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1 Introduction

Moduli space constructions, also referred to as collective coordinate methods, have been
especially successful in the description of the manifolds of possible vacua in quantum field
theories, e.g. [1–3] and in the characterisation of backgrounds in string theory, e.g. [4].
In the context of quantum field theories these methods have also turned out to provide
extremely good insights into the dynamical properties of solitons [5, 6]. In this application
the advantage of the approach is that it reduces the complicated field equations to simpler
classical equations of motion describing point particles. Many of the key features of the
wave dynamics are well captured in the collective coordinate description by identifying the
motion of the point particles with the centre of mass motion or distance of the waves. Some
well-known prototype wave-equations such as variants of the Korteweg-de Vries equations
reduce to well-known multi-particle systems such as the Calogero models [7].

Remarkably this approach does not only work well for integrable systems [6, 8], when
one can strictly speak of multi-solitons, but as well as for non-integrable systems [5, 6, 8–
19] in which one only encounters solitary waves. For most of the integrable systems one
is usually in the luxurious position to be able to carry out some explicit quality check to
test the success and shortcomings of the moduli space approach by comparing with the
exact multi-soliton solutions. For non-integrable systems this possibility usually does not
exist in an exact manner. However, for those systems the collective coordinate approach
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provides especially insightful information as it allows for the separation of different types
of modes present in these kind of systems [5, 6, 8–19].

Here we wish to extend the approach to integrable field theories that posses stable com-
plex multi-soliton solutions with real energies when suitable regularized by implementing a
PT -symmetry [20–22], i.e. a simultaneous reflection in space and time. This technique has
been adapted using ideas originally introduced in the context of non-Hermitian quantum
theories [23–26].

In principle there are various possibilities on how one might extend the moduli space
approach to non-Hermitian theories. The most obvious and general option is to consider a
non-Hermitian field theory from the very start, which possibly also leads to a non-Hermitian
reduced system in terms of the collective coordinates. The second option is to consider a
Hermitian field theory that possess complex solutions in parts of their parameter space so
that it leads to a non-Hermitian reduced system. Here we will focus at first on a theory that
is Hermitian as a field theory and also in its reduced variant, but possess complex solutions.
The Bullough-Dodd model [27, 28] is an integrable field theory with such features and will
serve here as a sample theory. We will construct its collective coordinates and compare
with the exact multi-soliton solutions.

Our manuscript is organised as follows: in section 2 we recall the key ideas of the moduli
space approach when applied to a 1+1 dimensional field theory. In section 3 we carry out
the moduli space analysis for the Bullough-Dodd model, we discuss the moduli spaces asso-
ciated to complex one and two-soliton solutions, recall the zero modes of the model, derive
analytical expressions for the collective coordinates by comparing with the exact soliton so-
lutions, conjecture the two collective coordinates that describe a newly found triple bounce
scattering and explain how to derive spatial displacements and time-delays by using the
moduli. Our conclusions are stated in section 4. The calculation of the integrals occurring
in the derivation of the reduced metric and potential are explicitly presented in an appendix.

2 Moduli spaces for 1+1 dimensional scalar field theories

We start by recalling some well-known features of the usage of a moduli space analysis to
1+1 dimensional field theories, see e.g. [5, 6] for recent clear expositions. The key idea
of this approach consists of reducing the classical field theory to a classical mechanical
system describing point particles in the hope that many properties of the original theory
are captured in its simplified version. We consider here a scalar field theory for which the
corresponding Lagrangian densities are replaced by their reduced versions

L =1
2∂µϕ∂

µϕ− V (ϕ) → Lred = T − Vred. (2.1)

Throughout the manuscript we adopt here the Lorentzian spacetime metric diag(1,−1). In
principle one might allow the field ϕ(x, t) and potential V (ϕ) to be complex and possibly
even non-Hermitian, but we will stick at first with a Hermitian version. Next we recall
how the reduced Lagrangian Lred is constructed. As a starting point one takes the static
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solutions φ(x,u) to the Euler-Lagrange equation for the classical field theory

φ′′ − ∂V (φ)
∂φ

= 0, (2.2)

depending on the space coordinate x and a set of constants u = (u1, . . . , un), i.e. we replace
ϕ(x, t) → φ(x,u) with φ̇ = 0. The constants are interpreted as the moduli or collective
coordinates spanning the moduli space of dimension n, which is determined by the number
of linearly independent zero modes. In turn, zero modes are the zero energy solutions to
the auxiliary Sturm-Liouville eigenvalue problem that arises in the stability analysis of a
linear perturbation, see e.g. [29] and references therein. In the moduli space approach the
constants are subsequently elevated to dynamical variables depending explicitly on time,
u → u(t). In terms of these variables we can now define the kinetic energy T of the field
evolution restricted to the moduli space and the reduced potential Vred occurring in the
reduced Lagrangian (2.1)

T = 1
2

∫ ∞
−∞

φ̇2dx = 1
2

∫ ∞
−∞

∂φ

∂ui
∂φ

∂uj
u̇iu̇jdx = 1

2gij u̇
iu̇j , (2.3)

Vred =
∫ ∞
−∞

[1
2
(
φ′
)2 − V (φ)

]
dx, (2.4)

where, together with φ̇ = (∂φ/∂ui)u̇i, the target space metric depending on the moduli
space coordinates has been put in place as

gij(u) =
∫ ∞
−∞

∂φ

∂ui
∂φ

∂uj
dx. (2.5)

The dynamics of the newly introduced n-point particles is now simply obtained from clas-
sical Euler-Lagrange equations

∂Lred(u, u̇)
∂ui

− d

dt

∂Lred(u, u̇)
∂u̇i

= 0, i = 1, . . . , n. (2.6)

A time-dependent solutions ϕ(x, t) to the full Euler-Lagrange equation can be con-
structed from the static solution by a Lorentz boost ϕ(x, t) = φ[(x−vt)/

√
1− v2], where v

denotes the velocity. We shall also make use of the energies for particular solutions, which
are computed from energy densities ε(ϕ) as

E[ϕ] =
∫ ∞
−∞

dxε(ϕ), ε(ϕ) =
(1

2 ϕ̇
2 + 1

2(ϕ′)2 + V (ϕ)
)
. (2.7)

Here our main objective is to investigate the properties of reduced theories that result
from complex solutions to the Euler-Lagrange equations that lead to theories that are
apparently ill-defined due to the fact that their potentials are not bounded from below,
have an indefinite or non-invertible target space metric. Moreover the solutions we consider
possess singularities that in general lead to infinite energies ε(ϕ), but can be regularized by
choosing some constants in the solutions in such a way that they become PT -regularized.
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2.1 Solutions and quality checks for the moduli

It appears that solutions in terms of the collective coordinates as functions of t describing
the dynamics of the reduced classical point particle systems are especially useful for sys-
tems that are not integrable and explicit solutions to the field equations are not available.
However, even when having exact solutions at hand the moduli space formulation might be
much simpler and in addition one may compare the two alternative versions in a number
of ways. Implicit solutions are readily obtained [5, 6]. Assuming for instance that we only
have one collective coordinate (modulus), say u(t), one can solve the energy equation

1
2g(u)u̇2 + V (u) = E, (2.8)

in a straightforward manner to

∫ u(t)

u0

√
g(ũ)

2[E − V (ũ)]dũ = ±(t− t0). (2.9)

Here one could think of the energy as E[ϕ] or E(u). This means we may involve either
the exact solutions from the field theory ϕ or are able to read off the “exact” expression
for u(t) from the exact solution ϕ. Alternatively, by staying fully within the moduli space
formulation we may attempt to solve directly the classical Euler-Lagrange equation (2.6)
of the reduced theory

ü = 1
g(u)

(
∂g

∂u
u̇2 + ∂V

∂u

)
, (2.10)

with some suitable initial conditions. The result obtained from (2.9) or (2.10) may then
be compared with the exact solution for u(t), subject to the possibility to extract it from
the exact solution of the field theory.

Alternatively [5, 16], when thinking of the collective coordinate as reducing the field
evolution to the classical evolution of a particle, we can also extract the collective coordinate
from the mean value or expectation value of x

〈x〉t =
∫
x%[ϕ]dx∫
%[ϕ]dx . (2.11)

Here %[ϕ] in (2.11) can be any density of a conserved quantity Q =
∫
%[ϕ]dx with Q̇ = 0.

For instance, the energy density ε(ϕ), as introduced in (2.7), or even powers of it [16] is most
readily available [5]. The limits of the integrals have to be suitably adjusted according to the
interpretation of what the quantity 〈x〉t should correspond to in the moduli space picture.

3 Moduli spaces for the Bullough-Dodd model

We will now consider a concrete example and construct the moduli spaces for the Bullough-
Dodd model [27, 28], which is an integrable scalar field theory defined by the Lagrangian
density

L =1
2∂µϕ∂

µϕ− eϕ − 1
2e
−2ϕ + 3

2 . (3.1)
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The classical as well as the quantum integrability of the model has been exploited in [30]
and [31], respectively. The main aspect we will be interested in here are the consequences
for the moduli space construction of the feature that some of the classical multi-soliton
solutions constructed in [29, 32] are complex in parts of their parameter regime. Using
arguments from [20–22] we recently established [29] that as an effect of the underlying
PT -symmetry and integrability the energies of these solutions are real, including those
for the complex solutions. Furthermore, a stability analysis revealed [29] that some of the
solutions are stable whereas others unstable. Crucially for our moduli space analysis also
the zero modes were constructed in [29].

We require here the classical Euler-Lagrange equation of motion (2.6) for the Bullough-
Dodd model (3.1), which is the nonlinear equation

ϕ̈− ϕ′′ + eϕ − e−2ϕ = 0. (3.2)

We present and analyse now the moduli spaces for various types of soliton solutions to this
equation.

3.1 One-soliton solutions with real or purely imaginary modulus

The simplest type of solution, a one-soliton solution,

ϕ±I (x, t) = ln

cosh
(
β +
√
k2 − 3t+ kx

)
± 2

cosh
(
β +
√
k2 − 3t+ kx

)
∓ 1

 , β ∈ C, (3.3)

was found to be stable in [29]. The solution ϕ+
I is a bright real peakon for β ∈ R and

|k| >
√

3, possessing a singularity at x0 = −[β +
√
k2 − 3t]/k. Taking therefore the

constant β to be purely imaginary, i.e. β ∈ iR, appears to be very natural as this choice
removes the singularity and makes the solution PT -symmetric, i.e. it remains invariant
under the transformation PT : x → −x, t → −t, i → −i, ϕ → ϕ. Moreover, with this
choice the energy in (2.7) becomes finite, which would otherwise diverge. This process of
choosing constants in the complex solutions that render it PT -symmetric is referred to
as PT -regularization. In turn, ϕ−I is real a dark double peakon for β ∈ R, |k| >

√
3 and

x < x+, x > x− where x± = −[β ± arccosh(2) +
√
k2 − 3t]/k. For the same reasons also

this solutions needs to be PT -regularized. More details and sample plots of these solutions
can be found in [29]. Here we will not explore the regime |k| <

√
3 of the parameter space

when ϕ±I become complex breather-like solutions.
Next we construct the moduli spaces corresponding to these solutions. For this purpose

we have to solve the static version of the Euler-Lagrange equation (2.2) to start with. As
we already have an exact time-dependent solution, the static solution is trivially obtained
in this case by the limit

lim
k→ks=

√
3

β→u

ϕ±I (x, t) = φ±I (x, u) = ln

cosh
(
u+
√

3x
)
± 2

cosh
(
u+
√

3x
)
∓ 1

 , u ∈ C. (3.4)

In turn, the time-dependent solution is recovered by the aforementioned Lorentz boost
with v = ±

√
k2 − 3/k. We identified here the constant β as our collective coordinate

– 5 –
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u. At first we take u to be real and elevate it to be a time-dependent function u →
u(t). Using equation (2.5), we compute the target space metric for the reduced theory
as g± = −2

√
3 and by evaluating the expression in (2.4) we obtain the reduced potential

V ±red(u) = −6
√

3. Therefore with (2.1) we assemble these results to the reduced Lagrangian,
which immediately gives the corresponding Euler-Lagrange equation and its solution

L±red = −
√

3u̇2 + 6
√

3, (2.10)⇒ ü = 0 ⇒ u(t) = c1t+ c2. (3.5)

With the particular choice of the constants c1 =
√
k2 − 3, c2 = β we recover the exact

value for u(t) that we may read off from (3.3) when compared to (3.4).
A second possible choice is based on the PT -symmetry argument mentioned above, so

that we can also take u→ iu in (3.4), which gives the same result as in (3.5), because u is
simply normalised with a different constant.

As a third option one may be tempted to associated the model to a two dimensional
moduli space by setting u→ u1 + iu2. However, in this case we obtain the metric

g± = 2
√

3
(
−1 −i
−i 1

)
, (3.6)

which is not invertible as det g± = 0. This is due to the fact that the moduli space is only
one dimensional as confirmed in [29], where we only identified one zero mode which must
be identical to the dimension of the moduli space. We recall this briefly in section 3.3.

Computing the expectation values of x by means of (2.11) for the one-soliton solu-
tion (3.3) gives

〈x〉t = −1
k

(√
k2 − 3t− β

)
. (3.7)

We obtain the same result by using instead of %[ϕ] the energy density ε[ϕ] or the momentum
density %[ϕ] = ϕ′ϕ̇. The result is to be expected, as is most obvious for ϕ+ for which the
solution is well localised, so that 〈x〉t = x0 corresponds to the centre of mass. For ϕ− we
interpret the expectation value as 〈x〉t = (x− + x+)/2, which is also its centre of mass.

3.2 One-soliton solutions with complex moduli

The second type of one-soliton solution

ϕ±II(x, t) = ln

ω∓2

1− 6βet
√
k2+3ω±1+kx(

1 + βet
√
k2+3ω±1+kx

)2


 , (3.8)

is always complex and does not possess a regime in which the solution is real. Here ω = eiπ/3

denotes the third root of unity. Sample solution are depicted in [29], showing that the
real part of this solution is an oscillation between a regular shaped soliton solution and a
double peakon solution. The solution has the property of having real energies despite being
complex, but they are still uninteresting as they were found in [29] to be unstable. Thus
in principle we would like to discard them right away for this reason. We show here briefly
for the one-soliton solutions that also their corresponding moduli spaces are ill-defined.

– 6 –
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The static one-soliton solution is obtained in this case by means of the limit

lim
k→ks=±

√
3ω2

ϕ±II(x, t) = φ±II(x, u) = ln
[
ω∓2 cos(

√
3ω±1/2x± u)− 2

cos(
√

3ω±1/2x± u) + 1

]
, u ∈ C. (3.9)

Since the coefficient of t is now always complex it seems natural to introduce two collective
coordinates on a complex moduli space, say a ∈ R and b ∈ R, as

t
√
k2 + 3ω±1 → a+ ib, (3.10)

such that the static solution becomes

φ±2 (x, a, b) = ln

ω∓2

1− 6β0β1e
a+ib+

√
3xω±2(

β0 + β1ea+ib+
√

3xω±2
)2


 . (3.11)

However, for this choice the target space metrics computed by means of (2.5) result to

g± = 2
√

3
(

ω±4 −ω±
5
2

−ω±
5
2 ω±1

)
, (3.12)

which are evidently not invertible as det g± = 0. Setting either a or b to zero still leaves
us with non-Hermitian kinetic energy terms

T±(a) =
√

3ω±4ȧ2, T±(b) =
√

3ω±1ḃ2. (3.13)

Dyson maps for these systems are easily found. Defining η±a = exp(±4/3πȧa) and η±b =
exp(∓2/3πḃb) we calculate the Hermitian counterparts from the adjoint action

η±a T
±(a)η∓a =

√
3ȧ2 and η±b T

±(b)η∓b =
√

3ḃ2. (3.14)

The reduced potential computed from (2.4) is vanishing.

3.3 Zero modes for the Bullough-Dodd solutions

We recall from [29] that the Sturm-Liouville eigenvalue problem of the stability analysis
for the Bullough-Dodd model reads

− Φxx + V (x)Φ = ω2Φ with V (x) =
(
eφ(x) + 2e−2φ(x)

)
. (3.15)

The static solution for the cusp and oscillatory solution acquire the form

φ±1 (x) = ln

cosh
(
β +
√

3x
)
± 2

cosh
(
β +
√

3x
)
∓ 1

 , (3.16)

which when substituted into (3.15) yield the potentials

V ±(x) = 1− 3
1∓ cosh

(
β +
√

3x
) +

8 sinh4
[

1
2

(
β +
√

3x
)]

[
2± cosh

(
β +
√

3x
)]2 . (3.17)

– 7 –
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We think now of the larger class of functions depending on the continuous parameter u as
ψ±(x, u) = φ±(x+ u/

√
3). The zero mode is then easily computed to

Φ±0 (x) = −
3
{

tanh
[

1
2

(
β +
√

3x
)]}∓1

2± cosh
(
β +
√

3x
) . (3.18)

One verifies that the Φ±0 (x) indeed satisfy (3.15) for the potentials (3.17) with eigenvalue
ω = 0. Notice that when taking u→ iu, as seems to be natural when k <

√
3, so that we

identify ψ±(x, u) = φ±(x + iu/
√

3), the resulting zero mode is the same as in (3.18) only
multiplied by i, which simply corresponds to u differently normalised.

3.4 Moduli spaces for two-soliton solutions

In the construction for moduli spaces resulting from two-soliton solutions we follow the
approach in [6] and start with a superposition of two one-soliton solutions involving the
collective coordinate as a constant, which is of course not a solution to the equations of
motion (3.2) due its nonlinear nature. Nonetheless, we take as our starting point

φ
(2)
± (x, u) = φ±1

(
kx/
√

3 + u/
√

3
)

+ φ±1

(
kx/
√

3− u/
√

3
)

(3.19)

= ln
{

1 + 3± 6 cosh(u) cosh(iβ + kx)
[cosh(u)∓ cosh(iβ + kx)]2

}
, (3.20)

where we re-introduced a parameter k with the factor 1/
√

3 simply included for convenience.
We also replaced β ∈ R by iβ, which converts the superposition into a PT -symmetric
expression, i.e. it remains invariant under PT : x → −x, t → −t and i → −i. As is now
well known [20–22], and has already been alluded to in the previous sections, this symmetry
is vital for the regularization of the energy of complex solutions. In addition, we will see
below that it will lead to well-defined expressions for the integrals that are required in the
construction of the reduced Lagrangian which would otherwise diverge. We further notice
that we may convert two solutions into each other simply by φ(2)

− (x, u, β+π) = φ
(2)
+ (x, u, β).

The centre of the two one-solitons in (3.20) are located at x± = ±u/k, so that the
modulus u measures k/2 times the distance between the two centres.

Let us now compute the effective Lagrangian based on the superposition of φ(2)
+ . The

metric results with (2.5) to

g(u, k) =
∫ ∞
−∞

∂2φ(2)(x, u)
∂u2 dx =

∫ ∞
−∞

G(x)dx (3.21)

=
∞∫
−∞

36 sinh2 u
[
cosh(u) cosh(kx+ iβ) + cosh2(kx+ iβ) + 1

]2
[2 + cosh(u− iβ − kx)]2[cosh u− cosh(kx+ iβ)]2[2 + cosh(u+ iβ + kx)]2dx

= 12
k

[
6u(cosh(2u)− 4) coth u− 4

√
3 arccosh(2) sinh2(u)

(cosh(2u)− 7)(cosh(2u) + 2) − 1
]
.

The integrand is here defined as the function G(x) for later reference. In the appendix
we explain in detail how this integral has been computed. The reduced potential resulting

– 8 –
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Figure 1. Reduced potential (3.23) panel (a) and reduced metric (3.21) panel (b) resulting from
the two-soliton solutions as functions of u for different values of the parameter k.

from the solution (3.20) is computed to

Vred(u) =
∫ ∞
−∞

[
1
2

(
∂φ(2)

∂x

)
+ eφ

(2) + 1
2e
−2φ(2) − 3

2

]
dx =

∫ ∞
−∞

W (x)dx (3.22)

=
∫ ∞
−∞

{
18k2 sinh2(kx+ iβ)(1 + cosh(u)(cosh(u) + cosh(kx+ iβ)))2

[2 + cosh(u− iβ − kx)]2[cosh u− cosh(kx+ iβ)]2[2 + cosh(u+ iβ + kx)]2

+
27 [1 + 2 cosh u cosh(kx+ iβ)]2

[
2 + [cosh u+ cosh(kx+ iβ)]2

]
2[2 + cosh(u− iβ − kx)]2[cosh u− cosh(kx+ iβ)]2[2 + cosh(u+ iβ + kx)]2

 dx.
We abbreviated the integrand in (3.22) as W (x). We notice that W (x) has the same pole
structure, periodicity and exponentially asymptotic behaviour as the function G(x) used in
the calculation of the metric, so that we can use the same method and contour as explained
in the appendix to compute the integral. We obtain

Vred(u) = 2k

4
√

3arccosh(2)−usinh(2u)
cosh(2u)−7 +

2
[
2usinh(2u)+

√
3arccosh(2)

]
cosh(2u)+2 −3

 (3.23)

+cothu
(

45ucsch2u

2k −6uk
)

+ 9
2k(cosh(2u)−7)3 {118−291cosh(2u)+30cosh(4u)

−4
√

3arccosh(2)[14cosh(2u)+cosh(4u)−3]−cosh(6u)+1080csch2(u)
+94usinh(2u)+7usinh(4u)} .

The potential and the metric are depicted in figure 1 for different values of k. We
observe that both the metric and the potential are always negative. Moreover, as we can
see in panel (a) of figure 1 the potential changes from a scattering potential to a binding
potential as k increases. However, we stress that due to the negative sign in the metric the
system is not a standard potential system.

Having calculated the reduced metric and potential we can immediate write down the
corresponding reduced Lagrangian and solve its classical Euler-Lagrange equation (2.10).
Our numerical solutions are presented in figure 2 as dashed lines. In our calculation we

– 9 –
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Figure 2. Collective coordinate u(t) as solution of the Euler-Lagrange equation (2.10) for the
reduced theory (dashed lines) versus the “exact” expression (3.29) (solid lines) read off from the
comparison of the exact two-soliton solution (3.24) with a superposition of two one-soliton solu-
tions (3.20) or obtained from the singularity structure of the exact solution (3.31) versus the average
value (2.11) with %[ϕ] = ϕ (dots).

have taken the initial values to be u̇(0) = 0, u(0) = arccosh[P (κ)]. This choice will
be justifies below. The same result is obtained from the integration of the conservation
of energy equation (2.9) with an adjustment of the initial conditions from u̇(0), u(0) to
u̇(0), E. Needless to say that different types of initial conditions will also produce different
types of qualitative behaviour.

In figure 2 we also present the average value of the distance 2x as stated in (2.11).
Both integrations are taken over [0,∞) and the density is simply related to the field itself,
i.e. we take %[ϕ] = ϕ. As initial conditions we take once u̇(0) = 0, u(0) = arccosh[P (κ)],
which is achieved by adjusting λ for varying κ as λ(1.8) = 44.543, λ(1.9) = 18.1828,
λ(2.1) = 8.2841, λ(2.5) = 3.7678, λ(3.0) = 2.10736 and λ(3.5) = 1.41988. We observe
that the moduli space calculation captures very well the qualitative behaviour of the exact
calculation. Moreover, for certain values of κ the fit is extremely accurate.

Let us next also explain how an analytic expression for the collective coordinate u(t)
may be derived.

3.5 Analytic expressions for the modulus from the exact two-soliton solution

In order to identify an analytic expression for the modulus we have seen already for the
one-soliton solution that in principle this is possible by comparing with the exact solution.
For the moduli space related to the two-soliton we compare now the superposition (3.20)
with an exact two-soliton solution. Such a solution is found for instance in [32]

ϕ̃(2)(x, t) = ln
(
τ0
τ1

)
, (3.24)

– 10 –
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with tau-functions defined as

τ0 = 1−4c1e
Γ1−4c2e

Γ2 +c2
1e

2Γ1 +c2
2e

2Γ2 +8c1c2
2α4

1−α2
1α

2
2 +2α4

2
(α1 +α2)2(α2

1 +α1α2 +α2
2)
eΓ1+Γ2

−4c2
1c2

(α1−α2)2(α2
1−α1α2 +α2

2)
(α1 +α2)2(α2

1 +α1α2 +α2
2)
e2Γ1+Γ2−4c1c

2
2
(α1−α2)2(α2

1−α1α2 +α2
2)

(α1 +α2)2(α2
1 +α1α2 +α2

2)
eΓ1+2Γ2

+c2
1c

2
2
(α1−α2)4(α2

1−α1α2 +α2
2)2

(α1 +α2)4(α2
1 +α1α2 +α2

2)2 e
2Γ1+2Γ2 (3.25)

and

τ1 = 1+2c1e
Γ1 +2c2e

Γ2 +c2
1e

2Γ1 +c2
2e

2Γ2 +4c1c2
α4

1 +4α2
1α

2
2 +α4

2
(α1 +α2)2(α2

1 +α1α2 +α2
2)
eΓ1+Γ2

+2c2
1c2

(α1−α2)2(α2
1−α1α2 +α2

2)
(α1 +α2)2(α2

1 +α1α2 +α2
2)
e2Γ1+Γ2 +2c1c

2
2
(α1−α2)2(α2

1−α1α2 +α2
2)

(α1 +α2)2(α2
1 +α1α2 +α2

2)
eΓ1+2Γ2

+c2
1c

2
2
(α1−α2)4(α2

1−α1α2 +α2
2)2

(α1 +α2)4(α2
1 +α1α2 +α2

2)2 e
2Γ1+2Γ2 , (3.26)

where Γi =
√

3[(αi − α−1
i )t− (αi + α−1

i )x]/2.
In order to match with the superposition (3.20) we have to reduce the amount of

free parameters from two, α1, α2, to one, say κ. This process is akin to constructing a
degenerate multi-soliton solution from a non-degenerate one, see [21, 33]. In fact, in [6] a
similar comparison was carried out for a two-kink superposition in the sine-Gordon model,
where the authors compared, see expression in equation (33), precisely with the exact
degenerate two-kink solution constructed in [33], see equation (2.12) therein. Here we
make the specific choices for the parameters in the solution α1 →

√
3/κ, α2 → κ/

√
3,

c1 → −λ, c2 → −λ, such that ϕ̃(2) acquires the form

ϕ̃(2)(κ, x, t) = ln

1 +
Q(κ) + 6P (κ) cosh

[(
3

2κ −
κ
2

)
t
]

cosh
[(

3
2κ + κ

2

)
x+ β(κ)

]
(
P (κ) cosh

[(
3

2κ −
κ
2

)
t
]
− cosh

[(
3

2κ + κ
2

)
x+ β(κ)

])2

 ,
(3.27)

where

P (κ) := (κ2 + 3)
√
κ4 + 3κ2 + 9

(κ2 − 3)
√
κ4 − 3κ2 + 9

, β(κ) := 1
2 ln

(
P 2(κ)
λ2

)
, Q(κ) := 3(κ2 + 3)2

κ4 − 3κ2 + 9 .

(3.28)
Comparing now (3.27) with (3.20) we notice that the two solutions formally coincide, i.e.
ϕ̃(2)(x, t)→ ϕ(2)(x, u) for

Q(κ)→ Qe = 3, 3
2κ + κ

2 ≡ k, u(t) ≡ arccosh
{
P (κ) cosh

[( 3
2κ −

κ

2

)
t

]}
. (3.29)

While the last two relations in (3.29) are exact identifications, the first relation can only be
achieved at the ill-defined values κ = 0, κ→ ±∞. Panel (a) in figure 3 shows the deviation
of Q(κ) from the exact value for all values of κ.

We explore here the entire regime for κ ∈ R, noting that for κ >
√

3 we have a
scattering between two bright peakons, panel (a) in figure 4, whereas for κ <

√
3 we obtain

– 11 –
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Figure 3. Panel (a): deviation ∆Q(κ) = Q(κ) − Qe as a functions of κ from the exact value Qe.
Panel (b): exact moduli u−(t) (solid lines) and u+(t) (dashed lines) from (3.33) exhibiting triple
bouncing for some values of κ.
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-1.14

-0.38

Figure 4. Panel (a): non-regularized bright two-peakon scattering for κ = 3, λ = 1 together with a
bright one peakon (dashed yellow line). The one-peakon constituent within the two-peakon solution
is tracked by a one-peakon solution with the same speed from the infinite past to the infinite future.
The deviation between the two pathes in the future in space and time is the spatial displacement
∆x and time-delay ∆t, respectively. The poles x± as identified in (3.30) are indicated. Panel (b):
non-regularized dark two-double peakons scattering for κ = 0.5, λ = 1 exhibiting a triple bouncing.
The poles x±

± as identified in (3.32) are indicated.

a scattering between two dark double peakons as depicted in panel (b) of figure 4. Notice
that the identification between k and κ as stated in (3.29) prevents to enter the breather
region of the one-soliton solutions |k| <

√
3.

In figure 2 we also present the plots for the analytic expressions of (3.29). In all our
numerical computations we take the values of u(0) and u̇(0) corresponding to (3.29) as
initial conditions. Notice that crossing from the bright to the dark regime is caused by the
change of P (κ)→ −P (κ), which is equivalent to changing β(κ)→ β(κ)+ iπ. We have seen
that for the superposition this shift relates the φ(2)

+ (x, u) to φ(2)
− (x, u).
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Another possibility to obtain analytic expressions for the modulus u(t) is to track
directly the center of mass in the exact solution. We note that the exact unregularised
two-soliton solution has poles, corresponding for κ >

√
3 to the peaks of the two one-

peakon constituents, at the positions

x± = 2κ
κ2 + 3

{
± arccosh

[
P (κ) cosh

(
κ2 − 3

2κ t

)]
− β(κ)

}
. (3.30)

Thus, together with the relation between κ and k, and u(t) as stated in (3.29) we obtain
for the distance between the two points

x+ − x− = 4κ
3 + κ2u(t) = 2

k
u(t). (3.31)

This means the function u(t) obtained directly from the exact solution is identical to the
one obtained from the comparison with the superposition in the muduli space analysis.

3.6 Conjectured collective coordinates for triple bouncing

We notice that the collective coordinate u(t) for the bright and dark peakon scattering are
the same. However, we clearly notice that the double peakon scattering in figure 4 panel (b)
exhibits a more intricate behaviour that is not captured by u(t). We observe that at first
the right component of the left double peakon bounces off the left component of the right
double peakon. Subsequently an internal scattering process takes place in which the two
components of the left and right double peakon bounce off each other. The last event in this
scattering process consists of a repetition of the first scattering event, i.e. right component of
the left double peakon bounces off the left component of the right double peakon. This triple
bouncing appears to be a new type of scattering behaviour different from the possibilities
previously discussed [34, 35], which were merge-split, bounce-exchange and absorb-emit
scattering.

We may therefore attempt to find a different type of moduli space that capture this
triple bounce behaviour. Inspired by the success of (3.31) we define once more a collective
coordinate by taken the difference between the singularities in the exact solution. We note
first that the four singularities of the dark double peakon are located at

x±± = ±1
k

arccosh

−2P (κ) cosh
(
κ2 − 3

2κ t

)
±

√
3P (κ)2 cosh2

(
κ2 − 3

2κ t

)
−Q(κ)

− β(κ)
k

,

(3.32)
where the signs in the subscript and superscript refer to the overall sign and the sign in
front of the square root, respectively. We keep the relation between k and κ as stated
in (3.29). See figure 4 for the relative location of these poles. In analogy to (3.31) we
therefore defined the new quantities

u±(t) = k

2
(
x±+ − x±−

)
(3.33)

= arccosh
[
±
√

3P (κ)2 cosh2
(
t
√
k2 − 3

)
−Q(κ)− 2P (κ) cosh

(
t
√
k2 − 3

)]
,
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to capture the triple bouncing observed in figure 4 panel (b). Indeed in figure 3 panel (b)
we see that while u+(t) exhibits the previously encountered single bouncing effect, u−(t)
reproduced well the triple bouncing effect, especially for smaller values of κ. For larger
values of κ this effect seems to be smeared out. We leave it here as an open question on
how these quantities may be obtained from a pure moduli space analysis involving a two
dimensional reduced Lagrangian for the variables u−(t) and u+(t).

3.7 Spatial displacements and time-delays

The defining feature of soliton scattering is that its one-soliton constituents regain their
original shape after the scattering event, but are displaced in space by an amount ∆x or
equivalently delayed in time by ∆t, see [36] and references therein for a recent exposition of
systems we consider here. From the exact solutions one may compute these quantities by
tracking the positions of the singularities in the one and two-peakon solutions and compare
their asymptotic values. We recall that the singularity for exact the bright one-peakon
solution ϕ+

I (x, t) in (3.3) is located at

x0(t) = −1
k

(
β +

√
k2 − 3 t

)
. (3.34)

From the exact expressions for the singularities in the bright two-peakon solutions in (3.30),
together with the identity arccosh(x) ' ln(2x) for x → ±∞, we find the asymptotic
expressions

x+(t) ' ±1
k

√
k2 − 3 t, x−(t) ' ∓1

k

√
k2 − 3 t− 2

k
β(κ), for t→ ±∞, (3.35)

where we used that lnP (κ) = β(κ) for λ = 1 and kept term of first and zeroth order in t.
The locations of the singularities can then be matched asymptotically

x0(t) ' x+(t), for t→ −∞, (3.36)

x0(t) ' x−(t) + 2
k
β(κ), for t→∞. (3.37)

Thus tracking the one-peakon constituents within the two-peakon solution and comparing
the asymptotic past (3.36) and future (3.37) we obtain the displacement and time-delay

∆x = 2
k
β(κ), and ∆t = 2√

k2 − 3
β(κ), (3.38)

respectively. In figure 4 this comparison is graphically illustrated and explained in the
caption. This interpretation presumes that we do not interpret the scattering process as
back bouncing, but assume that the two solitons have exchanged their position.

Let us now see how these quantities can also be obtained from the moduli space.
Recalling from section 3.1 the moduli space solution corresponding to the one-peakon, we
have left and right moving solutions trough the origin

u±1 = ±1
k

√
k2 − 3 t. (3.39)

– 14 –



J
H
E
P
1
0
(
2
0
2
2
)
1
0
9

Thus, in terms of quantities in the moduli space the displacement results to

∆x ' 2
k
u2(t)∓

[
u+

1 (t)− u−1 (t)
]
, for t→ ±∞, (3.40)

where u2(t) denotes the function u(t) as constructed in (3.29). Of course without the
comparison with the exact solutions the constant of integration in the moduli space can
not be fixed exactly.

4 Conclusions

For the explicit example of the Bullough-Dodd model we have demonstrated that the
moduli space formulation captures extremely well the centre of mass motion of the exact
one and two-soliton solutions. However, the constructed collective coordinate u(t) cannot
distinguish between the bright and dark solutions as their centre of mass is identical. We
conjectured two collective coordinates u±(t) that capture the more detailed features of
the dark double peakon solution, in particular the newly observed triple bouncing. While
multiple bouncing is well-known to occur in scattering processes of non-integrable system,
for integrable systems it appears to be hitherto unobserved and enlarges the previous
possibilities of merge-split, bounce-exchange and absorb-emit scattering [34, 35]. We leave
the task to derive u±(t) from within a collective coordinates approach via the use of a
reduced Lagrangian for future work. In addition, we may extract the spatial displacement
and time-delay between a one-peakon constituent within the two-peakon solution and a one-
peakon moving with the same speed by comparing the different moduli spaces constructed
from the corresponding solutions in the same manner as in the exact case.

In our analysis we have frequently used the ill-defined peakon expressions, solely for
the reason that their singularities are easily identified. However, we stress once more
that these solutions only make sense when they are suitable PT -regularised as then their
energy becomes finite. Moreover, the integrals that define the reduced metric and potential
become also suitable regularised in this way and can be computed as explained in detail in
the appendix.

For the moduli space resulting from the one-soliton solution we have seen that the
reduced metric becomes ill-defined, that is it becomes non-invertible, when we set up a
moduli space with the wrong dimension or when we construct it from an unstable solution.

We have seen that by comparing the modular spaces corresponding to the one and two
soliton one can extract the spatial displacement or time-delay. However, these expressions
remain generic constants that can not be fixed from within a pure moduli space analysis.

There are a number of issues that would be interesting to investigate further, a con-
struction of moduli space that resolves the details of the dark double-peakon solution and
mimic the triple bouncing, a treatment of reduced Lagrangians that correspond to non-
Hermitian theories and the construction of moduli spaces associated to fully non-Hermitian
field theories.
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A The integrals for the reduced metric and potential

We explain here in detail how the integrals for the reduced metric and potential in (3.21)
and (3.22), respectively, are computed using a method that adapts contour integrals for
periodic functions. In the context of studying moduli spaces this method was advocated
in [37] to evaluate integrals of a similar type for a different system.

First of all we notice that the function G(x) as defined in (3.21) is periodic and expo-
nentially vanishing asymptotically

G(x) = G

(
x+ 2πi

k

)
, and lim

x→±∞
G(x) ∼ 144 sinh2(u)e−2|kx|±i2β . (A.1)

Defining a new function G̃(x) := xG(x) we use the periodicity in (A.1) to observe

G̃

(
x− iπ

k

)
− G̃

(
x+ iπ

k

)
= −2πi

k
G(x), (A.2)

so that the integral we are interested in can we re-written as

∫ ∞
−∞

G(x)dx = ik

2π lim
R→∞

[∫ R

−R
G̃

(
x− iπ

k

)
−
∫ R

−R
G̃

(
x+ iπ

k

)]
. (A.3)

Adding now two integrals along the paths γ± = it ± R with R ∈ [∓π/k,±π/k] as
indicated in figure 5 to close the contour ΓR∫

γ±
G̃(z)dz =

∫ ±π/k
∓π/k

dt
dγ±
dt

G̃(γ±) = i

∫ ±π/k
∓π/k

dtG̃(it±R), (A.4)

we can re-express the integral in (A.3) as a contour integral of G̃

∮
ΓR→∞

G̃(z)dz = lim
R→∞

 R∫
−R

G̃

(
x− iπ

k

)
+
∫
γ+

G̃(z)dz +
R∫
−R

G̃

(
x+ iπ

k

)
+
∫
γ−
G̃(z)dz


= 2πi

∑
ResΓR

G̃(z) = −1
k

∫ ∞
−∞

G(x)dx. (A.5)

We have used here the fact that the two integrals, that were added in (A.4) in order to
close the contour ΓR, are both vanishing due to the asymptotic behaviour of G(x) when
R→∞ as stated in (A.1).
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Figure 5. Integration contour ΓR and poles of G(x) for u = 6/5, k = 3, β = 9/10.

Let us now specify this general set up for the concrete functions we are trying to
integrate. Identifying at first the singularities, we see that G(x) has double poles at

x(1)
p = u− iβ

k
+ 2iπn

k
, x(2)

p = −u− iβ
k

+ 2iπn
k

, (A.6)

x(3)
p = u− iβ + iπ − arccosh 2 + 2iπn

k
, x(4)

p = −u− iβ + iπ + arccosh 2 + 2iπn
k

, (A.7)

x(5)
p = u− iβ + iπ + arccosh 2 + 2iπn

k
, x(6)

p = −u− iβ + iπ − arccosh 2 + 2iπn
k

, (A.8)

with n ∈ Z. We only need to consider the poles in one 2πi/k-period. A sample for
n = 0 is depicted in figure 5. Notice that for real β the poles would lie on the integration
contour. In [37] this problem was overcome by introducing new variables. Here this issue
is automatically resolved by having taken β to be purely imaginary in order to obtain
PT -symmetric solutions. Summing up the residues related to the six poles for n = 0
in (A.6)–(A.8) leads to the expression reported in (3.21).

For the computation of the integral in (3.22) we first notice that W (x) has the same
periodicity as G(x) and is also exponentially vanishing asymptotically

W (x) = W

(
x+ 2πi

k

)
, and lim

x→±∞
W (x) ∼ 72(k2 + 3) cosh2(u)e−2|kx|±i2β . (A.9)

Moreover, W (x) has the same pole structure as G(x) so that we can use the same contour
as in figure 5. Adding up the 6 residues forW (x) leads to the expression reported in (3.22).
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