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ABSTRACT

It is important for political, commercial, security and safety reasons 
to be assured that all nuclear material is accounted for at all times. 
However, measurement and accessibility problems mean that there will 
always be a degree of uncertainty, which can be minimized but not 
eliminated by careful design of nuclear plants and instruments.

Much theoretical research has been carried out on the development of 
statistical methods for nuclear material accountancy. In practice, 
physical, financial and time constraints mean that the techniques must 
be adapted to give an optimal performance in plant conditions. This 
thesis aims to bridge the gap between theory and practice, to show the 
benefits to be gained from a knowledge of the facility operation.

Four different aspects are considered; firstly, the use of redundant 
measurements to reduce the error on the estimate of the mass of heavy 
metal in an 'accountancy tank' is investigated. Secondly, an analysis 
of the calibration data for the same tank is presented, establishing 
bounds for the error and suggesting a means of reducing them. Thirdly, 
a plant-specific method of producing an optimal statistic from the 
input, output and inventory data, to help decide between 'material loss' 
and 'no loss' hypotheses, is developed and compared with existing 
general techniques. Finally, an application of the Kalman Filter to 
materials accountancy is developed, to demonstrate the advantages of 
state-estimation techniques.

The results of the analyses and comparisons illustrate the importance of 
taking into account a complete and accurate knowledge of the plant 
operation, measurement system, and calibration methods, to derive 
meaningful results from statistical tests on materials accountancy data, 
and to give a better understanding of critical random and systematic 
error sources.

The analyses were carried out on the head-end of the Fast Reactor 
Reprocessing Plant, where fuel from the prototype fast reactor is cut up 
and dissolved. However, the techniques described are general in their 
application.
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NOTATION

Statistical tests

NRTMA Near Real Time Material Accountancy
MUF Material Unaccounted for
CUMUF Cumulative MUF
ACUMUF Average Cumulative MUF
ITMUF Independently Transformed MUF
MUFR MUF-Residual
KALR Kalman-Residual
KALMUF Kalman-MUF
REMUF Retrospective-MUF
GEMUF Geschätzter-MUF (Estimated-MUF)

Pneumercators

A "Overall" gauge reading (tank full) (mm H 20) 
a "Heel" reading (from "Overall" gauge) (mm H20)
P "Neck" gauge reading (mm H 20)
s in tank specific-gravity meter reading (mm H 20) 
d distance between dip-tubes on 's' (mm)
D distance between 'overall' and 'neck' dip tubes (mm)

Subscripts

T = "at tank temperature" 
t = "at laboratory temperature" 
20 = "at 20°C"
L = "of liquor" 
w = "of water" 
a = "of air"

Expansion coefficients

a expansion coefficient of 5M nitric acid at 20°C 
6 volume expansion coefficient of stainless steel tank at 20°C
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Main variables

T tank temperature (°C) 
t laboratory temperature (°C)
L mass of heavy metal (g) 
p density (g/1)
Z concentration of heavy metal, weight for weight (g/g)
Y concentration of heavy metal, weight for volume (g/1)

MVUE notation

[L] Minimum Variance Unbiased Estimate of the mass tranfer (g)

V Volume of transfer (1)

Concentration, weight for volume (g/1)

C C o n c e n t r a t i o n ,  weight for weight (g/g)

Ci,Vl Cw/y, V calculated from lab. determined density

^ 2 ^ 2 C /v> V calculated from in-tank density estimate 's'

Co,Vo C V calculated from hydrostatic pressure difference
j j w /v (' A ' - ' P ')

C4 ^w/V us:'-n£ plant control determination 'Y'

[L-] Minimum variance estimate of mass transfer, using lab. 
determined density to calculate volume

[L^] Minimum variance estimate of transfer using in-tank 
density determination 's' to calculate volume

[4 ] Minimum variance estimate of transfer using hydrostatic 
pressure difference (A - P) to determine volume

\p Functional relationship representing the tank calibration
process relating liquor height to volume

V V V Coefficients for [4 ]

Yr Y2 ’ y3 ’ y4 Coefficients for [l2]

V u2> ^ 3  J 4̂ Coefficients for [L3]
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W1 12 MVUE weighting coefficients for [L]

£ Summation operator
i,j Summation indices
a Standard deviation
X Lagrangian undetermined multiplier
A Matrix to be inverted to obtain minimum variance

coefficients

Correlation notation

Inv
U
IP
OP
Cor
Cov
a2(x)

Inventory
Net input
Input
Output
Correlation
Covariance
Variance of x

Subcripts refer to the balance period number
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Kalman Filter notation

X State vector

A Progression matrix

u Input vector

(A) Progression model error vector

Z Measurement vector

H Observation matrix

V Measurement error vector

Q Progression model error covariance matrix

R Measurement model error covariance matrix

X Predicted state vector

P Covariance matrix of predicted state

X Estimated state vector

G Covariance matrix of estimated state

K Kalman gain matrix
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1. Introduction

In any field dealing with valuable or dangerous materials, the operator 

will want assurance that all quantities in his care are secure and 

accounted for. In many cases the risk will be clearly defined: for 

example, theft for precious metals, or leakage to the environment for 

toxic or radio-active chemicals.

For the nuclear fuel cycle there is the additional need related to 

international agreements covering the restriction placed on the use of 

fissile plutonium and uranium. The processes of verifying the use of 

these materials, which are implemented by the International Atomic 

Energy Agency (IAEA) and Euratom, are collectively known as 

international safeguards. Safeguards are essential to encourage public 

confidence and assure the international forum of the integrity of the 

nuclear fuel cycle.

The aim of the Safeguards Inspectors is to establish with a high degree 

of confidence that no material has been diverted from civil use. In 

designing a safeguards system, the task must be viewed as a non- 

cooperative two-person game. The political consequences of the

inspectors decision are significant; if history proves his declaration 

of confidence in the integrity of the declared material cycle false, the 

value of safeguards is severely weakened. If, on the other hand, the 

available data points mistakenly to a misappropriation, the operator may 

question his involvement in a treaty entered voluntarily.

There is thus good reason to take all necessary steps to minimize the 

uncertainty on measurements of nuclear materials. While instrumentation 

is continuously improving, in certain parts of a nuclear plant
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transducers cannot be changed after installation. Thus there will 

always be limits to the accuracy with which determinations can be made, 

which leave a 'grey area' in which it is difficult to decide whether the 

discrepancies are due to measurement error or diversion. This is where 

statistical tools play their part; calculating the standard deviations, 

conditioning the data, and applying decision criteria.

The task of material accountancy is essentially a control problem, using 

information from inputs, outputs and inventories to decide whether the 

process is 'in control', that is, no loss of material is taking place. 

Much general theoretical work has been carried out on different aspects 

of material accountancy, but as yet no standard techniques have been 

adopted. Suggestions pertaining to the research carried out here are 

discussed in the next chapter.

This thesis demonstrates the application of statistical and control 

theory to materials accountancy in a practical nuclear facility, to 

either improve accuracy or knowledge of the errors. The benefits have 

been quantified either by theoretical calculation, or by statistical 

simulation.

An introduction to the principles and practices of nuclear material 

accountancy is given in chapter 2, together with a summary of the 

research already carried out in this field.

In bridging the gap between the theoretical developments and practical 

application, an understanding of the plant under consideration is 

required. Chapter 3 contains a general introduction to the techniques 

and problems of assaying nuclear materials, and a description of the 

operation and instrumentation of part of the Fast Reactor Fuel 

Reprocessing Plant at Dounreay, Caithness. The impact of this on the
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material accountancy is also considered.

The research carried out for this thesis falls into to two areas of 

materials accountancy. The first is concerned with applying statistical 

techniques to improve the quality of the accountancy data. Currently, 

the most accurate process quantification of nuclear material is carried 

out in an accountancy tank, with the material in solution. Chapter 4 

describes a technique for minimizing the random variance of the estimate 

of material in an accountancy tank, by utilizing parallel, redundant 

measurements.

The second area involves the use of plant data to quickly and accurately 

identify a material diversion. In Chapter 5, a plant-specific method of 

producing an optimal statistic from the input, output and inventory 

data, to help decide between 'material loss' and 'no loss' hypotheses, 

is developed and compared with existing general techniques.

Paralleling this, Chapter 6 illustrates the use of state-estimation 

techniques in the form of a Kalman Filter as an alternative means of 

producing an optimal test statistic.

The conclusions, and suggestions for further work, are presented in 

chapter 7.
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2. Nuclear material accountancy

2.1 Introduction

To set the context of the research described in this thesis, and explain 

the methods and terminology of nuclear materials accountancy, this 

chapter comprises a summary of the fundamental definitions and the 

data-processing techniques suggested for the quantitative application of 

nuclear material safeguards.

2.2 Material Unaccounted For

An important aspect of nuclear safeguards involves accurate knowledge of 

the whereabouts and quantities of all nuclear materials. This is termed 

'material accountancy'. As even small quantities of some nuclear 

materials, particularly plutonium and uranium-235, are of strategic 

value, careful checks are kept on the discrepancy between expected and 

measured quantities.

Thus the fundamental statistic in nuclear material accountancy is 

'Material Unaccounted For' (MUF), which can be defined as [1]:

Material Unaccounted For = Book inventory - Physical inventory

A boundary is drawn around the accountancy area, and all transactions of 

material through this boundary are recorded. At regular intervals, a 

'balance' is struck, comparing the expected inventory with the plant 

measurements. The difference is the MUF for that 'balance period'. Thus 

for balance period k;
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( 2 . 1 )

where Inv^ is the measured inventory of the area at the end of 

balance period k, and is the measured net input to the area 

during the balance period.

MUFk = <Invk-l + Uk> - Invk

2.3 Sources of MUF

MUF can result either from a real loss (or gain) of material, from 

measurement errors [2], or from errors in recording or processing the 

data. Statistical tests are used to identify anomolies which require 

further investigation.

Analysis of the MUF over a number of balance periods can help identify 

systematic errors in any of the estimates, and indicate transcription 

faults by showing an inconsistency.

As each MUF statistic comprises several measurements, it is generally 

assumed (by the central limit theorem) to be approximately normally 

distributed. Little reliable real data exists to confirm this; figure

2.1 shows a rough probability density distribution of the standardized 

MUF for 100 balance periods in part of the Fast Reactor Fuel 

Reprocessing Plant as Dounreay. The distribution is distorted by the 

fact that the mean of each MUF value is not necessarily zero - this is 

discussed in more detail later. However, it does indicate that the 

normal assumption is reasonably valid.
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D e n s ity

S ta n d a r d iz e d  MUF
MUF d a t a  f r o m  PFR R e p r o c e s s i n g  P l a n t  
100 b a l a n c e  p e r i o d s

Figure 2.1 Sample probability density, MUF data

2.4 Near Real Time Material Accountancy

In 'traditional' material accountancy, a material balance in struck 

relatively infrequently - typically twice a year. Intermediate 

inventories are only approximations, used for plant control purposes. 

Improvements in the accuracy and speed with which measurements can be 

made has led to 'Near Real Time Material Accountancy' (NRTMA), where 

balances are calculated perhaps once per day. This reduces the time 

taken to detect a diversion (an important consideration if the material 

could be quickly converted to military purposes), but careful 

consideration must be given to minimizing the false alarm rate, to avoid 

unnecessary time and expense in investigation.

Much discussion and development of NRTMA has taken place over the last
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decade; the first experiments at commercial reprocessing plants were 

instigated in 1980 at Tokai, Japan [3,4], and Dounreay, Scotland [5]. A 

summary of the status of the NRTMA theory in 1982 is described by Lovett 

et al [6] and Gupta et al [7].

Disputes over the relative ability of NRTMA to ultimately detect a 

diversion of a given amount of material, compared to traditional 

accountancy, were addressed by Jones [8]; he demonstrated that in a 

'worst case' of protracted loss carefully designed NRTMA was only 

marginally inferior, and was likely to 'alarm' much earlier.

The performance of a test against any loss in conventional accountancy 

can be compared with the 'optimal' Neyman-Pearson test for that 

scenario. The Neyman-Pearson lemma assumes that the diversion scenario 

is known, and enables the maximum possible detection probability to be 

calculated [9,10]. The test can be expressed:

NP. = M?. I71.MUF, (2.2)k -k k ---k

where M^ is the loss vector up to period k. In practice, this is 

not applicable, as the loss is unknown.

The introduction of NRTMA has greatly broadened the range of statistical 

treatment that can be carried out on the data. The loss pattern, as 

well as the loss magnitude, is now an unknown variable, so no single 

equivalent of the Neyman-Pearson tests exists as a guide to the design 

of an optimal detector for all diversion scenarios. This problem is 

discussed by Leitner et al [11], who conclude that a sensible NRTMA 

strategy must be evolved from a consideration of likely diversion 

scenarios, acceptable detection/timeliness/false alarm compromises, and
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plant specific considerations. No standard method has yet been adopted; 

a review of proposals is given in the next section.

In general, the test statistic (either the MUF or a quantity derived 

from it) can either be compared with a threshold linked to its variance 

[12], or submitted to Page's Cumulative Sum (CUSUM) test, which is 

described in the next section.

2.5 Test procedure

The MUF figures for a sequential set of balance periods are used as the 

basis for statistical tests, to detect material loss scenarios ranging 

from one large diversion to small diversions over a number of balance 

periods. The tests are designed to be as sensitive as possible, while 

attempting to ignore 'loss' due to measurement errors. The 'power' of a 

test is defined as its probability to alarm a diversion; the 

'credibility' is the probability of not alarming if there is no 

diversion. A useful figure is the 'false alarm rate' (FAR), which is 

equal to (1-Credibility).

2.5.1 Comparison with a threshold

On balance period k, the test statistic for that period (denoted e^) 

is compared to a predetermined threshold h^. The test can be 

expressed

Alarm if e^ > h^ (2.3)

While material losses are the main concern, an apparent gain that is 

'out of bounds' also requires investigation. The test can thus be
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written

Alarm if |e^| > (2.4)

If e^ is zero-mean, with a standard normal distribution (calculated 

by dividing the source statistic by its standard deviation), for 

each application of the test the choice of 'h^' determines the 

credibility:

hk Credibility False alarm rate

1.5 86.64% 13.36%
2.0 95.45% 4.55%
2.5 98.76% 1.24%
3.0 99.73% 0.27%

Prob density

Figure 2.2 Setting thresholds to achieve the required credibility

A false alarm rate of 5% is generally regarded as acceptable. This is 

easy to apply in conventional accountancy, by choosing h=2. However, if 

the test statistics are independent, a campaign of 20 balance periods 

with the same threshold will give an overall credibility of (0.9545)20, 

giving a false alarm rate of 60%, for NRTMA. To maintain the false
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alarm rate at 5%, 'h' will have to be increased to 3.

This is covered in greater detail by Russell [13]. The same author also 

describes a method for calculating overall credibilities where the test 

statistics are correlated, by evaluating multinormal probability 

densities [1A].

The power of a test is dependent on the loss scenario.

A time plot of a non-cumulative statistic is analogous to the Shewhart 

control chart [15].

2.5.2 Application to Page's CUSUM test

Page's CUSUM test [16] is a development of the sequential control chart, 

and has proved useful in process and quality control. At each step, a 

value S is attributed to the process; this is calculated from a plant 

parameter x, and is defined by

S+ = max ( 0, S^_1 + x̂ . - K ), k=l,..,n Sq = 0 (2.5)

An alarm is signalled if

S£ > H (2.6)

A second statistic is calculated to check for the negative 'out of 

control' condition:

S~ = min ( 0, + x^ + K ), k=l,..,n Sq = 0 (2.7)
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This alarms if

Sk < H (2.8)

In simple terms, the test allows a bias of K per balance period, and 

sums the drift away from the zero mean. By constraining S+ > 0, and 

S <0, the test responds quickly to a drift above the bias K. 

Figure 2.3 shows the test plotted in terms of x, using a V-mask. The 

slope of the mask is K (tan 0 = K), and the mask is positioned such 

that the mouth of the V-mask on the point of application of the test 

is 2H. If any point of the plot crosses the lower line, a positive 

'out-of-control' signal is given. If it crosses the upper line, 

that alarm is negative. This representation gives a clear visual 

indication of the performance of the test parameter; if the bias 

alters, the point at which it occurs can be easily deduced.

Figure 2.3 Continuous plot of CUSUM with V-mask

However, to contain the height of the graph, it is often more 

convenient to plot S. As S+ is never less than zero, and S_ is 

never greater than zero, the two can be plotted on the same axes 

without conflict, as illustrated in figure 2.4. The equivalence of 

the two forms is demonstrated by De Bruyn [17].
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3 -

Figure 2.4 Plot of S+ and S

The performance of the test is determined by the parameters H and K. 

Johnson [18] uses a non-precise analogy between the CUSUM test and 

sequential likelihood ratio tests to derive the following estimates for 

the parameters, from the expected standardized bias y and the false 

alarm probability a0.

H = -1/y . In a0 (2.9)

K = % y (2.10)

This comparison is based on suspect assumptions. However, the 

approximation for K is generally accepted as being valid [9,19,20,21]. 

In practice [22,23] K is chosen to match the diversion scenario under 

test (for example, around 0 for small, protracted loss, or 3 for an 

abrupt, large loss) and H is chosen by simulation to yield the desired 

FAR.

Under many conditions the performance of the CUSUM test exceeds that of 

the Shewhart-type test (see chapter 6). The latter remain popular, 

partly due to the ease of interpretation. The use of two CUSUM tests, 

with small and large 'K', does offer a good all-round performance for 

NRTMA [24].
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2.6 Test statistics proposed for NRTMA

The test statistics currently used or proposed for NRTMA fall into three 

categories. Firstly, the MUF data may be interpreted directly or 

summed. Secondly, a technique may be adopted to remove the serial 

correlation from the MUF sequence, giving a set of zero-mean 'filtered' 

statistics. Thirdly, the latter technique can be extended to smooth the 

data, producing an estimate retrospectively with later information. The 

methods, advantages, and problems of each are set out below.

2.6.1 MUF, CUMUF & ACUMUF

The power and credibility of the tests are adversely affected by serial 

correlation in the test data.

There is an inherent covariance between successive MUF values due to the 

appearance of Inv^_^ in both MUF^ and MUF^._^ of

Cov(MUFk_1,MUFk) = - ff2(Invk_1) (2.11)

After the first balance period, the MUF values are not zero-mean. 

Assuming each MUF value has an approximately normal distribution, figure

2.5 illustrates that maintaining the 'decision thresholds' (to maintain 

the power) will result in an reduction of the credibility (a higher 

false alarm rate).
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Period 2

Figure 2.5 Effect of unaccounted negative correlation on the 
credibility

The MUF sequence is thus not the best indicator upon which to base 

decisions. Two basic approaches to ameliorate this effect may be 

adopted. Firstly, summing the MUF values over a number of balance 

periods (to give Cumulative MUF or CUMUF) will tend to reduce the 

significance of the correlation:
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k
CUMUF, = Z MUF. (2.12)

* i=l 1

This gives an unbiased estimate of the total loss for any diversion 

scenario. However, the variance increases with the number of balance 

periods:

a2(CUMUFk)
k
Z

i=l
(a2(IP.) + a2(0P.)} + a2(Inv0) + a2 (Inv^)

(2.13)

The sensitivity thus decreases as the campaign progresses, and the later 

statistics are highly correlated. The final CUMUF figure is equivalent 

to MUF in conventional accountancy, and gives an easily-interpretable 

insight. It is the Neyman-Pearson test for the whole campaign, and 

gives a minimum variance unbiased estimate of the total loss.

Similarly, Average CUMUF (ACUMUF) is defined as:

ACUMUF, = - CUMUF, (2.14)
R k R

The scaling has no effect on the absolute performance of the test; 

ACUMUF behaves in the same manner as CUMUF. Both offer a high 

power/credibility compromise to detect losses early in a campaign, but 

the ratio decreases with an increasing number of balance periods. This 

weakness greatly reduces their effectiveness as safeguards deterrents - 

a potential diverter can easily plan an optimal theft strategy to 

minimize the risk of detection.

2-12



2.6.2 Filters

Given the same 'measurement model', which in this case translates to the 

MUF covariance matrix, all filters will generate the same results in the 

no-loss scenario. Three different approaches to obtaining a set of 

independent data from a correlated sequence have been developed. 

Stewart [25,26] described a method of diagonalizing the covariance 

matrix. In the nuclear safeguard field, Pike & Woods [27] took 

conditional expectations, calling the result Independently Transformed 

MUF (ITMUF). Using a plant model in which all inventories, inputs and 

outputs are determined independently on each balance period, and 

assuming constant variances on all the measurements, the errors on the 

MUF sequence can be described by a fixed, tri-diagonal covariance 

matrix:

a 2 pa2 0 0 0 0

pa2 a 2 pa2 0 0 0

0 pa2 a 2 pa2 0 0

0 0 pa2 CT2 pa2 0

0 0 0 pa2 a 2 pa

0 0 0 0 pa2 a 2

The correlation factor p will in general be in the range 0 (for a 

throughput-error dominated plant) to -% (for an inventory error 

dominated plant) [13]. As all the variances are assumed fixed, p is 

also fixed. This covariance matrix can be used as the basis of a matrix 

transformation to yield the ITMUF sequence.

Calculation of the transformation matrix

Given a serially correlated vector x »representing a MUF sequence with 

covariance matrix F, a transformation matrix to remove the serial
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correlation can be calculated [13]. This matrix, B, is lower triangular

with leading diagonal elements all . The transformation can be
$ tcdecV

y = B .x (2.15)

where each element of y is independent of the others.

The matrix B has the property that

D B.F.BT (2.16)

is diagonal. This is effected with a matrix of the form [13]:

1 0 0 0

B21 1 0 •

B31 B32 1

0

Bnl • • B . 1 n n-1

Thus,

ITMUF1 = MUF1

i t m u f2 = b 21.m uFi + MUF2

i t m u f3 = b31.m u f1 + b 32.m u5 + MUF

i t m u f4 = b41.m u f1 + b42.m u f2 + B43 + MUF. 4

Pike & Woods extended the covariance matrix to include calibration bias 

[28], and Beegden et al [29] also take systematic errors into account. 

The assumptions of independent measurements and constant covariances are 

still held.
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For the 'ideal' plant generally considered [23,30,31], with a complete 

set of independent measurements taken on each balance period and a 

constant ratio of inventory:throughput, this technique will indeed be 

fairly effective.

Sellinschegg [32] derived a recursive algorithm for the same purpose, 

also based on conditional expectations. He termed the resulting 

sequence MUF-residuals, or MUFR.

MUFRk = MUFk - E(MUFk |MUF1 ,...... M U F ^ ) (2.17)

Visualizing the same measurement model as Pike & Woods, he comments that 

this is identical to ITMUF. However, his derivation is expressed in 

more general terms and can be applied to different models.

To make the distinction clear, ITMUF will be used to describe the 

transformation with a fixed, tri-diagonal correlation matrix, the 

off-diagonal term being the average correlation between successive MUF 

figures, while MUFR will refer to a sequence with all the serial 

correlation removed. The principle of the calculation is identical to 

that of ITMUF; Sellinschegg describes an efficient recursive algorithm 

for effecting the transformation in the same paper [32].

The third method centres on the use of state estimation techniques, or 

the Kalman Filter [33,34]. A recursive matrix equation describing the 

plant parameters of interest in terms of the last determined state is 

drawn up; this will in general include an 'uncertainty' element 

reflecting the known range of deviation from the model progression. A 

measurement model describes the plant parameters in terms of the 

determinations that are made on the plant; these measurements will also
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have an uncertainty associated with them. The Kalman Filter weights the 

predicted progression and the measurements according to their 

reliability, to produce optimal linear estimates of the parameters. A 

derivation of the Kalman Filter is given in Appendix VIII.

The application of Kalman Filtering to nuclear material accountancy was 

first suggested by Pike, Morrison & Westley [35]. They suggested a 

filter with the state vector comprising the inventory and the loss:

Jk+1 = Xk + Tk “ ^  <2'18>

where

Jk+1 Lk * \ (2.19)

I^ = True inventory at start of period k 

T^ = True net transfers during period k 

= Material loss during period k

= zero-mean random variable denoting modelling error

Using simulation, they demonstrated the improvements in performance 

offered by this technique over MUF and, to a lesser extent, ACUMUF. 

Stewart [25,26] developed a method for producing an optimal linear 

inventory estimate by weighting a progression model of the inventory and 

the measurements according to their accuracies, by minimum-variance 

techniques. This should give the same results as Pike et al's Kalman 

Filter when the loss is zero; however, by including the loss as a 

parameter, the Kalman Filter can adapt to be optimal for a loss scenario 

that fits the progression model - in this case, a constant loss on each
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balance period.

Sellinschegg [32] demonstrates that the Kalman Filter can be used to 

generate approximate MUF-residuals. The Filter is built around a model 

of the MUF:

MUF^^ = MUF̂ . (~ denotes an expected quantity) (2.20)

The measurement of the MUF can be expressed:

MUFk+l = MUFk+l ~ nk+l " \ + l  + ®k+l + &k+l 4 X 4 vk (2-21)

where h = random error in inventory determination

v = systematic error in inventory determination 

e = random error in transfer determination 

6 = systematic error in transfer determination

The key element of the state vector is the MUF, but it is augmented to 

allow for the correlations introduced by the systematic errors and the 

links with errors on other balance periods. The state vector is thus

MUF
n
V

l 6

The approximate MUF-residual is calculated by subtracting the predicted 

value of the MUF from the measured value - as this is a Kalman Filter 

residual, it will be termed KALR:

“ “ W  - HUFk.i - ™ Fk*i <2-22>
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In additional, the Kalman Filter produces a minimum variance unbiased 

linear estimate of the true mean MUF - a constant-loss estimator.

Shipley [36] uses a similar implementation in 'DECANAL', a software 

package for materials accountancy. Several progression models for the 

MUF can be invoked, giving optimal performance against constant, random 

or deterministic diversions.

The 'CIMACT' material accountancy software package written at Winfrith 

Technology Centre [37] includes the Pike et al Filter and a two-state 

version of the Sellinschegg/Shipley Filter, with the systematic terms 

excluded. This package was originally written specifically for 

materials accountancy at the Fast Reactor Fuel Reprocessing Plant, and 

no data concerning systematic errors was available. These are described 

by Russell [19].

Just as the transformation techniques rely on the accuracy of the MUF 

covariance matrix, the Kalman Filter implementations require an accurate 

model of the process. Another illustration of the links between the 

covariance matrix approach and the Kalman Filter is provided by Nakamori 

& Hataji [38], who demonstrate the application of a Kalman Filter using 

the measurement error covariance matrix in place of the state-space 

progression model.

2.6.3 Smoothers

The correlation links to each MUF value go forward in time as well as 

back. By taking advantage of this, it is possible to smooth the MUF 

sequence. Pike et al describe how this can be effected with their
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Kalman Filter [35]. Russell et al [39] developed a smoothed estimate 

based on an extension of ITMUF. The resulting statistic, termed 

Retrospective-MUF or REMUF, can be expressed:

REMUF. , k.d MUFk_d - E ̂ MUFk_d MUF.;i=l,..,k;i*k-d (2.23)

where the test is applied on period k with a delay of d. Thus 

REMUFk d is the smoothed estimate for period (k-d). Russell 

demonstrates that this gives a significant improvement in 

performance over ITMUF. His analysis is restricted to a tri­

diagonal covariance matrix, which means that the set

MUF. ; i < k-d-1l

is independent of the set

MUF. ; i > k-d+1l

Extending this to a fuller covariance matrix introduces substantial 

complications.

Seifert [31] has suggested an alternative smoothed statistic, called 

Geschatzter-MUF (Estimated-MUF) or GEMUF. Echoing the Neyman-Pearson 

test,the statistic is calculated from:

GEMUFk = MSk.I~1.MUF1 (2.24)

MSk is an estimate of the loss pattern, and has been chosen by 

experimentation as:
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MS, = - . (MUFk_2 + MUFk_1 + 3.MUFk + MUFk+1 + MUFk+2) (2.25) 
k

Seifert compares the absolute power of this statistic with CUMUF, Page's 

Test, and the theoretical optimal Neyman-Pearson test. While not as 

powerful as CUMUF for protracted diversions starting on period one, 

GEMUF offers a robust performance against a number of diversion 

scenarios, a desirable facility for safeguards assurance.

Again, this test is dependent on the quality of the covariance matrix, 

or measurement model. Recognizing this, Beegden, Seifert and others 

working at the Kernforschungszentrum Karlsruhe with data from the 

Wiederaufarbeitungsanlage Karlsruhe reprocessing facility, progressed 

from a 'one-block model' (fixed covariance matrix with allowance for 

systematic errors) [40,41], to a full analysis of each measurement 

variance with flow-chart information [42]; this follows a similar 

approach to the MUF-residuals calculation detailed in this thesis, and 

was published at the same conference [43].

2.7 Choice of thresholds

The only control that can be pre-set for any test are the 'alarm' 

thresholds; these govern both the power and the credibility. The cost 

of investigating false alarms, in both money and resources, means that 

these must be constrained; the test must thus be carefully selected to 

maximize the power.

Several methods of comparing tests have been proposed. As illustrated 

above, the false alarm rate is dependent on the number of balance 

periods; results can only be interpreted with information about the
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model. To circumvent this, the concept of the 'Average Run Length' 

(ARL) has been proposed, as it requires no qualification. L°, the ARL 

with no loss, is set to the required value (calculated from 1/a). For 

a given diversion, the test with the shortest L 1 (the ARL after the 

loss) is the most powerful. It also gives a direct indication of 

timeliness, appealing in NRTMA. Leitner et al [30] use this measure, 

but they comment that it is difficult to justify from first 

principles.

The run length distribution may be highly skewed, and is affected by 

correlation in the test data [44]. Thus, comparing tests on the basis 

of a fixed ARL may not indicate that they have an equi-probable chance 

of false alarming. For example, setting the ARL much longer than the 

campaign length will result in a disproportionately large number of 

CUMUF false alarms, because of the strong positive correlation in the 

sequence.

Leitner et al [11] demonstrated this effect by comparing performance on 

a 23-balance-period campaign, setting L° = 100. Uncorrelated statistics 

(MUF-residuals) have an overall FAR of

[1-(1-a)2 3] = 0.206

The CUMUF sequence has the best performance, but has a FAR of 0.74. 

Clearly this does not offer a fair comparison, as the cost is related to 

the FAR, and the ARL is a secondary measure.

Pike & Woods [45] proposed a refinement using run length 

percentiles, defining Pj(L) by
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j/100Prob { run length <= Pj(L) }

where L is the loss occurring per balance period. Thus P^q (O) is 

the run length below which 10% of runs end under no diversion. The 

authors suggest taking 10%, 50% and 90% run lengths for comparison.

This method does offer a solution to the above problem, but in 

generating three 'figures of merit' for each test under each loss 

scenario, it is rather more difficult to interpret the results, and has 

not been widely adopted. Again, it does not offer a direct indication 

of the cost of false alarms.

Thus, several authors writing on the practical aspects of implementing 

material accountancy have favoured the FAR route [22,23], typically 

working with the IAEA recommendation of a 5% FAR. This still leaves an 

ambiguity in interpretation; it could be taken as 5% per test, an 

overall of 5% per reprocessing campaign, or 5% of campaigns. The last 

is the most stringent, and matches the traditional accountancy goal; 

this is the standard by which the tests are compared in this thesis.

For the purpose of comparison, a campaign length of 40 balance periods 

is used. The thresholds are set such that 5% of these campaigns have 

one or more false alarms. There will be a 0.25% probability that, 

having alarmed once, a campaign will suffer a second false alarm, and a 

0.01% chance of a third. This definition thus gives an effective false 

alarm rate of 5.26%. For the threshold test, if the statistics are 

uncorrelated (MUFR), the threshold values to achieve this are easily 

calculable from normal-distribution area tables. Each campaign must 

have an effective credibility of 0.9474, so each individual test in the 

campaign must have a credibility of
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0.9474 0.998650.025

This lies well into the tail of the normal distribution, it is difficult 

to place exactly. With 4 sig. fig. tables, this places the thresholds 

in the range 3.19-3.21.

If the statistics are correlated, the calculation of the thresholds 

becomes much more difficult. Russell [14] suggests a way of evaluating 

multinormal densities, but the lengthy calculation is only practical for 

up to about eight balance periods.

The correlations in the CUMUF sequence, leading to the exaggerated skew 

in the run length distribution, also mean that fixed thresholds will 

lead to a highly unequal probability of false alarming over the 

campaign. The cumulative false alarm probability of an independent 

sequence will tend asymptotically to 1; for the conditions described 

above the effective ARL (50% false alarms) is about 760 balance periods, 

and the curve will not be detectable over 40 balance periods. However, 

as the graph in figure 2.8 shows, the CUMUF FAR rises rapidly towards 

the 5% level and levels off. To overcome this, the thresholds must be 

set to decrease as the campaign progresses, maintaining a constant false 

alarm rate of about 0.13% per balance period.
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Figure 2.6 Cumulative false alarm probabilities with fixed CUMUF 

thresholds: Threshold test

In practice, it is likely that several tests will be used. To maintain 

the desired FAP, the thresholds must be raised. As the tests are based 

on the same data, the results will be highly correlated; the only 

practical way to find the new thresholds will be by simulation.

Improvements in data availability and timeliness will reduce the effort 

involved in investigating a suspected anomaly. A higher false alarm 

rate may thus be tolerable. A system of tiered thresholds could also be 

implemented, allowing low-significance alarms to be investigated 

quickly, while the evidence is still readily available without 

disrupting plant operation, to see if the cause is easily traceable 

[46] .
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2.8 Choice of performance benchmarks

Following on from the choice of false alarm rate as the governing factor 

in selecting thresholds, the performance of the tests will be compared 

on the basis of their power to alarm a diversion. The relative 

performances of the tests will depend on several factors - the loss 

scenario (eg. large-abrupt, protracted, loss-with-replacement), the 

point of the campaign at which the material is removed, and, in the case 

of Page's Test, the choice of test parameters. These conditions should 

be explicitly described in any comparison.

The IAEA favour an 'accountancy verification goal' , expressing the mass 

of material the diversion of which would be detected with 95% 

probability, 'with a low risk of false alarm' [1]. This would be linked 

to a timeliness goal, linked to the time required to convert the 

material into a form suitable for weapons.

Siefert [31] chose to plot the loss scenario graphically, in terms of 

loss against period, and thus show the detection curve in terms of alarm 

probability against period, with an additional 'ultimate power' chart. 

This fulfills the requirement of displaying all the test conditions, but 

each set of graphs can only show one specific mass/strategy scenario. 

This method also demonstrates how quickly a protracted loss is detected, 

important in minimizing the total loss.

The former of these is adopted in this thesis for displaying the 

response to a selection of possible diversion scenarios. Additionally, 

the power of each test will be plotted against the magnitude of the 

loss, to demonstrate likely detection rate for losses or measurement 

errors much smaller than the 95% detection level masses. This is 

important, as any test used in materials accountancy must present a
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deterrent to removing any material at all, and so should not have a 

'blind' region.
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3. Plant description

3.1 Introduction

The purpose of this research is to demonstrate the adaptation of 

theoretical work to a practical situation. While the techniques 

developed are general, the specific solutions relate to a current 

nuclear facility - part of the Fast Reactor Fuel Reprocessing Plant at 

Dounreay, Caithness. An essential pre-requisite is thus an 

understanding of the operations of the plant and the limitations these 

impose on material accountancy.

3.2 Techniques and problems in nuclear material determination

The hazardous nature of nuclear materials places severe constraints on 

processing and measurement methods. Sensors and transducers operating 

in active areas must primarily be reliable and maintenance-free, which 

may compromise accuracy.

It is particularly difficult to quantify nuclear material in a solid 

form. The most common methods are passive neutron assay (counting the 

natural decay radiation), and 'neutron interrogation'. This involves 

bombarding the material with neutrons from a Cf-252 source, and counting 

the response in terms of delayed neutrons. Both of these rely on 

stochastic processes, leaving a high degree of uncertainty in the 

results.

Concentrations in solution can be accurately determined in the 

laboratory by chemical titration methods. The density of a liquor 

sample can also be measured in the laboratory, using an Anton-Paar
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densitometer.

Bulk volumes are either calculated from hydrostatic pressures in a 

calibrated tank (this will be described in more detail later), or more 

recently by suspending the tank on load cells [47]. Errors in these 

mechanisms will make a significant contribution to the overall 

uncertainty, and are an obvious source of systematic bias.

Other measurements, such as flow metering, provide useful plant control 

information, but in general are not sufficiently accurate for reliable 

material accountancy.

It is not practical to obtain accurate, independent measurements at 

every stage in the plant. The choice lies between using approximate, 

independent readings, or assigning a value to inaccessible inventories 

derived from the last accurate quantification of the batch. The former 

may lead to an unacceptably high standard deviation for the MUF, 

reducing the sensitivity of the diversion tests, while the latter 

introduces correlations into the MUF sequence which should be accounted 

for if the tests are to give reliable results.

To illustrate these problems, and to provide a basis for the simulation 

of realistic plant data, an analysis of part of the Dounreay 

reprocessing plant is described. This takes in fast reactor fuel 

sub-assemblies, and outputs concentrated solutions of uranium nitrate 

and plutonium nitrate for conversion back to fuel.

3.3 Description of the Dounreay Fast Reactor Fuel Reprocessing Plant

A schematic of the Dounreay reprocessing plant is shown in figure 3.1.
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Figure 3.1 
The Fast Reactor Fuel Reprocessing Plant
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For the purpose of material accountancy, the plant is divided into two 

accountancy areas, the head-end material balance area (MBA) and the 

solvent extraction MBA. Used Prototype Fast Reactor (PFR) fuel 

sub-assemblies are brought into 'dismemberment caves' at the start of 

the head-end, where the fuel pins are drawn out, cropped, and divided 

into batches; about 2% batches are made up from each sub-assembly. Each 

batch is placed in a basket, and these are passed sequentially through 

the dissolver, where the irradiated material is leached out of the 

stainless-steel hulls into solution. The dissolver will hold one 

basket, and the dissolution takes about 24 hours. The liquor is then 

centrifuged to remove any remaining insolubles, and passed into a 

calibrated accountancy tank. The plant incorporates a 'hold-all' tank 

to receive overflow from the centrifuge system. This is periodically 

discharged to the accountancy tank. The fuel pin hulls and centrifuge 

deposits are removed as waste.

The batch is transferred from the accountancy tank across the boundary 

to a plant feed tank in the solvent extraction and storage MBA. The 

output from this is a constant feed to a cascade of mixer-settlers, 

which separate the uranium, plutonium and fission products. The last 

of these are categorized as either high-active or medium/low-active, and 

are drawn off separately.

Each heavy metal stream passes into a receipt tank. These are used in 

pairs, one filling from the mixer-settlers while the other supplies an 

evaporator. Once the second is discharged, the valves are switched 

over. The evaporator concentrates the liquor by a factor of about ten, 

and feeds the reduced volume into one of three large concentrate tanks. 

Each of these will hold about thirteen batches. Here it awaits transfer 

to an export flask, in which the material is carried out of the MBA 

boundary.
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As the head-end is run on a batch-mode, material balances are struck 

when a transfer out of the area from the accountancy tank is made. This 

occurs roughly every 24 hours. The solvent extraction and storage 

operates on a continuous-flow basis, so a period is taken as one day, 

and the balance struck at the same time each day.

3.4 Plant measurements in the head-end

Because of the difficulty of accurately quantifying solid nuclear 

material, the mass of heavy metal in the input sub-assembly is estimated 

by calculation, taking into account the initial make-up, position and 

time in the reactor core, and reactor power profile during that time - 

this is referred to as the 'burn-up calculation'. For the same reason, 

the inventory in the uncropped pins and in the batches in baskets is 

taken from the calculation for the source sub-assembly.

The correlation between the sub-assembly mass estimate and these 

inventory estimates is thus one, and the covariance between them is the 

product of their standard deviations.

The dissolver is designed primarily as a process tank; the 

instrumentation, calibration and laboratory assessments associated with 

it were designed only for plant control purposes. The estimates from 

the dissolver are not used in the conventional nuclear materials 

accountancy reporting system, but they did form a part of the early 

experiment with NRTMA. Now, however, the source sub-assembly value is 

used again, as it is much more precise. The analyses given in previous 

papers [43,48] were based on the earlier experimental system. The 

change has had far-reaching effects on the statistical nature of the
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accountancy data, so both systems are considered and compared in this 

thesis.

When the dissolver is discharged, a small volume remains in the 'heel'; 

the mass of heavy metal in this heel is determined independently and 

added to the next batch in the dissolver. The hold-all tank is 

reassessed when there is a change in content. Waste products are 

assayed on the balance period in which they are created; this 

determination is also used when the waste is exported.

The output from the accountancy tank is determined completely 

independently on each balance period.

It is possible that covariance exists between sub-assembly burn-up 

estimates, but this lies outside the scope of this thesis.

3.5 Determination of liquor height by the pneumercator system

A 'pneumercator' system is used to determine hydrostatic pressures (and 

hence liquor heights) in several tanks in the Fast Reactor Fuel 

Reprocessing Plant. The basic system shown in figure 3.2 comprises a 

stainless steel 'dip-tube' immersed in the liquor, the height of the 

exit being accurately known, which is fed with pressurized nitrogen 

through a control valve. In operation, the valve is adjusted to allow 

slow bubbling from the dip-tube exit; the pressure in the pipe feeding 

the dip-tube is then recorded from a pressure gauge. Appendix I 

demonstrates how the liquor height is calculated from the pressure in 

the pipe.
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Figure 3.2 The basic pneumercator system

Two immersed dip-tubes, of known vertical separation, enable the liquor 

density to be calculated from the difference in pipe pressures. The 

bubbling does cause slight oscillation in the pressure reading - an 

average value is used. This method does have the overriding advantage 

of having no electrical or moving mechanical parts in the 'active' 

area.

To improve the resolution of the hydrostatic pressure to volume 

conversion, the accountancy tank has narrowed neck and heel regions; in 

use, it is always filled to the neck, and emptied to the heel. The 

configuration of the pneumercator system is shown in figure 3.3.
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Figure 3.3 Schematic of the accountancy tank

The tank is 'd' shaped for criticality reasons. 's', 'A' and 'P' are 

pressure gauges.

Any error in the calibration of the tank will lead to a bias in the 

height to volume conversion, and hence in the mass estimate. An 

analysis of the existing calibration data is presented in Chapter 5.

The dissolver is also fitted with a pneumercator system, but the 

operation of the tank does not enable accurate estimates to be made. 

The small volume remaining in the heel after discharge is still 

estimated from the dip-tube reading for accountancy purposes; there is 

no other convenient way of determining this, and it contributes little 

to the overall error of the MUF.
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3.6 Modelling the head-end MBA

To assess the effect of the correlations on the performance of the 

diversion tests, a computer model (in FORTRAN) of the head-end MBA of 

the Dounreay reprocessing plant was written. This generates a complete 

set of plant data, modelling measurement errors by Gaussian noise, 

creates a MUF sequence, and records all the covariances in the sequence 

to enable a decorrelated data set to be calculated.

To compare the performance of the different statistical tests, where an 

analytical approach would be impractical, the model was used for 

Monte-Carlo simulation to generate data equivalent to many thousands of 

campaigns. This technique was also used to verify some analytical 

results.

3.7 Summary

As described in chapter 2, correlations in the MUF sequence affect the 

ability of statistical tests to differentiate between random 

determination errors and real losses. Previous research in this area 

has made assumptions about the way in which material accountancy is 

effected in terms of plant measurements which are not realistic in a 

commercial and industrial environment. By analysing the operation of a 

plant, all the sources of correlation can be identified and quantified. 

It will be shown later how this information can be used to remove the 

correlation from the accountancy test statistics; data from a model of 

part of the Fast Reactor Processing Plant will be used to demonstrate 

the improvement in loss detection ability that this offers.
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4, A minimum variance estimate of the transfer from an 
accountancy tank

4.1 Introduction

The material passing from the head-end MBA to the solvent extraction MBA 

is first held in an accountancy tank in the head-end. Approximately 

once a day the accountancy tank is emptied, passing its contents to the 

plant feed tank in the solvent extraction MBA. This accountancy tank 

plays an important role in determining the mass of heavy metal passing 

through the plant. Since the material is in the form of a nitrate 

solution, the mass of nuclear material transferred between the two MBAs 

cannot be measured directly but must be calculated from measurements of 

the total quantity of liquor transferred and the concentrations of 

plutonium and uranium in the liquor.

The error on this mass estimate is a compound function of the component 

determination errors. A set of four different equations to estimate the 

transfer, each using a different combination of measurements, has 

already been derived. However, only the most precise of these is 

currently used for material accountancy purposes.

The aim of this exercise was to show that a more reliably accurate 

estimate could be made by using all the data available, weighted by 

suitably selected coefficients.
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4.2 Mass transfer measurement and instrumentation

4.2.1 The basis of mass transfer calculation

In essence, the mass of nuclear material being passed from the 

head-end to the solvent extraction MBA is given by:

Total volume of Nuclear material
liquor transferred X concentration

(1) (g/D

The most accurate analysis of the concentration yields a value in 

g/g, which must be combined with a density expression. The mass 

transfer in this case becomes:

Total volume of Density of Nuclear material
liquor transferred X liquor X concentration

(1) (g/1) (g/g)

Concentration in g/1 (4.2)

îe:
V X  Cw/V (4.3)

4.2.2 Laboratory measurements

A sample of liquor is taken from the accountancy tank at the time of 

transfer and sent to the chemistry laboratory. There it is analysed 

to determine the concentration of plutonium and uranium using methods 

which yield results in both grams per litre and grams per gram. The 

sample's density is also measured.
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4.2.3 The pneumercator systems

Within the accountancy tank there are three pneumercator dip-tubes 

connected to three gauges (see figure 3.2). These are used to make 

measurements of the height of liquor in the accountancy tank before 

and after a transfer, and also to make estimates of the density of 

the liquor. The height is converted to a volume by using a height- 

to-volume calibration table.

Figure 3.2 shows schematically the pneumercator systems used in the 

accountancy tank. The gauges serve the following purposes:

Gauge 's' is connected between dip tubes the open ends of which 

are a distance 'd' apart. As explained in Appendix II.2, the 

gauge is calibrated to read Specific Gravity directly.

Gauge 'A' is used to measure the overall level and, in conjunction 

with gauge 'P' , to provide an in-tank density estimate between the 

dip-tube exits distance 'D' apart. Gauge 'A' is also used to 

measure the heel level, immediately after a transfer.

Gauge 'P' is used to measure the neck level, and, in conjunction 

with 'A', to provide the in-tank density estimate.

There are several ways in which the various measurements made can be 

combined to form estimates of the mass transferred. Reference [49] 

details four methods and reference [50] presents results of a 

'Monte-Carlo' analysis of the relative accuracies of the methods. For 

the purposes of materials accountancy (both near real time and 

conventional) only method one of [50] is used. This is also the method
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identified in [50] as the most accurate.

The individual measurements vary in accuracy, and the method currently 

used for determination of the mass transferred uses many of the more 

accurate ones. However, a method which makes intelligent use of all 

measurements can produce a result which is more accurate than a method 

using only some of them and which will be less sensitive to instrument 

biases.

Section 4.3 presents a new equation for the calculation of the mass of 

heavy metal transferred which uses all available measurements.

4.3 Equations of Mass Transfer Calculation

Table 4.1 illustrates the various terms which go towards calculation of 

the mass transferred. The derivation of the individual terms is 

detailed in Appendix II.

The basis for the calculation is the equation

V x Cw/V (4.3)

However, instead of choosing a single method for calculating V and a 

single method for calculating ^w/v’ twelve combinations (three 

volume and four concentration estimates) are combined into a single 

Minimum Variance Unbiased Estimate.

Ideally, the weighting coefficients would be found directly by the 

technique described in Appendix III, inverting a 13 x 13 matrix A. 

However, the distribution of variance among the component terms
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Table 4.1 Terms forming the accountancy tank transfer estimate
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causes a problem in the numerical solution. This can best be 

explained by considering the physical sources of the determinations. 

The accountancy tank has very narrow neck and heel regions; it is 

always filled to the neck then emptied to the heel during a 

transfer. A small difference in the filled volume results in a 

large change in the pressure reading ' P' (see figure 3.2). Thus the 

volume of the transfer can be calculated quite precisely. (The 

accuracy is dependent on the tank calibration.) The area of the neck 

in which gauge P operates is roughly one-tenth the area of the main 

body of the tank; errors in the reading ' P' are thus reduced in 

significance by a factor of about ten. This is illustrated clearly 

in the tables of sensitivity given in Appendix V. The standard 

deviation of ' z ' (C ) is proportionally similar to that of 'P', 

but an error on has one-tenth the effect on the resulting 

estimate in the methods which use it only for volume determination.

The variance in the determination of thus dominates the 

variance of the estimate. In attempting to calculate the MVUE, the 

parallel methods which incorporate the same C determination have 

a very strong correlation, leading to an almost singular matrix A to 

be inverted for the MVUE coefficients. Even using high-precision 

numerical routines, the results from this are unreliable.

Three practical alternatives were investigated; an MVUE of the four 

existing transfer equations [1] , a product of MVUE(V) and 

MVUE(Cw^y), and a combination of three MVUEs based on the three 

methods of volume determination. They gave similar results in terms 

of variance and sensitivity to bias. The last was chosen as the 

closest approximation to the ideal MVUE described above.
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Each of the three component equations is formed by a linear 

combination of the four expressions for C multiplied by one of 

the volume expressions.

or (20—T ) ̂ 1
c r ( 2 0 - t ) J j T, Z-

(pv20 - P.a20 )-s +

(A - P)*(pw20 - Pa20;
aT + r, L . fl + a-(20-T)V 

p  t ll + a* (20-t)J

x
/

'P
P '(pv20 pa 2 0 ) - *

a ‘(pv20 pa 2 0 )
fl + <*• (20-T)'j . f l  7  a' (20-T)'] .

lPLt ll + a- (20-t)J paT; lPLt ll + a - (20-t)J PaTj
[l+(T-20)6]

(4.4)

a* (20-T))| 
a* ( 2 0 - t ) J J

(p
+ w20 Pa20^

\

+

(A - P)-(p,w20
D + 1 + a*(20-T))\

.1 + a" (20-t )  J J

[1 + (T-20)6]

( 4 . 5 )
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[ L3] '

h ,7.n . a  ± «’ (20-T)'
ni l Z pLt l l + a - (2 0 - t ) . + n2 z (pw20 pa20),s

n3 Z <A - P>-<pv20 pa20)

paT +

(20-T)'
(20-t).

fts^p) - *(r^p)} • n  * <T-20>si

For clarity, these equations may be expressed

(A.6)

l Ll ] = Y1*C1'V1 + Y2'C2'V1 + y3'C3"V1 + V C4*V1 (4.7)

IL2] = V1'C1,V2 + V2'C2‘V2 + v3 ’C3"V2 + V4 ‘C4 ’V2 (4.8)

[L3] = + ^2# ̂ 2 ’̂ 3 + ^3#̂ 3'^3 + V C4*V3 (4.9)

where C1
... . (1 + a-(20-T)) 

“ pLt ll + a’ (20-t)J (4.10)

C2
„ (pv20 “ pa20),S 

= Z’ d + paT (4.11)

C3
(A - P)-(Pv20 - pa20^

= Z* D + paT (4.12)

C4
y . (1 + a-(20-T)) 
*t ll + a-(20-t) J (4.13)
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1ll P ‘(pw20 pa2 0) «li a '(pw20 pa2 0^T . f l + <*-(20-T)) q . (1 + a-(20-T)) .
\ lPLt 11 + a*(20-t)J paTj lPLt ll + a‘ (20-t)J paTj /

X [1 + (T-20)S]

* ( ^ )  - * ( ^ )  J • [1 + (T-20)6]

(A.14)

(4.15)

V- - '»(r̂ p) | ' i1 + <T-20>5i (4.16)

A general method for calculating the values of coefficients

necessary to form a Minimum Variance Unbiased (Linear) Estimator is

derived in Appendix III. The general result shows that y^, y^, Y3

and y, can be calculated in terms of I  ̂ where I is the covarianceA y y

matrix of results from the four methods of calculating the transfer

using V ; similarly, the coefficients and can be found in
-1 -1terms of and where and E^ are the covariance matrices

from V2 and respectively.

Appendix IV details the calculation of the covariance matrices and 

the coefficients y ^  , and The results of the

calculations were confirmed by Monte-Carlo simulation.

Looking at the volume and concentration expressions, it can be seen 

that there is a correlation between V^, V2 , and V^ (due to 'P' and 

'a'), between C1 and V^ ('p '), between C2 and V2 ('s'), and 

between and V^ ('A' and 'P').

This, combined with the common occurence of C.. , Cn , C- , and C, ,1 2 j 4
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results in the three minimum variance estimates having a very high 

correlation - greater than 0.999999 for any pair. Thus, for 

practical purposes, the Minimum Variance Unbiased Linear Estimator 

can be taken as an equally weighted combination of these three 

estimators.

where
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From Appendix IV, the MVUE coefficients for the sample data are thus

W1 = 0.1916

W2 = 0.0672

W3 = 0.0729

W4 = 0.0016

w5 = 0.1578

“6 = 0.1014

«7 = 0.0735

W8 = 0.0016

w9 = 0.1577

w 10 = 0.0668

W 11 = 0.1073

W 12 = 0.0016

4.4 Sensitivity of the weighting coefficients

The weighting coefficients have been calculated for a 'typical' set of 

transfer data. They are, however, fairly insensitive to changes in the 

transfer data.

The coefficients are functions of the variance for each combination of 

concentration x volume. The two most important components of these 

variances are the variance of the mass of heavy metal in the tank 'body' 

(up to the neck), and the covariance between the mass in the body and 

the mass in the neck (due to the common concentration term). The latter
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represents about 13% of the former when a common density determination 

is used, and about 23% when different density estimates are employed. 

Other contributions, such as the variance of the neck, and heel masses, 

are at least an order of magnitude smaller than this covariance.

Large changes in 'a', 'T', and 't' will have very small effect on the 

variances, and hence on the weighting coefficients.

A washout batch will have a very low concentration of heavy metal. As 

the contribution of the volume error only operates on about 10% of the 

total volume, for a normal batch the variance of the transfer estimate 

is dominated by the concentration variance. The lower variance of the 

concentration estimate for a washout batch reduces this dominance 

slightly, but not significantly for even a hundredfold reduction. The 

ratio of variances between the different estimates, and hence the 

weighting coefficients, change little.

The liquor density may vary over the range 1100 to 1450 g/1. The 

density determination contributes to the variance of the mass in the 

body of the tank; over this limited range a change in density affects 

the variance of all estimates almost linearly, with little effect on the 

coefficients.

The reading on the neck level pressure gauge 'P' may lie between 0 and 

2000mm H 20 for a typical batch. This affects the covariance term 

described above by different amounts for each estimate: as the liquor 

level in the neck rises, the variance of methods employing two density 

estimates increases more than those using a single density 

determination. Thus with the neck filled, the variances of Cl.VI, 

C2.V2, and C3.V3 are proportionally lower than the other methods, 

compared to the situation with the neck empty.
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This effect causes the weighting coefficients to favour the 

single-density methods listed above, as the volume of the batch 

increases.

The instrument error ranges quoted by Miller attribute additive and 

multiplicative elements to the uncertainty on the pressure gauge 

readings. The multiplicative element causes the standard deviations of 

the in-tank density estimates to decrease as the liquor level decreases. 

This effect is amplified in C3 and V3, which uses two pressure readings 

to calculate the density. The effect on C3 is dominant; the standard 

deviations of estimates using C3 drop substantially as 'P' decreases, 

resulting in a significant change in the MVUE weighting coefficients 

towards C3 based methods.

An algorithm has been written to calculate the coefficients accurately 

for any set of plant data.

4.5 Analysis of the sensitivity of the transfer estimate to systematic 
errors

Knowledge of bias is, by its nature, very restricted, even in a 

statistical sense. However, where a measurement technique M is compared 

against a more accurate reference technique R, it can generally be 

concluded that the bias in M is small compared with the variance. If 

the mean of M values differed substantially from the R values a 

correction would be applied to M, removing the known bias. Thus in 

estimating the effect on bias of the MVUE, it is reasonable to give most 

attention to the scenario where biases are proportional to variance. 

Other bias scenarios cannot, however, be ruled out, and simply by
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looking at limiting cases it can be seen that the bias on an MVUE may be 

higher than that on some of the component methods.

An analysis of the sensitivities of the existing four transfer estimates 

has been carried out by Miller [51], demonstrating the percentage change 

in the estimates given a ±3a bias on each of the measurements. This 

criterion has been applied to the MVUE, and the results are presented 

together in Table V.l, Appendix V, for comparison.

Table V.2, Appendix V, shows the error percentages resulting from a bias 

of IX of the measurement magnitude. These correspond to Miller's 

'coefficients of sensitivity'.

The random measurement errors have all been assumed normally 

distributed, with standard deviation equal to half the quoted 

uncertainty (±1 corresponds to a standard deviation of %). The MVUE 

minimizes the likely combined effect of these errors; if the systematic 

errors have a similar structure to this, with the standard deviations of 

all the determination biases a fixed proportion of the random error 

standard deviations, the MVUE will give a minimum sensitivity to the 

likely error resulting from this. However, if a different bias 

structure is suspected, coefficients for a 'best estimate' can be 

calculated by a similar method to the one described, substituting the 

proposed error model.

It must be emphasized that this is not a technique for handling known 

systematic errors; it is merely a means of obtaining a best estimate 

against a proposed statistical model of unknown errors.

The MVUE is an optimal estimator for 'no systematic errors' and the 

scenario described above.
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A possible source of systematic error lies in the conversion of the 

liquor height in the tank to a volume, which is effected by 

interpolating from a calibration table. The calibration plays a key 

role in the overall quality of quantifyable safeguards, and no 

statistical techniques can be applied to the transformed data to 

ameliorate the effect of this bias. The calibration techniques are 

described by Hamilton [52]. The methods used in the Tokai reprocessing 

plant are detailed by Shimojima [53]; a comprehensive appraisal of the 

sources and magnitudes of accountancy tank determination errors, many of 

which apply to calibration, are presented by Davis et al [54] and Foggi 

et al [55].

4.6 Results

The following table summarizes the results

Method
Number 1

Current mel 
Number 2

rhods 
Number 3 Number 4

New
method

Mean (g) 4795.6 4796.1 4795.6 4795.6 4795.6

Standard 
dev. (g)

12.25 169.93 13.81 13.90 11.57

As can be seen from the above table, the effect of using the MVUE 

calculation is indeed to reduce the standard deviation of the mass 

transferred. The reduction compared with Method 1 is significant albeit 

quite small.

As it uses all the measurements, the MVUE is affected to some extent by
a bias on any of them, whereas each of the other methods only takes a
subset of the available data and is thus immune to errors outside the
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subset. As the weight-aliquoting method of concentration determination 

is much more accurate than the parallel volume-aliquoting method, the 

MVUE offers little improvement in sensitivity to bias in the former. 

The effect of the measurement uncertainty of the volume-aliquoting 

technique is clearly illustrated in the high standard deviation of 

Method 2.

Currently, only Method 1 is used in the material accountancy 

calculations. Compared with this, the MVUE introduces a slight 

sensitivity to the volume-aliquoting concentration determination, and 

more significant sensitivities to the 'overall' pneumercator reading 'A' 

and the in-tank density determination 's'. However, it substantially 

reduces the error caused by bias on the laboratory determination of 

density.

From the analysis given in section 4.5, if there is no reason to suspect 

that the systematic errors are not proportional to the determination 

errors, the MVUE also minimizes the probable sensitivity to unknown 

biases.

4.7 Summary

The mass estimate from the accountancy tank is an important measure in 

materials accountancy. This chapter demonstrates a means of minimizing 

the error on an existing tank, where redundant determinations are 

available. It also illustrates the benefits to be gained by 

incorporating diverse instrumentation in the design of a new tank, even 

where the diverse measurements are less accurate than the principal 

determinations. If the diversity extends to at least three 

quantifications of a key parameter, this can be used to even greater
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advantage to identify biases and transcription errors [56]. More 

generally, the methods and conclusions pertain to any application in 

which the required precision cannot quite be practically or economically 

met by any single set of instrumentation.
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5. Analysis of correlations in the MUF sequence

5.1 Introduction

Most quantitative techniques for nuclear materials accountancy require 

the distillation of the data collected on each balance period down to 

two figures, a 'test statistic' and an associated error estimate. It is 

generally agreed that the ideal test sequence will contain no serial 

correlation; the basic MUF sequence has an inherent covariance between 

successive values due to the appearance of Inv^_^ in both MUFk and 

MUFk_x of

Cov(MUFk_lfMUFk) = - c2 (Invk_1) (5.1)

If all inventories, inputs and outputs were determined independently on 

each balance period, this would be the only source of correlation. This 

is the situation that most authors have considered, although Pike & 

Woods [28] have introduced an allowance for bias caused by instrument 

calibration.

However, this regime is often not economically practical; other 

correlations arise from the operation of the plant measurement systems. 

This chapter describes a method for producing an optimal statistic from 

'real plant' conditions, by matrix transformation techniques. This 

entails the development of an accurate MUF covariance matrix, from a 

detailed knowledge of the plant data-aquistion techniques and movement 

history of the material within the accountancy area. An independent set 

of filtered 'MUF-residuals' can then be calculated.
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5.2 Derivation of the covariance between successive MUF values

For balance period k,

MUFk Inv.k-1 + IPk OPk Invk (5.2)

where Invk is the measured inventory of the plant at the end of

balance period k, IP^ is the input to the plant during balance 

period k and 0Pk is the output from the plant during balance period 

k.

The variance of MUF, is the sum of the variances of the abovek
elements, modified by the covariances between them:

+ 2.Cov(Invk_1 ,IPk) - 2.Cov(Invk_1 ,0Pk) - 2.Cov(Invk_1 ,Invk)

- 2.Cov(IPk ,0Pk) - 2.Cov(IPk ,Invk) + 2.Cov(0Pk ,Invfc)

(5.3)

2
where c (x) is the variance of x, and Cov(x,y) is the covariance 

between x and y.

To find the covariance between MUFk and MUFk_^, an expression for 

the variance of (MUFk + MUFk_^) is needed.

a2 (Invk_1) + cr2 (IPk) + a2 (0Pk) + c2 (Invk)
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( 5 . 4 )

a2 (MUFk + MUFfc_1) = a2 (Invk_2) + a2 (IPk_1) + a2 (OPk l ) + a2 (IPk)

+ a2 (OPk) + a2 (Invk) + 2.Cov(Invk_2 ,IPk_1) - 2.Cov(Invk_2 ,0Pk_1) 

+ 2.Cov(Invk_2 ,IPk) - 2.Cov(Invk_2 ,0Pk) - 2.Cov(Invk_2 ,Invk)

- 2.Cov(IPk_1 ,0Pk_1) + 2.Cov(IPk_1 ,IPk) - 2.Cov(IPk_1 ,0Pk)

- 2.Cov(IPk_1 ,Invk) - 2.Cov(0Pk l ,IPk) + 2.Cov(0Pk_lt0Pk)

+ 2.Cov(0Pk_1 ,Invk) - 2.Cov(IPk ,0Pk) - 2.Cov(IPk ,Invk)

+ 2.Cov(OPk ,Invk) (5.5)

Using the formula

ff2 (MUFk + MUFk l ) = a2 (MUFk) + ct̂ M U F ^ )  + 2. Cov(MUFk , MUFR_1)

= a2 (Invk_1) + cr2 (IPk) + a2 (OPk) + a2 (Invk)

+ 2.Cov(Invk_1 ,IPk) - 2.Cov(Invk_1 ,0Pk ) - 2.C o v i l n v ^ ,Invk)

- 2.Cov(IPk ,0Pk) - 2.Cov(IPk ,Invk) + 2.Cov(0Pk>Invk)

+ a2 (Invk_2) + a2 (IPk_:) + a2(0Pk_1) + ^ ( I n v ^ )

+ 2.Cov(Invk_2 ,IPk_1) - 2.Cov(Invk_2 ,0Pk_1)

- 2.Cov(Invk_2 ,Invk_1) - 2.Cov(IPk_1 ,0Pk_1)

- 2.Cov(IPk_1 ,Invk_1) + 2.Cov(0Pk_1 ,Invk_1)

MUFk + MUFk-l = Invk-2 + IPk-l - 0Pk-l + IPk " 0Pk - InVk

+ 2.Cov(MUFk,MUFk_1) (5.6)
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the covariance between the balance periods can be isolated as

Cov(MUFk ,MUFk_1) = Cov(Invk_2 ,IPk) - Cov(Invk_2 ,0Pk )

- Cov(Invk_2 ,Invk) + Cov(IPk_1 ,IPfc) - Cov(IPk_1 ,0Pk)

- Cov(IPk_1 ,Invk) - Cov(OPk_1 ,IPk) + Cov(0Pk_r 0Pk)

+ Cov(0Pk_1 ,Invk) - Cov(Invk_1 ,IPk) + Cov(Invk_1 ,0Pk )

+ Cov(Invk_1 ,Invk) + Cov(Invk_2 ,Invk_1) + Cov(IPk_1 ,Invk_1) 

- Cov(0Pk_1 ,Invk_1) - c:2 (Invk_1) (5.7)

The correlation between successive MUF values is found from:

Cor(MUFk ,MUFk _ 1
Ccv(MUFk,MUFk_: )

7a(MUFk ).cr(MUFk_ 1)
(5.8)

5.3 Correlations over more than one interval

The MUF values for balance periods that are not in juxtaposition may 

still exhibit correlation. The analysis is similar to that given above, 

but there is no common inventory between the two MUF figures. The 

covariance between two MUF values of separation n balance periods, where 

n>l, is given below.
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Cov(MUFk ,MUFk_n) = Cov(Invk_n_r IPk) - Cov(Invk_n_1, 0Pk )

- Cov(Invk-n-l’InVk) + Cov(IPk-n>IPk) - Cov(IPk-n’0Pk)

- Cov(IPk_n ,Invk) - Cov(OPk_n ,IPk) + Cov(OPk_n ,OPk)

+ Cov(OPk_n ,Invk) - Cov(Invk_n ,IPk) + Cov(Invk_n ,0Pk)

+ Cov(Invk_n ,Invk) + Cov(Invk_n_1 ,Invk_1) + Cov(IPk_n ,Invk_1)

- Cov(OPk_n ,Invk l ) - Cov(Invk_n ,Invk_1) (5.9)

As a (Invk_^) is the same as 6 w(Invk ^,Invk_^), it can be seen that 

this expression also applies for n=l, and is thus completely general 

for any covariance in any accountancy area.

5.4 Application to the Fast Reactor Fuel Reprocessing Plant

5.4.1 Plant measurements in the head-end MBA

The mass of heavy metal in the uncropped pins and the batches in baskets 

is taken from the burn-up calculation for the source sub-assembly. 

Currently, the dissolver estimate is also taken from this. The 

correlation between the sub-assembly mass estimate and these inventory 

estimates is thus one, and the covariance between them is the product of 

their standard deviations. The dissolver heel is determined 

independently on each balance period, and the hold-all tank is 

reassessed when there is a change in content. Waste products are 

assayed on the balance period in which they are created; this 

determination is also used when the waste is exported, introducing a 

correlation between the output and past inventories.
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The output from the accountancy tank is determined completely 

independently on each balance period, and so makes no contribution to 

the random error. However, as discussed in chapter 5, it is a possible 

source of systematic errors; this will be investigated further in 

chapter 7.

Covariance may exist between sub-assembly burn-up estimates, but this 

lies outside the scope of this thesis; they are assumed to be 

independent, so there will be no correlation between inputs, or between 

the inventory at the end of period k-x (x>0 ) and the input during period 

k. The covariance expression thus reduces to:

Cov(MUFk ,MUFk_n) = Cov(IPk_n ,Invk_1) + Cov(Invk_n ,Invfc)

+ Cov(Invk_n_1 ,învj^) - Cov(IPk_n,Invk)

- Cov(Invk_n_1 ,Invk) - Cov(Invk_n,Invk_1)

- Cov(Invk_n_1 ,0Pk) + Cov(Invk_n ,0Pk) (5.10)

The terms remaining refer to the covariances arising from common 

inventories, caused by material remaining within the accountancy area 

over two or more balance periods without reassessment, the covariances 

between inventory estimates and the source sub-assembly estimates, and 

the covariances between output waste and their inventory 

determinations.

In applying these formulae, it should be noted that where there are two 

or more terms in a balance period inventory whose heavy metal content is 

assumed from a common sub-assembly, the correlations between these 

elements will increase the inventory variance (by twice the covariance
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for each combination).

It should be noted that the earlier NRTMA plant measurement regime used 

an independent assessment of the dissolver inventory, taken from its 

internal dip-tube system. This resulted in a much higher MUF standard 

deviation, and a very different covariance matrix; this inaccurate 

inventory measurement introduced a dominant negative correlation between 

successive MUF figures, which has now been replaced by a positive 

correlation from the covariance between the inputs and the inventories. 

The results cited in [43] and [48] refer to the earlier accountancy 

system, and are included here for comparison.

5.4.2 Plant measurements in the solvent extraction MBA

If there is no input to or output from any of the concentrate tanks 

between balance periods, the content is assumed from the measurement 

made after the last material transfer. When tank 1 is filled, it is not 

discharged or re-evaluated until another tank is filled. This can give 

rise to large covariances between inventories. All other determinations 

are made independently on each balance period. The covariance 

expression for this area is thus simplified to:

Cov(MUFk ,MUFk_n) = Cov(Invk_n ,Invk) + Cov(Invk_n_1 ,Invk_1)

- Cov(Invk_n_1 ,Invk) - Cov(Invk_n ,Invk_1)

(5.11)
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5.5 Application of the MUF-residuals transformation

The two models of the head-end were used to generate simulated MUF data 

and the associated inter-MUF correlations. For comparison, the 

MUF-residual sequence was created from these calculated correlations, 

and the ITMUF sequence was formed using a uniform tri-diagonal 

correlation matrix, with the off-diagonal terms equal to the average 

correlation between successive MUF figures of -0.4.

Alarm thresholds to give a constant false alarm for the MUF, MUFR and 

ITMUF sequences were found by iteration; they are listed in Appendix VI. 

These thresholds were then applied to simulated data with various 

diversion scenarios. Example results for both the old and new 

accountancy systems are illustrated graphically in the next section.

A more powerful tool for diversion detection is offered by applying 

Page's cumulative sum test to the data. As described in chapter 2, this 

can be expressed

where x is the test statistic. The parameters 'H' and 'K' can be 

'tuned' to be optimal for a large single diversion or a protracted loss; 

several papers have been written about the choice of these parameters 

and the performance of the test eg. [17], [45]. Reference [57] describes 

a method for calculating the parameters for the SITMUF (Standardised 

ITMUF) sequence, assuming each value is independent. For the plant 

under investigation the usual ITMUF transformation does not yield a set 

of independent elements, so to compare the MUF-residuals sequence with 

MUF and ITMUF all three were tested by simulation, applying each to the

n
alarm if max a 

l<r<n i=r
(5.12)
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same plant data.

For the purpose of the comparison, a value of 'K' was chosen, and 'H' 

for each of the test statistics was selected by simulation to give a 

false alarm rate of 5% (1 campaign in 20 alarming under no loss, 40 

balance periods per campaign). The test was then applied with these 

values to data containing different diversions. The percentage of 

campaigns ending in an alarm indicates the power of the test to detect 

that diversion.

Appendix VII describes a useful algorithm to calculate MUF-residuals (or 

ITMUF) for the application of Page's Test, in which the test is reset 

after an alarm is signalled.

5.6 Results

The use of an accurate covariance matrix to transform the MUF data to 

MUF-residuals (MUFR) gives a sequence with significantly better 

performance as a test statistic than MUF or ITMUF.

For the old accountancy system, where ITMUF represents a simple model of 

the MUF covariances, a plot of the statistics for a simulated campaign 

(fig. 5.1) shows that both MUFR and ITMUF in general suppress the swings 

of MUF.
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M ass (g)

—  MUF MUFR A  ITMUF
Figure 5.1 Sample data, old accountancy system (independent 

dissolver assessment)

It is not obvious from this which is the 'better' statistic. Turning to 

the performance of the tests in terms of identifying a loss with a 

threshold test, MUFR shows a clear superiorty. For an abrupt loss on 

period 30, the 95%-alarm-probability mass is less than 1200g for MUFR, 

around 1400g for ITMUF, and about 1600g for MUF (fig. 5.2). It is 

interesting to note that MUF, if it alarms, alarms instantaneously, 

while MUFR in particular shows a degree of 'delayed detection'. The 

loss may be concealed by random error on the period in which it occurs, 

but the MUFR expectation of the MUF mean on the immediately-following 

periods is distorted. The diversion on period 30 may thus put the 

residual on period 31 or even 32 'out of bounds'. While the cause of 

this delayed alarm may be more difficult to trace, this knock-on effect 

does enhance the overall power of the decorrelating techniques.

The performance of Page's Test is dependent on the choice of the H-K
pair; a large 'K' is most suitable for detecting abrupt losses, while a
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small 'K' offers a greater sensitivity to protracted diverions. A 

compromise of K=0.2, 'tuned' for losses of 0.4a, or around 120g, is 

demonstrated here.

The use of Page's Test increases the sensitivity of the tests, and 

reduces the benefits of the accurate modelling; these masses are now 

800g for MUFR and ITMUF, and 1200g for MUF (fig. 5.3). It can be seen 

from fig. 5.1 that the MUFR and ITMUF plots do still demonstrate a 

tendancy to echo the MUF zig-zag over the zero point. The CUSUM 

technique will smooth this and help identify any underlying anomaly. 

ITMUF, using a correct average value for the correlation, benefits 

particularly from this.

For campaign-long diversions or instrument errors, the improvement 

offered by MUFR in the threshold test is even more pronounced, almost 

100% of campaigns concealing a diversion of lOOg/period giving rise to 

MUFR alarms, compared with 25% for ITMUF and 9% for MUF (fig. 5.4). 

MUFR also displays a steep detection probability curve - there is a 90% 

chance that it would alarm this scenario in less than 20 periods, 

minimizing the total loss. Again, better and results are obtained from 

Page's Test, the 95% alarm rate falling at less than 50g/period for 

MUFR, 50g/period for ITMUF, and just under lOOg/period for MUF (fig. 

5.5). While ITMUF has almost the same absolute power, MUFR is again 

likely to detect the loss much sooner.

Similar results are obtained in loss scenarios involving loss over 

several periods (figs. 5.6, 5.7), or loss with fractional replacement 

(figs. 5.8, 5.9). In general, MUFR is much more powerful than ITMUF or 

MUF when used in a threshold test, and slightly more powerful than ITMUF 

in Page's Test.
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Graphs illustrating the absolute power of the tests against the 

magnitude of an abrupt loss on period 30 are shown in figures 5.10 & 

5.11, and against a campaign-long protracted loss in figures 5.12 & 

5.13. Page's Test somewhat ameliorates the effects of modelling errors, 

but the highest detection probabilities are given by MUFR with Page's 

Test in all cases.
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Fig 5.2 Cumulative alarm probabilities for abrupt loss, old system

Threshold test with MUF, MUFR, ITMUF
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Fig 5.3 Cumulative alarm probabilities for abrupt loss, old system

Page's Tes t vi th MUF, MUFR, ITMUF
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I n d e p e n d e n t  d i s s o l v e r  e s t i m a t e

Fig 5.4 Cumulative alarm probs. for protracted loss, old system

Threshold test with MUF, MUFR, ITMUF
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Fig 5.5 Cumulative alarm probs. for protracted loss, old system

Page's Test with MUF, MUFR, ITMUF
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Fig 5.6 Cumulative alarm probs. for loss over 5 periods, old system

Threshold test with MUF, MUFR, ITMUF
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Fig 5.7 Cumulative alarm probs. for loss over 5 periods, old system

Page's Test with MUF, MTJFR, ITMUF
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Fig 5.8 Cumulative alarm probabilities for alternate loss with

fractional replacement, old system

Threshold test with MUF, MUFR, ITMUF
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Fig 5.9 Cumulative alarm probabilities for alternate loss with

fractional replacement, old system

Threshold test with MUF, MUFR, ITMUF
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Cum ulative  a la r m  probab il ity  (%)

—  MUF —f-  MUFR ITMUF
Fig 5.10 Absolute power for abrupt loss on period 30, old system 

Threshold test with MUF, MUFR, ITMUF
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Fig 5.11 Absolute power for abrupt loss on period 30, old system

Page's Test with MUF, MUFR, ITMUF
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Cum ulative  a la rm  probab il ity  (%)

------  MUF — MUF R ITMUF
Fig 5.12 Absolute power for protracted loss, old system 

Threshold test with MUF, MUFR, ITMUF

Fig 5.13 Absolute power for protracted loss, old system

Page's Test with MUF, MUFR, ITMUF
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The improvement over the simple-model ITMUF statistic is, not 

surprisingly, much more pronounced in the new accountancy system, where 

the ITMUF assumptions are wrong rather than just inaccurate. The effect 

of this modelling error, and the performance of the MUFR statistic, is 

illustrated in the simulated campaign data in figure 5.14.

—  MUF MUFR A  ITMUF
Figure 5.14 Sample data, new accountancy system (dissolver assumed 

from fuel sub-assembly burn-up calculation)

The MUFR in general suppresses the swings of the MUF data, while ITMUF, 

expecting a negative correlation when it is in fact positive, 

overshoots. In terms of diversion detection, this means that the false 

alarm thresholds for the ITMUF must be set very high.

It is immediately evident in data simulating the new operating practice 

that removing the inaccurate inventory estimate greatly reduces the MUF
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standard deviation, now down to an average of around 40g. This is 

reflected in the 95% detection probability mass for an abrupt diversion, 

of interest to the IAEA as an accountancy goal; it is down to 200g with 

MUFR (fig. 5.15). The new covariance matrix structure means that the 

benefits over MUF are less pronounced - MUF will detect the 200g abrupt 

loss with a 92% probability. The overall link between successive MUF 

figures is weaker, because the positive correlation from the input- 

inventory estimate connections is partly offset by the expected negative 

inventory correlation.

In this scenario, the use of Page's Test with MUF has a reverse effect 

to the above examples - it actually reduces the sensitivity. The 

positive correlation between the MUF values means that any summation 

technique will require high thresholds; in this case, a better 

performance can be obtained from the 'raw' statistic. Accounting for 

the obvious negative correlation but ignoring the others creates a 

statistic in which this effect is even more pronounced. The ITMUF 

sequence contains a very strong positive correlation, and demands very 

high thresholds to limit the false alarm rate. Fig. 5.16 shows the 

alarm plot for a 250g diversion on period 30, which corresponds to the 

95% detection level for MUFR.

An additional problem in this application is the limited 'bandwidth' of 

Page's Test centered around the choice of K. In selecting a H-K pair to 

compromise between large and small loss detection, the performance at 

both extremes suffers. The choice of K=0.5 gives the CUSUM test with 

MUFR a slightly poorer performance against abrupt losses than the 

threshold test. This problem is largely overcome by the use of a twin 

test, one with a small 'K' for optimal performance against small losses, 

and one with a large 'K' to identify abrupt diversions. However, the 

thresholds would have to be increased to maintain the false alarm rate.
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The use of twin tests, and the performance benefits to be gained, are 

discussed further in chapter 7.

An interesting situation arises in the analysis of the test performances 

against protracted diversions, shown in figures 5.17 & 5.18 for the 

Threshold and Page's Test respectively. Firstly, the detectable loss is 

not reduced as significantly as might be expected from the decrease in 

the MUF standard deviation. Secondly, the MUFR statistic offers a 

poorer chance of detection than the MUF, and the best performance is 

given by ITMUF.

It appears that the assumption of negative correlation, when in fact the 

sequence is predominantly positively correlated, does actually increase 

the power to detect a protracted diversion. The reason for this is 

illustrated in figure 5.19. The two MUF values conceal a positive 

diversion of y. While MUFR attributes much of the anomaly on period 2 

to the positive correlation, ITMUF is expecting a negative MUF to offset 

the first positive MUF. Thus, the diversion lies much closer to the 

ITMUF threshold (even though it is higher than the MUFR threshold). 

This pattern will be repeated while the loss continues; a small positive 

random element on one of the MUF estimates is now very likely to cause 

an ITMUF alarm.

Inaccurate modelling techniques are not the most effective means of 

identifying a protracted anomaly, however; CUMUF and state-estimation 

techniques using accurate representations are both more powerful, as 

will be demonstrated in chapter 7.

MUFR again offers considerably more power against the more sophisticated
diversion-with-fractional-replacement strategy, shown in figures 5.20 &
5.21.
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The inaccurate modelling thus leads to an unreliable test with poor 

robustness.

The replacement of the pronounced oscillatory nature of the sequence 

with a much smoother data set also reduces the power of Page's Test with 

MUFR if a fraction of the diverted material is returned on the following 

period. In the 'old' accountancy system, MUFR 'expects' a negative MUF 

to offset the positive MUF caused by the diversion. The replacement of 

material thus does not tend to reduce the MUFR CUSUM significantly. 

However, here it expects another positive MUF to compliment the 

relatively high positive MUF of the diversion. The effect of the 

negative MUF is thus amplified in the MUFR statistic, reducing the MUFR 

CUSUM and decreasing the probability of alarming on the next positive 

diversion.

The absolute power against loss magnitude plots for the Threshold 

test/abrupt loss, Page's Test/abrupt loss, Threshold test/protracted 

loss and Page's test/protracted loss are shown in figures 5.22-5.25. 

These illustrate again the superiority of MUFR and the drawback of the 

single Page's Test for an abrupt diversion, and the anomalous advantage 

of ITMUF against a protracted loss.

5-26



Loss s c e n a r i o

Loss (g)

Loss

C u m u la t iv e  a l a r m  p ro b a b i l i t i e s
D is s o lv e r  e s t i m a t e d  f r o m  b u r n - u p  c a l c u l n

A la rm  p r o b a b il ity  (%)

MUF —  MUFR ITMUF
Fig 5.15 Cumulative alarm probabilities for abrupt loss, new system
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Fig 5.16 Cumulative alarm probabilities for abrupt loss, new system

Page's Test with MUF, MUFR, ITMUF
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Fig 5.17 Cumulative alarm probs. for protracted loss, new system

Threshold test with MUF, MUFR, ITMUF
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Fig 5.18 Cumulative alarm probs. for protracted loss, new system

Page's Test with MUF, MUFR, ITMUF
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Period 1

Period 2

P r o b  d e n s  ( ITMUF 2)

Fig 5.19 Increase in power due to the incorrect assumption of 
negative correlation
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Fig 5.20 Cumulative alarm probabilities for alternate loss with 
fractional replacement, new system 
Threshold test with MUF, MUFR, ITMUF
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Page's Test with MUF, MUFR, ITMUF
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Cum ulative  a la r m  probab il ity  (%)

------  MUF — MUF R ITMUF
Fig 5.22 Absolute power for abrupt loss on period 30, new system 

Threshold test with MUF, MUFR, ITMUF
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Fig 5.23 Absolute power for abrupt loss on period 30, new system

Page's Test with MUF, MUFR, ITMUF
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Cum ulative  a la rm  probab ility  (%)

——  MUF —*— MUFR — I TMUF
Fig 5.24 Absolute power for protracted loss, new system 

Threshold test with MUF, MUFR, ITMUF
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Fig 5.25 Absolute power for protracted loss, new system

Page's Test with MUF, MUFR, ITMUF
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5.7 Summary

Accurate plant modelling allows the MUF sequence to be accurately 

filtered; the knowledge of the uncertainties on the filtered estimates, 

and the performance of the filtered sequence as the basis for loss 

detection, are improved. This chapter explains how this is implemented 

in terms of the MUF covariance matrix, and illustrates the benefits in 

simulated diversion detection comparisons. The resulting statistic is 

particularly effective against abrupt loss, and diversion/replacement 

strategies. It is not an efficient means of identifying small, 

protracted diversions, however.

This problem will be addressed in the next chapter, where it is 

demonstrated that the modelling can also be effected in terms of 

state-estimation techniques. A Kalman Filter is used to solve a set of 

simultaneous matrix equations describing the system, producing an 

optimal filtered estimate. This can be configured to produce 

MUF-residuals, but it offers greater versatility in adapting to the loss 

scenario.
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6. Application of a Kalman Filter to materials accountancy

6.1 Introduction

The Kalman Filter uses recursive state estimation techniques to 

simultaneously evaluate a set of plant parameters. It uses a 

progression model of the plant, taking information at period (k) to 

produce an estimate of the state at (k+1 ), and a measurement model, 

describing the plant determinations; each has an associated error 

covariance matrix. The Filter produces an optimal, linear estimate of 

the plant parameters by suitable weighting of the prediction and 

measurements. This approach offers several benefits for materials 

accountancy; it monitors several variables, aiding anomaly 

investigation, it adapts to be optimal for a diversion scenario fitting 

its loss model, and, in general, it requires the storage of less 

information than the transformation techniques. The Kalman Filter has 

been described as a means of generating approximate MUF-residuals [32]; 

it can in fact be configured to produce exact MUF-residuals, which could 

provide a useful diverse verification of the accountancy software.

6.2 The basic Kalman Filter

A derivation of the Kalman Filter is presented in Appendix VIII. The 

basic equations of the Filter used in this application are set out 

below. This assumes that the noise vectors have zero-mean, and there is 

no covariance between the progression model noise and the measurement 

noise.
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Progression model

The state variables are written as a set of recursive equations, 

relating the values at (k+1) to those at (k). This relationship is 

summarized in a progression matrix. Uncertainty in the progression and 

any input is described by a random noise vector.

ïk*l * Ak'ïk * Hk * Î5k ( 6 . 1)
where x = State vector, comprising the state variables 

A = Progression matrix 

u = Input vector

w = Zero-mean random noise vector representing 
uncertainty in A and u

Measurement model

The state vector may or may not represent a set of plant measurements. 

A measurement model is used to express the relationship between the 

two.

ïk - \ - 2 k + \ ( 6 . 2)
where z = Measurement vector, comprising the relevant 

plant data

H = Observation matrix, linking the measurements to 
the state vector

v = Zero-mean random measurement noise vector

It is assumed that the variances and covariances between the 

elements of the noise vectors « and v are known. The covariance
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matrices are termed Q and R respectively:

Q. . = Cov(u). , w. ) 
ij i’ r (6.3)

R.. = Cov(v.,v.) 13 i J (6 . A)

The Kalman Filter first predicts the value of the new state, from the 

progression model. The measurement model is then used to correct the 

prediction, according to the relative accuracies, to give the final 

estimate. The following notation will be used to describe the two 

stages :

x = Predicted state vector, from progression

P = Covariance matrix of predicted state

x = Estimated state vector, using prediction and 
measurements

G = Covariance matrix of estimated state

K = Kalman gain, the multiplying factor to optimize 
the estimate

The Filter is initialized by selecting Xq , an unbiased estimator of 

Xq , and Gq , its associated covariance matrix. At each period, the 

following algorithm is implemeted to effect the Kalman Filter:

1. State prediction

Sk.l ’ V i k  * -k <6 '5

2. Calculate error covariance matrix for the predicted state
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(6.6)P

3. Calculate Kalman gain

K,'k+1

4 Correct state prediction to give state estimate

5 Calculate error covariance matrix for the state estimate

G'k+l (6.9)

This Filter, similar to those described in references [35,58,59,60] 

covers the application to materials accountancy detailed below. A more 

general form is given by Sage & Melsa [61].

6.3 Application of the Kalman Filter to the Fast Reactor Reprocessing 
Plant

6.3.1 Introduction

The materials accountancy measurement system employed in the head-end of 

the Fast Reactor Reprocessing Plant poses particular problems in the 

implementation of a Kalman Filter. The principal inventories, excluding 

the dissolver in the old accountancy system, are calculated from the 

value assigned to the source sub-assembly by the fuel burn-up 

calculations. The Kalman Filter proposed by Pike et al [35], with the 

inventory estimate as the key element of the state vector, would thus be 

unsuitable as there is no accurate observation to balance against the
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prediction. The MUF is generally accepted as the principal parameter in 

materials accountancy. It thus makes sense to choose this as the 

primary variable in the Kalman Filter; indeed, this is the route 

developed by Shipley [36], and adopted by Sellinschegg [32] and Russell 

[19].

In the original form, Shipley made allowance for systematic errors in 

the inventory and transfer estimates. The Filter demands variance and 

covariance information about the modelled errors; there is currently no 

information available about the size of systematic errors in 

determinations at the Dounreay facility. If any were discovered, they 

would be corrected. It would be possible to include them in the Filter, 

and assign arbitrarily large values to them. However, this would 

increase the variance of the filtered estimate.

Systematic discrepancies between the input/inventory and the output will 

appear in the MUF; it will be demonstrated that, without allowing 

specifically for transfer biases, they can be detected in the MUF 

estimate.

A systematic error in an inventory estimate, caused perhaps by 

miscalibration of an instrument or an unidentified hold-up of material, 

can only be detected as spikes in the MUF sequence at plant start-up (or 

when the bias first occurs) and washout. This may well be swamped by 

the random errors of the balance. The Filter distributes the measured 

MUF among the possible sources according to their relative variances. 

As the bias is likely to be small in relation to the inventory standard 

deviation, it is unlikely that a inventory bias term in the Filter will 

be able to detect it.

For these reasons, the systematic error terms will not be included in
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the Kalman Filter. Should this facility be required, it is a relatively 

simple task to augment the state vector [62] for their inclusion.

6.3.2 Modelling the 'ideal' plant

The MUF equation (2.1) can be rewritten:

MUF.k
inv

ek + eip inv
ek-l + MUF° ( 6 . 10)

where e = error 
ip = input 
op = output 
inv = inventory
MUF0 = actual loss of material

MUF is the 'observed' quantity; an estimate of MUF0 would obviously 

be desirable for materials accountancy purposes, and this forms the 

key element of the Kalman Filter state vector. To obtain this 

estimate, which will be called Kalman-MUF or KALMUF, a progression 

model of MUF0 must be pre-supposed, expressing KALMUFj^ in terms of

KALMUFj^, with a modelling 'uncertainty' term.

„ ATMIlt, KALMUF .,iTMin? KALMUF , ,  , , ,
KALMUFj^ = . KALMUF̂ + (6.11)

Setting = 0  implies no relationship between successive 

losses. In view of the lack of knowledge of MUF0, this appears to 

be a sensible model. However, as will be demonstrated later, the use 

of KALMUF is much more suited to the detection of protracted losses 

or transfer biases than abrupt losses. The model that will be used 

is
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KALMUF, . = KALMUF,k+1 k (6.12)

. KALMUF - , ,, ,setting â. = 1  for all k. KALMUF , .ci is chosen as zero to optimize
the model for the constant loss/constant bias scenario; any true 

loss scenario is obviously unknown, and the flexibility of the model 

can only be increased at the expense of the variance of KALMUF.

The observation of MUF̂ . must be expressed in terms of its components 

at time k. This is effected by introducing a variable

The state vector is augmented with this term. The basic models for 

the Filter can now be written [19]:

Progression

(KALMUF'

U 'k+1

1 0

.0 0

(KALMUF' 

0

0 )
inv 

'ek '
(6.13)

Observation

MUF, (1 1). (KALMUF )

, U

ip op inv+ e, - e, - e, k k k

k

(6.14)

where hk+1 

e

inventory error on period k 

error contribution

6.3.3 Augmentation of the state vector to describe plant conditions

The equations above fully describe a system in which all inputs, outputs 

and inventories are determined independently on each balance period -
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the 'ideal plant'. However, in the plant under consideration many of 

the inventories are linked to inputs, and one of the outputs is 

correlated with old inventories. To model these correlations, the state 

vector must be augmented to include recursive equations expressing the 

correlated variables. As the contents of the uncropped pins and batches 

in baskets (and the dissolver for the new accountancy system) are taken 

from the source sub-assembly, correlation exists between elements of the 

same sub-assembly, but not between inventories sourced from different 

sub-assemblies. The models must thus divide these according to their 

parentage; this version allows for components from a total of five sub 

assemblies within the balance area. It was thought that this would 

cover all usual plant operation; the Filter would need to be 

reconfigured if this parameter was exceeded.

It is assumed that all sub-assemblies entering the dismemberment cave 

will be processed sequentially; any pins left over from the last 

sub-assembly will form part of the first batch with pins from the new 

sub-assembly.

The correlations are accommodated in the progression model by 

expressing the error terms recursively. Firstly, einv will now be 

included in the state vector. To achieve this, it must first be 

expressed in terms of its components:

inv p&b&d dissh HAT wste, = e, + e, + e, + e,k k k k k (6.15)

where p&b&d = pins, batches and dissolver
dissh = dissolver heel
HAT = hold-all-tank
wst = waste in crates
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Each term on the right hand side, apart from the error in the dissolver 

heel estimate (and the dissolver itself for the old accountancy system) 

may contain correlation with the previous balance period: the 

hold-all-tank is only reassessed if there is an overflow of liquor into 

it, and waste is only assayed on the balance period in which it is 

created. As it is quite simple to include uncorrelated terms in the 

state vector - the progression multiplier is just zero - the inventory 

terms will all be included.

The uncropped pins, batches in baskets, and dissolver for the new 

accountancy system, may contain components of more than one sub- 

assembly. These must thus be sub-divided further, as the errors are 

traceable to the source sub-assembly.

p&b&d p&b&d p&b&d p&b&d p&b&d p&b&d
e = 6 -  + 6 q + + 6 /  + 6 r  v, 0 • J. u ^
k k zk \  k Dk

where the numerical subscript '1 ' refers to the error due to the 

'newest' sub-assembly component in the inventory. This allows for parts 

of five sub-assemblies in uncropped pins, batches in baskets (there may 

by several batches awaiting dissolution), and the dissolver (this holds 

only one batch).

Two other terms should be included in the state vector; firstly, waste 

is not reassessed when it is exported, leading to a correlation with the 

waste inventory on the previous balance period. Thus, an output waste 

term is required. Secondly, the inclusion of the sub-assembly input 

error will avoid problems due to correlation between the progression 

noise vector and the measurement noise vector.

The state vector thus becomes

6-9



I'KALMUF'i
n

p&b&d
el
p&b&de2
p&b&d

e3
p&b&d

e4
p&b&d

e5
disshe
HATe
wste

gopwst

ipe v

6.3.4 Calculation of the progression matrix and progression noise 
vector

The progression matrix for the above state vector will contain 12x12 

elements. The models for the first two terms are described in the above 

section; these will have no additional noise terms.

In calculating the progressions for the pins & batches and dissolver 

error terms, it should be noted that the subscript numbers increase with 

the increasing 'age' of the sub-assembly to which they refer. If there 

is no input on a balance period, there is a direct correspondence 

between subscript numbers on the progression:

ap&b&d
_1k+l

p&b&d a . eT
x ^

6-10

(6.17)



ap&b&d
K+l

p&b&d
av ,e2 y k

^p&b&d
K+1

p&b&d a . e~
z 3k

( 6 . 18 )

(6.19)

etc.

The a terms are calculated by dividing the mass from the relevant 

sub-assembly present at (k+1) by the mass present at (k). Their values 

are all 0 < a < 1 .

On a balance period in which a sub-assembly arrives as input,
k+1

refers to the new input sub-assembly: there is no previous knowledge 

to establish its numerical value, so the Filter will make an 

estimate from the variance.

gp&b&d _ gp&b&d ^ip
Xk+1 k+1

( 6 . 20)
where |3 is the fraction of the input sub-assembly in the uncropped

pins, batches in baskets and dissolver at the end of the balance 
IPperiod, and co£+  ̂ is the unknown 'random' error of the input sub- 

assembly estimate, defined by:

E[wlp] = 0 E[wip.wlp] = a2 [ip] (6.21)

where E[x] is the expected value of x

The remaining pins, batches and dissolver error terms are shifted in 

their correspondance with the previous balance period:
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^p&b&d
Zk+1

p&b&dOC • 61
y K

ap&b&d
'3Jk+l

p&b&d
az ' e 2 z zR

(6.22)

(6.23)

If, in this instance, a sub-assembly was also brought into the caves

on the previous balance period, the state vector will contain two

references to a single sub-assembly. There is thus an alternative

valid recursion equation for eP&b&d;
Zk+l

ep&b&d
2k+l

(6.24)

Equation 6.22 is simpler to implement, and so is used in this 

application of the Filter.

The hold-all tank is reassessed when its level changes. The 

determination error can be expressed

HAT HAT HAT HAT
ek+l " “ *ek + “k+l (6.25)

HAT HATwhere a =l, co =0 if there is no level change,

, HAT - HAT, n „.HAT HAT, 2,niT, and a =0, E[w ] = 0, E[w .co J = ct (HAT)

if the contents are remeasured.

(6.26)

(6.27)

The waste error term can be described by

wst wst wst wst
ek+i = a -ek + V i (6.28)

UQ fwhere a is the fraction of waste carried over from the previous
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is defined bybalance period inventory, and oovst:

(6.29)

Similarly, the output waste error term is written

opwst opwst wst e, , = a r ,e,k+1 k
-opwst wst 

+ P >wk+l (6.30)

where a and g°Pwst are the fractions of the waste from the

previous balance period and the current balance period respectively 

leaving as output.

The input error and the dissolver heel error terms are uncorrelated 

variables, and do not give rise to a progression; their errors are 

expressed in the random noise vector.

(6.31)

dissh
ek+l “k+l

dissh (6.32)

where E[oo1'3] = 0 „ r  ÌP ip-, 2 , .  \E[ co .  go = a (ip) (6.33)

E[ wdissh ] = 0 —ir dissh dissh E[w .oo ] = a2 (dissh) (6.34)
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6.3.5 Kalman Filter equations

The Filter models for the new accountancy system are thus:

Progression model

'KALMUF' •1 0 0 0 0 0 0 0 0 0 0 O' •KALMUF'

n 0 0 1 1 1 1 1 1 1 1 0 0 h
p &b i d

el 0 0 a33 0 0 0 0 0 0 0 0 0 ptb&d
*1

pibld 
e 2 0 0 “43 a44 0 0 0 0 0 0 0 0 plbld

e 2
p i b i d

*3 0 0 0 “54 a55 0 0 0 0 0 0 0 p tbld 
6 3

psbid 0 0 0 0 “65 “66 0 0 0 0 0 0 p&b&d
*4

pibid
ef

3B 0 0 0 0 0 “76 “77 0 0 0 0 0 p &b & d
el

di s s h e 0 0 0 0 0 0 0 0 0 0 0 0 di s s h e
HATe 0 0 0 0 0 0 0 0

“ 9 9
0 0 0 HATe

wste 0 0 0 0 0 0 0 0 0 “a a 0 0 wste
^opwst 0 0 0 0 0 0 0 0 0 “ab 0 0 gopwst

eip 0 0 0 0 0 0 0 0 0 0 0 0 eip/ k + 1 k /

+

p&b&d ip 
p k + 1

di s sh go, k + 1
HAT 

w,  -, k + 1
ws t 00, ik + 1

-ODWSt WStß . w, ,K k + 1
ipgo, 1k + 1 y

(6.35)
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Measurement model

MUFk +  1 =  (1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 ) ■ KALMUF

pib id
n
pib td 
#2
pibid

pibid 
5 4
pibid

* 5
d̂i s sh

HATe
ws t e

ODWBt»
*P

(6.36)

where superscripts p&b&d refers to uncropped pins, batches
in baskets, and the 
dissolver

dissh the dissolver heel

HAT the hold-all tank

wst waste in crates

opwst output waste

and numerical subscripts relate to the source sub-assembly, 

' 1 ' referring to components of the newest sub-assembly

If there is no input,

a43 ’a54 ’a65 ,a 76 = 0

0 < a33 ,a44 ’1 a55 ’a66 ,a77 < 1

If there is an input,

a33 .“44 .“55 ’ a66 ’“77 = 0

0 < “43 .“54 -1 a65 ’“76 ^ 1

It should be noted that the Kalman Filter can only produce estimates

of the errors where these errors contribute to the observation of
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MUF. Thus if a sub-assembly arrives as input, and its content 

remains in its entirety in the dismemberment caves as uncropped pins 

and batches in baskets awaiting dissolution, its positive error 

contribution to the MUF as an input is exactly cancelled by its 

negative contribution as an inventory. The Filter will thus 

estimate e * a s  zero.

The final Filter equations for the old accountancy system are: 

Progression model

'KALMUF' '1 0 0 0 0 0 0 0 0 0 0 O' 'KALMUF'

n 0 0 1 1 1 1 1 1 1 1 0 0 n

p & b & d
e l 0 0 “33 0 0 0 0 0 0 0 0 0 p&b&d

61
pibsd 0 0 “43 “ 4 4

0 0 0 0 0 0 0 0 ptbid 
62

p&b&d
*3 0 0 0

“ 5 4 “ 5 5
0 0 0 0 0 0 0 p &b &d

3
p&b&d 

6 4 0 0 0 0 “65 “66 0 0 0 0 0 0 pibid 
e 4

di s s e = 0 0 0 0 0 0 0 0 0 0 0 0 di s s e
di s s h  e 0 0 0 0 0 0 0 0 0 0 0 0

di s sh e
HATe 0 0 0 0 0 0 0 0

“ 9 9
0 0 0

HATe
wste 0 0 0 0 0 0 0 0 0 “a a 0 0

wste
opws t e 0 0 0 0 0 0 0 0 0 “ab 0 0

opws t e

eip
U 1

0 0 0 0 0 0 0 0 0 0 0 0 e i p
* / k

+

-P&b&d ip 
p -wk+i

di s s
(A). ,k + 1
di s sh 

w, k + 1
HAT

w,  1k + 1
wst

w,  1k + 1 
.opwst wst 
p -wk+i

k + 1

(6.37)
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Measurement model

MUF U  l  - l  - l  - l  - l  - l  - l  - l  - l  - l 1 ) •I'KALMUF'l

*1
ptbsd e f
pSfbtd

*2
pScb&d
pfcb&d©*;4
di s se

di s sh e
HATe
ws t©

opws t e

e
k

(6.38)

6.4 Performance of the Kalman Filter

In addition to the KALMUF term in the state vector, a 'residual', 

defined as the difference between the expected MUF and the observed MUF, 

can also be calculated. In the terminology used in section 6.2, this is 

written

where is the residual vector. In this case, it has a single

dimension, and will be called the Kalman-residual, or KALR. If the 

Filter is informed that there is no material diversion (KALMUF 

eliminated, or initialized as zero with zero variance), the KALR 

sequence will be identical to the MUF-residuals sequence; this is a 

useful check on the accuracy of the Kalman Filter model and the 

calculation of the MUF covariance matrix.

Enabling the loss model in the Filter introduces another variable with

Zk = - Hk -5k (6.39)
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an associated error, thus increasing the variance of KALR. This may 

slightly reduce the power to detect an abrupt loss. Against this, the 

use of the KALMUF term gives an estimate of the mean, constant loss; it 

is a very sensitive indicator of instrument bias, or the protracted 

siphoning-off of small quantities of material. Theoretically, as 

nothing is known about KALMUF(O), it should be initialized with an 

infinite variance, and the Filter allowed to track down on the actual 

uncertainty. However, this makes the variance of the early KALR values 

too high to be of use in loss detection. In practice, it was found that 

initializing the variance of KALMUF at 40 gave sufficient sensitivity to 

detect small, protracted anomalies, without unduly impairing the power 

of KALR to identify a larger diversion.

Against a variety of simulated loss scenarios, the KALR statistic 

displays a very similar behaviour to MUFR. Both are effective against 

abrupt and loss-with-replacement strategies, but insensitive to very 

small, protracted diversion. A useful advantage of the Kalman Filter 

approach is its adaptation to errors described in its system model; in 

this example, KALR shows a small but consistent superiority in detecting 

abrupt losses against a small negative systematic error in the transfer 

estimates.

The KALMUF term is blind to abrupt losses, but, as described above, very 

sensitive to small, protracted discrepancies. Its response has a very 

large time-constant - as a guide, it will take at a minimum of about 10 

balance periods to show any convergence on the anomaly. This does mean 

that it is fairly effective against loss-on-alternate-periods, despite 

the fact that this scenario is not within its model.

As protracted anomalies are handled by the KALMUF term, the KALR term is 

less sensitive than MUFR to background systematic errors. This aids
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investigation, as the discrepancy will probably be indicated in the 

KALMUF statistic rather than as an unidentified alarm in KALR.

6.5 Results

The two statistics generated from the Kalman Filter, the residual KALR 

and the mean loss estimator KALMUF, are compared with MUF, MUFR, and 

CUMUF, in the threshold test and, where appropriate, Page's Test.

As described above, the Kalman-residuals sequence KALR is very similar 

to the MUF-residuals (MUFR) calculated from the MUF covariance matrix. 

Its performance is in general also very similar - in can be seen, in 

figure 6 .1 , that in detecting a 1200g abrupt loss under the old 

accountancy system, the two detection plots are virtually identical. 

Even at this late stage of the campaign, when the CUMUF variance is 

quite high, CUMUF detects a loss of this magnitude with 95% probability, 

compared to 99% for KALR/MUFR. The slow reponse of KALMUF is shown 

quite clearly here, the detection rate reaching 90% six balance periods 

after the event, and with an overall power of 98% nine periods after. 

The constant loss model assumed the Kalman Filter is triggered by the 

large, abrupt diversion; it then assumes this loss is continuing, 

causing later alarms. The overall power of KALMUF is thus comparable 

with MUFR and KALR in this scenario.

The Page's Test results shown in figure 6.2 again illustrate the 

closeness between KALR and MUFR. The KALMUF response is extremely slow; 

the KALMUF model is of constant loss, so the sequence contains a very 

high positive correlation between successive elements, like CUMUF values 

towards the end of a campaign. Like CUMUF, it is thus not a suitable 

statistic to use in Page's Test, as to achieve a low false alarm rate

6-19



the thresholds must be set very high.

The real benefits of the KALMUF sequence are demonstrated by its 

performance against a constant loss. Figure 6.3 shows the detection 

probability/time curve for the statistics against a constant 30g/period 

diversion or systematic error in the threshold test. The KALMUF 

sequence is slow to repond again, but offers the greatest chance of 

detection after 18 balance periods. Applied to Page's Test, KALMUF has 

slightly more overall power than Page/MUFR (figure 6 .A), but is actually 

more effective in the threshold test.

Against a strategy of alternate diversion/fractional replacement, KALMUF 

performs well in the threshold test (figure 6.5), but is bettered in 

absolute power by Page/MUFR and Page/KALR (figure 6 .6 ).

The absolute power curves are shown in figures 6.7 - 6.10. The best 

performance against the abrupt loss is given by Page/KALR, and against 

the protracted loss by KALMUF.

Turning to the new accountancy system, KALR again performs in a very 

similar fashion to MUFR. The detectable levels of abrupt losses, and 

losses with fractional replacement are much lower under this regime, and 

KALMUF performs poorly against small losses over short periods. However, 

the use of KALMUF with the threshold test still offers the greatest 

power against a protracted diversion, figure 6.11 showing the 

performance against a constant loss of 25g/period. Again, the response 

is slow; up to period 22, CUMUF has a higher power. The use of Page's 

Test, illustrated in figure 6.12, yields no improvement; the anomalous 

benefit of ITMUF in this accountancy system against protracted losses is 

thus nullified.
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The absolute power curves for the new accountancy system are shown in 

figures 6.13 - 6.16. It can be seen that MUFR or KALR, used with the 

threshold test, offer the highest probability of detecting an abrupt 

diversion, while again KALMUF is the most effective against the constant 

loss.

6.6 The use of a 'Twin test'

It can be seen in the absolute power against protracted loss curves for 

both the old (figures 6.9, 6.10) and new (figures 6.14, 6.15) that KALR 

is unresponsive to this scenario; this is due to the 'absorption' of the 

constant anomaly by the KALMUF term. This may be turned to a slight 

advantage where a prompt theft of material occurs against a background 

of negative instrument error - deliberate miscalibration being a 

possible strategy open to a potential diverter.

The Kalman Filter thus tends to segregate the background trend from any 

instantaneous anomaly. This suggests that the two statistics derived 

from the Kalman Filter form a complementary pair, and should be used in 

a twin test.

This also aids the implementation of Page's Test, as the parameters can 

be selected to operate over different ranges. Data from the new 

accountancy system is particularly sensitive to the choice of the H-K 

pair - the variation of power with K is illustrated for an abrupt and 

protracted loss in figures 6.17 and 6.18 respectively. KALMUF still 

provides the greatest sensitivity in a protracted loss scenario for both 

accountancy systems, but the use of Page's Test with K=2 enhances the 

performance of MUFR and KALR in the new system; they are now comparable 

with their threshold test equivalents.
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Fig 6.3 Cumulative alarm probs. for protracted loss, old system 

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

C u m u la tiv e  a la rm  p ro b a b ilitie s  
I n d e p e n d e n t  d i s s o l v e r  e s t i m a t e

o 5 10 15 20 25 30 35 40
Balan ce period

-- P»ge/MUF -- Page/kiUFR Pig«/KALR P»ge/KALMUF

Fig 6.4 Cumulative alarm probs. for protracted loss, old system

Page's Test with MUF, MUFR, KALR, KALMUF
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Loss scen ar io

Loss (g)

Loss

C u m u la tiv e  a la rm  p ro b a b ilitie s  
I n d e p e n d e n t  d i s s o l v e r  e s t i m a t e

Alarm  p ro b ab ility  (%)

-----  MUF —  MUFR KALR “ ®“  KALMITF CUMUF

Fig 6.5 Cumulative alarm probabilities for alternate loss with 

fractional replacement, old system 

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

C u m u la tiv e  a la r m  p ro b a b ilitie s  
I n d e p e n d e n t  d i s s o l v e r  e s t i m a t e

A larm  p rob ab ility  (%)

-- Page/MUF Page/MUFR Page/KALR Page/KALMUF

Fig 6.6 Cumulative alarm probabilities for alternate loss with

fractional replacement, old system

Page's Test with MUF, MUFR, KALR, KALMUF
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Cum ulative  a la r m  probab ility  (%)

------  MUF —'— MUFR KALR - ® -  KALMUF CU M U F
Fig 6.7 Absolute power for abrupt loss on period 30, old system 

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

C u m u la t iv e  a la r m  p ro b a b ility  (%)

" P a g e / M U F  1 P a g e / M U F R  ^  P a g e / K A L R  —5 — P a g e / K A L M U F

Fig 6.8 Absolute power for abrupt loss on period 30, old system

Page's Test with MUF, MUFR, KALR, KALMUF
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Fig 6.9 Absolute power for protracted loss, old system

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

Fig 6.10 Absolute power for protracted loss, old system

Page's Test with MUF, MUFR, KALR, KALMUF
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Loss scenario
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Fig 6.11 Cumulative alarm probs. for protracted loss, old system

Threshold test with MUF, MUFR, ITMUF, KALR, KALMUF, CUMUF
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Fig 6.12 Cumulative alarm probs. for protracted loss, old system

Page's Test with MUF, MUFR, ITMUF, KALR, KALMUF
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Cum ulative  a la r m  probab il ity  (%)

------  MUF MUFR KALR ~ B-  KALMUF CUM U F
Fig 6.13 Absolute power for abrupt loss on period 30, new system 

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

------ P a g e / M U F  ~ 1—  P a g e / M U F R  ~ P a g e / K A L R  P a g e / K A L M U F

Fig 6.14 Absolute power for abrupt loss on period 30, new system

Page's Test with MUF, MUFR, KALR, KALMUF
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C u m ulative  a la r m  probab il ity  (%)

------ MUF —  MUFR ITMUF - 3 -  KALR - s -  KALMUF CUMUF

Fig 6.15 Absolute power for protracted loss, new system

Threshold test with MUF, MUFR, KALR, KALMUF, CUMUF

C u m u la t iv e  a la r m  p r o b a b ilit ie s  (%)

------ P a g e / M U F  1 P a g e / M U F R  ~ P a g e / I T M U F

~ ^  P a g e / K A L R  ~ 13— P a g e / K A L M U F

Fig 6.16 Absolute power for protracted loss, new system

Page's Test with MUF, MUFR, KALR, KALMUF
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A brupt  d ivers ion  of 200g, per iod  30 
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Fig 6.17 Effect of varying H-K pair in Page's Test 

Abrupt loss, new system

P r o t r a c t e d  d ivers ion ,  30g per  p e r io d  
D i s s o l v e r  e s t i m a t e d  f r o m  b u r n - u p  c a l c u l n
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Fig 6.18 Effect of varying H-K pair in Page's Test 

Protracted loss, new system
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6.7 Summary

The Kalman Filter generates two accountancy statitics, a residual very 

similar to MUFR, and a mean constant loss term. The latter offers the 

most powerful means of detecting a protracted loss or determination bias 

under both accountancy systems; however, it has a slow response, and is 

particularly unsuitable for detecting abrupt losses. The use of a twin 

test, using KALMUF with Page/KALR for the old accountancy system, and 

with KALR or Page/KALR for the new accountancy system, will give an 

effective 'blanket' safeguards cover.
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7. Conclusions & suggestions for further work

7.1 Accountancy tank MVUE

If the highest possible accuracy of a determination is required, or if 

the desired accuracy cannot quite be achieved with a single set of 

instruments, the technique of calculating a minimum variance unbiased 

estimate described in chapter 4 using redundant measurements with 

diverse instrumentation may provide a solution. Where the errors on the 

component measurements are normally distributed, with known standard 

deviation, the benefits can be quantified by the methods of Appendix IV. 

If the error distributions are likely to vary significantly from the 

normal assumption, the reduction in the error range may have to be found 

by simulation.

7.2 Modelling the plant measurement system

As the research into Near Real Time Materials Accountancy has matured, 

there has been a growing recognition of the need to establish more 

sophisticated methods of statistical data conditioning to enhance the 

performance of decision tests. With this aim, using the head-end of the 

Fast Reactor Fuel Reprocessing Plant at Dounreay as an example, two 

methods of accurately modelling the plant measurement strategy have been 

developed and applied to materials accountancy.

The methods both centre on the accepted basis of materials accountancy, 

the 'Material Unaccounted For' or 'MUF' statistic defined in equation 

2.1. Firstly, a means of calculating an accurate MUF covariance matrix, 

to remove the serial correlation from the MUF sequence, is described and 

compared with existing simple-model approaches. Secondly, the use of
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state-estimation techniques in the form of a Kalman Filter is 

demonstrated, predicting a set of state variables through a 'progression 

model' and correcting the prediction with the measured MUF.

The strategies were compared with the aid of simulated data, derived 

from models of two different data aquisition systems on the head-end of 

the Fast Reactor Fuel Reprocessing Plant. The results from the 

performance analyses illustrate the advantages of accurate modelling of 

the plant measurement regime. Additionally, the modelling enables the 

standard deviation of the test statistics to be accurately 

calculated.

No single test statistic is robust enough to satisfactorily handle the 

conflicting requirements of powerful and credible detection against an 

unknown diversion scenario, with a single set of parameters. Multiple 

testing is impractical, as either the overall false alarm rate will get 

out of control, or the thresholds for each test will have to be raised, 

reducing their effectiveness. There is general agreement that a dual 

test offers the best compromise, one 'tuned' for large, abrupt losses, 

the other for protracted diversions.

The choice of the 'ideal' statistic for detecting abrupt losses depends 

to a certain extent on the accountancy regime. Where there is an 

independent assessment of the inventory, leading to a negative 

correlation between successive MUF figures, the use of Page's Test with 

the Kalman Filter residual KALR offers the best solution. The CUSUM 

technique also suppresses the effect of modelling errors.

However, if there is no satisfactory, independent determination of the
inventory, and the bulk of the plant content is assumed from an input
figure, the performance of Page's Test is critically dependent on the
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choice of the H-K parameters. At best, the performance of Page/MUFR and 

Page/KALR match those of the respective threshold tests. To ensure 

robustness, the choice must thus fall to either MUFR or KALR with the 

threshold test.

The mean constant loss estimator generated by the Kalman Filter (KALMUF) 

is very sensitive to very protracted diversions or transfer biases under 

both accountancy systems. However, the slow response time means that it 

is ineffective until it has run for a number of balance periods. Its 

performance exactly complements CUMUF, which is very sensitive to early 

anomalies but has an excessive variance to perform well later in a 

campaign. Results from the simulations suggest that the switch to 

KALMUF should be effected after about twenty balance periods. Further 

research is needed to establish a theoretical basis for this 

decision.

MUFR, KALR and KALMUF are less readily interpretable than MUF and CUMUF. 

However, they offer a better and more consistent all-round performance. 

ITMUF is included in the analyses as an example of modelling error by 

over-simplification. The intention is not to discredit the concept 

behind ITMUF, but to indicate that, in practice, other factors than 

those generally considered in the calculation of ITMUF may condition the 

MUF sequence, and these should be accounted for. Where plant conditions 

approximate to the ITMUF assumptions of constant, known correlation 

between successive MUF estimates (as in the earlier accountancy system 

in the head-end of the Dounreay facility), the simple model shows a 

reasonably reliable performance, particularly if the data is applied to 

the CUSUM test. However, if the measurement regime differs 

substantially from this, results from the simple model are highly 

inaccurate. A simple ITMUF transformation on current data from the 

head-end of the Dounreay plant would yield grossly misleading
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results.

7.3 Future vork

Pike et al [35] demonstrate that the Kalman Filter is an ideal vehicle 

to implement a smoothing algorithm. The next stage of this vork would 

be the extension of the Filter models to provide retrospective estimates 

of the plant states.

It may be useful to carry out a theoretical investigation into the 

convergence of the Kalman Filter, with particular regard to the settling 

time of the KALMUF statistic. Reference [64], published by Kalman in 

1963, may be of assistance in this task.
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APPENDIX I - Liquor Height in a Tank from Pneumercator Readings

Figure 1.1 shows schematically a pneumercator system in plant 

conditions and in calibration conditions.

The pressure gauge is calibrated in mm of H^O at 20°C: this is the

pressure P. The actual pressure across the gauge (in Pascals) is

(referring to the inset) given by:

pl - p2 = ghpa20 + gPpw20 " g ( P + h ) p a20 (I'1)

Where p denotes density, subscript a denotes air and subscript 20 

denotes 20°C.

Now referring to the main diagram:

px + g(h + H)paT = gHpLT + ps (1 .2 )

ps = P2 + ghpaT (I-3)

P: - P2 = gH(PLT " paT) (I,4)

Where subscript L denotes liquor and subscript T denotes tank 

temperature.

Equating (1.1) and (1.4) gives:

H pa2o' 
PaT ,

(1.5)
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Figure I.l 
Conversion of pneumercator readings to pressures



APPENDIX II - Derivation of the elements of Table 4.1

II.1 Tank liquor density from laboratory density measurement

PLT “ (l + a-(20-T))-pL20 Tank density given 
density at 20°C (II.1)

pLt = (l + a" (20-t)j • pL20
Lab density given 
density at 20°C (II.2)

PLT =
(1 + a-(20-T)) 

pLt U  + a-(20-t)J (II.3)

II.2 Tank Liquor Density from the "In Tank S.G." Reading

Gauge S is connected between two dip tubes a nominal lm apart 

(the true distance is denoted by d). At calibration time, the 

gauge is placed across two dip tubes placed in water at 20°C 

a distance 'd' apart and the gauge is marked with the value 's'. 

If the gauge is fitted on plant between two tubes exactly lm 

apart then, calibrated in this way, (and ignoring air density 

correction) the gauge would read the S.G. of the tank fluid.

The relationship between reading 's' and Ap across the pressure 

gauge is:

Ap = (pw20 " pa2 0)-g‘S (II-A)

In the tank the same relationship is:

Ap = (pLT " paT),g’d (H-5)
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Equating these and rearranging gives:

(pv20 pa2 0),s
PLT d + paT (II.6 )

II.3 Tank Liquor Density from the Overall and Neck Gauges

The ends of the dip-tubes connected to gauges A and P (see figure 

3.3) are a distance D apart. The difference between the pressure 

across the gauge registering A, ApA , and the pressure across the 

gauge registering P, App, is given by:

ApA - App = D •g •PLT - D •g •paT = (PLT " PaT)'D-g (II.7)

The two gauges are calibrated with water at 20°C, ie:

ApA = (pw20 “ pa20),g‘A ApP = (pw20 ' pa20),g'P (II*8)

Substituting these two results into the equation above and 

rearranging gives:

(II.9)
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II.4 Concentration in g/1 at tank temperature given concentration

in g/1 at lab temperature

If is the concentration in g/1 measured at lab temperature, 

then Y2Q, the concentration in g/1 at 20°C is:

20 1 + cc-(20-t) (II.10)

From this Y^, the concentration in g/1 at the tank temperature can 

be calculated as:

_ . (1 + cl- (20-T)!
T "  x t ll + a * ( 2 0 - t ) J (II.11)

II.5 Volume of Transfer using Laboratory Density Measurement

The equation for the initial volume is found by substituting

II.3 into 1.1 using P, the reading from the neck level gauge, 

and applying the height-to-volume calibration function, \p:

P-(P.v20 " pa2 0)

Lt
fl + a* (20-T))
ll + a* (20— t) J paTj

( 11 . 12)

Similarly the final volume of fluid (heel volume) using a, the 

reading from the overall gauge after the transfer:

a ' (pv20 pa20^
. q *  « - ( 2 0 -T)) 

lpLt ll + a* ( 2 0 - t )  J paTj
(11.13)
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Thus the expression for the volume transferred is:

P '(pv20 “ pa2 0) - Y a '(pv20 pa2 0)
. . (1 + a-(20-Tn . a  + a-(20-T)'I

lPLt 11 + a*(20-t)J paT, lPLt U  + a-(20-t)J paTj
(11.14)

II.6 Volume of Transfer using In Tank SG Indicator

The equation for the initial volume is found by substituting II.6 

into 1.1 using P, the reading from the neck level gauge, and 

applying the height-to-volume calibration function, Similarly, 

the equation for the volume of fluid remaining after the transfer 

(heel volume) is found by substituting II.3 into 1.5 using a, the 

final reading from the overall gauge. The volume transferred is 

the difference:

(11.15)

II.7 Volume of Transfer using In Tank Density Measurement

The equation for the volume transferred is formed in the same way 

as the above equation, substituting II.9 into 1.1 and taking the 

difference between initial and final volumes:

(11.16)
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APPENDIX III - General Derivation of MVUE Coefficients

If X can be measured in n ways X^, X^, ... Xfi then a linear 

estimator of the quantity Y = X can be formed as

Y = y 1^ 1 + y 2x 2 + y3X3 + Y X n n (III.l)

The variance of Y, a^ is given by:

n n
crA = Z I y . y . a . .  Y . , . , 1 ] 1 1  i = l  j = l  J  J

(III.2)

The condition that Y is to be an unbiased estimate of X can be 

expressed as: , n

H=1t U )  - (III.3)

A further condition which can be imposed on Y is that it should 

have minimum variance; ie. the y 's should be chosen so as to 

minimise a*. This can be achieved by setting the partial 

differentials of cr̂. with respect to the y 's to zero. However, 

in order to impose the unbiased condition a Lagrangian 

undetermined multiplier, X, is introduced and the following is 

minimised with respect to the y 's and to X:

n n . n .
ctA = Z I y . y . a .  . + X- [ I y - - 1 | (III.4)
Y i . i  j . i  1 j  ( i _ i 1 J

Differentiating the above expression with respect to n 

Y's and to X and setting the results to zero produces 

n + 1 equations which solve for the n y 's and X.
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0 = 2 L y.  a

9to
1 
^ 

a> 
q

X
 1 

M
II 0 =

i

n
Z y i  ~ =1 1

Writing III.5 and III

bCNl1 ____ 2 a 12 2a13

2ct21 2 °2 2 f f 2 *

2a31 2an - 2 a ̂

2anl 2 a
r l i . 2 \ i

1—» 1 1

L

in matrix format ...

2 a2 n

1

(III.5)

(III.6)

"Y1 O'

Y2 0

y3 0

Yn 0

X 1

j

(III-7)
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In summary,

The Minimum Variance (Linear) Unbiased Estimator of X is:

Y = y 1X1 + ^2^2 + y3^3 + Y X n n

where the y . ' s 
of a: 1 1

are the first n elements of the last column

~2aì 2a12 2 o13 • 2aln 1"

2ct21 2 ° i 2al 1  ’ 2a2n 1

2a31 2ffV -
2 2a ~ 3n 1

A = • • . •

2anl 2fl, l 2a<\l ' 2a2n 1

1 1 1 1 0

(III.8 )
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APPENDIX IV - Calculation of the Accountancy Tank Transfer MVUE 
Coefficients

In Appendix III a method for calculating MVUE coefficients is 

described. It is shown that the coefficients are the first n 

elements of the last column of of the matrix A-\  where A is derived 

from the covariance matrix of the individual measurements. In the 

case of the accountancy tank transfer, MVUEs are required for the 

three volume expressions. To calculate the three As, the 

concentration and volume terms are simplied to remove negligable 

components and keep the solution manageable. They thus become:

C 1 - Z 'pL f §
+ a.(20-T)) 
+ a.(20-t)J (IV.1)

C 2 - 7 •

oCM

Q. pa2(P *s' (IV.2)
s d /

C3
7 .

'(A - 1oCM
 
> 

CL 
'—

✓

/■Ncu

Pa2 0^ (IV.3)
V

D y

C4 - V Crr-
a. (20-T)) 
a. (20-t)J (IV.4)

P‘(pw20 pa2 0^ - ^ a '(pw20 pa2 0)

PLt j i PLt J
v2 - *Pr) - »(nr) <IV-6>

v3 ■ *(r^p) - *(r^p) <IV-7)

For each of the equations [L^], [L^] and [L^], the variance of each 

(concentration x volume) term and the covariances between the four 

terms are needed. To calculate these, the following identities are
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useful.

Variance of a product

Two random variables x, y have mean x, y and error components u,v. 

They form the series

x + U p  x + u2 ,

y + v., y + v.

X + U

y + vJ  r

(IV.8 ) 

(IV.9)

The product of the jth elements is

p. = (x + u.).(y + v.) = x.y + x.v. + y.u. + u..v. (IV.10)FJ 3 J 3 3 3 3

with a mean value for the product series of

P = £ P.
i = l

x.y + E (u..v.) 
i=l 1 1

(IV.11)

Pj can also be expressed

p . = p + w . (IV.12)

where w is the error component. Thus,

w. = p. - p = x.v. + y.u. + u..v. - E (u..v.) (IV.13)J J 1 i=l l l '

n 2
The variance of p is equal to E w.

i = l 1
( I V . 14)
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2 - 2 2 - 2 2  2 2w. = x.v. + y . u .  +u..v. +J J J J J
E (u..v.) 

i-1 1 1

n
(IV.15)

_ 2 -+ 2.X.U..V.V. + 2.U..V.V. - 2.u..y. J J J * 3 J y

n
E (u..v.) 

i-1 1 1

2 .x.u..v. 
3 3

2 .x.v.. J

f n N f n ÌE (u..v.) 
i-1 1 1 - 2 .u . .v .. 

3 3
E (u..v.) 

i-1 1 1
v n , n

E w .2 = x2cr2 (y) + y2cr2 (x) + a2 (x)a2 (y) + 2xy.Cov(x,y) - (Cov(x,y)} 
i-1

(IV.16)

If x and y are accurate measurements,

x2 *ff2 (y) or y2 .a2 (x) » u2 (x).a2 (y) (IV.17)

and if they are uncorrelated, Cov(x,y) = 0

The variance of the product (x.y) thus simplifies to

(IV.18)

2/ \ -2 2 ., -2 2 , .
a (x.y) = x . a (y) + y .ct (x ) (IV.19)

Variance of a quotient

The jth quotient of the random variables x and y is

x + u . 
_____ 1
y + v.

X  +  u . 
_________1

1 + v . / y J
( I V . 2 0 )
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The term in brackets can be expanded by the binomial series

1
fv-lJL +

fv.)
J .

2 (v.)
JL

y v_
_ ÿ yk /

(IV.21)

As Vj« y for an accurate measurement, this may be approximated to

i + y  ÿ
= i -

V.
JL (IV.22)

Thus,
(x + Uj).(y - Vj)

y
(IV.23)

This expression enables the variance of the quotient to be found by 

similar method to that described above.

g2 (x) 2. , o (y)
-2
y

g2 (x). g2 (y)
-2 -2 x .y

2 .Cov(x,y ) 
x.ÿ

{Cov(x,y)}‘
-2 -2 x -y

(IV.24)

Again, with accurate measurements and no covariance between x and y, 

this simplifies to:

2j
r > 
X -2X f<j2(x) a2(y)la y “ -2 • -2 ' -2\ J y l x y )

(IV.25)

Covariances

To evaluate product or quotient covariances, use is made of the 

identity
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(IV.26)a(x,y) = £ x.y
i=l

n

n n n 
£ x. £ y

i=l i=l
2n

For some cases, such as a(x,ij, the expansion of the denominator 

requires the second order binomial term.

Sample data

The following values were used for the various plant measurements:

Plant variable Mean Std. dev.

T Temperature of liquor in tank 22.68°C 0.50°C

t Temperature of liquor in lab. 24.60° 0.05°C

P Neck level gauge reading 1317 (mm water) 2.5 (mm)

A Overall gauge reading 3980 (mm water) 5.0 (mm)

a Heel level gauge reading 63 (mm water) 1.5 (mm)

s In tank specific gravity 
reading

1274 (mm water) 2.5 (mm)

D Separation of heel and overall 
dip-tube ends

2070 mm

d Separation of dip-tubes ends 
for 's'

990 mm

Z Pu concentration 
weight/weight

0.0220 g Pu/g 5xl0-b
g/g

Yt Pu concentration 
weight/volume

28.2 g Pu/1 1.0 g/1

plt Density of liquor at t 1282.4 g/1 1.6 g/1
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The values of the constants are

Constant Value

a Expansion coeff. of 5M nitric acid @ 20°C 0.00057

6 Expansion coeff. of stainless steel tank 
@ 20°C

0.000048

pw20 Density of water @ 20°C 998.2 g/1

pa20 Density of air @ 20°C 1.2 g/1

paT Density of air @ tank temperature 1.2 g/1

Note: The air density term is always added to or subtracted from a 

water density in the formulae. Thus the variation in air density 

between 20°C and tank temperature has no effect on the precision of 

the transfer estimate.

Accountancy tank calibration models

The accountancy tank has narrowed regions at the neck and heel to 

improve the resolution of the height-volume conversion. Linear 

models of these regions were found from the tank calibration table 

using 'least-squares' techniques. These are:

Filled volume = (Neck height x 0.017317) + 152.47 (IV.27)

Emptied volume = (Heel height x 0.004651) + 0.20 (IV.28)

The neck model covers the height range 900-1100mm, and the heel 

model 43-64.5mm. Measurements are normally taken with the liquor 

level within these bands.
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Results

For [C1 4 ] x [V1]

mean: 4795.6 g

standard deviations: 11.58 g

inter-component correlations:

Between components... 1 and 2 0.657
1 and 3 0.627
1 and 4 -0.001
2 and 3 0.549
2 and 4 0.000
3 and 4 -0.001

For [C1 A ] x [V2]

mean: 4795.6 g 

standard deviations: 11.57 g

inter-component correlations:

Between components... 1 and 2 0.641
1 and 3 0.634
1 and 4 0.001
2 and 3 0.531
2 and 4 -0.004
3 and 4 -0.002

For [C1 4 ] x [V3]

mean: 4795.6 g

standard deviations: 11.56 g

inter-component correlations:

Between components... 1 and 2 0.665
1 and 3 0.607
1 and 4 0.001
2 and 3 0.528
2 and 4 0.002
3 and 4 -0.005

IV-7



Applying the A  ̂ formula for calculation of MVUE coefficients, 

derived in Appendix III, gives:

Y1 = 0.5747 vx = 0.4637 n1 = 0.4629

y2 = 0.2019 \>2 = 0.3042 h3 = 0.2004

y 3 = 0.2187 \>3 = 0.2174 h3 = 0.3220

Y4 = 0.0047 v, = 0.0047 4 P4 = 0.0047
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APPENDIX V - Comparison of the sensitivity to measurement bias of 
the MVUE with the existing four methods

Table V.l

Percentage change in estimate of transfer L for a +3ct bias

Measurement 
given +3ct 
bias

Formula
1

Formula
2

Formula
3

Formula
4

MVUE

Pu cone (W/W) Z 0.681 - 0.681 0.681 0.679

Pu cone (W/V) Y
t

- 10.63 - - 0.048

Pneumer. read. P 0.059 0.059 0.059 -0.193 -0.001

Pneumer. read. A - - - 0.505 0.121

Pneumer. read a -0.010 -0.010 -0.010 -0.010 -0.010

Lab. density P
Lt

0.336 - - - 0.180

Tank density s - -0.064 0.528 - 0.116

Lab. temp. t 0.008 0.009 - - 0.004

Tank temp. T -0.070 -0.078 0.007 0.007 -0.034
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Table V.2

Percentage change in estimate of transfer L for a +1X bias

Measurement
given +1X 
bias

Formula
1

Formula
2

Formula
3

Formula
4

MVUE

Pu cone (W/W) Z 1.000 - 1.000 1.000 1.000

Pu cone (V/V) Y
t

- 1.000 - - 0.005

Pneumer. read. P 0.104 0.104 0.104 -0.339 -0.001

Pneumer. read. A - - - 1.339 0.321

Pneumer. read a -0.001 -0.001 -0.001 -0.001 -0.001

Lab. density P
Lt

0.897 - - - 0.481

Tank density s - -0.102 0.896 - 0.197

Lab. temp. t 0.013 0.014 - - 0.007

Tank temp. T -0.011 -0.012 0.001 0.001 -0.005
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APPENDIX VI - Setting the alarm thresholds

The cost and effort involved in investigating false alarms by the 

diversion/no diversion decision tests demands a low false alarm rate - 

the IAEA suggest 5% as being an acceptable level. In terms of NRTMA, 

for the purpose of comparison in this thesis, this is taken to mean an 

average of one false alarm in twenty campaigns, 40 balance periods per 

campaign. This is a stringent constraint, and is obviously dependent on 

the number of balance periods in the campaign.

For the conditions stated above, an independent data set will give an 

almost equi-probable chance of false alarming on each balance period of 

about 0.13% with constant thresholds. This does not hold if there are 

strong correlations within the sequence; in particular, CUMUF will have 

an excessively high chance of false alarming over the first few balance 

periods. MUF and ITMUF suffer this to a much lesser extent, as their 

covariance matrices are more sparse; constant thresholds were used for 

these.

The only practical way of establishing thresholds for MUF, ITMUF and 

CUMUF over a large number of balance periods is by Monte-Carlo 

simulation. The models of the head-end of the reprocessing plant were 

used to generate MUF sequences, covariance data and state-space 

information, which was then used to calculate all the thresholds and 

Page H-K pairs for both the old and new accountancy systems. These 

thresholds apply to both positive and negative limits, and were 

calculated from 10 sets of data each comprising 1000 campaigns of 40 

balance periods. The values are not exact - there is inevitably a 

degree of uncertainty surrounding the sampling of points in the tails of 

the normal distribution. From the data available, the standard 

deviation on each of these is about 0.05. They are tabulated below, the
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CUMUF thresholds for the old and new accountancy systems being displayed 

graphically in figure VI.1.

Old accountancy system New accountancy system

MUF 3.17 3.23

MUFR 3.33 3.27

ITMUF 2.95 4.73

KALR 3.30 3.24

KALMUF 1.57 1.65

T h r e s h o ld

Old CUMUF t h r e s h o ld  1 New CUMUF t h r e s h o ld
Fig VI.1 CUMUF thresholds to maintain a constant false alarm 

probability of 0.13% per period
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It can be seen in figure VI.2 below that the KALMUF false alarm 

probability is not constant. This statistic takes about 10 balance 

periods to settle, so there is little point in adjusting the thresholds 

to give a constant false alarm probability over this period.

A la r m  p r o b a b i l i t y  (%)

—  MUF  — MUF R ITMUF KALR - s -  KALMUF CUM UF

Fig VI.2 Cumulative false alarm probabilities
Varying CUMUF thresholds, new accountancy system

The H-K curves for the old and new systems are shown in figures VI.3 - 

VI.8 . The H-K curves for MUFR and KALR are, as expected, the same for 

both accountancy systems.
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VI-A

P a g e ' s  Test, t h r e s h o l d s

V

H

o ---------1---------1 -------1---------1------- 1---------- 1--------- 1_______i_____ i_______ i________i_______i i ______i______

0 0 .2  0.4 0 .6  0 .0  1 1.2 1.4 1.6 1.0 2 2 .2  2 .4  2 .6  2 .0  3

K

MUF II —K c u r v e

Fig. VI.3 MUF H -K  curve
Old accountancy system

P a g e ' s  T e s t  t h r e s h o l d sII

ITMUF II — K c u r v e

Fig. VI.5 ITMUF H -K  curve
Old accountancy system

P a g e ' s  T e s t  t h r e s h o l d s

II

-----  MUFR II—K c u r v e

Fig. VI.4 MUFR II-K  curve

P a g e 's  T e s t  t h r e s h o l d sII

—  KA1.R II—K c u r v e

Fig. VI.6 KALR II-K  curve



VI-

P a g e ' s  T e s i  t h r e s h o l d s

0 0 .2  0 .4  0 .0  0 .0  I 1.3 1.4 1.0 l.fl  3 3 .3  3 .4  3 .0  3 .0  3

K
--1-  M1JF 11 — K c u r v e

Fig. Vi. 7 MUF ll-K  curve
New accountancy system

P a g e ’s T e s t  t h r e s h o l d s

40

30

30

10

0
0 0 .3  0.4  0 .0  0 .0  1 1.2 1.4 1.0 1.0 3 3 .3  3.4  2 .0  2 .0  3

K

~  ITMUF l l - K  c u r v e

Fig. VI.8 ITMUF H -K  curve
New accountancy system



APPENDIX VII - A method of calculating the residuals sequence from a
general covariance matrix

Introduction

Sellinschegg [32] has described an efficient recursive algorithm for 

calculating the MUF-residuals transformation matrix based on conditional 

covariances. The algorithm proposed here is developed through a 

diagonalisation of the covariance matrix. In general, this requires 

more calculation than Sellinschegg's method; however, if the statistical 

test deems that a diversion has taken place (the system is 'out of 

control'), this offers an easier way to reset the residuals calculation 

at that point, ignoring previous correlations. This is particularly 

useful in Page's Test, where the Cusum statistic merely represents a 

'score' attributed to the system performance, rather that an estimate of 

the loss.

Method

Given a serially correlated vector x, representing a MUF sequence 

with covariance matrix T, a transformation matrix to remove the 

serial correlation can be calculated [13]. This matrix, B, is lower 

triangular with leading diagonal elements all '1'. The 

transformation can be stated

y = B.x (VII.1)

where each element of y is independent of the others.
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The matrix B has the property that

D B.T.BT (VII.2)

is diagonal.

Calculation of the transformation matrix

' 1 0 0 0

B 21 1 0 •

03 = B31 B32 1 •

• 0

. Bnl • • B , 1 n n-1

(VII.3)

wi th

a. M. . 
1 U

a. M . .
i — 2 ,...,n ; j = 1 t ••.,i— 1 (VII.4)

where M „  is the (i,j) th cofactor of C^, 

the set  ̂Xj found from T.

the correlation matrix of

( Ci )km = C0r(xk ’xm ) 5 k ’m = 1’ 1 (VII.5)

cor(xk ,xk) = 1 (VII.6 )

To calculate the (i) th row of B, the (i) th row of cofactors from 

the correlation matrix are required. The (i) th row of the inverse 

of would contain these elements, each multiplied by the 

determinant of C^. As one element is divided by another for each of 

the elements of B, the determinant can be ignored and the terms of
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the inverse used in the expression.

Inversion of the correlation matrix

Taking advantage of the symmetric, positive definite nature of the 

correlation matrix, an efficient inversion can be effected using 

Choleski's method [63]. is first expressed as the product of two 

triangular matrices:

TC. = S Sl

or

C 11 c 12 c13 cli
C21 c22 c23 •

C31 C32 c33 •

c . . L ii • • c . .11 J

S 11 0 0 •

1--O

S 12 S 22 0 •

s13 s23 S33 0
0

. Sli • • • s . . ii J

(VII.7)

S 11 S 12 s13 Sli
0 S22 s23 S2i
0 0 s33 •

0 s . .

(VII.8 )

This is achieved using the relationships

xx
x-1 2

c - I s  XX , zx
Z = 1

y-1
: - E s s
xy 7.-1 zx zy

XX
» y>x

(VII.9)
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S can be inverted to give the matrix A using the algorithm

xy
xx

x+w
E s a -, zx zy z=x+l J

x + w (VII.10)

A is a (iwer triangular matrix.

Thus

C. 1 = A AT (VII. 11)

Only the i th row of C^-'*' is required; as the i th row of A 

contains only the element a... this can be found from

C.-1(i,j) = |C.|. M.. = a., x a.. (VII.12)i v , J /  1 l 1 ij li j i v '

Thus

a. a . .
B.. = — ; i = 2, . . . , n ; j = l,...,i-l (VII.13)rr a

Conclusions

This technique enables the residuals sequence of an 'out of control' 

sequence to be reset merely by moving the start point of the 

transformation calculation to the period after the statistical test has 

signalled a fault.

Compared to general matrix inversion techniques, the utilisation of the 

properties of the covariance matrix enable substantial savings in 

calcution times, typically quartering the time required to carry out the 

full set of inversions for a one hundred balance period campaign without 

diversion alarm.
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APPENDIX Vili - Derivation of the Kalman Filter

The Kalman Filter calculates a set of optimal estimates for the state 

variables from a prediction and an observation, each weighted according 

to their relative accuracy. The prediction is found from a 'progression 

model', in which the values of the variables at (k+1 ) are expressed in 

terms of those at (k). There will be an uncertainty in the prediction - 

if the step was completely determinate, no filter would be required - 

which must be quantified in terms of an error vector of standard 

deviations (expandable to an error covariance matrix).

Progression model

The observation consists of a set of measurements which may or may not 

correspond to the state variables; the relationship between the two is 

expressed in the 'measurement model'. Again, there will be 

uncertainties which must be explicitly quantified.

Measurement model

(VIII.1)

where x = State vector, dimension n

A = Progression matrix

u = Input vector

« = Random error vector of uncertainties in A and u

(VIII.2)
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where z = Measurement vector, dimension m

H = Observation matrix

v = Random measurement noise vector

The variances and covariances between the elements of the noise 

vectors w and Ÿ are summarized in the covariance matrices Q and R 

respectively:

°ij = Cov(w.,toj) (VIII.3)

R. . ij = Cov(\k , Vj ) (VIII.4)

The derivation assumes that the noise vectors are zero-mean, and there 

is no covariance between the progression noise and the measurement 

noise.

The optimal linear estimate based on the prediction and the observation

can be expressed:

*k == (VIII.5)

where x = Estimated state vector

x = Predicted state vector
r

K , K are the weighting matrices

As the estimate must be unbiased, K and K are related. By analysis

of the error terms, these can be reduced to a single variable.

5k == xk + eR (VIII.6 )

5k == xk + ek (VIII.7)
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where e = estimation error 

e = prediction error

Substituting identity (VIII.7) into the measurement equation 

(VIII.2), and replacing in equation (VIII.5) with the new 

definition gives:

X. = K, . x, + K, . H. . x, - K, . H, . e, + K. . v, -k k -k k k -k k k -k k -k (VIII.8 )

Applying the identities (VIII.6 ) and (VIII.7) leads to the result:

5k * IKk * Kk'Hk - ^ ' ï k  * Kk'îk + Kk'^k <VIII-9>

Taking expectations:

If the measurement noise is unbiased, E [ ]  = 0 (VIII.10) 

If the prediction is unbiased, E[e^] = 0 (VIII.11)

Thus for the estimate to be unbiased, [K̂ , + - I] = 0 (VIII.12)

Hence, K, = I - K, .H, k k k (VIII.13)

and the estimate can now be written

x, = x, + K. . [z, - H, .x, 1-k -k k -k k -kJ (VIII.14)

where is termed the Kalman gain matrix
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Calculation of the error covariance matrix of the estimate

The variance of x^» termed G^, is defined by

IIU

E l-k’-k^ (VIII.15)

From (VIII.14), using 

estimation error term

(VIII.2), (VIII.6 ) and (VIII.7) 

is

, the

k  - [I - Kk-Hk ]i + Kk-^k

enabling the error covariance matrix to be expressed

(VIII.16)

Gk = Kk-Hk>T + \ - Kl '  + Kk-^k-
(VIII.17)

The error covariance 

are termed Pk and Rk

matrices of the prediction and the observation 

respectively:

Pk « E[£k -eJ] (VIII.18)

Rk = El^ . ^ 1 (VIII.19)

As there is no correlation between the error sources,

E [ek .vJ] = E[vk .e£] = 0 (VIII.20)

reducing the estimation error covariance matrix to

G k  = ( I  -  K k . H k ) . P k . ( I  -  K R . H k ) T + K k . R k . K ^  ( V I I I . 2 1 )
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Choice of the Kalman gain matrix

The Kalman gain matrix is chosen to minimize the variance of x , 

which translates to minimizing the trace of Ĝ ., termed J^. The 

value of that fulfils this requirement is found by setting the 

partial derivative of with respect to equal to zero:

n
Jk = trace[Gk ] = Z GR(i,i) (VIII.22)

-  «race ((I - ^ . 1 ^ . ( 1  - Kk .Hk)T ♦ - 0
k

(VIII.23)
9Kk

Using the identity (with matrix B symmetric)

--- [trace(A.B.AT )] = 2.A.B (VIII.24)
3A

the differentiation is solved as

- 2.(1 - K. .H, ).P. .H, + 2.K, .R. = 0v k k/ k k k k (VIII.25)

(Pk is a covariance matrix and is thus symmetric)

Thus the Kalman gain matrix is isolated as

K, = P. .H?. [H. .P, .H?- + R. ] 1 k k k 1 k k k k J (VIII.26)

To ensure that this is indeed a minimum, the Hessian of Jk must be 

positive semidefinite, ie.

3 ^

92Kk
>  0 (VIII.27)
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(Vili.28)
32 Jk 2.H. .P. .H? + 2.R,k k k k32K,k

P^ and R^ are both covariance matrices, and so are positive 

semidefinite. Thus, provided is of full rank (non-singular), the 

Hessian will be positive semidefinite.

Substitution of the optimizing Kalman gain (VIII.26) into the 

estimate covariance expression (VIII.21) gives

Gk - Pk - Pk-i'tHk'Pk-Hk * Rlcl'1 -Hk .Pk (VIII.29)k k k

(VIII.30)

Calculation of the error covariance matrix of the prediction

The prediction error covariance matrix is defined by

(VIII.31)

which, from (VIII.6 ), expands to

(VIII.32)

By definition

Ak-r*k-i + Hk_! (VIII.33)

and from (Vili.1),

*k = Ak-l^k-l + -k-1 + \ - l (VIII.34)
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Thus,

e, = A, . .x, . - A, , .x, .-k k-1 -k-1 k-1 -k-1 “k-1 (VIII.35)

" Ak-1 ’-k-1 " ^k-1 (VIII.36)

Substituting in (VIII.31) gives the prediction error covariance 

matrix as:

Pk Ak-l’Gk-l’Ak-l + Qk-1 (VIII.37)
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