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Abstract

Thermally driven flows in a two-dimensional 

rectangular cavity filled with a fluid-saturated porous 

medium are considered when the applied temperature 

difference is perpendicular to the gravity vector. The flow 

depends on two non-dimensional parameters, the 

Darcy-Rayleigh number A and the cavity aspect ratio h 

(height/length). The motion is generated by maintaining the 

vertical sidewalls of the cavity at different constant 

temperatures and attention is focussed on the limit of large

aspect ratio, h— h o . Use of asymptotic and inumerical

methods leads to an excellent correlation with existing

results for the heat transfer across the cavity, and a

prediction of the conditions needed to minimize the heat 

transfer.

The basic problem for h>>l and finite Darcy-Rayleigh 

numbers, A, is formulated in Chapter 2, leading to a 

nonlinear end-zone problem which is studied in detail in 

Chapters 3-5. Asymptotic methods are used to solve the 

problem analytically for small A in Chapter 3 and for large 

A in Chapter 4. Numerical solutions for finite values of A 

are obtained in Chapter 5. Convective effects become 

important throughout the slot when A is of order h and 

solutions for the main core flow in this regime are 

considered in Chapter 6. A position of minimum heat transfer 

is identified. Properties of the flow near the ends of the 

slot are considered in Chapter 7 and the results are related 

in the limit as A/h— ho to existing theories for high 

Darcy-Rayleigh number flow in finite aspect-ratio cavities.
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Chap t e r  1 Int r o d u c t i o n

1.1 Background and mathematical model

The term porous medium is used for solid fissured 

rocks, ceramics, fibrous aggregates, filter paper, sand 

and for other solids which contain holes . The holes may be 

filled with a gas or a liquid. Thus in general a 

porous medium consists of a portion of space occupied 

by heterogeneous or multiphase matter (Bear, 1968 ).

The solid phase is usually called the solid matrix 

and that space within the porous domain which is not 

part of the solid matrix is referred to as the void space 

(or pore space). The solid phase should be distributed 

through the porous medium in such a way that it is present 

inside any representative elementary volume. Essential 

characteristics of a porous medium are that the specific 

surface of the solid matrix is relatively high and that the 

various openings comprising the void space are 

relatively small. The specific surface, S, of a porous

material is defined as the total interstitial surface area 

of the pores, S, per unit bulk volume, V, of the porous 

medium, S = S/V. For example, the specific surface of a 

porous material made of identical spheres of radius R in a

. . . 2 3cubical packing is $=4ttR /(2R) =tt/2R. It thus becomes

obvious that fine materials will exhibit a much greater

specific surface than will coarse materials .

At least some of the pores comprising the void space 

should be interconnected , and the interconnected pore 

space is sometimes termed the effective pore space . As far
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as flow through porous media is concerned, unconnected 

pores may be considered as part of the solid matrix. 

Certain portions of the interconnected pore space may, in 

fact, also be ineffective as far as flow through the

medium is concerned. For example, pores may be 'dead-end' 

pores (or 'blind' pores), i.e pores or channels with only 

a narrow single connection to the interconnected pore 

space, so that almost no flow occurs through them . A 

suitable definition of the effective pore space is that any 

two points within the space may be connected by a curve 

that lies completely within it. Moreover , except for 

special cases , any two such points may be connected by 

many curves with an arbitrary maximal distance between any 

two of them . For a finite porous medium this maximal 

distance is limited by the dimensions of the domain.

In the present work it will be assumed that the motion

of the liquid or gas through the porous medium conforms to

Darcy's law (Lapwood 1948) which states that a fluid flow
*

with velocity u through a porous medium experiences a 

resistance force equal to gu /K per unit mass , where K 

is a constant with the dimensions of velocity and g is 

the acceleration due to gravity. Incorporating this 

resistance force in Newton's law of motion gives the 

momentum equation

Du*
P --7

Dt

. . pgh
V p ---+ P F , (1.1.1)

where p is the pressure , p is the fluid density and F

is any external force per unit
*

mass . Also is the

gradient operator and D/Dt* =
* * * 

a/at + u . v denotes
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the time . In the absence of any sources, the mass of 

fluid is conserved, leading to the continuity or

'mass-conservation' equation

—  t + 1 ■(PH*) = 0 • (1.1.2)
at*

In addition, the thermal energy equation is assumed to

take the form

DT *2 *
—  =  JC V T  ( 1 . 1 . 3 )

Dt

differentiation following the motion, where t is

where T is the temperature of th<a fluid and k is the

therma.1 diffusivity Finally , the density of the fluid

will be assumed to be linearly dependent on its

temperature, so that the equation of state may be written 

in the form

p = p [ 1 - a (T - T ) ]r i- 0 l \ o '  J (1.1.4)

where a is the coefficient of thermal expansion and pQ is

the density of the fluid at temperature Tn

The present work is concerned with buoyancy-driven
*

flows where the external force is due to gravity. The z
* * *

axis of Cartesian coordinates (x ,y ,z ) is taken 

vertically upwards so that F=(0,0,-g) and the governing 

equations can then be taken as

du

Sx

av + aw _ (1.1.5)

.du * du * du , * du .
p (--  + U --  + V --  + w --  )“ n x « * * * '

d t JX dy dZ

ap

Sx
- P T- U'o k (1 .1 .6)
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* * * *
, 3v * 3V * 3v *3v ,

+ W — -)
dp V

P0 (- T + u --* + V --
# * - p t- V'o k

at ax ay 3z ay
(1.1.7)

.aw * aw * aw *aw
Pn (— ; + u — - +v -- + w — -
0 at ax ay* az

-pog(l-a(T*-T*)), (1 .1 .8 )

3T DT 3T ♦ 3T-- + u -- + V -- + w -- — K
at* ax ay* a z

(1.1.9)

where u =(u ,v ,w ) . Here the Oberbeck-Boussinesq 

approximation has been assumed, in which changes in the 

density are neglected except where coupled with the 

gravitational acceleration term. Also the constant K has 

been replaced by the permeability, defined as k=Kr/g where 

v is the kinematic viscosity . The system (1.1.5-9) may be 

non-dimensionalised by setting

(U*,V*,w*) 
* * *

K - — .
= — 7 (U , v , w ) ,

1' ̂
(x , y , z )

* (*2 t - t

N>,XII

► (1.1.10)

where t is a typical length scale of the system, and by 

def ining

T = T + AT T ,

p = p - p gz +  ̂ ro u

p r/c -o
P

(1.1.11)

*  ̂ * 
where AT is a typical temperature difference and p̂  is an

arbitrary constant . This gives

9



du ( av ( aw _ 
ax ay az (1 .1 .12)

. d U  — d U  — d U  — d U  .
e(—  + u —  + v —  + w —  ) =vat ax ay az '

£p -
ax u (1.1.13)

. av — dv , — dv , — av . ap -
e(T-rr + u —  + v — - + w —  ) = - - ^ - - vVat dx dy 3z dy (1.1.14)

. d W — dW — d w — a w  .

Vat ax dy dz '
ap
az - w + AT , (1.1.15)

dT  ̂- aT ̂  - dT ̂  - aT n2 =¡̂r + u —  + v — - + w —  = V T  ,dt dx ay dz (1.1.16)

where V2 = d2/dx2 + d2/dy2 + d2/dz2 ,

A ggAT kr
Ki d

(1.1.17)

. . * 2 
is the Darcy-Rayleigh number and e=kK/iV is a

non-dimensional parameter which for many porous-media

flows can be assumed to be small. In the limit as e -- > 0

the governing equations for three-dimensional flow become

du
dX

+

dp
ax

+

ap
ay +

a p
dZ

+

dT
at

+

dv aw 
ay az 0 , (1.1.18)

C 
|

ii o (1.1.19)

<1 II o (1.1.20)

w - AT = 0 , (1.1.21)

- af  ̂ -u —  + V dx ^  + W $  = 72f ,dy dz ' (1.1.22)

(Lapwood 1948). For steady, two-dimensional flow, 

independent of y, the system may be further reduced to the 

form
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3T
3X ( 1 . 1 . 2 3 )\72ij j  = -A

^2= = 3 (T , i//) 
3 ( x , Z ) (1.1.24)

2 2 2 2 2 — .
where 7 = 3  /3x + 3 /3z , ip is the non-dimensional stream 

function defined by

u dip_
3x ( 1 . 1 . 2 5 )

and the pressure has been eliminated .

The present study is concerned chiefly with solutions 

of (1.1.23,24) in rectangular geometries. There are 

applications in a wide variety of areas. Convective heat 

transfer in a confined rectangular cavity packed with a 

porous medium is of practical importance, for example, in 

the nuclear power industry where porous insulating 

materials are used in multishield structures surrounding 

the core of a nuclear reactor, and in regenerative heat 

exchangers (Seki, Fukusako and Inaba 1978). There are 

also applications in high performance building insulation, 

solar power collectors, energy-efficient drying processes, 

the cooling of nuclear fuel in shipping flasks and 

water-filled storage bays, thermal energy storage tanks and 

chemical catalytic reactors. On a wider scale,porous media 

flows are of interest in relation to the underground spread 

of pollutants, geothermal energy systems and convection in 

the Earth's crust (Prasad and Kulacki 1984,1984a). For 

many, but not all, of these applications the simplest 

realistic mathematical model consists of two-dimensional 

flow in a rectangular cavity filled with a porous medium
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and heated from the side. The horizontal thermal gradient 

generates motion via the buoyancy term in (1.1.23) and it 

is the nature of this motion, and of the corresponding heat

transfer 

interest.

properties of the system which are generally of

The geometrical configuration to be studied here

consists of a two-dimensional cavity defined by the region

VI
*XVIo * * * *

, 0 s z s h , with vertical side walls at x = 0

and x = it maintained at constant temperatures T andc 0

T(+AT respectively, equivalent to

HI II o (X = 0) , T = 1 (X = 1) . (1.1.26)

I f the horizontal walls are thermally insulating the

boundary conditions for the temperature are

^  = o dz (z = 0 , z = h) , (1.1.27)

while if they are conducting

T = x (z = 0 , z = h) , (1.1.28)

where h
* *

=h /it is the aspect ratio of the cavity. The

cavity walls are also impermeable, in which case

0 = 0 (x = 0 , 1),(z = 0 , h). (1.1.29)

An important property of the flow is the amount of heat 

which passes through each vertical wall of the cavity. 

This is measured typically by the Nusselt number for the

cold wall, defined by

* h ¿¡T* , *Nu = / — - dz (1.1.30)
0 i)X 1 x = 0
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or, in non-dimensional form

Nu

AT*

1.2

Nu
h

= J
0

AT 
d x

X —0

Previous work.

dz . (1.1.31)

There has been a considerable amount of previous work 

on thermally-driven cavity flows in porous media. Studies 

concerned with the motion generated by maintaining the 

vertical walls of a rectangular cavity at different 

constant temperatures can be divided roughly into those 

concerned with finite aspect ratios and those for which the 

aspect ratio h is either small or large. Both analytical 

and numerical methods have been used to obtain solutions 

and to make predictions of the heat transfer across the 

cavity.

For cavities of finite aspect ratio, much of the

theoretical work has concentrated on describing the

boundary-layer structure of the flow in the limit of large

Darcy-Rayleigh number, A -- > oo . Weber(1975) identified the

main features of this structure, which consists of a core

region flanked by vertical boundary layers of thickness 

- 1/2
A near each vertical wall.This type of structure was 

first identified in the case of a Newtonian fluid by Gill 

(1966). The core region is vertically stratified and 

contains a horizontal two-way flow which is entrained and 

detrained by the vertical boundary layers, which transport 

the fluid up near the hot wall and down near the cold wall, 

completing the main single-cell circulation in the cavity. 

Weber ( 1975) used an Oseen method to solve the vertical
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boundary-layer equations and this led to a prediction of 

the Nusselt number of the form

Nu ~ (Ah / 3) 1/2 , A -- > oo . (1.2.1)

Walker and Homsy (1978) discussed the finite aspect ratio 

case and used a semi-numerical approach to obtain series 

expansions for the solution in powers of A at fixed values 

of h. They also considered the boundary-layer limit and 

used a finite-difference method to solve the vertical 

boundary-layer equations, giving

Nu - 0.51 (Ah) 1/2 , A  > oo (1.2.2)

and improving upon the Oseen result obtained by Weber. 

Simpkins and Blythe (1980) further investigated the 

solution of the vertical boundary-layer system using an 

integral method and found results in excellent agreement 

with (1.2.2) for three types of boundary-layer velocity 

prof ile

Nu ~ 0.521 (Ah) 1/2 (polynomial-exponential)

Nu - 0.508 (Ah) 1/2 (exponential) (1.2.3)

Nu - 0.510 (Ah) 1/2 (inner-outer) .

They also extended this work to include the effect of a

temperature-dependent viscosity (Blythe and Simpkins 1981).

All of the work on the high Darcy-Rayleigh number 

limit to this point had been based on the assumption of a 

'mass-flux hypothesis' . This assumes that the vertical 

boundary layers empty into the core , so that horizontal 

boundary layers near the top and bottom walls of the cavity
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carry a negligible amount of mass flux in comparison with 

that conveyed across the core . The first steps towards 

confirming the validity of this assumption were taken by 

Blythe , Daniels and Simpkins (1982) who considered in 

detail the asymptotic structure of the solution near each 

end of the vertical boundary layer. They found that the 

solution for the stream function behaves as the square root 

of the vertical co-ordinate, correcting a previous 

assumption made by Walker and Homsy (1978). This result, 

consistent with the mass-flux hypothesis, led to a 

description of the structure of the solution near the 

horizontal walls of the cavity for the case where these 

walls are thermally insulated (Daniels, Blythe and

Simpkins 1982). The horizontal boundary-layer structure 

consists of two layers , an outer layer of thickness order

-1/4 . . .
A , which is dominated by convection, and an inner layer 

of thickness order A >/lb, in which conduction is important. 

Corner regions where the horizontal and vertical boundary 

layers meet were also considered, leading to a 

self-consistent leading order solution for the high 

Darcy-Rayleigh number flow throughout the cavity. The 

asymptotic properties identified by Blythe, Daniels and 

Simpkins (1982) also allowed an accurate numerical solution 

of the vertical boundary-layer system to be undertaken 

(Daniels 1983) and this led to a prediction of the Nusselt 

number of the form

Nu - 0.52 (Ah) 1/3, A ---> co . (1.2.4)

There have been a number of theoretical studies 

concerned with thermally-driven flows in shallow cavities,
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where h<<l. Walker and Homsy (1978) found solutions for

. -2
values of the Darcy-Raylelgh number, A<<h , using the

approach adopted by Cormack, Leal and Imberger (1974) for

2the equivalent Newtonian problem. For finite values of Ah 

the solution throughout most of the cavity is a two-way 

flow parallel to the horizontal boundaries driven by 

lateral conduction. The flow is turned in end regions of 

roughly square cross-section near each vertical wall where 

the full nonlinear equations apply. Approximate solutions 

for this region were obtained by Bejan and Tien (1978) and 

a more detailed study, which included numerical solutions 

of the end-zone problem, was undertaken by Daniels, Blythe 

and Simpkins (1986). The Nusselt number for this

'internediate'regime is

Nu - h(l+ A2h4) h 0 (1.2.5)

As the Darcy-Rayleigh number increases , the end regions 

spread across the cavity, leading to a new non-parallel 

core-flow when A is of order h J.In this so-called 

'merged-layer' regime studied by Daniels, Simpkins and 

Blythe (1989) the core region is governed by the horizontal 

boundary-layer equations and the motion is no longer 

uni-cellular, with inner circulatory motions in each half 

of the cavity completed via vertical boundary layers along 

the sidewalls. The merged-layer regime is particularly 

important as it covers a wide range of parameter space, 

25s Ah^slO4. The Nusselt number in this regime has the form

Nu ~ h 1 Nu(Ah3) , h -- > 0 ,

where Nu is a function only of the variable

(1 .2 .6 )

Ah3. As
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Ah — o ,

Nu - 1
120

consisten

AhJ --- > CO

Nu - 0.52

(Ah r  , (1.2.7)

consistent with the intermediate result (1.2.5) while as

3 . 1/2
(1 .2 .8 )

consistent with the boundary-layer regime for a cavity of 

finite aspect ratio , where (1.2.4) applies . This latter 

regime is recovered by a limiting process in which the 

regions governed by the horizontal boundary-layer equations 

become progressively thinner and are restricted to the 

neighbourhood of the horizontal boundaries, leaving a 

vertically stratified horizontal motion in the core. A full 

discussion of the various flow regimes for shallow cavities 

is given by Blythe, Simpkins and Daniels (1983).

In contrast , there is comparatively little previous 

analytical work on thermally-driven porous media flows in 

tall cavities , where h>>l. Gill (1969) showed that such 

flows are stable in the conductive regime while Riley 

(1988) has considered the effect of spatially periodic 

boundary imperfections in the form of surface undulations of 

the sidewalls. The core flow was assumed to lie in the 

conductive regime and it was shown that out-of-phase 

imperfections can significantly enhance the heat transfer 

across the cavity. Other work on tall cavity flows has been 

carried out mainly by numerical or experimental methods. 

Chan, Ivey and Barry (1970), Bankvall (1974) and Lauriat and 

Prasad (1987) have reported numerical results for aspect 

ratios in the range 1 s h  ̂ 50 while Prasad and Kulacki
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(1984b) have considered the extended range 1/20  ̂ h £ 100. 

Burns, Chow and Tien (1977) have studied the effect of mass 

injection in tall cavities , in connection with cavity wall 

leakage, while Prasad and Kulacki (1984a) have considered 

how the flow is affected by constant heat-flux boundary 

conditions for aspect ratios in the range 1 s h s 5 . 

Experimental results for tall cavities have been obtained by 

Klarsfeld (1970) and Seki, Fukusako and Inaba (1978), and 

for lower aspect ratios both experimental and numerical work 

has been carried out by Holst and Aziz (1972) and 

Haadjizadeh and Tien(1983). Hickox and Gartling (1981) have 

also obtained numerical results for shallow cavity flows 

with 1/10< h <1/2 while for tall cavities Prasad and 

Kulacki (1984) have considered the effect of an annular 

geometry .

1.3 Present work

This thesis is concerned with thermally-driven cavity 

flows in porous media where the aspect ratio of the cavity 

is large , i.e . the height of the cavity is large compared 

with the width. The flow is driven by maintaining the 

vertical walls of the cavity at different constant 

temperatures and attention is focussed on the case for 

which the horizontal end walls are thermally insulated . As 

shown earlier , for Darcy flow in the Boussinesg 

approximation there are two non-dimensional parameters 

which determine the flow, the Darcy-Rayleigh number A and 

the aspect ratio h . Chapters 2,3,4 and 5 are concerned 

with the solution for order-one Darcy-Rayleigh numbers A, 

such that A<<h where h>>l. Chapter 2 is concerned with the
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basic formulation of the problem and the identification of 

the important end regions near the horizontal walls where 

nonlinear effects come into play and accommodate the 

turning motion of the main single-cell circulation. 

Solutions of the end-zone problem, which determine a first 

correction to the conductive heat transfer across the 

cavity , are found by both asymptotic and numerical 

methods. In Chapters 3 and 4 the method of matched

asymptotic expansions is used to obtain solutions for small 

and large values of the Darcy-Rayleigh number, 

respectively . Numerical solutions for intermediate values 

of A are found in Chapter 5.

The remainder of the thesis is concerned with the

break-down of the conduction-dominated flow when the 

Darcy-Rayleigh number, A , is comparable with the aspect 

ratio h, and h>>l. Heat transfer across the cavity is no 

longer dominated by conduction and the main core flow 

throughout the cavity can be found using a vertical

boundary-layer approximation. The core solution is 

determined in Chapter 6 for a range of values of A/h and 

this leads to one of the major results of the present 

work - a prediction of the cavity width for which the heat 

transfer of the high Darcy-Rayleigh number flow is a

minimum. Chapter 7 contains a discussion of the relevant 

end-zone structure for A/h = 0(1) and provides an overall

picture of the flow which , as A/h -- » oo , is consistent

with the high Darcy-Rayleigh number flow in a cavity of 

finite aspect ratio (A>>1 ,h = 0(1)).
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Chapter 2 Convection in a vertical slot filled with a

porous medium

2.1 Introduction

In this chapter, the basic problem of convection in a 

rectangular cavity filled with a porous medium is 

formulated. The structure of the motion generated by 

maintaining the vertical walls at different constant 

temperatures is considered in the tail-cavity limit, h— >co.The 

governing equations and boundary conditions are stated in 

Section 2.2 using the non-dimensional formulation outlined 

in Chapter 1, based on Darcy's law and the 

Oberbeck-Boussinesq approximation. The steady-state flow is 

dependent on two non-dimensional parameters, the 

Darcy-Rayleigh number, A, and the aspect ratio, h. In 

Section 2.3 the solution is considered in the limit when h 

is large and A is finite, and it is shown that the flow 

domain divides into a main core region where 0<z<h and 

end-zones at the top and bottom of the cavity, where 

h-z=0(l) and z-O(l) respectively. In the core region the 

flow is conduction-dominated and parallel to the vertical 

walls while in the end regions, where the flow is turned, 

there is a more complicated motion. Symmetry properties of 

the flow imply that it is only necessary to consider one of 

the end zones, and at the base of the cavity where 

z=0(l) it is found that the leading approximations to the 

stream function and temperature satisfy the full nonlinear
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equations of motion, together with boundary conditions 

needed to ensure that the solution matches with that in the

core as z *». The end-region problem contains only one

parameter,A and in general requires a numerical solution 

(which is undertaken in Chapter 5). Asymptotic solutions for 

small and large values of A are considered in Chapters 3 

and 4. The end-region problem is stated in Section 2.4 and 

in Section 2.5 some of its general properties are considered 

with particular reference to the manner in which the

para 1 le 1 -f low core solution is recovered as z-- > oo. This

leads to a fourth-order ordinary differential eigenvalue 

problem which determines the exponential decay-rate 

associated with the solution and thus a measure of the 

vertical extent of the end region. The eigenvalue problem 

is solved using both analytical and numerical techniques .

2.2 Formulation

Consider steady, two-dimensional motion in a
* * * *

rectangular cavity 0  ̂ x s 1 , O ^ z ^ h  filled with a

porous medium . The motion is driven by maintaining the two

vertical walls x =0 and x =i at different constant
* * * * *

temperatures T = T and T = T + AT and the horizontal 

walls are thermally insulating. Then, as outlined in

Chapter 1, the Darcy equations governing motion in 

the Oberbeck-Boussinesq approximation may be written 

in the non-dimensional form

(2.2.1)

(2.2.2)

V2(Jj = - A —  , 
ox '

V2t = ^  3T _ M  ^  
dz dx dX  dz '
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the stream function

ip has been made non-dimensional with respect to k , and A 

is the Darcy-Rayleigh number defined by

where (x , z ) (x,z), T = Tq+ AT T,

* _ agAT k/'
/Kl/

where a is the coefficient 

the permeability, g is the 

is the thermal diffusivity 

viscosity .

Appropriate boundary 

walls of the cavity are :

= T = 0 on

ip = 0 , T = 1 on

HT
d z = 0 on

where 

h = h'/f*

is the cavity aspect ratio .

2.3 Solution for large aspect

(2.2.3)

of thermal expansion, k is 

acceleration due to gravity, k 

and v is the kinematic

conditions on the impermeable
X li o (2.2.4

X = 1 , (2.2.5

z = 0 and z= h, (2.2.6

(2.2.7)

ratio , h>>l

In applications to thermal wall insulation and other 

related problems the solution for large values of h is of 

primary interest and consideration of the limit h — — » co 

also allows analytical progress to be made. The domain 

divides into a core region 0 <z< h and end regions
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near the horizontal walls . In the core region, the

vertical gradients may 

approximation, leading to 

may be expanded as

T = T (x) + 0 - A 0 (x)
c  c

Substitution into (2.2.2) 

with T = 0 on x = 0 and T 

solution is

be neglected to a first

solutions for T and 0 which

+ ? V '
 8 (2.3.1)

. 2 2 gives d T /dx = 0 and
C

= 1 on x = 1, the required

T = x . (2.3.2)

2 2It now follows from (2.2.1) that d i¡j /dx = -1 and with
C

0 = 0 on x = 0 and x = 1, the required solution is
\

0 = X(1-X) / 2 . (2.3.3)

This conductive solution consists of a vertical two-way 

flow driven by buoyancy, with fluid rising near the hot 

wall and descending near the cold wall. The solution

(2.3.3) does not however satisfy the boundary conditions 

(2.2.6) on 0 at z = 0 and z=h and end regions are needed to 

accommodate the necessary turning motion. Since the full 

governing equations (2.2.1,2) and boundary conditions 

(2.2.4-6) possess the centro-symmetry properties

0(x,z) = 0{l-x , h-z)

T (x ,z)=1-T(1-x , h-z;

(2.3.4)

only the region near the bottom wall need be considered.
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2. 4 End region

In the end-region at the base of the cavity the 

solution is expanded in the form

T=T (x , z ) + . . . , 0 = i//(x,z)+... , (h —— > oo) , (2.4.1)

and from (2.2. 1,2) the leading approximations ip and T 

satisfy the full nonlinear system

V 21// (2.4.2)

y 2 T = £h// £iT _ HT
d Z a X i< X 0Z

with boundary conditions

(2.4.3)

t// = T = 0 on x = 0 , (2.4.4)

ijj = 0 , T = 1 on X = 1 , (2.4.5)

i/j = = 0 on z = 0 , (2.4.6) ̂ d z

and

i//-- »Ai/y (x) , T-- >T (x) as z-- > oo . (2.4.7)

This system requires numerical solution for general

values of the parameter A although some progress can be 

made analytically if A is either small or large by using 

asymptotic methods. These various approaches are 

considered in detail in Chapters 3-5 below. Here some
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important properties of the solution are obtained through 

an investigation of the structure of the solution at 

large values of z, in particular giving confidence that

the parallel-flow limit (2.4.7) can be achieved as z => co

and giving an estimate of the vertical extent of the end 

region as a function of the Darcy-Rayleigh number, A .

2.5 End-region solution , z-- > oo .

As z-- > co it is assumed that ip and T approach their

limiting forms (2.4.7) with an exponential decay ,so that

0 - Ai// + 0 (x) e-a z

T - x + 0 ( x) e-az
(z-- > « ) (2.5.1)

where the decay rate a and the functions 0(x) and 0(x) 

are to be determined. Sustitution of (2.5.1) into

(2.4 . 2 , 3) gives

<p‘ ' + a"(p = - A9

9 + a"9 - 9aAiji + a</> = 0

(2.5.2)

(2.5.3)

and from (2.4.4,5) the boundary conditions are

0 = 0 = 0  at x = 0 and x = 1 . (2.5.4)

It is easily shown that if a, 0(x), 0(x) are solutions

of (2.5.2-4), so also are -a, -0 ( 1-x) , 0(l-x).

* * *
Furthermore if a is complex then a , 0 (x) , 0 (x) are

also solutions where * denotes complex conjugate. Thus
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in considering the system, attention may be restricted to 

the first quadrant of the complex a plane. The function 

<p can, in fact, be determined from (2.5.2-4) to yield a

single fourth-order eigenvalue problem for 0 :

0 IV+0 (2a" - A at// )+Aa0 +(a4-a!Ai/; ) 0=0 , (2.5.5)
c  c

/ /
0=0 =0 on x=0 and x=l . (2.5.6)

To solve (2.5.5,6) numerically, it is assumed that

0 =0 +i0 , a=a +ia
r i r i

(2.5.7)

and substitution into (2.5.5) gives a pair of real 

coupled fourth order equations which may be reduced to 

first order form

y,=fi(X'Yj' V 2 ' ■

CM\—1 II
*H

by introducing the variables

y =0
2 1 r 1 y =0

2 2 i /

/ /

y =0 =y =f
2 3 r 1 1 1 t •< II CD =y)=f2 ,

/ / /

y =0 =y =f
2 5 r 2 3 3 t y =e'6 l’= A =f4 -

I I I  1

y = 0 =y =f
2 1 r 2 r> !

/

y =8
v 8 i

/ / /

^ 6  = f6 '

with

(2.5.8)

(2.5.9)
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(2.5.10)

f ={Aa i/v -2 (a2-a") }y + {4a a -Aa ip }y -Aa y +Aa y
7 r .( i i r> r I i c 6 r 3 i 4

-{a 4-6a^a“+a4 -(a 4-3a a 2) A\p }y
r r i i r r i c l

2 2 3 2 '+ {4a a (a -a ) + (a -3a a ) At// }y ,
r i r i i i r c 2

f ={Aa ip -2 (a"-a") }y -{4a a -Aa ip }y -Aa y -Aa y
8 r c  r i 6 r i i c 5 r 4 i 3

4 2 2 4 3 2 '-{a -6a a +a -(a -3a a ) Ai// }y
i- r i i r r i c 2

2 2 3 2 ‘
-{4a a (a -a ) + (a -3a a ) Ai// }y . (2.5.11)

r i r i i i r c 1

This allows the solution to be obtained numerically by 

a fourth-order Runge Kutta scheme. The solution vector is 

written as :

y=(y,/y,,--- ,yj (2 .5 .12)1 c. o

and a solution constructed in the form

y = ay‘11+by‘^’, (2.5.13)

where a and b are complex constants , by computing from 

initial states

y'1’=(0,0,1,0,0,0,0,0), y <2)=(0,0,0,0,0,0,1,0), (2.5.14)

at x=0. Then the boundary conditions 8=8 =0 at x=l, 

are satisfied provided that
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r ( 1 ) , . ( 1 ) 
y +iyM  2 y

( 2 ) ( 2 ) -, 
+ iy

1 2

d +id.= r l (1 ) , . <1 ) 
y +iyJr , 1 6 y

( 2 ) , . ( 2 ) 
+ iy

5 1 6

= 0 (2.5.15)

at x=l. The real and imaginary parts of this equation

determine a and a .
r i

Most calculations of d and d were
r i

carried out with a s tep size Ax= 0.01 in the Runge-Kutta

scheme and the zeros (2. 5.15) were located using

Newton iteration for a function of two variables as

follows . Assuming initial guesses for a and a the
r i

Newton increments q ,q. are such that

ad
d (a +q ,a.+q.)=d (a , a . )+q —  +q. =0 ,

1 : r  ; 1 r  r  1 r  OCX l OCX

ad ad
d . (a +q ,a .+q. )=d. (a ,a .)+q j—  +q . j—

1 r r  l l l r  1 r  Ü 0C 1 o(X =o ,

(2.5.16)

and may therefore be calculated from the formulae

ad.
q =(d — r

r rel u

ad ad ad
- d —  ) /J , q = ( d -r—— - d -r—

i da i ida rda ) /J, (2.5.17)

where J=a(d ,d ) /3(a ,a ) . This provides the newr i  i r

approximation a +q and a +q . The partial derivatives
r r i i

in (2.5.17) are evaluated numerically by calculating d
r

and d at appropriate neighbouring values of a and a
i r i

and the iteration continues until d and d are zero
r i

to within a required tolerance , usually taken as

-7
10 . Solution branches in the complex a plane

were generally located by marching forwards in the

direction of A increasing , using the solution for the
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previous value of A as an initial guess . In this way 

the various branches could be found by starting from 

known solutions a = nrr, a = 0 (n = 1,2 at A=0 

(see below) . The results are shown in Figures 2.1 - 2.3. 

The figures show an interesting behaviour, with 

extensive regions in which a is complex, corresponding 

to a damped oscillatory component in the flow. Only the 

lowest branch appears to remain purely real and this 

determines the e-folding decay length of the end-region, 

z ~ a l. Although higher branches contain complex 

sections, successive bifurcations appear to leave them

purely real as A-- > oo. The results suggest that there is

always a doubly-infinite family of eigenvalues, a, with 

positive real part, indicating that the end-region 

problem (2.4.2-7) is likely to have a consistent solution 

for all values of A, unlike related problems for Newtonian 

fluids where the parallel core-flow sometimes gives 

way to multiple cells (Daniels 1987 , Daniels, Blythe and 

Simpkins 1987) .

Some of the key features of the solution of the 

eigenvalue problem can be obtained by asymptotic 

analysis. In particular the solution for small A is 

obtained by expanding 0 and a in powers of A :

0=0 +A0 +A^0 +...0 1 2

a=a +Aa +A"a +...0 1 2

A-- > 0 . (2.5.18)

Substitution into (2.5.5,6) then gives at leading order
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(2.5.19)

I V  2 ' ' 49 +2a 0 +a 0 =00 0 0 0 0

9 =9 =0 at x=0,10 o

with solution

0 =a sin nnx , a = nrr (n=l,2,...) , (2.5.20)

where a is an arbitrary constant. From terms of order A, 

©i is found to satisfy

I V  2 2 ' ' 4 4 2 20 +2n tt 9 +n n 0 = -a n tt cos nnx1 1 1 0

0 =0 =0 at x=0, 1 ,
i i

and although terms involving a do not contribute , this 

has a consistent solution

0 = ia (x(x-l)cos nmx - — (x-i)sin rmx}+a sin mrx (2.5.22) 
i 8 o nrrv 2 i '

where a is a further arbitrary constant . From terms of 

order A", 9 1 is found to satisfy

(2.5.21)

0 IV+2a"0 +a40 =0 (a ib -4a a -2a2 ) +
2 0 2 0 2 0 1 c 0 2 1

i l l  i i  I
9 (a ip -4a a )-a 0 -a 0 +0 (3a a ip

1 0  c o i  o i  1 0  o'  o i c

2 2 3 3 ' 3
-6a a —4a a )+0 (a ip -4a a ) ;

0 1  0 2 ' l ' O  c 0 1

(2.5.23)

0 =0 =0
2 2

at x=0,1 .
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Multiplying the equation for 9 t by sin n7ix and 

integrating from x=0 to x=l gives

ao n "tt" oc" 1 192 0

so that

(2.5.24)

a =l
+ n'n"- 6 

192 n'rr"

/ 2

n=l,2,3,... . (2.5.25)

This result is consistent with the departure of the

eigenvalues a 

the numerical

value a =nrr ato

initial slopes

values of a q
i ^

from the neighbourhood of A=0 , as found in 

solution shown in Figure 2.1 . From each

A=0 two real branches are generated whose 

correspond to the positive and negative 

iven by (2.5.25) with

a nrr + A
2 2

n 77 - 6 

192n^7i"

1 / 2

+0(A2) as A -- > 0. (2.5.26)

At higher values of A all but the lowest of these 

branches appear to follow a bifurcation sequence in

which the solution contains one or more complex sections 

but eventually reverts to real form at large

Darcy-Rayleigh numbers .

For large values of A solutions are sought in the

form

9 ~ 6 (x) , a ~ a/A (A-- > œ) (2.5.27)
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and substitution into (2.5.5,6) gives :

~ I v ~ ' ~  ' ' ~ ~  '
9 - ou/) 9 +a 9 = 0 ;

l i
9=9 =0 at x=0,1

(2.5.28)

Solutions for the eigenvalue a were obtained using the 

appropriate simplified form of the Runge Kutta scheme 

outlined previously. Real eigenvalues were obtained in 

increasing order of magnitude as follows :

a = 8 3.1 , 548.4 , 1332 ,... (2.5.29)

and correspond to the leading branches of the numerical

solution shown in Figure 2.1. Note that as A-- > œ the

end-zone expands on the vertical scale

z ~ Aa~l ~ 0.012 A , (2.5.30)

leading to breakdown of the structure described in

Section 2.3 when this becomes comparable with the cavity 

height, h. A more detailed investigation of the

structure of the end-zone solution for large values 

of A is undertaken in Chapter 4 below .
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C h a p t e r  3 S o l u t i o n  of the e n d - z o n e  p r o b l e m  for small

Darcy-Rayleigh numbers, A « 1

3.1 Introduction

In this Chapter the solution of the end-zone problem 

is studied for small values of the Darcy-Rayleigh number A.

subdivides into inner and outer regions , with the major 

variation occurring in the inner region where z=0(l). Here 

T and \Ji are expanded in powers of the small parameter, A, 

and solutions for the first two terms in each expansion 

are found in Section 3.2 using Fourier series expansions in 

x. At large values of z, the exponentially small parts of 

these expansions break down ,leading to the necessity for 

an outer region where z=0(A 1) . The outer solution for T 

and d is considered in Section 3.3 where it is shown 

that the exponential part of the solution adjusts from the 

outer form of the inner solution to a new form 

consistent with the structure associated with the 

eigenvalue problem studied in Section 2.5.

3.2 Inner expansion, z=Q(l)

In the inner region where z=0(l) the solution for the 

temperature, T, and stream function, ip, may be expanded 

in the form

In the limit as A--- > 0 it is shown that the domain

T=T (x)+AT (x,z)+A"T (x,z)+...,c l  2
(3.2.1)

\p=A(ipi ( x )  +t/>i ( x ,  z)  ) +A2 i//2 ( x ,  z ) +A3 i//3 ( x ,  z ) +. . . , (3.2.2)
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as A— » 0. It should be noted that the leading term in the 

temperature , T =x, is consistent with all of the boundary 

conditions (2.4.4-7) and therefore remains uniformly valid

throughout the end region as A--- >0. Substitution into

equation (2.4.2) now shows , from terms of order A, that

V2!//̂  0 (3.2.3)

with , from (2.4.4-7) , boundary conditions

0 on X H o X II M (3.2.4)

-i//( on z=o , (3.2.5)

K —  ̂ 0 as Z-- > CO . (3.2.6)

The solution for iJi can be foundl by the method of separation

of variables . Application of the boundary conditions at

x=0 , x= 1 and as z— —> oo yields

00
ip = Y a e nTTZsin nnx (3.2.7)1 n K 'n = 1

and the coefficients a are determined from the final
n

condition on z=0 , giving

a = S x(x-l) sin nnx dx = — - - ̂— — --—  . (3.2.8)
n 3 3 v '

0 n 77

Thus, writing n=2m-l ,

. oo - ( 2m-l ) TTZ
/ 4 ~ e 1
% = -  —  Ï- -------—

n  m=i ( 2 m - l )

sin (2m-1) tlx . (3.2.9)

From terms of order A in (2.4.3), T satisfies

d ill
V2 T = -- -

1 d Z
(3.2.10)
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with,from (2.4.4-7), boundary conditions

T =0 on x=0 ,1 ,l

3T
7Tf1 = 0 on 2 = 0 »

T -- >0 as z-- > oo.

(3.2.11)

(3.2.12)

(3.2.13)

The solution can be expressed as the sum of a particular 

solution which balances the right-hand side of (3.2.10) 

and satisfies the boundary conditions at x=0 , x=l and as

z-- > co, and a complementary solution, which contains the

coefficients b :m

00 -  ( 2 m - 1  ) 7TZ CO .  „
v ze ' ' -(2m-l)rrzY -----------  sin (2m-l) ttx+ Y b e v '

n 3 m=i (2m-1)3 m = 1

sin ( 2m-1) 7TX . (3.2.14)

These coefficients are determined by application of the 

remaining boundary condition, ôT /âz=0 on z=0, which 

gives

bm
-2

4 4( 2m-1 ) 77
(m 1,2,...,). (3.2.15)

Thus

„ 2 _. (2 m-l)7 7z + l. -(2m-l)77z .
T =— - Yi  ---- — 7—  }e sin ( 2m-1 ) 77X .

77 m= 1 ( 2 m - l  )
(3.2.16)

Note that this contribution to the temperature field is a 

symmetric function of (x - i) .

2 ,
From terms of order A in (2.4.2) it is found that

W satisfies
2
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(3.2.17)
ri T

V̂l¡1 = --——
r 2 JX

with, from (2.4.4-7), boundary conditions

0 = 0  on x=0 ,1 ,

0 — —» 0 as z-- > co ,

0 = 0  on z=0
2

(3.2.18)

(3.2.19)

(3.2.20)

To find a particular solution of (3.2.17), 0 , which
2p

balances the right-hand side, and satisfies the

boundary conditions on x=0 , x=l and as z > oo, it is

possible to restrict attention to a function which is 

antisymmetric about x=l/2. Taking into account the form 

of T , a suitable trial solution is of the forml

0 = Y i (a z+/3 )e ('2lTI 1')TTZ (x- -i) sin (2m-l) rrx
2p m m  Zm = 1

, - ( 2m-l ) rrz . . . . ,+H e x ( x-1 ) cos ( 2m-l ) ttx } (3.2.21)

(m=l,2 ,...)

where a , [3 , j are coefficients to be determined.
m m in

Substitution into (3.2.17) then gives

a =m
l

( 2m-1 ) 3tt3

1

2 ( 2m-1 ) 3tt3

3

2 ( 2 m - l )  V 4

(m=l,2 ,...) (3.2.22)

and the complete solution for ip is

(3.2.23)

where

CO

i/j_ = Y. & e n7TZsin mix , (3.2.24)
n = 1

with the coefficients 8 chosen to ensure that the final
n
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boundary condition, i// =0 on z = 0, is satisfied. Thus

<5 = 2 S f(x)sin nrrx dx (3.2.25)

where

f (x) 1 _ . x(x-1) . _ .,1--- - cos ( 2m-1 ) TTX-
2t73 m= i ( 2m-1 ) !

3 <x - 2>

( 2m-1 ) 4n
sin ( 2m-l) ttx}

(3.2.26)

It follows that 6 =0 for odd values of n and aftern

integration by parts

ô =—  I {-
n nb m=i (2m-l) ! (2m-l-n)J (2m-l+n)

(2m-l)4 (2m-l-n)" (2m-l+n) “
] }

(n even) (3.2.27)

which upon further simplification gives

S = —  Z
6

3(2m-1)2-n2

tt“ m=i (2m-l) J [ (2m-l) 4-n2]3
(n even). (3.2.28)

Thus finally

-  £ <f
tt" m=i (2m-l)J 2(2m-l)4Ti

, - ( 2m-l ) 7tz , 1,]e (x- -) x

s in ( 2m-1 ) ttx -
- ( 2m-1 ) 77z

2 (2m-l)3
x ( x — 1 ) cos(2m-l)7ix}

ro oo

+—  I 1
k [ 4k" - 3 ( 2m-1 ) ]

77 6 k = ! m=i (2m-l) 3 [ (2m-l) 2-4k2]3

-2k77Z .e sin 2k7TX.

(3.2.29)

The solution for i// is antisymmetric about x=l/2 and

represents the dominant source of asymmetry in the
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end-region flow as A increases from zero.

Summarising, the solution for small A has the form

to - ( 2m-l ) TTZ
|//=A{|(1-X)---- Y. ------- ---sin(2m-l)Trx}+A2i// +. . . , (3.2.30)

TT m = 1 ( 2m-l )

where ip is given by (3.2.29) and

m ..2 ^ r ( 2m-l ) rrz + 1. -(2m-l)TTZ . ..
T=x-A{—  Y. [----- ----— ] e v ' sm(2m-l)nx} + ,

n4 m=i ( 2m-1 ) 4
(3.2.31)

in that part of the end-region where x and z are both of 

order one. It is noticeable, however, that the above 

expansions break down at large values of z , where

z=0(A l) . This may be seen by comparing terms of order

— 7T 2 2 ""77 Z
Ae and A ze in the form of tjj as z-- » oo. Although

the breakdown only affects terms which are exponentially 

small, it is of interest to identify the correct 

expansion in the region where z=0(A 4), and to resolve 

the discrepancy between (3.2.30,31) and the expansion for 

large z outlined in Section 2.5.

3.3 Outer expansion , z = 0(A

Let z = Az and then the leading terms in (3.2.30-31) 

suggest that in the outer region the expansions for T and

iIt begin

ip=Atp ( x ) +Ae TTẐ A {i/'1 (x , z ) +Aip ̂ (x, z) +...} + ..., '

T=T (x)+e_TTZ/A{Ti (x, z)+ATo (x, z)+. . . }+ ... 

Substitution into (2.4.2,3) then gives, from

(3.3.1)

terms of

41



order e iTZ/A and Ae 17Z/A respectively,

2a t 1 2-- - + 77 T =02 1 dx

a2i// „ aT
---------- +  7T2 !// =  -  ----- -

sx2 1 dx

with boundary conditions i¡j = T =0 at x=0 and 

from (3.3.2)

T =A ( z ) s in 77x ,1 i ' '

A

where A is an arbitrary function of z and

(3.3.3) ,

~ 22 1 i
ip =B (z)sin 77 x A (z) (x- x) sin nx ,
i i  2 i 2

where is a further arbitrary function of z. 

From terms of order Ae TTZ/A in (2.4.3),

d2T , „ dT „
---------2 +  77 "T =2T7 —2 -  +  TT( — -X)T -TU p„ 2 2 2 1 1  
dX dZ

1 1  ' .
= {— (77 ~ x)A ~B +2A }tt sin t t x  ,2 2 i i  l

/ A

where A =dA /dz . This has general solution

a
22 22 1 1 2 
T =A (z)sin 77X + C (z)cos TTX + 77- (x—r-) COS TTX
2 2 ' 2 8 2

1 , 1 A 1
+  j(Bi-2A1 ) (x-i) C O S  TTX - g^(x-|)sin t t x

A .

and satisfaction of the boundary conditions T 

and x=l gives

(3.3.2)

(3.3.3)

x=l. Thus,

(3.3.4) 

then, from

(3.3.5)

(3.3.6)

(3.3.7) 

=0 at x=0
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c  =  -  —2 3 2 and B =2 Al l (3

Thus

„ A . Ai l i
T = {A - — (x--) }sin 7TX + —— x(x-l)cos nx
2 2 8tt 2 8 (3

where A t is an arbitrary function of z.

From terms of order A"e 1TZ/A in (2.4.2),

a2ili dT
— — +n2\Jj = - — i
a x 2 2 a x

ÔIp
+ 2n-

dz
(3.3

which has general solution

ifî = B^z) sin TTX +D)(z)cos nx - — (A. + ) (x--) sin nx

+ (x-i)cos Trxdji - B' - — U
1 6 t t

2  2 2 7 7

A A

)+ 4 (x~2 ̂ "" 48'̂ X_2̂   ̂ ^3 '3

and satisfaction of the boundary conditions 1//̂ =0 at 

and x=l gives

D 16 and B =l

Aa (7T -6) 

9 6tt 2
(3.3

Thus

A
Î P= B^sin 77x -  j (A2+ ( x -  | ) s iSin 77 X

A
-COS 77X {16

A A A
1/ In 1 , 1.2. 1, 1.3

192 2̂  4 X 2 4 8 X 2 ^ (3.3

where B is an arbitrary function of z
/s  /v

At this stage the solution for A,(z) and B (z)

3.8)

3.9)

. 10 )

.11)

x = o

. 12)

. 1 3  )

can
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be completed by solving the coupled equations obtained in 

(3.3.8) and (3.3.12) :

2Ai =B^ , 9 617̂ 131 = (TTd-6 )A (3.3.14)

subject to boundary conditions obtained by matching the 

outer solution to the inner solution found in Section 

3.2. The outer limit of the inner solution as z— > co is 

given by (3.2.30,31) as

4 —7T 7
ip ~ A(ip --- e sin 7TX + ... )+..., (3.3.15)

TT

P A  — TT 7
T ~ T - —  (Tiztl)e sin ttx +. . . , (3.3.16)

c 4TT

which when written in terms of the outer variable z

becomes

ip ~ A(ip — — e TTZ'̂A sin ttx +...)+..., (3.3.17)
TT'

T  ~ T  - e_7TZ / A  s i n  77X . (3.3.18)
TT

From (3.3.4) and (3.3.5) the outer solution has the form

1 1 —TT 7  /  A
ip - A{ip +(1^- -(x —  ) Aj)e sin ttx} + ... , (3.3.19)

_ 7j 7  / A
T ~ T +A e sin ttx +... (3.3.20)

C 1

and it follows that matching with (3.3.17,18) requires

A ~ - 2 Z / 77 * , B — > - 4 / TT 3 (Z > 0). (3.3.21)

Thus the equations (3.3.14) must be solved subject to the 

conditions

A =0 , B =-4/tt3 at z = 0 , (3.3.22)
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and it is easily shown that the required solutions are

2A =— ---- sinh c j z  (3.3.23)1 3  v '
CJTT

4B =- —  cosh c j z  (3.3.24)1 3  v '
TT

where

CJ t t " -  6

1927T<\

1 / 2

(3.3.25)

Although these grow 

corresponding parts of 

providing a consistent 

In summary, the

exponentially as z-- > °o the

the overall solution still decay, 

match with the core solution, 

leading terms in the outer

expansions for i/i and T are

~ Cv-ii
A -TT z / A * ' 2 ~ip = Aip ( x ) -- e ' (4cosh cjz - ------- sinh cjz) sin ttx +
TT'

, 2 —TTZ / A.O ( A e ' ) (3.3.26)

and

T=T (x)-
_ - T T Z / A  . " , „9 p  ' * — TT 7  / A
-------  sinh c j z  sin ttx + 0(Ae ' ) (3.3.27)

CJTT

and these are valid in a region

A . —1 
z=0(1), equivalent to z of order A

A

edge of this region, as z --- > oo, the

decay associated with (3.3.26,27) may 

— zform e where

of vertical extent

as A -- » 0 . At the

overall exponential 

be expressed in the

a  ~ tt +  A cj (A -- > 0) (3.3.28)
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and with cj given by (3.3.25) this is 

consistent with the leading eigenvalue (n= 

in Section 2.5.

seen to be 

) identified
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Chapter 4 Solution of the end-zone problem for large

Darcy-Rayleigh numbers A » 1

4.1 Introduction

In this chapter the structure of the end-zone 

solution is considered for large values of the 

Darcy-Rayleigh number. Three main vertical scales emerge

in the limit as A---------- » oo, giving rise to an outer region of

large vertical extent z=0(A), a main inner region of 

roughly square cross-section where z=0 (l) and an inner 

horizontal layer where z=0(A 1/4) . The inner regions also 

subdivide laterally into main sections which span most of 

the cavity width 0<x<l, and boundary layers on the 

vertical walls near x=0 and x=l. A schematic diagram of 

the overall structure is shown in Figure 4.1.

The outer region is governed by a reduced form of 

the end-zone equations equivalent to a vertical 

boundary-layer system and is considered in Section 4.2. 

One of the key properties of the solution here is its 

behaviour approaching the base of the cavity, because 

this determines the nature of the solutions in the inner 

regions and eventually whether the overall structure is 

self-consistent. At the base of the outer region the 

proposed structure consists of three separate regions. 

Near the hot wall there is a boundary layer region which 

accommodates the main temperature adjustment from T=1 at 

the wall to T « 0 in the interior. This drives an upward 

flow which entrains fluid from the interior region 0<x<l.



Near the cold wall there is a further adjustment but here 

and throughout the interior region the motion is 

convectively dominated.

The solution in the outer zone breaks down when the 

vertical scale becomes comparable with the cavity width , 

leading to a local structure in which both horizontal and 

vertical diffusion are significant. The main central 

zone of this inner region, considered in Section 4.3, 

consists of descending streamlines which are deflected 

into the boundary layer on the hot wall where 

1 -x=0 (A 1/o) and a similarity solution is available. In 

the central zone, a solution is obtained by use of sine 

transforms. Because the central zone is convectively 

dominated, the solution for the temperature field there 

does not satisfy the thermal boundary condition 9T/3z=0 

at z=0 and as a result a further inner horizontal layer

. “ 1/4is necessary where z=0(A ). Here thermal conduction is

significant and a solution of the horizontal thermal 

boundary-layer equations is required. This is described 

in Section 4.4, and indicates that the layer is

compressed downwards into the bottom corner of the cavity 

as it approaches the hot wall . Details of the various 

corner regions are discussed in Section 4.5.

4.2 Outer zone,z=Q(A)

The eigenvalue calculations of Section 2.5 

indicate the existence of an outer region with a long

vertical length scale z of order A as A -- » oo . Thus a

new variable

48



Z (4.2.1)= z / A

is introduced and solutions for the temperature and 

stream function are assumed in the form

T=T ( x , z ) + . . . , ip—Aip ( X , z ) + . . . . (4.2.2)

Substitution into (2.4.2,3) gives :

a 2 \p

a x 2

| X1II (4.2.3)

d2T

a x 2

_ a(T,<A)_ !
fl ( x , z )

(4.2.4)

and from (2.4..4,5,7) a solution is required for which

p, = T = 0 at x=0 , (4.2.5)

= 0 , T = 1 at x= 1 , (4.2.6)

ip— > ip (X) , T— > T (X) as z -- > oo , (4.2.7)
C C

where ip = x (1-x)/2 and T = x. Although the
C

solution

of this system cannot be expected to satisfy the full

boundary conditions (2.4.6) at z = 0 , it is shown here

that a structure can be found for which

îp -- > 0 as z --- > 0 . (4.2.8)

This structure is quite complicated and consists of three 

separate regions spanning the cavity width 1.

Near the hot wall a thermal boundary-layer region 

where r; = (1-x ) / z1/2=0 ( 1 ) accommodates the main

temperature adjustment from T=1 at the wall to T-0 in
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the interior 0<x<l . Locally,

11> = z1/t;F() (7i) + . . . , T = Gq (T)) + . . . (z -- » 0) (4.2.9)

and substitution into (4. 2. 3,4) gives

/ /
Go 4  g ’f2 o o

/ / /
(4.2.10)

Appropriate boundary conditions are

G = 1 , F = 0 at 7]=0 (4.2.11)

and
/

G--> 0 , F ..> 0 as 71 ---» co . (4.2.12)o o ' '

Here the temperature must approach its cold-wall value as

V-- > a», as a similar temperature adjustment adjacent to

the cold wall cannot occur. The system (4.2.10-12) reduces 

to the following third-order problem for F

' ' ' i
F + ~ F F = 0 ;

o 2  o o '

F =0 , F = 1  (ti = 0) , F -- >0 (T)-- >co)o o ' o ' 1

(4.2.13)

and then the temperature field is given by

G = F (4.2.14)

A numerical solution of (4.2.13) has been obtained in 

different contexts by Howarth (1959), Sakiadis(1961)

and Singh and Cowling(1963) and shows that F̂ — » aq =1.616

as 7i-- > co . This behaviour generates a stream function of

"1/2 .
order z across the interior 0<x<l. A consistent

solution near the cold wall requires that T and ijj are of
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equal magnitudes there and indeed throughout the region

0=sx<l which is convectively-dominated.

Thus for the interior region 0<x<l, it is assumed

that

T = z 1 / 2 Tq (x )+... , ip = z 1 / 2  \pQ (x)+... (z-- » 0 ) (4.2.15)

and substitution into (4.2 .3,4) gives

_ / _ _ /
T 0 -ip T = 0o o o o

/ /
T .o (4.2.16)

Thus

To=K ip (4.2.17)

where K is an arbitrary constant , and since matching

with (4.2.9) requires that ip q » aQ as x » 1 the

appropriate solution is

1-e-K
(1-e

a Ko

1-e -  K
(1-e ) (4.2.18)

Here it has also been assumed that i~p and T tend to zero

as x » 0 in order to produce a consistent solution near

the cold wall.

Near the cold wall i~p and T can be expanded in the

form

ip = z3/4f (C) +z11/12f (C)+zf (C)+...0 10 1

~  -3 / 4  -11/12  , „ ,  ~
T = Z go(C)+z g10(C)+zgi (C)+. . .

(2— 0̂) (4.2.19)

— 1/4
where £ = x/z . Substitution into (4.2.3,4) gives, at

leading order
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! /
(4.2.20)f =0o

3 _ 3 'g - if g - 7g f^  o 4 o ^ o  4 o o

and from (4.2.5) it is required that

f =g =00 o at C = 0 • (4.2.21)

The required solutions which match with (4.2.15) as Ç— > œ 

are simply the linear limiting forms (4.2.18) as x— > 0, 

namely

f = c Co o

where

g =c KÇ
^ o

(4.2.22)

c =o

a Kn

1-e - K
(4.2.23;

The terms f ,g (which will be determined below) are 

similar linear functions of £ whose presence is suggested 

by the analysis of Blythe, Daniels and Simpkins (1982) 

of a related structure arising at large Darcy-Rayleigh 

numbers in a cavity of finite aspect ratio. The relation 

between the present work and that for order one values of 

h will be discussed in detail in Chapter 7.

The correction terms f , in (4.2.19) satisfy

g =f g - g f + -̂(g f -f g ) 
^ î î ^ o  î o  4 ^ i  o i ^ o J

(4.2.24;

and after substitution of f and g from (4.2.22) it iso o

found that

c K

fi= - ^
(4.2.25;

g - ;c Çg + c g = i(c2K2Ç2+ c KBÇ) . 
^  i 4 o ^ i  o ^ i  4 ^ o  o s  '

(4.2.26)
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Here the wall condition f =0 at C=0 has been applied and 

at this stage B is an arbitrary constant .The equation 

for g has general solution

K c c2
g =  Ciexp(^C2)U(- ^ , K i1/2C)+ K2(l- -j — )+ KBC , (4.2.27)

where U(- ^ ,K*/2 C) is the parabolic cylinder function 

defined by Abramowitz and Stegun (1965 , p.686),

3c 3a Ko o

and the solution which is exponentially large as C-- » °°

has been excluded. Applying the boundary condition

g =0 at C=0 gives

c = 21/33r(5/6)K2/7T1 /2- 2.405 K 2 (4.2.29)

and since

ii K c2
U(- — ,K1 C)~ C exp(- — --) as C ~ * 00 (4.2.30)

it follows that a term of order z2/3 in T is generated in 

the interior 0<x<l .

Thus the interior expansion develops as

ip = ~  1/2 
Z IJi (x) +0

~2/3 7 , \ ,z ip i(x)+.

(Z- 0)

T = z1/2 T (x) + z2/3 T (x)+. . .o i

and correspondingly for the region near the 

is anticipated that

(4.2.31)

hot wall it
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( Z -- >0) . (4.2.32)

ip = z17" F() (V) + z 3/3 F] (t?) + . . .

T = GJV) + Z1/6Gi(V)+. ■ ■

Substitution of (4.2.31) into (4.2.3,4)gives

! < V r  f X >  + i ' V . -  W  = 0 -

ip' ' = - Tv l l '

so that

(4.2.33)

/
T = - i/y + d (4.2.34)i l l

where d is a constant and elimination of T from (4.2.33)
i i

gives

- K. x , ~ 7 T. - K x . 7' 4-, 2 - K x 7 4, T, - K x , . _ _ .
(1-e )i/;i + (k--Ke ) >p ̂ ~ 3K e ^i= ' 3d iKe • (4-2.35)

The general solution is 

d
^  + e_Kx(d2+d3Ii (x)) , (4.2.36)

where d̂  and d̂  are further arbitrary constants and

I (x)
K x ( 1-e -Kx 4/3

dx' (4.2.37)

This integral can be evaluated by means of the 

substitution £ =(1- e Kx )1/3 so that

3 '6 '3 -2 'i x= £ s e (i-e ) de
0

(4.2.38)

where Ç=(1-e 

parts and partial

1 / 3 and 

fractions

after use of integration by
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It now follows that

1 [ 1 - 3 1+C+C2 \/3 V3 S> ^ K ' ( 4 . 2 . 3 9 )

d L-2 O7 1 , J . , „ K 2, . , 3 , „4/3 7/3 ,
1^= + d 2 (1 - KX + 2 ~ X + • • • ) + yd3K X + . . . ,

— 2 4 / 3 4 / 3
T = d + d K - d  K x - d K x +... ,

1 1 2  2 3

' (X— >0)

(4.2.40)

and matching with the wall solution (4.2.19) requires 

that

d =-d K , (4.2.41)

_ 3a K, 3. 0 . 2 / 3 P i c  ... . 1/2
d,= j(--- — ) r<5/6)/n

1 - e
(4.2.42)

and determines the functions g and f as
J 10 10

g =Kf =-K"d C .J10 10 2 (4.2.43)

A third condition which finally determines d^ and d^ 

arises from consistency with the solution near the hot 

wall. The correction terms Fi and G in (4.2.32) satisfy

/ / 1 1 ' 2G = 7G F - gG F - ;G F , F1 6 1 0 2 1 0 3 0 1

G =1 F =0 at 1 v = o , G , F1 1

(4.2.44)

It follows that G = F and hencel i

' ' ' l ' ' l ' '
F + ±F F - 7F F

1 2 0 1 6 0 1
gF F = 03 0 1 (4.2.45)

However the solution of this equation subject to the 

homogeneous boundary conditions
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/ /
F = F = 0 (tj=0) , Fi > 0 (T)-- » co) (4.2.46)

is the trivial solution F = 0, and thus G = 0  also. The
i i

interior solution for 0 must therefore satisfy

^ (1) = 0 , (4.2.47)

with the result that

d =i -d K
2

-3r(5/6)
O C 31/22r 771

(3a K ^2/30
. - K v 1-e 1

^(4-3^)

1-C,3

(i-C1)2

4

/3
(tan

l + 2Çi 

V3
(4.2.48)

— K 1/3
where £ =(l-e ) . The graph of dj as a function of K

is shown in Figure 4.2 .

In summary ,

d
7 1 , ,  - k x . 3r (1_e >' 2

3a K2

1-e - K

2/3
T ( 5 / 6 )  - K x t  . .— -— -— e I (x)1/2 ' 71

(4.2.49)

with d given by (4.2.48) and K an arbitrary constant 

whose value cannot be determined from the local analysis 

as z-- > 0 .

An approximate estimate of K can be deduced from the 

assumption that convective dominance is maintained all

the way down the cold wall. As z-- > oo it is known from

(4.2.7) that

 ̂ ~ 2 X
T ~ x (4.2.50)

near x=0 so that the functional relation

T =KiJi (4.2.51)
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applies to a first approximation with K=2 . This may well 

provide a good estimate of the actual value of K in the

interior solution (4.2.17) as z-- > 0 where the isotherms

and streamlines descending near the cold wall are turned

across the cavity. Graphs of \L , T , di and T for K=2 are0 0 1  1

shown in Figures 4.3 and 4.4 .

The structure found above can now be used to predict 

the behaviour of the flow near the bottom of the end zone 

where there must be an adjustment to the full adiabatic 

boundary conditions at z=0. Further terms in the 

interior and wall regions are expected to arise in a 

similar manner to those described by Blythe , Daniels and 

Simpkins (1982) for the high Darcy-Rayleigh number limit 

in a cavity of finite aspect ratio. This leads to a very

complicated set of expansions in powers of z as z >0 ,

the details of which it will not be necessary to consider 

here.

4.3 Inner regions , z=Q(l)

The solution in the outer zone breaks down as z-- > 0

because z derivatives in the diffusion term V2i// can no 

longer be neglected relative to x derivatives .Thus a new 

structure develops in a central zone where x and z are of

order one. The form of the outer solution as z -- > 0

suggests that this central zone is flanked by a vertical 

boundary layer of thickness x=0(A 1/4) near the cold wall 

and a vertical boundary layer of thickness l-x=0(A 1/2) 

near the hot wall (see Figure 4.1). In the layer near the 

hot wall (region I) it is expected that
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(4.3.1)
1/2

T = T i(xi,z) + ... , tp =  A i//i(xi,z)+... (A -- » » ) ,

1/2 . where x =A (1-x) and substitution

the vertical boundary-layer system

into (2.4.2,3) gives

3 T d(tp ,T )l v i i '

a x

a21//

a x

3 ( x i , z )

3T

ax

(4.3.2)

(4.3.3)

In the central zone (region II)

ip = A 1 7 2\p , (x, z) +. . . , T = A_1/2T ( x , z ) + . . . ( A -- > oo) (4.3.4)

and substitution into

convection-dominated system

(2.4.2 ,3 ) gives the

3 T dip
2 2

aT

ax a z a z

di/i

dx

v21//
3T

ax

(4.3.5)

(4.3.6)

while for the layer near the cold wall (region III)

ip = A 1 7 4 ip ̂ ( x 3 , z ) +.

1/4

T = A 3/4T 3(X3,z )+. . . (A— » oo)

(4.3.7)

where x =A ' x and substitution into (2.4.2,3) gives

3 T a(T , ip
3 v 3 ' 3 '

dx S(x3,z)
(4.3.8)

a2>p

dx
0 . (4.3.9)

In region I the solution is generated by the need to 

adjust the temperature from T =1 at x j=0 to zero as x j— > co
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and is simply an extension of the similarity form defined 

in (4.2.9), with

T a - Go (n) , i//i = z 1/2Fq (t]) , (4.3.10)

where t) = x^/zl/z. This implies that the solution in the 

central zone is generated by the requirement that

i// -a z1/2 at x=l (4.3.11)
2 0 v '

and also

, ■. ~Kx .a (1-e ). 0 1/2 
l/> ~ ------ r--  Z

1-e
- K as z-- > co (4.3.12)

Here the condition (4.3.11) represents matching with the 

boundary layer solution (4.3.10) in which F (oo)=a and 

(4.3.12) represents matching with the main outer

solution (4.2.15) as z---. Since region II is

convection-dominated and from (4.2.17) the temperature

f ield must satisfy T -  
1 2

K 0 2 as z------- > co , it follows that

T = Kip
2 2

(4.3. 13)

throughout region II Thus f rom (4.3.6) the govern ing

equatic>n for ip is
2

axil
V20 =  -

2

2
K — :-----

(J x
(4.3. 14)

and thi s must be solved subj ect to (4.3.1.1,12) and the

further■ requirements

oII
oo

'S
- at x=0 , (4.3. 15)

ip =  0
2

at z = 0 (4.3. 16)

Here (4.3. 15) represents matching with the solution in
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while (4.3.16)region III, while (4.3.16) is needed for consistency 

with the requirement that the stream function vanishes on 

the lower wall of the cavity .

Note that a consistent solution in region III that 

satisfies the boundary conditions on the cold wall and 

matches with the central-zone solution as x -- > co is
3

i/ / 3 = B(z )X3 , T 3=KB(z )X3 , (4.3.17)

where the function B(z) = d i p ^ / d x ( 0 , z )  and must be 

determined by solving the problem for ijj .

The main central-zone problem in region II can be 

solved using a sine transform in z and in order to ensure 

convergence of the integrals involved it is convenient to 

consider the slightly modified problem

d ill
V2!p = -K — —

*2 dx '

i// = 0 at x=0 ,

i// = 0 at z = 0 ,2 '

, l /  2 - e  zip = a z  e at x=l ,*2 0 '

i i /  2 -  e zip ~ z e q(x) as z--->oo

Here it is readily established that

(4.3.18)

(4.3.19)

(4.3.20)

(4.3.21)

(4.3.22)

q(x) k ( l - x ) / 2 sinh[ (K"-4e") 172x/2] a  e ---- -------------------------1.-------------L— j
0 . 2 2 1/2s m h  [ (K -4e ) ¡2]

(4.3.23)

and the desired solution is that obtained in the limit as 

e-- > 0 . The sine transform

z  = 00

02 (x,u) = S (// (x,z)sin cjz dz , (4.3.24)
z  = 0
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is introduced and equation (4.3.18) transformed to give

3|//0 c)(/yo
--—  + K—  - 0)2i]i = 0
„ 2 d X 2
dX

(4.3.25)

having used the boundary conditions (4.3.20,22). From 

(4.3.19,21) this must be solved subject to

ip =0
2

on x=0 (4.3.26)

and, from the sine transform of (4.3.21) (Ditkin and 

Prudnikov 1965 , p.269),

0 , TT , 1 / 2  . ,

—  < — ) 9<€'u > on x=l (4.3.27)

where

. / r . 2 2,1/2 . 1/2, , „d [ ( e +u> ) - e l  I , 2 , 2 -3/2
9<e'u >=2di , 2 2,1/2 h v  +u >

 ̂ ( e + u  ]

, , 2 , 2,1/2 -1/2 , 2 2 . 2 , 2,1/2.
{ ( e  +o> ) - e }  { e -u> - e  ( e +u ) } (4.3.28)

It follows that

a , K ( 1 - x ) / 27 o tt ,1/2 g ( e , oi ) e . , , ,.,2 , . 2,1/2
= - y  (-5-) — ---sinh{ (K +4oi ) x/2}

sinh{ (K +4gj ) /2}

(4.3.29)

and inversion gives

ip = -
2

. 2 21/2
a() R > / 2 °° 9 (e f u ) Slnh { (K + 4oi ) x/2 } sin{oiz }doi

( 2 t t ) 1/2 oi= 0 sinh{ (K2+4oj2) 17 2/2 }

(4.3.30)

Finally , letting e-- 1 0
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K ( 1 -  x ) /  2
CXD

( 277)1/,
- -3/2 .X cj s m  uz
o

sinh{ (K2 +4cj")1 /"x /2> 

sinh{ (K2+4cj2) 1/2/2 }
du .

(4.3.31)

It is easily verified that when x=l the form

a oo
*2= — ~ 2 fU, sin uz d<s - ao (55-) S(0,-l/2)

( 2TT) 0

(4.3.32)

is consistent with the boundary condition (4.3.11) since 

the generalized Fresnel integral S (0,-1/2) =v/27T

(Abramowitz and Stegun 1965 ,p.262).

The central zone consists of streamlines descending 

into the region which are deflected into the vertical 

boundary layer (region I) near the hot wall.One important 

feature of the solution is the finite slip velocity 

generated at the base (z=0). From (4.3.31) this is given 

by

i iip ■
U (x) = ( x , 0) =

( 277 )1/2

K ( 1 -  x ) /  2  T  ,  T, .e I (x ; K) ,

where

I (x ; K) = X
-1/2CJ

( J =  0

sinh{ (K2+4u 2)1/2x /2} dw 

s inh { (K2+4u2)1/2 / 2}

(4.3.33)

(4.3.34)

. . . 2 2 2 or, using the substitution Q =K +4cj

i (x ;K)= - A - "  ■ ,q^inh(nx/2)------
V2 fi= k (Q^-K2) i/4sinh(fi/2)

dfi. (4.3.35)

This integral was evaluated numerically by Simpson's rule
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as 1=1 + I where
A K

_ 1  ̂ 0 ( sinh(Qx/2) _ sinh(Kx/2)
A /2 k (Q'-K^)3/4 sinh (fi/2) sinh(K/2) 1

4- v^ ( A 2 - K 2 ) , / 4v s m h  (K/ 2 )

ro n sinh (fix/2 )
I - —  J -- ------------------  dfi ,
B V2 A (iT-lO) sinh(fi/2)

with the form (4.3.36) in K<Q<A chosen to

infinitely singular integrand. Solutions for 

K=2, in which the value of A was chosen as 3 ,

in Figure 4.5 for various upper limits of integration Q .
00

Note that an increasingly large range of integration is

required as x  » 1, with the integral I formally

divergent at x=l.

This divergence reflects the singular form of ip in 

the corner x=l, z=0 where the solution can be expressed as

0 ~ r1/Jf(0) (r -- * 0) , (4.3.38)

where r and 0 are cylindrical polar co-ordinates defined 

by

x-l=rcos 0 , z=rsin 0. (4.3.39)

Since the equation (4.3.18) is dominated by the Laplacian 

operator as r-- > 0 , f satisfies

f +if =0 , (4.3.40)

giving

(4.3.36)

(4.3.37)

avoid the 

U(x) with 

are shown
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Q 0
f = a cos - + b sin - . (4.3.41)

The boundary conditions (4.3.19,20) imply that

f =  0 (9 = t t ) , f=a() ( 0 = 7 7  /  2 ) , (4.3.42)

so that

Q
f=/2 a(COS - (4.3.43)

and

ip_~ a )(2r) ' cos — , r -> 0 , tt/2<8<7T . (4.3.44)

This implies that

dip a
U(x)= 0 ) -------- , (x----------- > 1) (4.3.45)

/2 (l-x)12

and this asymptotic form agrees well with the numerical 

integration shown in Figure 4.5.

At the bottom of the central zone the temperature 

field has the form

T_ (x,z)=Ki//i (X , z) ~ KU (X) z (z-- > 0). (4.3.46)

Thus an inner thermal boundary layer is required in order 

to reduce the vertical heat transfer to zero at the 

bottom surface of the cavity. This further inner 

horizontal layer is considered in the next section. The 

form of U(x) for various values of K is shown in Figure 4.6.

4.4 Inner horizontal layer , z=0(A 1/4)

It is readily shown from the governing equations

(2.4.2,3) and the limiting form of ip as z-- > 0 in region

II that conduction will become significant on a vertical

64



-1/4
scale z of order A near the base of the cavity . From

results obtained in the previous section the solution for 

the temperature and stream function in this inner 

horizontal layer (region IV) will have the form

T=A" J/4T (x, z )+. . . , i//=A1 7 41// (x, z ) +. . . (A-- > oo ) , (4.4.1)
•4 4 4 4

, ,1/4where z =A z

leading order,

Substitution into (2 .4.2 ,3) gives, at

a2ijj r

dz
= 0

d T <'JT dil) d T 8 ill
4 4 4 4 4

, 2 dX dZ dZ dX
OZ 4 4

4

(4.4.2)

(4.4.3)

and the boundary conditions for this horizontal thermal 

boundary layer are

c)T

4 dZ
( Z  =0)

4
(4.4.4)

04~ U(x)z4/ T - KU(x)z
4 v ' 4

(z4__> „) ' (4.4.5)

T4= 0  (X — 0) (4.4.6)

Here (4.4.4) are the conditions at the bottom wall of the 

cavity, (4.4.5) ensures that the solution matches with 

that in region II and (4.4.6) is for consistency with the 

thermal boundary condition on the cold wall.

The solution for ijj is clearly

ip = U ( x) z
4 4

and substitution of this into equation (4.4.3) gives

(4.4.7)
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(4.4.3)
a2T ..'T , OT
---  = U ( x ) t— - - U ( X ) z —  ̂ .

2 V c)X V ' 4 <3Z
dZ 4

Using a transformation of the independent variables 

(x,z )-- > {x fil> ) where
4 4

* = S U ( x ) dx
0

(4.4.9)

it follows that T satisfies
4

dT d T
4 4

dX dill'
(4.4.10)

with boundary conditions

3T
4

d\j) (^4=°) (4.4.11)

T ~ Kill
4 4

T = 0
4

( */' , -------> 00 ) ,
4

(X = o )

(4.4.12)

(4.4.13)

The solution of this system is the similarity form

T = ill V($)
4 4

$ =  i[i J x
4

1/2 (4.4.14)

where substitution of (4.4.14) into (4.4.10-13) gives

' ' 2 $
V + ( I + 2 )V = ° ' (4.4.15)

with boundary conditions

V + $ V — > 0 ($ -> 0) , V — > K ($ -> (4.4.16)

The required solution is

V = K{erf(4>/2) + — exp ( 2 / 4 ) }
rr '

(4.4.17)
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Thus .finally , the solution for T is
4

T ,=K{2 (x/rt ) 1 /l!exp(-^/4z) +1/7 er f (ip / 2*1 7 2 ) } . (4.4.18)
4 4 4 4

Here x is given as a function of x by (4.4.9) and this

functional relation 

and 2 .

is plotted in Figure 4.7 for K=l, 1.5

It is now possible to discuss the form of the

solution in the inner horizontal layer both as x---> 0 and

x-- >1 . Approaching the cold wall ,

U (x) ~ b x (x-- » 0) (4.4.19)

and typical values of the constant bQ are given in Table

4.1. It follows from 

so

(4.4.9) that x ~ bQX2/2 as x— » 0 and

$ ~ (2b ) ‘ ' " z ,' o' 4 (4.4.20)

indicating that the width of the layer remains finite as 

x— — > 0 and that the stream function and temperature have 

the forms

ijj ~ b X z , T ~ b x z V ( ( 2 b ) 1/" z ) (  x-- > 0) . (4.4.21)
4 0 4  4 0 4 0 4 v '

Approaching the hot wall, it has been shown in

Section 4.3 that

u(x)------- ^ 7 7
/2(1-x)

(X—— > 1) (4.4.22)

and x tends to the finite limiting value x q defined by

1
X()= S u ( x) dx .

0
( 4 . 4 . 2 3 )

67



 



(4.5.1)T =A" ’ Tr (x z )+. . . , $ = 0 (x z )+. . . (A -- »»),> > 4 o o 4

where x=A 1/4x and z=A 4/ 4z . Substitution into
3 4

shows that T r and ip c satisfy the equations

a2ip a2ipc
---- + --- - = 0

2  . ,  2
d X d Z

3 4

d2Tg ¿St a(T ,ip )
--- i + ---’ = ------ —  .
ax" dz a (x ,z )

The solution for ip which matches with the

(4.3.17) in region III as z ̂-- » m, with the

(4.4.21) in region IV as x^-- > oo and satisfies

conditions at x=0 and z =0 is
4

i/i = b x z .
5 0 3 4

where b = B(0)=U(0). Equation (4.5.3) then becomes

a2 t a2 t
-------- - + ----------
ax " az

3 4

b x
0 3

¿ÌT
5

a x
3

b z
0 4

3T
5

dz
4

and must be solved subject to

T =
5

0 (xr 0 )

3T

3z = 0
( Z 4 = 0 )

4

T ~r Kb x z
0 3 4 ( Z 4

00

T ~ b x  z V ( ( 2b ) X,‘~ z )
5 Q 3 4 ' ' o '  4 (*3-- » 00 ) t

where the function V is defined by (4.4.

conditions (4.5.6,7) represent the therma1

conditions on the wall of the cavity and (4.5.8,

(2.4.2,3)

(4.5.2)

(4.5.3)

solution 

solution 

the wall

(4.5.4)

(4.5.5)

(4.5.6)

(4.5.7)

(4.5.8)

(4.5.9)

17). The 

boundary 

9) ensure
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consistency with the solutions (4.3.17) and (4.4.21) in 

regions III and IV respectively.

It is easily established that the required solution 

for T is
5

T =b x z V ( (2b ) l / Z z ) , (4.5.10)

the reason being that for this linear function of x^, the 

term i f  T r /  d x  ^" in (4.5.5) is identically zero. The

remaining terms are equivalent to those in the equation 

governing the inner horizontal layer near x^ = 0 and since 

the limiting form of the solution there satisfies the 

wall conditions at x =0 and z =0 it remains valid as
3 4

the leading approximation to the temperature field

throughout region V.

Near the hot wall, at the other bottom corner of the 

cavity, the inner horizontal layer (region IV) and the

central zone (region II) merge into a single corner

• • -1/2 region (region VI) where x and z are both of order A

Here the solution has the form

T = A ’:J/4T (x ,z )+. . . , 0 = A 17 V ( x , z  ) + ..., (A-- > «)
6 6 6 6 6 6

(4.5.11)

- 1 / 2  - 1 / 2  . .where 1-x = A x and z = A z Substitution into
6 6

(2.4.2,3) shows that

a

ax
6

o

3(T ,<// )
6 6

3 ( X  , Z )
6 6

(4.5.12)

(4.5.13)
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The functional relation between stream function and 

temperature implied by (4.5.13) is determined by the 

isotherms and streamlines entering the region from the 

inner horizontal layer , requiring, from (4.4.24,25), that

T = i/j V (t// / x  1 7 2 ) . (4.5.14)6 6 6 0 ' '

The stream fuction itself is unchanged from the limiting 

form (4.3.44) identified in the central zone solution, 

implying that

i// =a (2 r ) 1 /“cos % (4.5.15)
6 0 6 2 '

where x =-r cos 0 and z =r sin 0. This remains the
6 fr 6 6

relevant solution of Laplace's equation because the 

boundary conditions associated with the continuation of 

the vetical boundary layer adjacent to the hot wall

{B-tt/2) and the requirement that ip = 06 at 0 = 77 are

unchanged. Thus the main feature of the solution in

region VI is an adjustment of the temperature field from 

its linear dependence on stream function in the central 

zone to the more complex dependence (4.5.14).

As r — » 0, the solution (4.5.15) is finally modified
6

within a corner region where both x and z are of order 

A 1 . Here the solution has the form

T = T7 (x? , z?)+ ... , i// = ¡A ? (x ? , z ? ) +... (A -- » oo) ,

(4.5.16)

- 1 - \ .
where l-x= A x and z=A z . Substitution into (2.4.2,3)7 7 \ i J

shows that T? and ip satisfy the full nonlinear equations
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a 2 41 a 2 \ii a t
^ 7  7 _  7

„ 2 . 2  d X
d X  d Z  7

7 7

2 2dx dz a(x , z )
7 7 ' 7  7'

and suitable boundary conditions are

(4.5.17)

(4.5.18)

i// =0 . T =1 (x =0)
r 7 7 '  7 '

(4.5.19)

t// =0
7

dT

dZ (z =0)\ 7 ' (4.5.20)

, , „ , 1/2 0\b ~ a (2r ) cos —
r 7 O '  1 2

(r?-- » » , 7T / 2 <Q—TT ) (4.5.21)

T -- > 0
7

where x = -r cos 9, z = r sin 0. Near the hot wall (0 = tt/2)

the vertical boundary layer is initiated as r -- > <»

through the behaviour

T ~G (x / z
7 0 7 7

1/1
) /  >A7 ~ Z 7/£iF o ( X 7 / Z 7/ 2 ) ( Z ?^ c o ) , (4.5.22)

where G and F are the functions first introduced ino 0

(4.2.9). A 

a numerical 

is noted 

inflow to 

upwards to 

the hot wall.

Overal1 

provide a 

consistent

complete solution of (4.5.17-21) would require 

approach which is not attempted here , but it 

that the behaviours (4.5.21,22) indicate an 

the corner , with the fluid then being swept 

form the vertical boundary layer adjacent to

, the results of this chapter appear to 

physically realistic and mathematically 

structure for the end-zone solution in the
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high Darcy-Rayleigh number limit. Certain features of the 

solution , such as the value of the constant K, have not 

been determined but further discussion will be given in 

Chapter 5 where a comparison will be made with full 

numerical solutions of the end-zone problem.
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K

1

1.5

2

Table 4.1

bo

3.05

4.00

4.48

1.79

1.91

2.00

Typical values of x 

for different values

î
X U(x)dx b
o

of K

74



0{ A' 2 )

OCA'1)

end-zone structure for -»00 .
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20.0

0.0

Figure 4.2: The graph of d1 against K •

4.0



20.0

F i g u r e  4.3 : The graphs of t\p , T q against x, for K=2 .



0.0 5.0 I5x 10.0 15.0

F i g u r e  4.4 : The graphs of t/̂ & T against x, for K=2 .



a«A2
Figure 4.5 : The graph of U(x) = ^-(x,0) against x for

K=2 and for different upper limits of integration,

a)fi =200, b)£l =100, c) Q =70, d)Q =40. The asymptotic 
00 00 00 00

form (4.3.45) is shown by dots.



0.0 2.0 4.0 iox 6.0 8.0 10.0

Figure 4.6 : The graph of U(x) against x for different

values of K : (a) K=2 , (b) K=1.5 , (c) K=1.0 .
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X =  X

Figure 4.7 : The graph of x=J U(x')dx' for a)K=2,
o

b)K=1.5, c )K—1.



Chapter 5 N u merical s o l u t i o n  of the e n d - z o n e  p r o b l e m

5.1 Introduction

In this chapter the equations and boundary 

conditions governing the end-zone flow are solved 

numerically for finite values of the Darcy-Rayleigh 

number in the range 0<A<co. Artificial time derivatives 

are introduced in the governing equations to yield a 

parabolic system which is then solved using a simple 

explicit finite difference scheme . The computations 

proceed until a steady-state solution is obtained to 

within a specified tolerance. The numerical method is 

outlined in Section 5.2 and the main results are 

described in Section 5.3, where a comparison is made with 

the analytical predictions for small and large values of 

A . The heat transfer across the cavity is discussed in 

Section 5.4 and the numerical results are used to obtain 

predictions of the Nusselt number of the flow in the 

range 0 < A < c o .

5.2 Numerical method

Numerical solutions of (2.4.2-7) were computed by 

inserting artificial time derivatives , ^  , and ~  on

the right-hand side of (2.4.2) and (2.4.3) respectively , 

giving the parabolic system

dip 2 . n d T  = 7 tp + A —at  ax

£T = 2 _ d(T,iP)
at  a (x , z )

(5.2.1)

(5.2.2;

The steady-state solution is then allowed to evolve as
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t -- > co from an initial state usually taken to be

ip = Ax(l-x) (l-e"Z)/2 , T = X. (5.2.3)

The equations were put into discrete form using centred

differences for the spatial variation and forward

differences for the time variation, leading to explicit

expressions for the values of ip and T at interior mesh

points at each new time step, i//(N) and T (N) , in terms of
i, j i , j

values at the previous time step , i//(0) , T (0) :
1,  j 1 , j

P.
( N , ( 0 ) , , . ( 0 ) _ , ( 0 ) , , ( 0 ) . , , . , 2  , . , ( 0 )1/y. .+At{ I//. .-21p. ,+ip. . / Ax +

1 , j l + i ,  j  1 , j  l - i ,  j  1 , j  + 1

•2 tf/.(0). V 0). )/(Az )2+ A ( T .' ° J ,-T(0’ . ) / 2 Ax }
1,  j  1 , j  -  1 1 + l  , j  1 -  l  , j

(5.2.4)

<N) = T (n) +At{(T(0) -2T(0)+T(0) ) / ( Ax ) 2 + ( T ( ° *
i , j i , j i + 1 , j i , j i -  1 , j 1 , j + 1

-2T1U,+T “” }/<Az)2 + [ ( k 01 V ° ’ )(T'°’ -T10’ )i , j  i , j -  t L i + l , j  i -  1 , j i , j + 1 i , j -  1 '

. . ( 0 ) . ( 0 ) . . m ( 0 ) _ ( 0 ) . , , . . . ,-ip ) (T -T )]/4AxAz}.
i , j + 1 i , j - 1 i + 1 , j i — 1 , j '

(5.2.5)

Here Ax and Az are the step lengths in the x and z

directions respectively, and At is the time step. The

computational mesh is defined by x=(i-l)Ax, (i = l,2, .... M)

and z=(j-l)Az, ( j = l, 2 , . . . , N) , with (M-l)Ax=l and the outer

boundary in the z direction taken at 2 = (N-l)Az.

On the boundaries of the computational domain the

new values of ip and T are given either directly from the

9Tboundary conditions or, where —  is involved , by using 

an extrapolation based on the new values of T at two

interior mesh points. Thus to find the temperature at the

<3Tbottom of the cavity , where — = 0, it is assumed that 

T has the quadratic form
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(5.2.6)T=a + bz + cz2

Equating this to values of

the fact that b <̂1 z =0,
z — 0

i t

boundary

T at z = 0 , Az, 2Az and using

is found that on the lower

T ( N ) 

i , 1
( 4T ( N ) ( N )

i , 2 i , 3 )/3 • (5.2.7)

Time steps for the computation were generally chosen 

to conform to the criterion for stability associated with 

a diffusion eguation , namely :

At £ (Ax Az)"

2{(Ax )2+(Az )2}
(5.2.8)

This result is an extension of the more familiar 

criterion for the explicit scheme for a diffusion 

eguation in one spatial dimension and can be established 

from the results given, for example, by Mitchell 

(1969,p.49). The scheme was allowed to run for the number 

of time steps , n , needed to ensure that differences 

between successive values of ip and T throughout the flow 

field, as measured by

Ai// = Max ( I i// 1 N ' - i//lU)|), AT = Max(|TlN>- T ‘ u ’ I ) , (5.2.9)
i , j Ì , j 1 1 i , j i , j 1

were as small as desired .

5.3 Numerical results

Results were obtained for values of the Darcy-Rayleigh 

number in the range A=1 to A=200 and for a selection of 

values of the computational parameters At , Ax , Az , z
00

and n() , as indicated in Table 5.1 . As part of the
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numerical calculation , heat-transfer properties of the 

solution were determined. In order to determine the heat

transfer through the cold wall of the cavity , a cubic 

polynomial form is assumed for T , with

T = a + bx + cx" + dxJ (5.3.1)

near x=0. Equating this to the values of T at x=0 , Ax,

2Ax, 3Ax, it is found that

AT
3x(°'Z)= b { 3T2, j

2
2

T
3, j

+ 1
3 T

4, j
} / Ax , (5.3.2)

where T(x,z) is the steady-state temperature field. The 

corresponding formula for the heat transfer through the 

hot wall is

ST,,
a5(1-z) - {3T

M - 1
2
2

T
M - 2 ,

1
3 T

M - 3 , j
1 1 .— }/ix. (5.3.3)

These formulae are used to calculate the two integrals

00 ' rri

a = J ( ||(0,z)-l) dz , (5.3.4)
0
00 * m

P = f ( |£(l,z)-l) dz , (5.3.5)
o

taken along the cold and hot walls of the end-zone, 

respectively. These provide a measure of the total 

heat-transfer through each wall relative to that of the 

conductive solution T=x and can be used as a useful check 

on the accuracy of the numerical scheme, as follows. From 

the steady heat equation (2.4.3)
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c - ] x=i h- r 1LaxJx=o
il"T , \ d . I dT. j j. d , , 3T. ,
—  dx *  S a ï 1-'“ a h dx - J  a h ' "  51>dx

0 d Z 0 0

p a s t. ,
J ah'" â h dx0

(5.3.6)

and now integration from z = 0 to z=co, using the fact that 

ijj - dT/dz =0 on z = 0 , gives

(3-a = ^ S x(l-x) dx = . (5.3.7)

Table 5.2 shows a comparison of the numerical value of 

/3-a computed for each steady-state solution with the 

corresponding value of A/12. This indicates reasonable 

agreement and the increasing discrepancy at large values 

of A is not unexpected in view of the difficulty in 

adequately resolving the boundary-layer structure of the 

solution.

Figures 5.1-5 show computed streamlines and isotherms

for Darcy -Rayleigh numbers A=:1 , 20 , 50 , 100 and 200.

For A= 1 (Figure 5.1), the time step was At=0.001

with Ax=0.05 and Az=0.1 . The number of time steps

needed for convergence of V> and T to within a

degree of accuracy of 10 10 was n =2000.0 The outer

boundary of the flow domain was taken as z = 5 . The
00

isotherms remain parallel to the vertical walls to a high 

level of approximation and the streamlines are virtually 

symmetric about the centre-line x=l/2 , consistent with

the conductive solution for small A outlined in 

Chapter 3 .

The same step sizes were used for A=20 (Figure 5.2), 

again with an outer boundary at anĉ  2000 time
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steps led to convergence of i// and T to within an accuracy 

of 10 7. At this Darcy-Rayleigh number there is a 

significant shift of isotherms towards the hot wall at 

the bottom of the cavity and a small asymmetry in the 

flow field is also evident . These trends are even more 

pronounced in the results for A=50 which are shown in 

Figure 5.3 and were obtained with the same step sizes. 

Here however, the outer boundary of the computation was 

taken as zra=7 to allow for the spreading of the end-zone 

upwards as A increases . At high values of A smaller 

steps in x, and therefore in t also, were used to resolve 

the increasingly narrow region near the bottom of the hot

wall. In Figure 5.4, where A=100 , the time step was

taken as At=0.00025, with Ax== 0.025 and Az=0.01. The

number of time steps needed for !// and T to converge to

within an accuracy of 10 9 and h-1
 

0
( O

(respectively) was

6000 and here the outer boundary was taken at z =10.00 The

isotherm pattern is consistent with the development of

the vertical boundary layer near the base of the hot wall 

of the cavity and the streamlines indicate how fluid is 

drawn across the cavity and entrained into the boundary 

layer. Results for A=200 (Figure 5.5) further confirm the 

development of the asymptotic structure although it 

becomes increasingly difficult to accurately resolve the 

behaviour of the solution near the lower hot corner.

The numerical results were used to make a prediction 

of the value of the constant K which arises in the 

asymptotic solution of Chapter 4 . In the square zone at 

the base of the end region and right up to the cold wall, 

the convective dominance implied by the asymptotic
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structure suggests that to leading order as A -- » co , the

ratio AT / ip should approximate the constant value of K. 

The shape of the isotherm T=0.1 in Figures 5.4 and 5.5, 

in comparison with the streamlines at the same location, 

gives some evidence that this is the case, and

quantitative results for AT/0 taken across the base of 

the cavity, and particularly near the cold wall, suggest 

a value of K of about 1.3 (see Tables 5.3 and 5.4).

A second method of testing this prediction is to 

compare the temperature profile along the base of the

cavity, as given by the numerical computation, with that 

predicted by the asymptotic analysis of Section 4.4. The 

asymptotic prediction given by (4.4.27) involves the

value of K , with

A J/4T(x ,0) ~ 2K X 1/2/7T1/2 (A»l) , (5.3.8)

where x is defined by (4.4.9). A comparison of this 

result with the numerical computation of A 3/4T(x,0) is

made in Figure 5.6 for a range of values K between K=1

and K=2. The trend of the computation for large A seems

to confirm a value of K consistent with that

predicted earlier.

5.4 Heat transfer

Numercal results for the heat transfer through the 

vertical walls of the end-zone are shown in Figures 5.7 

and 5.8 for Darcy-Rayleigh numbers in the range A=1 to 

A=200. As A increases the main transfer of heat, relative 

to that of pure conduction , is into the end zone through
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the hot wall. Although some of this heat escapes through 

the cold wall, most is converted into the vertical
A

transfer — , implied by (5.3.7) and is conveyed , via the 

core , to the end zone at the top of the cavity ,where it 

leaves through the cold wall.

A representative Nusselt number for the overall

cavity flow is defined by the heat transfer out of the 

cold wall,

 ̂ IT
Nu = S ~  I dz . (5.4.1)<3x 1 x = o v '

o

This integral, taken down the entire cold wall, must 

be subdivided into three parts, corresponding to

contributions arising from the core region and from the 

two end zones at the top and bottom of the cavity. Thus

h " it h at
Nu - S l dz + z)-l}dz + X {^(0,z)-l}dz

0 0 h -  CO

(h -- > oo ) . (5.4.2)

In the upper end-zone the temperature field can be found 

in terms of the solution in the lower end-zone by use of 

the centro-symmetry relation

T(x,z) = 1-T(1-x,h-z), 

which implies that

h  c irn  00 o F n

S { — (0,z)-l}dz = x {^(1, z)-l}dz.
h - 00 0

Thus (5.4.2) becomes 

N u ~ h + { a  + (3} (h -- > oo) , (5.4.5)

(5.4.3)

(5.4.4)
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where a and (3 are the two integrals defined by (5.3.4,5)

and given as functions of A in Table 5.2. Since a 

are of order A as A -- » co , with

a ~ Aa o 13 ~ A(3 q (A -- » «) ,

where a »-0.012 ,o

formula (5.4.5) is

Darcy-Rayleigh numbers

¡3 ~0.076o

a valid 

A<<h.

the Nusselt 

approximati

and ¡3

(5.4.6)

number 

Dn for
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A At Ax z00 n0

Ai//

t=n At0

Ai//

t=0

AT

t=n At0

AT

t=0

1 . 001 . 05 5 2000 . 4 2* 10~10 . 36*10~3 . 6 9*10"1 ° . n*io'3

1 . 002 . 1 5 1000 . 23»10'12 . 36*10'J . 46*10'12 . 11*10~3

20 . 001 . 05 5 2000 . 84»10~7 . lS’io'1 . 3 8*10~? . 18 * 1 O'2

20 . 002 . 1 5 1000

50 . 001 . 05 7 2000 -10.47*10 . 4 7*10_1 . 62* 10_11 . 46*10~2

50 . 002 . 1 5 1000

100 . 00025 . 025 10 6000 . 40*10-9 . 18‘IQ*1 . 26*10_1° . 34* 10~2

100 . 001 . 05 10 2000 . 72*10'10 . 96*10_1 . 62* 10_11 . 3 9*1 O'2

200 . 001 . 05 20 6000 . 3 2*10~13 . 154851 -1 4.18*10 . 12*10_1

200 . 00025 . 025 20 4000 . 30*10'6 . 44*10~1 . 10*10-7 . 74*10~2

Table 5.1 : Computationa1 parameters and convergence properties

The vertical step length is Az=0.. 1
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A

1 0.

20  1 .

50 4 .

100 8 .

200 16

Table

A
12

083

66

16

33

. 66

5 . 2

a ¡3

-0.040 0.042

-0.516 1.145

-0.864 3.47

-1.33 7.11

-2.3 15.23

(3-a (3+a

0.082 0.002

1.661 0.629

4.33 2.60

8.45 5.78

17.53 12.93

a. (3
A “A

-0.040 0.042

-0.083 0.057

-0.017 0.069

-0.013 0.071

-0.012 0.076

Computations of a and ¡3 for different values 

of A .
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z ' 0.05 0  . 1 0 . 15 0 . 2 0.25 0 .3 0.35 0 .4 0.45 0 .5

0 . 1 2 . 1 1 2 . 2 0 2.29 2.38 2.47 2.56 2.65 2.74 2.84 2.93

0 . 2 1.53 1.58 1.64 1.69 1.74 1.80 1.85 1.91 1.98 2.05

0 .3 1.47 1.52 1 . 57 1.61 1 . 6 6 1.71 1.76 1.81 1 . 8 8 1.95

0 .4 1. 50 1.55 1.60 1.65 1.70 1.75 1.80 1 . 8 6 1.93 2 . 0 2

0 .5 1 . 56 1.60 1 . 6 6 1.74 1.76 1.82 1 . 8 8 1.95 2.03 2  . 1 2

0 . 6 1.60 1 . 6 6 1.72 1.77 1.83 2 . 19 2.26 2.34 2.43 2.55

0 .7 1.65 1.71 1.77 1.83 1.90 1.97 2 . 0 0 2 . 13 2.23 2.36

0 .8 1.69 1.76 1.82 1.89 1.96 2 . 0 0 2  . 1 2 2 . 2 2 2.33 2.47

0 .9 1.73 1.80 1.87 1.94 2 . 0 2 2  . 1 0 2 . 19 2.30 2.43 2.58

1 1.89 1.97 1.91 1.99 2.07 2  . 16 2.26 2.38 2.52 2.69

Table 5.3 : The numerical results for AT/i// with A=100,

Ax = 0.025 , Az = 0.1 .
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z ' . 05 . 1 . 15 . 2 . 25 . 3 . 35 . 4 . 45 . 5

. 1 1.75 1.82 1.88 1.94 2.00 2.05 2.11 2 . 16 2.21 2.25

. 2 1.36 1.4 1.44 1.47 1.51 1.54 1.57 1.61 1.63 1.67

. 3 1.35 1.39 1.42 1.46 1.49 1.52 1.55 1.57 1.63 1.64

. 4 1.40 1.44 1.47 1.51 1.54 1.57 1.60 1.63 1.66 1.70

. 5 1.44 1.49 1.53 1.56 1.60 1.63 1.66 1.70 1.74 1.78

. 6 1.49 1.53 1.57 1.80 1.77 1.69 1.73 1.65 1.81 1.87

. 7 1.53 1.58 1.62 1.66 1.71 1.75 1.79 1.84 1.89 1.95

. 8 1 . 50 1.61 1.66 1.71 1.75 1.80 1.85 1.90 1.96 2.03

. 9 1.60 1.67 1.70 1.75 1.80 1.85 1.90 1.96 2.03 2 . 17

1
1

1.03 1.68 1.74 1.79 1.84 1.90 1.96 2.02 2.02 2.00

Table 5.4 : The numerical results for AT/i// with A=200, Ax=0.025

Az=0.1 .
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F i g u r e  5.1 : I s o t h e r m s  and s t r e a m l i n e s  for A-l.
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F i g u r e  5.2 : I s o t h e r m s  and s t r e a m l i n e s  for A-20.
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F i g u r e  5.4 : I s o t h e r m s  and s t r e a m l i n e s  for A=100,
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1
0
0

TT

b) K= 1.5, c ) K= 1 and the numerical values of A i/4T

at z=0 for d )A=20 , e)A=50, f)A=100, g)A=200.



12

11

10

9

8

:)

7

6

5

4

3

2

1

re 5.7 : The numerical values of the heat transfer at 

hot wall for a)A=l, b)A=20, c)A=50, d)A=100, e)A=200
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z

Figure 5.8 : The numerical values of the heat transfer at 

the cold wall for a)A=l, b)A=20, c)A=50, d)A=100, e)A=200.
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Chapter 6 Convection in a vertical slot filled with

a porous medium for Darcy-Rayleigh numbers 

A=0(h)

6.1 Introduction

In this chapter the cavity flow is studied for large 

Darcy-Rayleigh numbers, A, comparable with the aspect ratio, 

h, of the slot. The key difference from the asymptotic 

structure studied in Chapters 2-5 is that the core flow is 

governed by the vertical boundary layer equations and is no 

longer parallel to the sidewalls of the cavity. The 

temperature field is no longer dominated by conduction and 

as convective effects spread throughout the cavity there is 

a significant change in the heat transfer characteristics of 

the system. The Nusselt number must be found by solving the 

core problem and this is the main objective of the present 

chapter.

The core problem is formulated in Section 6.2 and is 

shown to require the solution of a vertical boundary-layer 

form of the governing equations in the rectangular domain, 

subject to appropriate boundary conditions on each side of 

the rectangle. A similar boundary-layer problem has been 

formulated and solved for a Newtonian fluid by 

Daniels(1987 ) , and here the same method of solution is 

used. This consists of using a Fourier decomposition in the 

z direction to reduce the system to an infinite coupled set 

of nonlinear ordinary differential equations in x, a 

truncated form of which is then solved by a finite 

difference method. Details of the numerical method are given
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in Section 6.4 and the results are described in Section 6.5.

As A/h >0 the conduction-dominated solution of Chapters

2-5 is recovered, while as A/h-- > oo the solution approaches

that of the high Darcy-Rayleigh number structure in a cavity 

of finite aspect ratio, previously considered by Weber 

(1975), Walker and Homsy(1978), Blythe, Daniels and 

Simpkins(1982) and Daniels(1983). Comparisons with this work 

are included in Section 6.5. Finally, in Section 6.6 the 

main heat transfer results are presented. Of particular 

importance is the prediction of a position of minimum heat 

transfer at a finite value of A/h.

6 .2 Formulation

When A is of order h the end-zones studied in Chapters 

2-5 have expanded to such a degree that they are comparable 

in vertical extent to the height of the cavity itself. The 

core solution T = T (x) , i// = Aip (x) is therefore no
C C

longer valid and must be replaced by more general forms

T = T(x,z)+... , ip = Ai//(x,z) + ... (A— > oo ), (6.2.1)

where

z = Az (0<z<h/A). (6.2.2)

Substitution of (6.2.1) into (2.2.1,2) gives

dT
d  X

(6.2.3)

a 2 t  _  a (t  , i/y ) (6.2.4)
a x 2 a ( x , z )

and these must be solved subject to the boundary
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conditions

*p = T = 0 (X = 0) , \j) =  0 , T = 1 (X=l) , (6.2.5)

t//=0 (z =0 and z=h/A). (6.2.6)

Here the conditions at z = 0 and z = h/A are necessary

for consistency with solutions in end regions adjacent to 

the upper and lower boundaries , to be discussed in 

Chapter 7 below .

It is convenient to recast the system into a form in 

which the vertical coordinate varies on the unit interval, 

which may be achieved by writing

T = 0 (X , Z) , ip = r a¥(X,Z) , X = l~lX , z = r 2Z , (6.2.7)

where

:A/h)
1/ 2

Then it is required to solve

3

ax2

a 2 ®

ax

a®
ax

_  =
2 a ( x , z  )

subject to

'1 = 0 = 0 (X = 0) , $ = 0 , 0 = 1  (X = t) , 

'1 = 0 (Z = 0, Z = 1) .

(6.2.8)

(6.2.9;

(6.2.10)

(6 .2 .11)

(6.2.12)

Solutions are sought for values of the parameter l in the 

range 0<l'<m .

6.3 Core solution

The solution of (6.2.9-12) is expressed in the form
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0(X, Z) ll N + M
 8

n=l

CO

*(X,Z) = I b r
n = 1

where a (X),b

(6.3.1)

:) sin nnZ , (6.3.2)

<) (n=l,2,.... ) are functions of X to

be determined . This solution is consistent with the end 

conditions (6.2.12). Substitution of (6 .3.1,2) into 

(6.2.9, 10) gives

E b sin nnZ = - T a sin nrrZ,
n n

n = 1 n = 1
(6.3.3)

E a sin nrrZ = E a sin nrrZ E nrrb cos nTTZ
n = 1 n = 1 n = 1

-(1 + T nu a cos nrrZ) Y b sin mrZ
n n

n = 1 n = 1
(6.3.4)

Equating the coefficients of sin nnZ in (6.3.3) gives

b + a =0 . (6.3.5)

From (6.3.4) ,

E (a + b }sin uttZ = E a sin nrrZ E nTrb cos nrrZ
n = 1 n = 1 n = 1

- E b sin nrrZ E nrra cos nnZ
n n

n = 1 n = 1
(6.3.6)

Each of the two terms on the right-hand side of (6.3.6) 

can be expressed in the form

CO CO CO

E r sin nnZ Y s cos rniZ = Y t , (6.3.7)
^  n u  n ^  m v '
n = l  n = l  m = l

where
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m

t = V r s sin kuZ cos (m-k+1 ) ttZ
m ^ k m-k+1 '  '

k = 1

1
= r Y, r s {sin (m+l ) ttZ + sin ( 2k-m-l ) ttZ } . (6.3.8) ̂ k m k 1

k = 1

In order to equate coefficients of sin nmZ in (6.3.8) it

is therefore necessary to isolate the coefficient of

sin nTTZ in the expression

- C O  m

2  I  I  r  k S rn - k + 1  ̂ (m+1 ) 712 +  sin(2k-m-l)TTZ} . ( 6 . 3 . 9 )
m = 1 k = 1

The coefficient of sin nrrZ in the expression 

î I E r s sin (m+l ) ttZ
¿L k m - k + 1

m = 1 k = 1

is simply found by letting m+l=n , to give

1 vr F r s
2 u k I 

k = 1

(6.3.10)

(6.3.11)

while the coefficient of sin nrrZ in the expression

^ co m

t I I r s sin (2k-m-l) ttZ (6.3.12)
Z k m - k + 1

m = 1 k = 1

is found by letting 2k-m-l = + n so that either

k=m+n+12
■+> m-k+1 m-n+1

2 (6.3.13)

or

k=
m-n + 1 m-k+1 m+n+1

2 (6.3.14)

For (6.3.13) the restriction k£m implies that

k=(m+n+l)/2 s m while for (6.3.14) the restriction k^l 

implies that k= (m-n+1 ) /2 a 1 so that m ranges over the
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values m=n+l , n+3 The coefficient of sin nrrZ in

(6.3. 12) is therefore

00
- Y 2 L
m = n + 1

[ r m+n+1 S m+l-n — T m+l-n S m + n+1 ] . (6 . 3 .15)

, n + 3 , .
2 2 2 2

From (6.3. 11) and (6.3.15), the coefficient of sin nnZ in

the f irst summation on the right-hand side of (6.3. 6) is

n - 1 oo

<P . = Y r s + Y.n i  Z k n -  k
k = 1

m = n + 1 , n + 3 ,

[ T m + n+1 S  m + l - n

2 2

— V m + l - n  S m + n + l ] } ,

2 2

where

r =a
n n

and s = mrb

(6.3.16)

(6.3.17)

while in the second summation on the right-hand side 

of (6.3.6) the coefficient of sin nrrZ is

n - 1 oo

<P = Y r*s* + Yn 2 Z k n - k
k = 1 m = n + l , n + 3 , . . .

[ V  m+n+1 S m+l-n

— If m+l-n S m+n+1 ] }  ,

2 2

(6.3.18)

where

r =b
n n

and s = nira .
n n

(6.3.19)

Substitution of (6.3.16,18) into (6.3.6) now gives

ii /
a +b =0

n

where

n n
(6.3.20)

0 = 0 - 0 , .  (6.3.21)n n 1 n 2

In practice the Fourier series (6.3.1,2) are truncated at

N modes and then (6.3.16,18) become
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n - 1 2 N - 1 - n

n 1 Y. r s + I2 k n -  k L-
k = 1

m = n + l , n + 3 , . .

i C m + n+1 S m-n + 1

2 2

~C  m-n+1 S m+n+1 ] }

2 2

( 1,2,...., N), (6.3.22)

„ n - 1 2 N -  1 -  n
N 1 * »4> = z r s + zn 2 2 u k n - k  ^

k = 1
m = n + l , n + 3 , . . .

! T m+n+1 S m-n+1

2 2

~~T m-n+1 S m+n+1 ] }

2 2

( n = l ,2,  . . . . , N) (6.3.23)

Here it is understood that the summations do not 

contribute when the lower limit exceeds the upper limit 

and the final formula for the coefficient of sin nnZ on 

the right-hand side of (6.3.6) is

N TT
n -1

0 = [ Z (n-k) (a b - b a )
2 k n - k  k n - k

k = 1

2 N -  1 -  n , ,, v- . . m-n+1 . . , ,
+2^ {  ( --------2------- ) ( â  m + n+1 D m-n+1 “  D m+n + 1 3. m-n + 1

m = n + l , n  + 3 , . . .  2 2 2 2

, m+n + 1 , . ' . , ' ...
“  ( --------—--------) (3 m-n+1 D m+n + 1 ”  D m-n+1 3  m+n+1 ) }  J f

(n=l,2,3,....N ). (6.3.24)

The truncated problem is now to solve the equations

b + a = 0 (n=l,2,... N) , (6.3.25)
n n

a + b = 0N (n=l,2,... N) , (6.3.26)
n n n

Nwhere <p is given by (6.3.24).
n

Boundary conditions for a and b are determined
n n

from (6.2.11) . The stream function vanishes at the cold 

wall , giving

b = 0 (X=0)
n

(6.3.27)
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and the temperature also vanishes there , implying that

CO

Z + Y. a (O)sin nnZ = 0 . (6.3.28)
n = 1

Thus

l
a (0) = -2 J Z sin nïïZ dZ = 2(-l)n/nïï. (6.3.29)

o

The computation of a and b
n n

can be limited to the

colder half of the cavity by making use of the

centro-symmetry conditions

¥(X,Z) = 9 (i-X, 1-Z) , 0 ( X , Z ) = 1-0 {i-X, 1-Z ) , (6.3.30)

which imply that in particular

9{i/2,Z) = 9{l/2,\-Z) . (6.3.31)

Thus

CO CO

Y. b ( (' /2 ) sin nrcZ = £ b (¿'./2)sin nTi(l-Z)
n=l  n= l

oo
=- I (-l)n b (H/2)sin nrrZ (6.3.32)

n=l

and so for even values of n,

b = 0
n

at X = 1/2 . (6.3.33)

Similarly, for 0

CO

Z + £ a (/;/2)sinnirZ
n = 1

CO
1- (1-Z)+ l

n =
(-l)na {1/2) sin nnZ

n

(6.3.34)
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and so for odd values of n,

a = 0 at X
n = <72 ■ (6.3.35)

Also, from (6.3.30)

a*
ax(^/2 ' 2) =

d ^
- -(t/2,l-Z) , (6.3.36)

giving

00 °°
X b ( 1' / 2 ) s i n nrrZ = - £ b (f/2)sin nrr(l-Z)

n n 
n = 1 n = 1

/
= Y. (~l)n b (t/ 2) sin niiZ,

n
n = 1

(6.3.37)

so that for odd values of n,

b = 0 at n X=i/2 . (6.3.38)

Similarly , from 30/3X it follows that f or even values

of n

a = 0
n

at X=i/2 . (6.3.39)

In summary, the boundary conditions for (6.3.25,26)

are

b = 0 , a =
n n

= 2 ( -1 ) n / n?T at X = 0 (n=l,2,...■ ,N) ,, (6.3.40)

a = b = 0
n n

at X=t/2 (n odd) , (6.3.41)

a = b = 0
n n

at X=t/2 (n  even) . (6.3.42)

6.4 Numerical method

N
If is viewed as a given function of X , the

system of equations (6.3.25,26), has a general solution

a = a (X) + c cosh X + c sinh X + c , (6.4.1)

b = b (X) - c sinh X - c cosh X + c , (6.4.2)
n n p 1 2  4 ' '
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where c , c , c , c are constants and a and b are
1 2 3 4  np np

. , n
particular solutions generated by 0 . Assuming without

n

loss of generality that

/ /
a = b = a = b = 0  at X=0 , (6.4.3)

n p n p n p n p

it follows from (6.3.40-42) that for odd values of n

-2—  = c + c nTT 1 3

c = c
2 4

l' i . I
a (-=-) + c cosh — + c sinh — + c = 0 ,

n p Z 1 Z 2 Z 3

' a a . a
b (— )-c cosh — -c sinh — = 0

n 2 1 2 2 2

giving

£ ' H 2
C = a (-)+ b (-)- l np 2 np 2 nrr

I! • t
C =-a (y) - b (-)

3 n p Z n p Z

'  ̂ t t ' t 2 i
c = c = b ( — ) cosech - -{a (̂-) + b (-) - — }coth -

2 4 n p ' 2 '  2 np v 2 '  np v 2 ' nTT J 2

(6.4.4)

(n odd) 

(6.4.5)

and for even values of n

2c + c1 3 nn

-c +  C = 0
2 4

b <!>-c sinh i
n p l 2

a
<f>

+c sinh
a

n P i 2

giving

£
-c cosh — + c = 0

2 2 4

+c cosh
2

= 0

(6.4.6)
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C =-a (4) cosech j + {a (|)+b ¿) }coth ~
1 np Z Z np Z np  Z Z

2 ' t t ' t t i
C = —  + a (-)cosech y-{a (■=■)+ b (-)}coth |

3 nn  n p Z Z n p Z n p Z Z

C =c = -{b ¿) + a ¿) }
2 4 n p Z n p Z

(6.4.7) 

(n even)

The particular solutions a and b are found by a
n p n p

numerical approach using a central difference approximation. 

The half-width of the cavity 0  ̂ X £ 1/2 is divided into 

equal intervals of length AX and values of a , b ,u = b and
n n n n

/
v = a are approximated by

n n

i + 1a - a
a =

a =

u

u =

, i +1 , ib - b
n n b =

n

n n

AX ! AX

i+ 1a +
n

ia
n

h  —
bi + 1 +

n
b1

n

2 t n 2

i +1 
U

n

i
U

n
V  =

n

i +l
V

n

i
V

n

AX t AX
i + iu +n

i
U

n
V  =

n

i + 1 
V

n
4- V 1

n

2 t 2

(6.4.8)

at location X =(i+ — )AX, where a 1 denotes a (iAX) etc.
Z n n

Hence the system of equations (6.3.25,26) becomes

i + 1 U iU i + 1 V i+ V
n n

= -(
n n \

AX 2 )

i + 1 i i +1 iV V u + u
n n t n n

AX V 2

b 1 + 1- b ‘ iU + 1+ u i
n n n n

AX 2

i + 1 i i+ 1 ia a V + V
n n n n

AX 2

where f (X)
n = 0n

(X) .

) +

(6.4.9)

Solving (6.4.9) for the unknown
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values at step i + 1 in terms of known values at step i

gives

u ‘ + 1 = { 4 AXv ' - ( (AX)2+4)u‘ + (AX)^(fi + 1+fi) }/{ (AX)2-4} ,

v ‘+1= -2
n

i + 1 
U -u

n :

- ÂX
-v

, i + l AX . i + i  i . , ib = —  (u + u ) + b
n 2 n n n

i+i  AX , i + i i . , ia = tt— (v + v ) + a
n Z n n r

n n

f (6.4.10)

and these formulae allow the solution to be computed from 

X=0 to X=(; / 2 starting from the initial configuration 

given by (6.4.3):

° , ° o o a =b =u =v =0 .
n n n n

(6.4.11)

For a 1-mode truncation , N=l, <p = 0 , and the 

system (6.3.25,26) is

al
+ bl = 0

bl
+ al = 0

(6.4.12)

allowing the solution to be obtained analytically as

2 Ha^= — (coth — sinh X - cosh X) ,

2 n t
b^= — (sinh X - coth — cosh X + coth — ).

(6.4.13)

For a 2-mode truncation, N=2, the functions <p and

are2

. 2 77 /

^i= 2 [ a b

i 2 77 /

*2 = 2 ( a bl

(6.4.14)

l l
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and the system (6.3.25,26) is

b + a = 0 1 i

/ / i
a + b = fl l i

(6.4.15)

b2 + a ; = 0

a2

+ cr (\j
II f

(6.4.16)

Here , and for 

nonlinear and 

iterative scheme 

updated until 

truncation level 

truncation level

all truncations N^2 , the system is

the solution (6.4.1,2) is used in an 

in which the right-hand sides f are
n

convergence is achieved at a given 

, N . The solution for the previous 

is used as initial guess , together with

a = b = u = v = 0 .
N N N N

A relaxation of the form

a
n

b
n

(new)ra +

. (new)rb +

(l-r)a
n

(l-r)b
n

(old)

( o l d )

(6.4.17)

(6.4.18)

is incorporated and was found to be necessary to achieve 

convergence, particularly at high values of t and high 

truncation levels, as in computations of the

corresponding Newtonian problem (Daniels 1987). The 

values a and a in (6.4.18) are those
n n

pertaining to the previous and new values of a and r is
n

introduced as a relaxation factor. For a given value of i 

the scheme starts with N=2 and solutions are found for 

truncation levels up to a maximum value N . Most
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computations were performed with a step length 1/200 and 

at each truncation level convergence is achieved to 

within a specified tolerance , e :

max | a ( n r w )- a ( » 1 d )
l< max I b* r

(new) - b (old) <€ .

(6.4.19)

Numerical results were obtained for values of l in 

the range 2s('<io . At high truncation levels , a

relaxation factor of the form r=r /N was used ,0 max

with the maximum truncation level , N , usually takenmax

as 25. Generally it was found necessary to decrease the 

value of the constant r for increasing values of i, with

values varying from r =4 at i=2 to r =1/6 at ¿=10,1 o o '

representing a severe under-relaxation of the system.

6.5 Numerical results

Numerical results for © and 'F with ¿=2, N =25 andmax

r=0.16 are shown in Figure 6.1 and at the highest 

truncation level 1155 iterations were needed to achieve 

convergence to within a tolerance of 10 5. At this level 

of (' the isotherms are parallel throughout most of the 

cavity although near the ends they converge to the lower, 

hot and upper , cold corners . The streamlines are also 

parallel except near the top and bottom of the cavity 

where the flow is turned. For 0 the solution of 

(6.2.9-12) throughout most of the cavity is the

conduction-dominated , parallel-flow solution

* = |(j)(1- j), (6.5.1)

® = j  , (6.5.2)
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so that in particular at the centre of the slot

>1(1/2, 1/2) ~ 1/8 (1-- >0) . (6.5.3)

The convergence of the isotherms to the two corners 

of the cavity is more pronounced in the result of

Figure 6.2 for 1=4, obtained with N =25 and r=0.01333.
m a x

Here convergence of >1 and 0 at the highest truncation 

level is achieved to within a tolerance of 10~5 after 

1073 iterations. Also the isotherms and streamlines are 

no longer parallel to the cold and hot walls , with the 

influence of the horizontal walls now extending 

throughout the cavity. In Figure 6.3 , where 1=6, N =25
m a x

and r=0.01, the results for 1 and 0 are obtained to

. . -4within a tolerance of 10 after 564 iterations at the 

highest truncation level . The slope of the isotherms is 

more evident than in Figure 6.2 and the streamlines are

more compressed to the cold and hot walls. The initial 

formation of vertical boundary-layer structures in the 

upper, cold and lower ,hot corners of the cavity is also 

observed. These trends are even more evident in the 

results of Figure 6.4 for 1=8 with N =25 and r=0.0066,
m a x

and where the results are obtained to within a tolerance

-4
of 10 after 946 iterations at the highest truncation 

level. The vertical boundary-layer structures spread 

further along the hot and cold walls and there are

significant regions near the ends of the cavity where the 

isotherms and streamlines are near-horizontal. In

Figure 6.5 where 1=10 with N =25 and r=0.0066, the
m a x

results are obtained to within a tolerance of 10~4

after 2946 iterations at the highest truncation level. Here
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the solution in the core of the cavity is seen to be 

increasingly independent of X , with a region of 

horizontal flow and vertical stratification sandwiched 

between vertical boundary layers on the hot and cold 

walls.

The structure which emerges for large values of i is 

that which pertains in a cavity of finite aspect ratio , 

previously considered by Weber(1975), Walker and 

Homsy(1978), Blythe Daniels and Simpkins (1982) and 

Daniels(1983). This consists of a core region X=0(f) 

sandwiched between boundary layers of thickness 0(1) on 

each vertical wall. Near the cold wall X=0 ,

* ~ *(X,Z) , 0 ~ 0 (X , Z) (t-- > oo) (6.5.4)

and substitution into (6.2.9,10) gives the full vertical 

boundary-layer system

3 0 3$ <10 _ 3$ 30
.,„2 3Z 3X 3X 3Z ' ( 6 . 5 . 5 )

a2$

ax‘

30
3 X * (6.5.6)

At the wall the boundary conditions are

$ = 0 = 0 (X = 0) . (6.5.7)

In

equations

the core region where X=0 (?.) the governing 

(6.2.9,10) reduce , at leading order , to

3 © _ 31
3X ~ 3X

and so

with

0 (6.5.8)

there is a vertically stratified, horizontal flow,
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vertical temperature gradient at the centre of the cavity 

are displayed as functions of i. These are given by the 

formulae

CO

*(<7 2 ,1/2) = Y. (-1) b 1 (t/2) ,2 m + 1 (6.5.15)

df (<7 2 ,1/2) = 1 + 1  (-1) m2mTra2m (t/2) (6.5.16)
m= 1

and values are incorporated in Table 6.1. The overshoot 

in the value of 30/az (1/2, 1/2) is also a feature of the 

corresponding problem for a Newtonian fluid (Daniels

1987). The behaviour of the solution at small values of i 

is consistent with the behaviour predicted by (6.5.3) and 

the vertical temperature gradient is exponentially small 

in this limit.

6.6 Heat transfer

The Nusselt number for the cavity flow is defined by

Nu = S 7^ (0,z) dz
dX K ' '

(6.6.1)
z=0

and since z=hZ and X = tx the contribution from the core

region is

Nu ~ W  S ||(0,Z)dZ = hi Nu (l) (6 .6 .2 )

where

(6.6.3)
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From (6.3.1)

£0
ax

00 /
Y a ( X) sin nrrZ

n
n = l

(6.6.4)

and so

Nu = J ||(0,Z)dZ
o

2
71 I

m = 0

V2m + 1 (0)

2m+l (6.6.5)

The numerical results for Nu are shown in Table 6.1 and 

Figure 6.7 for different values of i . The most 

interesting result is the prediction of a position of 

minimum heat transfer Nu = 0.48 when l ~ 4.25 , similar 

to that which occurs for a Newtonian fluid (Daniels 

1990) . This is of obvious importance in the context of 

cavity-wall insulation in buildings and in other

applications.

The results may also be compared with the asymptotic

predictions f for small and large values of i, where

conduction and convection , respectively, are the main

mechanisms of heat transfer. For small values of l the

relevant results may be obtained from the formulae

described in Chapter 5, where it was shown that for

finite Darcy-Rayleigh numbers A

Nu ~ h + {a + /3 } (h -- > oo) (6.6.6)

where a and /3 are functions of A which , in the limit as 

A -- » co , have the behaviours

a ~ Aan , [3 ~ A/3q (A-- > oo) , (6.6.7)

where
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(6 .6 .8 )a + [3 ' 0.06.o o

This implies that for the present regime

Nu ~ I " 1 + (a + (3 ) l , 1 > 0 (6.6.9)

and this result compares well with the computed values of 

Nu for is4 , as shown in Figure 6.7.

For large values of t , the boundary layer theory 

for a finite cavity (Daniels 1983 , Walker and Homsy

1978) predicts that

Nu = J" ^(0,z)dz ~ 0.515 (Ah) 1/2 , (Ah»l) (6.6.10)
0

which, for the present regime, infers that

Nu = -- > 0.515. (1!. -- ■» co) . (6.6.11)

This result is also shown in Figure 6.7.

Values of the Nusselt number obtained by other 

authors (Lauriat and Prasad 1987, Shiralkar, Haadjizadeh and 

Tien 1983, Prasad and Kulacki 1984) by full numerical

simulations of the cavity flow at various aspect

ratios and Darcy-Rayleigh numbers are shown in Table

6.2 and these results are also included in Figure 6.7. The 

results are in good agreement with those of the present 

calculation shown in Table 6.3, confirm the existence of the 

universal Nusselt number curve Nu(£) predicted here and are 

also consistent with the prediction of the minimum of the 

Nusselt number at

H ~ 4.25 , where Nu ~ 0.48 . (6.6.12)
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i r € It Nu ¥((7 2 ,1/2) a@/az(i/2 ,i/2)

2 . 013 .00001 1155 0.599 . 25 - . 2

3 .013 .0001 415 .498 . 37 . 06

3.5 . 007 . 0001 830 .482 . 43 . 19

4 .013 .00001 1073 . 477 . 47 . 32

4.25 . 007 . 0001 830 .476 . 50 . 39

4.5 . 007 . 0001 830 .476 . 52 .46

4.75 . 007 . 0001 830 . 477 . 53 .51

5 . 007 . 0001 830 . 478

IT)IT) . 58

6 . 01 . 0001 564 . 483 . 61 .76

8 . 007 . 0001 946 .490 . 67 .85

10 . 007 . 0001 2946 .495 .70 .72

Table 6.1 : Computational parameters and the numerical

results for Nu , 2,1/2), d© / dZ {1/2 , 1/2) for different

values of i with N = 25.
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A 1= (A/h)1/2 (1)

Nu

(2) (3)

10 1.414 0.735 0.735

20 2 0.56 0.565 0.565

30 2.449 0.506

50 3 . 1622 0.4680

100 4.472 0.4651 0.4673 0.4606

200 6.3245 0.4790 0.4806 0.4759

350 8.366 0.4876 0.4888

500 10 0.492 0.491 0.496

750 12.247 0.4956

1000 14.142 0.4963 0.5126

Table 6.2 : Values of the Nus s elt number obtained

other authors for h=5 and various Darcy-Rayleigh numbers

(1) Lauriat & Prasad 1987, (2) Shiralkar, Haadjizadeh and

Tien 1983, (3) Prasad & Kulacki 1984 .
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Nu

3.5

4.25

4.5

4.75

10

0.5997 

0.4984 

0.4827 

0.4771 

0.4765 

0.4767 

0.4775 

0.4786 

0.4837 

0.4905 

0.4956

Table 6.3 : Computed Nusselt number Nu 

for various values of i
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F i g u r e  6.1 : Computed streamlines and isotherms for 1 = 2 .
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F i g u r e  6.2 : Computed streamlines and isotherms for ¿ = 4 .

127



es
’o

Fi g u r e  6.3 : Computed streamlines and isotherms for ¿=6,
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F i g u r e  6.4 : C o m p u t e d  s t r e a m l i n e s  and i s o t h e r m s  for 1= 8 ,
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F i g u r e  6.5 : C o m p u t e d  s t r e a m l i n e s  and i s o t h e r m s  for ¿=10.
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Figure 6.6 : The numerical results for a) 30/3Z (1/2, 1 / 2 ) ,

b) T (i/2,1/2) shown by dots. The asymptotes (6.5.3) , (6.5.13,14) 

are also indicated.





C h a p t e r 7 S o l u t i o n  of the e n d - z o n e  p r o b l e m s for

Darcy-Rayleigh numbers A=Q(h)

7.1 Introduction

In this chapter the remainder of the solution 

structure for Darcy-Rayleigh numbers A of order h is 

considered . The core solution considered in Chapter 6 

must be consistent with structures near the two ends of 

the cavity which allow the full boundary conditions to be 

satisfied at z = 0 and z=h. It will be shown that the end 

structure is essentially of the form already identified 

in Chapter 4 except that the constant K now becomes a

function of the core parameter « = (A/h) . The

centro-symmetry of the flow means that only the end

region near z = 0 need be considered. In Section

7.2 The form of the core solution as Z 0 is

described and this leads to a description of the main 

end-zone structure in Section 7.3. This is dominated by 

convection , except near the hot wall, and an inner 

horizontal layer, where conduction is significant, provides 

the final adjustment to the thermal boundary condition on 

the bottom wall of the cavity . The inner horizontal layer 

is considered in Section 7.4 .

Section 7.5 considers the manner in which the overall 

core and end-zone structure develops as l -» oo , 

equivalent to Darcy-Rayleigh numbers A>>h. This allows the 

present work to be related to previous studies of the 

high Darcy-Rayleigh number limit in rectangular cavities 

of finite aspect ratio , h=0(l) (Daniels, Blythe and
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Simpkins 1982) and completes the description of high 

Darcy-Rayleigh number flows in porous media for the entire 

range of aspect ratios ; shallow cavity flows have been 

considered in a series of papers by Daniels , Blythe and 

Simpkins (1982 , 1986 , 1989). A final discussion of the

present work is given in Section 7.6 .

7.2 Core structure , Z > 0

The solution of the core region governed by the 

boundary layer equations

6 (••) _ 60 _ 6© S'i'
2 6 X 6Z 6 Z a X

oX

d* 2'*

a x 2

60 
6 X

(7.2.1)

(7.2.2)

is first considered as Z-- > 0. The structure is similar to

that described in Section 4.2 and so only the main results 

will be summarised here . Near the hot wall , there is a 

region where t] = (i'-X)/Z1/2 = 0(1) and

* = Z1/2Fq (7])+. • • , 0 = G q (t))+---  (Z-- > 00). (7.2.3)

Substitution into (7.2.1,2) gives

G + F = 0 , F = G (7.2.4)
o 2 o o o o

and the boundary conditions are

Fq= 0 , G()= 1 (7j = 0) , (7.2.5)

/
F -- > 0 , G -- > 0 (T)-- > œ) . (7.2.6)0 0

The system (7.2.4-6) is the same as that of (4.2.10-12). 

Elimination of G gives
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* 0 ( V -> 00F +^-F F = 0 ; F = 0, F = 1 (17 = 0), F
o 2 o o ' 0  0 ' 0

and the solution has the property

(7.2.7)

lim F = a = 1.616. (7.2.8)0 0  '  '

T)-- > 00

Across the main part of the core region (0<X<1)

= Z1^ *  (X) + . . . , 0 = Z1/20 q (X)+. . . (Z-— > 0) (7.2.9)

and substitution into (7.2.1,2) gives

© i'-0i' = 0 , i» = - 0 (7.2.10)
o o o o o  0

The relevant boundary conditions are

* = 0 (X = 0) , = a (X=l) .0 0 o '

This system of equations has solution

0 = K (1) st'0 0 0

with

, . -K X .a (1 - e 0 )
* (X) = — ------y—  , 0 (X)0 ' / , - K H 0 ' 11-e 0

, .  , -K X.K a (1-e 0 )0 0 ' '
- k i 1-e 0

(7.2.11)

(7.2.12)

(7.2.13)

Here K can in principle be determined as a function of t 

from the numerical solution of the core region.

Near the cold wall, there is a region where

C=X/ZX 7 4= 0(1) and

* = Z3/4f0 (C) + . • © = Z3/4gQ (C)+.•• (Z-- > 0)

Substitution into (7.2.1,2) gives

"  3 ' 3 'g = -rg f - — g f^0 4 0  0 4 0 0

/ /
f = 00

(7.2.14)

(7.2.15)
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conditions

and the relevant solution subject to the boundary

f  = g -  0 (C
0 0

o )  , g , K f •0 0

a K C0 0
-K H 1-e o

(C- (7.2.16)

is

a K Co o
-, _K 1 1-e o

a K Co o
1 _K  ̂1-e o

(7.2.17)

7.3 End-zone solution

The main end-zone structure is shown in Figure 7.1 and 

consists of three regions on the vertical scale z=0(l) which 

match, as z— » œ , with the core structure described in 

the previous section. In region I (vertical boundary layer) 

the solution is

ÿ = A 1 /2ip i(xi ,z)+. . . , T = T i(xi,z)+... ( A > » ) , (7.3.1)

where 1-x =A *'"x , andl

^ x= z1/2Fo (T]) , T i= Gq ( T) ) , (7.3.2)

where rj = x / z 1 ' " .l '

In region II, the solution is given by 

0 = A 1 7 2ip (X, z) +. . . , T = A' 1 7 2T 5 (X, Z) + . . . (A-- >co) (7.3.3)

and substitution into (2.2.1,2) gives 

6T

3(T ,0 )
— 7—-- 7- = 0à (X,Z)

The solution of (7.3.5) is

(7.3.4)

(7.3.5)
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T = F (ip )
2 2 2

(7.3.6)

and in order to find it is necessary to match the

solution as z > oo with that in the core region. From

(7.2.9) this requires that

ip ~ (t'x) , T ~ z 1/2(!0 (lx) (z-- > oo)
^ 2  O '1 ' 2 0

where ^  and ©q are given by (7.2.13). Thus

1 / 2 ., -K Hx. a z (1-e o )0
ip ~ ------------u---- , Tr Z - K H 21-e o

1/2X. „ . . -K ix, a z K H. (1-e oo o '
-K t 1-e o

(7.3.7)

(z-- >oo )

(7.3.8)

and it follows that T ~ K ( z -- >°°) , giving

t 2= F2(i//J = K2(C)02 (7.3.9)

throughout region II , where

K (C) = i'K (/') (7.3.10)2 0

is a function of t. From (7.3.4) it follows that 

throughout region II , the governing equation for \p is

Hill2
ax

(7.3.11)

This equation must be solved subject to the boundary 

conditions

Ip2= 0 (x = 0 ) , Ip2= aQZ1/2 (x= 1) (7.3.12)

a z (1-e 2 )
Ip 2= 0 (Z = 0) , IP2~ — ----- — -----  ( Z -> oo) .

1-e 2

(7.3.13)

The system (7.3.11-13) is precisely that considered in

Section 4.3 except that the constant K is replaced by K .
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The solution is therefore

. 2 2 1/2a k ( l -  x ) / 2 oo smh{(K +4u ) x/2}, 0 2 p - 3 / 2  2 . . . .ill =------  e J (j -------------------- sin(cjz)du.
2 ( 277) 1/2 o sinh{ (K22+4cj2) 1/2/2}

(7.3.14)

As x-- > 0

>//2 ~ xB2 (z;t) , T2~ K2xB2(z ;̂ ) (7.3.15)

where B (z;l!) is a function of z and i. Thus in region III, 

where x=0(A 1 x 4 ) the solution is

0 = A 1 /4 i/ / 2 (x 3 ,z )+---  T = A'3/4T j(X3,z)+. . . (A-- >co)

(7.3.16)

and it is readily shown that the solution which satisfies 

T = ill = 0 on x =0 and which matches with the solution in
3 3 3

region II as x -- » oo is simply

3 = x . B2 (z ;(;) T = K x B (z;t) .
3 2 3 2

(7.3.17)

At

forms

the base of the central zone ill and T have the
2 2

i//2= zU2 (x;i')+. . . , T 2= zK2U2(x ;1) + ---  (z-- >0)

(7.3.18)

where U (x;£) is a function of x and t. Since ST2/9z

is non-zero as z-- >0 an inner horizontal layer is needed

to allow the solution to adjust to the thermal boundary 

condition at the bottom wall.

7.4 Inner horizontal layer

In the inner thermal boundary layer on the
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bottom surface of the cavity

T=A 3/4T (x,z)+. ..,>// = A 17 V ( x , z  )+. . . (A-- »»), (7.4.1)
4 4 4 4

where z=A 1/4z^. Substitution into (2.2.1,2) gives

32!//

3z

a-t a(t , ip )
4 _  4 V 4 i'
~~ U , ”

a z a(x,z4) '
(7.4.2)

and the boundary conditions are

3T
ü j  =  -— - = 0  at z =  0 ,
V 4 a Z 4 '

(7.4.3)

04 ~ Ujx;f)z4 T ~ K U ( x ; 1 ) z (z -- > oo ) ,
4 2 2 4 ^ 4  '

(7.4.4)

T 4= 0  at x = 0 . (7.4.5)

This system is the same system as that solved in Section

4.4 and so the required solution is

T 4~K , { exP(-^4 ‘V 4*’) + ^e r f  {4>J2xl/Z) } ,
TT

(7.4.6)

where

x / /
ijj = U (x ; 1) z and ^ = J U (x ;1) dx . (7.4.7)

4 2 4 20

The results of this and the preceding sections

determine that the high Darcy-Rayleigh number structure 

for z=0(1) outlined in Chapter 4 remains qualitatively 

unchanged throughout the regime for which A=0(h). The one

difference is that the constant K is now replaced by

1 /2
K (/'), a function of the parameter t=(A/h) . This leads 

to a range of different solutions (7.3.14) of the central 

zone problem in region II and thus , in particular, a
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The parameter K(t) is determined by the solution of

the core problem and cannot easily be determined from

the Fourier series solution developed in Chapter 6. 

However, as I!— 0 , the conductive core solution is 

recovered and near z = 0 the adjustment to the boundary

condition '1 = 0 at Z = 0 occurs on a vertical length

scale Z ~ l'2 where X = 0{l) , 0 = 0(1) and ^ = 0(1) . It

follows that the linear relation which develops at the

base of this region is of the form 0=K('l/' :) where K is 

the pure constant estimated in Section 5.3 to have the 

value 1.3. It follows that

K (<') ~ Kf-1 (t-> 0) (7.4.8)

and hence , from (7.3.10), that

K _ (?)-- > K (C-- > 0) . (7.4.9)

The end-zone structure described in this chapter

therefore merges precisely, as t-- » 0, with that described

in Chapter 4.

Of further interest is the form taken by the

end-zone structure in the opposite limit as H.--- and this

is considered in the next section.

7. 4 The limiting structure for A/h --» qq

It has been argued that in the limit as i-- the

core solution adopts the structure first identified by 

Weber(1975), with vertical boundary layers where X=0(1) 

and i-X=0(l) separated by a vertically-stratified core

range of functions U (x;£) which determine the solution

in the inner horizontal layer .
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region 0 <X«' in which the flow is parallel to the 

horizontal walls of the cavity . The properties of the 

vertical boundary-layers now determine the value of

K (i') , as shown by Blythe, Daniels and Simpkins ( 1982) . 

Since 0, ^ , X and Z are all of order one within the 

vertical boundary layer on the cold wall, it follows

that, as i' » co, K (£) approaches a pure constant value

KQ m -* K (l- > «) . (7.5.1)

Thus

Ko (H) ~ Kl1 (I! » co) . (7.5.2)

The value of K is estimated by Daniels (1983) to be 

0.167.

The implications for the end-zone structure as l-- > co

can now be considered . Since K2 is large as t -- » co the

governing equation (7.3.11) in the central zone reduces 

formally to dip /dx = 0, implying that the solution is

(//,_ =a^zl/2 nearly everywhere. However, an adjustment to 

the boundary condition \p ̂ = 0 at x=0 now occurs in a

boundary layer near the cold wall where x=0(K~1)-O(i~ 1 ) , 

and it is readily shown from (7.3.11) that the relevant 

solution is

ip 2~ aQZ1 (l-e'Kx) , x = r \  , (7.5.3)

giving

dip
B2(z ;?) = ~(0,z) ~ i KaoZ1/2 (i-- > «) . (7.5.4)

Adjustment to the boundary condition ip = 0 at z = 0

occurs in a layer near the base where z=0(K’172)=0(¿~ 1 72 ) 

and ip =0 {H 1/4). This implies that U^ (x;l) =0 (i1 7 4 ) as
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i----------- >co and therefore that the inner horizontal layer

— l/4 i / o
assumes a vertical scale z=0(A 1 ) as f-- > oo . The

precise form of U (x;i') as l'-- > oo can be found by solving

the boundary-layer problem at the base of the central 

zone, where

ip = r  1 7 4 (x, z) + . . . , z = i~1/2 z (7.5.5)

and from (7.3.11,13)

a “ \p dtp
 ̂ — Y

à x
àZ

with

02= o (z = o )

7 ^1/2
W  = a z2 0 (x

, ip2 ~ a o z 1 /2 (z -4 co) , 

1) •

This problem has the similarity solution

(7.5.6)

(7.5.7)

(7.5.8)

TTZ

2 Ç

1/2

exp(-Ç2/4){ V (1,Ç)- U(1(C} }
2tt

1 / 2

c= K 1 / 2

/2(1-x)

z_
1 /2 (7.5.9)

where U and V are the 

defined by Abramowitz and

dip
U = or—  ( X , 0 )2 àz v 1

1 / 4

2T(3/4) (TÏ

parabolic cylinder functions 

Stegun(1965,p .686), and so

~ 1/4 -1/4K) (1-x) (H.-- >co) .

(7.5.10)

The main features of the end-zone structure for a 

cavity of finite aspect ratio have now emerged. Recalling 

that i = (A/h)1'2 the high Darcy-Rayleigh number 

structure for finite aspect ratios h=0(l) corresponds to
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the limit A > oo, with l of order A 1"'! The main part of

the central zone now merges with the core and the

region (7.5.5) becomes an outer horizontal layer on the 

bottom boundary of thickness

z~0 (A~1/4) , (7.5.11)

where the solution is given by (7.5.9). The layer is 

dominated by convection and is parabolic in the negative 

x direction. Below this, there is a conductive sublayer, 

or inner horizontal layer, of thickness

z=0 (A"5/16 ) , (7.5.12)

which is parabolic in the positive x direction and where 

the solution is given by (7.4.6,7) with U2 as determined 

by (7.5.10). This double horizontal structure is 

precisely that identified by Daniels, Blythe and Simpkins 

(1982) .

7.6 Discussion

In this chapter the main properties of the end-zone

structure for the regime in which A is of order h have

. . . 1/2 been considered. By taking the further limit £=(A/h) —> oo

it has been shown that this structure develops into a

double horizontal layer applicable to the high

Darcy-Rayleigh number flow in a cavity of finite aspect

ratio, as previously identified by Daniels, Blythe and

Simpkins(1982). There are a series of flow regimes which

describe the transition from high Darcy-Rayleigh number

flows in finite cavities to conduction-dominated flows in

shallow cavities (Daniels, Blythe and Simpkins 1982,

1986, 1989). The work described in the present thesis now
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completes the picture for the transition to the tall 

cavity limit and in particular provides the formula for 

heat transfer across the cavity in the high

Darcy-Rayleigh number limit. This shows that there is a 

position of minimum heat transfer when the Darcy-Rayleigh 

number and aspect ratio are such that

t = (A/h) 1/2 ~ 4.25 . (7.6.1)

For general values of t , the Nusselt number takes the 

form given by (6.6.2),

Nu - (Ah)17" Nu(i') (Ah>>l), (7.6.2)

where Nu(l) is shown in Figure 6.7. For a Darcy-Rayleigh
*

number R based on the cavity height, h ,

R = agAT kh /k 1/ = Ah , (7.6.3)

so that (7.6.2) can be re-interpreted as

Nu ~ R 17" Nu(f.) (R»l) , (7.6.4)

where

r = R ~ 17" h Y  (7.6.5)

*
For a vertical slot of given height h and across which

*
there is a specified temperature difference AT , the

Darcy-Rayleigh number R given by (7.6.3) is fixed and
*

thus Nu is a minimum as a function of the cavity width l 

when Nu is a minimum as a function of 1. Thus the

position of minimum heat transfer is attained for a 

cavity width i given by

l ~ 4.25 R~1 7 7 h * (R »1) (7.6.6)
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and at this point

Nu ~ 0.48 R1/tj (R »1) .

These

interest

formulae provide practical results of 

to engineers involved in heat-loss minimiza'

(7.6.7)

direct 

ion.
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Figure 7.1 : The main end-zone structure
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