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Abstract

ABSTRACT

The work described in this thesis is concerned with the 3D 
interpretation of monocular images. First, the perspective 
transformation is interpreted in an image which enables the extraction 
of 3D information. Then, connectivity in the image is utilized in order 
to infer 3D groupings in the scene. The result of the process is 3D 
structures, leading to local 3D maps, the scales of which are unknown. 
The processing of several images from unknown viewpoints allows the 
relative scales of the various maps to be known. Thus, an unsealed but 
consistent 3D map is extracted. This map has a 3D symbolic 
representation and may be integrated in a CAD database.

A probabilistic approach is used for interpreting the image. First, 
two types of error are defined : errors due to the measurement 
uncertainty and errors due to accidents such as the proximity of 
unrelated features, called segmentation errors. Because of measurement 
errors, relations are not exactly fulfilled. Accounting for such errors 
is responsible for segmentation errors, and thereby unreliability of the 
process. The best trade-off for checking these relations is based on the 
maximum likelihood test. In order to determine this test, a precise 
statistical model of the data is defined. Moreover, accounting for 
measurement uncertainty leads to an original process for detecting the 
vanishing points in the image in a consistent way over the space.

Another central theme of this work is the 3D representation adopted 
for the structures extracted from the image. The intrinsic parameters of 
these structures are viewpoint and scale invariant and the geometric 
relationships and the degree of freedom of these structures are implicit 
in such a representation. This considerably eases the construction of 
the 3D structures, and then of the local and global maps.

The method is illustrated by the processing of images of indoor
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scenes of a power plant.
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NOTATIONS

u ' Vector u, element of IR .
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sin 0
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V S  0 2

n! Factorial n , i.e. n! = nx(n-l)x.x2xl.

n 1 f  n  ]  - p !P J [ p J n! Cn-p)!
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MD Mahalanobis Distance
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[a, A] {« e R ; a £ x ^ }

[a, At {<c e [R ; a £ x < & }
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Chapter 1

CHAPTER 1 

INTRODUCTION

Context

Guidance of a vehicle in any environment is a key issue in 
robotics. A number of methods have been developed, ranging from 
previous training of the vehicle to the use of exteroceptive sensors 
as elaborate as vision.

Previous training whereby the vehicle is meant to repeat the same 
displacements, is a method widely used in an undisturbed environment. 
Although performance is increased by the use of sensors such as an 
odometer, a range finder, a tactile sensor which provides information 
about the vehicle orientation and free space or obstacles surrounding 
the vehicle, the range of mission remains limited.

Vision is a natural step forward to obtain a higher degree of 
autonomy for a wider range of mission. It would provide a precise 
description of the scene and thereby the relative position of the 
vehicle within it. It is a very flexible tool which does not require 
any conversion of the environment and may be used to perform other 
tasks (e.g. Inspection,repairs).

The principal difficulty of any method involving exteroceptive 
sensors is the interpretation of the data, as information contained in 
each datum, qualified "of low level", is extremely poor. The physical 
process of image formation is well known, but the interpretation 
process leading to a semantic description of the scene involves very 
complicated mechanisms not yet fully understood. An elaborated vision 
system would aim at providing such a "high level" description of the 
scene, which, up to now, is not possible without much prior knowledge
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of the scene.

Existing methods extract information from the image at an 
"intermediate level", such as edges, straight lines, geometric 
patterns. If a model of the projections of an object onto the image
plane under a number of viewpoints, i.e. a model of the aspects of an
object, is provided, then a matching strategy allows the object to be 
recognized in the image. Although this may be used to locate an object 
or conversely the camera (and therefore the vehicle in the scene), 
this does not yet deal with generic objects. Other methods use several 
images to extract a coarse 3D map of the scene, that is to say a set 
of points, segments or curves located in the 3D space.

Whatever the method, much remains to do to increase the level of
the image interpretation. Monocular vision cannot allow complete 3D 
interpretation without additional information which may be provided by 
other sensors such as a laser range finder, multiple images (stereo 
vision or motion) or a model of the scene (either heuristic or 
semantic). However, before choosing the most appropriate method it is 
useful to know the limits of the interpretation of one image. 
Anthropomorphic considerations suggest that it is possible to extract 
qualitative 3D information from a single image by using general 
knowledge of the scene (e.g. it is generally possible to recognize a 
scene from its photograph). The general knowledge involved depends 
very much on the type of the scene. In the case of man-made scenes, 
such as indoor scenes, knowledge about the regularity of expected 
shapes, occurrence of some geometrical relationships can be used.

Aim

The main purpose of this thesis is the analysis and interpretation 
of the information contained in a single image in the 3D space, at the 
highest level possible, by using general knowledge of the scene. The 
work is concerned with indoor scenes which can often be represented by 
a limited number of 3D regular geometric primitives (e.g.
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parallelepipeds, cylinders) with privileged directions. The boundaries 
provide numerous straight lines which are likely to be parallel or 
perpendicular. For instance, a room has three principal directions 
: one vertical and two horizontal ones defined by the directions of 
the room walls. In the present work, heuristic information is used in 
the form of hypotheses tested on the image primitives, such as "three 
concurrent lines in the image are likely to be parallel in the scene", 
in a way similar to Lowe’s method for perceptual groupings. Hence a 
local geometric interpretation of the scene is inferred.

The method described in the next chapters consists of two main 
parts, first the interpretation of the image perspective and second 
the construction of local 3D configurations.

Perspective interpretation

The image is first segmented and then edges are approximated by 
straight line segments or elliptical arcs. Finally the scene is 
hypothesized to contain at least two principal perpendicular
directions with which a number of lines in the scene may be
associated. These directions are detected through the interpretation 
of the perspective of the image which is done in three stages

- Vanishing point detection
- Line direction classification
- Perpendicular directions

The detection of the vanishing points is achieved by using an 
original accumulator space (using the Hough paradigm), with a total
consistency whatever their location in the image plane. Each line is
then classified with a vanishing point, by using a Bayesian approach. 
Perpendicularity criterion between directions fixes principal 
directions.
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Construction of local 3D configurations

Only lines associated with a principal direction have been 
considered in what follows. Since their orientation is known, they can 
be represented in the 3D space. They are grouped to form significant 
structures. For instance, close parallel lines form a linear structure 
then perpendicular linear structures form rectangular structures and 
corners. These structures are represented in the 3D space relative to 
the camera coordinate system. In fact, at this stage the situation is 
similar to the 2i/2 D sketch introduced by Marr (Marr, 1982) as the 
distance of the structures from the camera is unknown, i.e. the scale 
of the representation is unknown. Then the adjacent structures are 
grouped by using a connectivity criterion in order to form local 3D 
configurations, the substructures of which have consistent relative 
depths, i.e. only the global scale is unknown (They are called "3D" 
because of their representation, with no reference to their actual 
dimension). The structures are hierarchically organized by increasing 
complexity.

Uncertainty and scoring process

Robustness is clearly a major concern in any system responsible for 
vehicle guidance and depends on its response to noise. The presence of 
noise which results in uncertainty of measurement needs to be taken 
into account throughout the process. Uncertainty plays a key part in 
the method described in this thesis. Errors of measurement are 
hypothesized to be normal random variables and accordingly any result 
of the interpretation process is also a random variable. The 
hypotheses are tested by applying the likelihood concept, and a 
Bayesian method is used for the scoring process.

One difficulty of the Bayesian approach is the estimation of prior 
probabilities. This is done by using a statistical model of the 
features in the image, justified by experiment. It is shown that from 
this model, it is possible to define a likelihood ratio test for a
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given relationship, e.g. parallelism or connectivity. This test is 
proved to be more reliable than other popular tests, such as the 
Mahalanobis distance test or the neighbourhood test.

3D Représentât ion

The construction of the "3D configurations" described previously 
aims at demonstrating that the use of 3D representation from an early 
stage is powerful. The geometric relationships, such as viewpoint 
invariant geometric properties, are shown to be implicit in this 
representation, so is the degree of freedom of the structures 
extracted.

Application

In order to illustrate the possibilities of the method described, 
it is applied to the construction of 3D maps of the scene using 
several images grabbed by the camera during the movement of the 
vehicle. It is shown that two images allow the determination of the 
relative scale and location of the structures, without requiring any 
information about the relative positions of the camera. The merging 
process of several maps is simplified by the representation of the 
local configurations in the 3D space. Notice that the general scale of 
the map remains unknown. The software developed is called TIMI (Three 
Dimensional Interpretation of Monocular Images). The representation of 
the scene extracted by TIMI is consistent with some CAD 
representations (e.g. ROBCAD’s representation). Matching with two CAD 
databases using a different representation is discussed, although the 
matching process is beyond the scope of this thesis.

Industrial application

The general context of this work is the inspection of nuclear 
plants of Electricité de France (EDF) by autonomous vehicles. Up to 
now remote controlled vehicles are used, but this requires skilled 
staff and limits the set of possible tasks. The environment is known,
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but it may be subject to some variations. It is specific : numerous 
lines and cylinders (e.g. pipes, tanks). In hostile environments, 
robustness obviously is a key point. A CAD database of these plants 
may exist. The aim of the project is to match the image grabbed by a 
camera with a possible viewpoint in the CAD database, in order to 
locate the vehicle in the database coordinate system. But the CAD 
database has been designed for purposes other than vehicle guidance by 
vision. Therefore the database has to be transformed and enhanced to 
be used for such an application. The work done should demonstrate the 
possibilities of monocular vision for guidance with respect to a CAD 
database. It should also determine what type of additional information 
would be the most useful to improve robustness.

Organization of the thesis

Chapter 2 analyzes the overall characteristics of similar existing 
systems: type of scene processed, method chosen, type of 
representation used.

The context of this work, the problem to be solved and the general 
principles of the method are described in chapter 3. A unified 
approach is used throughout this work for testing a relationship 
hypothesized between 2 features by using a maximum likelihood 
approach. It is also described in this chapter.

Chapter 4 is concerned with the preprocessing of the image, edge 
detection and line finder algorithms. A section is concerned with the 
modelling of the measurement uncertainty and the statistical 
distribution of the feature parameters extracted from the image. 
Determining the camera parameters is also discussed in this chapter.

Chapter 5 describes the vanishing point detection method and the 
line classification. This method is tested on a set of images of 
indoor scenes of power plants.

Chapter 6 describes the construction of the local 3D configuration.
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After the method description, results on various images are provided 
and discussed.

The application of the method to map construction from several 
views is described in chapter 7. The representation used is compared 
with the representation of the data of two existing CAD softwares, 
ROBCAD and PDMS. It is converted into ROBCAD’s representation.

The method is discussed In chapter 8. Its major advantages and 
drawbacks are pointed out.

The method sometimes requires fastidious mathematical developments 
which are described in the annexes. Some of them are original, others 
are not but are given for clarity and completeness.
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CHAPTER 2 

SURVEY

The following survey aims at providing an analysis of the 
difficulties and constraints encountered when designing a vision 
system, based on previous work achieved in this field. Rather than 
describing consecutively the existing systems, we had better centre 
the discussion around principal thema of vision.

For interpreting a photograph, a human extracts meaningful 
information from the image and compares it to similar information 
obtained from past experience. What information has been extracted and 
in which form it has been stored are generally unknown; this is a 
fundamental problem for artificial vision. The following
sections are organized around the nature and the representation of the 
information used by a vision system. There are various types of 
knowledge which may be used for interpreting an image, they have been 
classified as follows : knowledge about the type of scene and the 
conditions of image acquisition, called general knowledge ; precise 
knowledge about the objects present in the scene, i.e. knowledge of a 
model. An image interpretation process may be roughly schematized in 
the following way :

- general information is represented within the process 
(geometric reasoning, properties exploited and various 
approximations).

- model information and data extracted from the image are the 
input of the process through which they are interpreted and 
compared.
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2.1 Aims and difficulties of a vision system

Field of application

Two linked problems in robotics vision have been the subject of 
much research. These are :

- To find the location of unattached objects in world coordinates, 
when the location of the camera is known by a previous 
calibration.

- To find the location of the camera (i.e. of the robot) by 
reference to fixed objects.

They may be formalized as in figure 2.1.1 :

Tm
model i coordinates ----------> world coordinates

Image coordinates

Tm : transformation from the model coordinates to the world coordinates 
T : transformation from the model coordinates to the image coordinates 
Ti : transformation from the world coordinates to the image coordinates

Two types of problem: * Ti known, Tm is searched for
* Tm known, Ti is searched for

Solution: to look for T

Figure 2.1.1 : Object location or viewpoint determination

Although both problems : object location and viewpoint
determination, can be formalized in the same way, they present 
different difficulties, because the types of scenes involved are very 
different (see section 2.2). It is well known that the conception of a 
vision system depends very much on the field of application.

Figure 2.1.2 classifies some well-known operational systems with
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their main field of application. The same systems have been used later 
in figure 2.3.1.

Up to now, these systems mainly deal with recognition and location 
of unattached objects (RAF, Grimson and Lozano-Perez 1984). Albeit 
potentially more general, ACRONYM (Brook, 1984) and SCERPO (Lowe, 
1985) have only been demonstrated on recognition of such objects. The 
field of application of these systems includes automatic inspection 
(3DP0 (Bolles and Horaud, 1986), HYPER 2D (Ayache,1985); CAIMAN 
(Lux,1985)).

However, over the last few years more general scene understanding 
systems have been developed, particularly for vehicle guidance. Stereo 
or motion based vision methods allow the extraction of 3D information 
and thereby have been quite popular (Ayache, 1988; Pollard et al, 
1989; Brown, 1989; Crowley and Stelmaszyk, 1990). Recent research has 
been to explore the possibilities of monocular vision for scene 
recognition purpose (Sugihara, 1988; Quan and Mohr, 1988; Coelho et 
al, 1990).

Another important application for vision is in highly specialized 
fields such as radiography, astronomy or microscopy, which mostly 
involves 2D recognition process. The objects in the image are 
classified according to a number of more or less general criteria 
(Tsuji and Nakano, 1981; Granger, 1985).

Method

For every case, the problem consists of extracting relevant 
information from the image which cannot be done without using prior 
knowledge of the scene and of the conditions of the image acquisition. 
The use of this knowledge during image interpretation process is 
schematized on figure 2.1.3.
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Isolated objects Envi ronement Classifi cat i on
3D/2D systems
ACRONYM *
SCERPO * *VISIONS *SYGAL *
FABIUS
2D/2D systems
HYPER 2D *
3D/3D systems $
HYPER 3D *3DP0 *
IMAGINE
Other systems
RAF *
STEREO (INRIA) * *

Figure 2.1.2: Application field of various existing systems:
- Identification and/or inspection of loose objects
- Interpretation of natural or artificial scene 
and/or location of the camera within this 
environment

- Object classification

General knowledge may be used at any level of the interpretation 
process, from image segmentation to 3D map construction (dotted lines 
in figure 2.1.3). The information stored in the model is compared to 
the features extracted from the image by a matching process at the 
feature level (arrow lines in figure 2.1.3). The method, which 
predicts visible features from the model, identifies them in the image 
and then characterizes them, is called a top down process. The 
extraction of high level features from the image using general 
knowledge of the scene and image formation, is called a bottom-up 
process. Both processes can collaborate (ACRONYM, Brook, 1984; 
VISIONS, Hanson and Riseman, 1978, 1988). Typically, a specific 
application, i.e. much prior knowledge, allows a top down process to 
be efficient (e.g. restriction on the set of possible viewpoints and 
the set of objects present in the scene allows a
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prediction-verification method to be efficient (Ayache, 1983)). 
Conversely, autonomous guidance of a vehicle should use a minimal 
amount of information to be of general purpose, which requires an 
elaborated bottom-up process.

Dimension 
of the
representation

Prior knowledge Image
Interpretation

3D

2D

General information:
View point infor- 
mati on
Geometric const
raints. . .

Model :
Semantic model 
Geometric model

Predicted features

Synthetic image 
Reference image

Semantic description 
Geometric description 
— ,, |
2 1/2D or 3D features

t
Extracted features

.........

Image data

Figure 2.1.3 : Prior knowledge and image processing

Therefore, the matching between the model and the image features 
can be achieved at different levels :

- At the low level by correlation between the real image and a 
reference image or a synthetic image deduced from a geometric 
model (Even and Marse, 1988). The viewpoint or at least a 
finite range of viewpoints should be known.

- At the intermediate level by matching either geometric 2D 
features extracted from a geometric model with 2D image
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features (Brooks, 1984), or 3D model features and 3D features
infered from 2D image features (Lowe, 1985). As data is
represented in a compact form (symbolic form), more viewpoints 
and more complex models may be processed. Matching at a 3D
level has the strong advantage to be viewpoint independent, 
thereby reducing the combinatorial complexity of matching.

- At a high level, i.e. a semantic level, by taking into account
the context of the image features and the relations between 
them (Granger, 1985; Simoni, 1988; Rosin, 1988). This approach 
may considerably reduce the combinatorix of matching if a
precise semantic description is available in the model, which 
is in general not the case for an indoor scene (see sub-section 
2. 3).

- At different levels simultaneously, as information becomes 
available in a blackboard (VISIONS (Hanson and Riseman, 1988)).

Difficulties

The main difficulties encountered by a vision process are linked to 
the three following phenomena :

- Noise: information in the image is embedded in noise. This 
may be due to the presence of shadows and reflections, to the 
camera distortions, to electronic noise and to digitization. 
Noise results in substantial uncertainty of the image 
segmentation process, which affects the significance of the 
information extracted as well as its accuracy.

- Connectivity : connectivity in the image is poorly related to 
connectivity in the scene. This is a major problem in the 
construction of high level primitives, such as a parallelepiped 
or cylinder, which are successfully used in CAD databases for 
scene description. Lack of consistency in connectivity is due 
to occlusion and to noise.

- Combinatorial complexity : Numerous objects may correspond to a 
single projection in the image. Even the conceptual objects
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which are expected to be present in the image are limited in 
number, the variety of their instantiations and the number of 
the associated aspects makes the recognition problem extremely 
complicated. In the case of a precise description of the scene 
being available, the combinatorix of possible assignments 
between model features and image features is still of 
exponential type.

Some solutions

These difficulties are reduced by using much prior information 
about the application, e.g. the effect of noise may be reduced if 
small details may be ignored, the connectivity of edges may be 
enforced if the scene only contains sparse objects, the combinatorix 
of matching may be considerably reduced if there is a finite range of 
possible viewpoints. Currently, vision systems are designed according 
to the type of the scene, the type of knowledge available and the 
performance required.

Various types of "prior" knowledge of the scene may be used for 
vision, from general information to a precise geometric model of the 
scene. They are used in different ways ; general information affects 
fundamental choices of method, whereas precise models are explicitly 
part of the data. Section 2.2 mentions various types of general 
knowledge which are used in image interpretation. This knowledge may 
be imprecise so the estimation of the reliability of the results is 
part of the problem and is discussed in the same sub-section. 
Sub-section 2.3 deals with model representation.

The image data are very numerous and very crude. To extract 
essential information, the image is segmented into features, having a 
symbolic representation where possible. This process decreases the 
number of data to process and increases their significance. From 
elementary features, e.g. straight line segments or vertices, it is 
possible to construct more elaborate features, e.g. vertex-pair or
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polygons. The higher the level of the features, the less numerous the 
data to process and the more significant the interpretation. Some of 
the most popular features are described in section 2.4.

The choice of the method depends on the property which is assumed 
to prevail in a particular situation, e.g. accumulation of evidence 
for the viewpoint location is an appealing method if the scene is 
mainly composed of fixed objects. However the method chosen should 
have essential mathematical properties to produce sound results, e.g. 
stability of the results with respect to the data. Data representation 
is a key point of the formalism used. Essential properties of the 
method used and data representation (i.e. feature representation) are 
the subjects of the sub-section 2.5.

Control structure has not been the subject of research in this 
work. Therefore, albeit it is an important aspect of a vision system, 
it has been ignored in the following sections.

2.2 General knowledge

The prior knowledge of the scene may consist of knowledge of the 
viewpoint and/or the geometry and the complexity of the scene. The 
following examines some common types of prior knowledge exploited by 
vision systems.

General knowledge about the geometry of the scene

If the scene is a man-made scene, e.g. a room, the shape of the 
objects are likely to be approximately polyhedral with corners likely 
to be rectangular. This constraint considerably reduces the number of 
possible interpretations. Polyhedral objects have been the subject of 
much attention (Roberts, 1965 ; Nevatia, 1982 ; Sugihara, 1984 ; 
Nelson and Young, 1985 ; Kanatani, 1989), and among them objects 
generated by blocks. Huffman and Clowes (huffman, 1971)(Clowes, 1971) 
give a list of the possible corner aspects of a blocks world scene.
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Mackworth (Mackworth, 1973) shows that the graph generated by the 
projection of a cubic object has a dual graph, a constraint useful to 
recognize consistent edges. Sugihara (1984) shows that the image of a 
polyhedral object obeys a number of algebraic constraints which can be 
used for infering 3D shape from a single image.

Using the same type of considerations, Lowe (Lowe, 1985) introduces 
the concept of perceptual groupings, i.e. typical configurations of 
features in the image, for 3D inference. This relies on heuristic 
knowledge such as: "in a man-made scene parallel lines are numerous so 
that it is reasonable to suppose that parallel lines in the image are 
parallel in the scene". A summary of such reasonable inferences is 
displayed in figure 2.2.1.

Heuristic knowledge also sustains the interpretation of the 
perspective in the image : "If a number of lines are concurrent in the 
image, they are likely to be parallel in the scene" (Banard, 1983; 
Magee and Aggarwal, 1984; Quan and Mohr,1989; Kanatani, 1989).

The use of heuristic knowledge enables the selection of a number of 
reasonable solutions among an infinity of them and thereby is an 
important step forward in the interpretation. However it does not 
provide a unique solution and the evaluation of the likelihood of each 
"reasonable" solution is still a problem. Moreover, this often 
excludes interpretation of natural scenes because such geometric 
information is rarely available.
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Figure 2.2.1: Inferences proposed by Lowe (Lowe, 1985)

Semantic knowledge may concern any type of scenes and increases the 
level of the interpretation. ANDES (Simoni, 1988) uses semantic 
knowledge for defining the geometric relationships in the image. It 
bases the recognition on an expert system, the knowledge 
representation of which are a set of rules representing the spatial
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organization of the scene, e.g. using predicates such as above, inside. 
The efficiency of such a description is limited by its simplicity (see 
sub-section 2.3).

General knowledge about the viewpoint

The viewpoint may be limited either in range, e.g. a camera may be 
located in a corner of a room and have a limited number of degrees of 
freedom, or in number, e.g. the camera is fixed and the object has a 
finite number of stable positions (Ellis et al, 1988). In the latter 
case, a 3D problem is reduced to a 2D problem. The camera may also be 
supposed far from the object so that the perspective transformation 
may be approximated by an orthographic projection with a scale factor 
(Thompson and Mundy, 1987). These approximations limit very much the 
field of possible applications.

Complexity of the scene

The combinatorial complexity of any matching process is directly 
related to the complexity of the scene. Strategies for pruning part of 
the interpretation tree, i.e. tree formed by all possible matches, are 
of increasing importance as complexity of the scene increases.

If the scene is composed of sparse objects with rather convex 
shapes and uniform colour on a uniform background, then a region 
growing algorithm (Rosenfeld and Kak, 1982) or any algorithm enforcing 
connectivity (Reis, 1991) may be very efficient and so reduces the 
combinatorial complexity of the matching. However the efficiency of 
these tools is compromized when the complexity of the scene increases 
(where it is more needed!).

Measure of evidence

Whatever the application, various knowledge is used to reduce the 
difficulties encountered by a vision system, but this also restrains 
the field of application of the system. A compromise has to be found
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between powerful constraints and generality. The use of precise 
information such as: "the number of possible viewpoints is limited", 
clearly very much limits the range of applications. Fuzzy heuristic 
information such as: "numerous lines are likely to be parallel" is 
less limiting but more difficult to handle, and raises the difficult 
question of reliability of the results.

Fuzzy heuristic information allows hypotheses to be tested on a set 
of image features but it should provide a prior estimate of the 
probability of success. In practice many systems accumulate evidence 
for hypotheses until inconsistencies arise. For instance an edge in an 
image is generally assumed to correspond to an object boundary until 
evidence for the contrary, e.g. failure in matching with a model 
feature. Mulgaonkar et al (Mulgaonkar and Shapiro, 1985) test a 
hypothesis through an inference engine, the rules of which are 
geometric relationships between 3D configurations of straight lines 
and their projection onto the image. Such methods give little 
information about the reliability of the final result.

Incorporating probability reasoning provides a firm basis for 
interpretation as long as rigorous statistical analysis supports the 
model. Tsuji & Nakao (1981) achieve an interpretation of 
a cine-angiogram system. The images vary significantly from patient to 
patient and do not allow a geometric description. The knowledge is 
represented as a set of rules, associated with a probability. They 
obtain good results with a difficult problem. Lowe uses the concept of 
significance, based on a Bayesian approach, in order to measure the 
likelihood of the hypothesis tested. The same approach is used by 
Rosin (Rosin, 1988), in the model-based recognition system FABIUS. 
Dickson (Dickson, 1990) generates a network where the features are the 
nodes and the hypotheses the arcs, in a way similar to Pearl’s method 
(1988), and a likelihood measure is propagated through the network. 
The difficulty of the Bayesian approach used in the previous methods 
is the estimation of the prior likelihoods, which is usually
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arbitrarily performed.

As the interpretation of the scene from one sensor to another 
sensor may vary substantially, the estimation of the reliability of the 
results is crucial in multi-sensor fusion. Most research for evidence 
qualification has been done in this context (Hackett and Shah, 1990). 
A popular method is based on the Dempster-Shafer theory (Shafer, 1976) 
according to which a probability measure does not give enough 
information about the possible occurrence of a hypothesis. Other 
measures are introduced such as the possibility measure and the 
plausibility measure, providing an interval of values associated with 
a set of evidences in a way similar to the uncertainty interval 
associated with a physical measure.

In spite of the difficulties, handling fuzzy information seems to 
be essential for the development of a vision system of general 
purpose. Nevertheless none of the systems described in the previous 
paragraph has been tested on a large range of applications and cannot 
be fully evaluated.

General knowledge embedded in the method is an essential component 
of any vision system. It may be extremely various in nature but is 
generally the heart of the method, e.g. perceptual groupings of Lowe 
(1985), algebraic constraints (Sugihara, 1984), affine transform 
(Thompson and Mundy, 1987). However, its choice remains arbitrary and 
there is no consensus on the way to represent and process it. 
Furthermore it may be considered as a set of hypotheses which limits 
the field of application.

2.3 Scene representation

In this sub-section, various types of models of the scene are 
described and discussed in contrast with general knowledge.

General knowledge described in the previous sub-section usually is
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embedded in the processing itself. In contrast, the use of models for 
object recognition is explicitly part of the data, e.g. in an expert 
system approach a model is stored in the fact base. General knowledge 
is used in a bottom up stage (i.e. to extract symbolic information 
from the image) whereas the model is usually used in a top down stage 
(i.e. the image feature corresponding to a particular model feature is 
looked for). This latter strategy is called a model-driven strategy. 
Numerous types of models and representations have been investigated by 
researchers.

The representation will greatly depend upon the type of scene 
studied and the source of the information. There are various ways of 
building a model with which the image features are to be compared, 
from reference image acquisition to a complete symbolic description.

From reference images

The reference image acquisition is probably the best way to model 
precise and maybe complicated objects, e.g. cast components. The 
technique for segmenting the model is the same as the one used for 
segmenting the image. Ayache (1985) in the system HYPER, Lux (1985), 
Grimson (1987), model 2D objects randomly placed and partially 
overlapped, using a polygonal approximation. The acquisition of a 
number of viewpoints corresponding to the various aspects of the 
object enables recognition of 3D objects.

This type of modelling gives good results as the features of the 
model are very likely to be matched with the features of the image 
since they are extracted by the same process. However, it limits the 
recognition to precise objects. It requires a limited number of 
possible viewpoints and does not allow geometric manipulation.

Faugeras and Herbert (1986) achieve 3D object modelling by 
interpolating 3D points acquired on the object by a set of facets. 
Fisher (1987) uses quadratic surface interpolation, whereas many 
researchers prefer bi-cubic surface interpolation which is simpler to
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implement and enables accurate modelling of a wide range of objects 
(Boult, 1985). The problem with both quadratic and bi-cubic 
interpolation is that a local change in the acquired points induces a 
complete change in the model. Nevatia and Binford (1977) fit 
generalized cylinders to real image data but the stability of the 
results has not been demonstrated.

Geometric modelling

The object to recognize is described as a set of simple geometric 
forms. This considerably limits the set of objects which can be 
modelled. The natural environment can not be easily modelled in this 
form, but many man-made scenes are designed with regular shapes.

CAD tools may be used to achieve geometric modelling. The most 
common types of CAD representation are constructive solid geometry 
(CGS) and the boundary representation. The CAD representation of the 
database used by Electricité de France for modelling power plants and 
particularly pipes, PDMS (PDMS) is of CGS type. The object is 
represented by a number of volumetric primitives, e.g. parallelepipeds 
or cylinders. The boundary representation represents an object by the 
set of linear primitives, e.g. straight line segments or circular 
arcs. This latter representation may appear more suitable for vision, 
but a CAD database may exist independently of the vision task and one 
may wish to use it as such. Ellis et al (1987) use a CAD 
representation of widgets to recognize their location and to inspect 
them.

Binford (1975) introduced generalized cones to represent a larger 
set of objects. Brooks (1985) used this idea with restriction on the 
definition of generalized cones. He succeeded to model objects as 
complicated as a class of aeroplanes. ACRONYM (Brooks, 1985) 
successfully uses this type of representation to identify particular 
types of aeroplanes from a range of models.
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Geometric modelling is associated with a symbolic description 
enabling the parameterization and thereby the representation of 
generic objects. The representation is compact and enables geometric 
reasoning. However the range of objects which can be modelled in this 
form is limited.

Semantic description

We define a semantic description as a set of qualitative rather 
than quantitative descriptors. It includes symbolic form descriptors 
(circular, lengthened...), color ( dark, bright or any color), and
predicates such as spatial relations (above, below, included...),

\

order relation (larger, smaller...). It is well adapted to describe a 
natural environment as it offers a great flexibility for the 
description.

A symbolic description can be represented as a graph, called a 
semantic network, where the nodes are objects, classes of objects, 
descriptors or situations and the arcs are the relations between the 
nodes. For instance a circular object will be represented by two nodes 
"object" and "circular" connected by the arc "shape".

A popular knowledge representation is the "frame" representation 
(Minsky, 1975). A frame is a multi-level representation of an object. 
With an object (a frame) are associated attributes or slots (sort of, 
part of, color, texture...) described by facets (value, default...). 
The frames can be connected to form a semantic network. It enables the 
modelling of a class of objects from which the objects inherit the 
properties. A geometric description may also be associated with it.

The frontier between general knowledge and modelling when using 
semantic knowledge is not as clear as in previous paragraphs. 
Actually, the distinction is made through the structure of the 
algorithm, whether prior knowledge is stored in the fact base in 
(Rosin, 1988; Granger, 1985) or in the rule base (Tsuji and Nakao,
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1981; Simoni, 1988).

The semantic representation is very well adapted to highly 
specialized fields, such as biology or astronomy (SYGAL (Granger, 
1985)). The knowledge of the expert, formalized in terms of image, is 
translated into the database. However, albeit scene interpretation is 
an elementary task for everybody, it is very difficult to formalize it 
in terms of image and it is still the subject of extensive research in 
neuroscience.

Figure 2.3.1 classifies some operational systems according to the 
type of representation adopted to describe the models.

R e f . i mage Geom. model Semantic desc.
3D/2D systems
ACRONYM * *

SCERPO * *VISIONS *SYGAL * *FABIUS
2D/2D systems
HYPER 2D *
3D/3D systems *HYPER 3D *3DP0 * * *
IMAGINE
Other syst.
RAF *
STEREO (INRIA) *

Figure 2.3.1 : Model type for various systems
- Model from reference image acquisition
- Geometric models as CAD database
- Semantic description

Organization of the database

The organization of the model database depends on the type of 
scene. If it consists of unattached objects, the object models are 
stored in a catalogue, which may be hierarchically organized if 
objects are formed of sub-objects (Brooks, 1985). In the case of
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indoor scenes, the notion of object is ambiguous. For instance the 
effect of scale can alter its definition. Let us suppose that the 
database can be structured as a highly interconnected hierarchical 
tree. The top of the tree corresponds to a coarse description and the 
bottom to a detailed description of the scene. For example a room may 
be represented by a parallelepiped or more precisely as the set of six 
rectangles corresponding to the walls, the floor and the ceiling, the 
description of which may be refined. It appears that different trees 
may be associated with the same scene, e.g. whether the frame door is 
classified as a door element or as a wall element. Besides, in spite 
of the description refinement it remains probable that most of tree 
leaves will only be partially visible.

The model database complexity rapidly increases with the complexity 
of the scene. The problem is further aggravated in an indoor scene 
because the notion of object may be ambiguous, e.g. due to the 
connectivity of the different elements.

2.4 Extraction of features

Raw image data are too numerous and have poor meaning when 
isolated. To consider only meaningful information, the image is 
segmented and represented as a set of symbolic features. The quality 
of the interpretation depends on the complexity level of these 
features; the highest level is a semantic description of the scene or 
a geometric description of the CSG type. Features commonly extracted 
from the image are described in what follows.

Information is extracted from the image in the form of image 
features or primitives, e.g. edges, points, regions. They are then 
processed to give more significant primitives such as straight line 
segments, angles, circular arcs. These primitives may be grouped to 
provide higher level primitives. Hanson and Riseman (1978; 1988) in 
the system VISIONS use the primitives "region" and "edge" which may be
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grouped into a structure called a token. A set of attributes is 
associated with each type of token. Thompson and Mundy (1987) have 
introduced the primitive called the "vertex pair“. It consists of a 
pair of vertices, each formed by the intersection of two edges; the 
angles between the spine, i.e. imaginary line linking the vertices, 
and the edges meeting at one vertex are known (see figure 2.4.1).

A

B

Figure 2.4.1: Vertex pair

Work has been done to increase the level of the primitives 
extracted by interpreting them as a projection of 3D features. The 
interpretation of the image perspective gives information on the 3D 
orientation of the primitives. The primitives used for such purpose 
are straight line segments (Ballard, 1982 ; Magee and Arggawall, 1984 
; Quan and Mohr, 1988). Coelho et al (1990) recently use such 
information to construct a 2i/2 D sketch (Marr, 1982), i.e. a set of 
planar regions, the orientation of which is known. The level of the 
interpretation is significantly increased, but the interpretation 
relies on a number of hypotheses, the likelihood of which varies.

A matching method based on stereo images gives the position of the 
primitives in the 3D space (Medioni and Nevatia, 1985 ; Ayache, 1988 ; 
Marapane and Trivedi, 1988). The primitives, typically points, 
straight line segments or regions, do not usually appear to be 
connected in the 3D space. Matching 3D segments with a CAD model of 
the scene is difficult because the boundaries which seem essential to 
the object description are not necessarily the ones which are easy to
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detect in the image. Furthermore segments do not give any information 
about shape which is necessary when using a CSG representation. 
Although the combinatorix of the matching is reduced by the 3D 
representation of the features, grouping them remains a necessity when 
the complexity of the scene increases.

Increasing the level of features extracted from the image by 
constructing complex primitives such as vertex-pairs or polygons, 
requires solution of the connectivity problem. Up to now this is 
largely solved by setting thresholds on the distance between segments, 
through experience (Coelho et al, 1990 ; Reis, 1991). As far as the 
author knows, there is no well formalized solution to this problem.

Characteristic features are extracted from the image and represent 
the input data of an interpretation process or a recognition process. 
These features may be grouped or interpreted in the 3D space to 
increase the level of the representation. The performance and 
generality of the system depends very much on the achieved level of 
these primitives. Up to now, among the most significant primitives let 
us mention: (2D) the vertex-pair (Mundy and Thompson, 1987), (2i/2D)
the oriented planar region (Coelho et al, 1990), (3D) straight line
segments located in the 3D space (Ayache, 1988).

2.5 Method and Data representation

The choice of the method depends on the knowledge available and on 
the properties which are assumed to prevail in the application 
studied. It also depends of the level of the interpretation one wishes 
to reach (see figure 2.1) or one can possibly reach. Besides, the 
method should obey a number of mathematical properties :

- Resolution : the problem should be resolvable
- Stability : a small variation of the data should produce a 

small variation of the results. This includes stability with a
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change of scale or a rotation.
- Efficiency and accuracy : the method should provide the correct 

solution in most cases, with a minimal uncertainty 
neighbourhood.

Data representation appears to be a key point of the method. 
Faugeras (1988) says that a representation should be :

- unique : a unique set of parameters,
- complete : a feature has always at least one representation,
- minimal : minimal number of parameters,
- differentiable : a small variation of the parameters correspond 

to a small variation of the feature.

To satisfy all the previous criteria is extremely ambitious, 
furthermore they are not of equal importance and some researchers have 
given preponderance to some of them. Their relative weight in the 
choice of the method is demonstrated through a number of examples.

Data

The data of an interpretation or recognition process are the 
primitives of various levels extracted from the image (segmentation 
processes are not investigated here). Whatever this process, it may be 
formalized as a system of equations with a number of unknown 
variables.

Resolution of the system

The system of equations may appear to be complex to solve, from a 
mathematical point of view, or even not resolvable by algebraic means. 
A classical way to deal with such a system is to linearize the 
equations, e.g. Newton-Raphson method for pose determination (Lowe, 
1985) or an extended Kalman filter for ellipse fitting (Porill, 1989). 
Linear algebra is very well known, numerous tools and results are 
available, thereby linearity becomes a crucial property when the
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complexity of the problem increases (e.g. dimension » 1).

Perspective transformation is inherently not linear in the 
Euclidean space. The problem may be solved by various approximations. 
If the viewpoint is approximately known (a small movement since the 
last positioning) the problem is linearized around this value 
(Worrall, Baker and Sullivan, 1989). This method may be used in a more 
general context by using an extended Kalman filter. In that case, the 
initial guess is associated with an infinite uncertainty (the 
stability of the process is still a problem). If the object is far 
from the camera, the perspective transformation may be approximated by 
an orthographic projection associated with a scale factor (Thompson 
and Mundy; 1987). However, approximations are not always possible. 
Naeve and Eklundh (1987) suggest that the right context for solving 
the problem posed by perspective geometry is projective geometry, as 
most equations become naturally linear. The elegance of the formalism 
is very attractive but the associated data representation is not 
unique, not minimal and not differentiable. For instance, a straight 
line segment is represented by 6 parameters, 3 of which are used for 
the detection of the vanishing points (in contrast with 2 using a 
minimal representation), and the uncertainty of the vanishing points 
detected is not bounded.

The problem may also be under-determined, e.g. the use of three 
points for determining 3D object position from a single perspective 
view (Wolfe, 1988) or the use of three edges for the same purpose 
(Dhome et al, 1989). In this case all the solutions are found and the 
ambiguities must then be solved by another process.

Stability

A small variation of the data should produce a small variation of 
the results. This obvious property of any reliable system is not 
trivial in image interpretation.
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Differentiability of the system is a necessary condition and 
applies equally well to data representation. However it is not 
sufficient, as differentiability is only concerned with small change 
of the values of the data but not of the data themselves, e.g. missing 
primitives or segments cut into two segments, the consequences of 
which are often unpredictable. Methods have been developed to remedy 
some aspects of the problem. For example, Quan and Mohr (1988) 
accumulate straight lines by weighting them by their length in order 
to be insensitive to over segmentation. The use of an edge fragment in 
the vertex-pair primitive definition (Thompson and Mundy, 1987) aims 
at the same property. More generally, invariance of the features under 
a number of transformations is the best way to prevent instability, 
e.g. the popularity of the vertex primitive is due to its invariance 
through rotation, change of scale and translation (Whitten, 1988).

The presence of a number of thresholds in a vision process gives 
little chance to perfect stability of the results. These thresholds 
are due to the necessity of deciding about the significance of the 
features or relationships between features throughout the process. 
This cause for instability of the process is related to the paragraph 
measure of evidence of the sub-section 2.2.

Currently, the use of differentiable and invariant representations 
is the best way to avoid instability.

Uncertainty and accuracy

The system may appear to be over-determined when n features are 
used to determine p parameters (p<n). For instance, the determination 
of the transformation between the model coordinate system and the 
camera coordinate system represented by six parameters is performed by 
matching n image features with n model features (n>6). In fact the 
equations are fulfilled within a range of uncertainty, so that the 
over-determination is broken.
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A classical way to handle uncertainty is to extract and solve 
consistent sub-systems, e.g. six non-coplanar points determine a 
solution for the transformation, then to accumulate the solutions 
using the Hough paradigm. The solution having the maximum number of 
votes is selected, i.e. maximum peak in the accumulator space 
(Thompson and Mundy, 1987). The method does not give a way of 
estimating the uncertainty of the result.

Another popular way is to minimize an error criterion such as the 
least mean square criterion (LMS) E = £ vie , e being the distance

i 1
between the solution searched for and the solution of i sub-system,
and w. any weight. If the noise responsible for e is assumed to be
normal, then it is possible to show that the solution which minimizes
the global uncertainty, minimizes E if w is equal to the inverse ofi
the variance of e and that it also maximizes the likelihood function, i
If the system is linear, this solution may be found by using the 
weighted LMS method, or a Kalman filter (Kalman, 1960) which, in this 
case, is similar to an iterative LMS method. These methods also 
provide the uncertainty neighbourhood of the solution. If the noise is 
not normal with zero mean, they may give very wrong results by 
emphasizing the importance of a large value of ê . In this case Weiss 
(1988) proposes a method based on a prior estimation of the result and 
segmenting the data by maximizing a likelihood function.

These latter methods are mainly used because they provide the best 
estimate of the solution in the LMS sense or the likelihood sense, 
with the associated uncertainty (Ayache, 1988; Porill, 1989; Deriche 
et al, 1990).

Representation

The linearity of the system of equations depends on the data 
representation chosen, e.g. the equations giving the coordinates of 
the intersection point of two straight lines are linear when using a
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Cartesian representation but are not when using a polar 
representation. The use of homogeneous coordinates (Thompson and 
Mundy, 1987; Ayache, 1988) or reduced coordinates (Kanatani, 1989) in 
a perspective transformation aim at providing linear systems.

Linear systems are very attractive because they are resolvable with 
the maximum accuracy in the LMS sense. However the data representation 
associated with these systems does not necessarily satisfy the 
criteria set by Faugeras.

Let us focus on a popular primitive, the straight line segment. In 
the Euclidean space the Cartesian equation of a straight line, i.e. 
ax+by+c = 0, is not minimal ; the Cartesian equation normalized by c=l 
is minimal but non differentiable at the origin and its polar equation 
is not unique. There is no representation satisfying the four criteria 
for this primitive (Ayache, 1988). Ayache proposes to use a set of 
unique, minimal and differentiable representations, called an atlas, 
the set being complete . However, the four criteria are not of equal 
importance : if the representation should obviously be complete, it 
should not necessarily be minimal or unique. The price to pay for not 
satisfying both these last criteria is an increase of the dimension or 
complexity of the problem. The differentiability allows uncertainty to 
be controlled throughout the process and ensures a better stability 
(see paragraph on stability, section 2.5).

Cartesian, homogeneous or projective representations have 
privileged coordinate axes. They are not appropriate for highlighting, 
for example, the isotropy of some geometrical relationships, e.g. 
angular properties. Thus, it is sometimes not possible to satisfy the 
set of fixed criteria or linearity without compromising a fundamental 
property of the relationship exploited. A trade-off has to be found 
between good mathematical properties of the representation and the 
intrinsic qualities of the representation.
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Conclusion on the methods and data representations

Simplicity and accuracy of the interpretation method depends on the 
data representation. Many methods aim at providing linear systems as 
they offer numerous tools including uncertainty calculation 
mechanisms, such as the Kalman filter, and solutions, such as the best 
estimate in the LMS or likelihood sense. For instance, in the context 
of projective geometry, perspective equations become linear (Naeve and 
Eklundh, 1987). The data representation associated with such systems 
is not always optimal in the sense defined by Faugeras (1988), 
nevertheless it is possible to define such a representation, e. g. an 
atlas (Ayache, 1988).

Approximations, choice of the prior knowledge, choice of the 
features, choice of the data representation may modify the nature of 
the initial problem. A trade-off has to be found between complexity, 
mathematical relevance and accuracy. Up to now no unified formalism 
exists for vision.

2.6 Conclusion

The nature of the information used and the way it is used in some 
existing vision systems have been the subjects of the previous 
sub-sections. Common difficulties when designing an image
interpretation process have been pointed out.

Among them the difficulty of dealing with fuzzy information has not 
found a satisfactory answer. It may be used in an intuitive way at 
some stage of the process such that its effect on the result is 
difficult to quantify. More satisfactory is to explicitly write it in 
a rule base. Various methods have been developed for quantifying the 
reliability of the results obtained but no definite consensus seems to 
have emerged.

Dealing with uncertainty has appeared to be essential in the last 
few years and a popular answer has been the Kalman filter. However
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this approach constrains the linearization of the equations and 
thereby various approximations which limits the field of application 
of the system.

Combinatorial explosion may be partly solved by increasing the 
level of the interpretation which is still relatively low. Errors of 
measurement, low reliability, inconsistent connectivity between the 
image and the scene are all parts of the problem.
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CHAPTER 3

OVERVIEW OF THE METHOD

3.1 Problem description

The aim of this work is to achieve a high level interpretation of 
the image by using general knowledge of the scene. The method developed 
is a first step to positioning a camera relative to a CAD 
representation of the scene, which is a CSG type representation in the 
case of PDMS, i.e. the application of this work.

The scenes studied are indoor scenes of power plants, typically 
composed of pipes (usually aligned with the walls), tables, rectangular 
and circular structures and cylindric tanks. Wall boundaries, door 
frames, rectangular structures and pipes may be represented by lines 
mostly perpendicular to three principal directions, the vertical one 
and two horizontal ones defined by the orientation of the walls. The 
presence of circular structures, such as joints of pipes or ends of 
cylindric tanks, correspond to elliptical arcs in the image.

The model provided by PDMS is a set of volumetric primitives such as 
parallelepipeds, cylinders or toruses. Each primitive is located 
relative to a unique coordinate system with no information about their 
relative positions and interactions. PDMS generates a very compact 
database and is very efficient for pipe runs. PDMS databases at EDF 
represent a huge amount of information about the power plants which 
might be used for vehicle guidance.

A first approach for solving this problem consists of deriving a 
vision-oriented model from the PDMS database and comparing it with the 
features in the image. A second consists of reconstructing volumetric
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primitives from the image and comparing it with PDMS primitives. The 
first approach is computationally very expensive, as numerous models 
have to be generated corresponding to all possible viewpoints. The 
complexity of the matching substantially decreases when the 
interpretation of the image improves, which makes the second approach 
attractive. Moreover it seems to be closer to how humans interpret 
photographs. But reconstruction of volumetric shapes from the image is 
limited because of the indétermination of the problem inherent to the 
2D projection, and thereby is not very reliable.

A trade-off is proposed here. On one hand, high level features 
extracted from the image are represented in the 3D space, which can be 
called volumetric-oriented primitives. On the other hand, a 
vision-oriented database is extracted from the CAD database, but kept 
at a 3D level, thereby not increasing the level of complexity.

The aims of this work are :

- to extract high level features and estimate their reliability
- to demonstrate the feasibility of locating the camera with 
respect to a CAD database of the scene.

The first point is the main part of this thesis. The second point is 
demonstrated by constructing a model from the interpretations of 
several viewpoints which is then included in a CAD database. The 
matching process involved in the construction is beyond the scope of 
this work.

The method for extracting high level features consists of the 
following stages :

- Extraction of the edges of the image and approximation by 
straight line segments and ellipses.

- Interpretation of the perspective consisting of the detection of 
the vanishing points and the classification of the lines with 
the appropriate vanishing point.

- page 58 -



Chapter 3

- Construction of features represented in the 3D space, called 3D 
structures, consisting of straight line segments, rectangles, 
ellipses, vertices, edges, connected structures called local 
conf igurat ions.

Then 3D maps are built in two steps :

- Rotation of the coordinate systems corresponding to two 
viewpoints, in order to line up the main directions with the 
coordinate axes.

- Matching of structures (not described here) and determination 
of the relative scales and, thereby, of the relative positions 
of the viewpoints.

The scale of the representation remains unknown except if the scale 
of one matched structure is known, since the matched structures are 
consistently scaled. The scale indétermination may be broken by the 
prior knowledge of the average depth of the scene.

The next sub-section describes the main principles of the method.

3.2 Principles of the m e t h o d

The scenes studied allow the following hypotheses to be made :

- geometric constraints : most objects in the scene are parallel 
to 2 or 3 main directions, e.g. in a room the directions defined 
by the walls.

- connectivity : connectivity in the scene is inferred from 
connectivity in the image, which can be done only if there is no 
occluded part. Therefore, the scene is hypotesized to contain 
few occluded parts.

The geometric constraints apply to most indoor scenes, such as 
offices or laboratories but it clearly excludes rooms or corridors with 
circular shape. The second hypothesis supposes that the scene is not
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excessively complex and has few unattached objects.

The formulation of the hypotheses is fuzzy in order to be a minimal 
constraint for the type of application concerned. This approach 
requires a method for evaluating the reliability of the result.

The main difficulties of a vision system are described in section 
2.1.1, which considers the presence of noise in the image, the lack of 
consistency in the feature connectivity and the combinatorial explosion 
due to the number of possible aspects of a scene. The lack of 
consistency is resolved by the second hypothesis. The combinatorix may 
be decreased by extracting high level features, but this introduces the 
problem of reliability of these features. The presence of noise implies 
the need to deal with uncertainty.

The same methodology is used throughout the process. Let ft be a 
relationship between 2 features which is to be exploited, the features 
linked by H are selected by a likelihood ratio test and then a higher 
level feature is determined using a Kalman filter. The part of this 
process common to several stages is detailed in the following 
sub-sections, whereas specific processes are detailed in the following 
chapters.

Sub-section 3.2.1 describes the elementary features selected for the 
process and the construction of high-level features from them. Two 
types of error are distinguished : uncertainty of measurement which is 
assumed to be normal with zero mean, and errors of segmentation (e.g. 
data selected although in fact they do not satisfy the relationship 3?), 
which do not have a zero mean error and thereby corrupts the Kalman 
filter. Sub-section 3.2.2 deals with the first type of error. It 
demonstrates how the necessity to deal with uncertainty constrains the 
choice of the tools and the representation of the variables and the 
relationships. The likelihood ratio test minimizes the risk of the 
segmentation error and is the subject of sub-section 3.2.3. The scoring 
process which provides a measure of the reliability of the results, is
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deduced from the result of the likelihood ratio and is described in the 
same sub-section. Sub-section 3.2.4 gives details on the construction 
of the 3D maps. The last sub-section concludes with the principal 
points of the method developed.

3.2.1 From low to high level features

Edges are extracted from the image and represent the only 
information retained from the image. Edges are chosen because they are 
relatively accurate and seem preponderant in scene interpretation, e. g. 
the boundary of a closed door in a room is visible because of the 
shadow area formed, rather than because of the contrast between the 
door and the wall, which may be of the same colour. The Gaussian filter 
(Canny, 1986), Deriche’s filter (1987) and Shen’s filter (1986) are 
compared. An improved version of Shen's detector is proposed.

Edges are then approximated by straight line segments or ellipses. 
Berthod’s algorithm (1987) has been tested for straight line segment 
fitting. Rosin and West’s algorithm (1988) achieves straight line and 
circular arc fitting and provides a score with each fit, based on 
significance. Then, circular arcs are grouped for fitting ellipses 
(Rosin, et al, 1990). These two steps are shortly discussed (further 
work on this step is in progress (Ellis et al, 1991). Let us remark 
that the quality of these steps plays an essential part in the quality 
of the final results.

Thus, the data of the process are straight line segments and 
elliptic arcs. Straight line segments are used for interpreting the 
perspective of the image. Once the vanishing points are found, elliptic 
arcs are interpreted as the projection of a circle and straight lines 
are grouped to form higher level features, called structures, which are 
represented in the 3D space.
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I interpret at Lon of the perspective

Parallel straight lines in the scene are projected onto concurrent 
lines in the image, which meet at a point called a vanishing point. The 
vanishing point coordinates provide the orientation of the associated 
lines (appendix 1). Lines lying in a plane in the scene have their 
associated vanishing points on a straight line in the image. 
Perpendicularity in the scene corresponds to a relationship between 
associated vanishing points in the image so that the vanishing points 
associated with a triplet of perpendicular lines form a triangle, the 
orthocentre of which is the projection of the optic centre onto the 
image, and the scale of which is related to the focal length. These 
well known properties of perspective are exploited for inferring 3D 
orientation of the features from their projection onto the image (see 
f igure 3.2.1.1).

V”
Figure 3.2.1.1: perspective view of a cube and 

associated vanishing points

The vanishing points are detected by accumulating the straight lines 
in an accumulator space in a way similar to Barnard (1983), but using a 
new accumulator space. Concurrent lines in the image are projected onto 
concurrent curves in this accumulator space which is bounded, isotropic 
and keeps constant the expected uncertainty of the vanishing point 
whatever its location. It is shown in chapter 5 that the definition of 
this accumulator space relies on a probabilistic model of the straight 
lines in the image and in particular of the expected value of the 
inverse of the square of their lengths. The model adopted and the
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results of the statistics are described in chapter 4. The searched 
vanishing points correspond to the peaks of the accumulator space. The 
properties of the accumulator space ensure the same quality of the 
detection whatever the location of the vanishing points in the image 
plane.

Once the vanishing points are found, the straight lines are 
classified with them by using a likelihood test. Then, the
perpendicular 3D directions are found by detecting consistent pairs of 
vanishing points. If possible, the elliptic arcs are classified with a 
pair of vanishing points, if not they are rejected. Hence, triplets of 
perpendicular directions are searched for.

At this stage, primitives are straight line segments and circular 
arcs oriented in the 3D space, i.e. only their distances from the 
camera is unknown. Actually, circular arcs have been very difficult to 
extract and have a very small place here; more work on this point is 
needed.

3D Local configurations

In the following text the prefixes 2D and 3D refer to the dimension 
of the representation space and not to the dimension of the feature 
itself, e.g. a 3D straight line segment is a segment of the 3D scene, 
the exact location of which may be unknown, whereas a 2D straight line 
segment is its projection into the image.

Connectivity in the image is used for grouping the 3D primitives 
extracted at the previous stage (see figure 3.2.1.2) in the following 
way :

- Parallel 3D line segments, the corresponding 2D line segments 
of which are close in the image, are grouped to form a single 
line segment, called a linear structure.

- Two perpendicular linear structures, the corresponding 2D 
projections of which are close in the image, are grouped to form
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an L structure.
- Parallel L structures, which share a linear structure and 
are in the same half-plane with respect to this linear 
structure, form a Comb structure.

- Two comb structures, which share a linear structure different 
from the spine, form a rectangular structure.

- Two perpendicular comb structures with the same spine form a 3D 
edge.

- Two perpendicular L structures, the projections of which have 
close vertices, form a 3D vertex.

Linear Subjective Comb
structure linear structure structure

Corner
structure

-------- : Original data
---------: 3 D structures

Figure 3.2.1.2: Examples of 3D structures

Most parameters describing a 3D structure are viewpoint invariant 
because of their representation in the 3D space. This is particularly 
attractive for a matching process. Most of these structures are scale 
invariant, e.g. edges and vertices. The size of the comb and L 
structures has poor significance as only a part of it may be visible, 
but the size of the rectangles is considered to have some significance. 
Not all the rectangles have been extracted, only the largest ones, e.g.
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only the largest rectangle included within two comb structures facing 
each other is extracted. The concept of the comb structure is 
introduced to restrict the construction to a linear complexity, as 
their number is less than four times the number of linear structures 
(there are four half-planes perpendicular to a linear structure). Comb 
structures (an L structure is a particular case of a comb structure) 
are the basis of all further constructions, i.e. rectangles, edges and 
vertices.

Two different connectivity criteria are used to form the 3D 
structures. The first one uses the closeness of the corresponding 
features in the image, the other one uses the simple heuristic "have a 
common sub-structure". Both are subject to mistakes; the former because 
of noise, segmentation errors and hidden parts, the latter because of 
hidden parts (e.g. an edge may be confounded with its projection onto a 
wall - see figure 3.2.1.3). To carry on the construction by applying 
connectivity criterion until the process is stable, may therefore be 
dangerous. However, it may be used as an accumulation of evidence for 
the presence of a super-structure. For instance, a number of close 
parallel planar structures may provide evidence of the presence of a 
wall, even if actually the substructures are not coplanar because they 
correspond to, say, a cupboard, a desk and a picture lying on the wall. 
The iteration of the second connectivity criterion provides structures 
called 3D local configurations, which should correspond to coarse local 
maps of the scene.
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Cupboard

Figure 3. 2.1.3 : Top view of a cupboard lying against a wall. The 
two vertical lines in the scene corresponding to the 
cross on the top view are confounded in the image.

At this stage the interpretation of the scene is not completed as 
the depths of the local configurations and the 3D structures are not 
known, i.e. the scale is unknown. However, it has improved very much as 
the scene is now symbolically described in terms of 3D rectangles, 
circular arcs, edges and vertices and more complex but less reliable 
structures, called local configurations.

These 3D structures may be compared with the 3D structures inferred 
by Lowe (1985) from the perceptual groupings extracted from the image. 
However, they are more precisely defined because of the interpretation 
of the perspective. It will be seen (sub-section 3.2.3) that the 
measure of the significance is given by a likelihood ratio based on a 
statistical model of the features in the image, using a unified 
approach. This approach is based on the existance of a non-negligible 
uncertainty of the measurements extracted from the image.

3.2.2 Dealing with uncertainty

The interpretation of the perspective and the construction method of 
the 3D structures may be expressed as a set of relationships linking 
the parameters of the features, i.e. the data, and the unknown 
variables. As the data are uncertain, the relationships are true within 
a range of uncertainty. Taking into account uncertainty enables the
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best estimate of the solution to be found with its associated 
uncertainty.

Let us remark that dealing with uncertainty is an absolute necessity 
for mobile vehicle because data from various sources (e.g. CAD model, 
multiple images, range-finder, odometer), may be required for achieving 
even a simple task, and they must be made consistent.

As mentioned in section 2.1.5, Kalman filtering is a very popular 
tool when dealing with normal random variables. If the relationship 
between data and unknown variables may be written as a set of linear 
equations (possibly after linearization) and the noise associated with 
the data has a zero mean, a Kalman filter (or extended Kalman filter) 
gives the best estimate, in the LMS sense, of the variable studied and 
its uncertainty. In addition, the algorithm is very efficient in time 
and storage because of its iterative implementation. However it 
requires linear (or linearized in case of an extended Kalman filter) 
and independent relationships (if 2 relationships are dependent, 
divergence occurs).

Kalman filtering (appendix 2) is used throughout the method 
developed in the following pages, whenever using the appropriate 
representation in the sense defined above (Ayache and Faugeras, 1987). 
However the tests selecting the input data use a different 
representation, enabling the exploitation of geometric properties 
(Figure 3.2.2.1). For example, the detection of vanishing points is 
achieved through an isotropic but non linear representation, whereas 
the Kalman filter uses the Cartesian representation, linear but not 
isotropic ; the use of the Cartesian representation for vanishing point 
detection would prevent the isotropy of the detection.

The use of a Kalman filter supposes a white noise and therefore a 
correct segmentation, which does not take into account possible errors 
at previous stages or simply unreliability of the hypotheses used. This 
implies that wrong data are used as the input to an iteration of the
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Kalman filter. The effect is very different from noisy data as no 
hypothesis can be made upon the statistical distribution of the error, 
so that the hypotheses required for using the Kalman filter (Kalman, 
1960) are not fulfilled. Unfortunately, the larger the error, the 
greater the influence on the result ; moreover if the uncertainty is 
low, it substantially reduces the uncertainty of the result, further 
aggravating the problem. Therefore, a distinction between segmentation 
error and measurement error should be made so that only reliable data 
(in the segmentation sense) are used in a Kalman filter. In the method 
described here, data are segmented by using a likelihood ratio test 
(section 3.2.3, appendix 3).

Another way to ensure stability of the Kalman filter is to provide a 
good initial estimate of the unknown variable to the Kalman filter. 
More flexibility is possible for this first estimation as uncertainty 
may be over-estimated. Accumulation of data in an appropriate 
accumulator space is an efficient way of doing this (Weiss, 1988). This 
approach is used for the detection of the vanishing points. However, as 
the prior estimate is found by using the same data as the Kalman 
filter, it is no longer independent of the data. This difficulty is 
overcome by over-estimating the uncertainty associated with the prior 
estimate, but not too much, in order to give this estimate some weight 
in the Kalman filter. It may cause an under-estimation of the 
uncertainty of the final result but this is in no way comparable to the 
one resulting from the use of wrong data in the Kalman filter, and it 
increases the reliability of the results.

The figure 3.2.2.1 demonstrates how the likelihood test and Kalman 
filter cooperate in the process and how the data representation is 
related to the process in which the data are involved. In this figure 
the following notations have been used :

R : result of the likelihood ratio test
(a,b) : a is the slope of a 2D line ( or the inverse of the slope
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(u,G) : 
( x .y )  :

(p,0) :
(X.Y.Z)

L(a,b) : 
L(u, G,

if the slope is higher than 1), and b the intercept with 
the axis Oy (or Ox if the slope higher than 1) 
unit vector and centroid of a 3D segment 
Cartesian coordinates in the image 
polar representation of a point in the image 
: Cartesian coordinates in the scene
: Distance between the features F and F (ini J
the image). D is the Euclidean distance in case of 
vanishing point detection, and is the longitudinal and 
transversal distances between two straight line 
segements (defined in chapter 6) in case of the 
construction of linear structures and L structures 

Straight line segment in the image with endpoints a, b.
1) : Straight line segment in the space with orientation 

u, centroid G and length Í.
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Vanishing point detection:
L i n e
s e g m e n t  s

L(p,0)

D(L,VP)

L(a,b)

D(L,VP) R
R+l

Pair and Triplet of perpendicular directions:
Van i sh i ng 
po i nts

VP (p.,0 )i i i
VP (p ,0 )

J j j

VP1(xi,yi) 

VP (x , y )
j j j 

El 1 ipse
E(a, b, c, d, e,

R
R+l

score R
R+l

Figure 3.2.2.1.a: Likelihood test, Kalman filter and data representation
in the construction of the 3D structures.
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Linear structures:
associated with the vanishing point VP(x,y):

L i nes

R Ro 1-̂-- X -=r--.

-» L(a, b)------> L(u, G, i)

L structures:

Corners structures:

From 2 perpendicular L structures LS (u,v ,C , l, l ) and LS (u,v ,C ,1,1 )
1 1 1 1 2 2 2 2

Vertices Prox i ra i ty 
test

C(X, Y, 2)

Corner structure CS (u , v ,v ,C,1,1 ,i )1 2  l’ 2

C(x,y)

Figure 3.2.2.1: Likelihood test, Kalman filter and data representation 
in the construction of the 3D structures.
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3.3 Dealing with segmentation noise : Likelihood test and scoring process

Likelihood ratio test

The perspective projection of the features in the scene onto the image 
generates an indétermination relative to the 3D location of these 
features. However, it is possible to use cues from the image for 
hypothesizing 3D configurations. For instance, connectivity in the 
image cannot ensure connectivity in the scene but strongly suggests it. 
Such particular relationships, e.g. connectivity or parallelism, are 
very important for interpreting the image. The aim of the likelihood 
ratio test is to decide whether a 2D relationship between two features 
in the image is more likely to be due to chance or to be due to a 
particular relationship between the corresponding 3D features.

As has been explained, the relationships between two features are 
not perfect because of uncertainty of measurement. But they can also 
occur by accident, e.g. two lines may be parallel in the image without 
being parallel in the scene. Hence the segmentation problem : how to 
determine which data satisfy the relationship of interest. Let us 
remark that the sources of errors are linked, since the worse the 
uncertainty of measurement, the higher the risk of erroneous 
segmentation.

Let us suppose that the relationship of interest, 9?, may be written 
in the following way : let Fi and F be two features of the image 
linked by this relationship, then

(9? true) => V(F ,F ) = 0 1 2

Because of error of measurement, it should be rewritten

(9? true) => V(F , F , e , e ) = V * 0 1 2 1 2

where e and e are the errors of measurement with covariance matrices 1 2
C and C . As the errors are supposed to be normal, V is a random

- page 72 -



Chapter 3

variable with a Gaussian distribution with zero mean and covariance C .v

Now let us suppose that the features F and F a r e  not linked by the 
relationship R, then V{F^, F̂ , e^ ê ) is still a Gaussian random variable 
no longer centered at 0 but at S(F , F ), then

V = y(Fi>F2>ei,e2) - S i F ^ )  (3.3.1)

The features Fj and F2 are supposed linked by the relationship R if 
V is not too large. V is therefore called the decision variable. For 
example, for classifying a line L with a vanishing point P the 
relationship R is : "the point P is the vanishing point of the line L". 
If R is true, the distance D between the line L and the point P should 
be equal to 0. Because of errors of measurement it is only possible to 
say that D is small. But D small does not mean that R is true as the 
line L may pass near P by accident. The problem is to find a criterion 
applied to D which minimizes the risk of mis-classification.

Various tests may be used to test the value of V and decide whether 
R is fulfilled. A coarse test consists of setting a threshold for V and 
selecting any pair of features such that ¡V| < V , i.e. amax
neighbourhood criterion. Another criterion takes into account the 
uncertainty with which V is known by using its Mahalanobis distance ,

t -1i.e. V C  V, which has to be less than a fixed threshold ; this test isV

called the MD test in what follows. This criterion does not take 
explicitly into account the risk of error due to accidental situations, 
i.e. segmentation error. Since the importance of such an error has been 
mentioned in the previous sub-section, it has been preferred to use the 
likelihood ratio test (LR test) which does take it explicitly into 
account.

The likelihood test consists of selecting the more probable 
hypothesis for the interpretation. Let V be the result of an experiment 
testing from which of the hypotheses H or H is true, i.e. whether two 
features Fi and F2 are linked by the relationship R (H) or not linked
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by K (H). For instance, in the case of the classification of a line L 
with a vanishing point P, V is the minimal distance from the line to 
the point and the hypotheses to test are H : "the line (L) passes 
through P ’on purpose’" and H : "the point P and the line L are not 
related", i.e. the point P is close to the line L by accident. The 
likelihood ratio tests which hypothesis is more likely, knowing V. 
Using the Bayes theorem, it is found that H is more likely than H 
knowing If = V if :

R = p (m r= V ) = p(l/=V|H) p(H)_ > t (3.3.2)
p(H!V=V) p(l/=V|H) p(H)

VjH and V|H are two random variables, the former corresponds to the 
hypothesis H and the latter to the hypothesis H. If classifying a line 
with H by mistake has more serious consequences than classifying a line 
with H by mistake, this is taken into account by modifying the test 
(3.3.2) to R > R >1.min

The difficulty with the Bayesian approach is to estimate the 
distribution associated with 1/|H and the prior probabilities p(H) and 
p(H). 1/|H is the random variable corresponding to the error of
measurement, the distribution of which is supposed known. 1/1H depends 
on the statistical distribution of the features of interest. The ratio 
p(H)/p(H) is often intuitively estimated by the user (e.g. Rosin, 1988; 
Dickson, 1990) which is dangerous as probability is not a very 
intuitive concept. In order not to jeopardize the appeal of the 
likelihood test, the definitions of the random variables 1/|H, V|H and 
the values of p(H) and p(H) must be precisely defined.

The scene and the conditions of image acquisition are supposed
perfectly known so that the exact parameters of the features F andi
their relationships may also be supposed known. Let Q be the set of 
pairs of features 9- = (F ,F ), Q the set of pairs of features linked
by the relationship !R, and the set of pairs of independent features.
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Then, V|H, V|H, p(H) and p(H) are defined by

n
CardUl) n and p(H)

V = V|H = V\Q and V =i l 2
p(Vi=V) = Pi(V) and p (v 2

Card( )  2
Card(fi)

n
n

P1 is a sum of Gaussian functions centred at 0 and scaled by a
normalization factor, whereas p is a sum of Gaussian functions centred2
at points S = V(F , F , 0,0), where (F , F ) = ¿F e £2 . The density p 

*  k i j i j k 2 2
may be written

p (V) = Z q G (V-S )2 k O' kk

where q is the prior probability associated with 3- e Q and G is
k

the Gaussian law associated with the measurement error. In fact, since
the scene is unknown, so are Q and !2 . If a statistical model of the1 2
distributions of the features F and F is available and defined by thei j
density g(P), where P is the set of parameters corresponding to the 
pair of features considered, then p2(V) may be estimated by replacing 
qj by g(P)d(P). Let q(S) be the density law associated with 1/|H = S in 
the absence of measurement error, then Js_ tg(P)dP = q(S)dS and p2 
becomes

P3(V) = G (V-S) q(S)dSO'
s

As q is smooth, it is possible to approximate p^ by q (i.e. the 
convolution of q by a Gaussian does not change q), which means that the 
effect of the error of measurement is negligible compared with the 
inaccuracy of the prior model.

The ratio R may be rewritten
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R =
n1 p x(v )
n p (V)2 2

The estimation of the ratio n1/n2 = p(H)/p(H) may be achieved as
follows. Let N be a subset of such that the probability of "(F^F )
linked by the relation K is not in N" is small. N is the subset of
interest. N is the subset of N of features linked by H and N its
complement in N. Let nn, nnj and nn^ be the expected values of the
cardinals of N, N^ and N The probability for a pair of features
S' e Q , with ie{l,2}, to be in N is J ., dp . Since nn = Y p(? &N ) : k i i J N *1 i ^ ̂  k i

i

nn n JN % and nn = n J2 “ N dP2

As Q and N are known, n and nn are also known. From n + n = n and nn +1 2  1
nn = nn, the ratio n /n is deduced :2 1 2

n1 
n2

nn - n dpa 

n lN dpi - nn
(3.3.3)

Note that theoretically, does not depend on the choice of N. 
Practically if N = Q, this ratio is undetermined. If N contains very 
few features of interest, i.e. dp̂  =* 0, then the numerator and 
denominator are negative, measuring a lack of features in N, a process 
which is highly unreliable because of the existence of other 
relationships among the features. If A' is a minimal subset containing 
most of the features of interest, i.e. J\. dp “ 0 and J\, dp - 1, the 
numerator evaluates the amplitude of the local event N , while the 
denominator evaluates the remaining noise. This process is much more 
reliable as it measures an event where it is most likely to occur.

The same definitions may be applied to any subset of Q, say A. For 
example, it is possible to define A by fixing one of the features, e.g. 
the vanishing point in the case of the line classification. The
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reliability of R measurement depends on the choice of the subset A. The 
smaller the initial subset, the more efficient the test, as it takes 
into account the specificities of the subset. The choice of A depends 
on the relationship studied (SR) and on the model used.

This approach contrasts with Lowe’s approach (1985). Here, the 
probability of occurence of R in £2 (i.e. in the image) is deduced from 
the comparison between the appearance of R in the image and its 
accidental appearance in (i.e. in the prior statistical model of the 
image), whilst Lowe defines it statistically as the frequency of 
occurence of the relationship R among a set of typical images. Our 
approach has the advantage not needing to refer to any specific set of 
typical images.

A model of the distribution of the straight line segments into the 
image has been used for determining A, p , p  ̂ and n^/n^ in the line 
classification stage (see chapter 5).

Adaptation of the LR test to the complexity of the image

The distribution of V , i.e. p , may often be approximated by a 
uniform distribution around zero, the value of which is represented by 
x. The likelihood ratio test is then

p(V|H) > r -P-ffi- = A (3.3.4)
p(H)

where A is related to the risk of rejecting H when H is true, called a 
type I error.

If A2 is very small compared with A , p(H)/p(H) is very small and 
the test is not selective, conversely if A is small compared with Â , 
then the test is very selective. This means that if the segmentation 
noise is low, i.e. the relationship R is generally fulfilled (e.g. most 
of the straight lines in the image are parallel in the 3D world), the 
errors are mainly errors of measurement (which can be dealt with by the
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Kalman filter) and the test may be tolerent, i.e. A is small. 
Conversely if the noise is high (e.g. the lines searched for are 
embedded in numerous other lines) it is necessary to be very cautious 
about the line selection, i.e. A is large.

It is shown in appendix 3 that the LR test is more indulgent than the 
MD test when the uncertainty of the feature is low and conversely when 
it is high. The LR test appears to be an intermediate between the 
neighbourhood test and the MD test. The LR test takes into account 
uncertainty of measurement but also the risks of segmentation error due 
to accidental configurations, i.e. the noise, by contrast with the MD 
test. However it requires the modeling of the distribution of V|H and 
the estimation of p(H)/p(H) (which is not always straightforward!).

Scoring process

Two features and are supposed to be linked by the relationship 
3? if

R > 1.

The higher the value of R, the higher the confidence of the 
decision. The score associated with this decision is

p(H|V-W) R
R+l

Once all pairs of features have been classified with H and H, 
updating p(H) is possible, e.g. for scoring a class of lines associated 
with a vanishing point. From the model described previously, it is 
known that the set

V{N) = {V (F ,F ) = V ; (F ,F )e;V}.k i j k i j

has the density p(V) = pCHip^CV) + p(H)p2(V). p(H) and p(H) has been 
estimated previously, using a global assumption on the repartition of 
the noise. Now it is possible to refine these values by taking into 
account the actual distribution of V[N), where N is the neighbourhood
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previously described. Let {x} be the set of possible values for 
CardC^^ )/Card(^). Then,

p(œ) = p(nn2=(l-£c)nn),

where nn is the total number of directions in N and nn is the number
2

of these directions corresponding to noise. Using Bayes’theorem the 
density of probability p can be written

p(V V |œ)p(Æ)
p(œ| V ,— , V ) = ---- ---------------- . (3.3.5)

1 n ï \ j ,, \

Using the decomposition of p(V. |œ) over p(H), i.e. x, and p(H), i.e. 
1-x, then

piVJa:) = pCV^H) ((0 -1 )x + 1)

where = p(V^ |H)/p(Vi |H) is the odds of V̂ . The events V being
independent, p(V ,-— ,V |a:) is the product of the p(V |¿c). The I n  1
maximization of (3.3.5) is equivalent to the maximization of

G(a;) = n( (0 -1 )x + l)p(<c) (3.3.6)

The probability p(ai) is maximum for x q = p(H), the prior probability of 
H, and decreases as x goes away from x . Thus, the maximum of G, x , is0 m
reached around x q and may be found by a simple process such as the 
parabolic approximation (Press, 1988).

Returning to the definition of p(H), p(H|1/ =V ,..,V =V ) = x1 1  n n m
represents the expected percentage of pairs of features linked by the 
relationship K, knowing V ,— ,V . In the case of the line1 n
classification the score of a class represents the expected percentage 
of lines in the image which are effectively parallel in the scene to 
the direction associated with the class.
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Conclusion

A relationship between two features is hypothesized if the decision 
variable associated with the relationship succeeds the LR test. The 
quality of the test depends on the accuracy of the modelling of the 
feature distribution. It has been compared to the neighbourhood test 
and to the test based on the Mahalanobis distance. Its advantage over 
the former is to take into account explicitly the uncertainty of the 
measurement. Its advantage over both is also to take into account the 
risk of mis-classification. Moreover, the approach enables a natural 
scoring of the process.

3. 2. 4 Application to map construction

Up to now the parameters of the 3D structures have been expressed 
relative to the camera coordinate system. The best pair or triplet of 
perpendicular directions is now chosen to be the new coordinate system, 
the origin of the system being unchanged. The transformation for 
passing from the old coordinate system to the new one is a rotation 
around the origin.

Let VP^ and VP^ be two viewpoints of the scene ; upside down 
movement of the camera is discarded so that it is possible to have a 
point to point correspondence between the vanishing points of both 
viewpoints. The new 3D coordinate systems associated with VP and VP^ 
are therefore parallel.

Matching of a similar rectangular structure in both viewpoints, e.g. 
identical orientation, same ratio width/length and same range of size, 
allows the determination of the relative scale of those structures and 
thereby of the translation of the camera between the viewpoints. All 
the structures may now be represented in a common coordinate system and 
matching be propagated to other structures.

The result of this process is a number of structures represented in
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a unique coordinate system parallel to the principal directions and 
with origin, say the optic centre of the first position of the camera. 
Although the general scale of the map is not known, the elements of the 
map are now consistently scaled. The scale of the representation can be 
bounded if the focal distance and the depth of field is known. Scale 
indetermination is broken once the scale or the depth of one 
rectangular structure is known.

The model of the scene obtained may be identified to a CAD model. To 
illustrate this point, it is converted into an object of ROBCAD 
(ROBCAD is the CAD software used by EDF for robotics simulation). The 
feasibility of matching such a model with PDMS database is discussed.

The 3D maps constructed from a range of viewpoints using monocular 
vision give a description of the scene in terms of high level symbolic 
primitives such as rectangles or vertices, but it is far from being 
complete, its reliability may be low and the scale remains unknown. 
However, it illustrates the level of interpretation achieved by the 
construction of 3D structures and local configurations and demonstrates 
the possibility of matching with a CAD database which takes advantage 
of the fact that only principal structures have been extracted.

The 3D representation of the 3D structures eases the change of 
coordinate systems and matching process, as it is a simple linear 
transformation, and the intrinsic parameters of the structures are 
directly comparable, e.g. orientation or ratio length/width.

3.2.5 Conclusion

The method briefly described in the previous sections is detailed in 
the following chapters.

High level structures represented in the 3D space have been 
constructed by first interpreting the perspective of the image, then by
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grouping the connected features. Relationships such as parallelism, 
perpendicularity and connectivity, are tested by a likelihood ratio
test, to be used in a Kalman filter in order to determine higher level
features. The Kalman filter maintains the uncertainty of the new 
feature while the likelihood ratios provide a score reflecting its 
reliability.

One of the main contributions of this work is concerned with the
statistical approach which is used throughout the process, avoiding as 
much as possible arbitrary choices. This approach has led to the 
definition of a new accumulator space for the detection of the
vanishing points and to a consistent methodology for testing and 
scoring a relationship between two features.

The high level of the interpretation reached is demonstrated by the 
construction of 3D maps using a number of viewpoints, without reference 
to their relative positions.
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CHAPTER 4 

PREPROCESSING

4.1 Overview of the feature extraction

The objects in the scene are represented by variations of grey level 
in the image. However, a uniform part of the object generally does not 
correspond to a uniform area in the image because of variations of 
lighting in the scene. However the boundaries of an object are very 
likely to be represented by sudden variations of grey level because of 
change of colour between the object and the background or because of 
the shadows due to the geometry of the boundaries. Therefore, the edges 
appear to be very useful features for scene understanding. Various edge 
detectors are described in section 4.2. They are first studied from a 
theoretical point of view and then are tested on simulated and real 
scene images. Then, an improved version of the Shen detector (1986) is 
proposed.

Edges are still low level information. The shapes of man-made 
objects are more efficiently described in term of straight line 
segments or circular arcs, which lead to higher symbolic descriptors, 
such as parallelepipeds or cylinders. Such shapes are very numerous in 
the scene studied. Thus, the edges are first approximated by straight 
line segments, then by elliptical arcs assumed to be the projection of 
circular arcs in the scene (section 4.3).

Unfortunately edge detection is sensitive to noise. As a result real 
edges are noisy and many false edges (i.e. corresponding to noise) are 
detected. The polygonal approximation should be insensitive to the 
noisy aspect of straight line edges, which is achieved by choosing 
appropriate parameters. However this results in uncertainty of the 
endpoints. The response of the edge detector and line finder is a main 
issue for the evaluation of the reliability of the result. The response 
to noise of various edge detectors and the Berthod line finder is
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studied in sections 4.2 and 4.3. Then the uncertainty of the endpoints 
is modelled in subsection 4.4.1.

Another source of error, completely different in nature, is due to 
the superimposition of the 2D projection of the segments of the scene. 
The effect of this superimposition is unpredictable and is a major 
difficulty for interpreting the scene. Segments may be adjacent in the 
image without corresponding to adjacent segments in the scene. This 
effect is considered as a type of noise, called the segmentation noise. 
It may be taken into account in the interpretation process by 
considering a prior distribution of the straight line segments in the 
image. This distribution is meant to describe the accidental occurence 
of various relationships in the image, due to the loss of one 
dimension. A particular prior statistical model of the feature 
parameters is described in subsection 4.4.2. This model will be used as 
a reference in the following chapters.

The interpretation of angles in the image, particularly the angles 
assumed to be the projection of right angles in the scene, requires the 
knowledge of the intrinsic calibration parameters. The determination of 
these parameters is the subject of section 4.5.

4.2 Edge d e t e c t i o n

The boundaries of the objects in the scene are represented by 
discontinuities in intensity in the image. The edge detection should 
detect these discontinuities, which are localized at maxima of the 
gradient of the image. Differentiation emphasizes noise, and numerous 
false maxima may appear in the image gradient. Low-pass filtering is 
required to decrease their number.

Two main approaches are classically opposed in edge detection : 
either maxima of the modulus of the gradient are searched for in the 
direction of the gradient, or the zero-crossings of the Laplacian are 
detected. The zero-crossings of the Laplacian include not only maxima 
of the gradient but also saddle points and plateaux of the gradient; 
however, they allow sub-pixel accuracy. Many researchers (Canny, 1986 ;
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Deriche, 1987 ; Shen, 1986 ; de Micheli et al, 1989) have preferred the 
method of the maxima of the gradient because there are less extraneous 
edges. This approach has been chosen here as it was not intended to 
obtain sub-pixel located edges, at least in the first place.

Therefore, the problem is to find the best antisymmetric filter for 
detecting the edges. First the shape, then the parameter of the filter 
have to be found. According to de Micheli et al (1989), they are not 
essential to the goodness of the result for indoor scenes, because of 
the good signal to noise ratio of such images, even with an average 
camera. The images studied here include many shadow areas, where the 
signal to noise ratio is very low, so that the search for the best edge 
detector is critical to the quality of the interpretation. It will be 
shown that it is indeed difficult to conclude on the optimal shape of 
an edge detector on images from real scenes, but that it is possible to 
appreciate the differences between the shapes of various filters, and 
still more between various parameters of the same filter, by using a 
theoretical approach illustrated by the response of the filters on 
synthesized images. Three different shapes are compared in the 
following, the Gaussian shape, Deriche’s filter (1987) and the 
exponential shape (Shen, 1986). Then, an improved version of the Shen 
filter is proposed, having the additional important property of 
isotropy. For comparing these edge detectors, Canny’s schema is first 
used, then extended by using three additional criteria describing the 
round-up effect, the sensitivity to thresholding and the sensitivity to 
multiple edges.

Canny (1986) proposed a convolution by an antisymmetric function 
followed by the detection of the maxima, called non-maxima suppression. 
Since u*g’ = (u*g)’ , the convolution by an antisymmetric filter f is 
equivalent to applying a smoothing filter g such that g’=f, and 
computing the gradient.For choosing the appropriate filter the response 
of the antisymmetric filters with a finite support to a noisy step is 
studied. A real edge and a simulated noisy step are displayed in figure 
4.2.1. The function optimizing the following product is looked for

P = Z r,
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where £ is the signal to noise ratio and T is the localization of the
edge. In one dimension the larger the filter, the better the signal to
noise ratio £ and the worse the localization. The optimization of £T
leads to a function f defined by a difference of boxes defined by
Herskovitz and Binford (1980). The definition of £ depends only on the
signal and the noise occurring at the very location of the perfect step
and not of the behaviour of the signal around this point. Actually, the
set of functions defined by a difference of boxes produces a multiple
response responsible for another type of noise, the parasite edge,
which is not taken into account by £T but which is taken into account
by the uniqueness criterion, defined as the inverse of the density of
maxima of a Gaussian noise filtered by f. Canny defines the optimal
filter with a finite support W, as the function optimizing P under the
constraint kW = 1/u .'o

The optimal filter proposed by Canny has the form

In order to qualify the uniqueness of the filter, Canny introduces 
the ratio n, defined as

where S is the support of f. The ratio a is meant to relate the rate of 
false maxima at the step location and the rate of false maxima far from 
this step. This ratio is equal to 1 when the two events are equally 
likely. Canny tried to choose n as close as possible to 1. In fact, for 
the optimal filter n. = 0.57 (Canny, 1986) (here, the probability of 
detecting false maxima is higher at the step location than outside).

Shen (1986), then Deriche (1987) have extended Canny’s approach to 
infinite response filters, by using a recursive implementation of the 
filter. They conclude on filters of different shapes. In the following, 
the Canny, Deriche and Shen filters are first compared with respect to

"f(x) = (a sin(ax) + a cos(ax)) exp(wx) + 1 2
(a sin(ax) + a cos(ax)) exp(-wx) + c".3 4

n If’(0)| (4.2.2)
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3 criteria, Z, <r = 1/r and p, where p is the density of false maxima 
at the step location, p instead of n. is used for the uniqueness 
criterion, because of its clear geometric interpretation. Only 2D case 
is studied. In 2D case, pQ is given in appendix 7 :

where R(£) is the correlation function of the convolution product of 
the noise by the filter, and p is given by eq.A7.13 :

where £ = n Z. Therefore, the higher n., the better the 
result. There is no reason for limiting the value of n to 1. Then, it 
is shown that these criteria are insufficient to characterize an edge 
detector, and additional criteria will be used : the round-up effect 
and the sensitivity to multiple edges and to thresholding.

Only the 2D case is considered in the comparison. First, let us 
shortly explain why the 2D case is really different from the ID case. 
For simplicity, the filter is supposed with a separable kernel (defined 
latter). The image is first filtered in one direction by a symmetric 
filter (i.e. smoothing filter), then filtered in the orthogonal 
direction by an antisymmetric filter, which provides with the value of 
the gradient in this latter direction. This opportunity of filtering 
along the step, allows the noise but not the step to be smoothed. 
Actually the central limit theorem shows that if the support of this 
smoothing filter, assumed positive and symmetric, is included in the 
interval [-n, n], then when n tends towards infinity, Z tends towards 
infinity and p tends towards pQ which tends towards 0. As it will be 
shown later on, the effect of this filter compensates the effect of the 
antisymmetric filter on the error of location cr̂ . These remarks suggest 
that, using a single step model, the larger the support of the filter, 
the better the results for Z, p and two effects on which compensate 
each other (in fact, <r decreases for the IEF and is constant for the 
Gaussian and Deriche filters). This behaviour is different from the ID

(4.2. 1)

p = PQ iV2n | CI (erf(0 - 0.5) + exp(--|-)) (4.2.3)
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case where the better E, the worse the localization. This shows the 
appeal of Shen’s and Deriche’s extension to infinite impulse response 
filters. The limitations of the size of the support are due to the 
finite size of the image, the presence of a number of edges and the 
fact that edges are not always straight, e.g. the presence of corners. 
Canny’s criteria are therefore incomplete for describing an edge 
detector. De Micheli et al (1989) have studied in detail the effect of 
the Gaussian filter on various types of corners or junctions. Here, for 
shortness, the study is limited to rectangular corners. The response of 
the filters is studied on crenellated and stair steps (figure 4.2.2). 
Then the effect of the thresholding is discussed.

Canny proposed to approximate his optimal filter with support 
W maximizing the uniqueness criterion n by the derivative of a Gaussian 
function :

f(x) = - — —--- exp(- — -— ). (4.2.4)
V2n a-3 2<r2f f

where cr̂ depends on W.

For the extension to the 2D case, one should consider that the 
convolution by f(x) is equivalent to a convolution by g(x) followed by
the calculation of the gradient. The 2D form of a filter is obtained by
considering the smoothing filter G(r,0) = g(r), where g’(r)=f(r) and 
(r,0) are the polar coordinates. First, the image is convolved by G, 
then the derivatives in both directions x and y enables the modulus of 
the gradient to be computed. If the kernel is separable in x and y 
where (x,y) are the Euclidean coordinates, i.e. G(r,0) = G (x)G (y),x y
then the gradient in y direction of the image filtered is given by the
convolution of the image by f (x,y) = G (x)*G’(y), which isy x y
computationally much more efficient. The advantage of the Gaussian 
filter is to be separable (Canny’s 2D optimal filter is not separable). 
In the following, only the 2D case will be considered.

Remarque : For extending their filter to the 2D case, Deriche and Shen 
directly used the convolution by g(x)*f(y), which in general does not
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correspond to an isotropic smoothing filter (see later).

REAL EDGE SIMULATED EDGE

Figure 4.2.1 : A real step and a simulated noisy step

Figure 4.2.2 : A crenellated edge and stair steps

The variance of the noise after filtering is equal to R(0) (R(£) is
the correlation function of the filtered noise and is given in appendix 
7 by eq.A7.8), then 2 is deduced

2
O'

R (0) = -— , 2 = 2o- 2 (4.2.5)o 4 f 08710-f

where cr is the standard deviation of the initial noise and 2 is then 0
initial signal to noise ratio.

The uncertainty cr of the edge location is equal to the inverse of 
the localization criterion (Canny, 1983), r = AQ|f’ (0)|/V-R"(0)' (see in 
appendix 7, A7.14), where Aq is the initial magnitude of the step. Let 
o- be the standard deviation of the initial noise, cr is equal to

O't (4.2.6)
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The density p of parasite maxima around the step is given in 
appendix 7 by A7. 13. It decreases as £ increases, i.e. as cr̂ increases. 
It is propotional to po which is equal to

1
2n crf

(4.2.7)

However, the previous analysis considers a perfect infinite length 
step. The response is in fact different near the corners. At a 
rectangular corner, say at (0,0), the response to a step with a 
magnitude equal to Aq is

A ----------------------------------------- -
G(x,y) = -- ---  / F2(x/cr )exp(-y2/cr2) + F2(y/cr )exp(-x2/cr2)

V2n <r /  f f f ff

where F(x) = 0.5 + erf(x).
If x = y = 0.5 o' then G = 0.87 A, G is the maximum gradient

f max max , ,, ,along the diagonal,

if x = 1.3 cr and y = 0 then G = 0. 95 A. f

The Gaussian edge detector rounds off the corners and decreases their 
contrast as <r increases. In the following, the value of x when y = 0, 
such that G/A = 0.95 is considered as a longitudinal error e. The 
round-up effect is measured by x = y = p, corresponding to the maximum 
of the gradient along the diagonal.

n
A mulpiple edge is defined by A £ e h ,  where h is theo i = - n i i i

heaviside function located at id and e is equal to ±1, depending on 
the sense of the step, d is the distance between two consecutive 
steps. The signal to noise ratio is

n/2
£ = £ (exp(-d ii-n/2 ^  2

id2 . (2i+l)d2,) - exp (---------- ) +
2 o'

n/2
£ e (exp(- i —n/2 i v

(2 i +1)d‘ 
2cr2

) - exp(-(i + 1 )d‘
O'
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If d>2<rf, then it may be approximated by

Z « (1 + (e +c ) exp (-— )) Z (4.2.8)d 1 - 1 2 crf

And the uncertainty of the edge point becomes

________________V R" (oT_________________________
°*td A |f’ (0) + (e +e )f’ (d) + .+ (e +e )f’ (nd) |0 1 - 1  n -n

(4.2.9)

where f’(d) = f’(0)(1 ---- ) exp(---- ) ; f’(pd) tends towards 0 with
cr crf f

1/p. It appears that the response of the edge detector depends very
much on (e +e ). In the case of the Gaussian filter if (c +e ) = -2 l - i  i - i
(i.e. crenellated edge) then the signal to noise ratio is worse than 
for the single step model but the localization of the edge is better, 
and conversely with (e^e )̂ = 2 (i.e. stair steps). By similarity to 
Canny’s criterion Zr, the response to multiple edges for d>2crf may be 
qualified by the product

= Z. r. « (1 ± 2/+°°f (x)dx//+C°f (x)dx) (1 ± 2f ’ (d)/f ’ (0)) Sr (4.2.10)id id id d 0

In the case of the Gaussian filter and ds2crr
* 2 ,2 ,2 r j

P. « (l ± 2 exp(- —  )) (1 ± 2(1-—  ) exp(- —  )) 4 /=-<r Z2 (4.2. 11)Id « 2  2 „ 2  V o f O2cr cr 2crf t f

Actually, in the case of a crenellated edge, the signal to noise ratio 
is lower than in the single step model, but the localization is better, 
and conversely for stair steps. In the case of stair steps then P+d<PQ> 
but in the case of crenellated steps if d/cr >2, then P >P . Notice 
that to study the case cL/cr̂ <2 more terms should be taken in the product 
(if n=l, there is an inversion of the sign of the step magnitude for 
d/o' small, which is natural since then the crenellated edge may be 
seen as a perturbation at the location of an edge with a magnitude

Once the non-maxima suppression has been performed, many noisy edges

- v -
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remain in the image. Let A be the magnitude of the filtered edge, the 
thresholding is defined by

A £ tvOT) = T, (4.2. 12)

where t is the lowest signal to noise ratio accepted and depends on the
probability x that the grey level A in the filtered image may be
produced only by noise. Considering the number of points in an image,
it is necessary to give the probability x a very small value, such as
0.0001. The value of T is linked to x in the following way : since
A /R(0) is a distribution function of a k law with two degrees of
freedom, t is equal to V-2Ln x , which leads to the following value of
T for a normalized filter, i.e. such that A = A so that R(0) =o
o' /(2(r ),n £

V-2 Ln x o'
T =  --- o------- (4.2.13)2 O'f

The effect of the thresholding is to split some edges. For example, 
if an edge has a magnitude equal to Aq, corresponding to a magnitude 
equal to A after filtering (A = Aq if the filter is normalised), and if 
T = A then the average length of the missing parts is given by 
(A7.11)

l = V2 n o- (4. 2. 14)o f

Segments with a length less than are more likely to belong to edges
with an initial magnitude inferior to A . Besides, small segments are
associated with a high uncertainty on their slope and are of little use
for perspective interpretation. Therefore segments with a length
inferior to l are eliminated, o

Thus, in the 2D case of a perfect straight line step, because of the 
conjugate smoothing effects along and across the step, the localization 
is independent of the parameter cr̂, and the signal to noise ratio Z, 
the average length after thresholding and the density of maxima p 
are improved if o- is larger. Considering only Canny’s criteria leads
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to the choice of the largest cconsistent with the size of the image.
However, the round-up effect increases with o' , while its response tof
multiple edges decreases. Therefore, the optimal parameter is the 
largest one such that the round-up effect and the response to multiple 
edges with a minimal distance apart d, depending on the type of the 
images processed, remains acceptable.

Deriche (1987) extends Canny’s approach to infinite impulse response 
filters. Using the same criteria as Canny, the optimal solution is

f(x) = sin(wx) exp(-a|x|) (4.2.15)

When w is very small, the filter becomes f(x) = -cx exp(-«x|x|). This 
filter provides a much better value for ST but a slightly smaller value 
for n than the Gaussian filter in the ID case (r is defined in appendix 
7 and is related to p (A7.13)). However, Deriche shows that it is
possible to have an exponential filter for which both values (2X and n) 
are above the values corresponding to the Gaussian filter. For applying 
the filter to a 2D signal, a smoothing filter is used h(x) =
k(l+a|x|)exp(-ax), so that the y gradient is obtained by convolving the 
image by h(x) in the x direction and by f(y) in the y direction.

The same analysis as for the Gaussian filter gives the signal to
noise ratio and the transversal uncertainty for edges parallel to x
and y

Z = — -  Z c = 7f-/Z . (4.2.16)
/ 5 a  ° t 8 0

Actually Z depends on the orientation of the edge and decreases to vTO1 
SQ/a when the angle between the nearest axis, Ox or Oy, and the edge 
increases to n/A.

The density of false maxima p around the step (A7.13) is
substantially higher than in the case of the Gaussian filter for the
same Z/Z because of the value of p .o o

a VS 
^o 2tt (4.2. 17)
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The effect on corners depends on the orientation of the corner 
because this filter is not isotropic. For a corner, the edges of which 
are parallel to the x and y axes, the response is

G = A / K2 ( x ) K2(y) + K2(y) K2(x)1 2 1 2

where K^(x) = 1 - (2+a|x|)exp(-a|x|)/4 and 
K2(x ) = (l+a|x|)exp(-a|x|)

If x = y = p = 0.73/a then G = 0.8 A

if y = 0 and x = e. = 3.2/oc then G = 0.95 A

The response to multiple edges is given by

P = (1 ± 2(l+ad) exp(-ad))(l ± 2(l-ad) exp(-ad)) E2 (4.2.18) ±d 5a o

Actually, as for the Gaussian filter, the signal to noise ratio of the
Deriche filter is better but the localization is worse in the case of
stair steps than for the single step model ; conversely for the
crenellated edge. However, here P <P <P , whilst for the Gaussian and-d 0 +d
the Deriche filters P P <P2.-d +d o

The threshold T associated with t for a normalized filter is

T = \/-2Ln^r o' (4.2.19)o n

The average length of the segments (or missing parts) after 
thresholding at the step magnitude A is

i = —  (4.2.20)o a

Also referring to Canny’s criteria, Shen (1986, 1990) extends the
initial set of functions not only to infinite impulse response but also 
to discontinuous functions at the origin. The resulting optimal 
function is the derivative of an exponential
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f(x) = sign(x) C exp(-a|x|) and h(x) = k exp(-ax) (4.2.21)

The signal to noise ratio after filtering depends on the direction 
of the edge. Assuming the edge parallel to one of the axes, the signal 
to noise ratio is equal to

2 Z
Z = --- - (4.2.22)a

For an edge forming an angle 0 with the nearest axis, Ô 0̂ 7r/4, Z should
be replaced by Z/(cos 0+sin 0) . Therefore, the signal to noise ratio
varies between V2 Z /a and 2Z /a with respect to the orientation of theo o  ^
edge.

The discontinuity at the origin prevents the use of the Taylor 
Lagrange development. Two cases should be considered : whether the 
zero-crossing is at the step location yQ or it is delocalized. If 
yi’t yQ, then the Taylor-Lagrange development may be used again, but 
introduces a bias due to the fact that f(0+) * 0. Thus, three
populations of £ = y^y exist, one population at zero, and two
populations centred at ±E(£|£>0). The probability of £ to be zero is

Z
p(0) = 2 erf(— ) (4.2.23)

Ya

Thus, the smaller a, the higher the probability to detect the edge at 
the proper location. Assuming an edge parallel to one of the axes, the 
expected value and the variance of £ when £>0 are

E(£>0) = —  var(£ >0) = ---  (4.2.24)
“ a Z2o

Therefore, the smaller a, the larger E(£>0) and the larger 
E(£>0)/Vvar(£>0)’, which means that if £*0 and a small enough, then £ is 
very likely to be far from the edge and therefore corresponds to a 
noise maxima which is eliminated by thresholding. Thus, conversely to 
the Gaussian and Deriche filters which keep the localization constant, 
here the smaller a, the better the localization and the smaller the 
risk of multiple edges at the edge location. Moreover, the localization
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increases very rapidly with the initial signal to noise ratio, much 
quicker than for the other filters.

2If a is large, say a>SQ, then the probability of not detecting the edge 
at the proper location but at is no longer small. Since £ always
exists, when £*0, |£| is likely to be small, corresponding to a signal 
close to £, then the edge is wrongly detected at Therefore if a is 
large, the variance of the edge location is estimated by

erf = ( —  + ) (1 “2 erf ( — —  ))t „2 2 /—ia £ a vao

This gives <r̂ ~0.57/E^, when a=Z^. Therefore the localization is still 
good, but the risk of multiple edges at the edge location is high.

The density of noise maxima when a is small enough is nearly 
constant and equal to

Actually, the discontinuity at the origin is theoretical and in
practice pQ decreases slowly with a. However, for the parameter a in
the range [0.25, 0.5], the above value of u. has been checkedo
experimentally. This relatively small value of pQ is compensated by the 
value of equal to

so that if a is small enough, the density p of noisy maxima at the edge 
location is small (see figures 4.2.3 and 4.2.6).

The response to a rectangular corner with the edges parallel to the 
axes is

£ = £q / K^(x) K^(y) + K^(y) K^(x)

where K^ix) = 1 - exp(-a|x|)/2 and 
K2(x ) = exp(-a|x|)
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If x = y = p = 0 then G = 0. 5 A

if y = 0 and x = e = 2.3/a then G = 0.95 A

Thus, for such corners, there is no round-up effect with the Shen 
detector but only a loss of contrast.

The response to mutiple edges is

P, = (1 ± 2 exp(-ad) + 2 exp(-2ccd)± .n exp(-nad))2 —  E /cr (4.2.25)±d r a o t

If exp(-naci) is small then

p±d = (1 1
2 exp(-ad) p  2
l+exp(-ad) a E /<r o t (4.2.26)

The estimation of P+d is limited by the difficulties for estimating tr , 
however it can be seen that, in the stair case, it tends towards 
infinity when a tends towards zero. Actually, in this case both signal 
to noise ratio and localization are better than in the single step 
case. In the crenellated step case, when ad tends towards zero, then

p  jw
-d

2<xd2Z
O' (4.2.27)

As o- tends towards zero with 0.5-erf(E /Va), R tends towardst o -a
infinity when a tends towards zero. However it has been seen that a
cannot be too small. Moreover P = k(a)P , when k(a) tends towards-d 0
zero with a. Actually, in this latter case both signal to noise ratio 
and localization are worse than in the single case but still they are 
better when a is relatively small. The response of the exponential 
filter to multiple edges works conversely to the Gaussian or Deriche 
filter with respect to stair steps or crenellated steps. Actually, if a 
is small enough, then the location of the edges using the exponential 
filter is always good, only the signal to noise ratio of the 
crenellated edge tends towards zero (and thereby the density of false
maxima at the edge location increases). Notice that here P P is not

2 _d +d upper bounded by P , conversely to the Gaussian and Deriche’s filters.

The problem of Shen’s detector is its strong anisotropy. However,
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the fact that <r and the signal to noise ratio tends toward 0 with a, 
is mainly responsible for most other properties to improve when a 
decreases, which is very attractive. Therefore, an isotropic 
exponential filter has been searched for. It is given by the smoothing 
filter :

f(x,y) = K exp (-a v42+ y2) (4.2.28)

which leads to the gradient operators in the x and y directions

f’ (x,y) = - — C- X exp (-a Vx2+ y2)
/"i 2vx + y

f’(x,y) = - — —  exp (-a Vx2+ y2)
Æ Ï7

(4.2.29)

These 2D masks give excellent results, but they are not separable and 
hence are computationally very expensive ; moreover a small value of a 
substantially reduces the size of the image processed. Part of the 
appeal of the Shen detector is its recursive implementation, resulting 
in a fast algorithm, independent of the value of a. An approximation of 
f’ and f’ in the form of separable kernels which could use such an

x y
implementation is looked for.

f’ = g = c C’ exp (-a’ |x| - a"|y|) (4.2.30)
X X X

with e = 1 if x^O and -1 otherwise. The response of g along an edge
x X

with the direction 0 is given by

A = A / A2 + A2
0 x y

_____“ _______  )a’+ a"tan 0

______ “ _________)a’+ a"cotan 0

a" = a’ is the Shen detector

where A = A ( 1
X 0

and A = A ( 1y 0

If a" ^ 2a’, then A„ decreases from 1, when 0=0, to A , , when 0 =0 7T/4

tt/4, and then increases up to 1, when 0 = n/Z. If a">2a, three extrema
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appear in the range ]0, n/2[.

/ g
Now, if a" = 2a’, then / -=-A ^ ^ A . Thus, compared with thev 9 o 0 o ^

Shen detector, the anisotropy has been drastically reduced. The signal 
to noise ratio of the filtered image is

Z « Z (4.2.31)a o

It gives the same signal to noise ratio as f’ for ot’ = oc/V2. The
X

probability of locating the edge with an error equal to zero is

Z
p(0) = 2 erf(— —  ) (4.2.32)

V2oT

The response on a rectangular corner is

Z = Z /  K2(x ) K2(y) + K2(y) K2(x)0 1 2 1 2

where K^(x) = 1 - exp(-2a’|x|)/2 and 
K2(x ) = exp(-a’|x|)

If x = y = p = 0.088/a’ then Z = 0.61 Zo

if y = 0 and x = e = 1.15/a’ then Z = 0. 95 Zo

Thus, a slight round-up effect p is introduced but with a smaller 
longitudinal error e.

The threshold associated with the risk t for a normalised filter is

T = V-2Ln x —  o- (4.2.33)
V2 n

The average length of an edge segment when thresholding at A is

io
n

2V2uT
(4.2.34)

The value of is very low (see figure 4.2.3). This means that edges 
such that Z <E are very likely not to be detected at all or to have 
a very small length and thereby will be eliminated (in that case
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l , >1 , because small segments are associated with too large anmin 0
uncertainty to be taken into account in the interpretation process). As 
a result false edges are very unlikely. However, it also means that 
significant edges may be broken into small segments, which is 
unacceptable. Let T be the threshold applied to the filtered image, l 
the average length of the segments detected, and the average length 
of the gaps between the segments, from eq. A7.10 and St = 2/il+l), it 
may be shown that the average length i of the segments of an edge such 
that A>T is lower bounded

2
*1 > *0 (2 “ P'-IETOT1 - 11 t4-2-35)

For example if o' = 4, a’ = 0.2 and A = T+l, then l >20.6 (in the casen i
of a Gaussian filter with cr =2. then £ >20.4). Therefore, a small valuef l
of £q is compensated by a large signal to noise ratio. This also 
suggests that T may be smaller than with the Gaussian or Deriche 
filter, i.e. the risk of false edge detection x may be larger, as the 
noise is very likely to be eliminated by the further constraint l̂ lmin

Thus, the Shen edge detector has been improved by changing the ratio 
of the parameter of the smoothing filter to the parameter of the 
gradient filter. The filter is now isotropic and it keeps all the good 
properties of the Shen detector for edges parallel to the axes. The 
implementation is the same as the Shen detector, which means it is 
fast, independent of the value of a and it does not reduce the 
processed part of the image. This allows choice of a very small value 
for a, which gives altogether a very good signal to noise ratio, a very 
good location and a small density of parasite maxima p without 
substantially increasing the round-up effect or worsening the response 
to multiple edges (actually it improves the response to stair steps). 
Therefore, the value of a is only limited by the acceptable round-up 
effect and the size of the image (if a is too small, the response is 
not homogeneous over the image). Let us remember that the good 
properties of the isotropic exponential filter (IEF) only holds if a is 
small. For large a, it is worse than the other filters studied with 
respect to nearly all the criteria adopted. The value of a from which
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IEF is competitive is difficult to make explicit because of the 
difficulty arising from the discontinuity at zero. But such a 
difficulty is not a good reason for discarding it as an edge detector.

The Gaussian filter, Deriche filter and IEF have been compared in
figure 4.2.3 with respect to a number of parameters : the signal to
noise ratio E, the standard deviation of the error of localization cr ,
the density of maxima at the edge location p, the round-up effect at
rectangular corners p, the expected value of the missing part near a
corner estimated by e+^/2, and the average length after
thresholding at A, and the response to multiple steps (5 units apart)

2given by m  = P5P /P , for an initial signal to noise ratio equal to 1. 
For proper comparison, the signal to noise ratio is identical for all 
the filters.

E O't P P e+f /2 0 l0 m

Gaussian 2.0 4 0. 61 0. 009 1 7. 4 8. 9 0. 77
Deriche 0.85 4 0. 28 0.03 0.86 6.4 7. 4 0. 97
IEF 0.35 4 =0. 5 0. 01 0.25 4.2 1.9 0. 76

Gaussian 3.5 7 0.61 0.00001 1.75 12. 3 15. 6 0. 39
Deriche 0.5 7 0.28 0.0017 1.46 12. 7 12.6 0.74
IEF 0.2 7 =0.2 0.0005 0. 44 7 2. 5 0. 5

Figure 4.2.3 : Theoretical comparison of the Gaussian, Deriche and IEF
filters

The localization of the Deriche edge detector is better than the 
localization of the Canny edge detector, but the density of parasite 
maxima is worse for Deriche’s than for Canny’s detector. The other 
criteria have approximately the same magnitude, so it is difficult to 
conclude for anyone of these filters. The choice of the right parameter 
has been proved to be much more important than the choice of the filter 
and depends on the type of the image. Actually, the parameters cy=3.5 
for the Gaussian filter and cr =0.5 for the Deriche filter are notf
commonly used for an image 256x256,but have been tested for several 
reasons. Firstly for showing the variations of the filter behaviour
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with the parameter and secondly for completness of the comparison with 
the IEF filter. For such values, is very large which is a
disadvantage as it means that the expected length of a missing part of 
the segment is large too. To decrease the threshold is not necessarily 
the answer, as the number of noisy edges with a significant expected 
length may still be extracted. The IEF filter behaves differently than 
the other filters because the increase of the signal to noise ratio 
only produces a small degradation of the corners and of the response to 
multiple edges, moreover remains low. Conversely to the other
filters with the same signal to noise ratio, a=0.2 is meant to be a 
usual value.

Thus, the Gaussian and Deriche filters with usual parameters (e.g. <r^l 
or a=l) give good results for multiple edge detection and preserves 
corners but have poor Z and p in presence of noise ; whereas the IEF 
with a’=0.2 still gives reasonable results for multiple edges and 
corners and has good Z and p in presence of noise. This suggests that 
the IEF is particularly appropriate to noisy images. The recursive 
implementation of the Deriche filter and the IEF is an important 
advantage as the corresponding algorithm is fast and does not truncate 
the image (The IEF is faster than the Deriche filter).

The four filters, Gaussian with c = 3.5, Deriche with a = 0.5, IEF 
with a’ =0.2 and IEF using the 2D masks (eq.4.2.29) with a = 0. 3 (they 
all correspond to a signal to noise ratio equal to 7Zq), have been 
tested on a simulated step image. Two rectangles representing step 
edges in 8 directions have been superimposed with noise so that the 
initial signal to noise ratio is equal to 1, i.e. A = cr = 16, (figure0 n
4.2.4). All the filters have been normalized so that A = A , in ordero
to give comparable results. Figure 4.2.6 shows the response of the edge 
detectors and figure 4.2.7, the effect of a thresholding to 2-1. The 
recursive version of the IEF appears to be an excellent approximation 
of the 2D IEF. The texture of the noise is remarkably different using 
the Gaussian filter or the IEF, illustrating the different values of 
PQ, although the value of p are almost comparable. Considering that the 
localization is limited by the uncertainty of the edge location due to
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the digitization, the experimental results are consistent with the 
theory.

Another test image (figure 4.2.5) representing crenellated and stair 
steps distance d = 5 apart, have been used to test the response of the 
edge detectors to multiple edges. It may be noticed that the
localization is very good with the IEF, although the E of the
crenellated edge is low. As expected, the stair is completely
delocalized with the Gaussian and the Deriche filters but is well
detected with the IEF. The Shen detector with oc = 0. 3 and the IEF with
a’ = 0 . 2  (same signal to noise ratio) have been compared on the
image 4.2.4, the results are displayed in figure 4.2.8.

The three edge detectors, Gaussian 3.5, Deriche 0.5 and IEF 0.2, 
have been tested on an image of an indoor scene of a power plant
(figure 4.2.10). The thresholds have been computed, using the value of 
o' estimated as follows. The value of cr has been estimated on then n
image filtered (before the non maxima suppression has been performed) 
on large uniform areas, selected by hand. This process has been 
performed on three different images and on various parts of the same 
image. The uncertainty of the various areas has been shown to be fairly 
uniform, in the range [3.0,5.0] and the expected value of o' has beenn
fixed to 4.0. The results are displayed in figures 4.2.11 to 4.2.13. 
The results are roughly comparable ; however it may be noticed that the 
rectangular texture of the grid at the front is only detected by the 
IEF and that it is an important feature for determining the direction 
of the camera in the scene (i.e. the location of the vanishing points).

Figure 4.2.4 : First test image Figure 4.2.5 : Second test image 
(Grey levels : 0-3 : bleu; 4-7 : pink; 8-11 : red; 12-16 : violet;>16 
black).
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Figure 4.2.6 Comparison of edge detectors on the first test image

Figure 4.2.7 : Image displayed in figure 4.2.6, thresholded at E-l.

- page 104 -



Chapter 4

WÊÊÈÊÊÊÊÈi liiilliliiip
¡®smw--— rr >>r3\ rzjs'ir— .~~r T^r

"■w  08
Figure 4.2.8 : Comparison of edge detectors on the second test image 

(Grey levels identical to figure 4.2.6)

Figure 4.2.9 Comparison of the Shen detector 
(a’=0.2). (Grey levels identical

(a=0.3) and the 
to figure 4.2.6).

IEF
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Figure 4.2.12 : Deriche’s detector Figure 4.2.13 : IEF, a’ =0.3
a = 0.85
(Grey levels identical to figure 4.2.6)
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Canny’s approach has been used for comparing three different shapes 
of filter for edge detection. It has been shown that Canny’s criteria 
are not sufficient for describing an edge detector and that additional 
criteria were necessary, such as the round-up effect near a corner, the 
response to multiple edges and the sensitivity to thresholding. It has 
been shown that the choice of the parameter has more influence on the 
chosen criteria than the choice of the shape of the filter.

An improved version of the Shen detector, the IEF has been 
described. This edge detector has been proved to have important 
advantages when using a small value of the parameter a : the signal to 
noise is high while the uncertainty of the edges is very low and tends 
rapidly towards zero when the initial signal to noise ratio increases, 
even for multiple edges ; the density of noisy edges at the edge 
location is very low, it does not round-off the corners and it produces 
very few false edges because of the low value of An additional
advantage is its recursive implementation, which gives a fast algorithm 
which does not truncate the borders of the image. The Shen detector 
fulfilled all these properties for vertical and horizontal edges, but 
it is not isotropic, when the IEF is. The IEF has been shown very 
appropriate to noisy images.

Remark : all computations have been performed in floating point and the 
non-maxima suppression has been performed using an interpolation 
between the eight neighbours.

4.3 Line and ellipse finder

The scenes studied are mostly composed of simple geometric shapes, 
such as rectangles (e.g. the walls) and cylinders (e.g. the tanks). The 
representation of the scene using such shapes is very efficient, and it 
is also the representation used for CAD databases. It is necessary to 
extract their projections in the image. This includes the extraction of 
straight line segments and elliptical arcs.

A very popular method is the recursive segmentation of the connected 
edges. A chord links the endpoints of an edge which is then split at
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the point of maximum deviation, when above a threshold. The 
difficulties of this method is the instability to noise as a small 
perturbation may produce a global change, and the fact that the 
detected segments are not the best approximation in the least mean 
square (LMS) sense. Once the segmentation is stable, it is possible to 
compute the LMS approximation, but the determination of the new 
endpoints is still a problem. Either the connectivity may be 
jeopardized, or the endpoints may be far from the actual ones, e.g. in 
the case of adjacent segments with an acute angle.

A similar method is used by Lowe (1985), but there is no 
thresholding on the deviation. An edge is split into two edges when the 
significance of the edges increases. Rosin and West have extended the 
method to circular arcs (1988), which then are used to find elliptical 
arcs (1990). A sequence of straight line segments is hypothesized to be 
an arc. A significance measure is associated with the arc, if it is 
lower than the significance of the corresponding straight lines then 
the hypothesis fails. The result of the algorithm is the set of 
straight line segments and selected arcs. These methods are invariant 
to scale and require no arbitrary thresholds.

Another method inspired by Sklansky and Gonzalez’s work (Sklansky, 
1980) has been developed by Berthod (Ayache, 1988). Let {M , -— ,M > be0 n
the sequence of points to approximate. The sectors with summit Mq,
axis M M and angle 0 are considered. The intersection of this set of o i & i
sectors is a sector with an axis closer to MqM if the sequence
{M , -— , M > is closer to a straight line. If (M ,•— , M > is another

O p  p+l  q

straight line, the intersection of the sectors C ,-.,C is empty. Let
i  q

D be the intersection of all C , with i^k and d its axis, and let k i k
(M M ) be the axis of the last cone C. such that C a  a C *0 ando. J J i j
C a  a  C =0. The first minimum d(M ,d ) of the distance from a point1 j+l k’ k ^
of the sorted set (M^,.,Mq) to d^ determines the splitting point, M̂ .
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Figure 4.3.1 : Principle of Berthod’s algorithm

Unfortunately, too little information is available on the 
implementation of Berthod’s algorithm to make a serious analysis (the 
algorithm is NOESIS’s version (1988) and the source code is not 
available). An experimental study has been done instead.

On the one hand, the choice of the parameter CQ=i0i has to be done 
in a way consistent with the error <r of the edge detector, in order 
not to produce numerous small segments which would be useless. The 
maximum deviation between the straight line detected and the edge is 
upper bounded by 2£ . The expected error is given by 4.2.6 and
4. 2. 4. Therefore should be much higher than o*t in order not to break 
straight line segments. On the other hand, it should not be too high 
such that it is not responsible for too large an error on the end 
points.

The main source of error is splitting errors, i.e. the line finder 
splits the curve at the wrong locations. For example, it may be due to 
a local perturbation or a rounded corner. Figure 4.3.2 shows how a 
small local perturbation may affect Berthod’s line finder. In that 
case, the noise cannot be considered as Gaussian noise with a zero mean 
on the corresponding part of the edge. In this type of configuration a 
systematic error on the endpoints occurs, which is bounded by 2^q.
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Initial line
Approximated line

Figure 4.3.2 Effect of a small perturbation on Berthod’s line finder

Therefore, if a straight line segment is an approximation of a 
segment within a straight line edge, e.g. an edge broken because of the 
thresholding on its magnitude, then the transversal uncertainty of the 
end points should be cr̂. On the contrary, if a straight line segment 
approximates the end part of the straight line edge, the transversal 
uncertainty may be as high as 2^q. This latter error is more likely 
with long segments, as long segments are likely to correspond to a high 
signal to noise ratio and thereby have their connectivity preserved. As 
long segments play an important part in the following chapter, it is 
important to keep relatively small. Thus, a trade-off must be found 
between the break-up effect produced by too small a value of C,̂ and 
splitting errors bounded by £ .

Let us remark that a LMS approximation of the segment after the 
splitting stage would have substantially reduced the effect of the 
splitting error. The endpoints are then defined as being the orthogonal 
projection of the real endpoints onto the straight line segment. But at 
the time this work began, the loss of the connectivity due to this 
latter stage seemed a serious drawback and, moreover, this option was 
not available in our current implementation. Now, as the connectivity 
of the segments has not been directly used (but only through a 
proximity criterion), the LMS approximation seems to be a necessary 
improvement for the future.

Berthod’s algorithm with the parameter £ =1.5 has been tested on the 
test picture used in section 4.2, using the three edge detectors 
studied in this previous section.
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Figure 4.3.3 : Berthod’s line finder results on a test image

Berthod’s and Lowe’s algorithms are compared in figure 4.3.4 and 
4.3.5 on a real image.

Figure 4.3.4 : Berthod’s line finder Figure 4.3.5 : Lowe’s line finder

For practical reasons, Berthod’s algorithm has been selected for the 
detection of lines in most of the images processed here. A more serious 
analysis of the existing line finders and the research of the 
appropriate criteria is necessary for improving this stage of the 
processing. However, the existing detectors could be improved by using 
a LMS approximation of the detected segments.

The smallest straight line segments extracted by the line finder are 
discarded, because they are too numerous and the direction is 
unreliable. Let i be the minimal length allowed, l is lower orrain min
equal to l , where l is defined in section 4.2. o o

In Rosin and West (1988) the algorithm has been used when
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significant elliptical arcs were expected in the image. Large ellipses 
have been missed because of various distortions (camera distortion, 
aggravated by noise). Others have been missed because of the poor 
connectivity of the edge detected. Current work is being undertaken to 
estimate the uncertainty of the approximation and to group unconnected 
edges for hypothesizing an elliptical arc (Ellis et al, 1991).

4.4 Statistical model

4.4.1 Modelling of the measurement error

The first source of uncertainty is the difference between the real 
scene and the symbolic representation describing this scene, e. g. CAD 
representations.

The second source of uncertainty comes from the image acquisition, 
digitization and preprocessing process. The acquisition of the image is 
modelled by a pin-hole perspective model. This does not take into 
account the possible distortions of the image caused by the lens. The 
Gaussian filter has an accuracy limited by the value of the parameter 
crf of the Gaussian filter (section 4.2). The line finder may introduce 
non-negligible errors for the slope of a segment.

To clarify, let us assume that the camera calibration parameters are 
known (though unnecessary for the vanishing point detection) and the 
ideal representation of the scene is also known, e. g. in the form of a 
CAD description. The error of an endpoint location is defined as the 
difference between the observed end point location, and the projection 
of the corresponding ideal end point in the scene using a pin-hole 
model (for which the parameters are known).

The sources of the uncertainty are various and difficult to quantify 
at times. However it has been seen how to estimate the uncertainty 
caused by the edge detector and the line finder.

The most obvious source of uncertainty is due to digitization. Let 
yQ be the location of the digitized edge on an axis perpendicular to
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the edge. The original edge is equally likely on [yQ-a,yo+a], with 
a=0.5 if the edge is vertical or horizontal and a=0.7 if the edge is 
along a diagonal. As the directions are assumed equally likely the 
expected value of the error of an edge location due to digitization is 
approximately 0.35.

The errors due to the edge detector have various causes. The first 
cause is the lack of localization of the edge, which is measured by 
Canny’s criterion T. The second one is the bad connectivity of the 
edges due to the threshold on the maximum of the gradient. As a result 
part of the edge is missing. This is integrated in the modelling in the 
form of the uncertainty of the endpoint in the direction of the 
segment. The third cause is the bad response to high curvature 
features, such as corners. The last cause is the presence of parasite 
edges.

The errors due to the line finder is break-up, which produces small 
segments which are then eliminated, and splitting errors, e.g. at 
corners. As the small segments are eliminated, parts of the edge are 
missing and this is represented by an uncertainty of the endpoint in 
the direction of the straight line segment. Splitting errors are 
responsible for an error in the transverse direction of the segment.

Eventually, the endpoint uncertainty is modelled by a Gaussian law 
with its main axes parallel and perpendicular to the straight line 
segment. The transverse uncertainty is crQ and the longitudinal 
uncertainty is (see figure 4.4.1.1).

Figure 4.4.1.1 : Model of the endpoint uncertainty
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The value of ctq is lower bounded by the digitization error. It 
depends on ô , p, ^  and errors more difficult to quantify such as the 
lens distortion. Moreover it should take into account the error due 
to the difference between the geometric model and the scene.

The definition of the transverse component is trivial, but the
definition of the longitudinal component cr is not. First, the use of1
this uncertainty has to be defined. As reported several times in the 
previous sections and chapters, a major difficulty is to extract
information from the connectivity of the segments. Through edge
detection, thresholding and the line finder, the connectivity of the 
segments may have been lost. This is not crucial for the interpretation 
of the perspective, but it is essential to the construction of higher 
level primitives such as rectangles. Therefore cr should represent the 
standard deviation of the missing parts, i.e. gaps due to thresholding 
plus eliminated small segments, in order to guide the construction
algorithm of the 3D primitives. This error should not take into account 
the relevance of the connectivity (for example the fact that it
corresponds to a 3D connectivity), as this will be done by the 
likelihood test, but only the fact that two segments might be connected 
in the image. Several configurations may occur. Let us consider three 
typical cases. The missing part is a gap due to thresholding and is 
less then l . Or it is a small segment surrounded by two gaps, the 
corresponding missing part of which is less than 2i +1 long. Or it0 min
is near a corner, and the missing part may be the truncated corner plus 
a gap due to thresholding, and the missing part is less than e + l , 
where -e is the round-up effect defined in section 4.2. The uncertainty 
cr is empirically estimated to cr = k i + l /2 + e, where k is the1 1 min 0
probability of an edge having its length equal to l , e.g. k=0.5 ifmin

The error on each end point location may be represented by an 
uncertainty ellipse defined by the covariance matrix of the endpoint. 
Let the matrix V be
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' V V
— X x y

V V
L x y y J

A point M of the uncertainty ellipse is defined by

Ait 1 V"1 s 1

Let u be the unit vector of the line L corresponding to the segment
AB, and v-* be the perpendicular unit vector. The principal axes of the
uncertainty ellipse are in the direction u"* and v*, with the major and
minor axes Zcr and 2<x .l o

V(w~*) is the variance of the error in the direction perpendicular to 
w”* (figure 4.4.2) and is equal to

V(w^) = (vT* 1 V'1 ¡7*) det(V) (4.4.1)

Figure 4.4.1.2 : Geometric interpretation of V(w )

4.4.2 Modelling of the segmentation error

The aim of this section is to model the noise created by the 
proximity of unrelated lines to the features of interest. For example, 
let the straight line segment S be the feature of interest, if the 
projections of the lines connected to S in the 3D space are looked for, 
all the other straight line segments connected to S in the image appear 
to be a type of noise, called segmentation noise. Another example is 
the search for vanishing points using a whole line accumulation 
strategy ; a line passing near a vanishing point P far from its own
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vanishing point is considered as a segmentation noise for P. This noise
is called segmentation noise, because the distinction between parasite
features (i.e. features located near the feature of interest by
accident) from the good ones is actually a segmentation problem. Since
no information is available to distinguish such features in difficult
cases, e. g. the parasite line passes very near P, errors necessarily
occur whatever the segmentation method. However, it is possible to take
them into account during the process, by modelling them. For example, a
complex scene is very likely to bring a lot of segmentation noise. A
complex scene results in numerous segments in the image, so that the
model should take into account the number of segments. Segments may be
expected over all the image area or rather in the upper part of the
image (i.e. camera looking at the floor). Thus, it is possible to
refine the model with respect to the application. The model chosen here
pretends to be general. However the statistical parameters used in

2chapter 5, the average length i and the expected value of l/l , 
depend on the type of images processed.

In the following chapters, the image is approximated by a circular 
disk in order to simplify the model and to make as much use as possible 
of the isotropy property. The lines are assumed to be distributed at 
random within the image, i.e. the centroid of the segments AB is
uniformly distributed on the image. The length of these segments obeys 
a probability law of density f(£), which is assumed to be uncorrelated
with the centroid location. Figure 4.4.2. 1 shows the distribution of
the length of the straight line segments. This density may be
approximated by the exponential law with the parameter 1 / ,

denoted by f(fQ). Let us note that, for numerous segments, the location
of the endpoints depends on the threshold chosen in the edge detection 
stage. Thus, the exponential model is justified by the fact that the 
density of the end-points given in appendix 7 is roughly constant; 
therefore it may be approximated by a Poisson model.

- page 116 -



Chapter 4

Figure 4.4.2.1 : Density function of the lengths of the segments (£>15)

From an image point of view, these assumptions are not exact because
of the segments crossing the boundaries of the image. Therefore, for
simplicity, the segments are not constrained to lie entirely within the
image, except their centroid, so that the assumptions are consistent.
It will be seen that E(cr ) depends on E(l/£ ). A statistical study of 

21 /£ on 12 real images demonstrates the validity of the assumption of 
the independence of 1/i with the centroid location (figure 4.4.2.2). 
Besides, in the images studied, the directions are not equiprobable as 
the vertical lines are always very numerous. In this case, the problem 
is solved by considering two classes of lines, the vertical lines with 
their centroid locations and lengths defined as above,and the other 
lines distributed as described in the previous paragraph.

l/X?2

0.0025

0.002 * • •
0 . 0 0 1 5

0 .0 0 1  !

0 . 0 0 0 5

16 G4r 128 d
2Figure 4.4.2.2 : Average value of l/l in function of d, where d is 

the distance from the origine to the line.
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Thus a model of the a priori distribution of the location of the line 
segments in the image and of a statistical model of their length is 
provided to the process. This model is equivalent to a statistical 
model of the straight line segment parameters. It allows the 
segmentation error to be taken into account throughout the process.

4.5 Calibration parameters

The interpretation of the angles between straight line segments 
requires the knowledge of the intrinsic parameters of the camera; that 
is to say, the projection C of the optic centre onto the image, the 
distance f between the optic plane and the image plane, and the ratio p 
of the scales along the y and x axes.

Various methods have been developed for calibration (Tsai, 1986; 
Faugeras, 1986) and have not been investigated thoroughly here, because 
the method based on the vanishing points, in a similar way to Wei 
(1988), allowed the method described in chapter 5 to be used.

First, the scale ratio p has been estimated by using the image of a 
circle parallel to the image plane. The experiment has been done 
several times without dispersion of the results. The variance of p has

n
been estimated experimentally by the unbiased statistics (Z s^/in-l),

2where s = (p -p) and p is the average value of p .i i i

Once this ratio known, the image of the cube displayed in figure
4.5.1 has been taken. The cube is 1 meter wide, to be consistent with 
the focusing distance used for the indoor scene images studied. 
Then, the lines drawn on the cube have been detected and approximated 
as described in the previous subsections. Eventually, the vanishing 
points have been extracted with the algorithm described in chapter 5.
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Figure 4.5.1 : Image of the test cube

The vanishing point coordinates are scaled in x and y according to
the scale ratio p. The projection C of the optic centre is the
orthocentre of the triangle (V , V , V ) and the focal distance is the
square root of the scalar product V d.CV^, with i*j (see appendix 1).i j
As C is defined as the orthocentre of a triangle, this scalar product 
is constant. The equations are given in appendix 1.

The uncertainty associated with these parameters may be computed by
using the covariance matrices associated with V . In order to have thei
best accuracy, the cube should point a corner towards the camera in 
order to obtain a nearly equilateral triangle of the vanishing points. 
If this is not the case, the solution would have a high uncertainty. 
For example, if V = (r cos0 ,r sinG ) is such that r is very large3 3  3 3 3  3
compared with r_ and r , then C(x,y) is given by

C(x,y) =

r sin 03 3
tan(0 -0 ) 12 3
r cos 0 3 3
tan(0 -0 ) 12 3

(4.5.1)
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where 0 is the orientation of the line V V . Therefore, C is the12 1 2
intersection of line (V , V ) with the line passing through the origin 
with the direction 6^-n/Z. Actually, the cube is orthogonal, so if r̂  
is very large, (e12~03-* ~ 7r/2 and the direction 6^-n/Z is parallel to 
the line (V^.VJ and the distance of C from the origin is undetermined. 
Therefore, the problem is undetermined for r3 large.

The accuracy of C and f depends not only on the accuracy of the 
vanishing points but also on the quality of the camera. If some cameras 
guarantee C with a subpixel accuracy, for the ordinary cameras, C has a 
position which may vary substantially, depending on the focusing 
distance. This factor has to be taken into account in the modelling of 
the parameter uncertainty. Moreover, the main directions in the scene 
may not be perfectly perpendicular, which may be taken into account by 
adding a "modelling" uncertainty to the calibration parameters. The 
cumulation of the sources of error may result in a substantial 
uncertainty of the parameters ; however, their inaccuracy is not a 
crucial problem here, as it is taken into account all through the 
process. On the contrary, it may be considered a source of flexibility 
of the method.

4.6 Conclusion

The edges are the features chosen for representing the image because 
they are assumed to reflect the presence of boundaries in the scene. 
Most boundaries in the indoor scenes studied are straight line 
segments, so that most edges in the image are also straight line 
segments. The scene interpretation process is difficult because of the 
error of the segment location during the detection, and because of the 
superposition of all the projected segments on the image. The first 
error is called measurement uncertainty and may be modelled by a 
Gaussian law, where the second source of error is called segmentation 
error and may be modelled by defining a prior statistical model of the 
features.

First, the error of measurement is minimized by using an optimal
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edge detector. The Gaussian, Deriche and Shen edge detectors have been 
theoretically compared with respect to Canny’s criteria and additional 
criteria, testing the robustness of the detector to corners, multiple 
edges and thresholding. An improved version of the Shen detector has 
been proposed. The results have been illustrated on simulated and real 
images. The Berthod line finder has only been experimentally studied 
because of lack of time, but necessary improvments need to be made to 
keep the error of measurement minimal, e.g. a LMS approximation of the 
straight line segments. This study allows the uncertainty of 
measurement of the straight line segments to be defined. If a group of 
straight line segments may be better approximated by an ellipse, then 
an elliptical arc is considered instead. West and Rosin’s(1990) method 
is used, currently improved by Ellis et al (1991) for taking into 
account the associated uncertainty.

The segmentation error is due to the fact that features may be 
connected in the image without being connected in the scene. In order 
to take it into account in the interpretation process, a prior 
statistical model of the straight line segments is defined. Thus, the 
prior probability of two features to be connected by chance can be 
known.

At this stage, the information available is the set of segments, 
represented by the list of their endpoints and if required, a set of 
elliptical arcs represented by the list of their (a, b, c,d,e,f) 
parameters and their endpoints. The physical parameters of the camera 
are known with their corresponding uncertainty. Besides, a model of the 
uncertainty associated with the endpoints is provided, as well as a 
statistical model of the straight line segment parameters.

The following strategy will be used : a hypothesis on a group of 
features is tested by using some measure and comparing the real measure 
with the measure associated with the prior model (i.e. image which 
represents nothing). If the real measure is comparable to the measure 
associated with the model, this means that there is no more information 
in the image than in the prior model ; thereby the hypothesis cannot be
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validated.

The use of a model for measurement uncertainty and segment parameter 
distribution allows the choice of optimal (and thereby consistent) 
parameters throughout the process, avoiding the difficulty of the 
choice of the right parameters, which increases exponentially with the 
number of stages of the method. This approach appears to be essential 
to any high level interpretation process.
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CHAPITRE 5

DETECTION OF PRINCIPAL DIRECTIONS

5.1 Introduction

The extraction of 3D information from an image is a central problem 
in computer vision. This chapter is concerned with the interpretation 
of the perspective in an image. In an indoor scene environment, 
directions of some features are more likely than others, e.g. for 
straight lines : the vertical direction and the horizontal directions 
parallel to the walls. The perspective projection of a set of parallel 
lines onto an image is a set of lines meeting at a common point, called 
a vanishing point. The vanishing point coordinates define the direction 
of the set of lines in the scene relative to the camera coordinate 
system. The coordinates of the end points of a straight line segment in 
the image provide the set of possible locations of the end points of 
the 3D segment. Therefore, once the vanishing point of a 2D straight 
line segment is known, the corresponding 3D segment is entirely 
determined except its depth, i.e. except its scale. As mentioned in 
chapter 3, scale indétermination is inherent to monocular vision.

Section 5.2 describes the detection of potential vanishing points 
which are the common intersection points of a number of lines. Lines 
are accumulated in an accumulator space, the peaks of which represent 
the points looked for. A new accumulator space formulation for the 
whole line accumulation approach is described which fulfills an 
important property for robustness: the constancy of the detectability 
of a vanishing point whatever its location in the image plane. This 
accumulator space is compact and isotropic. It is compared with the 
Gaussian sphere accumulator space.

Section 5.3 describes the classification of the lines with each 
vanishing point candidate and the scoring of the classes obtained. The
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classification is based on a likelihood ratio test (LR test). The 
vanishing point coordinates are recalculated by a Kalman filter which 
also provides its uncertainty neighbourhood, assuming the 
classification is correct. The result of the likelihood ratio is used 
for scoring the classification.

Because of the complexity of the scene (e.g. many lines are not 
parallel to any principal direction), because of the relatively high 
uncertainty of the line parameters after the line finder, and because 
of the possible ambiguities with corners, many false candidates are 
found, the scores of which may be good (e.g. for corners). An
additional criterion is provided by perpendicularity. The principal 
directions are supposed to be perpendicular, which again is the case in 
many indoor scenes. The sets of two or three vanishing point candidates 
corresponding to perpendicular directions are found by a likelihood 
process and scored. This additional filter is very powerful as the
vertical direction has been proved to always correspond to the highest 
score, which constrains the vanishing points corresponding to the
horizontal directions to lie on a line, i.e. the horizon, within an 
uncertainty. The detection of the perpendicular directions is the 
subject of section 5.4.

Section 5.5 describes the information extracted from the image and 
presents the results obtained from a set of images of indoor scenes of 
a power plant.

5.2 Detection of the vanishing points

5.2.1 Previous work

The search for vanishing points consists of finding a small
neighbourhood in the image plane intersected by a sufficient number of 
straight lines. In order to reduce the search to a bounded closed set, 
Barnard (1983) proposed projecting the lines of the image onto a 
Gaussian sphere centred onto the optic centre. The projection of points
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onto a Gaussian sphere is equivalent to a resampling of the image 
plane, and the number of resampled straight lines crossing each cell is 
the result of the accumulation (Hough paradigm). Peaks of the 
accumulator space correspond to potential vanishing points. The form 
and the size of the cells depend on the sampling used in the 
accumulator space. Barnard (1983) uses spherical coordinates 
(elevation, azimuth) ; unfortunately they are irregular and different 
in the x and y directions. Quan and Mohr (1989) use the same method 
with a dichotomic approach : the sphere is sampled from a coarse 
resolution to a fine resolution in order to reduce the number of 
studied cells. The lines are classified by looking for vanishing 
points. Once a vanishing point is found with its associated lines, the 
lines are eliminated and the algorithm is performed again. Dickson 
(1989) proposed a triangular sampling of the Gaussian sphere which is 
very attractive because it is isotropic; however the computational 
efficiency has yet to be proved.

Magee and Aggarwal (1984) accumulate the projection of the 
intersection points of all pairs of straight lines in the image onto 
the Gaussian sphere. The accumulation is achieved using the arc 
distance between two points which leads to an isotropic search.

The isotropy of the search for vanishing points using the 
accumulator spaces previously described can be ensured by an additional 
cost of complexity and only guarantees the isotropy in 0, not 
necessarily in r ((r,0) are the polar coordinates). As a result the 
probability of detecting a vanishing point depends on its distance from 
the centre of the image. The reason for this dependence with r is due 
to the increasing uncertainty of the vanishing point location with r.

Kanatani (1989) tests hypotheses on parallelism of three or more 
straight lines by using the projection onto the Gaussian sphere. The 
uncertainty of the line parameters is taken into account by using a 
threshold in a concurrency test which depends on the uncertainty of the 
intersection point coordinates. We (Brillault, 1989) have previously 
proposed to solve the problem by resampling the accumulator space such
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that the uncertainty remains approximately constant over the space. The 
variations of the uncertainty of the intersection point of a pair of 
lines is statistically estimated, but for r fixed the dispersion of 
this uncertainty is large, besides which the solution found is not 
really isotropic in 0. It will be seen that a criterion based on 
distance between intersection points does not seem appropriate to a 
problem initially defined as the minimization of distances between a 
point and lines, whatever the representation used.

A number of methods for the detection of the vanishing points have 
been developed, but for all of them the detectability of a vanishing 
point depends on its location in the image. The method proposed here is 
based on the accumulation principle but uses a new mapping that ensures 
the same detectability of the vanishing point over the space. The 
accumulator space is therefore isotropic ; moreover it is bounded and 
so does not increase the complexity of the detection.

5.2.2 Accumulator space

Under perspective transformation, parallel lines in a 3-D scene are 
projected onto concurrent lines in the 2-D image. Ideally, in a man 
made environment many lines are parallel, e.g. the edges of a wall and 
a door frame. In practice, this is only approximately true. However, 
parallelism is a useful concept for representing the scene, e.g. a door 
frame may be represented as a rectangle.

Let P be the vanishing point to be determined, which is the common 
point of the ideal projection of the ideal parallel lines onto the 
image. The location of P in the image depends on the viewpoint. The 
search for P by accumulation is equivalent to counting the real lines 
in the image passing through a neighbourhood of P.

A line (L) defined by a line segment in the image is assumed to have 
its vanishing point in P if D(L,P) < r(P), where D(L,P) is the distance 
between the line (L) and the point P and r(P) is the radius of the 
chosen neighbourhood N of P in the perpendicular direction of (L).
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The constant quality for the detection of P irrespective of its 
location in the image plane increases the robustness and meaning of the 
detection. The value of the radius r(P) of the neighbourhood N defined 
above should be proportional to the accuracy with which the line (L) is 
known in the vicinity of P, that is to say proportional to the 
uncertainty of the distance D(L,P) from L to P. The neighbourhood N has 
a corresponding neighbourhood N’ in the accumulator space. For 
practical reasons this neighbourhood N’ should be constant and have a 
simple shape.

Let cr be the uncertainty of D(L,P) ; the problem is to find a 
transformation T from the image plane to an accumulator space such that 
the expected value of cr’=T(cr) remains constant over the accumulator 
space. This transformation T will completely define the new accumulator 
space (figure 5.2.2.1).

T(0)

Figure 5.2.2.1: Transformation from the image plane 
to the accumulator space

Expected uncertainty of a vanishing point

The uncertainty of the end points of the segment AB results in 
uncertainty <r of its distance to a point P. Polar coordinates are used, 
with pole 0 and axis Ox. Let 0 be the centre of the image, r the 
distance from 0 to P, 0 the polar angle of OP, a the polar angle of
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(L), and d its distance from 0. Q’ is the intersection of the line (L)
and the circle (C) with centre 0 passing through P and a is the polar
angle of Q’ (in the ideal case â  = 0, see figure 5.2.2.2). Let <r be
the uncertainty of P along (C). The variance of tr over all the linesp
having P for vanishing point is equal to the variance of the error of P 
in the tangential direction, (r da^)2. If the line (L) is fixed, the 
uncertainty cr is equal to

o' 2 = r2 E(5a2) (5.2.2. 1)
p i

2where E(3a ) is the variance of the noise on a . Using the polar l l
equation of the line it follows that

r cosia^-a) = d . (5.2.2.2)

This equation is derived to provide the expression of 3(0^), when 
/  2 2v r -d is not too small,

da = da l
3d

r sin(a -a) l
da

3d

/  r2-d2
(5.2.2.3)

Let i be 
centroid

■/ r2-d2 
appendix

the length of the segment AB and b the distance between the 
G of the segment and the projection 0’ of 0 onto (L), when

2is large enough, the value of 
5, eq. A5.4, A5.5 and A5.6)

is given by (see

2O'p
2r

br
---------  ) V(u)

2r

(5.2.2.4)

where V(u) is defined in section 4.4.1.
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Figure 5.2.2.2: Line (L) passing near the point P

Using the statistical model defined in chapter 4, the expected value
of o- may be calculated. It has been demonstrated that the length of p
the segments may be assumed independent of the centroid location. 
However, if the length L of a 3D segment S is assumed fixed, the length 
l of its projection [A,B] onto the image depends on the distance of S 
from the camera : the further S from the camera, the closer [A,B] to 
the vanishing point and the smaller l. It is shown appendix 1 that the 
distance between a segment and its vanishing point is constrained by 
eq. Al.11 :

rrv D 
I Df

(5. 2. 2.6)

where D is the depth of field and D the focussing distance, f m
Figure 5.2.2.3 demonstrates that this constraint has a very small

2effect on the expected value of (1 /l ). This is not surprising because 
the constraint filters the small segments which play a preponderent 
part in E(l/£ ). In fact, the distribution of the length is mainly due 
to the line finder algorithm and little to the viewpoint.
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1/L2
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0 .001
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16 64 112 160 r

Figure 5.2.2.3 : Average value of l/£2 in function of d performed over
the lines satisfying the constraint 5.2.2.6 with
D /D_ = 1.3. (12 images of 6 different scenes have m i
been processed)

2 2 Let "a" be E(l/£ ). Using the independence assumptions between l/£
and (b, d, r) and the fact that E(b|d)=0 for symmetry reasons, the
expected value of cr over the set of segments AB at a distance d from
the origin is equal to (from (5.2.2.4))

E(o" 2|d) = (2ar2 + ---- ------  + 2a E  ( b  J.d .l ) V(u). (5.2.2.7)
P a2

2 (1 1 --¡L-
r r

2 2This relation ignores the constraint (5.2.2.6), but still E(b /l |d) 
gives more weight to large values of b and small values of l 
corresponding to the lines satisfying (5.2.2.6), which justifies
(5.2.2.7). Remark: The previous argument only holds when the minimal 
value allowed for i is small enough.

The distance d of a line is smaller or equal to r, within the 
uncertainty of r. When d is smaller than r

1 + e(l/r2),
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2 2 where e(l/r ) is infinitesimal with 1/r .

The centroid G is located at random on a chord of the image disk
f 2 2(defined in chapter 4), the length of which is equal to 2R vl-d /R , 

then (appendix 4),

E(b2|d)) = 4- R2(l~ —  ) and E(d2) =3 r 2 4

Using the model of the measurement uncertainty defined in section
4. 4

2
E(cr 2|d) = (2ar2 + 4" + ) o'2- (5. 2. 2. 8)p 2 3 o

A line having P for its vanishing point satisfies d £ r. The eq.
(5.2.2.8) has been found using (5.2.2.4) under the assumption that 
/ 2 2v r - d is not too small.

If r > R, d is always smaller than r, and (5.2.2.8 ) holds and is
independent of d. When r ^ R and d = r, the definition of cr makes noP
sense , as the line (L) may cross once, twice or not at all, the circle 
(C) in the vicinity of P. When P is far enough from the origin, a very 
small proportion of lines are likely to be such that d = r, and
(5.2.2.8) is nearly always valid. If r is very small, the radial
uncertainty of P makes no sense. The uncertainty neighbourhood of P is
a circle with a constant radius cr, where cr is defined as the root of

2the expected value of PQ . It is shown in appendix 5 that near the 
origin

2 , 1 
= (T +

2a R , 2o--) <r.3 o (5.2.2.9)

Therefore from (5.2.2.8) and (5.2.2.9) and the previous remarks, the 
expected value of the variance of P may be approximated by
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if r is large enough 

if r is small

E(cr 2) = (2ar2 + c) P
E(o~2) = c cr 2, o

2

i ’
(5.2.2.10)

where a = E(l/£2) and c = 1/2 + 2a R2/3.

The value of the uncertainty of the line location near P depends on 
the parameters of the corresponding segment in the image. It has been 
shown that it is possible to express the expected value of this 
uncertainty by using statistics of the line segment parameters. The 
expression for the expected values depends only on the distance of the 
vanishing point from the image centre. This result allows almost the 
same detectability to be guaranteed for any vanishing point, by 
resampling the image plane proportionally to the expected value of the 
uncertainty.

Transformation from the image plane to the accumulator space

In order to simplify the notation, <r represents v E(cr2) in the 
following.

If the transformation T exists it is defined by

T
P(r,0) i----------> P’ (x’(r,e),y’(r,0 )),

x’,y’ being the coordinates of the cell of the accumulator space.

Let Q’ be the point of the circle (C) located at the distance o'p
from P, 
then

O' O' cr
T(Q’ ) = T(P(r, 6 + -pH- )) = P’ (x* (r,0 + -pH- ),y’ (r, 0 + — H_ ))

In the accumulator space the uncertainty o'* corresponding to thep
uncertainty cr in the image, is equal to the distance of T(P) to T(Q’). P
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Thus
cr o*

o^2 = (P* (x* (r,0 + - j r  ),y’ (r,0 + — p~ ) ) - P’ (x’ (r,0),y’ (r,0))

= (x’(r, 0 + -ji) - x’ (r,0)j + (y’(r, 0 + ) - y’(r,0 ))‘

After linearization it leads to
-  2 -  2a , 2 cr „ , 2 O'

_> 2  ̂ 9x  ̂ p j. c 5y  ̂ p
p 90 2 90 2r r

Thus

9x
~ae~

, 2
+ -ÿ-

90

, 2 _ -, 2 r) = O'
p - 2O'

(5.2.2. 11)

One solution of (5.2.2.11) is

y’ = o'’ r d/cr , p p
x’ = x’(r).

x’ (r) is independent of 0 and may be any bijection from [0,+oo] to a 
bounded interval. For simplicity, x’ has been chosen such that

y’ = 0 k ’

where k is a scale factor determined by the expected resolution. 

Therefore

cr’_ p k r

O' / 20 v 2a r + c

O'p r 0

O'0 / 2a r2 + i

(5.2.2. 12)

The number of straight lines in the image passing near the point 
P(rQ,0o) is represented by the number of curves crossing the line
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parallel to y’ axis, y’ = y’(r ,0 ), in the range [P’ -cr’ j,P’+cr’ j]0 0 p p
(see figure 5. 2.2.4). The counting of these lines is performed by
accumulating curves dilated by a vertical kernel with a half-width 
equal to cr’ . The accumulation of dilated curves prevent the same line

p
from being counted twice.

A line passing near P such that d e ]r,r+<r[ does not cross the line
y ’ = y’(r ,0 ). When P is far from the origin such a configuration is
unlikely, but when r is small its probability increases. The problem is 
solved if the x’ resolution around P’ is less than or equal to o\ This
could be done by choosing the constant k in eq. 5.2.2.12 such that
x’(r) has a resolution equal to cr for small r, but the resolution of x’ 
has to be consistent with the resolution of y’ (e.g. 2 curves crossing 
at x’ = (2n+l) / 2 must cross the same uncertainty neighbourhood either 
at x’ = n or at x’ = n+1). The two constraints on k are incompatible
for large r. The constant k is chosen to ensure the consistency with y’
resolution and the constraint for the small value of r is fulfilled by 
a pre-accumulation stage in the (d,a) parameter space (see later).

Detection of principal directions

0 = 2n

Figure 5.2.2.4 : (x’(r),y’(r,0)) accumulation space.

So, a transformation T has been found such that any point in the 
image plane is simply transformed to a single point in the accumulator 
space and the search for vanishing points is reduced to the search for 
local maxima in the accumulator space. The sampling is isotropic and 
homogeneous with respect to the uncertainty criterion. Moreover the
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accumulator space is bounded.

Geometrical interpretation

The accumulator space (x’,y’) described previously is isotropic in 0 
by definition. In the continuous plane, it may be represented as a 
sector of a disk. In this sector, a point P’ with the polar coordinates 
(p’,0’) corresponds to the point P(p,0 ) in the image plane and is 
defined by using (5.2.2.12)

p’ = x’ (p) and 0’ = .

In this sector the neighbourhood of uncertainty is a circular arc with
arc length cr ’ .p

Let the origin of the coordinate system be 0 and the z axis be the 
optical axis. Thus, the transformation defined is equivalent to a 
projection onto a surface (S) of revolution with vertex 0 and axis Oz, 
followed by a projection onto a cone (C) with vertex 0, axis Oz and 
angle /3 (see figure 5.2.2.5), which is eventually developed onto a 
plane (to give a sector, i.e. the accumulator space), so that

T = d o p o s
Image 1 Surface Cone * Accumulator
plane s (S) p (C) d space
P(p,0) i------>P (s (p ), 0 ) h--->P (s(p),0,/3) i------->P ’(p’,0’)

S C

P^ is the projection of P(p cos 0, p sin 0, 0) on the surface (S)in 
a direction parallel with Oz ; P has the Cartesian coordinates (p cos

S
0, p sin 0, s (p)). P is the projection of P on the cone, in a

C S
perpendicular direction with Oz ; P has the Cartesian coordinates

C
(s(p) tan /3 cos 0, s(p) tan (3 sin 0, s(p)). P’ is the image of P when

C
the cone is developed ; P’ has the polar coordinates (p’ , 0’ ) in the 
accumulator space, such that

s(p) = p’ cos f3 and 0’ = 9 ^an —  = 0 sin ¡3

-  page 135 -



Detection of principal directions

It gives

sin ¡3 = and s(p) =.x- AP.L y/ k2-l k k

Remark : the constraint k>l which appears above is introduced by the 
geometric interpretation, but it is possible to show that it 
is not a real constraint (however, it is verified when the 
consistency of the resolutions is ensured - see later-).

Figure 5.2.2.5 : Geometric interpretation of the transformation T 

Pre-accumulation stage

Several straight line segments in the image may be aligned, often 
not by chance but because they belong to the same structure in the 
scene, say a window frame. From the point of view of the interpretation 
of the perspective, only the line is significant. Therefore, before the 
accumulation stage, aligned segments are grouped to form one line .
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The lines are first accumulated with respect to d and a, the

resolution of which is determined by v^EiSd2) and VE(9a2) averaged over 
all possible b (see appendix 5 (A5.4), (A5.5)), and for each cell (d,a) 
the best estimates of the line parameters are computed. Only one line 
per cell (d,a) is accumulated in the accumulator space.

2When r is small, d is also small and the expected value of E(3d )
—2over all b is equal to c, i.e. to cr . This means that all the lines 

such that d e [r,r+cr[ and 6, are accumulated in the same cell (d,a).
Therefore, for r small, the resolution in x’ is equal to cr around x’(r) 
and the lines satisfying d = r crosses the uncertainty neighbourhood 
around P’ defined above.

The preaccumulation stage avoids a weighting process, e.g. weighting 
lines by their length (Quan and Mohr, 1989), and thereby increases the 
significance of the peaks of the accumulator space (x’,y’) described 
above, since the peak value represents the number N of directions 
meeting at the same point. For instance, if N=3 the point may be a 
corner, if N>3 the point is likely to be a vanishing point.

Uncertainty of the vanishing point

It may be important to have a first evaluation of the uncertainty of
2the vanishing point location, once detected. Let cr be the variance ofr

the distance Q"P, where Q" is the intersection point of the line (L) 
and the line (OP) (see figure 5.2.2.3); it is equal to

2 piAlln21 2 E(QP2) r2cr2cr = E(Q P ) = r --- — —  = ---
r d2 d2

(5. 2. 2.13)

The line such that d = 0 does not provide any information about r,
and the corresponding uncertainty is infinite, so is the expected value 

2of o' over all possible d for r large enough. But here, the peak in ther
accumulator space has already been found, which means that the shape of

2the distribution of Q"P around P no longer matters. The information 
about r is provided by lines passing far from the origin. At least 
three lines with different directions should cross the neighbourhood of
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P to give it meaning as a possible vanishing point, and therefore at

least two lines passing far from the origin, typically at i/E(d2).
2Therefore, for large r, using the expression of E(d ) found in 

appendix 4

„ 2 2  . 2„ -2 2r (2ar +c)cr2 __1_ r cr ___________ 0

r 2 E(d2) R2
(5.2.2. 14)

where cr is an estimate of the radial uncertainty on P.r
— ~ 2If r is small, using the same considerations as for cr , <r can bep r2 2replaced by the expression of cr , say c cr . The expression (5.2.2.14)A 0

for cr gives a very coarse idea of the vanishing point uncertainty andr
it should be considered as a temporary information. This approximation 
is refined by using a Kalman filter applied to each line classified 
with the point P.

For the resolution to be consistent with this uncertainty value, the
derivative of r relative to x’ must be lower than cr . The sampling is„ r „
not regular according to cr , which does not matter as cr does notr r
affect the line-counting in the whole line accumulation approach 
described above. This would not have been the case if only the 
intersection points had been accumulated (see figure 5.2.2.6).

Figure 5.2.2. 6 : Comparison between a "whole line" accumulation approach 
and the "intersection point" accumulation approach
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Resampling according to cr

It is possible to choose x’ (r) in order to have a sampling 
approximately regular according to cr . Albeit it slightly increases ther
complexity of the formalism, it has been done to reduce the size of the
accumulator space and thereby the number of peaks to process
afterwards. However, the consistency between x’ and y’ resolution is
not as good as previously, which means a line may pass nearby a point
without being accumulated to it, (when the slope of the corresponding
accumulated curve is more than 2cr’). Actually it is unlikely to happen

p
and practically it does not seem to jeopardize the goodness of the 
results.

Returning to the solution of (5.2.2.11)

y’ = cr’ r 0/cr
p p

x’ = x’(r),

The regularity of the sampling of x’ according to cr may be writtenr
for small r (typically r<R) :

r < R

and for large r :

„ , cr crox o , , . o-s- = —  => x (r) = ----o r crcr or

dr

</22ar2+c

r 2: R
„ , cr’ <r’ Rdx x ’ , . .
a? * —  * x (r ) = 2cr or

dr

r 2ar2+c

where <r̂ and <r̂ f are coefficients defining the resolution in x’. They 
are chosen to ensure the continuity of x’ and its first derivative. The 
solution is given by

O'
r < R x’ (r) = —0 Argsh ( / ^  D,
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(5.2.2.15)

r £ R x’ (r)
o'’ R

X ’

4 o' Vc o
Ln [ A 2ar2+c Vc

- 2ar +c + Vc

+ x’

The continuity of the derivative is ensured by setting cr’ = o',,/2. ̂ O x
The value of cr’ fixes the resolution in x’. A trade-off between the o
consistency in the resolution of x’ and y’ and the size of the 
accumulator space should be found. For example a value of o'’ equal to 
2.75 leads in the particular case of the images studied here to an 
accumulator space size equal to 100x100, by contrast with 256x256 in 
the case of the original sampling (5.2.2.12).

The equation giving y’ is clearly unchanged

y ’
cr’ r Bp
O' / „ 2o v 2a r + c

Thus, another sampling has been defined for the accumulator space, 
which is more regular according to cr than the sampling (5.2.2.12), butr
is less consistent with y’ resolution. The size of the accumulator 
space has been reduced, without affecting the goodness of the results. 
The complexity have been slightly increased (see figure 5.2.2.7).
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Figure 5.2.2.7 : Accumulator space corresponding to the sampling
5. 2. 2.15.

5.2.3 Comparison with other accumulator spaces
Comparison with intersection points accumulation method

Figure (5.2.2.5) demonstrates that all the lines around Q are 
counted independently of the value of cr , but the counting of ther
corresponding intersection points should take cr into account. Ther
equation (5.2.2.13) shows that for r fixed, the disparity of cr is veryr
large, and thereby the disparity of the error of the distance between 
intersection points is very large too. Whatever the representation 
used, the disparity of the error of the intersection points is very 
much larger than the disparity of cr , which means that the concurrency 
test based on the intersection point accumulation approach has a poorer 
significance than the test used in the whole line accumulation 
approach.

The best estimate of the intersection point of a set of straight
2 2lines in the LMS sense minimises Z(d /cr ) , where d is thei i i

distance from the i line to the intersection point. This criterion 
may be written in terms of intersection point coordinates and the 
associated covariance matrix (it is complicated because the 
intersection points are not independent). Because of the disparity of
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the variance along the r direction, an accumulator space based on the 
intersection point accumulation should necessarily be associated with a 
weighting process using coefficients equal to the inverse of this 
variance, so that only significant intersection points would be taken 
into account. If the dependence of the intersection points is ignored, 
the value of the peaks obtained would approximately represent the 
inverse of the corresponding intersection point variance along r. This 
value is not significant because of the disparity of this value and 
because it provides no information about the number of lines or 
directions meeting at this point.

Albeit the set of intersection points and their associated 
uncertainty matrix theoretically contains sufficient information about 
the best estimate of the intersection point of a set of straight lines, 
the corresponding tests have a poor significance. Besides, the 
information is redundant (5n(n+l)/2 data in contrast with 5n data in 
the minimal case), i.e. the data are not independent, which is a 
serious difficulty when reasoning with uncertainty.

Comparison with Gaussian sphere method

If the constraint of the constant detectability is not fulfilled the 
detection of a vanishing point, i.e. a main direction in the scene, 
depends on the viewpoint and the orientation of the image. It is 
important to evaluate the behaviour of the more commonly used 
accumulator space, the Gaussian sphere, with respect to this 
constraint. In order to be general, the Gaussian sphere is placed on 
the optical axis at any distance h form the principal point (its radius 
has no importance).
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O’O = h 
0  Q = r

Figure 5.2.3.1: Projection of an image segment onto the Gaussian sphere

Let r be the distance from Q to 0. The projection process transforms 
L into a big circle C, P into P’ and Q into Q’ . P is assumed to be near 
Q, so that the distance D’ from C to P’ can be approximated to D’= 
D(P’,Q’), and its uncertainty cr’ approximated by the projection of the 
uncertainty cr. Let h be the distance between 0 and the centre of the 
Gaussian sphere, then

cr
O’Q* 
O’ Q

/ 2^u2 r +h

where p is the radius of the sphere. The constraint cr’ = constant 
2 2 2implies that (r +h ) is proportional to cr . It is shown in appendix 6

2that it is possible to approximate cr for any r by

cr = (2a r + c) cr ,

which leads to, when applied to the Gaussian sphere

h = c
2a~ ' (5.2.3. 1)

This relation means that there exists a value for h such that the 
uncertainty is the same at the origin and at infinity. A large value of 
h favours the detection of vanishing points located near the centre of 
the image, whereas a small value of h favours the detection of
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vanishing points located at infinity. Here, the neighbourhood used for 
the counting of the lines is a circular spherical cap with a constant 
radius cr’, which requires an isotropic sampling of the sphere.

The Gaussian sphere method appears to be a correct accumulator sphere 
for the constraint considered here in the context of the whole line 
accumulation, provided a correct value has been chosen for h and an 
isotropic sampling is used. This result does not hold when only 
intersection points are accumulated. But an isotropic sampling of the 
sphere in the whole line accumulation approach implies an involved 
process, whereas this problem does not exist for the accumulator space 
which is described previously.

5.2.4. Vanishing point detection

"Noise" of the accumulator space

The vanishing points looked for are peaks of the accumulator space; 
however a number of peaks are not vanishing points. Classically, the 
peaks are selected if they are above a fixed threshold (Quan and 
Mohr, 1989; Barnard, 1983). This approach is not very satisfactory 
because the threshold should obviously depend on a number of factors 
such as the number of lines or, in a case of lines weighted by their 
length, the average length of the straight line segments in the image. 
Usually, this threshold is fixed experimentally, which is arbitrary. 
In the following, a method for finding the optimal threshold is 
described.

It is important to estimate the significance of the peaks, in order 
to select a minimum number of false candidates and a maximum of good 
ones. A peak is selected if it is very unlikely to happen by accident. 
It will be seen that a peak actually generates a chapelet of peaks, 
therefore further precautions are needed (only the highest peaks over a 
large area of the accumulator spaces are selected). First the 
probability of a peak happening by accident is determined and the 
criterion to select a peak is defined ; then additional precautions are
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discussed.

A number of lines located at random in the image cross each other at 
any point which do not necessarily correspond to a particular point 
such as their vanishing point - they just have to cross somewhere! - 
The more lines in the image, the more likely several lines pass through 
the same neighbourhood in the image plane, i.e. in the same cell of 
the accumulator space. Using the statistical model defined in chapter 
4, applied to the number of lines accumulated, it is possible to 
determine the probability of a peak occuring by accident.

A line is characterised by its distance d from the origin of the 
coordinate system, i.e. the centre of the image, and its direction 0. 
The lines are supposed distributed at random in the image, according to 
the statistical model defined in chapter 4. In the accumulator space, a 
line is represented by a curve which crosses each vertical x’ constant 
twice, in the interval jx’(d),x’ J, the vertical x’ = x’ (d) once, andmax
never the vertical x’<x’(d). The expected number of lines crossing the 
vertical x’ = x’ (d) is equal to n’ (d) (see its expression in appendix 
4). As all the directions are equiprobable the distribution of the 
lines along a vertical x’ constant is uniform in the interval [0,y’ ]max
(illustrated in figure 5.2.4.1). Therefore the density of probability 
at the point (x’,y’) corresponds to a binomial law corresponding to 
the parameters (n’(d), p = 2 (2cr’/y’ )), which isp max

p(N(x’,y’) = k) = pk (l-p)n’~ \ (5.2.4. 1)

Therefore, the expected value at a point of the accumulator space is

4 cr’ n’ (d (x’ ))
E(N(x\y* )) = n’p = --- ^ ^ ---  - |(x’ ), (5. 2. 4. 2 )

max

and its variance is

- page 145 -



Detection of principal directions

4 or’
V(NCx’ ,y’ ) = n’p (1-p) = #(x’ ) (1 - — --^  ) = u(x’ ). (5. 2. 4. 3)

max

Remark : The value of y’ (x’ ) depends on the sampling chosen for themax
accumulator space.

The function £(x’ ) for the sampling (5.2.2.15) is displayed 
in figure 5.2.4.2. For illustrating the type of distribution obtained, 
2000 lines have been synthesized according to the statistical model 
defined in chapter 3 and have been accumulated, the result is displayed 
figure 5.2.4.1.

Figure 5.2.4.1 : Accumulator space corresponding to the accumulation of 
2000 lines located at random in the image.
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Expected value of the noise 

for 2000 accumulated lines
50 _
45 _
40 _
35 _
30 _
25

1 11 21 31 41 51 61 71 81 91 101 X,(r)

Figure 5.2.4.2 : Expected value of the accumulator space in function of

Detection of the significant peaks of the accumulator space

A peak of the accumulator space is selected when the probability 
that it happens by accident is less than the admitted risk x, say 0.0 1.

For large n’, say n’>10, the Moivre-Laplace theorem (Papoulis, 1965) 
allows the binomial law to be approximated by a Gaussian law with the 
parameters (n’p, n’p(p-l)).

The expected number of points in the accumulator space with a value 
higher than k(x’ ) is equal to xA, where A is the area of the 
accumulator space. Actually, only local maxima with a value higher than 
k(x’) are selected as potential candidates. So, the expected number of 
false candidates depends on x and the density of peaks in the 
accumulator space. Using the Gaussian approximation for p(N=k), it is 
possible to consider that

x’ where 2000 lines located at random in the image 
are accumulated.

w (y* ) = N(x’,y’) - fix’ )
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behaves approximately as a normal process. Furthermore, if x is small 
it is possible to ignore the probability of having two local maxima for 
w (y’) between two successive passages by k(x’). Therefore, the 
expected number of local maxima above k(x’) along a vertical, x’ 
constant, is equal to half the expected number of passages by k(x’). 
Appendix 7, eq. A7.16, shows that it is equal to

n (x’ ) x
y’ (x* )max Ve exp (- h(x ’ ) 2 

2 u(x’) (5. 2.4.5)

where h(x’) = k(x’)-£(x’), and e is the height of a cell of the 
accumulator space, that is to say c is equal to 1 (it is maintained in 
the equation for homogeneity). Using the Gaussian approximation

h(x’ ) 2 = [erf 1 (0.5-x) ] 2 w(x’)

where «(x’ ) is given by eq. 5.2.4.3. Therefore

n (x’ ) = x
y’ (x’ )max Ve

2n

exp (- [erf 1(0.5-x)]2. (5. 2.4.6 )

However, the local maxima along a vertical are not necessarily local 
maxima in the 2D accumulator space (though the converse is true). 
Therefore d = n (x’ )/y’ (x’ ) does not represent the density ofX X max
local maxima in the accumulator space. The correlation function along 
x’ is not easy to find, so that it is difficult to be conclusive in the 
2D case. It is only possible to give an estimation, by using the fact 
that the correlation is obviously high (because of the continuity of 
the lines into the accumulator space) and the additional following 
condition :

- if two candidates P and P’ are found such that the distance 
between P and P’, d(P,P’), is inferior to its corresponding
uncertainty cr , then they are merged into one.
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Thus, an intuitive reasoning indicates that the maxima along the 
vertical x’ being likely connected to the maxima of the vertical x’-l, 
the expected number of false candidates is of the same order of

A

magnitude as d^ A/£, where l/£ is equal to the average value of 1/tr 
For instance, in the case of the accumulator space defined by 
(5.2.2.15), A = 6950, (1/cr ) = 1/3.82 and cr ’ =1.5 which gives, forx' av p
x = 0.01, an expected number of false alarms of approximately 15, which 
is confirmed by the experience achieved on the accumulation of 
successively 50, 100, 300 lines, randomly chosen (see figures 5.2.4.3
and 5.2.4.4).

Nb of direct. 50 100 300
Trials x’ nf x’ nf x’ nf

1 0. 009 14 0. 01 15 0. 015 17
2 0. 01 19 0. Oil 16 0.0082 12

3 0.015 13 0.009 12 0. 007 10

Figure 5.2.4.3 : Number of false alarms nf when successively 50, 100, 300 
random directions have been accumulated, corresponding to the risk x = 0.01. 
x’ corresponds to the real percentage of points above k(x’).

Predicted risk x actual x’ predicted nf actual nf
0. 001 0. 1.9 0

0.00015 1
0.00015 1

0. 005 0.0048 8. 5 8
0.0041 8
0. 006 10

0. 01 0. 01 15. 5 15
0. Oil 16
0. 009 12

0. 02 0. 036 28 35
0. 035 36
0. 013 21

0.04 0.063 51 27
0. 044 37
0. 062 37

Figure 5.2.4.4 : Predicted number versus actual number of false alarms 
when 100 random directions been accumulated, for different risks x.
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Thus the detection of the vanishing point is consistent over the 
image plane not only with respect to the expected uncertainty, but also 
with respect to the expected level of noise. Furthermore, it is 
remarkable that the expected number of false alarms is independent of 
the number of lines accumulated, i.e. of the complexity of the scene.

Actually the statistical model does not take into account the lines 
associated with another vanishing point, although several main 
directions are supposed to exist. The presence of a real vanishing 
point near a peak produces noise in the neighbourhood of this peak 
which is not properly described by the probabilistic law described 
above. For example, the image of a set of pipes may produce several 
local maxima corresponding to the intersection of this set with various 
lines. This problem is due to the lack of accuracy of the model used 
and is clearly worse when no model is used and the peaks are selected 
when above a fixed threshold. Some of the other methods (Magee and 
Aggarwall, 1984), (Quan and Mohr, 1989) use the following strategy : 
once a vanishing point has been found, all the lines classified with it 
are taken away from the list and the algorithm is performed on the rest 
of the lines. However, a number of lines in the image may pass through 
several vanishing points and such a method may ignore an important 
direction in the image (usually the less represented horizontal 
direction), by having eliminated too many lines.

Here, this problem is empirically solved by the following 
considerations. First, the vertical lines are nearly always very 
numerous and are represented in the accumulator space by a very high 
peak ; second, the main directions are supposed to be perpendicular and 
thereby cannot be located in the same area of the accumulator space.

The risk of removing important lines is limited by the following 
strategy. The lines are removed from the list after classification with 
a vanishing point candidate, only if the corresponding peak is very 
significant, e.g the probability that it happens by accident is less 
than 0.0005 (x=0.0005 for the sampling (5.2.2.15) corresponds to a
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number of false alarms << 1). This means that a class of lines is 
discarded if the number of these lines is so high that it would be 
responsible for numerous significant peaks in the accumulator space. It 
is always the case for the class of vertical lines in the images 
studied.

The classification of the lines with a vanishing point candidate is 
achieved by a likelihood ratio test (sections 3.3.3 and 5.4). The more 
numerous the class, the more tolerant the test. This means that the 
number of lines missed by this test, which could be responsible for 
further noise, is approximately constant whatever the size of the 
class, by constrast with a MD test where the percentage of lines missed 
is constant. It is seen in the results (section 5.5) that the 
efficiency of the LR test for eliminating the lines associated with a 
preponderent class is more efficient that the MD test.

Once the classification corresponding to numerous classes is 
achieved, the accumulation is then performed again on the remaining 
lines. The search for all significant peaks is expensive and too many 
peaks may still appear. A first method consists of selecting only 
vanishing points perpendicular to the directions already detected, by 
using a MD test. This method is interesting but is computationally 
expensive as the MD test depends on each pair of points tested 
¡moreover it would definitely ignore directions not perpendicular to 
the first directions found. An alternative consists of dividing the 
accumulator space in several areas, in each of which no more than one 
vanishing point is expected (see figure 5.2.4.5). The maximum peak (or 
peaks if several peaks have the same value) of each area is found and 
tested by eq. 5.2.4.4). Let us remark that the test inside an area 
should be approximately constant, i.e. k approximately constant in the 
area, in order to have comparable peaks. This method is quick and 
efficient, but produces more candidates than the first method.
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Figure 5.2.4.5 : Division of the accumulator space in several areas 
in each of whch no more than one vanishing point is expected. The 
triangle corrsponds to three perpendicular directions (see appendix 1).

The method described in the previous paragraphs minimizes the 
probability of false alarms in a consistent way over the image, 
furthermore it allows the selection of vanishing points corresponding 
to a few straight lines by minimizing the risk of loss of these lines 
in the process of elimination of larger classes. The method does not 
depend on the complexity of the scene.

5.3 C l a s s i f i c a t i o n  o f  t h e  l i n e s

The lines are individually classified with the vanishing point 
candidates in order to take into account the value of o' corresponding 
to each line (appendix 5, eq. A5.9) and to perform the test 5.2.2. 6 .

For each vanishing point candidate and for each line a LR test is 
performed. If the line succeeds the test, it is used by a Kalman filter 
to improve the determination of the coordinates of the vanishing point, 
and the line is classified with the vanishing point.
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Definition of the LR test

A particular vanishing point P is considered in the following. The 
set Q is the set of the pairs (P.L^), where is any straight line 
segment extracted from the image. A sub-set A is the set of pairs such 
that the centroid of the segment is at a fixed distance r* from the 
point P with a constant length i.

The hypothesis H assumes that the line L. should pass through P, 
e.g. because P is its vanishing point (let us remark that this 
reasoning also holds for a corner). The hypothesis H assumes that the 
line L. passes near P by chance, i.e. the corresponding 3D line is not 
related to the 3D meaning of P in the scene. The decision variable is 
the distance D̂  from the line to the point P when the distance r
from P to the origin is less than r . Otherwise, it is the distance A

S i
from the curve = TCL^) to the point P’(x’,y’) = T(P) along a
vertical of the accumulator space (for large r, the accumulator space 
is the appropriate space because it is bounded).

The methodology described in chapter 3 may now be applied. Under the
hypothesis H, the distance D̂  is assumed to be the error of measurement
and is modelled by a normal law with zero mean and a variance equal to 
2o', defined in appendix 5, eq. A5.9.

Under the hypothesis H, the line A may have any direction a in 
the image with a uniform probability. From

D = d |sin(a)| and d |cos(a)| = ■/ r’ 2 - D2

i ’

the probability law of D is deduced

W  = p2(a(Din
1

3D

Therefore if r < r , the LR test is
S
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p (H) 

p(H)
i

O'i

D
exp(- — - )

o 22 o'i
> 1 , (5.3. 1)

In the case r > r , the calculation is performed in the accumulatorS
space.

In the accumulator space, the distribution of the curves along a 
vertical under the hypothesis H is uniform with the density 2/y* (themax
curves cross a vertical twice).

The uncertainty of the location of the curve C along the vertical 
passing through P’(x’,y’), using the geometric interpretation of the 
accumulator space (section 5.2) and the hypothesis r’ large, is equal 
to

cr
O'Ai O'

1 0-’ p -5= ^  y* (r* ) 27T r max

Let o' be the expected value of the error of the angle 0 of the lineHi i
(L ), then if r’ is large o' a* o-./r’. The LR test is therefore i 0 i i

p (H) 

p(H)

When r’ large

0i
exp (-

2 o'
) > 1 i

Ai
(5.3.2)

Ai
d . y’i max 
r* 271

Thus when r’ is large, the tests (5.3.1) and (5.3.2) are equivalent. 
Therefore, the value of r may be set to any large but finite value, 
e.g. 4*R, R being the radius of the image.

The value of P(H)/P(H) is assumed independent of A, i.e. the 
distance r’ and the length of the segment l does not give any
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information on p(H)/p(H). This hypothesis is not contradictory with the 
fact that a segment should necessarily be located at some distance from 
the vanishing point, as P could as well be a corner. No reference is 
made to its physical meaning, but only to the fact that the line does 
or does not pass through P by accident.

Applying eq. 3.3.3 to the set N of lines crossing [y’ -cr' j, y’ +cr’ j],p p
where y’ is the ordinate of P’ = <r(P), it comes

p(H) nn - n'J* P2
_ 2

P(H) n’ L  p - nn
J l

where n’(x’) is the expected number of directions accumulated along the 
vertical x’ (see eq. 5.2.4. 1), nn is the value of the peak P’ in the 
accumulator space,

p f cr
p = 1  - 2 erf

J 1
p

cr
[ 1

and n’ p is equal to £(x’) (see eq. 5.2. 4.2).
J 2

Remark : if r’ is large the LR test is equivalent to

< 2 Log
e

Vu p(H) l

2 p(H) cr v o
= T + 2 Log U) .

0 e
(5.3.3)

Thus, it corresponds to a MD test with a threshold depending on 
p(H)/p(H) and the logarithm of the length l. If the length of the
segment is large, i.e. its uncertainty is low, the test is more
tolerant. However, the tolerance grows less rapidly than the
uncertainty decreases, thereby the LR test may be described as 
intermediate between a MD test and a neighbourhood test.

The equation 5.3.3 may be used for approximating the LR test where
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p(H)/p(H) is intuitively estimated by the user. Often, it is possible 
to select a reasonable threshold for the MD test in a particular case 
(either an average case or an extreme case). Let T be a reasonable

S
threshold in the MD test for the straight line segments with a length 
t , thenS

< T + 2 Log U/l ) •s e s

Scoring of a line

The line L. is associated with the vanishing point P if R>1. The 
higher the value of R, the higher the confidence of the classification. 
The score of the classification of the line L.with the point P is

R
ptHlDj) = lr^ r  (5.3.4)

i

Scoring a ciass of lines associated with a vanishing point candidate

Once all the lines have been evaluated for classification with the
point P, it is possible to update the probability of the hypothesis H,
i.e. the probable ratio of the number of directions in the image having
P for vanishing point, to the total number of directions considered. It
is more interesting to limit this definition to a neighbourhood of P,
say N, where N is the set of straight lines at a distance inferior to
cr from P. Let iCQ be the prior probability of H, knowing that the line
crosses N (i.e. using the notations of section 3.3 cc = p(H|./V) =o
(n’ S^ p^ptH), n’ being the total number of lines expected along the 
vertical of the accumulator space considered). Let nn be the number of 
directions in N, ¿r̂ nn is the expected number of directions crossing at 
P "on purpose", and (l-iCQ) nn the expected number of directions passing 
near P by chance (corresponding to noise).

The methodology defined in chapter 3 is used with p(a:) defined as 
follows. As seen previously, the noise of the accumulator space may be
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modelled by a binomial law with parameters (p,n2), where p is the
number of cells considered along a vertical and n^ the expected number
of lines corresponding to noise crossing these cells. The expected
number of lines crossing the cell P by accident is n p = nn(l-a: ).2 0
Hence, p(<c) is equal to

p(o:) = p(nn2= (l-<E)nn|nn)
(1-iOnn,, .n -(l-<E)nn P ( 1 - p )  2

kP (1-P)n -k2
(5.3.5)

The denominator is a normalization factor. When nn is large enough, the 
Gaussian approximation may be used and

p(<r) =

, s 2 2(x-x ) nn
exp .. 2as }

VZn 5 (0.5+erf(a: nn/'/u)

1 x x^
w h e r e  e r f ( < c )  = -------- J - e x p i - - ^ — )da;, a n d  as i s  t h e  v a r i a n c e  o f  t h e  n o i s e

VZn 0 2
a t  t h e  p o i n t  P o f  t h e  a c c u m u l a t o r  s p a c e ,  as =  ( 1 - c c ^ )  ( l - p ) n n .

To compute the function G(a:) (eq. 3.3.6), the odds 0. of a direction
is defined as the maximum value of the odds corresponding to the
straight line segments grouped with this direction, because it
corresponds to the most likely segment which may have P for a vanishing
point. Since the function G(a;) is proportional to p(a;) and p(£) is very
small when x is far from x , the maximum of G(a:) should be close to X .o o
This property ensures the stability of the process.

The updating process measures the degree of convergence of the lines
around P. For instance, if a set of lines crosses the neighbourhood of Q
located at d from P, such that Q and P are considered as two possible
candidates (frequent case), x is supposed to be the same in both cases
(if d small enough), but x is inferior to x , because the lack ofQ p
convergence in Q "flattens" the Gaussian distribution, favouring the
uniform distribution, i.e. \-x .

Q
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Updating the risk of false alarms

As has been seen sub-section 5.2.4, it is possible to estimate the 
expected number of false alarms corresponding to the risk x which 
defines the thresholding process. Conversely it is possible to 
associate a risk xp to a peak P with a value nn by chance in the 
following way

TP
nn-1
I Mk= 0  ̂ /

k , . , n’ - kP (1-P) (5.3.6)

where (p,n’) are the parameters of the binomial law corresponding to 
the noise, defined in subsection (5.3.2).

The expected number of directions associated with a vanishing point 
and the risk of false alarms are complementary information, albeit 
related. The former indicates the significance of the interpretation of 
P as a vanishing point and the latter gives information about the 
confidence of such an interpretation.

5.4 M ain perpendicular directions

In the following, the coordinate system of the image is (Ox,Oy/p) in 
order to correct the distortion between Ox and Oy scales, so that the 
reference coordinate system (Ox,Oy) is Euclidean.

If two vanishing points P and Pcorrespond to perpendicular 
directions in the scene,then (appendix 1 )

0^ .0# + f2 = 0. (5.4.1)
1 2

Because of uncertainty of measurement V {P , P ) = of . of + f2, is a
1 2  1 2  2normal variable with zero mean and variance <r deduced from thev

covariance matrices associated with 0, P , P and f. Let V be the value
1 2

taken by V (P , P ).

Conversely, if two vanishing points obey the relation (5.4.1) they
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correspond to perpendicular directions in the scene. Therefore there is
no notion of such a relation happening by accident. If P and P are1 2

2 2two real vanishing points and if the corresponding V /«r̂  is less than a 
threshold, the corresponding directions in the scene are approximately 
perpendicular. Thus, a test based on the Mahalanobis distance seems 
appropriate. The threshold may be chosen reasonably high as most lines 
in the scene have been supposed parallel to three main perpendicular 
directions, therefore only three vanishing points are expected in the 
image, obeying the relation (5.4.1) in pairs. However, there are 
usually more than three candidates and P̂  or P  ̂ may be a false alarm. 
As the uncertainty of V is high (due to the uncertainty of the 
principal point and to <r eq. 5.2.2.14), a MD test is not selective 
enough when using a "common sense" threshold (above 2 for selecting 
more than 95% of the good candidates). The choice of a lower threshold 
is arbitrary if no explicit reference to the segmentation noise is 
made. Actually the perpendicularity test is not aimed at checking the 
perpendicularity of the main directions in the scene, but rather to 
provide an additional filter against false alarms. It has been seen in 
chapter 3 that the advantage of a likelihood ratio test is that it is 
dependent on the level of segmentation noise. If the noise is high the 
test is more selective than if it is low. Moreover, the test fails when 
the uncertainty of V is very high, independently of V, which seems 
appropriate as V would have no significance.

In order to define a likelihood ratio test, two complementary 
hypotheses have to be found. The set F of the vanishing point 
candidates is supposed to have the following characteristics :

- it contains at most three real vanishing points corresponding to 
three perpendicular directions (it may also contain duplicates 
of some of them corresponding to large cr and slightly differentr
classifications).

- the remaining candidates are false alarms due to the noise of 
the accumulator space.
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Let ft be the set of the pairs of the elements of r, and A be a
subset of ft, such that P is at the distance r from 0, and P at the1 1 2
distance r from 0. Let H be the hypothesis that P and P are two
real vanishing points. By hypothesis, they correspond to perpendicular
directions in the scene and must obey the relation (5.4.1). The
hypothesis H is : either P or P is a false alarm.1 2

The calibration parameters are assumed to be exactly known, and the 
principal point is assumed to correspond to the centre 0 of the image. 
The decision variable V may be rewritten

2V = r r cos0 + f ,1 2

where 0 is the angle (OP , OP ). Then1 2

av
30 -r r sin0. 1 2

Thus, the density of probability in the case of H is equal to

p (V) = p(0 ) = — ----- . . ,2 ^ 3V 2nr r sm01 2 27iv/r2r2-(V-f2)2 1 2

and the variance of V in the case of H is

2crV
2 2 . 2 2 r r sin 0 cr . 1 2  0

2The variance cr of the angle 0 depends on the covariance matrix of P 0 l
and P2 and is given in appendix 6, eq. A6.2. The density of

2probability p is a Gaussian with zero mean and a variance cr .i v
The likelihood ratio test may be written

p(H)

p(H)
V2ÏÎ

cr.
exp (-

2r 2 . 2  ̂ 2 r sin 0 cr 
2 0

) > 1 (5.4.2)

Unfortunately, the uncertainty of the calibration parameters often 
is far too important to be negligible and should be taken into account
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in the likelihood test. The error of the calibration parameters is
assumed to be normal with zero mean and covariance matrix C . Let (T* bec
the vector associated with the calibration parameters

= (xc>yc>f,p)\

V may be written at the first order

V “ V0 + W  de + v^(v).Hê ,

where is the gradient of C*. Thus, the law of V is now the
convolution product of the law p (in case of H) or p2 (in case of H) 
previously found, with the Gaussian law pc with zero mean and variance 

(eq. A6.5) describing the variations of V^(V).dé. The LR test 
becomes

p(H)
p(H)

P *  PJV)
________ > i
P2* p c(v )

The convolution of p with p is a Gaussian law with zero mean andi c
2 2variance equal to ô +cr̂ . The convolution of P2 with is computed by 

numerical means (Press, 1988).

The last problem is the determination of p(H)/p(H). It is defined as 
the ratio of the expected number of pairs of real vanishing points in A 
to the expected number of false alarms. Prior knowledge of the 
viewpoint may be introduced here. A model of a vertical upright camera 
is used in the following.

In the application studied here, all the pictures have been taken 
with the camera approximately vertical. The model of the prior 
knowledge is therefore chosen as follows. One of the horizontal 
directions, say the left side, may be any direction in the horizontal 
plane forming an angle ip between 0 and n/2 with the projection of the 
optic axis on the horizontal plane.

The prior knowledge of the vertical direction may be described in
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the accumulator space by a Gaussian law centred on the nearest point 
V’ of the points V’ , V’ and V’ with abscisse x’ and ordinates 0,i 1 2  3 max
y’ /2 and y’ , with a covariance matrix C . Thus, if P is assumed tomax max V
correspond to a vertical direction, then the expected
density of vanishing point in the accumulator space at P is

A = exp(P^ C_1P^ /2)/(2?r/det (C )'). p i v i v

Now, let L be the line (0V) in the image, where V is the vanishing
point corresponding to the vertical direction, Ho be the horizon and 0’
be the intersection of L with Ho. Let r’ be the distance between 0’ and
the vanishing point P corresponding to an horizontal direction. From
the relationship between the direction and its corresponding vanishing
point (see appendix 1 ), the density of probability p (r’) may beh
deduced

ph(r') = P<t>)-§J,= . 2
Tt f’ (1 +^—  ).,2

2 2 2where f’ = f + 00’ . 00’ is described by a Gaussian law centred at zero 
2with variance cr , cr is related to C and to the covariance matrix of h h v

the calibration parameters (see appendix 6 ). Then, from
p (x’) = p (r’)Sr’/Sx’, p (x’) in the accumulator space is deduced, h h h
Thus, if P(x,y) may correspond to an horizontal direction then r* = x, 

2 2 1/200’ = y, r=(x +y ) , x’ = x’ (r). The expected density of a vanishing
point in the accumulator space at P is

A = p (x’). exp(-y2/2cr2)/(V27ra' ).P h h h

Then p(H)/p(H) is defined as

p(H)
p(H)

A A__________ PI P2
k A + ic A +PI P2 P2 PI K K PI P2

(5.4.3)

where k = cr n (x )/y and k = cr n (x )/y , n (x ) is thePI p T 1 J 1 max P2 p T 2 ^ ma x  TiPI P 2
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expected density of false alarms along the vertical passing through P’ 
and is given by eq. 5.2.4.5, where the updated expected number of 
directions associated with P , h(æ) = nn^œ, is given by eq. 5.3.6.

If ic is negligible, which is the case of peaks corresponding to 
numerous classes, e.g. x<0.0005, then (5.4.3) becomes

p(H) _ P̂2
p(H) KP2

which is the ratio of the expected number of main vanishing points to 
the expected number of false alarms at P . This happens when one of the 
two points corresponds to the vertical direction. If both classes are 
very numerous, then the LR ratio is always very large even if they do 
not correspond to proper perpendicular directions. If both classes are 
relatively small and therefore unreliable, then the test is very 
selective : only real perpendicular directions succeed the test. Thus, 
this LR test behaves exactly as required : it does not provide a 
measure for the real perpendicularity of the main directions looked 
for, but it provides an additional filter against false alarms by using 
the prior knowledge that such directions are likely to be 
perpendicular. Lower and upper limits for p(H)/p(H) may be fixed, in 
order to give any candidate a chance of succes (i.e. the corresponding 
threshold of the MD test should always be positive) and to ensure a 
minimal significance to the perpendicularity relationship.

Score of a pair or a triplet of directions

The score of a pair of directions, i.e. a pair of vanishing points
RP , P , is equal to (see section 3.3.3). It corresponds to a1 2 1

measure of likelihood of having two real vanishing points using
available prior information on the feature extraction and on the
viewpoint. Let us assume that it may be written s = s s , s12 1
corresponding to the score of P̂  and s2 corresponding to the score of 
P2 (which is done for convenience but cannot be the case as their 
likelihoods are no longer independent). Then it is natural to define
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the score of a triplet of perpendicular directions as being equal to 
the product s s s equal to

R R R
(R +1)(R +1)(R +!)• 1 2  3

This score takes into account the confidence associated with each point 
of the triplet and the quality of the perpendicularity. The larger the 
confidence, the less important the perpendicularity.

A hierarchical tree may be built : first, the straight line segments 
are accumulated to form straight line directions which are grouped into 
classes corresponding to parallel lines in the 3D scene, then the 
classes are grouped by pairs, each pair defining approximatly 
perpendicular directions in the scene ; eventually the consistent pairs 
are merged to form triplets of perpendicular directions hypothesised to 
be the main directions of the scene (see figure 5.4.1). With each node 
is associated a score.
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V”

Triplets of classes 
corresponding to 
perpendicular 30- 
directions

Pair of classes 
corresponding to 
perpendicular 30- 
directions

V Class : set of lines 
associated with the 
vanishing point V

i!

;

!

Figure 5.4.1 : Interpretation tree of the 3D directions of line
segments from an image.

The triplets and then the pairs of perpendicular directions are 
sorted according to their scores. If no pair has been found, the 
interpretation has failed (this usually means that only the vertical 
direction has been found, which is a very poor performance for the 
effort involved!).

5.5 E l l i p t i c a l  a r c  c l a s s i f i c a t i o n

The elliptical arcs are assumed to be the projection of circular 
arcs in the scene. If an arc lies in a plane associated with two main 
directions, then the image of the arc may be associated with the two 
corresponding vanishing points in the following way.

Let V and V’ be the two vanishing points associated with the 
perpendicular directions considered, let the points A and B

- page 165 -



Detection of principal directions

(respectively A’ and B’ ) be defined by the tangents to an ellipse 
passing through the point V (respectively V’ ). The ellipse may be 
associated with two vanishing points V and V’ if and only if (figure 
5.5.1) the line joining the points A and B (respectively A’ and B’) of 
the ellipse passes through the vanishing point V’ (respectively V). 
This ellipse is the projection of a circle if the 3D axis lengths are 
equal, that is to say :

AB / - (f2+ 0V )2' = A'B’ /..lf2+ °V~ )2 (5.5.1)
f MV f MV’

The two lines (AB) and (A’B’), each of them corresponding to a
vanishing point, intersect at the projection a(x , y ) of the circle

<3 g
centre onto the image.

Figure 5.5.1 : Ellipse associated with two vanishing points.

5.6 Results

The accumulator space depends on the statistic of 1 /l which depends on 
the complexity of the image and on the preprocessing stages. The size 
of the image used here is 256 and only lines with a length greater than 
15 have been accumulated (lines with a length below 15 are very 
numerous and do not provide meaningful information as their uncertainty 
is very high and they often correspond to noise). Thus the 
pre-accumulation in (d,a) results in a narrow distribution of l/l2 
around a = 0.0019, determined experimentally over a number of images 
(see figure 4. 4. 2.1).

The method has been applied to various types of indoor scene. Figure
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5.6.1 shows the initial images. Their respective accumulator spaces are 
displayed with all the lines accumulated, figure 5.6.3, and with a 
number of lines removed, figure 5.6.4. The final result of the 
classification is displayed in figure 5.6.5. All the main directions 
represented by a sufficient number of segments have been found. False 
candidates have been found, corresponding generally to corners. They 
are filtered out by using the constraint 5.2.2.6 which is usually not 
satisfied by the corners. It can be noticed that vanishing points have 
been found corresponding to a small value of r (r = 18), to a average 
value of r (r = 135) and to an infinite value of r, with peaks of 
similar shape along y’ .

Figure 5.6.1: Initial images 1 and 2

Figure 5.6.2 : Extracted segments of the images 1 and 2,
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Figure 5.6.3 : Accumulator spaces 
clarity the image has been scaled 
corresponds to the vertical lines 
has been shifted by n/Z).

with all the lines accumulated (For 
from 0 to 255). The axis y=0 
(For convenience, the 0 reference

U it

Figure 5.6.4 : Accumulator space : the vertical lines have been 
removed (For clarity the images have been scaled from 0 to 255).

An extract of the result of the line classification is displayed in 
figure 5.6.6, and the result of the search for perpendicular triplets 
of directions in image 1 is displayed in figure 5.6.7. The best scored 
triplet corresponds to the triplet displayed in figure 5.6.5. The other 
triplet is composed of the vertical and the horizontal directions 
nearly parallel to the image plane, the other class has been falsely 
detected and corresponds to a corner. In image 2, the score of the 
triplet is 0.5 which is bad because the perpendicularity of the two 
corresponding horizontal directions is very bad ; it is compensated by 
the very good scores of each of these directions.
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Figure 5.6.5 : Final classification: the top and the bottom left images 
correspond to the main directions detected ; the bottom right images 
show all the lines classified with a main direction.

object number : 1
number of lines : 31

expected number of directions : 6
score : 0.78
perp. classes and associated scores :

5 0.71
6 0.70
11 0.73
13 0.75

Vx, Vy and covariance matrix :
-442.04 89.44 11839.77 197.37 367.64

element number : 1
x a , y a , x b , yb :

214 21 248 17
map, a, b and covariance matrix :

0 -0.118 46.24 0.0045 240.91 -1.04 
score value : 0.69

Figure 5.6.6 : Extract of the classification of a line with a 
vanishing point (image 1, V ).
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perp. triplets and scores :
1 6 1 3  0.608
1 5 1 3  0.605

Figure 5.6.7 : Result of the search for a triplet of perpendicular 
directions (image 1).

Images of various indoor scenes with various viewpoints have been 
processed, some examples of the results obtained are given in the next 
figures. It has not been always possible to extract a triplet of 
perpendicular directions, but it has nearly always been possible to 
extract two of them.

Figure 5.6.8 : Initial images

Figure 5.6.9 : Perpendicular directions
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5.7 Conclusion

A new accumulator space for the detection of the vanishing points 
has been presented. This accumulator space is isotropic and bounded ; 
moreover it ensures a constant quality of the detection of the 
vanishing points over the space. In addition it is easily implemented. 
It has been compared with other methods, using the Gaussian sphere as 
an accumulator space.

Only significant peaks are detected, taking into account the noise 
produced by the accidental presence of lines near the peaks. The line 
segments are then classified with each of the vanishing point 
candidates, i.e. significant peaks of the accumulator, by using a 
likelihood ratio test which takes into account the parameter 
uncertainties associated with each segment. A scoring process provides 
the expected number of directions which do not cross the neighbourhood 
of the selected peaks by chance, and a measure of the reliability of 
these peaks.

An additional filter is provided by taking into account prior 
knowledge about the perpendicularity of the main directions. This 
process compensates for the unreliability of some vanishing point 
candidates, when associated with few directions, by the quality of the 
perpendicularity to more reliable vanishing points. It does not filter 
out reliable candidates even if their perpendicularity is poor.

All tests are based on the principle of the maximum of likelihood,
which does not introduce arbitrary thresholds. The only parameters to
determine are the covariance matrix elements associated with the data

2and the parameter a=E(l/£ ), which may be determined by statistical 
means. Because of their physical meanings, the order of magnitude of 
these quantities is generally known. In other words, the thresholding 
parameters, usually present in any process, have been replaced by 
physical parameters, such as covariance matrix elements, which are 
included in statistical reasonings. The consistency of the various 
reasonings is ensured by the reference to the same probabilistic model
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of the locations of the straight line segments in the image (see 
section 4.4). This results in a more robust and predictable method that 
works on a large number of different images of indoor scenes, 
independently of their complexity.
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CHAPTER 6

HIGH-LEVEL 3-D CONFIGURATIONS

6.1 Overview of the method

For matching a 3D model of an object with the features extracted from 
the image it is necessary to transform the representations of the model 
and/or of the features to obtain comparable representations. Two 
approaches may be proposed : either the model is projected onto the 
image and the matching is performed between 2D features, or the image 
features are back-projected into the model space and the matching is 
done at a 3D level. The advantage of the latter approach is that the 
back-projection of the image features into the model space makes 
explicit the geometrical constraints linked to the consistency of the 3D 
objects, e.g. the equality of the opposed edges of a rectangle.

A method for building a 3D representation of the image features 
through back-projection is described in this chapter. This approach is 
fundamentally equivalent to the former approach but it allows a much 
more powerful representation of the information contained in the image.

Previous work

A number of systems propose to match a 3D model with a single view 
(Brook, 1984), (Lowe, 1985). The common approach is to project the model 
onto the image over a range of viewpoints (e.g. to obtain an aspect of 
the object) and to perform the matching between the projected model 
features and the image features. The representation of the different 
aspects of a 3-D model has been the subject of much research (Minsky, 
75; Brooks, 1984). Brooks (1984) does not predict all the instances of 
an object but rather quasi-invariant features. Lowe (Lowe, 1985) detects 
significant groupings, called perceptual groupings, which are matched 
with similar groupings in the model using a prediction-verification 
method. Mohan et al. (Mohan et al, 1989) also use the idea of perceptual
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organisation to extract 2D high level structures e.g. rectangles, for 
stereovision. Knowledge representation is a major concern for all these 
systems. The data are structured in the form of frames, schema or graphs 
corresponding to a particular view-point. Perceptual groupings are 
performed on the image to obtain a high level of representation and 
reduce the combinatorix at the matching stage. In spite of finding 
viewpoint invariant features, the viewpoint dependency is inherent to 
the type of representation, which remains 2D.

Ballard (1982), Quan et al. (1989), Kanakani (1989) and other
researchers interpret perspective transformation for constraining the 
set of viewpoints. This is a very important constraint which relies 
heavily on statistical inference, i.e. lines in the image are unlikely 
to meet at the same point by accident. The matching is still performed 
at a 2D representation but exploiting additional viewpoint invariance 
properties such as the bi-ratio (Quan et al, 1989) or the angle
relationships (Shakunaga, 89).

Kanade (1981) used parallelism as well as symmetry considerations to 
recover the 3D shape of objects. Nelson et al (1985) proposed a 
least-slant-angle heuristic to predict the orientation of an object 
face. The construction of an object using such techniques is based on 
connectivity criteria. For a simple scene, it may be inferred from 
connectivity in the image using a simple criterion, but for a complex 
scene errors are likely to occur and it is important to minimize them.

Problem definition

Image interpretation is concerned here with complex indoor scenes. 
For such scenes, the notion of an object, e.g. a wall or a window, is 
ambiguous. For example the window frame may be either part of the wall 
or part of the window. The scale choice may also modify the object
definition. Most of the time only part of the object is visible. To
allow a large degree of flexibility at the matching stage, a high level 
representation of the image knowledge is required.

Triplets of perpendicular directions have been found in the image. The
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best scored triplet is assumed to correspond to the main directions of 
the scene, e.g. the wall limits. All lines classified with these 
directions have a known orientation in the space ; only their depth is 
unknown. Proximal lines are grouped in order to form rectangles, 
vertices or edges, which are further grouped to form still higher-level 
configurations. This construction relies very much on connectivity : if 
two segments are close in the image they are likely to be connected in 
the scene. Because of numerous hidden faces and thereby numerous 
accidental proximity relationships in the image, many errors may occur. 
These errors are minimized by defining the connectivity criterion by a 
likelihood ratio test.

The construction of these 3D high-level structures is organised in a 
hierarchical way. If a grouping is false, sub-groupings may still be 
correct and therefore must be remembered. The representation used is (as 
much as possible) viewpoint and scale invariant so that matching is 
straightforward. The more complex the 3D structures, the more
constraints on the matching. The only unknown parameter of these 
structures is depth (i.e. scale), which will be deduced from matching in 
a latter stage. The viewpoint invariance of parameters and relations is 
inherent to the type of representation and thereby is fully exploited in 
a natural way.

Section 6.2 describes the connectivity criterion used for the 
construction. Then, section 6.3 describes the set of 3D structures 
built. The method has been tested on indoor scenes and the results are 
discussed in section 6.4.

6.2 Connectivity

First, close lines of the same class, i.e. lines which are parallel 
in the 3D world, are merged, in order to restore the connectivity of 
long edges and to simplify the representation. A set of 3D parallel 
lines merged together is called a linear structure, the representation 
of which will be detailed in section 6.3. Then, perpendicular linear 
structures, assumed to be connected in the scene, are grouped in order
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to form higher level structures. The connectivity criterion associated 
with each case is defined in this section, followed by a desccription of 
the merging process.

6.2.1 Merging lines parallel in the 3D world

Merging close lines which are parallel in the 3D world aims at 
restoring the connectivity of the edges which may have been broken by 
thresholding of the maxima of the gradient, or by eliminating small 
segments after having extracted the lines (see chapter 4). This merging 
process also aims at simplifying the final representation. Indeed, close 
parallel lines may be hypothesized to belong to the same 3D structure 
and would better be represented by one line. For example, the mouldings 
of a frame door may generate numerous close parallel lines in the image, 
which are useless for the semantic interpretation of the scene and 
unlikely to be present in the model of the scene. When restoring 
connectivity, the segments cannot be overlapped, but when simplifying 
the representation they may overlap (figure 6.2.1.1).

without overlapping with overlapping

Figure 6.2.1.1 : Example of close parallel segments, with and without 
overlapping.

The restoration and simplification processes are complementary. The
criteria for restoring or simplifying are based on two different
decision variables, D and D , where D is the transverse distanceo 1 o
between the segments candidates and is the longitudinal distance
between these two segments (see figure 6.2.1.2). The straight line
segments are candidates for the edge restoration if D * 0, otherwise
they are candidates for the simplification process.
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D0
y

D-|=0

Figure 6.2.1.2 : Definition of D and Do 1

Two straight line segments and S a r e  merged if they satisfy both 
tests for the restoration (if D^O) and the simplification.

Definition of the simplification test

The simplification process is arbitrary by nature, since it is not
associated with an uncertainty but with details unecessary to the
interpretation. Close parallel lines are assumed to belong to the same
3D structure, but little information is available to quantifying
"close". In order to control the process, an upper boundary, k<r , of thed
distance between such "close" lines is fixed, where <r is the equivalent
of an uncertainty and is defined in the following. As the simplification
test is performed with colinear segments assumed to belong to the same
edge, it should also deal with the transverse uncertainty. Thus, by
similitude with the distribution of the transverse uncertainty, the
distribution of the distance between two lines belonging to the same 3D
structure is assumed to be a Gaussian law, with the uncertainty cr̂.
Therefore cr is assumed to be at least equal to V2*cr (as the variance a o2of the transverse error is 2^), where cr̂ is the transverse uncertainty 
defined in section 4.4.1. The likelihood test may now be defined.

Let the straight line segments S and S’ correspond to (D ,D =0). Theno 1
the hypothesis H is defined by : the segments S and S’ are close 
parallel straight line segments in the scene. If the hypothesis H is 
verified, then, as been seen previously, Dq is assumed to obey a

- page 177 -



High-level 3D configurations

Gaussian law with variance cr . Otherwise, D is assumed to correspond tod 0
a uniform law. Thus the densities of probability p and p  ̂are

D2
p (D ) = ------------- exp (---—  ) and p (D ) = ---- (6.2. 1.1)

1 0 -  , n z— i n  2 2 0 .erf(k) VZn cr Zcr k crd d d

To estimate the ratio p(H)/p(H), H has to be made explicit. The 
segments S and S’ verify H if, either

- one of the segments or both have been misclassified,
- or the two segments are close in the image by chance.

2

Let Hq be the hypothesis that the straight line segment S has been 
correctly classified (respectively for S’), and let be the
hypothesis that S and S’ are close in the 3D space. Then, p(H)/p(H) is 
equal to

p(H)
p(H)

p i H j p i H ^ p t ^ )

p (H )(p(H )p(H’)+p(H )p(H’)+p(H )p(H’)) + p(H )1 0  0 0 0 0 0 l

(6. 2. 1.2)

The probabilities p(HQ) and p(H^) are given by the scores associated 
with the classification of S and S’ with the class of 3D parallel lines 
studied (see section 5.3). The probability of is deduced from the 
probability of H . To compute the probability of Ĥ , two cases island 
are considered whether it is (case £ ) or it is not possible (case 
to have two segments S’ and S" lying on the same side of S and at the 
same distance Dq from S, According to the statistical model defined in 
section 4.2, the centroid of the segments are assumed to have a uniform 
distribution in the image. Let P be the centroid of S, B be the band of 
the image parallel to S with centre P and width kcr , and n’ be the 
expected number of straight line segments in the band B of the image. 
The probability of having a segment S’ in B such that D = 0 is

p(H ) = 1 - (1- n’ U ~lV V  (6. 2.1.3)l n n

where h is the height of the band B. As n’ is proportional to the 
surface of the band B, n’k/h = n cr /A, where A is the area of the image.
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In the case i? , this probability is equal to

cr U+V)
p(H ) = n k — — T----  (6.2.1.4)l A

The real case is intermediate between cases £ and £ . If <r = ,1 2 d o
then the case to consider is ? , if o' is very large then it is W .2 d  1
However, if kcr (£+£’)/A is small, then eq. 6.2. 1.3 and 6.2. 1.4 are d
equivalent. Then when pCH^) is small enough, eq. 6.2.1.4 is valide, 
which is supposed to be the case here. Thus, the LR test is completely 
def ined.

From eq. 6.2.1.2 and 6.2.1.4, the likelihood ratio test defined is 
equivalent to

D2
—  s T(n,M\p(H ),p(H’)) (6.2.1.5)2 0 0 O'0

where T decreases when n, l and V increase, and increases when p(H )
and p(H^) increases. The more numerous the class, the more selective the
test. This allows the relative importance of each class in the image to
be kept. As pCH^) and p(H^) also depends on l and V , T decreases when
n, i and i’ are large enough and increases when V and V’ decrease, V and
V’ being the decision variables associated with S and S’ for classifying
them with the vanishing point considered. Therefore if V and V’ are
small, the quality of the parallelism of the corresponding 3D lines is
likely to be very good, then the lines are likely to belong to the same
structure and it is normal to have a tolerant test for D . If theo
segments are long, then they should be very close in order to be merged. 
This is very good, since if the segments are long, they usually are very 
significant and to merge such parallel segments is dangerous because the 
risk that they belong to different structures is relatively high (i.e. 
p(H^) is high) and merging them would result in a substantial error of 
localisation for one or the other structure. It is more natural to group 
the small segments around a large one, than to group large segments 
together. Therefore, the test defined behaves in a very satisfactory 
way.
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Definition of the restoration test

Let the straight line segments S, S’ correspond to (Dq, D^O). The
hypothesis H tested is : the straight line segments S and S’ are
colinear and connected in the 3D world. If H is verified then D is1
assumed to correspond to an exponential law with expected value 2<r , 
being defined in section 4.4.1, but if they are close by chance, then Di 
is assumed to correspond to a uniform law. For avoiding the difficulties 
due to the image bound, the set A of pairs of segments considered here 
is such that (D^kcr^, D <2k<r ), the segment S and the endpoint 
considered being fixed. This has the additional advantage of fixing an 
upper boundary to the possible values for D , useful when the 
segmentation error risk is very low. The value of k is such that if A is 
known to contain one pair, the probability that it contains an 
additional pair is nearly zero. Typically k is equal to 2, corresponding 
to the risk of missing a pair of segments connected in the 3D space 
equal to 5%. Thus, p̂  and pcorresponding to H are

1 _ -k D
p (D ) = -----  exp (-— —  ) and p (D ) = -- ---  (6. 2. 1.6)1 1  2 l „ .<r <r 2 k o'i i  l

The ratio p(H)/p(H) is given by eq. 6.2. 1.2, where Hq and are 
defined as previously and H is the probability of S and S’ belonging to 
colinear structures. To compute the probability of H , two cases to and 
&2 are considered whether it is (tâ ) or it is not (t? ) possible to have 
two segments S’ and S" lying on the same side of S and at the same 
distance D from S. According to the statistical model defined in 
section 4.2, the centroids of the segments are assumed to have a uniform 
distribution in the image, so are the set of the first endpoints and the 
set of the second endpoints, where the first endpoint is defined as the 
endpoint closer to the vanishing point. Let a be the area of the 
rectangle with centre P, length kv̂ cr̂  and width kcr . In case t? , if a is 
assumed to contain one first endpoint, then the probability for a to 
contain one second endpoint is

p(H ) = 1 - (1--?- )n (6.2. 1-7)1 A
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where A is the area of the image. In case this probability is equal
to

p(H ) = n (6.2. 1.8)l A

The real case is intermediate between cases £ and If = V̂ cr̂ ,
then the case to consider is S , if it is very large then it is tS .

2 d  1
However, if a/S is small, then eq. 6.2.1.7 and 6.2.1.8 are equivalent. 
Now, by hypothesis a/S is small, so that eq. 6.2. 1.8 is valid and the 
likelihood ratio test is completely defined.

Thus, the likelihood ratio test defined is equivalent to

D2
—  s T(n,p(H ),p(H* )) (6.2.1.9)

2 0 0 O'1

where T(n,po>p^) decreases when n increases, and increases with p(HQ)
and p(H^). As previously, the more numerous the class, the more
selective the test. The less reliable the straight line segments, the
more selective the threshold. It has been seen that the small segments
are associated with a small value for p(H ) in section 5.3, thereforeo
merging two small segments requires a small distance D̂ , which is very 
satisfactory as the evidence for a long linear structure is low in such 
a case. If segments are long but associated with a low score, either 
they have been misclassif ied, or they are unlikely to be exactly 
parallel in the 3D scene and thereby to belong to the same object. In 
this case the LR test is more selective, which is what was expected. On 
the contrary, segments with a high score are necessarily long and with a 
good parallelism, and the LR test is tolerant for D , i.e. the length of 
the gap between them. Once again the LR test behaves in the expected 
way.

Discussion

The definitions of the density of probability p̂  for the 
simplification stage are somewhat arbitrary. Actually, the distribution 
of close lines, corresponding to various details of the same structure
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is unknown. The Gaussian model describes the simplification process, 
rather than a physical reality. However, it is able to deal properly 
with the uncertainty defined by crQ in chapter 4. The exponential model 
associated with the length of the gaps between two line segments of the
same edge is justified in a similar way to the distribution of the
segment lengths (see section 4.4.2).

In the above definitions of the tests, the convergence of the
segments of the same class due to perspective is assumed negligible 
when these segments are close, i.e. Dq is assumed constant. This 
assumption is largely justified compare with the other assumptions 
already made, such as the distribution of Dq for the hypothesis (H^.

The separation of the tests allows emphasis of the importance of the 
endpoints in a connectivity test. It is noticeable that the longitudinal 
merging is easier if the segments are long and that the converse is true 
for a transverse merging, and that it is a satisfactory behaviour in 
both cases.

Thus, because of the simplifications made, the model chosen is not 
claimed to represent the full complexity of the problem of connectivity, 
but is rather a reasonable guide for finding adaptative tests which 
behave in a satisfactory way.

Merging process

Before performing the LR test, the segments are sorted by scores. 
Once two straight line segments have succeeded the LR tests defined 
above, then they are merged by using the Kalman filter, in a way similar 
to (Ayache, 1988). The Kalman filter provides the uncertainty of the 
line parameters and the longitudinal uncertainty of the endpoints is 
still <r .l

6.2.2 Grouping lines perpendicular in the 3D world

The purpose of this section is to define a test for selecting 
perpendicular lines, likely to belong to the same planar structure in
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the scene, e,g. a rectangle. The straight line segments have been merged 
into linear structures, as described in section 6.2.1. Therefore the 
connectivity criterion described here applies to perpendicular linear 
structures.

A similar reasoning to that previously is applied to the distances D 
and D’, between the segment S and S’ (see figure 6.2.2.1). For computing 
the ratio p(H)/p(H), it is considered that two parallel linear 
structures cannot lie in the neighbourhood of interest by construction 
(due to the simplification process, see section 6.2.1). Actually, it is 
not strictly true, since the LR test is not a neighbourhood test, but it 
is sufficient to consider only case t? described in section 6.2.1. 
Again, for defining the LR test, two cases are considered, whether D is 
equal to zero or not (figure 6.2.2.1).

Intersection point lying on S

If the intersection point of the straight line segments S and S’ lies
on S, then D=0. Either it also lies on S’ and D’=0, in which case the
segments are assumed connected in the 3D space. Or it does not lie on
S’, i.e. D’*0. Similarly to previously, D’ is bounded by kv̂is, where is
the variance of D’ . The density of probability pi of D’ is a Gaussian
law with variance <r2( = (sin0)2cr2 + a-2, where 0 is the angle between S
and S’ and cr is the transverse uncertainty of S The density p is t ^
uniform

S

D

Figure 6.2.2.1 : Definition of the distance D and D’ associated 
with the images of 2 perpendicular segments
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P ^ D ’ ) 2 erf(k) , D’2-------- exp (----—
V2n <r 2 crD ’ D ’

(6.2.2. 1)

The ratio p(H)/p(H) is given by eq. 6.2.1.2, where p(H ) and p(HQ) are 
defined as in section 6.2.1 and pCH^ is

k o' tl
p(H ) = n --- 5---  (6.2.2.2)l A

where n is the number of linear structures parallel to S and A the area 
of the image. Thus, the LR test is completely defined

Intersection point outside of the segments S and S’

Supposing the intersection point of the straight line segments lies 
outside of both segments S ans S’, i.e. D*0 and D’*0, let V be (D,D’) 
and Cy the covariance matrix associated with V, equal to the sum of the 
variances associated with D and D’ . The densities of probability are 
defined as eq. (6.2.2.1)

vtc"lv
P (V) = --------  exp (- — l ) p (V) = - - - (6. 2. 2. 3)

erf(k) 27r/det(C )' kv^detiC )'v v

The probability piH^) is now equal to

k2 det(C )
p(H ) = n n’ ---- ----—  (6.2.2.4)1 A

where n is the number of linear structures parallel to S and n’ is the 
number of linear structures parallel to S’.

Discussion

Again, the test is tolerent when there are few structures. The test 
for connecting the linear structures through the endpoints is more 
tolerant than the test for connecting the structures along one of the 
segments. This is due to the probability of false connection which is 
higher in the latter case, which is easy to admit.

The model adopted for p̂  is Gaussian, because it allows the 2D
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round-up effect to be more easily dealt with than by using an 
exponential model (because of the easy generalisation of the Gaussian 
law to the 2D case). Practically, the difference of results due to the 
choice of this law is negligible compared with the difference of the 
results when using various values cr̂. This result must be compared to 
similar results for the relative importance of the shape of the filter 
and the choice of the parameter, described in chapter 4.

Thus, a LR test has been defined for grouping structures assumed 
perpendicular and connected in the 3D world. This test will be used to 
construct higher level primitives, such as rectangles or vertices.

6.3 3D Structures

At each level of the direction interpretation tree (3D direction pair 
of perpendicular directions, triplet of perpendicular directions), it is 
possible to associate 3D structures (3D lines, 3D rectangles and 
ellipses, vertices and edges) by using proximity criteria (figure 
6.3.1).

Parallel and perpendicular 
groupings

3-dimensional
structures

Triplets of perpendicular Vertices and adjacent structures
directions and associated Edges and adjacent structures
lines

Pairs of perpendicular Rectangles
directions and associated "Comb" structures (U,L,T...)
lines and ellipses Circular arcs

Parallel lines Linear structures

Figure 6.3.1: Construction of 3-D structures 
from the direction interpretation tree.

The perpendicularity of the principal directions are clearly not 
perfect. As the representation looked for aimed at being symbolic,
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including forms such as rectangles and rectangular corners, it is 
necessary to correct for the lack of perpendicularity of the directions 
involved. This correction is achieved by a LMS method applied to the 
directions found, using the covariance matrices associated with them 
(they are deduced from the vanishing points covariance matrices). Thus, 
the parallelism or perpendicularity involved in the structures described 
in the following is quasi perfect.

In the following, the structures are described in the 3D scene with 
respect to the camera coordinate system. The only reference to the image 
is concerned with the connectivity test.

Linear structures

Main directions of the scene are supposed to be known from the method 
described in chapter 5 and image lines are associated with each of them. 
A merging process of these lines allows 3D linear structures to be 
built. A linear structure is assumed to represent a 3D straight line 
segment present in the scene.

Two types of linear structures are created, the linear structures 
obtained from a set of close parallel segments in the image and the 
linear structures obtained from an alignment of points with a vanishing 
point. The latter structures are called subjective structures.

The former type of linear structure is obtained by merging close 
segments which are parallel in 3D space, by using a merging process 
similar to the process described in (Ayache,1988). Two segments are 
parallel in the 3D space if they are classified with the same vanishing 
point and they are close if they succeed the likelihood test defined in 
sub-section 6.2.

When numerous and close parallel lines end on the same perpendicular 
line, the round-up effect of the edge detector prevents the 
perpendicular line from being extracted. To recover such lines which may 
have an important part in the scene (they often are the limit of a wall 
or a main structure) a linear structure has been created called a

High-level 3D configurations
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subjective linear structure. A subjective linear structure is obtained 
by accumulating the direction of the segments defined by the end points 
of an image segment and a vanishing point. Only the image segments 
classified with a direction perpendicular to the direction defined by 
the vanishing point are considered (figure 6.3.2).

A linear structure is defined by its orientation, its centroid 
position and its length within the camera coordinate system. These 
parameter values are deduced from the location of the corresponding 
segment in the image and the vanishing point coordinates. Only the scale 
of this representation, i.e. the depth of the structure, is not known. 
Let (C.r^J^.K*) be the coordinate system associated with the camera, 
where C is the optic centre, (C,K~*) the optic axis and (C,T^) and (C,X*) 
the axes parallel to the image coordinate system. Furthermore, let f be 
the algebraic distance from C to the image plane and 0 the principal 
point (i.e. cd = f K4 ). A 3D linear structure is represented in this 
coordinate system by :

Linear structure : associated vanishing point V ; = 0^ + f

V

d0

subjective line

Figure 6.3.2 : Example of a subjective linear structure

Orientation

Centroid/depth CÔ _ ttt 
d f

Length/depth L,
d

I AB I ICVI
f I MV I

Depth d = unknown
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where A and B are the end points of the image segment corresponding to 
the linear structure, and where M is the mid-point of the segment AB 
(M is not the projection of G). The centroid location and the length are 
represented by the "reduced" coordinates, i.e. the ratios of the 
centroid coordinates to the depth, and the "reduced" length, i.e. the 
ratio of the length to the depth. By definition the depth is the third 
centroid coordinate ; it defines the scale of the above representation.

Therefore, a set of close segments in the image, supposed parallel in 
the 3D scene, has a 3D representation parameterized by depth. This 
representation enables the correction of the distortions due to the 
perspective, e.g. recovering of the real centroid of the segment.

Circular structures

An ellipse in the image is assumed to be the projection of a circle 
in the scene. This circle is assumed to be lying in one main plane, that 
is a plane associated with two principal perpendicular directions (see 
section 5.5).

A circular structure is a 3D arc characterised by two directions, its 
centroid location and its radius. These parameters are deduced from the 
location of the ellipse in the image and the associated vanishing point 
coordinates.

Circular structure associated with the vanishing points Vi and

Orientations i rl

2
Centroid/depth CCr _ 0Ç + f-̂

d f

Radius/depth R _ IABI ic v i |
d 2 f |MVi |

Depth unknown

where A, B, M and q are in the image and are defined in section 5.5 and 
the orientations are defined as above.
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Rectangular structures

There are 2 types of rectangular structures : the "comb" structures 
including U,L and T shape structures and the rectangular structures.

The "comb" structures are formed from a linear structure, called the 
principal structure, and the perpendicular linear structures that are 
in close proximity, called the "teeth". Two linear structures are close 
if they succeed the LR test defined in section 6.2. There is no notion 
of a “cross" structure, therefore a "comb" structure is the set of the 
principal linear structure and the associated perpendicular structures 
(the teeth of the comb) lying in a half plane defined by the principal 
structure. Two "comb" structures are created in the case of a cross 
configuration (see figure 6.3.3).

Figure 6.3.3 : Example of comb structures

The "comb" structures are much less numerous than the set of specific
structures such as L,T,U and X shape structures (0(np) for L, T and X

2shapes or 0(np ) for U shapes against at most 2n for the comb 
structures, where n is the number of linear structures associated with 
the direction considered and p is the number of linear structures 
associated with a perpendicular direction). They are more significant as 
they usually represent parts of a plane and not any specific structure, 
the detail of which would often be omitted in the model.

The comb structure is the basis of the following construction, i.e. 
any structure described in the following is a set of comb 
structures which have a common linear structure in a way which will be 
described later. Therefore, the further reasoning is exclusively in 3D 
space.
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A rectangular structure is defined by two comb structures such that 
the principal linear structures associated with them are parallel and 
they have at least one tooth in common. If they have several teeth in 
common, only the largest rectangle is generated.

A comb or rectangular structure is characterised by its two 
directions, its centroid location and its length and width. That is to 
say :

Comb or rect structure associated with the vanishing points V and

orientations

centroid/depth

lr1
0 2̂
câ

half plane 

{d /depth}

lengthl/length2

area/depth2

depth

where the variables are :

+1 or -1 (in case of comb structure)

d ■— d (in case of comb structure)1 n

A = L /L 1 2
a = L L /d2 1 2
d = unknown

- comb structure : {d } are the algebraic distances between thei
perpendicular structures and the centroid of the principal structure 
(in the 3D space), L is equal to d -d^ and L  ̂ is the maximum length 
of the teeth, where the teeth are consistently scaled (figure 6.3.4). 
Here the centre is the centroid of the principal linear structure.

- rectangle : L is the length of one edge and L^ is the length of the 
other edge, with the "comb" structures consistently scaled. The point 
G is defined from the centroid G of one edge (corresponding to the 
direction and the length L ) such that GC^ is parallel to with 
a length equal to L /2. It is calculated using the 3D representation 
associated with the comb structures.
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Figure 6.3.4 : Consistent scaling of a tooth of a comb structure 

Edges and vertices

An edge is formed by two perpendicular comb structures which have the 
same principal linear structure. It is characterised by this linear 
structure, the two other perpendicular directions and its concavity. It 
is possible to hypothesize the concavity of the edge by considering the 
relative positions of the linear structures and the associated vanishing 
point in the image (see figure 6.3.6). When two directions are parallel 
to the image, the concavity is undetermined, case rare since the 
vanishing point associated with the third direction should be exactly at 
the principal point location (let us remember that, now, the 
perpendicularity of the directions is quasi perfect). An edge is not 
necessarily bounded by one or two corners as no connectivity criterion 
is applied to the respective ends of the comb structures.
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Figure 6.3.5 : Example of an edge built from 2 comb structures

A vertex is defined by a triplet of consistent perpendicular comb 
structures, i.e. each principal linear structure is a tooth for the 2 
other comb structures. It is possible to hypothesize the concavity of 
the vertex and the existence of a hidden face by considering the 
relative positions of the linear structures, the vertex and the 
associated vanishing point in the image (see figure 6.3.6).

V” V”

Figure 6.3.6 : Position of the vertex according to the orientations of 
the edges.

A vertex is characterised by :
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Vertex structure associated with the vanishing points V ,

orientations U

U'

U'

V and V 2 3

Concavity

3

concave, convex, convex with 1 hidden face

corner/depth

lengths/depth

depth

câ
d

L , L , L1 2 3

d = unknown

where G is the intersection of the 3 principal linear structures, which 
are first consistently scaled. Because of uncertainty of measurement, 
the linear structures do not intersect exactly, and G is found by a LMS 
method.

3D configurations

The hierarchical links are recorded with each structure. For example, 
/a rectangle is made of two comb structures, the identity of which is 
recorded with the rectangle. It is therefore possible to create a 3D 
configuration by propagating the depth information down to the linear 
structures involved, then up to all structures concerned with these 
linear structures (i.e. structures adjacent to the initial structure).

The 3D configurations may be built from any structure. However, it 
would result in numerous redundant 3D configurations. We have chosen to 
build them only from significant features, such as the rectangular 
corners and the rectangles. The propagation of the depth of a 
structure, say with centroid Ĝ , to adjacent structures, for example 
a structure S; with centroid Ĝ , is a simple geometric problem, which 
may be decomposed into a set of elementary problems of two types :
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- either the point G  ̂ is constrained to lie on the line (P,U ), 
where P and U a r e  known (see figure 6.3.4) ;

- or the point G is constrained to lie on the plane (G , U^.U*),
where G , U and U are known.1 1  2

In the first case, the point G’ is the intersection of the lines (P.U"*)2 2
and (0,G2). In the second case, G^ is the intersection between the plane 
(G^ir’.U^) and the line (0,G2). In spite of the connectivity in the 
image, no intersection point may exist because of the correction of the 
perpendicularity. Therefore a LMS method must be performed.

The third coordinate of G^ fixes the depth and hence the scale of the
structure S’.2

The propagation to the adjacent structures may be stopped or carried 
on until the process is stable. The result of this propagation is 
unreliable when there are numerous hidden faces. However, even if 
erroneous at times, the 3D configurations gives information about the 
general organization of the scene. For example, information such as "a 
long vertical structure (e.g. a wall) have been detected on the left" is 
valuable, even if the relative depths of the different objects along 
this structure are wrong. When no hidden face exists on the part of the 
scene studied, then a 3D configuration is a local 3D map, only the scale 
of which is unknown.

Thus, the 3D structures built are hierarchically organized, from the 
linear structure to the 3D configurations, which gives a local 3D 
interpretation of the image in terms of a set of connected symbolic 
forms, such as rectangles and corners.

3D representation

The 3D structures have a symbolic representation defined by a number 
of parameters independent of the depth (the depth is the single unknown 
variable). This representation allows the intrinsic geometric properties 
of the 3D form to be implicitly used. For example,
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- The use of a 3D representation associated with the linear 
structures has very much eased the construction of higher level 
primitives.

- For a "comb" structure the ratio d^d. is obviously viewpoint 
invariant; this property is a natural translation of the 
viewpoint invariance of the bi-ratio used to reduce the 
combinatorix by some researchers (Quan et al, 1989). Moreover, 
only 3 points are required here against 4 in the bi-ratio.

- For a rectangular structure, the ratio of the lengths is 
independent of the viewpoint.

- The variations of the area parameter are bounded by the extrema 
of the depth, i.e. by a relation depending on the ratio of the 
focus distance to the depth of field of the camera.

It has been seen that the lack of perpendicularity of the triplet or 
pair of directions found by the vanishing point detection process must 
be corrected. In order to minimize the effects of a possible error 
during the detection of the vanishing points, this correction may only 
involve the directions concerned with the structure studied. For 
instance, no correction is made for the direction of a linear structure, 
and for the two directions of a rectangle a LMS solution is computed 
only involving these two directions (so that the plane of the rectangle 
is unchanged). In pratice, the orientations associated with the
structures are recorded using labels associated with the triplet of 
directions studied, so that the degree of correction of perpendicularity 
may depend on the results of a further process. For instance, if 
numerous constructed structures may be successfully matched with model 
structures, then the corresponding triplet of perpendicular directions 
is valid, and the correction is made once for all, using the three 
directions. But if there is not enough evidence for a triplet of 
directions, it is better not to propagate the possible errors. In any 
case, the consistency of the representation built is ensured by the use 
of labels.

A 3D structure is visualized by setting the depth to any arbitrary
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value. For convenience, this value has been chosen equal to the focal 
length. The lack of perpendicularity between some structures, such as 
the linear structures, comes from the absence of correction of their 
associated directions (see the previous paragraph), but a rectangle or a 
rectangular corner is always perfect. As an example, a 3D rectangle is 
visualised in figure 6.3.7.

Figure 6.3.7 : Visualisation of the 3D structures

Now, the matching may be performed between two 3D representations, 
which avoids the extraction of the visible features from the CAD 
data-base and the projection of the model onto the image for a range of 
viewpoints and therefore it reduces the combinatorix.

It has been shown that it is possible to extract a natural 3D 
representation of the features extracted from the image by using a set 
of assumptions. The first assumption is concerned with the type of scene 
processed and relies on the validity of the vanishing point detection. 
The second assumption is concerned with the connectivity criteria. These 
criteria are used once for the construction of the linear structures and 
the comb structures. Then, the construction of higher level primitives 
is only concerned with the comb structures, using reasoning in the 3D
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space. This construction exploits the hierarchical links between the 
structures, e.g. structures sharing a linear structure. At the top of 
this hierarchical construction are the 3D configurations which are 
similar to local 3D maps. The 3D geometrical properties of the features 
extracted are intrinsic to the 3D symbolic representation used.

6.4 Results

The approach previously described has been applied to a set of indoor 
scenes of a power plant. The results are qualitative because matching 
with a model has not been performed. Only the most significant triplet 
of perpendicular directions has been taken into account. It has been 
possible to extract numerous significant structures from each image such 
as the door frame, the cupboard frame, parts of the walls and floor and 
corners.

The 3D structures are displayed by using orthographic projections in 
the camera coordinate system. They are back-projected onto the image to 
evaluate the consistency of the 3D location of the structure and its 
projection onto the image.

The entrance to an air-lock is displayed in figure 6.4.1. 107 
segments have been extracted and 116 linear structures, 66 rectangular 
structures and 3 vertices and 4 edges have been constructed. The 
segments are displayed in figure 6.4.2. The linear structures are 
displayed in figure 6.4.3, then the U structures in figure 6.4.4, the 
rectangular structures in figure 6.4.5 and the corners structures in 
figures 6.4.6 and 6.4.7. The depth has been propagated over the first 
adjacent structures in figure 6.4.8. Four connected components have been 
found, the first component represents the air-lock entrance, the second 
a part of the wall and the remaining two the top and the bottom of the 
cupboard. This local interpretation of the scene is the highest level of 
the representation described. It is possible to see how the 
interpretation of the scene has been improved from figure 6.4.3 to 
figure 6.4.8. The back-projection is very satisfactory.lt demonstrates 
that the vanishing point has been accurately detected. The lack of 
perpendicularity between some structures is due to the fact that it has
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only been corrected when necessary, e.g. for computing a rectangular 
structure but not for computing the linear structures.

Two different views of the same scene have been processed ; the results 
are displayed in figures 6.4.9 and 6.4.10. In figure 6.4.9, the shadows 
of the cupboard and a part of the wall behind it have been aligned with 
its doors. This illustrates the risk of error associated with the 
propagation of depth to adjacent structures. An ellipse has been found 
on the second one and has been interpreted as the projection of a circle 
onto a plane parallel to the air-lock entrance. The two representations 
of the cupboard front, associated with different view points (figure 
6.4.12), show that the ratio of the lengths and the ratio dmin/dmax are 
almost identical in accordance with the viewpoint invariance of both 
ratios. The areas and the distances dmin and dmax are similar because 
the camera was approximately at the same distance (along the Z axis) 
from the cupboard.

A different and more complex scene is displayed in figure 6.4.13. The 
interpretation does not clearly show the main components of the scene 
such as the cyndrical tank, the blackboard or the table. Nevertheless it 
shows pretty well the organisation of the space : a wall on both sides 
with an obstacle in front of the tank and some elements on the right 
wall as well as volumetric elements on the ceiling (pipe structures). 
Some linear structures may have either horizontal direction. Both 
alternatives remain in the interpretation. The two parts of the 
horizontal pipe on the ceiling are not really perpendicular. In this 
case, the correction of the lack of perpendicular does not correspond to 
a physical reality and therefore may be subject to discussion. This is 
responsible for the bad quality of the back-projection. It could have 
been decided to correct the lack of perpendicularity only when it is 
low.

These examples show the limits of the interpretation. Shadows, hidden 
parts are subject to mistakes ; however, shadows and hidden parts 
depends on the viewpoint and their mis-interpretation should not persist 
throughout the analysis of a sequence of images. The use of
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perpendicularity may introduce inaccuracy and must correspond to a 
;eliable prior knowledge of the scene. In spite of some mistakes or 
inaccuracy, the interpretation of the monocular images studied gives a 
good idea of the spacial organization of the scene.

Figure 6.4.1 : Initial image

Figure 6.4.2 : Detected lines.
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Figure 6.4.3 : linear structures

Figure 6.4.4 : Comb structures
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Figure 6.4.5 : Rectangles

Figure 6.4.6 : Edges
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Figure 6.4.7 : Vertices

Figure 6.4.8 : Propagation of depth to adjacent structures
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Figure 6.4.9 : 3D interpretation, same scene, different viewpoint
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Figure 6.4.11 : Ellipse interpretation

edtl2d.str

type: Comb structure
orientations: 0.559 0.041 0.828

0.028 -0.998 0.030
G : -31.76 -44.22 250.00
half plane: +1
d , d : 41.6 -42.4 1 2
A : 0.73

2a f : 964 8.0

Figure 6.4.12 : Same model 
viewpoints,

edtlld.str

type: Comb structure
orientations: 0.773 0.036 0

0.034 -0.999
G : 60.55 -42.23 250.00
ha If plane: +1
d , d : 40.5 -44.4

1 2
A : 0.76

2a f : 9454.6

structure under 2 different 
with the depths set to f = 250.
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Figure 6.4.13 : Initial image of another scene

Figure 6.4.14 : Scene interpretation of the scene displayed in figure 
6. 4. 13.

6.5 Discussion and conclusion

A method for constructing 3D structures from straight lines and 
elliptical arcs extracted from an image has been described in this 
chapter. Two or three principal perpendicular directions in the scene 
are supposed known, and the features considered parallel to them in the
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3D space (it is the subject of chapter 5). The construction of the 3D 
structures relies on the connectivity of the features in the 3D space. 
Since connectivity in the image is not sufficient to ensure connectivity 
in the scene, a likelihood ratio test has been defined in order to 
optimize the probability of a correct decision. As there is redundancy 
of the features, linked to the unnecessary details of the structures 
considered, e.g. the mouldings of a frame, close structures have been 
grouped in order to simplify the final representation. Albeit the LR 
test is based on statistical models which are somewhat arbitrary (e.g. 
the distance between "close" structures is defined by a Gaussian law) it 
behaves very well, as it simplifies the representation around the 
longest, and therefore the more reliable, structures.

It has been shown that the representation of the knowledge contained 
in the image in the form of a hierarchical tree of 3D structures is very 
powerful for exploiting viewpoint invariant properties and geometrical 
relationships between the image features in a 3D image interpretation 
process. It relies heavily on the robustness of the vanishing point 
detection and the classification of lines.

The 3D representation of the information extracted from the image 
allows the matching process to be performed between similar 
representations. The combinatorix is limited by the -high level 
representation of the complex structures. The matching strategy may be 
based on a prediction-verification paradigm and its feasibility is 
fundamentally the same as Lowe’s method because the information 
available is the same ; only its representation differs. The 
representation described in this chapter is a powerful and homogeneous 
data structure which implicitly contains Brooks’ quasi-invariant 
features, Lowe’s perceptual groupings and Quan’s bi-ratio property.
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CHAPTER 7

TOWARDS A CAD DATABASE

7.1 Introduction

This chapter aims at illustrating the efficiency of the 3D 
representation described in chapter 6, on a particular problem : 3D map 
construction. Only the aspects relevant to the work described in the 
previous chapters are fully studied in the following sections ; the 
matching process required for the construction is only examined with 
respect to its feasibility. Then, the constructed map is transferred to 
the database of ROBCAD, a CAD software for robotic simulation which uses 
a b-rep representation. Matching with PDMS (the CAD database used by EDF 
for storing a representation of a nuclear plant) is demonstrated. The 
construction of a 3D map has been tested on an indoor scene of a power 
plant (where the matching process has been done by hand).

Several views of the same scene are used to infer the relative depth 
of the structures, in order to build a symbolic 3D map of the scene, the 
scale of which remains unknown. The relative positions of the cameras 
for the different views are not known a priori, but are given by the 
process with respect to the constructed map. Thus, the same camera in 
motion may be used for the different views (which may be recorded on a 
video tape). This makes the acquisition procedure very simple.

The strategy is the following. The coordinate system of the 3D scene 
is defined such that its origin is located at the origin of the first 
viewpoint and its axes are parallel to the main directions of the scene. 
The first view is called the principal view and a second view of the 
scene is used for the determination of the relative depths of the 
structures of the principal view. From this process, the location of the 
second view in the scene coordinate system is known. The second view 
then becomes the principal view, the structures of which are located by 
using a third view, and so on. Up to now, there is no possible
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contradiction between the different views, during the construction of 
the map. This is the object of further work. At the end of the process, 
a 3D map of the scene, in terms of rectangles, corners, vertices and so 
on, has been built with respect to the scene coordinate system 
previously defined. The scale of the whole representation remains 
unknown, but the different elements of the map are consistently scaled, 
by contrast with the 3D configurations described in chapter 6.

Matching 3D structures from different views is required. It is 
demonstrated that the 3D representation adopted should make it easier, 
but no precise matching process is described, as it will be the subject 
of further work.

7.2 3D MAP CONSTRUCTION

General principle

Classically (e.g. (Ayache, 1988; Marapane et al, 1989)), the depth of 
a structure (e.g. edge, region) is determined by triangulation of the 
images of this structure, when using different viewpoints. This requires 
matching the images corresponding to the same structure in the 3D world. 
Here, the 3D world has already been interpretated with respect to the 
coordinate systems associated with the viewpoints. The relative depth of 
the structures is computed in two steps :

- determination of the second viewpoint location,
- determination of the depths of the structures of the principal 
view matched with structures of the second view,

- propagation of the depth to the 3D configuration extracted from 
the principal view.

Since the three main directions of the scene are supposed detected by 
the process described in chapter 5 for each viewpoint (if only two 
directions have been detected, the third one is automatically deduced 
for completing the orthogonal triplet), and the camera is supposed 
approximately up-right, the 3D structures extracted of each view may be 
represented in a coordinate system parallel to the main directions of
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the scene, by simply performing a rotation. The origin of one system 
with respect to the other remains to be determined. This may be achieved 
by matching a pair of connected points or a rectangle.

Rotation

First, let us remark that any linear geometrical transformation (e.g. 
a rotation, a translation or a change of scale) is straightforward when 
using the 3D representation described in chapter 6.

The rotation matrix is given by the main directions of the scene, Û , 
which are the unit vectors of the new coordinate system. This system is 
oriented as follows : (U*, 0"*, 0"*), where U* is the vertical direction1 2  3 2
oriented towards the bottom and U is an horizontal direction oriented3
towards infinity (opposite to the camera) (figure 7.2.1). The choice of 
the horizontal direction corresponding to is made with the first
view, e.g. the one corresponding to the vanishing point the closest to 0 
or such that xy>0, if there is an ambiguity. The correspondence of the 
horizontal directions between two views follows the same principle. 
Whether there is a vanishing point close to the principal point of the 
image and the other one is at infinity then the correspondence is 
straightforward ; or both vanishing points are at similar distances from 
the principal point and they appear in the same order on both views. 
Thus, the 3D structures corresponding to both viewpoints studied are now 
represented in coordinate systems if ̂ and if parallel to the main 
directions of the scene and parallel between themselves (figure 7.2.2)
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Figure 7.2.1 : Orientation of the axes associated with 
the scene coordinate system

Figure 7.2.2 : New coordinate system associated with 2 viewpoints, 
(top view).

Translat ion

Let 0 and 0 the origins of if and if i.e. 0 and 0 are the optic 1 2  1 2 , 1 2
centre of the fisrt and second camera. The origin 0  ̂ of the second 
viewpoint coordinate system with respect to the coordinate system if

must be determined. The coordinates of 0 are determined by matching two
2
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pairs of connected points or two rectangles extracted from each view, 
Two pairs of connected points (typically two rectangular corners
connected by a linear structure) or two rectangles may be matched if 
they have same directions and relative sizes and locations consistent 
with the set of possible displacements (the displacement is limited as 
both views must be comparable). As the scale cannot be known without 
additional information on the displacement, let the depth of this
structure be fixed for the principal viewpoint. From the equality of the 
lengths in the previous matching, the scale and therefore the depth of 
this structure with respect to the second viewpoint is known. Its
representation in if is then updated. Let (respectively G2) be the 
centroid of the structure with respect to if (respectively i f , the 
origin 0^ is given by

0“0* = GG~* (7. 2. 1)1 2  1 2

For example, the rectangle 9? , extracted from the first view, is
matched with the rectangle extracted from the second view. This
means that their orientations must be identical, with the same ratio A
of the edge lengths (i.e. parameter L^/L^) ; moreover the sizes and
locations must be consistent (same magnitude). The depth of iR is fixed

2to d1=d- From the parameter a = area/depth , the relative scale of 3? is 
found and therefore the depth of R

The centroid G , for i=l and 2, is updated

G --» G* ; o t ’ = d  O l  (7.2.2)
i i i i i l l

Since by hypothesis G^ = G^, the origin 02 is given by

CTO* = (TCP* - OlT* (7.2.3)
1 2 2 2 1 1

Thus, the location of the second viewpoint is known with respect to the 
first one (the previous example shows how simple this determination is 
when using a 3D representation of the structure). All the structures
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extracted from the second viewpoint are now represented in the scene 
coordinate system if centred at 0 .

Map construction

The structures of both views are represented with respect to a unique
coordinate system, the scene coordinate system. All types of
structures are considered. The 3D structures of the principal view have
one degree of freedom, i.e. the depth from 0 , which is eliminated by
matching with the corresponding structure extracted from the second
view. This matching is highly constrained ; indeed,the structures should
still have the same directions, consistent parameters and locations.
Moreover 0 G >, 0 G > and 0 0 > should be coplanar, that is to say the
associated determinant should be zero (this is the epipolarity
constraint). The intersection point of the lines(0 ,0 G )) and (0 ,0 G >)

1 1 1  2 2 2
is the centroid of the structure.

d CTcT* - d CTG^ = ÜU* 
2 2 2  1 1 1  1 2

(7.2. 4)

The system is overdetermined (two unknown variables, d and d , andl 2
three equations), which is dealt with by using a LMS method, which also 
allows the uncertainty of the input data to be taken into account.

Propagation

The locations of the matched structures with respect to the scene 
coordinate system are known. The depths of the located structures are
now propagated to the 3D configuration to which the structure belongs.
This process is only applied to the structures corresponding to the 
principal view in order to avoid the propagation of errors, as it has
been seen that 3D connectivity from a single view is unreliable. At the
moment, there is no process for contradiction, but it may be noticed 
that this process is very important for determining the reliability of 
the constructed map. Indeed, if the location of a structure is confirmed 
in the process of several views, its reliability rapidly increases.
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Conclusion

An unsealed 3D map of the scene has been built, using a number of 
views without reference to the relative positions of the viewpoints. 
Typically, the acquisition of such a sequence is done by a camera in 
motion and may be recorded on a video tape for off line processing. It 
has been seen how elementary the problem becomes when using the 3D 
representation described in chapter 6. Furthermore, the map constructed 
is of a high level, since it is in terms of sets of 2D or 3D geometrical 
forms, hierarchically organized and using a symbolic representation. 
During the construction of the 3D representation, the forms extracted 
have been rectified in order to correspond to an ideal world, such as 
represented in a CAD database, where the geometrical relationships, e.g. 
perpendicularity or parallelism, are supposed to be perfect. As a 
consequence, the map is not accurate, but is meant to describe the 
general organisation of the space in a qualitative way.

7.3 Towards a CAD database

The processing for extracting the 3D maps described in the previous 
sections is referred as TIMI (Three-dimensional Interpretation of 
Monocular Images). The representation of the scene extracted by TIMI is 
compared with the representation used by two CAD software packages, 
ROBCAD (Technomatics) (the CAD software used by EDF for robotic 
simulation) and PDMS (CAD Centre) (the CAD software used by EDF for 
storing a representation of the nuclear plants).

The representation extracted by TIMI is surfacic, each facet being 
described in a symbolic way. The database of ROBCAD allows the 
representation of surfaces, described in a symbolic way, and the 
representation of volumes in terms of polyhedrons, the facets of which 
are represented by their corners. PDMS describes only volumetric 
elements, by using a symbolic representation.

The level of the representation extracted by TIMI is "intermediate" 
between the levels of ROBCAD’s representation and PDMS’s representation.
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Therefore, at this stage of TIMI’s development, it is possible to 
convert the maps extracted by TIMI into ROBCAD objects, and it is 
possible to extract a TIMI representation from a PDMS database . The 
conversion TIMI— >ROBCAD is trivial. The conversion PDMS— >TIMI requires 
the extraction of the plane faces from the volumetric primitives. There 
are eleven primitives, symbolically represented, so that this extraction 
is quite simple. Matching between similar primitives (i.e. rectangles, 
edges, vertices, circular arcs) is now possible (figure 7.3.1). If model 
primitives remain unmatched, then they may be matched directly with comb 
structures, by using the relation "is a part of" (e.g. "may an extracted 
comb structure be a part of a model rectangle?"). The conversion of a 
PDMS model to a TIMI model should be limited to the "extractable" 
primitives, e.g. primitives parallel to the three principal directions 
of the room, if known. As in section 7.2, matching a pair of points or a 
rectangle enables the determination of the transformation between the 
model coordinate system and the TIMI map coordinate system. The depth 
computed by the process described in section 7.2 is used for matching 
purposes, but is updated by the model in case of success. If one image 
is used, matching can still be done in the same way as in section 7.2.
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Figure 7.3. 1 : PDMS/TIMI matching process
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The map constructed Is very incomplete. However, this is not a 
drawback when matching with a CAD database, as it reduces the 
combinatorix. Actually, the ideal case is to have a particular 
configuration of a minimum number of primitives, and in that respect 
circular arcs may be very good cues.

It has been seen that the map constructed may be interfaced with the 
CAD databases used by ROBCAD and PDMS. The feasibility of a matching 
process with PDMS’ database has been discussed.

7.4 Results

Three views of the same scene have been acquired using a camera in 
motion and have been recorded on a video tape. The processing of these 
views have been studied in chapter 6 (figures 6.4.1, 6.4.9 and 6.4.10) 
and the results have been displayed in figures 6.4.8 to 6.4.10. The 3D 
map extracted is displayed in figure 7.4.1. The matchings of the 
rectangles corresponding to the cupboard and the pair of points 
corresponding to the left edge of the door have been performed as 
follows. The rectangle and the pair of points have been chosen by hand 
on the first view and possible candidates on the other views have been 
searched for by filtering on the parameters. For each structure, only 
one candidate (or no candidate) has been found in the other views. The 
image at the bottom right represents the perspective projection of the 
constructed map from a viewpoint parallel to the scene coordinate 
system. The viewpoints are displayed as the projection of a 3D rectangle 
centred at the optic centre. The scene is correctly represented : a 
cupboard on the left wall lying at some distance from the front wall, 
the door and the begining of the corridor on this wall. Details have not 
been properly interpreted, such as the meter lying on the front wall 
nearby the door. The end of the face wall is aligned with the wall 
behind the cupboard and the base line of the wall lies in the same plane 
of the base line of the cupboard, although they belong to unconnected 
configurations in all views. This demonstrates the fairly good quality 
of the reconstruction.
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The ROBCAD version of the extracted map is displayed in figure 7.4.2.

II

Figure 7.4.1 : 3D map of the scene (a camera is represented in the
3D space by a small square parallel to the image plane 
with the centre located at the optic centre)

it
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Figure 7.4.2 : same map in ROBCAD
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7.5 Discussion and conclusion

It has been seen how to use the 3D configurations described in 
chapter 6 for the construction of a 3D map. The process appears to be 
extremely simple, once matching of 3D structures from the various views 
has been performed. The matching process has not been fully implemented, 
but it has been seen that it is highly constrained. This is due to the 
high level of the interpretation of the scene for each view. As a 
consequence, the combinatorix of the matching is very much simplified.

The epipolarity constraint is exploited by checking the value of a 
determinant, the bi-ratio property is exploited by checking the equality 
of the parameter L^/L , the consistency of the directions of the 
structures matched is trivial to check, the consistency of locations and 
sizes is checked by giving upper and lower bounds' on the relative 
variations of the parameters centroid/depth and size/depth (deduced from 
the admissible displacements of the camera between two views of the same 
scene). The simplicity of these comparisons results from the fact that 
the geometrical properties linked to the 3D consistency of the scene are 
intrinsic to the representation used. Moreover, 3D representation eases 
any geometric reasoning, such as merging similar structures, rotation, 
translation or change of scale.

The construction does not require the prior knowledge of the 
viewpoint location. Therefore, the calibration process is limited to the 
acquisition of the intrinsic parameters of the camera, which may be done 
once only (sometimes they are given by the constructor). However, the 
scale of the representation cannot be known. This does not seem a 
serious drawback as the knowledge of the size of one structure allows 
its determination.

The representation described is intermediate between ROBCAD’s 
representation and PDMS’ representation. Therefore, it has been possible 
to interface it with ROBCAD, and it has been seen how PDMS database 
could be used for matching.
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The accuracy and the degree of detail are clearly limited by the type 
of features extracted (only in three perpendicular directions and mostly 
straight line features), by the performance of the matching process and 
by the corrections made for ending up with an ideal schema of the scene. 
However, it has been seen on an example that the quality of the 
reconstruction is good when the cubic model is appropriate. Moreover 
this ideal representation is an advantage when matching with a geometric 
model, as it reduces the combinatorix and simplifies the calculations. 
Thus, this chapter illustrates the possibilities of a high-level 3D 
representation of structures from a single view but does not validate 
an accurate system of 3D map construction.

The 3D interpretation of an indoor scene has been achieved from 
monocular vision with unknown viewpoints, and its result is a CAD 
database object.
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CHAPTER 8

DISCUSSION AND CONCLUSION

8.1 Summary o f  the method

A process for 3D interpretation of a scene from a single image has 
been described. The interpretation has relied upon geometrical
properties of the scene, e.g. parallelism and perpendicularity of 
straight line borders, and the knowledge of the perspective 
transformation.

The perspective is interpreted, first by searching for the vanishing 
points, then by classifying the straight line segments and the 
elliptical arcs extracted from the image with these vanishing points. 
The straight lines of the scene have been assumed to be parallel to 
three principal perpendicular directions. Pairs and triplets of
vanishing points corresponding to perpendicular directions have been 
selected in order to reduce the number of false vanishing point 
candidates. Thus, the 3D orientation of segments and circular arcs of 
the scene has been determined.

From this stage, the interpretation has been carried on in the 3D 
space, with respect to the camera coordinate system ; the only reference 
to the image has been for testing the proximity of the segments. 
Proximal straight line segments have been merged into a linear structure 
; proximal perpendicular linear structures have been grouped to form a 
comb structure. The comb structures are the basis of the construction of 
higher level structures, e.g. corners and vertices. It has been chosen 
for restraining the process to a linear complexity. The result of the 
interpretation is unsealed 3D local maps, called 3D configurations.

The utilisation of two or more images has allowed the relative 
scales of these maps to be known, resulting in a consistently scaled 3D 
map of the scene, which is of a CAD database type.
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8.2 Discussion

Extraction of the primitives from the image

First, the interpretation of the image is based on the primitive 
"edge". Three edge detectors have been compared with respect to the 
uncertainty of the edge detected in various configurations. An improved 
version (IEF) of the Shen detector (Shen, 1986) has been developed. The 
edges have been approximated by straight lines and elliptical arcs, 
which are the data of the interpretation process.

This stage is primordial to the quality of the further process. The 
smaller the error of localisation, the more selective the various tests 
involved in the process for selecting the features of interest. The 
quality of the detection is also very important, as the process relies 
on accumulation of evidence. The accuracy of the straight line segments 
could easily be improved by using a LMS method, but the detection of 
elliptical arcs has been proved more difficult and is the object of 
further research.

Probabilistic approach

The reliability of the process has been adressed by using a 
probabilistic approach. Two types of error in this process have been 
defined : uncertainty of measurement (small errors), e.g. error of the 
localisation of the edge, and errors of segmentation (gross errors), 
e.g. choice of the wrong edge due to an accidental connectivity in the 
image. In order to determine probabilistic laws corresponding to the 
second type of error, a prior statistical model of the image data has 
been defined. These models are the basis of the method described in the 
previous chapters :

- A new accumulator space for the detection of vanishing points has 
been defined by taking into account such models for ensuring a 
constant reliability of the detection over the accumulator space.

- Segmentation is achieved through a likelihood ratio test based
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on these models, which therefore takes into account the two types 
of errors mentioned. It is found to be equivalent to an 
adaptative MD test. This method has been used whenever 
segmentation has been involved in the process, i.e. for
classifying the straight line segments and the circular arcs with 
the vanishing point candidates, for selecting vanishing points 
corresponding to perpendicular directions and for testing the 
conectivity of the straight line segments.

The probabilistic approach raises some difficulties. The choice of 
appropriate decision variables is not trivial and at times the 
associated probabilistic law is hard to justify other than by its 
correct behaviour on the boundaries and by its nice mathematical
properties (e.g. choice of the exponential law for D in section 6.2.1).1
If the measurement uncertainty is too high (<r too high), the likelihood 
tests have little significance and the interpretation process no value.

Detection of the vanishing points

The effort has been concentrated on the consistency of the 
detection of the vanishing points, whatever their location on the image 
plane. The method has been proved to be superior to other methods, such 
as the accumulation of the projections of the lines onto the Gaussian 
sphere or the accumulation of the intersection points. A first 
accumlation stage of the lines according to their uncertainty allows the 
complexity of the accumulation stage to be bounded.

In spite of these efforts to optimize the quality of the detection, 
the lack of accuracy of the parallelism and the straight line segments 
results in the presence of numerous false candidates when a good 
sensitivity of the process is required. The perpendicularity test 
provides a good filter for these false candidates, however this is not 
really satisfactory as it restrains the field of application. We believe 
that higher accuracy for straight line segments is required, which 
includes a high resolution image and the correction of the lens 
distortions. Unfortunatly, this would result in a larger accumulator
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space.

The detection of the vanishing points allows the orientation of the 
3D structures to be known. Thus, it appears from this study that
information about 3D orientation of the surface (from which the
orientation of any line lying on this surface may be deduced) is 
essential to the interpretation of the image. Indeed, the knowledge of 
the orientation of the structures enables their 3D representation, which 
is the basis of this interpretation. The detection of the vanishing
points is reliable in a simple environment, e.g. a corridor, but
no longer in a complex environment where the lines parallel to principal 
directions are not in majority. In such environments, this stage could 
be associated with or replaced by another type of system allowing the 
determination of surface orientation (range finder), the remaining part 
of the interpretation being unchanged.

3D representation

The 3D strutures constructed have been chosen to avoid combinatorial 
complexity (comb structures), for completeness of the representation 
(subjective linear structures) and for their flexibility (a comb 
structure is part of a higher level structure). Since the construction 
of high-level structures relies only on the comb structures, the 
hierarchical structure is very simple. The depth, which remains unknown, 
parameterises the 3D representation of the structures.

The appeal of this parameterised 3D representation of the structures 
relies on the fact that the geometrical properties are implicit and 
therefore are fully exploited by further processing. It has been seen 
how simple any geometrical transformation is, and how constrained a 
matching process becomes, when using such a representation.

3D map construction

A coarse but high level 3D map has been constructed from a sequence 
of images. This map uses an ideal world type representation, which eases 
matching or interfacing with a CAD database. As an example, the map
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has been converted into a ROBCAD object.

Relative depth of the structures is deduced from the interpretation 
of a sequence of images. Depth may also be deduced from matching with a 
CAD database. In contrast with orientation, depth has not appeared to be 
a significant parameter for the interpretation, which has largely been 
carried out without it. This is an interesting consideration, since it 
is difficult to estimate depth with good accuracy (e.g. using active or 
passive stereovision).

The fact that the 3D representation extracted is coarse, eases 
matching with representations from different viewpoints or/and with a 
CAD database. Once the matching is satisfactory, a top down process 
should allow the representation to be completed. Thus, the approach 
proposed for interpreting a scene from monocular vision consists of 
identifying the principal elements of the scene, e.g. the walls, 
relative to which the other elements will be located. The feasibility of 
the first stage has been demonstrated throughout this thesis.

Such a method for 3D interpretation does not require any extrinsic 
calibration of the camera (e.g. relative to another camera) in contrast 
with stereo-vision or active ranging, or a precise geometric model in 
contrast with model driven strategy. It only uses general knowledgej 
such as the occurence of geometrical relationships, e.g. parallelism. As 
a result, both visible parts of the process, that is to say the input 
and the output, are extremely convenient ; the former is a simple 
sequence of images and the latter is a CAD type symbolic representation 
of the scene.

Further improvment

The approach described seems very appealing, however further work is 
needed to generalize it and to increase the quality of the results.

- The accuracy of the straight line segments and the detection of 
elliptical arcs should be improved.

- Too many erroneous peaks are detected in the accumulator space.
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To reduce their number, the significance of the test should still 
be increased.

- The likelihood ratio tests have been deduced by hand. They could 
be generated by using mathematical tools.

- The interpretation should be extended to other type of primitives 
(e.g. regions).

- Complete scoring of the 3D structures and development of a 
matching strategy remains to be done.

- The interpretation could be completed by using a top down process 
in a second stage.

8.3 From monocular vision to a CAD representation

A 3D representation of the scene has been extracted from monocular 
image(s) with unknown viewpoints. It has been based on the detection of 
the vanishing points. Then, connectivity in the image has enabled the 
construction of 3D structures, such as rectangular structures or 
vertices, the parameters of which are completely determined, except the 
depth. It has been proved that this 3D representation of structures 
extracted from the image is very powerful. This point has been 
illustrated by the construction of a 3D map from a sequence of monocular 
images with unknown viewpoints. Then, the map has been converted into an 
object of a ROBCAD database and the feasibility of a matching process 
with a PDMS database has been discussed. Therefore, from a (set of) 
monocular image(s), a very convenient 3D representation of the scene has 
been extracted. The explicit definitions of models for the measurement 
error and the segmentation error have enabled an optimal and consistent 
definition for the parameters involved in the process ; this results in 
an adaptative method for a wide range of scenes.
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APPENDIX 1

Perspective t r a n s f o r m a t i o n

Let (Co,X,Y,Z) be the world coordinates, where Cq is the optic 
centre, CqZ the optic axis and CqX, CqY are parallel to the image axes 
Ox and Oy. First, the projection C of Cq onto the image, i.e. the 
principal point C, is chosen to be the origin 0. In the (Cq,X,Y,Z) 
coordinate system a straight line in the 3D world may be expressed in 
the form

(L)
X = X + P U

0 X
Y = Y + U0 y

N II N o + P UZ

(Al.1)

where P = (X ,Y ,0) is the intersection between the optic plane and the o o o
straight line (L) and U"* is the unit vector of (L). p represents the 
distance from the point P = (X,Y,Z) to the point Pq (see figure Al.l).

Image plane
k = 1/|cos(OZ’,OZ) I

Figure Al.l : Perspective transformation

L is assumed not to be parallel to the image plane (11̂ *0). The 
projection (D) of the line (L) onto the image is represented by
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(D)
x = f

y = f

uX 4. !_ r f
X0

Uz p l TT~z
u l r r

Y0
1r  +z p

I
k TT~z

X + T U 
V X

y + T uv y

with T>0 (A1.2)

where f is the distance between the optic plane and the image plane. The 
point V with the coordinates (x ,y ) is the vanishing point of the line

V V
(D) and depends only on the direction of the line (L). x represents the 
distance from the point Q(x,y), image of P, to the vanishing point V.

Parallelism and perpendicularity

As the vanishing point of a 2D line only depends of the direction of 
the corresponding 3D line, if two lines are parallel in the 3D world, 
they have a common vanishing point in the image. The coordinates of the 
vanishing point allows the common direction in the 3D world to be known.

Two lines (L) and (L’) are perpendicular in the 3D world if

U U’ + U IT + U U’ =0. (A1.3)x x  y y z z

If Uz and U’ are different from 0, then the corresonding 2D lines (D) 
and (D’ ) are related in the following way (from A1.2 and A1.3)

x x’ + y y’ = 0$.0$’ = -f2. (A1.4)
V V V V

If U = 0  then u"*. 0^’ = 0, and if U =U’=0 then u^.u^ = 0.z z z

Figure A1.2 : Triangle formed by the vanishing points associated with 
three orthogonal directions in the scene.
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Calibration parameters

In order to relate the vanishing point coordinates with the 3D 
direction of the line, the projection C of the optic centre (the origin 
of the image so far) and the distance between the optic plane and the 
image plane should be known. The origin of the image is now any 
arbitrary point 0, and C is looked for.

Let T = (M^M ,M ) be a triangle, and 12 its orthocentre (the heights 
dropped from the vertices meet at the same point, called the orthocentre 
of the triangle). If {S^} is the set of the feet of the heights of the 
triangle, then :

12̂  . fiit = constant K. (A1.5)i J

K<0 means that the orthocentre is inside the triangle, while it is 
outside if K<0.

If T is a triangle formed by three vanishing points corresponding to
perpendicular directions, then the orthocentre 12 of the triangle is

2equal to C, and the constant K is equal to -f .

The coordinates of C are given by solving the following system

CV . V V1 2 3
CV . V V2 3 1

0

0
(A1.6)

If the cartesian coordinates of V are (x ,y ), the cartesiani i i
coordinates (x ,y ) of C are given by

(

X c

yc

S x y (x -X ) - IT (y -y )i l l  k h j>i M  
Z e x y
>*j ij 1 j

f y. w  ~]?i K-y
Z e x y 
i*j ij 1 J

(A1.7)

with h s i + 1 [mod 3] and k s i+2 [mod 3]; e = 1 if (j-i) = 1 [mod3]
i j
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and -1 otherwise . If one of the point is at infinity, then the system 
is undetermined.

Then the value of f is deduced

f = v / (V  X o )(Xc" V  + (yr  y c H y c" V  (A1-8)

Let us remark that the vanishing point coordinates should first be 
consistently scaled by dividing the ordinate in the image by p, where p 
is the scale ratio y/x.

Filtering criterion

Let the straight line segment [a,b] be the projection of the straight 
line segment [A,B] onto the image, then

x
a
T
b

(A1.9)

Let a be the further end point from the vanishing point. As the
focussing distance and the depth of field should be approximately
known, it is possible to bound the ratio Z /Z and therefore t /t

a b a b

1 (Al.10)

where k = Z /Z > 1
max min

This constraint may be rewritten in the following form

A  > A
l F (Al.11)

where d is the distance from the centroid of [a,b] to the vanishing 
point, i the length of [a,b], D the focussing distance and F the depth 
of field.

A point V cannot be the vanishing point of the segment [a,b] if the 
inequality Al.ll is not fulfilled. An important number of impossible 
vanishing points are filtered in this way.
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Bi-ratio property

The bi-ratio (P ,P , P , P ) of four alined points is invariant by 1 2 3 4 ^ J

perspective transformation (see eq. Al.l and A1.2). If (Px>P2> P3> P4) are 
the projections of these points onto the image, then :

(P ,P ,P ,P ) =1 2 3 4
P P P P1 3  2*4XP P1*4 P P2 3

T -T T -X3 1 4 2------ X ------X -x X -x4 1 3 2

P ~p p ~p
3 1 4 2------ X ------

P ~P P ~P4 1 3 2

P P P P1 3  2 4XP P1 4 P P2 3
(Al.12)

This property may be used as a constraint in a matching process 
(Quan, 1988).
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APPENDIX 2

T he K a l m a n  filter

Let a be a vector to optimize, and x_ the vector measured. In absence 
of noise, the vectors a and cc are supposed related by the equation

P. m „
t. (<c ,a) = 0 ; £ e R 1, x e IR i, a e!Rn (A2. 1)1 1  i i

Because of noise the vector measured is in fact

x ‘ = x + ei i i

where -e_ is noise with zero mean and covariance matrix 
•e. are assumed independent.

C .i The vectors

If is not a linear relation of <cj and a, is linearized around 
(£cj, a ) by Taylor’s expansion

?. (æ. ,a) a £ (&’ ,a . ) + dL H,
1 dx- * ; >  + a a

(a - a ) (A2.2)i-l

It is possible to rewrite the measure equation (A2.1), using (A2.2) 
in the form of

a = M a + m1 I i (A2.3)

where y.., us. are vectors with p̂  lines and M. is a matrix (p^xn), such 
that :

v. = - V«v Vd + mr V.

H =

m  =

da
aL
â r  (Æi

/
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The noise m  has zero mean and covariance W i i

at. a t l 
w = —— - c — -i dCC. i doc i i

The estimate a of a after i iterations satisfies i

a - a + ai i

where A is noise with zero mean and covariance S .i i

The Kalman filter minimizes the following least square criterion

C = £ (u -M a W_1(u -M a) + (a -a) V i a  -a) i i i i i o o o

The minimization of C has a solution

k k
a = (S-1 + E mV 1** )_1(S_1a + E M V V  ) (A2.4)k 0 l i i i  0 0  1 i i v i

The size of the matrix to invert is nxn. Moreover, incorporating one 
extra measure requires the complete recomputation of a. The Kalman 
filter provides a recursive solution to this problem of minimization.

The recursive equations of the Kalman filter gives the estimate of a 
knowing the set of data

a = a + K (u - M a )i i-1 i v i i 1-1

K = S (W + m s mV 1i i-1 i i i 1-1 i

S = (I - K M ) si i i i -1

K. is the Kalman gain. The matrix to invert is 
now p.xp. (typically p. is equal to 1 or 2).

(A2.5)

If the noise vectors -e and A are Gaussian, the estimate of ai i
provided by the Kalman filter is the expected value of a knowing the set
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of data .
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APPENDIX 3

L ikelihood Ratio

A traditional approach in image processing when a decision has to be 
taken concerning an event H is : is the observation V likely when the 
event H occurs? For instance, the classical Mahalanobis distance test is 
based on this approach. Often, such an approach does not take into 
account all the information available on H, e.g. the prior probability 
of H to occur.

The aim of the likelihood ratio test is to compare the probability of
two mutually exclusive events, called H and H. In other words, the
problem is changed to : according to the observation V, is the event H
more likely than the event H? In the work presented here, the hypothesis
H corresponds to a theoretical value V of the observation V whicho
actually varies around Vq because of inaccuracy of measurement, whilst H 
is assumed to represent the absolute desorder, i.e. the absence of such 
a value. In terms of image, it means that the hypothesis that two 
features are linked by a specific relationship R. (due to related 3D 
features) is opposed to the situation where these features are 
completely independent (unrelated 3D features). The hypothesis H is 
represented by a statistical model corresponding to a completely 
unstructured image I , that is to say a set of straight line segmentsn
randomly placed, with a random direction (see chapter 3). Of course it 
is an extreme case and intermediate events between H and H are possible. 
However, most often these intermediate events are not individually 
observable and are considered events of H. For instance, in a room the 
location of an edge of the window is related to the location of an edge 
of the door, so should be their images ; in practice, the information 
about the connection is extremely diffused in the picture and may be 
ignored in a first place. This is nolonger true for two consecutive 
edges of the door, as their images are always connected. Thus, the
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problem may be rewritten : is the observation in the image significant 
of a well known 3D relationship or could it occur by chance?

Model of probability

Let V be the variable under observation and V its value. The hypothesis 
H may be modelled by a Gaussian law with zero mean and covariance 
matrix C representing errors of measurement (if the mean is not zero

V
but V , V-V is considered). The hypothesis H is modelled by them m
distribution of V, corresponding to the unstructured image I . Usingn
the decomposition over the two exclusive events H and H

p(V=V) = p (V=V|H)p(H) + p(V=V|H)p(H)
= p(H) Pi(V) + p(H) p (V)

where

p (V) = --- — ------  expf-J-vVV)
1 VzR d VdiFT 2

V

where d is the dimension of V and p^iV) depends on V . Usually, P2(V) 
is nearly constant around 0, so that the density of probability of V 
has a general form as displayed in figure A3. 1.

(A3.1)

(A3.2)
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P(V)

Figure A3.1 : Model of probability for V for hypothesis H and 
hypothesis H.

The determination of p is a mere calculation of covariance matrix butl
the determination of p depends on V and I , and may be complex to2 n
determine.

In order to estimate p(H) and p(H), the initial hypotheses should be
completed. Let H be the relation studied between the features (F ,F )i J
of the image, and V the decision variable. Let Q be the set of pairs of 
features (F^F ), the set of pairs of features linked by the
relationship R, and the set of pairs of independent features. Then,

Cardin ) 
p(H) = Card(fi) and

Cardin ) 
p(^  Card (n) (A3.3)

Definition of the LR test

The likelihood ratio test consists in determining whether a pair of 
features is more likely to be element of £2 or element of n̂ . 
Therefore the likelihood ratio is defined as
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R = P(H|V) 
p(H|V)

and the test (i.e. LR test) succeeds if R i 1. Using Bayes’theorem, the 
LR test may be rewritten

p (H) p (V)
R ------------ > 1

p(H) p (V)
(A3.4)

Comparison of the LR test with the MD test and the neighbourhood test

In order to compare the likelihood ratio test with the MD test
previously defined, the dimension of V is supposed to be 1 for 

2 2simplicity. Let cr be the variance of V|H and cr the expected value of 
2 _

<r on The quantity p^iV) p(H)/p(H) is assumed to be approximately
equal to a constant pQ around zero, which is independent of o^ as p2 
does not depend on error of measurement by hypothesis. Therefore, the LR 
test eq. A3.4 may be rewritten

—  < v - 2 Log --  = r(o- ) (A3.5)2 0 e O' vO' vO

with v = - 2 Log (/ 271 o' p ) 0 e vO 0

This relation can be easily generalized to any dimension d of the 
decision variable V

VtC XV < v - 2 Log ■-v = v(C ) (A3.6)v o e det C vvO

with v = - 2 Log (V 2tt d V'detC p )0 e vO 0

The threshold v(C ) on the Mahalanobis distance depends on the
V

covariance matrix of measurement C .v

In order to compare the test with the neighbourhood test, the
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2 2 variations of <r n(<r ) are studied for d=l. The value of <r via- )
V V V V

increases with cr , then reaches its maximum value for
V

cr = cr exp((n -l)/2), m o  o

and decreases to 0, reached for

cr = cr exp(n /2). m o o
2If cr is higher than <r , the value of o- r>(cr ) is negative and the testv M v v

fails whatever the value of V. This is conforting as it means that the 
uncertainty of V is so big that V has no significance at all.

When the uncertainty is small, the LR test is less constraining than the
MD test whatever the fixed threshold. When the uncertainty is very
large, the LR test always failed. When the uncertainty is around its
expected value then the LR test is equivalent to a MD test with a
threshold equal to v . The behaviour of the LR test is thereforeo
intermediate between a neighbourhood test, i.e. V > V , and the MDmax
test. It is more satisfactory than this latter test because it 
eliminates very uncertain, and thereby not significant features whereas 
the risk to miss a very significant feature is smaller. The risk |3 of 
selecting a feature by mistake, i.e. the type II error, is bounded by
13 :max

13 = 2 p cr (A3.7)max 2 m

where p^ = pQ p(H)/p(H).

Definition of p(x), where x~p(H)

The prior probability p(H) has been found by comparing the value of 
the peak P, to the expected value of this point when the lines are 
supposed randomly crossing the vertical of the accumulator space passing 
by P. Let Xq be p(H). It is possible to refine this value by taking into
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account not only the value of the peak P of the accumulator space, but
also the real distribution of the V corresponding to the directions
elements of this peak. If this distribution is the ideal representation
of the ideal case, it should be proportional to æ p (V) + (l-æ )p (V) (cf0 1  o 2
eq. A3. 1). However, it may be better represented by x. p̂  (V) + ( l-æ)p2 (V), 
æ * x q . In order to find the best value of x, the set of all x 6 [0,1] 
are considered, nn x being the expected number of directions meeting at 
P "on purpose", nn (1-æ) being the expected lines passing near P by 
chance (considered as noise). The probability of having such a number of 
lines passing near P by chance determines the probability of the 
hypothesis x. Using the model of the noise described in section 5.2.3, 
it comes

p(æ) = p(nn2=(l-œ)nn|nn) =
n ’ ]L (1_>

(1- x )nn P
n f n>'

k ?nn u

i , „ .n’-(l-x)nn(1-p)
k,. ,n’-kp (1-p)

(A3.8)

where p = 4cr’/y’ (see eq. (5.2.4. 1)) and n’ is the number ofp max
directions associated to noise crossing the vertical x’ ; using eq. 
(5.2.4.2) and substituting f(œ) by nn (l-œo), n’ is equal to

nn (1-x )
n’ = ------- —  . (A3. 9)P

Using a Gaussian approximation of the binomial law, p(œ) may be 
rewritten :

p(æ) “
exp(-

r \ 2 2(x-x ) nn o
2m ~ ' ' (A3.10)

V2tt v (0.5 + erf(æ nn/ViF')o

where = (1-a; )(l-p)nn and (0.5+erf [x nn/v^T1)) is a normalizationo o
factor corresponding to the constraint xs\.
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APPENDIX 4

Statistics of the p a r a m e t e r s of the s e g m e n t s

Using the statistical model described in the text, the segment (AB) 
may be generated by any point G located on the string (S) of the image 
disk, such that (AB) lies on (S) and has its centre is G. The string 
(S) is at the distance d from the centre of the image. G is assumed to 
have a uniform density of probability on (S), therefore the density of 
probability of d is proportional to the length of the string (S)

f(d) = 2 K R /l-d2/R2 .

The constant K is found by integration of f(d) over d (-Rsd^R)

K = 1/(ttR2) .

2The expected value of d is equal to

E(d2) = (2/ (tcR)) d2 vl-d2/R2 5d = R2/4 (A4.1)
J -R

Let b be the distance between the centre G of (AB) and the centre of 
the string (S). The expected value of b , knowing d, is equal to

1
E(b2|d) = — — — —

2 /  R2-d2

' V^2-d2 2 2
b 2  a b  =  R  - d  - (A4.2)

Probabilistic model for the distribution of the directions relative to 
d

It has been seen above that the density of probability of d, 
distance from a straight line to the origin 0 is equal to
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f(d) = — %r- /  l-d2/R2. (A4.3)
71 K

The density of probability of d for a direction should be corrected by 
the accumulation process which is performed over the lines before 
accumulation. The resolution in d and 0 of the accumulation process is 
given by (see eq. A5. 15 and A5.4), using the assumption V(u)=<r for 
clarity,

VE(3d2)' = Vc-2a. d2/3 cr and /E(3d2) = /2a cro o

Therefore the probability for a line to be accumulated in a cell 
corresponding to the direction (d,0) is

2/2a cr2 ,-------■ <--------,
g(d) = ------- - /  l-d2/R2Vc-2a.d2/3 . (A4. 4)

tt2R
The probability for the direction (d,0) to have been accumulated at 
least once when n lines have been accumulated is 1 - (l-g(d))n,
therefore the expected number of directions with a distance from the 
origin inferior to d is

n’ (d) = ---- V (l-(l-g(d.))n) . (A4.5)
•/2a o' d <d 10 i
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APPENDIX 5

Uncertainty  param eters  associated  with  a  line (L ) in the im age

Let a be the polar angle of the line (L), d its distance to the 
origin, u-* its unit vector and u/* the perpendicular unit vector. Let G 
be the centroid of the segment AB, L its length, O’ the projection of 
the origin 0 onto (L) and b the algebraic distance between O’ and G 
(Figure 5.2.2.2).

The line (L) is known within the errors of measurement 3A and 3B of
the end points A and B. These errors result in errors on a, d, u^ and
—  ̂u .l

3a = (at.u* - at. u*)/£ (A5.1)l i

And

3u = 3a ; 3u^ = -3a u^ (A5.2)l i

Now d = oX. u*. then 3d = at. u^ + oX. 3u~* = sX. u~* - oX. u 3a
^  1 1 1 Substituting OA. u by (b-L/2) and 3a by (A5.1), it is found that

3d = (b/£ + 1/2) dt. u* - (b/l - 1/2) ait. u* (A5.3)1 1

The variance of (<iX. uX) and (Slt.vX) is V(u*) (see eq. 4.4.1 andl i
fig. 4.4. 1.2 in the text), therefore the second moments of 3a and 3d 
are

E(3a2) = 2 V(u“V i 2 (A5.4)

E(3d2) = (2b2/¿2 + 1/2) Viu*) (A5.5)

E(3a 3d) = -2b V(u^)/i2 (A5.6)

Let D be the distance from a fixed point P to the line (L), D is
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equal to

D = AP.ul

The derivation of (A5.7) provides SD

(A5.7)

SD = -a t .

Let Q be the projection of P onto (L), using 
then substituing Â . u^ by AQ and (AQ-L) by BQ, it

(A5.2) and (A5.3) 
is found that

and

SD = (BQ/£)a£.u* - (AQ/l) si-iT* 1 1 (A5.8)

E(SD2) = (AQ2 + BQ2) V(u~*)/£2 (A5.9)

Let r’ be the distance from 0’ to Q, (A5.9) may be rewritten

E(SD2) = (2 (r’ +b)2/S? + 1/2) Viu*) (A5. 10)

/2 2 __aO’Q’ = vr -d and 0 Q = r’. The vector QQ depends only upon the error 
on the end points, therefore the substitution of Q by Q’ in (A5.8) 
only adds terms of degree higher than 1 in 3̂ . u^ and Sit. u/\ Thus the 
following approximation can be made

> /2 ,2r = vr -d .

2 2Let o' be the expected value of SD , square of the distance from a 
given line (L) and a fixed point P. The variations of SD are due to the 
errors of measurement of the end points. Developing (A5.9) by

/~2 2substituting r’ by vr -d , it gives

o-2 = (2r2/i2 + 4br(l-d2/r2)/£2+ 2b2/£2 + 1/2 - 2d2/£2) V(u*)

2If d is fixed and cr is averaged over all the segments AB producing the 
line (L), then by using (A4.2) and the fact that E(b) = 0 for symmetry 
reasons, it is found that

E(o~21d) - (2a r2 - 8a d2/3 + 2a R2/3 + 1/2) V(u*)

- page A5. 2 -



Appendix 5

2where a = E(l/£ ) (for the independence between a and the other 
parameters , see section 4.4.2). If the line (L) passes through P then 
|d|^r. Therefore, to compute the expected value of <x2 over the set of 
lines (L) crossing at the point P, 2 cases should be considered whether 
r is larger or smaller than R. If r is larger than R, E(d2) = R2/4 (see 
(A4. 1)) and using the asumption V(u^) = <r2 for clarity, the relation 
(A6.1) may be rewritten

E(cr2) = (2a r2 + 1/2) <r 2 (A5.ll)o

If r is smaller than R then (Integration by parts)

E(d2) = R2/4 (1 - 2r(l-r2/R2)3/2/(R Arcsin (r/R) + (R2-r2)1/2))

When r is small

E(d2) = r2/3

and subtituting in (A5.ll)

E(<r2) = (10a r2/9 + 2a R2/3 + 1/2) <r 2 (A5. 13)o

It is more convenient to use an approximation valid for any r. 
Besides the comparison with the Gaussian sphere method requires that 
such an approximation can be made. Using (A5. 12) and (A5.13), E(<r2) is 
approximated for any r by

E((r2) = (2a r2 + c) cro , (A5. 14)

where c = 2a R2/3 + 1/2.

Determination of the resolution in d of the preaccumulation stage.

The set of lines at a distance d from 0 is considered. As b is 
assumed independent of 1 /¿2 (see section 5.2), the expression (A5.5) 
becomes

E(Sd2|d) = (2E(b2)E(l/£2) + 1/2) Viu*)

- page A5. 3 -



Appendix 5

and using eq. A4.2

E(Sd2|d) = (c - 2a d2/3) V(u*)

with a = E(l/-£2) and c = 2a R2/3 + 1/2. This value fixes the 
of the preaccumulation stage for this d.

(A5.15) 

resolution
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APPENDIX 6

Uncertainty  param eters  in the Euclidean  im age  plan e

Calculation of the variance of the angle (OV ,0V^).

The reasoning in chapter 6 is performed using a Euclidean system 
with the origin at the principal point location, whilst the covariance 
matrix associated with a vanishing point candidate V of the image is 
expressed in the image coordinate system, which is not Euclidean. Let 
(x,y) be the Cartesian coordinates of V in the Euclidean system and 
(x’,y’) be the Cartesian coordinates of V in the image system, then

(x, y) = Cx’+x^ , (y’+y^)/p)

The covariance matrix of V in the Euclidean system is

( 2 2 2 
O' =  O' + O' x x ’ x ’0
2 , 2  2 w  2 2 2 . 2  

o' = ter + o' )/p + y o' /py y’ y ’ 0 p
O' = O' /p xy x’y ’

(A6.1)

The coordinates of the principal point are assumed uncorrelated (for 
simplicity as there is no technical difficulty in taking their 
correlation into account).

Let 0 be the polar angle of V in the Euclidean system, then

2 2 2 2 x o' + y o- - 2 xy o' y x xy

Now, let 0 be equal to 0̂ -0^, where 0̂  and 0̂  are the polar angles
of two vanishing point candidates V and V , then o-̂ is deduced from1 2  0
the previous equation applied to and
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2 2o' = cr 0 01 + <r02 (A6.2)

Calculation of cr , variance of V when the calibration parameters vary.

The decision variable associated with the perpendicularity test V is 
equal to

2

V = 0^ .0^ + f2 1 2

in the Euclidean coordinate system (0x,0y), where 0 is equal to the 
principal point, f the distance of the image plane from the optic 
centre. In this system, the decision variable V associated with the 
perpendicularity test of V and may be written

V = 0^ .0^ + f 2 (A6.3)1 2

Then

SV = 2fSf + x 3x + x dx + y dy + y Sy (A6.4)2 1 1 2  2 1 1 2
2 2And (A6.1) is used for computing o' = E((SV) ) from
C

2+ X 2O' + 2X 2O' + 2 x y o'2 xl 1 x2 2 2  xly1
2+ y 2O' + 2y 2O' + 2 x y o' (A6.5)2 yi i y2 1 1  x2y2

The distance f, the scale ratio p and the principal point coordinates 
have been assumed uncorrelated.

Determination of <r associated with a vanishing point corresponding toh ^
a horizontal direction.

Let V’ be the vanishing point corresponding to the horizontal 
direction studied and V the vanishing point corresponding to the 
perpendicular vertical direction. Then if 0’ is the projection of V’ 
onto the line OV, 0 being the principal point, then

00’ . OV = -f2
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Therefore, after differentiation it comes

var(0’) = (1 - 2 OO’/r) var(0 ) + 4 var(f)/r2 + 00’2 var(r)/r2 y y

where r = OV.

Only var(r) is not known. Let C be the covariance matrix associated
V

with the vertical direction in the accumulator space (defined in 
chapter 5).

v 0 crvy’J

Now, using the sampling 5.2.2.15 from the image system to the 
accumulator space and dr’ = (Sr’/ax’)dx’ where r’ is the polar distance 
in the image coordinate system,

var(r’)
4 o'2 r’ 2(2ar’ 2+c) o 2crvx’

Since the camera is assumed to be approximatly vertical, r is very 
large and r r’/p. Therefore, the variance of 0’ along the vertical is 
equal to

0 ,4 2 28f o' a p
var(0’) ^ var(0 )+ -- - ° - —  o'2 (A6.6)y y , 2 „ 2  vx’
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APPENDIX 7

Z e r o - c r o s s i n g  p r o b l e m  

A p p l i c a t i o n  t o  e d g e  d e t e c t i o n

A N D  T O  THE N U M B ER  OF F A L S E  A L A R M S  IN THE A C C U M U L A T O R  S P A C E

Zero-crossing problem

To extract meaningful information from a noisy signal, e.g. the image 
or the accumulator space, it is important to know the significance of 
the value of the signal at a particular point, that is to say the 
probability of this value to happen by chance or for a particular 
reason. The problem of determining the statistical properties of the 
crossings of the signal by a level a is known as the a-crossing problem, 
which is in fact a generalisation of the well known "zero-crossing 
problem".

Details about the zero-crossing problem are given in (Rice, 1944,45) 
and (Papoulis, 1965). A short presentation of this problem is given in 
the first part of this appendix. The demonstrations are not complete for 
the sake of shortness, but the main hints are given. The results are 
then used to describe the response of an edge detector to a noisy step. 
The Gaussian filter is used as an example, but the approach is similar 
for any other filter. Then, they are applied to a very different 
problem, the expected number of false alarms in the accumulator space.

Let s(x) be a stationary normal process with zero mean and an 
autocorrelation function R(£) defined by

R(£) = E(s(x+£)s(x)).

If s(x+£)s(x)<0, then the number of zero-crossings between x and 
x+£is odd. Let p(£) the probability of having an odd number of 
zero-crossings between x and x+£.
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Let y be the random variable s(x) and z the random variable s(x+£), 
then the random variable u = y/z has a Cauchy density, the distribution 
function of which is (Papoulis, 1965)

F(u) = 2 —  arctan n
u - r

/ 7 7
where r = R(£)/R(0). As p(£) is equal to F(0), then

p(£) _1
2 + —  arctan n

Arccos r 
n (A7.1)

If £ is small, then p(£) is also small and the equation (A7.1) may be 
developed to the first order

and p(£) is deduced

r - 1
2 2,..,

n P (g)2

p(£) - 1 / 2(R(0)-R(£))' 
n R(0) (A7.2)

and using the development of R(£) at the first order, it comes that

p(£) - JL_
n

2R* (0
R(0)

if the derivative of R is discontinuous at the origin and

(A7.3a)

P(€) - n
R" (0)
R(0) (A7.3b)

otherwise.

Let u be s(x), and v be s(x+£), it is possible to show that if 
R(£)^R(0) (i.e. £[̂ 0 and R smooth enough around zero),

2
p((u-a)>0 && (v-a)<0) « p(u>0 && v<0) exp(- 2^ (Q^) (A7.4)

Natea :
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1) Joint density function of u=s(x) and v=s(x+£)

----- 1 exp (- ----- (u2+v2-2ruv)).
0 2 /  2 2 (T2 ( 1-r2 )2n o' v 1-r

2) A7.4 may be shown by integrating thisdensity function over 
[a, +oo] [-oo, a] with u’=u-a, v’=v-a, then by using the fact that 
r~l.

The same relation as (A7.4) is true on the opposite quadrant so that

2
p( (u-a) (v-a)<0) p(uv<0) exp(- -¿^(q j ) (A7.5)

If £ is small then R(£)~R(0), i.e. r^l, and the probability of having an 
odd number of zero-crossings or crossings by a level "a" is nearly equal 
to the probability of having only one crossing by this level between x 
and x+£. Let p^(£) be the probability of having one crossing by the 
level "a" between x and x+£, using A7.2 or A7.3 and A7.5, it may be 
approximated by

if R’(0 )*0 then p (£) =
71

2R’(0+)£ , a2exp(-R(0) 2R(0))
(A7.6)

if R’ (0)=0 then P.<5>" / - £ $ ■  ° * P ( - £ US)) S

This represents the expected density of crossings by a level "a" at 
any point. Now, the expected density of crossings may be different at 
particular points, such as the crossing points. In the following the 
density of zero-crossings (given by A7.7) around a zero-crossing is 
studied in the regular case, i.e.R’(0) = 0. Let Pq(£) be the probablity 
P(s’ (x)s(x+£)<01s(x)=0). Using the joint density of s’(x) and s(x+£) and 
the relation A7.2, it comes

Po(€) — V2J1n
__________ -R’(g)________

/  -R"(0)(R(O)-R2(£)/R(0))
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where r’ is the correlation coefficient of the random variables 
s’(x)|s(x) and s (x+£;) | s (x). Let P^C^.d^) the probability that there is 
an odd number of zero crossings between £ and ?+d^, knowing that s(0)=0, 
when £ is small. It may be shown by using a Lagrange development around 
(€,<) = (0,0) that

1 / r " (0) R U) (0) ^
Zn V R(0) R"(0)

Therefore the density of zero-crossings around a zero-crossing is equal 
to

% _ 1 /  R" (0) R U) (0)
o 271 /  R (0) R" (0) (A7.7)

Application to edge detection

The Gaussian filter is used to illustrate the reasoning, but it could 
have been any other filter shape. The Gaussian filter may be written

J = /  (I * G * G* )2+(I * G * G’ )2 ,y x x y

where I is the initial image, J the filtered image, G and G are
2 x yGaussian functions with zero mean and variance cr . Then a non-maximaf

suppression algorithm is performed.

The edge detector is applied to a perfect step in the y direction on
2which has been added white noise w with variance o'n

I(x,y) = w(x,y) if y<yQ

I(x,y) = Aq + w(x,y) if y>yQ
(A7.8)

Let us consider J = I*G *G’ . The convolution of I by the Gaussiany x y
filter may be divided into two parts, the convolution of the signal and 
the convolution of the noise. The correlation functions along x and y
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corresponding to noise are

R (?) =X

R (?) = y

and A the magnitude of

exp (-o 4 , 28 7t c 4 <rf f2
O' _2

)

(1 - -£_)exp(--£— )
8 71 O' 2o~ 4o~f f f

the edge found by the filter is

(A7.9)

A
A = --- .

O'f

Once the edge detector isperformed, a non-maxima supression algorithm 
is performed and the image output is thresholded at the value T. First 
the effect of the thresholding is studied. It affects mainly the x 
direction. If T=A, the density of endpoints should be equal to the 
density of zero-crossings given by A7.6, where R(?) is equal to R (?).

X
So

5o
___ 1
V2 n o'f

The density of crossings by a level "T" is

5T
1------  exp

V2 7t O'f
(-(A - T)2 2 R(0) (A7.10)

The average length of the segments when thresholding at A is equal 
to the average length of the holes for reasons of symmetry, thereby it 
may be defined as the limit of L/n when n tends towards infinity, where 
L is the total length of the edge, and n the number of endpoints. As n/L 
may be considered as the average value of the random variable r(x), 
equal to 1 if x is an endpoint and 0 otherwise, Borel’s theorem may be 
applied and n/L tends towards 6q with the probability 1. Therefore
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l = 4- (A7. 11)o 5o

This means that if a threshold A is applied to a Gaussian edge image, 
then the average length of the segments of an edge having a magnitude 
equal to Aq is l (the boundary segments are not included). Consequently 
a segment with a length smaller than i is more likely to correspond to 
an edge with a magnitude less than Aq than to an edge with a magnitude 
more than Ao.

Using the above expression of A in the case of an edge of magnitude 
Aq and thresholding at A, the density of endpoints around an endpoint is 
equal to

A = — —  . (A7. 12)
Z n c r f

This means that knowing that the point P is an endpoint, the probability 
of having another endpoint nearby is lower than the one for any 
neighbourhood. This means that the endpoints are more equally 
distributed along the edge than it would be for a random distribution 
with the same density 5 , i.e. a Poisson process.

Now the effect of the non-maxima suppression algorithm is studied, 
which affects almost only the y direction. The points J(x,y) such that 
J’(x,y-dy)>0 && J’(x,y+dy)<0 are selected, the other points are
suppressed. Canny’s uniqueness criterion only considers the maxima due 
to noise ; thus applying A7.3b to w*G *G" and the fact that only thex y
maxima are selected (and not the minima) it found that the density of 
maxima due to noise at the point (x,y+yQ) is

1 /  r (4) (0)
2tt V R" (0) ’

2O' 2 2
where R(£) = R (£) = --- -—  (1 - — — )exp(~ — --), p is equal toy „ 4  2 . 2 08 ir ir 2<r 4crf f r
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2ncr

In fact the density of maxima is different at the edge location y=y
as it should take into account the variations of the signal. The number 
of zero-crossings of s(£) =
(Blanc-Lapierre, 1963, pp34)
of zero-crossings of s(£) = J’ (y +£) between -Y/2 and Y/2 is given byy o

n (y ) = Is’ s(s(?n S?,

where S(s) is the dirac measure at s. At £ fixed the expected value of 
the integrant is

E d s ’ (£)| S(s(€))) = J*“ is’ | p (s’ , 0) ds’

where p(s’,s) is a Gaussian density centred at (E(s’ (£)), E(s(£))) with 
variances R <4)(0), R"(0) and a covariance equal to 0. Let ^ be

C = s’ (0)/VR (4) (0)

C is the signal to noise ratio of J" (y ). Then, if E(s(0)) = 0, they o
density of zero-crossings of s at yQ is

E( | s’ (0)| 5(s(0))) = —  /- R (\/2ti C erf (<) + exp(- ))
R"(0)

If C, is large, i.e. a- small, E(|s’ (0)|5(s(0))) = ^QV2n |< | . If C, tends 
towards infinity then the density tends towards infinity, i.e. towards 
|s’(0)! S(s(0)), representing the fact that the signal surely crosses 0 
at £=0. It is possible to show that ¡JLQV2n ICI is the density 
corresponding to the maxima looked for (the corresponding integral over 
[-w,+co] is equal to 1), the density corresponding to other maxima, i.e. 
parasite maxima, is

¡i = l±Q (V2n (|£| (erf(O~0.5) + exp(--|-)). (A7.13)
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(the division by 2 is due to the fact that only maxima are considered), 
p is decreasing from pQ to 0 when |£| is increasing from 0 to +co. The 
ratio r introduced by Canny (1986) as a uniqueness response criterion, 
verifies

where J (y )/VR(0)' is the signal to noise ratio of J at y . The largest 
r, the smaller the risk of multiple response. However, it is not 
understood why r should be as near as 1 as possible (Canny, 1986). In the 
case of the Gaussian filter r = 2/Vl51. In order to compare different 
filters, the value of p seems a more appropriate uniqueness response 
criterion than r, as it really gives the probability of multiple 
response at the edge location (what Canny actually meant) by taking into 
account not only r but also pQ.

Uncertainty associated with the zero-crossings of the edge detectors

Let Jq be the response of the filter to the step Aq, and J the response 
of the filter to noise w. The maxima of J corresponds to the 
zero-crossing of J’ which occurs at y which may be different from yQ 
because of the noise. Assuming that it is close enough to y^ for using 
the Taylor-Lagrange development of J7 around y , then (Canny, 1986)

Therefore, substituting J" (y ) by A f’(0), where f is the filtero o o
considered, the uncertainty of the edge location is

C = r J (y )A/R(oy y o

As by definition J’ (y ) = J’ (y )+J’ (y ) = 0 and J’ (y ) = 0, thenJ  1 ^  ^  1 r s  ~/  1 r \  J  r\

o
(A7.14)
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It is not possible to use the Taylor— Lagrange development for the 
Shen edge detector (1985), because of the discontinuity of the filter at 
the origin. In the following only the ID case is considered for 
simplicity. The zero-crossing equation is

A f iV + J’ (y +€) = 0Q n 0

The function A f(£) + J’(y +£) changes its sign at 0 if0 n 0

A f (0") < J’ (y ) < A f (0+)0 n 0 0

Because of the antisymmetry of f, f(0~) = -f(0+). The probability of 
this event is

A f(0+)
P(y.=yj = 2 erf(— -̂-----)

V-R" (0)’

Application to the antisymmetric
f(x) = ± c exp(-a|x|). The derivative is

f’(x) = -a c exp(-a|x|) + 2c 5(0)

where 5 is the Dirac measure at zero.
A

p(yi=y0) = 2 erf(— -̂)
2 o'n

which is different from 1. So the localisation is different from oo,
unlike Shen’s claim. In the 2D case £ = A /cr should be replaced byo o n
2 EQ/Va. Unlike the Canny edge detector, the better the signal to noise 
ratio (i.e. the smaller a), the better the localisation.

Application of the zero-crossing problem to the expected number of false 
alarms in the accumulator space.

The notations are the same as the notations of chapter 5, subsection
5. 2. 4.

Using the model of the lines described in chapter 4, the noise of the

(A7.15)

exponential filter
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accumulator space at the point P(x’,y’) may be described as a random
process w , (y’), obtained as the number of lines crossing the vertical
y’ of P within the neighbourhood [y’ -cr’ , y’ +cr’ ]p p

w (y’) = E n (y’-i) ,x i i —, xI 1 I <0"p

where w^( (y’ ) is the number of lines crossing the cell (x’,y’) of the
accumulator space, n ,(y’) is a random process, the covariance of which

2is zero when and equal to cro when £=0, which is independent of y’ .
x’ being fixed,for simplicity let s(y’) be w , (y’)-£(x’), £(x’) being
the expected value of w (y’ ) at P. The correlation function of s(y’ ) is

R(?) = E(s(y’)s(y’+£)) = cr2 sup(2<r’ - |£ 1,0) = - ^ s u p ( 2 ^ ’ - |£ |, 0)
° p 2^’ pp

The expected number of maxima of s(y’) with a value above k(x’) is 
looked for. As R(£) is not derivable at 0, it is not possible to apply 
the equation A7.3 to s’(y’). However, as k(x’) is assumed large enough, 
it is possible to ignore the probability of having two local maxima for 
s(y’) between two successive crossings of s by the level k(x’). 
Therefore it is possible to approximate the expected number of maxima 
above k(x’) by half the number of expected crossings by the level k(x’). 
The formulae A7.3a may be applied to s(y’). Substituting R(0+) by 
-R(0 )/(2cr^), R(0) by ns(x’ ) and "a" by k(x’) - |(x’), the expected number 
of local maxima above k(x’) is

n (x’ )T
max

Zn
P

(k(x’)-£(x’))2 
2 v(x’ ) (A7. 16)

where e=l and «(x’ ) is given by eq. 5.2. 4. 3. Using the definition of r 
given eq. 5.2.4.3, (k(x’ )-£(x’ ) )2//u(x’ ) may be replaced by
(erf-1(0. 5-x) )2.
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