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ABSTRACT

Turbulence is the last great unsolved

problem of classical physics

[R. Feynman]

Some basic aspects of turbulence, transition to turbulence, and turbulence 

modelling, are summarized in Chapter 1 (Introduction). Emphasis is put on the 

increasing understanding of turbulent phenomena made possible by recent 

advances in the theory of dynamical systems; on the concept of "coherent 

structure"; and on the parallel evolution of computing power and computational 

fluid dynamics.

Chapter 2 is a survey of the turbulence modelling technique known as Large 

Eddy Simulation (LES). The equations governing fluid flow and scalar transport 

are introduced; the direct simulation of turbulent flows and its limitations 

are briefly outlined; and the concept of LES, with the related topics of 

decomposition, filtering and subgrid modelling, is discussed. The state of the 

art in LES is reviewed in the last three sections, under the separate headings 

of proposed subgrid models; wall boundary conditions; and applications 

presented in the literature. An attempt is made to give the most complete and 

updated possible account of the subject; work carried out from the early

'Seventies up to now is considered. Emphasis is put more on physical models 

and corresponding performances than on numerical methods and computational 

details.

In Chapter 3, the finite-volume numerical techniques used in the present work 

are presented and discussed. Emphasis is put on those aspects and options

which bear more relevance for the accuracy and quality of the results, such as

the pressure-velocity coupling algorithm, the discretization of advective 

terms and the treatment of centred (co-located), body-fitted grids. The

architecture and the basic features of the computer code Harwell-FL0W3D, 

Release 2, are outlined, while the modifications introduced in order to 

implement the Smagorinsky subgrid model and the appropriate boundary

conditions for LES are described in detail.

In Chapters 4 - 6  results are presented and discussed for the basic geometries 

studied.



Chapter 4 deals with the flow between indefinite parallel plates (plane 

channel), one of which heated with a uniform heat flux. For this basic 

geometry, a detailed study is presented on the influence of numerical options 

(grid size, time step and time-stepping method, pressure-velocity coupling,

discretization the advective ty

constant, subgrid Prandtl number, near-wall damping); Reynolds number; and 

alternative wall boundary conditions. The issues of initial conditions, 

numerical transients and statistical processing of the results are also 

discussed with some depth.

In Chapter 5, computations are presented for a plane channel having one of the 

walls roughened by transverse square ribs. An extensive literature review of 

experimental and numerical studies on this geometry is included. The 

parametrical study is limited here to the influence of grid size and Reynolds 

number; LES results are presented in detail for a reference case, and are 

compared with experimental flow and heat transfer data.

Chapter 6 is dedicated to the geometry of cross-corrugated ducts, 

representative of storage-type air preheaters for fossil-fuelled power 

stations. Flow and heat transfer predictions from direct simulation and LES 

are presented; they are compared with experimental results and with numerical 

predictions obtained by a standard and a low-Reynolds number version of the 

k-s turbulence model.

Finally, Chapter 7 summarizes the main conclusions which can be drawn from the 

above studies. Emphasis is put on the basic issue of LES applicability to 

engineering problems of practical interest, and of its feasibility using a 

commercial, general-purpose (though highly sophisticated) computer code. A 

critical comparison with more conventional turbulence modelling approaches is 

outlined, and 'weak spots', or issues requiring further clarifications, are 

pointed out for future studies.

The work includes an extensive bibliography with almost 400 references, and an 

appendix on the tensorial formulation of the governing equations of fluid 

dynamics in general domains.
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NOMENCLATURE

Note: only the most relevant and recurrent symbols were included here

A+ near-wall damping constant

A
P
a

diagonal coefficient in linearized equations

main flow direction in cross-corrugated heat exchangers

ann

Cf
C
u
c
P *
c ,c 
s' . s

D,D

off-diagonal coefficients in linearized equations

(Fanning) friction coefficient

constant in Prandtl-Kolmogorov relation

specific heat at constant pressure

constants in sub-grid models

near-wall damping factors

D
e
E, F

hydraulic diameter (=4ô in a plane channel) 

constants in logarithmic laws of the wall for u and T

F r Fi
f

body force

(D'Arcy-Weisbach) friction coefficient

G filtering function

H channel height

H,
l

h

internal corrugation height in cross-corrugated heat exchangers 

rib height

i/ j ,  k indices of the generic control volume (grid point)

T, I.

J

convective-diffusive flux of a generic scalar 

enthalpy

k turbulent kinetic energy

k unresolved (sub-grid) turbulent kinetic energy

L channel length; sinusoid length (cross-corrugated geometry)

1 turbulence length scale

LETOT Large Eddy Turnover Time, ô/u

m
P
M

local mass source residual 

overall mass flow rate

N
P

Nt
Nu

number of control volumes in grid 

number of time steps 

Nusselt number

Nu
av

n

average Nusselt number in cross-corrugated heat exchangers 

number of LETOT's

^stat
P

static pressure

apparent pressure, p +(2/3)iu.S, , (=p in incompr. fluids)
St. clt. KK Suât.

P equivalent pressure, p+(2/3)pk (in LES : 'P* = ( 2 l 3 ) f  k) ; 

corrugation pitch in cross-corrugated heat exchangers
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p

p
1
*

p, p ,
1

p, .
1]

p
c

q/

Re, ReD

Re£

ŝ ., sn, s , s 
Q 0 m p
s

T

t

u
u, u . 

1

U, V, w

u
T

vrandom
W

x , ;
l
: x, ;

y
yT
^v

pitch of transverse ribs in rib-roughened ducts

periodic component of P

surface force

total stress tensor

cell Peclet number, u Ax/r

heat flux vector

wall heat flux

Reynolds number, UDe/i? (based on hydraulic diameter) 

Reynolds number, (based on channel half-height)

generic source term

strain rate tensor, ( 9u^/3Xj + 3Uj/3x^)/2

quadratic invariant 2S. .S. .
i] iJ

various coefficients and terms of linearized equations 

wall thickness in cross-corrugated heat exchangers 

temperature

coefficient of proportionality between wall shear 

and near-wall parallel component of velocity 

time

average velocity in channel 

local velocity

velocity components along x, y, z
, . y2

friction velocity, (|t |/p) 

rms value of fluctuating velocity 

width of the computational domain 

physical-space coordinates 

distance from nearest wall 

thickness of thermal sublayer 

thickness of viscous sublayer

stress

Greek letters

a thermal diffusivity, X/(pc^)

as sub-grid thermal diffusivity

ft bulk viscosity

r dynamic diffusivity of a generic scalar

6 channel half-height, H/2

6^^ Kronecker delta

A length scale in sub-grid models

Ax^;Ax,Ay,Az dimensions of control volumes in grid
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M

At

£

£

0

(C

X
P

P,

?
a

o

o , .
i]

T , , 
1] A/

T , ,
i]

CO 

CO, ,
IJ

time step

dissipation of turbulent kinetic energy 

total mass source residual

corrugation angle in cross-corrugated heat exchangers

Von Karman constant (~0.42)

thermal conductivity

dynamic viscosity

sub-grid dynamic viscosity

kinematic viscosity, \x /p

sub-grid kinematic viscosity

grid stretching factor along y

density

Prandtl number, c u / X 
P

sub-grid Prandtl number 

turbulent Prandtl number 

anisotropic part of stress tensor 

wall shear stress

equilibrium wall shear stress, 6 Ap/Ax 

Reynolds stresses, -j?u,'u,' 

sub-grid Reynolds stresses, -fubjj

characteristic angle in "shifted" and "ejection" wall BC

stream function

vorticity

vorticity tensor, ( 3u,/3x. - 3u./3x.)/2
i ] ] i

Averages and fluctuations

Q generic scalar
A
Q filtered value of Q
rj
Q unresolved (sub-grid) component, Q-Q

Q time or ensemble average

Q' fluctuation Q-Q

Q ' rms root mean square value
2 1/2

of Q', (Q' ) '

< Q > ensemble average over "homogeneous" directions

Q " fluctuation Q-<Q>
2 1/2

of Q", <Q" > 'Q"
rms root mean square value

Q"
rms time average of Q"

3 rms
« Q » volume average over the whole computational domain

11



«  “ V 1 5 X \
-  **»^«**«f io j'J  v/fr A-

rw *#< ^

S  V  _  M l  a *  H>nrrfn/

mH<y • *»7i

- -••« vr>»/Tt

Leonardo da Vinci, two studies on water eddies caused by obstacles

"Observe the motion of the surface of the water, which resembles that of hair, 
which has two motions, of which one is caused by the weight of the hair, the 
other by the direction of the curls; thus the water has eddying motions, one 
part of which is due to the principal current, the other to the random and 
reverse motion"

[Leonardo da Vinci, 1510; transl. by U.Piomelli reported in Lumley, 1992]
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CHAPTER 1 - INTRODUCTION

1.1 Turbulence

What is your substance, whereof are you made,

That millions of strange shadows on you tend?

[Shakespeare, Sonnet LIII]

Since the pioneering work of Osborne Reynolds [1883], over a century of 

efforts has been devoted by scientists and researchers all above the world to 

the understanding of one of the most complex and fascinating phenomena in 

nature, the turbulent motion of fluids. The British physicist Sir Horace Lamb 

said in 1932 "I am an old man now, and when I die and go to Heaven I would 

like to be enlightened on two subjects: quantum electrodynamics and 

turbulence. And I am rather optimistic about the former". Lamb's attitude was 

amply justified; sixty years later the questions still open on the turbulent 

motion of fluids are many.

Most fluid motions, both in Nature and under artificial conditions, are 

turbulent. There are good practical reasons to be interested in the problem. 

Much of the energy consumed by machines and devices in which fluid flow occurs 

is spent to overcome the resistance caused by turbulence; on the other hand, 

turbulence is often desirable in order to promote mixing and mass or heat 

transfer.

The definition of "turbulent" flow is often restricted to high-Reynolds 

number flows in which the small-scale motions become completely independent of 

the boundary conditions. More generally, a flow can be defined as turbulent 

whenever the flow variables exhibit a chaotic dependence on time. However, the 

notion of turbulence can be specified more rigorously only on the basis of 

recent achievements in the theory of dynamical systems and transition to 

chaos.

A full mathematical description of turbulence has long baffled theorists. 

Turbulence is characterized by unpredictable motions of the fluid; the key to 

this erratic and chaotic behaviour is "sensitivity to initial conditions", a 

term first introduced by Ruelle [1978] to describe systems in which small 

changes in initial conditions lead to large and unpredictable changes in the 

long-term evolution of the system. Two trajectories (either in the physical 

three-dimensional space or in the abstract phase-space) which start close to

13



each other do not remain close; the difference between them may grow 

exponentially in time so that they rapidly lose any relationship to each 

other. This means that computations of long-range behaviour will be seriously 

affected by small errors and uncertainties. Furthermore, when a trajectory in 

phase-space winds close to its initial point, its future evolution will, in 

general, be completely different from its past history; in that sense, no 

long-range pattern can be discerned. On the other hand, an experimentalist 

trying to reproduce the detailed behaviour of such a system will try in vain, 

for unavoidable small errors in the initial data (even in the absence of 

significant external noise) will conspire to produce a different pattern at 

each run.

Thus, both experimentally and computationally such a system will be 

described as 'chaotic', or 'irregular', and only in a statistical sense 

reproducibility will be attained. This is often mentioned as the 'butterfly 

effect', after the only apparently paradoxical remark made by Lorenz [1979] 

that a butterfly flapping its wings in Brazil may well produce large-scale 

effects on next month's weather in Texas, thus making precise long-range 

weather forecast an utopic goal!

Now, fluids are very complicated systems having many (or rather, infinite) 

degrees of freedom, and their behaviour in the appropriate phase space is 

difficult even to conceive, let alone to model and simulate accurately. 

Nevertheless, the question arises whether the basic mechanism underlying the 

observed 'chaotic' behaviour is one that does not require consideration of 

many degrees of freedom; as a matter of fact, certain simple dynamical sys-

tems, described by just three or few more differential equations, display a 

chaotic and erratic behaviour which is strongly reminiscent of turbulence in 

fluids and often possesses many of its essential features [Yorke and Yorke 

1981] .

One such model was studied by Lorenz [1963] in connection with the 

instability of free convection between parallel plates. Lorenz found that, 

under some severe approximations, the behaviour of the fluid would be des-

cribed by a set of just three ordinary nonlinear differential equations 

involving a single basic controlling parameter R (related with a Rayleigh 

number). For R larger than a critical value, there are no stable steady or 

periodic solutions; computer experiments yield irregularly oscillating so-

lutions, in which no long-range pattern can be identified, and which display 

several characteristics of turbulent fluid flows (including sensitivity to 

initial conditions, broad-range spectrum, and intermittency). Since Lorenz's

14



work, several more 'simple systems with complex behaviour' have been proposed, 

and their properties investigated, by different authors, see for example 

Nicolis and Prigogine [1987] .

For 'simple' dynamical systems such as that described by the Lorenz 

equations, the behaviour of the system in phase space can be investigated 

directly by numerical simulations. For any given values of the parameters 

controlling the dynamical system, there is a more or less complicated region 

of the phase space that attracts all nearby states; starting from arbitrary 

initial conditions, the system will eventually end up on this set, wander 

through it and - given sufficient time - pass arbitrarily close to every point 

of the attractor. A rigorous definition of an attractor is given and 

discussed, for example, by Lanford [1981] .

The geometric shapes of the Lorenz, and related, attractors have received 

considerable attention. Ruelle and Takens [1971] were the first to use the 

term 'strange attractor' for any attractor of a dynamical system which is i) 

bounded, ii) connected, and iii) looks 'strange', i.e. is neither a point 

(steady-state solution) nor a periodic orbit, or limit cycle (periodic so-

lution) . Considerable insight into the nature of such 'strange attractors' has 

come from the theory of fractal objects, first developed by Benoist Mandelbrot 

[1977]; strange attractors possess a fractional dimension and are self-similar 

at all scales. Techniques such as that of Poincare's 'return maps' [McDonough 

et al. 1984.a] can be applied in order to investigate their properties. The 

concept of 'structural stability' can be used to show that, in many cases, the 

topological nature (if not the fine details) of a strange attractor do not 

change if the equations describing the dynamical system are slightly per-

turbed; this implies that the behaviour of the system is qualitatively stable 

and thus will not be affected by details of the numerical procedure, or of the 

experimental technique, used to investigate it. A strictly related term is 

that of 'genericity'.

In this context, an important role is played by the theory of dissipative 

systems. These are systems possessing some sort of 'frictional' mechanism by 

which energy is dissipated, and kept in a dynamical-equilibrium state by some 

sort of 'energy' input from the environment (by contrast with conservative 

systems of Hamiltonian mechanics, which preserve the total energy even in the 

absence of exchanges with the environment). Only dissipative systems are 

structurally stable and thus possess an 'intrinsic' dynamic; by contrast, 

hamiltonian systems are structurally unstable, and thus not 'generic', as any 

small dissipative terms will change their long-term behaviour, i.e. the 

topological nature of their attractor in phase-space (for example, a weak
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friction in a pendulum turns the attractor from a limit cycle into a fixed 

point, i.e. changes the system's asymptotic behaviour from periodical oscil-

lations to rest in the equilibrium position). Also, it can be shown [Nicolis 

and Prigogine 1987] that only dissipative systems, which contract volume in 

phase-space, can possess strange attractors in the sense of Ruelle and Takens.

Starting basically from the strong analogy between the behaviour of the 

'simple' dynamical systems discussed above and that of a fluid in turbulent 

motion, Ruelle and Takens [1971] suggested the following fundamental picture 

of turbulence:

"The object which accounts for turbulence is an attractor or a few 

attractors, of reasonably small dimension, embedded in the very 

large-dimensional state space of the fluid system. Motion on the attractor 

depends sensitively on initial conditions and this sensitive dependence 

accounts for the apparently stochastic time dependence of the fluid".

Indeed, it has been established that several partial differential equations possess

global attractors which arc embedded in finite-dimensional "inertial manifolds" of 

function space. On these manifolds, the system’s dynamics are formally 

representable by finite sets of ordinary differential equations. This has been well 

proved for a variety of closed and (relatively) simple flow phenomena, including 

Rayleigh-Benard convection and Taylor-Coiiette flow [Swinney and Ciolluh 1081.a;

Campbell and Rose 1983].

Although a rigorous mathematical proof that this reduction is possible for the 

three-dimensional Navier-Stokes equations does mg exist yet, several attempts to 

reconduct turbulent phenomena to finite-dimensional dynamical systems have been 

presented in the recent literature. For example, following a suggestion by Lumley, 

Aubry et al [JFM 192, 115-173, 1988] applied the orthogonal decomposition 

technique to the near-wall flow in a turbulent boundary layer; they expanded the 

instantaneous flow field in empirical eigenfunctions (shaped as streamwise rolls) 

and truncated the representation to obtain a low-dimensional set of just 10 ordinary 

differential equations. The dynamics of the system exhibited many of the 

empirically well known characteristics of near-wall turbulent flows, including 

intermittency and ejection-bursting events (see following sections).

Thus, the link between fluid turbulence and the chaotic behaviour of dynamical 

systems involving a finite number of degrees of freedom appears to be much more 

than a generic analogy.
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Unfortunately, very recent results by Keefe et al [JFM 242, 1-29, 1992] suggest 

that Ruelle and Takens were probably a bit too optimistic as regards the dimension
to

of attractors of general turbulent flows. The authors limited themselves*turbulent 

plane Poiseuille flow at moderate Reynolds numbers; by conducting very long 

direct simulations and computing the spectrum of the associated Ljapunov 

exponents, they were able to show that this dimension cannot be far from 780! 

This, indeed, supports the view that turbulent flows do possess finite-dimensional 

attractors; but the huge dimension of these rules out the notion that the global 

dynamics of turbulent flows can be attributed to the interaction of "a few" degrees 

of freedom.

1.2 Transition to turbulence

Turbulence is the gateway through which large fluid

masses in ordered motion march to their heat-death doom

[C.F. von Weizsacker]

Although the quantitative study of fluid motion began over a century ago, and 

the equations governing this phenomenon are now well known, the transition 

from laminar to turbulent flow has been a rather enigmatic phenomenon until 

recently. The difficulty is in the instability of the system of nonlinear 

equations describing the mass, momentum and energy balance of the fluid. These 

equations can be linearized and solved for systems close to thermodynamic 

equilibrium conditions, but far from equilibrium the solution is not, in 

general, unique and cannot be computed exactly [Swinney and Gollub 1978] .

For any fluid dynamic system, at sufficiently low Reynolds numbers a 

single stable solution, either stationary or periodic oscillatory, exists, 

towards which the system will tend asymptotically independent of the initial 

conditions. As the Reynolds number increases, a critical value Rec is reached 

beyond which the solution becomes unstable and a new type of motion appears. 

The low-Reynolds number solution reflects the spatial and time symmetry of the 

boundary conditions; transition to the second type of motion is accompanied by 

the breaking of this symmetry. As the Reynolds number increases, the motion 

becomes irregular in space and exhibits a chaotic dependence on time (turbu-

lence) . Nevertheless, the system is still a deterministic one and is governed 

by the same equations holding in the laminar regime; paradoxical as this may 

seem, it is a consequence of the system nonlinearity that the governing 

equations can have a solution so complex as not to look like the result of a 
deterministic process.
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The onset of turbulence in a fluid as the Reynolds number increases is 

preceded by the appearance of instabilities which generally occur without any 

apparent order in complex flows, but may exhibit a clearly recognizable and 

repeatable sequence in geometrically simpler situations. It has been clear for 

some time that, somehow, the superposition of these instabilities is respons-

ible for the appearance of chaos and turbulence. Several experimental and 

theoretical studies have been devoted to the understanding of the link between 

instabilities and turbulence. The former include, for example, the investiga-

tions on Couette flow between coaxial cylinders initiated by Taylor in the 

late Twenties. The latter are based on the mathematical theory of the 

stability of dynamical systems, which includes linear and nonlinear analysis 

techniques. As the phenomenon of turbulence is intrinsically related to the 

nonlinear nature of the equations of motion, nonlinear methods are obviously 

the most appropriate; however, they present a formidable complexity even for 

systems undergoing a sequence of two instabilities.

One of the first theoretical scenarios for transition to turbulence was given 

by Landau [Landau 1944; Landau and Lifschitz 1959] . He started from the 

Navier-Stokes and continuity equations under the assumption of 

time-independent boundary conditions, assumed that for sufficiently low 

Reynolds numbers Re a stable steady-state solution (x) existed, and 

investigated the stability of this steady flow as Re was increased. The 

deviation from steady flow, v^(x,t) = v(x,t) - Vq (x), obeys differential

equations which can be linearised if is assumed to be small enough. Thus, 

by separation of variables one is left with solutions of the form:

v1(x,t) = v1 (x) exp(iyt) (1.1)

in which y is a complex eigenfrequency, oo+iV . If all eigenfrequencies have 

positive imaginary parts, all deviations from steady flow die away with time 

and the steady flow is stable. For Re increasing beyond some critical value 

Re^, one eigenf requency, say t*‘̂ +i^, may cross the real axis; in this case a 

time-dependent, oscillatory mode with frequency will appear in the flow. 

Now, Landau assumed that, for Re further increasing beyond Re-̂ , a second 

critical value Re2  would be reached at which the new (oscillatory) solution 

becomes in turn unstable to perturbations with a new characteristic frequency, 

say . Thus for Re>Re2  one would have two sustained modes at frequencies 

and generally unrelated and thus incommensurable, corresponding to a

guasi-periodic flow which would not exhibit any time periodicity and would
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thus appear quite complex and unpredictable. As Re is further increased, more 

and more new frequencies etc. would enter the game, giving the flow a

more and more complex, and apparently 'chaotic', behaviour. Landau also 

suggested that the intervals between successive critical Reynolds numbers 

would be smaller and smaller, in relation to the fact that the new modes would 

be progressively smaller in scale. Thus, a flow containing an arbitrarily high 

number of incommensurable modes would be obtained at still finite Reynolds 

numbers.

Suggestive as Landau's scenario may be, it should be observed that, 

according to this view, a turbulent flow - however complex - would not be 

sensitive to initial conditions in the sense of Ruelle and Takens. Moreover, 

its frequency spectrum would contain sharp peaks corresponding to the critical 

frequencies etc. [McDonough et al. 1984.a]. By contrast, as discussed

in Section 1.1, turbulent flows observed in nature are sensitive to initial 

data, and possess a broad-band spectrum. In the language of dynamical systems, 

the attractor corresponding to Landau's notion would be a multi-dimensional 

torus in phase space, on which would lie all flow trajectories, decomposable - 

in principle - into cyclic, or periodic, orbits having incommensurable frequ-

encies. Now, it has been shown [Li and Yorke 1975] that, while two-dimensional 

tori of this kind are structurally stable (in the sense discussed in Section

1.1), tori having three or more dimensions, i.e. containing three or more 

frequencies, are not, and are destroyed by small perturbations giving rise to 

the characteristic, entangled topology of 'strange attractors'. Thus, the 

quasi-periodic behaviour envisaged by Landau would not be structurally stable, 

or generic, and would not be observed, in general, in nature.

A different, though subtly related, picture of transition to turbulence is 

suggested by the behaviour of simple systems which display a route to chaos. 

The first to be examined was the 'miniature' system represented by the single 

difference equation:

xn+l = r xn ,1‘xn) 11-2)

in which the subscript n may be thought to represent an instant of time.

Feigenbaum [1978] found that this system has a fixed point for r^3, and a

limit cycle (i.e. an oscillatory solution of period 2) for 3<r<;3.45. For

larger r, the period-2 solution is supplanted by a period-4 solution, and so

on; stable solutions of period 2 are successively replaced by solutions of 
k+1

period 2 . The critical values of r at which this occurs are closer and
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closer until, at r>rM = 3.57, a completely chaotic behaviour is established. 

This behaviour is reminiscent of Landau's infinite sequence of transitions; 

here, however, the 'flow' at high values of r does not contain any periodic 

mode at all. Moreover, this complex behaviour is achieved by a system having 

only one degree of freedom, whilst Landau's theory calls for an infinite 

number of degrees of freedom. In phase-space terms, the limit cycle represen-

ting the system's behaviour for low r becomes eventually a strange attractor 

as r is increased, and does so by passing through a sequence of period 

doublings.

Although the above system is extremely simplified, it is now widely 

believed that the basic mechanisms of 'transition to chaos' involved, notably 

period doubling, are essentially the same in much more complex systems 

including fluids in motion. A sound reason for this belief is that the 

behaviour of Feigenbaum's system does not depend on the specific form of the 

RHS of Eqn.(1.2), but is much more universal; for example, the value of rw 

does not change if the quadratic function in (1.2) is replaced by any 

nonlinear function having the same general form. Thus, the nonlinearity and 

the topological nature of the system, rather than details of its dynamic, play 

the crucial role.

1.3 Coherent Structures in turbulent flows

And more, much more, than in my verse can sit,

Your own glass shows you when you look in it

[Shakespeare, Sonnet CII]

During the last years, the concept of coherent structure has led to a more 

detailed and mechanistic description of the phenomena responsible for the 

generation and transport of turbulence. A recent and rather comprehensive 

definition of this includes any recognizable pattern, recurrent in a flow 

field [Perry, 1986]; in other terms, a coherent structure would be any region 

of the fluid in which a high degree of spatial correlation among some flow 

variables exists, and which is relatively persistent in time. The interest of 

theorists has been drawn towards coherent structures by relatively recent 

developments which have occurred in several, apparently unrelated, fields of 

the physical sciences and which can be grouped under the label of "order out 

of chaos" [Campbell and Rose 1983] . In this sense, the theory of coherent 

structures in turbulence is embedded in the broader theory of spatially-

- 20



organized "dissipative structures" [Nicolis and Prigogine 1987], and is 

interlaced with such fields as the theory of cellular automata and the so 

called "catastrophe theory".

A distinction can be drawn between near-wall and bulk-flow structures. An 

example of the latter are the large eddies associated with shear layer insta-

bilities, Figure 1.1. Coherent structures typical of the near-wall region 

include hairpin vortices, bursts and streaks. Hairpin vortices are generated 

by the U-shaped distortion of spanwise rolls periodically created by shear in 

the wall region of a turbulent flow, Figure 1.2. By self-induction, the 

leading end of these U-shaped vortices tends to leave the wall; this in turn 

brings it into a higher-speed region of the fluid, resulting in a stretching 

of the vortex along the flow direction. The deformation proceeds until a 

breakdown of the roll occurs; this is associated with a sudden release of 

mechanical energy ("turbulence burst"), which has been shown to be responsible 

for most of the turbulence generation at the wall. In the region confined 

between the two branches of a hairpin vortex the streamwise velocity is 

relatively low and the fluid moves away from the wall. In a real wall-bounded 

turbulent flow, several parallel hairpin vortices exist at any instant on a 

wall, and a pattern of alternating high- and low-speed regions ("streaks") is 

established on it. The existence of these structures has been experimentally 

confirmed in different ways; for example, Figure 1.3 [Kline et al. 1967] 

shows a picture of streaks obtained by the hydrogen-bubble visualization 

technique.

Shortly before the turbulence burst associated with the breakdown of a 

U-shaped vortex, the velocity normal to the wall and directed away from it may 

reach very high values; this is referred to as an "ejection" event. On the 

other hand, following the vortex breakdown high-speed fluid from the bulk-flow 

region is attracted towards the wall by the sudden negative pressure surge 

associated with the dissipation of mechanical energy ("sweep-inrush" event). 

These microphenomena cause characteristic distortions in the cross-stream 

profiles of the main velocity component, and contribute largely to the resul-

ting average drag. A detailed, though not very recent, review of experimental 

knowledge on wall turbulence is given by Hinze [1975], who also discusses the 

remarkable analogy between the phenomena occurring in the near-wall region of 

fully turbulent flows, and those concerning the transition of boundary layers 

from laminar to turbulent. A more updated survey is given by Banerjee [1992].

Head and Bandyopadhyay [1981], using advanced flow visualization 

techniques, have shown convincingly that wall turbulence basically consists of 

a "forest" of hairpin vortices. Perry and Chong [1982] and Perry et al. [1986]
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have further developed this concept. By observing that a vortex line induces a 

three-dimensional, irrotational flow field around it (fluid-dynamic analogue 

of the Biot-Savart law of electromagnetism), they have developed techniques to 

derive the main flow field, the spatial distribution of turbulence intensity, 

and its spectrum, from a random distribution of hairpin vortices having 

suitable properties and an appropriate range of sizes. In this sense, the 

near-wall "skeleton" of hairpin vortices can be regarded as the "genetic code" 

of near-wall turbulence. Similar concepts have been developed by 

Hatziavramidis and Hanratty [1979] .

Hairpin vortices, streaks and bursts are not the only structures

identifiable in wall turbulence. Perry et al. [1986] have shown the existence

of a small-scale eddy motion at a distance from walls, which contributes
-5/3

largely to the so called Kolmogorov inertial subrange (k portion of the 

turbulence energy spectrum, k being here the wave number). These "detached" 

structures are approximately isotropic and are the result of the breakdown of 

more active vortices "attached" to the walls. They do not contribute 

appreciably to the Reynolds stresses, but are responsible for a large fraction 

of the turbulence energy dissipation.

Besides the development of more and more sophisticated experimental 

techniques, a relevant contribution to the understanding of coherent 

structures has been given during the last years by direct computer 

simulations of turbulent flows. For example, Moin et al. [1985] reproduced 

hairpin vortices convincingly, and Azab and McLaughin [1987] simulated 

directly the near-wall layer by spectral methods, modelling the outer flow 

region by appropriate boundary conditions.

In parallel with the development of experimental and computational 

methods yielding large bulks of three-dimensional and instantaneous flow data, 

techniques have been developed for the processing of such databases and the 

identification of coherent spatial structures. These include statistical 

processing of the data by such sophisticated methods as conditional averaging 

[Komori et al. 1989] or stochastic estimation [Guezennec 1989], and flow 

visualization either by direct experimental techniques [Head and 

Bandhyopadhyay 1981] or by computer graphics [Delville et al. 1989].

Of course, these studies have primarily a theoretical relevance, as they 

shed light on the physical mechanisms of turbulence and, more generally, on 

the phenomena of spatial organization in dissipative structures. However, they 

are also of potential technological and engineering interest; for example, a 

better understanding of near-wall phenomena in turbulent flows may well allow 

the design of surfaces optimized for low drag or high heat transfer rates.
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Surfaces bearing longitudinal riblets for surface-drag reduction are now in 

the stage of commercial exploitation [Noauthor 1990.b].

1.4 Turbulence modeling and Direct or Large-Eddy Simulation

A numerical procedure without a turbulence model

stands in the same relation to a complete calculation

scheme as an ox does to a bull

[P. Bradshaw]

In parallel with the theoretical developments described above, a fundamental 

role in the understanding of the turbulent motion of fluids has been played in 

the near past - and probably will be played with increasing importance in the 

future - by more and more powerful and fast computers. Our comprehension of 

turbulence has been growing during the last twenty years as computers, making 

more and more resources available in terms of storage and computing speed, 

have allowed and stimulated the development of new turbulence models and 

numerical methods for the study of complex fluid flow problems. In parallel 

with the increase of computational resources and of the scope of feasible 

analyses, there has been a continuing decrease of the cost of computations 

(while experimental studies have often increased in cost as more and more 

detailed and complex experiments were designed and performed).

Computers started to spread in the Sixties and are now undergoing an 

extraordinary evolution; similarly, computational fluid dynamics (CFD) was 

established as a discipline of its own in the same period and is now in a 

phase of formidable growth. The first applications of numerical fluid dynamics 

to turbulent flow problems of some complexity date back to the late Sixties. 

They were based on turbulence models now considered as routine tools or even 

obsolete; the problems afforded were mainly two-dimensional and stationary 

[Launder and Spalding, 1974]. Only recently fully three-dimensional and 

time-dependent simulations have become feasible. Three-dimensional capabilit-

ies have made it possible to study in a realistic fashion complex geometries 

as are often encountered in engineering (e.g., the flow in a nuclear reactor 

vessel or around a car body). The capability of time-dependent simulations 

has also had an outstanding relevance, as it has made it possible to study not 

only "true" transient flows but also oscillatory phenomena in flows which are 

stationary on the average (which include vibrations and fluid-structure

23



interactions, e.g. the oscillations of an airplane wing or of a tube bundle in 

a heat exchanger).

It would seem that the natural limit towards which this evolutionary 

processes tends is the direct simulation of turbulent flows. With this appro-

ach, the Navier-Stokes, continuity and transport equations governing the fluid 

motion would be solved directly in a three-dimensional, time-dependent fashion 

without any recourse to turbulence models. Thus, a question arises naturally: 

why not wait for the introduction of machines sufficiently fast and economical 

to allow the direct simulation of turbulent flows in the majority of the 

situations of physical and engineering interest, rather than investing time 

and resources in the search for models which will be inevitably outdated in a 

few years? The answer is in the inherent limitations of direct simulation, 

which will be discussed in detail in Section 2.2. Lomax [1982] commented that

currently available computers allowed the treatment of grids having at most a
3

number of grid points of the order of 64 . Now, in order to afford by direct
5 .

simulation a turbulent flow at a Reynolds number of the order of 10 it would 

be necessary to use - even for elementary geometries - a grid having a number 

of grid points of the order of 512 , i.e. about three orders of magnitude 

larger (powers of two are often used to quantify the number of grid points, 

although there are good reasons to use them only if spectral methods and FFT 

techniques are employed). Moreover, the intrinsic geometrical complexity of 

several problems of engineering interest requires probably a further increment
3

of about one order of magnitude in the number of grid points (1024 ).

As the typical CPU time required for a simulation increases more than linearly 

with the number of grid points, computers having a speed 5-6 orders of 

magnitude larger than those considered by Lomax would be required; of course, 

storage capabilities, data transmission speed and graphical processing power 

would have to increase similarly.

In the decade elapsed since Lomax's article (1982) computers have evolved 

very quickly; there has been an increase of perhaps an order of magnitude in
3

storage and computing speed, and fluid dynamic simulations involving 128 or 

more grid points have appeared with some frequency in the literature. Some 

designers are thinking of a further 1000-fold increase in computer performan-

ces as a realistic goal to be attained within the end of the century [Corcoran
12

1991] . This would mean computing speeds of 1 Teraflop (10 floating-point
12

operations per second), storage capabilities of 1 Terabyte (10 bytes, i.e.

over 100 billions real numbers), and data communication speeds of 1 Terabaud 
12

(10 bits per second). Such performances would be made possible by further
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developments of existing technologies, such as gallium arsenide chips and 

optical-fibre transmission cables, and above all by new parallel 

architectures.

In principle, if these projects will turn into reality, grids including 
3 8

512 ( ~10 !) points will become treatable, allowing direct simulations of
4 5

turbulent flows at Reynolds numbers of 10 -10 . However, there are at least 

three good reasons to be sceptical. First, declared performances are often 

only peak performances; for a real code, the computing speed may decrease even 

by a factor 100 or more [Corcoran 1991]. Second, simulations requiring the 

fastest available supercomputers and CPU times of days or weeks are perhaps 

feasible for research and demonstration purposes, but certainly cannot be 

regarded as everyday computational tools for engineering. Finally, several 

problems of practical interest (for example weather forecasting and pollutant 

dispersion in the atmosphere or in the aquatic environment) involve Reynolds
5

numbers much higher than 10 and are probably forever beyond the reach of 

direct simulation. Thus, it is almost certain that, despite the tremendous 

progress in computing performances achieved so far and expected in the near 

future, direct simulation will be mainly restricted to the theoretical 

investigation of transitional and low-Reynolds number turbulent flows at least 

for the next 20 or 30 years. Therefore, some kind of turbulence modeling will 

be required for most of the practical applications.

The great majority of current turbulence-modeling work involves time- (so 

called Reynolds-) averaging, associated with various consequent simplifica-

tions. In this only the mean field is resolved, with the entire eddy behaviour 

unresolved, and hence mathematically modelled. Time-averaging approaches tend 

not to work too well for transitional flows, and are at their best at high 

turbulence. Recent surveys of computational methods for complex turbulent 

flows, notably involving heat transfer, are given by Launder [1988], Patankar 

[1988] and Collins and Ciofalo [1991] . An ample review of turbulence models is 

due to Nallassamy [1987]. A survey of forced convection, including 

experimental techniques, is given by Pletcher [1988].

A second alternative to direct simulation, which does not present the 

limitation of being restricted to low Reynolds numbers, is the approach known 

as Large-Eddy Simulation (LES). As will be discussed in detail in Chapter 2, 

it basically consists of simulating directly the three-dimensional, time 

dependent turbulent motion of a fluid only down to a certain scale, while the
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lower scales (called unresolved, or subgrid) are taken into account by appro-

priate subgrid models.

This approach is still in a development stage, and has been mainly used 

for the simulation of flows in simple geometries. A description of proposed 

subgrid models will be given in Section 2.4, and a survey of applications 

presented so far in the literature in Section 2.6. Most researchers using LES 

have chosen to develop "ad hoc" computer codes, or have adapted to LES, by the 

inclusion of subgrid-scale models, existing codes developed for direct turbu-

lence simulations such as TURBIT [Grotzbach 1987], FDS [Fodemski et al. 1987], 

FORTY [Antonopoulos-Domis and Love 1978] . Generally, these are optimized for 

specific problems such as Poiseuille or Couette flow, flow in annular passages 

etc., and use fast and accurate numerical algorithms such as spectral methods 

and explicit time stepping [Orszag 1980], in order to keep storage and compu-

ting times as low as possible while working with very fine grids and thus 

attaining a high degree of numerical accuracy. Of course, this approach 

presents a serious drawback, i.e. the difficulty of extending it to more 

complex and general configurations, in particular to flows of direct 

engineering interest.

An alternative approach has been chosen in the present work. It consists 

of using a general-purpose code of the last generation, a simple but relati-

vely "universal" subgrid model, i.e. Smagorinsky's [1963], and numerical 

methods which are far from being optimized for speed and accuracy but, on the 

other hand, can be extended without difficulties to complex geometries. When 

applied to simple flows this approach presents the drawback of heavier compu-

tational loads and less accuracy as compared with high-efficiency spectral 

codes. Such an application (flow between plane parallel plates, i.e. "plane 

channel"), which of course is mainly used as a benchmark, is presented and 

discussed in Chapter 4. On the other hand, simulations using this approach can 

be extended to relatively complex geometries where spectral codes show all 

their limitations and generally fail. Two applications of this kind (flow with 

heat transfer in a channel having one of the walls roughened by transverse 

ribs, and in a crossed corrugated geometry representative of rotary air 

preheaters) are shown and discussed in Chapters 5 and 6, respectively.
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Figure 1.1 - Large eddies in a plane free mixing layer 

[from Brown and Roshko, 1974]



Figure 1.2 - Near-wall turbulence structure: hairpin vortices, ejection /

sweep-inrush events, a turbulence burst and a low-speed elongated 

region (streak) are evidenced [from Hinze, 1975] .

Figure 1.3 - Near-wall turbulence structure: streaks visualized by the 

hydrogen-bubble method [from Kline et al., 1967]



CHAPTER 2 - LARGE-EDDY SIMULATION: THEORETICAL FRAMEWORK AND

STATE-OF-THE-ART

2.1 Governing equations

Rien n'est aussi pratique qu'une bonne theorie

[K. Levin]

2.1.1 Equations governing the fluid flow [Hinze 1975; Bradshaw 1978.b]

In the most general case of three-dimensional motion of a fluid, the flow 

field is specified by the velocity vector u = or (u,v,w), by the

pressure p and by the density g , all functions of the three space coordinates 

X1,X2,X3 (or x,y,z) and of time t.

In order to determine these five quantities, five equations are 

available:

a) the continuity equation;

b) three momentum equations;

c) a thermodynamic equation of state f {g, p, . . .) =0 .

This last equation may contain additional quantities such as the temperature 

T, for which the appropriate transport equations have then to be added to the 

system, see section 2.1.2.

a) The continuity equation expresses the balance per unit volume and per unit 

time between the mass which enters and exits a control volume, and the density 

variation in it. In the general case of unsteady flow of a varying-density 

fluid this is expressed by:

D$>/Dt + ?divu = 0 (2.1)

The symbol D /Dt denotes the 'substantial' derivative, which is the sum of a 

local and of an advective contribution:

D^/Dt - '&?/<> t + u-grady (2.2)
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so that Eqn.(2.1) becomes:

9$V9t + u-grad^+ £?divu = 0 (2.3)

But the following vector identity holds:

u-grad£> +p divu = div(^u) (2.4)

so that Eqn.(2.1) can be written, using cartesian tensor notation and 

Einstein's convention of implicit summation over repeated indices:

3jty3t + 3(^u^)/9x^ = 0 (2.5)

For a constant-density flow this takes the simplified form:

3u, /9x. = 0  (2.6)
l i

b) The momentum equations are derived from Newton's second law

(mass*acceleration = total force acting on the fluid volume). Two classes of 

forces need to be considered:

- body forces (gravitational, inertial etc.);

- surface forces (pressure and friction) .

If F and P are the body force and the surface force per unit volume, 

respectively, the momentum equations can be written in vector form as:

g Du/Dt = F + P (2.7)

Du/Dt denotes the 'substantial' acceleration consisting, like the substantial 

derivative of density, of a local contribution 9u/ dt and of an advective 

contribution u-grad u. Here, grad u (or Vu) stays for the triplet of vectors 

grad u^, grad u ^ , grad u^; thus, u-grad u is the vector having components: 

(u-grad u)^ = u-grad u^ (i=l,2,3).

More explicitly, the i-th component of the LHS of Eqn.(2.7) can be 

written, using again tensor notation and Einstein's convention on repeated 

indices:
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g Du^/Dt = y(9u^/9t + u-grad û ) = y3u^/3t + £>Uj 3u^/3Xj
= 3(^u^)/3t - u/bg/'dt +_pUj 3u^/9Xj (2.8)

But, because of the continuity equation (2.5):

3y/3t = -div(^u) = -9(^Uj)/3Xj (2.9)

Substituting Eqn.(2.9) into Eqn.(2.8) one has:

g Du^/Dt = 3(yu^)/3t + u^3(^Uj)/3Xj + g u ̂ 3 u^/3x ̂
= 3(yu^)/3t + 3(yu^Uj)/3Xj (2.10)

This last form of Du^/Dt is called the 'conservation' form of the substantial 

derivative; it has the property of leading to momentum balance expressions 

which are still valid exactly when written for finite volumes, and thus is 

usually preferred for finite volume - based numerical methods.

The body force F = (F^F^F^) includes the gravity force and any fictitious 

(inertial) force to be introduced in momentum balances in non-inertial (e.g., 

rotating) reference frames. Fictitious forces may also be used in the 

simulation of periodic problems, see Chapters 4-6.

As to the surface forces, it can be shown by examining the equilibrium of 

a fluid volume that:

P. = 3P. ,/3x . (2.11)
i i] ]

in which P,. is the total stress tensor, 
i]

On the basis of Eqns.(2.10) and (2.11), Eqn.(2.7) can be written:

3(cu.)/3t + 3 (<?u. u ,)/3x , = 3P. ,/3x , + F. (2.12)y i  j ' j i] 1 i

(for each component). By letting:

i] rstat i] i]
(2.13)

in which Pstat = -(1/3) P ^  (static pressure), is the non-isotropic part 

of the stress tensor, and 6 . , is the Kronecker delta, one has:
i]
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(2.14)P.
1

= -  Bp , , / B x .
rstat 1

+ Bo. . / B x .
i] 1

Therefore, Eqn.(2.12) can be written:

B(c>u.)/3t + B(pu.u. ) /Bx.  = -  Bp , . /9x,  + Bo. , /3x.  + F. (2.15)5 i  5 i  y  ] ^stat  i  i ]  ] i

The forces acting on the surface of a fluid volume depend on the velocity 

field. It is an empirical matter to specify the relation between the stress 

tensor P „  and the strain rate tensor:

= (Bu^/3Xj +BUj/Bx^)/2 (2.16)

The attention will be restricted here to newtonian fluids, for which this 

relation can be assumed to be a simple linear proportionality. All gases and 

many liquids of practical interest belong to this class. In newtonian fluids, 

the stress-strain rate relation involves two scalar quantities, i.e. the 

viscosity /x and the so-called "second coefficient of viscosity" p  :

= Z j i  S.j 4- p  Si, S , K (2.17)

Since the LHS of Eqn (2.17) is traceless, so must be the RHS; hence:

p  = -  y / 4 (2.18)

Taking eqns (2.17) - (2.18) into account, the total stress tensor can be re-written as:

Pi, -- - * J M (2.19)

Of course, the term Skk = div u vanishes in constant-density flow.

By substituting Eqn.(2.16) into (2.19) and the resulting expression into 

Eqn.(2.12) one has the Navier-Stokes equations:

B(^u^)/9t+B(^>u^Uj)/3Xj = -3p/Bx^+B[p (Bu^/BXj+Bu j/Bx^) ]/BXj+F^ (2.20.a)

in which:
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p “ pstat + (2/3) p Skk (2.21)

For incompressible fluids, one has of course p = p . Eqn.(2.20.a) may also
SLdL

be written with the tensor S. . 'split':
i]

3(^u^)/9t+3(yu^Uj)/3x^-3(p3u^/9Xj)/3Xj = - Sp/Sx^+SfpQu^/^x^)/3x.,+F^ (2 .2 0 .b)

or, in vector notation:

3 (yu) /9t + V(^uu) -V(pVu) = - Vp + 7[|j( Vu) q + F (2.20 . c)

c) In principle, the density can always be eliminated from the unknowns of

the problems by using the equation of state. In the case of compressible

fluids, it is a function of the pressure p; thus, by substituting the function 

p ( p ) into the continuity equation, a differential equation in p is obtained 

having the general form:

3p/3t = F (p, u, t) (2.22)

and Eqns.(2.20)-(2.22) can be solved directly in the unknowns p and u.

In the case of incompressible fluids, the density q is no more a function

of the pressure. It will be either a constant or a function of the temperature

and, possibly, of other scalars such as concentrations; thus, it can still be 

eliminated from the unknowns of the problem, but the time derivative of 

pressure disappears from the continuity equation. Therefore, no equation of 

the form (2 .2 2 ) can be written, describing how p varies with time; the press-

ure becomes an 'implicit' field specified by the condition that the velocities 

satisfying the momentum equations (2 .1 2 ) or (2 .2 0 ) also satisfy the continuity 

equation (2.5). Ideally, the pressure field propagates at infinite speed and 

adapts itself instantaneously to the velocity field. Of course, this requires 

the use of more sophisticated techniques to solve the coupled system of 

continuity and momentum equations, as will be discussed in Chapter 3. In the 

present work, only incompressible fluids will be considered.

2,1,2 Equations governing the transport of scalar quantities

In non-isothermal problems, the transport equation for enthalpy H has to be 

added to the fluid flow equations (2 .1 ) and (2 .2 0 ):
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3(yH)/9t + 3(yUjH)/3Xj = - 3qj/^xj + SH (2.23)

in which is a source term (power per unit volume), associated with internal 

heat generation, and is the heat flux vector. For a fluid having a constant 

specific heat, H=CpT+constant, and Eqn.(2.23) can be written:

3(9T)/3t + 3(yu.T)/3x. = - (1/c )3q./3x. + Sr 
3 D P 3 3

(2.24)

in which S„ = Su/c . More generally, the transport equation for a scalar
1 H p

quantity Q can be written:

3(9<2)/3t + 3 (jpû Q)/3x_̂  = - 3jj/3Xj + S (2.25)

in which Jj is the diffusive flux vector of Q and is a source term. Eqn.

(2.23) is of course a special case of Eqn. (2.25), with Q=H, Jj=q^ an<̂  ^q=^h '

Also the momentum equations can be regarded as the transport equations of the

scalar components of u; thus, also Eqns.(2.12) are special cases of Eqn.

(2.25), withQ=u., J.=-P,. and S.=F,.
i ] i] Q i

If the flux components follow Fick's law:

J. = - r 3Q/9 x , 
] 3

(2.26)

(f being the molecular diffusivity of Q), then Eqn.(2.25) can be written:

3(yQ)  f i t  + 3(yujQ)/9Xj = 3(r 3Q/3x_. )/3x_. + S
] ]

(2.27)

For the transport of heat, Fick's law is of course Fourier's law:

q. = -X 3T/3x, (2.28)

(X being the thermal conductivity). Eqn.(2.24) can thus be written:

3(jT)/9t + 3(yu.T)/3x, = 3 (r 3T/3x.)/3x. + ST (2.29)

in which r = X/c is the molecular thermal diffusivity. The ratio a = p/r is 
P

called Prandtl number if r refers to heat and Schmidt number if it refers to 

the concentration of some molecular species.

Fick's law (2.26) can be generalized as follows:
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Jj = - rjk3Q/3xk (2.30)

in which is a diffusivity tensor. Such formulation is particularly useful 

to express the total (laminar + Reynolds, or subgrid) stresses in conjunction 

with higher-order closure models. The transport equation of a scalar Q, 

Eqn.(2.27), is then generalized as:

d ( o Q ) / d t  + d ( o u.Q)/9x. = 9(r 3Q/3x, ) /3x. + S. (2.31)
' J j jk k j y

If Q is a passive scalar, i.e. a scalar which does not appear in the equations 

of motion (2.5) and (2.20), its transport equation (2.25) is linear in Q and 

its numerical solution does not ordinarily present special difficulties. On 

the other hand, if any term of the equations of motion depends on Q (as 

happens, for example, in free-convection problems when Q is the temperature 

T), Eqn.(2.25) becomes non-linear as the velocities u^ are (generally weak) 

functions of Q. Finally, if Q coincides with a velocity component, the 

transport equation (2.25) (which of course becomes one of the Navier-Stokes 

equations) is strongly nonlinear, and its numerical solution is exposed in 

general to all the difficulties of nonlinear equations including multiple 

solutions, sensitivity to initial conditions, and turbulence.

2.2 Direct simulation

Let him but copy what in you is writ,

Not making worse what Nature made so clear

[Shakespeare, Sonnet LXXXIV]

It is widely accepted that, at least for newtonian fluids, the Navier-Stokes 

equations, coupled with the continuity equation and, when appropriate, with 

the transport equations for temperature or other scalars, describe correctly 

the behaviour of the flow both under laminar and under turbulent conditions 

[Spalding 1978] . The difficulty - which, as will be shown, is not a simple 

matter of resources or of numerical methods - lies in the solution of these 

equations.

In order to solve directly the flow equations by any numerical method, 

the computational domain has to be spanned by some computational grid (spatial 

discretization), whose cells need to be smaller than the smallest significant 

structures to be resolved. Also, the simulation must be conducted by using
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time steps L t  (time discretization) small enough to resolve the time behaviour 

of the various quantities.

As discussed in the Introduction, if the Reynolds number (i.e., the ratio 

between the inertial and the viscous forces acting on the fluid) is small 

enough, the flow is laminar. The significant spatial structures of the flow 

field are then of the same order of magnitude as the physical structures 

present in the computational domain (duct height, obstacle size, etc.). Also, 

if the boundary conditions and the forcing terms do not vary in time, the 

problem has always a stationary or a periodic solution (perhaps following a 

transient, depending on the initial conditions). Therefore, in this case it is 

generally possible to attain a sufficient space- and time-resolution, and to 

obtain computational results which are independent of the particular discre-

tization used, and in good agreement with experimental data. It should be 

observed here that a laminar flow needs not to be 'simple' (in the intuitive 

sense); see for example the problem studied by Ciofalo and Collins [1988.a] 

(impulsively starting flow around a body with a backward-facing step), in 

which the solution - though purely laminar - includes transient vortices, wake 

regions and other details having a structure quite far from being 'simple'.

For higher values of the Reynolds number, the flow becomes turbulent. In 

this case, the flow field varies in a non-periodic fashion with time (even for 

constant boundary conditions and forcing functions), exhibits a sensitive 

dependence on the initial conditions, and lacks spatial symmetries (even if 

the problem presents geometrical symmetries). The spatial structures identi-

fiable in the flow field ('eddies') cover a range of scales which extends from 

the scale of the physical domain down to that of the 'dissipative eddies', in 

which the kinetic energy of the eddy motion is eventually dissipated into heat 

by viscous effects. This interval of scales increases with the Reynolds number 

and, for fully turbulent flows, may include several orders of magnitude. Thus, 

although the governing equations are still describing correctly, at least in 

principle, the physical behaviour of the flow, their direct solution in the 

sense specified above becomes a task of overwhelming complexity.

In the following, quantitative estimates of the required storage and CPU time 

will be sketched for the direct simulation of turbulent flow in a specific 

geometry, i.e. a plane channel having half-height 6 . This is the same problem 

that will be studied by Large-Eddy Simulation in Chapter 4, and can be consi-

dered as representative of a large class of thermofluid-dynamics problems. The 

geometry is sketched in Figure 2.1; the axes x, y and z are assumed to lie 

along the streamwise, cross-stream and spanwise directions, respectively, and
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the flow is assumed to be periodic along x and z. The sizes of the computati-

onal domain, or 'box', along the periodic directions must be large enough for 

the correlations between fluctuating components to become negligible; this is 

equivalent to imposing that all relevant spatial structures must be 'captured' 

in the box. Measurements such as those by Comte-Bellot [1963] show that these

minimum sizes are of the order of L =46 and L =26 (of course, L =26 here). For
x z y

similar reasons, the time duration of the simulation must include the lifespan 

of the longest-living flow structures; this is in general of the order of one 

'Large-Eddy Turnover Time' (LETOT), defined as ô/u in which u t is the 

friction velocity. Thus, the simulation has to be extended to at least a few 

LETOT's. Longer simulations may be necessary, according to the initial condi-

tions chosen, to allow for all numerical transients to die away and for a 

(statistically) steady-state to be attained.

A first, crude estimate of the number of grid points and of time steps 

necessary for a direct simulation follows directly from considering the 

Kolmogorov-Obukhov scales of dissipative eddies in locally isotropic 

turbulence, i.e. far from solid walls [Landau and Lifschitz 1959]:

length scale A
o

velocity scale V
0

frequency scale
%

time scale t
0

- 0/*efl3/« (2.32.a)

« U/Re 1/4 (2.32 .b)
° 3/4 

« (U/ó) Re* (2.32.C)
°3/4

- (ô/U)/Reô (2.32 .d)

in which U is the mean velocity and Re^Uô/V is the Reynolds number based on U

and on the channel half-height Ô. For this geometry the hydraulic diameter Dg

is twice the channel height, i.e. 45, so that the corresponding Reynolds

number is Re^ = 4Re*.
D 6

By imposing the mesh size in all three directions to be of the same order

of A , and the time step of the same order of t , one has: o r o

Ax, Ay, Az « ô Re0 ~ 3 / 4  (2.33)

At « (6 2/V ) Re ~ 7 / 4  (2.34)

The overall number of grid points N follows from Eqn. (2.33):
P

N = (L /Ax) * (L /Ay) * (L /Az) « Re* 
p -X y z o

9/4
(2.35)



The friction velocity u^ is related to the (Fanning) friction coefficient 

11J / (^U2 /2) by:

uT = (Cf/2)1/2U (2.36)

If is estimated by using the Blasius correlation:

-1/4C, = 0.056 Re, 
t o

(2.37)

then one has:

u =0.17 Re 7/8̂ /ô
T 0

(2.38)

and thus:

1 LETOT = 5/u = (ô2 /V)Re 7 / 8  
o

LETOT/At « Re
7/8

(2.39)

(2.40)

9/4
and the number of timeThus the number of grid points must increase as Re

7/8 ^
steps as Re^ . Although nothing can be said about the proportionality

coefficients relating and N̂_ to the appropriate powers of Re^ on the basis

of such a crude analysis, it is evident that the rapid increase of these

parameters is an absolute obstacle to the direct simulation of high - Reynolds

number turbulent flows, no matter the size and speed of available computers.

A more accurate estimate of the required values of and for a plane-chan-

nel flow can be made following the criteria discussed by Grôtzbach [1987] .

a) For directions normal to solid walls (y in this case), Grôtzbach suggests 

that the viscous sublayer should be resolved by at least three grid points. 

Now, the sublayer thickness is:

y = y V/u 1 v  T (2.41)

Thus, by assuming y^ = 11 and using Eqn.(2.38) for the friction velocity u , 

the above condition can be expressed as:

Ay/ô < 18 Re -7/8
(2.42)
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Of course, if the computational grid is selectively refined near the walls, a 

somewhat larger value of Ay can be used in the bulk flow region.

b) As for the streamwise direction x, the Kolmogorov length scale, Eqn. 

(2.32.a), can be written [Landau and Lifschitz 1959] as:

Aq « <93 /e ) 1 / 4  (2.43)

in which £ is the turbulence energy dissipation rate. Grdtzbach assumes that 

the mesh size along x can be somewhat larger than this scale:

Ax < 34-5 (V3/£) 1 / 4  (2.44)

Now, as the mesh spacing along x cannot depend on the distance from walls, the 

constraint on Ax is actually imposed by the highest value attained by £ along 

the cross-stream direction. Following the theory of equilibrium boundary 

layers [Launder and Spalding 1972; Hinze 1975] this occurs at the edge of the 

viscous sublayer (y = yv+) and is:

£ = 8  u 3/y (2.45)
max t  Jv

By using Eqns.(2.38) and (2.41) for u t and y , Eqn.(2.45) may be written:

£ Y - 1.8*10" 3  v> 3  Re 7 /2 /ô4  (2.46)max o

From Eqns.(2.44) and (2.46) the following condition is obtained for Ax:

Ax/ô < 18428 Re ~ 7 / 8  (2.47)
o

It is noteworthy that the constraints on Ax, Eqn.(2.47), and on Ay, Eqn. 

(2.42), are comparable, although they were derived from quite different 

approaches. This is a consequence of turbulence being nearly isotropic at the 

smallest scales.

c) Finally, the spanwise direction z can be treated as the streamwise direc-

tion x if the computational box is bounded laterally by periodicity planes, 

and as the cross-stream direction y if it is bounded by solid walls. In the 

former case, one has:

Az/ô < 184-28 Reô " 7 / 8  (2.48)
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Criteria <2.42), (2.47), (2.48) may be summarized (a bit optimistically) as:

Ax/<5 = Ay / 6  = Az / 6  < 28 Re^ “ 7 7 8  (2.49)

Hence, the minimum total number of grid points is:

N = (L /Ax) * (L /Ay) * (L /Az) - 7.7*10~4 Rex 2 1 7 8  (2.50)
p x y z 6

for Lx=46, Ly=Lz=26. Eqn.(2.50) gives a dependence of on Re^ even more

sensitive than Eqn.(2.35), but specifies a small proportionality factor.

As regards the time step, criterion (2.34) should be complemented by the 

Courant criterion. In fact, although this is a necessary stability requirement 

only when explicit time-stepping methods are used, yet it is generally consi-

dered as a more widely applicable accuracy requirement for complex flows. It 

may be written here as:

At < Ax/U (2.51)

which, taking Eqn.(2.49) into account, becomes:

At < 27 (6 2 /V) Re/ 1 5 7 8  (2.52)
o

This last criterion describes a more sensitive dependence of At on Re^ than

criterion (2.34), but actually becomes more stringent only at very large

Reynolds numbers. Up to Re^ « 1(J it is automatically satisfied provided that 

criterion (2.34) is followed. Thus, the time step can be chosen to be:

At = constant * (<52 /9) Re& 7 7 4  (2.53)

in which the constant is '“l. In the following, the value 0.5 will be

conservatively assumed.

In a simulation involving n LETOT'S, Eqns.(2.39) and (2.53) imply for the 

number of time steps:

N “ 2 n Re 7 / 8  (2.54)
t o

The values of N and N given by Eqns.(2.50) and (2.54), respectively, for the 
P u

direct simulation of a plane-channel turbulent flow over n=10 LETOT's, are
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summarized in Table 2.1 (columns 2 and 3) as functions of the Reynolds number
3 4

Re^ in the range 10 flO (column 1). The same table reports in column 4 

corresponding estimates of the storage that would be required if the Harwell- 

FLOW3D code were used. It is expressed in Mwords, i.e. millions of real 8 -byte 

locations, and is computed on the basis of about 1 0 0  words per grid point. 

Finally, estimates of the required CPU-time on a CRAY-2 computer for the same 

code are reported in column 5. They are computed by assuming the CPU time to

be proportional to N
1.4

and to N^, and to be about 1  second per time step for

a grid having 10 nodes. All these assumptions are based on the author's 

previous experience with the Harwell-FLOW3D code [Ciofalo 1988.a, 1989.a,

1989.b]. Note that the Harwell CRAY-2 has 256 Mwords of in-core storage; for 

larger memory requirements out-of-core storage would have to be used, so that 

the reported CPU-time estimates should be multiplied even by several times.

Table 2.1 Estimated storage and CPU-time requirements for a 

direct simulation using Harwell-FLOW3D on a CRAY-2

Re,
0

N
P Nt

Storage (Mwords) CPU Time

1 0 0 0 60000 4500 6 1 2  hours

1500 172000 6500 17 75

2 0 0 0 365000 8250 36 275

2500 656000 1 0 0 0 0 6 6 750

5000 4*106 19000 400 2  years

1 0 0 0 0 25*106 35000 2500 50

By using Eqns. (2.50) and (2.54), storage and CPU-time requirements (for a

10-LETOT simulation) may also be expressed as:

Storage » 8*10~ 2  Re* 2 ' 6 2 5  
0

words (2.55a)

CPU (Cray-2) - 0.9*10- 9  Re * 4 - 5 4 5  
0

seconds (2.55b)

CPU-times should be multiplied by a factor 2-3 if, instead of a CRAY

IBM-3090 200J of the University of Palermo Computing Centre (CUC) were used 

with the Vector Facility, and by a factor 5-6 if the same computer were used 

without exploiting the Vector Facility.
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Table 2.1 shows that the storage requirements put an upper limit of about 

4000 to the 6 -Reynolds numbers affordable by direct simulation, provided that 

a very large computer such as the CRAY-2 were available. However, computing 

times become prohibitive at much lower Reynolds numbers.

If, instead of Harwell-FLOW3D, different computer codes and numerical 

methods were used, explicitly designed for direct or large-eddy simulation of 

plane-channel and similar flows, computing times could be reduced perhaps by a 

factor 100, and large savings could be achieved also in storage. However, due 

to the large exponent of Re^ in Eqn.(2.55.b), the feasible Reynolds-number 

range would increase only by a factor 2 or 3; in any case, direct simulation 

would become unrealistic for Re^ > 5000, i.e. ReD > 20,000. These values are 

still well below those encountered in most engineering applications.

2.3 Large-Eddy Simulation and spatial filtering

There are lies, damned lies, and statistics

[Mark Twain]

The example in Section 2.2 shows rather clearly that, even for a simple 

plane-channel flow, direct simulation of all scales of turbulence is feasible 

only at low Reynolds numbers, i.e. in the transitional regime, and is impos-

sible in principle beyond some Reynolds number. This suggests naturally a 

simulation technique based on some decomposition of the flow field into 

large-scale and small-scale structures, the first being directly simulated in 

three-dimensional, time-dependent fashion, and the second (or rather their 

feed-back effects on the large-scale flow) being somehow modelled.

This approach is generally called 'Large-Eddy Simulation' (LES), a term 

introduced for the first time by Leonard [1974] . The rationale for Large-Eddy 

Simulation is that in a turbulent flow the large-scale structures, produced 

directly by the instability of the mean flow (shear or buoyancy effects), 

should be simulated directly, because 1 ) they are hard to model in a "univer-

sal" way, as they are highly problem-dependent and anisotropic; and 2 ) they 

are responsible for most of the transport of momentum, mass and scalars. On 

the other hand, the small-scale structures, produced by the energy-cascade 

process from larger eddies, are generally isotropic, depend little on the 

specific problem, and thus are much more amenable to be described by some 

"universal" model. Moreover, small eddies contribute little to heat and
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momentum transport, so that a large-eddy simulation is expected to be little 

sensitive to the parameterization scheme used for them.

The computing effort required by large-eddy simulation is generally much 

higher than for conventional turbulence closure models, so that until a few 

years ago this approach has been practised on a significant scale only by few 

institutions and research centres provided with large supercomputing tools (in 

particular, the National Centre for Atmospheric Research and the Stanford 

University in the U.S., the Queen Mary College in the U.K. and the Kernfor- 

schungszentrum Karlsruhe in Germany). However, supercomputing facilities are 

becoming relatively widespread now, and LES is becoming a viable tool for 

turbulence research for an increasing number of scientists.

The basic principles of large-small scale decomposition and filtering, and 

the main related modelling problems, will now be briefly recalled and discus-

sed. For the sake of clarity, the equations governing the flow and thermal 

fields for a Newtonian fluid are repeated below; source terms are omitted as 

they are not essential in the following discussion.

+ 3(£>u^)/3x^ = 0  

9(ipû ) /3t + 3(^u^Uj) /3x. 

3(yT)/3t + 3(^u .T) /3xj 

In LES each quantity Q

= -3p/3x.+ 3 [p (3u ./3x ,+3u , /3x . ) ] / 3 x , 
r i r i j j i  j

= 3(T 3T/3x.)/3Xj 

is decomposed as:

(2.5')

(2 .2 0 .a')

(2.2 4 . b ')

/\ ru
Q =  Q +  Q (2.56)

Eqn.(2.56) is the analogue of the Reynolds-decomposition of a generic field 

into an average and a fluctuating component, which is the basis for all 

classical closure models of turbulence. However, a caret (Q) denotes here the 

large-scale (resolved) component, which is still time-dependent even in flows 

which are stationary in the average, while a tilde (Q) denotes the 

small-scale, or 'sub-grid' (unresolved) component.

Following the general approach described by Leonard [1974], the 

large-scale components are the result of applying a filtering procedure to the 

local and instantaneous (unfiltered) quantities:

Q(x,t) = JG(x,x') Q(x',t) d3 x' (2.57)
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where Q = i u, p or T, and G is a normalized weight function, or filter. The 

integral extends (in principle) over the entire computational domain, and Q is 

still a continuous function, defined at each point in the domain and 

independent of the computational grid or discretization scheme used for the 

numerical computation of it. An example of filtered and unfiltered function is 

shown in Figure 2.2.

The equivalent of Eqn.(2.57) in transformed (wavenumber) space is:

Q(x,t) = f  elkx ̂ (k) 5(k,t) dk (2.57')
J  - 0 0

in which k = (k-^k^k^) is the wavenumber vector, 2 -(k,t) is the transform of 

Q(x,t) and p ( k )  is the transformed filtering function.

Several filters have been used by different researchers. Some of them are 

better expressed in physical space (x), others in transformed wavenumber space 

(k) . For example, Lilly [1967], Deardorff [1970] and other early investigators 

used the "box", or "top-hat", filter, defined in physical space as:

G(x,x')

' 1/A3

-

. 0

for Ix,-x.'I < A/2
1 l l 1

elsewhere

(i=l,2 and 3)

(2.58)

A being the characteristic filter width. Those using spectral methods and 

Fourier transforms, i.e. the Stanford group [Ferziger 1977] prefer to use the 

"gaussian" filter. It is defined in x-space by:

f f ï h f
G(x,x') = I— — — I exp [-(Vc /A ) n (x-x ' ) j (2.59.a)

where c is a constant, A is the filter width and n is the number of dimensions 

to be filtered. For plane-channel flows and related problems, the Gaussian 

filter is applied only in the horizontal directions (i.e., n=2 ) and the finite 

differencing in the vertical direction implicitly supplies top-hat filtering. 

Following Kwak et al. [1975], c = 6  and A= twice the grid spacing along x and 

z (directions parallel to the walls). In k-space, the same filter is defined 

by:

^(k) = exp [-A2 k2 /(4c)] (2.59.b)
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2 2 2 2
being k = k^ +k^ . Finally, the "sharp cutoff" filter is given in k-space 

by:

( 1  for k, < k
1 1  1 c

„0  for Ik.I > k
v 1 l 1 c

(2.60)

(i=l,2 and 3). In physical space, this filter is a damped sinusoid, with 

decreasing amplitude away from x'=x [Leonard 1974]. The three filters 

described above are shown in Figure 2.3 both in physical (co-ordinate) space 

and in transformed (wavenumber) space.

By filtering the Navier-Stokes equations (2.20.a') one has:

8f “i  3 
------ + ----
9t 3x , 

]

A
3P

3 1
faui 3u.

+ —  u + ---
9x. dx, 'y 3x, 3x.

i ] ' ] i

(2.61)

with the 

one has:

problem of filtering the product u^u^. Considering that u^ u .
i
+
V

u.u, = u .u . 
1 J 1 ]

+ u.u. + u.u, + u.u. 
1  ] 1  ] 1  ]

This may be written:

u.u, 
i 1

u.u. + L . . 
i D i]

C. , 
i]

u , u .
1  ]

where:

L. .
i]

/n .—
u , u
i j

A A

U . U
1 j

(so called "Leonard terms"); and:

A  f*j A

U , U  . +  U  , U  , 
1  ] 1  ]

(2.62)

(2.63)

(2.64)

(2.65)

(so called "cross terms").

The term is the analogue of the generic Reynolds stress arising from

the Reynolds-averaging of the Navier-Stokes equations, and is generally called 

unresolved, or subgrid, stress. If the Gaussian filter (2.59) is used, it can
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be shown [Leonard 1974] that the "Leonard terms" can be expressed 

approximately by:

L. .
i]

(2 .6 6 )

Similarly, the cross terms can be expressed approximately by:

u . u
l j

u . V U. 
J 1

(2.67.a)

/s r-t
u . u .

1  ]

A 2 ^
u. v u. 
i ]

(2.67.b)

Therefore, Eqn.(2.63) can be written:

u , u . 
i 1

u . u . + 
i ] 24

r 2 -~ ~ ^ —.2.^ a _a/ /v
V u.u. + u.v  u. + u .v  u. + u.u. 

i ] i ] ] i i ]
(2 .68 )

in which the only term left to be modelled is u.u..
i ]

Note that, due to the existence of the 'Leonard' and 'cross' terms, one

has tmUj - u^u^ t  u/u. (in general). As discussed by Deardorff [1973.a] and 

Leonard [1974], the physical reason for this inequality is that in the 

turbulence spectrum there is no gap between the large and the small scales, 

but rather a continuous 'energy cascade' involving eddies of all intermediate 

scales.

The filtering techniques described above have been criticized by several 

authors. For example, Speziale [1985] has shown that computing Leonard's 

stresses explicitly while using an eddy-viscosity subgrid model violates 

Galilean invariance of the Navier-Stokes equations, and Piomelli et al. [1987] 

argue that using the length and velocity scales of the grid-sized eddies to 

parameterize subgrid-scale effects is inconsistent with the use of a Gaussian 

filter.

An approach alternative to the above filtering techniques, which allows 

to drop the (rather uncomfortable) Leonard and cross terms and to overcome the
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above criticism, was proposed by Schumann [1975], but had been already 

practiced by Deardorff [1970.a foil.]. It is suitable for finite-volume / 

finite-difference based computational methods, and basically consists of 

replacing explicit filtering (prefiltering) by volume-averaging on each grid 

cell :

x /x2 +Ax2 / 2  /X3 +Ax 3 / 2

Q(x) = ------------  I dx': I dx ' 2  I dx'3 Q(x') (2.69)

Ax ^Ax 2 Ax 3  j  x^_^xj 2  j x 2 ~Ax 2 / 2  J x ^ - h x ^ / 2

The application of this filter to the velocity components u^ leads to the 

following important properties:

A  A A A
u . u . = u , u .
J O  1  ]

u . u . = u . u , 
i 1 i ]

0

(2.70.a) 

(2.70.b)

The same approach can be applied to the temperature equation. As a result, 

Schumann's method leads to the following form of the equations governing the 

flow and thermal fields:

sp a ^
—  + —
9t 3x. ]

]

) = o

A

3 ^ 3
3P 3

(yu ) +

j

= - -- + -- 1
3t 3x 3x.l

A

9x, 
1

3 ~ 3 A A 3 3T a

• 3 + (?u,T) = r — + —
at 3x.

]
3x ,
1

3x. 
]

3x

^3ui

, 1 7 +
1

3u. '
1

9X . ; 
1 '

u.u ,) 
1  ]

(2.71)

(2.72)

(2.73)

(subgrid density fluctuations were assumed to be negligible in order to derive 

the above equations). It has been shown by Antonopoulos-Domis [1981.b] that 

Schumann's method is not only simpler, but also more accurate (for a given 

filter width A  ) than methods based on "prefiltering" of the original 

equations.

The residual, or subgrid, stresses t ,, = -pu.u. and the residual fluxes
iT * . i] y  1  ]
£uj (which are the analogues of the Reynolds terms arising in time- or

ensemble-averaged equations) contain unresolved terms and thus have to be

expressed by means of a closure model. This is the task of the "subgrid

models" which will be reviewed in the following Section.
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2.4 Subgrid scale models for Large-Eddy Simulation

What one fool can do, another can

[Silvanus Thompson, 'Calculus made easy']

A survey of the subgrid-scale models for LES proposed and tested so far by 

various authors should not be separated from a discussion of their 

applications and of the numerical methods employed. However, for clarity of 

presentation, the main subgrid models will be classified and briefly described 

in this Section. Applications will be reviewed in more detail in Section 2.6, 

after a survey of the boundary conditions which will be given in Section 2.5.

2.4,1 Gradient-diffusion models

A large class of subgrid closure models are based on a gradient-diffusion

hypothesis, similar to the Boussinesq hypothesis of conventional turbulence

models. It consists of assuming the anisotropic part of the residual stress

tensor t u , to be proportional to the resolved (large-scale) strain rate tensor 
/\

1 rJ
. . - —  Ó . . T. .
lj  ̂ !] kk

(2.74)

in which:

1 /9u,

2  \9x
]

(2.75)

( \>s = u /$> is a kinematic subgrid viscosity, which has to be expressed by an 

appropriate model, and <5^ is the Kronecker delta) . If the subgrid turbulence 

energy (1 /2 ) u^u^ is indicated by the symbol k, then the second term at the 

LHS of Eqn.(2.74) can be expressed as:

1  2

- —  6. . t. . = -  6, , p k
3 i] kk 3 i]J

(2.76)

so that, substituting Eqn.(2.76) into Eqn.(2.74) and this into 

adding and subtracting the term (1/3) 6. . t , , ; and defining
1 3  K K

pressure P including the kinetic term k:

Eqn.(2.72); 

a modified
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(2.77)
• '  /s ^
P = p + —  % k

3

the generic Navier-Stokes equation (2.72) can be written:

9

at

3 P

—  [ou. ) + —  (PU.U.)

1  9x, 1  ]
]

9 x, 9x .
i ]

9 u . 9u .
i ]

(u+vu I —  +
9x . 9x,

] i'

--- (2.78)

For a constant-density fluid, Eqn.(2.78) can be simplified as:

3 ^ 3
— (u.) +
at  1 ax.  1 ]

i

1
A

3 P
3 ,

/ 9Ui
3 u j

— -----  + — (tf+V ) --- + ---

f 3x , 3x . S ‘l 3x . 3x .l 1 '  ] l

(2.79)

Equations (2.71)- (2.78) are formally identical to the time-dependent version 

of the governing equations for turbulent flow based on conventional Boussinesq 

closure models such as the k-E. In order to solve this set of equations, all 

that is needed is a closure relation expressing as a function of known 

(resolved) quantities.

As pointed out by Voke and Collins [1983.a], all proposed subgrid models 

belonging to the gradient-diffusion family can be summarized under the general 

form:

= C 1 q (2.80)

in which c is a dimensionless constant and 1  and q are a length and a velocity 

scale, respectively. They can be further classified as:

a) constant- v> model:
s

b) ’strain1 model:

c) ’vorticity’ model:

d) unresolved energy model:

v> = c
0

^  =

2  ^
c. l S

1  2  ̂  
c9l oo

i r 1 / 2  

C31  k

(2.81.a) 

( 2.81. b )

(2.81.C)

( 2.81. d)

Bardina et al. [1983] list the same basic subgrid-viscosity models and include 

also some "hybrid" formulations obtained by linear combination of the above.

The first model can be used only for isotropic homogeneous turbulence, and of 

course reconducts LES to a direct simulation with an artificially reduced
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Reynolds number. The second and third model can both be derived from the work 

of Smagorinsky [1963] .

The 'strain' model (b) is by far the most popular subgrid model, and was 

developed also by Lilly [1966]; it is generally called 'Smagorinsky - Lilly' 

subgrid model. Note that it is a nonlinear model, as the subgrid viscosity
/s

linking the subgrid stresses with the large-scale strain rate S. . is itself a 

function of S^. The parameter 1 is a length scale and is generally related to 

the width of the filter used. In finite difference - finite volume 

simulations, especially when the Schumann volume-averaging approach is 

adopted, a sensible choice is to express 1  as the average cell size (cubic 

root of its volume); i.e.,

1 = A  = (Ax-^^Ax^) (2.82.a)

/N
where the Ax^'s are the mesh sizes along the three directions. The quantity S 

is the quadratic invariant of the resolved strain rate tensor S^:

/N A A I/O
S = (2 S. ,S, ' (2.82.b)

i] i]

Eqn.(2.81.b) is more commonly written in the form:

j  = (c A ) 2  (2 S. ,S. , ) 1 / 2  (2.81. b ')
s s lj lj

The Smagorinsky-Lilly model can be derived by imposing equilibrium between 

energy transfer from large-scale to small-scale structures, and energy 

dissipation by the latter. A statistical derivation of this model from the 

Direct-Interaction Approximation (DIA) theory was given by Yoshizawa [1982, 

1986], who also extended it to buoyancy-driven turbulence [Yoshizawa 1983].

A crucial issue is, of course, the choice of an "optimum" value for the 

constant c ; the problem is discussed in Section 2.4.5.

Model (c) is a modified version of the more common Smagorinsky model (b), in 

which the parameter S is replaced by:

A
OJ

A A
( 2  co. . cu, ,

i] i]
1/2

ud , being the resolved vorticity tensor:

(2.83)
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, /'3u. 3u.\
~ 1  I 1  ] )
<*>.. = - --------- (2.84)

1 - 1 2  \ 3x. 3x. /

This model was tested by Ferziger [1977] and was found to yield results 

comparable with those of the Smagorinsky-Lilly model (b). An advantage is that 

it gives a vanishing subgrid viscosity in regions of zero vorticity 

(irrotational flow). Of course, also this model is a nonlinear one.

Model (d) was initially proposed by Lilly [1967] and was developed 

independently by Schumann [1975] and Deardorff [1980] . Its application
a/

requires the knowledge of the subgrid turbulence energy k; this can be 

estimated by solving a transport equation for k, which is the analogue of the 

k transport equation to be solved in the k-s and k-1 turbulence models. For 

example, in his study of the atmospheric boundary layer, Deardorff [1980] 

solved the following sub-grid turbulence energy transport equation:

3k
—  + --- u ,k = - u ,u, ---

9
+

N
3k

V> --- +SD - £ (2.85
at 3x. ] ’ k 9x„ 9x.

S o  B 
OX .

] k ] ]

in which Sg was a buoyancy-production term and I was the dissipation of 

subgrid turbulence energy. This was expressed in turn in terms of k and of the 

length scale 1  as follows:

£ = C£ \ ' / 1 (2.86.a)

with :

c£ = 0.19 + 0.51 1/A (2. 8  6 .b)

Deardorff assumed (in the present notation) c^O.10, and defined the length 

scale 1  so that in highly turbulent, well mixed regions it coincided with the 

average mesh size:

1  = A (2.87.a)

but in stably stratified, low-turbulence regions above the mixed layer was 

reduced according to:
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(2.87.b)1  = 0.76 (k)Va (q /-& Q a^/ay)

in which is a modified temperature (liquid water potential temperature) and 

■fr a reference value for this.

The same subgrid model was used by Moeng [1984-1987] and Moeng and 

Wyngaard [1984-1988] to study turbulence in the planetary boundary layer. 

Horiuti [1985.a] and Yoshizawa and Horiuti [1985] derived a transport equation 

for the subgrid kinetic energy from statistical considerations and applied the 

resulting one-equation subgrid-energy model to the study of turbulent channel
A/

flows. The subgrid-energy model, and the form of the transport equation for k, 

are discussed also by Grotzbach [1987] .

Also the transport equation ( 2 . 1 3 ) ,  governing the temperature field, contains

a term (the last at the RHS) made up by unresolved quantities. It consists of

the divergence of the vector q, or q^ (unresolved, or subgrid, heat flux

divided by the specific heat c ):
P

^  = pu.T (2.88)

A gradient-diffusion assumption similar to that used for the subgrid stresses 

leads for q^ to the expression:

A

9T

V ' rs r  <2-89>
3x.

l

A
in which T is the resolved temperature and Ts = >̂a the subgrid thermal 

diffusivity. By substituting Eqn.(2.89) into (2.73) one has the following form 

of the temperature transport equation:

9 3  ^ a
—  (?T) + ---(ou.T)
9t 3x. 3

J

q  9T
— (r+r  )—
9x. 9x.

] 9

(2.90)

The subgrid thermal diffusivity r is generally expressed on the basis of the 

subgrid viscosity ps and of a 'subgrid Prandtl number' og:

rs '  °s (2.91.a)
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For constant-density fluids, the alternative form using kinematic viscosity 

and diffusivity is more appropriate:

as = k  7  °s <2-91-b)

The issue will be discussed further in Section 2.4.5.

2,4.2 Non-Boussinesa models

A wider class of subgrid closure models can be obtained by dropping the

gradient-diffusion hypothesis. Of course, this leads to more complex

expressions for the subgrid stresses and fluxes t . ,, q, ,.
i] i]

Deardorff [1974] used a subgrid stress/flux transport model, consisting 

of individual transport equations for each of the sub-grid stresses - much as 

in Reynolds-stress transport (RSM) closure for time- or ensemble-average based 

turbulence models. The model, once completed with heat transport and buoyancy 

terms, involved not less than seven constants to be 'tuned', and required many 

of the assumptions well known to RSM modellers in order to achieve closure. 

According to the author, this model required 2v2 times more CPU time than a 

corresponding gradient-diffusion (Boussinesq) model. It is noteworthy that in 

later papers [Deardorff 1980, Moeng 1984] the NCAR group reverted to a simpler 

eddy-diffusivity approach. However, Deardorff had shown already in earlier 

work [1973.a] that both the subgrid-energy model and the Smagorinsky-Lilly 

'strain' model can be formally derived as successive approximations from the 

full subgrid stress/flux transport model.

A similar second-order closure model, but based on algebraically 

approximated equations (and thus closely related to ASM closure models) was 

developed by Schumann [1975]. He started from the observation that the 

large-scale component of a scalar Q, obtained following a filtering or 

volume-averaging procedure, is still a function of space and time and can be 

decomposed into mean <Q> and fluctuating component Q" = Q-<Q>. <Q> can be 

thought to be either a long-term time average or an ensemble average; in 

particular, for the flow in a plane channel, an annulus or any other geometry 

presenting the appropriate symmetries, <Q> can be replaced by the average over 

planes or surfaces parallel to the walls. Now, the mean component <Q> is more 

anisotropic, and more sensitive to the boundary conditions and to the effect 

of solid walls, than the fluctuating component. Thus, instead of modelling the
A» ,

ij- s via a single subgrid viscosity as in the Smagorinsky model, Schumann
, /\ A

split the resolved strain rate tensor S.. into mean <S..> and fluctuating
i] i]
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component S. ,-<S.
i] i]

and assumed that the unresolved stresses thet . , are

superposition of a 'locally isotropic' part, proportional to S. .-<S. .>, and of 
■ 3 1

an 'inhomogeneous' part proportional to <S^>. Moreover, he formulated in

tensorial terms rather than in scalar terms the relation between the t ,, and

the S^j, and allowed for the effects of computational grid anisotropy. In the

context of the volume-averaging (implicit filtering) procedure, the resulting

model can be summarized as:

r. J o  = -2 v> . , (S. ,-<S. ,>) - 2v> . 
i] T S,l] 1 ] 1 ] s,i

* /V»
<S. .>

i] i]
(2.92)

The 'locally isotropic' subgrid viscosity tensor is expressed as:

*  1 / 2

»s,ij = C2 (Fk) Cij (2.93)

in which F is the characteristic area (face of a control volume) over which
/w <v

the are averaged; k = u^u^ / 2  is the subgrid kinetic energy, also averaged

over F; c0  is a constant loosely corresponding to the constant cg of the

Smagorinsky model; and the Ch ̂ are the components of a geometric tensor 

introduced in order to account for the anisotropic effects associated with the 

computational grid.

As to P . . , associated with the mean component of the strain rate 

tensor and thus strongly depending on the external boundary conditions, 

Schumann restricted his analysis to the flow in plane or annular channels; in 

this case, as mentioned above, <u^> and <S^> are averages over planes or 

surfaces parallel to the walls and thus are functions of the coordinate y only 

(distance from the nearest wall). The only non-zero component of <S..> is 

<S^2 >  ̂ and the corresponding component of v’ is:

vs, 12
7 2  i ^ i
= 1  I0 ?<u > I (2.94)

in which § 2  is the finite-difference operator approximating the derivative 

along the cross-stream direction 2 , and 1  is a mixing length expressed by:

1
1/2

min[c1()F , tty] (2.95)

where c ^q is a further constant and K.= 0.42 is the Von Karman cappa.

A similar ASM-like second-order closure model was presented recently by 

Schmidt and Schumann [1989].
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A simplified version of Schumann's model was used by Moin and Kim [1982] 

in their well known simulations of plane-channel flow. They expressed the two
■k

subgrid viscosities v>s, v>g as simple scalars:

- ? ^ a ^ ^ 1/9
= (c DA) [2 (S. . - <S. .>) (S. . - <S. ■>) ] '  s S 1] 1] 1] 1]

* * * 2  ~ - 1/9
v> = (c D A0) [2 <S. .> <S. •>] ' s s 2  lj lj

(2.96.a) 

(2.96.b)

. . * *
in which cs = cs = 0.065 (constants similar to the Smagorinsky cs>, D and D

are Van-Driest damping factors accounting for near-wall effects (see next 

Section), A is the characteristic filter width, and ¿2 is the grid size in 

the direction normal to the walls.

Non-Boussinesq subgrid models such as those described above usually involve a 

relevant number of empirical constants and of 'ad hoc' assumptions; they 

behave very well for specific problems and simple geometries, such as boundary 

layers, plane channels and annuli, but are very difficult to generalize to 

different problems and complex configurations. For example, the models used by 

Schumann and Moin and Kim rely heavily on the possibility of averaging the 

various flow quantities over surfaces parallel to the walls, which of course 

would not be allowed if these surfaces were not periodic ("homogeneous") ones.

2,4.3 Multi-level models

Another approach to more refined subgrid models is based on considering more 

than two levels (i.e., resolved and subgrid, Eqn.(2.56)) in the decomposition 

of the flow field.

Bardina, Ferziger and Reynolds [1980, 1983] proposed a subgrid model 

based on a three-level decomposition. For any scalar Q, the repeated 

application of the filtering procedure generates the three-level hyerarchy 

summarized by the following scheme:

Q
*  /
Q Q Q Q

"larger" "transfer" "smaller" 
field field field
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in which Q=Q-Q and Q=Q-Q are actually the same field, christened "transfer"

field by the authors and including the larger eddies of the subgrid field,

coincident with the smaller eddies of the resolved field. By assuming the

energy cascade to occur always through the "transfer" field, Bardina et al.

were able to show that a good approximation for the terms R. , = u.u. + u.u. + 
, i] i 1  i ]

u^Uj (including both the subgrid stresses and the 'cross' terms defined in 

Section 2.3) should be:

. u  .
1  1

/S /V

u.u, 
1  ]

(2.97)

However, this model does not ensure a net energy transfer from larger to 

smaller scales. Thus, it was used only in linear combination with an 

eddy-viscosity model having the appropriate energy-transfer properties, so 

that the subgrid stresses (inclusive of 'cross' terms) were expressed by the 

"mixed" model:

t . .-(1/3)5. .t. , = -2 o < )  
lj lj kk ■> <S. . s 1 ]

PC [R. .-(1/3)5. .R, , ] 
•> r n  n  kk

(2.98)

with the Fbj's expressed by Eqn.(2.97), and cr being a combination parameter 

to be 'tuned' by numerical experiments. The authors tested various

combinations of the 'scale-similarity' model with eddy-dissipation models, 

compared results with full (direct) numerical simulations, and shown that 

their procedure gave better predictions than any eddy-viscosity approach, 

especially as regards comparisons at vector and tensor level.

The approach proposed by Bardina et al. was also tested and discussed by 

Horiuti [1989] .

On similar concepts is based the "dynamic SGS model" proposed by Germano et 

al. [1991]. Basically, it attempts to locally calculating the eddy viscosity 

coefficient to reflect closely the state of the flow; this is done by sampling 

the smallest resolved scales and using this information to model the subgrid 

scales. Besides the grid filter G, a (broader) test filter G' is introduced; 

scales whose length is intermediate between the grid filter width and the test 

filter width contribute resolved turbulent stresses, which can be used to 

estimate the local and instantaneous value of the Smagorinsky 'constant' c ^ .

In practice, the authors applied the model only to plane-channel flow, 

where cs can be assumed to be a function of t and y (distance from wall) only. 

They shown that the model predicted the correct asymptotic behaviour of the 

subgrid viscosity at walls without the use of 'ad hoc' damping functions (see
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following subsection), and gave results in better agreement with direct 

simulations than the basic Smagorinsky model.

2.4.4 Non-conventional approaches

An interesting approach to subgrid modeling, which attempts to found it on 

strange-attractor theory and which does not resort to formal averaging or 

filtering, is followed by McDonough and co-workers [McDonough et al. 1984.a; 

McDonough and Bywater 1986] . For each flow variable Q, they assume a standard 

additive decomposition of the same form as Eqn. (2.56):

Q =  Q 0  +  Q *  ( 2 . 9 9 )

in which, however, Qq may be assumed to correspond to the first few modes of a

generalized Fourier representation, which can be accurately approximated

globally via any standard discretization technique (finite difference, finite
*

element, spectral), while the term Q is associated with the remainder of the 

Fourier series. The authors do not work directly on the full Navier-Stokes 

equations, but rather on their one-dimensional version known as Burgers' 

equation:

3u Su 92u

---- + u ---- = - p  +v>----- (2 .1 0 0 )

3t 3x 3x2

which formally contains all the kinds of terms appearing in the full Navier- 

Stokes equations (i.e. linear temporal and diffusive, nonlinear advective, and 

a forcing term corresponding to a pressure gradient). Also other authors, for 

example Love and Leslie [1979], had used Burgers' equation in place of the 

more cumbersome full Navier-Stokes equations to study and compare different 

subgrid models for LES.

By substituting Eqn.(2.99), written for u and p , into Eqn.(2.100), the 

original equation is separated into the equivalent coupled system:

3u° 3u° 3 * 1  92 u°
---- + u ---- + (1 -6 ) —  (u°u ) --------- —  = - px° (2 .1 0 1 .a)

3t 3x 3x Re 3x2
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* * 2  *
3u * 3u a * 1  9 u
---  + u ---- + ft —  (u u ) ----------—  - - p. (2 . 1 0 1  .b)

? x
3t d x  d x Re 9x

in which Re = !/■) and B is an 'a priori' unknown parameter satisfying 0<Bil. 

The authors observe that, in contrast to usual averaging or filtering proced-

ures, this decomposition does not lead to Reynolds stress-like terms which 

ultimately must be modeled to close the system. On the other hand, the 

decomposition parameter B, whose values are in general unknown, must be 

prescribed. The value B=1 is chosen in the papers considered here; the authors 

mention that values for 6  can be derived from the 'renormalization group' 

theory of LES formulated by Yakhot and Orszag [1985] .

Now, McDonough et al. concentrate on the small-scale equation (2.101.b) 

and look for local solutions of this in an arbitrary interval [x^-h/2 , x 

l+h/2 ], h being the finite-difference grid spacing for the large-scale 

calculations. A solution is sought via representation by truncated Fourier 

series, leading to a system of ordinary differential equations in the 

time-dependent Fourier coefficients. The large-scale terms appearing in 

Eqn.(2.101.b) are treated as constants in this interval h, which is consistent 

with first-order large-scale spatial approximations. Arbitrary values are 

chosen for these large-scale fields and for the initial conditions, as well as 

for the 'Reynolds number' Re.
k

The resulting computed behaviour of u (x,t) in h displays bifurcation 

sequences as a function of the parameters and subparameters representing the 

large-scale solutions. The use of a combination of techniques, including 

velocity time series, power spectral densities and Poincare maps, confirms the

existence of a strange attractor in the appropriate phase-space. In
■ * 

particular, as the 'bifurcation subparameter' p is varied for a fixed Re, a
X

detailed sequence of bifurcations is identified in the computed small-scale 

solutions, which is reminiscent of the Ruelle-Takens [1971] picture of 

transition to turbulence and also similar to experimental results such as 

those obtained by Gollub and Benson [1980] for the Rayleigh-Benard problem.
k

However, chaotic solutions appear at values of p well below that at which
X

the final bifurcation to a strange attractor occurs, suggesting that here the 

sequence leading to turbulence may be more complex than in the Ruelle-Takens 

theory and may involve Feigenbaum period doubling [Feigenbaum 1980] and 

Pomeau-Manneville intermittency [Pomeau and Manneville 1980] . These results 

are noteworthy as they are obtained from a physical model (Burgers' equation) 

which, though still far from the full Navier-Stokes equations, is certainly
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closer to them than the simple, discrete, few-equation systems considered by 

Feigenbaum, Lorenz or other authors, and on which Ruelle and Takens founded 

their view of transition to turbulence.
"k

Detailed numerical solutions for the small-scale field u can now be fed 

back into the large-scale equation (2 .1 0 1 .a); the idea here is that the 

small-scale solution relative to a space interval h and to a time interval At 

has nothing special, and thus can be extended in space and time to the whole 

large-scale domain. Of course, this is equivalent to a subgrid model for LES. 

In other papers [McDonough et al. 1984.b] the authors extended their treatment 

to the temperature equation and to the one-dimensional equivalent of 

free-convection problems.

However, the authors did not generalize their study to the full 

three-dimensional Navier-Stokes equations, so that - for the time being - 

their results have mainly a theoretical relevance but cannot be directly 

transposed into subgrid model formulations.

2,4.5 Further aspects of subgrid modelling

There are several aspects of subgrid modelling which deserve a closer 

consideration. Some of these will be briefly scrutinised here, namely, 

near-wall damping, magnitude of the subgrid viscosity coefficient, energy 

backscatter, and subgrid Prandtl number. Of the issue of wall boundary 

conditions, a more detailed overview will be given in Section 2.5.

I. Near-wall damping

As in closure models based on time- or ensemble-averages, the wall region

deserves special attention. In particular, the subgrid model has to account
r~*6 xaW<k$ 3r)~ /Xv~ j ir-£yhc. 0*57“

for the fact that the fe-e-fcal—et-res-ses ete—aet vanish on walls, while the subgrid 

stresses do; hence, the subgrid viscosity or its more complex equivalents 

must vanish at the walls. This is related to the fact that on solid walls the 

large eddies dissipate their energy directly rather than by the usual energy 

cascade involving smaller and smaller eddies.

Wall effects can be partially taken into account by appropriately 

reducing, or 'damping', the length scale 1 in the proximity of walls. An 

approach common to conventional low-Reynolds number turbulence models is to 

use the Van Driest [1956] damping function:

D = 1/1M = 1 - exp(-y+/A+) (2.102.a)
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where 1 M is the value of 1  far from walls, y+ is the distance from the nearest 

wall, expressed in 'wall units' (i.e., y+=y u /tf), and A+ is a constant for 

which the value of 25 is generally used.

The damping function may be given the alternative form:

D s 1 /1 ^ = i - exp[-(y+/A+)2] (2.102.b)

which has the property of yielding not only 1 = 0 , but also dl/dy= 0  on the wall; 

this may be preferable for numerical reasons (i.e., to avoid sharp gradients 

of 1 ) .

A third damping function was suggested by Miner et al. [1989]:

D = [f o + (l-fg) (1 - exp [-(y+-yQ + )/A+] } 2 ] V 2 (2.102.C)

with fQ = 0 .0 4 , 8 -

The three profiles given for D(y+) by eqns.(2.102.a),(2.102.b), (2.102.c) 

are compared in Figure 2.4. Models (a) and (b) yield similar profiles, with 

the latter giving lower values of D for y+<A+ and higher values for y+>A+. 

Model (c) is characterized by a minimum at y+=yQ+, and thus yields relatively 

high values of D (i.e., less damping) within the viscous sublayer.

Taking near-wall damping into account, the Smagorinsky-Lilly subgrid 

model for $ , Eqn.(2.81.b'), can be re-written as:

t  = (c DA ) 2  (2S. .S. . ) V 2 (2.103)O O 1J 1J

in which D is given by one of the (2.102), or by some alternative formulation.

It should be observed that the use of the above near-wall damping 

functions requires some knowledge of the appropriate "inner" length scale 

V/u . For boundary-layer or plane-channel flows, this can be computed from the 

imposed streamwise pressure gradient or from the local or average wall shear 

stress without special difficulties (see Section 2.5 and Chapter 4). However, 

for flows in complex geometries (notably involving recirculation) u may not 

be well defined and further assumptions would be required, see Chapters 5-6.

II• Magnitude of the subarid eddv-viscositv coefficient

A much debated issue of LES is the magnitude to be attributed to the 

coefficient relating the subgrid viscosity to the length scale and strain 

rate, or equivalent quantities. The problem is most simply formulated in the
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context of the Smagorinsky model, where it comes down to the choice of a value 

for the constant c .
s _

Lilly [1966] determined that, for homogeneous isotropic turbulence with A

equal to the grid size and cutoff in the inertial subrange, one should have

cs=0.23. Values close to this were selected as optimum by Clark et al. [1979]

on the basis of comparisons at scalar level with direct simulation results.

However, in most applications to flows with mean shear (see review in

Section 2.6), smaller values of c were found necessary to avoid excessive
s

damping of the resolved fluctuations. McMillan et al. [1980] used direct

simulation results to show that c must decrease with increasing strain rates;
s

similarly, in large-eddy simulations of the atmospheric boundary layer 

Deardorff [1970.b and foil.] found that the value 0.17 gave best results for 

neutral conditions, but a higher value (0 .2 1 ) was better under unstable 

conditions, i.e. when buoyancy-generated turbulence prevails on shear-induced 

turbulence. The optimum choice of cg is also discussed in Deardorff [1971],

In actual large-eddy simulations of channel flows, values of about 0.1
4

were found appropriate both by Deardorff [1970.a], who used only ~10 grid 

points, and by Piomelli et al. [1989], who used much finer grids. An even
5

smaller value (0.065) was used by Moin and Kim [1982], who had up to ^5*10 

grid points, for both the "locally isotropic" and the "inhomogeneous" 

constants cg, cs in Eqns.(2.96). This is in contrast with results of Mason 

and Callen [1986], who found that the value cs=0.2 gave good predictions if 

the grid resolution was sufficiently fine, and concluded that lower values of 

cg are required only if the numerical resolution is insufficient. The contrast 

may be partly due to the fact that Mason and Callen employed "synthetic" wall 

boundary conditions, i.e. wall functions, while Piomelli et al. resolved the 

viscous sublayer explicitly.

In conclusion, there is not much agreement on the magnitude of the 

subgrid viscosity coefficient. Values ranging from 0.065 to 0.23 have been 

claimed to be optimum by different authors, in unclear correlation with the 

flow conditions, the grid size and the numerical methods used. What can be 

said with some confidence is that cg is of the order of 0 .1 , and is larger for 

isotropic and buoyancy-induced turbulence than for shear-generated turbulence; 

also, smaller values of cg seem to be appropriate in the near-wall region than 

in the bulk flow. Modified Smagorinsky models, in which the 'constant' cg was 

made a function of the local flow field, have been proposed and tested by 

Kobayashi et al. [1985.b] and Yoshizawa [1989]. Also the dynamic SGS model of 

Germano et al., mentioned in Section 2.4.2, goes along this direction.
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The author's impression is that in real simulations both numerical 

damping and numerically-generated fluctuations are superimposed on 'true' 

subgrid effects, and tend to mask the separate influence of the subgrid 

viscosity coefficient. Stable and even realistic simulations of complex and 

recirculating flows at very high Reynolds number have been presented 

[Nishikawa et al. 1991], which used no subgrid model at all!

Ill .Energy backscatter

Most of the commonly used subgrid-scale models assume that the main function 

of subgrid scales is to remove energy from the large scales and dissipate it 

through the action of viscous forces. However, it has been known for some 

years that while, on the average, energy is indeed transferred from the large 

to the small scales ("forward scatter"), reversed energy flow ("backscatter") 

from the small scales to the large ones may also occur intermittently.

By post-filtering large databases from direct simulations of turbulent 

and transitional plane-channel flows, Piomelli et al. [1991] shown that 

backscatter may interest a large fraction of the grid points at any instant; 

in flows undergoing transition to turbulence even the net plane-averaged 

transfer may occur backward, especially in the near-wall region and during the 

early stages of the transition. The precise amount of backscatter was found to 

depend on the Reynolds number and on the filter used; whatever its magnitude, 

an accurate modelling of this phenomenon is in principle desirable in order to 

obtain accurate predictions of the resolved flow field, especially in 

transitional and non-equilibrium conditions.

However, as discussed by Piomelli et al., the nett energy transfer from 

small to large scales is given by the subgrid-scale dissipation £ 5 0 5  =
<V ^  ^ /N ** A
ti jSij. In Smagorinsky-type models, = ~2M S and thus = ” 2  /^ij^ij'

which is always negative. Thus, these models are absolutely dissipative, i.e. 

they can not predict backscatter. The "mixed model" of Bardina et al. [1980, 

1983] and the "dynamic SGS model" of Germano et al. [1991] are capable of 

predicting backscatter and thus are more recommendable for transitional and 

non-equilibrium flows. For fully developed turbulent flows in channels, the 

correct modelling of backscatter does not seem to be as crucial, and 

absolutely dissipative models such as Smagorinsky's are (under this respect) 

quite acceptable.

IV. Subgrid Prandtl number
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The 'subgrid Prandtl number' is the LES analogue of the 'turbulent Prandtl 

number' ô_ used in conventional gradient-diffusion closure models of 

turbulence. However, values consistently ranging from 0.7 to 0.9 have been 

proposed in the literature for this latter parameter, and can be theoretically 

justified on the basis of turbulence theory [Landau and Lifschitz 1959; Yakhot 

et al. 1987], On the contrary, a broad range of values has been proposed in 

the LES literature for the subgrid Prandtl number, from 0.25 [Hunter et al.

1988] to 0.5 [Antonopoulos-Domis 1981.a] and 0.85 [Kobayashi et al. 1984,

1985.b]. Deardorff [1973.a] observed that pressure fluctuations at the 

sub-grid scale can inhibit momentum transfer relative to eddy transfer of 

scalar properties, thus making values of og much less than 1  physically 

reasonable. In their large-eddy simulations of the planetary boundary layer, 

Deardorff and the NCAR group generally made og a function of the local 

atmospheric stability, choosing values close to 1  in stably-stratified regions 

and smaller values in well mixed regions. For example, in Deardorff [1980] os 

was expressed as:

os = —  = (1+21/A) 1  (2.104)
a
s

with 1 given by Eqns.(2.87), and thus ranged from 1/3 to 1. Moeng and Wyngaard

[1988] derived a value of about 0.4 from high-resolution simulations using a 
3

96 -grid. Alternative values for were tested in other NCAR works, see also 

Section 2.6.

Finally, it is to be observed that the efforts towards improved subgrid models 

should address not only the problem of a better representation of the subgrid 

terms, but also the formulation of criteria for the optimum choice of the 

'cutoff' between large and small scales, i.e. of the grid size for a given 

problem. Currently, the finest grids compatible with the available 

computational resources are usually adopted; however, as faster and larger 

computational means become more common, the choice of optimum grid dimensions 

will probably acquire an increasing importance and will have to be based on 

detailed considerations on the turbulence spectra and the large-eddy size. 

This will probably constitute the true turning point towards the application 

of LES to problems of engineering interest.
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2.5 Wall boundary conditions for Large-Eddy Simulation

Humpty Dumpty sat on a wall:

Humpty Dumpty had a great fall.

All the King's horses and all the King's men 

Couldn't put Humpty Dumpty in his place again

[Lewis Carroll, 'Through the looking glass']

2,5.1 Local formulations

One of the most subtle problems of LES is the correct formulation of boundary 

conditions for the resolved fields on solid walls.

Let us consider first the hydrodynamic problem. Restricting our attention 

to finite-volume approximation methods, and with no essential loss of 

generality, the problem of imposing wall boundary conditions to the velocity 

field u basically consists of specifying the contribution carried to the 

momentum balance in a near-wall cell (control volume) by the face or faces 

which lie on a wall.

For the momentum balance in the direction normal to the wall, this is 

easily accomplished by imposing the normal component of u to vanish on the 

wall itself (this is a rather general condition and holds even for inviscid 

flows). On the other hand, for the directions tangential to the wall the 

problem can be restated as that of defining a relation between the velocity u
P

at a near-wall grid point, and the local wall shear stress tw at the 

corresponding wall location.

The velocity can always be decomposed into a component u  ̂ parallel 

to the wall, and a component un normal to it (which in most cases will be very 

small, but not necessarily nil) :

u = u + u
p par n (2.105)

(see Figure 2.5) . Without loss of generality, the relation between u r and tw 

may be given the linear form:

T
w, 1

T
M, i u

par, l (2.106)

which applies separately to each component of tw and u r along cartesian axes 

Xp,- the TM j_'s are temporarily unspecified coefficients (note that, in
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general, the wall may be arbitrarily oriented with respect to the axes xp so 

that all three components p may be nonzero).

Now, if P lies in the viscous sublayer, the velocity profile can be assumed 

linear between P and P' (Figure 2.5) and the wall shear stress tw is simply 

given by:

p u / y 
K par Jp (2.107)

so that the three multipliers  ̂are equal and their common value is:

TM,i = " 7  ¥p ( i = l , 2,3) (2.108)

Thus, Eqn.(2.106) expresses a truly linear relation. In Eqn.(2.108), p should 

be the laminar viscosity; as an alternative, the total (laminar + subgrid) 

viscosity p^o _̂ = p + ps may be used instead. Eqn. (2.108) then becomes:

V  = "tot 7  yp <i=l,2,3> (2.108')

Here, p^ and p̂. may be evaluated at P or, better, averaged over PP'. 

However, the near-wall damping expressed by Eqns.(2.102) and similar ensures 

that ps is very small in the viscous sublayer, so that p^Q)_ = P and the two 

formulations (2.108), (2.108') are practically equivalent.

On the other hand, if P lies outside the viscous sublayer, i.e. in the fully 

turbulent region, the velocity profile in PP' cannot be assumed to be linear, 

so that Eqn.(2.107) does not hold. An alternative is to assume that the 

'universal' logarithmic velocity profile holds in PP':

|upar|+ = (I/*) In (Eyp+) (2.109)

in which

= u / UT (2 .1 1 0 .a)

= y UT /■? (2 .1 1 0 .b)

and
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(2 .111)< U / í » V2

(friction velocity). In Eqn.(2.109), K is the Von Karman constant (=0.42) and 

E is a constant linked to the nondimensional thickness of the viscous 

sublayer, Yv+, by:

E = exp ( Kyv+) / yv+ (2.112)

A value of about 11 can be accepted for Yv + ; as a consequence, E=9.8.

Writing for simplicity upar s |u |, Eclns • (2.109)-(2.110) yield:

u  =  ( *  u  ) /  I n  ( E y  u  / i f 1) ( 2 . 1 1 3 )
i p a l  p  T

which can be used to compute u t iteratively, starting from any reasonable

guess, if y^ and upar are (locally) known. Once u t is computed, Eqn.(2.111)

gives the modulus of the wall shear stress t . Coherently with the assumption

of 'universal' wall functions, t can be supposed to be parallel to u ; the
w rr r par

result is:

TM,i = " ^ U T i</ ln (EypU i/v,) <i=1'2 '3> (2.114)

Eqns.(2.108) (to be used if P lies in the viscous sublayer) and (2.114) (to be 

used otherwise) are essentially identical to the approach proposed by Mason 

and Callen [1986] in their large-eddy simulations of plane-channel flow. 

Hence, they will be called "Mason-Callen boundary conditions", or "model a", 

in the following. Note that whether P does or does not lie in the sublayer can 

be simply verified by checking whether the following inequality holds:

“par « ' O H  <2-115»

A major limit of this formulation is that it is based on the assumption that 

universal 'wall functions' hold locally and instantaneously (or, at least, on 

the average in the limited region included in a single control volume); this 

may be questioned in a truly turbulent flow, as it neglects the existence of 

the phase shift between the wall shear stress and the near-wall velocity, 

observed, among the others, by Hanjalic and Stosii [1983] . Also, the validity 

itself of 'universal' wall functions is questionable in complex flows, notably 

involving recirculation, as discussed by Ciofalo and Collins [1989.a]. On the 

other hand, the above approach is the only one that can be applied, at least



formally, to general geometries, as it is based entirely on local quantities 

and makes no use of "wall-averaged" or "channel-averaged" velocities and 

stresses. This quality is not shared by the formulations which will now be 

discussed.

2,5.2 Global formulations

A second possible approach to the formulation of wall boundary conditions (in 

the sense specified above) is based on assuming that 'universal' wall 

functions (including the linear velocity profile in the viscous sublayer) do 

not hold locally, but rather globally, i.e. on the average over the whole 

computational domain.

Several alternative formulations of this kind are reviewed, for example, 

by Piomelli et al. [1989] for the case of plane Poiseuille flow ("plane 

channels"). They will be discussed in the following in a form slightly more 

general than that used by Piomelli et al. (who do not consider the case of P 

lying in the viscous sublayer).

Model b - This is basically as proposed by Schumann [1975]. The local wall 

shear stress is expressed as:

in  which t q i s  the "e q u ilib r iu m " average w all shear s t r e s s  a long x, re la ted  to 

the d r iv in g  streamwise p re ssu re  grad ien t Ap/Ax by:

tq = 6 Ap/Ax (<0) (2.117)

while Up' is the corresponding near-wall velocity as given by the 'universal' 

wall functions, i.e.:

(2.118.a)

• (u/vc) In (Ey u /V) (for y +=y u /V>y +)
T p T  Jp Jp T JV

(2.118.b)

The multipliers T , are equal also in this case, and are given by:ivl# 1t

T.
M, i (i=l,2 ,3) (2.119)
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(also, if x, y and z are the downstream, cross-stream and spanwise directions,

respectively, the walls will be parallel to the xz plane and thus only tw

and t will be nonzero, while t = 0  everywhere). 
w, z w,y J
Of course, this formulation is particularly "comfortable" to use when the 

"driving" pressure gradient Ap/Ax (and not the flow rate in the channel) is 

imposed as a known quantity, as in this case the multiplier TM is also a known 

quantity and does not depend on the solution.

Note that, in general, the average of u over planes parallel to the
pS L  f X

walls, <u >, will not equal U '(the former quantity depends on the
p a L r X  p

instantaneous computed flow field, while the latter is known "a priori"). As a 

consequence, Eqn.(2.116), the wall-averaged computed stress < t > along the
X

main flow direction will not equal the "equilibrium" value tq , i.e. will not 

balance the imposed driving pressure gradient, and the flow rate will be free 

of varying during the simulation.

Model c - This is basically as proposed by Grotzbach [1987] . The local wall 

shear stress is expressed as:

T
W

u
par (2 .120)

which is formally very similar to Eqn.(2.116). However, 

near-wall velocity, as computed by averaging the values 

part of the solution) over planes parallel to the walls:

here U is the 
P

of u (which
par,x

mean

are

U = <u > 
p par,x (2 .121)

while t ' is the wall shear stress along x, satisfying the 'universal' profile 

for 1 1 ;̂ i.e., tq ' = ^(ut>)2/ where u t' satisfies:

U /u '=• 
P t

fy PV " (for y +=y u ' / - f i y  + 
Jp Jp t Jv

(1/k.) In (Ey u ' /v>) (for y +=y u '/¿>y +) 
p t Jp Jp t Jv

(2 .122.a)

(2 .1 2 2 .b)

Eqns.(2.122), on the whole, should be regarded as a transcendent equation in 

uT' which is necessary to solve in order to compute t ' and thus to apply 

Eqn.(2.120). Also in this case, the multipliers T^  ̂are equal and are given 

by:

(i=l,2 ,3) (2.123)
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Note that, in this case, < t > is equal to t However, this in turn is not 

equal to 6  Ap/Ax; thus, as in the previous model, the wall shear stress does 

not balance the imposed pressure gradient and global equilibrium of the fluid 

is not ensured.

Model d - This was proposed by Piomelli et al. [1989] to take into account 

somehow the effect of the elongated structures which are found in the wall 

region of a turbulent channel flow. It is based on the assumption that the 

local wall shear stress is related not to the local near-wall (parallel) 

velocity, but to the near-wall velocity at a location shifted downstream by a 

length 1 . Thus, they may be called "shifted" wall boundary conditions. The 

wall shear stress is expressed by:

T
w

u
par (x+1 ,., z) (2.124)

in which t 1 and U have the same meaning as in model (c), while 1 is related
o p  X

to the distance of near-wall points P from walls, y , by:
P

Xx = Yp COtg * (2.125)

(see Figure 2.6). Piomelli et al. suggest a value of about 8°-13° for the 

characteristic angle <J>. The multipliers TM  ̂are given by:

t ' u ,(x+ 1  , y , z) 
o 1 par,i x Jp

M,i
u . (x, y , z) 
par,i Jp

(2.126)

In this case, the TM ^'s may be different from each other; namely, TM x may

differ from T.. .
M, z

Model e - Also this model was proposed by Piomelli et al. [1989] to take into 

account the effect of the near-wall coherent structures of a turbulent channel 

flow. It is based on the assumption that the local wall shear stress is 

affected by "ejection" events (see Introduction) occurring at a location 

translated downstream by a length 1 . When fluid is ejected from the wall
X

towards the centre of the channel, the main velocity (u) in the near-wall 

region decreases, thus reducing the gradient l3u/9yl and the wall shear stress 

t (in absolute value) . The opposite occurs when fluid coming from the
W , X

central regions of the channel is brought towards the wall by a "sweep-inrush"
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event. Note that the spanwise wall shear stress, tw , is not affected by 

these phenomena and thus can be computed as, for example, in model (d). The 

wall shear stress components are thus expressed as:

T
W, X 

T
w, z

+ c p u T v(x+lx, y , z) 

w(x+l , y , z) / U
x Jp p

(2.127.a) 

(2.127.b)

Piomelli et al. suggest a value of the order of 1 for the constant c. The 

multipliers T^ , may be different from each other, as in model (d), and are 

conveniently expressed by:

T
M, x 1 -c

Dp u(x, yp, z)
--- v(x+ 1  , y , z)
! I A P

(2.128.a)

T
M i z U

P

w(x+l , y , z)
x Jp

w(x, y , z)
(2.128.b)

2.6 Applications presented in the literature

So all my best is dressing old words new,

Spending again what is already spent

[Shakespeare, Sonnet LXXVI]

2,6.1 Planetary boundary layer

Following the pioneering papers by Smagorinsky [1963] and Lilly [1966, 1967],

an impressive amount of research work on Large-Eddy Simulation was carried out 

since the early 'Seventies at the National Centre for Atmospheric Research 

(NCAR) at Boulder [Deardorff 1970-1980; Sommeria 1976; Sommeria and Deardorff 

1977; Deardorff and Willis 1984; Moeng 1984-1987; Moeng and Wyngaard 1984 -

1988] .

This work was entirely in the context of Planetary Boundary Layer (PBL) 

research and included the development of numerical methods and models for 

subgrid momentum and scalar transport; their application to atmospheric
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turbulence simulation; and the statistical and spectral analysis of the large 

databases thus produced. It will be briefly surveyed here; attention will be 

focussed on subgrid models and other numerical fluid dynamics aspects, but it 

should be kept in mind that the authors were primarily interested in 

geophysical and meteorological issues which, of course, are beyond'the scope 

of this presentation.

The subgrid models and numerical methods tested at NCAR during the 'Seventies 

are surveyed in Deardorff [1973.a]. The computational model was based on a 

finite-difference, staggered-grid approach and used explicit time stepping. 

The leapfrog scheme was adopted in many applications, with some 'smoothing' 

every so many intervals to prevent decoupling of even/odd time steps; the 

Adams-Bashforth scheme was also tested and was found to be superior in 

computations based on complex subgrid models. At each time step, a Poisson 

equation was solved for the pressure in order to satisfy continuity. The 

second-order Arakawa scheme was used for the discretization of the advective 

terms; moreover, the grid was moved downstream with the mean wind velocity by 

a simple galilean transformation in order to reduce the associated truncation 

errors.

In all applications, periodic boundary conditions were used in the 

horizontal directions. At the upper boundary ("lid"), the vertical velocity v 

and the vertical derivatives of horizontal velocity components u, w, of 

temperature T and of other scalars (if any) were set to zero. At the surface 

(ground), v was set to zero while for u, w and T "true" wall boundary 

conditions were replaced by conditions on their second derivatives along y, 

imposed at the centre of near-surface cells (corresponding to a height of 

about 2 0  meters) and derivable from classical 'universal' profiles holding in 

the surface layer. Several subgrid models of increasing complexity were 

implemented and tested, ranging from the simple Smagorinsky-Lilly model to a 

full subgrid stress/flux transport model and to a subgrid energy model, all of 

which have been described in Section 2.4.

After a preliminary application to channel flow [Deardorff 1970.a], see next 

section, Deardorff simulated neutral and unstable planetary boundary layers 

[Deardorff 1970.b, 1970.c, 1970.d, 1972.a]. The computational domain had 

relative sizes of 4H * H * 2 or 4H (along x, y and z as defined in Figure

2 .1 ), corresponding roughly to a height of 1  kilometer by a few kilometers 

across. The grid included 40 * 20 * 20 or 40 cells, totalling from 16,000 to

32,000. The large-scale momentum equations included Coriolis and buoyancy
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terms, with the Boussinesq approximation; an additional transport equation was 

solved for the temperature, expressed as "virtual potential temperature" to 

account for vertical pressure gradient and moisture effects.

Subgrid terms were described by the Smagorinsky-Lilly model, Eqn.(2.101), 

with cs=0.13 in the neutral case and 0.21 in unstable cases (characterized by 

higher turbulence levels). The magnitude of c is discussed in detail in 

Deardorff [1971] . Near-wall damping was not explicitly included, but cs was 

set to a lower value (0 .1 0 ) in all cases at the first near-surface grid 

points. The subgrid Prandtl number to use in the temperature transport 

equation was set to 1/2 in the neutral case and to the lower value of 1/3 in 

unstable cases; it was set to 1  in all cases at the first near-surface points.

Results presented included vertical profiles of various mean and 

resolved fluctuating quantities, for which good qualitative agreement with 

known PBL data was claimed. Turbulent structures, including thermal plumes and 

Ekman-like vortices, elongated in the downstream direction, were simulated 

with convincing realism. Note that these elongated structures, though 

superficially resembling the sublayer 'streaks' mentioned in the Introduction, 

have a different nature and are several orders of magnitude larger; in the 

atmospheric simulations considered here, sublayer structures would be by far 

too small to be resolved by any feasible grid (besides being ill-defined due 

to surface roughness). However, quantitative comparisons with field data were 

not presented in these early works. The required CPU time on a CDC 6600 was 

about 150 hours for four basic simulations, corresponding to some hours of 

real time.

In the above early studies the height of the computational domain contained 

just the PBL, and did not allow for effects of entrainment of overlying air 

into it. In further works [Deardorff 1974.a, 1974.b] this limitation was 

greatly alleviated by allowing the model height to exceed the PBL thickness by 

a comfourtable margin; the upper "lid" was placed at a height of 2  km, while 

the PBL height ranged from about 100 to 1500 m during diurnal growth. This 

required doubling the vertical number of grid points; grids having 40*40*40 

cells (64,000 in total) were used. The horizontal 'box' sizes were 5*5 km. The 

numerical methods were as described above [Deardorff 1973.a]; the large-scale 

equations included now a transport equation for the humidity q.

The subgrid model was more complex than in the 1970-1972 studies; it was 

based on the solution of transport equations for each of the subgrid stresses 

and fluxes of potential temperature ^  and moisture q. Details are given in 

Deardorff [1973.b]. Computed results included the evolution of vertical
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profiles of all mean quantities, resolved fluctuations, and second moments. 

Field data from the experiment known as Wangara-day 33 (taken in Southeast 

Australia over flat terrain) were used for comparison; a satisfactory 

agreement was found.

More recent papers by Deardorff [1976, 1980] address the issue of turbulence 

structure in an atmospheric boundary layer capped by a deck of stratocumulus 

clouds. The set of large-scale equations employed was as in Deardorff 

[1974.a], i.e. momentum, temperature (expressed here as "liquid water 

potential temperature" , $^) and moisture. The subgrid model, however, was 

much simpler than in Deardorff [1974.a], being based on the 'subgrid energy' 

approach synthesized by Eqn.(2.81.d).

For the dissipation t  appearing in the subgrid-energy transport equation 

(2.85), the expressions (2.86) were adopted; also, c£ was increased by a 

factor of up to 3.9 near the surface to account for ground effects. The length 

scale 1 was computed by using Eqns.(2.87). Finally, Eqn.(2.92) was used for 

the subgrid Prandtl number appearing in the temperature transport equation.

The computational 'box' was 2 km in height, as in Deardorff [1974.a], and
■5

from 2*2 to 5*5 km across. The grid included 40 =64,000 cells and the 

numerical methods were as described above. Seven test cases were simulated, 

differing in the presence or not of cloud capping, phase-change and cloud 

radiative cooling in the model, and in the values imposed for the turbulent 

heat and moisture fluxes.

The NCAR LES code was greatly improved by Chin-Hoh Moeng [1984] . Following the 

approach adopted by the Stanford group [Moin et al. 1978], she completely 

re-wrote Deardorff's code leaving the finite-difference discretization along 

the vertical direction (y), but replacing it with a pseudospectral method, 

based on Fourier-series expansion, along x and z. The numerical accuracy of 

the code was tested by simulating (without any subgrid model and auxiliary 

transport equations) the classical problem known as Taylor-Green vortex flow 

[Taylor and Green 1937] .

The simulations for the Wangara-day 33 test case previously reported by 

Deardorff [1974.a,b] were then repeated using 32*40*32 nodes, a time step of 3 

seconds, and basically the same 'subgrid energy' model as in Deardorff [1980], 

but with a gaussian filter and Leonard/cross terms explicitly computed along x 

and z. Some changes were also introduced in the large-scale transport 

equations for temperature and moisture; in particular, a 'liquid-water static 

energy' equation was introduced in place of a potential or virtual potential
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temperature equation. Of course, a discussion of these aspects would be beyond 

the scope of the present review. The overall results were comparable with 

those of Deardorff [1974.a,b], the most apparent disagreement being in the 

vertical profiles of horizontal velocity variances.

The same model was also applied to the study of a stratus-cloud topped 

planetary boundary layer [Moeng 1986, 1987] . A grid of 40*40*40 nodes was

used; particular attention was dedicated to the modelling of radiative cooling 

in the cloud deck and to the necessary modifications in the 'liquid-water 

static energy' transport equation.

The large databases of computational results produced by the above

simulations were also analysed by Moeng and Wyngaard [1984, 1986] and by 

Fiedler and Moeng [1985] . The main purpose of these studies was to derive

models of pressure and scalar variances/covariances for use in more

conventional, second-order closure models of turbulence.

Moeng's pseudospectral code originally had all variables out of core except 

pressure, for which an elliptic (Poisson) equation had to be solved at each
3

time step. The memory management allowed grids of up to 40 nodes on the NCAR 

CRAY-X-MP and was accomplished by a technique known as 'slab partitioning'. 

Replacement of this by a method called 'pencil partitioning' allowed also the 

pressure equation to be treated out-of-core, thus increasing the size of
3

feasible grids to 96 .

Simulations of the planetary boundary layer using this much finer grid 

are described by Moeng and Wyngaard [1988]. The time step was 1 second, and 

the sizes of the computational 'box' were 5*2*5 km (along x, y and z); thus, 

the cell sizes were about 50*20*50 m, well within the inertial subrange. This 

allowed a comparison of filters on the basis of the produced turbulence

spectra; the authors concluded that a wave-cutoff filter, Eqn.(2.60), gave
-5/3

spectra closer to the theoretical (Kolmogorov) k trend in the inertial 

subrange than the gaussian filter (2.59). Also, wave-cutoff satisfies the 

requirements pointed out by Speziale [1985] and Piomelli et al. [1988], 

discussed in Section 2.4, and was thus judged to be markedly preferable.

In the same paper, from an analysis of the local balance of production 

and molecular destruction of subgrid temperature variance, the authors deduced 

a value of about 0.4 for the subgrid Prandtl number o , although a somewhat 

smaller value (0.3) was preferred in the actual simulations. Finally, they 

re-examined the results of Deardorff [1974.b] and found some errors in the 

model constants used for subgrid scalar transport, probably accounting for the 

reported overpredictions of scalar variances.
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As a final remark on the NCAR work, it should be stressed that Deardorff and 

his colleagues were interested in LES mainly as a tool for improving our 

understanding of planetary boundary layer physics. Thus, many of the choices 

regarding subgrid constants and other modeling details are often justified 

more on physical grounds than on the basis of rigorous turbulence-theory 

considerations, and may sometimes appear arbitrary to those not acquainted 

with PBL meteorology. However, the NCAR contributions to the development of 

LES are undoubtedly outstanding, and it is a pity that, due to the lack of 

communication channels between the geophysical-research and the engineering- 

research communities, they are relatively little known among numerical fluid 

dynamicists interested in engineering and general applications.

Large-eddy simulations of the planetary boundary layer were also conducted by 

Nieuwstadt and Brost [1986] under a collaboration between NCAR and the Dutch 

Meteorological Institute. They were furtherly developed in the Netherlands by 

Nieuwstadt and deValk [1987], who simulated the dispersion of buoyant and 

non-buoyant plumes in the atmospheric boundary layer. In these studies the 

finite-difference computational method, the subgrid model and the 

computational box were essentially as in Deardorff [1980] .

A large-eddy simulation model for mesoscale meteorology (MESOSCOP) was also 

developed in Germany by Schumann et al. [1987] and applied to the simulation 

of mixing in the convective boundary layer in the absence of mean wind 

[Schmidt and Schumann 1989; Schumann 1989], a problem which is known as a very 

difficult one for conventional closure models of turbulence.

The subgrid model was of the ASM-type, in that subgrid momentum and heat 

fluxes were determined by algebraic relationships derived from second-order 

closure theories and involving the subgrid turbulence energy k, for which a 

separate transport equation was solved. The computational method was based on 

finite-difference approximations on equidistant staggered grids. Second-order 

difference schemes were used for the advective terms. Time integration was 

performed by the explicit Adams-Bashforth method.

Very fine grids, having up to 160*40*160 (x*y*z) cells, were used; with 

this number of cells, simulations required 65,000 seconds of CPU time for 

2,800 steps (corresponding to some hours of real time) on a CRAY-X-MP. 

Out-of-core storage was necessary, and a "slab-partitioning" technique was 

used. The most relevant result was the prediction of coherent convective 

structures in the form of narrow and fast updraughts surrounded by larger and
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slower downdraughts in a polygonal spoke pattern, similar to that observed 

under certain conditions in Rayleigh-Benard convection and convincingly close 

to patterns actually observed in the convective boundary layer of the 

atmosphere.

Finally, spectral simulations of isotropic and stably-stratified turbulence,
3

obtained with a resolution of 128 collocation points, were presented by 

Metais and Lesieur [1989], and were compared with direct simulations for lower 

Reynolds numbers. Large-eddy simulations of the convective atmospheric 

boundary layer were also presented by Mason [1987] and Mason and Thomson

[1987] .

2,6.2 Basic geometries

Besides the atmospheric-turbulence studies described above, most LES 

applications presented so far in the literature regard basic geometries such 

as homogeneous turbulence, incompressible fluids flowing between plane 

parallel walls (Poiseuille flow) or in annular passages, and free convection 

in horizontal layers delimited by parallel plates (Rayleigh-Benard

convection). Some of the most significant examples will be surveyed in this 

subsection.

One of the earliest applications is due again to Deardorff of the NCAR at 

Boulder, who studied plane Poiseuille flow at 'infinite' Reynolds number using 

the Smagorinsky-Lilly subgrid model [Deardorff 1970.a]. The sizes of the 

computational box were 6 6 , 26 and 46 along x, y and z, respectively (see 

Figure 2.1); a finite-difference grid having only 24, 24 and 14 cells along

the same directions was used. Periodic boundary conditions were imposed along 

x and z, while conditions on the second-order cross-stream derivatives of u 

and w (compatible with 'universal' logarithmic velocity profiles) were imposed 

at a distance Ay / 2  from the walls, as in the mentioned planetary boundary- 

layer simulations [Deardorff 1972.a foil.]. Also, the condition v=0 was 

imposed on the walls.

For the Smagorinsky constant c , Deardorff found an optimum value of 

about 0 .1 ; corresponding cross-stream profiles of mean and fluctuating 

(resolved) velocities were compared with experimental data for high-Reynolds 

number channel flow [Laufer 1954, 1950] and a satisfactory qualitative

agreement was found. Also, the near-wall structure of turbulence was 

reproduced with some realism, especially as regards elongated regions of
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alternating low and high downstream velocity u (resembling the experimentally 

observed 'streaks', see Introduction). However, no quantitative assessment of 

streak spacing was possible, as the Reynolds number was unspecified and 

moreover was assumed so high that the viscous sublayer was not explicitly 

resolved.

As mentioned above, this study was preliminary to the planetary boundary layer 

simulations conducted at NCAR in the following years.

Large-eddy simulations of plane-channel flow were conducted at the

Kernforschungszentrum Karlsruhe, W. Germany, by Schumann [1975], who used his

subgrid model (2.92) with \) , . and \} . . expressed by Eqns.(2.93), (2.94)
s, i] s, 1 ]

and a transport equation similar to Eqn.(2.85) resolved for the subgrid
A/

turbulence energy k. Schumann considered computational boxes having sizes 46 

to 8 6  and 26 to 46, respectively along x and z, and finite-difference grids 

including 16 to 64 cells along x, 16 to 64 along y and 8  to 16 along z. The 

wall boundary conditions were those summarized in Section 2.5, Eqns.(2.116) to 

(2.119). As usual in these simulations, periodicity conditions were imposed 

along x and z. Optimum values of 0.094 and 0.01 were found respectively for 

the constants C2  and c ^  of the model. Simulation results, once compared with 

experimental data by Laufer [1954, 1950] and Comte-Bellot [1965], exhibited an 

agreement much better than the earlier results by Deardorff [1970.a] mentioned 

above. However, Schumann used up to 10 times more grid points than Deardorff, 

so that it is not clear how much of the improvement can be attributed to the 

grid refinement rather than to the more complex subgrid model (containing, 

however, as many as 1 0  adjustable constants as compared to the single basic 

constant cg of the Smagorinsky-Lilly model used by Deardorff).

Schumann applied the same model and methods also to the simulation of 

flow with heat transfer in annular passages, somehow representative of nuclear 

reactor subchannels; this is the first known application of large-eddy 

simulation to a problem of direct engineering interest.

Grotzbach [1988, 1990] developed Schumann's model and applied it to the 

simulation of Rayleigh-Benard convection, a problem previously studied by the 

author using direct simulation [Grotzbach 1982]. The subgrid model and 

numerical methods developed by the Karlsruhe group are reviewed by Grotzbach 

[1986] .

Work on LES, based on spectral or combined finite difference / spectral 

methods, was initiated since the 'Seventies at the Stanford University 

(Thermosciences Division, Department of Mechanical Engineering) in close
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cooperation with the NASA-Ames Research Centre. The earlier steps of this work 

are reviewed by Ferziger [1977, 1981] . Spectral numerical methods, especially 

suitable for use with the ILLIAC-IV computer, were developed at NASA by 

Rogallo [1977, 1981] and applied to direct simulations of homogeneous 

turbulence. A combined finite difference - spectral technique, suitable for 

plane-channel flow, was devised by Kwak et al. [1975].

McMillan and Ferziger [1979] analysed various aspects of eddy viscosity 

models by comparing LES results with full simulations of turbulent flows, 

following a suggestion by Clark et al. [1979]. Their results indicated that 

eddy viscosity models correlated poorly with 'exact' subgrid stresses 

(tensor-level comparison) although the resolved fields were fairly predicted.

The same technique was used by Bardina et al. [1980, 1983]. They used
3 3

spectral methods, in conjunction with very fine grids (from 64 to 128 

nodes), to simulate homogeneous turbulent flows with and without mean shear. 

The authors tested various combinations of subgrid models, including the 

'scale-similarity' approach described in Section 2.4.2, against the full 

simulations of homogeneous turbulent flow obtained by Rogallo [1977, 1981] and 

experimental results by Comte-Bellot and Corrsin [1971]; the best agreement 

with full simulations was given by a linear combination of their 'scale 

similarity' model with the Smagorinsky model, see Eqn.(2.98). The authors 

studied also the effect of rotation on turbulence structure and developed 

techniques to extract information on subgrid quantities from large-eddy 

simulation results ('defiltering').

The best known results of the Stanford group are probably those presented

for plane Poiseuille flow by Moin and Kim [1982] (and previously by Moin et

al. [1978] and Kim and Moin [1979]). They used the subgrid model summarized by

Eqns.(2.96), which is a simplified version of Schumann's model in that it does

not involve the explicit solution of a transport equation for the subgrid

turbulence energy and uses simple scalar values for the subgrid viscosities 
*

V>s, Vs . The sizes of the computational domains were 1T26 tofl46 along x and 

n(2/3) 5 tolf6  along z. A finite-difference approximation was used along the 

cross-stream direction y, and a spectral one, based on Fourier expansions,

«along the.^^
iv r i- s  -  Bn fr

directions x and z; the time-stepping^method wa§ explicit.
, ,{&> 6— ti vv̂_. f n J t (Crf>? fVicKi. . j

No-slip conditions were impose^ at the walls and Van Driest - like damping,
zpr JJx — *-■«-, h.« a fir
Eqn.(2.102.a), was dlso used the wall region. Very fine grids, having up to 

64*64*128 points along x, y and z, were adopted in this study: the viscous 

sublayer y < 1 1  was resolved by four grid points (selectively refined near the 

walls) for a Reynolds number, based on channel half-height, of about 15,000. 

The spanwise grid was also made very fine in order to improve the resolution
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of the near-wall 'streaks'. The overall number of grid points exceeded 500,000 

for some test cases.

Moin and Kim's study is still considered a "classic" in Large-Eddy 

Simulation. The computational results were in very good agreement with 

experimental data [Kreplin and Eckelmann 1979; Hussain and Reynolds 1975] as 

regards cross-stream profiles of mean quantities and (resolved) fluctuations. 

Near-wall 'streaks' were predicted with great accuracy, see Figure 2.7, 

although their spanwise spacing was still higher than indicated by 

experimental data (about 150-200 wall units against 100). The large databases 

produced by the above simulations were further analysed in successive works in 

order to search for coherent structures and to extract statistical and 

spectral information from them.

Further LES studies by the Stanford group regard stratified flows 

[Findikakis 1981], the effect of rotation on turbulence structure [Kim 1983], 

turbulence in uniformly-sheared layers [Moin et al. 1985], wall boundary 

conditions and model consistency in wall-bounded flows [Piomelli et al. 1988,

1989], and transitional flows [Piomelli et al. 1990].

In the U.K., the first LES studies were conducted by the 'Turbulence Unit' at 

the Queen Mary College [Love and Leslie 1977; Antonopoulos-Domis and Love 

1978; Leslie and Quarini 1979] . Both finite-difference and spectral methods 

were developed and implemented on computer codes (FORTY, ECCLES, CHANEL) 

purposely written for direct and large-eddy simulation.

The case of isotropic turbulence, with special regard to the transport of 

passive scalars, was investigated by Antonopoulos-Domis [1981.a,b]. Large-eddy 

simulations of low-Reynolds number channel flow were presented by Gavrilakis 

et al. [1986]. Hunter et al. [1988] used spectral methods to simulate the 

growth of the thermal boundary layer in a channel having one of the walls 

heated for a Reynolds number of a few thousands. They worked out an analogy 

between the growth of a thermal layer with time following a step increase of 

the wall temperature, and its growth in space downstream of an abrupt change 

of the wall thermal conditions; the latter case had been studied by Antonia et 

al. [1977], This analogy allowed comparison of LES results with real-time 

interferograms obtained in a wind tunnel [Lockett 1987] under not-fully 

developed conditions. Further simulations of developing turbulent boundary 

layers were presented by Tsai and Leslie [1990] .

Voke [1989] used a multi-grid method, in conjunction with a subgrid model 

similar to that used by Moin and Kim [1982], to simulate turbulent flow in a 

plane channel at Re^=3,000. The sizes of the computational 'box' were 26*26*6
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along x, y and z, respectively. The finest grid had up to 32*64*128 points and 

was used only every so many time steps, the computations being carried on on a 

much coarser grid during most of the simulation. This method allowed 

significant reductions of the required CPU time with no significant loss of 

resolution.

At the City University of London, Voke and Collins [1984.a] and then Fodemski 

et al. [1987] conducted large-eddy simulations of turbulent channel flow using 

spectral methods, based on Fourier expansions along the periodic directions 

and Chebychev expansions along the cross-stream direction [Voke et al. 1985]. 

An important feature of their computer code was the formulation of the gover-

ning equations in general coordinates [Voke 1982; Voke and Collins 1983.b,

1984.b]. This allowed the computational domain to be distorted in order to 

represent relatively complex geometries, including channels having one of the 

walls roughened by transverse ribs [Fodemski et al. 1986] . In order to avoid 

instabilities, a step-by-step deformation technique was developed, in which 

the solution for each geometry was used as initial condition for the further 

small geometry change. However, an unconditional numerical instability 

occurred whenever the steepness of the obstacles exceeded a certain limit.

In Japan, Horiuti [1982] used the Smagorinsky-Lilly model (2.81.b), with a 

near-wall damping function for the length scale and no-slip boundary condi-

tions, to simulate incompressible plane-channel flow. A noteworthy result was 

the realistic prediction of near-wall turbulence 'bursts' and 'sweeps' of the 

kind discussed in the Introduction. Later [Horiuti 1985.a], the author repla-

ced the Smagorinsky-Lilly model by his own one-equation subgrid-energy model; 

results from the two were compared in another paper [Horiuti 1985.b]. It was 

found, in particular, that the subgrid-energy model led to a better prediction 

of the spanwise streak spacing.

2.6.3 Complex geometries

Only a few large-eddy simulation studies are known for recirculating flows and 

(relatively) complex geometries such as rib-roughened channels, backsteps and 

jets.

LES results for the flow over periodic transverse square ribs at a 

Reynolds number of 11,000 were presented by Kobayashi et al. [1984.a]. They 

used a finite-difference approach, based on the SMAC method, to solve the 

time-dependent Navier-Stokes equations for the large-scale fields. Central
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differencing in space, and the explicit Adams-Bashforth time stepping scheme, 

were adopted. The subgrid model was that of Smagorinsky; a quadratic function 

was used to model near-wall damping of the subgrid kinematic viscosity. Heat 

transfer was also simulated, using a value of 0.85 for the subgrid Prandtl 

number o . The duct geometry was characterized by a rib pitch-to-height ratio 

(P̂ /h) of 5, and by a rib height to channel height ratio (h/H) of 1/3.2. The 

computational domain included one pitch in the streamwise direction, and only

0.35 channel heights in the spanwise direction. Streamwise and spanwise 

periodicity was imposed. Prescribed values of the heat flux were assigned on 

each wall, including the top (smooth) wall of the channel. The computational 

grid included 40 points streamwise, 25 cross-stream and just 9 spanwise (about

9,000 points in total). The simulation covered just a fraction of a LETOT,
_3

resolved by very small time steps of about 10 De/U (maximum Courant number < 

0.1). Results were presented in the form of cross-stream profiles of mean u 

velocity, resolved turbulence energy and resolved uv Reynolds stress, in 

addition to contour plots of the instantaneous pseudo-stream function and of 

the fluctuating rms v velocity on a spanwise "slice", and to average tempera-

ture profiles along the walls. The authors obtained a single recirculation 

"bubble" in the inter-rib region, in agreement with experimental evidence for 

the geometry considered [Mantle 1966] . However, only velocity and turbulence 

profiles near the smooth wall were quantitatively compared with experimental 

data of Laufer [1950, 1954]; the other predictions were only qualitatively 

discussed.

In a subsequent paper [Kobayashi et al. 1985.b] the authors introduced

some modifications in the subgrid model and in the near-wall damping function.

These changes basically consisted of making the constant c o f  the Smagorinsky

subgrid model a decreasing function of the local "cell Reynolds number"
_ —2

(defined with respect to the local vorticity co and mesh size A, as o j A /v> ) . 

This was claimed to improve the predictions, although it is not clear on what 

basis this conclusion was founded.

Non-periodic turbulent flow over a single square rib in a plane channel was 

simulated by Werner and Wengle [1989] by using the Smagorinsky-Lilly SGS model 

with c =0.1. Near-wall damping was partially taken into account by using for 

the length scale in Eqn.(2.81.b') the smaller value of cgA and K.y, y being the 

distance from the nearest wall and K the Von Karman constant (0.42). The rib 

height to channel height ratio, h/H, was 1/2. The Reynolds number, based on 

bulk upstream velocity and obstacle height, was 42,500 to match that of 

experiments by Dimaczek et al. [1988].
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Fully developed outflow conditions were imposed. At the inflow section, 

the time-dependent flow field from LES results for fully-developed plane-chan-

nel flow was used. The computational domain included 4 rib heights upstream 

and 13 downstream of the rib. A finite-difference method was used, with very 

fine staggered and non-uniform grids having up to 160*64*64 nodes along the 

streamwise, cross-stream and spanwise directions, respectively. Central 

differences were used for the advection terms. The numerical integration in 

time proceeded in cycles of explicit steps starting with an Euler step, 

followed by approximately 50 leapfrog steps and ending with an averaging step. 

A time-lagged treatment was used for the diffusion terms. Pressure-velocity 

coupling was performed by a predictor-corrector scheme akin to SIMPLE. Stati-

stics were collected over the (supposedly) "homogeneous" direction z parallel 

to the rib, and over 5.5 reference times (r.t.=2h/U), after a development 

phase of 7.5 r.t ..

Very realistic mean and fluctuating velocity fields were obtained; with 

the finest grid used, the reattachment length downstream of the rib was ~7h, 

against an experimental value of ~7.6h (as measured from the middle of the 

rib); the flow separating from the leading edge of the rib did not reattach on 

its top surface, in agreement with experimental observations. Switching to a 

coarser grid (80*28*44 nodes), the reattachment length decreased to ~6.4h and 

the flow reattached (in the average) on the top surface of the rib. However, 

mean and fluctuating velocity profiles were little affected, and remained in 

close agreement with experimental results even in calculations with a signi-

ficantly lower number of grid points. Strong three-dimensionality of the 

instantaneous flow was predicted, both in the impingement region (leading face 

of the rib) and in the reattachment and recovery regions downstream of the 

obstacle. The authors point out that this makes the use of z as "homogeneous", 

averaging direction much questionable.

Non-periodic flow over a backward-facing step was first predicted using LES by 

Schmitt and Friedrich [1987] . Also Morinishi and Kobayashi [1990] simulated 

the turbulent flow over a backward-facing step using a modified (varying-cs) 

Smagorinsky model, based on the work of Yoshizawa [1989] . The Reynolds number,
4

based on mean flow rate and step height, was 4.6*10 and the expansion ratio 

was 1.5. Computational grids having up to 230*50*20 points were used, and 

'artificial' boundary conditions, based on universal near-wall velocity 

profiles, were imposed. Predictions were compared with various experimental 

results presented in the literature, and a very good agreement was found both 

on reattachment length and on mean velocity and turbulence-intensity profiles
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in the recirculation and redevelopment regions. Large-eddy simulations of 

backward-facing step flow were also presented by Silveira-Neto et al. [1991].

Gao et a1.[1991] simulated the impingement of hot jets on a cold wall, 

representative of the "thermal striping" phenomenon occurring in sodium-cooled 

nuclear reactors, using a spectral code and the Smagorinsky subgrid-scale 

model.

Other applications of LES to complex geometries presented so far in the 

literature include recirculating jets [Baron and Laurence 1983], arrays of 

axial-symmetric jets [Rizk and Menon 1988, 1989] and periodic arrangements of 

cubes in a simulated atmospheric boundary layer [Murakami et al. 1987],

2.6.4 Summary and future developments

Excellent, though not very recent, reviews of LES work and its prospects are 

due to Ferziger [1977], Voke e Collins [1983.a], Yoshizawa [1987] and 

Grotzbach [1987] . An interesting discussion of LES applicability to 

engineering problems is presented by Collins and Voke [1983] .

It is noteworthy that the first appearance of Large-Eddy Simulation in 

computational fluid dynamics was in connection with such an eminently practi-

cal problem as weather forecasting [Smagorinsky 1963]. Only successively did 

LES acquire the rather theoretical character which distinguishes, for example, 

the work of Leonard [1974] . On the face of the most recent developments both 

in computing and in modelling, it is probably time to re-examine the question 

whether LES can be considered mature as a computational tool for engineering 

problems. To this purpose, it is useful to consider the opinions expressed on 

this subject by some of the leading scientists in the field.

In his review paper on Large-Eddy Simulation [1977] Ferziger stated "...The 

method is more expensive computationally than other approaches in common use. 

However, our experience has shown that, at least for simple flows, good 

results can be obtained with a surprisingly small number of mesh points and, 

consequently, the method is more expensive than more conventional Reynolds 

stress modeling by only a factor of two or three in many cases. With contin-

uing decrease in the cost of computation, we believe that this method has an 

excellent chance of becoming a computational tool for benchmarking and final 

design optimization". Later on in the same paper, he continued "...For the 

near-term future, large eddy simulations appear to promise the ability to test
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models used in other types of simulation and to provide constants and other 

data required to make these computations successful...Over the long range, it 

is possible that LES methods will become a standard computational tool. 

Although they are likely to remain expensive, they could find use as final 

design check methods and as calibrators of day-to-day design tools".

In his survey and outlook paper on computational fluid dynamics, Chapman 

[1979] considered the issue of LES in the wider context of the future of CFD. 

He concluded that, if the actual trends in development of computer memory and 

speed were to prevail in the following decade, then large eddy simulations 

would be used in the late 1990's for investigations of the flow over complete 

practical aircraft configurations.

Collins and Voke [1983] went even a bit further. In their 1983 review paper 

purposefully entitled 'The application of Large-Eddy Simulation to engineering 

problems' - they stated "...At some time in the future we may expect large- 

eddy simulation to become of direct relevance to engineering flows such as 

those encountered in nuclear reactor coolant problems", and added "...The 

general trend at present is towards simulations of greater complexity, and of 

greater practical interest to engineers". In the same paper, the authors 

pointed out that the most attractive feature of Large-Eddy Simulations appears 

to be "the relative model-independence of the results, i.e. their insen-

sitivity to details of the subgrid modelling, which makes them attractively 

robust compared with the more traditional approach". For the same reason, 

they expressed a marked preference for simple sub-grid models: "...The

results of both Schumann and Moin and Kim suggest that a simple SGS model is 

frequently adequate, and that additional layers of complexity may obscure the 

essential model-independence of the simulation results". We may add here that 

'additional layers of complexity' in the model often carry with them additio-

nal potential sources of numerical errors, are difficult to implement in 

exactly the same way in different computer codes, and thus are not amenable to 

reliable benchmarking by different computors.

Collins and Voke also identified three main areas in which additional 

research was especially needed:

- complex geometries;

- heat transfer by turbulence;

- wall region of bounded flows.
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The last problem was seen as "...particularly challenging for large-eddy 

simulation, since even very small eddies may be highly anisotropic, and 

therefore a correct sub-grid model is difficult to formulate".

Grotzbach [1987] expressed similar views: "One may expect that within the

next decade the large eddy simulation method will partly take the place of the 

Reynolds models, especially as regards the calculation of complex two-di-

mensional and three-dimensional flows. For these problems more and more 

transport equations for the closure terms are used in the Reynolds models. In 

this way, however, the computational effort and the number of coefficients 

increase. Thus, the large eddy simulation method will become a promising 

alternative of comparable effectiveness but of much higher universality and 

reliability.". Moreover, he pointed out that the large eddy simulation tech-

nique promises to be especially useful in those applications where the fluc-

tuating field variables are of direct interest, such as aerodynamic noise 

generation, fluid-structure interaction (for example in naval research), and 

alternating tensile stresses induced by thermal striping (for example in 

nuclear power plants).

Grotzbach also identified some of the major problems hindering extended 

applications of the method:

- the specification of turbulent inlet and outlet conditions for all those 

problems which are not amenable to the use of periodic boundary conditions;

- the wall approximations for high Reynolds number flows;

- the difficulties involved in code verification, as typical LES outputs are 

quasi-random in nature and can be compared with experimental data only on a 

statistical basis.

85



Figure 2.2 - Example of spatial filtering in one dimension
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Configuration Space

- tt/A it/ A

b) Fourier Space Sharp-cutoff

c) Gaussian

Figure 2.3 - One-dimensional filters in physical, or configuration, space 

(left) and transformed, or Fourier, space (right) [Ferziger 

1981] .

a: "top-hat", or "box", filter; 

b; sharp-cutoff filter; 

c; gaussian filter.
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Figure 2.4 - Profiles of the near-wall damping function D.

a) VanDriest, Eqn.(2.102.a), with A+=25

b) Modified VanDriest, Eqn.(2.102.b), with A+=25

c) Miner et al., Eqn.(2.102.c), with A+=25, fQ=0.04 and Yg+=8
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Figure 2.5 - Near-wall velocity and corresponding wall shear stress
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Figure 2.6 Illustration of "shifted" 

wall boundary conditions

and "ejection"

Figure 2.7 Contours of u in the x-z plane at y =6.26 

predicted by Moin and Kim [1982] .
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CHAPTER 3 - THE HARWELL-FL0W3D CODE AND ITS APPLICATION TO LARGE-EDDY

SIMULATION

3.1 Code overview

Why to dedicate oneself to do badly 

what has already been done well ?

[Abbe Dinouart, 'The art of being silent']

3.1.1 Introduction

Harwell-FL0W3D belongs to a family of thermofluid-dynamic computer codes which 

owe their existence mainly to work carried out at the Imperial College of 

London starting from the early Seventies. Other members of this family are, 

for example, TEACH [Gosman and Pun 1974]; TUFC [Cliffe et al. 1977]; Phoenics 

[Noauthor 1990.c]; and STAR-CD [Noauthor 1990.d]. They are all characterized 

by:

- finite difference / finite volume methods;

- solution of the primitive equations (Navier-Stokes);

- pressure-velocity coupling algorithms of the SIMPLE family;

- k-s (and in some cases alternative, more advanced) turbulence models.

Some of these codes (e.g. Phoenics, FLOW3D, and STAR-CD) have fully 

three-dimensional, time-dependent capabilities and are commercially available 

as standard packages, which usually include:

- pre-processors, for the input of data in high-level language or menu 

form and for grid generation;

- a solver;

- post-processors, for the graphic presentation of the results;

- additional modules for the treatment of combustion, radiation etc.

The first release of FLOW3D [Wilkes et al. 1985; Jones et al. 1985, 1986] used 

a staggered and rectilinear grid (either in cartesian or cylindrical coordi-

nates) . After this preliminary release, the code was largely re-written as 

Harwell-FLOW3D, Release 2, to implement body-fitted coordinates [Burns et al.

1986.a, 1987.a, 1987.b]. The approach chosen was based on a structured, 

co-located (non-staggered) grid and on cartesian velocity components as the 

main flow unknowns, and used the Rhie and Chow [1983] algorithm to prevent
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'chequerboard' oscillations. The mathematical treatment of the flow equations 

in general coordinates is described by Burns and Wilkes [1987] and will be 

summarized in Section 3.2. The last paper also presents the SIMPLE-family 

pressure-velocity coupling algorithms used by the code. Linear equation 

solvers, with special reference to conjugate-gradient methods, are discussed 

and compared by Kightley [1985] and Kightley and Jones [1985], and discre-

tization schemes (including HUW and QUICK, see Section 3.2) by Thompson and 

Wilkes [1982] . These last features, as well as the treatment of porous re-

gions, the handling of coupled conduction - convection problems, and the (k-e) 

turbulence model with "wall functions", were retained from Release 1 with only 

minor changes. A novel feature was the allowance for compressible flow, with a 

transport equation for the fluid enthalpy and a user-modifiable equation of 

state. Like Release 1, the code was fully vectorized and was optimized for 

CRAY computers.

The reference manual for Release 2.1 is given by Burns et al. [1988 .a]; 

this is the version of the code which was used for most of the large-eddy 

simulations described in the present work (Chapters 4 to 6).

While this work was in progress, the code's capabilities were being 

extended to include advanced ASM and RSM turbulence models [Clarke and Wilkes 

1988, 1989; Wilkes and Clarke 1989]; new discretization schemes for the 

advection terms, like CCCT and CONDIF [Alderton and Wilkes 1988]; adaptive 

gridding [Hawkins and Kightley 1989]; combustion models [Wilkes et al. 1989] 

and coupling with radiation codes [Guilbert 1989]; and some (limited) 

two-phase flow capabilities [Lo 1987; Lo and Hope 1989] . The relative 

development work is summarized by Burns et al.[1988.b]. A version of the code 

including these advanced features, i.e. Release 2.3 [Noauthor 1990 .a] was used 

for some large-eddy simulation runs for the plane-channel case (Chapter 4), 

with the main purpose of testing the alternative differencing schemes CONDIF 

and CCCT (described in Section 3.2.1) . Finally, it has to be mentioned that a 

completely new version of Harwell-FLOW3D (Release 3), allowing multiblock 

grids, has recently been developed and has become commercially available in 

1992.

In parallel with the development of the code proper, also pre- and 

post-processors were written for grid generation, data input and graphic 

presentation of computational results. A package for the generation of body- 

fitted grids using transfinite interpolation is described by Ingram et al. 

[1989] . The data necessary to specify problem and computational strategy may 

be supplied via a high-level command language, based on the Harwell facility 

INPROC [Winters and Jackson 1984], and described by Hanson et a1. [1989] and
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Jones and Hanson [1989]. Graphic post-processing of the results is normally 

performed on mainframes via the package OUTPROC, based on the TGIN language 

[Jackson and Winters 1989; Winters and Jackson 1989] and originally developed 

as part of the finite-element Harwell software ENTWIFE [Winters 1984]; also, 

surface plots can be produced by the program SURF3D, and simulated particle 

trajectories by the program RIP. Of course, FL0W3D may be interfaced with many 

other commercially available grid-generation and computer graphics packages. 

Finally, workstation versions of the code, including the post-processing 

software JASPER, have recently been developed. Currently, the software is 

commercially available from AEA Industrial Technology at Harwell.

In the present work little use was made of standard pre- and post-pro-

cessing facilities. Problem specification and grid generation were performed 

via the appropriate user-frontend routines; this approach was chosen as being 

the most flexible and powerful, and thus more indicated for the non-standard 

problems involved in LES. The facility OUTPROC was found to be quite time- 

consuming for transient problems, and thus was used only to a limited extent. 

Fast, though somewhat crude, printer plots were produced at runtime by using 

the purposely-written routine QSHADE, described by Ciofalo [1988.b]; limited 

post-processing of the FL0W3D dump files was performed by using GDDM libraries 

(on IBM and Tektronics graphic terminals) or other simple graphics packages.

3.1.2 Applications and previous experience with the code

An updated survey of applications and validation tests for Harwell-FL0W3D is 

given by Jones [1991]. Since 1986 the author and his colleagues, both at the 

City University of London and at the University of Palermo, have tested and 

applied this code to a wide range of problems. They include:

- 2- and 3-D turbulent flow with heat transfer past a backward-facing step 

[Ciofalo and Collins 1988.c];

- 2-D turbulent flow with heat transfer past a double symmetric flat-duct 

expansion [Ciofalo and Collins 1988.b];

- 2-D isothermal, transient, laminar flow at high Reynolds number past a 

backstep [Ciofalo and Collins 1988.a];

- 2-D, laminar natural convection in complex enclosures [Ciofalo and 

Karayiannis 1989.a, 1989.b, 1990, 1991; Karayiannis et al. 1991, 1992];

- 3-D turbulent mixing in stirred tanks [Brucato et al. 1989, 1990];

- 3-D turbulence structure and pollutant transport in the atmospheric 

boundary layer [Provenzale 1991; Iannello 1992];
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- 3-D laminar/turbulent flow and heat transfer in crossed-corrugated gas 

heat exchangers [Fodemski 1990; v v . f s n , 1989 - 1992 ; Ciofalo, Collins and 

Perrone 1990, 1991; Ciofalo, Collins and Henry 1991; Henry et al. 1991];

- 2- and 3-D turbulent flow with heat transfer in ribbed ducts [Fodemski 1987, 

1989; Fodemski and Collins 1988] and in multi-start helically-ribbed annuli 

[Henry and Collins 1989] .

Most of the above studies, when appropriate, made use of the standard k-s 

turbulence model. Modified wall functions were developed to improve 

predictions in recirculating flows [Ciofalo and Collins 1989.a]; their 

implementation in the code is described by Ciofalo [1988] . A low-Reynolds 

number model was also implemented and applied to flow and heat transfer in 

crossed-corrugated ducts [Ciofalo 1991]. The numerical methods used are 

reviewed and discussed by Collins and Ciofalo [1991] in the context of CFD 

application to transport processes. Preliminary large-eddy simulation results 

have been presented in previous papers, both for plane channels [Ciofalo, 

Fodemski and Collins 1988; Ciofalo 1989.a] and for rib-roughened channels 

[Ciofalo 1989.b; Ciofalo and Collins 1989.b, 1989.c, 1992]. They are based on 

the code modifications first described by Ciofalo [1988], which will be 

summarized in Section 3.3.
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3.1.3 Brief description of Harwell-FL0W3D, Release 2

The main features of the code are summarized in Table 3.1.

Table 3.1 - Main features of Harwell-FL0W3D, Release 2

a) capabilities and physical models

Type of flow: laminar / turbulent; steady / unsteady

2 / 3-dimensional; incompressible / compressible 

isothermal / non-isothermal 

forced / natural convection 

(Boussinesq approximation or fully-varying $>) 

Turbulence models (standard): k-£ (all releases); ASM / RSM (Rel. 2.3 foil.) 

Grid: rectilinear / general body-fitted

Physical-space Coordinates: cartesian / cylindrical

Boundary conditions: solid walls

symmetry or periodicity surfaces

inlet / outlet faces 

faces at imposed pressure

Further options: solids / thin walls / porous regions

heat conduction in solids 

additional scalar tranport equations 

adaptive grids (Rel. 2.3 foil.) 

combustion (Rel. 2.3 foil.) 

radiative heat transfer (via RAD3D code)

b) numerical methods

Pressure/velocity coupling: 

Advection terms:

Linear equation solvers:

SIMPLE / SIMPLEC / PISO / PISOC 

Central / Upwind / Hybrid upwind /

2nd order upwind / 3rd order upwind 

CONDIF / CCCT (Rel. 2.3 foil.)

Line relaxation / Sweeping SIP /

3-D Strongly Implicit Procedure (ST3D) / 

Conjugate Gradient (ICCG) / CG-squared
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Some aspects will be briefly discussed here, namely:

- computational domain and structures which can be defined within this;

- code flow-chart;

- input/output subroutines;

- input/output files.

The generic computational domain of Harwell-FL0W3D, Release 2, is shown in 

Figure 3.1. It must be spanned by a three-dimensional body-fitted grid, 

generally non-orthogonal, including NI, NJ and NK volumes along the "in-

trinsic" directions I, J and K, respectively. The grid is specified by giving 

the coordinates of the control volume corners with reference to a cartesian, 

arbitrarily oriented frame Oxyz; these are stored in the 3-dimensional arrays 

XC(I,J,K) , YC(I, J,K) and ZC(I,J,K). The generic control volume, which is an 

arbitrarily distorted "brick", is sketched in Figure 3.3; the numbering of the 

corners and of the centroid P is shown. The "intrinsic" directions are 

labelled U,D,N,S,E,W following the usual "compass rose" convention.

The computational domain includes a layer of "dummy" control volumes 

(corresponding to I = 1 or NI, J = 1 or NJ, K = 1 or NK) which surround the 

actual physical domain of interest and are used to impose the appropriate 

boundary conditions. It should be observed that two-dimensional problems are 

treated as three-dimensional ones with two symmetry or periodicity planes (see 

below).

Though the "intrinsic" directions I, J, K define a system of general 

coordinates, the cartesian velocity components u, v, w (defined with respect 

to the Oxyz frame) are used as the main flow variables (together with the 

pressure p and, if appropriate, with density and scalars). The cartesian 

reference frame may be replaced by a cylindrical one Or'̂ 'z; in this case, if 

the computational domain includes the axis, a special treatment is implemented 

to deal with the singular boundary "D".

Some of the internal or boundary 'structures' which can be defined include:

- Solid regions (either conducting or non-conducting);

- Porous regions.

These are both defined as sets of control volumes (CV's). For conducting 

solids, the thermal diffusivity tensor and (in transient problems only) the 

solid's density and specific heat need to be specified. For porous regions, 

the permeability tensor must also be supplied.
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- Thin surfaces (impervious boundaries between fluid regions);

- Interfaces between solid and fluid;

- Interfaces between dummy CV's and fluid;

- Interfaces between dummy CV's (or non-conducting solids) and 

conducting solids.

These are defined as sets of control volume faces (for thin surfaces, both 

sides need to be specified), and the following interface or boundary 

conditions need to be set:

a) velocity boundary conditions (i.e., u, v and w on the wall); in Release 

2.1, walls may be defined as "sliding", but must have a zero normal velocity 

component. This limitation does not apply to Releases 2.3 and following.

b) scalar boundary conditions; for example, for the temperature T these are 

given in the form AT + Bq = C, where T and q are the temperature and the 

heat flux on the wall. For interfaces involving conducting solids, the solid's 

conductivity in the direction normal to the wall must also be supplied. Of 

course, velocity boundary conditions are not required on interfaces between 

solid regions.

- Dirichlet boundaries ("inlets"): these are sets of CV's on a face of which 

the values of all flow variables (except p) must be specified;

- Neumann boundaries ("outlets"): these are sets of CV's on a face of which 

the normal derivatives of all flow variables (except p) must be specified; 

in the case of multiple outlets, it is possible to specify the flow rate, or 

fraction of the total flow rate, going through each of them;

- Pressure boundaries: these are sets of CV's on which the pressure p is 

specified;

- Symmetry boundaries: these may only be whole boundary surfaces U,D,N,S,E 

or W. In discrete terms, imposing symmetry is equivalent to imposing 

that, for any two control volumes lying on the two sides of the symmetry 

boundary, the velocity components normal to this have opposite values 

while the velocity components tangential to this, and all scalars, have 

identical values;

- Periodicity boundaries: these may only be couples of whole boundary 

surfaces U-D, N-S or E-W. In discrete terms, imposing (for example) U-D 

periodicity is equivalent to imposing on each variable Q the double

condition Q
1 / j,k QNI-l,j,k and Q2,j,k QNI,j,k’
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The numerical methods used in Harwell-FL0W3D, Release 2 will be discussed in 

detail in Section 3.2. However, some remarks on the overall solution strategy 

can be made by observing the code's flow-chart, schematically shown in Figure 

3.2. The three "nested" loops are relative to time stepping, "outer" ite-

rations and "inner" iterations, respectively. is the generic time step, 

the generic "outer iteration", and N.^ the generic "inner" iteration of the 

linear equation solvers.

Time advancement, and the whole computation, is normally terminated when

a prescribed number of time steps N, has been reached. With SIMPLE or
r t,max

SIMPLEC, the "outer" iterations are stopped either when a prescribed maximum 

number is reached, or when the overall residual mass source sM (which is the 

sum of the absolute values of all mass flow imbalances in control volumes, and 

thus expresses the amount by which continuity is not satisfied) falls below a 

prescribed value (SORMAX). Of course, when PISO or PISOC are used with a 

single iteration per time step, no such criterion applies. Finally, the 

"inner" iterations of the generic linear equation solver are stopped either 

after a prescribed number, or when the norm of the residual, ¡Ax-b|| , has been 

reduced to a suitable fraction of its initial value.

As mentioned above, for the present simulations the input to the code was 

given by using the appropriate user-frontend routines. They are listed in 

Table 3.2 below; the main purpose of each routine is indicated. Note that only 

periodic or wall boundary conditions were imposed, and that conduction in 

solids, compressibility, porous regions and many other capabilities of the 

code were not used.
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Table 3.2 - User-frontend subroutines used for LES applications

GETDT

SETCON

SETDIO

SETPER

SETPIO

SPEC

STFACE

USRBCS

USRDIM

USRGRD

USRMON

USRTRN

Time step

Solid regions (conducting or non-conducting) 

Control parameters for disk output 

Periodicity planes

Control parameters for printed output 

Miscellaneous: physical properties, control 

parameters, solution strategy 

Interfaces and velocity/scalar B.C.'s on them 

Initial conditions

Problem dimensions and main options; storage 

allocation for work arrays 

Grid (coordinates of control volume corners) 

User monitoring of various quantities 

User-defined output at each time step

Besides the frontend subroutines listed above, the implementation of a subgrid 

model for Large-Eddy Simulation required subroutines USRVIS and USRDIF to be 

configured appropriately, and a set of auxiliary subroutines to be purposely 

written and added to the code. Moreover, the implementation of boundary 

conditions for LES required subroutines WALSHR and WALSTR to be modified, and 

in some cases (conditions "a" of Chapter 2) also subroutine SCMOM to be 

slightly changed and an extra subroutine (MASCAL) to be included in the code. 

These modifications will be discussed in detail in Section 3.3.

Finally, Table 3.3 lists the input / output files used by Harwell-FL0W3D. For 

each of them the I/O unit number, the corresponding FORTRAN variable used in 

the code, the "nickname" typically used to identify the file in the computing 

system, and the main purpose are indicated.

Some "extra" files were defined in the present study in addition to, or 

instead of, the "standard" ones. The file DATA was used to specify the input 

parameters, in conjunction with special versions of SPEC written for each of 

the main problems studied; it replaced the READ command-language file. The 

file MAT was used to allocate printer plots based on the routine QSHADE 

mentioned earlier. The file RESTART was used as dump/restart file instead of 

the "standard" file DUMP; it contains only the main flow variables (u,v,w,p,T)
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strictly necessary for a restart while the "standard" dump file contains also 

convection coefficients, viscosity etc. and is considerably larger. This was 

necessary in order to minimize disk storage occupation as a large number of 

results were saved for successive post-processing. Note that, although 

grid-point (centroid) velocity components u,v,w do not satisfy continuity 

exactly, no significant "jump" or discontinuity was observed when using them 

to restart a simulation.

Table 3.3 Input/Output files

a) Input

No. FORTRAN name Nickname Description

5 NREAD READ Input data in command language

1 2 NNEWS NEWS Informations for users

7 NIGRID GRID Grid

16 NRDISK DUMP Standard restart file

Extra files :

51 NRGUES RESTART Simplified restart

13 NDATA DATA Input data read from SPEC

b) Output

No. FORTRAN name Nickname Description

6 NWRITE OUTPUT Printer output

17 NWDISK DUMP Standard dump for OUTPROC or restart

2 0 NSOLVE DI AG Diagnostic messages

49 IOUN1 TOPL Topological information for OUTPROC

Extra files :

37 NMAT MAT Printer plots (shade maps)

52 NWGUES RESTART Simplified dump
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3.2 Numerical methods

Mathematics is often regarded as the bread and butter 

of science. If the butter is omitted, the result is 

indigestion, loss of appetite, or both.

[Cundy and Rollett, Mathematical Models, 1961]

In this section the basic numerical methods implemented in Harwell-FL0W3D, 

Release 2, and used for the large-eddy simulations presented in the present 

work, will be briefly summarized. Three main topics will be covered:

- Finite-volume discretization of the governing equations on 

body-fitted, co-located grids, and resulting algebraic equations;

- Pressure-velocity coupling algorithms;

- Solution techniques for the linearised equations.

3.2.1 Finite-volume discretized equations

The basic transport equation of a scalar quantity Q has the form (2.27), which 

is repeated here for the reader's convenience:

Note that this is written in a cartesian reference frame. The discretized form 

of Eqn.(3.1) on a finite-volume, co-located grid (i.e. a grid in which all 

variables are defined at the centroids of control volumes) will now be 

derived. The case of a steady-state problem will be considered first; the 

extension to transient problems will then be described.

The steady-state version of Eqn.(3.1) can be written in shorthand as:

9(_pQ)/9t + 3(yUjQ) /3xj = 3(f 3Q/3Xj)/i3Xj + Sq (3.1)

(3.2)

in which S = Sq , and:

I,
l

?u.Q - f 0Q/3xi (3.3)

are the components of a vector I representing the total (advective + 

diffusive) flux of the generic scalar Q.



By integrating Eqn.(3.2) on a generic control volume V such as that shown 

in Figure 3.3, centred in P, and using the Gauss theorem to transform the 

volume integral of a divergence into the surface integral of the corresponding 

normal flux, one is left with the approximate equations:

1  (I A)nn = V <S>P <3.4)

in which the index nn (ranging from 1  to 6 ) refers to the faces d,u,s,n,w,e of 

the control volume; is the corresponding area vector, pointing outward;

and <S>p denotes the volume average of the source term S over V.

Note that the discretized equations (3.4) are derived making reference 

only to the "physical" space of the cartesian coordinates x1 =x^, in which the 

computational grid is, in general, distorted. However, in order to work out a 

set of algebraic equations involving only values of the unknowns (velocity, 

scalars) and of the physical properties at the centroids "P" of control 

volumes, it is convenient to think of the grid in "physical" space x1  as 

generated by a smooth mapping from a regular, rectilinear grid of the "compu-

tational" space (Figure 3.4). This allows one to use the powerful methods 

of absolute differential calculus (tensor calculus), briefly summarized in 

Appendix A. The coordinates may be identified with the indices i,j,k

labelling a control volume in the grid. In this approach (called "computa-

tional space approach" by Burns and Wilkes [1987]) the transport equations 

(3.2) are first transformed into the corresponding equations in computational 

space prior to being discretized.

As discussed in Appendix A, Eqn.(3.3) for the total flux can be expressed 

in general coordinates (and in contravariant components) by replacing:

- all cartesian components u1  = u^ of the velocity vector by their 

generalized contravariant components u'1;

- all partial derivatives 3q /3x  ̂ (cartesian components of the vector V Q )

by the corresponding generalized contravariant components of V Q ,  i.e 

g1  ̂3q /3|^ (g1 - 1 being the metric tensor) .

The result is:

I ' 1  = V u ,XQ - Tg1  ̂3Q/3^ (3.5)

If the diffusivity r has a tensorial nature in physical space, as in Eqn. 

(2.31), then the last term should be replaced by f ^ g ^  3Q/3^3. In both cases,
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the product of the physical diffusivity f by the metric tensor is a tensor, 

generally not diagonal nor orthotropic. Thus, no additional complexity is 

actually introduced by considering a physically anisotropic (tensorial) 

diffusivity instead of a simple scalar.

Eqn.(3.2) can now be written in general coordinates by substituting the 

covariant divergence for the ordinary divergence S/^x^:

V . I ' 1 = S (3.6)

or, using Eqn.(A.20) of Appendix A:

1  9 _ i
------ : (/g I'1) - S
/g

(3.7)

Eqn.(3.7) can be further transformed by introducing the normal flux components 

IjS see Appendix A. On the basis of definition (A.10) and of Eqn.(3.5), these 

are:

Ii = - r/igi]
3Q

n
c]

so that Eqn.(3.7) can be written as:

(3.8)

—  ii = Vgs (3.9)

This last equation is now discretized on the generic control volume of the 

grid in computational space I1. The result is:

tl}] + [if] + [ i j ]  = < r g s > ? (3.10)
d s w

As shown by Burns and Wilkes [1987], Eqn.(3.10) can be derived from (3.4) by 

approximating the volume V by the Jacobian determinant and the area vectors 

by the appropriate rows of the adjugate Jacobian matrix, see Appendix A.
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Thus, in Eqn.(3.4) areas and volumes are more accurately expressed, especially 

for strongly distorted grids. On the other hand, Eqn.(3.10) lends itself more 

naturally to deriving an appropriate set of algebraic equations in the flow 

unknowns.

The finite difference representation of the terms appearing in the total 

normal flux components (3.8) has now to be specified. The average values of I 

on faces nn can be expressed as:

(if) = (C1) Q - (D1])-1- nn nn nn nn

I 3Q'

nn

(3.11)

in which, by comparison with Eqn.(3.8) and with the definition (A.10) of 

normal flux components:

(CJ
nn

ÿu-Av ' ]
nn

(3.12.a)

(D
nn

T/gg i],
nn

(3.1 2 .b)

being i=l for nn = d or u, 2 for nn = s or n, and 3 for nn = w or e,

The quantities (C1)nn (convection coefficients) are the same for all 

variables Q. They are computed by interpolating the velocities defined on 

control volume centroids, once at each outer iteration, or step, of the 

pressure-velocity coupling algorithm used, and are stored in the 4-dimensional 

array CONV(l, J,K,NWL), in which the indexes I,J,K specify the control volume 

in the grid, and the index NWL specifies the face u, n or e of the control 

volume. Thus, for example, the convection coefficient on the "u" face of the 

control volume i,j,k is (C^)u = CONV(I,J,K,1), shortly indicated as C , while 

the coefficient on the "d" face of the same control volume is = 

-CONV(1-1,J,K, 1), shortly indicated as -C^.

The way in which centroid velocities are interpolated to yield face 

velocities is particularly critical; it is known that "naive" linear interpo-

lation leads to 'chequerboard' oscillations and thus a special algorithm, 

based on suggestions by Rhie and Chow [1983], is used. This will be discussed 

later, after the main pressure-velocity coupling algorithms will have been 

introduced.

Getting back to Eqns.(3.10)-(3.12), the terms G1  ̂ = Vgg1-' (geometrical 

diffusion coefficients) are purely geometrical quantities and thus, apart from 

the case of adaptive grids which will not be considered here, are computed
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only once. They are stored in the 5-dimensional array GDIFF(I,J,K,NWL,INDEX) 

in which NWL spans, as above, the three faces u, n and e of each control 

volume and INDEX spans the three components of G1  ̂defined on that face. 

Finally, the physical diffusivity r is computed on each face nn by linear 

interpolation between control volume centroids, using physical-space weight 

factors which are computed once for all and stored in the 4-dimensional array 

WFACT(I,J,K,NWL). Further arrays AREA(I,J,K,NWL) and VOL(I,J,K) are used to 

store the face areas and the volumes of the computational cells. Thus, 19 real 

locations per control volume are required to store the necessary geometrical 

information. It is noteworthy that connection coefficients (or Christoffel 

symbols, see Appendix A) do not directly enter the final equations and thus 

need not to be stored (they would require 18 additional real locations per 

control volume).

The computational-space derivatives 9Q/3^ on control-volume faces, appearing 

in diffusive terms of Eqn.(3.11), are always evaluated by central differences 

between adjacent grid points (control volume centroids). Much more critical is 

the finite-difference approximation of Q on control-volume faces in the 

advective terms of Eqn.(3.11). It is well known that more accurate schemes 

tend to be less "robust"; in particular, the use of central differencing for 

values of the "cell Peclet number" Pec=uAx/r larger than 2 leads to loss of 

diagonal dominance in the matrix of the linearized transport equations (unless 

small time steps or underrelaxation factors are used), and may jeopardize the 

convergence of the iterative linear-equation solvers employed. Discussions of 

the problem may be found, for example, in Roache [1972.a,b], Leonard [1979] 

and Vreugdenhil [1989] . Ample reviews of alternative discretization schemes, 

devised to preserve both accuracy and "robustness", are given by Patankar

[1988] and Collins and Ciofalo [1991].

In Harwell-FL0W3D, Release 2, a number of discretization methods are 

implemented, ranging from diffusive, simple upwind schemes through to bounded, 

quadratic upwind ones. The various schemes can be illustrated by writing, for 

example, the expression for (value of the generic scalar Q on the "down" 

face d) in terms of values of Q at neighbouring nodes (centroids of control 

volumes). The numbering of the nodes (i—1, i, i+1) will be assumed to follow 

the direction of the flow and, for the sake of simplicity, the grid will be 

assumed to be uniform and cartesian (Figure 3.5).
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I. Central (CD):
1

(3.13)
Qd = : (qd + q e

This scheme is formally second-order accurate, i.e. the truncation error

associated to the discrete representation of Q, (3.13) is proportional to
2 a 

(Ax) . As mentioned above, it is not "robust" and may lead to unphysical

solutions for high cell Peclet numbers. However, Ciofalo and Collins [1988.a]
3

used it succesfully up to Pec = 1 0  (in conjunction with small time steps) to 

compute a high-Reynolds number, transient, 2-D laminar flow. In that case, the 

linear equation solvers ST3D and ICCG (see below) were used for the transport 

and pressure-correction equations, respectively, and all the available pres-

sure-velocity coupling algorithms (SIMPLE, SIMPLEC, PISO, PISOC) were tested. 

Thus, CD was used as the reference discretization method in all the large-eddy 

simulations described in Chapters 4-6. Only for the plane-channel case, 

Chapter 4, alternative schemes were also tested and compared.

II. Upwind (UD) : ilTO
o

QD
(3.14)

'qd
for Pe >2 

c
(3.15.a)

III. Hybrid (HD) : IIT3
O

1

1 7  (qd + V
for Pe <2 

c
(3.15.b)

These schemes are very "robust" and have always been widely used in enginee-

ring applications. The hybrid scheme may be slightly better, as central 

differencing is used where the cell Peclet number is low (for example, in 

recirculation regions and wakes); it is used as the default differencing 

scheme in Harwell-FLOW3D. However, both schemes are only first-order accurate 

and may introduce a large amount of "false", or numerical, diffusion, espe-

cially in the presence of high cell Peclet numbers and of large streamwise 

gradients of Q; in these cases, they lead to solutions which, although "rea-

listic" and unaffected by spurious oscillations, are actually the solutions to 

a different problem. For example, Ciofalo and Collins [1988.a] shown that the 

use of hybrid differencing suppressed many physically relevant features of a 

complex laminar flow. First-order schemes such as UD and HD were shown to be 

too dissipative, completely suppressing turbulence, in preliminary LES studies
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with FL0W3D by Gavrilakis [1987] . Thus, they were never used in the large-eddy 

simulations described here.

3 1
IV. Second-order upwind (HUW): Q^ = - Qp - - QpD (3.16)

This, and the following, schemes are less compact than (I)-(III) due to the 

presence of the DD term. In three dimensions, the differencing "molecule", or 

"stencil", includes more points than P and the 6  immediate neighbouring nodes 

D,U,S,N,W,E, so that the matrix of linearized equations would include more 

than seven diagonals. In order to retain a compact matrix structure, which 

greatly simplifies the linear equation solvers, Eqn.(3.16) is re-written as:

Qd = °D + 2‘ (QD - °DD>
(3.17)

and the second term at the RHS is moved into the source term as a deferred 

correction. Details are given by Thompson and Wilkes [1982].

3 6  1
V. Quadratic upwind (QUICK): Q, = - Q + - Q - - Q (3.18)

a 8 r 8 u 8 uu

This scheme, introduced by Leonard [1979], is formally third-order accurate. 

In order to retain, as above, the compact 7-diagonal matrix structure, it is 

re-written as:

Qd = l  %  + l  Op +  ̂ <Qd - 0 DD) (3.19)

with all terms at the RHS, except the first, being treated as sources.

3 6  1
VI. CCCT: Qd = (- - a)Qp + (- + 2a)Qp - (- + a)QDD (3.20)

8 8 8

This is basically the CCCT/SMART scheme of Gaskell and Lau [1987] and is a 

modification of the QUICK scheme which is bounded, thus eliminating the 

non-physical overshoots often reported of QUICK and similar high-order 

schemes. The parameter a is computed locally as a function of the curvature of

Q. The deferred correction method is then used as with QUICK. Details are 

given by Alderton and Wilkes [1988] .

106



VII. CONDIF: this is a modification of central differencing in which the 

matrix coefficients (of the linearized transport equations) corresponding to 

the advection terms are written in such a way as to be diagonally dominant, 

and upwind differencing is used at any points at which unphysical overshoots 

are likely to occur. This prevents the difficulties mentioned for central 

differencing, at the cost of considerable coding complications and extra-

storage requirements. The scheme was introduced by Runchal [1987] ; 

modifications were proposed by Hedberg [1989]. Details of the implementation 

are given by Alderton and Wilkes [1988] .

Once the various terms have been properly discretized, the generic transport 

equation for the scalar Q takes the form:

(I ann + sm)QP ' 1  a„ „ %  “ S' = <V^S>P l3'21)

in which:

Qp is the value of Q at P and QNN the values of Q at the 6  neighbouring points 

D, U, S, N, W, E;

ann are matrix coefficients, the exact form of which depends on the 

discretization scheme used for the advection terms; for example, using hybrid 

differencing one has:

a = max (V2|c I, D ) - v2c (3.22.a)
u 1 u 1 u u
ad = max (^Cj, Dd) + v2cd (3.22.b)

etc., while, using central differencing:

(3.23.a) 

(3.23.b)

etc. ;

a = D - v2c
u u u
a , = D , + V2c 
d d d

sm is the "mass source" term:

s = I (C ) = C - C , + C - C + C - C
m n n u d n s e w

(3.24)
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which goes to zero (in incompressible flows) only for a fully-converged 

solution;

S' is a term which includes the effects of the non-orthogonality of the grid;

f n  3Q ,.3Q1u 9 1  3Q „  3 Q)n f 9 1 3Q „ g Q ^ e
S '= D±Z-+DiJ--- + ---+D^—  + DJi---+D^—  (3.25)

3 F  3 3̂ J d 3 | 1  3 |3 j s 2 f  3 p w

and thus vanishes on cartesian (rectilinear) grids;

S is the "true" source term of Eqn.(3.7.a).

In order to increase the diagonal dominance of the linearized equations, it is 

convenient to linearize the source term itself by writing:

</5S> = SQ + S0QP 

so that, by letting:

(3.26)

s

a
P

P

s n - s 
0  m

= I ann

(3.27.a) 

(3.27.b)

and also absorbing the extra terms S' due to non-orthogonality into the RHS, 

Eqn.(3.21) becomes:

a p Qp 1 ann QNN = s^ + S' = s' (3.28)

Now, the case of transient problems can be considered. The extra term d  { g  Q) 

/3t, which figures at the LHS of Eqn.(3.1), would still be present at the LHS 

of the space-discretized equation (3.28), which would thus take the form:

3(?Qp)/3t + apQp - X V  Qm  = s'Q (3.29)

If implicit time stepping is used, Eqn.(3.29) can be reconducted to the form 

(3.28) by modifying appropriately the coefficients and source term. In 

particular, if fully implicit backward time differencing is adopted, then 

Eqn.(3.29) is discretized in time as:

(<?Qp) - (?Qp)olcW  + apQp - I ann Qm  = s'Q (3.30)

108



in which the superscript "old" refers to the previous time step, while terms 

with no superscript are for the current time step. This can be written:

(?/At + ap)Qp Z a  Q 
nn nn

s'Q+(?/At)Qp°ld (3.31)

which, by letting:

ap = jVAt + ap

? 'q s s ’q + (?/At)Qp0ld

becomes :

a p Qp 1 a Q 
nn nn

(3.32.a) 

(3.32.b)

(3.33)

formally identical to the steady-state equation (3.28), except that terms 

containing the time step At have been included in the diagonal coefficient ap 

and in the source term s'^.

As an alternative, a time-centred treatment (Crank-Nicolson) can be used. 

By defining:

Q* s y2 ( Q ° l d + Q ) (3.34)

the discrete time-stepping equation corresponding to Eqn.(3.30) can be written 

in shorthand as:

Q -  Q
old

At/2
F ( Q * ) (3.35)

and of course can be treated in the same way as above to yield discretized
•k *

equations similar to (3.33) for the "mid-point" field Q . Once Q is known, 

the values of Q at the new time step are computed by extrapolation from Q°^d 

and Q :

* old
Q = 2Q - Q0ia (3.36)

The above discussion shows that Eqn.(3.28) can be assumed as the basic form of 

the discretized transport equation both in steady-state and in transient
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problems. For simplicity, the symbol (w) will be omitted from the terms s 'q 

and ap in the following.

In order to simplify the following discussion of pressure-velocity 

coupling algorithms, it is convenient to derive the specific form that the 

discretized transport equation (3.28) takes when Q is a velocity component u1,

i.e. when the original differential equation (3.1) is one of the Navier-Stokes 

equations (2.20.b). An examination of these last equations shows that now the

source term SQ in Eqn.(3.1) must be

9p 9
9u.

S i = - + — u --- + F ,u
9x. 9x, 9x. 1

ï ] l

The discretization of the equations following the procedure described above 

leads now to [Burns and Wilkes 1987] :

a u'*' - Ï a u 1  = - A.-' 9p/9^ + s' i (3.38)
P P nn nn i ^ * u

in which, with respect to the generic scalar transport equation (3.28), the 

pressure-gradient contribution has been separated from the remaining source 

term at the RHS. The reason for this is that the pressure-gradient term plays 

a special role in pressure-velocity coupling algorithms, as will be discussed 

in the following sub-section. The terms A ^ - 1 are the cartesian components of 

the area vectors (see Appendix A) .

Eqn.(3.38) can be written succintly as:

apu1p = H (u1) - ôiP + s' (3.39)

in which H( ) is a pseudo-linear operator (actually, it contains the 

convection coefficients C 1  and thus the velocity components u1  themselves) and 

ôi is just a shorthand for A^9/3^.

3.2,2 Pressure-velocity coupling algorithms

As discussed, for example, by Collins and Ciofalo [1991], the solution of the 

governing fluid dynamic equations is especially critical in incompressible 

flow problems since transport equations of the form (2 .2 0 .b) (or equivalent 

discretized form(3.39)) can be written for the three velocity components, but 

not for the pressure p, which is the fourth flow variable. It behaves as an
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"implicit" field, the values of which are determined by the condition that the 

velocities satisfying momentum balances, i.e. the Navier-Stokes equations, 

also satisfy mass balance, i.e. the continuity equation (2.5) (or its 

discretized form). In the finite-volume, co-located grid treatment used here, 

this is simply:

In most direct or large-eddy simulations presented so far in the 

literature, explicit time stepping is used. The new pressure field is computed 

by solving at each time step a Poisson equation, derived from the Navier- 

Stokes equations by imposing the (new) velocity field to be divergence-free. 

Basically, this technique can be traced back to the MAC method of Harlow and 

Welch [1965]. However, most recent general-purpose computer codes (including 

Harwell-FLOW3D) implement implicit time stepping (or steady-state) capabi-

lities, and their pressure-velocity coupling algorithms are generally derived 

from the SIMPLE method first introduced by Patankar and Spalding [1972]. The 

basic characteristic of these algorithms is that a Poisson equation is solved 

for a pressure correction (P-C), rather than for the whole pressure field, and 

is coupled, generally in an iterative fashion, with momentum equations written 

using the last available pressure field. The SIMPLE method, together with its 

variants SIMPLEC [VanDoormal and Raithby 1984], PISO [Issa 1986; Issa et 

al.1986] and PISOC, are implemented in Harwell-FL0W3D and have all been tested 

by the author in large-eddy simulations. They will be shortly described in the 

following; the pressure correction method is reviewed, for example, by Connell 

and Stow [1986] and Latimer and Pollard [1989] .

a) SIMPLE(C) algorithm

The i-th discretized momentum equation is Eqn.(3.39). If the exact pressure 

field p were known, the velocities u1  satisfying Eqn.(3.39) would automa-

tically satisfy also the continuity equation (3.40) (provided that the 

convection coefficients (C1) appearing in this were derived from the

grid-point velocities u1  following the Rhie and Chow prescriptions, as will be
, * 

discussed later). However, if a tentative pressure field p is substituted for

p in Eqn.(3.39), this becomes:

nn 0 (3.40)

being (C1) the convection coefficients defined by Eqn.(3.li.a).

*

+ s 1 (3.41)
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and is satisfied by an approximate velocity field u which does not satisfy 

continuity, but gives a "residual mass source":

(cV  = ap *  ° (3.42.a)

or, in terms of normal flux components:

r. i*i u „ 2 *
n

3*"-i + [ ?ux + F ux
d s

(3.42.b)

The pressure and velocity fields satisfying 

equations and the (discretized) continuity
k k

approximate fields u , p plus "correction"
k

if p was a good approximation of the "exact"

both the (discretized) momentum 

equation will be given by the 

terms u1', p' (presumably small 

pressure field):

k k i* i
u = u + u
k k k

P = P + p'

(3.43.a) 

(3.43.b)

with:

-j k k

apu p = H(u ) - ö.p + s'

I (C ) = 0
nn

(3.44) 

(3.45.a)

Eqn.(3.45.a) can be written also in terms of normal flux components:

e] **" u 9 * *' n

?ux + 5>ux + ?UXL d s V J
0 (3.45.b)

By subtracting Eqn.(3.41) from (3.44), one has for the correction terms:

V 1'] = H (u ' ) Ö . p ' 
ir

(3.46)

Now, the original SIMPLE procedure [Patankar and Spalding 1972] simply 

neglects the term Hfu1') in Eqn.(3.46) in order to derive an explicit expres-

sion for the velocity corrections. However, VanDoormal and Raithby [1984] 

argued that Hfu1') is of the same order as apU1^, so that it is inconsistent 

to retain the latter while neglecting the former. Rather, they suggested to 

re-write Eqn.(3.46) after adding and subtracting the term Hiu1^) = i annul'p 

at the RHS, which gives:
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(3.47)

and then to neglect the term H(u1 ,-u1 'p), which is indeed smaller than either 

Hfu1') or apU1^  since it involves only velocity differences between centroid 

(P) and faces (nn) of a control volume. Having thus simplified Eqn.(3.46), and 

taking into account the definitions of the operator H and of the terms u 'p, 

one has:

u1** = u1* - D6 ip' (3.48.a)

where:

D 5 2 [aP (1 -Iann/aP ) ] _ 1  = [apfp ] _ 1  (3’49)

(in which only the corrective factor f„ = 1-Ia /an differentiates SIMPLEC
P nn P

from the original SIMPLE).

In terms of normal flux components û , using the general relationship 

between the u^ and the u1  given in Appendix A, Eqn.(3.48.a) becomes:

apu i 'p = + Hfu^'-u^'p) - 6ip'

u
* -k 
X (3.48.b)

where :

°1] 2 2 Ak\ ]/ap (3.49')

Now, a pressure correction (P-C) equation is obtained by substituting 

Eqn.(3.48.b) into the continuity equation (3.45.b). Taking also Eqn.(3.42.b) 

into account, this gives:

b p ' - 5 b  p ' T = s' - nu 
P P nn ^ NN P p (3.50)

in which the coefficients b^n are given by:

bu,d=l?cll/£P»u,d; b„,s=lfc 2 2 /£P>„,s'- (3-51'a'

b_ = I b 
P nn (3.51.b)
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and the term s'p absorbs the additional terms due to non-orthogonality, 

namely:

s T =p

f 1 9 3P' t^P'Iu 
E +E +

OI^P OO^P
E +E

n
+

Ti3p 9 9 3P 
E +E

being:

L 2 p j d

r Vg

s L d f  d j 2

(Ei],
nn (fC1]/f

P nn
aPfP

a]

nn

(3.52.a)

(3.52.b)

(of course, in SIMPLE fp=l).

Note the analogy of Eqns.(3.50) and related (pressure correction) with 

Eqns.(3.28) and related (scalar transport). The "deferred correction" method

allows also in this case to move all cross derivatives to the RHS of the

equation, leaving just a 7-point "molecule", or "stencil", i.e. a 7-diagonal 

matrix of linearized equations (for the P-C equation, the matrix is also 

symmetric and thus solvers of the conjugate-gradient family can be used, see

subsection 3.2.3). However, as discussed by Burns and Wilkes [1987, p .19], in

this case it is appropriate to update the source terms at each inner iteration 

of the linear equation solvers, rather than at each outer iteration as is 

sufficient for the transport equations. See Burns and Wilkes [1987] also for a

discussion of the approximation consisting of dropping the off-diagonal

components of C1-1, adopted by Rhie and Chow [1983] .

The steps to be followed for the solution of the fluid flow (and scalar 

transport, if any) equations via the SIMPLE(C) algorithms can now be

summarized. The sequence is identical for a steady-state problem and for the

generic time step of a transient problem. In either case, initial estimates 

P i ul(0) , are required for the pressure, velocity and scalar fields; in

a transient problem, these are simply given by the respective values at the 

previous time step. Now, for the generic iteration (called "outer" iteration 

to distinguish it from the "inner" iterations of linear equation solvers), one 

has the following predictor/corrector scheme:

I. Prediction step:

- compute all convection / diffusion coefficients and source terms on the 

basis of the most recent estimates of u1, Q (taking transient terms into 

account if appropriate);
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, i*
- solve linearized momentum equations (3.41) to obtain the flow field u ; 

re-compute convection coefficients using Rhie-Chow interpolation.

II. Correction step:
»

- evaluate residual mass source mp (for each grid point) from Eqn.(3.42.a);

- solve pressure-correction equation (3.50) to obtain p';

- correct velocities by using Eqn.(3.48.a) and pressures by using
*  *  k k

Eqn.(3.43.b) to obtain updated velocity and pressure fields u , p 

replacing u , p ;

III. Scalar transport equations:

- update convection coefficients etc. and solve all scalar transport 

equations (if any).

IV. Convergence test:

- check convergence (by monitoring either the overall continuity error or 

the behaviour of some flow quantity along consecutive iterations); go 

back to step (I) for a new iteration or exit to new time step (or final 

output), as appropriate.

This reference scheme can be altered in several ways, for example by looping a 

number of times over hydrodynamic equations before solving any scalar 

transport equation, etc. The SIMPLEC simulations carried out in the present 

work followed the basic reference sequence given above. An important feature 

of SIMPLE(C) is that the linearized transport or P-C equations need not to be 

solved with great accuracy at the generic outer iteration, since they are only 

approximate equations which approach the "true" (discretized) equations only 

as the outer iterations proceed.

b) PISO(C) algorithm

This is a non-iterative technique, explicitly introduced by Issa [1986] for

transient problems and based on two correction steps per time step. This leads 
2

to a At -accurate solution in just one cycle, but requires the linearized 

equations to be solved with great accuracy (unlike SIMPLE(C)).

Basically, the steps represented by Eqns. (3.41) to (3.52), leading to 

velocity and pressure fields u1  , p , are like in SIMPLE(C). With respect to 

the original PISO algorithm [Issa 1986], a SIMPLEC-like modification (leading 

to a f -factor different from 1) may be used, yielding the PISOC version. A

115



s e c o n d  c o r r e c t i o n  s t e p  i s  n o w  p e r f o r m e d ;  i m p r o v e d  v e l o c i t y  a n d  p r e s s u r e  f i e l d s
*  *  k   *  *  ■k

u   , p   a r e  s o u g h t ,  s a t i s f y i n g  b o t h  t h e  m o m e n t u m  a n d  t h e  c o n t i n u i t y  

e q u a t i o n s :

■j ★  *  ★  -j *  *  *  *  k  k

a p u  p   =  H ( u   ) -  ô i p   +  s ' ( 3 . 5 3 )

i k  k  k

( C  > n n   =  0

( 3 . 5 4 )

S u b t r a c t i n g  E q n . ( 3 . 4 4 ) f r o m  ( 3 . 5 3 ) o n e  h a s :

a p u l B p  =  H ( u 1 " )  - ■ 5 .  p "  
i r

( 3 . 5 5 )

i   *  *  * ★  k k  k  k k  k

i n  w h i c h  u  " =  u -  u   a n d P "  =  P -  p   a r e s e c o n d  v e l o c i t y a n d

p r e s s u r e  c o r r e c t i o n s . A p p r o x i m a t i n g H f u 1 " )  b y H f u 1 ' ) ,  E q n . , ( 3 . 5 5 )  g i v e s  f o r t h e

s e c o n d  v e l o c i t y  c o r r e c t i o n :

j  k  k  k   -j *  *   -L  -j

u   =  u   +  —  H ( u  ') ( 3 . 5 6 )

i n  w h i c h  t h e  f i r s t  v e l o c i t y  c o r r e c t i o n  u 1 ' i s  k n o w n  f r o m  t h e  f i r s t  c o r r e c t i o n  

s t e p .  S u b s t i t u t i n g  E q n . ( 3 . 5 6 )  i n t o  t h e  c o n t i n u i t y  e q u a t i o n  ( 3 . 5 4 )  a n d  t a k i n g  

E q n . ( 3 . 4 5 . b )  i n t o  a c c o u n t  o n e  h a s  t h e  s e c o n d  p r e s s u r e  c o r r e c t i o n  e q u a t i o n :

V p  -  1  b n „  P " K N  =  s ''p < 3 ' 5 7 >

i n  w h i c h  t h e  c o e f f i c i e n t s  b p ,  b n n  a r e  a s  d e f i n e d  e a r l i e r ,  E q n s . ( 3 . 5 1 ) ,  a n d  s " p  

i s  a  n o n - o r t h o g o n a l i t y  t e r m  e x p r e s s e d  a s  i n  E q n . ( 3 . 5 2 . a ) , b u t  u s i n g  p "  i n s t e a d  

o f  p ' .

U s i n g  t h e  s a m e  n o t a t i o n  i n t r o d u c e d  f o r  S I M P L E ( C ) ,  t h e  a l g o r i t h m  P I S O ( C )  c a n  b e  

s u m m a r i z e d  a s  f o l l o w s :
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I. Prediction step:

- this is like in SIMPLE (C). Starting from estimates p , uX ̂  for

the pressure, velocity, and scalar fields (e.g., values at previous time 

step), all convection / diffusion coefficients and source terms are

computed and the linearized momentum equations (3.41) are solved,
■ • i* *

yielding a velocity field u having a residual mass source mp .

II. First correction step:

- this, too, is like the (single) correction step in SIMPLE(C). The 

pressure correction equation (3.50) is solved for p'; pressure and 

velocity fields are updated using Eqns.(3.43.b) and (3.48.a), yielding
*  *  j_ *  k

p and u

III. Second correction step:

- evaluate the term s’̂ at the RHS of Eqn.(3.57); solve Eqn.(3.57) to 

obtain the second pressure correction p". Correct velocities by using
k k k k k

Eqn.(3.56) and pressure by using p = p + p".

IV. Scalar transport equations:
k k k

-  as in SIMPLE(C), convection coefficients are updated using u and all 

scalar transport equations are solved accordingly.

Since PISO(C) is a non-iterative algorithm, convergence tests need not to be 

performed and the computation simply moves to the next time step. Like for 

SIMPLE(C), several variants could be introduced into PISO(C), including a 

third correction step or using the algorithm as an iterative technique. For 

the large-eddy simulations presented in this work, these were not used and the 

basic procedure outlined above, with the PISOC (SIMPLEC-like) correction, was 

followed.

3.2,3 Rhie and Chow interpolation

As already mentioned, a crucial issue in the computation of the convection 

coefficients (C1)nn is how the velocity components on control volume faces are 

interpolated from those defined at control volume centres (grid points). The 

"naive" approach would be to use linear interpolation in physical space; for 

example, the (cartesian) velocity component u1  on face "e" would be given by:

uxe = ( l - W ^ p  + WeuxE (3.58)
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involving the velocity components at grid points P, E and appropriate 

geometrical weight factors W . However, it is well known [Patankar 1980] that 

this leads to so-called "chequerboard" oscillations in pressure and velocity. 

The reason is that pressure fields on even and odd cells actually cease to be 

coupled via the momentum equations; they may become completely independent and 

start "drifting" in the absence of any effective (numerical) corrective 

mechanism.

A common remedy is the use of staggered grids, in which each velocity 

component is defined at the centres of the faces normal to it; it was used, 

for example, in Release 1 of Harwell-FLOW3D [Jones et al.1985, 1986]. However, 

this approach may become quite cumbersome in the presence of nonorthogonal, 

body-fitted grids, and requires considerable storage. An alternative 

technique, which allows the use of co-located (i.e., non-staggered) grids 

whilst preventing "chequerboard" oscillations, was suggested by Rhie [1981] 

and Rhie and Chow [1983] and has been implemented into Harwell-FLOW3D, Release 

2 as well as into other last-generation computer codes. It will be briefly 

summarized here.

The i-th discretized momentum equation (3.39) can be written at two adjacent 

grid points (control volume centroids), e.g. P and E, as follows:

aPulp + (ôip)P = [H (ul)]p + s'p 

aEU E + (Ôip)E = [h (u )]e + S'e

(3.59.a) 

(3.59.b)

while at the centre of face "e", lying between P and E, it becomes:

a u 1 + (ô.p) = [H (u1) ] + s'
e e  ir e e e

(3.60)

The problem is to approximate solutions of Eqn.(3.60) from solutions of 

Eqns.(3.59.a) and (3.59.b) . The method of Rhie and Chow consists of 

interpolating the whole LHS of Eqn.(3.60) instead of the term in u 1  alone:

a u 1  + (ô.p) = a u1  + (ô.p)
e e ir e e e e

i.e.,

%  = %  + [(ôip/a)e - (ôip/a)e]

(3.61)

(3.62)

which, using normal velocity components 

definition (3.49') of C1 ,̂ can be written as:

ui=A. 
A 1

and remembering the
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(3.63)
rf3p ' 3P 1

A

-1—I e eJ

and, neglecting cross-derivatives:

' [3p 3P '
*

.Uyi e J

(3.64)

(no summation implied), in which all terms with overbars are computed on face 

"e" by linear weighted interpolation between points P and E, as in Eqn.(3.58), 

while (3p/3 y1)̂  is computed by central differencing in computational space 

from values of p at points P and E. Eqn.(3.64) must be used to compute all 

convection coefficients (j’û ) = (C1) prior to using them at any stage of

the SIMPLE(C) or PISO(C) pressure-velocity coupling algorithms.

3.2.3 Solution techniques for the linearized equations

The discretization / linearization techniques described above lead, at the 

generic SIMPLE(C) iteration or PISO(C) step, to very large systems of linear 

equations having the general form:

Ax = b (3.65)

This may represent either a scalar transport equation of the form (3.28), 

including the momentum equations (3.41) or (3.53); or a pressure correction 

equation like (3.50) or (3.57). In the latter case only, the coefficient 

matrix is symmetric. In all cases, if the "deferred correction" technique 

described above is used, the matrix A contains only seven non-zero diagonals 

(in three-dimensional problems) and is efficiently stored as a (N*7) array 

(being N = NI*NJ*NK the overall number of control volumes in the grid). It is 

schematically shown in Figure 3.6; the control volumes are assumed to be 

ordered along the index:

IJK = I + (J—1)*NI + (K-1)*NI*NJ (3.66)
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For such very large systems of linear equations, only iterative solution 

techniques are applicable. Practically all iterative methods (including the 

well known Jacobi, Gauss-Seidel and SOR algorithms) consist of replacing the 

original matrix A by an approximation S = A + T which is easier to invert; 

Eqn.(3.65) can be written:

Sx = Tx + b (3.67.a)

which suggests the iterative approach:

Sxk + 1  = Txk + b = b' (3.67.b)

This last equation may also be written:

S6k+i - (3.67.C)

in which rk = b - Axk is the residual at the generic iteration k, and 6 k+  ̂

= x]c+]_ ~ xjc is the variation of the solution between consecutive iterations.

The various iterative methods differ mainly in the form chosen for the 

approximation matrix S. Several alternative techniques are implemented in 

Harwell-FL0W3D, Release 2; they include line relaxation (LRLX); Stone's 

.Strongly Implicit Procedure (SIP), either in a 2-D, "sweeping" version ( ST2 

DSW) or in a fully 3-D form (ST3D); conjugate gradient method (CG), with 

alternative preconditioners; CG-squared (CGSQ). Among these, the methods 

adopted in the present work were ST3D for all transport equations and ICCG 

(conjugate gradient with incomplete Cholesky preconditioning) for the 

pressure-correction equation. They are briefly outlined in the following.

a) ST3D

This is a three-dimensional adaption of the "Strongly Implicit Procedure" 

originally introduced by Stone [1968] for two-dimensional diffusion or 

diffusion/ advection problems. It is based on choosing for S the form LU, 

being L and U a lower-triangular and upper-triangular matrices, respectively, 

which contain four diagonals each in the same positions where they appear in 

the original matrix A. Without loss of generality, the main diagonal of one of 

the triangular matrices, say U, can be chosen to be unitary, so that L and U 

altogether contain 7N coefficients and can be stored in a (N*7) array.
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The elements of L and U could be determined by imposing that the product 

matrix S = LU coincide with A along the 7 non-zero diagonals of A; this leads,

in fact, to a system of 7 equations in 7 unknowns coefficients for each row

(i.e., for each grid point). The matrix S would also contain 4 extra diagonals

which are of course absent from A. In practice, however, slightly modified

definitions of L and U, involving a variable iteration parameter a, work 

better and allow a faster convergence. Details are given in the paper by Stone 

[1968] for the original, 2-D version but are not published for the 3-D version 

implemented in Harwell-FL0W3D.

As S = LU, the system (3.67.b) can be written:

LU5k+i = rk (3-67.d)

which, left-multiplying both sides by L 1, is transformed into:

U5k+i = V k (3.6 8 .a)

LVk = rk (3.6 8 .b)

Being L and U triangular, Eqns.(3.68) are promptly solved in Vk and 6 k + 1  by 

forward or backward substitution.

b) ICCG

This is a conjugate-gradient method with incomplete Cholesky preconditioning 

[Kightley 1985] and is applicable only if the matrix A is positive (semi) 

definite and symmetric. Thus, it is used only for the pressure-correction 

equation occurring in any of the SIMPLE family algorithms.

Like any preconditioned-CG method, ICCG basically solves the following 

system, equivalent to (3.65):

ALy = b (3.69)

in which the change of variable x = Ly has been performed. Left-multiplying 
T

both sides by L gives:

A'y = b' (3.70)
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in which A' = LTAL and b' = Lxb. Eqn.(3.70) is then solved by the 

conjugate-gradient method. The overall sequence of steps can be summarized as 

follows:

p k = A d k
(3.71.a)

X k+1 = V a kd k
(3.71. b)

r k+l = r k" B kP k
( 3 . 7 1 .c)

q k+l = P  r k + l
(3.71. d)

d k+l = q k + l +l3kd k
( 3 . 7 1 .e)

, , _ T -1
in which P = (L L) is the so called preconditioning matrix, and the 

coefficients a, , B, are given by:

iiO

‘ v V  > [ (3.72.a)

fik = [(qk+l) rk+l] 1 [ " v T r J (3.72.b)

The initial residual is = b-AXg, and the initial values q 0
= do = p"

Tq are

used for q and d. An initial guess is required for the solution vector; 

this is generally zero for the pressure correction.

For P = I the method becomes the standard CG; for P = A it would converge 

in a single iteration, but Eqn.(3.71.d) would be equivalent to the original 

problem (3.65). In practice, the best choice for P is a matrix easy to invert 

and having the same "general structure" as the matrix A. Alternative 

definitions of P are discussed by Kightley and Jones [1985] .

It should be observed that, unlike "true" iterative techniques, CG 

methods converge to the exact solution in a finite number of steps <N [Hager 

1988]; however, this number is usually very large and iterations are 

terminated long before that by some suitable stopping criterion (usually, when 

the norm of the residual is reduced to a prescribed fraction of its initial 

value).
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Personally I am not of an imaginative temperament- 

very few Engineers are

[R.Kipling, "The Strange Ride of Morrowbie Jukes"]

3.3.1 Code modifications for the Smaaorinskv-Lillv subgrid model

The Smagorinsky-Lilly subgrid model implemented in the code, with Van-Driest 

(or similar) near-wall damping, is summarized here for the reader's 

convenience:

v*s = l2  S (3.73)

with:

1 = csd Z (3.74)

and:
y\ Lk

S = (2S. ,S. .) (3.75)
lj lj

In Eqn.(3.74), the three terms cs, D and A represent respectively:

I. cs: this is the main model constant, which the user is free to set; as

mentioned in Chapter 2, values of the order 0.1 have been proposed in the

literature.

II. D: this is a near-wall damping factor, which may be expressed by one of

Eqns.(2.102). Their application requires, however, that the distance y from

the nearest wall be expressed in 'wall units' as y+. In general, it is

convenient to write:

y+ = Fy (3.76)

being F an appropriate non-dimensionalizing factor. For plane channel flows, F 

is naturally expressed as:

F = u t/y> (3.77)

■ | y2

being u^ = (|t |/j?) the mean friction velocity; this can be in turn deduced 

from the imposed streamwise pressure gradient. However, for flows within 

complex boundaries, notably involving recirculation, the scaling factor F not

3.3 Implementation of a subgrid scale model and of boundary conditions
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only becomes a function of the wall region considered, but can not in general

be expressed by Eqn.(3.77); in fact, t may well vanish at separation or
w

reattachment points. In the context of k-£ turbulence modelling, for example, 

F (which is used to impose wall boundary conditions based on universal 'wall 

functions') may be expressed as:

F = cu\ V  (3.78)

being kp the value of the turbulence energy k at the near-wall grid point P 

and c =0.09 the Prandtl-Kolmogorov constant. More generally, the scaling
r

factor F is proportional to the thickness y^ of the viscous sublayer, so that 

a good scaling of y is equivalent to a good knowledge of the distribution of 

this thickness along walls (also, ideas such as expressed by Ciofalo and 

Collins [1989.a] about a varying y ^ + could be applied here) . Finally, in the 

most general case F is a function of space and time, through its dependence on 

the instantaneous flow field.

III. A is the average cell size, conveniently expressed as the cubic root of 

the volume of the generic computational cell:

- 1/3
A = V (3.79)

A

In Eqn.(3.75), is the (resolved) strain rate tensor, expressed by

Eqn.(2.75). In the case of cartesian physical-space coordinates x,y,z, the

following expression holds for S :

= 2 [ (3u/3x) (3v/3y) (3w/3z) ̂ ] +

[(3u/3y+3v/3x)^+(3u/3z+9w/3x)^+(3u/3 z + 3 w / 3 y ) (3.80)

The appropriate modifications must be introduced if cylindrical coordinates r,
o

*,z are used instead. In Harwell-FLOW3D, the term S is already used, for 

example, in the k-E model to compute the generation of k due to shear; it is 

equivalent to the term (GEN/VIS) in subroutine GENTRB.

From the above formulation of the subgrid model, it is clear that the

computation of requires, besides the two constants A+ and cg, the knowledge

of the following quantities for each mass control volume n:
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A n (average cell size) ; 

yn (distance from nearest wall);

Fn (appropriate scaling factor for y );

Sn ('Smagorinsky' term).

Since, in a general flow, F is a property of each 'wall element' (control 

volume face lying on a wall) rather than of each control volume n, it is 

convenient to introduce the integer array:

(index of the 'wall element' nearest to each control volume n)

so that the appropriate scaling factor Fn for the control volume n can be 

expressed as F (L̂ ) = F^. Now:

a) A ^ can be easily expressed in terms of the array VOL, and thus needs not to 

be stored;

b) Yn and Ln are geometrical quantities which do not change during the course 

of a transient. Hence, it is convenient to store them in the two permanent 

arrays:

yn = WDIST(I,J,K); Ln = LDIST(I,J,K)

with 1=1 to NI, J=1 to NJ, K=1 to NK and n=I+(J-l)*NI+(K-l)*NI*NJ.

As no memory allocation is provided in the standard version of the code 

for such arrays, it is convenient (in order to avoid any modifications in 

routines of higher 'hyerarchical' rank than USRVIS) to store them into 

suitable 'chunks' of the working arrays WORK and IWORK, defining the relative 

pointers IWDIST and ILDIST and increasing the free-space pointers IWRFRE, 

IWIFRE by NIJK = NI*NJ*NK when USRVIS is called for the first time.

A
c) F^ and Sn are quantities which vary (in general) during a transient. Sn is 

given by Eqns.(3.75) or (3.80), while, as discussed above, in the most general 

case F^ is also a function of the instantaneous flow field. Thus, it is 

convenient to recompute them each time the subroutine USRVIS is called, and to 

store them temporarily in the two arrays:
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F^ = FACTOR(L) (L=l to NCV, overall number of 'wall elements');

Sn = SMAG(I, J, K) (1=1 to NI, J=1 to NJ, K=1 to NK) .

These two arrays are also stored in appropriate sections of the working array 

WORK.

Besides the arrays described above, some additional arrays are needed for 

the actual computation of WDIST, LDIST and of FACTOR, SMAG. They are also used 

temporarily and stored in 'chunks' of the array WORK (see below).

The flow-chart of the interaction between USRVIS and the auxiliary subroutines 

introduced for LES is sketched in Figure 3.7. A few comments are necessary:

a) Subroutine LESO is called when USRVIS is called the first time. Note that 

in FL0W3D, Release 2.1 USRVIS is called twice during the initialization 

phase, first through the path:

MAIN FLMAIN -> FL0W3D -» INIT -» PROPS -> CVIS -» USRVIS 

and then through the path:

MAIN -> FLMAIN FL0W3D -> INIT INTBCS -» PROPS -> CVIS -» USRVIS; 

LESO is called only the first time, and a flag is set so that no further call 

is made. The task of LESO is currently the computation of arrays WDIST and 

LDIST, which is accomplished through subroutine WALDST.

b) Subroutine LEST is called at each time step, and in the initialization 

phase. It is used to compute:

I. Array FACTOR (= F^), through subroutine USRFCT. Currently, for all the

geometries investigated here USRFCT computes a simple scaling factor u /v> 

from the (imposed) pressure drop along the channel; in successive

developments, a more sophisticated computation of F^, based on the concepts 

expressed above, might be implemented.

II. Array SMAG (= "s ) from Eqn.(3.80) or its equivalent for cylindrical 

coordinates. This requires a call to subroutine GRADV (and its auxiliary 

routines), already present in the code, in order to compute velocity gra-

dients. Much code for this was taken from the standard subroutine GENTRB.

c) Subroutine LES, also called at each time step, computes the subgrid 

viscosity ^  and the total viscosity (array VIS) from the computed values of 

Ff, yn, Sn and Ln (see above formulae).
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d) The computation of LDIST and WDIST is accomplished in WALDST by an outer 

loop on 'wall elements' 1=1 to NCV, and an inner loop on control volumes n=l 

to NI*NJ*NK. For each couple (control volume - wall element) WALDST computes 

the distance between the n-th grid point (centroid of control volume N) and 

the centroid of the 1-th wall element. The coordinates of the former are 

computed, as usual in FL0W3D, by averaging the corner coordinates stored in 

arrays XC, YC, ZC; the coordinates of the latter are stored in the 'standard' 

arrays XFACE, YFACE, ZFACE and are 'extracted' with the aid of the integer 

lists ILEN, 1ST, INC, NWLA, much as in the standard subroutine WALYP. The 

minimum distance for each cell n is stored in WDIST, and the corresponding 

value of 1 is stored in LDIST. The method is valid for arbitrary geometries; 

of course, the computation of WDIST and LDIST could be made trivially for 

simple geometries such as a plane channel.

The following tables 3.4 to 3.7 summarize the exchanged parameters for all the 

auxiliary subroutines described above. Comments are added when appropriate.
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Table 3.4 Computation of arrays WDIST, LDIST

in USRVIS: in LESO: in WALDST:

XC, YC, ZC XC, YC, ZC XC, YC, ZC

LM = ILIST(JTWS) LM LMAX

LTWS 2 ...) ILEN (dim. LMAX)

ILIST(JTWS to JTWS+NCV-1) LTWS -
LTWS LM+2...) 1ST ( " 3*LMAX)

LTWS 4*LM+2...) INC ( " 3*LMAX)

JLTWS 7*LM+2...) NWLA ( " LMAX)

NCV = ILIST(JTWS+8*LM+1) NCV NCV

IWORK(ILDIST to ILDIST+NIJK-1) LDIST LDIST (dim. NIJK)

WORK (IWDIST to IWDIST+NIJK-1) WDIST WDIST ( " NIJK)

X X (dim. NIJK)

Y Y ( " NIJK)

WORK(IWDIST+NIJK to Z Z ( " NIJK)

IWDIST+12*NIJK-1) XFACE XFACE (dim. 3*NIJK)

YFACE YFACE ( " 3*NIJK)

ZFACE ZFACE ( " 3*NIJK)

Remarks:

I. As LDIST and WDIST need to be stored permanently, free-location pointers 

IWIFRE and IWRFRE are increased by NIJK when USRVIS is called for the first 

time;

II. For the computation of LDIST and WDIST (in subroutine WALDST) the arrays 

X, Y, Z (containing the coordinates of control volume centroids) and XFACE, 

YFACE, ZFACE (containing the coordinates of face centroids) are used. In 

earlier versions of FL0W3D, Release 2, X, Y and Z could be stored permanently 

in their own locations by setting the option LGRID = .TRUE, in the main 

program; this, however, is no more possible in Releases 2.1 and following, so 

that the computation of X, Y, Z and their temporary storage in the first 

3*NIJK free locations of WORK are provided for. The same holds for arrays 

XFACE, YFACE, ZFACE, which are stored in the next 9*NIJK locations.
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Table 3.5 Computation of array SMAG

in USRVIS: in LEST: in GRADV:

- 0 I FLAG

XC, YC, ZC XC, YC, ZC XC, YC, ZC

u , V , W U, V , W U , V, W

TE, DEN, VIS TE, DEN, VIS TE, DEN, VIS

VOL, AREA, WFACT VOL, AREA, WFACT VOL, AREA, WFACT

UGRAD UGRAD (dim 3*NIJK)

WORK(IGRAD to IGRAD+9*NIJK-1) VGRAD VGRAD ( " 3*NIJK)

WGRAD WGRAD ( " 3*NIJK)

WORK(ISMAG to ISMAG+NIJK-1) SMAG -

NCV = ILIST(JTWS+8*LM+1) NCV -

ILIST (JTDIR___) LTDIR LTDIR

ILIST(JTNEUM...) LTNEUM LTNEUM

ILIST(JTNEUP...) LTNEUP LTNEUP

ILIST (JTSYS___) LTSYS LTSYS

ILIST (JTPS....) LTPS LTPS

ILIST (JTWS....) LTWS LTWS

RLIST (JRLWS___) RLWS RLWS

Remarks:

I. Array SMAG is stored (temporarily) in the first NIJK available locations of 

WORK;

II. Arrays UGRAD, VGRAD, WGRAD are stored in the next 9*NIJK locations in 

WORK;

III. Arrays TE, DEN, VIS are just passed as dummy parameters to LEST and 

GRADV, but are not actually used.
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Table 3.6 Computation of array FACTOR

in USRVIS: in LEST: in USRFCT:

LM = ILIST(JTWS) LM LMAX

LTWS( 2 . . . ) ILEN (dim. LMAX)

ILIST(JTWS to JTWS+NCV-1) LTWS LTWS < LM+2•*•>
1ST ( " 3*LMAX)

LTWS(4*LM+2...) INC ( " 3*LMAX)

LTWS(7*LM+2...) NWLA ( " LMAX)

NCV = ILIST(JTWS+8*LM+1) NCV NCV

Remarks:

I. Array FACTOR has a length NCV equal to the number of 'wall elements'. It is 

temporarily stored in the first NCV available locations of WORK.

II. Some remarks on the meaning of FACTOR and on its computations were 

sketched above. Like in WALDST, the same approach as in the 'standard' 

subroutine WALYP is used in USRFCT to scan the walls.

Table 3.« Computation of subgrid and total viscosity

in USRVIS: in LES:

WORK(IWDIST) WDIST (dim. NIJK)

WORK(ISMAG) SMAG ( " NIJK)

WORK(IFACT) FACTOR ( " NCV)

IWORK(ILDIST) LDIST ( " NIJK)

VOL, VIS VOL, VIS

Remarks:

I. The subgrid kinematic viscosity is computed directly according to formulae 

(3.73) and following. It is then multiplied by the density (stored in array 

DEN, and however constant in all the present simulations), and added to the 

laminar viscosity VISCOS (contained in the common block FLUPR); the result is 

stored in the array VIS;

II. Immediately after subroutine LES has returned VIS to USRVIS, all the 

temporary WORK space used is released.
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The use and release of working space is summarized below:

a) First call of USRVIS only (before calling LESO):

I. NIJK locations are reserved in IWORK for array LDIST, and in WORK for array 

WDIST:

ILDIST = IWIFRE , IWIFRE = ILDIST + NIJK

IWDIST = IWRFRE , IWIFRE = IWDIST + NIJK

II. 12*NIJK locations are temporarily reserved in WORK (for arrays X, Y, Z,

XFACE, YFACE, ZFACE) and are then released, in accordance with the scheme:

IWRSAV = IWRFRE 

IWRFRE - IWRSAV + 12NIJK 

. ..(CALL LESO) ...

IWRFRE = IWRSAV

b) Before calling LEST and LES (generic call of USRVIS):

NCV+NIJK+9*NIJK locations are temporarily reserved in WORK (respectively for 

array FACTOR, for array SMAG, and for arrays UGRAD, VGRAD, WGRAD) and are then 

released:

IWRSAV = IWRFRE

IWRFRE = IWRSAV + NCV + 10*NIJK 

...(CALL LEST) . . .

...(CALL LES ) . . .

IWRFRE = IWRSAV

At each stage, the availability of workspace is checked and error messages are 

issued if this is not enough.

3.3.2 Code modifications for the subarid heat transport

In all the present simulations, subgrid heat fluxes (2.88) were expressed by 

the simple gradient-diffusion assumption (2.89); i.e., a subgrid thermal 

diffusivity proportional to the subgrid viscosity, Eqn.(2.91.a), was used. The 

subgrid Prandtl number, a , was provided as an input parameter. Thus, subgrid
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heat transport was simply implemented by computing rg from Eqn.(2.91.a) and 

adding this to the laminar diffusivity r in subroutine USRDIF to get the total 

thermal diffusivity (array DIFF).

3.3.3 Implementation of wall boundary conditions for LES

Alternative hydrodynamic boundary conditions for Large-Eddy Simulation were

discussed in detail in Section 2.5; they were all tested for the plane channel

case (Chapter 5). All these formulations can be reconducted to appropriate

expressions for the multipliers  ̂ linking the (cartesian) components of the

wall shear stress,  ̂to the corresponding components of the velocity

parallel to the 'wall at the near-wall grid point P, upar j_ • some

formulations (models (a), (b), (c) of Section 2.5) the three multipliers are

identical, i.e. the wall shear stress t is assumed to be proportional to
w

Upar; i-mPlementation of these simply required minor modifications to the 

formulae used for 1^ in subroutines WALSHR and WALSTR. However, the 

implementation of models (d) ("shifted") and (e) ("ejection"), involving three 

different values for the ,, required also slight modifications to sub-

routine SCMOM in order to 'split' into three components before calling 

WALSHR. Finally, the implementation of model (a) ("Mason and Callen" boundary 

conditions) in the case of high Reynolds number (first near-wall grid point 

outside the viscous sublayer, i.e. 'synthetic' wall boundary conditions) 

requires the computational steps summarized by Eqns.(2.109) to (2.115); these 

were implemented in a separate auxiliary subroutine MASCAL, called in turn by 

WALSHR and WALSTR. Note that, for low Reynolds number flows (first grid point 

within the viscous sublayer) model (a) is identical to the ordinary no-slip 

conditions used in laminar flow, and no special modification to the existing 

subroutines would be required.

As regards the thermal boundary conditions at walls, in meet si-

mulations d^ribed in the present work the wall heat flux was imposed. Thus, 

the details of the treatment of heat transfer between wall and wall-adjacent 

control volume have no influence on the overall temperature field in the 

fluid, and affect only the temperature distribution on walls (computed by 

subroutine WALTHF). Minor modifications to WALTHF were necessary only in the 

case of high-Reynolds number flows, in order to implement log-law profiles 

coherent with those assumed for the flow field.
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symmetry plane

i = >
outlets

Figure 3.1 - Generic FL0W3D computational domain and structures which can be 

defined within it (a 2-D domain is shown for simplicity).

133



Figure 3.2 - Schematic flow chart of FL0W3D
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(U+l.K+1) (I+l.J+l.K+1)

Figure 3.3 - Generic control volume. Indices of corners in the FL0W3D grid 

are shown. The usual "compass rose" nomenclature is used.

Figure 3.5 - Nomenclature of control volumes for discretization schemes.
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Figure 3.6 - Structure of the matrix A of linearized equations.

Fig.3.7 - Flow chart of subroutine USRVIS and auxiliary subroutines LES, 

LESO, LEST, USRFCT, WALDST used to compute subgrid viscosity.
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CHAPTER 4 - APPLICATION TO TURBULENT FLOW WITH HEAT TRANSFER IN A PLANE 

CHANNEL

4.1 Introduction and literature review

If your pet theory of the universe is found to be 

contradicted by observation - well, these experimentalists 

do bungle things sometimes

[A.S. Eddington]

Experimental data for both mean and fluctuating velocities in turbulent 

channel flows have been obtainable for many years [Laufer 1954; Comte-Bellot 

1963] .

More recently, Kreplin and Eckelmann [1979] used hot-wire anemometry to 

measure the cross-stream profiles of mean velocity and of all three 

fluctuating components; the working fluid was oil, the duct had a rectangular 

cross-section with an aspect ratio of 3.59, the flow was practically 

fully-developed and the Reynolds number Re^, based on channel half-width and 

cross section-averaged velocity, was about 3000. Hussain and Reynolds [1975], 

using the same technique, measured only profiles of the mean velocity and of 

the streamwise fluctuation, but for a higher Reynolds number (Re^=10,000). The 

same quantities were measured by Nishino and Kasagi [1989] using Particle 

Image Velocimetry.

Experimental cross-stream profiles of mean and fluctuating velocities, 

once expressed in wall units as u+, u+rms etc., see Eqns.(4.10) below, exhibit 

only a weak dependence on the Reynolds number. Since the friction coefficient 

decreases as Re , with c close to 0.3 for moderate Reynolds numbers [Beavers

et al.1971], a simple analysis shows that the cross-section averaged velocity,
. + c / 2

expressed in wall units u t as U , must increase as Re (-0.15). However, the

peak (centreline) value of u+ is about 18 both in the experiments of Kreplin

and Eckelmann [1979], for Re^=3,000, and in those of Hussain and Reynolds

[1975], for Re^=10,000; thus, the increase in the average value is accompanied

by an increasing flatness of the cross-stream u-profile, with little variation

of the peak value.

Similarly, fluctuations do not exhibit a clear trend with Re. Among the

three components, the streamwise fluctuation u+rms is the largest, with peaks

of 2 .3-2. 8  near the walls; peak values of v+ and w+ are lower and closer  rms rms
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to each other. Peaks of v+ are the flattest and farthest from the walls.
rms

Turbulence becomes roughly isotropic in the central region of the duct.

There are no comparably accurate measurements of mean and fluctuating

temperatures for thermally fullv-developed non-isothermal flow. For example,

the holographic-interferometry results of Lockett [1987] include real-time,

span-averaged interferograms showing time-dependent 'thermal eddies' at
4 5

Reynolds numbers of 10 -10 , but are for a thermal development length of a few

channel heights. In fully-turbulent flow, the Nusselt number is expected to 
0 8

increase as Re ' , as, for example, in circular ducts. From Eqns.(4.10) below 

it follows that the cross-section averaged dimensionless temperature is 

expected to increase only as Re^'^.

4.2 Model and methods

"Can you do Addition?" the White Queen asked.

"What's one and one and one and one and one and 

one and one and one and one?"

"I don't know" said Alice. "I lost count".

[Lewis Carroll, 'Through the looking glass']

4,2.1 Summary of governing equations and subgrid model

The filtered continuity, Navier-Stokes and energy equations, in which the 

fluid is assumed to be incompressible and the gradient-diffusion hypothesis is 

adopted for the subgrid terms, may be summarized as:

Av

--- = 0 (4.1)
3x,

]

Du, •a 1 3 P 3
3u.

— + — (u.u ,) -  - + (f+O — (4,. 2

3t 9x. 1  ] Q 3x, 3x. S QOX .
] 5  i ] ]

3T 3 A A 3
A

3 T
+ --- (u.T) = ---(a+a )--- (4..3

3t ax. ] 3x. s 3x,

138



In the following, the caret (*) for 'resolved quantity' will be omitted. The
r*j

modified pressure P includes the term (2/3)$>k, see Eqn.(2.77).

The reference subgrid model used for the large eddy simulations of plane 

channel flow is the Smagorinsky-Lilly model with VanDriest near-wall damping, 

Eqns . (3.73) - (3.75) , (3.79), (2.102.a); a is the molecular heat diffusivity \>/o  

(with the Prandtl number o=0.72) and as the corresponding subgrid diffusivity, 

expressed by Eqn.(2.91.b). The subgrid Prandtl number os was made vary between 

0.25 and 1 in the simulations.

4,2.2 Averages and fluctuations

The direct result of a simulation is the instantaneous resolved field of all 

scalar quantities Q ( = u, v, w, p, T) on a three-dimensional grid, repeated 

at each time step. In order to interpret these results and compare them with 

experimental data or with other simulations, it is necessary to split the 

generic resolved field into an average and a fluctuating component via a 

statistical processing of the instantaneous results; this can be done in 

different ways. For any resolved scalar Q the following quantities can be 

defined:

Q instantaneous lo c a l va lue;

<Q> instantaneous value, space-averaged (ensemble-averaged)

over a plane parallel to the walls;

<<Q>> instantaneous value, space-averaged over the whole volume

of the computational domain;

Q local value, time-averaged over a given interval (number

of time steps);

<Q>=(<Q>)=< (Q)> value of Q averaged over a plane and over a time 

interval.

Similarly, fluctuating (resolved) components can be defined as follows:

Q' = Q - Q instantaneous lo c a l f lu c tu a t io n  w ith respect to the

tim e-averaged value;

Q" = Q - <Q> instantaneous lo c a l f lu c tu a t io n  w ith respect to the 

p lane-averaged (ensemble-averaged) value.

The corresponding root-mean-square (rms) values are:
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msQ'

Qnrms
= ̂ < Q " 2 > <(Q - <Q>) >

The latter will be extensively used, and indicated simply as Qrms' in the 

following.

Moreover, space- or ensemble-averages of Q'rmsf <(2'rms> anci time-averages

of Q" , Q" , can be computed. Like <Q>, they are one-dimensional fields, 
rms rms

functions only of the cross-stream coordinate y normal to the walls.

Similar average and rms values can be defined for wall quantities 

(pressure, shear stress, temperature, heat flux). Alternate definitions are, 

of course, possible.

4.2,3 Boundary conditions

The computational domain ('box') used for the reference simulations is

sketched in Figure 4.1; a typical three-dimensional grid, having 32*16*16 

control volumes and selectively refined in the near-wall regions, is shown in 

Figure 4.2. The sizes of the box are L=8 ô, W=4ô and of course H=2ô, being ô 

the channel half-height, used as the main 'outer' length scale in the

following. As discussed in Chapter 2, the choice of the box sizes is based on 

experimental results for the characteristic correlation lengths between 

fluctuations, e.g. Comte-Bellot [1963]. Periodic boundary conditions are 

imposed along the streamwise direction x and the spanwise direction z, while

no-slip or synthetic wall boundary conditions are imposed at y=0 and y=H. The

thermal boundary conditions are:

- adiabatic upper wall (y=H);

- uniform heat flux q on the lower wall (y=0 ).

As pressure P and temperature T are intrinsically non-periodic quantities,
* *

they are replaced by the respective periodic components P , T . By writing:

P = P* + (dp/dx)x (4.4)

T = T* + (dT/dx)x (4.5)

and substit. in Eqn.(4.2) (written for the streamwise direction l=x) and in
ic

Eqn.(4.3), it is easy to show that these may be thought of as equations in P ,
•k

T , provided the following source terms are added to their right hand sides:
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Su = - (dp/dx)/ ç  = |dp/dx| /p
ST = - u(dT/dx) = - q/(2CpÇô) u/U

(4.6)

(4.7)

in which u is the local instantaneous (resolved) velocity and U is the mean 

velocity, m/tqWH).

In Eqns.(4.6 )-(4.7) the driving pressure gradient |dp/dx| and the heat 

flux q (i.e. the temperature gradient dT/dx) are imposed as independent 

variables. The imposed pressure gradient can be used to derive the equilibrium 

wall shear stress:

tq = 5 (dp/dx) (4.8)

and the corresponding equilibrium friction velocity:

u =
T /p)

v2
(4.9)

The various flow quantities can be made dimensionless with reference to u^ as:

lengths (e.g., distance from wall) 

velocities

stresses (e.g., wall shear stress)

pressures

turbulence energy

temperatures

y  =  y u  J ' ?
+ _ j

U = u / U T

T T / (OU 2 )
W W 5 I

P = P/(?U )
, 2 T

k = k/uT

T+ S  < V T)? Cp UT/q

(4.10.a) 

(4.10.b) 

(4.10.C) 

(4.1 0 .d) 

(4.1 0 .e) 

(4.10.f)

In particular, Eqn.(4.10.a) is used to express y+ in the near-wall damping

functions (2.102). In Eqn.(4.10.f), T is the local instantaneous (resolved)
w +

wall temperature at the nearest wall location, so that T =0 at the heated wall 

and increases moving away from it. An alternative definition is:

T++=§TCpUT/q (4.10.g)

which, of course, decreases moving away from the heated wall.

The nominal mean velocity U°, used as an initial condition, was chosen so 

that a given nominal Reynolds number Re°=U°De/9 was obtained (based on the 

hydraulic diameter De= 2H = 45). The corresponding Reynolds number based on 

channel half-height was, of course, Re^°=Re°/4. The driving pressure gradient 

to be used as source term in the streamwise Navier-Stokes equation was 

computed from:
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|dp/dx| = (4Cf/De)ç(U°)2/2 (4.11)

in which the (Fanning) friction coefficient was expressed using the 

correlation given by Beavers et al. [1971] for low-Reynolds number turbulent 

flow in flat rectangular ducts:

Cf = 0.127*ReD"°'3 (4.12)

4,2,4 Initial conditions

Two basic methods of setting the initial conditions were tested.

In both cases, for each plane y=constant parallel to the channel's walls,

the values of each fluctuating velocity component (i.e. u-<u>, v and w) were

randomly distributed over the grid points lying on that plane, following a

normal distribution having zero mean and a prescribed standard deviation (also
2 1/2

equal to the root-mean-square value of the distribution, u =<u" > etc.).
n rms

The mean streamwise velocity, <u>, was prescribed for each plane, and of

course both <v> and <w> were set to zero. Normal distributions having

prescribed mean and standard deviation were generated by using the IMSL

subroutines RNNOA, SSCAL and SADD.

The difference between the two methods was the following:

a) In the first approach, both <u> and u , v , w were assumed to be 
--------------  rms rms rms

uniform (i.e., independent of y). The value of <u> was set equal to the

reference initial velocity U°=Re-°5/\? . The rms values were assumed to be
5 1/2

proportional to the equilibrium friction velocity u t = ( | t  |/p) :

u
rms

v = w = cu 
rms rms t

(4.13)

b) In the second approach, <u> and u , v , w were assumed to be
---------^ ----- rms rms rms

functions of v; their profiles were set on the basis of the experimental 

results of Kreplin ed Eckelmann [1979], appropriately scaled by u .

Preliminary simulations evidenced that results were very little affected by 

the choice of conditions (a) vs. (b), as well as by the choice of the 

proportionality constant c in eqn.(4.13). Therefore, the simpler conditions 

(a), with c=l, were used throughout the following runs; of course, they amount 

to imposing an initial plug velocity profile, with superimposed isotropic 

random fluctuations. The choice c=l gives for the resolved turbulence energy

142



rms
(4.14)

2
averaged over the whole channel and made dimensionless with reference to u ,
, + T 
i.e. as k , the initial value of 1.5, close to the experimental value of

Kreplin and Eckelmann ( * 2 )  .

It should be observed that neither conditions (a) or (b) satisfy 

continuity; this is not crucial for the solution algorithms used in 

Harwell-FL0W3D, as was preliminarily verified for non-LES transient

simulations (see for example Ciofalo and Collins [1988.a]), but has some 

influence on the initial behaviour of the fluctuations, as discussed in the 

following section.

4.3 General issues

Some general aspects of the large-eddy simulations conducted will be discussed 

in this section, before presenting detailed results from reference cases and 

from the parametrical study which accompanied these. Three main issues will be 

considered, namely, the way in which a statistically steady state is attained;

the effects of disequilibrium between the applied driving pressure gradient

and the wall shear stress; and the dependence of computed flow statistics on 

the averaging technique used.

4.3.1 Numerical transient and restart

A critical issue of direct and large-eddy simulations is the way in which an 

artificially perturbed flow develops into a "truly" turbulent flow, and 

statistically steady-state conditions are established. The simplest indicator 

of the evolution of the simulated flow field is the channel-averaged resolved 

turbulence energy k, Eqn.(4.14), though of course several alternative

quantities can serve as indicators.

The behaviour of k depends critically on the numerical methods used, on 

the initial conditions chosen, and on the subgrid model. As expected, the

Clearly I cannot synthetize in a few lines, 

especially in such a sunny day, 

this rich and fascinating system

[Paul Feyerabend]
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influence of the Smagorinsky constant c was found to be particularly relevant
 ̂ +

m  the present simulations. In Figure 4.2 the behaviour of k , starting from 

the pseudo-random initial conditions described in Section 4.2.4, is reported 

for Re^=20,000, a 32*16*16 grid, and different values of c . The

Crank-Nicolson time-stepping scheme was used here, with t=0.016/u (i.e.,

1/100 LETOT's), and the pressure-velocity coupling algorithm was PISOC with a 

single iteration per time step.

The first stage of the transient is characterized by a rapid fall of k+,
_2

which reaches values as low as 10 after about one LETOT. This can be 

interpreted as a consequence of the non-divergence-free initial conditions; as 

the velocity field is enforced to satisfy continuity by the pressure-velocity 

coupling algorithm (PISOC), most of the randomly assigned fluctuating 

components vanish. A low-turbulence phase follows, which may last up to 

several LETOT's as a boundary layer grows and vorticity is built up near the 

walls. The duration of this phase was found to increase with the number of 

control volumes in the computational grid (all the other conditions being the 

same).

For sufficiently low values of c , after some LETOT's the low-turbulence 
+ s

phase ends; k increases rapidly, overshoots and then, if c s > 0  (i.e., if a

subgrid dissipation mechanism is provided), stabilizes itself about a fairly

uniform asymptotic value, with more or less broad fluctuations around this.

For c =0 (no subgrid model), the low-turbulence phase is shorter; when this 
s +

ends, k overshoots to unrealistically high values, following which it does 

not exhibit a clear tendency towards an asymptotic stabilization, but rather 

continues (slowly) to increase. There is, however, no sudden 'burst' of the 

resolved fluctuations, which suggests that some numerical dissipation 

mechanism is at work.

On the other hand, for high values of cg subgrid dissipation prevails on 

turbulence generation, and no transition occurs; the fluctuation energy is 

damped monotonically, and laminar flow is (incorrectly) predicted.

The instantaneous velocity components u, v, w and temperature T at a 

monitoring point located near a wall (y+=2 0 ) are reported for the same 

transient at c =0.1 of Figure 4.2 in Figures 4.3(a) and (b). The local 

fluctuations in time follow more or less closely the behaviour of the overall 

spatial fluctuation intensity, summarized by the quantity k in Figure 4.2. 

After a relatively steady state is attained (say, after 10 LETOT's), the 

streamwise velocity u fluctuates with a time rms value, u' , of about 3u 

around a time average of about lOu . Both values are close to those obtained
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by space-averaging u over planes parallel to the walls. Two main frequencies 

are identifiable, the first one (associated with the sharp peaks of u in 

Figure 4.3(a)) corresponding to a period of about 0.56/u t (1/2 LETOT), and the 

other to a period of about 5 LETOT's. The interval between consecutive sharp 

peaks encompasses several tens of time steps, which rules out numerical 

instabilities as the source of the fluctuations. The period of this more 

rapidly-varying fluctuation is comparable with the time required for the fluid 

to cross the channel from inlet to outlet, but also for a typical near-wall 

"streak" (see below) to travel its entire length over the monitoring point.

Similar remarks hold for the spanwise fluctuations, Figure 4.3(b), while 

the fluctuations of the cross-stream velocity v are much smaller in amplitude, 

due to the proximity of the wall, and apparently more broad-band in spectrum. 

Temperature fluctuations follow closely those of the main velocity, with 

maxima of T corresponding to minima of u and vice-versa.

In order to reduce the total duration of a simulation and to by-pass the 

(physically meaningless) low-turbulence stage, most simulations conducted in 

the course of the present study used as initial conditions the final 

(divergence-free) field produced by a preliminary cs=0 simulation. Of course, 

only one such preliminary run was necessary for each computational grid 

tested. Each preliminary run was protracted long enough for the resolved 

turbulence energy k to go through the overshoot and to attain realistic, 

though not necessarily correct, values. This usually required 10 LETOT's (15
3

for the finest grids considered, e.g.~32 control volumes). The initial field 

thus obtained was adapted, if necessary, to Reynolds numbers different by that 

of the preliminary run by simply scaling up or down all velocities .

The restart technique was also used for runs in excess of the maximum CPU 

time compatible with overnight runs at CUC (12 hours). As mentioned in Chapter 

3, in order to reduce the required disk storage only the velocity, pressure, 

and temperature fields were used to restart a run instead of the (more 

accurate) convection coefficients; nevertheless, no significant discontinuity 

in the computed quantities was ever observed across a restart,provided that no 

model parameter was changed.

4.3.2 Nonequilibrium effects
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Figure 4.4 reports the time behaviour of the average resolved wall shear

stress <t > (normalized by the equilibrium value t „) and of the average
w u 0  

velocity U (in wall units) for c =0.08, a 32*16*16 grid, and Re =20,000. The

simulation lasts 20 LETOT's starting from a few-LETOT preliminary run at cs=0.

Following a numerical transient associated with the imposition of a

non-zero value of c , which lasts about 10 LETOT's, the wall shear stress
s

oscillates slightly around an asymptotic value which, however, is lower than 

that required to balance the imposed driving pressure gradient (dp/dx). As a 

consequence, the mean velocity in the channel, U, increases slowly as shown in 

the same figure.

A nice relation linking the long-term drift of the mean velocity U to the

relative error in the wall shear stress < t > can be derived from simple
x

dynamic considerations. From Newton's second law:

F = ma (4.15)

In this case (see Figure 4.1):

F = (<t >—t ) 2LW
X 0 

m = pLHW

a = dU/dt

so that eqn.(4.15) yields:

dU/dt = 2 (<t >—t )/ (oH) (4.19)
X O '

By expressing U in wall units as U+=U/u t and t in LETOT's as 0 = tuT / 6  =

2tu /H, and taking Eqn.(4.9) into account, Eqn.(4.19) is transformed after 

some manipulations into:

dU+/dO = (<t >—t )/IT I = A t/It I (4.20)
x o 1 o 1 1 o 1

i.e., the dimensionless acceleration of the fluid motion is equal to the 

relative error in the mean wall shear stress. For example, between 0 and i0 

LETOT's <t >, Figure 4.4, is underpredicted in absolute value by about 15%, 

i.e. t /|t | = +0-15; as a consequence, the average velocity U increases by 

about 0.15 wall units/LETOT (~1.5 wall units over LETOT's 0 to 10), as 

confirmed by Figure 4.4.

(4.16)

(4.17)

(4.18)
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The above considerations also show that in large-eddy simulations of 

channel flow including only a few LETOT's (like the majority of those presen-

ted in the literature) even significant over- or under-predictions of the wall 

shear stress do not lead to a significant departure of the mean flow rate from 

that imposed in the initial conditions.

4,3.3 Averaging techniques; resolved and subarid quantities

Figures 4.5 (a) to (d) compare instantaneous and time-averaged cross-stream

profiles of the mean velocity, <u>, and of the three rms fluctuations u ,
2 1/2 rms 

v ,w (defined as u =<(u-<u>) ) etc.). Results are expressed in wall 
rms rms rms

units u t and time averages are taken over an interval of 10 LETOT's. The 

simulation is for Re^=20,000, cs=0.08 and a 32*16*16 grid. It is evident that 

instantaneous profiles exhibit strong irregularities and asymmetries, esp. in 

the fluctuating components. This is suggestive of large but short-lived 

structures occasionally determining high departures from mean values, 

particularly in near-wall regions. On the other hand, time averages are much 

more regular and symmetric, confirming that the averaging time is much larger 

than the lifespan of all significant flow structures (typically 1 LETOT).

Figure 4.6 reports cross-stream profiles of the various contributions to 

the principal stress (uv). Three contributions are shown:

- resolved Reynolds stress, -pu"v" = -_p<(u-<u>) (v-<v>)>;

- unresolved (subgrid) stress, -_puv = -p^3<u>/3y;
- viscous stress, -pv)3<u>/3y.

All quantities are normalized by the equilibrium wall shear stress, Tn,
0 u

and are time-averaged over 10 LETOT's. The simulation is for Re =20,000 and a 

32*24*24 grid. Both the resolved and the subgrid stresses vanish on the walls, 

where $ and u", v" are equal to zero. The resolved stress peaks at y/H =0.12 

and 0 .8 8 , which is about 80 wall units from the walls; peaks of the subgrid 

stress are much lower (»1/2) and closer to the walls (y+=20). The unresolved 

stress is significant only in a narrow near-wall region. This tends to confirm 

that the grid resolution adopted here, though rather coarse, is sufficient to 

capture most of the turbulent stress in the resolved scale.

4.4 Detailed results for a reference case

The data with which the sciences start are concrete, 

whereas the objectives they strive for are abstract

[Saadia Gaon, 'The book of beliefs and opinions'(ca.900 AD)]

147



4.4,1 Description of the test case and behaviour of k

Typical results are presented and discussed here for a reference 40-LETOT 

simulation at Re5=5000 (ReD=20000), characterized by:

- Grid including 32*24*24 (x*y*z) volumes in the fluid, with selective 

refinement near the walls along the cross-stream direction y

(£=Ay , /Ay =0.2)
* Jmin Jmax

Time step At=l/100 (LETOT) 10 2  5/u

- Crank-Nicolson time stepping scheme (option TPARM=0.5 in FLOW3D).

- Central differencing of advective terms 

Smagorinskyconstant cs=0.08

- subgrid Prandtl number o =0.25
s +

- Van Driest near-wall damping, eqn.(2.102.a), with A =25.

The locally-based wall boundary conditions presented as "model a" in Section

2.5 were used. Since, for the present Reynolds number and computational grid, 

the dimensionless distance of the first grid point from the wall, y^+, is ~4 

(<1 1 ), these reduce themselves to ordinary no-slip boundary conditions, 

eqn.(2.108). Other computational details, periodic and initial conditions, and 

dimensions of the computational box, are as discussed in Section 4.2.

Selected results are presented in Figures 4.7 and following in 

dimensionless form, i.e., expressed in wall units according to

Eqns.(4.10). Further results will be shown in the next sections, in discussing 

the results of the parametrical sensitivity analysis that was conducted.

Figure 4.7 reports the channel-averaged resolved turbulence, k, as a function 

of time. As in the example shown in Figure 4.3 (c =0.1), k decreases for some
-i- ^

LETOT's to very low values (k =0.1); then it increases, exhibits a marked 

overshoot at about 22 LETOT's and eventually oscillates around the value 

k+=2.5, in fair agreement with the experimental result of about 2 of Kreplin 

ed Eckelmann [1979] . The greater length of the low-turbulence phase with 

respect to the case in Figure 4.3, characterized by a coarser grid, should be 

observed.

4.4.2 Averages and fluctuations for the main fluid dynamic quantities

Figure 4.8(a) reports cross-stream profiles of the resolved streamwise velo-

city, u, averaged on planes parallel to the walls and over LETOT's 30 to 40, 

and expressed in wall units, k-s predictions and experimental results of
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Kreplin and Eckelmann [ 19"79] (Re^ = 3000) and of Hussain e Reynolds [1975]

(Rê  - 1 0 0 0 0 ) are also reported for comparison purposes.

The centreline (maximum) velocity (<u> - 20.5) is overpredicted by

12% as compared with experimental data (<u+>ma_, = 18). The profile of <u> 

exhibits a satisfactory symmetry and regularity.

Cross-stream profiles of resolved fluctuations u , v , w are 
r rms rms rms

reported in Figures 4.8 (b) to (d). As above, quantities are time-averaged 

over LETOT's 30 to 40. Experimental results of Kreplin and Eckelmann and, for 

Urms Hussain and Reynolds, are reported for comparison purposes. LES

predictions obtained by Moin and Kim [1982] using accurate spectral methods 

and a much higher resolution are also shown.

The comparison of numerical results with experimental data is, on the 

whole, satisfactory; the relative importance of the three fluctuating compo-

nents upon overall turbulence levels is reproduced correctly, as are the peak 

and centreline values of each component. Predicted peaks of the cross-stream 

fluctuation, vr , are excessively low and far from walls, which may be due to 

the relatively poor resolution of the near-wall region.

The overview of predicted fluctuations is completed by the cross-stream 

profile of the resolved turbulence energy <k>, reported in Figure 4.8(e). Moin 

and Kim's results, experimental data and k-£ predictions are also shown. The 

present LES predictions compare favourably with the measurements of Kreplin 

and Eckelmann, better than k-s predictions and actually better than Moin and 

Kim's results (which, however, are for a higher Reynolds number).

4.4,3 Temperature profiles and heat transfer

Cross-stream profiles of the resolved temperature <T>+, made dimensionless 

according to eqn.(4.10.f) and averaged over planes parallel to the walls and 

over LETOT's 30 to 40, are shown in Figure 4.8(f). The three solid curves 

reported correspond to three values of the subgrid Prandtl number, os (0.25, 

0.5 and 1). As mentioned in Section 4.1, the literature is poor of experi-

mental data for the present configuration (single-sided, fully developed heat 

transfer in plane channels) . Therefore, the temperature profile computed by 

using the same code and the k-s turbulence model was reported for comparison 

purposes (dashed line); for simple problems like the present one, k-s predic-

tions (based on 'wall functions' and on Jayatilleke's [1969] correlations) can 

be regarded as highly accurate.

It is evident from Figure 4.8(f) that the temperature profile is best 

predicted for the lowest value of og (0.25); this, however, leads to undere-
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stimating the temperature drop T+ in the near-wall region. As discussed in 

Section 2.4, there is little agreement in the literature on the value of the 

subgrid Prandtl number os; a value of 0.25, however, seems too low and diffi-

cult to justify on theoretical grounds. A cursory look at Figure 4.8(f) shows 

that the real problem is the overestimate of the temperature drop (i.e ., 

underestimate of scalar transport) in the central (low-turbulence) region of 

the channel. As will be shown in the next Section, this is mainly an accuracy 

problem and can be overcome by refining the cross-stream grid, reducing the 

time step or replacing PISOC by the more accurate iterative algorithm SIMPLEC.

4.4.4 Instantaneous flow and temperature fields

An idea of the instantaneous simulated flow and temperature fields is given by 

Figures 4.9 to 4.11, which report shade plots of various quantités on selected 

2-D slices of the computational domain at t=31 LETOT's (they were obtained by 

post-processing the computational results on a Macintosh personal computer). 

In these and the following graphs, the numerical values associated with the 

various grey patterns are also reported; they are all in wall units, as 

specified by Eqns.(4.10), except for the subgrid viscosity which is normalized 

by the laminar viscosity. Of course, all quantities are streamwise and 

spanwise periodic as imposed by the boundary conditions. The dimensions of the 

computational domain, L=8 ô, W=4ô and H=2ô, correspond to L+=2280, W =1140 and 

H =570 (wall units) on the basis of Eqn.(4.10.a).

Figure 4.9 shows instantaneous streamwise velocity, temperature, subgrid 

viscosity and pressure on a plane normal to the x-axis (main flow direction). 

The pseudo-chaotic character of the computed fields is evident. Low-velocity 

regions ("streaks") in the near-wall layer can be observed in Figure 4.9(a). 

They protrude up to y+=100 into the bulk flow region and are spaced by about 

200-250 wall units spanwise. Hot thermal plumes, closely corresponding to the 

low-speed regions, can be observed near the bottom wall in Figure 4.9(b). 

Regions of high subgrid viscosity, Figure 4.9(c), occur at y+=l00-150 and 

their spanwise location corresponds loosely to the low-speed streaks. The 

distribution of p, Figure 4.9(d), is characterized by high-pressure regions, 

protruding into the flow up to the midplane, and having no clear association 

with the velocity distribution.

Figure 4.10 refers to the plane J=2 (y+=4) normal to the y-axis and close 

to the heated wall. The shade plot of u-velocity (a) confirms the presence of 

coherent structures, elongated in the streamwise direction x, having an 

average spanwise spacing of ~250 wall units. These structures
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correspond to the "streaks" experimentally observed in turbulent near-wall 

flows [Kline et al. 1967] and reproduced in previous direct or large-eddy 

simulations [Moin and Kim 1982; Horiuti 1985; Azab and McLaughlin 1987], as 

discussed in Chapters 1 and 2. The spanwise streak separation observed expe-

rimentally is about 100-150 wall units; therefore, the present simulation 

overestimates this quantity about twice. As mentioned in Chapter 2, a compa-

rable overestimate is reported by Horiuti [1982] using the Smagorinsky model 

for the unresolved scales; better predictions seem to be obtained using more 

sophisticated subgrid models, such as the one-equation, unresolved energy- 

model of Horiuti [1985.a, 1985.b] or the two-component model of Moin and Kim 

[1982] (who, however, used also much finer grids than the present one, with up 

to 4 points in the viscous sublayer). The streamwise extent of the streaks 

observed in experiments (-1000 wall units) is fairly well reproduced. The 

prediction of near-wall streaks was found to be sensitive both to the 

computational grid and to the value of the Smagorinsky constant c , as will be 

discussed in the following Section.

The temperature distribution on the same plane y+-4 is reported in Figure 

4.10(b). It presents similar elongated regions ('thermal streaks'), with 

higher temperatures corresponding to lower velocities and vice-versa. Figure 

4.10(c) shows the distribution of the subgrid viscosity on the same plane; it 

mimics closely that of the velocity u, since higher values of u correspond to 

higher values of the strain-rate term S in Eqn.(3.73), and thus of the subgrid 

viscosity. The pressure shade plot in Figure 4.10(d) shows irregularly 

distributed low- and high-p spots, which are not elongated in the streamwise 

direction. This is in agreement with previous direct and large-eddy simulation 

results, see for example Moin and Kim [1982].

Finally, Figures 4.11(a) to (c) report instantaneous shade plots of u, T 

and >>s on a plane normal to the spanwise direction z. In Figure 4.11(b), 

high-temperature plumes are evident, which interest mainly the boundary layer 

adjacent to the hot wall but occasionally protrude well into the bulk flow 

region and form an angle of about 45° with the wall.

The time-evolution of instantaneous velocity and temperature fields is 

documented in Figures 4.12 to 4.15.

Figure 4.12 (a-c) shows shade plots of the streamwise velocity u on the 

plane J=2 (y+=4) parallel to one of the walls, respectively for t=31.1, 31.2 

and 31.3 LETOT's. The motion of the streaks is evident; they move at a speed 

of about 5u^,-corresponding to the mean streamwise velocity at the given 

distance from the wall. Similar plots are reported in Figure 4.13 for the 

temperature distribution on the same plane.
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Figure 4.14 shows the evolution of the local instantaneous temperature T 

on a generic plane z=constant at consecutive instants t=31.1, 31.2 and 31.3 

LETOT's, while Figure 4.15 refers to the instantaneous, but spanwise-averaged, 

temperature. The comparison of Figures 4.14 and 4.15 shows that, while the 

local temperature field exhibits broad spatial and temporal fluctuations, the 

corresponding span-averaged field is much more regular in space and varies 

little with time. The interest of such comparisons stems from the fact that 

experimental instantaneous temperature fields obtained by real-time 

interferometric techniques, such as those reported by Lockett [1987], see 

Figure 4.16, are inevitably averaged over the direction of the beam, which 

leads to a loss of information comparable with that observed here.

4.5 Influence of Reynolds number, model, grid and computational options

The first man knew him not perfectly, 

no more shall the last find out

[The Ecclesiastes, on Wisdom]

In this section, the sensitivity of the results to the following parameters is 

investigated:

1 - Reynolds number;

2 - constant cg of the Smagorinsky subgrid model;

3 - near-wall damping function, eqns.(2.102.a) to (2.102.C);

4 - computational grid;

5 - time step At, and

6  - time stepping scheme;

7 - pressure-velocity coupling algorithm;

8  - discretization scheme used for the advection terms.

Each of the above parameters was made vary individually around the values 

listed for the reference case examined in Section 4.4. However, in order to 

reduce the computing time required, coarser grids (having 32*16*16 or 32*24*16 

volumes) were used as the reference ones in some cases. All simulations 

started from preliminary 'startup' runs using cs=0.08 or c s = 0  and lasting a 

few LETOT's, as discussed in Section 4.3.1.

The 'Mason and Callen' wall boundary conditions ('local' formulation of 

Section 2.5.1) were used here; since the first grid point P lies within the
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viscous-conductive sublayer (y < ~ 1 1 ), they reduce themselves to ordinary 

no-slip conditions. More general wall boundary conditions will be compared in 

the following Section 4.6 both for low and high Reynolds numbers.

4.5.1 Reynolds number - dependence

Reynolds-number dependence was studied here only in the limited range

Re^=10,000 to 40,000. At higher Reynolds numbers, the reference grid

resolution is not sufficient to have at least one point in the viscous 

sublayer, and wall boundary conditions switch to 'synthetic' ones. The 

associated changes in the solution cannot be regarded as 'Reynolds number - 

dependence', but rather involve the specific boundary formulation used (see 

Section 2.6). On the other hand, at lower Reynolds numbers the flow is not

fully turbulent, and the use of the Smagorinsky model would not be

appropriate.

Within the range examined, results are summarized in Figures 4.17(a) and

(b). Cross-stream profiles of the mean velocity <u> and of the mean 

temperature <T> (expressed, as usual, in wall units, and time-averaged over 10 

LETOT's) are reported for Re^=10,000, 20,000 and 40,000 and for a 32*24*16 

computational grid.

Results, once expressed in wall units, are little dependent on the 

Reynolds number. Predicted values of U+ (cross-section averaged velocity) and 

<T>+ (wall-to-wall temperature drop) vary approximately as Re^’’*’ and
0 (J 0

Re ' , respectively. As discussed in Section 4.1, the corresponding dependen-

ces suggested by experimental data are Re^'^ and Re^1'^, respectively. Thus, 

the Reynolds number - dependence of these fundamental quantities is correctly 

predicted. However, it must be observed that the profile of <u>, Figure 

4.17(a), tends to become unrealistically peaked (laminar-like) at low Reynolds 

number. Levels of the resolved fluctuations (not shown) were found to vary 

very little with Re.

4.5.2 Influence of the Smaaorinskv constant

The issue of the optimum value of cs in large-eddy simulations based on the 

Smagorinsky, and similar, models was discussed in Section 2.4.5. For the 

present simulations, the influence of cg on the initial development of the 

solution, starting from pseudo-random and not divergence-free conditions, has 

been already discussed in Section 4.3.1 (and Figure 4.2). The results of a 

further parametrical study are discussed here; it regards 20-LETOT simulations
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run with a 32*16*16 grid for cg = 0 to 0.2. The results of a preliminary

20-LETOT simulation at c =0.08 were used in all cases as initial conditions.
s

Results are presented in Figures 4.18(a) to (k) .

The behaviour of k+, Figure 4.18(a), is less influenced by the value of

c than one may expect. For c =0 (no subgrid viscosity), k+ does not diverge s s
as t increases, but stabilizes itself around a value of about 4 (which is 

unrealistically high), although it exhibits a slightly increasing trend with 

small oscillations in time. A similar behaviour is obtained for cs=0.04, with 

a smaller asymptotic value (about 3.3). On the other hand, for cs=0.16 and 

0 .2 0 , turbulence is rapidly damped and all fluctuations die away within ~ 2 0  

LETOT's. A more complex behaviour is obtained for intermediate values of cg 

(0.08, 0 .1 2 ): the resolved turbulence energy oscillates broadly between 2  and 

4 (case c =0.08) or 1.5 and 3.5 (case c =0.12).
o S

Comparable results are obtained for the average wall shear stress < t>, 

Figure 4.18(b). For small c , < t> exhibits rapid and small-amplitude oscilla-

tions; for high c , it does not fluctuate in time and, after an initial 

overshot, settles down to asymptotic values (markedly overpredicted only for 

cs=0.20). Broader fluctuations are obtained for intermediate values of c . The 

behaviour of the average velocity U, Figure 4.18(c), is consistent with that 

of the shear stress. A marked decrease of U, due to the overprediction of < t>, 

is obtained only for cs= 0 .2 .

Cross-stream profiles of mean quantities reveal more significant diffe-

rences associated with different values of c . The subgrid viscosity, Figure 

4.18(d), increases markedly with increasing c , though its rate of rise is 

less than quadratical (as would be suggested by Eqns.(3.73)-(3.74)) due to the 

associated fall in the resolved rate of strain, "S. Velocity profiles, Figure 

4.18(e), are clearly wrong and laminar-like only for cs=0.16 and 0.20, while 

they vary little between cs=0 and 0.08. Temperature profiles, Figure 4.18(f), 

show that resolved turbulent transport of heat is practically absent in the 

bulk flow (central region of the duct) for cg greater or equal to 0 .1 2 ; on the 

other hand, for such high values of c the subgrid heat diffusivity a (pro-
S o

portional to through the subgrid Prandtl number a ) is so high that the 

overall temperature drop across the channel does not vary much as cg varies.

Significant differences are shown by cross-stream profiles of velocity 

fluctuations, Figures 4.18(g) to (i). While values of cg of 0.16 and 0.20 lead 

to an almost complete suppression of all three components, the effect of 

varying cg between 0  and 0 . 1 2  is relatively little on the streamwise fluctua-

tion (u ), intermediate on the cross-stream fluctuation (v ) and largest 
rms rms

on the spanwise fluctuation (wr ). The last, in particular, attains realistic
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values (as compared with experimental results, see for example Figure 4.8(d)) 

only in a narrow range of cs~values around 0.08.

Finally, Figures 4.18 (j) and (k) show the time-behaviour of the stream- 

wise and spanwise velocity, respectively, at a monitoring point located near a 

wall (y+= 6 , i.e. within the viscous sublayer) for different values of the 

Smagorinsky constant. For cs=0 and 0.04, a broad-band fluctuating behaviour 

("white noise") is obtained, and the amplitude of spanwise fluctuations is 

comparable with that of streamwise ones. On the other hand, for large values 

of cg (0.16 and 0.20) fluctuations are completely suppressed. A more complex 

behaviour is obtained for intermediate values, especially for cs=0.08; 

fluctuations of u, Figure 4.18 (j), exhibit some intermittency characteristics 

and - as previously discussed in Section 4.3, Figure 4.3 - seem to contain two 

main frequencies, one of the order of (0.5 LETOT)  ̂ and a smaller one of the 

order of (5 LETOT) . Spanwise fluctuations, Figure 4.18 (k), are much smaller 

and more broadly distributed in frequency.

Also the influence of cg on the spatial structure of the flow field was 

found to be relevant. In Figures 4.19(a) to (d) shade plots of the streamwise 

(resolved) velocity u on the plane y+ = 2 0  parallel to a wall are compared for 

four values of cg (0, 0.04, 0.08, and 0.12). The 'streak' structure discussed 

in Section 4.4 is correctly obtained only for cs=0.08; lower values of cg 

yield an irregular structure with no dominant direction, while larger values 

yield a series of parallel stripes of alternating low and high u, covering the 

whole length of the channel. Apparently, for excessively low values of the 

Smagorinsky constant the resulting subgrid viscosity is not sufficient to 

establish the necessary correlation between fluctuating quantities, which 

results in a pseudo-random structure of the flow field. On the other hand, for 

large values of cg the damping of the fluctuations approaches the critical 

value (close to 0 . 1 2  in the present case) which would completely suppress 

turbulence, resulting in strong time oscillations of the turbulence energy and 

in an excessive space correlation between fluctuating quantities.

The results of the above parametrical study on the influence of cg can be 

summarized as follows:

- too large values of cg (higher than — 0 . 1 2  for the present grid and numerical 

methods) lead to a complete suppression of turbulence;

- for cg varying between 0 and 0.12, average quantities (such as k, U, < t>) 

and cross-stream profiles of plane-averaged quantities (such as <u> and <T>) 

are relatively little affected. A likely reason for this is that the discreti-

zation of the governing equations, despite the central differencing scheme
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being used for the advection terms, introduces a certain amount of numerical 

diffusivity associated with the truncation errors, which adds itself to the

'physical' (laminar + subgrid) diffusivity and masks the effects of the

subgrid model;

- at least three aspects of the simulated fields, however, are indeed sensi-

tive to the value of c and thus should be considered for an optimum choice of

this parameter:

1 . the level of secondary (esp. spanwise) fluctuations;

2 . the time structure of the fluctuations ("white noise" for cs<0.08 versus 

intermittent behaviour with definite frequency contents for cs=0.08);

3. the spatial structure of the near-wall flow field (irregular velocity 

distribution for low cg, "streaks" for intermediate cs and unrealistic longi-

tudinal bands for high c .

4.5.3 Influence of the near-wall damping function

The influence of the near-wall damping model was studied by performing three 

20-LETOT simulations (again on a 32*16*16 grid) using three different models 

for the function D(y+) which appears in Eqn.(3.74):

a) VanDriest function, eqn.(2.102.a), with A+= 25;

b) Modified VanDriest function, eqn.(2.102.b), with A+= 25;

c) Modified function proposed by Miner et al. [1989], eqns.(2.102.c) and 

(2.48), with fQ=0.04, yQ + = 8  and A+=25.

The profiles D(y ) corresponding to the three above models were compared in 

Figure 2.4. For the present case, the damping factor at the grid point nearest 

to the wall (y+= 6 ) is about 0 . 2  for models (a) and (c), while model (b) gives 

D=0.05.

Results are compared in Figures 4.20(a) to (c). The time behaviour of k+, 

Figure 4.20(a), shows that functions (a) and (c) give similar results, thus 

confirming that what really matters is the value of D at the grid points 

nearest to the walls. When model (b) is used, turbulence levels decrease and 

the attainment of (statistically) stationary conditions is delayed. The mean 

velocity, Figure 4.20(b), is least overpredicted by employing model (c), while 

using model (b) the overestimate of <u>+ worsens with respect to model (a). 

Finally, longitudinal velocity fluctuations, Figure 4.20(c), are little 

affected by the near-wall damping function chosen.
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In conclusion, results do not depart much from those obtained using the 

simple Van Driest function (2.102.a); the use of smaller damping factors near 

the walls (model b) delays the attainment of pseudo-stationary conditions and 

affects negatively the prediction of the average velocity profile. The 

peculiar profile of D predicted by model (c) in the laminar sublayer is 

obviously uninfluent as long as the latter is not finely resolved by the 

computational grid.

4,5.4 Influence of the computational grid

Once the dimensions of the computational box are chosen (they are 66*26*46 

along x, y, z respectively in the present case), the finite-volume computa-

tional grid is characterized only by the number of control volumes in the

N_) and/or by the degree offluid along the three directions (N̂ , N , .
Y z c

stretching of the control volumes near the walls along y ( ̂  = ̂ ymin^ y max> •

The grid is always uniform along x and z, coherently with the assumption of 

periodicity along these directions.

Here, the influence of the grid resolution was studied by varying

individually N , N and N around the reference values of 32, 24 and 24, 
x y z q

respectively, and running 20-LETOT simulations for cs=0.08 and Re =20,000. In 

all cases, the initial conditions were obtained from preliminary 10-LETOT

simulations at after rescaling mean velocities to U+=17.5c = 0 ,
+ s

fluctuations to k =2.7. Of course, one such preliminary run was necessary

and

for

each grid studied.

The influence of the computational grid on the time behaviour of the

volume-averaged resolved turbulence energy, k, is shown in Figure 4.21 for

a)varying N (24-32-48); b)varying N (16-24-48) and c)varying N (16-24-32). 
x y z

On the whole, grid effects are small. An insufficient number of spanwise grid

points, Figure 4.21(c), leads to a more irregular behaviour of k and delayes

the attainment of (statistically) steady-state conditions. The overshoot of k

is more pronounced for the finest streamwise grid, Figure 4.21(b). With a very

fine cross-stream resolution (N =48) k does not decrease following the

imposition of a non-zero value of c (as in all other cases), but rather peaks 
+ ^

sharply to k =3.6; however, after about 5 LETOT's the corresponding line 

approaches the other ones and presents the same asymptotic behaviour.

The time behaviour of the wall-averaged shear stress, < t>, obtained for 

different grids is reported in the same format in Figures 4.22(a) to (c). The 

influence of the computational grid on this quantity is indeed very small, at 

least in the range examined; with all combinations of grid points, < t>+ is
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practically stabilized after about 10 LETOT's to values of 0.85-0.95, i.e. 

only slightly underpredicted with respect to Eqn.(4.12) for the current 

initial Reynolds number.

The time behaviour of the cross-section averaged velocity, U, is reported 

in Figures 4.23(a) to (c). Differences are larger here than for the wall shear 

stress, since the flow rate has a "memory" of the initial discrepancy in the 

value of < t> (LETOT's 0 to 10 in Figure 4.22). U increases in all cases, 

coherently with the generalized underprediction of < t> (see remarks on 

nonequilibrium effects in Section 4.3.2). The least effects are associated 

with varying the streamwise resolution, the largest with varying the 

cross-stream one.

The grid influence on cross-stream profiles of plane-averaged resolved 

quantities will now be examined. As usual, these profiles were also 

time-averaged over the last 10 LETOT's.

Figures 4.24(a) to (c) compare profiles of the subgrid viscosity i? ,

normalized by the laminar viscosity v>. Increasing the grid resolution along

any direction reduces the values computed for 9  , as expected from the

Smagorinsky expressions (3.73)-(3.74) which involve directly the mean mesh

size, A. Note also that excessively low resolutions (e.g. N,̂ =24 and esp.

N =16) lead to irregular and non-symmetric profiles of v* . 
z __ s

Profiles of the mean velocity, <u>, are reported in Figures 4.25(a) to

(c). They are little sensitive to the number of streamwise grid points, see 

graph (a); as regards the cross-stream resolution, graph (b), unrealistical 

centrally-peaked profiles are obtained only with the coarsest grid (N =16). 

Finally, increasing the spanwise resolution, graph(c), leads to a progressive 

reduction of the mean velocity towards profiles closer to the experimental 

results.

Profiles of the streamwise fluctuation, u^ms, are compared in graphs

(a)-(c) of Figure 4.26. As a rule, increasing the grid resolution along any 

direction leads to higher values of u“  ̂ (especially in the near-wall peak 

regions), as a larger and larger fraction of the overall fluctuations is 

"captured" within the resolved scale (an exception is given by an excessively 

coarse spanwise grid, dotted line in graph(c), which leads to peaks of urms 

higher and farther from the walls). Similar results (increasing fluctuation 

levels for increasing grid resolution) are obtained for the main resolved 

Reynolds stress <u"v">, Figures 4.27(a)-(c).

Finally, the influence of the grid on cross-stream profiles of the mean

temperature <T> is shown in Figures 4.28(a) to (c). The effects of N , N and
x y
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Nz are not monotonic; increasing the streamwise resolution, graph(a), leads to

larger values of <T> , while opposite results are obtained by increasing

(b). The influence of the spanwise resolution (c) is negligible, at least for

N >24. 
z

The above study shows that the resolution adopted for the "reference" case of 

Section 4.4 (32*24*24 control volumes) is not sufficient to obtain completely 

grid-independent results: the solution is clearly still sensitive to a further 

increase of the number of control volumes, esp. along the cross-stream direc-

tion y. Refining the grid yields a general rise of resolved fluctuation 

intensities in the channel and a reduction of the mean velocity profile.

However, the residual grid dependence is surprisingly low; actually, 

realistic results are obtained even by very coarse grids having just 16 or 24 

control volumes along each direction. Of course, further parametrical studies, 

in which computations were repeated for different Reynolds numbers and diffe-

rent amounts of grid stretching, would be required in order to clarify this 

issue fully.

4.5.5 Influence of the time step

The influence of the time step was studied by repeating 20-LETOT simulations 

for four different values of At:

a) At = 1/25 (LETOT)

b) At - 1/50

c) At = 1/100

d) At = 1/200

A 32*16*16 grid was used in all cases, the value of cg was 0.08, and initial 

conditions were those generated by a preliminary 20-LETOT run with At=l/100th 

of a LETOT (reference value). Results are summarized in Figures 4.29(a) to 

(f) .

The behaviour of the resolved turbulence energy, Figure 4.29(a), is 

similar for At=l/100 and 1/50, while k flattens down to an almost constant 

value for At=l/25. For At=l/200, a more regular behaviour is observed, though 

levels of k are much as for At=l/100, 1/50. The wall shear stress, Figure

4.29(b), is similar for At=l/200 to 1/50 while it is underpredicted for 

At=l/25. As a consequence, the average velocity U, Figure 4.29(c), increases
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uniformly for this highest value of At, while very similar behaviours are 

predicted for the other time steps.

Cross-stream distributions of the mean velocity are reported in Figure 

4.29(d). Profiles of <u> are too high and laminar-like for At=l/25, acceptable 

for all other values of At, and decrease monotonically with the time step. 

Fluctuation profiles are deeply affected by At; the cross-stream component 

vrmsf ;“'n Particular (Figure 4.29(e)), is practically zero for the largest 

value of At, and there are still significant differences between predictions 

for At=l/100 and 1/200. As a consequence, profiles of the mean temperature 

(whose cross-stream transport depends strictly upon v") are sensitive to At 

and are grossly overpredicted for excessively high time steps, see Figure 

4.29 (f).

In conclusion, though predictions are already qualitatively correct for 

At=l/50, a significant residual time step-dependence is still observed for 

At=l/100, which corresponds to a maximum Courant number of ~1.

4.5.6 Influence of the time stepping scheme

The reference time stepping scheme used in all the above simulations (Crank- 

Nicolson) was compared here with the Euler Implicit, or Fully Implicit Back-

ward, scheme (in Harwell-FLOW3D, the two schemes correspond to TPARM=0.5 and 

TPARM=1.0, respectively). As above, simulations were run for cs=0.08 on a 

32*16*16 grid, starting from the results of the same 20-LETOT simulation run 

for TPARM=0.5. The time step was l/100th of a LETOT.

Results are summarized in Figures 4.30(a) to (c). It is evident that the 

use of the fully implicit scheme leads to a uniform fall (with no time oscil-

lations) of the average resolved turbulence energy, Figure 4.30(a); 

consistently with this, the mean velocity <u>, Figure 4.30(b), and the mean 

temperature <T>, Figure 4.30(c), are grossly overpredicted (and, of course, 

tend to increase in time as k continues to fall). Similar results were 

obtained also for a time step twice smaller (1/200th of a LETOT).

It can be concluded that the implicit scheme damps excessively the 

turbulent fluctuations and thus must be avoided in large-eddy simulations.

4.5.7 Influence of the pressure-velocity coupling algorithm

All the simulations described above made use of the PISO pressure velocity 

coupling algorithm [Issa 1986], in the PISOC form based on the same improve-

ments that were proposed for SIMPLE by VanDoormal and Raithby [1984].
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The algorithm was used in the non-iterative form originally proposed by 

Issa, i.e. with a single cycle (including two pressure correction stages) per 

time step. Coherently, underrelaxation of velocities and temperature was not 

used (the absence of pressure underrelaxation is an inherent feature of 

PISOC). Note that the absence of multiple iterations rules out the use of 

nonorthogonal grids and of higher order differencing schemes, since these are 

dealt with by the "deferred correction" method described in Section 3.2.1.

As remarked by Issa, the use of PISO requires a high degree of accuracy 

in the solution of the linearized transport and pressure-correction equations 

at each cycle; here, the imposed residual reduction factor and maximum number 

of "inner" iterations were 0 . 0 1  and 1 0 0 , respectively, for the transport 

equations (algorithm ST3D) and 0.005 and 250, respectively, for the 

pressure-correction equation (algorithm ICCG).

A comparison was conducted with the more widespread SIMPLE algorithm 

[Patankar and Spalding 1972], used in the SIMPLEC form [VanDoormal and Raithby 

1984]. Being an inherently iterative technique, it was used with 10 iterations 

per time step, setting the underrelaxation factors for velocities and tempe-

rature to 0.7 and imposing residual reduction factors/maximum number of 

iterations of 0.1/10 (transport equations) and 0.05/25 (pressure-correction 

equation).

The test case considered was a 15-LETOT run characterized by Re^=20,000, 

cs=0.08 and 32*16*16 control volumes in the grid; initial conditions were 

generated by a preliminary PISOC simulation and no re-scaling of mean and 

turbulence quantities was used.

Results are shown in Figures 4.31(a) to (d). They include SIMPLEC 

predictions obtained with FLOW3D, Release 2.3 (a code release more advanced 

than Rel.2.1), as part of a code validation test. For reasons that were not 

clarified, the use of PISO or PISOC with a single cycle per time step led to 

divergence of the solution after a few time steps with this release of the 

code.

Figure 4.31(a) reports the evolution of the resolved turbulent kinetic 

energy, k. SIMPLEC and PISOC results do not exhibit relevant differences, save 

perhaps that the former, and more accurate, algorithm allows to attain stati-

stically steady-state conditions slightly earlier than the latter. SIMPLEC 

results from Releases 2.1 and 2.3 are practically coincident for the first 4-5 

LETOT's and then depart slightly from each other due to minor differences in 

the numerical methods used (e.g., in the preconditioning algorithm for the 

conjugate-gradient solver of the pressure correction equation). Predicted 

trends of the average velocity U and of the average wall shear stress < t> were
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very similar for the two algorithms and code releases, and are not reported 

here.

Figure 4.3(b) shows cross-stream profiles of the mean velocity <u>, 

expressed as usual in wall units and time-averaged over the last 5 LETOT's. 

Again, differences between the two algorithms are little, though SIMPLEC 

yields a slightly flatter distribution. Similar remarks hold for the streamw- 

ise and spanwise fluctuations (not shown) .

More significant differences are observed in the cross-stream fluctua-

tion, Figure 4.31(c): SIMPLEC yields higher values of vrms and a more regular 

profile of this quantity. Even larger differences, clearly associated with the

above behaviour of v , are observed in the cross-stream profile of the mean
rms

temperature <T>, Figure 4.31(d) (based on the value 0.5 for the subgrid 

Prandtl number a ). SIMPLEC yields for <T>+ t (overall dimensionless tempe- 

rature drop across the duct) values about 25% lower than PISOC; moreover, the 

cross-stream distribution of <T>+ does not exhibit the (unphysical) large 

gradient in the bulk flow region observed in PISOC predictions, and thus 

approximates much better the (reference) k-£ profile reported, for example, in 

Figure 4.8(f) and allows the use of more realistic values for o .

The above comparison shows that the loss of accuracy implied by the use 

of PISOC as a non-iterative algorithm has little consequences on flow quanti-

ties (average turbulence energy, average velocity), but more relevant impli-

cations for scalar quantities such as temperature (mainly due to the under-

prediction of cross-stream velocity fluctuations and thus of cross-stream 

turbulent scalar transport). On the other hand, the use of SIMPLEC (at least 

with the present number of outer iterations per time step, i.e. 1 0 ) implies 

CPU times about 2.5 times higher and was therefore limited, in the present 

study, to the cases in which it was strictly necessary (see below).

4,5.8 Influence of the spatial discretization scheme used for the 

advection terms

All the simulations described above were conducted by using the central 

differencing scheme (CDS) for the advection terms appearing in the Navier- 

Stokes and scalar transport equations. As discussed previously, there are 

signs that the overall solution procedure is still introducing numerical 
dissipation adding itself to the "physical" subgrid dissipation. Therefore, 

comparisons were made with the higher order QUICK scheme [Leonard 1979] and 

with its bounded version CCCT [Gaskell and Lau 1987; Alderton and Wilkes 

1988]. They are both 3-point upwind schemes, formally granting third-order
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accuracy and thus potentially more accurate than the (second-order) CDS 

scheme. Of course, testing schemes of the same, or lower, order than CDS would 

be useless as they cannot be more accurate and less dissipative.

A comparison is presented here for three 15-LETOT runs, respectively 

using CDS, QUICK and CCT. The grid had 32*16*16 control volumes, and initial 

conditions were generated by a preliminary 20-LETOT simulation using CDS. The 

Smagorinsky constant was 0.08. The SIMPLEC pressure-velocity coupling 

algorithm (with 1 0  iterations per time step) was used here; as mentioned in 

precedence, the use of higher-order differencing schemes, implying deferred 

correction of some advective contributions, would not be compatible with 

non-iterative algorithms such as PISO(C).

Results are summarized in Figures 4.32(a) to (f). Figure 4.32(a) shows 

the development of the average resolved turbulence energy k, both for the 

"startup", 20-LETOT, CDS run and for the following 15-LETOT CDS, QUICK and 

CCCT runs. The use of QUICK and CCCT yields higher levels of resolved turbu-

lence, and a more irregular and intermittent behaviour of k. The evolution of 

the average velocity U and of the average wall shear stress < t> was very 

similar in the three cases and was not reported here. Cross-stream profiles of 

the mean velocity, <u>, are shown in Figure 4.32(b); these and the following 

cross-stream profiles were time-averaged over the last 5 LETOT's. CDS and 

QUICK profiles are very similar to each other, though the latter appears more 

irregular and less symmetric. CCCT yields larger values of <u> and a markedly 

asymmetric profile. The mean temperature is reported in Figure 4.32(c); CCCT 

yields a large overprediction of <T>+ while QUICK and CDS predictions are, 

again, similar.

Predictions relative to the resolved fluctuations are reported in Figures 

4.32(d) to (f) . Cross-stream profiles of ü ~ s are, on the whole, very similar, 

with slightly higher levels predicted by QUICK and CCCT. On the contrary, 

profiles of vrms and w^ms predicted by using QUICK and CCCT are markedly 

different from the corresponding CDS results: they do not exhibit the charac-

teristic central minimum presented by experimental data (see for example 

Figures 4.8(b) to (d)) and CDS predictions, are significantly lower, and are 

markedly irregular and asymmetric (especially for CCCT) .

Figure 4.33 reports the behaviour of the volume-averaged resolved turbu-

lence energy k obtained for two different values of cs (0.08 and 0.16) using 

both CDS and QUICK. With either differencing scheme, the higher of the two cs 

values does not allow sustained turbulence; the rate of damping of k is very 

similar for the two schemes, showing that QUICK is not significantly less 

dissipative than CDS.
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The above results can be summarized as follows. The use of QUICK leads to 

slightly higher turbulence levels, while affecting little global flow rates, 

profiles of mean quantities such as <u> and <T>, and streamwise fluctuations. 

However, it leads to wrong profiles of cross-stream and spanwise velocity 

fluctuations, lacking the characteristic central depression observed in the 

experiments and correctly reproduced by using CDS. These features suggest that 

a significant fraction of the "resolved" fluctuations predicted by using QUICK 

is due to numerical effects ("wiggles"), often reported in association with 

this, and similar, high-order schemes. Substituting CCCT for QUICK leads to an 

excessive damping of cross-stream fluctuations, which in turns produces a 

gross overprediction of the temperature drop across the channel, while 

streamwise fluctuations are enhanced. Both QUICK and CCCT yield large time - 

fluctuations of the resolved turbulence energy and of instantaneous resolved 

fields, which do not average out over 5 LETOT's (yielding, in turn, irregular 

and asymmetric profiles of <u> and other mean quantities). In conclusion, 

neither of these higher-order schemes seems preferable to central differencing 

in large-eddy simulations.

4.6 Influence of wall boundary conditions

Truth is never pure, and rarely simple

[Oscar Wilde, 'The importance of being earnest']

The sensitivity of LES results to the alternative formulations (a)-(e) of wall 

boundary conditions described in Section 2.5 was studied both for Re^=20,000 

and for Re^=100,000 using the same 32*24*24-volume computational grid as for 

the "reference" case of Section 4.4. In all cases, the PISOC algorithm, and 

the CDS scheme for the advection terms, were used. For model (e) ("ejection") 

the "adjustable" constants c and d were set to 1  and 1 0 °, respectively. 

Initial conditions were generated by running preliminary 20-LETOT simulations 

with wall boundary conditions of type (a) ("Mason and Callen") and rescaling 

velocities to the prescribed value of Re^1.

For the lower Reynolds number, the first near-wall grid points lie fully 

within the viscous sublayer, i.e. in the linear region of "universal" velocity 

(and temperature) profiles, and all the above formulations can be regarded as 

variants of no-slip boundary conditions. For the higher value of Re*\ the 

dimensionless distance of near-wall grid points from the wall is about 25, so 

that they lie in the turbulent (logarithmic) region of "universal" near-wall
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profiles, and all the formulations tested here can be regarded as "synthetic" 

wall boundary conditions. Results are presented and discussed below.

4.6.1 Comparison of results for low Reynolds number (Re,^=5,000)

In this case, the dimensionless distances y+ of the first near-wall points

from the wall were about 4, 12 and 22 for J=2, 3 and 4 (and symmetric),

respectively. The constant cs was set to 0.08. Results are summarized in 

Figures 4.34 and 4.35.

Figure 4.34(a) reports the time behaviour of the average resolved turbu-

lence energy, k. In all cases, this is similar to that observed in several 

previous examples: k falls slightly during the first few LETOT's (following 

the stepwise re-scaling of the velocity field), then rises and stabilizes 

itself around values between 2 and 3 after about 5 LETOT's. The results from

the first four models are almost coincident during the first few LETOT's, then

depart slightly from one another. Only the results from model (e) ("ejection") 

are markedly different since the beginning of the transient. The amplitude of 

the time-fluctuations of k is lowest for wall boundary conditions (a) ("Mason 

and Callen") and highest for wall boundary conditions (e) ("ejection") .

Figure 4.34(b) reports the time behaviour of the mean wall shear stress, 

< t > .  In all cases, it remains slightly lower than the equilibrium value 

predicted on the basis of correlation (4.12). There are no large differences 

between the values predicted by using different wall boundary conditions. 

Again, only results from model (e) are appreciably different from the other 

ones: < t >  is higher and exhibits oscillations having a small amplitude and a 

period of a few time steps. The behaviour of the cross-section averaged 

velocity U, shown in Figure 4.34(c), is consistent with that of the wall shear 

stress; all models predict a slight increase of U, with only marginal 

differences between the various results.

Cross-stream profiles of mean and fluctuating quantities (time-averaged 

over the last 10 LETOT's) are compared in Figures 4.34(d) to (f). All models 

give practically the same profile of mean velocity <u>. Slight differences can 

be observed between predictions of the mean temperature <T>; the largest 

values are predicted by boundary conditions (d) ("shifted") and the smallest 

by boundary conditions (e) ("ejection"). Profiles of the streamwise 

fluctuation urms show more pronounced differences; in particular, peak values 

are markedly higher for model (e) ("ejection"). Only minor differences are 

obtained in the cross-stream and spanwise fluctuations (not shown).

The distributions of the instantaneous velocity u on the near-wall plane
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y+-4, predicted using different wall boundary conditions, are compared in the 

form of shade plots in Figures 4.35(a) to (e). The "local" formulation (a) 

("Mason and Callen") gives a "streak" pattern similar to that reported, for 

example, in Figure 4.10(a). Models (b) to (d) give similar patterns, but tend 

to produce broad and unphysical spanwise irregularities in the distribution of 

u. The "ejection" model (e) yields a regular streak pattern, superficially 

resembling that given by model (a) but actually characterized by much larger 

variations of the streamwise velocity (u varies between ~ 0  and ~16 wall units 

here, but only between ~ 2  and v 8  in case (a)) .

In conclusion, the influence of wall boundary conditions is small, much 

as observed by Piomelli et al. [1989], The only significant differences are 

obtained by using the "ejection" model (e), which (all other things being the 

same) gives higher values of the resolved fluctuations and a larger variation 

of the streamwise velocity over near-wall planes.

4,6.2 Comparison of results for high Reynolds number (Re,^=25,000)

Here, the same grid and numerical methods were used as in the previous 

low-Reynolds number case. However, the Smagorinsky constant cg was set to .1 

since the choice cs=.08 gave excessively high levels of the resolved 

fluctuations. The distances of the first near-wall points from the walls were 

about 16, 50 and 90 for J=2, 3 and 4 (and symmetric), respectively.

Results relative to the various formulations (a)-(e) of wall boundary 

conditions are summarized in Figures 4.36(a) to (f) . Since the near-wall 

planes are well out of the viscous sublayer, the distribution of the 

streamwise velocity u does not exhibit the clear streak pattern observed in 

the low-Reynolds number case, and was not reported.

Many of the comments made on the low-Reynolds number results apply also 

to this high-Reynolds number case. Only a few remarks will be added here:

- On the whole, (statistical) equilibrium conditions are attained more 

rapidly than in the low-Reynolds number case (Figures 4.36(a)- (c)) .

- As in the above case, the wall shear stress, Figure 4.36(b), is slightly 

underestimated by all models with respect to Eqn.(4.12)); as a consequence, 

the average velocity, Figure 4.36(c), is slightly overestimated.

- All models give again very similar cross-stream profiles of mean velocity 

and temperature, Figures 4.36(d) and (e).

- Model (e) ("ejection") yields higher values, and broader time - 

fluctuations, of k and < t > ;  it also gives excessively high values of urms  ̂

with an unphysical inversion between the first two grid points.
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In conclusion, both at low and high Reynolds number no strong reasons were 

found in favour of any of the boundary condition formulations tested; in 

particular, there was no clear advantage in using "global" formulations (b) to 

(e), applicable only to the present plane-channel geometry, rather than the 

more general "local" formulation of model (a). The "ejection" formulation (e) 

was the only yielding significant differences with respect to all the other 

models; despite some obvious drawbacks, like the wrong profile of u^ms at high 

Reynolds number (Figure 4.36(f)), it may be worth a more complete parametrical 

study in which, for example, the "adjustable" constants c, <J) be made vary.

4.7 Conclusions

Reality is that which when you stop believing in it, it doesn't go away

[Philip K. Dick, 'V.A.L.I.S.']

The Smagorinsky-Lilly subgrid model was successfully implemented in the 

computer code Harwell-FL0W3D and applied to the large-eddy simulation of 

turbulent flow with heat transfer between infinite parallel plates (plane 

channel). Simulations were repeated for different Reynolds numbers; modeling 

details (near-wall damping, values of cs and o , wall boundary conditions); 

and computational methods (grid, time step and time-stepping scheme, 

pressure-velocity coupling algorithm, discretization of advection terms).

Profiles of mean and fluctuating velocities in good agreement with 

experimental data and previous, high-resolution, numerical simulations were 

obtained by using grids of 32*24*24 nodes, time steps of 1/100th of a LETOT, 

the Crank-Nicolson time advancement scheme, central differencing of the 

advection terms, the PISOC pressure-velocity coupling algorithm, and cs=.08. 

Near-wall structures ("streaks") were qualitatively reproduced, although their 

spanwise spacing was larger than experimentally observed.

When a random (not divergence-free) field was used as the initial flow, 

resolved turbulence levels decreased rapidly, remained very low for a period 

of several LETOT's (increasing with the grid resolution), then overshot more 

or less markedly and finally stabilized themselves around values of "2-3. When 

simulations started from a divergence-free flow, obtained by preliminary runs 

using the same computational grid, any stepwise variation of Re, cg or other 

parameters resulted in shorter numerical transient and in a quicker recovery 

of (statistically) steady-state conditions.

Values of cg larger than .12 resulted in a progressive decay of turbulent
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fluctuations. Values smaller than .06 (including the limit case cs=0, i.e. no 

subgrid model at all) resulted in unrealistically high values of the resolved 

velocity fluctuations, especially in the spanwise direction; moreover, they 

gave a "white-noise" spectrum of turbulent time-fluctuations. Also the near 

wall distribution of the main velocity u was found to be sensitive to the 

value of cs; qualitatively correct results ("streaks") were obtained only for 

cs close to .08, while larger values yielded unrealistic "stripe" patterns, 

and smaller values gave irregular "patches" with no preferred orientation.

The accuracy of the results was clearly higher when SIMPLEC, with several 

iterations per time step, was substituted for PISOC; this was reflected, in 

particular, in the more correct prediction of cross-stream fluctuation levels 

and of cross-stream turbulent scalar transport, resulting in correct 

temperature profiles for a realistic value (.5) of the subgrid Prandtl number.

Reducing the number of grid points, especially in the cross-stream 

direction, resulted in a more or less marked overprediction of the average 

velocity (with a corresponding underprediction of the mean wall shear stress). 

However, refining the grid beyond the "reference" resolution (32*24*24) had 

little influence on mean quantities, while resolved fluctuation levels 

increased and the time behaviour of k and < t> became more regular.

Changing the time step between l/50th and 1/200th of a LETOT had little 

influence on the solution; larger values resulted in fluctuation damping. Also 

the use of fully implicit backward time stepping (in place of the Crank - 

Nicolson scheme) led to suppression of turbulence.

Advection-term discretization schemes of higher order than CDS (namely,

QUICK and CCCT) were tested. Results were disappointing: these schemes turned

out to be not less dissipative than CDS, while contributing numerical

oscillations ("wiggles") superimposed on "true", physical fluctuations, which

resulted in wrong cross-stream profiles of v and w (lacking the 
3  r rms rms 3

characteristic minimum in the central region of the channel) and in large 

time-fluctuations of the average resolved turbulence energy k.

Finally, alternative wall boundary conditions were tested both for a low 

- Reynolds number flow (near-wall grid points in the viscous sublayer) and for 

a high - Reynolds number case (near-wall points in the fully turbulent region, 

i.e. 'synthetic' wall boundary conditions). Significant differences with 

respect to the reference formulation (a) were obtained only by using the 

"ejection" boundary conditions of Piomelli et al. [1989]; on the whole, 

however, none of the models appeared clearly superior to the others. In 

particular, "global" formulations, which present the shortcoming of being 

applicable only to plane-channel flows, did not behave better than the "local" 

formulation (a), which can be extended, in principle, to all geometries.
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Figure 4.1 - Plane channel: computational box (a) and typical 3-D grid having

32*16*16 control volumes (b)

Figure 4.2 - Plane channel: initial behaviour of k for different values of cg
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Figure 4.3 - Time behaviour of the three velocity components u,v,w and

temperature T at a monitoring point (y+=20) for the case cs=0.08 

in Figure 4.2. All quantities are expressed in wall units.
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(a)-Plane channel: effect of averaging on <u>

(b)-Plane channel: averaging effects on u rms

Figure 4.5 - Plane channel (Re^=20,000, 32*16*16 grid)

a) instantaneous versus time-averaged cross-stream profile of <u>

b) instantaneous versus time-averaged cross-stream profile of urms
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Figure 4

(c)-Plane channel: averaging effects on v rms

(d)-Plane channel: averaging effects on w rms

. 5 - (cont.'d)

c) instantaneous versus time-averaged cross-stream profile of vrms

d) instantaneous versus time-averaged cross-stream profile of w^ms
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Figure 4.6 - Plane channel (Re^=20,000, c =0.1, 32*24*24 grid): cross-stream 

profiles of the various contributions to the main (uv) stress.

Figure 4.7 - Plane channel (reference case): behaviour of the volume-averaged 

resolved turbulence energy k
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a - smooth channel: <u> (32*24*24 grid, cs =0.08)

Figure 4.8 - Plane channel (reference case):

a) comparison of computed and experimental profiles of <u>

b) comparison of computed and experimental profiles of u“ s 

Values of the 6 -Reynolds number are indicated.
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c-Smooth channel: v rms (32^24x24 grid, cs =0.08)

v rms

d-Smooth channel: w rms (32x24x24 grid, cs =0.08)

Figure 4.8 - (cont. 'd.) :

c) comparison of computed and experimental profiles of v ^ s

d) comparison of computed and experimental profiles of w 

Values of the 6 -Reynolds number are indicated.
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e-Smooth channel: k (32x24^24 grid, cs =0.08)

Figure 4.8 - (cont.'d):

e) comparison of computed and experimental profiles of <k>

f) cross-stream profiles of <T>+ for different values of os 

comparison with k-E predictions.
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Figure 4.9 - Plane channel (reference case): shade plots of instantaneous

velocity (a) , temperature (b), subgrid viscosity (c) and pressure

(d) on a plane normal to the main flow direction x.
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Figure 4.10 - Plane channel (reference case): instantaneous velocity (a),

temperature (b), subgrid viscosity (c) and pressure (d) on the 

plane y+=4 parallel to the heated wall.



Figure 4.11 - Plane channel (reference case): instantaneous velocity (a),

temperature (b), subgrid viscosity (c) on a plane normal to the 

spanwise direction z.
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Figure 4.14 - Plane channel (reference case): evolution of the temperature T 
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Figure 4.16 - Instantaneous, span-averaged temperature distribution obtained 

by Lockett [1987] for Re^=5,000 using holographic 

interferometry.
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a) profiles of <u> for Re=i-2-4*10##4

b) profiles of <T> for Re=l-2-4xl0xx4

Figure 4.17 - Plane channel: comparison of cross-stream profiles of <u> (a)

and <T> (b) for different Reynolds numbers and a 32*16*16 grid.
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Figure 4.18 - Plane channel: influence of the Smagorinsky constant cs>

a) evolution of the volume-averaged resolved turbulence energy k

b ) evolution of the mean wall shear stress < t >
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g) cross-stream profiles of the streamwise fluctuation u
rms

h) cross-stream profiles of the cross-stream fluctuation v
rms i)

i) cross-stream profiles of the spanwise fluctuation
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.19 - Plane channel: influence of the Smagorinskv constant.
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Figure .20 - Plane channel: influence of the near-wall damping function D.

a) time-behaviour of the average resolved turbulence energy k

b) cross-stream profiles of the mean velocity <u>

c) cross-stream profiles of the streamwise fluctuation u
rms
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Figure 4.21 - Plane channel: influence of the computational grid.

Behaviour of the average resolved turbulence energy k for

a) varying N̂ ; b) varying N̂ ; c) varying N .̂
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Figure 4.22 - Plane channel: influence of the computational grid.

Behaviour of the mean wall shear stress < t > for

a) varying Njt; b) varying N ;̂ c) varying Nz.
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Figure 4.23 - Plane channel: influence of the computational grid.

Behaviour of the average velocity U for

a) varying b) varying N̂ ; c) varying Nz<
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Figure 4.24 - Plane channel: influence of the computational grid.

Cross-stream profiles of the subgrid viscosity < V >

a) varying N ; b) varying N c) varying N„

for
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Figure 4.25 - Plane channel: influence of the computational grid.

Cross-stream profiles of the mean velocity <u> for

a) varying N̂ ; b) varying N ;̂ c) varying Nz.
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Figure 4.26 - Plane channel: influence of the computational grid.

Cross-stream profiles of the streamwise fluctuation urms for

a) varying N r ; b) varying N ; c) varying N .
x y z
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Figure 4.27 - Plane channel: influence of the computational grid.

Cross-stream profiles of the Reynolds stress <u"v"> for

a) varying Njr; b) varying N̂ ; c) varying Nz>
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Figure 4.28 - Plane channel: influence of the computational grid.

Cross-stream profiles of the mean temperature <T> for

a) varying Njr; b) varying N ;̂ c) varying Nz.
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Figure 4.29 - (cont.'d)

d) cross-stream profiles of the mean velocity <u>

e) cross-stream profiles of the cross-stream fluctuation

f) cross-stream profiles of the mean temperature <T> for

v
rms

a =0.5 
s
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Figure 4.31 - (cont.'d)

c) cross-stream profiles of the cross-stream fluctuation v
r __ rms

d) cross-stream profiles of the mean temperature <T> for os=0.5
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Figure 4.32 - Plane channel: influence of the discretization schemes used for 

the advection terms (Re^=20,000, 32*16*16 grid, SIMPLEC).

a) behaviour of the average resolved turbulence energy k

b) cross-stream profiles of the mean velocity <u>

c) cross-stream profiles of the mean temperature <T> for os=0.5
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Figure 4.32 - (cont.'d)

c) cross-stream profiles

b) cross-stream profiles

c) cross-stream profiles

of the streamwise fluctuation urms 

of the cross-stream fluctuation v
rms

of the spanwise fluctuation w
r rms
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Figure 4.33 Plane channel: time behaviour of the average resolved 

turbulence energy k for cs=0.08 and 0.16 using the CDS 

and QUICK discretization schemes for the advection terms 

(Re^=20,000, 32*16*16 grid, restart from a 20-LETOT run 

using CDS and cs=0.08).
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Figure 4.34 - Plane channel: comparison of different formulations of the wall 

boundary conditions (Re^=20,000, 32*24*24 grid, cs=0.08, PISOC)

a) behaviour of the average resolved turbulence energy k

b ) behaviour of the mean wall shear stress < t >

c) behaviour of the average velocity U
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Figure 4.34 - (cont.’d)

d) cross-stream profiles of the mean velocity <u>

e) cross-stream profiles of the mean temperature <T>

f) cross-stream profiles of the streamwise fluctuation u
rms
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Figure 4.35 Shade plots of the instantaneous velocity u on the plane y+=4 

obtained using different wall boundary conditions (low-Re case) .



Figure 4.36 - Plane channel: comparison of different formulations of the wall 

boundary conditions (Re^=100,000, 32*24*24 grid, cs=0.08, PISOC)

a) behaviour of the average resolved turbulence energy k

b) behaviour of the mean wall shear stress < t >

c) behaviour of the average velocity U
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Figure 4.36 -

d)

e)

f)

cross-stream profiles of the mean velocity <u>

cross-stream profiles of the mean temperature <T>

cross-stream profiles of the streamwise fluctuation u
r rms
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CHAPTER 5 - APPLICATION TO TURBULENT FLOW WITH HEAT TRANSFER

IN A RIBBED CHANNEL

5.1 Introduction and literature review

To say they err I dare not be so bold,

Although I swear it to myself alone

[Shakespeare, Sonnet CXXXI]

Turbulence promoters have been widely used in engineering to enhance heat 

transfer or mixing; see Nakayama [1982] for a brief review of the subject.

Periodic square ribs on one wall of a plane duct can be considered as repre-

sentative of a more general class of turbulence promoters; they are also a

basic geometry for the study of recirculating flows with separation and

reattachment, and thus have been extensively studied both experimentally and 

numerically.

5.1.1 Experimental results

Early experimental data on fluid flow over transverse ribs were obtained in 

the mid-Sixties in connection with the development of high-efficiency heat 

transfer surfaces for gas-cooled nuclear reactors. Mantle [1966] presented 

flow visualization data for air flowing over transverse ribs at different 

pitch-to-height ratios, P^/h, from about 5 to 15. He found that no

reattachment occurred for P^/h < 6 .6 . Kacker [1971] measured the wall pressure 

distribution around ribs having P./h = 7.2 in an air flow at a Reynolds number
5 1

of about 1 0  , in order to estimate the increase in frictional pressure drop 

induced by the ribs.

Several subsequent studies focussed on a single rib protruding from one 

wall of a duct. Durst and Rastogi [1979] presented data obtained by 

Laser-Doppler Anemometry (LDA) for the mean and fluctuating streamwise
, , 4

velocities in a water flow at a Reynolds number of about 3.2*10 over a square 

rib. In addition, smoke filament flow visualization results were presented. 

The channel blockage ratio (rib height to channel height, h/H) was very high 

(0.5). The authors obtained also computational results for this geometry, see 

next section. In a successive paper [Durst and Rastogi 1980] the same authors 

described also flow visualization results obtained for the air flow at a
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Reynolds number of about 3*10 over a rib; the channel blockage ratio, h/H,

was made vary from 0.5 to almost zero. A strong inverse dependence of the

reattachment length x on h/H was observed; it increased from 8  rib heights
K

for h/H = 0.5 to 15 rib heights for h/H -> 0. This may be due in part to the 

adverse pressure gradient downstream of the rib (increasing with increasing 

h/H), which should cause the separated shear layer to spread thus reducing the 

apparent reattachment length. A second possible reason for the effect of the

blockage ratio on x is that for low values of h/H the streamlines are
K

strongly tilted upwards by the obstacle, so that reattachment occurs far 

downstream, while for higher h/H the presence of the opposite smooth wall 

prevents significant streamline tilting and reattachment occurs earlier. Durst 

and Rastogi studied also the influence of the rib aspect ratio, and found that 

for thin ribs (fences) the reattachment length was higher than for square 

ribs. The reason is again related to the slope of the streamlines separating 

from the leading edge of the obstacle.

Crabb et al. [1981] presented measurements of mean and fluctuating 

streamwise velocities and turbulence spectra obtained by combining LDA and 

hot-wire techniques. Data on the wall static pressure, and helium-bubble flow 

visualization results, were also included. The geometry was a single square 

rib with h/H = 1/12.8; the fluid was air, and the Reynolds number was 

4.17*10^. The authors found a reattachment length of about 12.3 rib heights, 

and detected a counter-rotating corner eddy located below the main 

recirculation region and about 2 rib heights long. Results were also presented 

for a flat rib; the reattachment length was found to be shorter than for the 

square rib, consistent with the results of Durst and Rastogi [1980] discussed 

above. The authors also found a strongly anisotropic turbulence structure and 

commented that this could hardly be represented by eddy-viscosity turbulence 

models.

Finally, LDA results for various surface-mounted obstacles, including a 

single transverse square rib in a plane channel, were presented by Dimaczek et 

al. [1989].

Periodic ribs are the subject of the following papers.

Hanjalic and Launder [1972] conducted hot-wire measurements of mean and 

fluctuating velocities over the cross-section of a rectangular channel having 

one wall roughened by transverse square ribs; they also estimated the 

distribution of turbulent kinetic energy and dissipation rate. The Reynolds 

number was about 1.5*10 and the working fluid was air. The main interest of 

the authors was in the effects of the channel asymmetry on the overall

5
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turbulence structure, and measurements were not extended in the region close 

to the ribs or between them.

Humphrey [1979] and Humphrey and Whitelaw [1980] used LDA to measure mean

and fluctuating streamwise and cross-stream velocities, and Reynolds stresses,

for the turbulent flow of water in a square duct at a Reynolds number of 
4

2 .6 * 1 0  ; one of the walls was roughened by tranverse square ribs of 

pitch-to-height ratio = 10. The blockage ratio of the channel was h/H = 0.1.

The experimental technique used allowed measurements to be taken very close to 

the walls and to the ribs. A very strong turbulence anisotropy was observed.

Lawn [1976] presented hot-wire measurements for the air flow over 

transverse square ribs having P^/h = 7.2. The Reynolds number was 2.3*10^. Data 

included mean and fluctuating streamwise velocities, estimates of the 

turbulent kinetic energy distribution, full-field pressure distribution, and 

wall shear stress. The blockage ratio of the wind tunnel was very small (about 

1/25). Lawn found a reattachment length (size of the main recirculation bubble 

downstream of each rib) as low as 2.3 rib heights; flow re-separation occurred 

about one rib height upstream of the next rib.

Drain and Martin [1985] studied the flow of water in a flat rectangular

duct having periodic square ribs with P /h =7.2 and h/H = 1/5. The Reynolds 
4 1

number was 5.7*10 . LDA was used to measure mean and fluctuating streamwise 

and cross-stream velocities and Reynolds stresses. The reattachment length was 

found to be about 4.3 rib heights. This value was much higher than that 

reported by Lawn (2.3). A possible reason for this broad disagreement is that 

Lawn's data were for a higher (about 4 times) Reynolds number; the

reattachment length in related geometry, such as backsteps, is known to 

decrease, to a certain extent, with increasing Reynolds numbers. A second 

reason may be a difference in the free-stream turbulence level; reattachments 

lengths are known to decrease with increasing values of this quantity. 

However, these effects are small and cannot account entirely for a difference 

of almost twice. Moreover, the blockage ratio in Drain and Martin's 

experiments was much higher than in Lawn's, and - at least for single ribs, 

see above - several experimental results suggest that the reattachment length 

should be lower for higher blockage ratios. Thus, some measurement error has 

to be hypothesized for at least one of the data sets proposed; comparison with 

overall results for single and multiple ribs suggests that Lawn's reattachment 

length results are, for some reason, seriously defective.

Further experimental results obtained by LDA for the flow field in ribbed 

channels are due to Bates et al. [1983] (P^/h = 7.2, h/H = 1/5, Re = 5*104) ;
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Kobayashi et al. [1985] (P /h = 5, h/H = 1/3.2, Re = 3.8*104  to 1.6 * 105); and 

Cocking and Dalzell [1984].

Heat transfer data for ribbed ducts are less numerous than fluid flow data. 

Early results are due to Wilkie [1966], who measured the heat transfer 

coefficient and the wall pressure for air flowing in a cylindrical duct having 

square ribs on its wall; the Reynolds number was about 2* 105. Two different 

pitch-to-height ratios (7.2 and 15) were tested; the former value gave larger 

enhancement of heat transfer. The Nusselt number distribution along the ribbed 

wall was derived from mass transfer experiments by Williams and Watts [1970]. 

Heat transfer and pressure drop data were obtained on an air rig by Warburton 

[1972] .

Watts and Williams [1981] measured local heat transfer coefficients using 

the copper-foil technique for a pitch-to-height ratio of 7, a blockage ratio 

of 1/8, and Reynolds numbers ranging from 7.7* 104  to 1.5*10^. They obtained 

the Nusselt number profile along the entire ribbed wall (rib faces included) 

under fully developed thermal conditions.

Sparrow and Tao [1983] used the naphtalene sublimation technique to

measure the local mass transfer coefficient in flat rectangular ducts having

one of the main walls roughened by transverse obstacles of circular cross

section (rods). The duct Reynolds number was made vary between 10,000 and

45,000, the rod diameter to duct height ratio, d/H, between 0.082 ( 1/12) and

0.164 ( 1/6), and the rod pitch to diameter ratio, P^/d, between 9.15 and

36.6. For the cases closest to the conditions investigated in this study, i.e.

P^/d=9.15 and adiabatic opposite (smooth) wall, they found that the Sherwood

number increased with the Reynolds number as Re^'*^ 0.64 ancj was little
-0 3

affected by d/H. The friction factor decreased as Re ' (i.e., as in smooth
-0 2

rectangular ducts) for d/H=l/12, but only as Re ' for d/H=l/6 ; at a Reynolds 

number of 20,000 it was about 50% higher for d/H=l/ 6  than for d/H=l/12. These 

results, although derived for rods, should be applicable (at least 

qualitatively) also to square ribs.

Han et al. [1978] investigated the effect of square ribs on heat transfer 

and pressure drop in flat ducts at Reynolds numbers of 3,000 - 20,000. P^/H 

varied between 5 and 20, h/H between 1/15 and 1/5; non-transverse ribs and 

other cross-section shapes were also studied. These results cannot be directly 

compared with the present simulation as the test duct had ribs on both the 

main walls. The same applies to a later investigation by Han [1984], who 

considered a duct of square cross section and extended the investigation to 

Re=105.

- 218



Finally, heat transfer results have been obtained at the City University 

of London for ribbed channels by using holographic interferometry [Lockett 

1987; Lockett and Collins 1990] . The most promising feature of this technique 

is that real-time interferograms can be obtained and the motion of 'thermal 

eddies' can be recorded and analysed; this in turn may give information on the 

flow field and its turbulence structure. However, it must be remembered that 

interferometry can give only spanwise-averaged results, in which many local 

features of the flow and temperature fields are inevitably smoothed away or 

cancelled.

5.1,2 Computational results

Several predictive studies, based on conventional turbulence models 

(especially the two-equation k-£ model), are known for the flow and heat 

transfer over transverse ribs.

As regards single ribs, Durst and Rastogi [1979] compared their own 

measurements with computational results. They used the k-s model, as 

implemented in the TEACH code, to simulate the flow in the approaching and 

recirculation regions, and a three-equations turbulence model, based on the 

boundary-layer equations and implemented in the GENMIX code, in the 

redevelopment region downstream of reattachment. 45 cross-stream grid points 

were used. Reattachment lengths were severely underpredicted compared with 

flow-visualization and LDA results. Heat transfer predictions were also 

included; however, they were not compared with experimental data. In a 

subsequent paper [Durst and Rastogi 1980] the same authors compared their 

reattachment length data with predictions based on the standard k-s model and 

on modified formulations, incorporating the curvature corrections proposed by 

Militzer et al. [1977] and by Launder et al. [1977]. The latter allowed 

reattachment lengths to be correctly predicted or even slightly overpredicted, 

while the standard k-£ model underpredicted xD by ~30%. The 

curvature-correction of Militzer et al. behaved not as well as that of Launder 

et al.

Periodic rib flow was computed by Wilkes et al. [1980] and Wilkes and 

Firth [1981] by using the standard k-£ model with wall functions and the TUFC 

code. The geometry was characterized by a pitch-to-height ratio of 7.2 and 

symmetry conditions were imposed to the flow at some distance from the ribbed
5

wall. The Reynolds number was 10 . Results were compared with experimental 

data of Kacker [1971], Hanjalic and Launder [1972], and Lawn [1976]. The most 

serious limitation was a severe ( 40%) overprediction of the pressure drop for
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a given flow rate as compared with Lawn's data. Strangely enough, the 

reattachment-length data of Lawn were correctly reproduced; however, as 

discussed above, these are somewhat contradictory with respect to the 

generality of results for this geometry, so that some underprediction inherent 

in the k-s simulations of Wilkes probably compensated for an equivalent 

underestimate of x in Lawn's data.
K

Heat transfer predictions for the same geometry and Reynolds number were 

presented by Wilkes in a following paper [1981] . Experimental data of Watts 

and Williams [1981] for the Nusselt number were underpredicted by about 40% on 

the average. Also, the fine details of the streamwise Nusselt number profile 

were not correctly reproduced; the k-s model yielded an almost flat Nusselt 

number over the whole inter-rib region. Some improvement in pressure drop and 

Nusselt number predictions was obtained by using the near-wall model of Chieng 

and Launder [1980] instead of the standard near-wall treatment employed in the 

TEACH and TUFC codes. Computations were also repeated simulating the heat 

conduction in the solid wall instead of imposing the wall heat flux; 

"hot-spots" disappeared but general levels of the Nusselt number did not 

change appreciably.

Flow and heat transfer predictions for the pitch to height ratio 7.2 were

obtained also by Fodemski [1987, 1989] and Fodemski and Collins [1988.b], who

used the standard k-e model with wall functions and the finite-difference code

FLOW3D, Releases 1 and 2. Apart from a different treatment of streamwise

periodicity and other minor differences, both the method and the results were

comparable with those of the above mentioned studies by Wilkes and Wilkes and
4 5 ,

Firth. However, relatively lower Reynolds numbers (10 -10 ) were investigated, 

and three-dimensional simulations, using 53*59*10 grid points, were also 

presented. Results were compared, but only qualitatively, with experimental 

heat transfer data based on holographic interferometry [Lockett 1987] .

Further k-E  simulations of the flow and heat transfer over periodic ribs 

were presented by Gosman et al. [1979] for an axisymmetric geometry. They used 

the TEACH code and compared predictions with experimental data of Mantle 

[1966] and Wilkie [1966] . The reattachment length, as usual, was 

underpredicted, and computations indicated a maximum of the average Nusselt 

number for a pitch-to-height ratio of about 4, against the widely accepted 

experimental value of 7.2.

k-s predictions were also presented by Kobayashi et al. [1985.a], and

compared with large-eddy simulation results, for a pitch-to-height ratio of 5,
4 5

a blockage ratio of 3.2, and Reynolds numbers in the range 3.8*10 to 1.6*10 . 

A very fine grid (80*50 points) and a finite-difference, time-dependent
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approach were used. However, no comparison with experimental data was 

provided.

As discussed in Section 2.6.2, large-eddy simulations of the flow with heat 

transfer over periodic transverse square ribs were presented by Kobayashi et 

al. [1984, 1985.b]. Direct and large-eddy simulations of the flow with heat 

transfer over periodic obstacles were also presented by Voke and Collins

[1984.a] and by Fodemski, Voke and Collins [1986, 1987], The latter

simulations were successful only as far as the steepness of the obstacles did 

not exceed a certain limit; thus, no results were obtained for square ribs. An 

interesting aspect of these predictions was the "flapping" of the shear layer 

separating from the trailing rib edge, with a characteristic period of the 

order of one LETOT; it is still not clear, however, whether this was a

"physical" or a purely numerical effect. None of the above LES studies

included quantitative comparisons with experimental data. Werner and Wengle 

[1989] presented LES predictions for the flow over a single rib and compared 

their results with measurements of Dimaczek et al. [1989].

Finally, the author's own LES results for a ribbed-channel geometry have 

been partially presented in some previous reports and papers [Ciofalo 1989.b; 

Ciofalo and Collins 1989.b, 1989.c, 1952].

5.1.3 Summary and correlation of experimental results

On the basis of these studies, it is generally accepted that the best results 

in terms of heat transfer enhancement are obtained for values of the pitch to 

height ratio, P^/h, of about 7. In this case, the highest local heat transfer 

rates are attained at two distinct locations, significantly both involving 

flow impingement or reattachment:

a) the corner between the leading edge and the top surface of each rib;

b) the region (located approximately 4-5 rib heights downstream of each 

rib) where the shear layer separating from the rib reattaches on the 

smooth surface of the wall.

The former of these peaks is generally the higher, but it interests only a 

small fraction of the overall heat transfer surface. The latter peak is 

broader and involves a larger surface, thus contributing more substantially to 

the mean heat transfer coefficient.
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For smaller values of the pitch to height ratio a single recirculation 

bubble is formed in the cavity between consecutive ribs and heat transfer is 

impaired. On the other hand, for larger values of P^/h the beneficial effect 

of the ribs is excessively "diluted" over the entire heated wall.

The dependence of pressure drop and heat transfer rates on the relative rib 

height was investigated by Rapier [1977] for the case P^/h = 7.2. According to 

his correlations, with respect to a smooth channel the presence of transverse 

square ribs on a wall causes the friction coefficient to increase by a factor:

M = 1 + 1 1 5  h/D (5.1)
P e

and the average heat transfer coefficient by a factor:

Mt = 2.4 + 20 h/Dg (5.2)

in which h is the rib height and Dg is the hydraulic diameter of the channel.

As regards the dependence of the same quantities on the Reynolds number, the

results of Sparrow and Tao [1983], relative to transverse rods having P^/d=9.1

and moderate Reynolds numbers (10,000-45,000), suggest that in artificially

roughened ducts the mean Nusselt number should increase as Re^'^ the

exponent is thus lower than that expected in a smooth channel (0 .8 ) and close

to the value (2/3) often reported for the heat transfer coefficient in

reattachment regions of separated shear layers [Ciofalo and Collins 1989.a].
-0  2

Also, the friction factor should vary as Re , i.e. with the exponent 

typical of smooth ducts at very high Reynolds numbers.

It can be easily shown that, according to these results, the

channel-averaged velocity U and temperature T in a ribbed duct, once made

nondimensional according to Eqns.(4.10) as U+ and T+, should vary roughly as 

Re and Re , respectively.
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5.2 Model and methods

As I see it, mere aesthetics doesn't pay dividends. I should 

like my models to be beautifully effective, and predictive. 

But the real goal is the understanding of a situation.

[Prof. W . Taylor]

5.2,1 Computational domain and boundary conditions

The computational domain used for the final large-eddy simulations of the 

ribbed-channel is shown in Figure 5.1. As for the plane-channel case (Chapter 

4), periodic boundary conditions are imposed along the streamwise direction 

(x) and the spanwise direction (z); the sizes of the box are L = 65 

streamwise, W = 46 spanwise, and of course H = 26 cross-stream, 6  being the 

channel half-height. For the plane-channel case, this choice of the box size 

can be justified by correlation-length considerations based on experimental 

data. However, comparable results are not available for the ribbed geometry; 

thus, the choice is somewhat arbitrary and can be justified only 'a posterio-

ri' on the basis of the computational results.

The values chosen for the pitch-to-height ratio of the ribs P^/h, and for 

the blockage ratio of the channel, h/H, were 7.2 and 1/4.8, respectively. The 

former value, as discussed in Section 5.2, is the one of greatest engineering 

interest, as it has consistently been found empirically to yield the greatest 

enhancement of heat transfer rates. The size of the computational box is such 

that it includes two complete pitches; this allows direct testing of flow 

periodicity and improves statistics on computed quantities. A reduced compu-

tational domain, including only one rib and thus having L = 36, was also used 

for grid- and Reynolds number - dependence assessment, see section 5.3.

As streamwise periodicity is imposed, the computed pressure and tempera-
■k k

ture fields cannot be the "true" ones, but periodic fields P , T related to P

and T by the same Eqns. (4.4 )-(4.5 ) valid for the plane channel case. Source

terms, given by Eqns. (4 . 6  )-(4.7 ), are added at the RHS of the streamwise

momentum and temperature equations (4.2), (4.3).

As in the plane channel case, the pressure drop per unit length |dp/dx|

is imposed, while the flow rate (and thus the Reynolds number) follows as a

result of the computation. The mean wall shear stress tq is defined by Eqn.

(4.8 ), and the corresponding mean friction velocity u can be computed as 
. | y2 T

(|t |/$>) . This can be used to define dimensionless quantities by Eqns.

(4.10.a-«). However, in a ribbed channel t q  is the mean shear stress on the
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smooth wall but not on the ribbed wall. Thus, scaling y by u in Eqn. 

(4.10.a) is somewhat inappropriate, although it is the simplest available 

choice.

5.2.2 Initial conditions

Initial conditions are imposed much as in the plane channel case. The nominal

mean (cross section - averaged) velocity u° is determined so that the nominal

Reynolds number, based on D (the hydraulic diameter, given by 46 here) equals 
0  e

Re . The required pressure gradient dp/dz is determined by using Eqn.(4.11); 

in this, the friction coefficient is expressed using the friction

multiplier proposed by Rapier, Eqn.(5.1), and the correlation of Beavers et 

al., Eqn.(4.12), for the corresponding smooth channel. Thus:

Cf = (1 + 115 h/D ) * (0.127*ReD-0’3) (5.3)

The required pressure drop turns out to be 13 times higher in the ribbed duct 

(h/D = 1/9.6) than in the plane channel for a given Reynolds number.

Now, the mean velocity u (along x) is set equal to u°, and mean v and w 

are set equal to zero; random u, v and w fluctuations, having rms values equal 

to u , are distributed normally in the channel in order to 'trigger' 

turbulence. The exact form of the initial conditions, however, has almost no 

influence on the flow development after some time. The initial temperature is 

set equal to zero throughout the channel.

5.2.3 Subgrid model, numerical methods and boundary conditions

As in the plane-channel simulations, the subgrid model used here was the 

Smagorinsky-Lilly model (2.103), with the Van-Driest damping function 

(2.102.a). The value 0.08 was used for the Smagorinsky constant cg throughout 

the simulations. The subgrid Prandtl number og, used in Eqn.(2.91.b) to 

express the subgrid thermal diffusivity a , was 0.25.

The algorithm PISOC was adopted for pressure-velocity coupling, and the 

methods ST3D and ICCG for the solution of the linearized transport and 

pressure-correction equations, respectively. Underrelaxation parameters, 

residual reduction factors etc. were as discussed for the plane-channel 

simulations in Chapter 4. Only Crank-Nicolson time-stepping was used.

The hydrodynamic wall boundary conditions were those described as method 

'a' in Section 2.5.1 and based on the formulation by Mason and Callen [1986].
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As discussed in Section 2.5, this is the only formulation among those 

considered which can be extended (at least formally) to general geometries 

including reverse-flow regions, like the present one.

However, in order to avoid introducing additional complications, only 

moderate Reynolds numbers (<40,000) were considered here. Thanks to selective 

grid refinement, the near-wall grid points (control volume centres) lay within 

the viscous sublayer defined by y+<ll (at least as far as y+ was computed from 

Eqn.(4.10.a) as in a plane channel, using the friction velocity based on the 

mean wall shear stress t ) . Thus, the wall boundary conditions reduced 

themselves to ordinary 'no-slip' conditions, i.e. a linear profile was assumed 

for u and T between the wall and the first near-wall point.

The thermal boundary conditions were as follows:

a) the top wall was adiabatic;

b) on the bottom wall, a constant heat flux q was assumed on the horizontal 

wall between ribs, but a value q/3 on each face of a rib. Thus, the total heat 

input into the channel was the same as for the plane duct.

5.2.4 Grid, time step and statistics

A typical computational grid used for the ribbed channel had 48*24*24 (x*y*z)

volumes. Grids were selectively refined near the walls, and uniformly spaced 

along z. A slice of the grid on a plane z=constant is shown in Figure 5.2. The 

dependence of the results on the number of grid points will be discussed in 

Section 5.3.

The time step was 1/100 of a LETOT (6 /u ); this choice is based on the

experience gained from the plane channel, Chapter 4. Simulations lasted 40

LETOT's, i.e. 4000 time steps. The maximum cell Peclet number (defined as 
3

uA x/ J  ) was «10 and the maximum Courant number (u4t/4x) was «1.

Mean and fluctuating components of the (resolved) flow and temperature

fields were computed by processing instantaneous fields as described for the

plane-channel case. However, for any scalar Q, <Q> denotes here the

space-average over the duct's span rather than over planes parallel to walls

(which are not homogeneous ensembles) ; similarly, Q "rm s i-s the

root-mean-square fluctuation of Q about <Q>, etc. Apart from this, the meaning

of all averaging symbols is as for the plane channel, see also Nomenclature.

Note that in the ribbed channel <0>, O" etc. are two-dimensional fields
rms ---------------

(functions of x and y), whilst in the plane channel they are one-dimensional 

fields, functions of the cross-stream coordinate y only.
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5.3 Results and discussion

The object of studying complex flows 

is to be able to predict them

[P. Bradshaw]

5.3.1 Turbulence energy and flow rate

The behaviour of the channel-averaged resolved turbulence energy k is shown in 

Figure 5.3 for Re° = 20,000 (48*24*24 grid). For comparison purposes, the 

behaviour of k in a plane channel is also reported for the same size of the 

computational box and a 32*16*16 grid.

For the ribbed channel, the low-turbulence phase is much shorter than for 

the plane channel (~1 LETOT), no overshoot occurs, and an asymptotic behaviour 

is established after a few LETOT's.

The instantaneous Reynolds number increased slowly starting from the

initial (nominal) value of 20,000. The exact behaviour of both k and Re was

found to be sensitive to the constant cg and to the grid used. For the ribbed 

channel, the final Re (LETOT's 30-40) was ~26,600, i.e. the flow rate was

overpredicted by ~30% with respect to correlation (5.3). The corresponding

6 -Reynolds number was ~6650.

5.3.2 Grid dependence

For the ribbed channel, the investigation of grid-dependence was more

difficult than for the smooth channel. The 48*24*24 grid shown in Figure 5.2

is close to the upper limits allowed by CPU time and storage (the CRAY-2 at

Harwell would have allowed, in principle, grids having up to ~10^ volumes, but

only a limited CPU-time budget was available on it; on the other hand, on the

IBM 3090 of the University of Palermo Computing Centre the time allowance was

larger but only 16 Mbytes of storage were available).

Due to these limitations, the sensitivity study was conducted by varying

individually the number of streamwise, cross-stream and spanwise grid points,

N , N and N , in the range 16 to 32 for all directions, but for a "reduced" 
x y z ^
computational domain including only one complete rib pitch. The number of 

spanwise points, N , was found here to have little influence on the results in 

the range examined. For varying and Ny, results are summarized in Figures

5.4 and 5.5, respectively; cross stream profiles of <u> and u"rms' expressed
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in wall units, are reported for the channel cross section midway between 

consecutive ribs, section A in Figure 5.2.

Figures 5.4 - 5.5 suggest that 24 cross-stream and streamwise points (per 

pitch) are sufficient to give a basically grid-independent flow field, 

including the backflow (recirculation) region downstream of a rib. An 

insufficient streamwise resolution (N -16) results in failure to predict
X

backflow at section A, Figure 5.4(a), and in unrealistically high fluctuations 

near the smooth wall, Figure 5.4(b). The cross-stream resolution appears to be 

less critical, Figure 5.5.

Comparison between simulations for a single rib and for two consecutive 

ribs did not evidence any significant difference in the results. However, 

final simulations were run for the two-rib domain shown in Figure 5.1 in 

order to improve statistics and to check the existence of streamwise 

structures extending over more than one rib pitch.

5.3.3 Reynolds number dependence

Reynolds number - dependence was investigated in the restricted range Re0  = 

10,000 to 40,000, for the reasons discussed in Section 5.2.3. Results are 

summarized in Figure 5.6. Cross-stream profiles of <u> and <T>, expressed in 

wall units using Eqns.(4.10), are shown for the section midway between conse-

cutive ribs. It is clear that, once made dimensionless, mean fields are little 

influenced by the Reynolds number. Predicted values of u+ and T+ vary both as 

Re^'1 1̂, approximately; as discussed in Section 5.1.2, experimental results 

suggest for these quantities a dependence as Re^-̂  and Re^1'^, respectively. 

Thus, the Reynolds number - dependence of pressure drop is correctly 

predicted, while heat transfer rates do not follow the ~2/3-law typical of 

recirculating flows, but rather the 0 .8 -law of boundary-layer and smooth-duct 

flows.

For the ribbed channel, an additional parameter which influences the flow 

and thermal fields is the blockage ratio, h/H. Due to the necessity of having 

an adequate cross-stream resolution in the rib region, and to limitations on 

the overall grid size, values of h/H significantly less than the 'reference' 

one (1/4.8) could not be investigated in the present study. The flow and 

thermal fields in the proximity of a rib, as well as the shear stress, pres-

sure and temperature distributions on the bottom wall, should be little 

affected by h/H. However, it is clear that comparison with experimental 

results obtained for different values of this ratio has only a qualitative 

nature.
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5.3.4 Instantaneous fields

In the following, we concentrate on results for h/H = 1/4.8, Re° = 20,000 and 

a 48*24*24 grid, covering two ribs. An overall view of the instantaneous 

(resolved) flow and temperature fields is given by Figures 5.7 to 5.10.

Figure 5.7(a) shows the instantaneous velocity field on two planes normal 

to the main flow direction x (sections A and B of Figure 5.2). Vectors are 

(v,w); some contours of u are superimposed. Figure 5.7(b) shows the 

instantaneous velocity field on a plane (y+ = 1 1 ) close to the ribbed wall. 

Here, vectors are (u,w), and contours of v are superimposed. Large eddies 

rotating in the x-z plane (i.e., strong three-dimensionality of the flow) and 

intense backflow regions near the leading sides of the ribs, are the most 

apparent features.

Figure 5.8 is an instantaneous map of the shear stress on the bottom

wall; black cells are those in which t < 0, i.e. forward (direct) flow
w

occurs. The main reattachment regions at ~2/3 of the distance between ribs 

appear "patchy", which confirms the strong three-dimensionality of the flow. 

This feature is in qualitative agreement with the results of Werner and Wengle

[1989] discussed in Section 2.6 (which, however, were for non-periodic flow 

over a single rib). Almost continuous black stripes downstream of each rib 

indicate that stable counter-rotating corner eddies occur below the main 

recirculation regions.

Figure 5.9 is a temperature map of the ribbed wall at the same instant, 

t=40 LETOT's. Here, black regions are those where the wall temperature is 

lower than the plane average, i.e. higher heat transfer occurs. These are 

concentrated both in the proximity of reattachment areas and immediately 

upstream of each rib.

Figure 5.10 (a,b) shows instantaneous velocity and temperature fields at 

t = 40 LETOT's on an arbitrary plane z = constant. Only the region near one 

rib is shown.

The evolution of the instantaneous flow and temperature fields can be 

appreciated by looking at Figures 5.11-5.13.

Figure 5.11 shows shade plots of the instantaneous resolved streamwise 

velocity u on the plane y+=30 parallel to the bottom (ribbed) wall, 

respectively for t=40.00, 40.02, and 40.04 LETOT's. Darker regions correspond 

to forward flow, lighter regions to backflow. The "patchy" nature of the 

reattachment region, already indicated by the wall shear stress map in Figure 

5.8, is confirmed by these plots.
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The evolution of the resolved temperature on the same plane, and at the 

same time instants, is reported in Figure 5.12. Here, dark shades correspond 

to hot fluid (i.e., low heat transfer rates) and are localized mainly in the 

regions immediately downstream of each rib.

Figure 5.13 shows shade plots of the instantaneous resolved spanwise 

velocity w on a plane normal to the z axis, again for t=4 0.00, 40.02 and 40.04 

LETOT's. The main recognizable structure is a region of high w, presumably 

associated with a large streamwise vortex having its axis at about 45° with 

respect to the main flow direction. The existence of such structures confirms 

the strong three-dimensionality of the flow.

5.3.5 Effects of soace/time averaging

The effect of spanwise-averaging and time-averaging on the predicted tempera-

ture field is shown in Figure 5.14 (a-c). The top graph (a) is a shade-plot of 

the temperature field on the plane z = W/2 at the instant t = 40 LETOT's; some 

isotherms are depicted for purposes of clarity, and large irregular thermal 

structures are clearly visible. The central graph (b) is a plot of the span- 

wise-averaged field at the same instant; large thermal eddies present in graph 

(a) have been smoothed away by spanwise-averaging. Similar isotherm patterns 

are recorded by taking interferograms, which inevitably average the tempera-

ture field over the channel span [Lockett and Collins 1990] . The problem of 

extracting information about the flow structure from similar interferograms, 

taken in real time, was discussed in Chapter 4 for the case of plane-channel 

flow, and can be introduced for this more complex configuration; LES methods 

are a promising approach to the solution of such problems. Finally, graph (c) 

(bottom) is averaged in time over LETOT's 30 to 40. Smoothing effects are even 

more pronounced than in the span-averaged graph. The resulting time-averaged 

temperature field (or rather its span-average) is what would be recorded by 

long-exposure interferograms or similar techniques. Note that at the present

Reynolds number of 20,000, and for the flow of air in a wind tunnel 5 cm in
_2

height, one LETOT corresponds to 5*10 s, i.e. the averaging time of graph

(c) would correspond to just 0.5 seconds of real time.

The effect of averaging on the computed velocity u can be appreciated by 

considering Figure 5.15, in which cross-stream profiles are reported for the 

two section A and B of Figure 5.2. The following quantities are represented:

- local and instantaneous velocity, u, at t=40 LETOT and z=W/2;

- spanwise-averaaed and instantaneous velocity, <u>, at t=40 LETOT's;
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- local and time-averaged velocity, u, at z=W/ 2  (time averages are over 

LETOT's 30 to 40);

- soanwise- and time-averaaed velocity, <u>.

The local instantaneous velocity presents, especially at section B, an 

irregular profile. Spanwise-averaged profiles are smoother, but still exhibit 

residual irregularities (the averaging ensemble includes only 24 values). 

Time-averaged profiles are much more regular, and differ little from span- and 

time-averaged ones.

A similar comparison is shown in Figure 5.16 for the streamwise velocity 

fluctuation. Three quantities are shown:
2 1/2

- space rms fluctuation, u" , defined as <(u-<u>) > ;
rms T  1/2

- time rms fluctuation, u' , defined as ((u-u) 1
---- rms ____

- time-averaoe of the space fluctuation u" over LETOT's 30 to 40, u"
----------^  r rms rms

The first quantity exhibits a rather irregular profile; its time-average, 

however, is remarkably close to the local, time-rms fluctuation. All profiles 

share some distinguished features, such as the sharp maximum observed 

immediately over the rib top in Figure 5.16(b).

The effect of the various averages on wall quantities can be appreciated, for 

example, by considering Figure 5.17. In it, the whole simulated streamwise 

length of the channel, including two rib pitches, is represented. The abscissa 

is the distance % travelled along the ribbed wall following the sides of the 

ribs; it is made dimensionless with respect to the rib height h. The quanti-

ties shown are t (local instantaneous resolved streamwise wall shear stress), 
w

as computed at z = W/2 and t = 40 LETOT's; <TW> (span-averaged instantaneous 

stress); and < t > (span- and time-averaged stress, the time-average being made 

over 10 LETOT's). The local and instantaneous profile exhibits strong space 

fluctuations; moreover the profiles relative to the two rib pitches differ 

markedly from each other. Span-averaging reduces the irregularities and makes 

the profiles over the two pitches closer to each other. Finally, span- and 

time-averaging produces a smooth and periodic profile, repeating itself almost 

exactly over the two pitches. Similar remarks hold for the wall pressure and 

for the wall temperature or Nusselt number.

5.3.6 Mean wall quantities

The following Figures 5.18 to 5.20 report wall quantities (p , t w  and Nu). LES 

results are averaged at each streamwise location over the channel span, and 

further averaged in time over LETOT's 30 to 40. Moreover, the profiles
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relative to the two rib pitches included in the computational domain are

averaged to improve the statistical quality of the results. The abscissa in

Figures 5.18-5.20 is defined as in Figure 5.17.

Figure 5.18 reports streamwise profiles of the wall pressure, made 
. . . 2

dimensionless with respect to ^ ç(u ) (in which u is the maximum velocity
max max

in the channel). The mean streamwise pressure gradient is subtracted from

results, so that only the periodic component of the pressure is actually

shown. The pressure is arbitrarily set to zero in the position midway between

two consecutive ribs. k-£ predictions obtained by the author using Harwell

FLOW3D, and experimental data of Kacker [1971], obtained for Re = 50,000 in a

channel having H/h = 8 , are also reported in a similar form for comparison.

Taking into account the above remarks on comparisons with different geometries

and Reynolds numbers, the qualitative agreement with experimental data is

encouraging, generally comparable with that obtained by the k-£ model, and

much better in the region of the leading side of the rib.

Figure 5.19 shows similar profiles of the wall shear stress in the

streamwise direction,ít- >. k-£ results are also reported for comparison. Now
accurate experimental data seem to have been reported in the literature for 

this quantity. Values are normalized to T0 ri.e. the mean, or nominal, wall 

shear stress. Values of<Tw+> differ broadly from k-£ predictions; the LES wall 

shear stress profile indicates that reattachment occurs about 4 rib heights 

downstream of each rib, and is followed by a short direct-flow region and then 

by re-separation ~1.5 rib heights upstream of the consecutive rib. A counter-

rotating corner eddy is also clearly indicated by negative values of < t >w
downstream of a rib. These results, especially as regards the reattachment 

length, are in agreement with experimental findings for comparable pitch-to- 

height and blockage ratios. Drain and Martin [1985] reported a reattachment 

length of 4.3 h for P^/h = 7.2, h/H = 1/5 (practically coincident with the

values used in the simulation). k-£ computations underpredict severely this 

important parameter, giving ~3h in the present case.

Figure 5.20 shows span- and time-averaged profiles of the Nusselt number, 

defined here as :

q D
e

Nu = -------- ---- (5.4)
T - T X 
w a
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in which Tw is the wall temperature and Ta the cross-section averaged fluid 

temperature. Profiles are normalized to the corresponding averaged value Nu& 

to facilitate comparison with:

a) k-E results, obtained with Harwell-FL0W3D for the same pressure drop and 

channel geometry;

b) experimental results of Watts and Williams [1981], obtained by the copper 

foil technique in a channel having h/H = 1/8 at Re = 82,000;

c) experimental results of Lockett [1987], obtained by holographic interfero-

metry in the City University wind tunnel (having h/H =1/9.5) at Re = 30,000.

The LES predictions present many features that agree with experimental data, 

and differ from k-e results. The overall streamwise profile of Nu, with an 

absolute sharp maximum shortly upstream of each rib and a secondary flat 

maximum at 2/3 of the distance between ribs (i.e., in the reattachment 

region) is correctly reproduced. Note also the relative minimum shortly 

downstream of the rib, probably in correspondance with backflow separation 

(edge of a counter-rotating eddy). This graph should be compared with the 

instantaneous temperature map in Figure 5.9. These features are totally 

missing in the k-E predicted profile, which appears practically flat over the 

whole inter-rib gap.

As experimental data were obtained for different ratios of rib height to 

duct height (h/H) and for different Reynolds numbers, the levels and the 

average values of the Nusselt number cannot be compared directly with LES 

predictions on a quantitative basis. However, some comparison can be drawn if 

values of Nu are scaled to the present h/H (1/4.8) and Re (26,600) by using 

Rapier's [1977] results in the form:

?/3
Nu = const. * R e ' * (2.4 + 10 h/H) (5.5)

k-E results for Nu can be scaled using the same law; in fact, k-E simulations 

(for the same pressure drop as in LES) give a Reynolds number of 21,000, in 

good agreement with correlation (5.3). Results are summarized in Table 5.1. It 

shows that, within the limits of validity of Eqn.(5.5), LES predicts a value 

of Nu comparable with both k-E and experimental results.
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Table 5.1 Comparison of mean Nusselt number (scaled)

LES k-e Watts & Williams [1981] Lockett [1987]

h/H 1/4.8 1/4.8

26,600 2 1 , 0 0 0  

154 150

1/8 1/9.5

30,000

142Nu (scaled) 154

Re 82,000 

140

5.3.7 Mean flow and temperature fields, and resolved fluctuations

Cross-stream profiles of mean velocity and temperature are reported in Figure 

5.21 for the two streamwise positions A and B indicated in Figure 5.2; they 

are in dimensionless form and are compared with k-£ predictions obtained using 

Harwell-FLOW3D for the same pressure drop.

On profiles of <u> the most relevant disagreement is in the consistently 

higher value of bulk velocity, and in the backflow region predicted by LES, 

but not by the k-E model, midway between ribs (section A) . Profiles of <T> 

agree fairly well on section B but LES predictions are lower (i.e., heat 

transfer rates are higher) at section A.

Cross-stream profiles of the three fluctuating velocity components and of 

the total resolved turbulence energy are reported in Figure 5.22 for the same 

two sections A,B. Profiles of k predicted by the k-£ model are also shown for 

comparison purposes. Turbulence levels agree on the whole with k-£ predic-

tions; the most relevant difference is in the sharp peak predicted by LES just 

over the rib top, graph (b), and mainly associated with a peak in u"rms-

Cross-stream profiles of the mean streamwise velocity and of the stream- 

wise fluctuation, computed by LES for h/H = 1/4.8 and Re0  = 20,000, are 

reported in Figure 5.23 for the two streamwise locations A and B. They are 

compared with experimental results of Bates et al. [1983] and of Drain and 

Martin [1985], obtained for h/H = 1/5 and Reynolds numbers of "50,000 and

64,000, respectively. For the mean velocity only, also k-£ predictions based 

on the TUFC code are reported from Drain and Martin [1985] . Profiles are 

normalized to the mean velocity over the rib top, or to its square.

Experimental profiles of the mean velocity confirm that the main recir-

culation region extends beyond one-half of the distance between consecutive 

ribs. This is correctly predicted by LES, while k-E results show no backflow 

at section A. The experimental streamwise fluctuation profile at section B 

exhibits a sharp peak just above the rib top, which is qualitatively predicted
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by LES but not by the k-£ model. On both sections A and B, LES overpredicts 

turbulence levels in the bulk flow region. The disagreement between the two 

available sets of experimental results as regards the fluctuation intensity 

near the smooth wall should also be noticed.

5.4 Conclusions

Book both my wilfulness and errors down,

And on just proof surmise accumulate

[Shakespeare, Sonnet CXVII]

Large-eddy simulations were performed using Harwell-FL0W3D for the flow and

heat transfer in a channel having one of the walls roughened by transverse

square ribs. The Reynolds number varied between 10,000 and 40,000. The Smago-

rinsky-Lilly subgrid model was used, with Van-Driest near-wall damping and

no-slip boundary conditions at the walls. Just three arbitrary constants were

involved, namely c (0.08), A+ (25) and o (0.25).
s s

Satisfactorily grid-independent results were obtained using 24 volumes 

downstream (per rib pitch), 24 cross-stream and 24 or even less spanwise. For 

a computational domain including two complete rib pitches (33,800 overall 

control volumes), simulations lasting 10 LETOT's were sufficient to reach 

statistical equilibrium and fair statistics, and required about 30' of CPU 

time on a CRAY-2.

This study is one of the first based on LES presented so far for a 

complex geometry involving flow separation, reattachment, and recirculation. 

Statistically stationary conditions were reached after a few LETOT's. The mean 

flow rate was overpredicted as compared with experimental correlations and 

also k-£ simulations, and so were turbulence levels in the bulk flow region. 

However, the overall flow structure and many fine features of the mean and 

fluctuating fields were in good qualitative agreement with existing experim-

ental data. Certain flow features were correctly predicted by LES but absent 

from k-£ simulations, notably involving recirculation (e.g., reattachment 

length and peaks of Nu).

A noteworthy feature of the results was the strong three-dimensionality 

of the flow. As discussed also by Werner and Wengle [1989], this makes the use 

of the spanwise direction z as 'homogeneous', averaging direction 

questionable; in future works on this geometry, statistics should be obtained 

only with reference to time without such 'homogeneity' assumptions.
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The simulations failed to predict correctly the Reynolds number - depen-

dence of the Nusselt number. This may depend on the relatively poor resolution 

of the near-wall region; also the adequacy of the 'subgrid Prandtl number' 

concept is questionable in recirculating flows. However, it must be observed 

that in such flows even well established turbulence models, such as the k-£, 

fail to reproduce the correct Reynolds number - dependence of heat transfer 

rates.

Perhaps surprisingly, the overall quality of the predictions, for example 

regarding the establishment of statistical equilibrium, was higher for this 

relatively complex geometry than for the simpler plane-channel flow considered 

in Chapter 4. However, a turbulent flow between simple boundaries may be quite 

complex in its internal structure, while in a geometrically complex domain the 

flow characteristics are more heavily dominated by the geometry and may well 

be relatively easier to predict with reasonable accuracy. A well known example 

of this in external flows is separation over sharp corners as opposed to 

separation from smooth surfaces. It should also be considered that for basic 

geometries (like plane channels, pipes, or annuli), a very large amount of 

experimental information is available and has been used through the years to 

'tune' standard turbulence models, such as the k-s, while for more complex 

geometries, especially involving separated flow regions, most existing 

turbulence models present some drawback and LES can be more competitive.
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Figure 5.1 - Ribbed channel: schematic of the computational domain.

Figure 5.2 - Ribbed channel: computational grid

Figure 5.3 - Ribbed channel: average resolved turbulence energy as a function 

of time for Re^=20,000.
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a) profile of <u> lNx=lb-24-d^, iNy=iNZ=d4j, set. a

b) profile of u" rms (Nx=16-24-32, Ny=Nz=24), sec.A

Figure 5.4 - Ribbed channel: comparison of cross-stream profiles of <u> and

U"rms section ^ °f Figure 5.2 for varying from 16 to 32 and

N =N =24 (Re°=20,000).
y ^
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a) profile of <u> (Ny=16-24-32, Nx=Nz=24), sec.A

b) profile of u" rms (Ny=16-24-32, Nx=Nz=24), sec.A

Figure 5.5 - Ribbed channel: comparison of cross-stream profiles of <u> and

u"rms section A °f Figure 5.2 for N varying from 16 to 32 and 

N =N =24 (Re°=20,000).
Z
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a) profile of <u> for Re=l-2-4*10**4, sec.A

b) profile of <T> for Re=l-2-4*10*H sec.A

Figure 5.6 - Ribbed channel: comparison of cross-stream profiles of <u> and

<T> at section A of Figure 5.2 for different Reynolds numbers and 
3

a 24 -volume computational grid.
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A-A

f l o w

Figure 5.7 - Ribbed channel (Re =20,000): instantaneous velocity field on

a) planes normal to the main flow direction, sections A and B 

(vectors v-w, contours of u);

b) plane y+ = 1 0  parallel to the ribbed wall 

(vectors u-w, contours of v).
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flow

Figure 5.8 - Ribbed channel (Re^=20,000): instantaneous shear stress map on 

the ribbed wall (dark cells indicate t <0, i.e. forward, or
X

direct, flow) .

flow

Figure 5.9 - Ribbed channel (Re^=20,000) : instantaneous temperature map on

the ribbed wall (dark cells indicate T <T ,i.e. Nu>Nu_).
w wa &
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Figure 5.10 Ribbed channel (Re^=20,000): instantaneous temperature 

and velocity fields near a rib on a plane normal to z.
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Figure 5.12 Ribbed channel (Re^=20,000): shade plots 

resolved temperature T on the plane y+=30 

wall for t=40.00, 40.02 and 40.04 (LETOT'

of the instantaneous 

parallel to the ribbed

s) .
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Figure 5.13 - Ribbed channel (Re^=20,000): shade plots of the instantaneous 

resolved spanwise velocity w on a plane normal to the z axis for 

t=40.00, 40.02 and 40.04 (LETOT's).



(interval between consecutive isotherms -3.5 wall units).

a) z=W/2, y=40 LETOT's

b) span-average, t=40 LETOT's

c) z=W/2, time-average over LETOT's 30 to 40
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y/
de

lt
a 

y/
de

lt
a

Ribbed channel: u averages (Section A-A)

Ribbed channel: u averages (Section B-B)

Figure 5.15

local cross-stream profiles of the velocity u with

various averaged profiles 

a) section A-A; b) section B-B
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y/
de

lt
a 

y/
de

lt
a

Ribbed channel: u fluctuations (Sec.A-A)

Ribbed channel: u fluctuations (Sec.B-B)

Figure 5.16 - Ribbed channel (Re^=20,000): comparison of cross-stream profiles

of the resolved streamwise fluctuation u obtained by
rms J

different statistical techniques 

a) section A-A; b) section B-B
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Ribbed channel: Bottom wall shear stress

Figure 5.17 - Ribbed channel (Re^=20,000): effect of span- and time-

averaging on the computed shear stress along the ribbed wall.

Figure 5.18 - Ribbed channel: profiles of the static pressure along the 

ribbed wall.

----- Present predictions (LES, h/H=l/4.8, Re=26,600)

----- k-E predictions (h/H=l/4.8, Re=20,000)

A Experiments (Kacker 1971, h/H=l/8 , Re=50,000)
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Figure 5.19 - Ribbed channel: profiles of the shear stress in the direction 

along the ribbed wall.

----- Present predictions (LES, h/H=l/4.8, Re=26,600)

----- k-s predictions (h/H=l/4.8, Re=20,000)

Figure 5.20 - Ribbed channel: profiles of the Nusselt number along the 

ribbed wall.

----- Present predictions (LES, h/H=l/4.8, Re=26,600)

----- k-£ predictions (h/H=l/4.8, Re=20,000)

• Experiments (Lockett 1987, h/H=l/9.5, Re=30,000) 

a Experiments (Watts et al.1981, h/H=l/8 , Re=82,000)
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Figure 5.21 - Ribbed channel: cross-stream profiles of mean u and T at the 

two sections A and B of Figure 5.2.
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Figure 5.22 - Ribbed channel: cross-stream profiles of velocity and

temperature fluctuations at the two sections A and B of 

Figure 5.2
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Figure 5.23 - Ribbed channel: computed and experimental cross-stream

profiles of mean and fluctuating streamwise velocity. Values 

are normalized to the average velocity over a rib, uD .
D

----- Present predictions (LES, h/H=l/4.8, Re°=40,000)

- - - k-e predictions using the TUFC code [Drain and Martin 1985]

A Experiments (Drain & Martin 1985, h/H=l/5, Re=64,000)

• Experiments (Bates et al. 1983, h/H=l/5, Re=50,000)



CHAPTER 6 - APPLICATION TO TURBULENT FLOW WITH HEAT TRANSFER 

IN A CROSSED CORRUGATED HEAT EXCHANGER GEOMETRY

6.1 Introduction and literature review

Air heaters may not be the most glamorous of items in a 

modern power plant, but they are nonetheless essential 

for its efficient and economical operation

[Chojnowski and Chew, 1978]

6.1.1 Rotary regenerators

Compact heat exchangers are found in almost every field of engineering, from 

energy production to transport technology. In particular, air preheaters are 

essential components of fossil-fuelled power plants [Chojnowski and Chew 1978; 

Chew 1985] . Typically, they cool the flue gases leaving the final 

water-heating stage (economizer) from ~300°C to ~'100°C, and deliver warm air 

at ~250°C to the furnace. In a 500-MWe unit, the air heaters may recover some 

100 MW of low-grade heat, thus increasing substantially the overall plant 

efficiency. Moreover, preheating the combustion air makes the use of

lower-grade fuels possible and, in coal-fired plants, provides the means of 

drying the fuel.

Air heaters can be classified into direct transfer - type exchangers, or 

recuperators, and storage-type exchangers, or regenerators. The latter are 

cheaper and more compact, and are generally preferred on large modern plants. 

Regenerators rely on the heat-storage capacity of a matrix of closely packed 

corrugated steel plates, which is exposed alternately to the hot flue gases 

and to the cool combustion air. In the Ljungstrom design, the matrix rotates 

between stationary ducts, while in the Rothemiihle design the matrix is 

stationary and rotating hoods distribute the two streams through it (Figure

6.1). The two designs are essentially equivalent; the heat storage matrix is 

built in the form of a squat cylinder (Figure 6.2), typically having a verti-

cal axis, a diameter of ~10 metres, and a depth of ~2. Two such units serve a 

500-MWe boiler; each of them is crossed by flue-gases and air flow rates of
3

the order of 200 m /s, with speeds of 3-6 m/s. The surface-to-volume ratio can
2 3

be as high as 5-600 m /m .

The theory of rotary regenerators dates back to Nusselt [1927] and has 

been extended, for example, by Hausen [197 6 ] . Computer simulations of the
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overall behaviour of regenerators appeared as early as in the late 'Sixties 

[Wilmott 1969] . Design criteria are discussed in handbooks such as that by 

Rohsenow et al. [1986]. However, the models used in the above - and similar - 

works assume that convective heat transfer coefficients are somehow known. 

More generally, the optimum design of these devices requires the knowledge of 

heat transfer and friction coefficients, and of their dependence upon the 

corrugation geometry and the operating conditions.

The main performances required of an air heater are high heat transfer 

rates, low pressure drops, and moderate fouling (or, better, moderate 

sensitivity of heat transfer and pressure drop to fouling). These performances 

depend mainly on the geometrical design of the heat transfer elements. Several 

arrangements have been used or proposed, differing mainly in the shape and 

size of the corrugations formed by the steel plates; some of them are shown, 

for example, in Figure 6.3 (a-d) [Chew 1985].

However, the various corrugation designs have been developed mainly on an 

empirical basis. Although both operational and laboratory data are available, 

they do not cover the full range of shapes, sizes and operating conditions (in 

particular, Reynolds numbers) as would be required for an optimization study. 

Moreover, data are generally available in the form of overall performances 

(average heat transfer coefficient, global pressure drop), and the phenomena 

which cause these (flow patterns, transition to turbulence ...) are not well 

understood. Therefore, it would be of considerable value to supplement 

available bulk data by local flow and heat transfer measurements and 

three-dimensional numerical simulations; such studies should allow to 

characterize the dependence of overall performances on fluid flow patterns and 

regimes (laminar-transitional-turbulent), thus leading to optimized designs 

which could hopefully result in significant financial advantages.

On the basis of the above considerations, a comprehensive experimental 

and predictive research programme was carried over jointly by Marchwood 

Engineering Laboratories (PowerGen, UK) and the City University of London 

(with parallel work by the present author at the Department of Nuclear 

Engineering, University of Palermo). The design chosen in this study is the so 

called "crossed corrugated", sketched in Figure 6.4. In this, closely packed 

plates, bearing sine-wave corrugations, delimit open flow passages which 

intersect one another at an angle 0 ; a complex flow and temperature field is 

established which, especially for moderate values of 0 , may result in high 

heat transfer rates with still moderate pressure losses. The reason for the 

choice of this geometry is twofold: first, this is known to be a high-perfor-

mance design and is actually used on some modern plants; second, it is
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relatively easy to model and to investigate numerically. Within this design, 

the geometry of the heat exchange matrix is basically specified by two

dimensionless parameters only, i.e. the corrugation angle 0  and the pitch-to- 

height ratio P/H (a minor role is played by the wall thickness to corrugation 

height ratio, s/H).

6.1.2 Corrugation geometry and computational domain

Although the exchangers themselves are substantial pieces of engineering
, 7

equipment, they are composed of a large number (of the order of 1 0  !) of

nominally identical, small geometrical elements. For the crossed corrugated

design of Figure 6.4, a unitary cell can be identified as sketched in Figure

6.5(a). Each cell has two inlets (W,D) and two outlets (E,U) and can be chosen

as the computational domain. The projection of the cell on the midplane of the

plates is shown in Figure 6.5(b), while the section C-C parallel to the bottom

corrugation is shown in Figure 6.5(c) and the cross-section N-N normal to the

top corrugation is shown in Figure 6.5(d). Most predictive results will be

presented in the form of vector and shade plots of computed quantities on

these three "slices", or on the top surface of the unitary cell. The

orthogonal frame Oxyz used in the simulation is also reported in Figure 6.5.

The geometry of the heat exchange matrix is completely specified by the

parameters P, H, s and 0 indicated in Figure 6.5. All relevant geometrical

quantities can be derived from these as described below.

First, from Figure 6.5 it follows that fb=H-s and T=P/sin0. The overall

cross-sectional area normal to the main flow direction is:

A = T sin (0/2) H. = P H, sin (0/2) / sin© (6.1)
 ̂ 1 1

The reference velocity, v , can be defined as the ratio of the mass-flow rate 

M crossing the unitary cell to the cross-sectional area A t i m e s  the density

9 :

vr = M / (pAc) (6.2)

The (internal) volume of the cell is:

V = 2 (T Hi/2) P = P2  Hi / sin© (6.3)

The solid-fluid interfacial area ("wetted" area) in the unitary cell is:
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S = 2 T L = 2 P L /  sinO (6.4)

in which L is the length of the arc of sinusoid having pitch P and amplitude 

H./2. It can be shown that, under the assumption of perfectly sinusoidal 

corrugations, one has:

L = 2 P E(a,rr/2) / ( t t  cosa) (6.5)

in which E is the elliptic integral of the second kind: 

E(a,I$) = I [1-sin^a sin2ft' ] dlJ'

'o

and the angle a is given by:

:6 .6 )

a = arcsin{(nHi/P) / [1 + (ttH./P)2]172} (6.7)

The hydraulic diameter can be defined as four times the cell volume V divided 

by the cell "wetted" area S. Finally, Dg and v^ can be used to define the 

Reynolds number:

Re = v D / >> (6 .8 )
r e

The most relevant performance parameters of the exchanger are the head loss 

per unit length (in the main flow direction a) and the average heat transfer 

coefficient.

In fully-developed flow, the former quantity is simply the mean pressure 

drop between the inlet faces (D,W) and the outlet faces (U,E), divided by the 

length Aa (this is not true in developing flow , e.g. in the entrance region 

of the exchanger). The head loss can be made nondimensional by defining the 

equivalent friction coefficient:

f = iApI Dg / (£ Aa v ^  / 2) (6.9)

The local heat transfer coefficient can be defined in dimensionless form, i.e. 

as a local Nusselt number, as:

Nu = q Do / (\(T -T-)) (6.10)
w e  w i
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in which q and T are the local wall heat flux and wall temperature, T, is 
^w w r f

the average (mixing) fluid temperature, and X is the thermal conductivity of 

the fluid. An obvious definition of the average Nusselt number is:

1 f<Nu> - --- I Nu dS (6 .11.a)
S •'s

A more engineering-like definition, however, is:

Nu = <q > D / (\(<T>-TJ) (6.11.b)
av nw e w f

in which brackets <> denote surface averages. It is easily shown that:

<Nu>/Nu = (<T -T£> <(T - T J _1> c\ * )  (6.12)
av j w f w f

l 2 C i/' ni f- 7"n/ )
so that <Nu>=Nu for uniform-wall temperature conditions, but not otherwise 

(in particular, for uniform-wall heat flux conditions). If heat (mass) 

transfer occurs only on one of the walls, <Nu> should be defined as the 

average of Nu over the active surface only.

If the effect of conduction in the solid wall is neglected, the perfor-

mance parameters f and Nu depend solely on the geometrical parameters 0 and 

P/tL, on the Reynolds number, and on the Prandtl number.

6.1.3 Literature review

Very few experimental results have been published in the literature for 

corrugated geometries equal or similar to that described above. No detailed 

flow field measurements have been reported, and heat transfer characteristics 

have been investigated mainly by mass transfer techniques, using the analogy 

between mass and heat transfer.

Following early work by Okada et al. [1972], Rosenblad and Kullendorff 

[1975] and Zogg [1972] (this last dealing with triangular corrugations), Focke 

et al. [1985] used an electrochemical mass transfer method, the so called 

diffusion-limited current technique (DLCT), to determine local mass transfer 

coefficients on one of the walls of a test section including several tens of

unitary cells. Of course, the working fluid was water. The pitch to height
• 2 5

ratio was P/H=2; the Reynolds number ranged from ~10 to ^10 , and the

corrugation angle from 0 ° (corrugations parallel to each other and to the

flow) to 180° (corrugations parallel to each other but orthogonal to the

flow). Mass transfer results were reported as average Colburn j-factor
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j=Sh/ (Re ScV2), being Sh the Sherwood number (mass-transfer analogue of the 

Nusselt number) and Sc the Schmidt number (analogue of the Prandtl number). 

Values of the equivalent friction factor f, measured by wall pressure 

tappings, were also reported. The authors observed a monotonic rise of both 

the equivalent friction coefficient f and the Colburn j-factor for the 

corrugation angle 0 increasing from 0 to ~160°. Beyond this value, f and j 

decreased slightly and presented a local minimum at 0=180° (it has to be 

observed that the conditions for 0=180° are not univocally defined in general, 

since they depend on the phase shift between the lower and upper plates; this 

was zero in the above experiments). The observed rise was much more pronounced 

for the pressure drop than for the mass transfer rate; for example, for 0  

increasing from 30° to 160°, f increased by about 20-30 times, while j 

increased by only 2-2.5 (depending on the Reynolds number).

One of the most interesting results of this study was the behaviour of f 

and j as functions of Re for different values of the corrugation angle 0. For 

0 =0 , transition from laminar to turbulent flow was clearly indicated by a 

steep increase in f and j for Re=6 ,000-10,000. As 0 increased, the transition 

became smoother and occurred at lower Reynolds numbers; no clear transition 

could be identified any more for 0>6O°.

In a later paper, Focke and Knibbe [1986] described the use of the 

electrode-activated pH method, with o-cresolphthalein as the indicator, to 

visualize flow patterns between cross-corrugated plates. The geometry was the 

same as in the above study; the authors limited their investigation to low 

Reynolds numbers ( 10 to 1000) and included the case of the two plates forming 

two different angles with respect to the main flow direction.

Gaiser and Kottke [1989.a, 1989.b, 1990] investigated the dependence of 

Nu and f on the corrugation angle 0 in the range 60° to 160° for 

pitch-to-height ratios of 1.78 and 7.12 and a Reynolds number of 2000. The 

working fluid was air, and the test section included over a hundred unitary 

cells, so that practically fully-developed conditions were attained. Local 

mass transfer coefficients were measured by using the chemical reaction, 

coupled with a colour reaction, between a first reactant added in gaseous form 

to the air and a second reactant absorbed in wet paper coating one of the 

walls. The authors reported maps of the local heat (mass) transfer coefficient 

and plots of the average Nusselt number and of the equivalent friction factor 

as functions of 0. Under comparable conditions, results were in good agreement 

with those measured by Focke et al. [1985] and by other authors [Okada et al. 

1972; Zogg 1972] .
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6.1.4 Previous experimental and computational work

a) experimental measurements

Experiments were carried out at the City University using a purposely modified 

blow-down, low-turbulence wind tunnel. The test section consisted of a couple 

of PVC plates, bearing corrugations about twice the size of those in a typical 

rotary regenerator. The plates were mounted at an angle 0 so as to include 

about 6-7 unitary cells streamwise and 10-12 spanwise. The top plate had its 

lower (i.e. inner, or air) side coated by a sheet of thermochromic liquid 

crystals (TLC), while a uniform temperature was provided on its upper (i.e. 

outer, or water) side by a constant-temperature water bath.

The liquid crystals had an event temperature range of 27.0 to 29.6°C. In 

the actual measurements, only the green colour band (corresponding to a TLC 

temperature T = 28.3±0.075°C) was used, as it is the brightest and sharpest. 

The air temperature T^ was kept fixed at about 45°C, while the temperature T^ 

of the water bath was changed stepwise between ~13°C and 28°C. For each value 

of T̂ , the resulting steady-state colour pattern was recorded and analysed by 

a "true-colour" image-processing system; the associated Nusselt number was 

computed from:

Nu = --------- --------  (6.13)
R T, - T A

f g

in which R is the overall thermal resistance of the corrugated plate + TLC

package. By letting T^ vary, a series of contours of Nu were thus obtained.

<Nu> was computed by automatically averaging Nu over the "active" surface (top

wall) . Since the experimental conditions approach uniform-wall temperature

ones, <Nu> is very close to Nu here.
av

The air velocity along the corrugations was measured by a thin 

Pitot-ifeaft̂ Q probe, and the "reference" velocity v was estimated from this. 

The wall pressure distribution was measured by a micromanometer and pressure 

tappings, ~.S mm in diameter, located along the "crests" and "troughs" of the 

top corrugated plate, and was used to compute the equivalent friction 

coefficient f.

Reference values and ranges investigated for the basic parameters which

characterize the corrugation geometry are summarized in Table 6.1. The
2 3

surface-to-volume ratio for the reference geometry is S/V=280 m /m .
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Table 6.1 - Basic parameters characterizing the experimental geometry

Parameter Symbol Reference value Range

Wall thickness s 0.075 cm

Sinusoid length L 3.70 -

Pitch/height ratio P/H 3.66 3.66, 2.84, 2.41 , Z.

Corrugation angle 0 36° 30°- 80°

Reynolds number Re 2450 1000 - 7000

Complete results from the above investigation have been reported in a series 

of confidential reports [VV.AA. 1989-1992]; selected results have also been 

presented in unclassified reports or at different conferences and meetings, 

e.g. by Stasiek and Collins [1991], Shand [1990], Ciofalo et al. [1991.a, 

1991.b].

b) numerical predictions

Under typical operating conditions, in a rotary regenerator of the type

studied the Reynolds number ranges from ~1500 to 3000. Thus, transitional and

weakly turbulent flow is expected, which - as it is well known - is very hard

to predict by conventional turbulence models.

In former predictive studies [Ciofalo et al.1990, 1991], it was decided

to investigate the Reynolds number-dependence of the main performance
2 4

parameters by considering a broad range of Reynolds numbers (from 10 to 10 ), 

and obtaining laminar solutions up to Re=3000 and k-£ turbulent solutions at 

higher Reynolds numbers, with some overlapping of the two ranges. A correction 

procedure was also developed to take somehow into account the errors arising 

from the application of the high-Reynolds number form of the k-& model to 

situations in which the near-wall grid points inevitably lay within the 

viscous sublayer (unless very coarse grids were used). This approach was 

expected to yield upper and lower bounds for the heat transfer and pressure 

drop coefficients in the intermediate, and most interesting, range. Also, by 

comparison with experimental data, it was expected to assist in characterizing 

features and effects of the transition to turbulence.

Typical results for the reference geometry in Table 6.1 are summarized in 

Figures 6 .6 (a) and (b) for the friction coefficient and the average Nusselt
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number, respectively; they are, indeed, strongly suggestive of transitional 

flow. The experimental slope of Nuav vs. Re appears to be even higher - in the 

whole range investigated - than that predicted by the k-E model, whilst the 

experimental slope of f vs. Re appears lower. On the other hand, the 

experimental angle-dependence of both f and Nu^v is much higher than that 

predicted by either method. Actually, most of the angle-dependence seems to be 

associated with the influence of the corrugation angle on the Reynolds number 

at which transition occurs, rather than with "true" turbulence promotion.

Further predictive studies were conducted by using a low-Reynolds number 

turbulence model, very similar to that proposed by Lam and Bremhorst [1981] 

and purposely implemented in Harwell-FL0W3D, Release 2 [Ciofalo 1991]. Results 

were presented, for example, by Ciofalo et al. [1992]. The experimental 

Reynolds number - dependence of both f and Nu^v was predicted much better than 

by the above approaches, though some discrepancy persisted, especially in the 

angle-dependence of these parameters. Some of these results will be compared 

with the present LES predictions in Section 6.3.

6.2 Model and methods

Typical large computers perform a floating multiply in about 240 ps ... 

The main or fast memories have capacities of 500 to 100,000 words ...

[W.C.Sangren, 'Digital Computer and Nuclear Reactor Calculations', 1960]

6.2,1 Grid generation

Whatever the computational approach used, the computational domain (unitary 

cell) sketched in Figure 6.5 has first to be spanned by a body-fitted grid of 

hexahedral control volumes. For the sake of generality, the grid should 

include both the fluid region and the solid (wall) region, although the latter 

provision is strictly required only if coupled conduction-convection problems 

are to be treated (this was not done here). Also, a layer of "dummy" control 

volumes, surrounding the body, has to be included in order to impose boundary 

conditions, as required by the discretization method implemented in 

Harwell-FLOW3D, Release 2 (see Chapter 3).

The grid is completely specified by assigning the coordinates of the 

corners of the control volumes in the (cartesian) reference frame Oxyz, and 

storing them in the three-dimensional arrays XC(I,J,K), YC(I,J,K), ZC(I,J,K). 

The indices I,J,K can be regarded as discrete values of inner (generalized)
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coordinates; with reference to Figure 6.5(a), the index I runs from face D 

("Down") to face U ("Up"), the index K from face W ("West") to face E ("East") 

and the index J from bottom to top (directions S, "South" and N, "North"). A 

control volume is specified by the three indices I,J and K, while XC(I,J,K) 

etc. can be regarded as the (cartesian) coordinates of the (D,S,W) corner of 

the volume itself (see Figure 2.2). The three indices range from 1 to NI, NJ 

and NK, respectively, when labelling a control volume, and from 1 to NI+1, 

NJ+1 and NK+1, respectively, when labelling a corner. It should be observed

that the constant-I surfaces are planes parallel to each other only in the

upper portion of the body (y>0) and the constant-K surfaces only in the lower 

portion (y<0 ); they become curved surfaces in the opposite half of the body. 

The constant-J surfaces are all curved, except the one for J=NJ/2+l which 

coincides with the midplane y=0 .

Although grid-generation packages are available both for FL0W3D and as 

general-purpose software, a purposely-built routine was used here. It follows 

an approach first suggested by Fodemski and Collins [1989] and takes advantage 

of the fact that the computational domain can be mapped smoothly onto a cube

and is symmetric for a 180°-rotation around the "a" axis (main flow

direction). The grid generation can thus be split into two subtasks:

- generation of a two-dimensional, body-fitted grid on a face (say,"D");

- translations and reflections of this to generate a three-dimensional grid 

spanning the entire body.

a) - Generation of a two-dimensional auxiliary grid

Consider the face labelled D ("Down") in Figure 6.5(a). A local system of 

coordinates f , c a n  be introduced in the plane of this face. For symmetry 

reasons, only one half of the face needs to be considered. Moreover, we can 

separate the task of generating a body-fitted grid in the fluid region from 

that of adding the necessary control volumes in the solid wall and dummy 

volumes around the body.

Figure 6.7 shows the left half of a face I=constant on the physical plane 

(a) and on the transformed plane K-J (b). In order to avoid degeneration 

of control volumes, it was found convenient [Fodemski 1990] to replace the 

original geometry (sinusoid OQEB) with the modified geometry shown (piecewise 

line OO^QEB). This requires the choice of a value for 00^; the assumption 

00^=0D=s (wall thickness) seemed to be appropriate. This slight departure from 

the "true" geometry is not expected to affect flow and heat transfer results 

to any significant extent.
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Now, a body-fitted 2-D grid spanning the region O-^QEBAO^ is generated as 

follows. First, point E is arbitrarily located on the line O^B (the choice 

Ve=(2/3)T/2 turned out to be effective). The grid points lying on the boundary 

O^EBA are then prescribed by subdividing the two tracts O-̂ A and EB (lines 

J=constant) into even intervals, and the two tracts O^E and AB (lines 

K=constant) into , also even, intervals. Finally, the coordinates of the 

inner grid points (corners of control 'volumes') are computed by the simple 

iterative procedure:

t =- (£
5 K,J 8 K-1,J-1

\ ,  J=8 ^ K - l ,  J-l

+ ̂K, J-l+ ̂ K+l, J-1+ K̂-1, 

+\ ,  J-1+ 7 K+1, J-l^K-l,

J+ K̂+1, J+^K-1, J+1+ K̂, J+1 + ̂K+1, J+l* 

J + \ + l , J+^K-1, J+l+%, J+1+/?K+1, J+l)

(6.14a)

(6.14b)

i.e. by computing the grid point coordinates at each iteration as the average 

of those of the 8  neighbouring points at the previous one. With reference to 

Figure 6.7, the initial values of the inner point coordinates to use in 

Eqns.(6.14) can be assumed to be:

^K,J ° ° 1
+ 0 1A (K-Kx) /

\ rJ = AB (J-J^ /

(6.15.a)

(6.15.b)

i.e., the "starting" grid is the uniform rectangular grid spanning the recta-

ngle O^E'BA.

This method is similar to that proposed by Amsden and Hirt [1973]; 

however, in Amsden and Hirt the boundary points move towards their final 

positions during the iterative process, while here they are placed in their 

final positions from the beginning. It is easy to see that solving Eqns.(6.14) 

is equivalent to solving numerically a Laplace equation for Preliminary

numerical experiments showed that the results were almost identical if the 

"diagonal" points (K-1,J-1 etc.) were not included in the averages, thus 

reducing the 8 -point formulae (6.14) to simpler 4-point formulae. The method 

converges in a few iterations (e.g., 50 for the relative variation of all £'s 

and ^'s between two consecutive iterations to fall below 10  ̂ if N^=N =14), 

and has never exhibited stability problems.

A typical result of the above grid generation method is shown in Figure

6 .8 (a) for N,=N =14, N =1. It should be observed that the wall-fluid interface 
r t w

O^EB is a constant-K line in the tract O^E, but is a constant-J line in the 

tract EB, see Figure 6.7.
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In order to add control volumes in the solid wall and "dummy" control

volumes, the outer wall profile, line DFC in Figure 6.7(a), is approximated by

a sinusoid of slightly different pitch, and slightly shifted, with respect to

the basic sinusoid OQEB. The wall thickness s is subdivided into N layers,w
and an additional layer is generated around the body by means of algebraic 

formulae. Details are cumbersome and will not be given here. Finally, the 

half-grid can be reflexed around its right boundary to yield the complete grid 

spanning a constant-I slice of the upper part of the computational domain., as 

shown in Figure 6 .8 (b). The boundary values of the two indices K and J are 

also reported; here:

The 2-D grid on the "slice" shown includes NK * NJ/2 cells, 

b) - Generation of the three-dimensional grid

The "assemblage" of a complete three-dimensional grid spanning the computa-

tional domain is now simply accomplished by translating the 2-D grid of Figure 

6 .8 (b) along the I-direction to span the upper half of the body, and then 

upturning, rotating and translating it along the K-direction to span the lower 

half. The resulting 3-D grid has NI=NK and NJ volumes along the I, K and J 

directions respectively, see Eqns.(6.16). Final formulae for the coordinates 

of the control volume corners in the Oxyz reference frame of Figure 6.5(a), 

following the usual FLOW3D conventions, are:

Region y > 0 - For 1=1 to NI+1, J=NJ/2+l to NJ+1, K=1 to NK+1:

NJ = 2(N»+N +1) 
l w

NK = 2 (Nt+N +1)
C  T.7

(6.16.a) 

(6.16.b)

(6.17.a) 

(6.17.b) 

(6.17.c)

Region y  ̂0 - For 1=1 to NI+1, J=1 to NJ/2, K=1 to NK+1:

XC(I, J,K) 

YC (I, J, K) 

ZC(I, J,K)

K̂,lsinlS + V;

^I,NJ/2+2-J 
, cosB +

.K. f -L ' _I, NJ/2+2-J'

I,NJ/2+2-J
.cosB

sinB

(6.18.a) 

(6.18.b)

(6.18.C)
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in which fi = tt/4-0/2 .

For the "reference" geometry of Table 6.1, a typical resulting 3-D grid 

(including solid and "dummy" volumes) is shown in Figure 6.9(a). The solid 

wall is evidenced. As N*=N~=14, N =1, it follows from Eqns.(6.16) that for
5 c W

this grid NI=NJ=NK=32. Two "slices" of the same grid are shown (without 

"dummy" cells) in Figures 6.9(b,c). They lie on the midplane y=0 and on the 

plane C-C parallel to the bottom corrugation, respectively.

6.2.2 Suborid model and turbulence statistics

The Smagorinsky-Lilly subgrid model, widely described in Chapters 2 (theory) 

and 3 (implementation), was used. The constant cs was set to 0.08, i.e. to the 

value which gave the best results in plane- and ribbed-channel simulations. 

However, some cases, including different Reynolds numbers, were run with no 

subgrid model (c = 0 , i.e. as direct simulations), a comparison of the results 

is given in Section 6.3.1.

For the present geometry, it is not possible to identify "homogeneous"

directions along which to build representative ensemble statistics (these were

planes parallel to the walls for the plane channel in Chapter 4 and lines

parallel to the ribs for the ribbed channel in Chapter 5). Thus, quantities

such as <Q> or Q" (see Nomenclature) could not be defined; instead, mean and

fluctuating components were defined with reference to time, i.e. as time

averages Q and time fluctuations Q'=Q-Q.

By analogy with the plane-channel case, the LETOT was defined here as

<5/ut, being 5 a conventional channel half-height, defined as D /.4 (the

hydraulic diameter is defined in Section 6.1.3 for the present geometry), and
1 / 2

u y a conventional friction velocity equal to ( | t  | /<p) , with l t q i = ô  |Ap| / Aa

(i.e., Ô times the mean pressure gradient along the main flow direction "a").

For the reference geometry of Table 6.1 and a Reynolds number of 2450, 1 LETOT
- 2

is equal to -«1.25*10 s. Simulations were usually protracted for 5 LETOT's; 

this includes a "startup" period of 3 LETOT's, necessary for the influence of 

initial conditions to die away and a (statistically) steady state to be 

attained, followed by a period of 2 LETOT's over which time averages and other 

statistics were taken.

6.2.3 Boundary and initial conditions

For the present simulations, the inlet-outlet faces D,U,W,E of Figure 6.5(a) 

were assumed to be periodic surfaces, i.e. surfaces on which the flow
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variables repeat themselves periodically from face D to U and from face W to 

E. This approach is appropriate to simulate the flow and temperature fields in 

the generic cell of the exchanger, far downstream from intakes, in which fully 

developed flow and thermal conditions can reasonably be assumed to have been 

attained.

As usual, the intrinsically non-periodic quantities p (pressure) and T
* :k

(temperature) must be replaced by their periodic components p , T (i.e., 

"true" p and T plus a term varying linearly along the main flow direction 

"a"). Pressure losses have to be balanced by adding to the right-hand side of 

the momentum equation (4.2), written for the x- and z- directions, the source 

terms (driving pressure gradients):

Fx = Fz = >Apl 7  $ Aa) (6‘19)

Similarly, heat input into the fluid has to be balanced by adding to the 

right-hand side of the energy equation (4.3) the "sink" term:

(u+w) / '
ST = - — --------  l q  dS (6.20)

42 Aa M c L  w 
' P 'S

in which u and w are the cartesian velocity components along x and z, respe-

ctively.

Note that previous laminar and k-s simulations were run by imposing the 

required value of the Reynolds number, Re°, and adjusting the driving pressure 

gradient |Ap! in Eqn.(6.19) at each SIMPLEC iteration according to the actual 

Reynolds number Re. The result was a damped oscillation (along the "iteration 

axis") of both Re and |Apl , slowly converging to a steady state. However, in 

the present time-dependent, large-eddy simulations it was preferred to avoid 

the introduction of such artificial fluctuations; thus, the pressure drop was 

imposed while the Reynolds number was left free of varying in time as a result 

of the computation. Sensible initial flow rates were chosen on the basis of 

the experimental results and of preliminary simulations.

Alternative flow boundary conditions, consisting of defining faces D and 

W as inlets (Dirichlet boundaries) and the opposite faces U and E as outlets 

(Neumann boundaries), were used in previous (laminar and turbulent) 

steady-state simulations. This approach, repeated for a number of unitary 

cells in series, was more suitable for the simulation of developing flow 

(e.g., entrance effects in the experimental rig). However, this was not 

attempted here; as it is well known, the direct or large-eddy simulation of
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non-periodic flows raises considerable problems, particularly related to the 

necessity of building a suitable time-dependent inlet flow.

As regards the thermal boundary conditions at the solid walls, both in the 

test rig and in a real exchanger the true conditions are somewhat intermediate 

between uniform-T and uniform-q . Two different sets of thermal wall boundary 

conditions were used here: the first (uniform-heat flux conditions) were 

chosen as being the simplest and most universal to run a reference case, for 

which detailed computational results will be presented in Section 6.3.2, and 

to conduct a parametrical study on the influence of computational options and 

physical parameters. The second (mixed conditions) were used to compare 

results with experimental measurements; they approximated better the 

experimental conditions and consisted of setting:

in which, as was described in Section 6.1.4, R is the overall thermal 

resistance of the corrugated plate+liquid crystal package, and T^ is the 

(uniform) temperature of the water bath (assumed here to be 20.5°C).

Predicted Nusselt numbers, and their dependence upon the Reynolds number 

and the corrugation angle, were little affected by the particular conditions 

chosen (see also Section 6.3.5). It should be observed that, in periodic flow 

simulations, the integral at the right-hand side of Eqn.(6.19) has to be 

computed explicitly at each iteration and time step if uniform-temperature or 

"mixed" conditions are used, while it becomes a known constant under uniform 

wall heat flux assumptions.

The solid wall was regarded as non-conducting in the present simulations, 

and the boundary conditions were directly specified at the fluid-wall 

interface. Further remarks on this choice are to be found in Section 6.3.5.

Initial conditions consisted of setting in the upper and lower duct of

the unitary cell a plug velocity profile v^/cosiO/2), parallel to the

corresponding corrugation, and superimposing on this random fluctuations

having spatial-rms values u , v , w (as computed over the whole cell
rms rms rms r

volume) proportional to the "conventional" friction velocity u , defined in 

Section 6.2.2. The proportionality constant was just 1 in most cases. As 

previously observed for plane and ribbed channels, the resulting starting flow 

field does not satisfy continuity; however, this is not a critical drawback 

for the flow solvers used here (i.e., the SIMPLEC algorithm), and a

q

q on the top wall 

on the bottom wall

(6.21.a)

(6 .2 1 .b)
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divergence-free flow field, still containing significant three-dimensional 

fluctuations, is generated after a few time steps.

6.2.4 Time stepping, pressure-velocity coupling and spatial differencing

On the basis of the previous LES experience with different geometries

(Chapters 4 and 5), Crank-Nicolson time stepping was chosen, and time steps in 
- 2

the range 0.5-2*10 LETOT's were tested (see Section 6.3.1 for a comparison 

of the results).

As to the pressure-velocity coupling algorithm, the present body-fitted 

grids require deferred correction of the non-orthogonality terms (see Chapter 

3) and thus prevents the use of PISO or PISOC in a non-iterative fashion. 

Since there is no significant advantage in using PISO(C) with multiple

iterations per time step, the more reliable SIMPLEC algorithm was used. The 

maximum number of iterations per time step was set to 1 0 , and underrelaxation 

factors of 0.65 (velocities, viscosity) and 0.75 (temperature) were commonly 

used. As usual, the linear equation solvers ST3D (transport equations) and 

ICCG (pressure-correction equation) were selected, with a maximum of 10 and 25 

"inner" iterations, respectively. Central differencing was used for the

advection terms.

6.2.5 Programming and computational aspects

Release 2.1 of Harwell-FLOW3D, in the FORTRAN-frontend input mode, was used. 

Besides the LES modifications described in Chapter 3, minor 'ad hoc' 

modifications were implemented in order to compute local and average wall heat 

transfer coefficients, to input the data in an easy-to-use format, and to 

process the instantaneous results into time-averages and fluctuations. A 

purposely written subroutine, called in turn by USRGRD, was used for the grid

generation; it makes dynamic use of the working arrays WORK and IWORK in order

to save storage.

All simulations were run on the IBM 3090 —200J of the University of 

Palermo Computing Centre (CUC). Since Extended-Memory facilities have been 

recently implemented, allowing up to 64 Mbytes of in-core storage, it was 

possible to test finer grids (up to 42 control volumes) than those used for 

the plane and ribbed channel simulations in Chapters 4 and 5. No use was made 

of the Vector Facility since the code compiled with the "Vector" option gave 

troubles at runtime. Typical CPU times were about 150 seconds per time step 

with a computational grid having 32 control volumes, and 240 seconds per time
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step with 42 volumes. Most simulations were protracted for only five LETOT's 

(250 time steps); even so, typical values of the CPU time ranged from 10 to 16 

hours, i.e. close to the maximum which can be realistically afforded.

As has been previously remarked, standard graphic post-processors (e.g. 

the OUTPROC package) are not suitable for the treatment of time-dependent, 

three-dimensional results, since they would require the handling and storage 

of very large files. Moreover, they cannot generally handle time-averaged or 

fluctuating fields. Thus, results were dumped only for selected slices of the 

computational domain and were post-processed by purposely-written simple 

programs, based on GDDM software (used with a Tektronics graphic terminal) and 

on Apple-Toolbox software (used with a Macintosh-LC personal computer).

3

6.3 Results and discussion

By carefully constructing a model and watching it on 

a computer we can demonstrate the emergence of form 

out of chaos, and shape from what had been erratic

[C.A.Whitney, 'Random Processes in Physical Systems']

6.3.1 General aspects and sensitivity analysis 

a) Influence of the subgrid model

The time-behaviour of. the three velocity components u,v,w along x,y,z (see 
y>->o  n  1 lo fV -.« ,

Figure 6.5) at a + point -'located near the centre of face U (outlet of the

upper corrugation) is reported in Figure 6.10 (a-c) for the reference case

(i.e., 0=36°, Re°=3000) as computed with and without a subgrid model, i.e. for

c =0.08 (large-eddy simulation) and c = 0  (direct simulation).
 ̂ s

In both cases, it is possible to identify a short initial transient (less 

than 1 LETOT) during which the initial fluctuation amplitude decreases mark-

edly, and the effect of initial conditions is rapidly "forgotten". This is 

followed by a longer transient (2-3 LETOT's) during which mean velocities 

develop towards asymptotic values; note that, although the flow rate as a 

whole decreases, the velocities at the monitoring point increase as a full-

y-developed velocity field is gradually developed. After about 3 LETOT's, one 

can assume that statistically steady (ergodic) conditions have been attained. 

The corresponding fluctuations are clearly larger and more irregular for the 

case cs=0 (no subgrid model, i.e. direct simulation). In either case, however, 

they exhibit the same general behaviour, with a sharp dominant frequency Fof
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about 7 LETOT ^. As it is particularly clear for the cs=0.08 case, u and w 

components oscillate out of phase by about 180°, which is strongly suggestive 

of quasi-periodic oscillations of the velocity direction, with small changes 

in amplitude, at the monitoring point considered here. This conclusion is 

supported by the examination of consecutive instantaneous velocity vector 

plots for the same test case, see examples in Section 6.3.2.

The Reynolds number, averaged over LETOT's 3 to 5, is about 2450 both for

c =0 and for c =0.08; thus, there is no significant difference between LES and s s
DS as far as the equivalent friction coefficient is concerned (in both cases, 

f=0.069).

The time-behaviour of the instantaneous average Nusselt number Nu for
3. V

0=36° and different Reynolds numbers, computed either by LES (cs=0.08) or by 

DS (c =0), is reported in Figure 6.11(a). In all cases, Nu decreases rapidly 

for 2-3 LETOT's as wall thermal boundary layers grow starting from the init-

ial, uniform temperature conditions; asymptotic values are practically atta-

ined after 3 LETOT's. The influence of the subgrid model increases markedly 

with the Reynolds number; there are almost no differences between LES and DS 

results for Re=776, while for Re=4250 the predicted Nusselt number is *'10% 

higher if a subgrid model is used. A similar behaviour was observed for the 

equivalent friction factor.

The above results may be summarized by saying that the use of a subgrid 

model yields smaller and more regular velocity fluctuations; its influence on 

overall quantities such as the friction coefficient and the average Nusselt 

number becomes significant only for Re>2-3000 and is otherwise negligible.

The behaviour of the instantaneous average Nusselt number for Re°=3000 

and increasing corrugation angles is reported in Figure 6.11(b). It shows 

that, while values of Nu increase markedly with 0, practically asymptotic 

values are always attained after about 3 LETOT's. This supports the rest-

riction of the transient duration to 5 LETOT's and the use of the period 

between 3 and 5 LETOT's as the time-averaging interval.

b) Grid- and time step-dependence

The behaviour of the instantaneous average Nusselt number Nu for 0=36“and
0   ̂̂

Re =3000 is reported in Figure 6.12(a) as computed by using three prog-

ressively finer grids having 24^ (13824), 32^ (32768), and 42^ (74088) control 

volumes, respectively. Differences are clearly negligible for the two finest 

grids.

The pressure distributions on the top wall of the unitary cell (time 

averaged over LETOT's 3 to 5 and normalized by |t | ), obtained with the three
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above grids for the same reference case, are compared in Figure 6.13 (a-c).

Note that pressure is the flow variable most sensitive to computational 

methods and numerical accuracy. Again, while the results obtained with the 

coarsest grid are clearly different (and probably affected by spurious spatial 

oscillations, or "wiggles"), the results from the two finest grids differ only 

in minor details.
3

The above comparisons support the use of the intermediate (32 -volume) 

grid as the reference one for the parametrical study whose results will be 

summarized in the following Sections.

The instantaneous Nusselt number computed for the reference case by using 

two values of the time step (1/100 and 1/50 of a LETOT) are compared in Figure 

6.12(b). Results are barely distinguishable, which justifies the use of the 

larger of the two values as the standard one in all the following simulations.

6.3.2 Detailed results for the reference case

Velocity vector plots in the midplane y=0 for 0=36°, Re°=3000 (Re=2450),
3

computed by a 32 -volume grid for At=l/50 (LETOT) and cs=0.08 (reference

case), are reported in Figure 6.14.

Graph (a) refers to the time-averaged velocity field (the time averaging 

having been made over LETOT's 3 to 5). It shows, as expected, velocities 

directed almost everywhere along the main flow direction, with higher fluid 

speeds in the central region, and is on the whole very similar to that obta-

ined by using a low-Reynolds number turbulence model for the same conditions 

[Ciofalo et al. 1992], Graph (b) refers to the instantaneous field at t=4.2

LETOT's; it shows how the fluid "meanders" about the main flow direction, the

largest oscillations being found in the central region of the unitary cell. 

Oscillations are clearly induced by the instability of the "spiral" shea-

r-layer which is established between the two streams flowing in the upper and 

lower corrugation. The corresponding fluctuating (i.e., instantaneous minus 

time-averaged) velocity field is shown in graph (c) (note the different 

velocity scale) .

Corresponding vector plots, but for the slice C-C in Figure 6.5 (parallel 

to the bottom corrugation), are reported in Figure 6.15 (a-c). Significant 

instantaneous velocity fluctuations can be observed.

Vector plots of the in-plane velocity field in the cross-section N-N of 

Figure 6.5, normal to the top corrugation, are reported in Figure 6.16. Both 

the time-averaged (a) and the instantaneous (b) fields are shown (at different
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scales) . Vectors in the bottom region would be very large at the present scale 

(and would not show any interesting detail), so that they were not drawn.

The time-averaged flow field shows clearly the presence of swirl in the 

upper duct, induced by the fluid stream flowing in the lower one. Swirling 

flow in a similar geometry was predicted and visualized also by Henry and 

Collins [1991] from laminar and standard k-£ simulations; their results, 

however, exhibited a single central swirl cell, while in the present LES ones 

the main circulation cell is shifted to the right (i.e., along the flow 

direction in the bottom duct), and a secondary circulation cell is clearly 

visible on the left. The (time-averaged) swirl intensity is rather low; 

typical velocities in Figure 6.16(a) are less than one tenth the reference 

velocity v . Thus, it is unlikely that the swirl has any significant influence 

on the pressure-drop and heat-transfer characteristics of the corrugated 

geometry.

The instantaneous velocity field in section N-N, Figure 6.16(b), exhibits 

large velocity fluctuations near the midplane; no clear circulation cell can 

be identified.

Selected time-averaged scalar fields in the midplane are shown for the refe-
k

rence case in Figure 6.17 (a-c): the pressure p , normalized by the "conv-

entional" reference stress |tq | ; the temperature T , normalized by 

TT=qw/(9 CpUT); and the subgrid viscosity normalized by the laminar

viscosity p. The same time-averaged scalars are shown in Figure 6.18 (a-c) for 

the slice C-C parallel to the bottom corrugation. It must be kept in mind that
k

p consists of what is left of the pressure field once the mean pressure 

gradient (-)ApI Ma*a, "a" being a coordinate aligned with the main flow
k

direction) has been subtracted; thus, p is periodic between the inlet and 

outlet faces of the unitary cell (D-U, W-E in Figure 6.5). Also, in LES it 

includes the kinetic term (2/3)çk, "k being the unresolved turbulence energy.
k

Similar remarks hold for T , which is only the periodic component of the 

"true" temperature T.

Note how the lowest pressures, graphs (a), are attained near the "throat" 

of the lower duct. The temperature distribution, graphs (b), exhibits a 

characteristic "hot curl" near the midplane on the left, shortly downstream of 

the region where highest heat transfer rates occur. The subgrid viscosity, 

graphs (c), is largest about the midplane, i.e. within the "spiral" 

shear-layer occurring between the upper and lower fluid streams. Note that, 

for the present Reynolds number, corrugation angle and grid resolution, small
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values of the subgrid viscosity are obtained; ps is less than 0.5p over most 

of the midplane, and less than 0.15|i over most of the computational domain.

An idea of the time-evolution of scalar fields in the midplane is given 

by Figures 6.19 (pressure) and 6.20 (temperature). Both figures show three 

consecutive "frames" corresponding to t=4.0, 4.2 and 4.4 LETOT's,

respectively; the interval between two consecutive "frames" (1/5 of a LETOT) 

was resolved by 10 time steps in the simulation. Note that temperature 

fluctuations are advected downstream by the mean flow, while pressure 

fluctuations are not.

Time-averaged distributions of pressure p , wall shear-stress intensity |t | 

and (local) Nusselt number Nu on the top wall are reported for the reference
i i *

case in Figure 6.21 (a-c) . Both p and (t j are normalized by lT0 l-

The close similarity between the surface distributions of I t  I and Nu 

should be observed; under the present conditions, both quantities are

concentrated mostly on the right edge of the top wall, and exhibit a marked 

maximum near the trailing corner of the unitary cell. A secondary maximum is 

also visible near the centre of the right edge.

A vector plot of the instantaneous wall shear stress field on the top 

wall (at t=4 LETOT's) is shown for the same case in Figure 6.22. The 

concentration of stress on the right edge, especially in the upper (i.e ., 

downstream) end, can be clearly seen.

The time-evolution of surface quantities is suggested by Figures 6.23 

(wall pressure), 6.24 (wall shear stress intensity) and 6.25 (local Nusselt

number). As in Figures 6.19 and 6.20, instantaneous fields are shown for

t=4.0, 4.2 and 4.4 LETOT's, i.e. every 0.2 LETOT's (10 time steps). Note how 

also instantaneous distributions of |t | and Nu maintain a close similarity, 

and how both quantities can occasionally attain local values much higher than 

the corresponding time-averages.

6.3.3 Influence of the Reynolds number

The increasing influence of the subgrid model as the Reynolds number increases 

was discussed in Section 6.3.1. As expected, the relative amplitude of 

velocity fluctations increases with the Reynolds number in the present 

transitional range. Figure 6.26 (a-c) compares the behaviour of the three

velocity components u,v,w at the centre of face U (outlet of the upper 

corrugated duct) as computed for 0=36° and Re=776, 2450, and 4130. For this

corrugation angle, at the lowest Reynolds number fluctuations die away almost
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completely, and laminar flow is predicted. The intermediate Reynolds number is 

the "reference" case, fully examined in the above Section. At the highest Re, 

fluctuations are considerably larger; also, it becomes possible to distinguish 

in the time evolution of the velocities a first stage (LETOT's 0-3) during 

which they are irregular and relatively low, and a second (fully-developed ?) 

stage in which they attain larger values and become more regular 

(quasi-periodic) with a dominant frequency F. The corresponding Strouhal 

number, defined as Fô/u (number of periods in one LETOT) and clearly 

associated with the frequency of vortices such as those in Figure 6.14(b), is 

"7 at all Reynolds numbers for this 0.

The increase of the (relative) fluctuation amplitude with Re is confirmed 

by Figures 6.27 and 6.28, in which instantaneous velocity fields obtained at 

t=4 LETOT's for the three above Reynolds numbers and 0=36° are compared for 

the midplane and section C-C, respectively.

The influence of the Reynolds number on the swirling flow in the cross 

section N-N is evidenced in Figures 6.29 and 6.30, which show velocity vector 

plots of the instantaneous and time-averaged flow fields, respectively, for 

the three above values of Re. The latter figure shows that, as the Reynolds 

number increases, the swirl intensity - even once normalized by the reference 

velocity - increases significantly. Also, the swirl centre moves towards the 

centre of the duct. The secondary circulation cell on the left is almost 

completely absent at the lowest Reynolds number, while its position and 

relative intensity do not vary much between Re=2450 and Re=4130.

The influence of Re on time-averaged surface quantities is documented in 

Figures 6.31-6.33 (all for the top wall and 0=36°). Figure 6.31 is relative to 

the pressure field; it shows that, as the Reynolds number increases, the 

high-pressure region near the upper-right corner of the cell grows, and

pressure maxima (even once normalized by I t |) increase. Figure 6.32 shows tha
o

wall shear-stress intensity I t  I ,  normalized as usual by | t  i ; as Re increases, 

It (decreases in the central region but increases in the edge region where 

maxima are located, i.e. the distribution of i t i  becomes more peaked. Finally, 

Figure 6.33 reports the local Nusselt number; similar remarks hold, i.e. the 

distribution of Nu becomes less and less uniform as Re increases.

The above results can be summarized by saying that increasing Reynolds

numbers yield larger (relative) velocity fluctuations, a stronger swirl, and

more peaked distributions of pressure, shear stress intensity and local heat

transfer coefficient on the walls. The variation of f and Nu with Re was
av

studied in detail only for 0=37°; results will be reported in Section 6.3.5, 

where they will be compared with experimental wind-tunnel data.
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6.3.4 Influence of the corrugation angle

Figure 6.3.4 (a-c) reports the behaviour of the three velocity components at 

the usual monitoring point (centre of face U), as computed for Re°=3000 and 

0=36°, 48° and 60°, respecively. The large increase of the fluctuation 

amplitude with 0 is quite evident. The dominant frequency F of the velocity 

fluctuations, once expressed as a Strouhal number F6 /u (periods per LETOT), 

decreases with 0  from ~1 (0=36°) to ~ 6  (0=48°) and -'5 (0=60°) .

The instantaneous velocity fields in the midplane at t=4 LETOT's, 

obtained for the three above values of 0 and Re°=3000, are compared in Figure 

6.35 (a-c). As 0 increases, the region interested by large flow oscillations 

spreads considerably; for 0=36° only a narrow central "meandering" region can 

be observed, while for 0=60° almost the whole midplane is interested by large 

oscillations. Similar plots are reported in Figure 6.36 (a-c) for section C-C 

(parallel to the lower corrugation).

The swirl patterns in the cross section N-N computed for Re°=3000 and 

0=36°, 48° and 60° are compared in Figures 6.37 (instantaneous flow) and 6.38 

(time-averaged flow). Both figures show, as expected, a large increase of the 

swirl intensity with the corrugation angle. The time-averaged fields in Figure 

6.38 show that, as 0  increases, the secondary flow pattern in the cross 

section becomes increasingly complex; for 0=60°, up to four distinct 

circulation cells, two of which counter-rotating, can be observed.

The influence of the angle on time-averaged surface quantities is 

documented in Figures 6.39 (pressure), 6.40 (shear stress intensity) and 6.41
:k

(local Nusselt number). As usual, p and I t  I are normalized by the

"conventional" reference stress | t  | . The examination of Figures 6.39 and 6.40 

shows that, as © increases, the downstream high-pressure region spreads whilst 

the edge high-stress region shrinks (the fraction of the cell pressure drop 

lApI due to wall shear stress decreases, while the fraction due to bulk 

dissipation increases). The region near the right edge interested by high 

values of Nu, Figure 6.41, becomes more elongated, while overall Nusselt 

numbers levels increase significantly (note the different scales in Figure 

6.41) .

The dependence of f and Nuav on 0 was studied in detail only for

Re°=3000; results will be presented, and compared with wind-tunnel data, in

the following Section 6.3.5.

6.3.5 Comparison with experimental data
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Selected LES results are compared here with experimental data from the 

wind-tunnel measurements mentioned in Section 6.1 [VV.AA. 1989-1992, notably 

Report No.10 by J.Stasiek and M.W.Collins, 1992].

As anticipated in Section 6.2, for this comparison uniform heat flux

thermal boundary conditions at the walls were replaced by "mixed" conditions,

Eqns.(6.21), which are more appropriate to approximate the actual conditions

realized in the test section. However, they do not take into account the

coupling of convection with heat conduction in the wall, and thus the thermal

inertia of the latter; this would have required the explicit simulation of

conduction in the solid wall, which presents some unsolved difficulties for

periodic flow due to the particular structure of the computational grid. In

the real test section, the effect of the wall inertia is to completely

suppress wall temperature fluctuations, since the wall time constant (of the 
2

order of s /a = 5 seconds for the PVC plates) is much larger than the
. . -3

dominating period of the fluctuations (of the order of (1/7)6 /u = 2*10

seconds for Re=3000). This is confirmed by the fact that no significant

time-fluctuation of the wall temperature distribution (indicated by the liquid

crystal colour) was ever observed in the test section once steady-state

conditions had been reached.

The experimental and predicted (time-averaged) distributions of the local 

Nusselt number on the top (active) wall are compared in Figure 6.42 for 0=37°, 

Re=3900 and in Figure 6.43 for 0=60°, Re=Z400. There is some uncertainty in 

the experimental Reynolds numbers since total flow rates (i.e., cross-section 

averaged velocities) in the corrugated ducts were not directly measured but

rather inferred from the peak velocity, measured by a Pitot-tftteVV Pr°be.
3Simulations were conducted using a 32 -volume grid and setting cs=0.08.

For both corrugation angles, the experimental Nusselt number distribution 

is qualitatively well reproduced by the simulations (even in some details 

which might look at first sight as unreproducible idiosyncracies of the 

experimental method!). Peak values of Nu tend to be overpredicted, while the 

central flat minima are slightly underpredicted. On the whole, the agreement 

is better than that obtained by any other computational approach tested so 

far, including the use of a low-Reynolds number turbulence model [Ciofalo et 

al. 1992] .

For 0=37°, the predicted average Nusselt number, computed as in the 

experiments (i.e., as the surface-average <Nu> of the local values on the top 

wall) is~26.5, while the experiments give~27.5. For 0=60°, <Nu> (predicted) =30 

and <Nu>(experimental)-29. Thus, in both cases the average Nusselt number is 

predicted very well. Note that predicted values of <Nu> are close within a few
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percent to those computed for Nu from Eqn.(6 .11.b); these, in turn, are only 

slightly lower (less than 5%) than the values of Nuav computed under 

uniform-wall heat flux conditions for the same geometries and Reynolds numbers 

(for uniform-heat flux conditions <Nu> is rather ill-defined and may differ 

significantly from Nuav).

The Reynolds number - dependence of the predicted equivalent friction 

factor and average Nusselt number was investigated in the range 1000-7000 for 

a corrugation angle of 37°. Results are reported, and compared with 

experimental data, in Figure 6.44. Computational results obtained using 

laminar-flow assumptions, the standard k-£ model, and a low-Reynolds number 

k-£ model, are also shown. On the whole, LES predictions reproduce 

satisfactorily the observed Reynolds number dependence and lie very close to 

those obtained by the low-Re model; f is slightly overpredicted at the lowest 

Reynolds numbers and slightly underpredicted at the highest, while <Nu> is 

slightly overpredicted in the whole range, with the exception of the case 

Re=2500. The overall behaviour of laminar and standard k-a predictions is not 

satisfactory, as was previously shown for the whole range of 0 and Re in 

Figure 6 .6 .

The dependence of f and <Nu> on the corrugation angle 0 for Re=3000 is 

shown in Figure 6.45. As above, experimental data, LES predictions, and 

results from steady-state laminar, standard k-£, and low-Re k-£ computations, 

are reported. Values of the friction factor predicted by LES are very close to 

the low-Reynolds number k-£ results, and lie slightly below the experimental 

values (the largest discrepancy is observed for 0=48°). The 0-dependence of f 

seems to be reproduced better by LES. Values of <Nu> are predicted much better 

by LES than by the low-Reynolds number turbulence model, which tends to 

underpredict <Nu> over the whole range studied. Note the completely wrong 

0-dependence predicted for <Nu> by the standard k-£ model, and the strong 

underprediction obtained by assuming the flow to be laminar.

6.4 Conclusions

But these particulars are not my measure;

All these I better in one general best

[Shakespeare, Sonnet XCI]

Three-dimensional, time-dependent flow and temperature fields, and bulk head 

loss and heat transfer performances, were computed for a crossed-corrugated
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geometry in a range of Reynolds numbers and corrugation angles. A 

computational domain (unitary cell) was defined, and its geometrical and 

thermal-hydraulic characteristics were derived. A method for the generation of 

a body-fitted grid was developed. The continuity, Navier-Stok.es and energy 

equations were solved either directly or using the Smagorinsky-Lilly subgrid 

model, with cs=0.08 and a =0.5. Simulations were run for fully-developed flow 

by setting periodic boundary conditions at the inlet and outlet faces. At the 

walls, no-slip boundary conditions for the flow field, and either uniform-heat 

flux or "mixed" conditions for the temperature field, were imposed.

Most simulations were run for 5 LETOT's, defined in the text, of which 

the last two were used to compute time-averaged quantities. A sensitivity 

study showed that grids having 32 control volumes along each direction, and 

time steps of 1/50 of a LETOT, gave satisfactorily independent results. The 

use of a subgrid model for the unresolved scales led to slightly smaller and 

more regular velocity fluctuations; its influence on predicted bulk 

performances (time-averaged friction coefficient and mean Nusselt number) was 

found to be significant only above Re=2500.

The detailed examination of instantaneous velocity fields and of the 

time-behaviour of velocity components at monitoring points showed that most of 

the flow fluctuations arise from the instability of the "spiral" shear layer 

existing between the two fluid streams flowing in the upper and lower 

corrugated ducts, and are associated with large vortices localized about the 

midplane and lying roughly parallel to it. The frequency F of these vortices, 

once made dimensionless as a Strouhal number F6 /u , depends only on the 

corrugation angle and decreases from ~7 to ~5 as 0 increases from 36° to 60°. 

The relative intensity of the fluctuations increases both with © and with Re; 

for 0=36°, an almost completely laminar flow is predicted only for Re<1000.

A weak swirling flow exists in each of the two ducts; its relative 

intensity increases both with 0 and with Re. Moreover, as Re increases the 

swirl centre moves from the downstream side of each duct towards the centre; 

for 0=36°, a secondary (but co-rotating) circulation cell exists near the 

upstream edge of each duct. Increasing the corrugation angle makes the swirl 

pattern increasingly complex; up to four circulation cells can be identified 

in the cross-section of a duct for 0=60°.

The distribution of the local Nusselt number on an active wall is very 

similar, especially at low angles, to that of the wall shear stress intensity; 

both exhibit larger values on the downstream edge of the wall and flat minima 

in the central region of the duct. The corresponding distributions remain 

similar, but become more peaked, when the Reynolds number increases.
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Increasing corrugation angles lead to larger regions of intense heat transfer, 

while the relative importance of the wall shear stress in determining the 

overall pressure drop decreases.

Predictive results, with special regard to the surface distribution of Nu 

and to the Reynolds number- and angle- dependence of f and <Nu>, were compared 

with experimental wind-tunnel measurements. The agreement was very 

satisfactory, comparable (and under some respects superior) to that obtained 

by a low-Reynolds number turbulence model.

Due to the relatively fine grids required, to their non-orthogonal

nature, and to the use of SIMPLEC as the pressure-velocity coupling algorithm,

computing times were significantly larger than those mentioned for the plane

and ribbed channel in Chapters 4 and 5. Typical 5-LETOT simulations, with a 
3

32 -volume grid and At=l/50 (LETOT), required about 10 hours of CPU on the IBM 

3090-200J at the University of Palermo Computing Centre. However, these CPU 

requirements are only 2-3 times larger than those typical of a fully-converged 

steady-state simulation using a low-Reynolds number turbulence model on the 

same grid, and of course - besides being more accurate - provide a much larger 

insight into the nature and the behaviour of the flow and thermal fields.

Further predictive work on this subject should include the extension of 

the study to a wider range of geometrical parameters; the testing of alterna-

tive and more sophisticated subgrid models; and the development of graphic 

capabilities for an easier post-processing and a better understanding and 

comparison of the results.

As mentioned in Section 6.1, the present predictive study was paralleled 

by an experimental wind-tunnel research programme at the City University of 

London. The experiments for the sine-wave, crossed corrugated geometry, have 

just been concluded; it is now expected to extend the investigation to alter-

native corrugation geometries and shapes. Hopefully, the numerical simulation 

of these problems, including DS and LES predictions, will continue to assist 

in the planning, the assessment and the interpretation of the experiments.
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Figure 6.1 - Comparison of Ljungström and Rothemühle designs for rotary 

regenerators.
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Figure 6.2 - Perspective view of a Ljungström rotary regenerator.
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Figure 6.3 - Alternative corrugation designs for rotary regenerators.
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Figure 6.4 - Crossed corrugated heat transfer elements.

Figure 6.5 - Unitary cell (computational domain):

a) perspective view; b) midplane y=0 ;

c) section C-C parallel to the bottom corrugation;

d) cross-section N-N normal to the top corrugation.
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f

Figure 6.7 - Half-face I=constant and its equivalence to a rectangular 

domain having the same topology.

a) physical plane ; b) transformed plane K-J

Figure 6 . 8  - 2-D auxiliary grid on a constant-I plane:

a) half-grid in the fluid region for N^=N.^=14, N =1;

b) complete reflexed grid; extremal values of indices K and 

J are reported.
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Figure 6.9 - Example of a three-dimensional grid for N. =N =14, N =1:
 ̂ h T. ' w

a) perspective view; b) slice y= 0  (midplane); 

c) slice C-C parallel to the bottom corrugation.



Figure 6.10 - Behaviour of the three velocity components u,v,w at a monitoring

point located near the centre of face U, see Figure 6.5, for

P/Hi=4, 0=36° and Re°=3000:

a) c =0.08 (LES); b) c =0 (DS) .
s s
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Figure 6.11 - Behaviour of the average Nusselt number (starting from a 

uniform+random temperature field) for P/fb=4 and:

a) different Reynolds numbers, 0=36°, c =0.08 or 0;

b) different corrugation angles, Re°=3000, cs=0.08.
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Figure 6.12 - Behaviour of the average Nusselt number for P/EL=4, 0=36°,

Re°=3000, c =0.08, computed by:
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a) three different grids having 24 , 32 , 42 control volumes;

b) two different time steps (1/100 and 1/50 of a LETOT).
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Figure 6.13 - Time-averaged pressure distribution on the top wall for P/1L=4,

0=36°, Rev'=3000, c =0.03, computed by progressively finer grids
3 S 3 3

a) 24 volumes; b) 32 volumes; c) 42 volumes.
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Figure 6.14 - Reference case (P/H.=4, 0=36°, Re°=3000): time-averaaed (a), 

instantaneous (b) and fluctuating (c) velocity field in the 

midplane (t=4.2 LETOT's). The reference velocity v̂. is shown.
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Figure 6.15 Reference case (P/H,=4, 0=36°, Re0  

instantaneous (b) and fluctuating 

C-C (t=4.2 LETOT's). The reference

=3000) : time-averaged 

(c) velocity field in 

velocity v^ is shown

(a),

section
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Figure 6.16 - Reference case (P/H.,=4, 0=36°, Re°=3000): time-averaged (a) and 

instantaneous (b) velocity field in section N-N (normal to the 

top corrugation), showing swirling flow. Vectors in the lower 

half of the computational domain were not drawn. The reference 

velocity v is shown.
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Figure 6.17 - Reference case (P,GL=4, 0=36°, Re°=3000) : time-averaged

dimensionless pressure p* temperature T* and subgrid viscosity p 

in the midplane. Grey scales and normalization units are shown.
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Figure 6.18 - Reference case (P/H.=4, 0=36°, Re°=3000): time-averaged

dimensionless pressure p* temperature T*and subgrid viscosity 

in section C-C. Grey scales and normalization units are shown.
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Figure 6.19 - Reference case (F/H^=4, 0=3 6  , Re°=3000): instantaneous

dimensionless pressure field in the midplane. Grey scales and 

normalization units are shown, 

a) t=4.0  b) t=4.2  c) t=4 .4 (LETOT's).
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Figure 6.20 - Reference case (P/H.=4, 0=36°, Re~=3000): instantaneous

dimensionless temperature field in the midplane. Grey scales and

normalization units are shown.

a) t=4.0 b) t=4.2 c) t = 4.4 (LETOT’s).
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Figure 6.21 - Reference case (P/H.=4, 0-36°, Re°=3000): time-averaged

dimensionless pressure p* shear-stress intensity iti and Nusselt 

number Nu on the top wall. Grey scales and normalization units 

are shown.
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Figure 6.22 - Reference case (P/H.=4, G=36°, Re°=3000): vector plot of the

instantaneous stress field on the top wall at t=4.2 LETOT's. The

reference stress t is shown.
o
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Figure 6.23 - Reference case (P/H±=4, 0=36°, Re°=3000) : instantaneous 

dimensionless pressure on the top wall. Grey scales and 

normalization units are shown, 

a) t=4.0 b) t=4.2 c) t=4.4 (LETOT's).
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Figure 6.24 - Reference case (P/FL=4, 0=36°, Re°=3000): instantaneous

dimensionless shear-stress intensity on the top wall. Grey 

scales and normalization units are shown, 

a) t=4.0 b) t=4.2 c) t=4.4 (LETOT's).
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Figure 6.25 - Reference case (P/H.=4, 0=36°, Re°=3000): instantaneous 

Nusselt number on the top wall. Grey scales are shown, 

a) t=4.0 b) t=4.2 c) t=4.4 (LETOT's).
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Figure 6.26 - Behaviour of the three instantaneous velocity components u,v,w 

at centre of face U for 0=36° and increasing Reynolds numbers: 

a) Re=776 b) Re=2450 c) Re=4130
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Figure 6.27 - Instantaneous velocity field in the midplane at t=4 LETOT's for 

G=36° and increasing Reynolds numbers. The reference velocity v^ 

is shown.

a) Re-776 b) Re=2450 c) Re=4130
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Figure 6.28 - Instantaneous velocity field in section C-C at t=4 LETOT's for

0=36° and increasing Reynolds numbers. The reference velocity v^ 

is shown.

a) Re=776 b) Re=2450 c) Re=4130
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Figure 6.29 Instantaneous velocity field in section N-N at 

0=36° and increasing Reynolds numbers. The ref 

is shown. Vectors in the bottom half were not 

a) Re=776 b) Re=2450 c) Re=4130

t=4 LETOT's for 

erence velocity v 

drawn.
r
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Figure 6.30 Time-averaged velocity field in section N-N at t=4 LETOT's for 

©=36° and increasing Reynolds numbers. The reference velocity v 

is shown. Vectors in the bottom half were not drawn, 

a) Re=776 b) Re=2450 c) Re=4130

r
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Figure 6.31 - Time-averaged dimensionless pressure on the top wall for 0=36°

and increasing Reynolds numbers. Grey scales are shown, p* is

normalized by the reference stress I t  l .
o

a) Re=776 b) Re-2450 c) Re-4130
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Figure 6.32 - Time-averaged dimensionless shear-stress intensity on the top

wall for 0=36° and increasing Reynolds numbers. Grey scales are

shown. It I is normalized by the reference stress It I .
o

a) Re=776 b) Re=2450 c) Re=4130
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Figure 6.33 - Time-averaged Nusselt number on the top wall for 0=36° and 

increasing Reynolds numbers. Grey scales are shown, 

a) Re=776 b) Re=2450 c) Re=4130
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Figure 6.34 - Behaviour of 

at centre of

the three instantaneous velocity components u,v,w 

face U for Re°=3000 and increasing angles:

a) 0=36° b) 0=48° c) 0=60°
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Figure 6.35 - Instantaneous velocity field in the midplane at t=4 LETOT's for 

Re°=3000 and increasing angles. The reference velocity v^ 

is shown.

a) 0=36° b) 0=48° c) 0=60°
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Figure
■ 3 6  ~ Instantaneous velocity field in section C-C at t=4 LETOT's for 

Re =3000 and increasing angles. The reference velocity v^ 

is shown.

a) ©=36° b) 0=48° c) 0=60°
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Figure 6.37 Instantaneous velocity field in 

Re°=3000 and increasing angles, 

is shown. Vectors in the bottom 

a) 0=36° b) 0=48° c) 0=60

section N-N at t=4 LETOT's for

The reference velocity v1 r
half were not drawn.
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Figure j-38 - Time-averaged velocity field in section N-N at t=4 LETOT's for 

Re°=3000 and increasing angles. The reference velocity v̂_ 

is shown. Vectors in the bottom half were not drawn, 

a) 0=36° b) 0=480 c) 0=60°
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Figure 6.39 - Time-averaged dimensionless pressure on the top wall for

Re =3000 and increasing angles. Grey scales are shown, p is

normalized bv the reference stress |t i .
o

a) 0=36° b) 0=48° c) 0=60°
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Figure 6.40 - Time-averaged dimensionless shear-stress intensity on the top

wall for Re°=3000 and increasing angles. Grey scales are shown.

It ! is normalized by the reference stress |t | .
o

a) 0=36° b) 0=48° c) 0=60°
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Figure 6.41 - Time-averaged Nusselt number on the top wall for Re°=3000 and 

increasing angles. Grey scales are shown, 

a) 0=36° b) 0=48° c) 0=60°
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Figure 6.42 - Experimental (a) and predicted (b) Nusselt number distribution 

on the top wall for Re=3900 and 0=37°.
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Figure 6.43 - Experimental (a) and predicted (b) Nusselt number distribution 

on the top wall for Re=2400 and 0=60°.
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Figure 6.44 - Predicted vs. experimental equivalent friction coefficient (a) 

and average Musselt number (b) as functions of the Reynolds 

number for 0=37°. Predictions from large-eddy simulations and 

from steady-state laminar, standard k-£ and low-Reynolds number 

turbulent computations are reported.
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Figure 6.45 - Predicted vs. experimental equivalent friction coefficient (a) 

and average Nusselt number (b) as functions of the corrugation 

angle for Re=3000. Predictions from large-eddy simulations and 

from steady-state laminar, standard k-£ and low-Reynolds number 

turbulent computations are reported.
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CHAPTER 7 - CONCLUSIONS AND RECOMMENDATIONS

God keep me from ever completing anything. This whole 

book is but a draught - nay, but the draught of a draught. 

Oh, Time, Strength, Cash, and Patience !

[H.Melville, "Moby Dick"]

7.1 General aspects

The main purpose of the present work was to demonstrate the feasibility of LES 

flow and heat transfer predictions for both simple and complex (recirculating) 

flows using a general-purpose code, a simple subgrid model and relatively 

coarse grids. This purpose was essentially reached; satisfactory 20-LETOT 

simulations required about 6  hours of CPU time for the plane-channel flow 

(with 34*26*26=22,984 overall grid points) and about 9 hours for the ribbed 

duct (50*26*26=33,800 grid points) on an IBM 3090—200J computer, used in 

scalar mode, and from 5 to 10 times less on a CRAY-2 computer. Analysis of the 

behaviour of the solution for the latter problem (see for example Figure 5.3) 

shows that much shorter simulations ( 10 LETOT's) are sufficient in this case 

to get independence from initial conditions and satisfactory statistics. 

Comparable CPU times, but for shorter transients (5 LETOT's), were required 

for the third problem, i.e. the crossed-corrugated geometry, using a 32 -node 

grid.

For the simplest flow studied (smooth channel) several high-quality LES 

predictions are known. The present simulations suffered mainly from 

insufficient resolution of the computational domain, which resulted in a 

slight overprediction of the mean velocity and temperature profiles, and in a 

more significant overprediction of the streak spacing near the walls. 

Turbulence quantities, however, were predicted satisfactorily and coherent 

near-wall structures were qualitatively reproduced.

For the two more complex flows, the present study is among the first 

presented so far. Statistically stationary conditions were reached in both 

cases after a few LETOT's. In the ribbed channel, the mean flow rate was 

overpredicted as compared with experimental correlations, and so were 

turbulence levels in the bulk flow region; however, the overall flow structure 

and many fine details of the mean and fluctuating flow field were in good 

qualitative agreement with existing experimental data. Certain flow features 

were correctly predicted by LES but not by the k-e model, notably involving 

recirculation. For the crossed corrugated geometry, the study was limited to
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transitional and weakly turbulent conditions (Re=500-7000); the subgrid model 

had a significant influence on the results only for Re>2500, and played a 

minor role at lower Reynolds numbers. LES results were comparable with those 

obtained by using a low-Reynolds number turbulence model, and even better in 

reproducing the experimental Reynolds number- and angle-dependence of friction 

and heat transfer, and the surface-distribution of the local Nusselt number. 

Moreover, they included complex flow patterns - especially concerning swirl - 

which were not predicted by any other approach (unfortunately, experimental 

data are not available to validate these) .

As a rule, predictions concerning geometrically complex flows were found 

somewhat easier to obtain than those for the smooth channel, in that 

(statistically) steady-state conditions were attained earlier, results were 

less grid- and time step-dependent, and the comparison with conventional 

closure models was more favourable. Although this conclusion may look 

surprising, it is just a consequence of the fact - already mentioned in 

Section 5.4 - that in geometry-driven problems the overall flow and thermal 

fields, and related quantities such as the heat transfer and friction 

coefficients, are less sensitive than in a geometrically simple problem to the 

accuracy with which the fine details of the flow (e.g., in the near-wall 

regions) are resolved. A remarkable consequence of this is that the ability of 

a numerical procedure to predict accurately basic flows should not necessarily 

be regarded as a measure of its applicability to complex flows of engineering 

interest.

Finally, it should be stressed that all the results presented in this 

work were obtained by using a very simple model, containing only a few

'adjustable' parameters (i.e. the Smagorinsky constant c , the VanDriest
+ s 

constant A and, only for heat transfer predictions, the subgrid Prandtl

number o ). s
As regards the comparison with conventional turbulence models, it should 

be observed that the main point at issue is not whether LES performs "better" 

than these (e.g., the k-s). The amount of information provided by a 

three-dimensional, time-dependent simulation of a turbulent flow is incomp-

arably larger than that given by any time-average based turbulence model; 

under some circumstances, this may well overcome the disadvantage of a less 

accurate prediction of some mean property of the flow, especially as far as 

the simulation is used as a tool to assist our understanding of the physical 

mechanisms involved.
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7.2 Subgrid model and boundary conditions

Throughout this work, the only subgrid model used was that of Smagorinsky - 

Lilly, as described by Eqn.(2.103). It was first proposed for planetary 

atmospheric circulation problems, i.e. in a context where the term "subgrid" 

applies to scales of the order of 100 Km, and can be derived with sensible 

approximations only under the assumption of equilibrium between the energy 

transfer from large to small scales, and the energy dissipation by the latter. 

Thus, it is an "absolutely dissipative" model, incapable - as mentioned in 

Section 2.4.5 - of predicting energy backscatter from small to large scales, 

and suitable (in principle) only for high-Reynolds number, fully turbulent 

flows. In addition to this, of course, it is a gradient-diffusion model and 

thus cannot predict subgrid Reynolds stresses not aligned with the 

corresponding large-scale strain rates.

Considering all this, the Smagorinsky - Lilly model would seem to be 

sadly unfit to moderate - Reynolds number, wall bounded flows such as those 

studied in the present work. As a matter of fact, however, this model has been 

widely applied to such flows, as reviewed in section 2.6. Though various 

shortcomings have been described, and various alternative models have been 

proposed and applied to specific problems, no simple alternative, applicable 

to general geometries, is at hand. Modified two-component models, such as 

those used by Moin and Kim [1982] and later by Voke [1989] and other authors, 

are based on ensemble-averages which can be defined only for plane channels 

and strictly related geometries. Similarly, varying-cs models, such as 

proposed by Kobayashi et al. [1985.b] or by Morinishi and Kobayashi [1990], 

depend too much on the specific geometry considered. The subgrid stress 

transport model developed by the NCAR group [Deardorff 1973.b] is exceedingly 

complex for general use and inevitably involves a host of rather dubious 

"free" constants; significantly, the same authors reverted to simpler models 

in later studies. Probably, the only models which have given some clear proof 

of being superior to the Smagorinsky model, while retaining a sufficient 

universality and simplicity, are the one-equation subgrid energy - transport 

models derived first by Schumann [1975] and, in similar forms, by Deardorff 

[1976, 1980] and Horiuti [1985.a]. However, even these models contain 

geometry-dependent parameters and can not be simply extended to geometries 

different from those for which they were originally optimized.
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As to the main "free" parameter of the model, i.e. the Smagorinsky 

constant c , its effect was studied here only for the smooth-channel flow in 

Chapter 4, for which reliable reference results were available for comparison. 

It was found that letting cg vary had a significant influence only on the 

near-wall flow structure and on turbulence spectra, while affecting only 

weakly the overall flow and temperature fields. The value of 0.08 was selected 

as the most adequate, and was successively applied with satisfactory results, 

with no "ad-hoc" re-optimization, to the different and more complex geometries 

studied. This figure is well within the range of values proposed in the 

literature, as discussed in Section 2.4.5(11).

Alternative near-wall damping functions were tested for the same 

smooth-channel case. No large difference was found in the results, so that the 

simple and widely used VanDriest function, Eqn.(2.102.a), was used for all the 

geometries studied.

Subgrid heat transport was modelled in all cases through a simple gradient 

diffusion model, involving a single "free" constant (the subgrid Prandtl 

number o ). An early optimization of this parameter, based on PISOC runs for 

the plane channel [Ciofalo and Collins 1992] led to the low value os=0.25, 

which is rather unrealistic and close to the lower end of the range of values 

proposed in the literature. The combination PISOC / os=0.25, however, was used 

for all the ribbed-channel simulations in Chapter 5. Later, however, a more 

detailed parametrical study evidenced that temperature profiles and heat 

transfer coefficients are particularly sensitive to the numerical accuracy 

attained, and that simulations based on the SIMPLEC algorithm, with several 

iterations per time step, gave the best heat transfer results for os=0.5, 

which is a more realistic value about in the middle of the literature range. 

The combination SIMPLEC / os=0.5 was used for the later simulations concerning 

the smooth channel (Chapter 4) and for the crossed-corrugated geometry 

(Chapter 6 ).

The above remarks throw a shade of suspicion on the various "physical" 

considerations that have been proposed to account for each of the broadly 

scattered values of og in the literature, as surveyed in Section 2.4.5(IV). It 

is well possible that, once numerical accuracy problems were overcome, these 

would converge to a single figure, perhaps close to that generally accepted 

for the "turbulent Prandtl number" ô_ ( 0.8-0.9).

For the smooth channel only, a number of alternative formulations of the wall 

boundary conditions were implemented and compared. In particular, the various
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formulations described by Piomelli et al. [1989] were re-cast so as to apply 

both to low Reynolds numbers (resolved sublayer) and to high Reynolds numbers 

(unresolved sublayer, i.e. true "synthetic" wall boundary conditions). Note 

that in LES, even in the former case, wall boundary conditions do not simply 

collapse to no-slip conditions, since the strain rate-stress proportionality 

may still be assumed to hold either locally or globally, with many variants in 

the details. However, in both cases no significant influence on the results 

was observed, so that a clear preference was expressed for the "local" 

formulation of Section 2.5.1 (similar to that proposed by Mason and Callen 

[1986]) which offers the great advantage of being applicable, unlike all the 

rival models, to general geometries.

The initial conditions for all the cases studied were simply generated by 

superimposing random and isotropic velocity fluctuations, of the order of the 

friction velocity u , on a plug velocity profile. Though the resulting 

starting flow field was not physically realizable for an incompressible fluid, 

as it was not divergence-free, the flow solvers did not have any troubles in 

dealing with this and in turning the flow into a divergence-free one within a 

few time steps.

In the smooth-channel case only, an undesired consequence of the 

enforcement of continuity was that most of the initial fluctuations were 

damped out, leaving a low-turbulence flow which in turn took a long time to 

develop again sustained and statistically stationary turbulence levels. It is 

well possible that, by using a divergence-free initial field, the 

low-turbulence stage could be bypassed, thus greatly reducing the required 

transient duration and the associated CPU time (such flows can be generated by 

building an appropriate pseudo-random vector velocity potential and computing 

its curl).

On the other hand, for the two geometrically complex flows of Chapters 5 

and 6  the enforcement of a divergence-free flow was not associated with any 

significant suppression of turbulent fluctuations, so that the initial 

conditions used here appear quite acceptable for these problems.

7.3 Numerical methods and computational aspects

The numerical methods used throughout the present study were all chosen among 

the standard ones implemented in the Harwell-FL0W3D (Release 2) code, as 

described in Section 3.2 and in Appendix A.
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As regards the pressure-velocity coupling algorithm, the earliest 

simulations conducted (which include most of the smooth-channel runs in 

Chapter 4 and all the ribbed-channel runs in Chapter 5) made use of the PISOC 

method in its non-iterative form (1 "iteration" per time step). The residual 

reduction factors required to stop the "inner" iterations of the 

linear-equation solvers were set to 0.01 for ST3D (transport equations) and 

0.005 for ICCG (pressure correction equation). The corresponding maximum 

allowed numbers of iterations were set to 100 and 250, respectively. Of 

course, no underrelaxation was used.

However, a subsequent comparison with SIMPLEC (used with 10 iterations 

per time step, residual reduction factors of 0.1 (ST3D) and 0.05 (ICCG), and 

maximum numbers of iterations of 10 and 25, respectively) for the 

smooth-channel case evidenced a clear superiority of the latter algorithm: 

statistical stationarity was attained earlier, the overprediction of the mean 

velocity profile was reduced, and fluctuation profiles closer to experimental 

values were obtained. The most relevant difference, however, was the large 

reduction of the temperature drop in the central region of the channel allowed 

by the use of SIMPLEC, clearly related to the larger values predicted for the 

cross-stream velocity fluctuations v"rms- As a consequence, as was mentioned 

in Section 7.2 above, the best agreement with reference data for the tempera-

ture profile and the heat transfer coefficient was obtained for a larger and 

more realistic value of the subgrid Prandtl number og (0.5) than required by 

PISOC.

Moreover, the use of PISO(C) in a non-iterative form is incompatible with 

all situations requiring the "deferred correction" approach described in 

Section 3.2; these include nonorthogonal grids and higher-order differencing 

schemes. Finally, it has to be mentioned that using PISOC non-iteratively with 

a later version (Release 2.3) of the same code led to a rapid divergence of 

the instantaneous velocities after 30-50 time steps, although up to that point 

the solution was practically coincident with the (stable) one obtained using 

the reference code (Release 2.1). The reason for this has remained, so far, 

unexplained despite much consulting with the (patient!) code developers.

For all the above reasons, SIMPLEC was selected as the most accurate and 

reliable algorithm for all the subsequent simulations, including a part of the 

smooth-channel runs in Chapter 4 and all the corrugated-geometry runs in 

Chapter 6 . A price had to be paid, however, in that computing times increased 

about 2.5 times with respect to PISOC (with the above mentioned iteration- 

control parameters).
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As to the differencing schemes used for the advection terms, most simulations 

were based simply on the central scheme (CDS). For testing purposes only, some 

plane-channel runs were repeated using the higher-order schemes QUICK and 

CCCT. These comparisons were made using the code release 2.3, and, of course, 

the iterative SIMPLEC method.

As discussed in Section 4.5.8, results were disappointing. Both QUICK and 

(especially) CCCT yielded low and asymmetric profiles of the secondary fluct-

uations v" , w" ; CCCT also led to a gross overprediction both of the mean
- L i l l o  -L ilLo

velocity and of the mean temperature drop across the channel. With both 

algorithms, unrealistically high time-fluctuations of the resolved turbulence 

energy were obtained.

Thus, central differencing appeared to have no real competitors for this 

kind of simulations. It may be mentioned that the highest values of the Peclet 

cell number Pec (= uAx/a) were about 10,000 for the plane-channel simulations 

(high-Reynolds number cases in Section 4.6.2), about 5000 for the ribbed 

channel simulations and about 500 for the crossed-corrugated geometry. These 

figures are indeed quite high for central differencing to be used; neverthel-

ess, the use of moderate time steps and the robustness of the linear equation 

solvers were sufficient to prevent instability problems.

The time-step values used in most simulations ranged from 1/200 to 1/50 of a 

LETOT (defined in the text for the different geometries). In this range, the 

observed time-dependence of the results was not large, though a residual 

difference could still be observed in the smooth-channel case between the 

results for 1/100 and 1/200 (Section 4.5.5). For this geometry only, also a 

very coarse time step of 1/25 of a LETOT was tested, and was found to damp 

(though not completely) the turbulent fluctuations.

With the grids commonly used (having 32 or 48 cells in the downstream 

direction), a time step of 1/50 (LETOT) corresponds to a maximum Courant 

number (uAt/Ax) decreasing from about 2 for the smooth channel to 1 for the 

ribbed channel and 0.5 for the crossed-corrugated geometry (independent of the 

Reynolds number). Since the use of an explicit method would typically require 

Courant numbers of 0.3-0.5, it is clear that the advantage of using the 

present, implicit approach (as far as the time step is concerned !) decreases 

in the same order for the three above geometries. Needless to say, an explicit 

method would require much less computing effort per time step. Actually, the 

advantage of using implicit methods is expected to be very little in direct or 

large-eddy simulations in general, since - independent of stability
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considerations - the Courant number must be kept small in order to capture the 

time-fluctuations of the flow field and to get sustained turbulence.

It has to be mentioned that for all the problems studied simulations were 

successful only when Crank-Nicolson time-stepping was used. The fully-implicit 

backward method, which was tested both for the plane channel and for the 

crossed corrugated geometry, led in both cases to a severe damping of the 

fluctuations even when the time step was reduced to 1/200 of LETOT, and thus 

was discarded as too dissipative for large-eddy simulations.

Finally, as regards the computational grids employed, many relevant remarks 

(concerning the cell Peclet number, the Courant number, the wall boundary 

conditions etc.) have been implicitly made in the above sections. The "refer-

ence" grids had 32*24*24 volumes along the streamwise, cross-stream and 

spanwise directions, respectively (excluding the "dummy" external ones) in the 

smooth-channel case, 48*24*24 for the ribbed channel and 32*32*32 for the 

crossed corrugated geometry. In the last case, at Re<2000 and moderate 

corrugation angles (37-48°) three cells lay in the viscous sublayer y+<ll over 

most of the walls; as discussed by Chapman [1979] and Grotzbach [1986], under 

these conditions also direct turbulence simulations should be reliable, which 

was confirmed by the fact that very little difference in the results was 

obtained when the Smagorinsky constant cg was set to zero. However, for the 

other two geometries, at the Reynolds numbers investigated the grids had only 

one near-wall volume lying in the viscous sublayer and, in the high-Reynolds 

number plane-channel simulations of Section 4.6.2, there was no cell in the 

sublayer.

7.4 Recommendations for further work

In the following, some areas are indicated in which, to the author's opinion, 

validation and development efforts should be concentrated and applications 

look more promising.

a) The extension of the simulations to non-periodic geometries. Streamwise and 

spanwise periodicity assumptions, used throughout the present work, are 

clearly the simplest to deal with in large-eddy simulations; however, they 

greatly reduce the field of the applications and cut out such interesting 

problems as the flow over isolated obstacles (including backsteps, circular 

duct expansions etc.) and entrance effects in pipes or exchangers.
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While fully-developed outflow conditions are probably adequate enough in 

most cases, the generation of suitable, time-dependent inflow conditions is 

much more difficult. The few authors who have presented non-periodic large 

eddy simulations [Schmitt and Friedrich 1987; Morinishi and Kobayashi 1990; 

Silveira-Neto et al. 1991; Werner and Wengle 1989] have recurred in most cases 

to preliminary, fully-developed (periodic) flow simulations from which a 

single "slice", normal to the main flow direction, was extracted, stored for 

all consecutive time steps and successively used as the inflow condition for 

the non-periodic problem. Of course, this requires a considerable amount of 

extra computing time; for long transients, also the necessary disk storage may 

become a problem. It is possible that, for strongly geometry-driven flows such 

as those considered in Chapters 5 and 6 , the exact spatial and spectral 

distribution of the inlet velocities would not be relevant, and that satisfa-

ctory time-dependent inflow conditions can be prescribed by some suitable 

simple law.

b) The development and validation of better subgrid models. These should 

maintain the universality of the Smagorinsky-Lilly model while improving over 

this as regards not only the description of subgrid mechanisms, but also the 

resulting quality of the large-scale predictions. As discussed previously, 

this does not look like an easy task; one-equation models, based on a trans-

port equation for the subgrid turbulence energy, are probably the most promi-

sing.

c) The application to transitional flows (which include a host of problems of 

direct engineering interest concerning heat exchangers, free-convection etc.). 

The results in Chapter 6 confirm that for these problems the direct or large 

eddy simulation approach may well give results better than conventional 

"low-Reynolds number" turbulence models even when relatively coarse grids, and 

somewhat inadequate physical models, are employed. Moreover, in complex 

geometries for which even conventional simulations should be run in three 

dimensions, the extra computing effort required by DS and LES may really be 

very low and - to the author's opinion - more than payed for by the much 

larger wealth of information that can thus be gained.

Finally, two remarks on numerical aspects seem to be appropriate.

First, for the reasons discussed above, the implementation of explicit 

time-stepping capabilities would be greatly beneficial in large-eddy
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simulations and should be sought if the application of general-purpose, 

flexible codes to LES is regarded as a promising area.

Secondly, the development and testing of more advanced physical models 

(including subgrid models) would not make much sense if it were not accompa-

nied by a detailed investigation of the accuracy of the numerical methods 

employed; as discussed above in these conclusions, many drawbacks that were 

regarded, at first sight, as inherent shortcomings of the models used turned 

out to be rather a consequence of numerical inaccuracies, and to vanish once 

better algorithms or finer resolutions were adopted. Of course, this is true 

in general for numerical fluid dynamics, but is particularly true for the 

three-dimensional, time-dependent simulations to which this work is dedicated.
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Appendix A - Definitions and main formulae of tensor calculus

A . 1 Coordinate transformation

Let x 1  be cartesian coordinates and I 1  generalized coordinates. A 

computational domain of arbitrary shape in the "physical" space x1  can be 

mapped into a simple parallelepiped of the "computational" space f1 (see 

Figure 3.2). Let a non-singular coordinate transformation between the x^s and 

the f1,s exist, so that both the functions (x\x^,x^) and their

inverses x 1  = are single-valued. Any body-fitted grid in the

"physical" space x1  can be generated by specifying the functions x 1  ( ^ ) , 

either analytically or in discrete form, e.g. by specifying the coordinates x1  

of all cell corners.

The geometrical properties of the coordinate transformation are described 

by the Jacobian matrix:

= 3xk/3V1  (A.l.a)

or from the inverse Jacobian matrix:

Jik = 9 ^ k/3x1  (A.l.b)

K.
The determinant J=det(J^ ) is called the Jacobian of the transformation and is 

nonzero everywhere for non-singular transformations. The terms:

A .k = J J~,k (A.l.c)
1 1

form the adiuaate Jacobian matrix.

The elements of the Jacobian matrices allow two systems of basis vectors

to be defined in the curvilinear space \ a system of covariant vectors e,̂ ,
* i >= cix/^ (tangential to the coordinate lines) and a system of contravariant

vectors (normal to the coordinate surfaces ^constant) . Their

cartesian components (in the x1 -system) are given by:

e <i)]k = Jik
(A.2.a)

e (ll]„ = j /k k
(A.2.b)
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basis vectors e,,,. The area vectors (normal to the faces of Q and having (1 )  ----------------------------
moduli equal to the corresponding areas) are:

The Jacobian J is the volume of the parallelepiped Q spanned by the covariant

A ( 1 )

6 (2) xe(3)
(A.3.a)

and similar; they can also be expressed as:

(i) = J e (A.3.b)

so that, see Eqn.(A.2.b), their cartesian components are given by:

i.e., the vectors A ^  are the rows of the adjugate Jacobian matrix, 

Eqn.(A.1.c).

A.2 Scalars, vectors and tensors

a) Scalars - A scalar field Q is invariant, i.e. its values do not depend on 

the particular reference frame used.

b) Vectors - A vector v can be expressed as a linear combination of either the

covariant basis vectors e,..:
(i)

v = v'* e ^ (A.5.a)

or the contravariant basis vectors e ^ 1  :

v = v'. e b) * * * * * * * * * (l) (A.5.b)

(summation over repeated indices is not implied here). The coefficients v'.

and v ' 1  are respectively called covariant and contravariant components of v. 

The apex will be omitted for the components of v in a cartesian frame x ; in

this case, covariant and contravariant components coincide (v1 =v^).

In changing the reference frame from to ^1 n̂ew) the covariant

components are transformed as:
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(new)
= v

(old) g ̂  j (old) ̂ i  (new)
(A.6 .a)

i.e., like the partial derivatives of a scalar field, while the contravariant 

components are transformed as:

vii(new) = v ,j(old) ̂  ̂ i(new)j(old)
(A.6 .b)

i.e., like the differentials of the independent variables.

The transformation rules (A.6 ) may also be used as the definition of 

covariant and contravariant (simple) scalar systems. Of course, they still 

hold if either of the old or new coordinate systems is cartesian.

c) Tensors - A tensor T can be defined as a double system of covariant (T^), 

contravariant (T1-1) or mixed (T̂ -1) scalars, which follow the transformation 

rules:

T (new)
ij

. m (Old) 
lk [3 f1

(old)^i(new)^ jg. k (old) ̂ j  (new)
] (A.7.a)

Tij(new) = Tlk(old) ( n e w ) -1 (old)^ J(new)/ 3 |k(old) ] (A.7 . b)

T j(new) 
i

. T k(old) 
1

^ 1  (old) (new) ̂ ^  - j (new) ̂ k  (old)
] (A.7.c)

Of special relevance is the metric tensor g, expressed in covariant

contravariant components, respectively, by:

gij = Jikjik = [9xk/3^] [3xk/3$j] = e (

glj = Jk1j'kj = [ d ) 1 / d > ^ ] [ d f / d x k ] = e (

metric tensor can be used to "raise" and "lower" indices, i.e. to express the 

contravariant components of a vector or tensor in terms of the covariant ones, 

etc.; for example:

. ,* e . ,, (A.8 .a)
i) (])

i). e (̂ (A.8 .b)

of g equals Ĵ , i.e., J-Vg. The

v^ = g^V.
]

Tij = gU gkjT
lk

(A.9.a) 

(A.9.b)
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Rather than working with the contravariant components v ' 1  of a vector field v, 

it is more physical to work with the normal flux components, defined as:

(A.10)

i.e., proportional to the contravariant components v'1. It is easily shown 

that :

(A.11)

in which = Vg e'1  ̂ are the area vectors defined previously.

A.3 Covariant derivation

a) Scalars - The partial derivatives of a scalar field Q with respect to the

components can be obtained by using the metric tensor to raise indices, as 

discussed in Section A.2:

transformed according to Eqns.(A.7) when the reference frame is changed. Thus, 

any differential equation, e.g. Eqn.(3.1), which is written in terms of 

partial derivatives, cannot be generalized as it stands to reference systems 

other than cartesian. Therefore, it is necessary to recast it into an 

invariant form; this is done by introducing the so called "covariant 

derivatives" of a vector v.

As v', = v 3x , the generic partial derivative Bv'^/3^ can be 

written as:

(general) coordinates fc1  form a simple covariant system; i.e., the derivatives 

BQ/S'j1  are the covariant components of the vector VQ. Its contravariant

(7Q) 1  = glj (VQ) . - glj d Q / d f (A.12)

b) Vectors - Consider a vector v having components vt or v ’ 1  in the general 

coordinate system I1, and components v 1  (=v̂ ) in the cartesian system x1. It 

is easy to verify that the partial derivatives of the components v 1, or v ’ 1

, i  1

with respect to the coordinates | do not constitute a tensor, i.e. are not
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3v' . 
i

3  k
dv ox

( vk ) = ---

Bf1 3I1 &

observing that v = ,n k 
v' dx /3fn

3v' . 3vk 3x^ 3xk
*
3xk

+ V

->2 ko X

at1 a*1
k , 1

+ v ,n

9x^ 3 ^  3 ^ 1 3 f  3 ^ 3 ^

( A . 1 3 . a)

7 ^  - v  1  \ *  / /^  V  3  I ft rr^ ~  \ ■

(A.13.b)

It is easily shown that, among the three terms of Eqn.(A.13.b), only the first 

term at the RHS possesses a tensor nature (i.e., is transformed according to

Eqns.(A.7)). It constitutes the tensor \7.v ' , of the covariant derivatives of
1  l ---------------------

v. The term in brakets in Eqn.(A.13.b) is called Christoffel symbol of the

first kind, and is synthetically denoted as [il,n]:

k ft 2 k
ox a x

[il,n] s ---------- (A.14)

Eqn.(A.13.b) can now be written in a form involving the covariant derivatives: 

dv' ,
l

V v' . = ----- [il,n] v'n (A. 15)

Eqn.(A.15) contains both covariant components v', and contravariant components 

v ,n; in order to express V^v'^ i-n terms of covariant components only, the 

metric tensor g 1 - 1 can be used to raise the appropriate indices: v ,n = g1 ]v',. 

Thus, Eqn.(A.15) can be written:

dv' .
i

V^v' = ----- {il, j} V* . (A.16.a)

&  3

in which the terms:
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■a k o 2  k o x  o x

{il,jl = g^n [il,n] = g^n ---------- (A.17)

3^n 3 ^ 3 ^

are called Christoffel symbols of the second kind, or connection coefficients.

Eqn.(A.16.a) expresses the covariant derivatives of v in terms of its 

covariant components vk . Similarly, it can be shown that:

3v ' 1

V V 1  = ---- + { jl, i} v ' ̂ (A. 16 .b)

3 ? 1

which expresses the covariant derivatives of v in terms of its contravariant 

components v'1.

Of particular interest is the covariant divergence of a vector field v. 
From Eqns.(A.8 ), (A.17) it follows that the connection coefficients can be 

written as:

1
. . . . k l r 9 g j i M i l 3 g i j ]
i ] , k } = -  g + ------- — -------

2 i s ? 1 j 3 ? 1 J

and in particular, for j=k:

{ik,k}
1

2

(A.18.a)

(A.18.b)

From the derivation rules for determinants [Finzi and Pastori 1961] it follows 

that the last equation can be written:

1  3  g 1  3 In g

{ik, k} = -------= --------- (A.18.C)

2 g 2  3 f X

Now, by definition the covariant divergence of v is (using for example 

contravariant components):
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+ (ji,i) V (A.19)

d v '1
. j

in which summation over i and j is understood. By substistuting Eqn.(A.18.c), 

written for (ji,i), into Eqn.(A.19), one has:

1  3g

V. v ' 1  = ----- + ---------v 1 ̂ (A.20.a)

Bf1 2g 3^

and, after some algebraic manipulation and changes of indices:

1  a
V.v ' 1  = -------(Vgv'1) (A.20.b)

/g

This is the covariant divergence of the vector field v expressed in terms of 

its contravariant components v ' 1 and of the Jacobian J = Vg.
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