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A B S T R A C T

Pulse rate variability (PRV) describes the changes in pulse rate through time, when measured using pulsatile
signals such as photoplethysmograms (PPG). PRV has been used as a surrogate of heart rate variability (HRV),
but their relationship is not straightforward, both due to physiological differences and to effects of technical
aspects on the extraction of PRV information from pulsatile signals such as the PPG. One of the factors that
may affect PRV analysis is the presence of noise and the filtering strategy used to pre-process the PPG signal. In
this study, the aim was to evaluate the best performing filtering strategy for the extraction of PRV information
reliably from noise-contaminated synthetic PPG signals. Time domain, frequency domain and Poincaré plot
indices were extracted from PRV trends obtained from the filtered PPG signals and compared against indices
measured from a gold-standard simulated PRV function. It was found that PRV information can be reliably
extracted from PPG signals filtered using lower low cutoff frequencies and elliptic IIR or equiripple or Parks–
McClellan FIR filters, however the filtering parameters depend on the type of noise present in the signal.
Moreover, special care should be taken to assess the pNN50 index from contaminated PPG signals, regardless
of the type of noise. Future studies should aim to validate these results from real PPG data.
1. Introduction

Pulse rate variability (PRV) refers to the changes in pulse rate
through time [1]. It is extracted from pulsatile signals such as pho-
toplethysmograms (PPGs), and has been proposed as an alternative
to the measurement of heart rate variability (HRV), which relies on
the acquisition and processing of electrocardiographic signals [2]. Due
to the widespread availability of PPG sensors, especially in wearable
devices [3], PRV extracted from PPGs has been gaining attention in
the last decades, and researchers have used it for several applications,
including the monitoring and prediction of mental and cardiovascular
diseases [1].

Nonetheless, the relationship between HRV and PRV is not entirely
understood, and there is evidence of a different behaviour on these
two variables under different circumstances. It has been demonstrated
that physiological aspects, such as changes in blood pressure, pulse
transit time and respiration, may affect PRV in a different way than
HRV [4–8]. Also, technical aspects have been proposed as important
causes for the differences between HRV and PRV. Some of the factors
that has been considered as possible contributors to these differences
are the sampling rate used for acquire the PPG, the fiducial points
used for the detection of the inter-beat intervals (IBIs) from the PPG,
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and the pre-processing strategies used for extracting PRV from PPG
signals [1,9].

The pre-processing alternatives to extract PRV information from
PPG may include processes such as scaling, outlier removal, detrend-
ing, resampling and filtering. Particularly the latter one may have an
important role in the reliability of PRV information, especially when
noise-contaminated signals are considered, which makes it harder to
extract IBIs with confidence. The aim of this study was to investigate
the performance of different filtering techniques when applied to PPG
signals corrupted with different types of noise. Also, the study investi-
gated how various filters affected PRV indices, with an ultimate goal
to determine the best performing filter for PRV analysis. Therefore,
PPG signals were simulated with 15 different types of noise and PRV
was extracted from the filtered signals. The extracted PRV indices were
compared to gold-standard PRV information and the best performing
filtering strategy for each kind of noise-contaminated PPG signals was
determined.

2. Materials and methods

The simulation and processing of PPG signals and PRV was per-
formed in MATLAB (version 2020b), while statistical analyses were
vailable online 21 October 2022
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Table 1
Ranges for the Pulse Rate Variability (PRV) parameters and the generation of PRV gold
standard values.

Parameter Range Units

Low frequency peak location (LF) 0.04–0.15 Hz
High frequency peak location (HF) 0.15–0.40 Hz
Average pulse rate (PR) 40–200 Beats per minute (bpm)
Standard deviation of pulse rate (SD) 0.05–0.08 s

Table 2
Parameters used for the simulation of noise corrupted photoplethysmographic (PPG)
signals. RES: Respiratory noise; BW: Baseline wandering; EM: Electromagnetic noise;
MA: Movement artifact. 𝐴𝑛: Proportion of the noise amplitude with respect to the PPG
ignal amplitude; 𝑓 : Fundamental frequency of the noise. x: Indicates the inclusion of

the specific type of noise in the resulting signal.
Combination Types of noise Parameters

RES BW EM MA 𝐴𝑛 𝑓 (Hz)

C1 x – – – 0.1 0.15
C2 – x – – 0.5 [0.08, 0.18]
C3 – – x – 0.1 60
C4 – – – x 0.07 [1.02, 7.31, 5.06]
C5 x x – – RES: 0.1

BW: 0.5
RES: 0.15
BW: [0.08, 0.18]

C6 x – x – RES: 0.1
EM: 0.1

RES: 0.15
EM: 60

C7 x – – x RES: 0.1
MA: 0.07

RES: 0.15
MA: [1.02, 7.31, 5.06]

C8 – x x – BW: 0.5
EM: 0.1

BW: [0.08, 0.18]
EM: 60

C9 – x – x BW: 0.5
MA: 0.07

BW: [0.08, 0.18]
MA: [1.02, 7.31, 5.06]

C10 – – x x EM: 0.1
MA: 0.07

EM: 60
MA: [1.02, 7.31, 5.06]

C11 x x x – RES: 0.1
BW: 0.5
EM: 0.1

RES: 0.15
BW: [0.08, 0.18]
EM: 60

C12 x x – x RES: 0.1
BW: 0.5
MA: 0.07

RES: 0.15
BW: [0.08, 0.18]
MA: [1.02, 7.31, 5.06]

C13 x – x x RES: 0.1
EM: 0.1
MA: 0.07

RES: 0.15
EM: 60
MA: [1.02, 7.31, 5.06]

C14 – x x x BW: 0.5
EM: 0.1
MA: 0.07

BW: [0.08, 0.18]
EM: 60
MA: [1.02, 7.31, 5.06]

C15 x x x x RES: 0.1
BW: 0.5
EM: 0.1
MA: 0.07

RES: 0.15
BW: [0.08, 0.18]
EM: 60
MA: [1.02, 7.31, 5.06]

done in RStudio (version 1.4.1717). Fig. 1 summarises the method-
ology proposed in this study.

2.1. Signal simulation

PPG signals were simulated using a modified version of the model
proposed by Tang et al. [10,11]. In their model, a single cardiac
cycle was simulated using the sum of two Gaussian functions with
parameters set to obtain excellent and acceptable quality PPG signals.
These parameters that describe the Gaussian functions, i.e., 𝑎𝑖, 𝑏𝑖 and
𝑖, were determined according to the behaviour of annotated PPG
ignals obtained from the MIMIC III database [12–14]. In the modified
ersion of this model, proposed in this study, the quality of the PPG
aveform can be set by modifying the ratio 𝑟 of the 𝑎 parameters

rom the two Gaussian functions, which alters the amplitude of the
aussian functions and, therefore, determines the presence or absence
f a dicrotic notch, and its amplitude. The 𝑏 and 𝜇 parameters were
elected according to what has been suggested in the original model
or the excellent quality PPG. The resulting model for the PPG cycle is
hown in (1), where 𝜃 corresponds to the four quadrant inverse tangent
2

n

of the cosine and sine functions of the duration of the cycle.

𝑧 = 𝑎(𝑒
− (𝜃−𝜇1)

2

2𝑏21 ) + 1
𝑟
𝑎(𝑒

− (𝜃−𝜇2)
2

2𝑏22 ) (1)

The duration of each of the cardiac cycles was modified in order
to include PRV information on the PPG signal. This was done by sim-
ulating PRV information as a sum of sinusoidal waves with randomly
generated parameters (Table 1) that fall inside plausible physiological
ranges for PRV.

The resulting function for the randomly generated PRV information
is shown in (2). As can be seen, a total of four sinusoidal waves were
summed, each of them with different fundamental frequencies, two for
each of the main frequency bands as found in PRV analysis. This was
done to increase the variability of the frequency spectrum and to alter
the area of each of the frequency bands. This function was used as gold-
standard for the comparison of PRV extracted from the PPG signals.

𝑃𝑅𝑉 = 𝑃𝑅 + 𝑆𝐷
2
∑

𝑖=1
(sin (2𝜋𝐿𝐹 (𝑖)𝑡) + sin (2𝜋𝐻𝐹 (𝑖)𝑡)) (2)

Simulated cardiac cycles were appended and the resulting signal
was detrended and low pass filtered using a second-order Butterworth
filter with cutoff frequency of 15 Hz. In this study, two types of PPG
signals were simulated, according to the ratio 𝑟 used to simulate the
amplitude of the Gaussian functions. Excellent quality PPG signals were
simulated with ratios of 𝑟 = 2, while acceptable quality PPG signals
were considered as those with 𝑟 = 4. The base cardiac cycles for these
two values of 𝑟 are illustrated in Fig. 2. The main difference between
these signals can be observed in the notoriety of the dicrotic notch,
i.e., its amplitude when compared to the amplitude of the systolic peak.
Fig. 3 depicts excellent and acceptable PPG signals simulated using the
model with the specified 𝑟 values, and with randomly generated PRV
information.

The proposed simulation framework allows also for the inclusion
of four different types of noise to the PPG signal or any of their
combinations. These noises were respiratory noise, baseline wandering,
electromagnetic noise and movement artifact. The mathematical model
for the respiratory noise follows an amplitude modulation method, and
is shown in (3), where 𝑥(𝑡) and 𝑦(𝑡) represent the clean and noisy
PG signals. There are two parameters that can be modified for this
ype of noise, the proportion of noise amplitude with respect to the
mplitude of the PPG signal, 𝐴𝑛, and the fundamental frequency for
he respiratory noise, 𝑓 [Hz].

(𝑡) = max (𝑥(𝑡))[1 + 𝐴𝑛(sin (2𝜋𝑓𝑡))]𝑥(𝑡) (3)

The mathematical model for baseline wandering noise is similar, as
hown in (4), but allows for the selection of 𝑁 frequency components
or the noise. In this case, the parameters are also the proportion
f amplitudes, 𝐴𝑛, and the fundamental frequencies of each of the
inusoidal waves to add as noise.

(𝑡) = max (𝑥(𝑡))[1 + 𝐴𝑛

𝑁
∑

𝑖=1
(sin (2𝜋𝑓 (𝑖)𝑡))]𝑥(𝑡) (4)

The electromagnetic noise is added as shown in (5), and the same
wo parameters, 𝐴𝑛 and 𝑓 , can be modified accordingly.

(𝑡) = 𝑥(𝑡) + 𝐴𝑛[max (𝑥(𝑡))] sin (2𝜋𝑓𝑡) (5)

Finally, the model for the movement artifact is shown in (6). It
onsists in the summation of 𝑁 sinusoidal waves, each of them with
fundamental frequency 𝑓 within 1 and 10 Hz. The proportion of

mplitudes 𝐴𝑛 allows for the modification of the signal-to-noise ratio,
s with the previously described types of noise.

(𝑡) = 𝑥(𝑡) + 𝐴𝑛[max (𝑥(𝑡))]
𝑁
∑

𝑖=1
sin (2𝜋𝑓 (𝑖)𝑡) (6)

Fig. 4 illustrates the resulting PPG signals when simulated without

oise and with each of the described noise types.
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Fig. 1. Flow diagram of the methodology employed in this study.
Fig. 2. Photoplethysmographic cardiac cycles generated using the proposed model, using ratios of value (a) 𝑟 = 2 (excellent quality), and (b) 𝑟 = 4 (acceptable quality). The blue
and orange dotted lines illustrate the two Gaussian functions generated, while the black continuous line shows the result of summing these two Gaussian functions, i.e., 𝑧.
For this study, PPG signals were simulated with 15 different types of
noise achieved by applying all possible combinations of the 4 types of
noise that can be simulated with the proposed framework. Table 2 sum-
marises these combinations and the parameters used for the generation
of noise. A total of 117 excellent and 117 acceptable quality PPG signals
for each of the noise combinations were simulated. These signals were
5 min long and had a 256 Hz sampling rate, which has been shown to
be a good sampling rate for PRV analysis from PPG signals [9,15].

2.2. Filtering strategies

Different types of filters were designed in order to evaluate which
filtering strategy produces more reliable PRV indices extracted from the
simulated noise-corrupted PPG signals. Both finite (FIR) and infinite
impulse response (IIR) filters were considered, with different orders and
low and high cutoff frequencies.

For FIR filters, 5 design methods were considered: Equiripple filter
(FIREQR), Hamming window (FIRWIN), constrained least squares (FIR-
CLS), least squares (FIRLS) and Parks–McClellan (FIRPM). For FIREQR
and FIRPM, the optimal order was determined using MATLAB built-
in functions, whereas for the remaining FIR filters, the sampling rate
𝑓 = 256 Hz was used as the order of the filter. In all cases, a
3

𝑠

3 dB passband ripple and a 40 dB stopband attenuation were consid-
ered. Similarly, two design methods were considered for IIR filters,
i.e., Butterworth (IIRBUT) and Elliptic (IIRELL) filters. For these filters,
the order was also optimised using MATLAB built-in functions, and
3 dB and 40 dB were considered as passband ripple and stopband
attenuation, respectively. A total of 210 filters were designed by com-
bining these parameters and the investigated values of low and high
cutoff frequencies. Low cutoff frequencies considered were 𝑓𝑐,𝑙𝑜𝑤 ∈
[0.0, 0.1, 0.2, 0.5, 1.0, 2.0] Hz, while high cutoff frequencies were 𝑓𝑐,ℎ𝑖𝑔ℎ ∈
[8, 10, 12, 15, 20] Hz.

2.3. Pulse rate variability assessment

The designed filters were applied to the noise-corrupted simulated
PPG signals, and IBIs were detected from the filtered signals using the
algorithm described in [16]. This algorithm is based on the generation
of blocks of interests using two moving averages, which are designed
according to the expected duration of cardiac cycles and the 𝑎 point
in the second derivative of the PPG signal. The location of the systolic
peak from the PPG signal was determined as the location of the maxi-
mum point in each block of interest. This algorithm has been found to
have a good performance for PRV analysis [9]. IBIs were then obtained
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Fig. 3. Example of photoplethysmographic (PPG) signals simulated using the proposed model and randomly generated pulse rate variability (PRV) information. (a) PPG signal
with excellent quality (𝑟 = 2). (b) PPG signal with acceptable quality (𝑟 = 4). (c) PRV information used for the generation of these signals.
as the time difference between consecutive 𝑎 points detected from each
of the identified cardiac cycles. IBIs longer than 1.25 times the median
duration of all the IBIs were corrected by looking for additional cardiac
cycles in each of these longer windows. IBIs shorter than 0.75 times the
median duration of IBIs were also detected and discarded.

PRV indices were then extracted from the time series created us-
ing the IBIs, as well as from the gold-standard PRV functions. The
average duration of cardiac cycles (AVNN), the standard deviation of
this duration (SDNN), the root-mean square value of the successive
differences between consecutive IBIs (RMMSD) and the proportion of
successive differences larger than 50 ms (pNN50) were used to describe
the behaviour of PRV trends in the time domain. Additionally, 1-lag
Poincaré plot indices were used to assess the non-linear behaviour of
PRV. Hence, the ellipse-fitting technique was used to extract informa-
tion from the Poincaré plot, and the area of the ellipse (S), the major
and minor axes of the ellipse (SD2 and SD1) and the ratio between the
axes (SD1/SD2) were measured.

Finally, PRV trends were interpolated using a cubic-spline inter-
polation and an interpolation frequency of 4 Hz. Spectral analysis
was then performed using the fast Fourier transform (FFT) with 512
points. From the obtained spectra, the absolute power of the very-low
(0.0033 ≤ 𝑓 < 0.04 Hz, VLF), low (0.04 ≤ 𝑓 < 0.15 Hz, LF) and
high (0.15 ≤ 𝑓 ≤ 0.4 Hz, HF) frequency bands, as well as the total
power (TP) between 0.0033 and 0.4 Hz were extracted. Relative power
from the LF and HF bands (nLF and nHF, respectively), and the ratio
between LF and HF (LF/HF) were also measured. Finally, the behaviour
of these frequency bands was characterised by measuring the 𝑥− and
𝑦−coordinated of the centroid of the band (cLFx, cLFy, cHFx, cHFy, cTPx
and cTP )
4

y

2.4. Statistical analysis

The difference between the extracted indices and the indices ob-
tained from gold-standard PRV trends was measured, and the results
obtained from applying the different filters within each of the combi-
nation of noises were compared using factorial analyses, in order to
evaluate which combination of cutoff frequencies, filter type and filter
topology gave the most accurate results for each type of signal. Since
these differences did not follow a normal distribution as confirmed by
Lilliefors tests, Box–Cox transformations were applied in each case, and
the factorial analyses results were derived after these transformations.
A 95% significance value was used for all the analyses.

3. Results

3.1. Signal simulation

Figs. 5 and 6 depict excellent and acceptable signals simulated
with the different noise combinations, respectively. As expected, as the
number of noise components increases, the complexity of the signal is
higher and, most likely, it would be more difficult to obtain a good
quality filtered PPG and to extract PRV information from these signals.

3.2. Factorial analyses

Factorial analyses with Box–Cox transform were performed for each
group of signals with a particular combination of noises, to evaluate
the impact of the type of filter and cutoff frequencies on PRV analysis
when contaminated PPG signals with each noise were analysed. It
was found that the three factors, i.e., the type of filter and its cutoff
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Fig. 4. Behaviour of the different types of noise on the simulated PPG signals.
frequencies, have a significant effect in most PRV indices, as well as
their interactions, when excellent and acceptable quality PPG signals
were used, and these were contaminated with different kind of noises.
The 𝑥-coordinates of centroid-related indices tended to be less affected
by the interaction of factors than the other indices.

The combinations of factors that gave the lowest difference to
gold standard indices were determined for each combination of noises.
Figs. 7 and 8 show the average and standard deviation of the absolute
differences between PRV indices obtained from measured and gold-
standard PRV trends for excellent and acceptable quality PPG signals,
respectively. The pNN50 index is not shown given the extremely large
differences shown in the measurement of this index, probably due to
the presence of outliers in the detection of IBIs from contaminated PPG
signals. Therefore, care should be taken when this particular index is
measured from PRV extracted from noisy PPG signals regardless of the
filtering strategy used.

Besides pNN50 and considering the other PRV indices obtained
from noise contaminated, excellent quality PPG signals, frequency-
domain indices showed a relatively stable difference to gold standard,
regardless of the type of noise, with VLF showing the largest differences
to gold standard. Time-domain and Poincaré plot indices did show
changes in the differences due to the noise present in the signal.
Interestingly, the more complex the noise, the lower differences were
obtained after filtering the PPG signal with optimal parameters. For
these indices, AVNN was the most affected one. A similar behaviour can
be observed when PRV is obtained from noise-contaminated acceptable
quality PPG signals.

The most common parameters that gave the lowest differences for
each of the types of noise are shown in Tables 3 and 4, for excellent and
5

acceptable quality PPG signals respectively. It was observed that the
extraction of PRV from excellent and acceptable quality PPG signals
contaminated with different types of noise tends to be more reliable
if the PPG signals are filtered using elliptic IIR filters, or equiripple
or Parks–McClellan FIR filters. There were differences in these results
due to the different quality of signals, but these three types of filters
showed the lowest differences to gold standard indices. Again, it should
be remarked that pNN50 showed an unreliable behaviour, and care
should be taken when measuring this index from PRV extracted from
noise-contaminated PPG signals.

For excellent quality PPG signals and most of the types of noises
studied in this experiment, lower low cutoff frequencies gave better
results. In the case of high cutoff frequencies, most results showed bet-
ter performance when 20 Hz was used. Only when movement artifact
and respiratory noise, or when movement artifact, respiratory noise
and baseline wandering where present in the signal, the high cutoff
frequency with better performance was found to be 8 Hz. This could
be a result of the frequency content of the movement artifact.

When acceptable quality signals were analysed, the lower low cutoff
frequency used, the better results were obtained, with most filters
acting as low pass filters. For high cutoff frequencies, a similar pattern
was observed as in excellent quality PPG signals.

4. Discussion

PPG-based PRV has been proposed as an alternative to evaluate
cardiovascular autonomic activity, instead of HRV acquired from ECG
signals. However, the relationship between these two variables is not
entirely understood, and there is evidence of both physiological and
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Fig. 5. Example of noise-corrupted, excellent quality photoplethysmographic signals simulated for experiment 6. RES: Respiratory noise; BW: Baseline wandering; EM:
Electromagnetic noise; MA: Movement artifact.
technical aspects that may affect PRV differently to HRV [1,17]. More-
over, although guidelines have been proposed for the extraction and
analysis of HRV information from ECG signals [2], there is not a
standard procedure for the analysis of PRV information from pulse
wave signals, specifically from PPGs. In this study, the aim was to
evaluate how noise and filtering strategies affected PRV information
extracted from simulated signals.

4.1. Signals simulation

Although it is not possible to completely mimic physiological
changes in a simulation model, using these approaches for the gen-
eration of synthetic PPG signals opens the door for the development
and assessment of novel algorithms and techniques that aid in a more
efficient and reliable analysis of the PPG signal [10,11]. This is due
to the capability of simulating a large number of signals with varying
features, such as sampling rate, mean heart rate or the quality of the
signal. Moreover, it allows for the analysis of signals in a controlled
environment, in which no physiological or environmental factors can
affect the information obtained from the PPG. For this particular
6

study, it was possible to generate a large database with PPG signals
contaminated with specific types of noise, which allows for a better
understanding of how each of these noises may be neutralised for a
reliable PRV analysis from PPG signals.

The capability of simulating several types of noise with different
parameters is one of the main contributions of the proposed framework
and, considering the susceptibility of PPG signals to noise, having a
simulation framework that includes different types and magnitude of
noises could help in the development and testing of robust algorithms
for PPG signal processing, not only for PRV analysis. Further types
of noise could be modelled and included in the framework, but the
currently used types of noise were considered due to its effect on PPG
signals.

4.2. Noise management

The application of filters in the PPG signal is essential to improve its
signal-to-noise ratio (SNR), which tends to be low due to the multiple
artifacts that may affect it [3,18,19]. However, these filters may also
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Fig. 6. Example of noise-corrupted, acceptable quality photoplethysmographic signals simulated for experiment 6. RES: Respiratory noise; BW: Baseline wandering; EM:
Electromagnetic noise; MA: Movement artifact.
generate changes in the PPG waveform that could affect the identifica-
tion of fiducial points from the signal and, hence, affect the reliability
of PRV information. Moreover, the filters could induce time-shifts in
the detection of fiducial points that could determine the reliability of
the PRV information extracted from the signal [20].

In this study, each combination of noises was treated independently,
since in most cases it is possible to identify the noise present in real
PPG signals, and the filtering strategies to each of types of noise can
significantly vary. In line with this, it was observed that, regardless of
the combination of noise present in the PPG signal, the filter applied
and its cutoff frequencies had a significant effect on most PRV indices.
Perhaps the most robust index from PRV was the 𝑥-coordinates of
centroid-related, indicating the robustness of these indices above those
related with the magnitude of frequency bands.

It is important to discuss the particular behaviour of pNN50. This
index showed important differences against gold-standard indices, re-
gardless of the noise and the filters applied. Hence, care should be
taken when this index is analysed from PRV trends extracted from
noise-contaminated signals, given it is largely affected by outliers in
the trends. For the other indices, a similar behaviour between excellent
7

and acceptable quality, noise-contaminated PPG signals was observed.
Interestingly, for time-domain and Poincaré plot indices the differences
to gold standard tended to become smaller as the noise combination
became more complex. For frequency-domain indices, the differences
tended to remain stable, especially for relative and 𝑥-coordinate related
indices. Time-domain and Poincaré plot indices showed larger differ-
ences to gold standard than frequency-domain indices, from which VLF
was the index that showed larger differences. This could be explained
by the fact that PRV was extracted from short 5-min PPG signals,
contaminated with noise, which could have an important effect on
the frequency spectra and the near DC components of the signal.
Nonetheless, it was observed that, applying the best performance fil-
tering strategies, the differences to gold standard can be considered
acceptable.

In general, it was observed that PRV indices tend to show better
reliability when PPG signals are filtered using elliptic IIR filters or
equiripple or Parks–McClellan FIR filters. In terms of cutoff frequencies,
lower low cutoff frequencies tended to give better results, except for
those excellent quality PPG signals contaminated with a combina-
tion of baseline wandering, movement artifact and respiratory noise,
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Fig. 7. Mean and standard deviation of absolute differences between pulse rate variability (PRV) indices extracted from excellent quality photoplethysmographic (PPG) signals
contaminated with different noises and filtered using the best combination of factors obtained, against indices obtained from gold-standard PRV trends. RES: Respiratory noise.
BW: Baseline wandering. EM: Electromagnetic noise. MA: Movement artifact.

Fig. 8. Mean and standard deviation of absolute differences between pulse rate variability (PRV) indices extracted from acceptable quality photoplethysmographic (PPG) signals
contaminated with different noises and filtered using the best combination of factors obtained, against indices obtained from gold-standard PRV trends. RES: Respiratory noise.
BW: Baseline wandering. EM: Electromagnetic noise. MA: Movement artifact.
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Table 3
Best combination of factors for filtering excellent quality photoplethysmographic signals
with different types of noise. FIR: Finite impulse response filters. IIR: Infinite impulse
response filters. RES: Respiratory noise. BW: Baseline wandering. EM: Electromag-
netic noise. MA: Movement artifact. 𝑓𝑐𝑙𝑜𝑤: Low cutoff frequency. 𝑓𝑐ℎ𝑖𝑔ℎ: High cutoff
requency.
Noise Type of filter 𝑓𝑐𝑙𝑜𝑤 (Hz) 𝑓𝑐ℎ𝑖𝑔ℎ (Hz)

RES IIR Elliptic 0 20
BW IIR Elliptic 0 12
EM IIR Elliptic 0 20
MA IIR Elliptic 0.2 20
RES + BW IIR Elliptic 0 20
RES + EM IIR Elliptic 0.2 20
RES + MA FIR Equiripple 1 8
BW + EM IIR Elliptic 0 20
BW + MA FIR Parks–McClellan 2 12
EM + MA IIR Elliptic 0.1 20
RES + BW + EM IIR Elliptic 0.1 20
RES + BW + MA FIR Equiripple 1 8
RES + EM + MA FIR Equiripple 0.1 12
BW + EM + MA FIR Equiripple 0.1 12
RES + BW + EM + MA FIR Equiripple 0.1 12

Table 4
Best combination of factors for filtering acceptable quality photoplethysmographic
signals with different types of noise. FIR: Finite impulse response filters. IIR: Infinite
impulse response filters. RES: Respiratory noise. BW: Baseline wandering. EM: Elec-
tromagnetic noise. MA: Movement artifact. 𝑓𝑐𝑙𝑜𝑤: Low cutoff frequency. 𝑓𝑐ℎ𝑖𝑔ℎ: High
cutoff frequency.

Noise Type of filter 𝑓𝑐𝑙𝑜𝑤 (Hz) 𝑓𝑐ℎ𝑖𝑔ℎ (Hz)

RES IIR Elliptic 0 20
BW FIR Parks–McClellan 0 20
EM IIR Elliptic 0 20
MA IIR Elliptic 0.1 20
RES + BW IIR Elliptic 0 12
RES + EM IIR Elliptic 0 20
RES + MA FIR Parks–McClellan 0 10
BW + EM FIR Parks–McClellan 0 20
BW + MA FIR Parks–McClellan 0 12
EM + MA FIR Parks–McClellan 0.1 20
RES + BW + EM IIR Elliptic 0 20
RES + BW + MA FIR Parks–McClellan 0 10
RES + EM + MA FIR Equiripple 0 8
BW + EM + MA FIR Parks–McClellan 0.5 15
RES + BW + EM + MA FIR Equiripple 0.5 8

which needed higher low cutoff frequencies, most likely due to the
frequency content of the respiratory and baseline wandering noises. For
higher cutoff frequencies, both with excellent and acceptable quality
PPG signals, the most common high cutoff frequency was 20 Hz,
which was the maximum considered cutoff frequency. This could be
an indication of the more important role played by the lower cutoff
frequency of the filter to remove the types of noises included in this
study. Moreover, higher cutoff frequencies affect less the morphology
of the anacrotic phase of the pulse, probably allowing a more precise
detection of the fiducial point used in this study. These results are in
line with the results obtained in a similar study performed with data
obtained from healthy, resting subjects and by comparing PRV to HRV
information [21].

Other studies have aimed to understand the effects of digital fil-
tering on PRV. Akar et al. [22] concluded that using a Butterworth
filter and a nonlinear weighted Myriad filter did not have a significant
difference on PRV analysis. Kim and Ahn [23] evaluated the effects
of Butterworth and elliptic filters for the assessment of PRV from
PPG signals, and concluded that there were no significant differences
between HRV and PRV time series, although small differences were
observed in some extracted indices. The results found in this study
indicate differences in the type of filter and its parameters used given
the different types of noise involved in the signal, which is a factor
that has not been taken into account in previous studies and could
explain, to some extent, the differences in results. Nonetheless, the
9

present study involves a large data set and multiple different factors
that were not included in these previous studies. Further studies should
aim to validate the obtained results in real data with different but
controlled types of noise.

4.3. Limitations of the study

This study has some limitations. Firstly, simulated PPG signals with
simulated PRV information were used in this study. This was done with
two main purposes. It is simpler to obtain a larger number of samples
using simulated data, which gives statistical validity to the experiment.
The sample size for each of the experiments in this study was estimated
to be the optimal value in order to observe differences of 2% in the
measurement of the indices, compared to the gold standard. Also, by
simulating PRV information it was possible to obtain a gold standard
that was not HRV information obtained from the ECG. As mentioned,
physiological aspects may explain part of the differences between HRV
and PRV, hence comparing them in order to establish methodologies
and strategies for obtaining PRV information is not ideal. Regardless of
the benefits, using simulated PPG signals may not represent the entire
variation of the PPG morphology, and the results from these experi-
ments need to be validated using real PPG data. The simulation of PRV
information may also affect the results obtained. However, PRV was
simulated using physiologically feasible values, which may introduce
larger variability of the PRV but also simulate PRV information that
could be obtained from most of the healthy population. Future studies
could optimise the PRV model to have a better reflection of real PRV
information.

The simulation of noise and the models used can also be considered
a limitation. Future studies should aim to better model these noises and
include other types of noise that might be involved in PPG signals, such
as those generated from the acquisition systems or other physiological
phenomena. Finally, the agreement between indices was not assessed.
Future studies should investigate not only the significance of the differ-
ence but also determine how the indices agree using techniques such
as Bland–Altman analysis.
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