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Is formal simplicity a guide to learning in humans, as

simplicity is said to be a guide to the acceptability of the-

ories in science? Does simplicity determine the difficulty

of various learning tasks? I argue that, similarly to how

scientists sometimes preferred complex theories when

this facilitated calculations, results from perception,

learning and reasoning suggest that formal complexity is

generally unrelated to what is easy to learn and process

by humans, and depends on assumptions about available

representational and processing primitives. “Simpler”
hypotheses are preferred only when they are also easier

to process. Historically, “simpler”, easier-to-process, sci-
entific theories might also be preferred if they are trans-

mitted preferentially. Empirically viable complexity

measures should build on the representational and

processing primitives of actual learners, even if explana-

tions of their behaviour become formally more complex.

KEYWORD S

Bayesian learning, induction, language acquisition, learning
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1 | INTRODUCTION

We like to explain things. Luckily we are not particularly good at it and can thus enjoy stories
of gods creating other gods by throwing around godly genitals (Hesiod., 1914) as opposed to less
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dramatic and “simpler” descriptions of celestial bodies forming other celestial bodies when their
dust moves peacefully through space and accretes (Armitage, 2008).

While it might not make for good stories, a particularly prominent metric of the quality of
an explanation is its simplicity. This principle is known as Occam's razor (e.g., Baker, 2016;
Fitzpatrick, 2022): When two theories explain the same phenomenon, the simpler one, requir-
ing fewer assumptions, should be given preference.

As simplicity is a good metric to gauge the quality of scientific theories (but see, e.g., Baker, 2016;
Fitzpatrick, 2022), and as our mental representations are arguably some form of mental theory of
the world, many authors propose that simplicity might also be a good guiding principle for the kinds
of mental representations we entertain and, more generally, for the kinds of inductive biases we
have when we learn about the world to establish these mental representations to begin with.

However, the history of science suggests that a formal notion of simplicity is not the only
extra-empirical yardstick to judge the quality of a scientific theory. For example, Russo (2000)
argues that the often ridiculed Ptolemaic model of planetary motion was an exceptionally
efficient computational device:

Because “epicycles” is still a byword for clumsy and backward attempts at science,
we spell out the two reasons why the method was supremely well-adapted to the
purposes to which it was put.

First, accounting for the observed motion of planets as the composite of several uniform
motions on circular orbits (the first centered on the earth… and each of the others, called
epicycles, centered on the point obtained on the preceding circumference) is equivalent
to a modern expansion in Fourier series, and allows and efficient description of observed
datawith increasing precision as the number of epicycles grows.… Second, since themain
computational tool of Hellenistic mathematics was geometric algebra performed with
ruler and compass, decomposition into circular motions was the most efficient possible
system for computing the observable position of planets. (Russo, 2000, pp. 90–91).

In other words, although heliocentric models have been known for centuries at the time of Clau-
dius Ptolemaeus, the computational tools available to Hellenistic astronomers made a geocentric
model efficient for their purposes even though the heliocentric model is simpler (though this
depends on what exactly we mean with “simplicity”; see, e.g., Baker, 2016; Fitzpatrick, 2022).

Here, I argue that a similar situation arises when it comes to mental representations and the
learning thereof. We are endowed with a certain set of computational tools, and any learning
problem (as well as the application of what has been learned) needs to make do with the tools
we have at our disposal. As a result, any psychologically viable notion of simplicity needs to
take into account the computational machinery we have evolved, both for learning and, later
on, for applying what has been learned (i.e., for processing).

Specifically, I will make three claims. First, what is simple from a formal point of view is gen-
erally unrelated to what is simple from a learning and processing point of view, maybe because it
is easier to learn and process what is more frequent in our environment, which, in turn, makes
it more likely that we have evolved machinery to deal with these frequent occurrences.1

1While the proposals discussed below make no explicit reference to ease of learning, they do specify those regularities
that should be acquired preferentially. In empirical and behavioral terms, however, the regularities that are acquired
preferentially are indistinguishable from those that are acquired more easily.
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Further, percepts, from sensory input to utterances, often require active interpretations of the
stimuli, and these interpretations are unlikely to be the formally simplest interpretations. Con-
versely, when people prefer simpler explanations of empirical phenomena over more complex
explanations, they do so because the simpler explanations happen to be easier to process and not
due to a genuine preference for simplicity. Historically, easier-to-process hypotheses might also
be learned and transmitted preferentially, leading to a normative preference for subjectively “sim-
pler” theories.

Second, formal claims that learning is guided by simplicity considerations either mis-
state mathematical facts or are empirically unsupported. Such claims depend on auxiliary
assumptions, have alternative (and simpler) explanations, are not necessarily consistent
with the data they seek to explain, make incorrect predictions, or do not scale up to learn-
ing problems in actual humans. Third, I suggest that any empirically adequate concept of
simplicity requires a detailed understanding of the mental computations and processing
constraints.

While the arguments below focus on the question of whether simplicity guides learn-
ing in the common human, very similar arguments have been advanced in the philosophy
of science. Simplicity is hard to define, a preference for “simpler” explanations is hard to
justify, historically, it is unclear whether simplicity really guided scientific practice
(or rather was a rhetorical device use to justify decisions already taken), the relative sim-
plicity of two theories depends on the formalism in which the theories are described, and,
even in cases where simplicity reputedly favored one theory of another (e.g., the Coperni-
can vs. the Ptolemaic model of planetary motion), it is not always clear which of two the-
ories is the simpler one (Baker, 2016; Fitzpatrick, 2022). Even when simplicity is valued as
an attribute of a good scientific theory, its role is to “[bring] order to phenomena that in
its absence would be individually isolated and, as a set, confused” (Kuhn, 1977, p. 322),
and thus essentially a (collective) memory strategy that helps scientists to represent a set
of phenomena, similarly to how, at the individual level, Hellenistic and later memory
techniques embed memoranda in coherent contexts (Yates, 1966).

2 | IS FORMAL COMPLEXITY RELATED TO EASE
OF PROCESSING?

2.1 | Extraneous information in everyday inference making

Occam's razor has a venerable history in science (e.g., Baker, 2016; Fitzpatrick, 2022).
As simpler models, based on only few overarching principles, are easier to falsify (but see
Fitzpatrick, 2022), Popperian, falsification-based scientific paradigms will thrive with simpler
hypotheses. But people are not scientists. They indulge in conspiracy theories that require
numerous auxiliary hypotheses and like to think that chemicals in the drinking water turn us
gay, that 9/11 was an inside job, that Elvis is alive, and so forth. Scientists are not immune from
such biases either. Giants of mathematics such as Leibniz and Newton were heavily influenced
by occult religious (Hermetic) traditions (Keynes, 2010; Yates, 1966), and the inferences made
by actually existing scientists depend on other aspects of their worldview (e.g., Kuhn, 1977,
Chapter 13, pp. 320–339; Latour & Woolgar, 1986). Actual humans thus do not necessarily favor
the simplest available hypotheses. (In contrast to refutation-based scientific theories, they are
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also remarkably resistant to correction, potentially due to their confirmation bias;
e.g., Kahneman, 2011.)

This is not to say that the kinds of inferences people make are illogical or unhelpful
for surviving in their environment (as has long been recognized in anthropology; e.g.,
Lévi-Strauss, 1962). Rather, making complex and sometimes extravagant inferences
might not be so much a bug of the mind as a critical and necessary feature. For example,
what people are told is generally underspecified. To borrow an example from Sperber
and Wilson (1987), a perfectly reasonable answer to the question “Do you want some
coffee” is “Coffee will keep me awake”. However, this sentence is not an actual answer
to the question. Rather, the listener has to infer from extraneous information that is
little more than a physiological truism (“coffee will keep me awake”) that the actual answer
is “No”. These kinds of situations are so widespread that entire theories have been devoted
to them (e.g., Sperber & Wilson, 1987, 1995), and should abolish any hope that successful
communication would be possible if a listener's inferences were “simple” in any relevant
sense.

Of course, the tendency of perceivers to have rich interpretations of the world is
not limited to high-level phenomena such as decision-making and communication
(though they are amply documented in such domains; see, e.g., Gigerenzer &
Goldstein, 1996; Todd & Gigerenzer, 2000). Rather, they routinely occur in perception as
well. In the words of Ramachandran (1991) “perception is essentially a ‘bag of tricks’ …
through millions of years of trial and error the visual system has evolved numerous short-
cuts, rules-of-thumb and heuristics which were adopted not for their aesthetic appeal or
mathematical elegance but simply because they worked” (347). This insight is by no means
specific to sensory or mental processes; rather, organismal traits are rarely optimized on a
stand-alone basis but evolve within the evolutionary history and constraints of an organism
(e.g., Gould et al., 1979).

For example, if we see two lines of equal length, the simplest inference is probably that
they are of equal length. But this is not the inference the perceptual system draws: Even
though the two lines are of the same length, a line surrounded by arrow tails (e.g., ) is per-
ceived as longer than one surrounded by arrow heads (e.g., ). In this case, however, the
reason for the arguably more complex inference is clear: In natural scenes, line segments sur-
rounded by arrow tails tend to be longer than those segments surrounded by arrow heads
(Howe & Purves, 2005). Given these environmental statistics, our perceptual system thus
evolved to make inferences that are maybe not “simple” in any obvious formal sense (that does
not take into consideration historical environmental statistics), but that are adaptive given
those environmental statistics, and there is no shortage of other cognitive mechanisms that
might have evolved due to environmental constraints (e.g., New et al., 2007; Pinker, 1998;
Sperber, 1994; Sugiyama et al., 2002).

In the next section, I will argue that similar phenomena occur in learning and
processing: Simplicity in a formal sense is a poor guide towards what is easy to learn or pro-
cess. Rather, what is simpler or easier to learn is determined by the learning mechanisms
that happen to be available. Following this, I will argue that, in cases where observers do
choose simpler hypotheses, the simplicity bias might be an emergent property of other cog-
nitive biases, and that putatively simpler inferences might be those that can be processed
with more fluency.
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2.2 | Simpler is not simpler

There is no shortage of examples where formally more complex operations are easier for
humans. For example, (arithmetic) divisions are hard for humans but easy for computers,
while we can do elaborate 3D rotations which require considerable processing power in
computers.

Likewise, it is easier to notice that a figure is symmetric (e.g., ) than that it is composed of
the copy of two shapes (e.g., ) even though symmetry entails more operations than copying
(e.g., Baylis & Driver, 1994, 2001; Bruce & Morgan, 1975; Corballis & Roldan, 1974): In the sec-
ond figure, the shape is copied and then translated to the right; in the first figure, the is
again copied and then translated, but, crucially, also mirror-reversed. Still, it is easier to detect
symmetry than translation.

Such cases suggest that formally “simpler” operations are not necessarily easier to process
for humans. But ease of processing is not even constant for a given operation. I will now pro-
vide examples illustrating that the difficulty to learn or execute a given operation strongly
depends on the domain in which it is applied (see Endress, 2019, for a review). If the difficulty
of a learning problem depends on its domain, the difficulty cannot be driven by the problem's
formal complexity.

This is true even for the simplest operations such as associations. For example, animals
readily associate tastes with visceral sickness, and external events (e.g., sounds and light) with
pain. In contrast, it is much more difficult or even impossible to associate taste with pain, or
external events with sickness (e.g., Garcia & Koelling, 1966; Garcia et al., 1974, 1976; see,
e.g., Domjan, 1983, 2015, for reviews). Evolutionarily speaking, this makes sense of course: Sick-
ness typically results from what we ingest, while physical pain typically has external causes that
we can perceive sensorily, which makes the pattern of preferential associations adaptive
(see Alberts & Gubernick, 1984; Gemberling & Domjan, 1982; Gemberling et al., 1980;
Gubernick & Alberts, 1984, for evidence that this pattern of preferential associations is not
learned). From a formal perspective, however, both types of associations are equally complex,
simply because they reflect the very same computation.

Likewise, if we hear, see or feel two objects frequently occurring together, we form associa-
tions between them (e.g., Aslin et al., 1998; Conway & Christiansen, 2005; Endress, 2010;
Fiser & Aslin, 2002; Saffran et al., 1999; Saffran, Newport, & Aslin, 1996; Turk-Browne
et al., 2005; Turk-Browne & Scholl, 2009). However, this form of associative learning works bet-
ter for consonants than for vowels (Bonatti et al., 2005), although the reasons are debated
(Bonatti et al., 2007; Keidel et al., 2007). Again, the learnability of equally complex operations
seems to depend on their domain, suggesting that formal complexity is a poor guide to the ease
of acquisition and processing of an operation.

A similar conclusion follows from an operation that has helped defining the complexity of
phonological processes (e.g., Culy, 1985; Manaster-Ramer, 1986): repetition-patterns. Such pat-
terns can be learned in many domains, but not in many others; as the formal complexity of
learning the very same pattern across domain is presumably identical, this suggests again that
learnability is not equivalent to the complexity of a rule.

Specifically, repetition-patterns are important in many languages. For example, Marshallese
uses reduplications for derivative morphology (e.g., “takin” means sock, while “takinkin”
means to wear socks; Moravcsik, 1978). In some form or another, reduplication occur in some
85% of the world's languages (Rubino, 2013). Other examples of repetition-patterns used by lan-
guage include vowel harmony (e.g., Rose & Walker, 2011; Vroomen et al., 1998), the feature
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repetitions resulting from assimilation rules (e.g., Darcy et al., 2009; Mitterer & Blomert, 2003)
and constraints on consonant co-occurrence in Semitic languages such as the Obligatory
Contour Principle (e.g., Berent & Shimron, 1997; Frisch et al., 2004; McCarthy, 1986;
McCarthy & Prince, 1999).

Despite their importance for language, repetition-patterns can be perceived in many
non-linguistic domains and by many non-linguistic animals. For example, even seven-month-
old babies notice the repetition in syllable sequences such as dubaba and generalize it to new
items (Marcus et al., 1999). When familiarized with syllable sequences such as ledidi, wijeje and
so forth, infants behave as if they were more familiar with novel sequences with novel syllables
that share the repetition-pattern (e.g., bapopo) than with other novel syllable sequences that do
not share the pattern (e.g., babapo). Humans and non-human animals can compute repetition
patterns not only for speech syllables, but also for tones and visual objects (e.g., Dawson &
Gerken, 2009; Endress et al., 2007; Giurfa et al., 2001; Hauser & Glynn, 2009; Marcus
et al., 2007; Marcus et al., 1999; de la Mora & Toro, 2013; Murphy et al., 2008; Neiworth, 2013;
Pepperberg, 1987; Saffran et al., 2007; Smirnova et al., 2015; Versace et al., 2017; Yamazaki
et al., 2012, but see Spierings & ten Cate, 2016; van Heijningen et al., 2013, for evidence that
these relations are not equally salient to all species).

However, although the ability to detect such patterns is widely shared across animals and
domains, there are some domains where they are easier to learn than in others. For example,
adult speakers learn such patterns better when they are carried by vowels than when they car-
ried by consonants, to the extent that they fail to detect the patterns on consonants (e.g., Toro,
Bonatti, et al., 2008; see Hochmann et al., 2011; Pons & Toro, 2010, for similar results with
infants), even when the salience of the vowels is much reduced (Toro, Shukla, et al., 2008).
Further, given that rats learn repetition-patterns just as well on consonants as on vowels (de la
Mora & Toro, 2013), the reason for the vowel advantage in humans does not seem to be a gross
perceptual difference.

Likewise, adult speakers seem unable to learn repetition-patterns over syntactic categories
(Endress & Hauser, 2009). When familiarized with word triplets conforming to either an AAB
pattern (noun-noun-verb triplets such as town-leg-choose and verb-verb-noun triplets such as
choose-speak-leg) or an ABB pattern (noun-verb-verb or verb-verb-noun), they are unable to
decide whether test triplets made from new words were like the familiarization items. Again,
there does not seem to be any particular formal reason for this failure: Participants readily
access the categories, learn other sequential regularities about the categories that do not involve
repetitions, and learn repetition-patterns over semantic, non-syntactic categories (e.g., animals
and clothes). Endress and Hauser's (2009) conclusion was that repetition-patterns over syntactic
categories are simply not in the learner's repertoire because they are not part of any human lan-
guage. Critically, however, participants failed to learn an extremely simple regularity that they
should learn based on simplicity considerations, as they can learn it in many other contexts.
Taken together, this evidence thus suggests that the formal simplicity of an operation does not
seem to predict how easily it is learned.

2.3 | Simpler is also easier

The examples presented so far suggest that learning and processing biases cannot be
predicted based on simplicity considerations. Rather, learners process those regularities
more easily that happen to be supported by the learning mechanism they come equipped
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with, and the available learning mechanisms might even differ across domains (see also
Endress, 2019; Endress et al., 2009). I will now suggest that the converse holds as well: Some
inferences might be subjectively simpler (and thus preferred) because they happen to fit
processing constraints.

The evidence comes from experiments where participants have to choose between (or rate)
competing explanations of phenomena. While observers sometimes prefer more complex expla-
nations containing irrelevant information (e.g., Hopkins et al., 2016; Weisberg et al., 2008), they
sometimes also choose “simpler” explanations (see Lombrozo, 2016, for a review). However,
I will now argue that the simpler explanations are also those more attuned to human processing
constraints, and that a preference for simpler explanations might be an emerging property of
other processing biases related to general pragmatic factors and memory strategies such as
chunking.

Such processing biases might also contribute to why (subjectively) simpler theories
might be preferred historically: Theories that fit our processing biases are easier to trans-
mit, and, in line with prominent accounts of cultural evolution (e.g., Kirby et al., 2007),
more likely to survive.

2.3.1 | Pragmatics versus breadth of explanation

Read and Marcus-Newhall (1993) asked whether people prefer single hypotheses explaining
multiple phenomena, or rather multiple hypotheses explaining one phenomenon each. In
one of their scenarios, Cheryl presents with three symptoms: nausea, weight gain and
fatigue. Participants had to choose a diagnosis among three narrow explanations that each
explained one of the symptoms, and a single broad explanation that explained all three
symptoms. When participants were told about just one symptom, they favored a narrow
explanation that did not account for the other symptoms; for example, they favored a stom-
ach virus as the cause for nausea when no other symptoms were mentioned. In contrast,
when informed about all three symptoms, participants favored a “simpler” and broader
explanation that explained all three symptoms (i.e., pregnancy), even though, in principle,
the symptoms could be explained by a conjunction of three separate and narrower
explanations.

While such results are consistent with a preference for simpler hypotheses, they can also
emerge from pragmatic factors. If participants expect to be provided with relevant information
(e.g., Grice, 1975; Sperber & Wilson, 1987, 1995), they might reasonably opt for the explanation
that is most strongly associated with the facts to be explained (e.g., using the availability heuris-
tics, Tversky & Kahneman, 1973, or Grice's [1975] maxims of quantity). Similarly, they might
expect to be provided with all relevant symptoms, especially when they are strongly associated
with a condition (e.g., weight gain and pregnancy), and might not think about symptoms that
are not mentioned. After all, the description of a big, four-legged mammal gracefully grazing on
a pasture is hard to recognize as an elephant when the most strongly associated feature
(e.g., the trunk) is not mentioned, and a listener will likely conclude that the animal in question
does not have a trunk when none is mentioned. As a result, the participants preference for
narrower explanations might emerge from assumptions about the experimenters' communica-
tive intentions rather than from epistemic biases per se.

ENDRESS 7
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2.3.2 | Memory fluency versus model flexibility

Simpler hypotheses might also be preferred when they allow for more fluent memory
processing. For example, Blanchard et al. (2018) asked if participants preferred hypotheses
that are less flexible and can account for a narrower set of data. For example, a “simple”
model of a series of coin tosses is a binomial model with the success probability fixed to .5;
a more flexible model would finetune the success probability. Simpler, less flexible models
should be favored for a variety of reasons (e.g., Baker, 2016), and in fact, are favored by stan-
dard model selection metrics such as the Akaike Information Criterion or the Bayesian
Information Criterion.

To test whether humans are sensitive to model complexity, Blanchard et al.'s (2018)
participants had to classify animals as “velmos” or “zorgits”. Both species had red spots
on their backs, but the typical number of spots differed across species. All participants
were told that velmos can have a random number of spots, with three possible values.
For zorgits, the possible numbers of spots varied across participants. Some participants
were told that the number of spots was deterministic, others that the number of spots
could take four possible values, and yet others that the number of spots could take
100 possible values. Results showed that participants were increasingly less likely to clas-
sify the animals as zorgits as the number of possible values increased. They thus rejected
increasingly complex hypotheses.

Participants thus preferred simpler hypotheses. However, this preference might emerge
from processing constraints. After all, it is presumably hard to picture a distribution with
100 possible values, or to keep the relevant situations in working memory to evaluate
their likelihoods. Participants might thus reject hypotheses that are too hard to under-
stand or to process. In line with this possibility, text that is hard to read is judged as less
true (Reber & Schwarz, 1999), and authors of excessively complex prose are judged as less
competent (Oppenheimer, 2006). If participants use the processing fluency as a cue to the
likelihood of an explanation, a simplicity biases might thus emerge from processing
considerations.

2.3.3 | Chunking versus simplicity

People might also prefer hypotheses that allow for more efficient memory processing through
chunking. For example, Lombrozo's (2007) participants had to explain a set of facts by compet-
ing hypotheses that differed in the number of causes. For example, a space alien might have
two symptoms. Each symptoms could each be caused by a separate disease (two causes), or both
symptoms could reflect a single common disease (one cause). Participants overwhelmingly
chose the single cause explanation.

Such results are consistent with a preference for simpler explanations with fewer causes.
However, a single cause explanation might also reduce the working memory load of the expla-
nations because it would allow participants to chunk the symptoms together. In fact, even
young infants can retain more information in working memory when arbitrary verbal labels are
given (e.g., Feigenson, 2008; Kibbe & Feigenson, 2014). For example, while they cannot keep
track of four identical objects, they can do so when two of the objects are labelled as “dax”, and
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two as “blickets” (Feigenson, 2008), presumably because such labels allow infants to first chunk
the information, and later act as retrieval cues. Mutatis mutandis, a single cause explanation
might act as a chunking cue binding together symptoms and proximate causes, and thus
increase processing fluency, and participants might prefer explanations that are easier to pro-
cess. Alternatively, they might also prefer explanations with stronger associations between the
symptoms and the diseases.2

Likewise, Pacer and Lombrozo (2017) contrasted two possible metrics for the simplicity of
an explanation: The total number of causes (“node simplicity”) and the number of unexplained
causes (“root simplicity”). For example, a patient might present with weight loss and fatigue.
One explanation provides separate causes for each of the symptoms (e.g., reduced appetite and
insomnia); this explanation thus entails two causes in total, but both causes are unexplained.
Another explanation provides a higher level explanation; for example, depression might cause
both reduced appetite and insomnia, which cause weight loss and fatigue in turn. This explana-
tion involves three causes in total, but only one of them is unexplained. Results showed that
participants favored the second explanation, thus minimizing the number of unexplained cau-
ses rather than the total number of causes.

However, as in the case of Lombrozo's (2007) results, participants might minimize the num-
ber of unexplained causes to reduce the working memory load. Adding a deeper, more funda-
mental cause might allow participants to chunk both causes and symptoms, and thus to process
them more fluently.3 In fact, both Pacer and Lombrozo (2017) and Lombrozo (2007) showed
that participants tend to misremember frequency information in a way that made it more con-
sistent with their chosen hypothesis, suggesting that participants seek to construct an effective
memory representation of their preferred explanation.

2.3.4 | Are simpler explanations transmitted better?

The examples in this section suggest that, in some cases, humans might end up preferring sim-
pler explanations if they choose explanations that are easier to process. Applying Occam's razor

2A preference for the single cause explanation might also emerge from basic associative processes. Participants might
associate symptoms with diseases. When they are informed that a disease can cause a symptom, they might set the
conditional probability of the symptom given the cause P(symptom j cause) to one. In contrast, when a symptom is not
mentioned, the pragmatic situation might lead participants to conclude that the disease does not predict the symptom
and that the conditional probability is zero. For the two cause explanation, the average conditional probability of the
symptoms given the disease P(symptom j cause) is thus .5, because each disease explains only one of the symptoms.
In contrast, the average conditional probability is 1.0 for the single cause explanation, because the disease explains both
symptoms.A similar picture emerges when considering the reversed conditional probabilities, P(disease j symptom).
For the separate cause explanation, the average conditional probability across symptoms is .25, because only one of the
symptoms is associated with each disease, and because each symptom is associated with two diseases (i.e., the single
cause and the separate cause). In contrast, for the single cause explanation, the average conditional probabilities
P(disease j symptom) across symptoms is .5. Normatively, computing average conditional probabilities is not how
probabilities of disjunctions are evaluated. However, in statistical learning tasks (e.g., Aslin et al., 1998; Saffran, Aslin, &
Newport, 1996), participants seem to average conditional probabilities and tend to treat them as non-directional
(e.g., Endress & Wood, 2011; Pelucchi et al., 2009; Perruchet & Desaulty, 2008; Turk-Browne & Scholl, 2009), perhaps
because they rely on simple Hebbian associations (Endress & Johnson, 2021). As a result, a preference for explanations
involving fewer causes might emerge if participants evaluate the strength of association between causes and effects.
3A second, mutually non-exclusive, explanation is that people tend to prefer more reductive explanations even when the
reductive information is irrelevant (Hopkins et al., 2016; Weisberg et al., 2008). For example, non-experts are more
satisfied with (bad) explanations of psychological phenomena when irrelevant neuroscience information is added.
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to the evidence for Occam's razor thus suggests that, in some cases, people might prefer subjec-
tively simpler theories without explicitly considering their formal complexity. This view might
also explain why simplicity might play a major role in the acceptance of scientific theories.

Such an account would combine the role of individual preference in theory choice
(e.g., Kuhn, 1977, Chapter 13, pp. 320–339), and the role of learning biases in the cultural transmis-
sion of knowledge (e.g., Kirby et al., 2007). Specifically, scientific theories need to be reasonably ade-
quate empirically, but they also need to be intelligible (at least to scientific experts). If experts have
similar biases as the lay persons in the studies above, they might also prefer (and preferentially
transmit to their students) theories that are subjectively simpler and easier to process. Given that
experts in fields from chess (Chase & Simon, 1973) to ornithology (Gauthier et al., 2000) to mathe-
matics (Amalric & Dehaene, 2016) represent information in their field of expertise differently from
lay persons, theories that are subjectively simple for experts might still be complex or even unin-
telligible to lay persons. However, if experts preferentially transmit theories that they can process
more fluently, they might promote subjectively simpler theories even when there is no obvious for-
mal metric that would quantify the simplicity of the theories.

3 | ARE FORMAL NOTIONS OF SIMPLICITY EMPIRICALLY
ADEQUATE?

So far, I suggested that, in every day reasoning, people are not particularly concerned about the
simplicity of their inferences, that the simplicity of operations or learning problems does not
predict how easily they are processed, and that, when people prefer simpler explanations, this
preference might arise because the simpler explanations also happen to be easier to process.

I will now review some prominent formal measures of simplicity that have been proposed
to guide learning. I will first consider two related measures of “simplicity” (or rather complex-
ity), one that might be more intuitive for defining the complexity of operations to be learned
(e.g., grammatical rules) and one more intuitive for the learning of knowledge structures (e.g.,
words). In both cases, I will argue that, in the absence of an exhaustive list of the processing
and representational primitives used by human learners, neither form of complexity provides
useful guidance towards the relative ease of a learning problem. This conclusion is by no means
novel. It has long been known that both the underlying representations and the processing
capacities of a machine influence how easily regularities can be learned and represented. For
example, a finite state automaton can accept more complex grammars when it operates on
structured trees rather than simple strings (e.g., Morgan, 1986; Thatcher, 1973) and both the
processing elements and expressive power of a machine have a massive influence on how easily
a given grammar can be described (e.g., Kutrib & Pighizzini, 2013; Meyer & Fischer, 1971).
Likewise, in the philosophy of science, it is widely recognized that the relative simplicity of two
theories depends on the terminology used to describe them (Baker, 2016; Fitzpatrick, 2022).

Based on these observations, I will consider a notion of simplicity that focuses on the sim-
plicity of the inferences, and argue that there is no empirical support for it.

3.1 | Kolmogorov complexity

Regarding the learning of procedures, one way of defining the “simplicity” of a learning prob-
lem is to use its Kolmogorov complexity (KC; e.g., Chater, 1996, 1999; Chater & Vit�anyi, 2003;

10 ENDRESS

 14680017, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ila.12450 by C
ity, U

niversity O
f L

ondon, W
iley O

nline L
ibrary on [14/12/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Pothos & Chater, 2002). KC is basically the length of the shortest program used to describe an
object. But of course, the length of a program depends on the language it is written
in. According to proponents of the use of KC as a measure of cognitive complexity, this problem
is immaterial because, in the words of Chater and Vit�anyi (2003), “the choice of programming
language does not matter [for computing KC], up to a constant additive factor”.

However, this statement is misleading. In fact, the difference between the program length in
different languages is certainly bounded by a constant; that is, if K1 xð Þ and K2 xð Þ are the com-
plexities of some procedure in two languages L1 and L2, then jK1 xð Þ�K2 xð Þ j <C, where C is
some constant. The reason is simply that, with general-purpose programming languages, one
can always write an emulator of L2 in L1 (or vice-versa). Once the emulator is written, any piece
of code from L2 will execute in L1 and the total length of the code is the length of the original
L2 code plus the length of the code representing the emulator when the latter is needed. The
constant is thus essentially the code length of the emulator.

Critically, this result does not guarantee that the two objects have the same relative KCs in
two languages. For example, if L1 has operations for multiplication and addition but L2 only for
addition, a program using multiplication will be longer than a program using addition in L2

(because on has to write the multiplication operation first), but both programs will be equally
long in L1. As a result, in the absence of an exhaustive list of the computational primitives avail-
able to human learners, it is impossible to formally determine if one learning problem is easier
than another one.

Of course, it is possible to turn this approach around and to determine the available primi-
tives from their relative ease of processing (e.g., Goldsmith & Riggle, 2012; Halle, 1962;
Katzir, 2015), but this is not how KC is usually employed.

3.2 | Minimum description length

A closely related measure of complexity is minimum description length (MDL; see
Rissanen, 2008, for a basic introduction). For example, when fitting a polynomial through a
number of points, a higher degree polynomial will fit the points better, so that we need fewer
bits to represent the noise (i.e., the errors from the fit). The description length of the data is thus
shorter with higher order polynomials. However, we also need to represent polynomials them-
selves, and the additional terms of the higher order polynomials make their description length
longer. MDL thus seeks a compromise between a short description of the data and a short
description of the function describing the data.

This approach has been the basis of one of the first computational model of how infants
might learn words from fluent speech (Brent & Cartwright, 1996, though one can also use it to
simultaneously learn a lexicon and rules that are applied to the lexicon, given that output forms
are generated from a lexicon using rules; e.g., Katzir, 2015; Rasin & Katzir, 2016). Fluent speech
is a continuous signal, according to many authors, with few consistent cues to word boundaries
(e.g., Aslin et al., 1998; Aslin & Newport, 2012; Conway & Christiansen, 2005; Saffran, New-
port, & Aslin, 1996; Saffran et al., 1999, but see, e.g., Brentari et al., 2011; Christophe
et al., 2003; Endress & Hauser, 2010; Fenlon et al., 2008). As a result, infants need to figure out
where words start and where they end before they can learn the meaning of any word.

Brent and Cartwright (1996) used a MDL-based algorithm similar to standard compression tech-
niques. The basic idea is illustrated in Figure 1, where I show three candidate segmentations of the
continuous sequence “Thedogbitesthedog”. Each candidate segmentation will take up memory
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space in three ways. First, we need to reserve memory space for each word in the lexicon. Second,
we need to populate this memory space with content, and the longer each word, the more space it
takes up. Third, we need to represent the sequence using the symbols from the lexicon. For our pur-
poses, the optimal segmentation is the one that minimizes the sum of these memory components,
though Brent and Cartwright's (1996) model is mathematically more sophisticated.

In the maximal segmentation, each letter is a word in the lexicon. This gives us nine lexical
entries (as there are nine unique letters in the sequence), each of which takes up a single mem-
ory unit. Finally, we need 17 units to represent the 17 letters of the sequence, leading to a total
memory score of 9þ9þ17¼ 35.

In the minimal segmentation, the entire sequence is stored as a unit in the lexicon. If so, we
have a single unit in the lexicon that takes up 17 memory units, while the sequence can be rep-
resented with a single symbol, yielding a total memory score of 1þ17þ1¼ 19.

Finally, in the intermediate segmentation, we postulate the “words” bites and thedog. We
thus have two memory items that take up 11 memory units in total, and that allow us to repre-
sent the sequence using only three units. The total memory score is thus 2þ11þ3¼ 16, and
thus the lowest one of the three possible segmentations.

Brent and Cartwright (1996) showed that such an MDL approach successfully recovers
many word boundaries. Brent and Cartwright's (1996) critical conclusion was that, given that
the algorithm recovered word boundaries, there must have been distributional information that
allowed the algorithm to do so and might also allow infant learners to find word boundaries.
Critically, they pointed out that their model was not meant to be a psychologically realistic
model of infant learning (it is fundamentally a compression algorithm after all) and that their
model demonstrated the availability of distributional information that infants might exploit if
they have required processing mechanisms.

While Brent and Cartwright's (1996) model successfully demonstrated that distributional
information is available in speech streams, I provide three general reasons for why MDL-based
approaches are unlikely to be good guides to learning in terms of psychological processes. First,
as in the complexity case, we do not know what the underlying primitives are. To keep with the
example of word segmentations, learners of different languages might well rely on different per-
ceptual units (as do their adult counterparts who use stress-based units, syllables or moras,
depending on their native language; e.g., Cutler et al., 1986; Cutler et al., 1992; Mehler
et al., 1981; Otake et al., 1993). If the underlying units are different, so we will be the results
from a MDL-based learner. For example, when learners encounter their sibling's exclamation
“Mama, Papa!” (maybe to express their outrage at the suggestion that they might be simplicity-
based learners), it is easy to verify from Brent and Cartwright's (1996) cost function

Segmentation 

type

Words in lexicon Sentence representation based 

on this lexicon

# Words in 

lexicon

# Letters in 

lexicon

# Words in 

sentence

Total

Maximal b, d, e, g, h, i, o, s, t 9-5-3-2-7-4-1-6-9-3-8-9-5-3-2-7-4 9 9 17 35

Minimal Thedogbitesthedog 1 1 17 1 19

Intermediate bites, thedog 2-1-2 2 11 3 16

FIGURE 1 Illustration of the minimum description length principle for a segmentation of the chunk “The
dog bites the dog”. The maximal segmentation considers each letter as a word; the minimal segmentation

considers the whole input as a single word. Finally, some intermediate segmentations will find recurring units

that are larger than single letters and smaller than the entire input. As memory is taken up by representing the

items in memory and by representing the sequence, the optimal segmentation that minimizes the total memory

storage will be some intermediate segmentation.
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(Equation (5) in Supporting Information SI1) that learners using phonemes as basic units would
posit the words Ma and Pa, while learners using syllables as basic units would be undecided
between the words Mama and Papa and the words Ma and Pa, respectively. Further, even if
learners use the same basic units such as syllables or moras, they might not perceive all units
equally well, depending on their native language (e.g., Dupoux et al., 1997; Polka &
Werker, 1994; Werker & Tees, 1984), or perceive extra units that are not present in the speech
signal (such as epenthetic vowels; see, e.g., Dupoux et al., 1999).

These problems are more general than the word segmentation problem. For example, if
learners in the curve-fitting example above have the ability to represent polynomials only up to
a degree of three (maybe due to some memory limitations), or if they cannot represent polyno-
mials at all, an optimal polynomial of degree four would simply not be in their learning reper-
toire. Relatedly, when MDL-based approaches are used to decide among possible grammars,
Heinz and Idsardi (2013) argued that “there are multiple ways [certain classes of] languages
can be represented [and that] relative length of generalization is not preserved across these for-
malisms”. As a result, without knowing what the underlying representational and processing
primitives are, MDL-based approaches do not give us any guidance as to which learning prob-
lems might be simpler and which might be harder.

A second problem with MDL-based approaches to learning is that there is no evidence that
learners actually optimize the description length. To use the word-segmentation example again,
a learner in a word learning experiment might be exposed to a sequence of word repetitions like
dog, dog, dog, …, pig, pig, pig, …. Would such a learner extract the words dog and pig, or some
other units such as dogdog… and pigpig…? In Supporting Information SI1, I show that this
depends on the specific familiarization: If each word is repeated N times, the optimal units have
length

ffiffiffiffiffiffiffiffiffiffi
N

3log25

q
. If each pronunciation of a syllable takes roughly 500ms, learners should thus

extract the units dogdogdog and pigpigpig after a 1 min familiarization, dogdogdogdog and
pigpigpigpig after a 2 min familiarization, dogdogdogdogdog and pigpigpigpigpig after a 3 min
familiarization, and so on, a prediction that seems implausible at best. As a result, MDL-based
approaches per se cannot give us any guidance as to the hypotheses learners consider in the
absence of independent evidence for the underlying units and for the ability of learners to per-
form the relevant optimizations (though again, we might use the output of actual learners to
decide between different theories of the underlying representations and learning mechanism;
Goldsmith & Riggle, 2012; Halle, 1962; Katzir, 2015).

A final problem with MDL-based approaches is that it is not clear that learners really need to
optimize the total memory space they use up, given that they have a massive capacity for declara-
tive memory both in the short-term (e.g., Endress & Potter, 2014; Endress & Siddique, 2016) and
in the long-term (e.g., Brady et al., 2008; Standing, 1973; Standing et al., 1970), with an estimate
that a typical college-aged adult knows about 50,000 words (Pinker, 1999). Further, to the extent
that grammatical knowledge relies on procedural rather declarative memory (e.g., Pinker &
Ullman, 2002; Ullman, 2001; Ullman et al., 1997), such memory does not appear to be particu-
larly limited either in a species that manages to learn the motor commands associated with speak-
ing, cycling, swimming and playing the Fantasia Contrappuntistica.

3.3 | The size principle

An alternative to defining the simplicity of a learning problem is to consider the restrictiveness
of the solutions: If we have to choose between two hypotheses that are equally consistent with
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the examples we have seen, we choose the hypothesis that is more restrictive and compatible
with fewer potential data points, a strategy called the size principle (Tenenbaum &
Griffiths, 2001). Learners are thus expected to prefer simpler and less flexible hypotheses
(see also Blanchard et al. (2018) above).

A related strategy has been proposed for language acquisition (e.g., Hyams, 1986; Manzini &
Wexler, 1987). In some versions of this proposal, humans evolved to acquire language following
a sequence of acquisition steps that is consistent with the most restrictive grammar given the
input, using specific “triggers” to move from a more restrictive grammar to a more permissive
one (e.g., Gibson & Wexler, 1994). The underlying idea is that the triggers allow learners to
“conclude” that their current grammars are not general enough, and to adjust them appropri-
ately, while it is unclear how they could even notice that they started out with a grammar that
is too general (see below for an interpretation of “triggers” in terms of developmental pheno-
typic plasticity). More generally, an inference strategy that starts with simpler hypotheses and
accepts more complex hypotheses only when necessary is efficient in the sense that it mini-
mizes the number of times an incorrect hypothesis is adopted, and the working hypothesis
needs to be changed (Kelly, 2007a, 2007b).

In the literature following Tenenbaum and Griffiths (2001), this idea has been applied much
more widely in domains ranging from basic probabilistic inference to language acquisition to
social cognition. If these demonstrations are convincing, the size principle might provide a
simplicity-based metric with which learning problems can be evaluated in general. However, I
will now discuss some of the strongest evidence for the size principle in the domains of word
learning, rule learning and probabilistic inference, and argue that these demonstrations provide
good examples of what Glymour (2007) called “Ptolemaic Psychology”, and that their success
relies on numerous auxiliary assumptions (see, e.g., Jones & Love, 2011; Marcus & Davis, 2013;
Sakamoto et al., 2008, for related criticisms). I will further argue that common-sense psychology
provides much more straightforward accounts even though it does not provide any general met-
ric for the evaluation of learning problems.

3.3.1 | The size principle and word learning (1)

Some of the strongest evidence for the size principle comes from Xu and Tenenbaum's (2007b)
experiments on word learning (see also Navarro et al., 2012). They asked how learners assign
meaning to novel nouns, and under what condition they would choose a meaning at the subor-
dinate category level (e.g., “Dalmatian”), at the basic-level category level (e.g., “dog”), or at the
superordinate category level (e.g., “animal”).

Participants were presented with a novel word (e.g., “fep”), and shown one or three exam-
ples of the word's meaning (e.g., a Dalmatian). Following this, they were shown a test screen
with potential examples of “feps”, and had to select other feps.

The test screen comprised eight items of each of three superordinate categories
(i.e., animals, vegetables, and vehicles). Within each category, there were two examples of the
same subordinate category (e.g., two other Dalmatians), two examples of the same basic-level
category (e.g., two non-Dalmatian dogs), and four examples of the same superordinate category
(e.g., four non-dog animals). If participants infer that fep means “animal”, they should choose
all eight pictures of that category; if they infer that it means “dog”, they should choose the four
corresponding pictures; and if they conclude that it means “Dalmatian”, they should choose the
two Dalmatians only.
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Results showed that, when familiarized with three Dalmatians, participants concluded that
fep meant “Dalmatian”. When familiarized with one Dalmatian and two other dogs, they con-
cluded that fep meant “dog”; and when familiarized with one Dalmatian and two non-dog
animals, they concluded that fep meant “animal”.

These results are certainly consistent with the size principle. After all, there are more ani-
mals in the world than there are dogs, and there are more dogs than there are Dalmatians.
Hence, if learners opt for the most restrictive inference, they should opt for a subordinate mean-
ing when this it is consistent with the data, as this is the most restrictive one, and chose basic
level or superordinate levels only when required by the data.

However, it is almost certain that learners do not apply the size principle, simply because
it does not scale up to natural language acquisition. In fact, natural language learners are
rarely shown test screens explicitly providing them with the nine possible meanings of a
novel word as well as with the number of elements of each category, raising the question of
how learners could possibly estimate the number of elements of a category—and even if they
had access to this information, whether they could process it. In fact, there are an estimated
70 million dogs in the United States (American Veterinary Medical Society 2012 U.S. Pet
Ownership & Demographics Sourcebook, retrieved on August 16, 2019 from https://www.
avma.org/KB/Resources/Statistics/Pages/Market-research-statistics-US-pet-ownership.aspx).
It is an entirely open question whether infants can process numbers of this magnitude, or
which other information they might possibly exploit according to Xu and Tenenbaum
(2007b).

In contrast, these results follow directly from standard approaches to word learning
(e.g., Medina et al., 2011; Stevens et al., 2017): Learners acquire a word whenever they
encounter a situation that is conducive for inferring its meaning. If subsequent occurrences
are consistent with this guess, they stick with it, and revise it if they are not. By default,
learners might assume that word meanings correspond to a basic-level category
(e.g., Markman & Hutchinson, 1984; Waxman & Markow, 1995). If they see an example that
is not part of the basic level category (e.g., a cat, which is an animal but not a dog), they might
revise their guess and opt for a superordinate category interpretation, similar to how the “trig-
gers” discussed above (e.g., Gibson & Wexler, 1994) might lead learners to move to more gen-
eral hypotheses. Conversely, if they consistently see “bad” examples of a basic-level category
(e.g., because Dalmatians are presumably not particularly prototypical dogs; Emberson
et al., 2019), or if the variability of the exemplars is less than expected from a basic-level cate-
gory (e.g., because learners are not shown the best examples), learners might opt for a subor-
dinate interpretation. This model thus accounts for Xu and Tenenbaum's (2007b) data,
without making any use of the size principle. It also makes testable predictions: Learners
should be less willing to entertain a subordinate interpretation when the examples are more
prototypical for the basic level category even if they all come from the same subordinate cate-
gory. For example, if they are shown German shepherds rather than Dalmatians, a subordi-
nate interpretation might be less available.

That being said, Xu and Tenenbaum (2007b) report another result that, at first sight,
seems to provide strong evidence for the size principle. Specifically, they show that, when par-
ticipants are familiarized with a single Dalmatian, they conclude that fep means “dog”; in
contrast, when familiarized with three Dalmatians, they conclude that fep means “Dalma-
tian”. However, as mentioned above, participants might have a tendency to use basic level
categories, and conclude that the lone Dalmatian is an exemplar of the “dog”. When shown
three Dalmatians, however, they might be surprised that all of the dogs are Dalmatian
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(e.g., because the examples are particularly prototypical dogs), and change their inference
accordingly.4

3.3.2 | The size principle and word learning (2)

Like Xu and Tenenbaum (2007b), Xu and Tenenbaum (2007a) asked how learners choose
between subordinate category and basic-level meanings. Participants (adults and three-to-four-
year-olds) were presented with a display showing items from two categories. The categories
were defined by their shapes and were spatially grouped together. Each category comprised
three subordinate categories of four items each. Items in different subordinate categories shared
their shape, but differed in texture.

Learning occurred in one of two conditions. In the teacher-driven condition, the experi-
menter pointed to three items from the same subordinate category and labeled them with a
novel word (e.g., a blicket). In the learner-driven condition, the experimenter labeled only one
object, and then encouraged participants to point to two other blickets. Results showed that all
but one participant pointed to two other items from the same subordinate category.

Following this, participants were pointed to five more objects and asked whether these were
blickets as well. Results showed that participants in the teacher-driven condition were more
likely to infer that “blicket” referred to the subordinate category than participants in the
learner-driven condition. Xu and Tenenbaum's (2007a) explain the preference for the subordi-
nate category in the teacher-driven condition as follows. Since the teacher knows the meaning
of the word, she will choose example objects to which this meaning applies. Hence, due to the
size principle, if all examples are consistent with a subordinate meaning, a subordinate mean-
ing should be preferred, because the number of items in that category is lower than that in a
basic-level category. In the learner-driven condition, in contrast, the learner does not know the
meaning of the word; hence, the size principle does not apply to favor smaller categories, such
that the learner should be less likely to infer a subordinate-level meaning than in the teacher-
driven condition.

At first sight, Xu and Tenenbaum's (2007a) assumption that the size principle applies only
in the teacher-driven condition seems to contradict Xu and Tenenbaum's (2007b) assumption

4In contrast, according to Xu and Tenenbaum's (2007b) formal explanation, the likelihood of each category given all
exemplars is the product of the likelihoods of each category given the individual exemplars. Importantly, one of the
factors in the individual likelihoods comes from the size principle, and is inversely proportional to the number of items
in the category. As a result, with more exemplars, the influence of the set size is more pronounced, and should favor
smaller categories (e.g., subordinate categories if these are consistent with the data). However, this is true for any
probability smaller than one that is raised to a power corresponding to the number of exemplars. To make this point, I
show in Supporting Information SI2 that Xu and Tenenbaum's (2007b) results can also be explained based on the
similarity between the training items and the test items. If the similarity score is converted to a probability score, the
same qualitative predictions follow. That is, the a priori likelihood of a meaning is largest when the similarity between
the training examples and the other items to which the meaning applies is largest; as such, this probability score favors
small (i.e., subordinate) categories. Hence, when it is raised to the third power (due to the three examples), the
preference for the subordinate category will be more pronounced. As a result, what guarantees the narrowing of the
generalizations between one and three exemplars is not the size principle but rather the rest of Xu and Tenenbaum's
(2007b) formalism.A similar conclusion applies to the results reported by Navarro et al. (2012). “Narrowing” of the
inferences occurs simply due to raising probabilities to a power corresponding to the number of examples, but not due
to the size principle per se. As such, neither Xu and Tenenbaum's (2007b) nor Navarro et al.'s (2012) results provide
evidence for computations involving the size principle.
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that the size-principle does apply in the absence of a teacher. Maybe more critically, if it is true
that, for the size principle to apply, one needs an experimenter (or caretaker) who patiently
points to all instances in the extension of a label, it would seem questionable whether the size
principle has any relevance for language acquisition at all. Further, the size principle would not
apply to the acquisition of verbs—for which deictic reference is much less felicitous and much
more ambiguous than for nouns (e.g., “Look at this, that's digesting!”)

Leaving aside this caveat, Xu and Tenenbaum's (2007a) results are actually inconsistent with
their conclusions. In fact, all but one participant in the learner-driven condition selected items
from the same subordinate category when asked to find other blickets; given that Xu and
Tenenbaum's (2007a) model predicts that participants in the learner-driven condition should
favor a basic-level interpretation, and that there are more than twice as many candidate blickets
from different subordinate categories, one would expect them to preferentially choose items
from different subordinate categories.

However, there is a simple alternative interpretation. Xu and Tenenbaum's (2007a) claims
notwithstanding, participants clearly have a tendency to choose a subordinate-level interpreta-
tion, maybe because they are presented with novel non-sense objects that might not be readily
assigned to conceptual categories (Callanan et al., 1994). In the teacher-driven condition, partic-
ipants might just stick with this interpretation. In the learner-driven condition, in contrast, they
might opt for the basic-level interpretation for purely pragmatic reasons after they initially
chose a subordinate interpretation. As mentioned above, participants were asked to decide
which other objects were blickets only after they had (correctly) identified two further blickets.
Plausibly, the teacher pointing to further objects, asking whether they were blickets as well,
might have given participants the impression that their initial interpretation (at the subordinate
level) was not general enough, and that the experimenter expected a (more general) basic-level
interpretation. If so, the difference between the teacher-driven condition and the learner-driven
condition might be due to pragmatic factors that are unrelated to the size principle and rather
reflect the participants' beliefs about the teacher's communicative intentions.

3.3.3 | The size principle and rule-learning

Frank and Tenenbaum (2011) use the size principle to explain how infants might learn the
repetition-patterns discussed above. They propose that, when infants have to choose between
multiple regularities that are consistent with examples they have heard, they choose the one
that has fewer potential items conforming to it.

According to their model, infants might encounter a total of three syllables. Before encoun-
tering any syllable triplet, infants know that the three syllables allow for a total 27 triplets, that
six of these triplets follow an ABB pattern (e.g., pu-li-li), that three of these triplets follow an
AAA pattern (where all three syllables are identical), as well as the number of triplets that
would conform to any conceivable rule. They then use the number of triplets that are consistent
with each rule to choose among possible generalizations.

Frank and Tenenbaum (2011) applied this size-principle-based model to a variety of infant rule-
learning experiments. However, in addition to the prima facie implausibility of the model, Endress
(2013) showed that the models made incorrect predictions (e.g., that a change from human syllables
to monkey vocalizations should be less salient than a relatively subtle change from AAB patterns to
ABB patterns), assumed that infants can process about 900 triplets per second, made predictions
that were subsequently refuted (Gervain & Endress, 2017), assumed that infants have severe
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perceptual problems in some phases of an experiment and perfect perception in other phases, used
model parameters that led their model to contradict the experimental data when the parameters
were used in psychologically meaningful ways or wired in the phenomenon they sought to explain
(Endress, 2013; see Frank (2013) and Endress (2014) for discussion). It thus seems that an account
based on the size principle is unlikely to explain infant rule learning.

3.3.4 | The size principle and probabilistic inference

Gweon et al. (2010) presented 15-months-olds with a transparent box containing blue and
yellow balls (see also Denison et al., 2013). The experimenter then removed a variable number
of blue balls from the box and demonstrated that they squeaked upon squeezing them.
Following this, infants were handed a yellow ball. Gweon et al. (2010) asked how likely infants
were to conclude that this ball squeaked as well. The dependent measure was whether, and
how often, infants would squeeze the yellow ball.

The critical manipulations were (1) how many balls the experimenter picked from the box
(1 or 3) and (2) whether the majority of the balls in the box was blue or yellow: In blue majority
populations, 75% of the balls were blue, while, in yellow majority populations, only 25% of the
balls were blue.

When the experimenter extracted three blue balls from a blue majority population, infants
squeezed the yellow ball more often than when the blue balls came from a yellow majority popula-
tion. In contrast, when only a single blue ball was extracted from a yellow majority population,
infants squeezed the yellow ball as much as when three blue balls were extracted from a blue major-
ity population. In a crucial control condition, three blue balls were ostensibly drawn by chance from
yellow majority population. In that condition, infants did not suppress squeezing the yellow ball.

To explain their data, Gweon et al. (2010) proposed that infants consider the four possibilities
spanned by two factors: (i) Is the teacher cooperative and picks the balls only from the squeaky
ones, or is she evil, and picks from all balls irrespectively of squeakiness? (ii) Are all balls squeaky,
or only the blue ones? Infants then compute likelihoods of the results of the experimenter's actions
according to all four possible scenarios, and compare these likelihoods to decide whether or not to
squeeze the yellow ball. This likelihood ratio is given by, with β being the proportion of blue balls
(and α being a parameter that is irrelevant for the current purposes):

Lα ¼ βn

αþ 1�αð Þβn , α� 0, 1½ �, β� �0,1�: ð1Þ

Should infants ever squeeze yellow balls?
Irrespective of whether it is plausible that infants have the processing abilities to deal with such
a complex model, it is inconsistent with the data, for two reasons. First, the model always con-
cludes that it is more likely that only blue balls are squeaky. In fact, it is easy to see that Lα ¼ 1
for α¼ 0 or β¼ 1, and that Lα <1 for all α>0 and β<1. Hence, Gweon et al.'s (2010) model pre-
dicts that infants should never squeeze the yellow ball at all.5

5It is easy to see that, irrespective of the proportion of blue balls, this effect should be more pronounced when more
balls are drawn from the container, and that, eventually Lα goes to 0. Indeed, the partial derivative ∂nLα ¼ αβn lnβ

αþ 1�αð Þβnð Þ2 is
strictly smaller than zero since lnβ is smaller than zero for β<1. Further, limn!∞Lα ¼ 0.
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Are blue balls more fun than yellow balls?
Second, the model assumes that it is more fun to squeeze squeaky blue balls than to squeeze
squeaky yellow balls, and that infants thus desire to find blue squeaky balls. A plausible
alternative hypothesis is that infants are interested in squeaky balls irrespective of their
color. As shown in in Figure 2, a version of Gweon et al.'s (2010) model that assumes that
infants care about squeaky balls irrespective of their color predicts that infants should be
more likely to squeeze the yellow ball in yellow majority populations, which is just the situa-
tion where infants are less likely to squeeze it. (However, in contrast to Gweon et al.'s (2010)
model, the new model accounts for the fact infants squeeze the yellow ball in the
first place.)

Specifically, given a proportion β of blue balls, one can derive different likelihoods for the
teacher picking three squeaky blue balls. These likelihoods are presented in Figure 3. The two
middle columns show the likelihoods from Gweon et al.'s (2010) model, assuming that infants
desire blue squeaky balls. The two right-most columns show the likelihoods assuming that
infants care about squeakiness but not about color. The likelihood of picking n squeaky blues
balls can be obtained by averaging across the choice strategies of the teacher (see Gweon
et al., 2010, for a justification of this average).
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FIGURE 2 Predictions of Gweon et al.'s (2010) original model assuming that infants like to find squeaky

blue balls (left) and a modified model where infants are interested in squeaky balls irrespective of color (right)

when three balls are extracted from the container. In Gweon et al.'s (2010) model, infants are more likely to

squeeze a yellow ball in when the container holds a majority of blue balls; in the modified model, infants are

more likely to squeeze a yellow ball when the container holds a majority of yellow balls.
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Gweon et al. (2010) compared the ratio of (i) the likelihood of the teacher picking three squeaky
blue balls if all balls are squeaky and (ii) the likelihood of the teacher picking three squeaky blue
balls when only the blues one are squeaky. As mentioned above, this ratio is given by:

L¼ 2βn

1þβn
: ð2Þ

(Compared to Equation (1), and following Gweon et al. (2010), I set α to .5) When 75% of the balls
are blue, and the teacher picks three balls, the ratio is .59; when 25% of the balls are blue, the ratio
is .03. Hence, leaving aside the fact that the model predicts that infants should never squeeze yellow
balls, they should be more likely to squeeze yellow balls when 75% of the balls are blue.

The alternative model, where infants care only about the squeakiness of the balls but not
their color, reverses the predictions. As can be seen from Figures 2 and 3, the corresponding
likelihood ratio is (with α set to 0.5):

L
0 ¼ 2

1þβn
: ð3Þ

Keeping Gweon et al.'s (2010) α parameter as a variable, the likelihood ratio is given by:

L
0
α ¼

1
αþ 1�αð Þβn : ð4Þ

It is easy to see that L
0
α ¼ 1 for α¼ 1 or β¼ 1, and L

0
α >1 for α<1 and β<1. Hence, this model

accounts for the fact that infants have a tendency to squeeze balls irrespective of their color.6

Squeaky 
balls

Teacher 
chooses among

Explanation P Explanation P

only blue squeaky The hypothesis holds that only blue balls 

are squeaky, and that the teacher will only 

sample from these balls. Hence, according 

to this hypothesis, the teacher will choose 

squeaky blue balls with probablity 1.

1 The hypothesis holds that the teacher will 

only sample from squeaky balls. Hence, 

according to this hypothesis, the teacher 

will choose squeaky balls with probablity 

1.

1

only blue all Since the teacher randomly picks balls, she 

has, for each ball, a chance  for picking a 

blue/squeaky ball.

n Since the teacher randomly picks balls, she 

has, for each ball, a chance  for picking a 

blue/squeaky ball.

n

only blue average (1 + n)/2 (1 + n)/2

all squeaky While all balls are squeaky, the teacher has 

a chance of  to pick a blue ball.

n Since all balls are squeaky, the probability 

of picking n squeaky balls is 1.

1

all all While all balls are squeaky, the teacher has 

a chance of  to pick a blue ball.

n Since all balls are squeaky, the probability 

of picking n squeaky balls is 1.

1

all average
n

1

Infants want blue squeaky balls Infants want squeaky balls

FIGURE 3 Likelihoods of the teacher picking n balls of interest out of a box with a proportion of β blue

balls. The middle two columns present Gweon et al.'s (2010) model, in which infants seek blue squeaky balls.

The likelihood ratio in favor of the hypothesis that all balls are squeaky is given by 2βn= 1þβnð Þ. The rightmost

columns present an alternative model, where infants just care about the squeakiness of the balls, irrespective of

their color. In that case, the likelihood ratio is 2= 1þβnð Þ.

6In contrast to Gweon et al.'s (2010) model, the partial derivative ∂nL
0
α ¼ � 1�αð Þβn lnβ

αþ 1�αð Þβnð Þ2 is strictly positive for β� �0,1½ and
α≠ 1. Further, limn!∞L

0
α ¼ 1=α>1.
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However, for blue majority populations (with 75% of blue balls), the ratio is 1.41, while it is
1.97 for yellow majority populations (with 25% of blue balls). Hence, the alternative model
(incorrectly) predicts that infants should be more likely to squeeze yellow balls when 25% of the
balls are blue, though it does account for the fact that infant squeeze the yellow balls to
begin with.

A simple psychological explanation of ball squeezing behavior
The considerations above suggest that the “success” of Gweon et al.'s (2010) model is not due to
the size principle, but rather to extraneous assumptions about what infants are most interested
in: They need to assume that squeaky blue balls are more fun than squeaky yellow balls.

In contrast to this model, there is a much simpler explanation. By default, infants might
tend to squeeze the balls, because shape is a better predictor of function (i.e., squeaking) than
color (e.g., Bloom, 1996; Brown, 1990; Hauser, 1997), and because squeezing them does not
entail a huge cost. However, infants can also detect non-random behavior of an agent; they
know that drawing three blue balls out of a box of mostly yellow balls is unlikely (Tégl�as
et al., 2007) and can use this ability to detect non-random behavior in agents (e.g., Kushnir
et al., 2010; though they sometimes expect random behavior from agents as well; Tauzin &
Gergely, 2019). Further, infants know that humans are often communicative and might even
courageously attempt to “teach” them (e.g., Csibra & Gergely, 2009). Hence, they might detect
the non-random behavior of the agent, assume that the agent has a reason to behave in non-
random ways, and, in line with the idea that infants and children are more likely to imitate
when they perceive intentional behavior (e.g., Gergely et al., 2002; Lyons et al., 2007), imitate
her more closely only in the condition where the agent shows clear non-random behavior.
This idea accounts for all of Gweon et al.'s (2010) data. A similar account applies to Denison
et al.'s (2013) data.

Taken together, these data thus do not provide support for another simplicity-based guide to
learning: The size principle. Rather, they have alternative explanations based on simple psycho-
logical considerations, raising the question of what might constitute an empirically adequate
guide to learning.

4 | CONCLUSIONS

In this paper, I first reviewed data suggesting that people do not necessarily draw the simplest
inferences and that, generally speaking, the formal complexity of an operation is not necessarily
a good measure of what is easy to process or learn for actual humans. When humans prefer
“simpler” explanations of phenomena, they might do so because the simpler explanations are
also easier to process. I then showed that prominent formal metrics of simplicity are unlikely to
help in this respect. Claims to the contrary notwithstanding, approaches that rely on minimiz-
ing the code or description length of a problem crucially depend on assumptions about the
underlying representational and processing primitives. Further, as shown by the empirical
examples above, even when we have a sense about what the underlying computational primi-
tives might be, certain operations are easier in some domains than in others, again for no obvi-
ous formal reason. Finally, approaches that quantify the simplicity of the inferences (e.g., the
size principle) have, to the best of my knowledge no empirical support, strongly depend on
sometimes arbitrary assumptions, and sometimes make incorrect predictions. As a result, there
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does not seem to be a context-free, generally applicable notions of simplicity that explains the
behavior of actual people.

As mentioned above, this conclusion also follows from purely theoretical considerations,
given that the simplicity of a description depends on the representational primitives, the
processing units and the representational strategies (e.g., Baker, 2016; Fitzpatrick, 2022;
Kutrib & Pighizzini, 2013; Meyer & Fischer, 1971; Morgan, 1986; Thatcher, 1973). It also reflects
debates in the philosophy of science about the definition, justification and historical relevance
of simplicity in the practice of science (Baker, 2016; Fitzpatrick, 2022).

These results might also have implications for why simpler theories might be preferred in
the history of science even when their simplicity is hard to quantify or even to justify
(e.g., Baker, 2016; Fitzpatrick, 2022). In line with other accounts of cultural evolution
(e.g., Kirby et al., 2007), scientists might prefer theories they can process more easily (though
their mental representations of their domain of expertise likely differ from those of lay people;
e.g., Amalric & Dehaene, 2016; Chase & Simon, 1973; Gauthier et al., 2000), claim that the
easier theories are also simpler, and preferentially teach and transmit them. As a result, the
scientists' learning and processing biases might shape the kinds of theories that will eventually
find acceptance; further, these theories will appear simpler if they are easier to process.

Together, these arguments thus suggest that, for any empirically viable notion of “simplic-
ity”, we need to determine empirically what the underlying representational, learning and
processing primitives are before any notion of simplicity can be fruitfully deployed.
Once (and if) such a list of primitives becomes available, it will become possible to calculate the
complexity of a learning or processing problem for an actual biological learner.

From an evolutionary point of view, such conclusions are utterly unsurprising. Just as it is
impossible to know that a geocentric model of the solar system is computationally efficient
(even when “simpler” heliocentric models are available) without knowing the processing con-
straints of Hellenistic astronomers (Russo, 2000), it is impossible to know what is simple for
humans to infer and process without knowing the (evolutionary) history of their representa-
tional and processing abilities. Inductive biases might not follow simplicity prescriptions when
considered by themselves. Rather, they might be those inductive biases that an organism with
our evolutionary history happens to have, just as any other trait needs to evolve within the con-
straints of an organism's evolutionary history (e.g., Gould et al., 1979). In other words, while
simplicity is often considered a guiding principle to science itself (e.g., Baker, 2016;
Fitzpatrick, 2022; Goodman, 1943), the traits of biological systems cannot easily be predicted
based on simple first principles: They result from an interplay of natural selection, evolutionary
constraints, trade-offs, and mere accidents (e.g., Gould et al., 1979). Unless one is willing to
entertain an evolutionary dualism, positing different kinds of evolutionary mechanisms for
morphological traits on the one side and mental and behavioral traits on the other side, there is
no a priori reason to consider simplicity a core feature of mental representations or inductive
biases.

This is not to say that inductive biases have not evolved to acquire language. If so, they
might be particularly conducive for learning the regularities that need to be learned given the
(linguistic) environment in which they are learned (i.e., the input), just as we preferentially
learn ecologically relevant associations.

An extreme version of the adaptive view is that learners have highly constrained feature
detectors for certain abstract patterns, learn by matching their input to these patterns and rec-
onfigure their representations according to these matches. Biologically speaking, this idea is
similar to developmental phenotypic plasticity, where an organism “chooses” among
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phenotypes depending on environmental stimuli (e.g., Alcock, 2001). For example, major phe-
notypic options such as sex are determined by the incubation temperature of the eggs in many
reptiles (e.g., Shine, 1999). Mutatis mutandis, the “incubation language” might provide
learners with trigger stimuli that lead them to adopt certain grammatical options, an idea
seems rather similar to principles and parameter approaches (e.g., Baker, 2001; Huang &
Roberts, 2016).

Irrespective of whether this speculation is true, the examples above show that, in some
cases, models with epicycles are the better models: Just as the Ptolemaic model led to easier cal-
culations for Hellenistic astronomers, the human mind needs to make do with the computa-
tional machinery it happens to come equipped with, and computations are simple when they
match the available machinery.
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