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Outlier Management for Pulse Rate Variability Analysis from
Photoplethysmographic Signals

Elisa Mejı́a-Mejı́a1 and Panayiotis A. Kyriacou2, Member, IEEE

Abstract— Pulse rate variability (PRV) has been proposed
as a surrogate for the estimation of Heart Rate Variability
(HRV), which is a non-invasive technique used to assess the
cardiac autonomic activity. However, both physiological and
technical factors may affect the relationship between HRV and
PRV, and there are no standards for the analysis of PRV
from photoplethysmographic (PPG) signals. The aim of this
study was to determine the best outlier management strategies
for PRV analysis. 117 PPG signals with randomly generated
PRV information were simulated using Gaussian signals. From
these, interbeat intervals were detected and different outlier
detection and correction techniques were applied. Time and
frequency-domain and non-linear PRV indices were extracted
and compared with respect to the gold standard values obtained
from the simulated PRV information. The results show that, in
good quality PPG signals, there is no need to apply any outlier
management technique for the extraction of PRV information.

Clinical relevance— Establishing guidelines for PRV mea-
surement can lead to more reliable and comparable results, as
well as to the increase in the use of this variable for the diagnosis
and monitoring of cardiovascular and autonomic conditions.

I. INTRODUCTION

Pulse Rate Variability (PRV) refers to the changes in
the duration of cardiac cycles through time, measured from
pulsatile signals such as the photoplethysmogram (PPG)
[1]. PRV has been used in recent years as a surrogate
for Heart Rate Variability (HRV), which is measured from
the electrocardiogram (ECG) and has been used for the
assessment of the cardiac autonomic nervous activity [2],
[3]. However, the relationship between HRV and PRV is not
straightforward and there is still a debate regarding the use
of PRV as an estimate of HRV [1], [4].

Physiological factors may explain the differences between
HRV and PRV. PRV is measured from the PPG, a non-
invasive optical technique widely used in the study and
monitoring of the pulsations associated with changes in
blood volume in a peripheral vascular bed [5], while ECG
is an electrical signal, and both contain distinct information
and are affected by different processes. Moreover, the ECG
directly reflects the electrical activity of the heart, while PPG
is measured in peripheral tissue and may be affected by
vascular behaviour and other physiological variables, such
as blood pressure [6], [7], [8].
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However, technical aspects may also be a source of
disagreement between HRV and PRV. The measurement
of HRV, which has been standardised before [9], relies
on the detection of the R peaks from the ECG trace and
the measurement of the so called R-to-R intervals (RRI).
The ECG QRS complex possess a distinct shape whose
identification is relatively simple [10]. Conversely, the PPG
has a smoother shape without a remarkably distinct fiducial
point [11] and there has not been any standardisation of the
processes to obtain PRV information from the PPG signal.
Factors such as the selection of the fiducial point to use
for interbeat interval (IBI) extraction, sampling rate used
to acquire the PPG signal, the methods used to pre-process
the PPG signal, and the management of outliers in IBI time
series, among others, can affect the results obtain from PRV
and its relationship with HRV [1].

The aim of this study was to establish guidelines for
outlier management in PRV analysis, using simulated PPG
signals and simulated PRV information as gold standard.
IBIs were extracted from simulated PPG signals and different
outlier detection and management techniques were used to
determine the effects of these methods in PRV indices. The
use of simulated PPG signals and PRV information allows for
the direct comparison of the expected results to the extracted
PRV information, instead of using HRV information as
gold standard. Thus, this is a direct analysis of how the
different techniques affect PRV analysis, and controls for
the physiological differences that may be included in the
comparison against ECG-derived HRV indices.

II. MATERIALS AND METHODS
A. Signal simulation

PPG signals were simulated using a modified version of
the model proposed by Tang et al [12], [13]. In this model,
each single PPG pulse is simulated as the summation of
two Gaussian functions with different parameters according
to the quality of the PPG signal to be simulated. Tang et
al. [12] determined these parameters based on PPG signals
available in the MIMIC database. In the modified version of
this model, the parameters for both Gaussian functions are
not fixed, and the user can determine a ratio of amplitudes
(r) of the Gaussian functions, being able to simulate almost
any morphology of the PPG pulse.

Then, PRV information was simulated by generating ran-
domly features for the expected PRV trace, considered as the
gold standard, and the duration of each individual pulse was
set according to the generated PRV trace. PRV information
was simulated as a summation of four sinusoidal waves with
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Fig. 1. Simulated photoplethysmographic signals with varying pulse rate
variability information. (a) Excellent quality signal. (b) Acceptable quality
signal.

randomly selected frequency, amplitude and offset, as shown
in (1). The offset µ , which represents the mean duration
of the pulses was set to be a random selected number
between 300 and 1500 ms (for 200 and 40 beats per minute,
respectively), while the amplitude, A, was obtained also as
a random number between 50 and 80 ms. For the frequency
information, two randomly generated values between 0.04
and 0.15 Hz, fLF1 and fLF2, and two randomly generated
values between 0.15 and 0.40 Hz, fHF1 and fHF2, were used
to simulate the low frequency (LF) and high frequency (HF)
components from the PRV. These sinusoidal waves were
considered as gold standard for PRV analysis.

PRV = µ +A(sin(2πt fLF1)+ sin(2πt fLF2)+

sin(2πt fHF1)+ sin(2πt fHF2)) (1)

Finally, all individual pulses were concatenated using a
cubic spline interpolation, and filtered using a low-pass,
second order Butterworth filter with cutoff frequency of 15
Hz. A total of 117 PRV traces were randomly generated, and
used for the simulation of excellent (r = 2) and acceptable
(r = 4) quality PPG signals. PPG signals were simulated
using a sampling rate of 256 Hz and with a duration of
5 minutes. Fig. 1 exemplifies the simulated PPG signals.
Signal simulation and analyses were performed in MATLAB
R2020b.

B. Interbeat intervals extraction, and outlier detection and
management

Cardiac cycles were identified from the simulated PPG
signals using the algorithm described in [14]. Then, the a
points from the second derivative of each cardiac cycle were
used to extract the IBIs as the time difference between the
location of consecutive a points. Outliers in these IBIs traces

were detected and corrected applying the methods described
in Tables I and II, respectively.

C. Pulse Rate Variability analysis

From the extracted IBIs, the corrected IBIs, and gold
standard PRV traces, time-domain, frequency-domain and
Poincaré plot indices were extracted.

From the time domain, the average duration of the IBIs
(AVNN), their standard deviation (SDNN), the root mean
squared value of the consecutive differences (RMSSD) and
the proportion of consecutive differences larger than 50 ms
(pNN50) were obtained. For the Poincaré plot analysis, the
ellipse fitting technique was applied [15] and the area of the
ellipse (S), its minor and major diameters (SD1 and SD2,
respectively) and the ratio between diameters (SD1/SD2)
were estimated.

For the frequency domain analysis, the IBIs were inter-
polated using cubic spline interpolation with 4 Hz sampling
rate. The fast Fourier transform (FFT) with 512 data points
was used to obtain the frequency spectra. From these, the
low (LF, 0.04 ≤ f < 0.15Hz) and high frequency bands (HF,
0.15 ≤ f < 0.40Hz) were calculated, as well as the total
power of the spectrum (TP, 0.0033 ≤ f < 0.40Hz). The ratio
between LF and HF (LF/HF) and the normalised power of
LF and HF bands (nLF and nHF, respectively) were obtained,
as were the x and y coordinates of the centroid of LF, HF
and TP (cLFx, cLFy, cHFx, cHFy, cTPx and cTPy).

D. Statistical analysis

The differences between indices extracted from the gold
standard and the original and corrected IBIs were calculated
and used for the statistical analyses.

Factorial analyses were performed to evaluate the effects
of the detection and correction methods, as well as their
interaction on the differences of each of the PRV indices.

TABLE I
OUTLIER DETECTION METHODS

Name Outlier definition
Median IBIs with values more than three scales median

absolute deviations from the median
Mean IBIs with values more than three standard deviations

from the mean
Quartiles IBIs with more than 1.5 interquartile ranges above

the upper quartile or below the lower quartile
Grubb’s test IBIs are detected in an iterative manner, assuming

the sample as normally distributed. IBIs are
classified as outliers using the largest absolute
deviation from the sample mean in units of the
sample standard deviation as the statistic

Generalized
extreme
Studentized
deviate
(GESD)
test

Similar to the Grubb’s test but optimised for
multiple outliers

Moving
mean

IBIs with values more than three standard deviations
from the mean over a window of 5 consecutive
samples

Moving
median

IBIs with values more than three scales median
absolute deviations from the median over a window
of 5 consecutive samples
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TABLE II
OUTLIER MANAGEMENT METHODS

Name Description
Mean k = 5 Replaces each outlier for the mean value of the 5

previous IBIs
Median k = 5 Replaces each outlier for the median value of the 5

previous IBIs
Mean Replaces each outlier for the mean value of the IBIs
Median Replaces each outlier for the median value of the

IBIs
Clip Replaces each outlier with the lower or upper

threshold value for elements smaller than or higher
than three scaled median absolute deviations from
the median

Previous Replaces each outlier with the previous non-outlier
value

Next Replaces each outlier with the next non-outlier value
Nearest Replaces each outlier with the nearest non-outlier

value
Linear Replaces each outlier after linearly interpolating

neighbouring, non-outlier values
Spline Replaces each outlier after applying a cubic spline

interpolation with neighbouring, non-outlier values
Piecewise
Spline

Replaces each outlier after applying a shape-
preserving piecewise cubic spline interpolation with
neighbouring, non-outlier values

Makima Replaces each outlier after applying a modified
Akima cubic Hermite interpolation with neighbour-
ing, non-outlier values

Since the data did not follow a normal distribution, as
checked using the Lilliefors test, Box-Cox transformations
were applied to the differences, after finding the optimal
lambda for each case. Then, the combination of factors that
gave the lowest difference for each index was compared to
the differences obtained if no outlier detection and manage-
ment strategy was applied, using Wilcoxon rank sum tests.
A 95% significance value was used for all the analyses.

Statistical analyses were performed in RStudio (version
1.4.1717).

III. RESULTS
From the factorial analyses, it was found that there were

significant differences due to the interaction of factors only
for measuring pNN50, both with excellent and acceptable
quality signals. The detection method was a significant
factor for SDNN, RMSSD, SD1 and SD2 in both types
of signals, while AVNN and SD1/SD2 showed significant
differences due to the detection method only when measured
in acceptable quality signals. The correction method did not
show statistically significant differences for any index or
any type of signal. Table III summarises the combination of
factors that gave the lowest difference to the gold standard
for the estimated indices.

After comparing these best combinations to the indices ex-
tracted from the original IBIs, i.e. without managing outliers,
it was found that only RMSSD (p < 0.001) and SD1 (p <
0.001) showed significant differences when measured from
excellent PPG signals, while S showed significant differences
(p< 0.001) when measured from both types of signals. In all
these cases, the mean difference between extracted and gold
standard indices were lower when no outlier management
strategy was applied, as shown in Table IV.

TABLE III
COMBINATION OF FACTORS WITH THE LOWEST DIFFERENCE TO INDICES

EXTRACTED FROM THE GOLD STANDARD.

Index Excellent PPG Acceptable PPG
A B A B

AVNN † Quartiles Median Quartiles Median
SDNN ‡ GESD test Next Mean Next
RMSSD ‡ Moving

median
Next Grubb’s

test
Next

pNN50 ? Mean Median
k = 5

Mean Median

LF Moving
median

Previous Moving
median

Previous

HF Moving
median

Median
k = 5

Moving
median

Piecewise
Spline

TP Moving
median

Next Moving
median

Nearest

nLF Moving
median

Linear Moving
median

Linear

nHF Moving
median

Median
k = 5

Mean Linear

LF/HF Moving
median

Median
k = 5

Moving
median

Median
k = 5

cLFx Mean Clip Moving
median

Previous

cLFy Moving
median

Linear Moving
median

Median
k = 5

cHFx Moving
median

Previous Moving
median

Previous

cHFy Moving
median

Spline Moving
median

Linear

cTPx Moving
median

Mean Mean Clip

cTPy Moving
median

Nearest Moving
median

Clip

S Moving
median

Next Moving
median

Next

SD1 ‡ Moving
median

Next Grubb’s
test

Median

SD2 ‡ Quartiles Linear Quartiles Median
SD1/SD2
†

Mean Next Grubb’s
test

Makima

A: Detection method
B: Correction method
‡ Significant difference due to A on both types of signals
† Significant difference due to A on acceptable signals
? Significant difference due to the A*B on both types of signals

IV. DISCUSSION

PRV describes the changes in pulse rate over time [1].
It is usually measured from PPG signals, which are ob-
tained using an optical, non-intrusive and low-cost device
widely used in clinical and wearable devices [16]. PRV has

TABLE IV
AVERAGE DIFFERENCE TO GOLD STANDARD FOR INDICES THAT

SHOWED SIGNIFICANT DIFFERENCES BETWEEN APPLYING OR NOT

APPLYING OUTLIER MANAGEMENT STRATEGIES

Index Excellent PPG Acceptable PPG
No manage- Best com- No manage- Best com-

ment bination ment bination
RMSSD −0.0014±

0.0062
0.0045±
0.0064

- -

S −0.0100±
0.0408

0.0115±
0.0448

−0.0076±
0.0374

0.0135±
0.0410

SD1 −9.78x10−4±
0.0043

0.0032±
0.0045

- -
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been suggested as an alternative to HRV, although their
relationship is not straightforward and both physiological
and technical aspects could affect the measurement of PRV
[1], [4]. Moreover, the measurement of PRV has not been
standardised and different studies usually do not align their
methodologies, precluding the comparison of the results and
the validation of the technique. Some aspects that could
affect PRV analysis are the sampling rate used to acquire
the PPG, the identification and selection of fiducial points
to segment the cardiac cycles, the length of the window
used for PRV analysis, and the management of outliers and
ectopic beats from the PRV traces. In this study, the aim
was to determine the best way to manage these outliers, by
investigating the effects of different detection and correction
strategies.

The obtained results showed that most of the extracted
indices were not affected by the selection of outlier man-
agement strategies, and even not controlling for outliers
showed good results when compared against the gold stan-
dard. This means that with good quality signals there is no
need to manage outliers before extracting PRV indices. This
is especially true for the assessment of frequency domain
indices, which did not show any difference among outlier
management strategies. These results are both for excellent
and acceptable PPG signals, suggesting that PRV analysis
might be performed without managing outliers when the
signal has a good signal-to-noise ratio and when the signal is
measured from different sites of the body, which have been
shown to alter the morphology of the signal [17].

This study has some limitation. Firstly, simulated PPG
signals with simulated PRV information were used in this
study. This was done with two main purposes. It is simpler
to obtain larger number of samples using simulated data,
which gives statistical validity to the experiment. The sample
size for this study was estimated to be the optimal value in
order to observe differences of 2% in the measurement of the
indices, compared to the gold standard. Also, by simulating
PRV information it was possible to obtain a gold standard
that was not HRV information obtained from the ECG. As
mentioned, physiological aspects may explain part of the
differences between HRV and PRV, hence comparing them in
order to establish methodologies and strategies for obtaining
PRV information its not ideal. However, the results from this
study need to be validated using real PPG data. Secondly,
there was no noise in the simulated signals, which could
enhance the performance of the algorithm used to segment
the cardiac cycles and diminish the presence of outliers.
A similar analysis should be performed with PPG signals
that contain different types and levels of noise in order to
evaluate the performance of outlier management strategies
in these cases. Finally, the agreement between indices was
not assessed. Future studies should investigate not only the
significance of the difference but also determine how the
indices agree using techniques such as Bland-Altman plots
[18].
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