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University of Athens Medical School, Athens, Greece, 2Department of Computer Science, University
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Debilitating hearing loss (HL) a�ects ∼6% of the human population. Only 20%

of the people in need of a hearing assistive device will eventually seek and

acquire one. The number of people that are satisfied with their Hearing Aids

(HAids) and continue using them in the long term is even lower. Understanding

the personal, behavioral, environmental, or other factors that correlate with

the optimal HAid fitting and with users’ experience of HAids is a significant

step in improving patient satisfaction and quality of life, while reducing

societal and financial burden. In SMART BEAR we are addressing this need

by making use of the capacity of modern HAids to provide dynamic logging

of their operation and by combining this information with a big amount of

information about themedical, environmental, and social context of each HAid

user. We are studying hearing rehabilitation through a 12-month continuous

monitoring of HL patients, collecting data, such as participants’ demographics,

audiometric and medical data, their cognitive and mental status, their habits,

and preferences, through a set of medical devices and wearables, as well as

through face-to-face and remote clinical assessments and fitting/fine-tuning

sessions. Descriptive, AI-based analysis and assessment of the relationships

between heterogeneous data and HL-related parameters will help clinical

researchers to better understand the overall health profiles of HL patients, and

to identify patterns or relations that may be proven essential for future clinical

trials. In addition, the future state and behavioral (e.g., HAids Satisfiability and

HAids usage) of the patients will be predicted with time-dependent machine

learning models to assist the clinical researchers to decide on the nature of

the interventions. Explainable Artificial Intelligence (XAI) techniques will be

leveraged to better understand the factors that play a significant role in the

success of a hearing rehabilitation program, constructing patient profiles. This

paper is a conceptual one aiming to describe the upcoming data collection

process and proposed framework for providing a comprehensive profile for

patients with HL in the context of EU-funded SMART BEAR project. Such

patient profiles can be invaluable in HL treatment as they can help to identify

the characteristics making patients more prone to drop out and stop using

their HAids, using their HAids su�ciently long during the day, and being more

satisfied by their HAids experience. They can also help decrease the number

of needed remote sessions with their Audiologist for counseling, and/or HAids
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fine tuning, or the number of manual changes of HAids program (as indication

of poor sound quality and bad adaptation of HAids configuration to patients’

real needs and daily challenges), leading to reduced healthcare cost.

KEYWORDS

explainable AI (XAI), Deep Learning, big data, hearing loss, Hearing Aids, prognosis

prediction, Long Short-Term Memory (LSTM), attention mechanism

Introduction

Hearing Loss (HL) is a public health problem that affects one

out of three people over the age of 65, while debilitating HL is

estimated to affect 6% of the population (466 million people)

according to World Health Organization (WHO) statistics1.

As per the same statistics, its annual management cost is

estimated at more than 555 billion Euros (1) for the European

countries and at 750 billion Dollars globally. HL should not

be considered as an isolated health problem. Apart from the

associated financial cost, HL severely affects communication

and is associated with various comorbidities. Multiple studies

have suggested that hearing impairment is associated with

psychological and physical illness, such as cognitive disorders

and dementia. An increase in the hearing threshold of 25

decibels (dB) corresponds to a loss of 7 cognitive years (2),

and is associated with increased anxiety and depression (3), and

even higher mortality rate (4). On the other hand, adults with

hearing impairment tend to isolate themselves by limiting their

participation in social events (5), thereby reducing their quality

of life significantly (6).

Although the only available and validated management

solution that currently exists for HL is the fitting and use of

hearing assistive devices, only one in five people in need of a

Hearing Aid (HAid) will eventually seek, acquire, and continue

to use one efficiently (7, 8). A “HAid experience” refers to

the process of living with a HAid and involves all the real-life

challenges, coping strategies, and facilitations that the uses of

HAid may evoke. Improvements in the HAid experience can

lead to minimization of drop-out risk and enhancement of the

overall quality of life (9).

The key factors in improving the HAid experience include,

but are not limited to, proper fitting, affordability and

accessibility of the follow-up services, and their combination

with thorough and evidence-based personalized counseling

and training on how to use the selected HAid (10). Since

everyday patient needs and HL degree are not static and

might change over time, there are still many factors that

audiologists find challenging to address, including selecting

1 https://www.who.int/news-room/fact-sheets/detail/deafness-and-

hearing-loss

optimal HAid configurations or best counseling approach

according to individual patient profile and lifestyle (7, 11–

13). Dynamic monitoring and collecting information about a

patient’s hearing and cognitive capacity, as well as their ability

to control settings in real time in order to cope in different

sound environments, could be very helpful toward this direction

(14, 15). The development and validation of prediction models

using the collected information and making accurate prognoses

of how each patient’s HAid experience will unfold are of

major priority.

The use of Artificial Intelligence (AI) models in prognosis

studies has gained traction increasingly in recent years due to its

ability to handle large amounts of messy data (16), to learn from

different types of data (17), and to facilitate clinical management

of patients (18). Researchers have incorporated AI models in

prognosis in clinical cancer research, such as breast cancer

with Support Vector Machine (SVM) (19), colorectal cancer

with Long Short-Term Memory (LSTM) (20), and glioblastoma

with Prognosis Enhanced Neural Network (PENN) (21). As

well as the prognosis for adult congenital heart disease with

Convolutional Neural Network (CNN)-LSTM (22), rate of

kidney disease with an ensemble of Logistic Regression, Decision

Tree, Random Forest (RF), and K-Nearest Neighbor (KNN)

(23), and COVID-19 with a segmentation network (24).

The effectiveness of AI models in HL prognosis has also

been investigated by many researchers. Sensorineural Hearing

Loss (SNHL) is the most common form of permanent HL

resulting from the damage to the auditory nerve and/or the

hair cells in the inner ear. Abdollahi et al. (25) constructed

eight Machine Learning (ML) models to predict SNHL after

chemoradiotherapy, including Decision Stump, Hoeffding,

C4.5, Bayesian Network, Naïve, Adaptive Boosting (AdaBoost),

Bootstrap Aggregating, Classification via Regression, and

Logistic Regression (LR). The average predictive power of

all models was found to be more than 70% in terms of

accuracy, precision, and Area Under Curve (AUC). Idiopathic

Sensorineural Hearing Loss (ISSHL) is characterized by an acute

dysfunction of the inner ear. Zhao et al. (26) developed several

ML models for ISSHL prediction, including SVM, Multilayer

Perceptron (MLP), RF, and AdaBoost. A similarly high level

of accuracy is also reported and varies between 78.6 and

80.1%. Bing et al. (27) evaluated several Deep Learning (DL)
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and ML models to predict the dichotomised hearing outcome

of ISSHL in order to identify the best predictive model for

clinical application. Six input feature collections derived from

149 potential predictors have been used with Deep Belief

Network, LR, SVM, and MLP. Best predictive performance was

achieved by Deep Belief Network when evaluated with accuracy,

precision, recall, F-score, Receiver Operating Characteristic

Curve (ROC), and AUC, achieving 77.58% of accuracy and

0.84 of AUC. Ototoxic-induced HL, more specifically, the

ototoxic effects in participants who were exposed to cigarette

smoke and/or pesticides were evaluated by Artificial Neural

Network, KNN, and SVM (28). While all models showed a good

performance during training, KNN achieved the highest training

accuracy with about 90% in two of the five datasets.

Attention-based DL models have also gained popularity in

the medical domain recently. Bahdanau et al. (29) proposed the

first attention mechanism, also known as the Soft Attention,

for a Neural Machine Translation task using LSTM. The

advantage of using attention mechanisms with LSTM is that it

prevents the LSTM from forgetting certain input features when

analyzing long-term dependencies and from putting too much

weight on certain input features. Despite the lack of research

using attention-based LSTM for HL patients specifically, a

similar approach has been adapted for other comorbidities.

Park et al. (30) used a Frequency-aware Attention-based

LSTM (FA-Attn-LSTM) to investigate medical features that

can be considered as critical for predicting the risk of

cardiovascular disease. Wall et al. (31) proposed a framework

for audio classification, specifically for chronic and non-chronic

lung disease and COVID-19 diagnosis, with attention-based

bidirectional LSTM (A-BiLSTM).

AI, particularly DL models, in general are appreciated for

their ability to achieve high prediction accuracy. However,

for sensitive domains, such as health care, accuracy is not

the only determining factor (32). The inherent limitation of

many AI systems is their black box nature, which means that

humans are unable to easily understand the inner workings of

these systems or how they arrive at their conclusions. Thus,

automated decision-making systems that employ AI models

are not widely accepted (32) due to a lack of trust from the

end users. The integration of AI models into medical domains

also faces criticisms where the models may fail to adhere to

high standards of accountability, reliability, and transparency

for medical decisions (33). It also complicates the issue of

accountability in the event of a wrong decision (34).

Explainable AI (XAI) aims to overcome these limitations

by explaining the learned decisions of AI models, thus giving

end-users the ability to trust the models (35) and understanding

why the models made certain decisions (32). Different XAI

methods have been proposed over the years, particularly in the

fields of computer vision and natural language processing. Yet

very few studies have explored the potential applications of XAI

methods to themedical field (34), especially in prognosis studies.

A number of researchers have adapted Local Interpretable

Model-agnostic Explanation (LIME) (36) to explain a CNN-

based diagnostic model, including chronic wound classification

(37), gastral image classification (38), and Alzheimer’s diagnosis

(39). Gu et al. (40) proposed an auxiliary decision system for

breast cancer diagnosis and prediction with Extreme Gradient

Boosting (XGBoost) and SHapley Additive exPlanations (SHAP)

(41). Chakraborty et al. (17) developed a similar framework

that was inspired by Gu et al. (40) using XGBoost and SHAP

for prognosis in breast cancer patients. In the HL domain,

Lenatti et al. (42) applied SHAP to explain the classification

results of RF in predicting whether or not a patient has HL.

In particular, SHAP is used to investigate the local predictions

for each of the two output classes in four scenarios: true

positive, true negative, false positive, and false negative. They

have found that Age is the most important feature that impacts

the classifier. In particular, values of age equal to 74 contribute

positively to the model correctly predicting participants with

HL (true positive), whereas values of age equal to 25 contribute

negatively to the model correctly predicting participants without

HL (true negative).

To the best of our knowledge, this is the first conceptual

paper on a framework that leverages AI and XAI for prognosis

forHL benefit and usage.ML techniques have been implemented

previously in studies focusing on the prognosis of SNHL, ISSHL,

and HL induced by ototoxic drugs and other substances (25–

28), and modeling has also been attempted with synthetic data

in more progressive types of HL, such as age-related or noise-

induced HL (43). Nevertheless, we are unaware of any such

attempts with real multi-source big data to date.

In the EU-funded SMARTBEAR project2, we are developing

and validating a prognosis framework to address this scientific

gap for HL patients. AI and XAI techniques will help identify

and explain particular trends and factors in the large amount

of heterogeneous data collected that correlate with the success

or failure of hearing rehabilitation. In particular, the proposed

framework composes the predictive power of LSTM with

Attention Mechanism with the explanatory abilities of SHAP,

and it will be used to answer several questions to provide a

comprehensive profiling of HL patients.

The purpose of this article is to describe the planned data

collection process, as well as the upcoming analyses to identify

and explain particular trends and factors that correlate with the

success or failure of hearing rehabilitation: drop-out of HAids

usage, more hours of HAids usage and higher benefit from it,

and less frequent need for manual adjustments or fine tuning

of the HAids. As this is a conceptual paper, data collection is

expected to begin in autumn 2022, followed by the experiments

of the proposed methods.

2 https://www.smart-bear.eu/
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FIGURE 1

Participants’ flow of action.

Materials and methods

Participants

Five thousand elderly participants from six different EU

countries will be included in the study. In particular, these

six countries are divided into five study groups and 1,000

participants are recruited from each, namely France, Greece,

Italy, Romania, and Portugal-Spain. A smaller-scale pilot study

with 100 participants is already underway in the island of

Madeira. The large-scale project is scheduled to begin in autumn

2022 and run for 24 months. Subjects will be included in the

study based on the following eligibility criteria:

1. Age and birth gender: males and females, 67–80 years old.

2. Medical history: at least 2 of the following conditions:

cardiovascular diseases (CVDs: hypertension, coronary

disease, heart failure), hearing loss, balance disorders, mild

depression, mild cognitive impairment, frailty.

3. Cognitive function according to MoCA score: participants

with 26–30/30 (no cognitive impairment), and 18–26/30

(mild cognitive impairment) will be included (44). Score

lower than 18/30 corresponds to mild dementia which is not

addressed in SMART BEAR so those participants scoring <

18/30 will be excluded.

4. Excellent toModerate level of mobility, which corresponds to

be able to perform simple tasks such as walking and jumping

independently, with or without the help of a mechanical

equipment, for example, a cane.

5. Ability to read.

6. Ability to use the basic functions of a smartphone (answer,

call, check a notification, open an application).

Participants who meet the aforementioned criteria but

present a severe or life-threatening condition, such as severe

depression or high risk of heart failure, will be excluded from

the study. All participants willing to provide their informed

consent and voluntarily participate in the study will undergo an

initial clinical assessment as shown in Figure 1. According to the

results of this screening assessment, a specific set of devices and

clinical procedures will be allocated to each participant. These

devices are being obtained through joint procurement for all

six countries and will be the same in terms of type, model, and

configuration for all participants.

Participants with hearing loss

We intend to recruit one thousand people with HL to a

degree that requires amplification. Participants with a moderate

to severe unilateral or bilateral HL, as indicated by their pure

tone audiogram, are considered eligible for HAid fitting if their

HL negatively impacts their communication ability, cannot be

treated surgically, or can be treated but the surgery is contra-

indicated for the particular participant. Participants will only be

excluded from Fitting if they do not wish to be fitted with aHAid,

or if they have profound HL (Pure tone average 0.5–4 kHz >

80 dB), and have not received any benefit from recent previous

HAid fitting and use.

Audiological assessment

The same audiometric assessment (Figure 2) will be

conducted on all participants with suspected or diagnosed

HL by experienced personnel who have undergone additional

internal training on every procedure of the clinical protocol

by the clinical coordination team of the SMART BEAR. Joint

procurement will ensure that the equipment (including HAids)

and relevant software will be the same for all countries.

Following the audiometric assessment, all participants will

be fitted with HAids according to the same fitting protocol.

The exact fitting protocol will be defined once the specific

model and manufacturer of the HAids is selected during

the international procurement procedure as discussed above.
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FIGURE 2

Audiological assessment flow of action.

HAids configuration will then be fine-tuned in accordance

with the participant’s experience level, listening preferences,

and language preferences. There will be a predefined HAids

program for all participants, other programs may be added

based on the judgment of the audiologists and the needs of the

participants. Pure tone audiometry will follow the British Society

of Audiology3 guidelines.

In accordance with the SMART BEAR fitting protocol,

participants will be monitored for 12 months after they have

been fitted with either one or two HAids (same manufacturer,

same model). As shown in Figure 2, participants will also

have continuous access to remote and face-to-face fine-tuning

services provided by the SMART BEAR audiologists. Through

the SMART BEAR clinician’s dashboard, the audiologists will

have access to participants’ data and HAids log throughout

this period.

Source of data

SMART BEAR is a large-scale multi-centric clinical study

that aims to integrate state-of-the-art technology into everyday

life of senior citizens with specific comorbidities, composing off-

the-shelf and user-friendly devices onto an innovative platform.

There are three subsystems in the SMART BEAR architecture

as shown in Figure 3, namely the mobile phone application,

the SMART BEAR HomeHub, and the SMART BEAR Cloud

3 https://www.thebsa.org.uk/wp-content/uploads/2018/11/OD104-

32-Recommended-Procedure-Pure-Tone-Audiometry-August-2018-

FINAL.pdf

(SB@Cloud). Data are collected (i) during participants’ clinical

assessments via the clinician dashboard (e.g., anamnestic

history, physiological and audiometric measurements), (ii) from

all linked portable devices via the mobile phone application

(e.g., HAid program, heart rate, and steps measurement), and

(iii) through the mobile phone application itself (e.g., through

questionnaires about their mood, diet, medication adherence

and sleep quality). The HomeHub accumulates data from

different home-based device sensors, such as weight scales

and movement sensors. Finally, SB@Cloud securely stores and

analyses the collected data through model and data-driven big

data analytics during a 12-month period for each participant.

A total of 24 variable and covariates are collected

through SMART BEAR HAids, including timestamp

of the measurement, environmental noise, and manual

program adjustments. Supplementary Table 1 provides a

detailed description of each variable and covariate. Several

other covariates are also being considered and are shown

in Supplementary Table 2. The additional 241 covariates

are collected in order to monitor the participants’ other

comorbidities based on their demographics, biological,

environmental, and behavioral characteristics. There is a

need to consider the impact of these additional covariates

on the outcomes since they have been previously shown to

affect to HL and HAid experiences, such as age, occupation,

education, family history, mood disorders, cognitive function,

diet, glucose levels and medication (3, 45–47). They are also

currently being investigated for their correlation to hearing, as

in the case of cardiovascular diseases, poorer mobility, frailty,

and balance disorders (46, 48, 49). Furthermore, the medical

and audiological assessment will also be supplemented by
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FIGURE 3

The SMART BEAR architecture.

additional sensor data as listed in Supplementary Table 3, such

as blood pressure measured by the blood pressure tracker and

physical activity measured by the smart watch. These variables

are collected as a part of SMART BEAR’s commitment to

collect a wide range of data which will be explored as a part of

data-driven analysis.

Sample size

SMART BEAR is aiming at collecting and analyzing

big data—integrating information from many thousands of

participants and different data sources. In Big Data, common

sample size calculations cannot apply (50). Big data studies need

to consider the marginal costs vs. the marginal value of possible

sample sizes and include asmany participants as possible (51). In

SMART BEAR, the maximum number of participants that can

be recruited based on available resources and time is 5,000. In

accordance with the requirements of the study, this number is

considered sufficient for ensuring the impact analysis obtained

at the end of the project to be significant. In the case of HL,

200 participants with HL will be recruited from each of the

five study groups, creating a sample of 1,000 participants with

HL. These participants will then be fitted with either one or

two HAids depending on whether one or both ears require

amplification. Therefore, the total number of HAids to be used

in the planned data collection is estimated between 1,000 and

2,000. The SMART BEAR platform is designed to facilitate the

collection of data from a maximum number of 2,000 HAids, in

case all participants suffer from bilateral HL. Data collected from

up to 2,000 HAids are also considered to be sufficient based on

previous experience (50).

Analysis methods

The questions that will be addressed with the proposed

framework are based on future events. The prediction model

will be used, for example, to predict future HAid usage or

future drop-out rate. As a result, the model is fundamentally

constructed with participants’ historical medical history, HAid

usage and habit, as well as the outcomes of medical and

audiological assessments. As such, the collected SMART BEAR
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data are sequential in nature and can be viewed as time

series data.

The proposed framework uses an attention-based LSTM

(attn-LSTM) as the prediction model and then applies SHAP

to interpret the model predictions. More specifically, SHAP

is employed to identify those characteristics that influence

the model predictions. To enable continuous learning and

provision of personalized solutions, the pipeline for the

proposed framework is to pre-process the data, hyper-tune the

model, train/test the model with the optimal set of hyper-

parameters selected from hyper-tuning, and then apply the XAI

method. The performance of the prediction models is evaluated

using different set of evaluation metrics for classification and

regression problems.

Pre-processing the data

The temporal element of the collected data is determined

by the Time variable, which records the date and time of the

collected variables every 60 s when the SMART BEAR HAids are

active in use. In SMART BEAR, clinicians also have the option of

choosing how the data are aggregated for different analysis. Due

to this, the data frequency is transformed first in order to allow

hourly, daily, weekly, monthly, or yearly predictions, depending

on the choice of clinician.

Transforming the distribution of the features allows the

ML and DL algorithms to converge faster and minimize the

weight of any variable with extreme values. Standardization

and normalization are two pre-processing techniques that are

particularly important for training an LSTM algorithm, since

standardization on the data centers the noise from trend

reverse signals and prevents activation functions to saturate (52),

whereas normalization prevents the weights of the model being

skewed (53).

Ordinal variables will be transformed with ordinal encoding

and nominal variables will be transformed with one-hot

encoding in order to convert these variables into either binary or

multiple values with a numerical form. If the expected outcome

variable is categorical then these will be treated label encoding.

Another important pre-processing step is to handle missing

data. Several studies regarding data completeness in medical

data were reviewed by Chan et al. (54) and found that the

percentage of missing values of a variable, such as clinical status,

laboratory results, and clinical actions or procedures, can reach

as high as 98%. There is a possibility that this phenomenon

might also be observed with data collected through SMART

BEAR HAids due to connectivity issue and lack of participant

adherence. As a result, simply deleting rows with missing values

is not feasible for treating missing data, and imputation and

model-based approaches should be used instead. There are

several types of both imputation and model-based methods.

For imputation methods, there are mean, median, zero, linear

interpolation, forward, and backward, whereas for model-based

methods, there are linear regression, KNN, and Multiple-value

Imputation. A generic method was suggested by Salgado et al.

(55) for the purpose of evaluating the performance of various

methods for handling missing data. To start with, use a sample

of the dataset that contains no missing data as ground truth,

and then introduce the proportions of missing data at random

in increments of say 5%. In the next step, compute the sum

of squared errors (SSE) between the ground truth and the

reconstructed data, for each method and for each proportion of

missing data. Repeat these steps for each method and calculate

the average SSE. Lastly, select the method that performed best at

the level of missing data in the given dataset.

In addition, there is the question of how to deal

with outliers—“samples that are exceptionally far from the

mainstream data” (56). Even with a thorough understanding of

the data, outliers can still be difficult to detect (56); however,

statistical methods can assist in the identification of them.

As standard deviation method is more suited for data with a

normal distribution, therefore, it is used after the data have been

standardized and normalized. Given the mean and standard

deviation of the dataset, z-score can be computed for every ξi,

which is the number of standard deviations away from themean,

as a way to identify outliers (57). Data points can be declared

as outliers if their z-score standard deviation is greater than

a predefined threshold. The threshold used in this analysis is

three, as it is common practice to identify outliers in data with

Gaussian or Gaussian-like distributions.

Lastly, it is important to determine whether there is

multicollinearity among the variables. Multicollinearity refers

to when there is a lack of orthogonality among two or more

variables, and it often creates problems in a regression model

(58) because the model results tend to fluctuate significantly

when changes are made to independent variables that are highly

correlated. In terms of hearing data, multicollinearity is often

met among several variables. A typical example is the pure tone

thresholds across different frequencies. Pure tone thresholds

are measured in frequency bands with each representing a

cochlear region, and the neighboring frequencies tend to be

highly correlated (59). Moreover, pure tone audiogram also

shows a high correlation among the sensitivity of the two

ears for each participant when symmetric hearing is present

(59). A common method of checking whether the data are

multicollinear is to use the Variance Inflation Method (VIF)

for each independent variable. In general, a VIF value of 10

indicates weak multicollinearity, and a variable with a higher

value is typically considered to have a high correlation with

another independent variable (58). A simple way to eliminate

highmulticollinearity variables is to remove them. However, this

may not be feasible in practice. As a result, alternative methods,

such as transforming the variables or performing Principal

Component Analysis, should be considered instead, depending

on the data and the expected outcome. Finally, data will be split

into training, validation, and testing sets.
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In this conceptual paper, the pre-processing steps discussed

here are generic. While these techniques should be considered

regardless of the questions to be answered, specific pre-

processing methods, such as handling missing data and

multicollinearity variables, will only become apparent following

the data collection.

Hyper-tuning the model

The model is validated on the validation set during hyper-

tuning in order to determine the set of optimal hyper-

parameters. The hyper-tuning is performed using the Keras

Tuner4 library to determine the set of optimal hyper-parameters

for model trained with TensorFlow5. There are many hyper-

parameters that need to be determined when training an LSTM

model. For this analysis, the number of hidden states in each

layer, choice of activation function, learning rate, dropout rate,

and batch size are hyper-tuned.

It is imperative to adjust the number of hidden units

according to the complexity of the data and select an activation

function that is capable of learning the complex relationship in

the data. Learning rate is also important because if it is too fast,

the model converges too quickly, while if it is too slow, it reaches

some local minima. Dropout is a regularization technique while

training a DL model, aiming at improving generalization and

reducing overfitting. Last but not least, the batch size is the

number of samples of training data that will be propagated

through the model and should be adjusted accordingly as it

impacts the stability of the learning process. Furthermore, the

model will also be trained with early stopping in order to prevent

overfitting. Early stopping is implemented through a callback

function, which monitors the progress of the training, and if

no improvements are made during the course of training, the

training is terminated early.

Proposed model architecture

The proposed prediction model, attn-LSTM, will be trained

on the training set with the set of optimal hyper-parameters

from hyper-tuning, and the results are reported by predicting

the unseen testing set. Table 1 shows the proposed model

architecture of attn-LSTM and hyper-parameters setting for

each layer. It should note that the choice of learning rate and

batch size is hyper-tuned for the entire model and not for each

individual layer.

LSTM (60) is a refined variant of the Recurrent Neural

Network that is designed with a feedback architecture such that

the current time step prediction is influenced by the network

activation from the previous time steps as inputs. LSTM is one

of the widely used DL technique for analyzing time series data

4 https://keras.io/keras_tuner/

5 https://www.tensorflow.org/

TABLE 1 Proposed model architecture.

Layer no. Layer

description

Hyper-parameters setting

1 Input layer N/A

2 LSTM layer Hidden units are hyper-tuned between

32 and 512. Activation function is

hyper-tuned between Sigmoid and Tanh.

3 Self-attention

layer

N/A

4 Dropout layer Dropout rate is hyper-tuned between

0.001 and 0.1.

5 Flatten layer N/A

6 Output (dense)

layer

Regression problems: hidden unit is 1,

and activation function is hyper-tuned

between ReLu, Sigmoid, and None.

Binary classification problem: hidden

unit is 2, and activation function is

Softmax and Sigmoid.

and is capable of learning long-term time series data as well

as short-term time series data (61). The hidden layer inside

an LSTM network contains recurrently connected special units

called memory cells and their corresponding gate units: input

gate, forget gate, and output gate (60) as shown in Figure 4.

The input gate is responsible for preventing the memory stored

in a memory cell from perturbations by irrelevant inputs.

Similarly, the output gate is there so other units are protected

from perturbations by currently irrelevant stored memory. To

optimize the performance of the LSTM, information that is no

longer required by the LSTM is removed in the mechanism of

the forget gate.

At each timestep t, the cell takes an input vector, xt , and

produces an output vector, ht , which also refers to the hidden

state of the LSTM. Firstly, the cell needs to determine whether

the information from the previous timestep, t − 1, should be

kept or not with the forget gate, ft . The forget gate takes the

input vector at current timestep, xt , and the hidden state from

the previous timestep, ht∗−1, and produces an output between

0 and 1 where 0 represents “completely forget this information”

and 1 represents “completely keep this information”. The forget

gate, ft , is calculated as follows:

ft = σ (wx xt + wh ht−1 + b) ,

where σ is the sigmoid function,wx, wh are the weighting factor,

and b is the bias vector. More specifically, the sigmoid function

is calculated as:

σ (x) =
1

1+ e−x .
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FIGURE 4

An illustration of the LSTM network.

The next step is to quantify the importance of the new

information with the input gate, it :

it = σ (wx xt + wh ht−1 + b),

which is also a function of input vector at current timestep, xt ,

and the hidden state from the previous timestep, ht−1. Then,

a new vector named st is created which decides if the new

information should be stored in the cell state or not. This is

done by applying a hyperbolic tangent function, tanh, to the

input vector at current timestep, xt , and the hidden state from

the previous timestep, ht−1. It is calculated as:

st = tanh(wx xt + wh ht−1 + b) ,

and the value of new information is transformed to a value

between−1 and 1, where−1 means the new information is

subtracted from the cell state and 1means the new information is

added to the cell state. The current cell state, ct , is finally updated

by taking the previous cell state, ct−1, the forget gate, ft , the input

gate, it , and st into consideration by:

ct = ft ⊙ ct−1 + it ⊙ st ,

where ⊙ is the element-wise product. Then, the output gate,

ot , determines what information from the cell state is going

to be the output. The output gate is also a function of input

vector at current timestep, xt , and the hidden state from the

previous timestep, ht−1, and outputs a value between 0 and 1.

It is calculated as follows:

ot = σ (wx xt + wh ht−1 + b) .

Finally, the hidden state, ht , at timestep t is updated with the

current cell state, ct , and the output gate, ot , by:

ht = tanh(ct)⊙ ot .

The use of attention-based LSTM was initially designed for

natural language processing tasks and has been extended to

other areas such as computer vision and time series prediction.

The attention mechanism is also inspired by the human

biological system, such that humans do not process large

amounts of data all at once, but instead selectively focus on

certain distinct parts of information (62). Moreover, integrating

an attention mechanism into an LSTM model architecture may

also enhance the interpretability of the model (63), since the

attention mechanism can be used to demonstrate which features

are important for predicting a particular outcome. The specific

attention mechanism adopted in this framework is the Self-

attention similar to the one proposed by Vaswani et al. (64),

where the mechanism is relating different positions of a single

sequence in order to gain a representation of the sequence.

Vaswani et al. (64) introduced a generalized definition

for attention functions in which the inputs of the function

consist of three vectors: queries (q), keys (k), and values

(v). In practice, the attention function is computed on a

set of queries simultaneously and packed into the matrix

Q, and similarly the keys and values are packed into the

matrix K and V, respectively. The concepts of Q, K, and

V were first introduced in the context of NLP, specifically

with Encoder-Decoder models. Taking the task of machine

translation as an example, the query is derived from the Decoder

layers reading the current translated text, whereas the key

and value are derived from the Encoder layers reading the

original sentence.

However, Self-attention is a special case of the attention

mechanism where all of the queries, keys, and values come

from the same place, such that Q = K = V (64). The

mechanism queries only the inputs to obtain the self-attention,

and from the self-attention a new representation of the inputs
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can be constructed. In this framework, the inputs of the attention

function are the sequence of hidden state vectors for all timesteps

produced by LSTM,H =
(

h1, h2, . . . , hn
)

, therefore,H = Q =
K = V .

The next step is to calculate a compatibility score for each

hidden state vector in the LSTM. More specifically, it involves

scoring the compatibility of each hidden state vector in H against

the hidden state vector for which the self-attention is calculated.

The specific compatibility score used in this framework is similar

to the proposed by Vaswani et al. (64) and calculated as follows6:

Compatibility score =
HH⊤
√

dH
,

where dH is the dimension of the sequence of hidden state

vectors and it is a dot-product-based compatibility score. For

example, the compatibility score of the first hidden state vector,

h1, is calculated by scoring each hidden state vector, h2, . . . , hn,

against h1, with h1 · h⊤1 /
√

dH , h1 · h⊤2 /
√

dH , . . . , h1 ·
h⊤n /

√

dH . The other commonly used compatibility score is the

additive-based one, where the compatibility score is computed

using a single hidden layer feed-forward network. Dot-product-

based compatibility scores can be space-efficient andmuch faster

in practice when compared to additive-based compatibility

scores (64).

Each compatibility score for each hidden state vector

is then sent through to the Softmax function in order to

normalize the scores so that all scores are positive and sum

to 1. Finally, the output of the self-attention function is

calculated as a weighted sum of the hidden state vectors and

the compatibility score. The matrix of the output is calculated

as follows7:

Attention (H) = softmax

(

HH⊤
√

dH

)

H.

Evaluating the model performance

The results of the trained attn-LSTM are reported

by predicting the unseen testing set and evaluated using

different sets of metrics for classification and regression

problems. For classification problems, the evaluation

metrics are accuracy, precision, recall, F1 score, and AUC.

Accuracy, precision, and recall can be derived from a

confusion matrix, and F1 score is the harmonic mean

of precision and recall. Each of the metric is calculated

6 The original notation for the generalized compatibility score in

Vaswani et al. (64) is QK⊤√
dk
.

7 The original notation for the generalized output of the attention

function in Vaswani et al. (64) is Attention (Q, K, V) = softmax

(

QK⊤√
dk

)

V .

as follows:

Accuracy =
TP + TN

TP+ FP + TN + FN
,

Precision =
TP

TP+ FP
,

Recall =
TP

TP+ FN
,

F1 score = 2 ∗
Precision ∗Recall
Precision + Recall

.

Finally, AUCmeasures the area under the ROC curve, which

is a graphical representation of how well the model performed

and shows the relationship between True Positive Rate and False

Positive Rate.

For regression problems, four standard error estimators

are used, namely Symmetric Mean Absolute Percentage Error

(sMAPE), Mean Absolute Scaled Error (MASE), Mean Absolute

Percentage Error (MAPE), and Weighted Average Percentage

Error (WAPE). The error estimators are calculated as follows:

sMAPE =
200

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

∣

∣yi
∣

∣+
∣

∣ỹi
∣

∣

,

MASE =
1

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

1
t+N−1

∑t+N
j=2

∣

∣yj − yj−1
∣

∣

,

MAPE =
1

N

N
∑

t=1

∣

∣yi − ỹi
∣

∣

yi
,

WAPE =
∑N

i=1

∣

∣yi − ỹi
∣

∣

∑N
i=1

∣

∣yi
∣

∣

,

where yi is the true value, ỹi is the predicted value, and N is the

number of data points.

Since sMAPE,MASE, andMAPE are percentage-based error

estimators, they are scaled-independent so that they can also

be used for comparing prediction performance across different

datasets. In addition, all error estimators are symmetric, which

means that both positive and negative prediction errors are

penalized equally. However, MAPE has the disadvantage that the

errors tend to blow-up when the variable values are low, causing

the results to be misleading. Thus, WAPE is also applied here

since the errors are weighted by the total values.

Explaining the model

SHAP (41), more specifically, Kernel SHAP, is a local, post-

hoc, and model-agnostic XAI method that can be used for both

classification and regression problems. Post-hoc interpretation

means that the interpretability is created after the model has

been constructed (32) and aims to provide an explanation

for the black-box models (65). Another method is ante-

hoc, in which the decision-making process or the basis of a

technique of a model can be understood by humans without

additional information (65). Some of the ante-hoc methods
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include LR, Decision Tree, and KNN. Both ante-hoc and post-

hocmethods can be further divided into two approaches,Model

(Global) Explanation and Instance (Local) Explanation. The

Local Explanation approach explains only the model prediction

for the single data instance, whereas the Global Explanation

approach explains the inner workings of the entire model

trained on a dataset. Model-agnostic is a subcategory of post-

hoc methods, such that it can be applied to a variety of models,

whereas model-specific can only be applied to one specific type

of model.

SHAP uses the Shapley value from Game Theory to assign

importance to each feature. In effect, the feature contributions

(Shapley values) are calculated by the marginal contribution of

the feature over every feature so that how the model behaves in

its absence is analyzed, and then the prediction of the model can

be written as the sum of bias and single feature contributions

(41). According to Lundberg et al. (79), SHAP belongs to the

family ofAdditive Feature AttributionMethods,meaning that the

Shapley values are applied to binarised features, where a value

of 0 corresponds to an unknown feature value, and a value of 1

corresponds to a feature being observed. The explanation model

can be written mathematically as:

g
(

z
′)

= φ0 +
M
∑

i=1

φiz
′
i ,

where g is the explanation model of the prediction model, z
′ ∈

{0, 1}M where z′is the binarised feature and M is the number

of binarised input features, φ0 is the model output without

binarised inputs, and φi ∈ R are the Shapley values (41). When

compared with the other state-of-the-art explanation approach,

LIME (36), SHAP satisfies three crucial properties that LIME

does not: Local Accuracy, Missingness, and Consistency (41).

Local accuracy requires consistency between the outputs of

the explanation model and the prediction model. Missingness

requires features missing in the original input to have no impact

on the output. Lastly, consistency ensures that the impact of a

feature does not decrease as it increases or remains the same.

Local accuracy is particularly important for providing

explanations, as it ensures that the explanation model is less

susceptible to adversarial attacks (66). Adversarial attacks refer

to when the outputs of a classifier can be manipulated by a

small perturbation of an input to conceal the biases of a system.

In the study of Slack et al. (67), the authors attempted to fool

both LIME and SHAP in order to determine if the feature

contributions can be manipulated through the use of biased

classifiers. It was found that the SHAP is less vulnerable to

adversarial attacks than LIME due its local accuracy property.

It is for these reasons that SHAP was chosen over LIME in

our framework.

SHAP is a local XAI method that has been used to explain

local predictions in many studies. For instance, Lenatti et al.

(42) investigated the contribution of specific feature values to an

individual prediction based on SHAP values. It is nevertheless

also possible to obtain a global SHAP explanation by calculating

the mean absolute SHAP values for each feature across the

datasets allowing the global importance of each feature and

the relative impact of all features over the entire dataset to

be determined.

The results of SHAP will therefore be presented in the form

of a visualization, in particular, the summary plots8 will be used

where it combines the feature importance with feature effects.

The x-axis of the plots represents the SHAP value, or the impact

on the model prediction, of each feature, the y-axis lists all the

features and ordered according to their importance, and the

color depicts the value of the feature from low to high.

In addition to the summary plots proposed to be used here,

SHAP values can be analyzed in a variety of ways, including a

dependence plot to demonstrate the global interaction effects

between features. SHAP values may also be useful for assessing

the contribution of features to an incorrect prediction, as

demonstrated in the work of Lenatti et al. (42).

Expected outcome and predictors

The objectives of the SMART BEAR project in relations

to HL are to answer several questions using the collected

SMART BEAR data and the proposed predictive framework that

leverages XAI techniques in order to develop a comprehensive

profiling of patients with HL. Table 2 summarizes the expected

outcome and its associated predictors (characteristics) for each

question, and how this framework is applied to each question is

discussed below.

Asmentioned previously, this is a conceptual paper meaning

that the precise details of the pre-processing techniques, optimal

hyper-parameters for each question, and the prediction and

explanation results will only be available once the study is

commenced in autumn 2022.

Q1—Identification of those characteristics that
make patients more prone to drop-out and
stop using their HAids

The optimal drop-out rate should be less than the general

population with HL (7), therefore, the expected outcome for

Q1 is to be <45–50% for aged populations. Clinicians have

the option of choosing how the data are aggregated in order

to determine what the drop-out rate will be in the future in

days, weeks, months, or years. In cases where a weekly analysis

is required, for example, the average of HL chronicity, degree

of HL, and manual adjustments of volume/program, and the

sum of time of HAids usage are calculated for each week to

8 https://shap-lrjball.readthedocs.io/en/latest/generated/shap.

summary_plot.html
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TABLE 2 A description of the predictive models, their expected outcome, and associated predictors.

Prediction

models (PM)

Predictors Outcome

variables

Expected

outcome

Value type

Q1 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, manual adjustments of volume/program,

overall HAids satisfaction, time, time of hearing aids usage

Dropout <45–50% Y/N

Q2 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, time

Time of HAid

usage

Adults should use their

HAids >10 h a day.

Minutes/day

Q3 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, number of visits, manual adjustments of

volume/program, time

GHABP score Described in detail

below.

(Integer)

Q4 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, overall HAids satisfaction, manual adjustments

of volume/program, time, time of hearing aids usage

Number of

face-to-face

sessions

<4 visits to the

Audiologist’s in the first

6 months.

(Integer)

Q5 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, overall HAids satisfaction, manual adjustments

of volume/program, time, time of hearing aids usage

Number of

remote sessions

<4 visits to the

Audiologist’s in the first

6 months.

(Integer)

Q6 Age, biological gender, hearing loss type, hearing loss chronicity,

degree of hearing loss, noise exposure, overall HAids satisfaction, time,

time of hearing aids usage

Number of

manual changes

per day

<3 per day. (Integer)

convert the data frequency. Apart from handling missing data,

outliers, and multicollinearity among the variables, continuous

variables such as age, degree of HL, and time of HAids usage

are standardized and normalized, nominal variables such as

gender are one-hot encoded, and ordinal variables such as HL

chronicity, HL type, andmanual adjustment of volume/program

are ordinal encoded. In addition, the outcome variable is also

treated with label encoding, with 1 representing Yes and 0

representing No, for making a binary classification.

Attn-LSTM is then employed to predict whether or not a

participant will stop using their HAids in the future and the

identification of characteristics that have an impact on this

prediction is carried out through SHAP. Finally, the predicted

future number of drop-out participants is compared to the

general population with HL in order to compute the drop-

out rate.

Q2—Identification of those characteristics that
make patients more prone to use their HAids
su�ciently long during the day

It is recommended that adults should use their HAids for

more than 10 hours a day (76). Due to this, data are aggregated

to have a daily frequency by default. This is done by taking the

average of HL chronicity, degree of HL, manual adjustments

of volume/program, and overall HAids satisfaction for each

day, and the sum of time of HAids usage for each day in

minutes. It should note that, although the data are transformed

to have a daily frequency by default, clinicians will still have the

option to choose to analyse monthly HAid usage, for example, if

required. Similarly to Q1, continuous variables are standardized

and normalized, while nominal and ordinal variables are one-

hot and ordinal encoded, respectively. Missing data, outliers,

and multicollinearity will also be treated with appropriate pre-

processing techniques.

As a regression problem, attn-LSTM is used to predict

participants’ future HAids usage. SHAP is then used to interpret

the model prediction to identify which characteristics influence

participants to use their HAids more often.

Q3—Identification of those factors augmenting
the benefit of patients from using their HAid

The Glasgow Hearing-Aid Benefit Profile (GHABP)9 is

a questionnaire that was designed to assess the operational

management forHAid benefit, both at the systematic and clinical

levels (15). The questionnaire will assess 4 situations with 6

questions, which are scored with 1 being the best score and

5 being the worst score. Whitmer et al. (77) recruited 1,574

participants and were asked to rate their hearing disability,

handicap, HAid use, HAid benefit, HAid satisfaction, and

residual (aided) disability with the GHABP questionnaire.

The participants were divided into none, unilateral, and

bilateral aided users and assessed in the four situations: quiet

conversations, TV listening, noisy conversations, and group

9 https://www.hey.nhs.uk/wp/wp-content/uploads/2020/09/

HEY1167-2020-GHABP.pdf
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conversations. Their findings regarding the normative GHABP

score for HAid benefit will be used as the expected outcome

for Q3.

Q3 is also a regression problem as the future GHABP

score is predicted with attn-LSTM, and the reasons for this

prediction are provided by SHAP. When clinicians require

a monthly analysis, for example, the average of the GHABP

score, HL chronicity, degree of HL, number of visits, and

manual adjustments of volume/program, and the sum of time

of HAids usage are calculated for each month to convert the

data frequency. For Q3, pre-processing steps are similar to those

used for previous questions, where continuous variables such as

age, degree of HL, and time of HAids usage are standardized

and normalized, nominal variable such as gender are one-

hot encoded, and ordinal variables such as GHABP score, HL

chronicity, HL type, number of visits, and manual adjustments

of volume/program are ordinal encoded.

Q4—Identification of those factors decreasing
the number of needed face-to-face sessions
with their audiologist for counseling and/or
HAid fine tuning, as an indicator of better
self-management and optimal initial HAid
configuration

The number of face-to-face with the audiologists is

suggested to be <4 times in the first 6 months (78).

Following this, the data are transformed to have a monthly

frequency by default, with the options of analyzing the data

at other frequencies still available. Therefore, the average of

HL chronicity, degree of HL, number of visits, overall HAids

satisfaction, and manual adjustments of volume/program, and

the sum of time of HAids usage are calculated for each month.

Nominal variables such as gender are one-hot encoded, ordinal

variables such as overall HAids satisfaction, HL chronicity,

HL type, number of visits, and manual adjustments of

volume/program are ordinal encoded, and continuous variables

such as age, degree of HL, and time of HAids usage are

standardized and normalized.

As a regression problem, the future number of face-to-face

sessions is predicted using attn-LSTM, and the characteristics

affecting the prediction are investigated with SHAP.

Q5—Identification of those factors decreasing
the number of needed remote sessions with
their audiologist for counseling and/or HAid
fine tuning, as an indicator of better
self-management and optimal initial HAid
configuration

Similar with Q4, the suggested number of remote sessions

with the audiologists is also to be <4 times in the first 6

months (Tecca, 2018). Therefore, the default frequency is also

set to be monthly, and attn-LSTM is used to predict the

number of remote sessions with the audiologists in future

months. SHAP is then used to identify the characteristics

that influence participants to request fewer sessions with

their audiologist. The pre-processing steps are also in line

with Q4.

Q6—Identification of those factors decreasing
the number of manual changes of HAid
program, as indication of poor sound quality
and bad adaptation of hearing aid configuration
to patients’ real needs and daily challenges

Although there is no precise definition for the optimal

number of manual adjustments of the HAids, clinical experience

has shown that fewer than three manual changes per day is

considered as acceptable. By default, data are transformed to

have a daily frequency in order to predict future daily manual

adjustments with attn-LSTM, with SHAP providing information

on the characteristics that impact the prediction.

It is also possible for clinicians to select a different

data frequency for this analysis if required. The average

of HL chronicity, degree of HL, number of visits, overall

HAids satisfaction, and manual adjustments of volume

and program, and the sum of time of HAids usage are

calculated for each day to convert the data frequency. Pre-

processing steps also consists of handling missing data,

outliers, multicollinearity. As well as transforming continuous

variables with standardization and normalization, ordinal

variables with ordinal encoding, and nominal variables with

one-hot encoding.

As a final point, SHAP values are analyzed with the same

principle for all questions. The y-axis on the SHAP summary

plot would indicate the most important feature on average for

attn-LSTM to predict a certain outcome. The x-axis, along with

the color, would show the impact of each feature value on

the model prediction. For example, the SHAP values for Q1

may indicate that perhaps Age is the most important feature

on average for participants to stop using their HAids. More

specifically, younger participants might be less likely to drop out,

whereas perhaps participants with a lower HAids usage might be

more likely to stop using their HAids. As for Q3, SHAP result

might show that perhaps HL type influences future GHABP

score the most on average, where participants with a mixed type

of HL might be more likely to benefit from their HAids.

Results—Discussion

This paper is a conceptual paper that synthesizes previous

work on prediction models in healthcare and audiology (20,

27, 30, 31), and further describes the design and methods of

the Big Data research project SMART BEAR with which we
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are aiming to fill the identified knowledge gaps. To the best

of our knowledge, SMART BEAR represents the first research

initiative in hearing research aimed at integrating such large

and heterogeneous datasets and analyzing them using AI and

XAI methods.

According to Mellor et al. (12), many factors beyond the

pure tone audiogram should be monitored and dynamically

adapted in order to achieve optimal hearing rehabilitation.

Prognostic prediction models using audiometric and other

lifestyle or medical data may be helpful toward achieving this

goal. Education level (68), cognitive performance (69), and

performance on speech recognition tests (70) have previously

been suggested as potential prognostic factors. Following this,

a wide range of data is collected in SMART BEAR as

shown in Supplementary materials 2, 3, such as demographics,

audiometric data, cognitive status, mental status, habits, and

biological gender. Taking advantage of the ability of modern

HAids to record their dynamic operation will also enable a

relatively low-cost collection of data, such as hours of HAid

use, from a large population, while clinical assessment will

provide insight into the clinical context of the collected data.

Furthermore, instead of assessing patients in a laboratory

environment, SMART BEAR is collecting data both at the office

and in real life through clinical assessments and smart sensors.

The created and continuously updated data can then be

viewed as sequences with temporal elements and contain

high-dimensional clinical variables (63). Therefore, collected

SMART BEAR data will be analyzed through time-dependent

multivariate prediction models that are capable of handling

both classification and regression problems while ensuring a

high level of accuracy. The XAI method will then be applied

in order to explain the model to clinicians so that they will be

able to better understand how the model arrives at the predicted

results. In this study, attention-based LSTM is proposed to be the

prediction model and then using SHAP to interpret the model.

The proposed framework introduced in this conceptual paper

can also be applied to other comorbidities within the SMART

BEAR project.

The findings of this analysis will have implications in clinical

practice, health policies and research.

Clinical and research implications

With proper analysis and interpretation of SMART BEAR

results, the most accurate patient profile to date can be created

for HL patients, allowing it to serve as a valid proxy for

anticipated behavior even before the initial HAid fitting session.

According to the analysis of synthetic hearing data conducted

within the context of the H2020 project EVOTION10, higher

levels of physical activity are associated with longer daily HAid

10 https://h2020evotion.eu/

use (43). Therefore, SMART BEAR results also aim to provide

a better understanding how physical activity, such as walking,

affects HAid experience in order to incorporate physical activity

promotion into hearing rehabilitation for different populations.

Furthermore, different factors relating to hearing rehabilitation

might be identified with different participants. This is shown

in the data-driven analysis with the subjective data of 572

HAid users conducted by Sanchez-Lopez et al. (71), where

participants with different HL degree preferred different types

of hearing rehabilitation. Other factors may include presence of

particular comorbidities or different living situations, therefore,

the combinations and interactions between the factors will also

be examined in SMART BEAR.

The patient profiling proposed by SMART BEAR may be

able to assist manufacturers and clinicians in making optimal

choices in terms of HAid model and configuration options,

or, in future stages, it could create automatic fine-tuning of

HAids (12). In this context, after the end of the study, SMART

BEAR is considering providing access, upon request, to the de-

identified dataset for future exploration. Participants will be fully

informed and will provide their consent so access to their de-

identified data can be granted in the future for specific scientific

purposes. Open Access will be provided for the following

SMART BEAR datasets: anonymised data from demographics,

questionnaires, interviews, anonymised sensor raw data, video

of the protocols for annotation, and anonymised data from basic

clinical information for annotation. It is envisaged that this

policy will facilitate the use of SMART BEAR’s gained knowledge

by a range of different stakeholders.

Limitations

All participants in SMART BEARwill be fitted with the same

HAid model, following the same fitting protocol, with the use of

the same algorithm. Although the fine-tuning and the program

selection of the HAids will be based on the needs and preferences

of each participant, the fitting of the HAids may not be optimal

for every participant when only one universal fitting protocol is

used. However, this choice was made since the comparison of

programs or algorithms is not in the scope of SMART BEAR,

as well as in order to avoid unnecessary heterogeneity or lower

quality of the data as a result of systematic errors. This limitation

will be taken into account in the interpretation of our results.

Moreover, SMART BEAR participants will only be between

the ages of 67 and 80, which means that its results cannot be

generalized to a population younger than that. Data like hours

of usage and changes in programs will be subject to connectivity

loss, which is a significant barrier in similar projects (50). The

impact of loss of follow-up patients, such as the unavailability of

information regarding continuation of usage, is also expected to

be low, provided that this percentage will remain in the predicted

range (below 20%). Close follow-ups and dedicated helpdesks
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will help minimize these risks, while imputation and model-

based approaches will facilitate dealing with missing data, as

explained above. Another limitation will be the variation in the

population between six different countries with socioeconomic

and cultural diversities; however, comparison between study

groups is expected to produce useful results. Finally, speech

audiometry in quiet or in noise is not part of the SMART

BEAR data collection. This is due to the fact that there do not

currently exist any universally validated materials that could be

used across all six countries and thus in all languages. Speech

audiometry, while recognized as having clinical value in fitting

choices, does not fall under the scope of SMART BEAR. As an

alternative approach to assess HAid benefit, we are aiming to

collect other parameters, including real-life data, such as hours

of usage and manual changes of programs, as well as interview

data, such as the GHABP questionnaire.

It is noteworthy that unlike the evaluation metrics used in

this paper to evaluate a prediction model, there are currently no

widely accepted objective metrics for evaluating XAI methods.

Though the proposed XAImethod will be validated by clinicians

and medical experts in SMART BEAR, this will only provide a

subjective assessment of the XAI method. To this end, existing

evaluation metrics for XAI metrics, such as Rosenfield’s set

(72), should be tested in the future with the collected data

in order to obtain both objective and subjective validation.

Although SHAP is one of the best known XAI methods, it is

often criticized for long computation time and Shapley values

do not work if features are correlated (73). As a result, the

proposed framework may be unable to deliver what clinicians

require in cases where the characteristics to be identified are

correlated. Therefore, alternative methods of XAI should be

considered in the future. Among them is Attention Mechanism-

based XAI methods, such as the one proposed by Choi et al.

(74) and Schockaert et al. (75). An attention mechanism-based

XAI method can provide an explanation for Recurrent Neural

Network or its variants by assigning corresponding values to the

importance of the different sub-sequence of the input sequence

according to the model and may be more suitable for the

proposed prediction model.

Conclusion

SMART BEAR is, to the best of our knowledge, the first

big data study whose goal is to integrate heterogeneous and

contextualized HAid, medical, societal, and environmental data

in order to develop and validate a prognosis framework using

AI and XAI methods. The outcomes of the project are expected

to benefit multiple stakeholders in the field of Audiology, such

as HAid users, manufacturers, clinicians, researchers, and health

policy makers, as well as to influence current practice and future

research. These outcomes could also improve confidence in

integrating AI models in the medical field, particularly with

encouraging AI to be used in the medical decision-making

process by utilizing XAI methods to enhance its interpretability,

transparency, and accountability.
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