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Abs t r a c t

This thesis is concerned with the representation of music. It investigates the issues that 

must be tackled when constructing a formal representation (or representational system) for 

expressing musical knowledge. The central problems are pointed out by examining existing 

proposals for the representation of music and studying models from the fields of the 

psychology of music and computer music research for their use of explicit or implied 

representations. These discussions adopt both psychological and technical perspectives 

and provide the essential groundwork for the formalisation of concrete solutions of a 

representational system for music. Partial solutions are expressed as small programs, or 

microworlds, that facilitate further exploration and understanding. This methodology 

resulted in two concrete proposals that describe seperate aspects of such a 

representational system. The first microworld describes a generalized representation of 

the continuous aspects of music with respect to time. The second microworld embodies a 

calculus for expressive timing defined in terms of structure. Finally, two larger systems are 

presented that functioned as the experimental gardens of the microworlds described 

previously.
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St r u c t u r e  o f  t h e  t h es is

This thesis is divided into three pairs of two articles preceded by an introduction and 

followed by a conclusion.

I Introduction

The introduction gives, besides a description of the subject and the aim of this thesis, a 

detailed discussion on the methodology of building microworlds that was applied in this 

research. It stresses the importance of the use of a computational approach in music 

research, reaching from musicology to the psychology of music.

II Issues

The first pair is concerned with bringing out the issues in the representation of music.

"Issues in the representation of time and structure in music" gives a global overview of the 

field and the central problems that have to be solved, serving as a proper introduction to 

a thesis dedicated to this subject. Most of the issues are presented as controversies, using 

extremes to clarify the underlying problems. Associating time intervals and their 

constraints with the components of musical structure turns out to be essential. These 

constraints on time intervals model an important characteristic of musical knowledge and 

should be part of the representation, i.e. part of the syntax.

"Tempo curves considered harmful" is a critique of a widespread representation of time. It 

evaluates well-known models stemming from the literature of musicology, computer music 

research and the psychology of music. In this work timing or tempo measurements are 

mostly presented in the form of continuous curves. The article warns against the notion of 

'tempo curves' as giving the false impression that a continuous concept of continuous 

temporal flow has an independent existence -has a musical or psychological reality- and 

that time can be perceived independent of the events carrying it. It is shown that when 

one bases a transformation or manipulation of timing on the implied characteristics of 

such a notion, the results do not make any musical sense.

The insights that were developed during this research yielded a second group of concrete 

proposals.
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Ill Microworlds

The second pair of articles propose two concrete solutions, presented as microworlds.

"Time functions function best as functions of multiple times " is dedicated to a proposal for 

a representation of time. It introduces control functions that have multiple times as 

arguments. This generalized concept of a time function can support absolute and relative 

kinds of time behaviour. The possibilities of composition and transformation of time 

functions themselves are retained.

A microworld version of the time functions is included as an appendix.

"Towards a calculus for expressive timing in music" describes a calculus that enables 

expressive timing to be transformed on the basis of structural aspects of the music. The 

behaviour of musical material under expressive transformations is determined uniquely 

by its structural description and the type of expression. Although the calculus separates 

different kinds of behaviour, it entails no musical knowledge of the transformations 

themselves. It does not model music cognition, but it will hopefully prove to be a solid 

basis for formalised theories of music cognition.

A microworld version of the calculus is included as an appendix.

IV Two examples of larger systems

The third pair of articles describes two larger systems that formed the basis for the four 

preceding articles.

"POCO: an environment for analysing, modifying, and generating expression in music" 

describes a system that formed an important basis in comparing different existing models 

of expressive timing, and brought out the numerous problems that had to be solved in 

realising a more general representational system for music. The system integrates existing 

models of expression which made it possible to compare and combine these models using 

the same performance and score data. POCO is developped as a workbench to be used in a 

research context. Several tools were developed for specific "micro-surgery" on expression 

(including an early version of the calculus presented above). A lot of attention was given 

to the openness, integration, and extendability of the system.

"LOCO: a composition microworld in Logo" describes the experimental garden of the 

microworld approach. It was developed in the years from 1984 to 1988, and was 

implemented on a whole range of small machines for use by both novices, music students,
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and composers. The ideal of making a composition microworld, consisting of a small set of 

primitives from which all kinds of higher-level compositional ideas could be constructed, 

is nicely illustrated in this discrete "choice-principles" microworld. The score system and 

the time-structuring principles that were designed for it, also proved to be valuable in 

later work (see Microworlds).

A more detailed description of the score system and the final descisions on a consistent set 

of primitives is described in the LOCO manual. It is added as an appendix.

V Conclusion

The thesis is concluded with a discussion of how the "explicit, formal, and modular 

strategy" can serve in working towards a general representational system for music.

viii



In t r o d u c t io n



I
In t r o d u c t io n



Long-term aim....................................................................................................................... 2

Overview of approach........................................................................................................... 2

Microworlds.............................................................................................................................3

Building microworlds as methodology.....................................................................4

Moving knowledge from control structure to data structure........................................5

Is a microworld more or less than a theory?................................................................. 6

Conclusion................................................................................................................................7

References.................................................................................................................................7



In t r o d u c t io n

This thesis is concerned with the representation of music. It investigates the issues that 

must be tackled when constructing a formal representation (or representational system) for 

expressing musical knowledge. The central problems are pointed out by examining existing 

proposals for the representation of music and studying models from the fields of the 

psychology of music and computer music research for their use of explicit or implied 

representations. These discussions take both psychological and technical perspectives 

and provide the essential groundwork for the formalisation of concrete solutions for a 

representational system for music.

This thesis is about applying computational modeling and artificial intelligence 

techniques to music. These methods and techniques are used to evaluate and understand 

related research in the psychology of music and computer music research and its 

(partially) formalised theories. Partial solutions are expressed as small programs, or 

microworlds, that facilitate further exploration and understanding. They play a key role 

in this research. Each microworld models an isolated aspect of a representational system 

of music, making a certain set of issues even more explicit and broadening our 

understanding of it.

It is important to point out here that computational modeling is considered a powerful 

methodology in music cognition research, although it is clear that there are important 

aspects, normally associated with music, that are ignored in such an approach (e.g. the 

problem of embodiment). Nonetheless I will ignore the mind/machine debate. Central to 

this thesis is the definition of a representational system , not the construction of a 

computational model of music cognition and the possible internal representations used. 

Since the construction of a complete and general representation of music is still far ahead 

of us, if not fundamentally impossible, gaining understanding of what can and what 

cannot be represented using certain types of formal representations, is far more important. 

The methodology of constructing microworlds and micro-version programs has turned out 

to be a successful strategy in building these formalised components of a representational 

system, components that are well-understood and generalized in such a way that 

maintenance and extension is guaranteed. In the end, these formalised parts of a 

representational system will turn out to be a solid basis for theories of musicology, music 

perception and cognition.
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LONG-TERM AIM

The long-term objective of this research is to develop a formal and computational 

representational system of music that, on the one hand, can serve as a basis for higher- 

level formalisms or theories, such as formalisms from musicological research intended to 

express specific musical knowledge (e.g. style or performance practice), theories that are 

based on grammars, rule-systems or stochastic formalisms, or theories of music cognition 

describing diverse and often isolated domains of, for instance, harmony and metre. Since 

all these models are based on a specific set of primitives, they will benefit from a level of 

abstraction that incorporates musical knowledge about these primitives (and to which 

new musical knowledge can simply be added). On the other hand, this anticipated 

representational system could make the link between lower-level models of a more 

perceptual and psycho physical nature, like models of rhythm and pitch perception. 

They could provide the "bottom-up" information to this knowledge representation layer. 

The possibility of realising such a representational system for music will be investigated, 

and the following questions will be asked. What is an effective methodology and a good 

strategy in realising such a system? Is it possible at all? Can we learn from experiences in 

other fields, e.g. knowledge representation in general? This introduction and, in more 

detail, this whole thesis, tries to answer these questions.

OVERVIEW OF APPROACH

The material presented in this thesis is based on experience gathered during research in 

computer music. What started out as an approach in designing composition systems 

(Desain & Honing, 1986), influenced by the work of the Logo community, developed over 

the years into a methodology that accompanied us in different areas of music and AI 

research. In this work the computer took a central position, performing different roles at 

the various stages of the research process. First of all, we concentrated on the construction 

of 'microworlds', a small and closed set of procedures and data structures. In these 

microworlds it is easy to experiment with ideas, vague as they are, to gain more insight 

into the problem to be understood and modeled. Secondly, we constructed theories in 

computational form. These new microworlds made the theory explicit and allowed for 

tests on completeness and internal consistency. Thirdly, we found much profit in 

(re)constructing 'micro-versions' of larger programs (or models), particulary when they 

were made to share the same data abstraction. In trimming these computational theories 

down to a "bare minimum", they allowed for better and easier comparison (Desain, 1990; 

Desain & Honing, 1991), that brings a real understanding of the theory with, more than 

once, the emergence of more abstract or general notions as a result.
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A lot can be said about the advantages, disadvantages, and implications of building 

microworlds and micro-version programs, as a methodology. The next paragraphs look at 

some of the explicit and implied characteristics of this methodology.

MICROWORLDS

"What characterizes the period o f  the early seventies is the concept o f  a microworld - a 

domain which can be analysed in isolation." (Dreyfus, 1981)

Many of the microworld ideas stem from the Logo project (Papert, 1980/1984) and other 

people working at MIT in the seventies (e.g. Abelson, Minsky, Winograd, Sussman). The 

notion of a 'microworld' has been described by Marvin Minsky and Seymour Papert as:

"Each model - or 'micro-world' as we shall call it - is very schematic; it talks about a 

fairyland in which things are so simplified that almost every statement about them would 

be literally fa lse  if  asserted about in the real world. [...] Nevertheless, we fe e l that they 

[the micro-worlds] are so important that we are assigning a large portion o f  our effort 

toward developing a collection o f  these micro-worlds and finding how to use the 

suggestive and predictive powers o f  the models without being overcome by their 

incompatibility with literal truth." (internal MIT memo Minsky & Papert, 1970; quoted 

in Dreyfus, 1981)

Papert and his colleagues developed several microworlds for use in an educational 

context, inspired by the cognitive development theory of Jean Piaget (Papert, 1981/1984). 

These microworlds were designed to facilitate learning, and were based on a new 

programming language called Logo (based on Lisp) embodying the educational 

philosophy of "learning without being taught."

The most prominent example of one of these microworlds is the 'turtle-world' which 

models a world of turtle-geometry (Abelson & diSessa, 1980). Children learned about this 

world by giving commands to a turtle robot, or a turtle image on a computer screen, and 

building procedures from them. They gained knowledge and understanding of (turtle) 

geometry by just exploring the possibilities of this object. These ideas had a major 

influence on the development of educational research and formed the basis of a 

widespread curriculum in computer science in primary and secondary schools.

Another, often referred to, example of the microworld notion is Winograd's block-world 

for natural language understanding (Winograd, 1972). Here, by contrast, the domain is not 

central; the microworld just serves as a toy problem to test the possibilities of a certain 

approach to natural language processing. This kind of microworld approach, and the
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optimism that these microworlds could simply be combined and extended into a general 

knowledge representation, prompted a heavy critique (e.g. Dreyfus, 1981) that gave the 

notion of microworlds a bad press (causing Winograd to take the side of his critics, see 

Winograd & Flores, 1986). This critique, though, should be placed in the perspective of 

using microworlds to model human knowledge, instead of seeing them as part of a 

methodology that brings out the isolated problem under study and make it explicit (in the 

case of Winograd's microworld, the representation and processing of natural language). 

There are still strong arguments for the design and use of microworlds.

Besides these ideas normally associated with microworlds (i.e. to model a toy problem, or 

to facilitate "learning without being taught"), there are much broader implications that 

make it a valid and important notion in computational modeling and artificial 

intelligence research. Several aspects are involved, which will be described below.

Building microworlds as methodology

"The best way o f  finding out the difficulties o f  doing something is to try to do it." (David

Marr, 1985; p. 108)

This near-cliché has, as every cliché, the reality of the obvious. But the quote illustrates 

well an important characteristic of AI research that stands for trying out ideas in the 

form of programs. Vague formalisms, parts of theories, and "poorly understood and 

sloppily formulated ideas" (as Marvin Minsky calls them) come up against a tough 

discipline in programming, the language of AI. Minsky promoted "exploratory 

programming" to avoid having to start with a complete and detailed specification: "an 

excessive preoccupation with formalism is impeding our development" (Minsky, 1987). 

This exploratory programming (using microworlds) was one of the key concepts in the 

beginning of AI in the early seventies, a newly emerging methodology, and an alternative 

to empirical research.

In my own work I have frequently found that actually programming a certain idea can 

provide new insights. It brings out other aspects of a possible solution because the program 

forces you to answer questions you didn't think of, or it suggests a way of programming it in 

another way (e.g. choosing a different data abstraction or control mechanism). A 

microworld, because of its relatively small dimensions, invites you to do things 

"completely differently" because not all the work (as in a larger system) is dependent on 

the abstractions chosen. Experimenting with the resulting ad hoc formalisation or 

program may bring out further insights, providing a real understanding, that, in turn,
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possibly provides for a new formalisation, and a new theory. In making problems concrete, 

deciding what is essential and what isn't, and moving knowledge and understanding from 

being implicit (e.g. in the control structure) to being explicit (e.g. as data structures), 

problems become objects, objects of thought, that facilitate thinking about them - just as 

the turtle gave children "an object to think with" (Papert, 1980/84), helping them to 

understand more about geometry.

Moving knowledge from control structure to data structure

People grasp simple problems better than complex ones. Therefore computer languages 

have been developed which allow for convenient ways of arranging information (i.e. 

algorithms and data) in simple chunks that facilitate the readability and understanding 

of it by human beings. The complexity of a problem can be reduced by encapsulating 

complex notions in simple abstractions; it helps to have an overview and to see the 

implications of a theory. The problem here is, as Terry Winograd puts it, "one of human 

understanding - the ability of a person to understand how a new situation experienced in 

the world is related to an existing set of representations, and to possible modifications of 

those representations" (1990, p. 179/180).

I often start with a procedural description of a problem, that specifies how to obtain a 

certain result. Hereby all the knowledge was implicitly represented in the control 

structure (i.e. ways of processing the data) of the program. In subsequent phases the 

concrete and stable information would crystallize and become more and more explicit, 

finally moving to the data structure (i.e. the data objects themselves), reducing the 

amount of information that Tiides' in the control structure. For example, a list of numbers 

is a data structure. Its cardinality is not represented explicitly in the data structure. One 

can describe an algorithm that calculates its cardinality. It this case the control structure 

has implicit ways of determining the cardinality of lists. This information or knowledge 

can be made explicit by moving it from the control structure (i.e. the algorithm calculating 

the cardinality of a list) to the data structure, turning it into an attribute of the list itself 

(i.e. a number describing the cardinality of a list becomes part of the data structure). The 

process of understanding a problem by balancing between procedural and declarative- 

styled programming proved to be very fruitful.

In a lot of cases, by factorizing the procedural information and distributing it among the 

data components, the resulting knowledge representation was made to contain its own 

special built-in behaviour. Such a kind of knowledge representation can be envisioned as
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a collection of small mechanical machines that have an obligatory behaviour that is 

completely determined by their type or character. The operations acting on these 

'machines' get this behaviour for free; the machines always perform their fixed and 

simple routine in the appropriate place. This real integration of knowledge into a 

representation is thus an important aspect of the methodology.

Is a micro wo rid more or less than a theory?

After this first exploratory phase of constructing and using a microworld, hopefully the 

understanding of the problem domain is improved. The next stage can then be to construct a 

theory. Here again a computational version of the theory in the form of a microworld has 

a number of advantages. After this formalisation we can recapture the implications of the 

theory, and in the process better understand how to achieve abstractions and true 

generalizations. To build and, even more important, to use such a microworld 

formalisation brings out aspects never foreseen during the design of a theory. It makes the 

theory concrete and verifiable. The construction process itself may even influence its 

design by revealing flaws and missing aspects. "The electronic computer gave new 

embodiment to mechanical rationality, making it possible to derive consequences of 

precisely specified rules" (Winograd, 1990, p. 169). As such, a microworld is more than a 

theory.

But there are also some dangerous aspects that can be associated with the construction of 

programs or microworlds. One frequently sees, in a computational approach to music, that 

a class of problems is described, followed by a description of a program and a description 

of the results obtained from sample problems. Often this is just one of a small set of 

problems with an unclear relation to the class of problems the program or the methods 

embody. This is the well-known "bulky program - this is the theory"- mistake. It is 

unclear what the limitations are, which aspects are generalizations, which aspects are 

specific to a particular problem, and which can be attributed to a whole class. If these 

limitations are not stated along with the program, the program is more or less a 'black 

box'; the program works in a particular case, but we don't know precisely why, and even 

more important, we have no idea when it doesn't work. There is a danger of starting to 

live in the self- created microworld, rigourosly explaining all other problems in terms of 

this world, instead of retaining flexibility and awareness of a certain set of un-treated 

problems. As such, a microworld is far from a theory.
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CONCLUSION

I have argued for the importance of the use of a computational approach in music 

research, reaching from musicology to the psychology of music. The construction of 

microworlds plays a key role in different stages of the research. In this process three 

phases can be distinguished: the exploratory phase, where a problem is explored to gain 

understanding and make it concrete; secondly, a phase where a program implements the 

theory in a computational form that makes it explicit and open to further inquiry, and 

allows for tests on completeness and internal consistency; and finally a third phase where 

computational theories are trimmed down to their bare essence, i.e. stripped of 

unnecessary detail, where one is forced to make generalisations and abstractions.

This process of reducing problems to their bare essence does not come for free. The 

methodology does not help in taking the right decisions. So a philosophy or strategy has 

to be there in stepping through these phases, to help to decide what is and what isn't 

important. The most important characteristics of a microworld are, besides its 

exploratory strength - the way it makes makes abstract problems concrete, the relative 

ease of finding and making new abstractions and generalisations within and between 

related microworlds.

Finally, every theory and program will have its limitations. These should be understood 

and known at all times, and have to be clearly set out alongside the description of the 

microworld. Since they only model a very small aspect of the real world, it is important 

to provide all the information about how to extend and maintain them.
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to be there in stepping through these phases, to help to decide what is and what isn't 

important. The most important characteristics of a microworld are, besides its 
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TIME AND STRUCTURE IN MUSIC
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This article discusses the issues in the design of a representational system for music. 

Following decisions as to the primitives of such a system, their time structure and general 

structuring is discussed. Most of the issues are presented as controversies, using extremes to 

clarify the underlying problems. Associating time intervals and their constraints with the 

components of musical structure turns out to be essential. These constraints on time 
intervals model an important characteristic of musical knowledge and should be part of the 

representation, i.e. part of the syntax. It is concluded that a representation of music should, 

in the short run, be made as declarative, explicit and formal as possible, while actively 

awaiting representation languages that can deal with the presented issues in a more flexible 

way.

KEYWORDS

Representational systems, music representation, knowledge representation, temporal 

representations, structure

INTRODUCTION

This article describes a number of important issues in the representation of music with 

respect to the structuring of musical information. The set of issues presented is in no way 

complete, but indicates the most influential decisions that have to be taken in the 

representation of structure. The identification of the problems is central and there will 

be no speculation on possible solutions. The discussion will be restricted to the descriptive 

issues of music representation, concentrating on its primitives and their structuring. Of 

course, a purely technical description of a representation of music is not sufficient; its 

cognitive aspects should be incorporated as well. Although a discussion on the modeling 

of the "musical mind" is not the aim here, a cognitive viewpoint will add an essential 

perspective in the identification of the issues in the design of a general representation of 

music. Since a representation of the real world (represented world) has to do with 

cognition, the image (representing world) will have most of cognition's characteristics.
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In the cognitive sciences, and in particular subfields like computational psychology and 

artificial intelligence, the use of computational models (or representational systems) is 

central. Their merits, together with the proposal of the term "cognitive science", were 

described by Christopher Longuet-Higgins as:

[...] it sets new standards o f precision and detail in the formulation o f  models o f  

cognitive processes, these models being open to direct and immediate test. (Longuet- 

Higgins, 1973)

The hope is that these formulations will contribute to a new theoretical psychology. 

Apart from the discussion whether a computational psychology is possible at all, a 

computational theory sets an important foundation: by describing a theory in terms of a 

formal system, together with its interpretation, it can be used to define what is faulty or 

inadequate (i.e. it can be falsified) and might help us in defining what kind of 

theoretical power we actually need. Or, as Margaret Boden states:

It provides a standard o f rigour and completeness to which theoretical explanations 

should aspire (which is not to say that a program in itself is a theory). (Boden, 1990, p.

108)

Representation is an essential part of such a formal system and decisions made in its 

design will undoubtedly influence the behavior of the computational model, embodying 

the theory. It is these decisions, to be made with regard to a representational system of 

music, that this article is aiming at.

DIFFERENT PERSPECTIVES

A number of different areas of research have a direct interest in specifying an 

appropriate representation of music. The latter either forms the basis of their studies or 

is a subject of study in itself. In the following short overview the different viewpoints 

and their specific demands will be described. The main difference is contained in the 

distinction between representations of a technical nature and representations of a 

cognitive nature (conceptual or mental representations).

Music analysis and production
Musicology

Notation has always played a central role in musicological research. The design and 

adaptation of notations or representations have been developed along with the specific 

theories of analysis. Different overlapping or contradicting theories have been proposed 

(Schenker, 1956; Meyer, 1973; Narmour, 1977; Lerdahl & Jackendoff, 1983). Most theories 

agree that there is more in music than what is written in the score. In this sense, the
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opinion of the philosopher Nelson Goodman (1968) that a piece can be characterized as 

the set of performances in conformance with its score is an exception. The question here is 

whether a piece of music resides in the notation, in the air, or in people's minds, or in 

other words, whether music is cognitive or not.

Computer music

In the field of computer music there is an interest in the design of appropriate data 

structures for music systems that form the basis of , for example, composition tools, 

interactive systems, and notation systems. Several projects have proposed different 

kinds of representation, suited to the specific demands of the particular problem or even 

to the software or hardware used (see Loy, 1988 for an elaborate survey of computer music 

systems). A distinction can be made between representations designed for real-time 

systems that are process-oriented (e.g. Puckette, 1988), and non-real-time systems that 

have a static global view of the music (e.g. Dannenberg, 1989). They differ,respectively, 

in their tacit and explicit representation of time (see below: The representation of time).

All systems have their own way of representing music and share little common ground. 

The only widespread standard is the industry proposed MIDI standard: a communication 

protocol (described in Loy, 1985) and file format. It is a very low-level stream-like and 

structureless representation (criticized in Moore, 1988) designed for communication 

between electronic instruments and computers. Within the computer music community 

several initiatives (Dannenberg et al, 1989; ANSI, 1989) have been taken towards a more 

general and high-level representational standard.

Music publishing and retrieval systems

In music archiving the need for the standardization of notated music has resulted in 

several proposals for the storage and printing of music (Erickson, 1975; Byrd, 1984; 

Gourlay, 1986). Most of them are based on a visual description (e.g. notes positioned on 

staves) and are not very general in their applicability. The ANSI standardization 

committee for music representation (ANSI, 1989) is a recent attempt to make a technical 

and methodological specification for a standard music description language, useful in 
areas such as music publishing, music databases, computer assisted instruction, music 

analysis, and music production. In general, these standards seem to concentrate more on 

pragmatics (e.g. efficiency, in terms of size and speed requirements) than on generality 

and consistency.
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AI and cognitive modeling

Another large area of research is artificial intelligence (AI) and the cognitive sciences. 

Both have their own specific goals and demands. I will describe them here briefly.

AI and knowledge representation

In AI the concern is to notate descriptions of the world in such a way that an intelligent 

machine can come to conclusions about its environment by formally manipulating these 

descriptions. In knowledge representation, a subfield of AI, research is focussed on the 

development of representation languages and the design of inference schemes (e.g. to 

model reasoning about knowledge). Both are based in the tradition of (predicate) logic 

while more recent languages can be classified as structured object representations (e.g. 

frames; Minsky, 1975), associational representations (e.g. semantic networks; Quillian, 

1968), and procedural representations and production systems (Newell, 1973). It is 

important to note that AI and knowledge representation are about feasible ways to build 

intelligent systems and not so much about modeling cognitive behavior.

AI and music is also an important field of research where representation is becoming one 

of the central issues (Balaban et al., 1991).

Cognitive and computational psychology

In the cognitive sciences, mental and knowledge representations are important subjects of 

study. It seems impossible to imagine a cognitive system in which a representation does 
not play a central role (Anderson, 1983; Fodor, 1983; Johnson-Laird, 1983). There is, 

however, no general agreement on the assumption that mental activity is mediated by 

internal or mental representations, and when there is, there is still some discord on the 

precise nature of these representations. Proposals for knowledge representation can be 

grouped into three categories: propositional representations (discrete symbols or 

propositions), analogical representations (use of images), and procedural representations 

(i.e. modeled as processes or procedures). To this last category also belong distributed 

representations (e.g. connectionist networks).

Music perception and cognition

In the psychology of music, alongside research in music production and comprehension, 

the majority of work has consisted of describing the nature of musical knowledge and its 

representation. Elaborate studies have been done in the domains of pitch (Krumhansl, 

1979; Shepard, 1982), rhythm (Povel & Essens, 1981; Longuet-Higgins & Lee, 1984; 

Desain & Honing, 1989) and timbre (Grey, 1977; Wessel, 1979). But here also, there is no 

general agreement on the precise nature of these representations (see McAdams, 1987 for 

a more complete overview or Sloboda, 1985; Dowling & Harwood, 1986).
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GENERAL APPROACHES TO REPRESENTATION

This paragraph will outline the main approaches to representation. Identifying the 

problems of representation in general will be shown to be of direct benefit to the debate 

concerning music representation.

Knowledge representation hypothesis

An important assumption in a formalist approach to representation is the knowledge 

representation hypothesis . It is summarized by Brian C. Smith (1982) as follows:

Any mechanically embodied intelligent process will be comprised o f structural 

ingredients that a) we as external observers naturally take to represent a propositional 

account o f  the knowledge that the overall process exhibits, and b) independent o f  such 

external semantical attribution play a formal but causal and essential role in engendering 

the behavior that manifests that knowledge.

Such a "mechanically embodied intelligent process" is presumed to be an internal process 

that manipulates a set of representational structures, in such way that the intelligent 

behavior of the whole results from the interaction of parts. It is presumed only to react to 

the form or shape of these representations, without regard to what they mean or 

represent.

As an illustrative example one can use a technique that is sometimes used in making 

enlarged copies of pictures, for instance, by artists who make large chalk drawings of 

well-known paintings on the street. They copy these paintings from a small reproduction, 

holding the it upside-down. This minimizes the distorting influence a perspective has on 

the copying of the actual proportions: an unwanted interpretation that imposes 

'meaning' not present in the picture. This example shows that one has to watch out for 

interpretive knowledge, so easily added by human observers, not present in the 

representation itself. A representation is only syntax and should have all knowledge 

embodied in this syntax, independent of the interpretive system.

A representational system can be defined as "a formal system for making explicit certain 

entities or types of information, together with a specification of how the system does 

this" (Marr, 1982). In the formalist definition entities in a formal system might have 

complex mechanisms.1 In deciding on any particular representational system and its 

entities, there is a trade-off; certain information will become explicit at the expense of 

other information being pushed into the background making it possibly hard to recover.
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Procedural and declarative approaches

There is a classic distinction between declarative and procedural ways of representing 

knowledge: declarative being the knowledge about something, while procedural 

knowledge states the knowledge in terms of how to do something. Declarative 

knowledge tends to be accessible: it can easily be examined and combined. Procedural 

knowledge tends to be inaccessible, guiding a series of actions but allowing little 

examination. We seem to have conscious access to declarative knowledge whereas we do 

not have this access to procedural knowledge (Rumelhart & Norman, 1985).

Declarative representations have the merit of being composable i.e. the meaning of a 

complex expression is based on or can be derived from the meaning of its parts and their 

combinations. There are no interactions between separate entities, which makes the 

representation extremely modular. Knowledge can simply be added as long as it keeps 

the system consistent. All knowledge is open for introspection.

In procedural representations the emphasis is on interaction. Procedural representations 

are, not surprisingly, very powerful in modeling knowledge that is procedural by nature. 

There is no separation between facts and processes. Interactions are strong but deriving 

semantics is very hard (if not impossible). Addition or change is only reached by 

modification (and a resulting debugging process). Introspection and reflection is 

impossible. The problem, here, is the way in which procedures can be represented so that 

they can be interpreted. The question becomes what they do, instead of how they do it 

(see Table 1 for an overview).

D ecla ra tive  know ledge P rocedura l know ledge

accessible inaccessible

modular (no interaction) interaction (no separation between 
facts and processes)

composable semantics impossible (or hard) to derive 
semantics

open to introspection and reflection closed to introspection and reflection

knowledge can easily be added, if 
consistent

addition only by modification

control structure obscure control structure explicit

Table 1. Procedural and declarative knowledge representations compared.
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Mixed and multiple representations

In general, the distinctions between procedural and declarative representations are about 

efficiency, control, modularity, and the accessibility of knowledge. For computer science 

the first two are most important, while cognitive psychology is most interested in the 

last two.
Terry Winograd (1975) emphasized the duality between modularity and interaction, 

interaction being a strong characteristic of procedural representations and modularity of 

declarative representations. Many complex systems can be viewed as "nearly 

decomposable systems", a notion introduced by Herbert Simon (1969)^ A single module 

can be studied separately without constant attention to its interaction(s) with other 

modules. Interactions among these subsystems are weak but not negligible. In 

representational terms, this forces us to have representations that facilitate these weak 

interactions. Mixed representations (i.e. both modular and interactive), as described by 

Winograd and others, have been further developed in the design of object-oriented 

languages (e.g. Minsky, 1975; Hewitt, 1975). In mixed representations different parts of 

the represented world are described in different ways. Some parts might be described 

procedurally, while others are described in a declarative way.

Another approach is to have m ultiple representations of the same 'world', each 

describing the represented world completely. Instead of a mixture of, for example, 

procedural and declarative representations, describing different parts of the world, 

there is a procedural representation describing the whole world and a declarative 

representation describing the whole world in parallel. Here the trade-off is extra power 

against the problem of coordinating the information in the separate representations: 

when a change is made, all structures have to be kept consistent so as to reflect the same 

represented world.

ISSUES IN MUSIC REPRESENTATION

The remainder of this article will address issues specific to the representation of music. 

Three sub-areas will be discussed: the primitives of a music representation, time 

structuring and general structuring. The notion of structuring depends on the possibility of 

decomposing a representation into meaningful entities, so we must first answer the 

important question: what are we structuring?
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The primitives: building blocks of a representation
• Decomposability

How to decompose a representation of music into the appropiate parts? What are the 

building blocks, the primitives of such a representation? As described earlier, this 

decision is essential and has implications on what kind of information will be lost and 

what information will clearly be represented.

There seems to be a general consensus on the notion of discrete elements (e.g. notes, sound 

events or objects) as the primitives of music. It forms the basis of a vast amount of music- 

theoretical work and research in the psychology of music, but a detailed discussion and 

argument for this assumption is missing from the literature. In music theory, as Robert 

Erickson (1982, p. 533) points out, there is no clear definition of what such a primitive 

object might be. In the psychology of music, John Sloboda (1985, p. 24), for example, just 

states "the basis phoneme of music is a note", and Diana Deutsch (1982) founds her 

discussion on grouping mechanisms in music on a 'given' set of basic acoustic elements. Yet 

the essential question of what these elements or 'phonemes' are is not answered. 

Research in psycho-acoustics on streaming shows how difficult it is to decide on such 

elements from a perceptual point of view (McAdams & Bregman, 1979; Bregman, 1990). A 

distinction has to be made between natural and artificial discretization of dimensions, 

or, in other words, the existence of possibly innate perceptual mechanisms and a learned 

division of continuous signals. In going from a continuous acoustic signal to a discrete 

signal one loses information. This quantization process should be looked at as a 

separation process instead: both types of information, the continuous and the discrete, 

are needed, and probably interact with each other (cf. Desain & Honing, 1989, with 

regard to this separation process in rhythm perception). So, next to decomposition, the 

issue of the characterization of the primitives of a representation, as continuous, discrete 

or a combination of the two, is very important.

• Continuous or discrete?

By way of illustration, imagine Billie Holiday singing "I cried for you." How can the 

sound be represented in such a way that all expressive and structural information is 

incorporated? What is the relation between the actual perception and the notes 

originally notated in the score? Consists the sentence as sung of several discrete entities, 

or should it be described in a continuous way? Or a combination of both? For example, 

discrete phonemes, syllables or notes, continuous expression over these discrete structural 

elements, continuous fluctuations of pitch and amplitude within them, etc. combined into 

several levels of discrete and continuous types of information that are closely related.
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In music cognition, the assumption of discrete elements finds a lot of support (McAdams, 

1989). Stephen McAdams makes a distinction between three auditory grouping processes 

that organize the acoustic surface into musical events, connect events into musical 

streams, and 'chunk' event streams into musical units (simultaneous, sequential and 

segmentational grouping, respectively); and perceived discrete qualities that are based 

on learning (e.g. scale, meter, harmony) (McAdams, 1989, p. 182). These discrete elements 

of music are assumed to carry structure, while the continuous aspects carry expression 

(Clarke, 1987). Mary Louise Serafine (1988) stands quite alone in arguing for a continuous 

basis. She blames music perception research for reducing music to false elements such as 

discrete pitches, scales and chords: "[they] are not the elements or building blocks of 

music" (p. 52). She accounts for these elements as an after-the-fact notion of music. But, 

as David Huron (1990) observes, these are speculative claims with no empirical support. 

It is clear that there is still quite a lot of discussion and research needed, especially on 

the rules of the segregation of acoustic signals, before we can decide on the discrete 

elements of a general representation of music.

Currently, most music representation systems use either notes or sound events/objects as 

the building blocks of their descriptions. In these systems, the distinction between 

continuous and discrete is normally between sound generation and the discrete events 

which describe the sound in several attributes, or, in other words, between the instrument 

and the score. This division rests on the assumption that sound is continuous by nature 

(e.g. signals, wave forms), whereas the score is mainly a collection of discrete events.The 

continuous aspects of the score (e.g. timing and dynamics) are often taken care of by 

different kinds of procedures or 'modifiers' (e.g. Pope, 1989; Dyer, 1990) acting on the 

score: their descriptions are not part of the score representation (see below: Granularity). 

The trade-off made in these decompositions is very little discussed or even 
acknowledged.

The relations: issues in structuring

When we have decided on the primitives of the representation, their structuring becomes 

of great importance. This structuring will be described in two separate sections. Since 

time and its structuring is an important factor in music, with its own specific issues 

related to it, it will be discussed separately from the issues in general structuring. 

However, in the end it will be shown that they are not very different. Time structuring 

will be discussed first.
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THE REPRESENTATION OF TIME

A number of distinctions need to be made in trying to narrow down discussion of the 

representation of time. There are three different areas of interest: temporal 

representation, temporal logic or reasoning, and planning and scheduling. All of them 

influence the design of a representation of time. This section will concentrate on the first.

The representation of time can be subdivided in three categories: 1) tacit (time is not 

represented at all); 2) implicit (time is represented, but explicit time relations are not); 

and 3) explicit (time is represented with explicit time relations). The issues will be 

spread over these categories.

Tacit time structuring

Some real-time systems can be called 'no-time' systems (e.g. Bharucha,1987; Puckette, 

1988). Because time is not explicitly represented in the primitives, there is only the 

notion of now. There is no explicit formulation of the systems dependence on time and no 

information regarding time (except 'now') can be derived or manipulated.

Implicit time structuring

In this category, time is represented without explicit time relations. Time is expressed in 

an absolute way (e.g. note lists (Matthews, 1969)) or relative to an arbitrary point of 

reference. Time relations (e.g. this note occurs before that note, or, these notes are 

overlapping) have to be calculated since they are not explicitly stated in the 

representation.

• Primitives: points vs intervals

The decision to represent time as points or intervals is not arbitrary, even when they, 

theoretically, can be expressed in terms of each other (an interval is a collection of 

points, a point is a very short interval3). A point-based representation (McDermott, 

1982) implies the occurrence of only one event at a time and lacks the concept of an event 

'taking' time. As Allen (1983) argues, there seems to be a strong intuition that, given an 

event, we can always "turn up the magnification" and look at its structure. He therefore 

proposes an interval-based representation. Intervals form a strong basis for the 

computability of meaningful relations, i.e. time intervals that overlap, meet, are during, 

before, and after each other, etc.

In music representation there are examples of both choices. Mira Balaban (1989), for 

instance, describes a representation based on pairs of a sound object and a time point, and
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Desain & Honing (1988) use sound objects with a duration (i.e. time interval) as the basis 

of a representation of time.

• Time base: absolute vs relative

The time base that can be chosen is either absolute or relative, or, in other words, real-

time (e.g. in seconds) or proportional time (e.g. a quarter note). With an absolute time 

base, (onset-)time is an attribute of the musical object, whereas with a relative time base 

it isn't.

Some music representation systems (Smith,1972; Schottstaedt, 1983) use lists of notes 

with absolute times, whereas later systems tend to describe time in terms of a relative 

time base or relative to the enclosing time context, i.e. expressed as a function of this 

context (Dannenberg, 1989; Balaban, 1989). But both time bases seem to be needed. For 

example, in representing a trill as being twice as long as another trill, one has to decide 

whether to stretch or to extend the description of this related trill, i.e. is the new trill 

half the speed (using relative time) or is the speed the same (using absolute time) and 

are there just more notes added (or any other particular way of extending a trill). Both 

types of behavior, using both time bases, need to be represented to allow for both 

representations of time.

• Granularity: discrete vs continuous

What is the grain or grid size of the time bases mentioned above? Is time expressed as a 

discrete value labeling events, or is it expressed as a continuous function? As well as 

discrete time, a continuous way of representing time is needed, for example, when 

representing an accelerando or rubato over a series of notes.4 Most representational 

systems make these notions available as global operations acting upon  the 

representation instead of making them part of the representation.

Explicit time structuring

An example of explicit time structuring in music is the use of two basic structuring 

relations called 'parallel' and 'sequential' (Desain & Honing, 1988). These two time 

relations, and combinations of them, can express many constellations of discrete sound 
events. Similar time structuring is proposed by several other authors (e.g. Rodet & 

Cointe, 1984; Dannenberg, 1989). Allen (1983) describes a list of thirteen possible 

relationships. A set of basic explicit time relations forms a solid basis for higher level 

notions of time structuring and make operations on time, or operations depending on time, 

very elegant (Desain, 1990).
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• Controversy: declarative vs procedural

The controversy over declarative and procedural representations is also very important 

in the representation of music. Take the example of a trill - a sequence of notes, 

alternating in pitch, filling up a certain time interval. This "filling up" is most 

naturally represented in a procedural form. But, as discussed previously, this type of 

representation has quite some disadvantages. Problems occur when there is, for instance, 

a nesting of these trills defined in terms of each other (e.g. a higher-level trill composed 

by combining the definitions of some other, i.e. lower-level trills): the definition of the 

high-level trill depends on the result of the low-level trills, a result that is only 

available after execution of the procedural description of these low-level trills. There is 

no way in which the duration of the high-level trill can be decided upon without 

evaluating the definition of the low-level trills since this knowledge is represented in a 

procedural form. The declarative representation (a low-level trill of a certain length) 

has to be replaced by the result (a sequence of notes adding up to a certain length) and 

information is lost (e.g. knowledge on how the trill was composed). Both kinds of 

representation seem to be needed in the representation of music. The marriage of both 

types of knowledge is, as described before, still a topic of research.

THE REPRESENTATION OF STRUCTURE

Structural descriptions of music can be divided into two areas. One is the description of 
musical structure independent of psychological considerations, based on an analysis by a 

musicologist. The other is the description of the structural properties of mental 

representations of music: the goal of music psychology research. The described issues are 

relevant to both areas. In describing general structuring, we can employ the same division 

used in the subfield of time structuring: 1) tacit structural relations, 2) implicit structural 

relations, and 3) explicit structural relations.

Tacit structural relations

When no structure is represented, we are left with only the primitives of the 

representation. This is the case in the earlier mentioned MIDI protocol that represents a 

piece of music as a structureless stream of note-onsets and offsets (with as attributes an 

integer key number, a velocity value and channel number).

Implicit structural relations

Implicit are those structural relations that have to be calculated from the 

representation. As an example, from a MIDI file format the following structural 

information can be obtained: all notes on channel 1 belong to one unit called a 'track';
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every two seconds there is a bar and all notes within that time span are part of it; etc. 

The structural relations that can be derived from a representation (with only implicit 

structuring) depend heavily on the choice of primitives and their attributes.

Explicit structural relations

Structure is the denominator for a large class of possible relations made between the 

entities of a representation. One can say that almost everything, except the entities 

themselves, is structure. Very few representational systems for music supply explicit 

structuring mechanisms, and even when they are available, they only represent specific 

kinds of structure (e.g. meter, bars, instrumental parts) or support annotation (e.g. "this is 

an important note"). The following paragraphs discuss the issues in the design of a 

general structuring mechanism.

• What kinds of structural types are needed?

One way of describing different kinds of relations -so as to have a handle to talk about 

them in a general way- is to divide them in binary and n-ary relations. A special kind of 

binary relation is a tree or hierarchy. A part-of relation defines such a hierarchical 

relation between objects. It propagates behavior between objects. A part-of relation could 

denote relations such as "all notes part-of chord", or the often-used bar, beat, and note 

hierarchy. They are quite general and flexible in describing musical structure (see 

Honing, 1990).

Another hierarchical relation, orthogonal to the part-of relation, is the is-a relation. It 

defines inheritance of behavior and characteristics, specifying a generalization 

hierarchy of objects: a structure of concepts which are linked to those of which they are 

specializations. Examples are: a dominant chord being a special kind of seventh chord, a 

chord being a kind of cluster, a cluster being a kind of collection of notes, etc. (see e.g. 

Pope, 1989).

A great number of music theories use hierarchies as their only kind of structuring 

(Lerdahl & Jackendoff, 1983). Hierarchies are very useful in relating local and global 

information, but other kinds of relations are needed as well. Other binary relations like 

associative relations are useful in relating, for example, a theme with its variations. 

Functional relations are also needed (e.g. the function of a particular chord in a scale) as 

well as referential relations (e.g. a theme referring to a previously presented or already 

known motif).
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N-ary relations can structure more complex types of relation: for instance, the 

dependency of a certain chord on scale, mode and the context in which it is used is a 

ternary relation.

The structural types described here are the ones most relevant to music, though a 

complete overview of all musical constructs and their expression in these structural types 

would take considerably more space.5

• Relations between musical constructs: generalization vs dedication

Not everything is said about musical structure by simply assigning one of the structural 

types described above. Within one type of structure (e.g. defined in terms of part-of 

relations) refinement is needed to distinguish between the different musical constructs 

described by means of this type (e.g. what is the difference between a chord and a bar 

when both are described in terms of part-of relations?). There are two extremes in 

approaching this problem. One approach is dedication: all the well-known or often used 

musical constructs (chord, arpeggio, bar, beat, trill, grace note, etc.) are described, more or 

less ad hoc, as primitives with their own specific relations (and resulting behavior), 

with little or no hierarchy. The other approach is generalization and is based on 

parsimony: there are no special musical constructs defined as primitives, all constructs 

being based on some very general primitive (e.g. a time interval). The bias is on 

generality: new musical constructs have to be defined in terms of existing ones, in a 

hierarchical way.

The first is a popular and pragmatic approach. For instance, in a computer composition 

system a reasonable set can be provided that takes cares of most needs. The main 

drawback is that extensions have to be made in an ad hoc fashion and often need to have 

their own processes (or transformations) defined for the user to be able to access or 

manipulate them.

In the latter approach the choice of the right generalities is the problem. But when they 

are available, extensions are simply defined in terms of these generalities or higher- 

level constructs. There is no need to 'tell' the processes, acting on the representation, 

about these new constructs.

• Direction: bottom-up, top-down or both?

In expressing one of the above mentioned relations, it is important to note how the 

information flow is supported by the representation. In music theory and the psychology
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of music, different directions are proposed: from the conceptual level down (top-down; 

Schenker, 1956), and from the low-level data up (bottom-up; Narmour, 1977), or in both 

directions, as in modeling tonal hierarchies with interactive activation networks 

(Bharucha, 1987).
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Figure 2. A 'progression' structure with part-of relations (a), its associated time intervals and constraints (b).
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• Musical structure: association with time intervals and their constraints essential

In what way is musical structure different from any general structure mechanism (e.g. the 

part-of and is-a relations we described before)? Since time is an influential factor in 

most, if not all types of structure in music, musical structure can be described as a 

collection of structuring mechanisms that have time intervals associated with their 

components (i.e. structural objects). It is the constraints on these time intervals that 

specialize the different types of structuring.

As an example, let's look at two simple part-of relations: bars, a bar, note (see Figure la), 

and a progression, chord, note hierarchy (see Figure 2a). In the first hierarchy it is clear 

that the structural object 'bars' and its parts have a duration: they hold for a certain 

time interval. This is also the case for the 'progression' object and its parts. Both 

constructs have the same part-of structure but differ in the kind of constraints they have 

on their associated time intervals. In a 'bars' structure, if one bar becomes longer, the 

other one has to become shorter: they have to satisfy the meet constraint (using Allen's 

(1983) terminology). In the 'progression' structure, the comparable structural objects have 

a before relation. The musical constructs are characterized by the specific constraints on 

these time intervals associated with their structural objects (see Figure lb and 2b)6.

These constraints should be part of the representation, i.e. part of the syntax, so that 
operations on the representation produce the behavior resulting from these restrictions 

for free; the semantics of musical constructs (e.g. what does an arpeggio mean, and how 

does it differ from a chord or a run of notes) should be moved to the syntax. In this way 

the representation has embedded knowledge of how to deal with particular kinds of 

structure. These musical constructs can be compared with small machines: they have a 

clear and accessible behavior that cannot be altered.

• Multiple representations: power vs coordination and consistency

Multiple representations are needed in a complete description of music, i.e. several 

structural descriptions being applied to the same primitives (e.g. a note is part of a meter 

and a tonal hierarchy at the same time). One could think of multiple structural 

representations as analogous to a ring binder: the spiral resembles the primitives, the 

pages the different kinds of structural relations.^ As described before (see General 

approaches to representation), the consistency and coordination of the information 

between the pages is the problem here.
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Inconsistencies may occur when two structural descriptions clash (i.e. the constraints on 

both structural descriptions can't be solved or unified) and exceptional or preferred 

behavior has to be provided. It seems that in these situations, the demand for 

consistency is too strong (e.g. a slowed-down chord structure might turn into an arpeggio). 

It may not be possible to formalize a representation of music in a way that guarantees 

consistency.8 More research is needed in the formalization of musical constructs (i.e. 

definition and behavior) and their combination that might result in exceptional or 

preferred behavior.

• Modularization: musical knowledge vs annotation

Here the issue is whether structuring is used to add musical knowledge or just used as 

annotation. Structure can be used as an annotation of the basic elements of the 

representation assigning different kinds of information, but it can also be interpreted as 

musical knowledge. Using structure in both ways facilitates modularity: not all 

knowledge about music has to be part of the representation, since structure can be used as 

a hook to import information from outside the system. This improves the modularity of 

the system considerably (as advocated by Simon (1969) in technical terms, and by Fodor 

(1983) in cognitive terms).

CONCLUSION

Representational systems have a central position in the cognitive sciences, especially in 

the fields of computational psychology and artificial intelligence. A formalist 

approach to representation, as summarized in the "knowledge representation 

hypothesis", applied to the representation of music has turned out to be beneficial. 

Representing musical knowledge in syntactical terms, makes a theory within the 

psychology of music explicit and verifiable. Discussing the issues in the design of such a 

representational system for music is what this article has aimed at.

Before talking about structuring, the question "what are we structuring ?" was asked. The 

decomposability of a representation of music was discussed as well as the expression of 

its primitives in either discrete or continuous terms (or a combination thereof). Research 

in the segregation of acoustical signals (Bregman, 1990) is essential in deciding on the 

primitives of a general representation of music. Currently, most research is based on the 

assumption that the basic elements of music are discrete.

The discussion of time structuring, as a special case of general structuring, showed that 

the choice of either points or intervals, a relative or absolute time base, discrete or
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continuous representations, and the use of procedural or declarative descriptions of 

musical knowledge are controversies where solutions through combining these polarities 

have to be found.

Several types of general structuring were discussed. An important point is the 

observation that structure in music is often associated with a time interval (for which it 

'holds')- The constraints on these time intervals model specific musical constructs and 

their behavior. Time structuring and general structuring differ in the sense that time 

structuring makes these constraints explicit: they are represented as structural objects 

(e.g. 'parallel' and 'sequential' relations), while in general structuring they are implicit: 

they are used to restrict the behavior of the specific structure, but are not explicitly 

represented as structural objects.

In conclusion:

1) A representation should be as formal as possible. Even when the meaning is removed 

from the formal system it must be possible to prove its correctness (i.e. not dependent on 

knowledge outside the the formal definition).

2) A representation should be as declarative as possible. Declarative representations 

were shown to have preference over procedural representations, even though some 
information is more naturally represented in a procedural way.

3) A representation should be as explicit as possible. All relations and knowledge should 

be explicitly stated in the representation.

4) All the controversies presented above need combined solutions in which both extremes 

can be expressed. The idea of having multiple representations of the same 'world' seems 

useful.

5) Musical structure should be associated with time intervals. Constraints on these time 

intervals model the specific musical constructs and their behavior. These constraints 

should be part of the representation, i.e. part of the syntax, so that operations on the 

representation get the behavior resulting from these restrictions for free.

In the short term, it is concluded that it would be best to construct representations of msuic 

so as to be as declarative, explicit and formal as possible, while actively awaiting
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developments in representation languages or schemes that can deal with the issues 

presented here in a more flexible way. 9
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NOTES

 ̂ Distributed representations (e.g. connectionist networks), in this sense, manipulate symbols of an

unusual kind. An individual unit of such network does not implement an identifiable symbol; a

meaningful representation only exist at a level made up of a number of units.
9^ Simon (1969) describes nearly decomposable systems as having the property “the short-run 

behaviour of each of the component subsystems is approximately independent of the short-run 

behaviour of the other components” (p. 100).

J Allen’s theory (1983), describes points as intervals that are durationless, i.e. a duration less than a 

value £, adjusted to the reasoning task.

^ It has been shown that structure is essential in the performance of the continuous and discrete 

aspects of musical time (e.g. Clarke, 1987, 1988). Therefore a complete representation of time should 

facilitate the expression of these aspects in terms of structure to be of any perceptual or musical 

relevance (see Desain & Honing, 1991a).

 ̂ A complete overview of all musical constructs will quite likely turn out to be a large, if not infinite 

collection, but they probably can be grouped into a considerably smaller set o f proto-typical 

relations, with their specific characteristics being modeled as refinements of a particular structural type 

(see issue on Musical structure: association with time intervals and their constraints essential).

^ The constraints on the time intervals, as shown in Figure lb and 2b, give a raw characterization of 

the example structures, just for comparison. For a more complete characterization of such structures 

the logic-based constraints of Allen (1983) are not enough. Other kinds of constraints are needed as 

well to be able to express relations like, for example, all bars have the same length, or, a bar is half 

the length of ‘bars’.

^ These pages could be of different shapes and material, standing for structural descriptions of a 

completely different nature. This analogy was suggested by Morris Halle in a seminar at Sussex 

University in 1987 when talking about conceptual representations of linguistic structure.

8 Recent work done in the field of artificial intelligence on non-monotonic logic and truth- 

maintenance might therefore be applicable to music.

^Since this article was written (autumn, 1990) work has been done on partial solutions of the issues 

presented above. Some of the issues on the representation of time have been resolved in a generalized 

concept of time functions (Desain & Honing, in press). A proposal for a specification and 

transformation formalism of expressive timing described in terms of structure is published as Desain & 

Honing (1991b).
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A b s t r a c t

In the literature of musicology, computer music research and the psychology of music, 

timing or tempo measurements are mostly presented in the form of continuous curves. The 

notion of these tempo curves is dangerous, despite its widespread use, because it lulls its 

users into the false impression that a continuous concept of temporal flow has an 

independent existence, a musical or psychological reality, and that time can be 

perceived independent of events carrying it. But if one bases a transformation or 

manipulation of timing on the implied characteristics of such a notion, one is doomed to 

fa il.
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Tem po  c u r v es  c o n s id er ed  h a r m f u l
Peter Desain & Henkjan Honing

In which we decided to have a good time, invited an expert, and had our 

first disappointment.

Not so long ago we decided to spend a Christmas holiday studying music and its 

performance. One of us is an amateur mathematician (M) and the other one likes to 

delve into old psychology textbooks (P), and because we enjoy impressing each other 

with new facts and insights, we often find ourselves in vehement discussions. Therefore 

we thought we might have a pleasant and peaceful time by putting our beloved hobby 

horses aside and embark upon a subject about which neither of us knew much: the timing 

aspects of music. We became interested in this field because we had noticed, while 

playing with the computer, our favourite toy, that adding just a bit of random timing 

noise to a program that played a score in an otherwise metronomically perfect way, 

made the music much more pleasant to listen to. It seemed as if we could make more 

sense of it. But we suspected that there was more to timing and expressive performance 

than adding bits of noise, so we invited a mutual friend who is a retired professional 

pianist to spend Christmas in our small but well equipped laboratory. Our friend has a 

great love for the piano and its music, but is completely ignorant of the advances of 

modern technology. To demonstrate to him our latest sequencer program we asked him to 

play the theme from the six variations composed by Ludwig van Beethoven on the duet 

Nel cor piu non mi sento, the score of which we had lying around (see Figure 1).
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Even though he was somewhat disturbed by the touch and harpsichord-like sound of 

the electronic piano, he was quite fascinated with the possibility of recording and 

playing back on the same instrument. Enthusiastically we told him that this system 

was more than just a modern version of the pianola: 'You can examine and change every 

detail you want; for instance, inspect the timing , accurately to the millisecond, add and 

remove notes, make notes longer or shorter, or louder or softer, and so on and so forth.' 

Our friend became quite excited and asked : 'Could your machine play my performance 

in a minor key?' We were a bit put off by the simplicity of his demand, but patiently 

demonstrated the key-change feature. After hearing his performance with the key 

changed to G minor our friend was not impressed. 'O dear, I'm afraid this sounds much 

too hasty. For example, the "dramatic" e-flat in bar 3 needs more time. Let me play it in 

minor for you.' When we looked at the timing data of his new performance it indeed 

showed a different pattern. Upon noticing our disappointed faces our friend remarked 

'this was not a minor change; it really turns it into another piece. We did not expect 

your device to know about that, did we?' We kept silent. 'But your machine can 

undoubtedly play the same piece at a faster tempo.' That set us in motion again. We 

changed the setting of the tempo knob to a tempo one-and-a-half times as high and 

pushed the play button. The face of our friend again did not show the expression we had 

hoped for. 'I'm awfully sorry, but this is not right! It sounds like a gramophone record 

played at the wrong speed, but without changing the pitches.' Suspiciously, wre wanted 

some proof for his crude statement and asked him to play it the way he thought it 

ought to be performed. His version at the higher tempo was indeed different. We had 

to admit that it sounded more natural than our artificially speeded-up version. What 

made it sound so much better? We tried to unravel this mystery by examining the timing 

of the onsets and the offsets of the notes, since these were the variables that could be 

altered with our electronic keyboard, just like a real harpsichord.

Tempo curves considered harmful 5



Temporal pattern is a series of time intervals, without any interpretation or structure.

Rhythm  is a temporal pattern with durational and accentual relationships and 

possibly structural interpretations (Dowling & Harwood, 1986).

Beat refers to a perceived pulse marking off equal durational units (Dowling & 

Harwood, 1986, p. 185). They set the most basic level of metrical organisation. The 

interval between beats is sometimes called a "time-span" (Lerdahl & Jackendoff, 1983), 

or, less abstract, beat duration, beat period or metrical unit (Longuet-Higgins & Lisle, 

1989).

Metre involves a ratio relationship between at least two time levels (Yeston, 1976). One 

is a referent time level, the beat period, and the other is a higher order period based on 

a fixed number of beat periods, the measure. It imposes an accent structure on beats, 

because beats initiating higher level boundaries are considered more important.

Tempo refers to the rate at which beats occur (often expressed as beats per minute), and 

is therefore closely linked to the metrical structure.

Density is used to refer to the average presentation rate taken across events of different 

duration (i.e. events per second) when a piece has events of different durations and the 

beat is hard to determine unambiguously, if at all (Dowling & Harwood, 1986).

It is important to note that rhythm, tempo, metre and density can be conceived 

independently: it is possible to maintain the same tempo while changing density; for 

example, a musical fragment can have a lot of embellishments (i.e. have a high 

density) and still be perceived as having a slow tempo. Furthermore, rhythm can exist 

without a regular metre and any type of rhythmical grouping can occur in any type of 

metrical structure (Cooper & Meyer, 1960).

Tactus is the tempo expressed at the level at which the units (beats) pass at a moderate 

rate (Lerdahl & Jackendoff, 1983). This rate is around the "preferred" or "spontaneous" 

tempo of about 100 beats per minute (Fraisse ,1982).

Tempo, Metre and Beat

Our sequencer, a very recent version, had a separate tempo track. In this track, the 

tempo can be changed from fragment to fragment, even from note to note. With this 

feature we could put the original score on one track and the timing of the performance, 

expressed as tempo changes per note, on the tempo track, although it took quite a bit of 

calculating and editing by hand. After a while we had completely recreated the 

original performance, but now as a score plus a separate track of expressive timing
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information. This tempo track looked like the graph in Figure 2a (for clarity we show 

only the timing of the melody). We could now compare the timing of this performance 

with the one played at tempo 90 (see Figure 2b). Their form was quite different even by 

visual inspection, although our ears were, of course, the only valid judges.

Figure 2. Tempo deviations in the performance of the theme at tempo 60 (a) and at tempo 90 (b).

What had happened? The sequencer had speeded everything up by the same amount 

(which we all agreed sounded awkward), while in the performance the expressive 

timing appears not to scale up everywhere by the same factor. Our friend adapted his 

rubato according to the tempo, which he explained to us as: 'My timing is very much 

linked to the musical structure and what I want to communicate of it in an artistic 

manner to the listener. If I play the piece at another tempo, other structural levels 

become more important; for instance, at a lower tempo the tactus will shift to a lower 

level, the subdivisions of the beat will get more "in focus", so to say, and my phrasing 

will have much more detail.' After some scratching with pen on paper, M found a quite 

elegant way of representing these changes using simple mathematics. We took the time 

interval between the onsets of every two succeeding notes and calculated the ratios of 

these time intervals in the two tempi. If the expressive timing pattern would scale-up 

linearly, we would find the ratios for all the notes to be around the ratio between the 

two tempi, and most ratios were indeed around 1.5. There was some variance around 

that factor, though, and we thought that could be explained by the more elaborate 

short-span phrasing at the lower tempo. But, even more noticeable was the fact that for 

some notes the ratio was close to 1. We found that these notes were notated as grace 

notes in the score. They did not change at all when performed at an another tempo. We 

also found that not all grace notes behaved like this. For example, the two grace notes 

that cover an interval of a sixth, in bar 7 and 19, were timed like any other note: they 

were actually played in a metrical way. Our pianist got really excited about our 

observations. He pointed at grace notes in the score that were notated in the same way,
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but that needed a different interpretation, and he started to lecture about the different 

kinds of ornaments, so popular in the eighteenth century, the difference between 

acciaccatura and appoggiatura , 'ornaments that "crush in" or "lean on" notes', about 

their possible harmonic or melodic function changing their performance, and so on and so 

forth. When he noticed that we were getting bored with his lengthy historical 

observations, he woke us up again with a new, sharp attack on our beautiful sequencer 

program: 'It might be forgivable that your program cannot play the onsets of ornaments 

correctly, but it also murders the articulation of most notes, especially the staccato ones. 

And have you heard what the program did to my detailed colouring of the timbre of 

chords?' Well, in fact, we had not, but we could well understand that the timbral aspect 

brought about by the chord spread (playing some notes in a chord a tiny bit earlier or 

later than others) was not kept intact when all timing information is just scaled by a 

certain factor. And we did not even dare to play the performance again at a lower 

tempo, afraid that each chord would turn into an arpeggio.

So our sequencer was not so wonderful after all. It could not be used to change 

something, not even such a minor thing as the key in which the piece was played. 

Again our pianist explained that a change of key was not a minor thing. The minimal 

variation that he could think of was the repetition of bars 5-8 at the end of the theme. 

'The only difference between them is the fact that the second segment is a repetition of 

the first, and I even expressed that minimal aspect by timing. This problem is 

exacerbated if the difference between two sections is the overall tempo. Then detailed 

knowledge about structural levels, articulation, timing of ornamentations and chords, is 

indispensable.' We had to agree. How dumb of us, after all, to assume that a tempo knob 

on a commercial sequencer package could be used to adjust the tempo.
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In principle, timing can be linked to any musical structural concept. The most concrete of 

those are the following.

Although the most obvious metrical units are bar and beat, this strictly hierarchical 

structure may extend above and below these levels. Special expressive marking of the 

first beat in the bar, either by timing, dynamics or articulation, is a common 

phenomenon (Sloboda, 1983).

Phrases may not be ordered in a strict hierarchy, and may cut across metrical structure. 

Phrase final lengthening is the most well-known way in which they are treated (Todd, 

1989)

A large proportion of the timing variance can be attributed to rhythmical groups 

(Drake & Palmer, 1990). Some standard rhythmical patterns, like triplets, seem to 

have a preferred timing profile (Vos & Handel, 1987).

Small timing asynchronies within a chord (called chord spread) are perceived as an 

overall timbral effect - the actual timing pattern is hard to perceive.

Ornaments, like grace notes and trills, can be divided in acciaccatura, so called timeless 

ornaments, and appoggiatura, ornaments that take time and can have a relatively 

important harmonic or melodic function. The former normally falls outside the metrical 

framework, the latter tends to get performed in a metrical way.

The independent timing of individual voices is sometimes hard to perceive because 

their components are immediately organised by the perceptual system in different 

streams (Bregman, 1990). This is not the case with (almost) simultaneous onsets that 

result in clear timbral differences. This can be heard in ensemble playing where often 

the leading voice takes a small lead of around 10 ms. (Rasch, 1979).

Any associative relation, e.g. between a musical fragment and its repetition, can be 

given intentional expression by using the same or different timing patterns.

Tempo, Timing and Structure

Wherein we looked at multiple performances, learned from a conductor 

and tried different hierarchies but had no success.

But we were convinced we could make our friend happy, and proposed to program some 

additions to the sequencer ourselves. We showed him a video tape about research done 

at MIT by Barry Vercoe and his collaborators on computer accompaniment of a real 

musician. In this project the computer is given a score and several performances of the 

piece. With that information it can be "trained" to follow and accompany the musician.
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Not that we were trying to do that, but we could use the idea to annotate each note in 

the score with its deviation in the performance, in our case in different tempi. Our 

friend friendly agreed to perform the Beethoven theme at four different tempi that 

were musically acceptable to him. We saw again that some notes exhibited a large 

change when tempo is changed, while others were less influenced by the tempo. But we 

could now use statistical methods to derive the right timing information for each tempo 

from this data. Our friend, who started to develop a little bit of suspicion, asked: 'Will 

that solve playing at different tempi then?' We were not quite sure. We definitely had 

more information now, but the representation of the music was still flat; no structural 

information was provided. It seemed we could not avoid incorporating some 

organisation above the note level into our program. Our friend agreed with a smile that 

was almost saying: 'are you stupid or am I?' We got a bit nervous. But after some 

discussion he agreed to concentrate on the timing of simple structural units like beats 

and bars only, leaving the note by note details aside for the moment.

Then we remembered Max Mathews working at CCRMA, Stanford University, who 

does important work in conductor systems (sort of the opposite of what Vercoe is doing). 

He made a system where one can conduct a sequencer on the beat level, which was just 

what we needed. The idea of a conductor shook our friend up; that sounded a much 

better approach than all those statistics we tried to explain to him before. We gave our 

friend an electronic baton, connected to our sequencer, and asked him to conduct the 

piece. In the score in the sequencer the beats were marked. The program followed the 

conductor by aligning each conducted beat with the corresponding mark in the score, and 

it tracked the tempo indicated by the conductor in doing so. At the high tempo, beating 

the baton very quickly, it seemed all right, but at the moderate tempo it was impossible 

to steer the timing deviations within the beat. 'It sounds too jumpy/ our friend 

complained. Since the beat level of the system of Mathews is arbitrary (he calls it 

'generalised'), we annotated the score with marks at a lower metrical level, which 

alleviated the problem a bit. But, as our friend was still complaining about the 

controlability, we eventually ended up by marking each note in the score. This gave 

complete control at last, though our poor pianist, out of breath by the acrobatics needed 

to draw each note out of the sequencer by means of a single baton, made a cynical remark 

about the wonderful invention, which we may have heard of, called a keyboard. We 

became a bit vapid and proposed to help our conductor by connecting three MIDI batons 

to the computer, the first two used by us to time the bars and the beats, and the third to 

be used by our friend to fill in the details, using batons inter-connected with a complex 

mechanism of wires, to keep the timing at all levels consistent. We fantasized for some
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time about a whole orchestra of conductors, leading one pianist before them. It was 

clearly time for a tea break.

Timing and Tempo, Patterns and Curves

In studying timing deviations a first distinction should be made between non-intended 

motor noise and intended expressive timing or rubato. The first category deviates in the 

range of 10 to 100 ms; the latter can deviate up to 50% of the notated metrical duration 

in the score.

Expressive timing is continuously variable and reproducible (Shaffer, Clarke & Todd, 

1985) and clearly related to structure (Clarke, 1988; Palmer, 1989).

It is important to note that there is interaction between timing and the other expressive 

parameters (like articulation, dynamics, intonation and timbre). For example, a note 

might be accented by playing it louder, a fraction earlier than expected or by 

lengthening its sounding duration. Which method of accentuation is used is difficult to 

perceive, even when the accentuation itself is obvious.

To refer to expressive timing, in computer music the term micro tempo is often used, 

comparable to the term local tempo used in the psychology of music (the tempo changes 

from event to event, expressed as a ratio of a performance time interval and a score time 

interval). For clarity, the term timing would be more appropriate here. It specifies the 

timing deviation on a note-to-note basis and is often referred to as the expressive timing 

profile (Clarke, 1985; Shaffer, 1981; Sloboda, 1983), timing pattern or rubato pattern 

(Palmer, 1989).

In these patterns, points are often connected, either stepwise with straight line 

segments or with a smooth interpolation, yielding a timing curve. Only the first 

representation maintains a proper relation with the time map in which points are 

connected with line segments. These continuous time maps are used by Jaffe (1985) and 

most people of the computer music community. Time maps can be superimposed, using one 

for each voice.

Time maps can also be constructed for uniformly spaced units in the score like bars or 

beats. The corresponding duration patterns form a true tempo pattern. The points in 

these patterns can be connected by line segments, yielding so called tempo curves. Some 

authors insist on stepwise tempo changes, like Mathews (Boulanger, 1990), in which 

they are linked to one level of the metrical structure.
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Over tea our friend told us about a series of programs on BBC radio, presented by the 

English conductor Denis Vaughan, on the composer's pulse he used in conducting. The 

pulse is a hierarchical, composer specific way of timing the beats. This pulse was an 

idea proposed and actually programmed by someone working in Australia. We went to 

our library and looked for some references that might tell us more on this composer's 

pulse. We ran into a collection of articles by Manfred Clynes who had invented the 

notion. This pulse, coincidentally, had precisely the characteristics we were looking 

for: hierarchical tempo patterns linked to the metrical structure. It basically entailed a 

system of automated hierarchical batons, and reduced the complexity further by 

postulating a fixed pattern for each baton. We took a final sip of our tea and hurried 

back to the lab and added Clynes' Beethoven 6/8 pulse as tempo changes in the tempo 

track to our sequencer. It divided the time for each bar into two unequal time intervals 

for the first and second half-bar and divided each half-bar into 3 unequal parts, one for 

each beat. With some adjustments here and there, we had our program running in no 

time. We called in our musical friend from the library to provide some professional 

judgements. He was definitely not unhappy with the result. 'This sounds much better 

than the things I've heard before,' he said.
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Figure 3. Score of the first variation o f Nel cor più non mi sento.
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'Let's do the first variation, and see how our system performs it/ our friend said, far 

more optimistic now. He was talking about "our" system. This was a good sign. 'This 

variation is written in an ornamental style,' our friend explained, while we loaded the 

score of the first variation (Figure 3) into our system and created the tempo track 

containing the Beethoven pulse for this material. The metrical and harmonic structure 

is the same for both theme and the first variation. The only difference is that there are 

more "ornamental" notes added,' he said in a patronizing tone. When everything was 

set we played him the result. 'Well, this is disappointing,' was his short and decisive 

answer. After seconds of uncomfortable silence he added, 'it lacks the general phrasing 

and detailed subtlety I think is essential to make it an acceptable performance. The 

rhythmical materials of the theme and the first variation are different. The sixteenth 

notes of the variation ask for a different kind of timing than the mainly short-long, 

short-long, short-long rhythm of the theme. This pulse plays only with the metrical 

structure, but musical structure has far more to offer than that.' So the composer's pulse 

could not just be mapped onto any rhythmic material. Furthermore, it only linked 

timing to the meter, and, as our friend made clear, phrasing and other musical structure 

was ignored.

That rang a bell. We remembered one of the articles by Neil Todd on a model of 

rubato, linked to phrase structure. His proposal is very similar to Clynes; it explains 

timing in terms of a hierarchical structure, but now phrase structure is the basic 

ingredient. The beat is again the lowest level; below that no timing is modelled. The 

abundance of mathematical notation in Todd's articles did not put off our amateur 

mathematician. Quite the contrary. 'This, on first sight, will give us a solid basis to 

work with. What he states here is that, if you remove all the constants from the 

formula, it is actually quite simple,' M said. 'Todd proposes to attach a parabola to 

each level of the hierarchical phrase structure, and sum their values to calculate the 

beat length.' He simplified a formula, found an error on the way and finally the model 

became easy to implement. We were quite conscious of the fact that we were the first 

really to hear Todd's model (he himself had never listened to it). It did not sound very 

pleasing because this model was expressed in terms of the phrase structure only (based 

on the idea of systematically lengthening the end of a phrase in a hierarchical way), 

and because it lacked all expressive timing below the level of beats.

Longing to show our collaborator that the computer could, in principle, also calculate 

detailed note-by-note timing, we looked for a model that would provide these. 

Happily we found masses of rules for those subtle nuances in the articles of Johan 

Sundberg and his colleagues. These rules formulated simple actions, like inserting a

Tempo curves considered harmful 13



small pause in between two notes or shortening a note. The actions had to be performed 

if the notes matched a certain pattern, such as constituting a pitch leap or forming part 

of a run of notes of equal duration. In fact there were so many rule sets proposed in his 

articles that we got a bit lost in the details, but it has to be said that some rule- 

cocktails really seemed to work for our piece. Especially if their influence was adjusted 

to effect a subtle change only, the music gained some liveliness. But because these rules 

are based on the surface structure of the music only we could predict the judgement of our 

musical expert by now. And indeed he did not even bother to comment on the artificially 

produced performances. Instead he kindly reminded us that we might give up looking 

for a system that enabled us to generate a "musically acceptable" performance, given a 

score (that is what Clynes, Todd and Sundberg are aiming at), for the simple reason 

that we already had an "acceptable" performance, namely his own. It was true, the 

initial aim of our endeavour was to find ways of manipulating the timing in a musically 

and perceptually plausible way, given a score and a performance. Because the simple 

representations we had used proved unsuccessful, we had been sidetracked by studying 

even simpler representations that could at most model a small aspect of our friend's 

performances. We decided to close the session, look for more details in the literature, 

and give it another try the next day.
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Generative models

Clynes (1983; 1987) proposes composer specific and metre specific, discrete tempo 

patterns. This so called composer's pulse is assumed to communicate the individual 

composer's personality. E.g. in the Beethoven 6 /8  pulse the subsequent half-bars span 49 

and 51% of the bar duration and each half bar is divided again in 35, 29 and 36%. 

Clynes is opposed to analysis of performance data: the pulses stem from his intuition. 

Repp (1990) has undertaken a careful evaluation of this model.

Todd (1985; 1989) proposes an additive model in which beat duration is calculated as a 

summation of parabola shaped curves, one for each level of hierarchical phrase 

structure. He complemented the model with an analysis method that calculates phrase 

structure from beat durations.

Sundberg et al. (1983; 1989) proposes a rule system to generate expression from a score 

based on surface structure. His research was done in an analysis-by-synthesis paradigm 

and captures expert intuition in the form of a large set of these rules. An example of a 

rule is "faster uphill": A duration of a note is shortened if it is preceded by a lower 

pitched note and followed by a higher pitched one. Van Oosten (1990) has undertaken a 

critical evaluation of this system.

In which we investigated discrete patterns and continuous curves, tried 
interpolation and failed again.

We found all kinds of references in the literature and read a lot that evening. It was 

amazing to find how much work actually was done on a problem that we had thought 

was not a problem at all. We became a little bit more conscious of the whole thing. It 

looked as if P's hobby horse, psychology, had to be given a chance. He explained that 

the perception of time had been modelled postulating a certain (often exponential) 

relation between objective time and experienced time. But this research had all been 

done with impoverished stimulus material, often consisting of just one time interval 

marked-off with two clicks. 'Other research,' P added, 'found that duration judgment 

depends on the way the interval is filled with more or fewer events, so unfortunately 

these simple laws cannot be directly applied to more complex material like real music.' 

Even P was disappointed with the results of his beautiful science. 'But psychology has 

something to offer to us here', he spoke in a defensive tone. Take a look at all the 

articles that present timing or tempo measurements in the form of continuous curves 

instead of just a scattergram of measurements. These curves more or less imply an 

independent existence, apart from the rhythmic material where they were measured
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from. But psychological research has shown that one cannot perceive timing without 

events carrying it.' He found this convincingly argued in an article by the psychologist 

James J. Gibson called "Events are perceivable but time is not". 'Can you imagine 

perceiving a rubato without any notes carrying it?' P asked. 'And vise versa: "filling 

up" time by adding an event between two measured points is problematic, isn’t it?' 

There seemed to be no possible argument.

Subjective Time, Duration and Tempo Magnitudes

Most psychophysical scales for time intervals are described by Stevens' Law, that 

relates the physical magnitude of a stimulus to its perceived magnitude as perceptual-

time = a-constant.physical-time ^ constant_ The h value differs from one dimension to 

the other. For time duration b is commonly found to be 1.1, slightly over estimation of 

the interval. However, for intervals shorter than 500 ms it is found that b is around 0.5, 

the square root of its physical duration (Michon, 1975).

Humans seem to have a relatively poor ability for time discrimination of intervals 

presented without context. The just notable differences (JND) are in the range of 5-10% 

(Woodrow, 1951) with an optimum near 600 ms intervals. However, in the context of a 

steady beat, the JND’s are around 3% with the same optimum interval (Povel, 1981).

Much research was done on the existence of a spontaneous tempo, preferred rate or 

natural pace (Fraisse, 1982). This tempo should occur as a preferred rate of spontaneous 

tapping, and material presented at that rate should be easy to perceive and remember. 

There is weak, but converging evidence for the existence of such a rate, again with 

intervals around 600 ms. There is no consistent evidence for physiological correlates like 

heart rate.

There has been quite some research done on the influence of different dimensions on time 

perception, mainly in the fifties. Evidence was found that, in general, the higher 

pitched the sound the longer the percept (Cohen et al., 1954), and the same holds for 

louder sounds (Hirsch et al, 1956). Evenly divided intervals seem longer than irregular 

divided ones (Ornstein 1969).

Time intervals shorter then 120 ms, preceded by a physically shorter neighbour time 

interval, are underestimated to such a remarkable degree that one can speak of an 

auditory illusion (Nakajima et al., 1989).

We decided to do the acid test using a feature of the sequencer program. In this 

program it was possible to copy tempo tracks from one piece to the other. We applied
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the tempo track of the original performance of the theme (see Figure 2) to the score of 

the first variation. The result was poor; even we could hear that. The timing made 

sudden jumps, like a beginner sight-reading and hesitating at unexpected points because 

of a difficult note. The expressive timing pattern found in the theme did not "fit" the 

variation. Our friend's performance of the variation was much smoother and had 

gestures on a larger scale, as far as we were able to judge (Figure 4). Also, the other way 

around, taking the timing data from the variation and applying it to the score of the 

theme had the same awkward effect. It seemed impossible to just add or remove notes 

using these stepwise tempo curves. We felt stupid again for having assumed that the 

independence of tempo tracks in the sequencer made musical sense. But it made us look in 

the literature for alternatives.

Figure 4. Tempo deviations in the performance of the variation at tempo 60.

The answer was not far away. In the field of computer music research continuous 

rubato curves were used almost by default. We decided to take the path of the 

continuous timing functions, hoping it would get rid of this awkward "jumpiness". Thus 

M's hobby horse was brought out again. 'Functions are far easier to handle. One can 

calculate, given the right kind of function, a good timing curve for every piece,' M 

argued convincingly. This combined approach of formality (in the mathematical sense) 

and pragmatics reminded us of a method developed by David Jaffe of CCRMA to model 

the timing of different parts of a computer orchestra. Jaffe wanted the different 

instruments to have their own timing, but they had to synchronise at specific points as 

well. By using a time map, instead of tempo changes, coordination and synchronization
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became possible. 'What he actually does is to specify the timing for each event by 

means of a function from score time to performance time/ M explained, 'a blatantly 

simple idea indeed: to integrate velocity or one-over-tempo, as Jaffe calls it, to get 

time. This of course restrains the possible functions one can use to make up such a time 

map; they have to increase monotonously and one must be able to calculate a first 

derivative.' This was again a method, among many others, in which different authors 

presented their ideas of tempo curves (see Figure 5). We tried to bring some order to the 

ways the different representations were used.

Figure 5. A typical so called "Tempo Curve" with duration factors for each note as a function of

metrical time.

Soon M gave up, stating that it was a hopeless mess; no two authors used the same

dependent and independent variables and measurement scales. And while in the end all 

the information needed could be extracted from most presentations, it was a difficult job, 

the more so because of the confusion in terminology. We decided to return to the 

practical application of the time map. We adapted the sequencer's tempo track to 

contain a time map (composed of line segments) instead of the discrete tempo changes 

we had used before. We then applied this continuous curve to the variation and had our 

pianist judge it. He thought it was much better than the direct application of the 

discrete curve of the theme to the variation. The interpolation (with line segments) did 

improve the smoothness of the timing, but he still complained about the sudden tempo 

jumps at the junctions of the curve. M remarked that one could restrict the allowed 

tempo map functions further or smooth the existing function, for instance, with splines. 

This brought us to an article describing work done at IRCAM by David Wessel and 

others, which indeed proposes the use of splines. We took an algorithm we had lying
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around that did splines and added it to our tempo track algorithm. And there it was: 

with some twiddling of the parameters we could interpolate the timing pattern of the 

theme for its use on the variation. We almost thought that with this interpolation we 

had proven Gibson wrong. There was a smooth sense of timing in between events, and if 

one is smart enough one can tap it and hook new events onto it in a reasonable way. But 

our musical friend did not agree 'Reasonable?' he reacted angry, 'it sounds reasonable, 

yes, but your numerical calculations have nothing to do with the way I played it, 

whatsoever. The musical structure, my dear friends, remember the musical structure. 

How often do I have to repeat this. Timing is related to structure!' We suggested to him 

a cup of tea, in the hope that this would calm him down.
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Objective Time, Duration and Tempo Measurements

When an event happens (an onset of a note) one can measure the real time elapsed since 

the beginning of the piece (called performance time) and also the point in the score 

where this onset was notated (called score time). The latter can be measured either in 

seconds (taking the tempo marking in the score serious, or normalising the total score 

length to the performance), in metrical units like beats or quarter notes (called metrical 

time), or as an event count (called event time). The last loses so much information that 

the timing pattern cannot be reconstructed without reference to the score.

Performance time can be shown as a function of score time (called a time map), or vice 

versa. In these representations it is easy to spot (a)synchronies between voices because 

they depict points in absolute time.

Calculating differences between subsequent performance times in a time map makes the 

step from time to duration. Because in such a representation it is difficult to compare 

notes of different nominal duration, a proportional measure is better. It makes the step 

from duration to relative duration by dividing two corresponding durations. In case a 

performance duration is divided by a score duration, this forms a series of duration 

factors (often misleadingly called tempo). This measure is mostly notated in a graph 

with the independent axis labelled with metrical or event time. In the case of the 

inverse calculation, the ratios form the velocity, the local speed of reading the score.

In both cases the measured points are often filled in with line segments - implying the 

existence of a tempo measurement in between events. This is misleading - the more so 

because integration does not yield the original time map again.

Gabrielsson (1974) uses note duration expressed in proportion to the length of the bar. 

This allows for comparison with exact note values in different meters. The method 

might be generalizable to study timing at different levels of structure.

Tempo is sometimes presented on a logarithmic scale; this is a first step towards the use 

of subjective magnitudes.

An interesting hypothesis was given by Brown (1979). He argues that a musician makes 

use of a collection of discrete tempi: a collection of discrete physically possible tempi, 

where the choice is defined by musical and performing factors.

E p i l o g u e

What this partly fictitious story (the characters are fictitious, but the examples and 

arguments are real!) shows is that we have to be aware of the Tempo Curve. Of course

Tempo curves considered harmful 20



one should be encouraged to measure tempo curves and use them for the study of 

expressive timing. But it is a dangerous notion, despite its widespread use and 

comfortable description, because it lulls its users into the false impression that it has a 

musical and psychological reality. There is no abstract tempo curve in the music nor is 

there a mental tempo curve in the head of a performer or listener. And any 

transformation or manipulation based on the implied characteristics of such a notion is 

doomed to fail.

That does not mean that generic models that represent timing in terms of some sort of 

structure, even when they describe just a fraction of the many aspects of expressive 

timing, do not constitute a valuable contribution to the field. They only have to be seen 

in a proper perspective in which their limitations are understood as well. It also does 

not mean that certain features in computer music software and commercial sequencers 

should be forbidden. Their mere existence at least makes the realisation of their 

limited worth evident.

It should be noted here that the views expressed in this article comply more or less 

with the British school of expressive timing research (E.F. Clarke, H.C. Longuet- 

Higgins, L. Shaffer, J. Sloboda and N. Todd), in which the link between structure and 

timing is paramount. There are alternative views developing at the moment, denying 

such a strong link (Kendall & Carterette, 1991). We hope this controversy will 

eventually lead to more understanding of this wonderfully complex aspect of music 

performance.

In reality the experiments were done using POCO, an environment for analysing, 

manipulating and generating musical expression (Honing, 1990), which took a bit longer 

to build than one Christmas.

The holiday was almost over now and we felt that we had not found out many useful 

things. Our musical friend announced that he would go back to his own piano. He 

thanked us for the interesting sessions, from which he had learned a lot. But 

underneath these friendly remarks we could hear the cynicism. He advised us in a 

fatherly way to get rid of our research papers and start reading biographies of famous 

composers, in which the true facts about music and its performance could be found. This 

made the feeling of disappointment even more pronounced. But in a last irrational 

attack of bravery, we decided not to give in yet and we invited him to come back next 

Christmas, and to bring his biographies if he wished.

To be continued...
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This paper presents an elegant way of representing control functions at an 

abstract level. It introduces control functions that have multiple times as 

arguments. In this way the generalized concept of a time function can support 

absolute and relative kinds of time behavior. Furthermore the possibilities of 

composition and transformation of time functions themselves is retained. The 

proposed solution has three main advantages. Firstly, for the human user the 

language is transparent, and no unforeseen interactions or side effects take place. 

Secondly, it is independent of host language and composition system and can be 

used in a variety of known environments (even in real-time systems). Finally, 

the method is easy to adapt to ran on parallel architectures: each note can be 

handled by a different processor, without the need for information passing 

between them.

INTRODUCTION

In the early history of computer music composition (Loy, 1988) the systems 

available took either a monolithically continuous, signal processing inspired 

approach (Mathews & Moore, 1970; Berg, 1979), or used a discrete, note or event 

based technique (Hiller, Leal & Baker, 1966; Koenig, 1970). Although some early 

work stressed the importance of hybrid systems (Mathews, 1969; Buxton, 

Sniderman, Reeves, Patel & Baecker, 1978), this division became even more obvious 

once the rich domain of hardware and software, that became available for MIDI, 

had lured designers into building composition systems close to this note-based 

protocol. While MIDI allows for some rudimentary continuous control (i.e.
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polyphonic aftertouch), most parameter changes affect either all sounding notes or 

all notes on a specific channel. With the recent advent of cheap signal-processing 

hardware that allows a more natural continuous control over parameters during 

each note's evolvement, the quest for elegant constructs for composition languages 

supporting both worlds is on again. During this whole history some researchers 

foresaw these developments and made attempts to bridge the gap between both 

worlds, by stating the problems (Dannenberg, Dyer, Garnett, Pope & Roads, 1989; 

Huron, 1990; Honing, 1991) and proposing solutions to them (Dannenberg, 

McAvinney & Rubine, 1986; Anderson & Kuivila, 1989).

The main problem that arises is how continuous control functions should behave 

under specification and transformation of the discrete structure. A notorious 

example is the vibrato problem: a vibrato should not slow down if the note itself is 

elongated, but some extra vibrato cycles should be added to the pitch envelope. A 

discrete analogy of the vibrato problem is the drum roll, which should be extended 

by adding more hits, but its rate should not slow down. However, a glissando, 

specified by the same means of a continuous pitch envelope, should be stretched 

along with the note duration. A third example is an ornament (e.g. a mordant) that 

is invariant under transformation of the duration of the note.

Several solutions for these problems have been stated, but all are unsatisfactory. 

We will name a few. In Canon (Dannenberg, 1989) a collection of transformations on 

a fixed set of attributes is used, together with a way of communicating environment 

information to new transformations. With these constructs he explicitly solves the 

"drum roll problem", though in a non-trivial, almost procedural way. Dannenberg 

(1986; 1989) proposes the term "behavioral abstraction" for the ability to express 

these complex parametrized behaviors. Anderson & Kuivila (1989) describe a 

solution based only on global time, prohibiting the composer to think in terms of 

local constructs (most real-time composition systems have, besides actual time, no 

sense of time at all; see Desain & Honing (in preparation)). Solutions proposed for 

object-oriented composition systems (e.g. Pope 1987; 1989) suffer from a 

declarative/procedural confusion whereby transformations and musical objects form 

no orthogonal sets (each new transformation added has to take all object types and 

all existing transformations into account). This inevitably leads to the situation 

whereby some transformations cannot be done twice or some combinations cannot be 

done in an arbitrary order.

In this paper we will present an elegant and -once understood- obvious way of 

representing control functions at a more abstract level that simply evades all these
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problems and yields a transparent specification of (discrete) musical structures 

with continuous control over their parameters. To be able to illustrate this 

approach, a simple framework language for discrete musical objects and their 

ordering in time is given, expressed in Common Lisp (Steele, 1990).

FRAMEWORK OF DISCRETE MUSICAL OBJECTS

Let us start by assuming a basic note object, and a basic rest object (called pause, to 

avoid clashing with the Common Lisp primitive r e s t )  with some parameters 

specified by keywords:

(note :duration 2 :pitch 60 :amplitude 0.8)

(pause ¡duration 1)

The syntax is taken directly from Lisp, i.e. prefix notation with the function name 

before the arguments, the whole enclosed in brackets. Each argument is specified as 

a pair of a keyword and a value. The actual parameters allowed are irrelevant for 

the present introduction; a MIDI-based composition system might need other 

parameters than a signal-processing approach. Furthermore, the discussion on the 

magnitude scales for these parameters is ignored here. A simple assumption of a 

duration scale in seconds, a pitch scale in MIDI key numbers (with fractional part), 

and a [0,1] scale for amplitude is assumed in the examples. Even the semantics of 

such expressions; whether they initiate processes, deliver data-structures that 

represent musical objects (i.e. event-lists), or are the actual procedures that output 

the material directly, is immaterial here. In the Appendix one possible 

implementation is given. We assume that not-mentioned parameters are defaulted 

to reasonable values (duration 1 second, pitch 60, and amplitude 1) for ease of use in 

the examples.

It must be possible to specify the timing of the basic musical objects, either by 

passing parameters for start time and duration directly (as is used here for the 

duration parameter) by means of parameters that place or move objects in time 

(Abbott, 1981; Dannenberg et al, 1986; Balaban, 1989), or by constructor functions 

that build or play musical objects in a distinct time order (Smoliar, 1980; 

Dannenberg,1989). For the sake of simplicity, we will use the last approach with 

the Sequential and Parallel constructs that we used in the LOCO composition 

language (Desain & Honing, 1988) and which were elaborated as a basis for 

transformations in (Desain, 1990). These constructs mirror the sequential and 

parallel execution primitives originating from parallel language design. S stands
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for a sequential ordering of its components, the whole structure ending after the last 

one, and P stands for a parallel structuring ending at the end time of its longest 

component. As an example, consider the following musical object. Its graphical 

piano-roll like representation is shown in Figure 1, where time is represented on 

the x-axis, pitch is represented on the y axis, and the amplitude of a note is 

represented by its shading.

(s (p (note :duration 2 :pitch 62 : amplitude 1.0) 

(note ¡duration 4 :pitch 65 ¡amplitude 0.7)) 

(note ¡duration 5 ¡pitch 58 ¡amplitude 0.3)))

Figure la. Example of a time structured musical object.
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Figure lb. Graphical notation of the musical object given in Figure la.

An extension of this approach allows for high level timing control for defining 

non-standard musical objects like grace notes. As these constructs are not essential 

for the present argument we refer to Desain and Honing (1988) for more details. For 

naming complex musical objects, forming parametrized families of objects and 

defining musical transformations we will use the standard procedural abstraction 

(function definition) facilities of the host language. An example of a compound 

musical object built by those means is shown in Figure 2.
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{defun major-chord (duration key)

(p (note [duration duration : pitch key)

(note :duration duration : pitch (+ key 4)) )

(note [duration duration : pitch (+ key 7))) )

(s (major- chord 2 57) (major- chord 5 58) (major-chord 2 57))

Figure 2a. Use of procedural abstraction in defining a compound musical object.

Figure 2b. Graphical notation of the musical object given in Figure 2a.

We introduce one basic transformation on the timing of fully constructed musical 

objects, that we can use to demonstrate the behavior of the time functions when the 

duration of the object they are linked to, is changed. The s t r e t c h  transformation 

multiplies each duration of the enclosed objects by a factor.

(stretch (note :duration 1 :pitch 60 [amplitude 1) 2)

(note ¡duration 2 [pitch 60 [amplitude 1)

These preliminaries constitute a world rich enough to introduce continuous time 

functions and their problems, but it has to be kept in mind that the same solution 

can be used in most present composition systems, however different their notion of 

musical objects and collections thereof, and in whatever way the time relations 

between them are specified.

CONTINUOUS CONTROL 

The problem

A most natural thought, when bored with note-based discrete systems, is passing to 

each note a continuously variable function of time as parameter for say pitch or 

amplitude instead of a constant value. The functions passed are functions of the 

actual time, and elegant ways can be given to build and transform them. Often
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though, these functions have been regarded as control signals (resembling audio 

signals) even up to the point where a list of data points, interpreted at a fixed 

(low) sample rate has been called a function (e.g. Schottstaedt, 1983; Puckette, 

1988), obscuring the highly abstract powerful possibilities of functions in their 

mathematical sense (exceptions are Rodet & Cointe, 1984; Dannenberg, McAvinney 

& Rubine, 1986; Anderson & Kuivila, 1989). But even when the full power of 

function specification is used, time functions are considered to be functions of actual 

time. This complicates the coupling of these functions to discrete objects and gives 

rise to the problem described before: the notorious vibrato problem and its discrete 

counterpart, the drum roll problem.

A related concern is the use of a relative or absolute start-point for the time base 

used. The use of an absolute time scale is sometimes preferred by composers because 

of the (false) impression of total control. However, it implies an envelope to be 

redefined each time it is used at another absolute point in time. This can simply be 

avoided by using a time base relative to the object under construction. This, of 

course, does not mean that the notion of absolute time control can be ignored. It is 

indeed indispensable when time relations with events outside the musical piece 

(say the midnight church bells) are to be taken into account, or, as is the case more 

often, when relations between different and independent musical objects have to be 

maintained (e.g. a synchronized vibrato between different voices).

A solution

The solution we propose is to make each control function a function of more 

parameters - each parameter reflecting a different aspect of time. As an example, 

we will develop this notion for time functions of three parameters: the absolute 

start time of the discrete musical object it is controlling; the absolute time duration 

of this musical object; and a relative progress, expressing in how far time has 

elapsed since the start time, relative to the duration (a number in the range [0,1]). 

Other choices are of course possible here (e.g. start time, end time and actual time). 

All these parameters will be passed their appropriate values automatically by 

the interpretative system. With this definition of a time function, the user can now 

choose to use some time parameters and ignore others to make time functions that 

behave differently when used for musical objects with different duration or start 

time.

As a first example, let us define an elastic ramp control, independent of an 

absolute start time, taking the full duration of the musical object to reach its final

Time functions of multiple times 8



value. We will use it to control the pitch of some notes, creating glissandi. The 

function ramp produces a linear time function of the three time parameters 

mentioned before. It ignores the absolute start time and duration parameters, 

depending only on the progress of the evolving note (a number between 0 and 1) to 

calculate its value. Figure 3 shows how the same ramp construct is used for notes of 

different duration -yielding an appropriate glissando- and how the musical idea is 

kept intact under a stretch transformation.

(defun ramp (from to)

# ' (lambda (start duration progress)

(+ from (* progress (- to from)))))

(defun glissando-example ()

(s (note ¡duration 1 ¡pitch 58)

(p (note ¡duration 2.5 :pitch (ramp 64 61))

(s (pause ¡duration .5)

(note :duration 2 ¡pitch (ramp 61 60))))))

(s (glissando-example) (stretch (glissando-example) 2))

Figure 3a. Definition of a ramp time function and a musical object using it.
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Figure 3b. Glissandi that extend when stretched in time given in Figure 3a.

Now let us construct, with the same means, a vibrato function, parametrized by 

the fundamental pitch it is to be applied to, and the frequency and depth of the 

vibrato itself. It only depends on the actual time elapsed during the musical object: 

the multiplication of duration and progress. Now the application of the vibrato 

function to notes of different duration will not alter the vibrato rate, nor will the 

stretch transformation applied to the compound musical object (see Figure 4b).

If we make a similar sinusoidal glissando function, expressed in terms of relative 

time (progress), a stretch of the musical object will slow-down the rate (see Figure 

4c).
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Absolute time can also be used to make time functions that are not influenced at 

all when they are applied to musical objects with a different duration. An 

ornament could have such character; a sinusoidal ornament will keep its absolute 

timing when stretched (see Figure 4d).

(defun sine-oscillator (offset frequency depth)

# ' (lambda (start duration progress)

(+ offset 

(* depth

(sin (* 2 pi duration progress frequency)))))) 

(defun sine-glissando (key depth)

* ■ (- ambda (start duration progress)

(+ key

(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)

n ' (.ambda (start duration progress

&aux (relative-time (* duration progress)))

(+ key

(if (< relative-time count)

(sin (* 2 pi relative-time))

0) ) ) )

(de fur 

( s

vibrato-example () 

note rduration 1 rpitch 58)

(p (note rduration 2.5 rpitch (sine-oscillator 64 1 .5))

(s (pause rduration .5)

(note rduration 2 rpitch (sine-oscillator 61 1 1))))))

(de fur glissando-example ()

(s (note :duration 1 :pitch 58)

(p (note rduration 2.5 :pitch (sine-glissando 64 .5))

(de fur 

(s

(s (pause rduration .5)

(note rduration 2 rpitch (sine-glissando 61 1))))))

. ornament-example () 

note rduration 1 rpitch 58)

p (note rduration 2.5 rpitch (sine-ornament 64 .5))

(s (pause rduration .5)

(note rduration 2 rpitch (sine-ornament 61 1))))))

(s (vibrato-example) (stretch (vibrato-example) 2)) ; Figure 4b 

(s (clissando-example) (stretch (glissando-example) 2)) ; Figure 4c 

(s (ornament-example) (stretch (ornament-example) 2)) ; Figure 4d

Figure 4a. Definition of musical objects using vibrati, glissandi and ornaments.
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Figure 4b. Vibrati that elongate when stretched in time.

A

57
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Figure 4c. Sinusoidal glissandi that extend when stretched in time.

Figure 4d. Sinusoidal ornaments not affected when stretched in time.

The abstract vibrato, glissando and ornament time functions can be depicted 

nicely in a three dimensional surface plot, as is shown in Figure 5. Relative time 

(duration * progress) and the duration are used as dependent variables. For any note 

duration, the actual time function used will be a cross-section of these surfaces.
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Figure 5. Surfaces representing a) vibrato, b) glissando, and c) ornament time functions as 

a function of duration and relative time.

Using the absolute start time parameter enables full control over timing with 

respect to a global clock. This can be used to specify the phase of a vibrato among 

parallel notes, such that they can be synchronized as is shown in Figure 6 (compare 

with Figure 4b).
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(defun sync-oscillator (offset frequency depth «.optional (phase 0)) 

*' (lambda (start duration progress)

(+ offset 

(* depth

(sin (* 2 pi (+ phase
(* start frequency)

(* duration progress frequency))))))))

(defun synchronized-vibrato-example ()

(s (note :duration 1 :pitch 58)

(p (note ¡duration 2.5 :pitch (sync-oscillator 64 1 .5))

(s (pause ¡duration .5)

(note ¡duration 2 ¡pitch (sync-oscillator 61 1 1))))))

(s (synchroni zed-vibrato-example)

(stretch (synchronized-vibrato-example) 2))

Figure 6a. Example of a musical object using a synchronized vibrato.

Figure 6b. Graphical notation of the musical object given in Figure 6a.

This finalizes the examples of the use of time functions with multiple parameters 

as control functions for individual basic objects. It shows how problems of 

synchronization and time modification are elegantly evaded by lifting the concept 

of a time function to a more abstract level. Of course the control functions used are 

rudimentary in their musical value as much more elaborate envelopes are needed, 

but they can all be based on the same idea and a further section will show how 

simple time functions can be combined into complex ones. First we want to tackle the 

problem of time functions extending over a collection of several musical objects.

Control over compound objects

In composition the use of time dependent control specified over a collection of 

musical objects is abundant. The most simple example specifies the same control 

information to be applied to each basic object. Naming a control function (as done
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with the l e t  local binding construct of Common Lisp) is a natural way (see Figure 

7).

(defun envelope-example ()

(let ((envelope (ramp 0 1)))

(s (note ¡duration 1 :pitch 58 ¡amplitude envelope)

(p (note ¡duration 2.5 ¡pitch 64 ¡amplitude envelope)

(s (pause ¡duration .5)

(note ¡duration 2 ¡pitch 61 ¡amplitude envelope)))))) 

(s (envelope-example) (stretch (envelope-example) 2))

Figure 7a. Example of applying the same local envelope function to the individual note

objects.
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Figure 7b. Graphical notation of the musical object given in Figure 8a.

A different method has to be used to pass time functions evolving over a compound 

musical object, to each basic musical object. An example of such a construct is a 

crescendo from a certain loudness level to another, starting at the start of the 

musical structure it is applied to, and extending over its total duration. We need to 

introduce a new construct in the language to enable the passing of information from 

collections of musical objects to such envelopes. It follows the same syntax as the 

l e t  construct but modifies the time functions bound such that they will behave 

appropriately. In Figure 8 the definition of a crescendo is shown using the same 

ramp function and the same musical structure as used in Figure 7.
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(defun crescendo-example ()
(let-time-fun-over-compound ((crescendo (ramp 0 1 ) ) )

(s (note :duration 1 :pitch 58 :amplitude crescendo)

(p (note :duration 2.5 :pitch 64 :amplitude crescendo)

(s (pause :duration .5)

(note -.duration 2 :pitch 61 ¡amplitude crescendo)))))) 

(s (crescendo-example) (stretch (crescendo-example) 2))

Figure 8a. Example of applying a global crescendo function to the individual note

objects.

-5 65

57

0 1 2  3 4  5 6 7 8 9  10
t i me ->

Figure 8b. Graphical notation of the musical object given in Figure 8a.

Time function composition

Building a comprehensive set of musically useful time functions can best be done by 

supplying some simple, basic time functions and some ways of building complex ones 

by transforming and combining them. The function tim e-fun-com pose is one of 

the higher-order functions that can be thought of, that supports this. It generalizes 

any operation to the corresponding combination of the results of time functions. The 

example in Figure 9 shows both an additive combination of an oscillator and a ramp 

time function for pitch, and one using a multiplicative combination for the 

amplitude parameter. An object oriented approach here, packaging time functions 

in their own class and overloading the standard arithmetic operations for them, 

will of course simplify the syntax.
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(defun compose-example ()

(note ¡duration 7

¡pitch (time-fun-compose #'+ (oscillator 58 1 1) (ramp 5 0)) 

¡amplitude (time-fun-compose #'*

(oscillator .5 1 .5)

(ramp 1 0))))

(s (compose-example) (stretch (compose-example) .5))

Figure 9a. Example of combining time functions

Figure 9b. Graphical notation of the musical object given in Figure 9a.

Another useful combinator is the concatenation of two time functions, with an 

extra argument expressing the proportion of the duration handled by the first, 

implying the remaining time for the second one. In Figure 10 the concatenation of 

two ramp envelopes is shown, one used locally for the pitch, the other used 

globally for the amplitude parameters.
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(defun crescendo-decrescendo-example ()

(let-time-funs-over-compound

((cresc-decresc (time-fun-concatenate (ramp 0 l)(ramp 1 0) .2)))

(let ( (glissando
(time-fun-concatenate (ramp 58 5 9 ) (ramp 59 58) .8)))

(s (note :duration 1 :pitch glissando ¡amplitude cresc-decresc) 

(p (note ¡duration 2.5 ¡pitch 64 ¡amplitude cresc-decresc)

(s (pause ¡duration .5)

(note ¡duration 2 

¡pitch 61

¡amplitude cresc-decresc)))))))

(s (crescendo-decrescendo-example)

(stretch (crescendo-decrescendo-example) 2))

Figure 10a. Example of concatenating time functions

é  65

57

0 1 2  3 4  5 6 7 8 9  10
tim e ->

Figure 10b. Concatenations of a crescendo and a decrescendo, and up- and downwards

glissandi.

An ever richer world of possibilities opens up when time functions accept time 

functions as arguments, their parameters may then change over time as well. In the 

example we use a sine oscillator that changes its frequency over time, controlled by 

a ramp time function. A new definition of an oscillator, that takes functional 

arguments, can easily be constructed. In Figure 11a such a sine oscillator time 

function is defined (it uses the function t im e -fu n c a ll ,  and the function make- 

s in e  that supplies a sine function that remembers its state over time).

It has to be stressed here again that these combinations of time functions preserve 

-in a compound way- the different ways in which their constituent components deal 

with time. For instance, the composition of a glissando and a vibrato, as in Figure 

9b, can still be stretched in time consistently: the vibrato gaining cycles at the 

same rate and the glissando slowing down. This composibility of behavior is an 

important characteristic of this solution.
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(defun sine-osc (frequency)

(let ( (sine (make-sine)))

# ' (lambda (start duration progress

&aux (time (+ start (* duration progress)))) 

(funcall sine time

(time-funcall frequency start duration progress)))))

(defun new-oscillator (offset frequency depth)

(time-fun-compose #'+ offset

(time-fun-compose #'* depth

(sine-osc frequency))))

(defun new-vibrato-example ()

(s (note ¡duration 1 :pitch 58)

(p (note ¡duration 2.5

:pitch (new-oscillator 64 2 (ramp 0 1)))

(s (pause :duration .5)

(note ¡duration 2

.•pitch (new-oscillator 61 (ramp 0 1) 1)

¡amplitude (new-oscillator .5 (ramp 0 1) .5))))))

(s (new-vibrato-example) (stretch (new-vibrato-example) 2))

Figure 11a. Example using an oscillator taking functional arguments.

Figure lib . Graphical notation of the musical object given in Figure 11a.

Specification by means of transformation

Finally, the reader might wonder how transformations on a complex musical object 

can be taken care of. Because of the abstractions chosen, this comes with little extra 

effort (in contrast to other systems; see closing remarks in Dannenberg, 1989 and 

Rahn, 1990). Transformations are just another way of specifying complex musical 

objects. A set of transformations and their equivalents are shown below.
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(stretch
(amplitude

(s (note) (transpose (note) 2))
(ramp 10))

2 )

(let-time-funs-over-compound ((envelope (ramp 1 0)))
(s (note :duration 2 pitch 60 :amplitude envelope) 

(note :duration 2 pitch 62 ¡amplitude envelope)))

Of course, a free mix of direct specification and transformation can be used. In Figure 

12 two examples of simple transformations are given. An a ttr ib u te -tra n s fo rm  

function supports these kinds of transformations on the attributes of the notes. It 

takes, besides the musical object applied to, a keyword identifying an attribute, a 

time function or constant, and an operator used in combining the results of the time 

function with the time functions or constants found in the musical object.

(defun transpose (object interval)

(attribute-transform ¡pitch interval #'+ object))

(defun amplitude (object amplitude)

(attribute-transform ¡amplitude amplitude #'* object))

(s (transpose (new-vibrato-example) -1)

(amplitude (stretch (new-vibrato-example) 2)

(ramp 1 0 ) ) )

Figure 12a. Examples of attribute transformations.

0  1 2  3 4  5 6 7 8 9  10
tim e ->

Figure 12b. Graphical notation of the musical object given in Figure 12a.

MICROWORLD

To enable the reader to check and experiment with these ideas, a rudimentary 

implementation of a language with these capabilities is given in the Appendix, 

the full implementation of which will be part of the COCO composition system.
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The basic and compound musical objects are defined procedurally. Because at the 

time of their call their context is still unknown (i.e. their start time) they will 

deliver functions (called event-list generators) of this context that will, when 

given a start time and a scale factor, return an event-list together with its end time. 

A draw procedure is available to transform such musical objects into the graphical 

representation that was used in drawing the figures. Low-level draw routines for 

the users' window system or plotter, implementing the d r a w -a ir -b r u s h  

primitive still have to be supplied. The incorporation of a play primitive to sort 

event-lists and send data to a MIDI driver is left as an exercise to the reader. Note 

that this is a non-trivial task since some technical tricks (e.g. allocating notes to 

different MIDI channels) must be used to allow continuous control of the individual 

note parameters.

EXTENSIONS

Articulation

Some parameters are not continuously variable by nature (like the articulation of a 

note: the proportion of its duration that it is actually sounding), but they can be 

modelled well by using continuously variable time functions extending over 

compound musical objects, sampled once automatically by the interpretive system 

at the start time (as in Dannenberg, 1989). It is even possible to supply this 

information as an extra argument to all time functions (on the risk of becoming 

circular: articulation time functions themselves should not be allowed to use the 

articulation parameter). This elegantly solves the specification of, for example, 

different attack, decay and release sections of envelope functions in terms of an 

articulation factor.

Real-time control

There is no reason why this approach could not be used in real-time control. If it is 

possible in the host system to specify the start of a musical object (e.g. a note-on) 

without its end, then the set of parameters passed to time functions has to be 

adapted (e.g. to absolute start time, and absolute time elapsed after the start). 

Time functions can naturally depend upon incoming (real time) parameters if their 

evaluation is postponed to the last possible moment. Note that in that case time 

functions are not strictly functional any more, reading control signals from input 

ports.
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Rubato functions and time maps

It might be possible to add flexibility to the common rubato functions and nested 

time maps used for composition systems (Jaffe, 1985; Desain & Honing, 1991) by 

supplying them with multiple time arguments as well. To avoid circularity a 

division in score and performance time has to be made. This could then be a basis for 

meaningful specifications and transformations of expressive timing. The 

possibilities have yet to be investigated.

ADVANTAGES OF "TIME FUNCTIONS OF MULTIPLE TIMES"

The proposed approach has three main advantages. Firstly, for the human user the 

language is transparent, and no unforeseen interactions or side effects take place. 

Secondly, the musical objects, time functions, and transformations on musical objects 

are orthogonal constructs. They serve as a solid and extendible basis for further 

design, independent of the host language or the composition system. Finally, from 

the hardware perspective this approach has the distinct advantage of being easy 

to adapt to run on parallel architectures: each note can be handled by a different 

processor, without the need for information passing between them (see Walker 

(unpublished) for the argument that note-based parallelism is the most promising 

distribution of labour for most parallel architectures).
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APPENDIX

;;; TIME FUNCTIONS MICROWORLD 

;;; ( 0  1991, Peter Desain & Henkjan Honing

;;; Part of the COCO composition system 

;;; In Common Lisp (uses loop macro)

;;; basic musical objects

(defun note (&key (duration 1) (pitch 60) (amplitude 1))

"Return an event-list-generator of a note"

# ' (lambda (start factor &aux (stretched-dur (* duration factor)))

(values (list (list rstart start

:duration stretched-dur 

rpitch pitch 

ramplitude amplitude))

(+ start stretched-dur))))

(defun pause (&key (duration 1))

"Return an event-list-generator of a pause"

# ' (lambda (start factor &aux (stretched-dur (* duration factor)))

(values nil ( + start stretched-dur))))

;;; compound musical objects (time structuring)

(defun s (&rest elements)
"Return an event-list-generator of a sequential compound musical object" 

tr' (lambda (start factor &aux event-list (end start))

(loop for element in elements

do (multiple-value-setq (event-list end)

(funcall element end factor)) 

append event-list into result-list 

finally (return (values result-list end)))))

(defun p (Srest elements)
"Return an event-list-generator of a parallel compound musical object"

# ' (lambda (start factor &aux event-list end)

(loop for element in elements 

with event-list and end

do (multiple-value-setq (event-list end)

(funcall element start factor)) 

append event-list into result-list 

maximize end into end-time

finally (return (values result-list end-time)))))

;;; time transformation

(defun stretch (object new-factor)

"Return an event-list-generator of a stretched musical object"

# ' (lambda (start factor)

(funcall object start (* factor new-factor))))
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attribute transformations

(defun attribute-transform (keyword attribute-time-fun operator musical-object) 

"Return an event-list-generator of a transformed musical object"

# ' (lambda (start factor)

(multiple-value-bind (event-list end)

(funcall musical-object start factor)

(loop for event in event-list

do (setf (getf event keyword)

(time-fun-compose-local-global operator

(getf event keyword)

attribute-time-fun

start

(- end start))))

(values event-list end))))

(defun time-fun-compose-local-global

(operator local global global-start global-duration)

"Return time-function

composed of operator applied to local and global time-fun"

# ' (lambda (start duration progress

&aux (global-progress (/ (+ (- start global-start)

(* progress duration)) 

global-duration)))

(funcall

operator

(time-funcall local start duration progress)

(time-funcall global global-start global-duration global-progress))))

;;; use of time functions over compound musical objects

(defmacro let-time-funs-over-compound (bindings expression)

"Establish bindings of time-functions over compound object"

(let* ((start (gensym)) (end (gensym)))

(let* (,start ,end

,8 (loop for binding in bindings

collect (make-binding binding start end)))

, (make-body start end expression)) ) )

(defun make-binding (binding start end)

"Return binding of time-function using global start and end time"

(,(first binding)

# ' (lambda (local-start local-duration local-progress)

(let ((local-time (+ local-start (* local-duration local-progress)))) 

(funcall , (second binding)

/start

(- ,end , start)

(/ (- local-time ,start) (- ,end ,start)))))))

(defun make-body (start end expression)

"Return an event-list-generator with time-functions over compound object"

' # ' (lambda (start factor)

(multiple-value-bind (event-list end-time)

(funcall ,expression start factor)
(setf ,start start ,end end-time)

(values event-list end-time))))
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(defun time-funcall (time-fun-or-constant start duration progress)

"Return constant or result of applying time-function to its arguments"

(if (functionp time-fun-or-constant)

(funcall time-fun-or-constant start duration progress) 

time-fun-or-constant))

(defun time-fun-compose (operator Srest time-funs)

"Return time-function composed of operator applied to results of time-funs" 

# ' (lambda (start duration progress)

(apply operator

(mapcar # ' (lambda (time-fun)

(time-funcall time-fun start duration progress)) 

t ime-funs))))

(defun time-fun-concatenate (time-fun-1 time-fun-2 proportion)

"Return time-function concatenating two time-functions given a proportion" 

# ' (lambda (start duration progress)

(if (<= progress proportion)

(time-funcall time-fun-1

start (* duration proportion) (/ progress proportion)) 

(time-funcall time-fun-2

(+ start (* duration proportion))

(* duration (- 1 proportion))

(/ (- progress proportion) (- 1 proportion))))))

(defun make-sine ()

"Return sine function with state"

(let ((phase 0) old-time)

# ' (lambda (time frequency)

(when old-time

(incf phase (* 2 pi (- time old-time) frequency)))

(setf old-time time)

(sin phase))))

; ; ; graphical score output

(defun draw (musical-object Skey (resolution 1/10))

"Draw a musical object"

(loop for note in (funcall musical-object 0 1) 

do (apply t'draw-note resolution note)))

(defun draw-note (resolution &key start duration pitch amplitude)

"Draw a note using the time-function or constant of the attributes"

(loop as old-pitch-val = (time-funcall pitch start duration 0) 

then pitch-val

as old-amplitude-val = (time-funcall amplitude start duration 0) 

then amplitude-val 

as old-time = start then time 

as progress = (/ (- time start) duration)

as pitch-val = (time-funcall pitch start duration progress) 

as amplitude-val = (time-funcall amplitude start duration progress) 

for time from start by resolution to (+ start duration) 

do (draw-air-brush old-time old-pitch-val time pitch-val 

old-amplitude-val amplitude-val)))

(defun draw-air-brush (xl yl x2 y2 shadel shade2)

;; draw-air-brush has to be provided by the user,

;; draws a diamond shape with vertical left and righthand sides 

;; (xl,y l ) is mid left, left shadel, (x2,y2) is mid right, right shade2 

)

;;; time function utilities
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(defun sine-oscillator (offset frequency depth)

# ' (lambda (start duration progress)

(+ offset 
(* depth

(sin (* 2 pi duration progress frequency))))))

(defun sine-glissando (key depth)

# ' (lambda (start duration progress)

(+ key

(* depth (sin (* 2 pi progress))))))

(defun sine-ornament (key count)

# ' (lambda (start duration progress

Saux (relative-time (* duration progress)))
(+ key

(if (< relative-time count)

(sin (* 2 pi relative-time))

0) ) ) )

(defun vibrato-example ()

(s (note ¡duration 1 :pitch 58)

(p (note :duration 2.5 :pitch (sine-oscillator 64 1 .5))

(s (pause ¡duration .5)

(note :duration 2 :pitch (sine-oscillator 61 1 1))))))

(defun glissando-example ()

(s (note ¡duration 1 :pitch 58)

(p (note :duration 2.5 .-pitch (sine-glissando 64 .5))

(s (pause :duration .5)

(note ¡duration 2 ¡pitch (sine-glissando 61 1))))))

(defun ornament-example ()

(s (note ¡duration 1 ¡pitch 58)

(p (note .-duration 2.5 ¡pitch (sine-ornament 64 .5))
(s (pause ¡duration .5)

(note ¡duration 2 ¡pitch (sine-ornament 61 1))))))

;;; examples of use (draws pictures as shown in Figure 4b, 4c and 4d)

(draw

(s (vibrato-example) (stretch (vibrato-example) 2))) ; Figure 4b
(draw

(s (glissando-example) (stretch (glissando-example) 2))) ; Figure 4c 
(draw

(s (ornament-example) (stretch (ornament-example) 2))) ; Figure 4d
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To wa r d s  a  c a l c u l u s
FOR EXPRESSIVE TIMING IN MUSIC

Peter Desain & Henkjan Honing

Center for Knowledge Technology 
Utrecht School of the Arts 

Lange Viestraat 2B 
NL-3511 BK Utrecht

This paper presents a calculus that enables expressive timing to be transformed on the basis 

of the structural aspects of the music. Expression within a unit is defined as the deviations of 

its parts with respect to the norm set by the unit itself. The behaviour of musical material 

under expressive transformations is determined uniquely by its structural description and the 

type of expression. Although the calculus separates different kinds of behaviour, it entails no 

musical knowledge of the transformations themselves and it also does not model music 

cognition. The algorithmic simplicity of the calculus combined with its elaborate knowledge 

representation mirrors the common hypothesis that the complex expressive timing profiles 

found in musical performances can be explained as the product of a small collection of 

simple rules linked to a relatively complex structure. The calculus (and the program 

implementing it) will hopefully prove to be a solid basis for formalised theories of music 

cognition.

INTRODUCTION

In Desain and Honing (in press, a) we argued that a simplistic notion of a tempo curve of a 

musical performance is a dangerous and harmful theoretical construct. Although the use 

of a tempo curve to describe time measurements is perfectly sound, the notion itself is 

often presented as a cognitive or musical concept. And tempo curves do not have any right 

to exist in those domains. In the above article, this was concluded from the fact that 

when it is used as a basis of transformations, inevitably the results make no musical 

sense. The cause of this failure can often be attributed to the lack of structural 

information in the tempo curve. For example, in changing the overall tempo of a 

performance, by manipulating the tempo curve alone, all time intervals of equal length 

between two notes are scaled in the same way. But some notes may constitute a particular 

kind of ornamentation, whose duration should be more or less unaffected by tempo. As a 

result the timing of the piece becomes unmusical. And there are many more examples of 

transformations that cannot be done on isolated tempo curves. Because the article had an 

essentially negative tone - identifying the problems and their causes - we felt compelled 

to follow it up with a study of possible solutions.
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This paper is an attempt to identify ways in which structural knowledge can be used to 

enable expression transformations on musical performances that do make musical sense.

In past research we considered expression merely as deviations of attributes of performed 

notes from their value notated in a score. This definition, however useful in the initial 

study of expressive timing, soon lost its attractiveness. In general, listeners can 

appreciate expression in music performance without knowing the score. And a full 

reconstruction of the score in the form of a mental representation is often impossible. Take 

for instance the notion of loudness of notes. Should a listener be required to fully 

reconstruct the dynamic markings in the score before it is possible to appreciate the 

deviations from this norm as expressive information added by the performer? Such a 

nonsensical conjecture indeed follows from a rigid definition of expression as deviations 

from the score. But it is possible to find ways of defining expression on the basis of 

performance information only. The more so since it became possible to model the 

quantization of performed note durations into discrete categories (Desain & Honing, 

1991), and therefore even the extraction of performed tempo is possible directly from the 

performance itself.

In this paper we will base expression on the notion of structural units in a working 

definition: expression within a unit is defined as the deviations of its parts with respect 

to the norm set by the unit itself. An example might make this more clear. Lets take, for 

instance, a metrical hierarchy of bars and beats; the expressive tempo within a bar can be 

defined as the pattern of deviations from the global bar tempo generated by the tempo of 

each beat. Or, take the loudness of the individual notes of a chord; the dynamic 

expression within a chord can be defined as the set of deviations from the mean chord 

loudness by the individual notes. Using this intrinsic definition, expression can be 

extracted from the performance data itself, taking more global measurements as reference 

for local ones, assuming that the structural units themselves are known. Thus the 

structural description of the piece becomes central, both to establish the units which will 

act as a reference, and to determine its subunits that will act as atomic parts whose 

internal detail will be ignored. A generalization of this concept can also deal with 

expression arising from the interplay of two or more voices.

It will be clear by now that any other connotations of the concept of musical expression, 

its link to human affect and extra-musical indexicality, however interesting, will be 

ignored here completely.

Before the details of the calculus are presented it might be fitting to give some 

explanation for undertaking for this work. First of all, we think that the research of 

expression in music is in need of measurement instruments that can cope with the enormous 

complexity of performance data and that are much more sophisticated than tempo 

curves. Some of the proposed transformations can be used as an "auditory microscope" by
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exaggerating expression at certain structural levels, like amplifying the timing lead, the 

melody often has over the accompaniment. Some of the tools presented can be used as 

"expression scalpels" for trimming away certain kinds of expression that might obscure 

other phenomena, like removing the tempo deviations within each beat, but holding the 

timing patterns of the beats themselves invariant. Other tools can "transplant" musical 

expression from one piece of music to the other, say from a theme to its variation. The 

availability of this 'machinery' will deepen our understanding of the intricacies of music 

performance expression.

A further motivation is the practical applicability of this work in systems for computer 

music. Especially the music editors and sequencer programs that are commercially 

available nowadays which are in need of better ways to treat musical information in 

musical ways. Expressive timing should not be considered a nasty feature of performed 

music, as it is in nowadays multi-track recording techniques where tempo, timing and 

synchronization are treated as technical problems. Instead expressive timing has to be 

regarded as an integral quality of performed music whereby the performer communicates 

structural aspects of the music to the listener (Clarke, 1988). We hope that our work can 

inspire new music software based on this view.

OVERVIEW OF THE CALCULUS 

Characteristics

The calculus has the following important characteristics:

The calculus is described here only for different brands of expressive timing. Dynamics 

could be formalised along the same lines, but for clarity we restrict ourselves to the 

domain of expressive timing. Other attributes that carry expression, like intonation, 

vibrato and timbre mav require a different treatment.

The types of expression have to be computable to be within reach of this calculus. One 

must be able to calculate the expression at every level of the structural hierarchy, given 

the expression of their components (e.g. the timing of a chord must be computable when 

the timing of the embedded notes is given). One also must be able to state ways to 

effectively set the expression of the components once the expression of the whole is given 

(i.e. propagate a shift in timing down the hierarchy, to the basic objects carrying the 

expression). Types of expression that do not have this characteristic - or are not vet 

formalised as such- cannot be described.

Both performance and "score" timing of individual notes are clearly defined. Notes 

require attributes that can be measured more or less directly from the performance data 

like the note onset time and the offset time. At least the onset time must be clearlv
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specified, which makes the calculus less appropriate for expressive performances by 

instruments for which onset times are not so clear cut. Secondly, the metrical note 

duration (the timing of the note as notated in the score) must also be available as a note 

attribute - either via quantization or by matching a performance to a known score. These 

processes are considered preprocessing here. Although the reference to score duration, 

score onset and score offset times is less appropriate in the context of our definition of 

expression - we will use this terminology, for lack of better terms.

The "score" timing of rests is clearly defined. Perhaps surprisingly, the rest plays a key 

role in some transformations. So we assume that it either can be inferred from the 

performance timing (Longuet-Higgins, 1976 shows a way of doing so), or it is recovered 

via the matching of a performance and a known score.

All proposed transformations are structure preserving. This means that the calculus is 

restricted to true expressive transformations: the score timing of the notes is known and 

fixed, and transformations will leave this and the structural description invariant.

The behaviour of musical material under expressive transformations is determined 

uniquely by its structural description and the type of expression.

The transformations are defined on a hierarchical structural description uniquely linking 

all material. Ambiguous structural descriptions (e.g. two or more possible structural 

descriptions) or incomplete descriptions cannot be dealt with. The obvious need for 

knowledge representations containing multiple structural descriptions (metrical, phrase, 

and rhythmical grouping structures, different analysis etc.) is not denied. We just require 

that such representations be preprocessed to select only one complete structural 

description. This is not a real restriction since transformations based on different kinds of 

structural knowledge of the same piece can always be done in sequence. Re-inserting the 

trimmed structural descriptions into a transformed piece is trivial because the 

transformations preserve the structure.

Naturally, the higher-level structural description of the piece must be consistent with 

the performance timing. For example, a structural description of the piece in which two 

notes are given a certain sequential time order (one after the other) - can only fit a 

performance in which at least the onset of the corresponding notes obey the same order. 

The precise rules will be given when the structural descriptions are introduced.

The transformations are defined to apply to a certain level of the hierarchical structural 

description, ignoring details from lower levels and keeping higher levels invariant. 

Means to select such a level are assumed. In sophisticated realisations of the calculus
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this may entail a match language ("the first bar of the piano solo that begins with a C") 

or a graphical representation. In this paper we will simply assume that each musical 

object has a name as attribute and defines a structural level as the set of objects with a 

certain name.

Although the calculus separates different kinds of behaviour, it entails no musical 

knowledge of the transformations themselves. Accordingly, the proposed knowledge 

representation docs support for example, arbitrary descriptions of the metrical structure 

of a piece, but has no knowledge of "the best structural analysis". To give a second 

example: the proposed knowledge representation does support ways to modify timing 

(a)synchrony between voices, but it has no knowledge about correct or effective ways of 

using this in musical performance.

The calculus also does not model cognition. It does not state how, for example, voice-

leading helps auditory streaming, how phrase final lengthening beyond a limited range 

disables rhythm perception, or how structure is communicated by the expressive timing 

profiles. However, this work constitutes a solid basis for formalised theories about these 

issues, providing a powerful representation in which they can be expressed.

Representation

Several concepts are used in the calculus:

Musical objects are either of a basic nature or form a structural description of a collection 

of musical objects. Basic musical objects consist of notes and rests. Notes are the only 

musical objects that carry the expressive information. Structural descriptions form 

collections of musical objects. They may describe hierarchical time intervals like 

metrical-, phrase- or rhythmical grouping, they can group the notes of chords and 

ornaments together, or form large horizontal slices through the piece, describing the 

separate voices etc. Mere collections (sets) of objects are too meager a basis for most 

transformations, therefore, structural descriptions specify the intended relations in time 

between these objects as well (Honing, 1991). Most transformations can be defined if two 

orthogonal characteristics of the structural description are given: the temporal nature 

and the ornamenting quality. The first describes whether a sequence or a parallelism (a 

so called successive or simultaneous construct) is represented. The second describes 

whether the musical object is considered an ornament attached to another object or not. 

Ornaments are shielded from certain modifications and refer to another object for certain 

attributes. These two binary characteristics result in four concrete types of structural 

description that will be described in detail later.
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Expressive magnitudes are values of expressive measurement on a certain scale. The 

scales themselves are of course crucial in modeling effective transformations, in cognitive 

and musical senses. For example, a tempo scale on which a transformation to make 

something twice as fast actually yields a double perceived tempo is quite useful. But for 

the sake of simplicity we abstract from the perceptual processes and the instruments that 

generate the sound, and will just assume simple physical measurements of time and other 

expressive attributes.

Expression maps describe the expressive patterns of structured musical objects at a certain 

structural level. They consist of a section for each musical object at that level. A section 

lists the expressive values for all components of that object. They come in different brands 

- consistent with the type of musical structure where they were extracted from. 

Expression maps can be extracted from and applied to musical objects, with possibly a 

modification of the map in between.

Expression types are sets of procedures to extract a particular type of expression map from 

a musical object, to impose it on a musical object, and to modify the map. They capture the 

difference between expressive tempo, asynchrony, and articulation. They may become 

fairly sophisticated, like a brand of expressive tempo that knows how to keep the 

articulation of an individual note invariant when the timing of the note onsets is 

changed.

Modifications are defined as operations on expression maps. They may scale, interpolate, 

or do any other operation on the map. They are often designed such that certain 

characteristics are kept invariant, e.g. the total duration of a section while changing the 

timing of the parts.

Transformations are defined as operations on musical objects. They are often direct 

generalizations of the expression map modifications - first extracting the map, applying 

the modification and imposing the modified map. They also handle the selection of the 

level of structural description on which to apply the transformation. Furthermore, they 

may have means to maintain consistency among the affected level and other musical 

material, e.g. making an accompaniment obediently follow the transformation in 

expressive tempo applied to the melody.

Implementation

Part of the work described in this paper was done in the design of the POCO system 

(Honing, 1990) for which a scaling operation of expressive timing linked to structural 

descriptions was implemented. But, in evaluating this rather complex piece of software, 

better abstractions arose. Especially the design of a set of data structures for music that
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capture the differences in behaviour under transformation proved beneficial. Which 

again illustrated the adage:

"Get your data structures correct first, and the rest of the program will write

itself." (David Jones, quoted in Bentley, 1988)

Because the constructs interact heavily, and because it should be easy to add unforeseen 

new constructs (like a new type of expression), musical objects, expression maps and 

expression types arc implemented as classes in an object-oriented language. In that way it 

is easy to express modifications and transformations as polymorphic operations that will 

behave according to the type (the class) of their arguments. The slicing-up of knowledge 

in classes means answering questions like: which part of the extraction procedure of an 

expressive tempo map of a sequential musical object is specific for expressive tempo only 

and should be stated within the expression type; which part only depends on the 

sequential nature of the musical structure, and should be part of the class for sequential 

musical objects; and which part describes the creation of an expression map and belongs to 

that class?

Although a good Object-Oriented Language (we used CLOS, a Lisp-based system) 

provides one with the programming-constructs needed to express these concepts, the 

actual process of factoring knowledge into these polymorphic procedures is still a 

difficult one, especially because during the design of the best structure of the classes - 

allowing for the most elegant factoring of the procedures - cannot be completely foreseen. 

This forced us to go through several re-design rounds before the concepts stabilized in 

their present form.

The following CLOS (Keene, 1989; Steele, 1990) constructs were used heavily in the 

implementation: multiple inheritance (forming class dependencies that are more complex 

than simple hierarchies), multi-methods (functions that are polymorphic in more 

arguments), mix-in type of inheritance (grouping of partial behaviour in an abstract class 

that must be mixed in with other classes to supply that behaviour to their instances), 

method combination (providing ways of combining partial descriptions of behaviour of 

one method for more classes). Together they make it possible to extend the system by 

adding program code only, instead of rewriting it.

The calculus will be incorporated in POCO. The other tools available in POCO, like 

score-performance matchers, multiple structural descriptions, storage and retrieval from 

standard MIDl-files, playback and editors for music text formats etc., will support a 

comfortable use of the calculus with real performance data. An implementation in the 

form of the microworld is given in the appendix and aimes at conciseness and elegance. 

Luckily, this goal only occasionally conflicts with computational efficiency.

The following five paragraphs will describe the calculus in more detail. The reader 

interested in the more general aspects of the calculus is advised to continue reading below 
Transformations.
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MUSICAL OBJECTS

Musical objects come in different brands. Some types are specific enough to describe an 

object completely (the instantiatable or concrete classes). Other types are used as a 

descriptive grouping of likewise behaviour (the abstract classes). The types of musical 

objects and their interrelations are shown in figure 1.

►  IS-A

Figure 1. Classes of musical objects and their interrelations.

Basic musical objects

Basic musical objects are notes and rests (In the program we use the word PAUSE to avoid 

the name clash with the Common Lisp primitive REST). In examples we will use notes 

with clearly observable onset and offset times (called PERF-ONSET and PERF-OFFSET) 

measured in ms. from the beginning of the performance. Both notes and rests have as a 

property a time position in the score (called SCORE-ONSET and SCORE-OFFSET) 

measured in any kind of (beat)-count (a rational number). These score times are calculated 

automatically from the supplied score durations of notes and rests via the structural 

descriptions. This facilitates easy creation of large scores.

Rests are essential and cannot just be ignored, as is done in some low-level representations 

(e.g. the Midi-file standard). They are central e.g. in dealing with articulation - a short
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note followed by a rest behaves differently under transformation than a longer note 

played in a staccato way.

Structured musical objects

Multilateral structures

In research on music perception and cognition a distinction is often made between 

successive temporal processes that deal with events occurring one after another, and 

simultaneous temporal processes that handle events occurring around the same time (e.g. 

Bregman, 1990; Scrafine, 1988). For the first type of events of the expressive means can be 

rubato - the change of tempo over the sequence. In the second one the expressive means can 

be chord-spread and asynchrony between voices, both more timbral aspects. These 

processes work differently in perception. Since we want to imply differences in behaviour 

mainly by differences in structural description a way should be found in which both these 

constructs can be represented.

We propose to use for this purpose the simple time structures S and P that functioned well 

in (Desain & Honing, 1988; Desain, 1990; Desain & Honing, in press, b). If a collection of 

musical objects is formed such that they occur one after another they are described as a 

successive structured object named S (for Sequential). If a collection of musical objects occur 

at the same time they can be collected in a simultaneous structured object called P (for 

Parallel). These structures serve as a general way to represent a collection together with 

the temporal relation between the components, as stated in the score. We call the objects 

multilateral because their components are considered to be of equal importance, and are to 

be treated as such in expressive transformations.

The score times of a structured object and its parts are constrained by consistency rules. 

They are described separately in frames 1 and 2. These constraints are enforced by 

specifying only notes and rests with a score duration. The constraints propagate these 

automatically when a structural description is created and set all score onset and offset 

times.

In calculating expression, the previous and subsequent context of musical objects is 

sometimes needed. For instance, consider articulation: possibly defined as the overlap 

between the sounding parts of a note and the next one, i.e. the time difference between the 

offset of the note itself and the onset of the "next" note. Besides "next material" a link to 

"previous material" is foreseen to be needed as well, e.g. in the calculation of local accent 

patterns. To formalize and generalize this notion of "previous" and "next" material a 

definition of the left and right context of a musical object is given. This notion also 

reflects the fact that some expressive values cannot be calculated because some contexts 

are not available or carry no expression e.g. the tempo of the last note in a piece, or the 

performance onset of a voice that starts with a rest. Expressive transformations must thus 

expect to come across missing values in an expression map. The notion of context is
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explicitly represented in the program as attributes of the objects themselves. This is 

possible because the structural description is invariant and so are the contexts. Another 

possibility would be to represent them implicitly, recovering them by search via a bi-

directional part-of link between musical objects. Alternatively, they could be represented 

tacitly, i.e. supplying them by a general control structure that walks through structured 

musical objects.

Collateral structures (ornamented objects)

Some musical objects contain components that should maintain a dependency relation to 

one another. If such a collateral pair is transformed, the transformation should be carried 

out on the main component only, the submissive one obediently following the main 

component's transformation, but not being transformed itself. An ornamented musical 

object like a graced note (a note preceded by a grace note), is a good example of a 

collateral object. For example, in the scaling of the expressive tempo of a melody which 

contains a graced note, the data on which the expressive transformation is carried out (in 

this case the performance onset) stems from the main object. The grace note is ignored. 

When in the actual transformation the graced note pair is stretched or compressed and 

moved to an other point in time, only the main note will undergo that operation. The 

ornament will just follow its shift in time.

A second use of this concept is made when the relation of an ornament to its main object, 

within such a collateral couple, is considered to be expressive, and a potential source of 

expressive transformations. In this case, the main object stays invariant, and only the 

ornament undergoes transformation. Take for example the asynchrony between the 

performance onset of a grace note and the note it is attached to. This time interval can be 

modified by appropriate means, resulting in local changes of the timing of the grace note 

- but keeping the timing of the main note invariant.

Collateral (ornamented) objects can again have two kinds of temporal nature: successive 

or simultaneous. The first one is called APPOG (for appoggiatura). It describes a "time-

taking" ornament where the ornament is considered to finish when its main object starts 

(all in terms of score times). The second is called ACCIA (for acciaccatura). It can 

represent a so called "time-less" ornament that is supposed to start at the same time as 

the object it is attached to. Note that both parts of a collateral pair are musical objects 

themselves and can have internal structure. The concepts of APPOG and ACCIA 

ornamented objects are an elaboration of the PRE and POST objects that were introduced 

in (Desain & Honing, 1988). Consistency rules for score times and context are described in 

frames 3 and 4.
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APPOG, a collateral successive structure

Son Soff

Figure of A PPOG object

Consider a APPOG structure of a ornament component CQ and a main component Cm. 

Assume that component CG has score onset time SonQ/ score offset time SoffQ, that 

component Cni has score onset time Sonm and score offset time Soffm and that the whole 

structure has score onset time Son and score offset time Soff. Then the following must 

hold:

Sonm = Son 

Soffm = Soff 

SoffQ = Sonm

Assume that component CD has performance onset time PonQ/ component Cm has 

performance onset time Ponm and that the whole structure has performance onset time 

Pon. Then the following holds:

Pon = Ponm 

Pon0 < Ponm

Assume that component C0 has left context L0 and right context R0, component Cm has 

left context Lm and right context Rm and that the whole structure has left context L and 

right context R. Then the following holds:

R = Rjp

Ro = ^-m 
L0= undefined

F ra m e  3. D escrip tion  o f  an  A P P O G  s tru c tu re .
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EXAMPLE OF THE REPRESENTATION OF A MUSICAL OBJECT

In figure 2 a fragment of a score is shown that will serve as a basis for the examples at the 

end of this article. It is the score of the last bars of the theme of six variations over the 

duet Nel cor piu non mi sento, by Ludwig van Beethoven (with some adaptations), which 

is the same material used to study tempo curves in (Desain & Honing, in press, a). It 

contains examples of several kinds of musical structure: chords, voices, sequences, bars and 

beats, phrases and two types of ornaments. Figure 3 shows a graphical notation 

indicating two structural descriptions: a metrical hierarchy and a separation into voices. 

The way these structures are specified in Lisp is given in the appendix.

Ludwig van Beethoven.

S bars

P bar P bar P bar P bar

S lop voice S lop voice S lop voice

P A U S E  N O T E A P P O G

N O T E

N O T E
ACCIA

I N O T E  I N O T E  N O T E N O T E

L_ J
]n o t e

Jn o t e  I

S bolionv voice P chord P chord

P A U S E N O T E  N O T E N O T E N O T E N O T E

N O T E N O T E

N O T E N O T E

P A U S E N O T E
A P P O C

N O T E
ACCIA

N O T E N O T E

I N O T E I N O  TE I

|n o t e
|n O T £  I

> accompaniment

P chord P chord

N O T E N O T E

N O T E N O T E

N O T E N O T E

Figure 3. a) Structural description of the metrical hierarchy of the score in figure 2, and b) Structural

description of the voices in that piece.
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REPRESENTING EXPRESSION

There are three kinds of expressive timing: expressive tempo, expressive asynchrony and 

expressive articulation. The first two are based on performance onset times only, the 

third is based on performance onset and offset times (see figure 4).

expression

expressive
timing

mixin class 

abstract class

c instantiable class

V  IS-A 
mixin

Figure 4. Expression type hierarchy.

One could imagine sophisticated algorithms that calculate the onset of a note and of 

parallel structures on the basis of their perceptual onset (P-center; see Vos & Rasch, 

1981). But for clarity vve use a very simple definition of onset times, which was already 

given in the frames 1 to 4. In that way, all musical objects have performance onset times 

and so can be used as units on which tempo and asynchrony measures are built.

Expressive tempo

The notion of tempo is relevant only for successive structures. It is defined as the ratio of 

score duration and performance duration. This velocity-like notion the inverse of the 

notion of a tempo factor, as is used in the psychology of music literature.

Expressive asynchrony

The notion of asynchrony is relevant only for simultaneous structures. It is defined as the 

difference of performance onsets. It is thus independent of score times.
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E xp ressive  articu lation

Expressive articulation uses the performance offsets of individual notes. It simply 

assumes that they are given. A definition of performance offset of structured musical 

objects is not needed. Articulation is also independent of score times.

Articulation can be defined in several ways - but it is hard to find a way that will suffice 

in all circumstances. In the legato range the absolute overlap time of the sounding part of 

a note and the next one seems a good candidate for an articulation scale. In the staccato 

range the absolute sounding duration of the note seems the most prominent perceived 

aspect. In the intermediate range the relative sounding proportion is a good measure. For 

the moment we cannot do better than to supply these three concepts of articulation 

expression (overlap-, duration- and proportion-articulation) - leaving it for the user to 

choose the most appropriate one (see frame 5). For a multilateral structure the expressive 

articulation value is taken to be the average articulation of its parts. For a collateral 

structure the expressive articulation value is defined to be the articulation of its main 

part.

Definition of articulation

Consider a note with performance onset Pon, performance onset Poff and performance 
onset of its right context Ponr. There are three alternative definitions of articulation A

given:

overlap articulation A = Poff - Ponr

duration articulation A = Poff - Pon
, Poff - Ponproportion articulation A = ___________

Ponr - Pon

If a multilateral structure with articulation A has components Q  for 0 < i < n-1, and Q 

has articulation A; then:

A = MEANn ,  ^ -, A;
0 < l < n-1 1

If a collateral structure has articulation A, and its main component Cm has articulation 
Am then:

F ra m e  5. D e fin it io n  o f  a r t ic u la t io n  ex p r e s s io n .
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Estimate onsets

Because sometimes the performance onset of missing objects (like the virtual note after 

the end of the piece) or the performance onset of a rest are needed, we devised a set of 

procedures that estimates these missing values on the basis of performance onsets that 

can be found in the context, using a linear interpolation or extrapolation method. The set 

of procedures forms a mix-in class that can be combined with any expressive timing type 

enabling that kind of expressive timing to deal - in all operations - with missing values. 

Estimation is derived from the same structural level as the transformation itself. For 

example, a transformation on a beat structure in need of a missing expressive value at the 

end of the piece (cf. the onset the final barline in a score) will be estimated on basis of the 

two previous beats -not on the basis of any internal detail. In the case of extreme tempo 

variations, as occur in a final retard, the estimation feature cannot work well. In this case 

it is better not to use it.

Articulation invariance

When moving the onsets of notes around (e.g. in modifying the performance onsets) it is 

quite annoying that the articulation of the individual notes also changes - an effect that 

is very easy to perceive and which may well overshadow subtle modifications of onset 

timing. Therefore a set of procedures can be mixed-in with expressive tempo and 

asynchrony. They are given a chance to calculate the articulation of individual notes 

before onsets are changed and to reinstall it afterwards. This will insure that 

articulation is kept invariant under transformations of onset timing (see figure 12).

EXPRESSION MAPS

An abstraction of the expression of an object is useful for many operations because it can 

hide the irrelevant details of the structure and provides a means to transfer expression 

from one object to another. Therefore expression maps were introduced. They describe 

expression of musical objects at one level of a structural description. All objects at the 

level described must have the same structural type. Maps contain a list of sections, one for 

each of those musical objects. A section lists the expressive values of the components of 

that musical object. Of course maps may be partial - consisting of several sections with 

gaps in between, or even have missing values within a section.

Onset timing

The application of a (modified) map of performance onsets on an object works as follows. 

First, all objects at the indicated level are found, paired with their corresponding 

sections. Then each section is applied to its object. This means that the components of 

that object are provided one by one with a new onset from that section.
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This setting of onsets is handled differently according on the structural type of the 

component. If this component is a note, the onset is set directly. For S components the 

whole structure is stretched between that onset and and the next onset (the onset of the 

succeeding component). A P component is set to the provided onset, but keeps its internal 

asynchrony invariant and truncates at the next onset. In the case of a ACCIA component, 

the main structure is set to the onset, with the ornament following the displacement of 

the main structure. Finally, for a APPOG component, the main structure is stretched 

between that onset and the next onset, with the ornament also simply following the 

displacement of the main object.

Now we have indicated how an expressive timing is applied to components of structured 

objects - it remains to be shown how such a change propagates when these components 

again are embedded structured objects themselves. This fairly complex process depends on 

the type of the embedded structured object and mirrors the decisions given above: S 

components are stretched, P components are shifted and truncated, and ornaments follow 

the shift of their main components.
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Figure 5. Propagation of change of onset within an S structure for different component types. This figure 
shows the propagation process for an S structure containing different types of structural components. We 
assume the components are moved around by an arbitrary transformation, parametrized by a factor. In 
this figure it is shown how this change is propagated to the internal structure of different kinds of 
components. The first component is an S structure and the onsets of its internal parts (lines marked with 
white circles) are stretched along proportionally. The second sub-structure is an APPOG structure and one 
can see that the onset of its ornament (line marked with upward pointing white triangles) shifts along 
with the main object. The third sub-structure is an ACCIA structure and the onset of its ornament behaves 
likewise. Note that the onset of the ornament is allowed to shift freely (line marked with downward 
pointing white triangles), even the order of notes is allowed to change here . The fourth sub-structure is a 
P structure and the onset of its components (lines marked with squares) are shifted and truncated at the 
end (the right context note; line marked with x's).

Articulation expression

In comparison, to set the articulation expression to a structured object is much simpler. 

When a section of an articulation map is applied to a multilateral or collateral structure 

the articulation of its components are set to their respective values from the section.

The propagation of a (modified) articulation value to a component works as follows. If 

that component is a note, a new offset is calculated from the articulation value and set 

directly, taking care to maintain reasonable offset times (e.g. not shifting before its 

onset). If that component is a multilateral structure, its articulation is calculated (the
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mean articulation of its components) and the difference with the required articulation is 

propagated as an increment to all components. If it is a collateral structure, its 

articulation is calculated (the articulation of its main component) and the difference 

with the required articulation is propagated as an increment to both main and ornament 

components.

OPERATIONS ON EXPRESSION MAPS

Operations on expression maps work section by section. In each section the expression of a 

structured musical object is represented. The operations delivers a new section to be 

applied to that object. Care was taken to maintain structural consistency in all 

operations even in case of extreme parameter values. Of course expression transformations 

are intended as subtle changes and truncation or extreme normalization should in practice 

never occur.

Scale maps

Scaling expressive tempo

Scaling tempo is done in an exponential way. Inverse tempi are considered to be related 

by a scale factor -1; twice as slow is considered to be the mirror image of half as slow. 

This exponential scaling of expressive tempo mirrors the exponential nature of notated 

note durations.
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The scaling of the expressive tempo of a m ultilateral successive structure w orks as 

follows. Assum e the structure has n com ponents named Cj with 0 < i < n-1 . Assume

com ponent Cj has score onset time Son, and perform ance onset time Ponj. Assum e the 

right context of the structure (and thus the right context of component Cn_] ) is object Cn . 

It has score onset Sonn and perform ance onset time Ponn . A section of the expressive 

tempo map of the structure contains all Sonj and Ponj including Sonn and Ponn . The scale 

operation on such a section delivers a new section with perform ance onsets Ponj'

according to the following rules:

Define the score inter-onset interval ASonj and the perform ance inter-onset interval 

APonj and the local tempo Tj for 0 < i < n-1 (a better term would be velocity) as:

ASonj =  Son j+ j - Son;

APonj = Ponj+ j - Pom 

ASonj 

~ APonj

This ratio is scaled bv an exponential factor f.

T-' = T-f M M

Then new raw performance durations APonj" are calculated:

ASonj
APonj" = .

1 i

These are re-norm a’.ised such that the total performance duration is kept invariant.

Por.n-PonQ
APon;' = APom" * — :------------1 1 n - .

y  APonj"

i= J

Starting at the same point, the new performance times are given as: 

l-l
Ponj' = Pong + y^APor.j'

_______________ j=0 _________________________________________________________

f 'j f f l c  6. Scaling the expressive tempo an S section.

Scaling the expressive tempo of an S section
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Figure 6. Scaling the expressive tempo of an S section. This process is shown for a specific set of 
performance onsets Ponj .In this figure the horizontal axis is the performance time P. On the vertical axis
the scale factor f is given. Thus at the horizontal line at scale factor 1 the performance times Ponj' are 
shown as markers on the line; they are identical to the original performance times Pon:. This operation
(with scale factor 1) is the identity transformation with respect to the performance timing. At the 
horizontal line at scale factor 0 the performance times Ponj' are identical to the score times Son; (modulo 
normalization to the total performance duration). This operation (with scale factor 0) effectively 
removes the expressive timing of the performance. At factor .5 a diminished expressive timing profile 
will result, and at factor 2 an exaggerated rubato can be obtained. At negative values of the scale factor 
the expressive profile is inverted: a slower tempo becomes faster and vice versa. At extreme values of the 
scale factor the note that is played at the slowest tempo in the performance will gain almost the whole 
performance time interval spanned by the structure, pushing other notes to zero duration.
When the performance onset Ponn is not available, the scale transformation uses Ponn_| instead, and 
scales the tempo of the section with regard to the onset of the last component in the section - instead of 
the onset of the right context. This tempo scaling method works well for S constructs with many 
components and small tempo deviations.
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The scaling of the expressive tempo of a collateral successive structure works as follows. 
Assume this structure has a main component with score onset time Sonm and performance 

onset time Ponm and a preceding ornament component with score onset time SonQ, and 

perform ance onset time Pon0 . Assume the right context of the structure (and thus the 

right context of component Cm ) is object Cr . It has score onset Sonr and performance onset 

time Ponr. An APPOG time map section contains this score and performance data. The

scale operation on such a map delivers a new map with performance onsets according to 

the following rules:

Define the main and ornament score inter-onset interval ASonm, ASon0 and the main and 

ornament performance inter-onset interval APonnv APonQ as:

ASonm = Sonr - Sonm 

ASon0  = Sonm - SonG 

APonm =  Ponr - Ponm 

APon0 = Ponm - Ponn

The ornam ent tempo T0 and the main tempo Tm are calculated as:

ASonC)

APon0 

ASonm 
^m  “ APonm

T 0 / m ' s tempo of the ornam ent relative to the main tempo. This factor is scaled by an 

exponential parameter f, and a new ornament tempo T0 ‘ is calculated:

T °t o /m  ~ t  1 m

T0 = Tm * T0/ ir/

This gives a new performance duration AP0 ', which yields the new perform ance times 

Ponm ' and PonQ':

ASon0
APon0 ' = ~  .

*o

P°nm = P°nm 
PonQ' =  Ponm - APon0 '

Frame 7. Scaling the expressive tempo of an APPOG section.

Scaling the expressive tempo of an APPOG section
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Figure 7. Scaling expressive timing of an APPOG section. This process is shown for a specific set of 
performance onsets. Note that only the performance timing of the ornament is affected. At scale factor 1 
the timing of the ornament is identical to the original timing. At scale factor 0 the ornament is performed 
at the same tempo as the main object (in this particular example the score duration of the ornament is 
half that of the main component). This operation (with scale factor 0) effectively removes the 
expressive way in which the ornament is performed, relative to the main component. At factor .5 a 
diminished expressive timing effect will result, and at factor 2 an exaggerated effect will be obtained. At 
negative values of the scale factor the expressive timing is inverted: a performance of the ornament at a 
lower tempo than the main component becomes one at a faster tempo and vice versa.

Scaling expressive asynchrony

Asynchrony occurs when two or more simultaneous musical objects - prescribed to happen 

at the same score time - have unequal performance onsets. The differences can be scaled 

linearly but care has to be taken not to disrupt the timing of higher levels.
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The scaling of the expressive asynchrony of a multilateral simultaneous structure works 

as follows. Assume the structure has n components named Cj with 0 < i <  n-1. Component

Cj has perform ance onset time Pon;. Assume the right context of the structure (and thus 

the right context of all components) has performance onset Ponn . A parallel time map of 

the structure contains all Pon; including Ponn . The scale operation on such a map delivers 

a new Ponj' according to the following rules:

Let the global performance onset Pon and the performance onset asynchronies APonj be 

defined as:

Pon = MINfl <  j <  n _i Ponj 

APonj = Ponj - Pon for 0 < i < n-1

The asynchronies are scaled by an multiplication factor f:

A P onj' = APon; * f

New perform ance onsets Ponj' are calculated, shifting such that the global performance 

onset is kept invariant (min (Ponj') = min (Ponj) = Pon). The result is truncated such that 

the onsets never move beyond Ponn . Of these two safeguards the first applying in case f

is negative, the second applying in case f is large com pared to the ratio  of the 

asynchronies and perform ance duration of the whole structure. Together they ensure 

consistency with higher-level structural descriptions by keeping the components within 

the bounds of the structure.

Ponj' = MIN (Ponn, Pon + APonj' + MIN (APonj'))

Frame S. Scaling the expressive asynchrony of a P section

Scaling the expressive asynchrony of a P section
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Figure 8. Scaling expressive timing of a P section. This figure shows this process for a specific set of 
performance times P; (say a chord performed with some spread). At scale factor 1 the performance onsets 
Pon;' are identical to their original Pony At scale factor 0 all Ponj' occur synchronously at the minimum of
their originals (i.e. removed chord spread). At factor .5 a diminished chord spread will result, and at 
factor 2 an exaggerated chord spread can be obtained. At negative values of this factor the spread is 
inverted: first notes becoming last and vice versa. At extreme values of the scale factor the notes are 
restrained from moving out of the chord structure into the next musical object by truncation. Note that the 
whole operation is independent of score times.
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The scaling of the expressive asynchrony of a collateral simultaneous structure works as 

follows. Assume the structure has a main component with performance onset time Ponm 

and an ornam ent com ponent with perform ance onset time PonQ. A time-map of the 

structure contains PonQ and Ponnv The scale operation on such a map delivers new

performance onsets according to the following rules:

Let the performance onset asynchrony APon be defined as:

APon = PonQ - Ponm

The asynchrony is scaled by a multiplication factor f, and a new performance onset Pon0 ' 

is calculated:

APon' = APon * f 

Pon0 ' = Ponm + APon'

Ponm' = Ponm

Frame 9. Scaling the expressive asynchrony of an ACCIA section.

Scaling the expressive asynchrony of an ACCIA section
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Figure 9. Scaling expressive timing of a ACCIA section. It shows this process for a specific set of 
performance times (a note preceded by an acciaccatura). At scale factor 1 all performance onsets are 
identical to their original. At scale factor 0 the ornament occurs synchronously with the main note 
(removed asynchrony). At negative values of this factor the order of onset of ornament and main note is 
inverted. Note that the ornament is allowed to shift freely - even outside the bounds of the whole 
ACCIA structure.

Scaling expressive articulation

The articulation of a note is interpreted (scaled) relative to the articulation of the 

structu re that it form s part of. For m u ltilateral stru ctu res this is the average 

articulation. If thus the first note in a bar is played with m ore overlap than the other 

notes, a rem oval of the overlap articulation expression (a zero scale factor) will set the 

overlap of all notes to the mean overlap of the notes in the structure. And exaggerating 

the articulation expression (a scale factor larger than 1) will m ove the individual 

overlaps away from the mean - but maintaining the average overlap of all the notes in 

the bar. Of course all articulation types maintain reasonable perform ance offsets in the 

case of extrem e values (i.e. note offsets will not shift before their onsets).
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Assume a multilateral structure has n components C; with 0 < i < n-1. Component Q  has 

articulation Aj (see frame 5 for the calculation of Aj). A section of the expression map of 

the structure contains all Aj. The articulation A of the structure itself is defined as:

A = MEANq  <  j < n-i Aj

Let the expression deviations be 

AAj = Aj- A for 0 < i < n-1

The deviations are simply scaled by a multiplication factor f 

AAj' = f * AAj

The scale transformation delivers new articulations Aj' by adding the new deviations to

the reference articulation A such that the articulation of the whole structure is kept 

invariant (mean Aj'  = A).

Aj — A + AAj

Keeping the expressive values in a reasonable range can only be done while applying 

them to the individual notes.

Frame 10. Scaling the expressive articulation of a multilateral section

Scaling the expressive articulation of a multilateral section
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Figure 10. Scaling of an S section with three different kinds of articulation. It shows the scaling of three 
types of articulation for a multilateral structure, in this instance an S structure with a specific set of 
performance onset and offset times. Here, at scale factor 1 articulations A;' are identical to the original 
performance. At scale factor 0 all Aj' are scaled to the mean articulation A. At a scale factor above 1 the 
deviation of each with respect to A is exaggerated, with negative values constituting an inverse 
deviation: legato notes become more staccato and vice versa. Note that the mean articulation A is always 
kept invariant.
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Assum e that a collateral structure has ornam ent and main com ponents CQ and Cm . 

Com ponent Cc  has articulation A Q and component Cm has articulation Am (see fram e 5 

for the calculation of A 0 and Am ). A section of the expression map of the structure 

contains these values. The articulation A of the structure itself is defined as:

A = Am

Let the expression deviation be 

AA = A0 - A

The deviation is scaled by a multiplication factor f 

AA' = f * AA

The scale transform ation delivers a new articulation for the ornam ent by adding the 

new deviation to the reference articulation A.

A q  = A +  AA 

= Am

Keeping the expressive values in a reasonable range can only be done while applying 

them to the individual notes.

Scaling the expressive articulation of a collateral section

Frame 11. Scaling the expressive articulation of a collateral section.
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Figure 11. Scaling of an APPOG section with three different kinds of articulation. It show's three types of 
articulation scaling for an ornament (here an APPOG structure). At scale factor 1 the articulation AQ' is 
identical to the original articulation of the ornament. At scale factor 0 AQ is identical to the articulation 
of the main component Am At a scale factor above 1 the deviation of AQ with respect to the main 
component Am is exaggerated, negative values constituting an inverse articulation: legato ornament 
articulation become more staccato and vice versa.

Keeping articulation consistent in the scaling of expressive timing

In the scaling of timing of onsets we ignored the influence it should have on its offsets. To 

obtain some sort of articulation consistency we can use the three types of articulation (as 

described above) when scaling expressive tempo and expressive asynchrony. In figure 12, 

we use expressive tempo scaling for an S section as an exam ple in illustrating the 

different types of articulation consistency.
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Figure 12. Scaling of an S section that keeps a particular type of articulation consistent. Shown for

the same, set of performance onsets as used in figure 6.
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S tretch  m aps

Som etim es it is useful to be able to keep a consistency in perform ance timing between 

voices when modifying one of them. Naming the modified material as the foreground and 

describing the rest as the background, the consistency  requires that a series of 

perform ance onsets, at a selected background level, that happen betw een two 

perform ance onsets in the foreground are "stretched along" with the changes in the 

foreground. This feature is im plem ented by first extracting a timing map from  the 

background, and "stretching" this map between the old and modified foreground map 

before it is reapplied to the background. The fore- and background must be parallel (must 

happen during the same score time interval) and have to be S structures. M aintaining the 

consistency between other kinds of structure remains a problem.

In terp olate m aps

A more sophisticated notion of expression entails the difference in expression between 

two structured objects. The best known exam ple is voice leading in ensem ble playing 

(Rasch, 1979) whereby the leading instrum ent often takes a small but consistent timing 

lead (around 10 ms). Inter- or extrapolation between two extracted timing maps yields 

the possibility to scale this kind of expression.

T ran sfer m aps

Sometim es it is useful to apply an expression map extracted from one object, to another 

object, possibly with a different structure, e.g. boldly applying the expressive timing of 

the m elody to the accompaniment. This is supported via an operation on timing maps 

that uses the structure of one map but imposes expressive values of the other.

TRANSFORMATIONS

Transform ations of musical structures are generalizations of the operations on expression 

maps. They handle the selection of a level of structural description, extract a map, do the 

operation and re-im pose the map. However, they often becom e quite sophisticated 

because they also take care of maintaining consistency with a background (material that 

is not affected directly). The application of the modified map has its own com plexity, 

w hereby changes are propagated to low er levels depending on the types of musical 

structure encountered. Finally, in the setting of new performance onsets of the notes, also 

the offsets may change in order to keep the articulation invariant. Out of the wealth of 

possibilities we choose some examples to be illustrated further by means of figures. In the 

figures the perform ance onsets a n d /o r  offsets o f the individual notes at d ifferent 

parameter settings are given. The structure of the musical objects transformed are shown 

underneath.
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In the following examples the same performance of a Beethoven theme is used (the 

fragment as shown in figure 2), allowing for comparison of the different transformations 

and to see the effect of applying the same transformation to different levels or types of 

structure. Note that for all the transformations the indentity transformation is shown at 

scale factor 1.
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Scale timing

S bars

P bar P bar P bar P bar

I S lop-voice S lop-voice S lop-voice

J P A U S E  | ̂ N O T E A P P O G  

£  N O T E
Ó n o t e

ACCIA

1 * h o t e |
O n o t e  Q u o t e £  N O T E

(f N O Tè [fworej

S boiiom voice P chord P chord

P A U S E
...

p H O T j  □.NOTE; □  NOTE;- □  n o t e □  n o t e

Q n o t e □  n o t e

□  n o t e □  n o t e

Figure 13. Scaling the expressive tempo of bars in the Beethoven fragment. Underneath the figure a 
structural description of the fragment is shown in bars. Imagine what would happen if we asked a 
performer to emphasize his/her timing of the bars? One possibility would be to play the onsets of the 
bars, that were played slightly early, even earlier, and ones that were played late, later still. This 
particular transformation can be read from figure 12 as the lines with the black markers, indicating the 
component in the bar that carries the expressive timing. Both the performance onset of the first and the 
last bar of the enclosing bars' structure are not changed; the transformation is done at the level named 
"bars", with its timing kept invariant. The lines with white markers show the embedded material that 
follows the change of the performance onset of each bar. Note that the timing of the ornamented notes 
does not change (they keep the same distance with respect to the note they cling to), as does the spread of 
the chords.
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Figure 14. Scaling the expressive asynchrony of each bar in the Beethoven fragment. It shows the 
expressive transformation we might expect to happen when a performer is asked to exaggerate the 
asynchrony between the top-voice and bottom-voice at the onset of each bar. The figure shows the scaling 
of the asynchrony of the bottom voice onsets (the black squares), without changing the timing of the bars 
(lines marked with black circles and triangles). The embedded notes of the bottom voice (lines with 
white squares) just shift along with the expressive timing of their embedding structure. Here again, the 
ornament timing and the chord spread stay invariant.
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Figure 15. Scaling the expressive asynchrony of each chord in the Beethoven fragment. It shows another 
expressive transformation that exaggerates the chord spread, turning them almost into arpeggio's at 
high scale factors. At scale factor 0 the chord spread is completely removed. The timing of the rest of the 
fragment stays unaltered.
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Figure 16. Scaling the expressive tempo of the melody in the Beethoven fragment, a) without and b) with 
"stretching" the accompaniment. It shows that the timing of each note of the melody becomes 
exaggerated with a higher scale factor. Here the accompaniment (lines marked with white squares) is 
not affected at all. Figure 16b, on the other hand, shows a musically more reasonable transformation: the 
accompaniment follows the movements of the transformed melody, e.g. slowing down when the tempo of 
the melody slows down. Here the accompaniment is kept consistent with respect to the original 
performance (compare with the onsets at scale factor 1). Note that note order can change between melody 
and accompaniment, because of the structural description in two parallel voices.
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Keeping articulation consistent

In the above examples we showed the scaling of onset times and neglected what 

happened to the offset times. But, as we showed before, this cannot just be ignored in 

musically relevant transformations. We can select one of the described types of 

articulation to keep consistent, but we do not show this here (see figure 12 for a simple 

example).

Scale intervoice expression

When the expression between voices is scaled, two parameters are used. The first one 

selects a reference level of expression (0 designates the expression of the first, 1 

designates the expression of the second, 0.5 is the mean of the two etc.). The second 

parameter determines in how far the voices are removed from that reference level (0 

means completely on reference level, 1 means as in original performance, 2 means 

exaggerated with respect to the reference etc.).
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Figure 17. Scaling the intcrvoice timing between the melody and the accompaniment in the Beethoven 
fragment, a) with the melody as reference, and b) with the mean of the melody and the accompaniment 
as reference. In figure 17a intcrvoice timing (one type of intervoice scaling) is scaled with the melody 
voice as the reference. It shows the scaling of the asynchrony between the accompaniment and the 
melody, as found in the performance (see the horizontal line where the scale factor is 1). Notes that are 
not synchronous (i.e. don't have the same score time) interpolate their change with respect to their 
surrounding performance onsets that are considered parallel (have the same score time). Note that the 
timing of the melody does not change because it is used as reference.
In figure 17b the mean of the melody and accompaniment timing is used as reference, resulting in 
displacements (with respect to this invisible reference) of both voices.
In both figures, the first event in the melody voice is unaffected since there is no measurable timing in the 
accompaniment (only a rest).
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CONCLUSION

In this paper we have presented a proposal for a calculus that enables expressive timing 

to be transformed on the basis of structural aspects. The program implementing the 

calculus, will hopefully prove to be a solid basis for formalised theories of music 

cognition. A micro version of this program is included in the appendix, open to further 

inquiry and immediate test. The proposed representation constructs allow for easy 

maintenance and extension. An object-oriented programming style proved a good choice 

for this kind of modelling. The algorithmic parts became reasonably simple, but the 

program can still be considered as quite complex, especially its elaborate knowledge 

representation. This algorithmic simplicity combined with structural complexity 

mirrors, in this respect, the widespread hypothesis that the complex expressive timing 

profiles found in musical performances arc more readily explained as the product of a 

small collection of simple rules linked to a relatively complex structure, than as the 

result of a large collection of interacting rules, with hardly any structure.

This research again confirmed that music is a very rewarding field for experimentation 

with knowledge representation concepts.
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Appendix

MICROWORLD EXPRESSION CALCULUS

****************************************************************************************
* A CALCULUS FOR MUSIC PERFORMANCE EXPRESSION *

* (c) 1991, Peter Desain & Henkjan Honing *
* *
* in CLOS (Common Lisp) , uses loop macro *
****************************************************************************************

**************************************************************************************** 

**************************************************************************************** 

MUSICAL OBJECTS
**************************************************************************************** 

**************************************************************************************** 

abstract classes of musical objects

(defclass musical-object ()

((name ¡reader name ¡initarg ¡name ¡initform 'no-name ¡type symbol) 

(score-onset ¡reader score-onset ¡type rational rinitform 0)

(left ¡reader left ¡initform nil)

(right ¡reader right ¡initform nil))

(¡documentation "Musical Object"))

(defclass structured (musical-object)

((score-offset ¡reader score-offset ¡type rational))

(¡documentation "Structured Musical Object"))

(defclass multilateral (structured)

((components ¡reader components ¡initarg ¡components))

(¡documentation "Multilateral Musical Object"))

(defclass collateral (structured)

((main ¡reader main ¡initarg ¡main)

(ornament ¡reader ornament ¡initarg ¡ornament))

(¡documentation "Ornamented Musical Object"))

(defclass successive (structured)

0
(¡documentation "Successive Musical Object"))

(defclass simultaneous (structured)

0
(¡documentation "Simultaneous Musical Object"))

(defclass basic (musical-cbject)

((score-offset ¡reader score-offset ¡type rational ¡initarg ¡score-dur)) 
(¡documentation "Basic Musical Object"))

.************************x-»r ****************************

; instantiatable classes of musical objects

*r******** k ************************

(defclass S (multilateral successive) () (:documentation "Sequential"))

(defclass P (multilateral simultaneous) () (:documentation "Parallel"))

(defclass ACCIA (collateral simultaneous) () (:documentation "Acciaccature"))

(defclass APPOG (collateral successive) () (:documentation "Appoggiature"))

(defclass NOTE (basic)

((dynamic : accessor dynamic :type float :initarg : dynamic)

(perf-onset ¡accessor perf-onset : type float :initarg :perf-onset :initform nil) 

(perf-offset ¡accessor perf-offset ¡type float ¡initarg :perf-offset ¡initform nil)) 
(¡documentation "Note"))

(defclass PAUSE (basic) () (¡documentation "Rest");
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(defmethod initialize-score-times ((object S))

(loop with onset = 0

for component in (components object) 

do (shift-score component onset)

(setf onset (slot-value component 'score-offset)) 

finally (setf (slot-value object 'score-offset) onset)))

(defmethod initialize-score-times ((object collateral))

(setf (slot-value object 'score-offset)

(slot-value (main object) 'score-offset)))

(defmethod initialize-score-times rafter ((object APPOG))

(shift-score (ornament object)

(- (slot-value (ornament object) 'score-offset))))

(defmethod shift-score ((object musical-object) shift)

(incf (slot-value object 'score-onset) shift)

(incf (slot-value object 'score-offset) shift)

(loop for component in (components object) do (shift-score component shift)))

. * * * * * * * * * x i r * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
; initialization of context of musical objects

(defmethod initialize-context ((object musical-object)))

(defmethod initialize-context ((object S))

(loop for component in (components object)

for next-component in (rest (components object)) 

do (set-contexts component next-component)))

(defmethod initialize-context ((object APPOG))

(set-context (ornament object) (main object) 'right))

(defmethod set-contexts ((left musical-object) (right musical-object))
(set-context left right 'right)

(set-context right left 'left))

(defmethod set-context ((object musical-object) (context musical-object) dir)
(setf (slot-value object dir) context))

(defmethod set-context rafter ((object P) (context musical-object) dir)

(loop for component in (components object)

do (set-context component context dir)))

(defmethod set-context rafter ((object S) (context musical-object) dir)

(if (eel dir 'left)

(set-context (first (components object)) context dir)

(set-context (last-element (components object)) context dir)))

(defmethod set-context rafter ((object collateral) (context musical-object) dir) 
(set-context (main object) context dir))

(defmethcd set-context rafter ((object ACCIA) (context musical-object) dir)

(when (eel dir 'left)

(set-context (ornament object) context dir)))
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(defmethod filter-null-expression ((section section)) 
(make-new-section-from-pairs section 
(loop for expression in (expressions section) 

for score-time in (score-times section) 
when expression
collect (list score-time expression))))

(defmethod filter-null-expression- 
(mapcar #'filter-null-expression

(defmethod fi1ter-null-expression- 
(loop for expression in (express 

for score-time in (score-t 
for index from 0 
unless expression 
collect (list index score-

out 1( (map
-out (sect

out 1( (sect
ions secti
imes secti

time) ) )

map)
ions

ion
on)
on)

)
map))) 

section))

(defmethod unfilter-null-expression ((map map) 
(make-map (mapcar #'unfilter-null-expression

rejections) 
(sections map) rejections)))

(defmethod unfilter-null-expression ( (section section) removed)
(if removed

(make-new-section-from-pairs section
(loop with expressions = (expressions section) 

with score-times = (score-times section) 
for index from 0 
while (or score-times removed) 
when (and removed (= index (caar removed))) 
collect (list (second (pop removed)) nil) 
else collect (list (pop score-times)

(pop expressions))))
section))

Calculus 51



� ��� �� � � ��� � � � � � �� � � � �� � � � � �� � �� � ��
�������������������������������������������������������������������������������

� � �� � � � ����� � ��� � ��� � � �� �� � ��� ���� ��� ��� ��� � �� ���

 �������������������������������������������������������������������������������



•****************************************************************************************
; propagate-truncating-shift

(defmethod propagate-truncating-shift : around 

(when shift (call-next-method)))

((object musical-object) 
shift end expression)

(defmethod propagate-truncating-shift ((object multilateral) shift end expression)
(loop for component in (components object)

do (propagate-truncating-shift component shift end expression)))

(defmethod propagate-truncating-shift ((object collateral) shift end expression) 
(propagate-shift (ornament object) shift expression)
(propagate-truncating-shift (main object) shift end expression))

(defmethod propagate-truncating-shift ( (object NOTE) shift end expression)
(set-expression object

expression
(save-min (save-+ (fetch-expression object expression) shift) end)))

(defmethod propagate-truncating-shift ((object PAUSE) shift end expression))

-**************************xX************************************************************

; propagate-shift

(defmethod propagate-shift :around ((object musical-object) shift expression)
(when shift (call-next-method)))

(defmethod propagate-shift ((object structured) shift expression)
(loop for component in (components object)

do (propagate-shift component shift expression)))

(defmethod propagate-shift ((object basic) shift expression)
(set-expression object

expression
(save-+ (fetch-expression object expression) shift)))

- ************************xx

; onset timing
; **********************xxxx

XX**********************************************************

X***********************************************************

(defclass expressive-tiding (expression) ()) 
(defclass onset-timing (expressive-timing) ()) 
(defclass basic-asynchrony (onset-timing) ()) 
(defclass basic-tempo (onset-timing) ())

(defclass estimate-onset-timing (onset-timing estimate-mixin) ())

. *********************xxx

; get expressive timing
********X*************X**************x********************

(defmethod get-expressic 
(perf-onset object))

((object NOTE) (expression onset-timing))

(defmethod get-expression ((ooject S) (expression onset-timing)) 
(get-expression (first (components object)) expression))

(defmethod get-expression ((object P) (expression onset-timing)) 
(loop for component in (components object)

when (get-expressior. component expression) 
minimize it))

(defmethod get-expression ((object collateral) (expression onset-timing)) 
(get-expression (main object) expression))
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(defmethod set-expression ((object NOTE) (expression onset-timing) value)
(setf (perf-onset object) value))

(defmethod set-expression ((object S) (expression onset-timing) (section S-section))
(loop for new-expression in (expressions section)

for next-new-expression in (snoc (rest (expressions section))
(next-expression section)) 

for component in (components object) 
do (propagate-interpolated component

(fetch-expression component expression) 
new-expression
(fetch-expression (right component) expression) 
next-new-expression 
expression)))

(defmethod set-expression ((object P) (expression onset-timing) (section P-section))
(loop for new-expression in (expressions section) 

for component in (components object) 
do (propagate-truncating-shift component

(save—  new-expression
(fetch-expression component expression)) 

(get-next-expression object expression) 
expression)))

(defmethod set-expression ((object ACCIA)
(expression onset-timing)
(section ACCIA-section))

(propagate-shift (ornament object)
(save—  (ornament-expression section)

(fetch-expression (ornament object) expression)) 
expression))

(defmethod set-expression ((object APPOG)
(expression onset-timing)
(section APPOG-section))

(propagate-interpclared (ornament object)
(fetch-expression (ornament object) expression) 
(ornament-expression section)
(fetch-expression (right (ornament object)) expression) 
(main-expression section) 
expression))

. * * * * * * * * i r * * * * * * * * * ) r r T r x x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * l |r x x x x * x * * * * x * * *

; scale expressive-timing

(defmethod scale-expression ((section P-section)
(expression basic-asynchrony) 
factor)

(if (expressions section)
(make-new-sect i or. 
section
(scale-P-expression-points (expressions section) factor)) 

section))

(defmethod scale-expression ( (section S-section)
(expression basic-tempo) 
factor)

(cond ((and (expressions section)(next-expression section))
(scale-S-sec:ion-] section factor))

( (rest (expressions section))
(scale-S-secrion-> section factor))
(t section)))

.****************************************************************************************
; set expressive timing
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(defmethod scale-S-section-] 
(make-new-section section

(section section) factor)
(seale-S-expression-points

(snoc (score-times section)(score-offset section)) 
(snoc (expressions section) (next-expression section)) 
factor)))

(defmethod scale-S-section-> ((section section) 
(make-new-section section

( scale-S-expression-points

factor)

(score-times 
(expressions 
factor)))

section)
section)

(defmethod scale-expression ( (section ACCIA-section)
(expression basic-asynchrony) factor)

(make-new-section section
(scale-ACCIA-points (main-expression section) 

(ornament-expression section) 
factor)))

(defmethod scale-expression ((section APPOG-section) (expression basic-tempo) factor) 
(make-new-section section

(scale-APPOG-points (ornament-expression section)
(main-expression section)
(next-expression section)
(score-ornament section)
(score-main section)
(score-offset section) 
factor)))

*****************************************************************************************

(defun scale-P-expression-points (perf-onsets factor)
(let* ((perf-begin (apply #'min perf-onsets))

(perf-iois (mapear #'(lambda (onset) (- onse 
(raw-new-perf-iois (mapear #'(lambda (perf)(

perf-iois))
(shift (- (apply #'min raw-new-perf-iois)))
(new-perf-onsets (mapear #'(lambda (ioi) (+

raw-new-perf-iois))
new-perf-onsets))

(defun scale-S-expression-points (score-times perf-times factor)
(let* ((perf-iois (mapear #'- (rest perf-times) perf-times))

(score-iois (mapear (rest score-times) score-times))
(perf-begin (first perf-times))
(perf-end (last-element perf-times))
(raw-new-perf-iois (mapear #'(lambda (score perf)

(scale-velocity score perf factor)) 
score-iois 
perf-iois))

(new-perf-iois (normalise raw-new-perf-iois (- perf-end perf-begin))) 
(new-perf-times (integrate new-perf-iois perf-begin))) 

new-perf-times))

(defun scale-ACCIA-points (main-expression ornament-expression factor)
(let* ( (expression-interval (- main-expression ornament-expression)) 

(new-expression-ornament (- main-expression
(scale-expression-lin expression-interval factor)) )) 

(list: new-expression-ornament main-expression) ) )

t perf-begin)) perf-onsets)) 
scale-expression-lin perf factor))

ioi shift perf-begin))
)
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(defun scale-APPOG-points (ornament-expression main-expression next-expression
score-ornament score-main score-end 

factor)
(let* ((score-ornament-ioi (- score-main score-ornament ))

(expression-ornament-ioi (- main-expression ornament-expression))
(score-main-ioi (- score-end score-main))
(expression-main-ioi (- next-expression main-expression))
(ornament-tempo (/ score-ornament-ioi expression-ornament-ioi))
(main-tempo (/ score-main-ioi expression-main-ioi))
(relative-tempo (/ ornament-tempo main-tempo))
(new-ornament-tempo (* main-tempo (expt relative-tempo factor))) 
(new-expression-ornament-ioi (/ score-ornament-ioi new-ornament-tempo)) 
(new-expression-ornament (- main-expression new-expression-ornament-ioi)))

(list new-expression-ornament main-expression next-expression)))

.**************************************************************************************** 

; expression scale methods

(defun scale-velocity (score perf factor)
"Exponential scaling"
(/ score (expt (/ score perf) factor)

) )

(defun scale-expression-lin (perf factor) 
"Linear scaling"
(* perf factor))

. **************************************************************************************** 

; stretch expressive-timing

(defmethod stretch-expression ( (section S-section)
(old S-map)
(new S-map)
(expression onset-timing))

(make-new-section 
section
(loop for perf-time in (expressions section)

as (score-begin score-end) = (lookup-inverse 
collect (if (and score-begin score-end)

(interpolate (lookup-expression old 
perf-time
(lookup-expression old 
(lookup-expression new 
(lookup-expression new

old perf-time)

score-begin)

score-end) 
score-begin) 
score-end))

perf-time))))
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**************************************************************************************** 
keeping articulation invariant: mixin for expressive timing expression

(defclass keep-articulation-mixin () ())
(defclass keep-overlap-articulation-mixin (keep-articulation-mixin)())
(defclass keep-duration-articulation-mixin (keep-articulation-mixin)())
(defclass keep-proportion-articulation-mixin (keep-articulation-mixin)())

(defmethod articulation ((expression keep-overlap-articulation-mixin)) 
(find-expression 'basic-overlap-articulation))

(defmethod articulation ((expression keep-duration-articulation-mixin)) 
(find-expression 'basic-duration-articulation))

(defmethod articulation ((expression keep-proportion-articulation-mixin)) 
(find-expression 'basic-proportion-articulation))

(defmethod set-map :around ((object musical-object)
map
(expression keep-articulation-mixin) 
ground)

(when map
(let* ((parts (find-parts object ground))

(articulation-collections 
(loop for part in parts

collect (get-notes-expression part (articulation expression))))) 
(call-next-method)
(loop for part in parts

for collection in articulation-collections
do (set-notes-expression part (articulation expression) collection))))

object)

.*******************xxx*******************

; resource for expression instances

k*************************************

(defvar *expression-ir.stances*)
(setf *expression-instances* nil)
(defvar *use-expression-resource*)
(setf *use-expressior.-resource* t)

(defun find-expressicr. (class)
(or (and *use-expression-resource*

(cdr (assoc class *expression-instances*)))
(make-expressicr.-instance class) ) )

(defun make-expressicr.-instance (class)
(let ((instance (make-instance class)))

(when *use-expression-resource*
(push (cons class instance) *expression-instances*)) 

instance))

-*******************X-rxX***********************************************************X*X***

; averaging expression
.******************xx-rxx***********************************************************x*****

(defclass averaging-expression-mixin ()())

.*******************xxx****************************************************************''**

; get averaging expression

(defmethod get-expression ((object multilateral) (expression averaging-expression-mixin)) 
(loop for component in (components object)

when (get-expression component expression) 
sum it into total
finally (return (/ total (length (components object))))))

(defmethod get-expression ((object collateral) (expression averaging-expression-mixin)) 
(get-expression (main object) expression))

Calculus 58



.�***�*��*���***�*����* �*��*���*�* *����**�**�*�*�*�**�*�*�*��* �** *�* �**







(class-mixer 
tempo " n 
(basic-tempo)

asynchrony " "
(basic-asynchrony)

estimate-tempo n "
(basic-tempo estimate-mixin)

estimate-asynchrony " "
(basic-asynchrony estimate-mixin)

keep-overlap-articulation-tempo " "
(basic-tempo keep-overlap-articuiation-mixin)

keep-duration-articulation-tempo " n
(basic-tempo keep-duration-articuiation-mixin)

keep-proportion-articulation-tempo " "
(basic-tempo keep-proportion-articuiation-mixin)

keep-overlap-articulation-estimate-tempo " "
(basic-tempo keep-overlap-articulation-mixin estimate-mixin) 

keep-duration-articulation-estimate-tempo " "
(basic-tempo keep-duration-articulation-mixin estimate-mixin) 

keep-proportion-articulation-estimate-tempo " "
(basic-tempo keep-proportion-articulation-mixin estimate-mixin)

keep-overlap-articulation-asynchrony " ”
(basic-asynchrony keep-overlap-articulation-mixin)

keep-duration-articulation-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin)

keep-proportion-articulation-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin)

keep-overlap-articulation-estimate-asynchrony " "
(basic-asynchrony keep-overlap-articulation-mixin estimate-mixin) 

keep-duration-articulation-estimate-asynchrony " "
(basic-asynchrony keep-duration-articulation-mixin estimate-mixin) 

keep-proportion-articulation-estimare-asynchrony " "
(basic-asynchrony keep-proportion-articulation-mixin estimate-mixin)

overlap-articulation " M 
(basic-overlap-articulation)

duration-articulation " ”
(basic-duration-articulation)

proportion-articulation " "
(basic-proportion-articulation)

estimate-overlap-articulation " "
(basic-overlap-articulation estimate-mixin)

estimate-duration-articulation " "
(basic-duration-articulation estimate-mixin)

estimate-proportion-articulation " ” 
(basic-proportion-articulation estimate-mixin))
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**************************************************************************************** 
**************************************************************************************** 

TRANSFORMATIONS ON MUSICAL OBJECTS
**************************************************************************************** 
**************************************************************************************** 

transfer expression transformation

(defmethod transfer ((object musical-object) expression foreground background)
(let* ((foreground-map (get-map object expression foreground))

(background-map (get-map object (find-expression 'empty-expression) background)) 
(new-background-map (interpolate-maps background-map foreground-map 1)))

(set-map object new-background-map expression background)) 
object)

.**************************************************************************************** 

; scale expression transformation

(defmethod scale ((object mus 
(let* ( (old-foreground-map 

(new-foreground-map

(old-background-map

(new-background-map

ical-object) expression foreground background factor) 
(get-map object expression foreground))
(when old-foreground-map
(scale-map old-foreground-map expression factor))) 

(when background
(get-map object expression background)))

(when old-background-map
(stretch-map old-background-map

old-foreground-map 
new-foreground-map 
expression))))

(when new-foreground-map
(set-map object new-foreground-map expression foreground)) 

(when new-background-map
(set-map object new-background-map expression background))) 

object)

.**************************************************************************************** 
; scale intervoice expression transformation

(defmethod scale-intervoice ((object musical-object) expression
voicel voice2 factor ref)

(let* ((mapl (get-map object expression voicel))
(map2 (get-map object expression voice2)))

(when (and mapl map2)
(let* ((original-sync-mapl (get-sync-map mapl map2)) 

(original-sync-map2 (get-sync-map map2 mapl))
(new-sync-mapl (monotonise-map (interpolate-maps

original-sync-mapl 
original-sync-map2 
(* ref (- 1 factor)))))

(new-sync-map2 (monotonise-map (interpolate-maps
original-sync-map2 
original-sync-mapl 
(* (- 1 ref) (- 1 factor)))))

(new-mapl (stretch-map
mapl original-sync-mapl new-sync-mapl expression)) 

(new-map2 (stretch-map
map2 original-sync-map2 new-sync-map2 expression))) 

(set-map object new-mapl expression voicel)
(set-map object new-map2 expression voice2))) 

object))
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(defun background-example ()
(P 'fragment

(S 'melody
(PAUSE :name 'pause :score-dur 1/4)
(NOTE :name 64 :score-dur 1/8

:perf-onset 0.3 :perf-offset 0.5 ¡dynamic .7)
(APPOG 'appoggiatura

(NOTE :name 64 :score-dur 1/8
:perf-onset .550 :perf-offset .680 :dynamic .75) 

(NOTE :name 55 :score-dur 1/4
:perf-onset .675 :perf-offset 1.133 :dynamic .7)) 

(NOTE :name 55 :score-dur 1/8
:perf-onset 1.125 :perf-offset 1.475 :dynamic .7)

(ACCIA 'acciaccatura
(NOTE :name 59 :score-dur 1/16

:perf-onset 1.600 :perf-offset 1.700 ¡dynamic .65) 
(NOTE :name 57 :score-dur 1/8

:perf-onset 1.625 :perf-offset 1.880 :dynamic .7)) 
(NOTE :name 55 :score-dur 1/8

:perf-onset 1.880 :perf-offset 2.256 :dynamic .6)
(NOTE :name 57 :score-dur 1/8

:perf-onset 2.256 :perf-offset 2.647 :dynamic .65)
(NOTE ¡name 55 ¡score-dur 3/8

¡perf-onset 2.425 ¡perf-offset 4 ¡dynamic .7))
(S 'accompagniment

(PAUSE ¡name 'pause ¡score-dur 3/8)
(NOTE ¡name 38 ¡score-dur 1/8

¡perf-onset .725 ¡perf-offset .90 ¡dynamic .6)
(NOTE ¡name 43 ¡score-dur 1/8

¡perf-onset .950 ¡perf-offset 1.2 ¡dynamic .6)
(NOTE ¡name 47 ¡score-dur 1/8

¡perf-onset 1.150 ¡perf-offset 1.475 ¡dynamic .7)
(P 'chord

(P

(NOTE ¡ñame 38 ¡score-dur 3/8
¡perf-onset 1.725 ¡perf-offset 

(NOTE ¡ñame 42 ¡score-dur 3/8
¡perf-onset 1.775 ¡perf-offset 

(NOTE ¡ñame 48 ¡score-dur 3/8
¡perf-onset 1.800 ¡perf-offset

'chord
(NOTE ¡ñame 43 ¡score-dur 3/8

¡perf-onset 2.500 ¡perf-offset 
(NOTE ¡ñame 47 ¡score-dur 3/8

¡perf-onset 2.550 ¡perf-offset 
(NOTE ¡ñame 50 ¡score-dur 3/8

¡perf-onset 2.580 ¡perf-offset

2.500 ¡dynamic .7)

2.500 ¡dynamic .65)

2.500 ¡dynamic .7))

4 ¡dynamic .6)

4 ¡dynamic .7)

4.5 ¡dynamic .65)))))

;data at factor 2 in figure 13 
(scale (metre-example)

(find-expression 'tempo) (has-name? 'bars) nil
2 )

;data at factor 2 in figure 14 
(scale (metre-example)

(find-expression ’asynchrony) (has-name? ’bar) nil
2 )

;data at factor 2 in figure 16a 
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) nil 
2)

;data at factor 2 in figure 16b 
(scale (background-example)

(find-expression 'tempo) (has-name? 'melody) (has-name? 'accompaniment)
2 )
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POCO:  
An  En vi ro n men t  fo r  

Ana ly si ng , Mo d if yin g , a n d  Gen erating
Exp res sio n  in  Mu si c

Henkjan Honing

POCO is a workbench for analysing, modifying and generating expression in music. It is 

aimed to use in a research context. A consistent and flexible representation of musical objects 

and structure was designed. The integration of existing models of expression made it possible 

to compare and combine these models using the same performance and score data. New tools 

were developed for specific "micro surgery" on expression. A lot of attention was given to the 

openness, integration, and extendibility of the system.

IN T R O D U C T IO N

As part of our research on the modelling of expression in musical performance at City 

University, London, we developed a workbench named POCO. It consists of a collection of 

tools that can be used for the analysis, modification, and generation of expression in a 

research context. The research project combines three perspectives: musicological aspects 

(what are the rules of expression used in different styles of music), cognitive aspects (how 

does a good performance or interpretation facilitate the understanding of the music by the 

listener), and computational aspects (the design of appropriate data structures and 

development of programs dealing with expression). The latter will be described in this 

paper.

Before describing the system, the next section will give the reader a flavour of some of 

the problems and ideas related to this research.

D R E A M S  A N D  V ISIO N S

When starting a project like this there are various directions one might take. This is the 

moment to fantasize about the ideal system, as later on one's thoughts will probably tend 

to be directed by their feasibility. We will sum up a collection of dreams that we would 

like to see realised.

First of all, the system should incorporate existing computational models related to 

expression in music. These should share the same data structures so that they can be 

evaluated and compared. Combining these models should also be possible.
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We are interested in studying a number of issues in expressive performances. For instance, 

how do the magnitudes, that are used in the different expressive parameters, behave in 

time and at different tempi, and how do they relate to the musical structure (Clarke 1988). 

Because a listener cannot detect all the subtle expressive details of a performance we need 

some help. We envisage the possibility of "zooming-in" at the different structural levels 

of a musical performance (e.g. examining the expressive timing only at bar level or only at 

phrase level), as well as looking at its various structural units (e.g. chords or grace notes) 

or inter-structural relations (e.g. voice leading).

Besides analysis, we would like to perform "micro surgery" on performances: change 

expressive detail and shape of structural units, or, in other words, generate modified 

performances that have have been transformated depending on particular structural units. 

To give some examples: we would like to exaggerate the timing of chords without changing 

their spread (or the reverse), change the tempo of a piece without altering the timing of 

grace notes and trills, modify the timing of the melody without changing the timing of the 

accompaniment, remove all expressive timing except on beat level, scale specific structural 

elements of a performance using different magnitudes, or make a solo voice lead with 

respect to the rest of the music. The results of these adjustments (i.e. modified 

performances) could then be used in experiments where listeners have to judge the 

modified performance on the basis of their perceptual effectiveness.

In order to study expression in a performance a score is essential. When scores are not 

available (in the case of e.g. improvisations) we are helped by an automated score 

generator.

When scores are available, computer assistance is indispensable in mutually adjusting 

the performance and the score (e.g. taking care of performance errors, order of notes within 

chords, ornaments in the performance etc.), since we have to compare them on a note-to- 

note basis. It should also assist in transfering structural information from the score to the 

performance (e.g. left and right hand parts), instead of having to annotate each new 

performance.

Of course the possibility of recording and playing back performances of different types of 

instruments is an important requirement, next to having access to libraries of (expert) 

performances and scores, and employing graphical and textual editors in editing the 

musical and structural information.

All the means described should be embedded in a programming environment in order to 

gain maximum flexibility and extendibility. The environment should support version 

management (keep track of different versions of data and how it was created), assistance 

in repetitive work (e.g. when doing the same analysis over all the data of an experiment),
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and the automatic generation of documentation about the system. These are just a few 

demands on system support.

Finally, both first-time and advanced users should feel comfortable working with the 

system. First time users should be able to make use of menu's and dialogs, and have 

explanatory information on the actions that are performed. More advanced users probably 

want to bypass the menu’s and dialogs using a programmed way of manipulation. The user 

interface should be multi-modal, both simple and flexible, and it should be easy for 

advanced users to extend the environment and have their programs well integrated.

We will try to give shape to this hotchpotch of dreams and visions in the following 

paragraphs. The described "ideal" system is simplified into a conceptual description in 

Figure 1.

DESIGN

Earlier work on composition systems (Desain & Honing 1988) gave us enough confidence in 

the importance of building POCO by using a workbench approach: a collection of tools that 

can be combined in a flexible way. This resulted in an architecture that embodies a 

relatively empty shell consisting of a closed data representation at one end and the user 

interface at the other. In between there is a layer of commands (or transformations) that is 

extendible. Communication with the outside world (e.g. sequencers and statistical 

packages) is supported by an i/o  layer and is extendible as well (e.g. when a new medium 

is added or a new format is needed). This architecture is shown in Figure 2.

In the remaining half of the article we will describe this architecture layer by layer.

Communication with the outside world is implemented as transparent as possible and is 

modelled as streams, a combination of a medium (e.g, a file, a window, a Midi-port) and 

its associated i/o-type(s) (e.g. formats, protocols). The system provides different i/o-types 

(e.g. music-text-files, standard Midi files). All information generated by the system is 

encoded in the specific format or protocol used, so there is always completeness of 

information. A new medium and its i/o-type(s) can easily be added by providing a set of 

read and write functions.

We support the Midi standard to be able to use commercial software for capturing and 

play-back, facilitating the exchange of performances and scores between systems, and 

making use of the growing range of Midi based instruments and interfaces. The format was 

extended to sustain completeness of information. Within the system the musical 

information is encoded into a more general data representation.
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Figure 1. Conceptual design.
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Figure 2. Functional design.
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DATA REPRESENTATION

A consistent and flexible representation of musical objects within the environment is 

essential because all operations take place on this representation.

Musical objects

There are two kinds of basic objects in this representation: time-points and time-intervals. 

Time-intervals are note, rest, and segment (denoting structure). Time-points are midi (e.g. 

Midi controller information), comment (for representing comments and other timed textual 

information), and begin-of-stream and end-of-stream (to model upbeats, to calculate the 

length of a piece, to cut séchons out of performances, to merge and concatenate them etc.).

Structure

One of the main deficiencies of low level representations of music (e.g. Midi files, note 

lists) is the absence of structural descriptions. In our representation we use a simple and 

flexible way of representing structure called segmentation or collections. The basic musical 

objects can be grouped using a general 'part-of' relation to build hierarchical, horizontal, 

vertical, associative or even mutual ambiguous structural units. This representation proved 

to suffice in rebuilding wildly different models.

Each unit is named to be able to provide a hook onto which any other knowledge (outside 

the definition of the musical representation) can be attached. When constructing a 

complete model of expressive timing, information is needed from a harmonic or metrical 

nature. Although it is tempting to incorporate musical knowledge, as done in most AI 

approaches to modelling of musical knowledge, it specializes the model and makes it less 

modular. With structural annotation there is no need to incorporate all this domain (i.e. 

style) specific information in the system, because it can be communicated through a layer 

of structural information (see also Honing 1990).

USER INTERFACE

POCO is implemented in Allegro Common Lisp making use of program generators. They 

facilitate the easy integration of user code. When a new command is added to the system, 

it automatically propagates information to the right menu's and dialogs and provides 

information for the automatic documentation generator (a facility that is almost 

indispensable in a larger system).

The user interface supports multiple modes of communication, consisting of menu's and 

dialogs, Lisp program equivalents, and natural language descriptions (see figure 3). The
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system keeps a history of all actions that took place. They are available as normal Lisp 

expressions that can be re-evaluated and edited. Data files generated by the system 

contain information describing what transformations were used and their parameters (i.e. 

the Lisp expression that generated it).

TRANSFORMATIONS

Transformations are a (still growing) collection of tools that generate new or modified 

musical information. There is a matcher for comparing, cleaning-up, and mutually 

adjusting scores and performances, a filter system (using a general pattern language) to 

retrieve special information (e.g. all notes that are part of a chord, the whole piece except 

the ornaments, all notes in the left hand of a piano performance in the second phrase etc.), 

tools that allow scaling of timing, articulation and dynamics of musical objects (e.g. 

amplifying, translating or inverting the expressive timing profiles), and transformations 

to merge or concatenate performances or scores.

Another set of tools embodies some well-known models of expression. Longuet-Higgins' 

metrical parser (1987), Todds model of rubato (1989), the Sundberg (1989) expression 

generating rule system (Van Oosten 1990), and the Desain and Honing connectionist 

quantizer (1989) are examples of transformations that are available.

A typical path

To give an idea of both the complexity of an expressive transformation, which might seem 

simple at first sight, and the support given by the system in the realisation of such 

transformation, we will describe a typical path from an original piano performance to a 

new version with a modified expressive timing profile depending on the musical structure.

To be able to look at the expressive timing of the performance we need a score. Either we 

use a score available in one or the other standard formats or we can make a new one from a 

recorded performance using one of the quantizers (Desain & Honing 1989; Longuet-Higgins 

1987) resulting in a first version of the score. Then we probably need to do some editing of 

the score, for instance, add (more) structural information, correct errors etc. This can be done 

by using the editors outside the system, after converting the score to a convenient format. 

But before we can do any transformation the score should be matched to the performance 

under examination (removing errors in the performance, altering order of notes within 

chords etc.). All non-note (e.g. rests, comments) and structural information annotated in the 

score is merged into the performance and vice versa. The result is a matched performance 

and score, both with all the available structural information. These form the basic input 

to our transformations. We can now, for instance, exaggerate the timing of the bars,
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without changing the timing of the other structural units (e.g. chords and phrases). The 

modified performance is written to an external file that can be played by a sequencer.

The environment offers different kinds of help that makes traveling along this path, 

with all its intermediate steps, easier and repeatable (see User Interface).

ANALYSES

Analysis is a category of transformations that generates statistical data (instead of 

musical information). The analyses comprises special analytical methods that provide 

the user with textual or numerical information. It will be written to a selected medium (e.g 

file, window) and can be used by programs outside the system (e.g. statistical packages), 

were additional analysis can be done, graphs can be plotted etc.

Examples of analyses provided are the use of autocorrelation in analysing expressive 

timing (Desain & De Vos 1990), analysis that produce tables of timing data related to 

structure that facilitate the study of e.g. voice-leading and chord timing. These are among 

other more straightforward analyses.

CONCLUSION

Although we, of course, didn't succeed in realising all the dreams of a ideal system, we 

provided a sound basis for further development. We do think to have made the right 

decisions in what should be inside and what outside the system. The possibility to use 

structure in examining and manipulating expression proved to be very powerful. The 

facilities described in User Interface turned out not to be just luxurious, but improved the 

usability and maintainability of the system.

POCO is currently used by the institutes involved in the project, but is still in development. 

We now work on stabilising the system. A version for distribution is not yet available.

Our own use of the system is directed towards understanding the relation between 

expression and structure, hopefully resulting in more insights of how to model expression in 

music. This would enable us to design editors that can manipulate musical information in a 

more psychologically and perceptually relevant way. In the end we hope to contribute to 

the design of composition and interactive computer systems in need of models for the 

production and perception of musical performance.
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TOCO comm and his tory
; POCO <27/6/90)
DATE : THURSDAY 12 JUL 1990 12:42:08 
USER: henkjan

(TRANSFORM 1<(SCALE-EXPRESS IUE-TIM I NO 'BRR T T 0.5 )> 
(READ-STRERM ‘FILE

(STANOARO-MIDI-FILE 1>
“POCO; examp I es : performance" ) 

(REAO-STRERM ’FILE
(STANDARD-MI 01-FILE 1)
“P O C O ; examp I es : score“ ) 

(URITE-STRERM 'NEU-UINDOU
(MUSIC-TEXT-FILE ’(NOTE REST)) 
“MTX/output")

NIL)

USER I Eval_ done.

L is ten er

Performance ¡n file (In standard MIDI format with track = 
POCO;examples:performance, and 

Score in file (in standard MIDI format with track = 1): 
POCO;examp Ies: score 

are transformed in:
Performance in neui window (in music text format with whol< 
MTX/output

by:
scale expressive timing with
onsets which are part of (* = all) : BAR,
stretch onsets in between : T,
sea Ii ng ruI e T,
express i ve magn i tude : 0.5
T

=l I ■■ M T H / n u t p i i t  ± = = s
; time type ■ o
; note dur keu ve 1 o ch

rest dur ch

; midi data

'

0.000 beg i n
5.000 beg i n BAR (BERT) n =1
5.000 begin BERT (1)
5.000 note 0.500 Cl 0.52 1
6.021 note 0.500 C2 0.52 1
6.856 note 0.500 C3 0.52 1
8.248 end BERT
8,248 beg i n BERT (1)
8.248 note 0.500 C4 0.52 1
8.797 note 0.500 C5 0.52 1
9.785 note 0.500 C6 0.52 1
10.993 end BERT
10.993 begin BERT (1)
10.993 note 0.500 D 1 0.52 1
11.895 note 0.500 D2 0.52 1
12.897 note 0.500 D3 0.52 1
14.000 end BERT
14.000 end BRR
14.000 end >

USER 1 K i 11ed reg i on saved 1* :K>
USER I Idle

Figure 3. A snapshot of the system.
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Introduction

Ideally, a system for music composition should en-
able a composer to express ideas in a direct way. 
Most such systems are limited to a certain style 
of music, using known aesthetics. These programs 
are not very useful for creative purposes. It is, of 
course, impossible to implement all musical criteria 
and rules one can think of. If the focus is not on a 
music production system but on a composition sys-
tem, things become easier. Such a system must be:

User ex ten d ib le : the user can define new func-
tions that have the same status and possibil-
ities as the already provided, built-in ones.

M odular: functions and objects are isolated and 
protected from each other and can be studied 
and used separately.

O rthogonal: functions and objects can be repre-
sented in such a way that any future extension 
will still fit in the system and make use of all 
the features.

The system should also have these qualities:

G ood  m ech an ism s for nam ing: coding of musi-
cal parameters and objects is as close as pos-
sible to normal use (so mezzoforte instead of 
"67," if the user is accustomed to these terms, 
or -10 db, or "ear-splitting," in their respective 
cases).

G ood  m ech an ism s for abstraction : allowing 
families of related objects to be defined, differ-
ing in one or more parameters.

These design objectives closely resemble the objec-
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LOCO: A Composition 
Microworld in Logo

tives for a general programming language, and in-
deed a good language would suffice. But to provide 
only a general programming language, thus asking 
composers to become programmers, is not reason-
able. The present generation of computer music 
composers acknowledge the cumbersome indirect-
ness of expressing ideas in programs, especially 
when working, out of habit or need of calculation 
speed, with low-level languages.

There is another approach. By providing a set of 
powerful tools in an integrated composition en-
vironment, composers are freed from the need to 
program ad hoc solutions for their ideas. In special 
cases they, of course, must be able to make use of 
the power of a programming language, but then the 
tools are still of great help. In this way the distinc-
tion between programming and using already exist-
ing programs disappears.

The tools provided take the form of program  gen -
erators, which do much of the work for the com-
poser. To be able to implement program generators 
(a common practice in artificial intelligence re-
search) we needed a symbolic language like Lisp 
(Anderson, Corbett, and Reiser 1987). Logo, based 
on Lisp, would also suffice (Harvey 1985). This lan-
guage, however, had the enormous advantage of 
being easy to learn, enabling composers to write di-
rectly in Logo. It is also widely available on differ-
ent microcomputers. This gives its creative possi-
bilities to a much broader user group (Beckwith 
1975). A final reason to choose Logo was that it 
enabled us to use machines at both ends of the 
processing-power spectrum, from Lisp machines 
to small personal computers. Development work 
could be done with all the power of the program-
ming environment of the Lisp machine, while 
we are still able to port the programs to cheaper 
computers.
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Music System Architecture
At the end of the 1950s and in the early 1960s the 
first computer music systems came into existence. 
One of the first revolutionary aspects of these ex-
periments were the algorithmic composition pro-
grams. The computer-generated score had to be 
played by human musicians. But soon computers 
became fast enough to generate sound themselves. 
This was such a fascinating aspect of computer mu-
sic that it took about a decade before a revival of 
interest in the compositional processes reappeared 
(of course there were a few happy exceptions). Prof-
iting from the development of higher, more ab-
stract programming languages, compositional sys-
tems were designed (Koenig 1971; Berg 1979; Fry 
1984; Jones 1981; Schottsteadt 1983).

The goal of defining any architecture—any sys-
tem design—should be splitting complex problems 
into simpler ones. Although often real world sys-
tems are only nearly decomposable, a system de-
signer should look carefully where to make an arti-
ficial division—-or decomposition— of a system.

In general most music can, from a production 
viewpoint, be looked at from two sides: the view of 
the composer and the view of the interpreter. Or to 
put it in another way, the composition and the in-
strument. The composer makes a piece according 
to all sorts of rules, conventions, intuitions, and 
tastes. A composition can result in a score meant 
as the best, or one of several possible representa-
tions of the compositional work. A score could be 
anything left over from the composition phase for 
the interpreter or instrument, ranging from codes 
to control a signal processor to a traditional printed 
score. This score is decoded by the interpreter with 
more or less freedom into an audible form. In com-
puter music such a division in three (composition, 
score, and instrument) turns out to be a convenient 
one. It is often used implicitly. So one can define 
three languages. The language of the composition 
system, the language in which the resulting score is 
expressed, and the instrument language. These lan-
guages can vary between a general programming 
language and a simple data representation. The in-
formation flow can be in both directions, as is the 
case with interactive composing and music analysis.

Architecture of the Loco System

Our first concern was to design a flexible score lan-
guage that would always behave as a convenient 
communication vehicle between any devisable 
composition and instrument system. Given enough 
power, the score language can be used for express-
ing intermediate composition results, and can func-
tion as the main data representation in the com-
positional part of the system. It should indeed be a 
general representation language for musical objects.

The Score: Representation of Musical Objects

This language is described as a set of primitives 
(basic building blocks) and ways of structuring small 
objects into bigger ones. In defining languages one 
is often tempted to start creating primitives. This is 
reflected in the huge lists of features often pre-
sented in programming language advertisements. 
But general and powerful ways to build objects out 
of smaller ones is the central issue. So in defining a 
score language we chose not to prescribe any primi-
tives, but we do provide the mechanisms for cre-
ating them. Anything an instrument system can 
handle on its own, will, by definition, be a primi-
tive musical object. This ensures that the composi-
tional system is as much as possible independent of 
the instrument, in the way that good programs are 
machine independent. Let's first give some ex-
amples of interesting instruments and their 
primitives.

Primitives

If the instrument system is an interface to a me-
chanical percussion installation, it will know about 
materials, place, and pitches, and can be sent a 
primitive object like:

[HIT "quarter "metal "north-
east "high-pitched]

This looks like a subroutine call (in prefix notation) 
with HIT being the subroutine's name and some ar-
guments that are constants here (shown by the
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Logo quote character (") which means: Take the 
next thing as a literal, do not handle it as a pro-
gram). This example shows the use of one of the 
primitives we made for the instrument system con-
trolling Ringo: a large percussion installation by 
Floris van Manen and Trimpin of the Klankschap 
Foundation (Manen and Trimpin 1986). The only 
other primitive needed was a rest:

[REST "whole]

For other instrument systems, different primitives 
would have to be designed. To give some examples:

[PHONEME "short "ooaAAH "low- 
pitched "very-loud]

[NOTE-ICON "eighth "G# "staccato]
[TAPE-RECORDER "A-77 "record 
(dB -10)]

[SINE (ms 100) (Hz 440)]

The first being appropriate for a phoneme syn-
thesizer, the second for a score printing program, 
the third for a studio remote control system and the 
last for a digitally-controlled sine oscillator. Notice 
again the absence of arbitrary coding in the parame-
ters. Scaling of parameters and decoding can be 
done in the primitives themselves as in the first ex-
ample, or in a Logo function call, as in the last two, 
whichever is more appropriate. The primitive musi-
cal objects are not defined in the score but rather in 
the instrument part of the system. The only as-
sumptions we make about primitives is their be-
havior with respect to time.

They are stretched out in time; but there is no 
specification in the primitives themselves as to 
when they have to take place. The start time is not 
a parameter of the basic musical objects. So we con-
sider a sound now, and the same sound some time 
later as being the same musical object. The time- 
extent of a primitive is, however, predefined, and is 
computable from its call.

Time Structuring

We state that a score is a set of musical objects plus 
their timing relations. Specifying these relations is 
the task of our structuring functions. Only two
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timing relations are needed. We must be able to ex-
press that musical objects take place at the same 
time, and we must be able to order them one after 
another. We call the first basic time order PARAL-
LEL and the second SEQUENTIAL. A score can 
now be expressed in a nested structure of paral-
lel and sequential musical objects. To give some 
examples,

[SEQUENTIAL theme improvisation theme 
coda]

means that there are musical objects called theme, 
improvisation, and coda combined in a sequence to 
make up a piece. We can make a small Logo pro-
gram to represent this newly constructed musical 
object and give it a name:

TO j am
OUTPUT [SEQUENTIAL theme improvisation 
theme coda]

END

In which TO binds the program name jam to the 
program that, when run, will output the musical 
object. Now in its turn we can define theme as a 
layered musical structure:

TO theme
OUTPUT [PARALLEL bass-part piano- 
part saxophone-part]

END

Which defines theme to have a bass-part, a piano- 
part, and a saxophone-part all starting at the same 
time. The parts can be defined as sequences of 
chords, notes, and rests. Chords can be described as 
parallel notes, etc. If these notes are primitive ob-
jects (are known by the instrument) we can stop 
here. A graphical representation of the defined ob-
ject jam is shown in Fig. 1.

In the score system, SEQUENTIAL and PARAL-
LEL can be looked upon as functions, as programs 
that create a time structure. But they can also be 
seen as data, representing the timing relations be-
tween several parts. This two sided approach, repre-
senting knowledge as a program and as data, gives 
the best of both worlds (the procedural and the de-
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Fig. 1. T im e  stru ctu re o f
th e  o b je c t  ¡am .
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>  Time

clarative one). Only in Lisp-like languages this is 
possible. The process scheduling mechanism of 
FORMES (Rodet and Cointe 1984) uses the same 
time-structure functions, but they cannot be looked 
upon as data, so transformations on these struc-
tures are impossible. To summarize the score lan-
guage properties:

Primitives are not given.
Time structures are made by nesting PARALLEL 

and SEQUENTIAL constellations.
Modularity and naming is achieved by the Logo 

function definition mechanism.

A dvan ced  Timing Control

As an illustration of the power of not using absolute 
start times, we show two examples of advanced 
timing control. The first one, called PRE, shifts the 
start time of its argument. The "magical" musical 
object produced, will already be finished when 
asked to start. This is useful for constructing things 
like grace notes, upbeats, and the start of a tape re-

corder some seconds before it has to record. This 
mechanism prevents the cluttering of higher-level 
descriptions with low-level details. The second 
function, called POST, shifts the end time of a mu-
sical object to its start time (see Fig. 2). The object 
produced behaves like a sort of secret tail to the ob-
ject it clings to, always coming after it but invisible 
to the outside timing. In this way grouping objects 
can be done on logical or musical grounds. Modify-
ing PRE or POST objects does not change the gen-
eral timing. It should be noted that the functions 
PRE and POST are polymorphic: they can be ap-
plied to objects on any level of our hierarchical 
score representation.

The Composer

A composition system should not reflect implicit 
views of composition. We do not want to enforce 
compositional ideas on users of the system. The 
system should give access to different techniques 
and styles. We avoided making choices about "the
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Fig. 2. The use of PRE and 
POST primitives.

[SEQUENTIAL a b]

a

b

[SEQUENTIAL a c b]

[SEQUENTIAL [SEQUENTIAL a [POST c]] b]

best way of composing," but instead made available 
a range of compositional techniques that are other-
wise only available in different programs and in-
stitutions. Users can see for themselves, experi-
ment with, and eventually make their own choices.

Because the ways of composing are myriad, and 
handling them all at once is very confusing, we se-
lected a number of broad Helds and covered them 
each in a separate package. We constructed each of 
these packages as a kind of complete workbench on
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which a compositional approach can be experi-
mented with. In the Logo community these pack-
ages are called m icrow orlds. A microworld is a 
small set of powerful tools that constitute a more 
or less complete, or closed system (so there is no 
need of more or other tools within this world). This 
enables the user to learn about and make use of the 
knowledge domain expressed in these tools. The 
following paragraphs describe one of these music 
composition worlds.
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"Composing is Making Choices"

Choices can be made by the computer or by the 
composer. This microworld focusses on the range 
of control a composer wants to have over the musi-
cal material. It enables the composer to prescribe 
the rules of possible choices to the computer. The 
computer makes the actual choices according to 
the rules. LOCO remains silent about the musical 
value of the choices; this is for the composer and 
the listener to decide.

D iscrete C hoices

In this section we focus on choices from a finite set 
of possibilities. Discrete or quantized choices re-
flect the concept of scales (be it in loudness, pitch, 
or duration) in which not all values are permitted. 
Our first-choice principle describes total control by 
the composer. All subsequent interpretations of the 
piece will be the same. This choice mechanism is 
called CONSTANT.

CONSTANT "instrument "si tar

generates a program called instrument. When it is 
run it outputs the word sitar. Our next choice prin-
ciple is a simple aleatoric choice—as often used by 
different composers.

ALEATORIC "timbre [hollow fat 
rumbling ringing]

The program generator ALEATORIC is called with 
two arguments. The first argument is the name of 
the program to be created and the second is the list 
of possibilities (the event space) of this choice. 
After the program named timbre is created, it can 
be called anywhere in a Logo program and produces 
a random timbre. Of course, the Logo interpreter 
can be used directly to check its workings.

?ALEATORIC "timbre [hollow fat 
rumbling ringing]

? timbre
f at
? timbre
r in g in g

(Note that the computer output is printed light, and 
the question mark is the Logo prompt.)

Neither ALEATORIC itself, nor the program 
timbre knows about the actual timbres mentioned; 
they just handle words. These words only receive 
an interpretation at a later stage. In this way it is 
possible to make use of the same choice mecha-
nisms for different types of musical objects.

ALEATORIC "piece [part.l part.2 
part. 3 part. 4 part. 5]

This realizes parts chosen at random. Using al-
eatoric choices for the pitches in a melody yields a 
so-called w hite m elody. It lacks, like in white noise, 
any structure or predictability. A natural extension 
to ALEATORIC is the possibility of assigning dif-
ferent probabilities to the elements of its event 
space, like loaded dice. The generator WEIGHTED 
provides such a feature. It has the same argument 
structure as ALEATORIC but the elements of the 
event space are paired (in a list) with the proba-
bility that they will be chosen. Probabilities are 
specified as real numbers between 0 and 1.

WEIGHTED "instrument [[snaredrum 0.5]
[timpani 0.2] 
[cymbal 0.3]]

When instrument is called, 50 percent of the time 
it outputs snaredrum, 20 percent of the time it out-
puts timpani, and the rest of the time it will 
produce cymbal.

Sometimes there is a large number of numeric 
elements to choose from. Writing them all in a list 
for ALEATORIC would be too cumbersome. For 
this we can use the generator SCALED instead.

SCALED "pulse 1/4 2 1/8

The program pulse will return values between 1/4 
and 2, in a scale with a resolution (grid) of 1/8.

The preceding choices are made without a mem-
ory. That is, a choice does not depend on the out-
come of previous ones. We now introduce choice 
processes that have a memory—an internal state. 
Instead of the term stoch astic  variable  to refer to
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Fig 3 R hythm ic structure 
resulting from the program 
Duration.
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the outcome of a choice, we have to use the term 
stochastic  process  now. Our first most well-known 
stochastic process is called SERIAL. Each time a 
choice is made the event space is reduced by the 
chosen element, so that in a next choice this ele-
ment is excluded. Once the event space has been 
emptied, it is reestablished to its initial value. This 
constitutes a generalization of the twelve-tone prin-
ciple. For example:

SERIAL "duration [eighth quarter 
sixteenth sixteenth]

A rhythmic structure produced by this procedure is 
shown in Fig. 3. Sometimes the composer wants to 
have complete control over a time ordering. In that 
case ORDERED can be used. The elements of its 
event space appears in the predefined order.

ORDERED "accent [heavy none light 
none]

This produces heavy none light none heavy none 
light . . .  ad infinitum. There are different ways in 
which primitives, choices, and time orderings can 
be combined. For example, the arguments of primi-
tives can be the result of choice programs.

SERIAL "duration [whole half quarter 
quar ter]

ALEATORIC "pitch [c d f g a]
CONSTANT "loudness "pp

If we had a primitive musical object NOTE that 
takes a duration, a pitch, and a loudness as argu-
ments, then:

[NOTE duration pitch loudness]

results in a note of a random pitch (in a pentatonic 
scale) and a random duration (with a serial struc-
ture) in a constant pianissimo.
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Choices can also be embedded in choices as in 
the next example:

ORDERED "element
[[NOTE duration pitch loudness]
[REST duration]]

This produces an alternating sequence of the previ-
ously mentioned notes and rests.

Also time orderings can be embedded in choices 
and vice versa:

ALEATORIC "structure
[[PARALLEL element element] 
[SEQUENTIAL element element]]

The results of choices can be used in calculations 
like the following:

SERIAL "error [smal1-positive zero 
smal1-negative]

Adding error to the duration, of a musical object, 
constitutes a first experiment in forming a rubato. 
For further hierarchical nesting of choice principles, 
we need a "dereferencing" mechanism, which we 
call EVALUATED. Let us start with three value 
generators, high, mid, and low.

ALEATORIC "high [400 500 600 700] 
ALEATORIC "mid [200 250 300 350] 
ALEATORIC "low [100 125 150 175]

When we want to choose the generator to use for 
the choice in a fixed order, we can construct the 
expressions:

ORDERED "register [high mid low] 
EVALUATED "pitch "register

Register will just produce the words high, mid, and 
low, in that order. Pitch produces the high, middle, 
low, and frequency value itself.
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Fig. 4. T ran sition  n e tw o rk
o f  th e  o b j e c t  W ord.

A different way to produce the same result is to 
make a program that generates a list of possible val-
ues at a time, and to use that program as an argu-
ment for ALEATORIC:

ORDERED "possibilities 
[[400 500 600 700]
[200 250 300 350]
[100 125 150 175]]

ALEATORIC "pitch "possibilities

Each time that pitch is called, it first evaluates pos-
sibilities and then picks a random value from the 
list that was produced by possibilities.

Linking choice principles in a network, each one 
choosing a next one to use, can be done by a gener-
ator called TRANSITIVE. Like all generators, it has 
the name of the program to be generated as its first 
argument. The second argument is a starting state. 
Besides TRANSITIVE we need the definitions of 
some choice programs that produce the name of 
other choice programs.

TRANSITIVE "word "janice

ALEATORIC
ALEATORIC
ALEATORIC
ALEATORIC
.ALEATORIC
.ALEATORIC
ALEATORIC

"janice [meant said wanted] 
"doris [meant said]
"nelson [said wanted] 
“meant [that]
"said [that]
"wanted [that]
"that [doris nelson janice]

processes, can be depicted by labelling the arcs of a 
transition network with probabilities. Our way of 
constructing Markov chains has the added advan-
tage of dividing data in manageable pieces, instead 
of using huge matrices. Furthermore, by incorporat 
ing other choices (like SERIAL or ORDERED) in a 
transition network, many new musical experi-
ments are possible.

A way of constructing a stochastic process from 
a simple stochastic variable is to accumulate (or in-
tegrate) its previous values. CUMULATIVE is a 
program generator that defines a program that ac-
complishes this.

ALEATORIC "interval [ 1 2 3  -6]
CUMULATIVE "pitch "interval 60

Each time word is called, it returns its current state, 
starting with janice, and uses that state as a choice 
principle to calculate its next state. So calling word 
several times produces something like janice said 
that nelson wanted that janice meant that. . . . The 
flow of control implemented by the programs is 
called a transition netw ork. It looks familiar in its 
graphical representation (Fig. 4).

By using WEIGHTED instead of ALEATORIC as 
the basis of a transition network, the well-known 
M arkov chains  can be modelled. Probabilities are 
then not assigned to the event space but to the tran-
sitions from one event to the next. This powerful 
tool, which is able to model all discrete stochastic

In this way a program named pitch is generated 
that outputs 60 when it is called for the first time. 
Each subsequent time it is used, it yields a value 
produced by adding 1, 2, 3, or - 6  to its previous 
value. Such series of pitches fall into the class of 
brow nian  m elod ies  in which a new state is calcu-
lated by incrementing a present state with a small 
value. Brown melodies can be compared to white 
ones and are easily distinguished from them by ear. 
Different kinds of these random walk algorithms 
can be experimented with by changing the input of 
CUMULATIVE (the interval choice mechanism). 
CUMULATIVE can also be used to produce values 
that change with a constant linear slope.
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Fig. 5. Pitch changes pro-
duced by a Voss algorithm.

CUMULATIVE “ c o u n t . d o w n  -1 10

Countdown indeed counts down from 10, one at 
a time.

Since duplication of values (using the same value 
for a second time) is encountered so often, we con-
structed a generator ITERATIVE that can handle 
this mechanism.

ITERATIVE "repeated.value "value 3

If the user has defined or generated a program named 
value (of any kind), the program repeated.value 
yields the same subsequent results as this program, 
but now each value will be repeated three times. 
Repeated.value can return something like low, low, 
low, high, high, high, mid, mid, mid. . . . This 
mechanism gives us a simple way to construct 
a program for generating 1 / /melodies (Voss and 
Clarke 1978).

SCALED "fast.value 20 26 1
ITERATIVE "mid.value "fast.value 2
ITERATIVE "slow.value "fast.value 4

While fast.value yields a new number between 20 
and 26 each new round, mid.value produces a new 
value in the same range only once in two rounds, 
and slow.value comes up with something new every 
four rounds. We add the three produced values and 
use fast.value +  mid.value + slow.value as a pitch 
number. Once in a while there can be a big jump in 
pitch because all three values change in the same 
direction. When there are two values changing, 
which happens more often, the jump is smaller. 
Most of the time there will be only a small jump 
because only one value is changing (see Fig. 5). The 
resulting pitch pattern is a raw approximation of a 
1// melody. The possibilities for modification and 
refinement are enormous. The values can be scaled 
properly to give the higher-frequency components 
less amplitude. The repeat values 2 and 4 could be 
calculated—or used elsewhere to produce a rhyth-
mic structure related to the melody. The aleatoric 
choice could be replaced by another process and so 
forth. Experimenting with these melodies, compar-
ing them to brown and white ones, will be made
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much easier by using our open and simple imple-
mentation instead of awkward Basic programs 
(Dodge and Bahn 1986).

Formal languages and grammars have received at-
tention in music research. They were used as a 
model to describe different musical domains or as a 
mechanism for new (computer) compositions. (For 
an excellent review of their possibilities and use, 
see [Roads 1985].) fust as choice principles can be 
built on other ones, they can also refer to them-
selves (Desain and Honing 1988).

ALEATORIC "answer [low. note 
[SEQUENTIAL note answer]]

Answer results in a low note or a note followed by 
an answer. The last answer produces a low note or 
a note followed by an answer. In this way, when the 
system is asked to interpret an answer, it plays a 
sequence of notes ending with a low note. To ex-
pand our grammar:

ALEATORIC "dialog [nothing
[SEQUENTIAL ques tion answer dialog]]

ALEATORIC"question [high.note 
[SEQUENTIAL note answer]]

ALEATORIC "answer [low. note 
[SEQUENTIAL note answer]]

This context-free grammar generates series of 
question-answer pairs. Of course, the programs 
note, high.note, low.note, and nothing have to be 
supplied. These programs function as terminals
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Fig. 6. Rhythmic structure 
resulting from the program 
Note.
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of the grammar (they are not expanded further by 
rules of the grammar).

Changing the choice principle used to choose the 
grammar rule, from ALEATORIC to WEIGHTED, 
will yield a so-called program m ed  gram m ar. The 
individual probabilities assigned to the rules can be 
used to control the average size, and amount of ap-
pearance of the produced substructures. Assigning a 
high probability to production rules containing 
only terminals produces small objects and so forth.

Here we give an example of a grammar for sym-
metrical rhythmic structures.

ALEATORIC "note 
[nothing
[SEQUENTIAL quarter note quarter] 
[SEQUENTIAL eighth note eighth] 
[SEQUENTIAL sixteenth note 
sixteenth]
[SEQUENTIAL note quarter.rest note]]

This program could produce the rhythmic structure 
in Fig. 6.

Grammars will produce highly structured music, 
and are most useful in describing such music. An 
example of a grammar for chord progression in tra-
ditional twelve-bar blues is described by (Steedman 
1984). Because the grammar capability is implied 
by the total structure of the LOCO system, it can 
be intermingled in various ways with the other 
mechanisms. Note the restriction to context-free 
grammars.

C ontinuous C hoices

Traditional scales have been overused, so that for 
some composers they represent a restriction to be 
eliminated. In electronic and computer music one 
can specify a continuum of frequencies in Hertz or 
cents, and a continuum of loudness in decibels, for

example. Probability distributions of continuous 
variables are well researched. They inspired a new 
branch of music that called itself stoch astic  m usic  
(Xenakis 1971).

The main tool for describing stochastic variables 
is the p rob ab ility  density  function. It relates an in-
terval to the chance that a variable will be in this 
interval. In Fig. 7(a) an arbitrary probability density 
function F[x) is drawn. The probability that x  is be-
tween a and b  is the (shaded) area below F between 
a and b. This means that all probability density- 
functions will be nonnegative functions with a 
total surface area of 1. A commonly used proba-
bility density is the n orm al or Gaussian d istribu -
tion (Fig. 7(b)). It is characterized by a mean value 
M (the position of the peak in the function), and a 
deviation value S that signifies how wide the peak 
is. There is also the uniform  distribution  (Fig. 7(c)) 
in which any value between a specified minimum 
and maximum has an equal chance to occur. For 
our microworld we implemented these distribu-
tions as program generators called GAUSSIAN and 
UNIFORM. They can create a program that picks a 
value according to its distribution.

GAUSSIAN "frequency.a 1000 200
GAUSSIAN "frequency.b 1000 2
UNIFORM "loudness -80 0

When the program frequency.a is called (e.g., typed 
into the Logo interpreter), it returns a value. The 
probability density of this value will be the normal 
distribution with mean of 1000 Hz and deviation of 
200. The program frequency.b also returns values 
around 1 KHz. But they are more in the neighbor-
hood of 1000 compared to the values produced by 
frequency.a, owing to its smaller deviation. The 
generated program loudness produces values be-
tween -8 0  and 0. There is no neighborhood in 
which they are likely to fall (except of course the 
interval from -8 0  to 0 itself).
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min max -  >  x

Frequency.a and frequency.b are mutually inde-
pendent: knowing the value produced by one does 
not help in estimating the unknown value pro-
duced by the other. Sometimes we want to describe 
two stochastic variables that are not mutually inde-
pendent. Perhaps we want to create random pitches 
on two instruments, which must have a tendency 
of one pitch being high, if the other one is also 
high. Then there is a need for a tw o-d im ension al 
distribution  function. We'll just describe one.
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The two dimensional normal or Gaussian distri-
bution has five parameters. A mean value for the 
first variable, and a mean for the second. Also two 
deviations are needed, one for each variable. The 
last parameter, called the covariance, describes 
how much both variables are correlated. If the co- 
variance is high, an educated guess can be made at 
the second variable when the first is known. The 
generated programs will return a list of two values 
that are drawn according to the parameters.

GAUSSIAN.2D "independent 0 1 0 1 0  
GAUSSIAN.2D "small.corr. 0 1 0 1 . 3  
GAUSSIAN.2D "large.corr. 0 1 0 1 . 9

The plots in Fig. 8 were made by plotting these two 
values as x and y coordinates. It is simple to gener-
alize this process to other distribution functions 
and more dimensions. The continuous distribu-
tions can be combined in various ways with other 
objects. We can, for example, vary the parameters of 
a distribution.

ALEATORIC "mean [ 1 2 5 ]
GAUSSIAN "near "mean 1

The resulting distribution of near is shown in Fig. 9. 
Each time the program near is run, it first draws a 
mean value. This value is used in the normal distri-
bution of near. So it results in a value around 1, 2, 
or 5. This stacking of random choices yields, in a 
conceptually simple way, stochastic variables with 
sophisticated probability densities.

The same method can be used to construct ten-
den cy  m asks  in only a few lines.

CUMULATIVE "min -10 1 
CUMULATIVE "max 20 -2 
UNIFORM "value "min "max

The program value produces values from a per-
mitted range, this range extends from - 1 0  to 20, 
gradually diminishing (Fig. 10). Combining the pro-
posed building blocks in slightly different ways 
gives us an enormous field of possibilities (tendency 
masks with internal time-changing distributions, 
distributions with time-changing parameters, etc.).

Computer Music fournal



Fig. 8. The use of a two- Fig. 9. Distribution of Fig. 10. Tendency m ask of
dimensional probability Near. Value,
distribution with different 
correlations.

(a) Independent

>  x

(b) Small correlation

Fig. 9

Fig. 10

(c) Large correlation

If we had adhered to the traditional way of defining 
mechanisms, we would have surely defined one sort 
of tendency mask, thus forcing the user to use our 
concept of it. We hope we have proved that making 
small but powerful mechanisms that can be com-
bined in any thinkable way is a better approach.

Conclusion

We have used LOCO in a number of courses and 
workshops. It has proven to be a rich, motivational 
context for different kinds of participants. After a 
short explanation they were able to start using 
LOCO and soon were expressing their own ideas, 
depending on previous knowledge and experience in 

• the field of traditional or computer music. The sys-
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tem is currently used at the music faculty of the 
recently founded Center for Art, Media and Tech-
nology (CKMT) for courses in computer music 
composition.

We are still continuing our search for more mecha-
nisms used in different (computer) music styles, 
and their expression in LOCO microworlds. Cur-
rent work on composition systems is done in Com-
mon Lisp, so LOCO becomes COCO (Desain 1988). 
The research is directed towards transformations, 
pattern matching, parallelism, graphical interfaces 
(Desain 1986) and real-time interaction.

Implementations

We have available an implementation for the Apple 
lie with Terrapin Logo V3.0, one for the Macintosh 
and Macintosh II with Microsoft/LCSI Logo, and 
a Dutch version for the Yamaha CX5M-II with 
Philips/LCSI MSX-Logo. The cost of a disk and 
a manual is S50 (postage and handling included). 
Checks should be made payable to the Center for 
Art, Media and Technology, Utrecht Academy of 
Arts, in American dollars drawn on a Dutch bank.
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LOCO MANUAL

1 INTRODUCTION

l o c o  is a system for (music) composition. It is built on the general programming 
language Logo. It can be used as a workbench for experimenting with musical 
structures, both for beginners and professionals. It is a non-realtime system, 
which means that composing and playing don't take place at the same time. LO C O  
consists of three subsystems: the composition system, the score system, and the 
instrument system (see figure 3). The composition system consists of a set of 
program generators, programs that write programs. They can be used to create the 
so-called choice systems that will make a composition according to the rules 
provided by the composer. The connection between the composition system and 
the instrument is via the score system. The instrument system uses standard MIDI 
codes to control any kind of MIDI synthesiser.
The scope of this manual is a step by step introduction to l o c o . It is not intended 
as a demonstration of the full power of l o c o , nor to explain theories about music 
composition. The underlying philosophy and design decisions, as well as some 
other examples of l o c o  are given elsewhere (Desain/Honing 1986,1988).

2 GETTING STARTED THE VERY FIRST TIME

This chapter explains the configuration actions needed to start LOCO for the very 
first time at your site. For most users, this will already have been done by 
someone else, so they can skip this chapter and start reading chapter 3.

2.1 Needed Equipment

1. An Apple Macintosh computer: Macintosh 512K, Ed, Plus or II.
2. MIDI interface (i.e. Apple, Applica, Opcode)
3. MIDI cable.
4. MIDI synthesizer - any kind of MIDI synthesiser will do, even a synth without 

a keyboard can be used (like the Yamaha TX-7 or FB-01 expander). Other 
MIDI driven equipment (like drummachines) can also be used.

5. Audio equipment - a simple headset will do for most experiments.
6. Microsoft/LCSI Logo
7. the l o c o  disk.
8. Empty disks - for storing your compositional work and scores.

Note: LO C O  runs only under the Finder (Don’t use the Multifinder).

For workshops and classes in computer music composition it is often wise to 
concentrate first on l o c o  itself, not being distracted by all kinds of fascinating 
audio equipment. For the same reason we advise to use synth's without a 
keyboard.

LOCO Appendix 1



2.2 Step 1: Make a Working Copy of Your LOCO Disk

Make a copy of the l o c o  disk in the normal way (See your Macintosh manual). 
Store the original disk savely and use the working-copy for the configuration 
process.

Making copies o f LOCO for other than backup purposes is prohibited.
They can be traced back to the original purchaser who will be held responsible for  
all.

2.3 Step 2: Connecting a MIDI Interface and Synthesiser

Connect the MIDI interface to the modem port. For primitives adjusting the 
default settings see 6.8.
Now connect the MIDI-out of the interface to the MIDI-in on your synthesiser 
with a standard MIDI cable. Make sure the synthesizer can receive MIDI 
information on channel 1 (see your synthesiser manual). Additional synthesisers 
may be "daisy chained". They can receive MIDI on subsequent channel numbers.

2.4 Step 3: Configuring Your LOGO

Make a new copy of your Microsoft Logo application and call it LOCO Logo (see 
page 204 of the Microsoft Reference Manual).
After this startup the Preferences Program on your Microsoft disk. (If you use a 
Macintosh with HFS, make sure both the Preferences Program and a copy of the 
Logo application are not inside a folder. The Preferences Program is affected by 
the HFS system and can not find primitive sets that are in folders, see Addendum 
Microsoft Manual).
Next, copy the LOCO primitive set called LOCOPSET.P  into your LOCO Logo 
using the Primitive Set Mover (see page 214/217 of the Microsoft Reference 
Manual).
Finally, if you want to adjust your copy of Logo to your personal needs (i.e. 
more workspace) select Memory & Font Preferences in the Preferences Program 
to adjust the allocation of memory and default font (see page 207/210 of the 
Microsoft Reference Manual).
The configuration phase is now done. You can quit the Preference Program and 
copy LOCO Logo to your working copy of the LO C O  disk. Place them in the 
same folder.
You can now continue with chapter 3.
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3 GETTING STARTED

In this chapter it is assumed that your Macintosh is connected to a synthesizer, 
receiving MIDI data at channel 1, and the l o c o  disk is assumed to be configured 
appropriately.

You can then startup l o c o  by double-clicking on the file called 
"LOCO startup".

Feel free to stop reading the next chapters at any time and do some experiments of 
your own - doing is the best way of learning.
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4 THE SCORE SYSTEM

N O T E

W R IT E
P L A Y

R E S T

After starting l o c o , a score writing and playing system is available. This score 
system is to be considered as a tool - it is in itself not so interesting (see figure 3). 
But with this tool you can make programs that write music on the score in their 
own (slow) way. After that the score can be played as fast as you like by your 
synthesiser.
On a score you can write simple and compound musical objects. An example of a 
simple musical object is a n o t e :

[NOTE d u r a t i o n  p i t c h  l o u d n e s s ]

It has 3 inputs: a duration, a pitch and a loudness. The duration signifies how 
long the note is going to last. The pitch is a number counting the semi-tone steps 
of an equal-tempered scale, middle C has pitch number 60 (see chapter 6.7 for a 
table of MIDI pitches). The loudness is a number between 0 and 1. Later we will 
define translations from well-known names (like middle C and pianissimo) to 
these numbers. Let's first write one simple short loud middle C note to the score 
and play it.

WRITE [NOTE 1 6 0  1]
PLAY

(In all examples plain text is user input and italic is computer output.)

In Microsoft Logo there is no prompt. You can type text everywhere in a text 
window. To let the interpreter actually do the instruction, press the Enter key after 
each command line (see page 11/12 of the Microsoft Reference Manual).

If we write more notes they will be added one after another to the score. Let's try 
some other inputs:

WRITE [NOTE 2 6 0  1]
WRITE [NOTE 1 5 8  1]
PLAY

Of course we also need rests:

WRITE [REST 1]
WRITE [NOTE 2 5 8  0 . 7 ]
PLAY

When you make a typing error you can use the common Logo cursor keys and 
line editing commands (see page 9 of the Microsoft Reference Manual).
Clover-S stops the playing of the score and clover-H for Help information also 
works for L O C O  primitives.
Also other Logo constructs like repetition are usable within LOCO:

REPEAT 4 [WRITE [NOTE 1 67  1 ] ]
PLAY

If you are bored with such repeated notes or with typing all these notes yourself, 
and want to let the computer compose the piece for you, you should start reading 
chapter 5 and come back later to hear all about the facilities of the score system. 
On the other hand, if you like to explore one thing at a time just continue reading.
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P O S I T I O N
P O S I T I O N ?

Let's talk about polyphony now. We can start from the beginning of the score 
( p o s i t i o n  o) and add a second layer of notes. Or we can see were we are in the 
score, go to a specific position, and continue from there.

POSITION 0
WRITE [NOTE 3 51 1]
WRITE [NOTE 1 52 1]
PLAY
POSITION?
4
POSITION 2
WRITE [NOTE 1 50 1]
PLAY

The created score in a pianoroll notation looks like this:

T E M P O
T E M P O ?

S A  V E .S C O R E  
E R A S E . S C O R E

The score can be played at different tempos. A tempo number gives the number of 
time-units per minute. So our little score of 11 time-units will last for 11 seconds 
when played at tempo 60:

TEMPO?
60
PLAY
TEMPO 120 
PLAY 
TEMPO 60

A score can be saved to disk, erased and retrieved at a later time, s a v e .s c o r e  
will open a Save dialog box and asks for a filename.

SAVE.SCORE 
ERASE.SCORE 
PLAY
WRITE [NOTE 1 60 1] 
PLAY
LOAD.SCORE 
PLAY
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L O A D . S C O R E

P

S

T IM E U N IT
T IM E U N IT ?

l o a d .s c o r e  overwrites the current score. So if  you want to keep it, save it 
before reading a new score from disk, l o a d .s c o r e  opens a Load dialog box 
and lets you select the file that has to be loaded.

Next to make multiple layers of notes on the score by writing layer per layer and 
using p o s i t i o n , we can make compound musical objects at once (note that later 
these objects will be calculated by some kind of program, but for the moment we 
will type them in). Musical objects that will sound at the same time are constructed 
using p  for Parallel. A parallel object will last as long as its longest component.

ERASE.SCORE
WRITE [P [[NOTE 4 60 1][NOTE 8 63 1]]]
PLAY
WRITE [P [[NOTE 4 57 1][NOTE 4 59 1][NOTE 4 63 1]]]
PLAY

You can make a sequential ordering of musical objects into one compound object 
by using s  for Sequence.

ERASE.SCORE
WRITE [S [[NOTE 1 60 1][REST 1][NOTE 1 61 1]]]
PLAY

P and s  are functions that have a list of musical objects as argument.

Sometimes you want to use notes with smaller durations. Although it is permitted 
to use fractional durations, a change in the meaning of the time-unit is often more 
effective. The default value of time-unit is a sixteenth, each note of duration 1 will 
be a sixteenth note - lasting for 0.25 seconds. If you set the time-unit to a quarter 
note, and since at tempo 60 you will have 60 of diem each minute, a note of 
duration 1 will last for one second. Changing the time-unit will only affect the 
writing of the score (way of notating) and not the actual playing. If this all seems 
too complicated to you, just remember the following. If your tempo has to be set 
at an unreasonable high value to get the result you want, then it is better to write 
the score with a smaller time-unit and vise-versa.TiMEUNlT is usually set before 
you write the score, t em po  while playing it (see figure 3).

ERASE.SCORE 
TIMEUNIT? 
1 / 1 6  
TIMEUNIT 1/4
WRITE [NOTE 1 60 11
WRITE [NOTE 1 61 11
PLAY
ERASE. SCORE
WRITE [NOTE 1 60 1]
WRITE [NOTE 1 61 1]
PLAY

Note that l o a d .s c o r e  and e r a s e .s c o r e  reset t i m e u n i t  to its default value 
1/16. That is why in the example after e r a s e .s c o r e  the written notes sounded 
shorter, t i m e u n i t  was set to its default value.
Most MIDI synthesisers are equiped with different sounds called instruments, 
timbres or voices. The playing instrument can be changed using i n s t r u m e n t . It 
has a number as input. This is the same number you'll have to use when selecting 
the instrument manually on the synthesiser itself.
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IN S T R U M E N T
IN S T R U M E N T ?

P A R T
P A R T ?

ERASE.SCORE 
WRITE [NOTE 4 54 1] 
INSTRUMENT 3 
PLAY
INSTRUMENT?
3
INSTRUMENT 22 
PLAY

If you have a synthesiser that can handle more instruments at once (this is called 
multi-timbral), or if you have more synthesisers connected in a "daisy chain", 
each receiving MIDI information on a different channel, you can write music that 
has more then one part. If you do not have this, skip the explanation of PART. 
PART changes the current part of the score you are writing (i.e. the MIDI channel 
the notes will go to when played). And INSTRUM ENT changes the instrument 
playing the current part.

ERASE.SCORE 
PART?
1
WRITE [NOTE 1 60 1]
WRITE [NOTE 2 63 1]
INSTRUMENT 3
PLAY
PART 2
POSITION 0
WRITE [NOTE 2 55 1]
WRITE [NOTE 1 56 1]
INSTRUMENT 11
PLAY
PART 1
INSTRUMENT 10 
PLAY

The resulting score can be visualised as follows:

»sksssks = part 1, played by instrument 10 
= part 2, played by instrument 11

Figure 2. Pianoroll notation of the given score.
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P R E

P O S T

Note that l o a d .s c o r e  and e r a s e .s c o r e  reset p a r t  and t i m e u n i t  to then- 
default values, 1 and 1/16 respectively.

Advanced control of timing achievable with the l o c o  system will be 
demonstrated next.
When writing scores the position in the score can be manipulated by the musical 
objects themselves. [PRE object ] will be written to the score just before its 
current position without changing it. This is useful for objects like grace notes.

ERASE.SCORE
REPEAT 4 [WRITE [NOTE 1 60 1]]
PLAY
POSITION 3
WRITE [PRE [NOTE 0.2 50 1]]
PLAY

The PRE object is prefixed to the current position in the score, i.e. it already 
happened when it's asked to start at position 3 (you can hear that the PRE note is 
not on the same beat as the first layer). 
p r e  can also be combined in s.

POSITION 4
REPEAT 4 [WRITE [S [[PRE [NOTE 0.15 70 1]][NOTE 1 62 1]]]]
PLAY
POSITION?
8

pr e  behaves like a prefix attached to [n o t e 1 62 1], but it does not change the 
duration, nor the timing of the s object.The po s t  object is postfixed to the 
position in the score. This means that it can be written to the score at the current 
position without changing it. Mind that writing a PRE object at position 0 of the 
score is an error (This is like writing a musical object on your desk instead of on 
the music paper).

The next example will yield a chord:

ERASE.SCORE 
POSITION?
0
WRITE [POST [NOTE 1 70 1]]
POSITION?
0
WRITE [NOTE 4 60 1]
POSITION?
4
PLAY
WRITE [POST [NOTE 1 70 1]]
POSITION?
4
PLAY

To make clear the information flow in the score system we summarize the 
commands in a picture:
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REST

P
S

PRE
POST

Figure 3. Information flow in the score system.
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A L E A  T O R IO

5 USE OF CHOICE SYSTEMS

Composition can be looked at as the making of choices. Choices can be made by 
the composer or by the computer. In the last case the composer (you!) will have to 
give the rules to the computer. One of the possible rules is a random choice from a 
fixed set of possibilities. We create such a program, a so-called "choice system", 
by means of the program generator a l e a t o r i c

ALEATORIC "COLOR [RED GREEN ORANGE]
SHOW COLOR 
RED
SHOW COLOR 
ORANGE
REPEAT 4 [SHOW COLOR]
GREEN
GREEN
ORANGE
RED

Note that the program co lo r  is just a normal Logo program, except that it is 
created by a program (by a l e a t o r ic ), c o l o r  can be used as any Logo 
program, like in the example where its result is printed repeatedly. (If you do not 
know about r e pe a t  you should have a quick look in the Logo manual here.) 
Note also that c o l o r  does not know anything about colors, it just gives you a 
word as result.

The name of the program (e.g. c o l o r ) can be chosen freely, but mind not to use 
LOCO primitive names as listed in chapter 10, or any logo primitives (see 
Microsoft Reference Manual). Also the use of names starting with a dot is 
discouraged: loco  uses them internally.

In the window called "LOCO Work" an overview of all currently available choice- 
systems is displayed.

Now we are going to use a l ea t o r ic  to construct a musical example, creating a 
melody with pitches chosen randomly from a fixed set of possibilities.

ERASE.SCORE
ALEATORIC "PITCH [60 65 67 69 70]
REPEAT 12 [WRITE [NOTE 1 PITCH 1]]
PLAY

Until now, we have been supplying a number as the second argument of NOTE. 
Now the program pit c h  calculates such a pitch number for us. Those of you 
who know about scales, and like to experiment with them, can immediately start 
creating random melodies in major, minor, or other scales, by selecting a suitable 
list of possibilities for pit c h  (For MIDI pitch/key numbers see chapter 6.7).
Note that when you PLAY the score a second time you will hear the same notes, 
while when you repeat the previous example (writing a new sequence of notes 
with a random pitch) you will hear a different score.

We also can make random rhythms using a l e a t o r ic :

ERASE.SCORE
ALEATORIC "DURATION [124]
REPEAT 12 [WRITE [NOTE DURATION 60 1]]
PLAY
REPEAT 12 [WRITE [NOTE DURATION PITCH 1]]
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PLAY

E R A S E . W O R K  
E R A S E . C H O I C E

O R D E R E D

R E S E T . W O R K  
R E S E T . C H O I C E

In the last example we combined the two mechanisms of choosing random pitches 
as well as durations, l o c o  supports lots of ways of combining very simple 
mechanisms into complex ones. We encourage the free experimenting with these 
combinations. They are so manifold that it is impossible to describe them all, just 
like describing all possible Logo programs is an infinite task.

When you want to start all over with a new composition you can use 
e r a s e .w o r k . It will erase all choice systems, e r a s e .c h o i c e  can be used for 
erasing just one choice system.

ERASE.WORK 
SHOW COLOR
J  don't know how to color

If you have a predefined order in mind, in which the choices have to appear, you 
can use the generator o r d e r e d  instead of a l e a t o r i c , o r d e r e d  would make 
the right traffic light, compared to the c o l o r  example we did with a l e a t o r i c , 
but we will give a musical example here:

ERASE.SCORE
ORDERED "PITCH [60 61 64]
REPEAT 9 [WRITE [NOTE 1 PITCH 1]]
PLAY
ORDERED "DURATION [1 2]
REPEAT 12 [WRITE [NOTE DURATION PITCH 1]]
PLAY

In the second part of the example we put a duration order of two elements against 
a melody line of three elements. Can you figure out what goes on?
We can use loudness to accentuate one of the patterns:

ORDERED "LOUDNESS [1 0.7]
REPEAT 12 [WRITE [NOTE DURATION PITCH LOUDNESS]]
PLAY
ORDERED "LOUDNESS [1 0.7 0.7]
REPEAT 12 [WRITE [NOTE DURATION PITCH LOUDNESS]]
PLAY

Select an instrument on your synthesiser that is sensitive for loudness (for which 
0.7 and 1 are distinguishable).
Sometimes you need the possibility to reset a choice system in its initial state, as if 
you never used it. You can use r e s e t .c h o i c e  here (or r e s e t .w o r k  that 
resets all choice systems).
(In the LOCO Work window you see how l o u d n e s s  was generated:
ORDERED "LOUDNESS [1 0.7 0.7]).

SHOW LOUDNESS 
1
SHOW LOUDNESS 
0.7
RESET.CHOICE "LOUDNESS 
SHOW LOUDNESS 
1

A third principle of choice used by many composers is serial choice. A serial 
choice of a given set of possibilities will first use all of them before one can be
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S E R IA L

E V A L U A  TED

chosen again. Think of a serial choice as a bucket full of possibilities (written on 
little pieces of paper). Each time a new value is needed, one piece of paper is 
taken out of the bucket at random without putting it back. Only when the bucket is 
empty all of the possibilities (pieces of paper) are put back in the bucket and the 
process is continued.

ERASE.SCORE
SERIAL "PITCH [60 63 65]
REPEAT 12 [WRITE [NOTE 1 PITCH 1]] 
PLAY
ERASE.SCORE 
SERIAL "DURATION 
REPEAT 24 [WRITE 
PLAY
POSITION 0 
REPEAT 24 [WRITE 
PLAY

[1 2 3]
[NOTE DURATION PITCH

[NOTE DURATION PITCH

1]]

-12  1]]

When we use a serial choice for making rhythms, as we did in the second part of 
the example above, a kind of feeling for measure is created. This happens because 
after each 1 +  2 +  3 =  6 time-units we can be sure a note will start. This even 
becomes more apparent when a second layer of the same kind of notes is added. 
This second layer is transposed down by an octave (12 semitones) by using just 
plain Logo arithmetic. Everywhere in l o c o  the full power of Logo is available 
for these kinds of calculations.

Our next example will give a demonstration of the orthogonal nature of l o c o : 
everything can be coupled to everything. We will use a choice system to generate 
a list of possibilities that another choice system can choose from.

ALEATORIC "DIVISION [[3 3][4 2][5 1]]
SHOW DIVISION 
[ 4  2 ]
SHOW DIVISION 
[3 3]
SERIAL "DURATION "DIVISION 
SHOW DURATION 
2
SHOW DURATION
4
SHOW DURATION
5
RESET.CHOICE "DURATION 
ERASE.SCORE
REPEAT 12 [WRITE [NOTE DURATION 50 1]]
PLAY
POSITION 0
REPEAT 12 [WRITE [NOTE DURATION 61 1]]
PLAY

In this example serial choice system d u r a t i o n  only consults d i v i s i o n  when the 
previous list of possibilities is exhausted. Note that when you use these kind of 
stacked choices the name of the choice system must be quoted when it is used as 
an input to another choice system. Otherwise, Logo considers it just a program, 
calculates its result and gives that as a constant value to the second program 
generator.

The next example shows another way of stacking choice systems. One choice 
system can choose the name of another one that has to be evaluated.

ERASE. SCORE
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C O N S T A N T

T R A N S L A T E D

W E IG H T E D

ERASE.WORK
ALEATORIC "HIGH [60 61 62]
ALEATORIC "LOW [50 51 52]
ORDERED "REGISTER [HIGH HIGH LOW]
EVALUATED "PITCH "REGISTER
SHOW REGISTER
HIGH
SHOW PITCH
61
REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

r e g i s t e r  will return the name of a choice system, p i t c h  will use that name and 
run it once (in this example it produces a pitch number).

To make your programs more readable you can use CO N STA N T to give names to 
your musical structures, as in the following two examples:

ERASE.SCORE
ALEATORIC "PITCH [60 61 62]
CONSTANT "LOUD.NOTE [NOTE 1 PITCH 1]
CONSTANT "SOFT.NOTE [NOTE 1 PITCH 0.6]
CONSTANT "CHORD [P [[NOTE 4 60 1][NOTE 4 63 l][NOTE 4 64 1]]]
REPEAT 12 [WRITE [S [CHORD LOUD.NOTE SOFT.NOTE]]]
PLAY

ERASE.SCORE 
ERASE.WORK
CONSTANT "MINOR [60 62 63 65 67 68 70]
CONSTANT "MAJOR [60 62 64 65 67 69 71]
ALEATORIC "PITCH "MINOR
REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY
ALEATORIC "PITCH "MAJOR
REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

If you want to use an element by element translation of names you can use 
t r a n s l a t e d  that has a list of pairs (a kind of dictionary) as its third input.

ERASE.SCORE 
ERASE.WORK
ALEATORIC "TONE [C D E F G A B]
TRANSLATED "PITCH "TONE [ [C 60] [D 62] [E 64] [F 65] [G 67] [A 69] [B 71]] 
SHOW TONE 
E
SHOW PITCH
69
REPEAT 12 [WRITE [NOTE 1 PITCH 1]]
PLAY

When you need choices with different probabilities, you can use w e i g h t e d . It 
works like A LEA TO R IC , but assigns to each possibility a different probability.
The next example shows the use of weighted durations. Half of the choices will 
be of duration 1, the rest will be of duration 2 or, with a slight chance, of duration 
8 .

ERASE.SCORE
WEIGHTED "DURATION [[1 0.5][2 0.4][8 0.1]]
REPEAT 12 [WRITE [NOTE DURATION 55 1]]
PLAY
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S C A L E D
Sometimes you want to choose from a (very) large number of possibilities. It 
then can be much easier to give only the borders in between which can be chosen. 
With s c a l e d  you need a minimum, a maximum, and a resolution defining the 
size of the scaled steps in between (as if we used a l e a t o r i c  with a list of equal 
spaced numbers between a minimum and a maximum). The larger the resolution, 
the less possibilities there are within the given range.

ERASE.SCORE
SCALED "WHOLE.TONE.PITCH 60 72 2 
SHOW WHOLE.TONE.PITCH 
72
SHOW WHOLE.TONE.PITCH 
62
SHOW WHOLE.TONE.PITCH 
66
REPEAT 12 [WRITE [NOTE 1 WHOLE.TONE.PITCH 1]]
PLAY

A whole tone scale has equal steps between every preceding note. You maybe 
want to compare the sound and making of this scale with the ones you made with 
A L E A T O R I C .
When you want to use negative values, mind that Logo is weak in handling 
negative numbers. Be sure to put parentheses around them, so they will be 
interpreted in the right way (e.g. (-2)).

The next is an example using pr e  for precise timing control of a grace note 
attached to a regular beat, while the duration fluctuates.

ERASE.SCORE
SCALED "DURATION 0.1 0.5 0.01
CONSTANT "GRACE.NOTE [PRE [NOTE DURATION 50 1]] 
CONSTANT "BEAT [NOTE 2 52 1]
WRITE [REST 1]
REPEAT 12 [WRITE [S [GRACE.NOTE BEAT]]]
PLAY

I T E R A T I V E

The first r e s t  is to prohibit the writing of a G R A C E .N O TE  before the beginning 
of the score (see explanation of p r e ).

Now we arrive at what we can call higher order choice systems. They are only 
useful when build on top of other choice systems. A very useful one is 
i t e r a t i v e  which can repeat results a number of times. An example:

ERASE.SCORE
ORDERED "PATTERN [64 62 64 67]
REPEAT 16 [WRITE [NOTE 2 PATTERN 1]]
PLAY
ITERATIVE "DOUBLE.PATTERN "PATTERN 2 
SHOW DOUBLE.PATTERN 
64
SHOW DOUBLE.PATTERN 
64
SHOW DOUBLE.PATTERN 
62
SHOW DOUBLE.PATTERN 
62
RESET.WORK 
POSITION 0
REPEAT 32 [WRITE [NOTE 1 DOUBLE.PATTERN + 12 1]]
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PLAY

C U M U L A T IV E

T R A N S IT IV E

Well, in this example a lot of things happened. Let's look at them step by step. 
The first thing you played was a simple repeated pitch pattern or melody of four 
notes. The second time the same pattern is doubled, as well as in tempo as in 
notes. The double tempo is defined by a smaller duration value, but, what is much 
more interesting, the doubled notes were derived from p a t t e r n  by taking its 
result and repeating every new value two times. Because we checked out 
D O U B L E .P A T T E R N  on the monitor half way, we used R ES E T .W O R K  to reset 
d o u b l e .p a t t e r n  to its initial state. Otherwise both patterns wouldn't be that 
synchronous ( d o u b l e .p a t t e r n , would start half-way). 
p a t t e r n  and d o u b l e .p a t t e r n  could also be called Balungan and Pekingan, 
respectively, if it was a first step in making a simulation of a Javanese gamelan 
styled composition.
Construct for yourself an iterative choice system that lets another choice system 
take care of the repetition input (the third input of i t e r a t i v e ).

Another higher order program generator is c u m u l a t i v e . Next to the name of the 
program to generate it has an increment and a start value.

ERASE.SCORE
CUMULATIVE "CHROMATIC.PITCH 1 48 
SHOW CHROMATIC.PITCH
48
SHOW CHROMATIC.PITCH
49
SHOW CHROMATIC.PITCH
50
REPEAT 12 [WRITE [NOTE 1 CHROMATIC.PITCH 1]]
PLAY

Although this is not a very shocking example, c u m u l a t i v e  is a strong principle. 
It, as its name suggests, cumulates all inputs, beginning with its starting value (48 
in the example above). The next values are determined by the increment value. 
That can be a number (as in the previous example), but also, and more interesting, 
a choice system, as is t h i r d  in the next example:

ERASE.SCORE
ALEATORIC "THIRD [3 4 -3 -4]
CUMULATIVE "BROWN.THIRD.PITCH "THIRD 60 
SHOW BROWN.THIRD.PITCH 
60
SHOW BROWN.THIRD.PITCH 
57
REPEAT 24 [WRITE [NOTE 1 BROWN.THIRD.PITCH 1]]
PLAY

Brown melodies, as made here with c u m u l a t i v e , have a more flowing nature 
compared to aleatoric or white melodies.

The next program generator to introduce is t r a n s i t i v e . With this you can link 
choice systems in a network, each one choosing a next one to use. Like all 
generators it has the name of the program to be generated as its first argument.
The second argument is a starting state.

ERASE.WORK 
ERASE.SCORE
WEIGHTED "I [[II 0.2][IV 0.6][V 0.2]]
WEIGHTED "II [[I 0.7][IV 0.3]]
CONSTANT "IV "V
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CONSTANT "V "I 
TRANSITIVE "PROGRESSION "I 
SHOW PROGRESSION 
I
SHOW PROGRESSION
IV
SHOW PROGRESSION
V
SHOW PROGRESSION 
I
TRANSLATED "CHORD "PROGRESSION [[I «01 [II D][IV F][V G] ]
CONSTANT "C [P [[NOTE 2 48 11 [NOTE 2 52 1] [NOTE 2 55 1]]]
CONSTANT "D [P [[NOTE 1 50 1] [NOTE 1 53 1] [NOTE 1 57 HI]
CONSTANT "F [P [[NOTE 2 48 1] [NOTE 2 53 1] [NOTE 2 57 1]]]
CONSTANT "G [P [[NOTE 3 50 1] [NOTE 3 53 11 [NOTE 2 55 1][NOTE 3 59 1]]]
REPEAT 12 [WRITE CHORD] 
PLAY

SA VE. W O R K  
L O A D .W O R K

Figure 4. Graphical representation of P R O G R E S S IO N .

After all this typing you can save the compositional work by using s a v e .w o r k . 
l o a d .w o r k  reads it back in again, ( s a v e .w o r k  and l o a d .w o r k  are in fact 
quite like the Logo primitives s a v e  and l o a d , you can use the File menu items 
as well (see page 6/7 of the Microsoft Reference Manual). Only l o a d .w o r k  
also refreshes the LOCO Work window).

S C A L E

SAVE.WORK "PROGRESSION 
ERASE.WORK
LOAD.WORK "PROGRESSION

The last two program generators are used when lists of values are needed instead 
of isolated values.
Sometimes it's useful to have available a scale of values (as used implicitly in 
s c a l e d ). This can for example be used as argument for s e r i a l . The arguments 
of s c a l e  are a minimum, a maximum, and a resolution (like SC ALED ).
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ERASE.SCORE 
ERASE.WORK
SCALE "WHOLE.TONE.SCALE 60 72 2 
SHOW WHOLE.TONE.SCALE 
[ 6 0  62  64 6 6  68  70 7 2 ]
ALEATORIC "WHOLE.TONE.PITCH "WHOLE.TONE.SCALE 
SHOW WHOLE.TONE.PITCH 
70
SHOW WHOLE.TONE.PITCH
64
REPEAT 12 [WRITE [NOTE 1 WHOLE.TONE.PITCH 1]]
PLAY

Of course, the arguments for s c a l e  can also be calculated by another choice 
system.

ERASE.SCORE
CUMULATIVE "MAXIMUM 1 60
SCALE "PITCHES 60 "MAXIMUM 1
SERIAL "PITCH "PITCHES
REPEAT 24 [WRITE [NOTE 1 PITCH 1]]
PLAY

C O L L E C T
This example produces a constantly widening serial melody.

If you want to collect a certain number of outcomes from a choice system into a 
list, it can be passed as an argument to another choice system, using c o l l e c t . In 
the next example a number of trills are made.

ERASE.SCORE
ALEATORIC "PITCH [60 62 64 65 67 69 72] 
COLLECT "PITCHSET "PITCH 2 
SHOW PITCHSET 
[ 6 9  6 2 ]
SHOW PITCHSET
[ 6 0  6 7 ]
ITERATIVE "REPEATED.PITCHSET "PITCHSET 4 
ORDERED "TRILL "REPEATED.PITCHSET 
REPEAT 36 [WRITE [NOTE 0.5 TRILL 1]]
PLAY
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6 SUMMARY OF COMMANDS

6.1 Writing Scores

E R A S E . S C O R E
Deletes the entire score

P AR T number
Sets the current part to number. Number is between 1 and 16 and 
corresponds to MIDI channels 

P A R T ?
Prints the number of the current part 

P O S IT IO N  number
Sets current position in the score to a point number time-units from the start 

P O S I T I O N ?
Prints the current position in time-units, measured from the start of the score 

T1M EUNIT note -va lue
Sets the reference unit of time to note-value, a fraction of a whole-note 

T I M E U N I T ?
Prints the current reference note-value 

W R ITE  object
Writes object into the score at the current position, in the current part

6.2 Playing Scores

IN S T R U M E N T  number
Assigns the instrument to the current part of the score 

IN S T R U M E N T ?
Prints the instrument number for the current part 

P L A Y
Performs the score

TE M P O  number
Sets the playing tempo to number time-units per minute 

T E M P O ?
Prints the current tempo

6.3 Storing Scores

S A V E . S C O R E
Saves the score to disk. Opens a Save dialog box

L O A D .S C O R E
Loads a previously saved score. Opens a Load dialog box

6.4 Musical Objects

[N O TE  duration pitch velocity]
A note with given duration (in time-units), pitch (in MIDI 
numbers), and intensity (between 0 and 1)

[R E S T  duration]
A rest (silence) lasting duration time-units 

[S [o b je c t l  ... objectn]]
A S(equence) of objects starting one after another

[P [ob jec t l  ... objectn]]
A P(arallel) structure of objects starting at the same time 

[PRE object]
A prefix object 

[P O S T  object]
A postfix object
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6.5 Program Generators

A L E A T O R IC  name l is t -o f -p o ss lb i l i t ie s
Name will return a randomly chosen element from the list o f 
possibilities
List-of-possibilities is evaluated each time name is called 

C O L L E C T  name source number
The program name will return a list of number values from source 
Source is evaluated once for each number of calls of name 
Number is evaluated each time name is called 

C O N S T A N T  name value
The program name will return value 
List-of-possibilities is evaluated each time name is called 

C U M U L A T IV E  name increment start -va lue
Each new value that name will return is increment bigger than the 
previously returned value. The first value returned is the start-value 
Increment is evaluated each time name is called 
Start-value is evaluated at the first time name is called 

E V A L U A T E D  name source
Name will run the choice system given by source once 
Source is evaluated each time name is called 

IT E R A T IV E  name source  number 
Name will repeatedly return a value from source a number of times 
Source is evaluated once for each number of calls of name 
Number is evaluated when all its elements are used 

O R D E R E D  name l is t -o f -p o ss ib i l i t ie s  
Name will return one of the possibilities in the given order 
List-of-possibilities is evaluated when all its elements are used 

S C A L E  name minimum maximum resolution
Name will return an ordered list of random values between minimum and 
maximum with the given resolution
Minimum, maximum, and resolution are evaluated each time name is called 

S C A L E D  name minimum maximum resolution 
Name will return a random value between minimum and maximum 
with the given resolution
Minimum, maximum, and resolution are evaluated each time name is called 

S E R IA L  name l is t -o f -p o ss ib i l i t ie s  
Name will return one of the possibilities, excluding it in future 
choices, until all are chosen. Then it starts all over again with the full 
list of possibilities
List-of-possibilities is evaluated when all its elements are used 

T R A N S IT IV E  name in it ia l-p rogram -nam e
Each new word that name will return is the result of running its 
previous result as a program. The first result is its initial-program-name 
Initial-program-name is evaluated at the first time name is called 

T R A N S L A T E D  name sou rce  l is t -o f -o r ig in a l -t ra n s la t io n -p a irs  
Name will return a value from source translated according to the 
table (list-of-original-translation-pairs)
Source is evaluated each time name is called
List-of-original-translation-pairs is evaluated each time name is called 

W E IG H T E D  name l ls t -o f -p o s s ib i l i t y -p ro b a b i l l t y -p a i rs  
Name will return one of the possibilities according to the assigned 
probabilities
List-of-possibility-probability-pairs is evaluated each time name is called
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6.6 Choice Systems Management

E R A S E .C H O IC E  c h o ic e -s ys te m
Deletes the choice system 

E R A S E .W O R K  
Deletes all choice systems 

LO A D .W O R K  file
Retrieves all choice systems previously saved in file. (Identical to the 
standard Logo primitive l o a d , except that it also refreshes the LOCO Work 
window)

R E S E T .C H O IC E  c h o ic e -s y s te m
Resets a choice system to its initial state 

R E S E T .W O R K
Resets all choice systems to their initial states 

S A V E .W O R K  file
Saves all choice systems to a file. (Identical to the standard Logo primitive 
S A V E )

6.7 MIDI Pitch Numbers

Figure 5. MIDI pitch/key numbers

6.8 MIDI Interface Primitives

M ID IO U T  byte
Sends a byte to the MIDI interface

M ID I.P O R T n am e-o f -p o rt
Sets the port for the MIDI interface to name-of-port (Modem or Printer) 

M ID I .P O R T ?
Prints name of current MIDI interface port (Modem or Printer)

M ID I.S P EED  speed
Sets the speed of the MIDI interface to speed Mhz (0 .5 ,1  or 2)

M ID I .S P E E D ?
Prints the current speed of the MIDI interface (0.5, 1 or 2 Mhz)
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7 SEPERATE USE OF LOCO COMPONENTS

7.1 Separate Use of the Choice Systems

Choice systems can be used separately e.g. for creating pictures or poems. Load 
both the files LOCO General Primitives and LOCO Program Generators.
Two short examples are listed below.

LOAD "LOCO\ General\ Primitives 
LOAD "LOCO\ Program\ Generators

SERIAL "ANGLE [-30 -70 -10 20 50 40]

Define in the Editor:

TO STRANGE.LINE
REPEAT 6 [RIGHT ANGLE FORWARD 4]
FORWARD 12 
END

Now you can type in the text window 

REPEAT 100 [STRANGE.LINE PU FORWARD 50 PD]

Another example with text:

ORDERED "SPEECH [I STUT T ER SOME TIMES, AND SOMETIMES NOT] 
ALEATORIC "NUMBER [112]
ITERATIVE "MAX.HEADROOM "SPEECH "NUMBER 
REPEAT 12 [TYPE MAX.HEADROOM TYPE "\ ]
I STUT T T ER SOME TIMES, AND AND SOMETIMES NOT NOT

7.2 MIDI Output

The MIDI output can be use separately.You can sent an arbitrary byte (number 
from 0 to 255) through the MIDI interface. In this way you can write programs 
controlling your synthesiser directly.
The next example shows a procedure that starts your tape recorder ("250" is the 
MIDI sequence to start a MIDI sequencer):

TO START.SEQUENCER 
MIDIOUT 250 
END

See the manual of your synthesiser for details on the MIDI codes that can be used.
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7.3 Score System

The score system can be used separately to make your own music composing 
program tool. This will give you the score primitives. A quick example:

LOAD "LOCO\ General\ Primitives 
LOAD "LOCO\ Score\ Primitives

Define in the Editor:

TO DOWN :FROM :TO 
IF :FROM < :TO [STOP]
WRITE NOTE 1 :FROM 1 
DOWN :FROM - 1 :TO 
END

And try out in the text window

DOWN 70 50 
PLAY
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Co n c l u d in g  r em a r k s

In the introduction of this thesis it was stated that it was not the construction of 

computational equivalents of music cognition that we aimed at, but the development of a 

language or representational system that enables the description, in clear and precise 

ways, of the main characteristics of a particular sub-domain of the representation of 

music, in order to help in the understanding and modelling of cognition. I took an explicit, 

formal and modular approach to the representation of musical knowledge. This is, as 

argued before, a restriction for the time being but shown to be one of the better and 

advisable alternatives to choose. The methodology to obtain these results was to build 

microworlds dedicated to an isolated problem or a related set of issues. The result being 

two concrete and successful microworlds: one concentrating on a set of issues related to the 

representation of time, the other embodying an extensive knowledge representation of 

structure facilitating the specification of a calculus for expressive timing. They, as such, 

meet the aim set in the subtitle of this thesis. In conclusion, however, it is good to wonder 

about the question of what might be lacking if one restricts oneself to such an approach, 

especially in the research towards a general representation of music.

T O W A R D S  A  G E N E R A L  R E P R E S E N T A T IO N  O F  M U S IC

The task of constructing a general representation of music is hard to imagine and to plan. 

Especially since projects of a comparable complexity did not reach high levels of success. 

We still lack a general theory of representation "a sobering fact since our systems rest on 

it so fundamentally" (Smith, 1991). General representation languages are still under 

development, and there are, besides lots of technical difficulties, still theoretical and 

philosophical problems of enormous proportions. I nevertheless think that it is very 

important to look for generalizations and abstractions in the representation of music in 

all its aspects. An alternative position is summarized in the statement "A representation 

depends on its use" (Roads, 1984; Pope, 1988; Huron,1990b), a viewpoint described by 

Christopher Longuet-Higgins (1990) in the following quote:

“My only comment is to remark that the quality o f  a representation depends on how well 

it fulfils the purposes fo r  which it is intended, and to underline the need to specify 

exactly what these purposes are, and how the representation is to be used in achieving 

them. A blindingly obvious, but by no means trivial, example is the remarkable 

efficiency o f  stave notation fo r  the purpose o f  sight-reading - a  form  o f  representation 

from which we still have a great deal to learn"

Although this is a valid approach to the respective domains of music representation - 

whether it is in music notation, printing, archiving, the construction of sound and
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sequencer files formats etc. the aim of constructing a general representation is to bring 

out the generalizations and abstractions that are not primarily influenced or guided by 

their use. I prefer this path 'generalization and abstraction' to that of 'dedication and 

specialisation' (i.e. to design a new and therefore "efficient" representation for every 

new task or problem) and that forces one to describe what is shared among all these 

representations.

In the following paragraphs the possible restrictions on the three main aspects of our 

approach to the representation of music will be discussed (i.e. explicit, modular and 

formal), hopefully functioning as an appetizer to future work in this field.

Limitations on making musical knowledge explicit

If we look back to the relative complexity of the expression calculus microworld with its 

explicit structural descriptions, it is hard to imagine the size of a representational 

system that incorporates all musical knowledge in an explicit manner. It seems that, at a 

certain stage, implicit knowledge can not be ignored.

Implicit knowledge is frequently used in all kinds of computer systems. Think of a simple 

library catalogue system. What is often retrieved is implicit knowledge, for example 

when a user combines facts on the country of publication and the author's year of birth to 

obtain information on books of Renaissance writers in England - information that is not 

explicitly represented in the electronic catalogue. But the extraction and representation 

of implicit knowledge will always be dependent on explicit information (in this example 

an explicit representation of a book with e.g., a title, the author's name, his/her year of 

birth, etc.).

At a later stage of building a representational system we might have to consider the 

notion of skill, also a kind of implicit knowledge (one has to be careful not to treat the 

entire world as a collection of explicitly representable objects). Skill is acquired by 

practice and experience and can not be represented explicitly. As an example example one 

might think of expressing knowledge on performing ornaments, how they are played at 

different tempi and in various musical styles. This knowledge is most readily expressed 

in a procedural, implicit way, and in this way the explicit structural representation of 

the calculus provides the hooks to which this implicit behaviour can be attached (a 

good test for the expressive power of expression calculus and its extendibility).

When a proper set of explicit structural descriptions is given together with powerful 

ways of providing methods or procedures that express implicit knowledge, and

Conclusion 2



extendibility is well-supported, one can envision a more or less complete framework for a 

representational system of music.

Continuous representations underestimated?

However, especially in the case of the continuous aspects of music, we still lack the 

availability of proper explicit representations that can deal with these continuous 

aspects in a flexible and a comprehensible way.

Let's take the time functions microworld as an example. The functions that are defined in 

terms of the generalized time function have, despite their expressive power (e.g. support 

of function composition and embedded, automatic behaviour), procedural characteristics: 

after definition they are not accessible (time functions cannot be de-composed) and, as 

such, are closed to inspection. To have a declarative description in parallel, that allows 

for this inspection, would combine the advantages of function composition and 

encapsulated behaviour with the accessibility of a declaratively styled 

representation.1

In a larger context, it appears that representations of a continuous nature can improve the 

flexibility of representational systems considerably. They sometimes yield a level of 

performance that is not obtained by their discrete counterparts (see e.g. Desain, 1991). 

For example, in our research on rhythm perception we represented a temporal sequence as 

continuously variable values that specify event durations, as cells in a connectionist 

network. This proved a powerful representation for separating the continuous aspects 

from the discrete aspects in musical time, precisely because of its non-discrete, non- 

symbolic nature (Desain & Honing, 1989). I would not be surprised if the use of continuous 

representations prove beneficial in other areas of music perception and cognition as well, 

because of this flexible and sub-symbolic character from which discrete and symbolic 

representations may arise. Continuity has been underrated for too long now, both from a 

technical viewpoint -in many cases considering a discrete representation a harmless 

simplification-, and from musicological and psychological perspectives which, more or 

less, overstressed the importance of discrete categories.2

Limitations on the modularization of musical knowledge

The idea that in music “everything has to do with everything", and the impossibility to 

describe aspects of it in isolation, finds a lot of support in ethno-musicological research. 

But I think that the perceptual aspects of music as a whole can be profitably understood 

by describing them in a formalised way, ignoring a larger context (e.g. as in a 

microworld). One could also argue that music shouldn't be restricted, because if it is, the
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restriction would be set apart on purpose by the makers of music (and its active listeners). 

As David Huron (1990a) has pointed out, it is important how to approach the study of 

music and how to compare these different approaches (e.g. social, perceptual, 

historical); a universal representation of music is impossible and the pursue of it should 

be rejected. Such a universal representation will have "worldly proportions, [...] will 

change music in unpredictable ways, and there is no neutral point of view from which to 

begin." And, indeed, a universal representation of music seems impossible. Therefore I 

prefer to use the term 'general'. The definition of general is important here, since it 

makes significant restrictions. With 'general' I mean firstly, a representation that 

describes the measurable and perceptual aspects of music (i.e. a sound signal) and 

secondly, the cognitive aspects that are directly involved with this perception. The 

latter is a bit of a problem. The term 'cognitive' refers to models or systems that contain 

and process knowledge. But are there any limits on the knowledge we need for our 

'general' representational system? We have to be able to restrict the required 

knowledge. I will elaborate on this in the next paragraph.

Limitations on the formalisation of musical knowledge

The viewpoint that "everything is important for a representation of music" in relation to 

our modular approach in obtaining such a representation, brings us to the "frame 

problem" (McCarthy & Hayes, 1981): a problem that arises when knowledge has to be 

encapsulated, separated from the rest of the world knowledge. It is difficult, and most of 

the time even impossible, to determine what knowledge is affected and what knowledge 

is unaffected by a certain change or addition of new knowledge to a knowledge base. If we 

think of a microworld as a small knowledge base, the possibility to extend and combine 

microworlds can be questioned. A number of philosophers and cognitive psychologists 

have come up with pro and contra arguments related to this problem (pro: Pylyshyn, 

Fodor; contra: Dreyfus, Searle). Jerry Fodor takes an important stand in this. He doubts 

the possibility of formalising cognitive processes. They are part of one central system 

that is global, non-modular, and therefore cannot - with our current theoretical tools and 

methods - be comprehended, and can therefore not be formalised. He considers this lack 

of understanding as the basis of a failure in formalising cognitive processes: "cognitive 

science has not even started". He thinks the cognitive sciences can be and are successful in 

formalising the modular parts of the mind: the input systems that are "cognitive 

impenetrable" (like the five senses and language). These are a successful domain for AI 

and psychological research (Fodor, 1983).

The problem now becomes whether music can be considered as being part of this central 

system, or whether it is a module on its own? It clearly is part of the former if one takes
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into account all the social and cultural aspects of music; music can be a cognitive faculty 

among a lot of other things. Restricting a representation of music to, first, all the 

information measurable in the sound signal itself and secondly, by the cognitive processes 

that directly interact with it, seems limited enough to gain some level of success 

(following Fodor's argument). Within this definition I think it is possible to work 

towards generalizations that can form a basis of cognitive models of important aspects of 

music. A positive consequence of such a 'decontextualized' representation is its 

effectiveness in a carefully restricted domain where almost all the knowledge is special 

to that domain (i.e. little or no common-sense knowledge is required). The question, 

whether music cognition can be described as such a restricted and isolated domain, is still 

open.

SOME MORE CONCRETE ISSUES IN THE REPRESENTATION OF MUSIC

After these ideas of a mostly philosophical nature, I will, finally, return to a list of 

more concrete problems that should be explored in the near future.

Representation and the problem of consistency

Consistency is a relational property. It describes the organizational principles of a set of 

rules or statements, or, in other words, it relates a set of statements or rules to the set as a 

whole. Without these organizational principles the number of possible different 

configurations meeting the structural requirements would be quite large. Consistency, 

therefore, is an essential characteristic of a formal system. But what are the demands on 

consistency of a representational system for music?

In the calculus for expressive timing structural consistency is a given; the structural 

descriptions are not changed as a result of a transformation applied to the 

representation. But, when we have to loosen this restriction in a higher-level 

representation based on such a calculus, structure changing transformations should be 

possible. For example, a chord could be changed into an by applying a ritardando 

transformation and the rhythmical structure could also change because of such a 

transform ation.3 In (Honing, 1991) it has been proposed to use constraints on time 

intervals to distinguish between similar structural objects, with the coordinated 

behaviour imposed by these constraints modelling their specific structural character.4 

On the basis of these descriptions, a parse mechanism could take care of situations where 

transformations on a given musical object would change its organisation (e.g. changing a 

chord into an arpeggio), as a result delivering an updated structural description, i.e. a 

different set of relations associated with the transformed musical object (a set of
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arpeggi° constraints replacing the set of chord constraints), changing the behaviour of 

the structural unit under future transformations. In this way, a representational system 

could incorporate structure changing behaviour.

Representation and ambiguity

How can ambiguity be described in a representation system? How to coordinate the 

interaction between ambiguous structures and their associated behaviour? For example, 

we need a representation formalism that can express the ambiguous structure of a certain 

musical fragment and the way it influences the expressive timing profile in a 

performance.

Another problem, often confused with ambiguity (I was no exception), is the notion of 

overlapping structure, like overlapping phrases, where, for instance, one note is part of 

both the first and of the second phrase. This type of phrase structure is not ambiguous, 

ambiguous in the sense that there is m ore than one  structural description possible, since it 

is best described as o n e  structural description that comprises the dependencies of more 

than one overlapping (or cross-branching hierarchical) descriptions. This is also an 

acknowledged representational problem in phonetics where one phoneme can be part of 

two syllables at the same time, and in spoken language, where sentences like "I think, 

John is over there, I think" are not exceptional. It might turn out that the support for 

"overlapping structure" is a key aspect in the representation of music since it conflicts 

with the description of music as a formal grammar of rewrite rules finding such a 

widespread application.5

Representation of articulation and rests

How can the difference between articulation and rests be represented? In certain contexts, 

a note and a silence can be perceived differently. The structure can either be described as 

a note and a rest, or as a staccato note without a rest. There are several theories that try 

to explain this, on a discrete basis (Longuet-Higgins, 1984) and on a continuous basis 

(Desain, in preparation). It seems that a solution should be formalised in terms of the 

surrounding structure, like the metrical and rhythmical structure and, of course, the 

absolute tempo.

A static representation is not enough

Especially with regard to the last question, we need the introduction of theoretical 

notions like expectation and attention, and principles that have to do with the process of
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building up and determination of structure, based on a process-oriented description of 

music perception. The representation issues described in this thesis could ignore (for the 

time being) these process-oriented descriptions because they were not aimed at the 

modelling of human cognition. All too often, though, process-like descriptions are 

preferred over static ones because of this valid psychological argument. However 

processes like quantization, closure, planning, etc., need some overview, and therefore 

static descriptions (Desain & Honing, in preparation). A balance between static and 

dynamic process-oriented descriptions is important here. Processes are made up of a 

knowledge representation and an algorithm, with the algorithm depending heavily on 

the representation chosen (cf. implicit knowledge discussion above). Therefore, moving 

the focus to the process aspects of a representational system will most likely influence 

the proposed representations (hopefully) in the form of extensions or generalizations. 

But here, once again, the first task is to make these processes explicit, in a modular and 

formal way, instead of leaving them in procedural obscurity.

• • •

This list of points concerning the generalization of a representation of music could be 

continued but it would be accompanied by more and more speculation and less and less 

justification. So this seems to be the right moment to finish this thesis, a thesis in which 

I hope to have shown, at least, a successful integration of knowledge representation 

research with work in the field of the psychology of music.
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NOTES

1The use of multiple representations was discussed earlier as a possible solution, a solution, though, 
that has not yet been investigated in the case of the generalized time function.

2This is not to say that discrete elements do not play a central role in e.g. music perception, but to 
stress the loosely defined hypothesis that a continuous basis might explain this discreteness even 
better, in a more flexible and complete way.

T̂hough, in the ‘real’ world, musicians are often very good in the application a “correct” or right 
amount of ritardando in a way such that the rhythmical structure is not lost.

Ûnfortunately, although planned, these ideas have not yet been realised. Some of the ideas have been 
loosely tried out and are planned to be incorporated in a system for computer animation called Cocoa.

-’These ideas are the result of several discussions with Peter Desain on this problem.
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