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A B S T R A C T 12 

Ransomware attacks are hazardous cyber-attacks that use cryptographic methods to hold victims’ 13 

data until the ransom is paid. Zero-day ransomware attacks try to exploit new vulnerabilities and 14 

are considered a severe threat to existing security solutions and internet resources. In the case of 15 

zero-day attacks, training data is not available before the attack takes place. Therefore, we exploit 16 

Zero-shot Learning (ZSL) capabilities that can effectively deal with unseen classes compared to 17 

the traditional machine learning techniques. ZSL is a two-stage process comprising of: attribute 18 

learning (AL) and Inference Stage (IS). In this regard, this work presents a new Deep Contractive 19 

Autoencoder based Attribute Learning (DCAE-ZSL) technique as well as an IS method based on 20 

Heterogeneous Voting Ensemble (DCAE-ZSL-HVE). In the proposed DCAE-ZSL approach, 21 

Contractive Autoencoder (CAE) is employed to extract core features of known and unknown 22 

ransomware. The regularization term of CAE helps in penalizing the classifier's sensitivity against 23 

the small dissimilarities in the latent space. On the other hand, in case of the IS, four combination 24 

rules Global Majority (GM), Local Majority (LM), Cumulative vote-against based Global Majority 25 

(CVAGM), Cumulative vote-for based Global Majority (CVFGM) are utilized to find the final 26 

prediction. It is empirically shown that in comparison to conventional machine learning 27 

techniques, models trained on contractive embedding show reasonable performance against zero-28 

day attacks. Furthermore, it is shown that the exploitation of these core features through the 29 

proposed voting based ensemble (DCAE-ZSL-HVE) has demonstrated significant improvement 30 

in detecting zero-day attacks (recall=0.95) and reducing False Negative (FN= 6). 31 

Keywords: Zero-shot Learning, Zero-day Attack, Ransomware, Deep Learning, Autoencoder, 32 

Ensemble Classification. 33 

34 
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1. Introduction 35 

Ransomware is a malware that possesses its special characteristics in addition to the standard 36 

features of a generic malware [1]. Ransomware, generally follows similar methods to evade, 37 

propagate, and attack its victims as other malwares do. However, it injects its peculiar actions in 38 

the form of processes into target programs, then extract the data, and establishes the connection 39 

with Command and Control server (C&CS).  Its main function is to encrypt all the important files 40 

in the target system and demand ransom for recovery. These typical steps of ransomware lifecycle 41 

are described pictorially in Fig. 1. Due to its specific objective, it is considered easy to write and 42 

modify the existing ransomware that can result in an explosive generation of its variants [2]. 43 

Wannacry variants (executed in 2017) are said to be responsible for damaging various 44 

organizations that were running an old version of Microsoft Windows. These attacks were 45 

propagated by employing EternalBlue. Some of the other known propagation methods of 46 

ransomware attack include; delivering its payload to the victim using Malicious Emails, bypassing 47 

the typical access control (Bucbi Ransomware [3]), using Exploit Kits (EKs), Injecting redirect 48 

link in JavaScript, Drive-by Download, Waterhole Attacks, and Malvertising [4,5]. 49 

 50 

Fig 1: Typical steps of ransomware life cycle 51 

 52 

The variants of ransomware can be broadly grouped under two categories: "Locker Ransomware" 53 

and "Crypto Ransomware". Locker Ransomware locks the user's system and thus restricts the 54 

access to the system files.  Its common variants are: Winlock, DM-4 Locker, CTB Locker, Locky 55 

Ransomware, and Torren Locker. On the other hand, CryptoRansomware, instead of locking the 56 

whole system, encrypts the essential files of the system. Variants of CryptoRansomware include 57 

Pack Crypt, Crypt Locker, Dirty Decrypt, Crypto Wall, and Telsa Crypt. Earlier versions of the 58 
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Ransomware have used symmetric cryptographic algorithms [6]. However, lately some of its 59 

variants use asymmetric cryptographic methods. Most of the recent Ransomwares are using both 60 

symmetric and asymmetric cryptographic methods that are not easy to break. 61 

Existing signature-based detection systems are not able to cope with the increasing number of 62 

unique ransomware variants [7]. Existing intrusion detection systems (IDS) are based on various 63 

analysis method to detect the ransomware. Static analysis based IDS rely on detecting the unique 64 

patterns [8, 9]. Commercially available IDS system adopts static analysis as they are fast and 65 

inexpensive. However, these static IDS normally fails in detecting the zero-day attack and the 66 

polymorphic variations of the attack. In contrast, behavioral based methods focus on the behavioral 67 

profile generated at run time. Behavioral based methods are superior to static analysis in detecting 68 

zero-day attacks and dealing with the polymorphic variations [10]. However, Behavioral based 69 

methods are comparatively slow and cannot detect the metamorphic variations. Anomaly detection 70 

based methods relies on modeling the normal connection behavior and detecting deviations [11, 71 

12]. Such type of anomaly detection methods are better in detecting zero-day attack, but may yield 72 

high false alarm rate. 73 

Recently, machine learning based IDS are increasingly used due to their excellent learning 74 

capabilities and their adaptive nature. Researchers exploits various supervised (Decision trees 75 

(C4.5), Support Vector Machines, K-Nearest Neighbor, Naïve Bayes) [13], unsupervised 76 

(Balanced Iterative Reducing and Clustering using Hierarchies (BIRCH)) [14], Deep Learning 77 

(Deep Belief Networks (DBN) [15]),  and semi supervised methods [16] to develop intelligent 78 

IDS. Each of these methods has its advantages and disadvantages. However, it is not easy to 79 

achieve the effective IDS for dynamically changing environment with a single classifier and 80 

therefore an ensemble of classifier is more effective.  The biggest challenge is to detect zero-day 81 

attacks. Zero-day attacks tries to exploit the new vulnerabilities of the victim's system hence 82 

nothing is known about them in advance. On the other hand, most of the current machine learning 83 

based solutions are dependent upon previous data for detecting future attacks, which is not 84 

available in the case of a zero-day attack. 85 

This paper aims to develop a ransomware detection system that can generate an encoding (core 86 

features) based description of the zero-day attacks at run time. Furthermore, it can relate the 87 

derived description with the known attacks for detection purposes. Finally, to increase the 88 

generalization power of the classification system, we have also proposed an ensemble classifier 89 

focusing on the reduction of FN under nominal control of FP. In summary, the proposed technique 90 

is addressing the challenges mentioned above associated with zero-day attacks through the 91 

following contributions: 92 

1. This work presents a novel zero-shot learning (ZSL) framework to detect the zero-day 93 

ransomware attack. Current approaches generally use an external source of information for 94 
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attribute learning, which might be a time-consuming task and not viable for collecting data 95 

regarding zero-day vulnerabilities. 96 

 97 

2. The proposed technique presents customized deep contractive autoencoder based attribute 98 

learning (DCAE-ZSL) for zero-day ransomware. For this purpose, an optimum loss function 99 

is learned in an unsupervised manner by optimizing the penalty term for achieving the invariant 100 

representation of the known and unknown ransomware. A lower-dimensional DCAE has been 101 

designed that forces the model to learn only the essential features of the input data. And 102 

compared to traditional ML approaches, it is empirically shown that DCAE based feature 103 

extraction effectively performs well against zero-day Ransomware. 104 

 105 

3. An ensemble (DCAE-ZSL-HVE) is trained both on original features and derived attributes to 106 

address semantic loss for suppressing the intra-family variations and increasing the 107 

generalization ability of the classifier on unknown ransomware.  108 

 109 

4. The proposed Inference Stage makes cost-sensitive inferences using four simple yet effective 110 

combination rules that provide a considerable compromise between FP and FN. 111 

 112 

5. The performance of the proposed technique is compared with both the deep CNN models as 113 

well as shallow learning models. 114 

 115 

The rest of the paper is structured as follows. In Section 2, the related work and its background is 116 

presented. The proposed Attribute Learning (AI) and IS (Inference Stage) phases are presented in 117 

Section 3. The implementation details of the experiments is presented in Section 4. Discussion and 118 

analysis is presented in Section 5. In Section 6, threat to validity of the proposed system is 119 

analyzed. Finally, the conclusion and future work are presented in Section 6. 120 

2. Related work and background 121 

This section presents a review of recent ransomware detection techniques and their potential in 122 

detecting zero-day attacks. In general existing methods are based on static and dynamic analysis. 123 

Static analysis is performed without executing the malware to extract the structural features. 124 

Andronio et al. [17] presented a static analysis based HelDroid detection system specifically 125 

developed for mobile devices. The model uses only the encryption-based function to detect crypto 126 

and locker ransomware. Mercaldo et al. [18] presented a model-based technique for detecting 127 

mobile-based crypto and locker ransomware. This method analyzes the bytecode of potential files 128 

to inspect only those instructions that are involved in the infection phases. Das et al. [19] presented 129 

a model that performs semantic-based feature extraction by grouping API calls of the same 130 

resource. These API calls of the same resource are further represented as one feature set. The 131 

frequency of these feature sets helps to identify the repetitive actions that differentiates between 132 

benign and malware samples.  Alsoghyer et al. [20] proposed an application programming 133 

https://sciprofiles.com/profile/779381
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interface (API)-based ransomware detection system (API-RDS) for android platform. The 134 

proposed method identifies the significant API calls from API packages and achieved 97% 135 

accuracy on a self-generated dataset. Although static methods are fast and have a high detection 136 

rate, their main focus is ransomware detection rather than the zero-day attack detection. 137 

Additionally, these methods are generally unable to detect polymorphic variations and packed 138 

families.  139 

On the other hand, dynamic analysis is performed by running malware in a safe environment to 140 

extract behavioural features. Kharraz et al. proposed UNEVIL model based on dynamic analysis 141 

[21]. The system's main focus was on learning about the access pattern, system file activities, and 142 

the entropy of I/O data buffer. Song et al. [22] proposed a detection model that performs detection 143 

by monitoring the CPU consumption, memory utilization, files events and I/O usage. Andriono et 144 

al. [17] proposed a dynamic analysis to detect the threatening text. Dynamic analysis based 145 

methods are useful in detecting polymorphic variations. However, they are unable to detect 146 

metamorphic variations. In this regard, few researchers [23–25] have employed a hybrid feature 147 

analysis technique to improve the detection of polymorphic and metamorphic attacks. Alberto 148 

Ferrante et al. [24] proposed a hybrid method to detect mobile ransomware. Firstly, it examines 149 

the potential file using the static method before installation and then observes its runtime behaviour 150 

using dynamic analysis. During static analysis, it computes the frequency of opcodes to detect the 151 

ransomware attack. While during dynamic examination CPU usage, memory consumption, and 152 

network usage are explored to detect malware. 153 

Conventional ML-based methods are useful in performing behavioural analysis. The EldeRan 154 

proposed by Sgandurra et al. [26] is based on the files' dynamic behaviour. It uses Mutual 155 

Information Gain to extract the most significant dynamic features and then feeds them to Logistic 156 

Regression Classifier. Hwang et al. [2] proposed,  a two-stage mixed ransomware detection model, 157 

based on Markov and Random Forest models. Firstly, their technique builds a Markov model only 158 

on the Windows API call sequence pattern then, builds the Random Forest ML model on the 159 

remaining behavioral features to control FPR and FNR. However, typically the new attacks may 160 

not follow the training distribution to perform covert operations. A different ML-based solution to 161 

zero-day attack detection is an anomaly-based method that trains the model only on normal 162 

activities, and therefore, anything that is not normal is considered as malicious[27]. In [28], Al-163 

ramy et al. presented a zero-day ransomware detection system using behavioural and data-centric 164 

features. Behavioural features are constructed using n-gram technique on the pre-encryption 165 

generated features. At the same time, data-centric features are generated by grouping the API calls 166 

of the same resources and forming frequency distribution of similar features. After, the feature 167 

generation step, important features are selected using information gain measure. Finally, the 168 

detection module is stacked using two types of classification. Firstly, it performs behavioural 169 

detection using SVM. If the sample is declared as malicious by behavioural detection module, then 170 

it is the final step. Otherwise, the decision is put forward to one class anomaly detection SVM for 171 
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a final decision. However, the anomaly-based zero-day attack detection system may also generate 172 

a high false alarm rate.  173 

Current IDS are mostly unable to cope with modifications in the attack's landscape and are also 174 

highly dependent on the training dataset. On the other hand, an attacker is always searching for 175 

new types of vulnerabilities and exploiting a new weakness in the system, leading to a zero-day 176 

attack. In this regard, we exploit a new paradigm of ML known as zero-shot learning (ZSL). ZSL-177 

based models can detect unseen objects, in the absence of additional knowledge, by relating the 178 

attributes of seen and unseen classes. In literature, interesting techniques have adopted different 179 

methodologies [29] to find the semantic embeddings (core features) between seen and unseen 180 

classes. These embeddings are generally based on attributes that can be derived manually, 181 

discriminatively, using word vectors, mining knowledge from the web, or combining different 182 

kinds of embeddings. ZSL can be described as two-phase process. The first phase is the AL phase, 183 

and the second phase is the IS. In [30], the authors presented a new IS algorithm for Network IDS. 184 

Their main contribution involved an experimental set up for ZSL using of the KDD intrusion 185 

detection dataset. Then, in AL phase applied decision tree for extracting rules. In the IS phase, 186 

they derived the representation depending on point location in Grassmannian manifold, and 187 

explicit distance formula is utilized that finds the shortest distance between the unknown attack 188 

and the known attacks. On the other hand, in [31], XiaoZhang et al. presented regression model 189 

based ZSL method that fits the regression equation for each category. They then, calculated 190 

threshold for all respective categories. In their IS, the test samples' attributes are sequentially 191 

substituted to the equations of all categories. Finally, if the resulted calculation meets the criteria 192 

for all the corresponding thresholds, the attack is considered a known attack; otherwise, it is 193 

considered an unknown attack. Their reported technique can detect unknown intrusion types; such 194 

as Hydra-FTP and HydraSSH types of attacks. However, for a Java-Meterpreter, and Meterpreter 195 

type's other unknown attacks, its capability may not be satisfactory. In [32], Zhang et al., proposed 196 

sparse autoencoders based ZSL method for novel attack detection. It maps known feature space to 197 

semantic space, and try to restore the feature space using reconstruction error constraint. The need 198 

for detecting new ransomware attacks, together with the competence of CAE for change 199 

detection[33], and the competence of ZSL to classify unknown attacks on Zero-shot training data 200 

motivated  us to use it for the AL stage. Moreover, high generalization ability of ensemble methods 201 

and effective combination rules encouraged us to use it for the IS. 202 

3. Material and methods 203 

This section presents the details of the proposed DCAE-ZSL and DCAE-ZSL-HVE 204 

methodologies. The DCAE-ZSL is the AL method based on finding robust embedding that can 205 

learn the semantic description of zero-day attacks in an unsupervised manner. To learn the context 206 

of a zero-day attack, CAE based feature representation and its effect on ZSL is explored using 207 

zero-day ransomware test data. Finally, the DCAE-ZSL-HVE based is proposed to improve the 208 
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generalization power and to find a considerable compromise between FP and FN. The abstract 209 

working of the proposed ZSL model is described in Fig. 2.  210 

 211 

 212 

Fig. 2– Framework of the proposed ZSL architecture 213 

3.1. Dataset  214 

The ransomware dataset used in the proposed methodologies is accessed from the home page of 215 

Sgandurra et al. [26] using a given link(https://www.danielesgandurra.com/). The data samples 216 

were retrieved from the VirusShare4 site in the exe files format in February 2016. Later these 217 

samples were analyzed using Cuckoo Sandbox5 to trace the seven basic features in the runtime 218 

environment. The dataset consists of 582 ransomware samples and 942 goodware samples. 219 

Therefore, the available dataset is highly imbalance in nature. The major attributes of the data are 220 

given in Table 1. Collected samples were further manually categorized into 11 different established 221 

family’s names. The detail of these families is reported in Table 2. The collected ransomware are 222 

the most popular variants and mostly are CryptoRansomware. The dataset of goodware is collected 223 

from trustworthy sources. Goodware application includes browsers, drivers, emulator, and file 224 

utilities like file search, word office tools, games and various other realistic applications of PC. 225 

Each sample is analyzed in a sandbox environment for 30 seconds. Although, the authors acquired 226 

the PCAP traces by connecting VM (Virtual Machines) with a network. However, only host-based 227 

features were collected.   228 
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3.1.1. Features and their visualization 229 

The ransomware uses the API calls to write into the other processes to inject them with its peculiar 230 

actions or to use it to terminate the other processes. Usually, victim processes are explorer.exe or 231 

svchost.exe. On the other hand, the registry keys operation is important because to ensure the 232 

survivor of ransomware after each reboot. Moreover, it keeps track of every key to get the list of 233 

mounted devices for exploring more extensions of user files. In literature, ransomware detection 234 

is often implemented using API call sequences or registry key operations. Other features like DLL 235 

(Dynamic Link Library) are also important as ransomware often links to the DLL of Visual Basic 236 

or shell extensions to access the certificates of keys for encryption purpose. Additionally, dropped 237 

file features are important as ransomware used it for its notes. The important drooped files are html 238 

or RTF. There are in total of 16382 features collected. These features can be further divided into 239 

seven broad categories: 1) API represents API invocations, 2) Drop: represents the extensions of 240 

the dropped files, 3) REG: involves various registration key operations, 4) Files: include operation 241 

related to files, e.g., create or delete files, 5) FILES_EXT: is the extensions of all the files that are 242 

involved in dynamic analysis, 6) DIR: files directory activities, and 7) STR: denotes strings 243 

embedding. Unlike, the traditional methodologies, the focus of the proposed methods is not on a 244 

specific action. They are developed by using dynamic features like registry key operations, API 245 

invocation, files extension, file directory operation, drop files monitoring, files operations and 246 

embedded strings. 247 

Table 1: Attributes of the dataset 248 

Parameters Values 

Data type Binary data 

Total malicious samples 582 

Total benign samples 942 

Total samples 1524 

Total features 16382 

Missing values  None 

 249 

Table 2: Distribution of the different ransomware families 250 

ID Family  

Name          

 

Data 

Distribution 

ID Family  

Name          

 

Data 

Distribution 

0 Goodware 942 6 Locker 98 

1 Critroni  51 7 Matsnu 60 

2 CryptLocker 108 8 Pgpcoder 5 

3 CryptoWall 47 9 Reveton 91 

4 Kollah 26 10 TeslaCrypt 7 

5 Kovter 65 11 Trojan-Ransom      35 
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3.1.2. Data distribution and its visualisation using t-SNE 251 

 252 

In this work, t-Distributed Stochastic Neighbor Embedding, known as t-SNE [34], is used to show 253 

the data distribution of various classes. t-SNE maps higher dimensional data to two or three-254 

dimensional space. It is based on SNE optimization and Student’s t-distribution. It finds the 255 

pairwise similarity matrix between the data points. The t-SNE optimization function maintains the 256 

maximum structure of the original mapping. Therefore, in the proposed DCAE-ZSL technique, t-257 

SNE is used to visualize higher dimensional data into two dimensional lower space, as shown in 258 

Figures 3 and 4. It is useful to visualize the clusters present in malicious and benign data at various 259 

scales. Fig.3. shows the distribution of the ransomware data for the two-class problem. Where the 260 

‘cyan’ colour is representing the ransomware samples, and the black colour is representing 261 

goodware samples. It can be observed that the two classes may overlap at some points, thus 262 

indicating the possible similarities between the two categories. There also exist some samples that 263 

are far away from their relative classes due to intra-class variations. Fig.4. shows the distribution 264 

of the multiple families of ransomware more clearly by using different colours. 265 

 266 

 267 

Fig. 3 Data distribution of ransomware vs goodware 268 

 269 
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 270 

Fig. 4 Data distribution of ransomware families’ vs. benign samples. Benign samples are 271 

shown in black color  272 

3.2. Zero-shot Learning for zero day attack detection 273 

In general, ZSL [29] deals with predicting classes, which were not part of the training. It is mostly 274 

applicable when the training data does not truly represent all the interested class categories. This 275 

situation is most viable for IDS due to the growing numbers of zero-day attacks. Correspondingly, 276 

in ZSL, classes of training and test instances are different from each other. Classes of training 277 

instances are known as seen classes, and test instances are known as unseen classes. ZSL can be 278 

described as a two-stage process: AL and IS. Attributes are learned using derived knowledge from 279 

some labelled training data or finding some intermediate information to relate the seen and unseen 280 

classes. In the IS, the derived knowledge is used to detect the unseen classes. Therein literature, 281 

different AL algorithms are presented in the context of IDS, e.g. Attribute Learning for Network 282 

Intrusion Detection (ALNID)[31], Graph Embeddings[32], Deep Attribute Prediction 283 

(DeepAP)[33], and Grassmannian [24]. ZSL can be classified as Inductive ZSL and Transductive 284 

ZSL subject to the available information. Inductive ZSL learned attributes using only seen class 285 

information, while Transductive ZSL uses both labelled unseen data and unlabeled unseen data. 286 

Based on a test set, ZSL is classified as conventional ZSL (CZSL) or Generalized ZSL (GZSL). 287 

CZSL evaluates its model on unseen classes, whereas, GZSL uses both seen and unseen classes in 288 

evaluation. The proposed DCAE-ZSL method is the transductive approach. It generalized the 289 

model on unknown attacks by utilizing both seen and unseen classes in an unsupervised manner 290 

and evaluated using the CZSL method.   291 

3.3. ZSL-Data Split 292 

We firstly performed data partitioning for training and evaluation of the ZSL in ransomware 293 

detection related tasks to achieve the desired goals. For this purpose, we split the original data ‘D’ 294 
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into two disjoint sets of seen and unseen classes, named as ZSL-train data =  , Ytr tr

i iX  and, ZSL-295 

test data = , Yts ts

i iX , respectively. Where ‘ ’iX  is representing the attributes of the samples, and 296 

‘ ’iY  is representing their respective labels. The proposed system presents the binary classification 297 

of ransomware vs goodware(𝐺𝑖
𝑛). Models are trained on trY members and tested on tsY members. 298 

Respective members of trY and tsY are described as sets in (Eq.1 and Eq.2 respectively), where299 

tr tsY Y = . In the context of ransomware detection seen classes are known attacks on which 300 

models are trained. However, unseen classes are unknown zero day ransomware on which models 301 

are tested. 302 

trY    = {𝐺𝑖
𝑘, Critroni, CryptLocker, CryptoWall, Kollah, Kovter, Locker, Matsnu}                (1) 303 

tsY   = {𝐺𝑘+1
𝑛 , Pgpcoder, Reveton, TeslaCrypt, Trojan-Ransom}                                              (2)  304 

3.4. The proposed DCAE-ZSL attribute learning method 305 

This module's objective is to generate the class independent description of seen and unseen (zero-306 

day) attacks. Autoencoder can learn useful latent representations without class information. In 307 

essence, the learned representation should represent the core features by suppressing unnecessary 308 

variations. CAE is used to suppress unnecessary variations. Further, Deep Undercomplete 309 

Autoencoder is used to extract the most useful core representation of the data. To build DCAE-310 

ZSL, we have trained ten hidden layers of CAE on ZSL-train data. Where the first five layers are 311 

encoding layers, and the remaining five are the decoding layers. However, the DCAE-ZSL 312 

technique selected the robust features from the fifth encoding layer comprised of 100 neurons. 313 

Overall, the proposed DCAE-ZSL methodology is schematically explained in Fig.5. 314 

Implementation details of designed topology are described in section 4.1. Whereas, Table 3 is 315 

illustrating the designed topology of the CAE. 316 
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ZSL Data Split

Seen Classes

Unseen Classes

Raw 

Data

Training  

Data

Validation 

Data

Contractive

Autoencoder

DCAE 

Model

ZSL-train- 

embedding

ZSL-test- 

embedding

 317 

Fig. 5– Overview of the proposed Attribute Learning (AL) architecture (DCAE-ZSL) 318 

Table 3: Number of neurons in encoding and decoding layers of Autoencoder 319 

3.4.1. Autoencoder 320 

Autoencoder is an unsupervised neural network that backpropagates by setting its input as its target 321 

value [35]. A simple Autoencoder is composed of an input layer, a hidden layer, and an output 322 

layer. The Autoencoder's objective is to learn useful hidden representations with minimum 323 

reconstruction loss. 324 

                 
2

L x x= −                                                                                                                (3) 325 

Autoencoder based machine learning algorithm is a two-step process that involves pre-training 326 

and fine-tuning [36]. Pre-training is unsupervised learning that backpropagates error in a greedy 327 

layer-wise manner to reconstruct its input with minimum loss. Pre-training consists of the encoding 328 

and decoding layers. In encoding, each layer learns important features from previous information; 329 

subsequently, these essential features are the original input's encoded form. The mathematical 330 

description of the encoding process thus becomes:   331 

                 ( )e eEncoding x W x b= =  +                                                                                     (4) 332 

 E1 E2 E3 E4 E5 D6 D7 D8 D9 D10 

Input Unit 16382 4000 2000 1200 600 100 600 1200 2000 4000 

Output Unit 4000 2000 1200 600 100 600 1200 2000 4000 16382 

Activation Function Relu Relu Relu Relu Relu Relu Relu Relu Relu Sigmoid 
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While in decoding layers, each encoded layer is decoded to reconstruct the original features. The 333 

process of decoding is mathematically described in Eq. (5): 334 

                 ( )d dDecoding x W x b= =  +                                                                                   (5) 335 

where, x and  x’ are representing the original and encoded signals, respectively, eW   is the weight 336 

matrix of encoding layers and dW  is the weight matrix for the decoding layers, eb  and db  are their 337 

respective biases, and   is the activation function to add the nonlinearity.           338 

 339 

Fig. 6 Undercomplete Autoencoder  340 

3.4.2. Contractive Autoencoder (CAE) 341 

CAE is an unsupervised regularized autoencoders variant[37]. The CAE proposed by Rafie et al. 342 

is the extension of the Denoising (DE) autoencoder having the same motivation to produce a robust 343 

representation. It allows small perturbation around its training data using an additional penalization 344 

term (
2

(x) FhJ  ) in its generic loss function. This penalization term penalizes the large derivative 345 

using a lambda parameter that controls the extent of change in input, w.r.t the learned 346 

representation. This penalization term forces the model to learn the uniform representation of the 347 

concept (as described in Eqs. (6) and (7)).  348 

     
2 2

(x) FhL x x J= − +                                                                                            (6) 349 

                 
2

2 (x)
(x)

j
Fh ij

i

h
J

x


=



 
 
 

                                                                                            (7) 350 

CAE can learn the non-linear manifold. The common variations present in the data correspond to 351 

the manifold’s local dimensions. Whereas, the variations that are of rare type will correspond to 352 

the orthogonal dimension. The penalization term ensures invariant feature along all dimensions. 353 

At the same time, the reconstruction error term offers to reconstruct the input faithfully.  In case 354 
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of directions having strong contractive pressure are the ones, where the input density is sparse. In 355 

comparison, the directions with weak contractive pressure raise the input density. Hence, training 356 

set direction can resist this contractive pressure. 357 

Alternatively, Contractive mapping can be achieved by weight decaying in the linear case. For 358 

non-linearity, it can be achieved by motivating the hidden units to their saturated regime. Sparse 359 

autoencoders achieve it by keeping most of its components close to zero. Thus, maintains tiny 360 

derivatives in its Jacobian term. Similarly, DE autoencoders indirectly incorporate the robustness 361 

in its reconstructions phase. They achieved scholastically by generating the corrupted input to 362 

attain identity function, while reconstructing the clean version. Whereas, CAE’s are the ones that 363 

explicitly encourage robustness in its encoding phase, which is more vital as it penalizes the 364 

magnitude of the first derivatives at training data. This property makes it as a suitable choice for 365 

feature extraction purposes as compared to others. 366 

3.5. Inference Stage (IS) 367 

In this stage, classes are inferred from the extracted attributes. Therein literature has three well-368 

known IS methods [38]: Probabilistic frameworks [39], energy function [38, 40], and the K-369 

Nearest Neighbor (K–NN). The probabilistic framework's most general form combines the derived 370 

attributes with original attributes to find the target class. However, it has two variants: (i) Directed 371 

Attribute Prediction (DAP) and Indirected Attribute Prediction (IAP). DAP method builds the 372 

learning model for each attribute of AL stage. These learning models are then used in IS to predict 373 

new classes using attribute signature. IAP creates the learning model for each training class. At 374 

the evaluation stage, the prediction from each training class tempt labelling of the attribute layer, 375 

which helps to infer the test class labels[41]. The K-Nearest Neighbour (K–NN) based methods 376 

rely on distance measures to find the closest match of input instance to the attribute instance 377 

derived in AL stage. The proposed IS method learns various models e.g.: Random Forest (RF), 378 

Logistic Regression (LR), Support Vector Machine (SVM), Gaussian Naïve Bayes (GNB) on 379 

attributes learned in DCAE-ZSL stage and on original attributes. At test time, the two feature 380 

representation schemes' inferences are combined using GM, LM, CVAGM, and CVFGM on 381 

unseen classes of attack. The proposed (DCAE-ZSL-HVE) ensemble scheme with its combination 382 

rules is described below. 383 

3.5.1. Proposed ensemble (DCAE-ZSL-HVE) based Inference Stage 384 

In this paper, we applied different voting-based ensemble approaches to infer unknown 385 

ransomware. Firstly, the Global Majority (GM) based method selects the majority votes from all 386 

the decision models considering them as individual decision spaces. Algorithm 1 describe the   GM 387 

procedure. Besides, two decision spaces are distinctly defined based on features representation 388 

scheme in the Local Majority case (Algorithm 2 show the LM procedure). With this voting-based 389 

mechanism, a winner class label is selected based on the local majority of any single decision 390 

space. It is experimentally observed that multiple base learners can achieve greater 391 
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generalizability. However, not all the base learners can yield effective classification performance 392 

in a practical pattern recognition task regarding the diversity or pseudo-independent nature of base 393 

learners. Some base learners may have adverse effects on the ensemble learner. Therefore, we 394 

carried out a model selection by finding the cumulative vote-against value for each model. 395 

Top ‘n’ models with the minimum cumulative vote against them are selected to form a single 396 

decision space in case of global majority voting (CVAGM). Similarly, in the case of the proposed 397 

CVFGM cumulative vote for value is calculated for each model. Then select the top ‘n’ models 398 

with maximum cumulative vote-for value. Detailed procedure of the combination schemes 399 

CVFGM and CVAGM is described in Algorithm 3. The aim was to reduce the FN by increasing 400 

the generalization of ensemble and giving more weightage to FN. Overview of the proposed 401 

(DCAE-ZSL-HVE) architecture is described in Fig.7. 402 

 403 

Fig. 7– Overview of the proposed (DCAE-ZSL-HVE) Inference Stage (IS) architecture 404 
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 407 

3.6.Performance comparison with state of the art Deep Models 408 

Deep learning (DL) techniques are becoming famous for enhancing the performance of network 409 

intrusion detection systems (NIDS)[42]. However, DL based detection models are highly dependent 410 

upon large amounts of labelled training data, often unavailable. In this comparison, we investigate the 411 

potential of transfer learning (TL) in detecting zero-day ransomware. TL is an approach that enables 412 

the transferring of learned features from the source domain to the target domain, especially in cases 413 

where the target domain samples are less in number. We compare the performance of the proposed 414 

model with several deep models trained using TL, e.g. ResNet50[43], GoogleNet (Inception-V1)[43], 415 

and Inception-V3[44]. We used the pre-trained model trained on the imageNet dataset and then fine-416 

tuned the model on ZSL-train data. The implementation details of these architectures are provided in 417 
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the section 4.2. These TL based deep CNN architectures are customized to make them applicable for 418 

ransomware image dataset by adjusting new input layer as per the dimensions of the targeted 419 

ransomware image data (224X224X3). Similarly, the last fully connected layer of the standard 420 

architecture is replaced with two neurons to classify the goodware and ransomware samples using 421 

softmax function at the last layer 422 

On the other hand, the remaining convolutional blocks are kept unchanged. These models' weight space 423 

is optimized using the backpropagation algorithm to minimize the cross-entropy-based loss function. 424 

We show how effective are the TL based detection models in detecting zero-day attacks, when there is 425 

no information available, compared to the proposed and shallow learning methods. GoogleNet is a 426 

Deep CNN architecture that employs inception block to transforms the image representation at multiple 427 

scales using multi-resolution filters. However, Inception-V3 replaces these multi-resolution filters with 428 

asymmetric filters to make them computationally efficient. ResNet improves the optimization strategy 429 

for fast convergence using skip connections. 430 

4. Implementation details 431 

All the experiments were carried out using Microsoft Window7 professional, 16.0 GB memory, 432 

X64-based PC, 64-bit operating system. The core coding modules are implemented using python 433 

version 3.6. However, the base learners SVM, RF, GNB and LR were developed using Scikit 434 

library. Proposed CAE topology is designed using Keras library. In addition, pillow and t-SNE 435 

libraries were also used. 436 

4.1. Parameter settings of baseline models and Deep Contractive Autoencoder 437 

Parameter setting involves the parameters of the DCAE and different models, including RF, 438 

GNB, SVM, and LRC. To extract DCAE bottleneck features, CAE is trained on the ZSL-train set. 439 

To optimize the parameters, 15% of the total data is reserved as validation data. Table 4 shows the 440 

values of the parameters, which are set during the training phase of DCAE. CAE is trained using 441 

a contractive-loss function that takes lambda =0.000001. Different conventional learning model’s 442 

optimization is carried out using 5-cross validation on precision and recall due to the data's 443 

imbalanced nature.  444 

  445 

Table 4: Parameter setting of Autoencoder 446 

Parameters Values 

Total encoded layers 4 + 1  

Total decoded layers 5 

Batch size  2 

Encoding dimension  100 

Total layers 10 

Lambda 0.000001 
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4.2. Parameter settings of TL based CNN models 447 

TL-based CNN models' parameter setting involves its hyperparameters settings like Epochs: 100, 448 

learning rate: 0.0001, batch size: 5, and momentum: 0.95. Furthermore, the train, test and 449 

validation data are kept the same for comparison purpose both for the baseline models and the 450 

proposed technique. TL-based Deep CNNs models' training is optimized using SGD optimizer to 451 

minimize the cross-entropy loss.  452 

4.3 Performance evaluation 453 

To evaluate the proposed DCAE-ZSL technique's effectiveness, the different performance 454 

measures used in various experiments are recall, accuracy, precision-recall curve (PR Curve), and 455 

AUC-PR. PR Curve is a plot between precision and recall by varying threshold. The mathematical 456 

description of the used performance measures is given below in Eqs. (8-10).   457 

                 Precision
TP

DetectionRate
TP FP

= =
+

                                                                   (8) 458 

              

TP TN
Accuracy

TP FP FN TN

+
=

+ + +                                                                              (9) 459 

                 
Recall

TP

TP FN
=

+                                                                                                      (10)       460 

The positive (P) and negative (N) represent two classes, in the current problem, the positive class 461 

is the ransomware, and the negative is goodware. The objective is to increase TP value and 462 

decrease FN value, as the malicious class detection is more important in this scenario. 463 

5. Results and discussion 464 

5.1. Effectiveness of the proposed DCAE-ZSL attribute learning method 465 

The objective of this experiment is to show that the robust features extracted through the bottleneck 466 

layer of Undercomplete CAE can work well against zero-day attacks. Table 5 shows the result of 467 

zero-day attack detection using a full set of original features. In addition, the results of zero-day 468 

attack detection using robust and reduced features extracted through the proposed DCAE-ZSL 469 

technique. It illustrates the obtained results in terms of the recall and accuracy. DCAE-ZSL-RF 470 

has shown significant improvement in recall (0.85) and accuracy (92.8) as compared to recall 471 

(0.79) and accuracy (81.0) of the baseline RF model that was trained on the original features. 472 

Similarly, DCAE-ZSL-GNB and DCAE-ZSL-SVM have shown considerable improvement in 473 

terms of the recall and accuracy, as compared to the baseline GNB and SVM model. DCAE-ZSL-474 

LR performance has also shown improvement in terms of the recall and is more sensitive in 475 

detecting the positive class than the baseline LR model. Overall it can be observed that features 476 

extracted through the proposed technique can enhance the ZSL capabilities of conventional 477 

learning algorithms. 478 
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Table 5: Different classifiers’ result on original and transformed feature space (proposed DCAE-479 

ZSL) on test set. 480 

Attributes 

Type 

Learning 

Models 

TN FP FN TP Recall Accuracy(%) 

Original  

 

RF 112 21 28 106 0.79 81.0 

Proposed 

DCAE-ZSL 

 133 0 

 

20 

 

115 

 

0.85 92.8 

Original 

 

GNB 105 28 47 87 0.64 71.9 

Proposed 

DCAE-ZSL 

 84 49 

 

11 

 

123 

 

0.91 77.5 

Original SVM 130 

 

3 

 

28 

 

106 

 

0.79 88.4 

Proposed 

DCAE-ZSL 

 120 

 

13 13 121 0.90 90.3 

Original LR 132 

 

1 

 

25 

 

109 

 

0.81 90.4 

Proposed 

DCAE-ZSL 

 121 12 14 120 0.90 90.3 

 481 

5.2  Effectiveness of the proposed ensemble (DCAE-ZSL-HVE) based Inference Stage 482 

We present the extensive experimental results for different ensemble configurations using different 483 

learning models (RF, DCAE-ZSL-RF, SVM, DCAE-ZSL-SVM, LR, DCAE-ZSL-LR, DCAE-484 

ZSL-GNB and GNB) trained distinctly on two feature representations in Table 6. The bold values 485 

indicate the best values for the each method used. Table 6 shows the performance of diverse voting 486 

approaches that define the different combination rules on the dynamic behavior dataset. The 487 

highest recall performance is obtained by using the local majority (i-e 0.95). This combination rule 488 

and ensemble scheme provide a 92.8% accuracy rate. Besides, the global majority based 489 

combination yields the second greatest results in terms of recall (i-e. 0.91). So, we conclude that 490 

the local majority can gain a recall measure for ransomware detection. The performance of the 491 

four different proposed ensemble is evaluated using recall. FP, FN, accuracy and F1 show that 492 

each inferencing method brings improvements than the individual learners. 493 

 494 

 495 

 496 
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Table 6: Comparison of DCAE-ZSL-HVE with four different proposed combination rules in terms 497 

of Recall, Accuracy, and F1 on test data 498 

IS Methods Combination Schemes TN FP FN TP Recall Accuracy 

(%) 

F1 

Proposed 

Method 1 

GM 129 4 11 123 0.91 94.3 0.94 

Proposed 

Method II 

LM 120 13 6 128 0.95 92.8 0.93 

Proposed 

Method III 

CVAGM 131 2 21 113 0.84 91.0 0.91 

Proposed 

Method IV 

CVFGM 120 

 

13 

 

11 

 

123 

 

0.91 91.0 0.91 

 499 

5.3 Performance analysis using recall 500 

Fig.8. shows the recall measure comparison of, baseline models, proposed DCAE-ZSL based 501 

models and the proposed ensemble methods. From the figure, it can be seen that the proposed 502 

DCAE-ZSL transformation brings improvement in terms of recall for all learning models. 503 

Moreover, the proposed ensemble scheme further improves the recall rate. The results of all 504 

combination rules except Method III are better than the base learners trained on the two 505 

representation schemes. However, the best results (0.95) in terms of recall are obtained by using 506 

the local majority as a combination rule. 507 

 508 

Fig. 8– Performance comparison in terms of recall  509 
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5.4  Performance analysis using FP and FN 510 

In this section, we further evaluate the FP and FN error measures. Fig. 9 shows the True Positive 511 

(TP), and the FP values, of the classifiers trained on original features, proposed DCAE-ZSL 512 

transformation and trained on proposed ensemble scheme with four different combination rules. 513 

The figure shows that the lowest FP is achieved by the proposed DCAE-ZSL-RF model (FP=0). 514 

As this research work aims to decrease the FN value, it can be observed that it is decreasing with 515 

each proposed module. The lowest FN is achieved using the proposed ensemble scheme with the 516 

local majority combination rule (i.e., FN =6). FN values of all the classifiers that are trained on the 517 

roposed transformation are better than the baseline models which are trained on original features. 518 

When applied the proposed ensemble, it further decreasing the FN values. 519 

 520 

Fig. 9– Performance comparison in terms of FP and FN values 521 

5.5  Detection rate analysis at multiple threshold levels 522 

The ransomware attack is one of the most dangerous cyber-attacks due to its common effects on 523 

internet resources. Therefore, false alarms pose less cost as compared to a FN. Hence, we 524 

optimized the recall by compromising precision, as this compromise is desirable. Fig.10. (a) and 525 

(b) are showing the PR curves of baseline and proposed DCAE-ZSL techniques. It can be observed 526 

that when the recall threshold is less than 0.8, the baseline is performing better. However, as the 527 

baseline approaches 0.8, the proposed techniques outperform both in terms of precision and recall. 528 

Even below 0.8 recall threshold values, results are comparable. 529 

 530 
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 535 

 536 

Original Attributes(Full Set) Proposed DCAE-ZSL Attributes(100 Features) 

 

 

    

 
 

Fig. 10– PR curve of baseline vs proposed technique 537 
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 538 

5.6  Performance Comparison with state of the art techniques 539 

 540 

Table 7 shows the comparison between the proposed method's performances and fine-tuned CNN 541 

models on ZSL-test data. The performance of the proposed DCAE-ZSL-HVE is compared with 542 

three classification models (GoogLeNet, Inception- V3, ResNet-50) on the same data using the 543 

same train test distribution. These classification models are now in trend to solve a complex 544 

problem like intrusion detection[45]. The Performance analysis of TP, FN and recall values 545 

suggests that proposed DCAE-ZSL-HVE models learn the ransomware specific feature better than 546 

GoogLeNet, Inception- V3, ResNet-50. In comparison, the fine-tuned CNN models show slightly 547 

better performance in learning goodware specific features but at the cost of a high false alarm rate 548 

(minimum 23 by Inception- V3). However, the proposed DCAE-ZSL-HVE generates only 13 false 549 

alarm. This may be because GoogLeNet, Inception- V3, ResNet-50 are data-hungry classifiers and 550 

are biased towards majority class samples.  551 

 552 

Fig.11. depicts the Bar Chart graph comparison among best performers of baseline models (i-e 553 

LR), Deep CNN models (i-e ResNet50), the proposed IS (i-e LM) in term of error measures (FP 554 

and FN), recall value and number of misclassified samples (MCS). The number of MCS is 555 

calculated by summing the error measures FP and FN. It can be observed that the values of all 556 

metrics using the proposed ensemble-based IS (LM) is better than all the other reported results, 557 

except FP for baseline LR. However, LR yields high MCS than the proposed IS (LM). This 558 

indicates that the proposed technique achieves a considerable compromise between FP and FN. 559 

Moreover, it attains the lowest number of MCS. Therefore the proposed approach is well designed 560 

to detect zero-day ransomware. 561 

 562 

Table 7: Comparison of the proposed DCAE-ZSL-HVE with Deep Learning models in terms of 563 

Recall, and, Accuracy on zero-day attacks based test data 564 

 565 

Techniques TN FP FN TP Recall Accuracy 

(%) 

GoogleNet[46] 

 

127 33 6 101 0.81 85.3 

Inception V3[44] 127 23 6 111 0.84 89.1 

ResNet50[43] 126 

 

25 

 

7 

 

109 

 

0.91 88.0 

Proposed  

DCAE-ZSL-HVE (LM) 

120 13 6 128 0.95 92.8 

 566 

 567 
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 568 

 569 

  570 

Fig. 11– Comparison of the proposed method with best performing state of the art method 571 

 572 

To evaluate the performance of the proposed methods against other detection systems, we 573 

investigate different approaches from the literature for ransomware detection. Table 8 shows the 574 

comparison between DCAE-ZSL and EldeRan [26], evaluated using ZSL-test-data given in 575 

section 3.3. Both techniques are compared in terms of the detection rate on 100 features. However, 576 

the proposed method is using less training data as compared to the existing technique. The 577 

proposed DCAE-ZSL technique does not include the remaining test classes in training while 578 

evaluating one family from ZSL-test data. The results show that the proposed technique is better 579 

in detecting Pgpcoder, Trojan-Ransom and Reveton than the existing method.  580 

 581 

Table 8: Detection rate comparison with existing EldeRan[26] on test data 582 

Family No of 

ransomware 

samples 

Detection Rate 

(100 features) 

EldeRan 

Detection Rate 

(100 features) 

DCAE-ZSL-HVE 

Pgpcoder 4 0.75     1 

Reveton 90 0.88     0.96 

TeslaCrypt 6 1.00     0.92 

Trojan-Ransom 34 0.94      0.95 

Table 9 shows the comparison with the existing techniques in term of recall measure. We compared 583 

the recall performance of proposed DCAE-ZSL_HVE (0.95) with some of the existing methods 584 

namely , C4.5(0.52)[13], KNN(0.70)[13], DNA Sequencing Engine(0.82) [47]and Anomaly(0.89) 585 

[27]. DNA Sequencing Engine is using the same dataset, but train test split may not be the same. 586 
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However, its testing is carried out on the known type of ransomware. Similarly, methods such as 587 

C4.5[13] and KNN[13] are tested on known types of ransomware. Results show that the proposed 588 

method is outperforming even on unknown test data compared to the existing methods that show 589 

performance on known attacks. These results show that intra-family variations of ransomware can 590 

be suppressed effectively using the proposed DCAE-ZSL technique. It also shows that by 591 

efficiently integrating the decision of base learners trained on two different representation can 592 

perform well than the single base learner. 593 

 594 

   Table 9: Recall comparison with existing techniques on test data 595 

Techniques                                         Type Recall Test data 

Proposed DCAE-ZSL-HVE            

(Local Majority) 

Heterogenouas 

Ensemble 

0.95 

 

Unknown attacks  

Saleh et al. [13] KNN  0.70 Known attacks 

Saleh et al. [13] 

Al-rimy et al.[27] 

C4.5 

Anomaly 

0.52 

0.89 

Known attacks 

Unknown attacks 

Sgandurra et al. [26] EldeRAN 0.93 UnKnown attacks 

 596 

Table 10. shows the qualitative comparison using some significant characteristics between the 597 

proposed method and the most recent ransomware detection methodologies. The quantitative 598 

comparison is difficult to perform due to lack of availability of any benchmark dataset, different 599 

test environments, and due to the difference in objectives of developing the detection systems. The 600 

proposed method uses full set dynamic features to capture all malicious API sequences, file access, 601 

registry access, drop files, file extension search, and threatened text instead of focusing on single 602 

event. Further, we have extracted the core semantic embeddings that utilizes the subset of these 603 

events. Further we objectively trained and tested the proposed ensemble model to detect zero-day 604 

ransomware.  605 

Table 10: Comparison of the proposed method with recent Ransomware detection techniques 606 

Techniques year Ensemble Features 

Type 

Zero-day 

Attack 

Detection 

Cost  

Sensitive 

Approach 

Classification 

Type 

Proposed  2021 yes Entire 

dynamic 

features 

Yes yes Binary 

B.Zhang et al.[48] 2020 No N-gram 

opcodes 

No No Family  

Al-rimy et al.[49] 2019 yes Dynamic 

API 

Calls 

No No Binary 
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R.Vinayakumar et 

al.[50] 

2019 No User 

centric 

data 

No No Family  

S.Maniath et al.[51]  2017 No Dynamic 

API 

Calls 

No No Binary 

S.Homayoun[52] 2019 yes Sequenc

es of 

events 

Yes No Family  

6. Threats to validity  607 

While developing the framework for zero-day ransomware detection, the proposed framework has 608 

some threats to validity which are defined below: 609 

 610 

Construct validity: In the present research, the developed framework for ransomware detection 611 

only discriminate between the goodware and ransomware of local machine, but does not include 612 

the verification of network traffic with server. Moreover, family classification of ransomware is 613 

not performed. 614 

Internal validity:Another threat is the homogeneity of the data used. However, in this current 615 

work, the data has been collected from diverse sources and thus it is largely hetrogenous.  616 

External Validity: In this work, we considered 11 different ransomware families, while for 617 

training we used seven families and the remaining four families are used to evaluate the model for 618 

zero-day ransomware detection. Additionally, the work can be extended to train the framework 619 

with more ransomware families, which then can become more proficient to detect the real world 620 

ransomware. Another external threat to validity is timely detection, however dynamic analysis is 621 

a time taking process.  622 

 623 

7. Conclusion and future work 624 

This paper presents a two-stage ransomware detection system using concepts of ZSL, DCAE, and 625 

Ensemble learning. The first stage is an AL (Attribute Learning) phase, whereby, a novel DCAE-626 

ZSL technique is proposed to learn the uniform latent semantic embeddings both for known and 627 

unknown attacks. The learned latent space also penalizes the input for little changes and can focus 628 

on major similarities between known and unknown classes. Thus, it is able to learn only the core 629 

transformation that results in performance improvement against zero-day attack detection. 630 

Through different experiments, it is observed that DCAE-ZSL based transformed representation 631 

outperforms the traditional machine learning approaches against zero-day attacks. Then, base 632 

learners are trained on the original features and on features extracted through the proposed DCAE-633 

ZSL method. Finally, the second stage of the proposed framework consists of the IS (Inference 634 

Stage) that implements four combination rules to obtain the final prediction results. The prediction 635 

results by K-NN, DNA Sequencing Engine   and Anomaly based methods shows that our method 636 
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can provide good recall score as compared to these methods. Further, the proposed method shows 637 

better performance in detecting Pgpcoder, Trojan-Ransom, and Reveton families than the existing 638 

method [20] in terms of precision. Moreover, results show that the proposed DCAE-ZSL-HVE 639 

methods achieve a considerable compromise between FP and FN as compared to the conventional 640 

baseline models. Hence, we conclude that the invariant and reduced feature representation of the 641 

original features can efficiently detect new classes at the test time. 642 

In this study, the developed system for zero-day ransomware detection only detects either an exe 643 

file is a goodware or ransomware. In future, this work can be extended to identify the family of 644 

the ransomware. Similarly, in future CAE can also be used to extract the pre- encryption based 645 

discriminant features for an early detection. 646 
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