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Sound generated by axisymmetric
non-plane entropy waves passing
through flow contractions

Dong Yang1, Juan Guzmán-Iñigo2
 and Aimee S. Morgans2

Abstract
For a single-component perfect gas, entropy perturbations are associated with the difference
between the overall density fluctuation and that coming from the acoustic perturbation. Entropy
perturbations can generate sound when accelerated/decelerated by a non-uniform flow and this is
highly relevant to thermoacoustic instabilities for gas turbines and rocket engines, and to noise
emission for aero-engines. Widely used theories to model this entropy-generated sound rely on
quasi-1D assumptions for which questions of validity were raised recently from both numerical and
experimental studies. In the present work, we build upon an acoustic analogy theory for this
problem. This theory was initiated by Morfey (J. Sound Vib. 1973) and Ffowcs Williams and Howe
(J. Fluid Mech. 1975) about 50 years ago and extended recently by Yang, Guzmán-Iñigo and Morgans
(J. Fluid Mech. 2020) to study the effect of non-plane entropy waves at the inlet of a flow contraction
on its sound generation. Comparisons against both numerical simulations and previous theory are
performed to validate the results.
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Introduction

In gas turbine and rocket engine combustors, the combustion process is inherently unsteady as both
the flow and the chemical reaction process involve turbulence. This unsteady combustion generates
heat release fluctuations which are a source of noise,1 the so-called direct combustion noise. At the
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same time, unsteady combustion and the associated unsteady mixing of hot and cold flows also
generate advective temperature perturbations (also called “hot/cold spots” or entropy waves). These
entropy waves remain silent (decoupled from the acoustics) when they are advected by a uniform
flow, but generate sound when they are accelerated.2–4 This can happen for instance at the turbine
inlet in gas turbines or at the downstream nozzle of rocket engines. This entropy generated sound is
believed to be a major contributor of indirect combustion noise.5–7 Indirect noise can modify the
thermoacoustic stability of the combustor via its reflected component8 and increases noise emissions
when transmitted outside the engine.

Many theoretical models for entropy noise assume that both the flow and the entropy waves are
quasi-one-dimensional. This is the case, for instance, for the theory of Marble and Candel,2 which
predicts the generation of entropy noise using isentropic flow conservation equations across nozzles
in the zero-frequency limit. This theory has been extended to higher frequencies by,9–13 to
compositional noise14,15 and to nozzles with heat transfer.16

Recent numerical17 and experimental18,19 evidence suggests that approximating entropy per-
turbations geometrically as plane waves is not satisfactory for real combustors, due to their complex
three-dimensional flow, combustion and mixing effects. A recent experimental study further
confirms that quasi-1D models may not suffice20 for these flows.

However, there is little systematic modelling work directed at non-plane wave effects for entropy
noise. In,21,22 it was found that non-plane wave effects were important at medium frequencies and
some modelling of their effects was achieved. Other recent efforts to relax the quasi-one-
dimensional assumptions have been based on Rapid Distortion Theory,23 with models devel-
oped for the sound generated by entropy interacting with isolated blades24,25 and cascades.26

An alternative way to model the sound generation due to non-plane entropy waves is to use the
acoustic analogy theory pioneered by Lighthill.27,28 Along these lines, the earliest attempts to
identify entropy-related sound sources were made nearly 50 years ago by Morfey29 and Ffowcs
Williams and Howe,30 where the dominant entropy-related sound source term was derived for low
Mach numbers. This acoustic analogy theory was recently extended by Yang et al.31 to give full
expressions for the entropy-related sound sources in a single-component calorically perfect gas
without external mass, volume force or heat sources and for linear perturbations. It was used31 to
study the entropy noise generated by deceleration through an area expansion, where quasi-one-
dimensional, isentropic theory fails.32

In this work, we use the acoustic analogy model of Yang et al.31 to study the sound generated by
the acceleration of non-plane incoming entropy waves. The configuration of interest is an area
contraction, with a uniform mean flow passing from an upstream cylinder into a smaller co-axial
downstream cylinder, being accelerated in this process. Results from the present model are
compared to those from Marble and Candel’s quasi-1D model and to numerical solutions of the
Euler equations.

Theoretical model

Governing equations. We consider a single-component, calorically perfect gas as the working fluid
and we assume that the flow is compressible, inviscid and irrotational. Neglecting also any external
volumetric sources of mass, momentum and energy, the conservation of mass and momentum can
be combined to obtain the following equation31,33
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where ρ, c, T, B, s and t denote density, speed of sound, temperature, stagnation enthalpy, specific
entropy and time, respectively. D/Dt = ∂/∂t + u �= is the convective derivative and u is the velocity.
This equation has considered the energy equation in its entropic form, Ds/Dt = 0.

We now decompose the flow variables into a steady mean, ½��, and a small-amplitude pertur-
bation, [�]0, such that ½�� ¼ ½�� þ ½��0. Following Yang et al.31 and taking the mean flow to be
homentropic, equation (1) can be linearised to obtain
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where cp denotes the heat capacity at constant pressure, D=Dt ¼ ∂=∂t þ u � = and B0
a ¼ p0=ρþ

ð��uj2=2Þ0 denotes the acoustic part of the perturbation in stagnation enthalpy. The left-hand side of
equation (2) is an equation governing sound propagation and the three terms on the right-hand side
(RHS) are the sound sources due to entropy perturbations.

Neglecting any heat addition, thermal diffusion and viscous effect, the energy equation for a
single-component thermally perfect gas gives Ds/Dt = 0. By linearising this equation and further
assuming the mean flow to be homentropic, such that =s ¼ 0, the entropy perturbation can be
computed after solving the linearised entropy equation

∂s0

∂t
þ u � =s0 ¼ 0: (3)

A harmonic ansatz ½��0 ¼ e½�� eiωt can now be assumed, where ω is the angular frequency and i the
imaginary unit. As discussed in,31 dimensional analysis of the source terms of equation (2) shows
that the second and third terms are O(M2) and O(MHe) (He ¼ ωL=c where L is some characteristic
length scale, such as Rd as shown in Figure 1) times the first term, making them much smaller at low
Mach numbers and frequencies. In this work, we focus on low Mach number flows, i.e.M2 = 1, and
low frequencies and thus these last two terms can be neglected. At low frequencies, it will also be the
case that any mean flow non-uniformity has a much smaller spatial extent than the acoustic
wavelength. The effect on the acoustic propagation is small, such that for the LHS terms, ρ, c and u

Figure 1. (Color online) (Left) The geometric configuration under consideration, which consists of a
cylindrical contraction. (Right) Entropy wave at the inlet and its advection envelope through the contraction.e½ � denotes the Fourier amplitude.
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can be taken as uniform in each duct (u ¼ u i where i is the unit vector in the axial direction).
Equation (2) then simplifies to"
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The present work applies this theory to a sudden flow contraction between two co-axial
connected cylindrical ducts, as shown in Figure 1 (left). The up- and downstream duct radii are
Ru and Rd, respectively. A uniform mean flow with Mach numberMu enters the larger cylinder inlet
on the left-hand side, with the corresponding Mach number in the downstream duct being Md. To
avoid velocity singularities in the numerical simulations, the two corners at the junction of the ducts
are smoothed with small quarter-circular arcs of radii Rc. A small-amplitude entropy wave, ~s0, is
injected at the inlet and then advected downstream as indicated by equation (3). Upon being
accelerated through the contraction, reflected ð~p�Þ and transmitted ð~pþÞ acoustic waves are gen-
erated and propagate as plane acoustic waves far upstream and downstream, respectively. The
entropy profile imposed at the inlet is axisymmetric, but takes the form of a circular spot rather than a
plane wave. It has a uniform value of ~sinleteiωt for radial positions r ≤ Rs and is zero otherwise.
Because the entropy is simply advected by the mean flow, the streamline passing through r = Rs and
denoted by the red-dash line in Figure 1 (right) separates two regions: (i) an inner region where
entropy is advected and (ii) an outer region with no entropy presence. The position of Rs is given by
β = Rs/Ru. To compare the results obtained with different values of β, the strength of the entropy
profile at the inlet is averaged over the inlet cross-sectional area, such that

�
~s0

�
¼

Z
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~s0 dA

Au
¼ β2~sinlet: (5)

The solution of the equation

Equation (4) is now solved using the Green’s function method34 for the system shown in Figure 1.
The Green’s function, ~Gðx, y;ωÞ, denotes the acoustic response at the location of an observer, x, due
to a Dirac delta function, δ, at the source location, y:"
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For a given space V, bounded by surfaces s (being positive in the outwards direction), the solution
for ~Ba can be obtained by convolution of the Green’s function with the boundary and volume
acoustic source terms. Defining k ¼ ω=c, this gives

~Ba ¼
Z
∂V
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This follows the method of Sec. 2 in34 where circumferential variations are neglected so that the
system is two-dimensional, and the problem is divided into a region upstream of the contraction and
a region downstream. Note that in34 both regions are cylindrical in shape with a sharp transition
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between them; in other words, the two rounded edges presented in Figure 1 will be treated as sharp
for the acoustic solution. Boundary conditions for the upstream region are that the radial velocity on
the cylinder inner surface is zero, the axial velocity oscillation just upstream of the contraction is
zero and only outward waves propagate far upstream. Similar boundary conditions are used in the
region downstream of the contraction. Then for each cylinder, the Green’s function is expressed as a
Fourier-Bessel expansion for the cylindrical geometry and the relevant boundary conditions ap-
plied, before substituting into (7).

For the acoustic source term, far up- and downstream of the contraction, the entropy disturbance
advects within a uniform flow and no acoustic source exists. When the entropy wave passes through
the contraction, it accelerates, setting up an acoustic field. This contains many radial modes in the
vicinity of the contraction, even though all other than the plane wave mode will be evanescent at low
frequencies.

The velocity oscillation at the interface is expanded as the sum of a series of Bessel functions to
capture the large number of radial modes – the strength of each “Bessel mode” needs to be solved
for. ~Ba just up- and downstream of the contraction interface are represented in terms of the interface
velocity oscillation equation (15) in34 and the entropic source term, with the latter depending on the
mean pressure gradient in both the axial and radial directions. The mean flow profile is assumed to
be the same as the geometry profile (no flow separation exists). It was shown in31 that the mean
pressure gradient is predominantly in the axial direction for a flow expansion, and this is also true for
the present contraction case. Thus even though the radial gradient can be considered if it is provided
(e.g. by numerical simulation), only the axial gradient is retained in the model for simplicity.
Additionally, this mean flow is assumed isentropic so that we can use the classical solutions for an
isentropic 1D nozzle.

Finally, by applying continuity of ~Ba across the contraction interface, the velocity oscillation can
be resolved. Then ~Ba and the reflected and transmitted acoustic waves can be obtained.

Numerical results

In this section, we present the numerical simulations used to validate the model. The numerical
method employed here is based on a linearisation of the Euler equations. Both the steady and
linearised Euler equations are solved using the finite element method35 implemented using the open-
source computing platform FEniCS.36,37 The flow variables are assumed axisymmetric. The mean
flow is obtained as the solution of the steady, compressible non-linear Euler equations in con-
servation variables and cylindrical coordinates. The equations are discretised in space using a
continuous-Galerkin formulation stabilised using the least-squares method.35 The discretised non-
linear problem is solved using a fully-implicit, pseudo-time-stepping algorithm.38 A slip boundary
condition is imposed on the walls. The mesh used for both the mean flow and the perturbation
contains approximately 480, 000 triangular elements. This mesh yields a resolution of around
50 elements per entropy wavelength in the upstream duct for the highest frequency considered in
this study, i.e.He = 0.3. Quadratic approximation polynomials are employed for both the mean flow
and perturbations. The resulting mean flow for the area contraction is depicted in Figure 2 for an
inlet Mach numberMu = 0.069 (Md = 0.204) and for a ratio of the up- and downstream duct radii of
Ru/Rd = 1.7. To avoid supersonic velocities at the corners, the radii of the two small quarter-circular
arcs were both taken as Rc = 0.1Rd.

To obtain the acoustic field, the linearised compressible Euler equations are formulated in
primitive variables and recast in the frequency domain, yielding:
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These equations, together with the linearised Gibbs relation ~p ¼ c2ð~ρþ ρ~s=cpÞ, are spatially
discretised using again a continuous-Galerkin formulation stabilised with the least-squares
method.35 The discretisation leads to a linear problem that is solved using the sparse linear
solver MUMPS.39,40 A slip boundary condition is again imposed on the walls. Fully non-reflective
acoustic boundary conditions are imposed at both the inlet and the outlet,41 so that only reflected and
transmitted plane acoustic waves exist, respectively, at the far up- and downstream ducts. An
entropy perturbation,~s0, is inserted at the inlet as a boundary condition. The entropy profile imposed
in the simulations is similar to the step function presented in the previous section, but is smoothed to
avoid singularities of the gradient at r = Rs:

~s0ðrÞ ¼

8>>>>><>>>>>:
~sinlet if r ≤Rs,

~sinlet

	
3

�
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Rf � Rs

�2

� 2

�
Rf � r
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�3

if Rs < r ≤Rf ,

0 otherwise:

(9)

with Rf = Rs + 0.2. The distribution of entropy for different frequencies and values of β is shown in
Figure 3. We observe that for values of β < 1 and regardless of the frequency, the entropy is zero in
the outer region defined by the streamline that passes through r = Rf at the inlet. On the other hand,
there is an internal region delimited by the streamline passing through r = Rs at the inlet where the
modulus of the entropy is uniform.

Figure 2. (Color online) (a) Mean-flow Mach number, M, and (b) normalised mean pressure, p=γpd,. White
lines denote streamlines.
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The acoustic field generated by the acceleration of entropy fluctuations is post-processed using
the multi-microphone method42,43 to compute the reflected and transmitted waves. Figure 4 shows
the reflected and transmitted coefficients obtained from the simulations for several values of β. For
all the configurations, both coefficients tend to a constant value at low frequencies (the compact
limit) and, when the frequency increases, the values of the coefficients drop due to non-compact
effects. This low-pass filter behaviour is typical of entropy noise. The predictions of the compact,
1D and isentropic model of Marble and Candel2 are also depicted in Figure 4. For a subsonic nozzle,
the reflected and transmitted coefficients predicted by this model are respectively

~p�
��
γpu

�
�
~s0

��
cp

¼ �
�
Md �Mu

1�Mu

�
0:5Mu

1þ 0:5ðγ� 1ÞMuMd
, (10)

Figure 3. (Color online) Real part of the entropy perturbation for: β = 1 and (a) He = 10�3, (b) He = 0.2, and
β = 0.6 and (c)He = 10�3, (d) He = 0.2. The white lines denote the streamlines passing through r = Rs and r =
Rf at the inlet.
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1þ 0:5ðγ� 1ÞMuMd
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where γ = 1.4 is the adiabatic index. The value of the reflected and transmitted coefficients in the
compact limit is the same for all β, the same for plane entropy waves (defined by β = 1) and the same
as predicted by the Marble and Candel model. Because the simulations and the predictions of the
Marble and Candel model tend to the same values at low frequencies, this model will be used in the
following section to benchmark the results obtained with the acoustic-analogy-based model.

Model results

In this section, the acoustic response of the contraction to incoming entropy waves is investigated
analytically using the acoustic analogy presented previously. As a reminder, the Green’s functions
used to solve the acoustics assume sharp edges at the flow contraction and the mean flow profile is
assumed to be the same as the geometry profile. For the entropic source term on the RHS of equation
(4), the spatial variation of the entropy perturbations, ~s, is required as an input. As observed in
Figure 3(a) and (c), phase variations during the advection of entropy through the contraction are
negligible at low frequencies. ~s can thus be considered uniform within the region delimited by the
streamline passing through r = Rs at the inlet. In this work, we intend to provide an analytical
solution to the problem and hence assume that the streamline path, denoted by the red-dash line in
Figure 1 (right), is not explicitly available. Three models are proposed to estimate this path, denoted
entropy profile hereafter, as shown in Figure 5. The first, denoted ‘Streamline 1D model’, assumes a
quasi-1D flow within the duct so that the ratio between the entropy profile radius and that of the duct
at any axial location is fixed and equal to β

brs�bx�
brg�bx� ¼ Rs

Ru
¼ β, (12)

Figure 4. (Color online) Acoustic (a) reflection and (b) transmission coefficients produced by the
acceleration of entropy waves at the flow contraction depicted in Figure 2. Numerical results (lines with
symbols) and predictions of the compact Marble and Candel model2 (black dashed line).
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where brsðbxÞ and brgðbxÞ are the normalised radii of the entropy profile and geometry profile at the
normalised axial locationbx respectively (with all normalizations being with respect to the radius Rd).
The second model, denoted ‘Streamline-CFD model’, uses the axisymmetric streamlines obtained
from the numerical mean flow, as depicted in Figure 2. The third model, denoted ‘Streamline-SemiA
model’ uses streamlines for an incompressible potential flow without smoothing circular arcs (Rc =
0). This potential flow field can be obtained by numerically solving Laplace’s equation or by solving
semi-analytically (by using the Green’s function method) the homogeneous version of equation (4)
with u ¼ 0 and assuming the frequency to be very low.44 ðHe ¼ ωRd=c ¼ 10�6Þ.

The entropy profiles for β = 0.6 and 0.95 as obtained using the three models are shown in
Figure 5. Two important points are firstly that the Streamline 1D model gives a very different
entropy profile to those from the other two models for both β = 0.6 and 0.95. Secondly, the
difference between the streamlines from the CFD and the semi-analytical model is small in the case
β = 0.6 but becomes significant near the inlet edge of the downstream duct when β = 0.95.

In order to compare the prediction from the present model with that fromMarble and Candel,2 we
introduce the relative difference (for both reflection and transmission coefficients) defined as

Difference ¼
����Present model � Marble and Candel model

Marble and Candel model

����: (13)

We now consider a plane entropy wave, i.e. β = 1, at the inlet and the Streamline 1Dmodel for the
entropy profile. Figure 6 shows that when Rc/Rd = 0.1, the difference compared to the Marble and
Candel model is about 4%. This increases with Rc and is negligible for Rc/Rd < 0.02. This is
consistent with the Green’s functions assuming cylindrical ducts for which Rc/Rd is zero.

We now take Rc/Rd = 0.1, the same value as the simulations, and consider non-planar entropy
waves, i.e. β < 1. Figure 7 shows that for the Streamline 1D model entropy profile, the predictions
from the present model deviate significantly from those of theMarble and Candel model when β < 1,
reaching 35% when β ≈ 0.7. However, this difference is greatly reduced if the Streamline-CFD
entropy profile is used, for which the largest difference is about 10% at β = 0.95. In Figure 8, we
show that as the corner radius is reduced, the Streamline 1D model entropy profile gives results
which better match those from the Streamline-CFD entropy profile (which is always based on Rc/
Rd = 0.1).

Figure 5. (Color online) The flow and entropy profiles, with β = 0.6 (left) and β = 0.95 (right).br ¼ r=Rd andbx ¼ x=Rd.
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From Figure 8, it can be seen that by using the Streamline-SemiA entropy profile, a good match
to the Marble and Candel model is obtained over the whole range of β. It is worth noting that at β =
0.95, the significantly different predictions between the Streamline-CFD model with Rc/Rd ≤
0.01 and the Streamline-SemiA model is solely due to the slight difference between the streamlines
from the CFD and the semi-analytical model, as shown in Figure 5 (right). This leads to the main
conclusion of the paper: for the present flow contraction, the sound generated by non-planar,
axisymmetric entropy waves passing through a contraction with sharp corners can be accurately
predicted by the Marble and Candel model as long as the entropy wave profile matches the
corresponding potential flow streamline. This conclusion is true for low-Mach numbers and low-
frequencies.

Figure 6. (Color online) The effect of the radii of the two corners on the normalised difference between the
entropy noise predicted by the present model and Marble & Candel. β = 1, Mu = 10�3 and He = 10�6 are
considered.

Figure 7. (Color online) The effect of β on the normalised difference between the entropy noise predicted by
the present model and Marble & Candel. Rc/Rd = 0.1, Mu = 10�3 and He = 10�6 are considered.
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Next, we compare predictions at the compact limit (He = 10�3), from the models with those from
the numerical simulations. As shown in Figure 9, in the considered range, β 2 [0.2, 1], while the
present Streamline 1D model predicts higher acoustic reflection and transmission coefficients, both
the present Streamline-SemiA model and the Marble and Candel model predict the same results
compared with the numerical simulations.

Finally, we consider the effect of frequency dependence. As shown in Figure 3, as He increases,
the central part of the entropy perturbation is advected through the junction faster than its outer part,
and the distribution becomes non-uniform. The low-pass filter behaviour of the acoustic reflection
and transmission coefficients was shown in Figure 4. To account for this frequency dependence in
the present model, we keep Rc/Rd = 0.01 for the mean flow profile and still assume the mean pressure
gradient to be nonzero only in the axial direction. We then use the semi-analytically obtained
streamline for the entropy profile, but consider the entropy advection within this profile to be two
dimensional. This 2D entropy perturbation distribution can be obtained by numerical simulations,31

or as suggested by,21 by discretising the radial direction into streamtubes, assuming isentropic 1D
flow in each one and integrating the entropy in each to obtain the whole distribution. We use the
latter method in the present paper. The results in Figure 10 show that for He < 0.1, both the LEE and
the present model predict similar results to those of the Marble and Candel model. However, for
He > 0.1, both the reflection and transmission coefficients exhibit a gain fall-off. This is captured by
both the LEE and the present model, with the discrepancy between the two likely to be associated
with the assumption on the mean flow profile and the mean pressure gradient. More accurate
predictions would require fully accounting for the 2D nature of the mean pressure gradient and the
entropy perturbation distribution, and is left for future study.

It is worth noting that a flow expansion case was considered in.31 The expansion accounts for the
flow separation, whereas the present contraction case assumes attached flow. As can be seen from
Figure 10 in the present paper, the non-planar effect becomes apparent when the frequency is higher
than He ≈ 0.1, corresponding to a Strouhal number based on the radius of the smaller duct
St ¼ ωRd=ud ≈ 0:5. For the expansion case, as shown in Figure 3 in,

31 the non-planar effect starts to
become apparent at about St ≈ 0.04. The latter frequency (in terms of Strouhal number) is much
smaller than the former. The reason for this is because in the expansion case, the flow separates to

Figure 8. (Color online) The effect of β when the corner radius Rc/Rd varies. 8 lines with Rc/Rd = 0.1, 0.08,
0.06, 0.04, 0.02, 0.01, 0.007, 0.005 are plotted for each result in the Streamline 1D and Streamline-CFD
models while the last three nearly merge into one. Mu = 10�3 and He = 10�5 are considered.
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generate a long recirculation bubble downstream of the area change. This results in a spatial length
responsible for the deceleration of the entropy much longer than the spatial length corresponding to
the acceleration of the entropy in the contraction case – about 10 times that of the radius of the
smaller duct, as can be seen in Figure 2 of,31 in the expansion case, and about a similar length of the
radius of the smaller duct, as shown in Figure 3, in the contraction case. Except for the difference in
the non-planar wave effect, the two cases are also different at the low-frequency (compact) limit.
The contraction flow result tends to the prediction fromMarble and Candel’s compact model, while
for the expansion flow, the generated noise is much smaller than that from the Marble and Candel
model, due to the flow separation and resulting spatial extent of the recirculation zone, as seen in
Figure 3 of.31

Figure 9. (Color online) Acoustic (a) reflection and (b) transmission coefficients due to non-plane entropy
waves passing through a flow contraction for Mu = 0.069 (Md = 0.204). In both the Streamline-CFD and
Streamline 1D models, Rc/Rd = 0.1 is used, while for the Streamline-SemiA model, Rc/Rd = 0.01 for the mean
flow profile. He = 10�3.

Figure 10. (Color online) Acoustic (a) reflection and (b) transmission coefficients due to non-plane entropy
waves passing through a flow contraction forMu = 0.069 (Md = 0.204). β = 0.8 is considered. In the present
model, the Streamline-SemiA model with Rc/Rd = 0.01 for the mean flow profile is used.
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Flow contraction sustaining a high subsonic Mach number flow

In the previous section, we showed that, in the compact limit, the magnitude of the acoustic waves
generated by acceleration of entropy fluctuations through a low-Mach-number flow contraction tend
to the Marble and Candel 1D prediction, even if the entropy waves are non-planar. The results
presented so far have been obtained for low-Mach-number flows, so that the simplified version of
the acoustic analogy could be employed. In this section, we explore numerically a flow contraction
sustaining a high subsonic Mach number flow to verify if this observation is also true in this case.
We consider an axisymmetric flow contraction characterised by the same ratio of the up- and
downstream duct radii as previously, i.e. Ru/Rd = 1.7. The geometry is further smoothed to avoid
supersonic regions in the corners: the radius of the corners is now taken to be Rc/Ru = 10 and a slope
of 10 deg with respect to the horizontal axis is introduced at the contraction. A Mach number Mu =
0.204 is imposed at the inlet, leading to a Mach number in the downstream duct of Md = 0.95. The
geometry and the Mach number distribution are depicted in Figure 11.

The acoustic reflection and transmission coefficients due to entropy acceleration have been
computed as described in previous sections and the results are plotted in Figure 12. It is clear that
even in the high subsonic Mach number limit, the results at low frequencies are independent of the
distribution of entropy at the inlet and that the results tend to the predictions of the Marble and
Candel model.

Figure 11. (Color online) (a) Mean-flow Mach number, M. The Mach number at the inlet is Mu = 0.205 and
Md = 0.95 at the outlet. Ru/Rd = 1.7.

Figure 12. (Color online) Acoustic (a) reflection and (b) transmission coefficients produced by the
acceleration of entropy waves at the flow contraction depicted in Figure 11. Numerical results (lines with
symbols) and predictions of the compact Marble and Candel model2 (black dashed line).
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Conclusion

In the present paper, we have studied both theoretically and numerically the sound generated by
axisymmetric non-planar entropy waves passing through a flow contraction. Numerically, it has
been shown that, at low-frequencies, the sound generated by such entropy waves is independent of
the shape of the entropy at the inlet. In the compact limit, the magnitudes of the reflected and
transmitted acoustic waves were found to be equal to those obtained for planar entropy waves and,
hence, to the predictions of the compact, quasi-one-dimensional and isentropic model of Marble and
Candel. At higher frequencies, the non-planar shape effects cause a fall off in the gain of the entropy-
to-acoustic transfer functions.

These results have been analysed with a recently developed acoustic analogy theory. The theory
was simplified assuming the flow to be inviscid and irrotational and restricting the configurations of
interest to low-Mach and low-frequency conditions. The simplified acoustic analogy governing
equation were solved using the Green’s function method. For the entropy-related sound source term,
three models for the profiles of non-plane entropy waves were proposed. It was shown that only
when the potential flow streamlines are used as the entropy profiles, the present theoretical model
predicts the same sound generation results as Marble and Candel’s compact model. The results for
non-planar waves were found to be very sensitive to the exact distribution of the entropy per-
turbations. At slightly higher frequencies when the entropy perturbation cannot be considered
compact/uniform across the contraction, the present model predicts the corresponding low-pass
filter behaviour for both the acoustic reflection and transmission coefficients.
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