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Transport, refraction and interface arcs in junctions of Weyl semimetals
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We study the low-energy single-electron transport across a junction of two magnetic Weyl semimet-
als, in which the anisotropy axes are tilted one respect to the other. Using a two-band model with
a potential step, we compute the transmission factor for normal and Klein tunneling and the refrac-
tion properties of the interface as a function of the tilt angle. We show that the interface acts as a
beam splitter, separating electrons with different chiralities. We also characterize interface states,
only appearing for finite tilt angle, which connect the projection of the Fermi surfaces on the two
sides of the junction, and we discuss transport effects due to their interplay with Fermi arcs.

I. INTRODUCTION

Weyl semimetals are three-dimensional materials, in
which the valence and conduction bands are well-
separated everywhere in the Brillouin zone, except at a fi-
nite number of isolated points, dubbed Weyl nodes. Here,
two non-degenerate, approximately linear, bands cross,
which make the sample behave as a semimetal when the
chemical potential is approximately at the band cross-
ing and originate the characteristic topological magneto-
electric response [1–5]. In many ways, this class of mate-
rials can be thought of as the three-dimensional analogue
of graphene, but the extra dimension provides robust-
ness against time-reversal breaking perturbations and a
very large magnetic field is necessary in order to gap out
the electronic spectrum [6, 7]. In addition, the topologi-
cal protection of the band crossings provides robustness
against moderate disorder [8].

One way for non-degenerate band crossings to appear
in the spectrum is to break the time-reversal symmetry:
Weyl semimetals of this family are dubbed magnetic and
exhibit partial or full magnetization of the carriers at
the Fermi level. They provide an excellent playground
for theorists and experimentalists due to the richness of
exotic features, and are currently object of widespread
attention because their bulk Berry curvature potentially
allows extensive manipulation of electronic currents [9–
11]. They host surface states in the form of Fermi arcs,
which are connected to nontrivial Hall response, mag-
netoconductance and thermal transport phenomena [12–
14]. Compounds in the pyrochlore iridates family and
the ferromagnet HgCr2Se4 were the first candidate Weyl
semimetals [15, 16], followed by various layered materials
[17] , such as Co3Sn2S2 [18–21] and the antiferromagnets
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Mn3X (X=Sn, Ge) [22], in which the Weyl nodes were
identified. Magnetic Heusler alloys also provide excel-
lent candidates for time-reversal-broken Weyl semimetals
[9, 17, 23], with various experimental confirmations, in-
cluding Ti2MnAl [24–26], Co2TiX (X=Si, Ge, Sn), GdSI
[27] and Co2MnGa [28]. See also [29] for a recent review.

The mounting number of experiments and the high
degree of manipulation available on the samples prompts
theoretical efforts to investigate systems with more com-
plicated geometries. In this work, we address electronic
transport at an interface between two magnetic Weyl
semimetals which are tilted one with respect to the other.
The relativistic spectrum is at the origin of intriguing
transport properties, such as Klein tunneling [30, 31].
The helicity of the quasiparticles near the Weyl nodes,
together with the spin texture of the Fermi arcs, also
originates non-trivial physics at the interface with a nor-
mal metal [32] or with a superconductor[33]. A common
instance of an interface may be created by imperfections
in the sample, in the form of irregular surfaces or adja-
cent extended regions with misaligned lattice structures.
Moreover, when a crystalline sample is abruptly cooled
down, small cracks in the material can be generated, so
that the lattice vectors are not perfectly aligned anymore
on the two sides of the defect. Finally, a sharp domain
wall between two regions with different magnetization
[34, 35] can be described within our formalism [36]. In
these situations, translation invariance in the direction
perpendicular to the interface is broken. As a result of
the displacement of the crystal axes, the dispersion of
the electron changes across the interface, resulting in the
refraction of an incident electron beam [37]. A junction
of two different non-centrosymmetric Weyl semimetals of
the same family has been considered in [38]: following the
idea of Veselago lensing in graphene [39–41] the authors
proposed application to scanning tunneling microscopy
and to fine control of electron transport using a square
potential barrier.

We focus in this paper on a single interface and charac-
terize its transmission properties as a function of the tilt
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FIG. 1. Two identical Weyl semimetals, with anisotropy axes
rotated in the yz plane by a tilt angle θ, share a common
interface at x = 0. The system is infinite in the y and z
directions.

angle, see Fig. 1, and their impact on electric transport
and thermoelectric properties of the sample. We also
consider the possibility of different doping levels on the
two sides of the sample, hence, the possibility of Klein
tunneling, and compute how the interface affects the di-
rection of a transmitted electron or hole. In addition,
we address the question of electronic states localized at
the interface. For finite tilt, the projections of the Weyl
nodes from the two sides do not coincide, which suggests
the necessity of interface states joining the disconnected
parts of the Fermi surface. A transfer matrix formalism
has previously been applied in [42] to investigate how
Fermi arcs on different sides of an interface can connect.
The fate of surface states when two Weyl semimetals are
tunnel-coupled has been further studied in [43], see also
[36, 44] for the effect of a twist. In our work, we consider
the transparent limit and find interface arcs, supporting
chiral transport along the interface. We emphasize the
universal origin of these interface states, whose main fea-
tures can be derived using a simple low-energy model of a
magnetic Weyl semimetal with a minimal pair of nodes.

The article is structured as follows. In section II we
introduce the model underlying our study. In section
III we analyze electron tunneling and Klein tunneling
across a transparent junction, and we determine the
single-electron transmission amplitude as a function of
the incoming momentum. We then compute the low-
temperature limits of the conductance and the ther-
mopower per unit surface, showing their relation with the
shape and position of the projected Fermi surfaces. In
section IV we determine the refraction properties of the
junction, showing that the interface acts as a beam split-
ter, where electrons with opposite chiralities are trans-
mitted with different angles. In section V we show that
states localized at the interface, in the shape of arcs in
the Brillouin zone, are generically expected in a minimal
continuum model where the interface is transparent and
the Fermi surfaces on the two sides are not overlapping.
In section VI we introduce the contribution of Fermi arcs
in the scattering problem and argue that the interface

states play an essential role in transport at large rotation
angles. We offer conclusions and an outlook in section
VII. Technical details about rotations, interface states
and the diagonalization of the slab problem are provided
in several Appendices.

II. MODEL

A simple model for a Weyl semimetal with broken
time reversal symmetry is described by the Hamiltonian
(~ = 1) [2, 14, 45, 46]

H0 = vkxσ
x + vkyσ

y +m (kz)σ
z, (1)

where v is the Fermi velocity and the Pauli σ matrices act
on a band (pseudospin) degree of freedom. The ”mass”

m (kz) =
v

2kW

(
k2
z − k2

W

)
(2)

changes sign at kz = ±kW and singles out the z axis as
the anisotropy axis. The Hamiltonian (1) can be seen
as a small-momentum expansion of a widely used mini-
mal two-band Hamiltonian of a magnetic Weyl semimetal
[1, 47]. Then, two Weyl nodes with linear dispersion are
present in the Brillouin zone at the momenta (0, 0, ηkW ),
η = ±1. To each of these points it is possible to as-
sociate a ”chirality” η = ±1, which coincides with the
quantized flux of the Berry curvature through a closed
surface surrounding the node (divided by 2π).

We will model an extended region with a lattice tilted
with respect to the adjacent one by starting from the
Hamiltonian (1) and applying a rotation of an angle
θ around the x axis, which rotates the internal ”pseu-
dospin” degree of freedom as well as the anisotropy axis.
Denoting k = (ky, kz)

T the component of the momentum
in the yz plane and kθ = (kθ,y, kθ,z)

T = Rθk its rotated
counterpart, the transformed Hamiltonian is written as
(see App. A)

Hθ = vkxσ
x + bθ · σ, (3)

where

bθ =

(
bθ,y
bθ,z

)
= R−θ

(
vkθ,y
m (kθ,z)

)
. (4)

The matrix Rθ represents the two-dimensional rotation
in the yz plane. Note that if the mass function is chosen
to be of the form m(kz) = vkz, the Hamiltonian and the
spectrum are invariant under rotations. Conversely, with
our choice of m in (2), the spectrum of (3) is composed
by an electron (ν = +1) and a hole (ν = −1) branch,
with eigenvalues

E = Eθ,ν (kx,k) = ν
√
v2k2

x + b2
θ , (5)

corresponding to the eigenvectors given in Appendix A.
It is readily checked at this point that the Weyl nodes
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are moved to the positions

k
(η)
W,θ = ηkW

(
− sin θ
cos θ

)
. (6)

The chirality associated with the node, instead, does not
change with θ. In the vicinity of the nodes the vector bθ

assumes the simple linearized form bθ ≈ v
(
k− k

(η)
W,θ

)
.

In this work, we consider an interface in the x direction
between two identical samples, whose anisotropy axes are
tilted by an angle θ, see Fig. 1. We also introduce a po-
tential step in the form V (x) = sgn(x)V0, with V0 > 0,
thus realizing a model np-junction. This configuration
can be achieved by different doping levels or, for a suffi-
ciently thin sample in the z direction, via suitable gating.
In real samples, a mismatch in the lattice orientation re-
sults, in general, in a larger inter-layer distance and in
an only partially transparent interface. This can be mod-
eled by a small region −` < x < ` around the origin in
which a potential barrier of height V1 � V0, E is inserted.
While this affects the transparency of the interface, no
qualitative changes to the transmission coefficients are
introduced in the thin barrier limit and, for the sake of
simplicity, we omit this effect altogether. We therefore
write the Hamiltonian

Hk =

{
vk̂xσ

x + vkyσ
y +m (kz)σ

z − V0 , x < 0

vk̂xσ
x + bθ,yσ

y + bθ,zσ
z + V0 , x > 0

(7)

where k̂x = −i∂x. The tilt results in a mismatch in
the position of the Weyl nodes on the two sides of the
interface, with the displacement between the tilted and
untilted Weyl nodes given by

∆kW = k
(η)
W,0 − k

(η)
W,θ = 2ηkW sin

θ

2

(
cos θ2
sin θ

2

)
(8)

for the nodes with the same chirality. For nodes of oppo-
site chirality, the displacement is given by Eq. (8) with
θ replaced by θ + π. The separation between tilted and
untilted nodes plays an important role in the scattering
and refraction properties of the interface, which we will
address in the following sections.

The original Hamiltonian (1) has inversion symmetry,
rotational symmetry in the xy plane, and particle-hole
symmetry. For the interface Hamiltonian in Eq. (7), all
these symmetries are broken by the tilt between the left
and right subsystems and by the potential step. We note
that the reflection in the plane spanned by x̂ and R− θ2

ẑ

exchanges the Weyl nodes on the two sides of the system.
We show in App. C that this reflection is a symmetry of
the dispersion relation of the interface arcs if V0 = 0.

III. SINGLE-ELECTRON TRANSMISSION AND
TRANSPORT ACROSS AN INTERFACE

In this section, we study the scattering problem on the
interface, in the presence of a tilt θ and a potential step

2V0. In the regime E > V0, an electron incoming from the
left can be either reflected or transmitted as an electron
through the potential step and one writes a scattering
state in the form

ψE,k(x) =

{
u0;kx,ke

ikxx + r u0;−kx,ke
−ikxx x < 0

C uθ;k̄x,ke
ik̄xx x > 0

(9)

with the bulk eigenstates uθ;kx,k given in (A6) and
complex-valued coefficients r and C. The momentum
in the x direction is not conserved, but depends instead
on the energy via the relations

kx =
1

v

√
ε2

+ − v2k2
y −m2 (kz), (10)

k̄x =
1

v

√
ε2
− − v2k2

θ,y −m2 (kθ,z), (11)

where ε± = E ± V0. In the regime −V0 ≤ E < V0, we
consider an electron incoming from −∞, which can be
either reflected as an electron or transmitted as a hole
(Klein tunneling). In this situation, the transmitted hole
traveling in the positive x direction is described by a scat-
tering state analogous to (9), with the wave function in

the region x > 0 replaced by uθ;−k̄x,ke
−ik̄xx. In the same

way, one can describe the transmission and reflection of
holes by changing appropriately the sign of kx and k̄x.

FIG. 2. Intensity plot of the transmission factor (12) in the
kykz plane (momenta in units of kW ) for a zero-energy elec-
tron with a potential step V0 = 0.2 vkW and tilt angle θ = 0.2.
The red and orange circles delimit the Fermi surfaces on the
two sides of the interface.

Imposing the continuity of the wave function at the in-
terface, the transmission probability Tθ = 1−|r|2 follows
as

Tθ (E,k) =
4kxk̄xAθ(

Aθkx + k̄x
)2

+ (Aθky − ν1ν2b
y
θ/v)

2
,(12)

where

Aθ =
|ε−| − ν2b

z
θ

|ε+| − ν1m (kz)
. (13)
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FIG. 3. Zero-temperature conductance per unit surface area
as a function of chemical potential for V0 = 0 and (from top
to bottom) θ = 0, θ = 0.2, θ = 0.4, θ = 0.6. This function is
symmetric under µ → −µ in the absence of a potential step.
Inset: angular dependence for µ = 0 and, from top to bottom,
V0 = 0.1vkW , V0 = 0.15vkW , V0 = 0.2vkW , V0 = 0.25vkW .

FIG. 4. Dimensionless conductance per unit surface as a func-
tion of temperature for V0 = 0, µ = 0.1vkW and, from top to
bottom, θ = 0, θ = 0.2, θ = 0.4, θ = 0.6.

Here ν1 = ± labels the particle/hole branch on the left
of the interface and ν2 = ± on the right. One can readily
check that the transmission probability from right to left
has the same expression.

When the chemical potential is close to the band cross-
ing, for V0 ≈ 0, the reduced Fermi surface implies that
very few states are available for transport. In particular,
for µ � vkW , one can approximate it with a sphere of
radius µ centered around each node. Hence, the Fermi
surfaces on the two sides overlap if

2µ ≥ v |∆kW | . (14)

An analogous expression holds if µ = 0 and V0 6= 0. The
transmission function is, at all energies, strongly peaked
around the Weyl nodes, both in the case of normal and of
Klein tunneling, as exemplified for the latter in Fig. 2. In
particular, it is nonzero in the area where the projections
of the Fermi surfaces from the two sides overlap [48].
The transmission probability can reach unit value only
for θ = 0, and is mildly suppressed for small tilt.

We now address the consequences of the shape of the
transmission factor on transport observables. Through-
out our analysis, we assume coherent transport in a clean
sample. For V0 6= 0, the charge accumulation in the re-
gion around the junction creates a non-uniform electric
field, which has been analyzed in [30]. The new features
introduced by the tilt are qualitatively similar to that of
a normal junction, so we focus on V0 = 0 in the follow-
ing. Approximating the quasiparticle distributions in the
contacted samples with Fermi distributions, we make use
of the Landauer-Büttiker formalism to describe quantum
transport through the junction. To this end, we define

Tθ (ε) =

∫
d2k

(2π)
2 Tθ (ε,k) , (15)

where the integration is over the domain in which there
exist incoming states, i.e., in which kx in (10) is real.
As exemplified in the inset of Fig. 3 for various values
of the potential step, the total transmission function has
a quadratic angular dependence around its maximum at
θ = 0. In terms of the integrals (kB = 1)

In =

∫
dε

(ε− µ)
n Tθ (ε)

4T cosh2 (ε−µ)
2T

, (16)

we write the charge conductance per unit area as [30]

Gθ (µ, T ) =
e2

2π
I0 , (17)

where e is the charge of the electron taken with its
sign. At low temperatures, this quantity behaves
as Gθ (µ, T ) ≈ Gθ (µ, 0), with Gθ (µ, 0) = e2Tθ (µ) /2π.
This function is plotted in Fig. 3 for various values of
θ. This limit is valid up to quadratic corrections in T/µ:

using µ = 0.1vkW , v ≈ 105m/s and kW ≈ 9 × 102Å
−1

[49], one estimates a reference temperature µ ≈ 70K.
Clearly, the current is always suppressed around charge
neutrality, due to the vanishing density of states. More-
over, the momentum-space area where the transmission
function is vanishing broadens with increasing tilt angle,
due to the mismatch between the scattering states on the
respective Fermi surfaces on the two sides [37]. As a con-
sequence, one finds from (17) a finite zero-temperature
value and a quadratic low-temperature correction pro-

portional to e2π2

48 ∂2
µTθ (µ) only for θ = 0, while for small

but finite θ one has activated behavior, with activation
gap of the order v

2 |∆kW | − µ. This is consistent with
the temperature dependence of the conductance, shown
in Fig. 4 for various tilt angles. For large angles θ ≈ π,
the relevant gap is instead determined by the separation
between the nodes with opposite chirality.

A small temperature difference ∆T between the two
contacted samples makes free electrons and holes diffuse
across the interface, creating, in the steady state, an elec-
trical voltage gradient ∆V0. This is known as thermoelec-
tric effect and can be quantified via the thermopower (or
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FIG. 5. Angle-dependence of the linear contribution (19) to
the thermopower for V0 = 0 and various values of the chemical
potential. From top to bottom: µ = 0.1 vkW , µ = 0.15 vkW ,
µ = 0.2 vkW .

Seebeck coefficient) [50]

S = −
(

∆V0

∆T

)
jx=0

=
1

eT

I1
I0
. (18)

In bulk Dirac and Weyl semimetals, it is known that
the numerical value of this quantity is determined by the
Berry curvature, the density of carriers and the direc-
tion and magnitude of the applied magnetic field, allow-
ing it to achieve very large values [51, 52]; conversely,
in our analysis, the energy-dependence of the transmis-
sion probability across the interface plays a pivotal role.
It is readily seen that the thermopower is sensitive to
the asymmetry of the transmission coefficient: hence, it
will be exactly vanishing for µ = 0 (it is negative for
µ > 0 and positive for µ < 0). We assume for simplicity
V0 = 0 in the following. At finite chemical potential and
low temperature T � µ, the first nonzero contribution is
linear in temperature and given by the Mott formula

S =
π2T

3e

∂µTθ (µ)

Tθ (µ)
, (19)

in which the condition (14) is assumed for this term to
be finite. The coefficient of the linear contribution has
a minimum at θ = 0 and increases linearly with the tilt
angle at small tilts, as shown in Fig. 5. For large tem-
peratures µ � kBT the hyperbolic cosine in (17) and
(18) flattens and we obtain instead a 1/T decay. As
seen above, the tilt angle strongly suppresses the charge
conductance, which has the consequence that (18) must
be larger for larger tilt angles, as shown in Fig. 6, and
for lower values of the chemical potential. We observe
that the position of the maximum of the thermopower is
shifted toward lower and lower temperatures as µ is de-
creased. In fact, for finite chemical potential, the particle
branch has a larger density of states than the hole branch
and the numerator of (18) initially increases. However, at
larger energies, more states in the hole branch are acces-
sible, contributing with the opposite sign to the thermo-
electric current and the thermopower starts decreasing.

FIG. 6. Temperature dependence of the thermopower (18) at
chemical potential µ = 0.15 vkW , for various tilt angles. From
bottom to top: θ = 0, θ = 0.1, θ = 0.2 and θ = 0.3.

Summing up, we have shown that the electric conduc-
tion and the thermoelectric properties of the junction
can be tuned by the tilt angle θ. The considerations
above only arise from the probability of the electron be-
ing transmitted at the interface, independently from its
direction. However, we note that the momentum in the x
direction is generally discontinuous across the interface:
this leads to electron refraction at the interface, which
we study in detail in the next section.

IV. REFRACTION AT THE INTERFACE

Given that the dispersion relation is anisotropic, an
electron with the same momentum has a different energy
on the two sides of the interface. In particular, as trans-
lation invariance is broken only in the x direction, the
component of the momentum parallel to the interface is
continuous across it, while kx is discontinuous and deter-
mined from (10) and (11). Considering a monochromatic
electron beam incident from a given direction, we deter-
mine how the direction of the transmitted excitation de-
pends on θ and V0, both in the cases of normal and Klein
tunneling. Complementing earlier observations [37], we
show that the refraction angle is not uniquely determined
by the incidence angle, but one has to specify the chiral-
ity of the incident electron as well. We explore the effect
of the tilt on the polar angle and determine the splitting
of the electron beam due to the chirality of the nodes.

As seen in Sec. III, the transmission of an electron takes
place in the vicinity of a Weyl node. As a consequence,
its dispersion relation is approximately linear in the de-
viation of the momentum from the position of the Weyl
node and the group velocity of the incoming electron is

(vi,x,vi) =
v2

ε+

(
kx,k− k

(η)
W

)
, (20)

where η = ± and ε± = E ± V0. The momentum k
parallel to the interface is unchanged through the in-
terface, but the Weyl nodes are in position kW,θ =
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η̄kW (− sin θ, cos θ), where η̄ is now the chirality of the
Weyl node in which the electron is transmitted, i.e., η̄ = η
for θ ∼ 0 and η̄ = −η for θ ∼ π. It follows that the ve-
locity of the outgoing mode is

(vo,x,vo) =
v2

ε−

(
k̄x,k− k

(η̄)
W,θ

)
, (21)

with k
(η̄)
W,θ defined in (6). Importantly, the sign of ε−

can be negative, which signals Klein tunneling, in that
the velocity and momentum of a hole are opposite in di-
rection. We denote the angle of the incident/outgoing
particle velocity with respect to the normal to the inter-
face as χi,o and the azimuthal angle in the yz plane as
ξi,o, so that

(vi/o,x,vi/o) = v(cosχi/o, sinχi/o cos ξi/o, sinχi/o sin ξi/o),
(22)

with 0 ≤ χi/o < π/2 and 0 ≤ ξi/o < 2π. The momentum
component perpendicular to the interface of a transmit-
ted excitation is a function of the energy and the momen-
tum parallel to the interface, which are conserved in the
transmission process. With the parameterization (22),
we find

v2k̄2
x = ε2

− − ε2
+ sin2 χi − 2v2k2

W (1− ηη̄ cos θ) (23)

−2ηvkW ε+ sinχi [sin ξi − ηη̄ sin (ξi − θ)] .

From Eqs. (21) and (22), the polar angle is then given by

cosχo =
vk̄x
|ε−|

. (24)

Moreover, setting ξo = ξi+φ for an outgoing electron (or
ξo = ξi + φ+ π for an outgoing hole), we find

tanφ =
−2ηvkW sin θ

2 sin(ξi − θ
2 )

|ε+| sinχi + 2ηvkW sin θ
2 cos(ξi − θ

2 )
(25)

if the transmission takes place close to a node of the
same chirality, i.e., if ηη̄ = 1. If the chirality is changed
across the interface, for ηη̄ = −1, one should replace θ
with θ + π in Eq. (25). The equations (24) and (25) fix
the direction of the transmitted electron or hole and can
be seen as a generalization of Snell’s law [38]. As an
example, Fig. 7 illustrates the dependence of the polar
angle of a transmitted hole on the azimuthal angle of the
incident electron.

The presence of a tilt already implies that the angle of
refraction is different from the angle of incidence, and the
anisotropy of the material makes the refraction coefficient
dependent on the azimuthal angle ξi. Noticeably, normal
incidence (χi = 0) does not imply normal transmission,
but instead transmission at the angle

sinχo =
2vkW
|ε−|

sin
θ

2
(26)

with respect to the normal. In order to underline the
effect of the tilt on the azimuthal angle, one can consider

FIG. 7. Polar plot of the refraction polar angle for Klein
transmission, see Eq. (24). We represent above sinχo as a
function of ξi at fixed incidence angle χi = 0.1 for V0 =
0.2 vkW , E = 0, and θ = 0.1. The angle χo depends on
the chirality of the incident electron: the continuous blue line
is for an incident electron with positive chirality η = 1, the
dashed orange line for negative chirality η = −1. The two
curves are exchanged if the tilt angle is reversed (θ → −θ)

.

a situation in which the component of the momentum
of the transmitted electron parallel to the separation be-
tween the Weyl nodes on the two sides of the interface
lies between the projection of the two Weyl nodes. Then,
the projection of the velocity in this direction is opposite
on the two sides of the junction, which results in a large
shift of the angle φ. This mechanism is exemplified in
Fig. 8, in which the momentum of the electron is held
fixed, i.e., it is a point in the Brillouin zone: by increas-
ing θ, the Weyl node passes from one side to the other
of this point, hence, the azimuthal angle shift φ quickly
passes from ≈ 0 to ≈ π when this happens.

There is an explicit dependence of the refraction angles
in (24) and (25) on the chirality η of the incident parti-
cle: the fact that the same group velocity is attained by
electrons near both Weyl nodes implies that birefraction
takes place and the interface acts like a beam splitter for
the electrons. As shown in Fig. 7, the refraction angle
depends on the azimuthal angle and a finite tilt angle
displaces the electrons with the same incidence direc-
tion, but opposite chiralities, in opposite directions. The
splitting angle χs between the refracted beams can be
directly computed using the angle parametrization (21).
For |θ| < π/2, using Eqs. (24) and (25), we arrive at
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cosχs =
v2k2

W

ε2
−

ε
2
+ sin2 χi

v2k2
W

− 4 sin2 θ

2
+

√√√√[ ε2
−

v2k2
W

− 4 sin2 θ

2
−
ε2

+ sin2 χi

v2k2
W

]2

− 16
ε2

+

v2k2
W

sin2 χi sin2 θ

2
cos2

(
ξi −

θ

2

) .

(27)

FIG. 8. Azimuthal angle shift for a transmitted electron with
E = 0.2 vkW and V0 = 0. We represent above φ as function
of θ for two fixed incidence angles χi = 0.3, ξi = 0.2 and
χi = 0.3, ξi = 3.0, and the two chiralities.

As illustrated in Fig. 9, the splitting angle is minimal
for ξi = (θ ± π) /2, while it reaches its maximum value
in the orthogonal direction ξi = θ/2, ξi = π + θ/2. In
the case of normal incidence χi = 0, the splitting angle
is independent of ξi. For Klein tunneling in a Weyl np-
junction, as well as for normal tunneling at specific an-
gles, the transmitted particle is refracted with opposite
component of the velocity in the plane parallel to the
interface. Therefore, the possibility of focusing electron
beams, or Veselago lensing [38, 41, 53], appears, but it
is hindered by the intrinsic anisotropy of the materials
if the Weyl nodes on the two sides of the interface are
misaligned. On the other hand, the interface acts as a
polarizing filter, in which the ”polarization” is the chiral-
ity index, due to the fact that a monochromatic electron
beam incoming from a given direction is split at the junc-
tion. For materials with more Weyl nodes, our analysis
above suggests a different outgoing angle for each of the
nodes.

V. INTERFACE STATES

We now study states which are exponentially localized
at the interface. These states are expected, for instance,
in related systems locally described in the bulk by a Dirac
equation, and at the interfaces between topological insu-
lators [54, 55]. Defining the inverse decay lengths

κ = 1
v

√
v2k2

y +m2(kz)− ε2
+ , x < 0 , (28)

κ̄ = 1
v

√
v2k2

θ,y +m2(kθ,z)− ε2
− , x > 0 , (29)

FIG. 9. Polar plot of the splitting angle cosχs as a function
of the azimuthal angle ξi for E = 0, θ = 0.1 and V0 = 0.2vkW ,
for various incidence angles: starting from the outer curve and
proceeding inwards χi = 0.1, χi = 0.3, χi = 0.4 and χi = 0.5.

a localized eigenstate of the Hamiltonian (7) can be writ-
ten in the form

ψE,k(x) =

{
C1u0;−iκ,ke

κx x < 0

C2uθ;iκ̄,ke
−κ̄x x > 0

, (30)

where we use the spinors defined in (A6). C1 and C2 are
arbitrary coefficients, determined by continuity and nor-
malization of the wave function. Imposing the continuity
at the interface, we arrive at the condition

Φ (E,k) = 1 , (31)

where

Φ (E,k) =
(E + V0 −m (kz)) (−vκ̄+ bθ,y (k))

(E − V0 − bθ,z (k)) (vκ+ vky)
. (32)

This equation implicitly defines the dispersion relation
E = E(k) of the interface states. For fixed energy, its
solutions define a one-dimensional curve in the Brillouin
zone, an interface Fermi arc, analogous to a surface Fermi
arc. A necessary condition for such interface states to
exist is that κ and κ̄ must be real. The endpoints of the
arc are determined by the conditions κ = 0 or κ̄ = 0:
in these points, the interface states merge with the bulk
states on one or the other side. Interface arcs exist for
|E| > V0 for every θ > 0, while they exist for |E| < V0 if
the projected Fermi surfaces do not overlap.
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FIG. 10. Interface states in the plane ky − kz (in units of kW ) for V0 = 0, energy E = 0.1 vkW , and several values of the tilt
angle θ: from left to right, θ = π/5, 2π/5, 3π/5, 4π/5. The circles correspond to the interface projections of the bulk Fermi
surfaces, the red being those of the left subsystem, with Weyl nodes at (0,±kW ), the orange the ones of the right, rotated
subsystem, with Weyl nodes in the positions (6). The black arrows represent the direction of the group velocity, which is
normal to the arc. In the last two panels, the incomplete arc portions join outside the shown region of the ky − kz plane.

FIG. 11. Zero-energy interface states in the plane ky − kz (in units of kW ) for a potential step with V0 = 0.15vkW and the
same values of θ as in Fig. 10. The conventions are the same as in Fig. 10. In this case no interface state is present as long as
the bulk Fermi surface projections overlap. As soon as they are disconnected, an interface state connects the projections with
the same chirality.

Using the implicit function defined by (31), one can also
compute the group velocity of an electron wave packet
on the interface as

va = −∂kaΦ

∂EΦ
, a = y, z . (33)

The shape of the interface arcs can be determined by
solving (31) numerically, and is illustrated in Figs. 10
and 11 for several values of the tilt angle in two different
situations. In Fig. 10 we show the interface arcs for the
case V0 = 0, while Fig. 11 shows the zero-energy arcs
for the case of finite V0 (np junction setup). The first
interesting feature we see is that, in contrast to the usual
surface Fermi arcs that connect (the projections of) Weyl
nodes of opposite chirality, the interface arcs connect the
projections of the bulk Fermi surfaces of opposite sides of
the interface with the same chirality. This occurs for any
value of θ for which interface arcs exist. It is interesting
to note that in the case V0 = 0, below a critical angle θc,
the shorter arc connects the nodes with chirality η = +1,
the longer arc those with chirality η = −1.

At θ = θc the two arcs intersect and then exchange
their role, as seen in the last two panels of Fig. 10. For

example, in our model, at E = 0.1vkW , we find θc ≈ 2.49,
close to 4π/5, as can be seen in the last panel of Fig. 10.
The angle θc tends to π as E → 0, but otherwise its value
is model-dependent. If the Weyl node separation is not
the same on the two sides, there appears a range of an-
gles in which the connectivity changes, namely, the arcs
connect the Weyl nodes of opposite chirality on the same
side. When the separations become the same, this inter-
val shrinks to zero, and the change of connectivity occurs
only at θ = π. This is in accordance with the results of
[43]. In Fig. 10 we also note that for V0 = 0 the arcs
are symmetric under reflection in the line going through
the midpoints between the nodes with the same chirality.
This is a consequence of the invariance of Eq. (31) under
a reflection symmetry as discussed in App. B, and im-
plies that both arcs carry a net current in the direction
(sin θ

2 ,− cos θ2 ), perpendicular to the displacement vector
between the Weyl nodes on opposite sides of the interface
∆kW in (8).

The second salient feature in Figs. 10 and 11 is that
the way the arcs attach to the bulk projections depends
on whether the projections consist of particle states or
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of hole states. This difference can be rationalized along
the lines of [1, 56]. The Fermi contours depicted in the
figures are constant-energy curves, so the group velocity,
which is the energy gradient in the ky−kz plane, is always
normal to the curves. At the junction between the arc
and the bulk part of the Fermi surface, the velocities of
the interface and of the bulk states must eventually align.
Looking at Fig. 10, one sees that this is indeed the case, as
the velocity of bulk states is oriented perpendicularly to
the circles, pointing outwards. Conversely, the velocity
of holes states has the opposite sign: in the presence
of a potential step, the arc must therefore attach to the
circle on the opposite side, which is what we observe when
comparing Fig. 11 with Fig. 10.

The detailed shape of the interface arcs depends on
the specific form of the model Hamiltonian. However,
we can consider the net chirality of the interface states,
defined as the difference N = n+−n− between the num-
bers of right (n+) and left (n−) movers in the y direction
at given kz. Its change when crossing the projection of
the Weyl nodes is independent of the microscopic details
and fixed by the relative position of the projections of
the Weyl nodes in the bulk subsystems. We can under-
stand the qualitative aspects of the arc shapes in terms
of this difference. In order to see this, we follow the ar-
guments of [12, 42, 43] and divide the Brillouin zone of
the system into slices with fixed kz: away from the Weyl
nodes, each slice can be seen as the Brillouin zone of the
junction between two-dimensional topological insulators.
As such, the value of N is fixed by the difference between
the bulk Chern numbers [57–61]. The continuum Hamil-
tonian (7) does not have a Brillouin zone, yet, it can be
seen as the small-momentum expansion of a lattice model
and the role of the difference between the Chern numbers
is taken on by the difference of the signs of the mass func-
tions at given kz, i.e. N = sgn (m (kθ,z))− sgn (m (kz)).
As we scan in kz, when the mass changes sign across a
Weyl node, the number of interface modes changes. In
our system, because of the tilt, the sign change takes
place at different values of kz in the right and left sub-
systems. Let us illustrate this argument with the help
of, e.g., the second panel of Fig. 10. When kz crosses
the Weyl node of the left subsystem (at kz = kW ), the
interface is between a topological insulator and a trivial
insulator, so a Fermi arc should appear: indeed, start-
ing from the region kz > kW , where N = 0, we observe
that as soon as kz = kW , a right mover appears and
N jumps to 1. The situation is mirrored for negative
kz: for kz < −kW , there are one left and one right in-
terface modes and N = 0, while we observe N = 1 for
−kW < kz < −kW cos θ. As soon as kz crosses the Weyl
node of the right subsystem, we have a junction of two
topological insulators with the same value of the Chern
numbers, and indeed we observe N = 0 in the region
|kz| < kW cos θ. If θ > π/2, as in the third panel of
Fig. 10, we observe a similar situation, with N = 0 if
|kz| > kW , and N = 1 if kW > |kz| > kW | cos θ|. Con-
trarily to the previous case, in the region |kz| < kW | cos θ|

the sign the mass function jumps from −1 to +1 across
the interface and we observe indeed N = 2.

To close this section, we remark that we obtained the
arcs for a transparent interface, whereas the conventional
Fermi arc surface states are found imposing a vanish-
ing condition on the current across the interface. Our
approach can be seen as the limit in which Fermi arcs
from two disconnected samples are fully hybridized by a
very strong tunneling between the samples [42, 44, 62].
From this perspective, the region in which no interface
states are present results from the gapping out of counter-
propagating Fermi arcs, while this does not happen if the
two Fermi arcs are co-propagating, in the region with
N = 2.

It is worth emphasizing that interactions may alter
the transport properties of the interface in the pres-
ence of electrons localized at the interface. While this
would change the boundary conditions for weakly tunnel-
coupled surfaces, it can be neglected in first approxima-
tion in our strong tunneling limit. An intriguing con-
sequence of the existence of interface arcs can instead
be observed in the electric transport in the y direction,
which we study in a slab geometry in the next section.

VI. SCATTERING IN THE PRESENCE OF
SURFACE STATES

We now consider the junction of two slabs, with trans-
verse size L in the y-direction, but otherwise infinitely
extended and joined at x = 0 via a transparent interface.
In this situation, two Fermi arcs are present on the lat-
eral surfaces at y = 0 and y = L and transport chiral
current in the x direction. These states are responsible
for the large surface contributions to electric transport in
different geometries and setups [13, 63–65]. The trans-
mission of the surface current carried by these states at
the interface depends on the twist angle θ. Considering
for definiteness a tilt |θ| < π/2, the projections of the
Weyl nodes on the surface Brillouin zone at y = 0 for
the left subsystem are at distance 2kW , while at distance
2kW cos θ for the right subsystem. It follows that for
kW cos θ < |kz| < kW , a Fermi arc is present for x < 0,
but not for x > 0. In this region, as seen in the previous
subsection, an interface arc appears, which can indeed be
thought of as the continuation of a portion of the Fermi
arc in the bulk of this system. The same argument ap-
plies for |θ| > π/2, only in this case the Fermi arcs at
y = 0 have opposite velocities in the x direction, hence,
we have N = 2 in the region |kz| < −kW cos θ. In order
to illustrate the physical consequences, we consider here
the two extreme cases, θ = 0 and θ = π, in which the
Weyl nodes are at k = (0,±kW ) on both sides of the
interface. For the sake of simplicity, we assume straight
Fermi arcs on the surfaces of the slab.
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A. Bike lanes

For θ = 0, we impose the boundary conditions [66]

σxΨ (y = 0) = Ψ (y = 0)

σxΨ (y = L) = −Ψ (y = L) (34)

on the wave function Ψ, for every value of x. These
boundary conditions do not break inversion symmetry
[67] and imply that the charge current vanishes across
the surfaces at y = 0 and y = L. The wave function
reduces then to the eigenvectors ξ± of the Pauli matrix
σx.

For simplicity, we consider the large-L limit. The spec-
trum is then composed of bulk states in the form (D7)
(plane waves in the x- and y-direction). The transverse
momentum is quantized according to Eq. (D6). In the
large transverse size limit |m|L� 1, the quantized ky,n
approach the values

ky,n =
πn

L
, n = 1, 2, . . . . (35)

The corresponding transverse electron subbands are

En (kx, kz) =
√
v2k2

x + v2k2
y,n +m2 (kz) (36)

(hole subbands have the opposite sign). In addition
to the bulk states, within the interval −kW < kz < kW ,
there are a pair of surface states in the form

Ψ0 (y) =
√

2|m (kz) |em(kz)y/vξ+,

ΨL (y) =
√

2|m (kz) |e−m(kz)(y−L)/vξ−. (37)

The energy of these states is E0 = vkx, EL = −vkx,
hence, the electrons on the opposite surfaces propagate
with opposite group velocity vx = ±v in the x-direction.

Each mode at given kz contributes to the current in the
x direction by the amount

Ix0 = ev , IxL = −ev (38)

for −kW < kz < kW . Integration of kz ∈ [−kW , kW ] pro-
duces a total current ±evkW /π related to the anomalous
Hall response in the presence of an electric field in the y
direction [12].

With a potential step at the interface at x = 0 between
the rotated regions, the momentum kx is not conserved,
but is instead a function of the energy given by

kx,n =
1

v

√
ε2

+ − v2k2
y,n −m2 (kz)

k̄x,n =
1

v

√
ε2
− − v2k2

y,n −m2 (kz) (39)

on the two sides. The energy of the surface states is now
E0 = vkx ∓ V0, EL = −vkx ∓ V0 on the two sides of the
junction, but the group velocity of the electronic states
is unaffected. In the regime −V0 < E < V0, an electron
propagating on the surface at y = 0 toward the interface
can be reflected in any of the bulk modes with amplitude

FIG. 12. Junction of two magnetic Weyl semimetal slabs
with matching Weyl nodes (θ = 0). Perfect transmission of
the surface electrons is realized for any value of the potential
step.

rn or in the counter-propagating surface state with am-
plitude rL. Analogously, it can be transmitted in a bulk
state with amplitude tn or in only one of the surface
states, the one with matching chirality, with amplitude
t0. The state is then written as

ΨE =

{
Ψ0 (y) eiε+x/v + rLΨL (y) e−iε+x/v +

∑
n rnΨ

(−)
n (y) e−ikx,nx x < 0,

t0Ψ0 (y) eiε−x/v +
∑
n tnΨ

(+)
n (y) eikx,nx x > 0.

(40)

In the expression above, when ky,n is sufficiently large,
the momenta kx,n and k̄x,n become imaginary, which
accounts for the possibility of having evanescent waves
on either side of the interface, with inverse localization
length κn = −ikx,n and κ̄n = ik̄x,n. Imposing the con-
tinuity condition of the wave function at the interface

and projecting onto the various bulk states, one readily
sees that the only solution is t0 = 1, with all other co-
efficients being zero. One then has perfect transmission
along the chiral direction, due to the fact that on the
other side of the interface there exists a matching state.
The two states on the two opposite surfaces behave like
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”bike lanes”, preferential paths for the electron transport
across the interface, as illustrated in Fig. 12.

B. Pedestrian crossing

An opposite scenario arises when the bulk is depleted
of states and the two Fermi arcs on the same side of the
slab have opposite chirality: in order for an electron to
be either transmitted or reflected (necessarily as a sur-
face state) it must cross the sample in the y direction.
To exemplify this situation, we can consider the extreme
case in which a sample is contacted with a copy of itself,
mirrored in the yz plane, in the absence of a potential
bias. We therefore set θ = π and V0 = 0. Given that for
a transparent interface the wave function is continuous
at x = 0, this condition would not be compatible with
abruptly reversing the boundary condition for x < 0 and
x > 0. In order to retain the simplest picture of the
Fermi arcs, we require that, sufficiently far from the in-
terface, the states satisfy the boundary conditions (34)
for x < −`, while{

σxΨ (y = 0) = −Ψ (y = 0) ,

σxΨ (y = L) = Ψ (y = L) ,
(41)

for x > `. Here ` > 0 is a length scale which models the
smooth change in the boundary conditions. Physically,
we expect this length to be of the same order of mag-
nitude of the localization length of the interface states.
An alternative approach would be to relax the continuity
condition at the interface in proximity of the boundaries:
as our considerations in this section are mostly qualita-
tive, the two ways of imposing boundary conditions can
be considered physically equivalent. In fact, if one sample
is disconnected from the other, one has a unique Fermi
arc which is an eigenstate of σx on the surface at y = 0
and an eigenstate of σy on the surface at x = 0, pro-
vided one is sufficiently far from the origin: around the
corner of the sample, the spinor smoothly rotates from
one configuration to the other. If two samples with co-
propagating Fermi arcs are put in contact, this picture is
not altered.

While the bulk spectrum is unchanged by the π-
rotation, the eigenstates are different on the two sides.
In particular, the bulk states are given in (D10). More-
over, a pair of boundary states exists in the region
−kW < kz < kW , with wavefunction given by

Ψ0 (x, y) =
√

2|m (kz) |/v eikxx+m(kz)y/vξ−, (42)

ΨL (x, y) =
√

2|m (kz) |/v eikxx−m(kz)(y−L)/vξ+,

and chiral dispersion, E = −vkx (E = +vkx) for the
state localized at y = 0 (y = L). An electron traveling
from −∞ towards the junction cannot be transmitted in
the chiral state at y = 0, as the latter does not sup-
port outgoing states. A scattering state can in principle
be written in the form (40), but, following the discus-
sion above, one can only expect such an expression to

FIG. 13. Junction of two magnetic Weyl semimetal slabs,
with a θ = π tilt and V0 = 0. An incoming chiral electron on
the surface at y = 0 must travel along the interface arc.

be valid far from the junction. Clearly, the term Ψ0

has to be substituted by ΨL for x > 0 and the bulk
eigenstates by the corresponding eigenstates in the tilted
model (D10). One can then divide the system into three
regions and impose continuity equations at x = ±` [40].
While the problem is in general complicated in the vicin-
ity of the junction, an especially simple and interesting
situation is obtained for E = 0, for which the only states
that propagate in the x direction are the surface states.
Given the form of the asymptotic states and the fact
that the only bulk states are located at the Weyl nodes,
the current which is localized on the surface cannot leak
into the bulk on either side. Moreover, the ”out” surface
states are localized on the far junction: in such a setting,
the interface states studied in section V must provide a
sort of ”pedestrian crossing” for the electrons, in analogy
with what happens in topological insulators [60]. In fact,
in the simplified case at hand, the quantization equa-
tion (31) has the only solution ky = 0 and in the region
−kW < kz < kW , the surface state at y = 0 transports
electric current Iy = evkW /π in the positive y direction,
which matches the incoming current from the Fermi arc.

In order to understand what happens at the other end
of the interface arc, y = L, one can model the interface
arc and the Fermi arcs on the two sides as effectively
one-dimensional chiral modes entering or exiting a Y-
junction. At the junction, we impose the continuity of the
boundary condition using (30) and (B5) for the interface
arc and (42) for the Fermi arcs, reading

1√
2

(
−i
1

)
= aLξ− + aRξ+ , (43)

where aL/R are the probability amplitudes for the elec-
tron to be transmitted to the left or to the right Fermi
arc and satisfy |aL|2 + |aR|2 = 1. One readily obtains the
solutions aL/R = (±1− i) /2, hence, we conclude that
the current splits with equal probability to the two sides
of the path, as depicted in Fig. 13. A current injected
from the left side of the interface at y = 0 can then be
measured with half intensity on the right side at y = L,
which determines a nontrivial signature of the interface
states in this specific setup. This splitting of the cur-
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rents is arguably analogous to the one described in [68]
for snake states in graphene.

We can now, at least qualitatively, try to understand
what happens when the various idealized assumptions are
relaxed. While we have studied the simplest situation in
order to solve (31), the fact that the Fermi arcs have
opposite velocities in the x direction when they arrive
at the interface remains true as long as |θ − π| < π/2,
hence we expect this effect to be robust if we vary the
tilt angle. On the other hand, for a generic chemical
potential, transmission of the Fermi arc excitations into
the bulk states on the other side is generically possi-
ble, hence, at least part of the current leaks into the
bulk. Fermi arcs can hybridize with the bulk states, as
a consequence of, e.g., scattering by random impurities,
although they remain well-defined as long as the bulk
Weyl nodes are not gapped out [1, 69, 70]. In fact, the
latter are robust against weak disorder [8, 71] and we ex-
pect the ”pedestrian crossing” scenario to survive in this
situation. In real materials, the Fermi arcs do not, in
general, describe straight lines in the Brillouin zone [72].
Nevertheless, there still is chiral propagation along one
direction, hence, the scenario of this section is expected
to hold. Moreover, multiple pairs of Weyl nodes can be
present in the material and, in some instances, their con-
nectivity in the Brillouin zone can depend on the details
of the surface [18]: the bare two-node scenario is clearly
not expected to describe this more complicated situation,
and it would be interesting to understand whether the
simple argument based on the position of the projections
of the Weyl nodes will apply. Finally, a non-transparent
interface, while always allowing for transport from one
side of the slab to the other, will reduce the ratio of the
current which is found on the other side of the interface
against the one on the same side.

VII. CONCLUSIONS

We have studied electronic transmission and refraction
properties of junctions of two magnetic Weyl semimetals
in contact via a transparent interface, with mismatched
anisotropy axes. We have related the magnitude of the
low-temperature conductance and thermopower to the
non-trivial topology of the Fermi surface, which features
two disconnected or partially overlapping regions. Fur-
thermore, we have studied the momentum refraction at
the interface as a function of the incoming momentum
and tilt angle, and we have shown that the interface splits
the incoming electronic beam according to its chirality.
Potentially, this property can find application in the ex-
perimental detection of the nature of bulk quasi-particles,
i.e., to establish whether there exist chirality-polarized
valleys around the Fermi energy, and in the control of
the electron trajectories, as this effect is able to produce
a beam with a single chirality.

Using a low-energy two-band model, which retains the
universal features of the band crossings, we have estab-

lished that there exist interface states, connecting the
Fermi surfaces around the nodes with the same chirality
on the two sides of the slab, whenever the Fermi surfaces
do not overlap. We have characterized their chiral trans-
port along the interface and their shape in the Brillouin
zone which, although model-dependent, is uniquely fixed
by the tilt angle. Arguably, the interface arcs stem from
the discontinuity in the local orientation of the Berry cur-
vature at the interface, originated by misaligned Weyl
nodes on the two sides. Since the Berry curvature acts
on the semiclassical trajectories of the electrons analo-
gously to a magnetic field in momentum space [73], a
discontinuity bears many resemblances with a magnetic
field jump in a graphene layer: in particular, the inter-
face states can be seen as three-dimensional analogues of
the ”snake states” [74]. Interestingly, the chirality of the
interface arcs implies that they are to some extent ro-
bust to backscattering arising from the interaction with,
e.g., phonons, while dissipation of the current in the bulk
modes is generally possible and most prominent for states
in the vicinity of the merging points with the bulk Fermi
surface [67]. It will be interesting to extend the analysis
of this paper to related models, including type-II, multi-
Weyl and triple-point Weyl semimetals [75–78]. Possible
applications of the work include engineering the inter-
faces in order to control the path of the interface current
[79].
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Appendix A: Rotations

The rotation of the Pauli σ matrices by an angle θ
around the x-axis is accomplished by the matrix R̂θ, de-
fined by

R̂θ = e−i
θ
2σ

x

. (A1)

This acts as σaθ = R̂θσ
aR̂−θ, a = x, y, z. While σx clearly

commutes with R̂θ, the matrices σy and σz are brought
into the form

σyθ = cos θσy + sin θσz, (A2)

σzθ = − sin θσy + cos θσz. (A3)
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Analogously, while kx is unaffected by the rotation, the
momentum in the yz-plane k = (ky, kz)

T becomes

kθ = Rθk, (A4)

with kθ = (kθ,y, kθ,z)
T and the rotation matrix

Rθ = cos θI + iσy sin θ. Applying these transformations
to the bulk Hamiltonian (1), one readily obtains (3) for
a generic rotation angle θ:

H0(kx,k)→ R̂θH0(kx, Rθk)R̂−θ = Hθ(kx,k). (A5)

The corresponding eigenvectors are

uθ;kx,k =

√
1

2

(
1− bθ,z

E

)( vkx−ibθ,y
E−bθ,z

1

)
(A6)

and have energies E = Eθ,ν (ν = ±1) given in (5) for
the particle/hole branches. (The normalization factor
included in Eq. (A6) applies only to propagating states.)
The current density along the x-direction carried by the
bulk states (A6) is

jxθ =
ev2kx
Eθ,ν

(A7)

and is affected by rotation only through the modified dis-
persion. (We omit here the volume normalization factor.)

Appendix B: More on interface states

The current density carried by the interface states is
evaluated from the wave function (30) as

jy(x) = evΨ†σyΨ =
2ev2N 2

i (κ+ ky)

ε+ −m (kz)
e−2κ̃|x| , (B1)

where the normalization is

Ni =

√
κκ̄ (ε+ −m)

2

2S (κ+ κ̄) [ε+ (ε+ −m) + v2κ (κ+ ky)]
(B2)

and κ̃ = κΘ(−x) + κ̄Θ(x). (Here, S is a normalization
area in the yz-plane.) The expression (B1) is exponen-
tially decaying from the junction. Integrating over x, one
obtains the contribution to the current

Iy =
ev2 (ε+ −m (kz)) (κ+ ky)

[ε+ (ε+ −m (kz)) + v2κ (κ+ ky)]S
(B3)

from a mode at given energy and kz. For θ → π±, the
wide interface arc between the nodes of negative chirality
widens more and more, until its far end is pushed to
ky → ∓∞. Exactly for θ = π, the continuity equation
(31) reduces to

E −m (kz)

E +m (kz)
=
ky + κ

ky − κ
, (B4)

and admits the two solutions

E = vky , vκ = −m (kz) |kz| < kW , (B5)

E = −vky , vκ = m (kz) |kz| > kW .

Specializing them at E = 0 and substituting into (B3),
we obtain

Iy = − sgn (m (kz))
ev

S
. (B6)

This expression changes sign at kz = ±kW .

Appendix C: Symmetry of interface states dispersion

When V0 = 0, the equation (31) that determines the
dispersion relation of the interface states is invariant un-
der a mirror reflection in the plane spanned by x̂ and
R− θ2

ẑ. To see this, we rotate the whole system by θ
2

around the x axis, so that the mirror plane coincides
with the xz-plane. The function Φ (E,k) in Eq. (32)
then takes the more symmetric form

Φ (E,k) =

(
E − b− θ2 ,z(k)

)(
−vκ̄+ b θ

2 ,y
(k)
)

(
E − b θ

2 ,z
(k)
)(

vκ+ b− θ2 ,y
(k)
) . (C1)

The reflection in the xz plane maps ky into −ky. Under
this transformation, we find that

b± θ2 ,z
→ b∓ θ2 ,z

, b± θ2 ,y
→ −b∓ θ2 ,y, κ̄↔ κ, (C2)

and therefore

Φ (E,−ky, kz) = 1/Φ (E, ky, kz) , (C3)

which indeed leaves Eq. (31) invariant. It follows that,
in the rotated system, E(k) and vz(k) are even in ky and
vy(k) is odd in ky, hence the net current carried by the
arc is along the z direction, which is normal to the node
displacement vector ∆kW .

Appendix D: Weyl semimetal slab

In this appendix, we briefly summarize the derivation
of the eigenstates of H0 and Hθ=π in Eqs. (1) and (3)
for a slab of finite width L in the y direction and infinite
extension in the x and z directions, used in Sec. VI. Here,
the eigenstates are labelled by momentum components kx
and kz and energy E.

We look for eigenstates in the form

Ψ(y) = f+ (y) ξ+ + f− (y) ξ−, (D1)

where

ξ± =
1√
2

(
±1
1

)
(D2)
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are the eigenstates of σx. We first consider the case θ = 0
and apply the Hamiltonian H0 to the state (D1). Using

σyξ± = ±iξ∓ , σzξ± = −ξ∓ , (D3)

we obtain the equation

0 =
{

(E − vkx) f+ +m (kz) f− + vf ′−

}
ξ+ (D4)

+
{

(E + vkx) f− +m (kz) f+ − vf ′+
}
ξ− .

The general solution of the coupled differential equations
above reads

(
f−
f+

)
= c1

(
vky cos (kyy)−m (kz) sin (kyy)

(E + vkx) sin (kyy)

)
(D5)

+c2

(
− (E − vkx) sin (kyy)

vky cos (kyy) +m (kz) sin (kyy)

)
,

in which the coefficients c1 and c2 are fixed by the bound-
ary conditions and by the normalization condition, and

v2k2
y = E2 − v2k2

x −m2(kz).

Real values of ky correspond to bulk transverse states,
whereas imaginary values ky = iκy correspond to trans-
verse states localized at the surfaces y = 0 and y = L,
with inverse decay length κy. The boundary conditions
(34) imply f− (0) = 0 and f+ (L) = 0. In turn, these fix

c1 = 0 and give the quantization equation

vky
m (kz)

cot (kyL) = −1. (D6)

In the large-|m|L limit, the real solutions ky,n approach
the asymptotic values given in Eq. (35). The bulk trans-
verse states for a plane wave e±ikxx+ikzz then read

Ψ(±)
n (y) = Nn

{
[vky,n cos (ky,ny) +m (kz) sin (ky,ny)] ξ+

− (E ∓ vkx) sin (ky,ny) ξ−

}
. (D7)

For real ky, the normalization factor is, at leading order
in L,

N−1
n =

√
2LE (E ∓ vkx), (D8)

and the corresponding subband dispersion relations are

En (ky, kz) = ±
√
v2k2

x + v2k2
y,n +m2 (kz). (D9)

In the same way, we can analyze the case θ = π. Using
the Hamiltonian (3) with byπ = vky and bzπ = −m (kz)
and imposing the boundary conditions (41), one finds
the same quantization condition as in (D6) and the bulk
transverse states

Ψ(±)
n (y) = Nn

{
(E ± vkx) sin (ky,ny) ξ+ (D10)

+ [vky,n cos (ky,ny) +m (kz) sin (ky,ny)] ξ−

}
,

with the spectrum given in (D9). The normalization fac-
tor Nn is obtained from (D8) substituting kx → −kx.
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