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Abductive Reasoning in Neural-Symbolic Systems

Artur d’Avila Garcez, Dov Gabbay, Oliver Ray and John Woods

Abstract

Abduction is or subsumes a process of inference. It entertains pos-
sible hypotheses and it chooses hypotheses for further scrutiny. There
is a large literature on various aspects of non-symbolic, subconscious
abduction. There is also a very active research community working
on the symbolic (logical) characterisation of abduction, which typi-
cally treats it as a form of hypothetico-deductive reasoning process.
In this paper we start to bridge the gap between the symbolic and
non-symbolic approaches to abduction. We are interested in benefit-
ing from developments made by each community. In particular, we are
interested in the ability of non-symbolic systems (neural networks) to
learn from experience using efficient algorithms and to perform mas-
sively parallel computations of alternative abductive explanations. At
the same time, we would like to benefit from the rigour and semantic
clarity of symbolic logic. We present two approaches to dealing with
abduction in neural networks. One of them uses Connectionist Modal
Logic and a translation of Horn clauses into modal clauses to come up
with a neural network ensemble that computes abductive explanations
in a top-down fashion. The other combines neural-symbolic systems

and abductive logic programming and proposes a neural architecture



which performs a more systematic, bottom-up computation of alterna-
tive abductive explanations. Both approaches employ standard neural
network architectures which are already known to be highly effective in
practical learning applications. Differently from previous work in the
area, our aim is to promote the integration of reasoning and learning
in a way that the neural network provides the machinery for cogni-
tive computation, inductive learning and hypothetical reasoning, while
logic provides the rigour and explanation capability to the systems, fa-
cilitating the interaction with the outside world. Although it is left as
future work to determine whether the structure of one of the proposed
approaches is more amenable to learning than the other, we hope to
have contributed to the development of the area by approaching it from

the perspective of symbolic and sub-symbolic integration.

1 Introduction

Three notable hallmarks of intelligent cognition are the ability to draw ratio-
nal conclusions, the ability to make plausible assumptions, and the ability to
generalise from experience. In a logical setting, these abilities correspond to
the processes of deduction, abduction, and induction, respectively. Although
human cognition often involves the interaction of these three abilities, they
are typically studied in isolation. For example, in Artificial Intelligence (AT),
symbolic (logic-based) approaches have been mainly concerned with deduc-
tive reasoning, while connectionist (neural networks-based) approaches have
focused on inductive learning. It is well known this connectionist/symbolic

dicothomy in Al reflects a distinction between brain and mind, but, even



so, we argue this should not disuade us from seeking a fruitful synthesis of
these paradigms. As remarked by Smolensky, “if we believe that a mind
is an abstract, higher-level description of a brain... and if we believe that
connectionist networks provide a useful stand-in for a solid theory of neu-
ral computation... then it follows that abstract, higher-level descriptions of
connectionist computation should provide the basis for theories of mind”
[Smolensky, 2000].

In our research programme, we seek to integrate the processes of ab-
duction, induction and deduction within the neural computation paradigm.
Our goal is to develop a unified framework for learning and reasoning that
exploits the parallelism and robustness of connectionist architectures. To
this end, we choose to work with standard neural networks whose learning
capabilities have already been demonstrated in significant practical applica-
tions [Rumelhart et al., 1986], and investigate how they can be enhanced
with more advanced reasoning capabilities [d’Avila Garcez et al., 2002,
d’Avila Garcez et al., 2006]. In this enterprise, we take inspiration from re-
cent work in symbolic Al [Flach and Kakas, 2000, Ray, 2005], which shows
the benefits that can arise from incorporating abductive reasoning within
inductive learning. We also take inspiration from work in connectionist rea-
soning, which provides added reasoning capabilities to neural learning sys-
tems and a bridge between the symbolic and neural settings of computation
[Smolensky and Legendre, 2006, Sun, 1995].

In neural computation, induction is typically seen as the process of
changing the weights of a network in ways that reflect the statistical prop-

erties of a dataset (set of examples), allowing for useful generalisations over



unseen examples. In the same setting, deduction is the network computation
of output values as a response to input values (stimuli), given a particular
set of weights. Such network computations have been shown equivalent to
different logical systems depending on the network architecture (see e.g.
[d’Avila Garcez et al., 2002]). Abduction, in this setting, can be seen as the
process of finding input values that would result in a particular output value
if presented to the network. In this process, we can either hypothesise input
values and find out the network’s outputs for those, or we can try and reverse
the network’s reasoning process so that the possible inputs for the desired
output values can be computed. We shall investigate both approaches in
this paper.

When we combine deduction and induction in neural networks, we use
the same network to learn a current state of affairs and to compute its
logical consequences. As we propose to combine abduction and induction
in neural networks, we envisage a system where the possible outcomes of a
current state of affairs can be considered (abduced), and inform a learning
or belief revision process. In this paper, we focus on how neural networks
can be used for abductive reasoning. The details of the interaction between
abduction and learning are left as future work. It also remains to investigate
how neural networks could be used in practice to combine all three primary
inference processes.

Differently from previous work combining the symbolic and neu-
ral views of cognition, we choose to consider an artificial neural net-
work model that has been shown very effective already in learning ap-

plications - and which we have already shown capable of deductive



reasoning of various kinds, including nonmonotonic, modal and intu-
itionistic reasoning [d’Avila Garcez et al., 2002, d’Avila Garcez et al., 2006,
d’Avila Garcez et al., 2006] - and we investigate how we can incorporate
abduction into this system. The artificial neural network model in ques-
tion consists of feedforward and recurrent networks, as opposed to the
symmetric networks investigated e.g. in [Smolensky, 2000]. It uses a lo-
calist rather than a distributed representation [Page, 2000], and it works
well with the highly effective Backpropagation neural learning algorithm
[Rumelhart et al., 1986]. We will get back to issues of representation and
learning later on in the paper.

We now concentrate on the problem of abduction. In its barest form,
abduction is a reaction of a certain kind to a cognitive irritant. The irrita-
tion is occasioned by the inability to hit some cognitive target with present
epistemic resources. The cognitive target is in its turn constituted by some
or other state of affairs. The target may be a perplexing observation for
which a plausible or rational explanation is sought, or it may represent a
desirable goal which an agent would like a plan to achieve.

Abduction is, or even subsumes, a process of inference. It entertains
possible hypotheses and it chooses hypotheses for further scrutiny. As such,
abductive conclusions are not matters for belief or for probability, but they
are mere suggestions that, if true, would offer an explanation for the cogni-
tive target. Peirce famously characterised abduction as an inference of the
form: the surprising fact C is observed; but if A were true, C would be a
matter of course. Hence, there is reason to suspect (albeit tentatively) that

A is true.



There is a large literature - if not a large consensus - on various aspects
of non-symbolic, subconscious abduction. As Churchland observes, “...one
understands at a glance why one end of the kitchen is filled with smoke:

the toast is burning!”

Churchland proposes that in matters of perceptional
understanding, we possess “an organised library of internal representations
of various perceptual situations, situations to which prototypical behaviours
are the computed output of the well-trained network”. Like Peirce, Church-
land sees perception as a limit of explanation, and he suggests that all types
of explanation can be modelled as prototype activation by way of “...vector
coding and vector-to-vector transformation”, rather than linguistic represen-
tation and standardly logical reasoning. In this approach the knowledge that
comes from experience (learning) is modelled in the patterning of weights
in the subject’s neural network, where it is seen as a disposition of the sys-
tem to assume various activation configurations in the face of various inputs
[Churchland, 1989].

This form of abductive reasoning has been studied in the context of di-
agnostic problem solving - where outputs, called manifestations, are each
associated with a set of possible inputs, called disorders. Given a set of
manifestations, the abductive task is to find a set of disorders that account
for, or cover, the manifestations according to the specified causal associa-
tions. Typically, the diagnoses must satisfy some notion of parsimony, which
in its simplest form means that no subset of the disorders suffices to explain
the manifestations.

A number of non-symbolic (neural network) models for diagnostic prob-

lem solving have been proposed. For example, [Goel and Ramanujam, 1996]



proposes to re-write such diagnostic covering problems as constrained op-
timisations that are solved by energy minimisation in Hopfield networks,
while [Reggia et al., 1993] and [Ayeb et al., 1998] apply similar methods to
harder problems using competition-based neural networks. An extension of
these methods is proposed in [Zhang and Xu, 1999] to enable abduction in
more complex causal networks. While some of these approaches have been
applied to real problems, they are limitied in both their expressivity and
their ability to systematically compute alternative solutions.

These probelms are overcome in the symbolic setting, where abduction is
most commonly treated as a general form of hypothetico-deductive reasoning
which returns a set of facts A that explain a set of goals G with respect to a
prior logical theory T'. An account of the processes of abduction in the form
of symbol manipulation can be found in [Levesque, 1989]. Logically, given
a theory T and goals G, the task of abduction is to find a hypothesis A
such that T'U A logically entails G. Typically, one considers simple theories
expressed in the form of Horn clauses or logic programs.

In this paper we start to bridge the gap between the symbolic and non-
symbolic approaches to abduction. We are interested in benefiting from
developments made by each research community. When we think of neural
networks, what springs to mind is their ability to learn from examples using
efficient algorithms in a massively parallel fashion. When we think of sym-
bolic logic, we would like to benefit from the rigour, neat definitions, and
semantic clarity it offers, or available proof procedures and the explanations
they can give to the reasoning process, e.g. in the form of a proof history.

In particular, this paper seeks to bridge the gap between the processes



of abductive reasoning and those of learning by experience. Differently from
previous work in this respect [Flach and Kakas, 2000, Michalski, 1993], our
aim is to develop massively parallel techniques for abduction that can be
integrated with existing connectionist learning approaches. In this view,
learning is achieved by generalisations over vector-to-vector transformations,
presented as training examples to neural networks, and abductive inference is
the process of computing neural activations that can be seen, in a principled
way, as explanations for certain other neural activations. The neural net-
work provides the machinery for cognitive computation, inductive learning
and hypothetical reasoning, while logic provides the rigour and explanation
capability to the models, facilitating the interaction with the outside world.
We call such a system, combining a connectionist component with a logical
component, a neural-symbolic learning system [d’Avila Garcez et al., 2002].

We consider two approaches in this paper. One of them is a top-down
approach based on translating modal logic theories into ensembles of neural
networks [d’Avila Garcez et al., 2006, d’Avila Garcez et al., 2004]. We in-
vestigate how this approach, called Connectionist Modal Logic (CML), can
be used for abductive reasoning. The other approach is a bottom-up ap-
proach based on generalising neural-symbolic systems from logic programs
to Abductive Logic Programs [Kakas et al., 1992] in order to systematically
computate alternative abductive explanations and allow reasoning with par-
tial information and integrity constraints.

In what follows, we briefly recall Neural-Symbolic Learning Systems
(Section 2). We then review Connectionist Modal Logic and show how it

can be used for abductive reasoning (Section 3). We then review Abductive



Logic Programming and show how it can be encoded in neural networks
(Section 4). We conclude by summarising our case for the combination
of symbolic and non-symbolic abduction, and by discussing directions for

future work.

2 Neural-Symbolic Learning Systems

In this section, we define neural networks and present the basic concepts of
neural-symbolic learning systems used throughout the paper.

An artificial neural network is a directed graph with the following struc-
ture: a node (or neuron) in the graph is characterised, at time ¢, by its input
vector 1;(t), its input potential U;(t), its activation state A;(t), and its output
O;(t). The nodes of the network are interconnected via a set of directed and
weighted edges (or connections) such that if there is a connection from node
i to node j then Wj; € R denotes the weight of this connection. The input
potential U;(t) of neuron ¢ at time ¢ is obtained by computing a weighted
sum for neuron 7 such that U;(t) = >_, W;;I;(t). The activation state A;(t)
of neuron ¢ at time ¢ - a bounded real or integer number - is then given by
the neuron’s activation function h; such that A;(t) = h;(U;(t)). Typically, h;
is either a linear function, a non-linear (step) function, or a sigmoid function
(e.g.: tanh(z)). In addition, 6; (an extra weight with input always fixed at
1) is known as the threshold of neuron i. We say that neuron i is active at
time ¢ if A;(t) > 6;. Finally, the neuron’s output value O;(t) is given by its
output function f;(A;(¢)). Usually, f; is the identity function.

The nodes of a neural network can be organised in layers. A n-layer



feedforward network is an acyclic graph. It consists of a sequence of layers
and connections between successive layers, containing one input layer, n — 2
hidden layers, and one output layer, where n > 2. When n = 3, we say that
the network is a single hidden layer network. When each node occurring in
the ¢-th layer is connected to each node occurring in the i + 1-st layer, we
say that the network is fully-connected.

A multilayer feedforward network computes a function ¢ : R" — R,
where r and s are the number of neurons occurring, respectively, in the
input and output layers of the network. In the case of single hidden layer
networks, the computation of ¢ occurs as follows: at time #;, the input vector
is presented to the input layer. At time to, the input vector is propagated
through to the hidden layer, and the neurons in the hidden layer update
their input potential and activation state. At time t3, the hidden layer
activation state is propagated to the output layer, and the neurons in the
output layer update their input potential and activation state. At time g4,
the output vector is read off the output layer. In addition, most neural
models have a learning rule, responsible for changing the weights of the
network progressively so that it learns to approximate ¢ given a number of
training examples (input vectors and their respective target output vectors).

In the case of backpropagation - the neural learning algorithm most suc-
cessfully applied in industry [Rumelhart et al., 1986] - an error is calculated
as the difference between the network’s actual output vector and the target
vector, for each input vector in the set of examples. This error E is then
propagated back through the network, and used to calculate the variation of

the weights AW. This calculation is such that the weights vary according

10



to the gradient of the error, i.e. AW = —nVE, where 0 < n < 1 is called
the learning rate. The process is repeated a number of times in an attempt
to minimise the error, and thus approximate the network’s actual output
to the target output, for each example. In order to try and avoid shallow
local minima in the error surface, a common extension of the learning al-
gorithm above takes into account, at any time ¢, not only the gradient of
the error function, but also the variation of the weights at time ¢t — 1, so
that AW; = —gVE + uAW,_1, where 0 < p < 1 is called the term of
momentum. Typically, a subset of the set of examples available for training
is left out of the learning process so that it can be used for checking the
network’s generalisation ability, i.e. its ability to respond well to examples
not seen during training.

Neural-Symbolic Learning Systems [d’Avila Garcez et al., 2002] are mas-
sively parallel computational models based on artificial neural networks that
integrate inductive learning by backpropagation with deductive reasoning.
In such systems, a translation algorithm maps a logical theory T into a
single hidden layer neural network N such that N computes the deductive
consequences of T'. This should provide not only a massively parallel model
for computing 7', but one should be able to train N by examples, using T'
as background knowledge in a process of knowledge acquisition. The knowl-
edge acquired by training could then be extracted closing the learning cycle,
as advocated in [Towell and Shavlik, 1994].

In this paper, we consider theories T' that are sets of Horn clauses each of
the form aq, ..., a, — ag, where the a; are ground atoms, ag is referred to as

the head atom of the clause and a4, ..., a, are called body atoms. Intuitively,
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this rule states that “if all of the body atoms ai,...,a, are true, then the
head atom ¢ must also be true”. If the body is empty, then the head is
called a fact and is simply written ag. A set of such clauses is usually called

a (propositional) Horn theory or logic program [Lloyd, 1987].

Example 2.1 Consider the neural-symbolic learning system of Figure 1. It
encodes the logic program P = {ry : a,b — ; ro : ¢ — x; r3 : © — y}'.
Each rule r; of P is mapped from the neural network’s input layer to its
output layer through a unique hidden neuron n;. The output is activated if
the rule’s body is satisfied. For example, output neuron x will be activated
(indicating that atom z is true) either if input neurons a and b are both
activated (indicating that a and b are true), or if neuron c is activated (c
is true); y will be activated if x is activated. In other words, the network
computes an and-or function with hidden neurons computing a logical and,
and output neurons computing a logical or. In addition, atoms that appear
in the head of one rule and the body of another (e.g. x in r1 and r3) are
linked through a feedback connection with weight fized at 1.0 from the output
to the input. This is responsible for implementing chains such as a — b
and b — ¢ in the network. In the case of P, this is how, given a and b, the
network would have y activated via neuron x. The details of how to set-up
the weights and thresholds of the network so that the appropriate behaviour
of the logic is achieved can be found in [d’Avila Garcez et al., 2002].

Given that neural-symbolic translations produce neural networks that
represent a logical theory, and taking the view that abduction is a form of

reverse deduction, it might be suspected that abductive reasoning could be
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achieved by simply running the network in reverse (i.e reasoning backwards
from the desired output to the required inputs). However, since neural-
symbolic systems exploit the massive parallelism of neural networks, this

strategy would not work, as the following example illustrates.

Example 2.2 Consider again the neural-symbolic learning system of Figure
1. Taking the task of symbolic abduction described above, we know that
{a,b} should be a possible explanation for x and so should {c}. If we were
to simply reverse the network in an attempt to compute explanations {a,b}
and {c} given hypothesis x, we would have a relation to compute instead of a
function. As a result, a standard neural network (which computes functions,
and not relations) would not be able to distinguish {a,b} and {c} as two
alternative explanations for x. Instead, neurons a,b and c would be activated

given x with no possible distinction between them.

.
3 ol
\

) OO
cto¥olfc

Fig. 1: A Neural-Symbolic Learning System

Notice that learning from examples can be performed on the network of

Figure 1 to change the causal dependencies that have been pre-established
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by the background knowledge between the concepts in the input and output
layers. For example, learning may cause the weights of the connections from
neurons « and b to change so that, e.g., a alone (instead of a and b together)
causes . Notice further that, in general, the concepts to be considered
a,b,c,x,y,... do not change. In other words, the network architeture is
fixed. Future extensions of the learning system could, however, consider
actual changes in architecture, which may be of interest in relation to the
creation of wholly new hypotheses in the context of abduction.

In what follows, we assume that abduction presupposes an underlying
deductive relation. We argue that, as a result, neural-symbolic learning
systems should be a natural candidate for sub-symbolic abduction. We seek
to be able to exploit the massive parallelism and the learning capabilities
of neural systems, and our key challenge in this undertaking lies in the
inevitable plurality of solutions yielded by abductive reasoning. In what
follows, we propose two alternative solutions to the problem of sub-symbolic
abduction, one based on the fact that connectionist modal logic can compute
relations (this is a top-down approach), and the other based on fixed-point
computations by a neural network of an abductive logic program meaning

operator (a bottom-up approach).

3 Neural-Symbolic Abductive Reasoning

We investigate two solutions to the problem of realising abductive infer-
ence using Neural-Symbolic Learning Systems. As mentioned above, the

key challenge faced in this undertaking is the inevitable plurality of so-
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lutions yielded by abduction. Abduction can only suggest tentative hy-
potheses that would, if they were true, explain a goal. We are therefore
confronted with a situation where many alternative possible states of af-
fairs must be considered. Our first solution addresses this issue by means of
propositional modal logic with its associated possible world Kripke semantics
[Hughes and Cresswell, 1996]. Our second solution is based on generalising
existing neural-symbolic translations from normal logic programs to the case
of abductive logic programs [Kakas et al., 1994], which are more expressive
than normal programs and allow reasoning with incomplete information.
The first approach has been outlined in [Gabbay and Woods, 2005], and the
second in [Ray and dAvila Garcez, 2006].

Take the network shown in Figure 1 and assume that y is a goal. We
would like to be able to reason top-down in order to obtain {x} as an expla-
nation for y, and then {a, b} and {c} in parallel, as alternative explanations
for . One way to achieve this is to use Connectionist Modal Logic (CML)
[d’Avila Garcez et al., 2006] as detailed below.

Modal logic deals with the analysis of concepts such as necessity (repre-
sented by [J) and possibility (represented by ¢). A key aspect of modal logic
is the use of possible worlds and a binary (accessibility) relation R between
possible worlds. In modal logic, a proposition is necessary in a world if it
is true in all worlds which are possible in relation to that world, whereas it
is possible in a world if it is true in at least one world which is possible in
relation to that same world.

In Connectionist Modal Logic, we use ensembles of neural networks (in-

stead of single networks) to represent the language of modal logic program-
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ming [Orgun and Ma, 1994]. The theories 7' are now sets of modal Horn
clauses each of the form May,..., Ma, — Magy, where M € {{J,0} and the
a; are ground atoms as before. Such theories can be implemented in neural-
symbolic learning systems with the use of an ensemble of neural networks,
each network representing a possible world. The use of an ensemble allows
for the representation of relations (such as the accessibility relation of modal
logic) in neural networks and thus provides a way of distinguishing {a, b}
and {c} in the example above, as two alternative explanations for z.

In CML, each network in the ensemble is a simple single hidden layer
network like the network of Figure 1 to which standard neural learning algo-
rithms can be applied. Learning, in this setting, can be seen as learning the
concepts that hold in each possible world independently, with the assessibil-
ity relation providing the information on how the networks should interact.
For example, take three networks all related to each other. If neuron {a is
activated in one of these networks then a neuron a must be activated in at
least one of the other networks. If neuron U is activated in one network
then neuron a must be activated in all the networks. This implements in a
connectionist setting the possible world semantics mentioned above; it can
be achieved by defining the connections and the weights of a network ensem-
ble, following a translation algorithm for modal Horn clauses which extends
that for Horn clauses. Details of the translation using practical examples
can be found in [d’Avila Garcez et al., 2004].

In the case of abductive reasoning, we can model, for example, the fact
that {a,b} and {c} are possible explanations for z by having neurons a and

b active in a network of the ensemble (or world) (say, wy), and neuron ¢ also

16



active but in a different network of the ensemble (say, ws) 2. We denote
these possibilities by {(a,b) and {(c), respectively. Neurons a and b should
be active in w; whenever neuron z is active in a network w that is related
to wy. Similarly, neuron ¢ should be active in wo whenever z is active in w.
We denote the relationship between networks by the accessibility relation R
so that in this case we have R(w,w;) and R(w,ws). In general, we will use
ap — {(aq, ..., an) to denote the fact that (aq, ..., a,) is a possible explanation

for ag. The following example illustrates the idea.

Example 3.1 Take the same program P = {ry : a,b — z;re : ¢ = x;73 :
x — y}. First, we translate P into a modal program by replacing each rule of
the form ay,...,a, — ag by a modal rule of the form ayg — $(ay, ...,an). The
intuition behind this translation is that a1, ..., an s a possible explanation for
ap (and hence the use of {). We then need to assign worlds to rules and
define how the worlds should relate to each other (i.e. define the accessibility
relation R(w;,w;) between worlds w; and w;). We do so according to the
dependency chains in P. For example, there is a dependency chain from
rule T3 to rule ri because the head of vy (i.e. x) forms part of the body of
r3. In this case, we must relate ry to r1 so that when x is identified as
an explanation for y, a,b can be identified as an explanation for x; if r1 is

labelled by world wy, and r3 is labelled by we, we make R(wsq,w).

Once we have a modal program and accessibility relation, an ensemble of
neural networks can be constructed with the help of CML. For each possible
world w;, CML repeats the process for constructing single and-or networks,

and then whenever R(w;, w;), it connects each neuron {(ai, ...,a,) in w; to
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neurons a; to a, in wj, as the following example illustrates.

Example 3.2 Figure 2 shows the network ensemble wy, ..., wy for the pro-
gram P of Example 3.1. To each head atom (x and y), we assign a world
(w1 and woy, respectively), and translate the program into the modal program:
wy : = $la,b);wy rx — Qeywe 1y — Qx. From the dependencies in P,
we know that R(wq,wy). This deals with $x in wo (it tells us that Qx should
be connected to x in wy). Now, we need to deal with {(a,b) and e in wo.
CML does this by creating possible worlds ws and wy s.t. R(wg,ws) and
R(wa,wy). It then connects neuron {(a,b) in we to neurons a and b in ws
so that a and b are activated whenever {(a,b) is activated, and it connects
neuron {c in wy to neuron c in wy so that c is activated whenever c is
activated. In the network of Figure 2, if at time t we activate x, at time
t+4, a, b and c will be activated. Similarly, if y is activated at t then z will
be activated at t + 4. This allows us to reason top-down in parallel, at the

same time keeping track of the alternative explanations for our hypotheses.

In summary, given a set P of Horn clauses a1, ...,a, — a;, we proceed
as follows: (i) create a world w; for each head atom a; in P; (ii) create a
modal rule w; : a; = {(a1, ..., apn) for each clause in P; (iii) make R(w;,w;)
whenever a; is in the body of a clause in P whose head is a;; (iv) build
a network ensemble for the modal rules using the CML translation algo-
rithm [d’Avila Garcez et al., 2004]; (v) for each unconnected output neuron
of the form {(ay,...,a,) in the ensemble, create a new network with output
neurons ai, ..., a,, and connect {(ay, ...,a,) to ay, ..., a, so that ay,...,a, is

activated if {(a1,...,a,) is activated; (vi) connect each output neuron a;
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Fig. 2: A Neural Network Ensemble for Abductive Reasoning

in the ensemble to any corresponding output neuron with the same name
(a;) in any other network of the ensemble such that one neuron is activated
whenever the other is activated. In order to run the network ensemble to
compute explanations, we activate a number of neurons (hypotheses) at time
t1 and check the activation throughout the ensemble at times %9, t3, etc. un-
til the ensemble is stable (i.e. until the activation at time ¢; is the same as

the activation at time ¢;_1). The sequence of activations should give us the



alternative explanations for the hypotheses, as exemplified above.

It is interesting to note the need for step (vi) in the above algorithm.
This is related to the fact that, in some cases, different copies of the same
atom will appear throughout the ensemble. Take, for example, the program:
a,b = z;a = y;b — y;z — b. Our translation gives the modal program:
wy :x — Ola,b);we 1y = Qaswy 1y = Obyws 1 b — Oz, and the relation
R(wsy,ws). We then create networks w, we and ws as depicted in Figure 3.
R(ws,ws) tells us to connect $b in wo to b in w3. But $(a,b) in wy, Pa in
ws, and $z in ws still need to be resolved. For this, we need to create three
new networks wy, ws and wg in which to place, respectively, a, a and b, and
z. Figure 3 shows w4 and ws, but omits wg for simplicity. Notice how we
are left with two copies of a and two copies of b in the ensemble. This is
required because we need to be able to distinguish {a} and {b} as alternative
explanations for y from {a,b} as an explanation for z. Now, regardless of
whether b is activated in ws or in ws, we know that z should be activated
in wg. Similarly, wy : @ and ws : a should activate each other. In order to
achieve this, we connect such neurons via a hidden neuron in each network
of the ensemble as shown in Figure 3 for neurons a and b. This creates a
self-sustaining loop such that the activation of any such neuron causes the
activation of the other and vice-versa, implementing the desired effect in the

network ensemble. This is the purpose of step (vi) in the above algorithm.
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W1

Fig. 3: Dealing with Multiple Copies of Atoms in the Ensemble

4 Neural-Symbolic Abductive Logic Program-
ming
INTRO TO ALP
In addition to explaining the goal, abductive explanations are often re-

quired to satisfy some additional preference criteria. It is usual to restrict

abductive explanations to some subset of ground atoms declared in ad-
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vance as abducibles. Intuitively, abducibles are atoms whose truth is not
initially known, but for which there may be partial information or integrity
constraints restricting the combinations of abducibles that may appear in
any explanation. Minimality requirements may also be imposed to ensure
that abductive explanations contain no redundant atoms. These restrictions
are elegantly and modularly expressed in the formalism of Abductive Logic
Programming (ALP) [Kakas et al., 1992], which is an extension of standard
logic programming for representing and reasoning about uncertainty.
Formally, an abductive logic program consists of a theory T, a set of
abducibles A and a set of integrity constraints IC of the form aq,...,a, —
1. Here, 1 is the atom denoting falsity and the above constraint states that
the atoms aq,...,a, must not all be true at the same time. Given a goal
G, the task of ALP is to find an explanation A C A such that TU A entails
G and satisfies IC. In addition, an explanation A is said to be minimal if
there is no strict subset A’ C A such that A’ is itself an explanation of G

with respect to T'.

Example 4.1 Consider the abductive problem in Figure 4 below which con-
cerns an old car. The theory states that the car won’t start if its battery
is flat or its fuel tank is empty, that the battery is flat on wet days, that
the car will overheat if its fan is broken, and that the lights of the car are
on. The integrity constraint states that the lights cannot be on at the same
time that the battery is flat. The goal is to find out why the car won’t start
(wont_start). The possible explanations to be considered (abducibles) are

wet_day, fan_broke and fuel_empty.
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battery_flat — wont_start
fuel_empty — wont_start

T = wet_day — battery_flat
fan_broke — overheat
lights_on

G = { wont_start }

1C = { battery_flat,lights_on — L }

A = { fan_broke, fuel_empty, wet_day }

Fig. 4: An Abductive Logic Program

There are two correct explanations: Ay = {fuel_empty} and Ay =
{fan_broke, fuel_empty}. The former is minimal but the latter not (as it
is a superset of the former). These are the only correct explanations since
all other sets of abducibles fail to satisfy either the goal or the integrity con-

straints.

Using the translation described in Section 2, the theory 7' can be repre-
sented by the neural network shown within the rounded rectangle in Figure
5.3 However, the abductive approach introduced in the previous section
is not suited to computing the explanations required in this case, since it
does not take into account the ideas that explanations should only contain
abducible atoms or must satisfy integrity constraints.

A more discerning abductive approach that takes into account the above
additional restrictions is schematically illustrated in Figure 5. The intuition
is essentially that of computing hypotheses by inspecting the network’s out-
puts once it has settled down. If the network activates a goal neuron and does

not activate an integrity constraint neuron then the activated abducibles con-
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Fig. 5: A Neural-Symbolic System for an Abductive Logic Program

stitute a valid explanation. Conversely, if the network fails to activate the
goal or activates an integrity constraint then the activated abducibles do
not constitute a valid explanation and an alternative explanation must be
sought.

This approach can be implemented as shown in Figure 5 using a binary
counter to drive the abducibles. When the signal next is activated, the out-
put of the counter, which is represented by the signals aa2a3, will advance
to the next binary number 000, 001, 010, 011, etc. As the output changes,
it activates a different combination of abducibles and causes the network

corresponding to the theory to settle into a new state. The signal goal is
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true whenever all of the goals are satisfied, while the signal ic is true when-
ever some of the integrity constraints are violated. This information is fed
to a simple control logic whose job is to route a periodic clock signal sync
left or right according to whether the current abducibles comprise a valid
explanation or not.

If the explanation is valid then the sync pulse is routed to the left,
where it activates the soln signal and suspends the activity of the clock.
In this case the entire system enters a stable state in which soln is active,
indicating that an abductive explanation has been successfully found. If the
explanation is invalid then the sync pulse is routed to the right, where it
activates the next signal, thereby causing the counter to advance and the
next set of abducibles to be considered. Once all possible solutions have
been tried (i.e. the counter reaches 111, in this case) the counter overflows
and activates the signal done which suspends the operation of the clock and
indicates that there are no further hypotheses to investigate.

As explained in [Ray and dAvila Garcez, 2006], all of the components
shown in Figure 5 can be implemented by expressing them as logic programs
and translating them into neural networks in the usual way. For example,
the goal signal is obtained from G by adding the following rule to the theory
T:

wont_start — goal.

Similarly, the 7c signal is obtained from IC' by adding the following rule

to T
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battery_flat,lights_on — ic.

The abducibles A are connected to the output of the counter by adding

three rules:

a1 — fan_broke
as — fuel_empty

a3 — wet_day

The counter itself is represented by the theory:

@iy 7C;p = @

N d; — a; next — by
U § a; — b; » U by, -an — done
i=1

bi_1,a;_1,0; = ¢; done — done

[ bi—1,7ai—1,7a; = d; |

where N is the number of abducibles and = denotes negation.* When this
theory is translated into a neural network, each bit of the counter uses four
neurons, a;, b;, ¢; and d;, to implement a divide by two register that toggles
the state of a; whenever the state of a; 1 changes from on to off — with the

neurons ¢; and d; signalling a; to turn off and on, respectively.®

The clock is represented by the theory:

M —hold, —ky — ko
U { ki1 — k; } U
j ko, k1 — sync
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where M is a constant that determines the period of the clock. Intuitively
the neurons k; are connected in a loop such that the state of each neuron
follows that of its predecessor; except for the first, which always opposes the
last. As mentioned above, the clock is disabled when hold is active. The
output sync is active when kg is on but k; is not. The period of the clock is
proportional to the number of neurons M + 1, which must be chosen to give
the rest of the network sufficient time to stabilise before the control logic

decides whether the current explanation is valid or not.

The control logic is represented by the theory:

ic — nogood

—goal — nogood
sync, —nogood — soln
soln, =nogood — soln
soln — hold

done — hold

| synec, nogood — next

where the atom nogood is true whenever the goal is not satisfied or one of
the integrity constraints is violated. When sync becomes active, either next
or soln will be activated depending on the state of nogood. The first case
will advance the network into the next state while the second will force the
network to stabilise in a solution state.

Assuming that all of its neurons are initially inactive, the network will

quickly settle down into a stable state in which exactly one abducible,
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fuel_empty, is activated. The state corresponds to the abductive solution
A = {fuel_empty}. If a signal is then applied to next, the network will leave
this stable state and converge instead to another stable state representing
the solution A = {fan_broke, fuel_empty}. If another signal is applied
to next the network will leave this state and converge to a final state in
which the neuron done is activated. This indicates that there are no more
abductive solutions for this goal.

Consequently, this method provides a way of solving abductive logic
programs using massively parallel neural hardware. If required, the approach
can be made to enumerate all abductive solutions or provide an explicit
guarantee when none exist. However, as it stands, there are two weaknesses
which need to be addressed. First of all, a small modification is required
to correctly handle cyclic logic programs which contain loops of the form
711Gy —> A2 T2 1 G2y... —> A35...; Tp : Gp,... — a1 whereby an atom
can potentially depend upon itself.

To see why cyclic programs are potentially problematic, suppose that the
rule fan_broke — over_heat is added to T in the example above together
wit the integrity constraint | — over_heat. The problem is that the cycle
between fan_broke and over_heat introduces a memory into the network
that causes these atoms to remain forever true after either one of them
is activated — leading to a permanent violation of integrity thereafter. A
solution to this problem is to add a new atom true into the body of each
rule in the program and add a clause —next — true. In this way, any self-
sustaining loops are systematically deactivated just before the next set of

abducibles is presented to the network.
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The second weakness has to do with efficiency. The problem is that
although the parallelism of the network is exploited when checking each in-
dividual hypothesis, the number of hypotheses checked is exponential in
the number of abducibles (the abductive logic programming problem is
known to be NP-complete even in the case of diagnostic problem solving
[Bylander et al., 1991]). However, the search for minimal abductive expla-
nations can be speeded-up by activating abducibles in the order 000, 001,
010, 100, 011, 101, etc, where all of the numbers with n bits high precede
all of the numbers with n + 1 bits high, etc. This can achieved by adding
one layer of logic to the output of the counter.

It may be possible to further improve efficiency by utilising some
form of pruning during the search as in symbolic ALP systems such as
[Ray and Kakas, 2006], or employing some form of simplification when
transforming the program as in the approach of Answer Set Programming

[Simons et al., 2002]. However, this is still an open problem.

5 Conclusions and Future Work

We have presented two approaches to dealing with abduction in neural-
symbolic systems. One approach makes few assumptions about abducibles
or integrity constraints and uses CML to compute explanations in a top-
down fashion. The other approach takes advantage of typical abduction
set-ups which use abducibles and integrity constraints, and performs a more

systematic, bottom-up computation.
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COMPARISON OF TWO APPROACHES ALSO CITING
[Aiello et al., 1995] and [Wang et al., 2006]

One may argue that the key difference between the two approaches is
a mere exchange of space for time complexity, where the CML-based ap-
proach is space intensive and the ALP-based approach is time intensive,
having a simpler structure. We believe that structure is key to computa-
tion, and should be investigated, in particular, in connection with learning.
We accept that the systems proposed here have been engineered to perform
specific tasks of symbolic abduction. It remains to be verified whether ei-
ther of the proposed structures is more amenable to learning than the other.
Both approaches use standard neural networks so that the exploitation of
Backpropagation-based connectionist learning should be straightforward, al-
though much empirical work is yet required in this area.

One may further argue that the machinery presented in Section 4 could
be somewhat at odds with the broader Peircean conception of abduction, or
indeed question whether the abductive logic programming approach based
on the use of integrity constraints would be realistic in key application areas
such as natural language interpretation [Hobbs et al., 1993]. If we compare
our machinery with the Peircean apparatus generated in, for example, The
Reach of Abduction [Gabbay and Woods, 2005], we see, among other things,
that the former is a semantic treatment, whereas the latter is a pragmatic
treatment. The semantic treatment has some advantages. One is that it is
neat. Another is that it is the sort of treatment that readers will already
have some familiarity with. Besides, since the semantic treatment can be

seen as an abstraction from the pragmatic, we use it here mainly because,
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in virtually all respects, it allows us to lay down our proposals for abductive
neural-symbolic integration. We accept that our system is a somewhat cir-
cumscribed instance of the Peircian or pragmatic model, and that in future
work it should be investigated how our machinery adapts to the broader
conception.

An alternative to the (localist) network structures proposed in
this paper is the wuse of distributed representations as done in
[Smolensky and Legendre, 2006]. As pointed out by one of the paper’s ref-
erees, a major challenge for abduction is to account for creativity and the
development of wholly new hypotheses [Perkins, 2000]. Distributed connec-
tionist representations may be better equiped to deal with this problem than
the logic-based approach, or indeed the localist connectionist approaches in-
troduced here. This is a matter for investigation [Weber and Perkins, 1992].
As mentioned in the Introduction, we depart from distributed representa-
tions for two main reasons: localist representations can be associated with
highly effective learning algorithms such as Backpropagation, and in our
view localist networks are at an appropriate level of abstraction for sym-
bolic knowledge represetation. As advocated in [Page, 2000], we believe one
should be able to achieve the goals of distributed representations by properly
changing the levels of abstraction of localist networks, while some of the de-
sirable properties of localist models cannot be exhibited by fully distributed
ones.

Of course, the question of how we humans perform abduction remains
unanswered. But we argue that the prospects of answering this question are

better if one investigates the connectionist processes of the brain in connec-
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tion with the logical processes of symbolic computation, and not in isolation.
The suggestion that abduction can be viewed as a connectionist logic is at-
tractive for two reasons. One is that, unlike every other logic of explanation,
connectionist explanation has a stab at being psychologically real (although
once adapted to the broader, Peircian model, the claim to psychological re-
ality may become more substantial than notional). The other, relatedly, is
that a connectionist logic is no enemy of the subconscious and prelinguistic
sectors of cognitive practice. But it is no panacea, either. As discussed
above, the key question of how subsymbolic computation could solve the
problem of the deployment of wholly new hypotheses, as, for example, in
the case of Planck’s postulation of quanta remains unanswered.

In summary, we believe that by paying attention to the developments
on either side of the division between the symbolic and the non-symbolic
approaches to abduction, we may be getting closer to a unifying theory, or
at least promote a faster and principled development of the field. This paper
describes and solves a very specific problem by two specific approaches. We
hope it serves as a stepping stone in the modelling of abduction and in
reconciling the symbolic and connectionist approaches. While it may have
indeed posed more questions than answers, we hope it started to bridge
this gap and contributed to placing the two research communities in closer

contact.
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Notes

'For ease of reference, we normally prefix the rules by a label giving r; : a1, ...,an — ao.
To avoid ambiguity, we use semi-colons to delineate the end of clauses.

2We are essentially labelling a, b and ¢ here in order to be able to distinguish the two
explanations. In the same way, we can now talk about a concept which holds in different
networks (worlds) and distinguish, e.g., between w : a and ws : a.

8 For convenience, predicate names have been abbreviated in the obvious way so that
battery_flat is represented by b_f and so on.

“Here, negation is understood in the standard logic programming sense of negation as
failure whereby the negative literal —a is true if and only if the corresponding positive
literal a is not true.

°It is interesting noting that in addition to its logical meaning, the — also has a
temporal significance in these clauses. For example, the rule done — done is logically
redundant, but when translated into a neural network, it ensures that if done is true in
the present state of the network then it will also be true in the nezt state.

Artur S. d’Avila Garcez
Department of Computing
City University London
EC1V 0HB, London, UK
aag@soi.city.ac.uk

Dov M. Gabbay

Department of Computer Science
King’s College London

WC2R 2LS, London, UK
dg@dcs.kcl.ac.uk

Oliver Ray

Department of Computing
Imperial College London
SW7 2BZ, London, UK
or@doc.ic.ac.uk

John Woods

Department of Philosophy
University of British Columbia
V6T 174, Vancouver, Canada
JHWoods@interchange.ubc.ca

38



