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Abstract. Machine Learning components in safety-critical applications can per-
form some complex tasks that would be unfeasible otherwise. However, they are 
also a weak point concerning safety assurance. An aspect requiring study is how 
the interactions between machine-learning components and other non-ML com-
ponents evolve with training of the former. It is theoretically possible that learn-
ing by the Neural Network may reduce the effectiveness of error checkers or 
safety monitors, creating a major complication for safety assurance. We present 
an initial exploration of this problem focused on automated driving, where ma-
chine learning is heavily used. We simulated operational testing of a standard 
vehicle architecture, where a machine learning-based Controller is responsible 
for driving the vehicle and a separate Safety Monitor is provided to detect haz-
ardous situations and trigger emergency action to avoid accidents. Among the 
results, we observed that indeed improving the Controller could make the Safety 
Monitor less effective; it is even possible for a training increment to make the 
Controller’s own behaviour safer but the vehicle’s less safe. We discuss implica-
tions for practice and for research 

Keywords: safety, autonomous vehicles automotive, machine-learning. 

1 Introduction 

Machine Learning (ML) is bringing great changes in many embedded computing ap-
plications. In many applications, Neural Networks (NNs) generalize well from situa-
tions encountered during training to those it will encounter during subsequent testing 
and, with luck, to those it will encounter during operation. However, neural networks 
also represent a weak point from the viewpoint of safety assurance. The lack of an 
explicit design derived from a specification undermines the very basis of established 
verification activities for critical systems: verifying with confidence that the implemen-
tation satisfies its specifications, and the specified safety properties. An additional con-
cern is that established practice requires a safety-critical system to change as little as 
possible, and changes to be clearly documented, to support verification towards their 
acceptance. Machine learning, by contrast, encourages a development culture in which 
frequent change (additional “learning”) is accepted and, due to the nature of ML, there 
is no documentation of the changes that could directly support verification. Manufac-
turers of autonomous vehicles are known to collect data from their fleets of vehicles 
under test, and even in commercial operation, to incrementally train and improve the 
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ML “driver” [1, 2, 3].  Last but not least, some self-driving vehicles must satisfy ex-
treme safety requirements (accident rates comparable or substantially better than those 
of human drivers), such that simple statistical demonstration of their satisfaction 
through road resting is not feasible [9, 10, 11, 12]. 
Given that we cannot trust these control systems, or “controllers” for brevity, to be safe 
enough, it is natural to apply independent safety subsystems (“Safety Monitors” 
– SMs – hereafter) that can detect hazardous situations, e.g., approaching collisions, 
and command remedial actions such as braking, as an additional line of defense [4, 5, 
6, 7]. 

Ideally, a safety monitor is much simpler than a controller, so that, once verified, it 
gives strong confidence that it will perform to the level of reliability (and hence of 
vehicle safety) that has been assessed. This may seem to offer a solution for the assur-
ance problem: aim for strong confidence in the safety system even if there will be un-
certainties on the safety of the controller by itself. Although a real safety monitor does 
not have 100% coverage (probability of detecting and mitigating a hazard situation, 
conditional on its arising), the coverage could be assessed by extensive simulation test-
ing. The goal is a high enough coverage value that if one multiplies (1-coverage) times 
the estimate of the rate at which the controller allows hazardous situations to arise, the 
result is a low enough rate of accidents. Even if the controller is frequently changed, 
this form of reasoning will remain valid. Estimating the two multiplicands separately 
through testing would require substantially less testing than estimating the rate of acci-
dents directly.  

This solution to the assessment difficulties is – however – illusory. The coverage of 
the Safety Monitor depends on the controller that it monitors [8]. It is possible that, as 
a vehicle's controller improves, and even if this improvement includes its safety (i.e., if 
without the help of the Safety Monitor each new version would cause fewer accidents 
than the previous one), the coverage of the Safety Monitor becomes worse, because the 
fewer hazard situations allowed by the controller are increasingly of kinds with which 
the Safety Monitor cannot cope. So, the whole system must be tested enough to demon-
strate that the rate of accidents would not exceed the required bound. In theory the 
coverage may decrease so much that improving the controller makes the vehicle as a 
whole less safe. It would be very desirable to have a strong argument that this will not 
happen [9], since this would support a sound and simple form of safety argument based 
on operational testing of the vehicle. 

A first step to study this possibility is the empirical study that we present here, to 
answer these research questions: 

1. Can one observe in practice these “nasty surprises” in which improving a controller 
reduces the monitor's coverage, or even increases the vehicle's accident rate? 

2. If so, can we derive insights on what factors in the controller’s training, the operating 
environment or the safety subsystem's design contribute to these nasty surprises? 

Our study applies these questions to a primitive simulated vehicle and its environment. 
The goal of this paper is to share with the community i) the methodology, so that it can 
be used and improved, ii) a proof of existence of the “nasty surprises”, and iii) initial 
insights on what contributes to them. 
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2 Related Work 

Research on machine learning techniques in many diverse applications, some of them 
safety-critical, has proliferated in recent years [26, 27, 28, 29, 30]. Concerns about ma-
chine learning in safety-critical systems have led to research to develop techniques for 
safety and/or explainability of ML components [32, 33, 34]. A common approach in 
safety-critical systems is to pair the main system controller, which may use ML, a 
Safety Monitor which may be a human or, more commonly, a dedicated hardware-soft-
ware subsystem [13, 20, 31, 33]. Another approach, hardening and verifying the safety 
properties of neural networks by developing new training algorithms and network ar-
chitectures, has proved effective in some studies [35, 38]. Unfortunately, improving 
ML components is not enough by itself to prove valid safety arguments for such sys-
tems [19, 36]. Thus, effort is also applied on how to provide sound and reasonable 
safety arguments of such systems. These research efforts aim at improving the explain-
ability of the decisions of the ML components and at designing and providing guide-
lines for safety/assurance cases [19, 33, 34, 36, 37, 38]. 

In this rich research corpus, however, we found no studies of our topic, i.e., how 
improving ML components affects the efficacy of Safety Monitors that monitor them. 

3 Problem Statement 

Verifying that “ultra-high” dependability requirements are satisfied is known to be a 
hard problem [9, 10, 11, 12] and the use of ML makes it even harder. The challenge of 
assuring the safety properties of autonomous vehicles is, as of now, one of the main 
concerns delaying their deployment [13, 14]: because it is hard to collect enough evi-
dence to prove that one system is “safe enough”, and because it is difficult to understand 
the inner process that made a neural network take a specific decision [15]. Simulation 
proved effective for training a neural network to drive, and it is one of the first steps in 
the development of automated, unmanned vehicles [16, 17, 18]. However, testing an 
autonomous vehicle is a hard task even with the aid of a simulated environment because 
i) neural networks cannot generalize their function to every possible event, ii) it is not 
possible to test every possible event and iii) designing an end-to-end design and de-
ployment process for such complex systems is hard [19]. 

In this work we are interested in studying the effects of “additional learning” of a 
Controller on the coverage of the Safety Monitor (probability of detecting a hazard 
situation, conditional on its arising: true positive rate of the hazard detection – and mit-
igation – function). Since the probability of the SM preventing an accident depends on 
the relative frequencies with which the controller generates various types of demands 
on the SM (hazardous situations for which coverage is high vs those for which coverage 
is low) [8], the controller may significantly change these probabilities as it “learns”. So, 
every change in the controller will invalidate the coverage estimate and thus any safety 
argument that assumes i) unchanging coverage of the Safety Monitor or even just ii) 
that more learning by the Controller implies improving system safety. 



4 

4 System Model and Terminology 

Here we describe the system model and the terminology used, and define and discuss 
the metrics used to measure the performance of the Safety Monitor when applied to a 
learning Controller. We simulated the architecture depicted in Fig. 1, where an end-to-
end learning Controller is paired with a Safety Monitor to make the car move safely. 

The Controller is the main component of the system. Its task is to drive the car from 
a starting position to a destination, obeying traffic laws and other internal rules such as 
ensuring a “smooth” ride or acceptable fuel consumption. A Controller is often built as 
a set of specialized modules which implement the required functions of perception, 
planning, etc. This allows run-time monitoring of the operation of each module. We 
used a simpler, monolithic design: the whole process from perception to motion control 
is encoded into a single deep learning architecture (end-to-end learning [20]). The Con-
troller is thus a “black box”: the Safety Monitor can only react to hazardous actions of 
the Controller, not to errors of its components. 

Our Safety Monitor uses data from other sensors (a LiDAR) than those used by the 
Controller, as recommended by good practice, to sense objects and obstacles near the 
car. If the action of the Controller would cause a safety hazard (i.e., potential for a crash: 
e.g., not braking when crossing the minimum safe distance from an obstacle in front), 
the SM triggers emergency braking. 

4.1 Terminology 

Neural networks can be trained over long periods, using multiple datasets to improve 
their performance. Their evolution is described by the changes in their internal param-
eters, i.e., weights of the prediction function. We define a checkpoint as the set of 
weights of the NN’s function after a series of training steps. We say: checkpointi < 
checkpointj if checkpoint j is obtained from checkpoint i after a number of training 
steps. We define Ci as “the Controller obtained at checkpoint i” and will refer to it just 
as “Controller” when the level of training is irrelevant. Note that j > i only means that 
Cj had more training than Ci, not necessarily that it performs better. 

The Controller’s task is to drive the car efficiently and safely, while obeying traffic 
laws. In practice in our simulation, since the car's training was stopped at a compara-
tively immature stage, we allowed all simulated trips to continue until a crash occurred. 
Since we are only interested, at this stage of the work, in safety, we define a failure of 

 
Fig. 1. System architecture 
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the Controller as: “Any action taken by the Controller that would result in a crash”, i.e., 
the output of the Controller will trigger a transition from inside to outside the space of 
safe states. The safety performance of the Controller can be evaluated as a rate of acci-
dents per km, or per unit of time in operation, or per trip. 

Whenever the Controller fails, the SM has to detect this situation and intervene as 
soon as possible to prevent the imminent crash. The SM may respond correctly, which 
will in some cases avert the accident and lead the system to a safe state. Obviously, the 
SM can fail as well, in one of these two ways: 

• It does not detect the problem (obstacle). 
• It detects the obstacle and takes action, but the car still crashes. 

The Safety Monitor can thus be seen as an "extended binary classifier” that classifies 
the system’s state as safe or unsafe, based on the Controller’s actions and sensor data, 
and takes action accordingly. Its performance can be described via a matrix, like the 
Confusion Matrix of a classifier, but related to results of actions (e.g., success or failure 
of a safety intervention) rather than just classification decisions. 

4.2 Description of the State Space 

We divide the state space of the system (Controller plus Safety Monitor) as in Fig. 2:  

• Safe States (dotted states): all the states in which the Controller does not need the 
intervention of the Safety Monitor, and the Monitor does not intervene. 

• Mitigation States (vertical-lined states), in which the Controller behavior would lead 
to a system failure (accident), but the Monitor correctly prevents the crash. 

• False Alert States (diagonal-lined states): the states in which the Controller does not 
need the intervention of the Safety Monitor, but the Monitor wrongly intervenes. 

• Accident States (white states): all the states in which the Controller’s behavior leads 
to a crash which are not solved by the Monitor. 

The actions of the Controller cause transitions between the system states. Fig. 2 is a 
Venn diagram representing the events "transitions from the safe state", with areas rep-
resenting the probabilities of these events, determined by the system and its environ-
ment, and which will normally change if the system components change (e.g., through 
machine learning). 

Any further training of the Controller will change its behavior and thus the probabil-
ities associated to each transition. If the probabilities of transitions to both safe states 

 
Fig. 2. Probabilities of transitions from safe states 
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Alert
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and mitigation states increase, system safety improves. However, it is also possible that, 
even if the Controller learned to drive very safely (i.e., the probability of transitions to 
safe states gets very large), transitions to accident states also become more frequent, at 
the expenses of transitions to the mitigation states. These two possible effects of train-
ing are shown in Venn diagrams in Fig. 3, where areas represent probabilities. Starting 
from the diagram on the left, additional training may produce, among others, either one 
of the two right-hand Venn diagrams. For reasonably safe systems, transitions to safe 
states and mitigation states will be much more likely than the others. For good availa-
bility, performance, comfort, transitions to false alert states should also be rare.  

5 Study Method 

To test the Controller at different stages of its training, we generated m checkpoints, 
resulting in m Controllers C1…Cm. We tested all these on the same predefined set of 
scenarios, to observe how well the ML component handles the same task (i.e., reaching 
a target destination, via specified waypoints, given a starting position, in the same en-
vironmental conditions) at different stages of its training. A “scenario” is defined by 
the initial conditions of the environment in which the system is deployed for testing. 
This includes the starting point, seeds for random number generators, a target destina-
tion and intermediate waypoints, and environmental conditions such as weather and 
traffic density. Scenarios can be made more difficult by manipulating conditions, e.g., 
by increasing the traffic present in the environment or by simulating adverse weather. 
We call the difficulty levels h0, h1, etc. A higher subscript represents greater difficulty: 
if x > y, hy is designed to be harder than hx. We note that a level that is harder for the 
Controller may not be harder for the SM monitoring that Controller in that environ-
ment. 

5.1 Paired Tests with and without Safety Monitor 

The Controllers were first tested without the Safety Monitor in every scenario, until a 
crash occurred, or the target destination was reached. We built the study to also allow 

  
Improved safety Decreased safety 

Fig. 3. Two example scenarios of how additional training of Controller increases or reduces 
safety. Training starts from the situation depicted in Fig. 2. 
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stopping the test after a reasonable amount of travelled distance, but we have not yet 
used this option. 

To assess the efficacy (coverage) of the SM, it is necessary to compare a simulation 
run (vehicle trip) without the SM with one in which the SM is active. To reproduce 
exactly a simulated trip, the initial conditions and the sequence of actions chosen by the 
Controller are recorded. 

Each recorded run of the Controller is then “replayed” with the Safety Monitor, to 
observe whether it intervenes correctly to interrupt that specific accident sequence. 

We want to measure the effectiveness of the SM and observe whether it is correlated 
with the neural network’s (controller’s) stage of evolution. By replaying a set of runs 
that have already been simulated, it is possible to gain a complete knowledge on what 
is happening in each simulation. This allows us not only to observe how “good” the SM 
is in preventing failures, but also, in some cases, to understand which situations are 
difficult for the Controller, and which ones are difficult for the Safety Monitor. 

To test the Safety Monitor, all the alerts it raises in each simulation step are recorded, 
without enabling safety braking. If a collision happened in that specific run, we compute 
by what earlier time t the hazard must be detected to allow braking to prevent the acci-
dent. We assumed that any alert raised by the Safety Monitor before time t is not nec-
essary and thus a false alarm. After time t, that is, during the series of simulation frames 
that resulted in a crash, we enable emergency braking by the SM. If the imminent col-
lision is avoided, we terminate the run and log a successful SM intervention. This ap-
proach is feasible as we are repeating a set of runs that have already been observed, 
thus giving us full control on the simulations. In the present study, we enabled emer-
gency braking 2 seconds before the accident happened; this interval was chosen based 
on the maximum speed (50 km/h) the car can reach, the reaction time needed to detect 
the hazard, and the distance required for braking. In the last 2 seconds of the simulation, 
an alert raised by the SM will now effectively make the car brake.  

If we simply repeated the runs after activating the SM, the sequence of events that 
led to a crash might not be observed again: e.g., if a false positive of the SM caused 
braking, slowing down the car so that it would not encounter the same hazard.  

We note that with this setup our test of the Safety Monitor will omit events of po-
tential interest: in reality, false alarms may cause accidents, e.g., if hard braking causes 
the vehicle to be hit from behind (a frequent event in road testing of some autonomous 
vehicles). This risk complicates the task of specifying safety monitors. This potential 
for the SM to cause accidents is also one way that improving the Controller may make 
the vehicle less safe, e.g., if the controller learns “bold” maneuvers that it would com-
plete safely but that prompt a SM to apply potentially risky emergency actions. We left 
the simulation of these more complex effects to future research; the focus of this study 
was to demonstrate subtle problems in safety arguments even with a safety monitor 
whose interventions are always beneficial.  

5.2 Evaluation of the Components and the System (Vehicle) Safety 

We define the event “a crash would occur without the SM” as “C-crash” (Controller 
crash). We define classes of correct and wrong actions of the SM as follows: 
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• Successful Intervention (SI). Every crash prevented by the SM, i.e., the safety pro-
cedure of the SM triggers a transition from a safe state to a mitigation state. 

• False Alarm (FA). Each alert raised by the SM when the system is in a safe state. 
• True Negative (TN). The system is in a safe state and the SM does not raise an alert. 
• Crash (CR). Every crash not prevented by the Safety Monitor, i.e., there is a transi-

tion from a safe state to an accident state. 

From the recorded counts of these events, we derived safety measures of interest. First, 
we computed the Coverage (COV) of the SM, the ratio between the number of crashes 
avoided by the SM and the number of crashes that the Controller would cause if the SM 
were not present, that is: 

 COV = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒

 (1) 

We also compare the rate of occurrence of accidents per kilometer caused by the Con-
troller without a Safety Monitor: 

 P(C-crash) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶−𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒𝑒𝑒
𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (2) 

with the rate when the SM is active:  

 P(crash) = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶ℎ𝑒𝑒𝑒𝑒
 𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

 (3) 

Another measure of interest (which we do not analyze in detail) is the False Alarm Rate: 

 FAR = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝐹𝐹𝐹𝐹𝐹𝐹 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇

 (4) 

The SM may raise a false alarm at any time during a simulation run, while the Cov-
erage is measured on the number of crashes, which happen once per run at most. 

These measures are sufficient for answering the immediate questions of this study. 
This simulation setup allows one also to assess, for instance, the Mean Distance Be-
tween Accidents, Mean Time Between Accidents and Reliability Functions related to 
accidents and False Alarms. 

Another study of interest would consider the severity of accidents. For example, a 
crash at 10 km/h against a fence may be flagged as a less serious failure than hitting a 
group of pedestrians at 50 km/h. These data can be used to observe correlations between 
failure modes and difficulty levels that may be counterintuitive, such as a Controller 
that crashes more frequently with vehicles when the number of pedestrians is increased. 

6 Technical Details of the Simulation 

6.1 CARLA Simulator 

We used CARLA 0.8.4 [21], an open-source simulator, sponsored by Intel and Toyota 
among others. It provides a realistic urban environment and was developed specifically 
to train and test autonomous vehicles controlled by ML components. It allows full 
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customization and control over vehicles, pedestrians, weather, and sensors. In this ver-
sion of CARLA there are four sensors: 

• Scene Final Camera: provides a view of the scene as regular cameras. 
• Depth Map Camera: provides a depth mapping of the objects in the environment. 
• Semantic Segmentation Camera: it paints object pertaining to different classes (e.g., 

vehicles and pedestrians) with different colors. 
• LiDAR sensor: Light Detection and Ranging creating a 3d map of the surroundings. 

The Depth Map Camera and the Semantic Segmentation Camera provide ground truth 
values for depth mapping and object classification. The ray-cast based LiDAR provided 
by CARLA was tuned to simulate a slightly modified version of the HDL-64E Velo-
dyne LiDAR. The modifications were necessary because of the computational cost re-
quired to simulate a real LiDAR. 

6.2 Implementation of the Controller and Safety Monitor 

The Controller was implemented using the implementation of the Deep Deterministic 
Policy Gradient (DDPG) algorithm [22], provided by Coach, a framework for rein-
forcement learning developed by Intel’s AI Labs [23]. The DDPG algorithm was cho-
sen because it is specifically designed for environments with a continuous action space, 
such as the one we study, and it proved to perform well in driving tasks. 

The Safety Monitor, implemented using the Point Cloud Library [24], is based in 
part on E. Bozkurt’s project “Lidar Obstacle Detection”, available on GitHub [25]. It 
implements a safety braking function using non-ML processing of data from the LiDAR 
sensor to map the environment. Using two consecutive measurements, it can track ob-
jects in the environment and estimate the relative speed of objects in front of the car. 
Thus, it is possible to implement a safety routine based on the braking distance between 
the car and the object detected, and their relative speed. To test the efficacy of the whole 
safety routine (not only the ability of the Monitor to raise an alert) the runs previously 
recorded without the SM are repeated with it, rather than just replaying the LiDAR data 
from them to the Safety Monitor to record the alerts raised. 

6.3 Structure of the Study 

We collected 5 checkpoints from the training activity: Controllers C1 to C5.  CARLA 
offers 150 predefined locations in the city. For each 1 of these, we created a trip speci-
fication that started from it and had to travel through a randomly selected sequence of 
15 other locations (the latest one being the destination of that trip). Each trip specifica-
tion was then combined with 4 different traffic conditions, or “difficulty levels”, h0, h1, 
h2, h3, to vary the difficulty of the Controller’s task: 
h0) Default: the map is generated with 30 pedestrians and 15 vehicles. 
h1) Pedestrians: the number of pedestrians in the map is doubled. 
h2) Vehicles: the number of vehicles in the map is twice that in h0. 
h3) Pedestrians and Vehicles: both pedestrians and vehicles are twice as many as in h0. 
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From each combination of trip specification and difficulty levels we created 4 scenarios 
by applying different Random Number Generator seeds in CARLA. We thus had 4 x 
150 x 4 = 2400 test scenarios, on which each Controller Ci was tested with and without 
the Safety Monitor. A SM-less run ends when a collision happens, or the car reaches 
its destination (passing by the intermediate waypoints). The paired run with SM is 
ended at the same point, as explained in Section 5.1. 

The simulation runs at a fixed time step of 10 Frames Per Second, so the number of 
simulation steps created per second of simulated time is an invariant. This avoids po-
tential accuracy problems with timing and measurements and gives a reference time-
base to compute time-dependent metrics. 

7 Results of the Simulation 

7.1 Controller 

Table 1 shows the rates of occurrence of crashes of Controllers C1 to C5, operating, 
without the SM, at the four level of environment difficulty. 

One sees that there is safety improvement from C1 to C5: e.g., the rate at difficulty 
h0 improved from 0.95 for C1 to 0.29 for C5, although the improvement is non-mono-
tonic (e.g., C3 is less safe than C2). Moreover, the way we manipulated difficulty from 
h0 to h3 appears effective: it actually makes the environment more difficult for the con-
troller, as P(C-crash)hi < P(C-crash)hj if j > i, for all Controllers (except for C2 perform-
ing slightly better in h1 which than in h0). 

 

 

7.2 Safety Monitor 

The Safety Monitor was tested with the procedure described in section 5.2. 
Table 2 shows the COV, and FAR of the SM combined with each Controller, for 

each difficulty level. We observe that as the Controller was trained, the coverage of the 
SM remained almost unchanged between C1 and C2, decreased for C3, increased again 
a bit with C4 and drastically dropped with C5. Decreased coverage of the SM represents 
the fact that among the hazardous situations created by the Controller, a larger fraction 
is harder for the SM to mitigate successfully. 

These data confirm that the efficacy of an unchanging SM may depends heavily on 
the behavior of the Controller, that is, for a ML component, on its training level. With 
training, the Controller learns to handle by itself some or most of the situations that 

Table 1. Rate of occurrence P(C-crash), per kilometer, of crashes caused by the Controller, in 
each difficulty level. 

 C1 C2 C3 C4 C5 
h0 0.95 0.5 0.66 0.54 0.29 
h1 0.95 0.48 0.68 0.64 0.32 
h2 0.96 0.69 0.76 0.79 0.51 
h3 0.97 0.74 0.79 0.8 0.55 
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previously required the SM to intervene; but the fewer hazardous situations it now cre-
ates may be too hard for the SM to handle, reducing its effectiveness.  

The rate of false alarms did not change much, from C1 to C5, at difficulty levels h0 
and h1, but doubled at levels h2 and h3. 

7.3 Whole-Vehicle Evaluation 

Table 3 shows the following measures: the rate of occurrence (per km) of crashes if 
Controller is operating without SM, P(C-crash) (from Table 1), the coverage of the SM 
(from Table 2), and  the rate of occurrence (per km) of crashes with the SM active, 
P(crash). These three rows are repeated for each difficulty level, h0-h3. 

Looking at the first two rows, P(C-crash) and COV, for any difficulty level, we see 
that between the worst and best controller C1 and C5, both decrease: as the Controller 
learned to cause fewer accidents, it reduced the ability of the SM to prevent an accident.  

Such patterns of contrasting changes appear repeatedly in the table. For example, 
between the two best controllers, C2 and C5, we observe that for any difficulty level, 
P(C-crash) improved but COV became worse: PC5(C-crash) < PC2(C-crash) but 
COVC2 > COVC5. E.g., at difficulty h0, the additional training that resulted in a 42% 
improvement of the Controller ( PC2(C-crash) = 0.5 but PC5(C-crash) = 0.29 ) caused a 
reduction of almost 25% in the coverage of the SM ( COVC2 = 0.76 > COVC5 = 0.57 ). 

Table 3. Essential measures of vehicle safety and SM efficacy at different stages of training  of 
the Controller 

 C1 C2 C3 C4 C5 

h0 
P(C-crash) 0.95 0.5 0.66 0.54 0.29 

COV 0.76 0.76 0.69 0.72 0.57 
P(crash) 0.228 0.12 0.2046 0.1512 0.1247 

h1 
P(C-crash) 0.95 0.48 0.68 0.64 0.32 

COV 0.73 0.73 0.7 0.66 0.54 
P(crash) 0.2565 0.1296 0.204 0.2176 0.1472 

h2 
P(C-crash) 0.96 0.69 0.76 0.79 0.51 

COV 0.71 0.75 0.71 0.73 0.6 
P(crash) 0.2784 0.1725 0.2204 0.2133 0.204 

h3 
P(C-crash) 0.97 0.74 0.79 0.8 0.55 

COV 0.73 0.74 0.7 0.7 0.6 
P(crash) 0.2619 0.1924 0.237 0.24 0.22 

 

Table 2. Coverage and false alarm rate of the SM paired with each Controller 

 C1 C2 C3 C4 C5 

h0 
COV 0.76 0.76 0.69 0.72 0.57 
FAR 0.005 0.007 0.007 0.008 0.006 

h1 COV 0.73 0.73 0.7 0.66 0.54 
FAR 0.005 0.007 0.007 0.008 0.005 

h2 COV 0.71 0.75 0.71 0.73 0.6 
FAR 0.004 0.009 0.009 0.01 0.008 

h3 COV 0.73 0.74 0.7 0.7 0.6 
FAR 0.004 0.009 0.008 0.01 0.008 
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Thus, using the coverage measured on a version of the Controller to estimate the acci-
dent rate for a different version may err on the side of optimism. 

Next, we can compare the first and third rows for each difficulty level: the rate of 
occurrence of crashes without the SM, P(C-crash), against the rate of occurrence of 
crashes for the complete vehicle (C plus SM), P(crash): 
1. adding our SM to any version of the controller reduces the probability of crash if 

compared to that of the controller alone.  
This confirms that our SM is effective. Indeed, this simulation setup is such that it 
allows the SM to prevent crashes but not cause them, as explained in section 5.1.  

2. but making the controller safer has in certain cases made the vehicle less safe.  
E.g., controller C5 without SM is safer than C2, but with the SM, the vehicle with 
controller C5 crashes more often that with controller C2. The worst case is for dif-
ficulty h2: C5 by itself would cause 26% fewer crashes than C2, but C5 with the SM 
causes 18% crashes more than C2 with SM. The system was safer with C2 thanks 
to the greater efficacy of SM with that Controller, that is, thanks to C2’s flaws 
“favouring” those accidents that the SM is able to prevent. 

 Point 2 above indeed proves that, in certain situations, the decreased coverage of 
the SM may outstrip the improvement of the Controller and reduce overall vehicle 
safety. Table 4 highlights this by showing accident rates obtained for the vehicle with 
C2, with C5, and in a hypothetical calculation for C5 under the wrong assumption of 
unchanging coverage, i.e., multiplying the SM coverage measured with C2 by PC5(C-
crash). This wrong assumption would lead to underestimating the accident rate by 39%. 

In this simplified model, the SM paired with a specific vehicle will always improve 
it; but improving the Controller may make the vehicle more dangerous, because the 
previous level of safety was due to a good match between what the Controller does 
wrongly and what the SM can mitigate well. 

8 Concluding Remarks 

We have shown an empirical example of how an error checker’s (our Safety Monitor’s) 
efficacy may change when the system that it monitors changes (“learns”). The essential 
conclusions are that  
1. even though in this study the safety monitor made safer every version of the mon-

itored system, yet  
2. it may be less effective (prevent a smaller fraction of accidents: have lower cover-

age) on an improved version of the monitored system (one that is safer than the 
previous version if both are used without the safety monitor); and 

Table 4. Accident rates (per km, averaged over difficulty levels) of the system for different con-
figurations: C1+SM, C5+SM (observed values), and for the system under the wrong assumption 
of unchanging coverage of the SM. 

 C2 + SM C5 + SM C5 with COV2 
P(crash)=P(C-crash)(1-COV) 0.154 0.174 0.1066 
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3. this reduction of coverage may be so large that the new, improved version of the 
monitored system may be less safe, when paired with the safety monitor, than the 
earlier, worse version was, when paired with the same safety monitor.  

With the frequent, hard-to-analyze changes typical in the development of machine 
learning systems, the immediate implication is that architectures that pair ML compo-
nents with safety monitors need joint quantitative assessment of the entire architecture 
at every change of the ML component, a much more onerous process than separate 
assessment of the ML-based part alone and of the safety monitor, as is often advocated.  

Our very basic experiment does not prove that such “nasty surprises” will be com-
mon in real-life systems, or in autonomous cars in particular; nor that they will be rare. 
It proves instead that safety arguments cannot legitimately assume them to be rare or 
impossible. We ran the simulations on an “immature” simulated car, allowing us to 
count large numbers of events that in a real, mature products would very rare. Thus, the 
car was very unsafe from the start, improved very quickly and yet was still unrealisti-
cally unsafe at the point where we took the final set of measurements. We do not pro-
pose the numbers we report as generalizable to any real-world situation, but rather as a 
proof of existence of the phenomena of concern, which without such examples might 
be taken as possible “only in theory”.  

These early observations suggest directions for future work including: applying this 
methodology to more thoroughly trained Controllers, with repeated training so as to 
study the likelihoods of the various possible trends in how improvements to the con-
troller affect SM coverage; studying how variations in training strategy affect these 
likelihoods (e.g., would using SM alerts as input in the training, to make the controller 
safer, exacerbate the reduction in SM coverage?); a more complete simulation design 
that allows for SM-caused accidents; more detailed measurement to study various 
trade-offs involving severity of accident, ride comfort, energy efficiency. 
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