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ABSTRACT

The aim of the thesis is to provide a unifying framework and tools for the study of a number of 

control theory problems arising in Decentralised control. These problems are known as frequency 

assignment problems and they include the decentralised problem of pole assignment by state, output 

feedback and zero assignment by decentralised squaring-down. It is further shown that decentralised 

dynamic problems where the dynamic complexity of the controller is fixed , may also be reduced to the 

same formulation given for the constant Determinantal Assignment Problem(DAP). The unifying 

mathematical problem studied here is the Decentralised - Determinantal Assignment Problem (D- 

DAP) which is a special form of the general DAP defined for multivariable systems.

The study of D-DAP involves the use of tools from exterior algebra in an essential way and 

also tools from classical algebraic geometry, specifically the theory of Grassmann varieties. In this 

thesis the mathematical framework of D-DAP is fully developed and used for the study of pole, zero 

assignment problems by decentralised constant controllers and new solvability conditions are given.

The mathematical framework of D-DAP also allows the study of structural properties of 

Decentralised controllers. In fact new invariants for decentralised control are introduced in the form of 

Pliicker matrices and Decentralised Indices and a new characterisation of fixed modes and fixed zeros is 

given based on tools from exterior algebra.The classical notion of fixed modes, fixed zeros is extended 

to almost fixed modes, almost fixed zeros for certain families of systems.

Finally it is shown that the general framework of D-DAP is suitable for the study of dynamic 

problems such as pole assignment by decentralised classical controllers of the P-D, P-I, P-I-D type.



I Abbreviations"

LIST OF SYMBOLS AND ABBREVIATIONS

Throughout this thesis, the following symbols and abbreviations will be used:

R, C; the field of real, complex numbers respectively

R[s]; the ring of polynomials over IR

IR(s);

Rn, Cn,Rn(s); 

RnXn;

the field of rational functions

n —dimensional vector spaces over R, C, R(s) respectively 

the set of matrices with elements from R

^ {A } , p{A}; 

■NV{A},

the range space, the rank of a linear transformation A 

the right, left null spaces of a linear transformation A

r ,  x; V is a vector space, x is a vector

x 1Ax2,---,A xi ;

APT;

The exterior product of k —vectors

the p—exterior power of the vector space V

Cp(A); the p —th compound matrix of A

AZ Almost Zero

AFZ Almost Fixed Zero

CA Completely Assignable

CPA Completely Pole Assignable

CZA Completely Zero Assignable

DAP Determintal Assignment Problem

DAZ Decentralised Almost Zero

DC Decentralised Characteristic

D -D A P Decentralised Determintal Assignment Problem

D -C O C Decentralised Constant Output Controller

abb. 1
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D -D O C Decentralised Dynamic Output Controller

D -P A P Decentralised Pole Assignment Problem

D -Z A P Decentralised Zero Assignment Problem

D -R [s ]-G R Decentralised Polynomial Grassmann Representative

D -S U S Decentralised Strongly Unstable

DOF Dynamic Output Feedack

DPM Decentralised Plucker Matrix

DSF Decentralised State Feedback

DSD Decentralised Squaring Down

DSNA Decentralised Strongly Non Assigned

EUS Entire Un-stable

FM, FZ Fixed Mode, Fixed Zero

GCD Greatest Common Divisor

GPA Generically Pole Assignable

GR Grassmann Representative

GZA Generically Zero Assignable

LEF Left Echelon Form

LCMFD Left Coprime Matrix Fraction Description

LNA Linearly Non Assignable

MFD Matrix Fraction Description

PAZ Prime Almost Zero

P - D Proportional Derivative

P - I Proportional Integral

P - I - D Proportional Integral Derivative

PNA Pole Non Assignable

QPR Quadratic Plucker Relations

RCMFD Right Coprime Matrix Fraction Description

RQPR Reduced Quadratic Plucker Relations

R[s] — GR Polynomial Grassmann Representative

TFM Transfer Function Matrix

ZNA Zero Non Assignable

I abb. 2 1



Chapter 1

Chapter 1

INTRODUCTION

For the study of the structural properties of linear systems as well as the analysis and design of 

control systems various methods have been developed.

The pioneering work of Kalman on the state space description of dynamic systems was 

followed by Rosenbrock and Popov who extended the classical transfer function method and ideas to 

the multivariable systems. Rosenbrock’s work,[Ros.l], on the algebraic approach based on the 

polynomial matrix theory provided the framework for the generalisation of the classical frequency 

response techniques for single input single output (SISO) systems to the multiple input multiple output 

(MIMO) systems. The state-space and the algebraic methods are only two extremes of a whole 

spectrum of possible descriptions for linear systems. Although we can work exclusively in the time 

domain (state-space) or frequency domain (transfer function) we can also transfer results from one 

framework to the other.

The state-space method is well developed and is suited for the study of system properties such 

as controllability,observability, minimality, redundancy, etc. The structural characteristics generally 

known as invariants are well developed and have been used for the solution of control problems such as 

pole shifting, quadratic regulators, tracking algorithms, state estimators, decoupling controllers, 

hierarchical controllers etc. The popularity of state-space methods is closely related to the availability 

of powerful computational tools from numerical linear algebra implemented on digital computers. 

However when it comes to practice, state-space methods lacked the spectacular success of the classical 

methods due mainly to the lack of accuracy of the mathematical models; i.e., A, B, C matrices in 

representing the real world. The sensitivity to uncertainty of the signals and system dynamics as well 

as the failure to cope with time delays, led many people to take another look to the classical transfer 

function approach.

I - 1 -
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At the beginning various control engineers explored the relationship between state-space models 

and transfer function descriptions. From their work those people established two fundamental methods 

that are the main ingredients of the transfer function approach The first method known as the 

algebraic approach treats the system as an operator between rational vector spaces and the basic tools 

are algebraic (polynomials, polynomial matrices, integral matrices, theory of rings).The other method 

views the system as a map between spaces of periodic signals and thus its tools are those of complex 

analysis. The algebraic approaches are most suitable for addressing structural questions related to the 

system and design problems. The complex variable approaches on the other hand are most suitable for 

describing quantitative properties and design problems.

The traditional task of control design has been that of selecting the dynamics of a given type 

control structure that is fully coupled i.e., multivariable controllers,simple diagonal, decentralised, 

hierarchical controllers e.t.c. The problem of selection of control structure has been overlooked so far 

and has been simply addressed as a problem of engineering specifications (constraints) . The selection 

of control structures is an important issue where control theory may also contribute (EPIC project). 

Techniques so far for the selection of control structures have originated in the chemical and aerospace 

engineering and they are mostly of empirical nature. The way control theory may contribute is by 

providing tests, criteria which may exclude bad choices of the control structure . The purpose of this 

thesis is to develop tools for the selection of control structure and design of controllers after system 

structure has being decided for problems referred to as frequency assignment.

Of course hybrid approaches combining both approaches have recently emerged and a typical 

representative of the new philosophies is the algebrogeometric approach which represents a specific 

school of thought for tackling system design problems collectively known as the algebrogeometric 

assignment problems. Within this framework two basic approaches have emerged (i) the modern 

algebraic geometry approach and (ii) the exterior algebra or classical algebrogeometric approach. The 

first approach considers the plant and the controller as elements of algebraic varieties of an affine space 

and studies the solvability of pole assignment by state or output feedback, simultaneous stabilisation 

e.t.c., by using tools from modern algebraic geometry . Important conditions for generic solvability of 

control problems have been derived within this framework . These conditions may be used as criteria 

for the selection of inputs,outputs e.t.c., The main disadvantage of the approach is that the nongeneric 

cases are difficult to handle and that no procedures for computing the controllers have been suggested.

The second approach introduced by [Kar.l] is referred to as Determinantal Assignment 

Problem (DAP) which has been formulated as a unifying method to all problems of frequency 

assignment nature. This is based on the idea that determinantal problems are of multilinear nature and

I - 2 -  I
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thus they may naturally split to a linear problem and a multilinear problem according to the 

decomposability nature of the multivectors. The solution is thus reduced to the solvability of a set of 

linear equations characterising the linear problem together with a set of quadratic equations for the 

multilinear problem of decomposability. Classical algebraic geometry makes use of a projective space 

instead of an affine to determine the existence of solutions. This approach relies heavily on exterior 

algebra to provide the necessary tools as well as the new set of invariants, which characterise the 

solvability of the problem.

The distinct advantages of the DAP approach with respect to the first are that it provides the 

means for computing the solutions , it can handle both generic and exact solvability investigations and 

introduces new criteria for the characterisation of solvability of different problems .The computation of 

solutions is reduced to an optimisation problem of a function with quadratic equality constraints . The 

development of an algorithmic technique is essential for the method to become a C.A.D. tool for 

frequency assignment.

The types of problems which have been tackled by DAP so far are pole, zero assignment 

problems with centralised compensators. The extension of the approach so that it can handle similar 

design problems for the decentralised control of large scale systems is the main theme of this work. The 

main characteristic of a decentralised controller is that the controller is not fully coupled and restricted 

but its structure is partially fixed in our case because of the decentralised assumption. This is not a 

trivial extension of DAP as far as solvability of problems is concerned since we are now forced to work 

with varieties in a projective space (subvarieties of Grassmann varieties) for which the theory is not 

developed. Although in this thesis we deal with decentralised problems arising in large scale systems, 

the methodology equally applies to general partially fixed structure controller where the matrices are 

not of the block diagonal structure. An attempt is also made to show that this general framework of 

DAP, either decentralised or centralised may also be extended to deal with certain dynamic problems 

such as pole, zero assignment by Proportional plus Integral (P-I) , Proportional plus Derivative (P-D), 

or Proportional plus Integral plus Derivative (P-I-D) multivariable controllers of general architecture; 

i.e., decentralised or centralised.

The extension of the DAP framework to the case of D-DAP enhances our understanding about 

structural issues of decentralised control, introduces new invariants such as the Decentralised Indices 

and D-Pllicker matrices, provide a new characterisation of fixed modes and fixed zeros as well a novel 

method for their computation and leads to an extension of the exact notion of fixed modes and zeros 

to those of almost fixed modes, fixed zeros. Those concepts are related to the limitations of feedback 

design for certain families of systems. Finally new criteria for decentralised pole, zero assignment are

I - 3 -  I
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derived based on the properties of D-Plucker matrices and relationships of the decentralised groupings 

of input-output or Forney dynamical order. Note that these conditions are necessary but not sufficient 

because the key tool for deriving such conditions i.e., the D- Grassmann variety is a mathematical 

object which has not properly studied in the control literature unlike the centralised case where the 

literature is quite rich. This is the standard theory of Grassmann variety and its subvarieties in a 

projective space.

The structure of the thesis is as follows. In chapter 2 we provide a comprehensive introduction 

to the fundamental algebraic tools which form the backbone of the DAP method. Emphasis is given to 

the representation theory of multilinear maps and its relationship to compound matrix theory. The 

existence of the so called Pliicker embedding, an essential tool behind the introduction of the new 

invariants associated with the approach is also clarified. A short introduction to the standard 

polynomial and rational theory is also given in this chapter. Chapter 3 is a survey of the basic results 

from decentralised control and in chapter 4 we formulate the Decentralised frequency assignment 

problems of pole, zero assignment as to a different version of the Decentralised-Determinantal 

Assignment Problem (D-DAP) . It is also there where it is shown that D-DAP splits naturally into a 

linear problem of zero assignment of polynomial combinants and a standard multilinear problem for 

the decomposability of multivectors with additional constraints imposed by the decentralisation 

structure.

In chapter 5 we examine the implications of decentralised assumptions on the projective 

invariants associated with DAP as well as the nature of a new variety to be known as Decentralised 

Grassmann variety. The notion of Decentralisation Index emerges as quite central since it defines the 

number of additional constraints i.e., zero Pliicker coordinates due to the decentralised nature of the 

problem , the reduced Grassmann representative and the Pliicker matrices. A novel technique for the 

computation of the decentralisation index is also given there.

In chapter 6 we explore the decentralised index and the structure of the decentralised 

Grassmann representative to provide a novel characterisation of fixed modes, fixed zeros as well as a 

procedure for the computation of the fixed pole, fixed zero polynomial. Using the notion of almost zeros 

of a set of polynomials introduced by [Kar.l] we extend the notion fixed modes, fixed zeros to those of 

almost fixed modes, zeros. Almost zeros are connected to restrictions of frequency mobility and this is 

expressed by the so called trapping discs. A technique for the evaluation of those discs is also given in 

chapter 6.

C ~ F * =
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We then proceed in chapter 7 to investigate the properties of Decentralised Grassmann variety 

and to define new necessary conditions for Decentralised pole assignment by state, output feedback and 

Decentralised zero assignment for squaring down problems.

An essential part of the work here is the computation of the dimension of the dynamic varieties 

by using the standard intersection variety theory. The solvability conditions are expressed in terms of 

the rank properties of the Decentralised Pliicker matrix and relationships between the Decentralised 

input-output groupings, the McMillan degree, and the Forney indices. Finally in this chapter a variety 

of dynamic problems, decentralised and centralised, are considered from the control point of view using 

multivariable P-I, P-D, P-I-D controllers and is shown there that these problems may also be tackled 

within the framework of DAP or D-DAP using the tools of this work. Finally chapter 8 concludes the 

present work and draws the attention to some future research directions.

I - 5 -  [



Chapter 2

Chapter 2

EXTERIOR ALGEBRA AND POLYNOMIAL MATRICES

2.0 Introduction

This chapter introduces the main concepts of exterior algebra and some fundamental properties of 

polynomial matrices.

Section 1 provides a definition of a multilinear function while 2 describes the exterior powers of 

a general vector space. Then section 3 specialises the results of the two previous sections to the case of 

a finite dimensional vector space. Section 4 gives some properties of exterior powers of linear maps, 

which are also expanded in the following section where the compound matrices and Grassmann 

products are defined and their properties examined. Section 6 is used to introduce the Plücker co-

ordinates, projective spaces, Grassmann manifold and the Grassmann variety. The decomposability of 

vectors is studied in section 7 which also defines the Quadratic Plücker relationships (QPR). Section 8 

provides a break with the geometric approach used so far to return to the study of some algebraic 

properties of polynomial matrices.

It should be stressed that the above tools from exterior algebra will be used throughout the 

thesis to define a complete basis-free invariant for any rational vector space which are usually 

associated with linear dynamic systems. It will be shown later on in chapter 5 that for a rational 

vector space T, the canonical Grassmann representative and the associated Plücker matrix completely 

characterise T.

2.1 Multilinear Vectors—Multivectors

Let T  and TL be vector spaces over a field T of characteristic 0. A p-linear map from T to TL is a map
P . . .  .<f>: x i-►  CU which is linear with respect to each argument, i.e.

•••, Ax,- +  MQ, •••,xp) =  A0(x j, -, x P) +  m Kx i , y •••, xp) ( 2.1)

- 6 -  1



Chapter 2

where A, p £ if and x ,, y , E T. A p-linear map from X to if is called a p-linear function in X.

A p-linear map <̂>: x T - »Lt is called skew-symmetric if for every permutation a, a  £ Sp (Sp is 

the group of permutations of p objects)

<Kx„(1), •••, x CT(p)) =  sign •••, x P) (2-2)

where sign <x is the sign of the permutation. Every p-linear map from X to CU determines a skew 

symmetric p-linear map xp which is given by:

xp — 53 sign a-cr-<p (2-3)

Example (2.1): Determinants provide an example of multilinearity. For instance, the determinant 

d(A) of an nxn matrix,A, with entries in if is a function of the columns of A. Let A =  [a,;, a n] £ 

(jnXn, ĵlen determinant d(A) is a function d: x ifn —+ if for which

d(a j, •••, Aa, +  pa^, a n) =  Ad(a x, •••, a {, •••, a„) +  /j(aj, •••, a •••, a„)

So the determinant is a an n-linear skew symmetric function of ifn. □

Proposition (2.1): Let ^ be a p-linear map from X to 'LL. Then the following conditions are 

equivalent:

(i) (f> is skew symmetric;

(ii) <p(x x, Xp) =  0 whenever x ; =  x - for some pair (i, j) : i j

(hi) ^(Xj, •••, x p) =  0 whenever the vectors Xi, •••, Xp are linearly dependent. 0

2.2 Exterior Powers of a Vector Space [Gre. 1]

Let X be an arbitrary vector space and p> 2 be an integer. Then a vector space APT together with a 

skew symmetric p-linear map
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is called a p-ih exterior power o f X if the following conditions are satisfied:

(i) The vectors Ap(x 1, x p) generate APT.

(ii) If xp is any skew symmetric p-linear map of x T  into an arbitrary vector space TL then there 

exists a linear map

f: AP T —> TL such that xp =  f o AP.

It is proved that conditions (i) and (ii) are equivalent to the following condition:

(iii) If xp is any skew symmetric p-linear map of x T into a vector space TL then there exists a

unique linear map f: A! V —* Tt such that xp =  f o AP □

The elements of APT are called p-vectors. A p-vector of the form AP(x.i, x p) is called 

decomposable, and is denoted by X;A - A xp. Condition (i) states that APT is generated by its 

decomposable elements.

The skew symmetric property of the p-linear map Ap implies that for every permutation

<7 G Sp

x <7(i)A---Ax<7(p) =  sign o- ■ XjA - Axp (2.5)

Now suppose that { x l5 •■■,Xp} are linearly dependent vectors. Then the skew symmetry of AP 

implies that:

x i A • • • Ax p =  0 (2.6)

Conversely, p-vectors which satisfy (2.6) are linearly dependent. The vector space APf  may always be 

defined and it is a subspace of the p-th tensorial power of T, Cg>pT.

2.3 Exterior Algebra Over a Vector Space of Finite Dimension.

The results and definitions given above for general vector spaces will be specialised and discussed in 

more detail for the case of finite dimensional vector spaces. Suppose that V is a vector space of

1 ~ 8 -  1
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dimension n over the field T. The p-th exterior power of Y, APY may always be defined; APT is a 

vector subspace of the p-th tensorial power of T, <g>pT. The pair (A PT, AP) is uniquely defined up to 

an isomorphism. If { e ; , i =  1, •••, n} is a basis of T, then the products:

i i ,  A e ,2A - A e ip 1 < ix < i2 < ••• < iP < n (2.8)

span the vector space APY. There are choices of distinct indices ilt ip from 1 to n, and they 

can be arranged uniquely in increasing order. It can be proved that the elements defined above {e^ A, 

■••Ae,- } are linearly independent and thus form a basis for APY. Clearly

dim APY =  ())), p =  0, 1, •••, n (2.9)

and A PY =  0 for p >  n.

An arbitrary vector space APY is a p-vector and an element of the form XiA--- A xP where x l5 

x 2, x p G T  is decomposable. Every p-vector u of A! Y can be uniquely represented in the form:

< , » P A e • A • •~ 'i Ae ■— *p (2. 10)

where the symbol < indicates that the indices (ix, •••, ip) are ordered lexicographically (1 < ii < i2 < 

'■ < iP < n). The coefficients a,- ,• ... ip are called the co-ordinates o f the p-vector u with respect to 

the basis {_e i =  1, • • •, n} of Y.

2.4 Exterior Powers of Linear Maps: Determinants

Theorem (2.1) [Bir. 1]: Let T ,1!! be finite dimensional vector spaces over a field T, and let G: Y —»TL 

be a linear map. Then, there is a unique homomorphism G: A T —»Tl of the exterior algebras such that 

G (x) =  G(x) for any x € T. Notice that G maps APY to APcU for all p. □

The homomorphism G is a linear map. The result simply means the following: If G is a 

linear map of a vector space T into a vector space °U over T, then to (x j,  •••, x P), € x T  we may 

correspond the element G (x j) A • • • A G (xp) of APTl. This defines an alternating multilinear map ip of 

x T  into APcU. By the definition of the exterior product there exists a unique linear map G of: 

A PY —*■ A PcU such that

r  - 9 - ~ i
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G(x.i, •••,xp) =  G (x j)A ••• AG(xp) (2.11)

We may write APG for G and we call it the p-th exterior power o f the linear map G. Clearly,

APG (x 1, ■••,Xp) =  G(x 1)A - AG(x p) (2.12)

Equation (2.12) defines the linear map APG of APf  into APcU. An important property of APG is 

defined below:

Corollary (2.1) [Mar. 1]: Let F: T-+TI and G:0!! —<■ be linear maps of finite dimensional vector

spaces over IF. Let II =  G o F. Then

Ap(G o F) =  APH =  ApG o ApF □

2.5 Representation Theory of Exterior Powers of Linear Maps 
[Kar. 1] [Mar. 1]

2.5.1 Definitions and Basic Results

Let f  be an m-dimensional vector space over the field T and let APT, p < m be the p-th exterior

power of T. If {v t-, i =  1, • • •, m} is a basis of V, then APT is spanned by the vectors of the basis

{vA, w =  (ilt ip), 1 < ii < i2 < < ip < m, v A =  v.^A v >2A --A v ,p}. Every vector

v 6 APT may be written as v =  T a uv A._  ~ V  “ “

(m )Let r -̂ be the map of APT into T p defined by:

r^-(v) =  [ a.w, ■■■ ] (2.13)

Then r -̂ is linear and it is called the representation map of APT associated with the basis { v i  =  1, 

m}. It can be seen that there is such map associated to every basis of f .  The image of APlV" 

under this map is called the representation of APf  relative to the basis {v t-, i =  1, m} of V. The 

following result can be easily verified.
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Proposition (2.2): The representation of the p-th exterior power of an m-dimensional vector space T

over T, are isomorphisms of APT onto T □

Let T ,0!! be two vector spaces over the field T of dimensions m, n, respectively and let h be a 

linear map of T into Tl. The linear map h can be represented with respect to the bases B^-= {v^,
Ql

i =  1, •••, m} and Bc^ =  {u it i =  1, • • •, n} of T  and TL by a matrix H -̂ which is defined by the 

following commutative diagram:

where r^-, r ^  are the representation maps of T and Tl onto and T " respectively. Because f , Tl 

are isomorphic to lJ m, respectively, T™, T '1 may be used to represent T, Hi and the matrix H,^ to 

represent the linear map h.

Let APT, APTL be the p-th exterior powers of T, Tl respectively, where p < min(m,n). Then 

h :T —»Hi implies the existence of a linear map Aph: APT —*-APcU. If we denote by r^-, r ^  the 

representation maps of APT, APcU with respect to the bases B^- — {v f, i =  1, •••, m) and 

Bcŷ  =  {u.,, i =  1, • - -, n} of r ,  Hi respectively, then applying the representation result for linear 

maps, we have the following commutative diagram:

Apr - Aph ■ApTl

rpr

v =  Y, awv wA

ApHr  A HcIL

u =  J^apUpA 
p

rHi

Xp )

p %and thus the matrix A is defined by the equation
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A ' < . (2.14)

The description of ApH^in terms of will be defined below and that will establish the links 

between the present subject and the compound matrix theory.

Let B -̂ =  {v j, i =  1, •••, m}, B<  ̂ =  {u ; , i =  1, • - n} be bases of T  and TL respectively

and let B^- — {v„A =  v̂  A• • • Ayip, u  — (ix, •••, iP), 1 < ij <■••< ip < m }, B ^  =  (u pA =

u j A • ■ ■ Au j p, l j =  ( jlt • • •, j  p ), 1 < j i  < ••• < j P < n} be the induced bases of APT and APcU

respectively. If

h ( v j  =  E c i jU j ,  i =  1, •••, m, =  [cl ; ]

then for all basis vectors v w 6 APT we have

(2.15)

APh(v,.i A --Av,.p) =  ( ¿ C i j j M ^ A 1 • • A ^ E  CjpjUj) (2.16)

However,

I l , A' •Aü^ = s ig n (k 11,’ kp P n A - A — i P
(2.17)

Also by the theory of determinants

h a ’. '..’/p* i > i * p

•Cl

C'i ip

c 'pi l 

c'pip

=  sign c'pip (2.18)
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p TClearly, the quantities of equation (2.18) are the entries of the matrix, A Hc  ̂ which represents the 

linear map APh: APT —► APcU. with respect to the bases B^-, B ^ .

2.5.2 Compound Matrices and Grassmann Products [Mar. fc Min. 1]

The results of the section 2.5.1 may be simplified by introducing some useful notation and definitions 

on the sequences of integers and on submatrices of a given matrix.

(t) Notation

(a) Qp,n denotes the set of strictly increasing sequences of p integers (1 <  p < n) chosen from

1, •••, n e.g. Q2 3 =  j( l ,2 ) ,  (1,3), (2,3)j .  Thus, the number of the sequences which belong 

Qp,n, is If cr,/? £ Qp,n, we say that a  precedes (3 (a<b), if there exists an integer t

(1 < t < p) for which Oj =  /?lt a t_ 1 =  a , <  f3t, where a,-, (3 { denote the elements

of a, (3 respectively, e.g. in the set Q3 8, (3,5,8), (4,5,6). This describes the lexicographic 

ordering of the elements of QP,n. The set of sequences Qp,n from now on will be assumed with 

its sequences lexicographically ordered and the elements of the ordered set Qp,n will be denoted 

by Qp,n(t), t =  1, •••, (p ) or simply by u>.

(b) Qp,n denotes the subset of QP,n whose sequences do not contain any of the indices of a given 

a  £  Qp,n, e.g. Q2 5 =  {(3,4), (3,5), (4,5) j  if a  =  (1,2). This set has p p j  elements. The 

elements of Qp,n will be denoted by Qp,n(t) or simply u>a y

(c) If Cj, •••, cn are elements of the field T and u  =  (ilt •••, ip) is a sequence in QP,n, 

1 £  P ^ n> then the product c^ -- cip will be denoted by cu-

(d) Suppose A =  [ai ; ] £  Mmjn(T) where Mm,n denotes the set of mxn matrices of the field T; let 

k,p be positive integers satisfying 1 < k < m, l < p < n  and let a  =  (ilT ■■■, ik ) £ Q,km  and 

P — On • j P) £ Qp,n• Then A[a|/?] £  M̂ . p(T) denotes the submatrix of A which contains 

the rows it , •••, ifc and the columns j x, •••, j p. We use the notation A(a|/?] to designate the 

submatrix of A which excludes rows q, •••, \k and includes columns j x, •••, jp. The 

submatrices A[a\(3) and A(a|/?) can be defined similarly.
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(it) Compound Matrices [Mar. & Min. 1]

Let A 6 T mXn ancj 1 < p < min(m,n), then the p-th compound matrix or p-ih adjugate of A 

is the j  matrix whose entries are det(A[or|/?]), a £ QP,m, P £ Qp,n arranged

lexicographically in a and /?. This matrix will be designated by Cp(A). For example, if A £ 

T 3X3and p =  2, the Q0 3 =  {(1,2), (1,3), (2,3)} and

C2(A) =

det{A [(l,2) (1,2)]}

det{A[(l,3) (1,2)]} 

det{A[(2,3) (1,2)]}

det{A((l,2) (1,3))} 

det{A[(l,3) (1,3)]} 

det{A[2,3) (1,3)]}

det{A[(l,2) (2,3)]} 

det{A[(l,3) (2,3)]} 

det{A[(2,3) (2,3)]}

(2.19)

or setting for convenience det{A[a|/?]} =  a}} we have

C2(A)

a

a

a

1,2 1,3 1,2
1,2 a l ,3 a 2,3

1,3 1,3 1,3
1,2 a l , 3 a 2,3

2,3 2,3 2,3
1,2 a l ,3 a 2,3

(2 .2 0 )

Properties of Compound Matrices

(a) If A £ T nXn, 1 < p < n and also A is non-singular

(i) ( C ^ A ) ) - ^  C ^ A “1) (2.21)

(ii) CP(A) =  (CP(A))* (2.22)

where A* is the conjugate transpose of A(T =  C).

(iii) CP(AT) =  (CP(A))T (2.23)

where AT is the transpose of A.

(iv) Cp(A) =  C^A ) (2.24)
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where A is the conjugate of A('J =  C).

(v) Cp(kA) =  kpCp(A) V k e ?  (2.25)

(Vi) Cp(In) =  I(„} (2.26)

(vii) Svlvester-Franke Theorem

det{CP(A)} =  (d etA )P (2.27)

□

(6) Bmet-Cauchy Theorem: If A £ <tFmXn and B £ cfnXk and 1 < p < min(m,n,k) then:

Cp(AB) =  Cp(A)Cp(B) (2.28)

□

(c) If A £ <J pXn and the p rows of A are denoted by a j ,  •••, a J  in succession (1 < p < n), then 

Cp(A) is an ”̂^-tuple and it is called the Grassmann product or skew symmetric product of the 

vectors {a^ , •••, a,p} for reasons which will become apparent later on. The usual notation for 

this ^pj-tuple of subdeterminants of A is a j A - - - A a J  and it denotes a row vector. The 

Grassmann product of the columns of a matrix A £ <J nXp (1 < p < n) may be defined in a 

similar manner; the product in this case, however, will be an ^-column vector. If 

{An •") ap} are the columns of A, in this case, then this ^ )-tuple of subdeterminants of A 

will be denoted by a^A — Aap. By the properties of determinants, if a  £ Sp (where Sp 

denotes the totality of permutations of 1, • • •, p), then

— cr(i) A • "  Aa CT(p) =  sign u a ^ - A a p  (2.29)

If B £ ‘J nXn, A £ <J rlXp, then by the Binet-Cauchy theorem it follows that:

C p (B )a  ̂/\ ■ • * f  \ â  p — Ba j A • • * A Ba p (2.30)
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Grassmann products suitably deployed may greatly reduce the complexity of the 

expressions in compound matrices. Thus, let A E <J mXn and 1 < p < min(m,n). The matrix 

A may be written in terms of its rows or columns respectively as

or A =  [a j, • • •, a „] (2.31)

Let to =  {ij, ip} E QP,m  and <j> =  { j lt • • •, j p} E QP,n and let us denote by a^A  the 

Grassmann product A- ■■ Aa.Jp and by a^A the Grassmann product a ^  A ■ ■ ■ Aa -p. The p- 

th compound matrix of A may then be expressed in either of the following forms:

A

C(A) = w £ Qp,m orCp(A) — [ • ■ - , a^A, ••• ] (2.32)

2.5.3 Compound Matrices and Exterior Algebra [Mar. 1] [Kar. 1]

We may now return to the Eqn. (2.18). We first note that the matrix Hr
TL defined by (2.15) or by

[h(v1),h(v2), ■■•,h(vm)j =  [u1,u2, ■■•,Un]

C 11 C21

c l n  c 2n

Cml

C mn

(2.33)

is the matrix representation of h: T —►CU with respect to the bases B,̂ - and B,^ of T , TL respectively. 

Note that H;1 p is the p-th order minor of h 1  that lies on the {j^  • • -, jp } rows and { i1; •••, ip} 

columns. If we define h wA =  h j A • • • Ahip, where {h,^, •••, h ip} are the columns of H that 

correspond to the indices (ilt •••, ip) G QPlm, then Eqn. (2.16) may be written as:

APh(ywA) =  [ u pA, ] h wA, p E QP,n (2.34)
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Given that the relationship holds for all w £ QP,m, {_Vu>A, to £ Qp,m} is a basis of APT and {u pA, 

p 6 Qp,n} is a basis of APLL we may write:

[ A Ph(v w A), ••■] =  [ ■ —, Up A, ••• ][ - .h w A , ••• ] =  B Pi ApH ^ =  B ^ C p (H ^ ) (2.35)

where APH ^ =  Cp(H^) is the matrix representation of Aph with respect to the bases B^-, B ^  and
qr

it is defined by the p-th compound matrix of Hc .̂ These considerations lead to the following result.

Theorem (2.2): Let Y, LL be two vector spaces over T, with dimT =  m, dimLL =  n and let h: Y —+U 

be a linear map of Y into U. Let B^ =  {v ,, i =  1, ■■■, m}, B ^  =  {u j ,  j =  1, •••, n} be bases of Y, 

'LL respectively and let be the matrix representation of h with respect to the bases B^-, Bq^. If

APh: A PY —*-ApLL 1 < p < min(n,m), is the p-th exterior power of h, then Aph may be represented

with respect to the induced bases B^- =  {v wA, u £ Qp,m}, B ^  =  { i ipA, p £  Qp,n} of A! T, APLL
p qr qr qr qf

respectively, by the matrix A Hq^:= Cp(Hq^), where Cp(HcyJ is the p-th compound matrix of H ^. □

The above result can be represented by the following commutative diagram:

B r ,Y ’ LL,BLI u YB p ,Apr  — A- h- ■APLL,B^

r1 =±>rPrLL^ Y

i (m\ t 1

Hr
LL

rLL

Xp )

Cp(H^)

(m) (")It has been shown that the pairs of the vector spaces (A PT ,T  p ) and (A PLL,T p ) are isomorphic. In

fact, every basis B^- of Y and Bq  ̂ of LL induces a decomposable basis for APY, APLL and the

(m) (")
corresponding representation maps r^-, r ^  define isomorphisms between APY,  T and AP<T, T

The linear map ApI l I  =  Cp(Hq,): T vp/—>Tvpy is induced by the map: Hq,: T m—t-T“ and it,Y Xp ) J p ) . Y ,
‘LL ‘LL LL-

is a representation of the linear map Aph: APY —>APLL. Thus, it is clear that, as any pair of vector 

spaces Y,  LL of finite dimension and their linear map h can be discussed by means of m-tuples, n-tuples 

and matrices, their p-th exterior powers A PT, APLL and their linear map Aph may be discussed in 

terms of ^-tuples, ^-tuples and compound matrices.
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Before we close this section we discuss the composition of exterior powers of linear maps and 

its relationship to the Binet-Cauchy Theorem. Let Y,  TL, W be vector spaces over the field <J ,  such 

that dimU =  m, dim'd! =  n, dimW =  k and let f, g be two linear maps such that f: Y —►CU, g: 

TL—►‘W. The composite map h =  g o f, h: T — may be defined by the following commutative 

diagram:

b  r ,r

rr

Tl, BTL W,B

1

u
£

---
---

--- LW

TL
,TL

► T

where r^-, r ^ ,  r^. are the representation maps of Y,  TL, W with respect to the bases B<̂ -, B ^ , B^. 

respectively, and F<^, G<^ are the matrix representations of the linear maps f, g, relative to the bases 

B y , Bc|p B^. correspondingly. Hence:

f =  (rJjjL)_1o F Y
cjjl° rV ’ 8 — (rty )  0 (̂ ‘V °  rTL

g ° f — (rV )  1(3 rTi ° (pTl ) 1q F i °  rV — ° ° ^TL° rT

or

r V o h ° ( rV)~1= G V ° Fi  (2-36)

which simply means that the matrix representation of the composite map h with respect to the bases
n R t t T _  r TL r 'VC 
a Y' 1S n<W — r TL "

The above result may readily be interpreted to the linear map Aph =  Ap(g o f) =  APg o  Apf 

where Apf: APtU-+APcU, Apg: APTL—►AP<V  and Aph: APY ^  AP<W. Using the induced bases B^-, 

®TL’ ^ P^ ' APTL,AP<W we have the following commutative diagram:
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b Ç-,a pt _Â L_

‘ r

ApTl, B -̂

rTi

_a ! s _ ► Ap3f, B

Cp(F^|) t(p) Cp(G ^ )

‘V

5 ®

from which by using similar arguments to those in the derivation of equation (2.36) we have that

4 o A Ph o ( r ^ - ) - 1=  r ^ . o A pg o A pf o ( 4 ) - 1=  C P' ( G ^ ) C P(FJ, ) =  C P( H ^ )lr r 1 J r t i ^ (2.37)

The above relationship clearly states that the Binet-Cauchy Theorem in its compound matrix 

form expresses the composition law of the exterior powers of linear maps when matrix representations 

are considered.

2.6 Plucker Coordinates and Grassmann Variety

2.6.1 Plucker Coordinates [Mar., l][Gre, l][IIod & Ped., 1]

Let T  be an m-dimensional subspace of an n-dimensional vector space Tl over a field T. The map f: 

T —►CLL defined by f(x) =  x , x 6 f  is linear and by Theorem (2.1) there is a unique homomorphism 

f: A T —»-ATI associated with f. Since dimT — m, AmT is a one-dimensional space and it is mapped 

by f onto a one-dimensional subspace of AmcU. Thus if B^- =  { v f, i =  1, •••, m} is a basis of T  then 

AmT is spanned by the element v t A - - A v m and f maps this element onto

{■(vjA'-Avm) =  f(v j)A • ■ • Af(v m) =  VjA'- 'Avm (2.38)

in AmcU. The vectors v ; , i =  1, •••, m are linearly independent and so Vj A- ’ -Avm is a non-zero 

element of AmcU. In fact the injection map f: T —»-Tl defined by f(x) =  x , x £ T  induces an 

injection map Amf: AmT —cAmcU defined by Amf(xA) = x A ,  xA £ AmT. The vector v t A • • • A v m 

spans a one-dimensional subspace of Amcli which depends only on T . Now let B ^  =  {u^, 

j =  1, • • ■, n} be a basis of TL, then using matrix representations we have the following commutative
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b r ,r- ^ -T L ,B Si

rr
A =  Frai_

<3/'
where A =  Fcj  ̂ is the matrix representation of f with respect to B y  and B ^ . In fact if

f(v .) =  v,- =  £  a,,ui=i (2.39)

;11 is the matrix

au a 21 a m l

a 12 a 22 a m 2 (2.40)

a l n a 2n & m n

The column span of A is a subspace of F n and it is the representation of f(T) with respect to 

the bases Bcŷ  and B y . The representation of v ^ A - A v m with respect to the bases AmB ^ , A mB y  is 

defined by the commutative diagram

A  m f
AmB ^ , A mr  — -

T

Am cU,AmBS'|TL

1 = 5(m) C m (F^| =  Cm(A)

rcu

f( n )

thus, if Ul =  (il5 im) G Qrn.n, then
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1 j A • • • A v m =  ^  aw u w A =  [ • • •, u wA, ] (2.41)

and hence the matrix

Cm(A) =  Cm( F ^ ) ,(m)xi (2.42)

is the “matrix” representation of Amf with respect to AmB(^, AmB ^. The ^ j-tu p le  ( •••, au, ••■ ) 

are the co-ordinates of the one-dimensional subspace Amf(AmT) with respect to the two given bases. 

If B,^ =  {v,-, i =  1, ■ m} and B ,= . {v(,  i =  1, •••, m) are two bases of Y and Bn, is a fixedr
basis of TL then the matrix representations of f with respect to those two bases B^~, B » are related by

Tthe coordinate transformation Q ^

■«u - Fa t V ’ H i ’ f t ì  e <3r’ ’

and thus

C ( f £ )  =  Cm( F ^ )  Cm(Q ^ ,)  =  Cm(F ^ )q , q =  d et{Q ^ } G 5 - { 0 }  

The two vectors jt = v 1A --Av ,, t/ =  v_[ A • • • Av.m are related by

t! =[•••) UwA, ••• ] — [ u wA, ■■■ ] ciu) q = q i

(2.43)

(2.44)

(2.45)

&u> — Q cLu>, U) G Qm,n (2.46)

Definition (2.2): The scalars aw of Eqn. (2.42) are called Plucker coordinates o f the subspace Y 

relative to the basis B^- of Y and B ^  of TL. □
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Eqn. (2.46) shows that any two sets of Plucker coordinates of Y, which correspond to two 

different bases of Y , with respect to the fixed basis B,^ of cll differ by a non-zero scaler factor. Hence 

the ratios of aw’s are the same as the corresponding ratios of aL’s (aWl=  q aLx, a co2 — Q &o>2) 

aWl /aui2 =  aLj/a^ )■ Therefore, the ratios are uniquely determined by V. Sometimes, the ratios of 

the a w rather than the a!u themselves, are called the Plucker coordinates o f Y.

Definition (2.3): The set of all equivalence classes of non-zero vectors in lJ p + 1 as defined above, is

called projective space o f dimension p over T, denoted by P P(T). Each equivalence class defines a

point of this projective space. If Q is any point of P p('J) and if x =  (x0, •••, xp) is any vector of the

equivalence class which defines Q, then the x, ’s are called homogeneous coordinates of Q. □

2.6.2 Grassmann Manifold and Grassrnann Variety

If we set p =  — 1 =  dimAmcU— 1, then we can easily see that the Plucker coordinates of Y,

enumerated in lexicographic order, may be considered as the homogeneous coordinates of a point in 

P p(5 ). However, every point in P p(T) does not represent an m-dimensional subspace of 'LL. Elements 

of AmcLL of the type qVjA-- -Avra where v l5 •••, v m are linearly independent vectors of Y and 

q G If — {0} are called simple or decomposable m-vectors. Decomposable multivectors uniquely define 

m-dimensional subspaces of TL as it is shown below.

Proposition (2.3): Let 'LL be an n-dimensional vector space over T and let y A =  y j A- - - Ay m, _z A =  

z t A" ' Az m be two decomposable non-zero elements of AmcU and let us denote by Y y =  

spanjy^ •••, y m} and Y z =  spanjz^, •••, Am} the subspaces of 'LL defined by y A and ẑ A respectively. 

Necessary and sufficient condition for Vy =  Y z is

y A =  y j A ■ - • Ay m =  q z i A - - A z m =  qz A,  q € T — {0} (2-47)

□

Definition (2.4): Let 'LL be a vector space over a field T with dim'LL= n. The Grassmannian G(m,cU) 

is defined as the set of m-dimensional subspaces Y of 'LL; Gim,0!!) actually admits the structure of an 

analytic manifold which is known as the Grassmann manifold. □
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Example (2.2): To dem onstrate  th a t  every vector of A mcLL does not define an m-dimensional subspace 

X of TL, we consider the simple case of dimTl =  n =  4, dim'T =  m =  2. Let B<̂ - =  { v 1, v_2} be a 

basis of X. Then, as it is well known, we can extend to Em =  {v j ,  v 2, v 3, v 4} which is a  basis of 

TL. Thus the induced basis of A 2cU is A 2^cy_= {1 ^ 1 2 , V j Av j , y j A y 4, y 2A v 3, v 2A v 4, y 3 A v 4} 

and so

v = v 1Av 2 =  £  c , . v ; A v -  (2.48)
l < i < j < 4

where c - ,  1 <  i <  j  <  4 is a set of Pliicker coordinates of X .

Clearly, the one-dimensional subspace qv of A 2cU consists of decomposable 2-vectors and it is 

uniquely defined by X. But

v A v  =  (v j Av 2) A (v j Av 2) =  0

and thus

v A v  =  Y  cij¥-i AX j A Y  c ^ y ^ A v *  =
1 ̂  ^ i ̂  4

=  (ci2 X i A v 2 +  c13 y xA v 3 +  c14 y ! A y 4 +  c23v 2A y 3 +  c24 v 2A v 4 +

+  c34 y 3 A v 4) A (c12y 3A y 2 +  c13 Vj Av 3 +  c14 y i A v 4 +  c23v 2A y 3 +

+  c24 y 2A v 4 +  c34 y 3 A y 4) =

— ^12C34— 1 Ay 2 Av 3 Av 4 +  c13c24v 1A y 3 A y 2A y 4 -l-c14c23y 1A y 4 A y 2A v 3 -f 

+  C23c i 4X 2A v 3 A y 1A y 4 -(- c24c13v 2 Ay 4 Ay x A y 3 + c 34c 12v 3 Ay 4 Ay 4 A y 2 =

— 2 (c12c34 — c13c24 +  c14c23) y 1A y 2A y 3 A v 4 =  0

Since Vj A y 2 A y 3 A v 4 yt 0 because v t ,v 2 ,y 3 ,v 4 are linearly independent, we have

C12C34 — C13C24 +  c14c23 =  0 (2.49)

Clearly, the above condition is a necessary condition for the general 6-tuple (c12,c13,c14,c23,c24,c34) to 

be the Pliicker coordinates of a  2-dimensional subspace T , or in other words to be the coordinates of a 

decomposable vector. □
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Such a condition is known as a Quadratic Plucker Relationship. This Quadratic Plucker 

Relationship defines a hyperspace in the 5-dimensional projective space P 5(7 ), which is known as the 

Grassmann variety of this projective space.

In general, those points of P p(7 ), p =  — 1 which correspond to m-dimensional subspaces

T of the n-dimensional vector space 01 must satisfy a set of quadratic relationships of the type (3.49). 

It will be seen that this set of relationships defines an algebraic variety of the projective space P P(7 ) 

which is known as the Grassmann variety o f  P p(7).

2.7 Decomposability, Grassmann Representatives, and Quadratic 
Relationships

A number of further results concerning the decomposability of vectors as well as the definition of the 

Quadratic Plucker Relationships will be considered next. For more details see Marcus [Mar. 1] and 

Hodge & Pedoe [Hod. k. Ped. 1],

Proposition (2.4): Let 01 be a vector space over 7  with dim 'LL =  n and let _z ^  0 £  AmcLL, m <  n. 

Then z_ is decomposable if and only if there exists a linearly independent set of vectors u 1, u 2, •••, u m 

in 'LL such that u ; A ẑ =  0 ( i  =  1, m). D

Proposition (2.5): Let 01 be a vector space over 7  with dim 01 =  n and let =  {u 1, u 2) •••, u nj  

be a basis of 01. The induced basis of AmcLL, m <  n is =  {u^A, u £  Qm,n} and thus any z_ £ 

Amctl can be written as:

_z =  Y. a^u^A (2.50)
gj G Qm,n

This vector is decomposable if and only if there exists a matrix A £ <$nXm such that

aw =  det(A[w| 1, 2, m]), ui £ Qm,„, or Cm(A) =  [•••, aw, •••] (2.51)

□

Proposition (2.6): Let TL be a vector space over 7  with dim 01 =  n, then any vector of An_101 is 

decomposable. 0

Proposition (2.7): Let Y £  G(m,01), dim 01 =  n, then any non-zero decomposable element

I - 2 4 -  |
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x.i A • • • Ax mi xj G r ,  i e  m is called Grassmam i representative for T  [Mar., 1]. The Grassmann 

representatives all differ only by non-zero scalar factors so that we shall denote any of them by g ( f ). □

The characterisation of a vector space V of G(m,cU) by its Grassmann representative g (T ), provides 

the means for the definition of the classical Pliicker embedding [Hod., fc Ped., 1]. The elements, [aw[ 

of (2.51) may be regarded as the homogeneous co-ordinates of a point in the projective space P U(T) 

where v =  — 1- Then this point depends only on the subspace T and not on the choice of basis.

What we have constructed so far is a well defined projective mapping p: G(m,n) —*■ P t'( lJ )  with p (f )  

=  g ( f ) .  The co-ordinates of the point {aw} in P V(T) are called the Plucker co-ordinates of T and the 

mapping p is the Plucker embedding o f the Grassmannian G(m,cU) into the projective space P ^ T ). 

The Plucker image of the Grassmannian G(m,cU) in P t>(lJ )  is an algebraic variety known as the 

Grassmann variety which will be denoted by G(m,n).

Theorem (2.3): Let (■••, cw, •■•), ui £ Qm,n be a system of co-ordinates in P t,(T) where v 

The Grassmann variety f2(m,n) is an algebraic variety in P ^ T ) which is defined by the equations

m + 1 , ,
£  ( - 1 )  G ... ; C, . . . . .  , . . . . .  = 0

it =  l 1 1 m - l  H  ’ • T - l ’Jjfc +  l '  ■3 m  + 1
(2.52)

where 1 < ii <  i2 <  <  im_i < n and 1 < j x <  j 2 <  ••• < im+1 < n. □

The set of the quadratic equations defined by Eqn. (2.52) is known as the set of Quadratic Plucker 

Relations ( QPR) [Hod., & Ped. 1],

Theorem (2.4) [Hod. k. Ped.]: The Grassmann variety f2(m,n) is an irreducible algebraic variety with 

dimension m(n — m), which lies in Pt'(T) and not in a space of lower dimension. □

Corollary (2.2): The co-ordinates of a generic point of the Grassmann variety L2(m,n) can be expressed 

rationally in terms of m(n —m) independent indeterminates. □

Corollary (2.3): The Grassmann variety fi(m,n) is projective equivalent to the Grassmann variety 

G(n —m,n). In fact dim fl(n —m, n) =  (n —m) • (n —n +  m) =  m(n — m) =  dim f2(n,m) and

fi(n — m,n) lies in the same projective space as f2(m,n) since =  (">)' ^

Corollary (2.4): If m =  l , then fi(l,n) =  P n-1(T), because dim fl(l,n) =  n — 1. Also if m =  n — 1 

then f2(n —1, n) =  P n_1(T). So in these cases the Plucker embedding is bijective, or in other words

- 2 5 -
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every vector of An 1CLL is decomposable. □

A useful parametrisation of the Quadratic Pliicker Relations (QPR) in terms of a minimal set of 

algebraically independent quadratics have been obtained in [Gia. k ,  1]. Their results rely heavily on 

the following theorem.

Theorem (2.5) [Hod. k  Ped., 1]: Let k =  [■••, pw, •••]T G a  =  be a decomposable vector

satisfying the set of QPRs and let pai ■■■,aq be a non-zero co-ordinate of k. If we define by:

^°1''' ■>at-l>'h°» + l '” ''“i ’ *  ̂ J ^ P (2.53)

then C,(H) =  k where H =  [htJ] □

Corollary (2.5) [Hod. k  Ped., 1]: Let k =  [•••, pw, •■•]T G ci a , a  — be a decomposable vector 

and let the first co-ordinate of Jr be non-zero. The H matrix defined by Theorem (2.5) has the form

H =  [pa 1?, XT]T G T pX?, where pa =  Pi,2,---,? 7̂  0 (2.54)

or in a more detailed form, is expressed as in (2.55), where by H0 we denote the matrix that 

corresponds to the first non-zero Pliicker co-ordinate

Hr

Pl , 2 , - , q

0 p l , 2 , - , c

/ n q-i ( , ,q-2
(_1) p2 ,- - ,q ,q + l  (-1) P l , 3 , - , q , q + l

(-1)q' lp2 ,- ,q ,p  W * \ s , - , q ,P

p l , 2 , - , q

P l,2 ,--- ,q-l,q+ l

P 1,2,■ ■ ■ ,q-l,p

(2.55)

□

1 - 2 6 -  1
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Example (2.4): Let [PoiPi^iPaiP^Ps^ be a point of the Grassmann variety 0(2,4) of the projective 

space P 5. A basis of the subspace T  whose Pliicker co-ordinates of the given point is:

P o 0

0 Po

- P 3 P i

- P 4 P2

(2.56)

under the assumption p0 yt 0. If we assume that p2 ^  0 then a basis of the same subspace is given 

by:

P 2 0 

P 4 Po  

P 5 P i  

0  P 2

(2.57)

It can be seen that H2 H0 Q, where

Q =

E_2
Po

0

Po
1

det Q ^  0 (2.58)

Note that C2(H0) =  [Po,P0Pi> PoP2> PoP3> PoP4- P1P4- P 2P3] which implies that p5 =  (P1P4- P 2P3) / 

p0, or equivalently P0P5- P 1P4+ P2P3 =  0 D

The above example suggests a method for writing down an independent set of QRPs which completely 

describe fi(q,p); such a set will be referred to as the Reduced Quadratic Plucker Relations (RQPR). 

We know that dimfi(q,p) =  q(p —q), so it is clear that the number of RQPR is ( pq 1—q(p—q) —1.

I - 2 7 -  I
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Proposition (2.8) [Gia, 1]: Let k =  [••■, pw, •••]T €  IT7, a  = ( ç )  be a decomposable vector and let 

the first co-ordinate of k be non-zero. If II0 is the matrix which is defined by Corollary (2.5), then the 

equation

C,(H0) (2.59)

defines a set of RQPR with respect to pj 2 ... q co-ordinate.

A similar procedure can be applied for any non-zero co-ordinates of k.

□

follows:

H0 =

Let k = [Po
P 9. We can

Po 0 0

0 Po 0

0 0 Po

Pe -P 3 Pi

P7 P4 P2

(2.60)

The number of RQPR in this case is — 3(5 —3) —1 =  3. Equation (2.52) gives the following set of 

equations:

Po =  PoPoi PoPi — PiPo- P0P2 =  P2P05 P 0 P 3 =  P 3 P 0

(2.61)

PoP4 — P4P0’ P0P6 — P6Po> PoP7 — P7P0

Po(PiP4 P 2 P 3 )  =  P 5 P 0 - Po(PiP7-P2Pe) =  PsPo
(2.62)

P o ( P 3 P ~ — P 4 P 6 ) =  P 9 P 0

It is clear that the set (2.61) is trivial, whereas the set (2.52) obtained after the correlation of p0 is a 

minimal set. □
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2.8. Polynomial Matrices: General Properties

Some of the basic properties of polynomial matrices related to invariants and canonical forms under 

different types of unimodular equivalence are summarised below. These properties, also hold true over 

any Principal Ideal Domain (PID).

Definition (2.5): A non-singular square polynomial matrix U(s) £ RpXp[s] whose determinant is not a 

function of s is called unimodular matrix (i.e. det U(s) =  c £ R —{0}). 0

Note that unimodular matrices represent products of elementary row, column operations on 

polynomial matrices. In fact, post-multiplication by a unimodular matrix corresponds to products of 

elementary column operations, while pre-multiplication is equivalent to products of elementary row 

operations. By elementary operations we can reduce polynomial matrices to several “canonical” forms.

Theorem (2.6): Column Hermite Form  [Kai. 1]: Any polynomial matrix M(s) £ RpX?[s], p{M (s)} =  t 

with t < min{p,q} can be reduced by elementary row operations (i.e. by premultiplication by a 

unimodular matrix) to a (lower or upper) quasi-triangular form in which

(i) the last p —t rows are identically zero;

(ii) in column j,  1 < j < t, the diagonal element is monic and of higher degree than any (non-zero) 

element above it;

(iii) in column j,  1 < j  < t, if the diagonal element is unity, then all elements above it are zero; 

and

(iv) no particular statements can be made about the elements in the last q —t columns and the first

t rows 0

Remark (2.1): By interchanging the roles of rows and columns a similar row-Hermite form  can be 

obtained. □

I - 2 9 -
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Theorem (2.7) Smith Form  [Kai. 1]: For any polynomial matrix M(s) £  IRP ?[s], p{M(s)} =  t with t 

< min{p,q}, we can find elementary row and column operations or corresponding unimodular matrices 

U(s) £ RpXp[s], V(s) £  R?X i[s], such that

U(s) M(s) V(s) =  S(s) (2.63)

where

S(s)

fi ( s )

f«(s)

q - t

t

I

1

p - t

I

(2.64)

and the set {f,(s), i =  1, •••, t}  is uniquely defined modulo c £  R (c 0) and they satisfy the 

divisibility conditions

fi(s) / f,+i(s), i =  l, ■■■, t - 1 (2.65)

If D;(s) denote the greatest common divisor of all iih-order minors of M(s), then the set of 

ft-(s) polynomials is defined by the Smith Algorithm i.e.

f,(s) =  Dt(s) / D.-.jis), D0(s) =  1, i =  1, 2, t (2.66)

□

The matrix S(s) is called the Smith form  o f M(s). The {D,(s), i =  1, •••, t) are called the 

determinant divisors o/M(s) and {f,(s), i =  1, ■■■, t} the invariant polynomials o f M(s).

I - 3 0 -  |
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Definition (2.6) [Kai. 1]: A square polynomial matrix Q(s) G R,X ?[s] is said to be a right divisor 

(R.D) of the polynomial matrix M(s) £ IRpX,[s], with p > q, if and only if there exists a polynomial 

matrix M^s) £ RpX?[s], such that

M(s) =  M^s) Q(s) (2.67)

Let Q*(s) be a R.D. of M(s). Then Q»(s) is said to be a greatest right divisor ( G.R.D) of M(s) if and 

only if deg {det Q»(s)} > deg (Q(s)} for every R.D. Q(s) of M(s). □

Remark (2.4): Greatest right divisors of polynomial matrices are not unique. They differ only by 

unimodular (left) factors. □

Definition (2.7) [Kai. 1]: A polynomial matrix M(s) £ IRpX?[s], p > q, p |M(s)} =  q is said to be 

irreducible or least degree if and only if one of the following equivalent conditions are satisfied:

(i) all the G.R.D. of M(s) are unimodular matrices;

(ii) the Smith Form of M(s) is [I?, 0]T ;

(iii) the greatest common divisor of all q-order minors of M(s) is 1;

(iv) p{M(s)} =  q, for every s £ C. □

Definition (2.8) [Kai. 1]: A square polynomial matrix Q(s) £ IR?X?[s] is said to be a greatest common 

right divisor ( G.C.R.D) of the two polynomial matrices Mx(s) £ [RpX?[s], M2(s) £ RmX?[s] if and only 

if Q(s) satisfies the following properties:

(i)

(H)

Q(s) is a common right divisor of M1(s) and M2(s);

if Q^s) £ [R,X , [s] is any other common right divisor of M1(s) and M2(s), then Q^s) is a right 

divisor of Q(s), or in other words deg |det (Q(s)}| > deg {det Q^s)}. □

Remark (2.3): Greatest common divisors of two polynomial matrices are not unique. They differ only 

by unimodular (left) factors. □

1 - 3 1 -  |
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XOO
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,mX5r

M2(s )

[s] with

q are said to be relatively right prime or right coprime if and only if one of the

following equivalent conditions is satisfied:

(i) all G.C.R.D of Mj(s) and M2(s) are unimodular matrices;

00

(iii)

(iv)

the Smith form of
Mj Cs )
M2(s )

I«
0

the greatest common divisor of all q-order minors of

M1(s)l\
M2(s ) =  q’ f° r CVery S G C '

Miis)
M2(s)

is 1;

Left divisors (L.D.), Greatest Left Divisors (G.L.D.) and Greatest Common Left Divisors 

(G.C.L.D) can be defined with the obvious changes. For convenience, we shall henceforth talk only of 

right divisors.

Remark (2.4): Let G(s) =  Nr(s)D f1(s) =  D r1(s)N,(s). A right MFD (left MFD) {D r(s), Nr(s)} ({D,(s), 

N/(s)}) of a transfer function matrix G(s) is called a right coprime MFD ( a left co-prime MFD), if and 

only if the matrices Dr(s), Nr(s) (D;(s), N,(s)) are right coprime (left coprime). □

Let M(s) G RpX?[s], p > q be a polynomial matrix with p{M(s)} =  q and let us write it in 

terms of its q column polynomial vectors as M(s) =  [m^s), •••, m g(s)] where m,(s) =  

[mH(s), mpi(s)]T, i =  1, ■ • q. Then we may define [Ros., 1], [Wol., 1]:

Definition (2.10)

(i) The degree o f the polynomial vector m {(s) is the highest degree occurring among the degrees of 

its polynomial elements m -¿(s), i.e.

deg Q?,(s) =  . max {deg m ,(s)} i =  1, q (2.68)
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(ii) The complexity c o f  M(s) is the sum of the degree of its column polynomial vectors, i.e.

c =  E  deg {m ,(s)} (2.69)
• = i

(iii) The degree d o f M(s) is the highest degree occurring among the degrees of all its q-order 

minors.

□

Since a q-order minor of M(s) is a sum of products of polynomials one from each column, the 

maximum degree occurring among all the q-order minors of M(s), i.e. its degree d can not exceed its 

complexity c, i.e., we have [Ros. 1] [Wol. 1] c > d. Let now that ĝ  =  deg {m t(s)}, i =  1, •••, q, and 

write

m^s) =  m- +  m js +  +  m /s5' =  E  0ifs* , i =  1, •••, q
k = o

(2.70)

Then M(s) can be written as

M(s) =  [m^s), •••, ra,(s)j =  [m j1, •••, m ^]

S51 0

0 sJi

+  M6Z(s) (2.71)

where Mt G RpXc(c =  E  g,); and

Z(s)

e ix(s)

e Ss(s)

G RcX?[s] where e.Sj.(s) =  [1, s, ]T (2.72)

The matrix [m^1, m^?] =  Ma G RpX<i is called the highest (column) degree coefficient matrix of

M(s).

Definition (2.11) [Kai. 1]: A polynomial matrix M(s) G RpX?[s] is said to be column proper or column 

reduced if the matrix Ma has full rank q. □

I - 3 3 -  1
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Proposition (2.9) [Ros. 1]: A polynomial matrix M(s) G RpX?[s] is column reduced if its complexity c 

is equal to its degree d. 0

Proposition (2.10) [Ros. 1]: Let M(s) G RpXi[s] be a polynomial matrix which is not column reduced. 

Then there always exists a unimodular matrix U(s) G IR?X?[s], det {U(s)} G R -  {0}, such that the 

polynomial matrix M^s) =  M(s) U(s) is column reduced. 0

2.8.1 The algebraic Structure of Rational Vector Spaces

Let G(s) G RmX,[s], m > 1, p{G(s)} =  1 be a matrix. Let us also denote by V G the set of all linear 

combinations of the columns of G(s) with multipliers in IR(s), i.e. if G(s) =  [gi(s), gj(s)], then

T q  =  spanR^ { g  [(s), g ((s)}. Clearly T G is a linear vector space over M(s) and dimVG =  1, and

it is called the rational vector space generated by G(s).

From any rational basis matrix G(s) of T G we can generate a polynomial basis of Y G by 

means of a right MFD of G(s), i.e. if G(s) =  N(s) D_1(s) with N(s) G IRmX,[s], D(s) G RiX ,[s], det 

{D (s)} 0, then clearly the columns of N(s) define a polynomial basis of X q . More precisely, if N(s)

=  [nx(s), •••, n,(s)] then spanR,^ {n j(s ) , • • -, n ,(s)} =  X G and spanR^ {n j(s ) , • • -, n ,(s)} =  A>N 

where denotes the set of all linear combinations of the columns of N(s) with multipliers in R[s].

The set is a free R[s] — module [Bir. 1] and it is called the polynomial module generated by N(s).

Some of the important properties of such R[s] modules are summarised without a proof below [Bir. 1],

Proposition (2.11): Let J b ^  be the polynomial modules generated by the polynomial matrices

Ni(s), N2(s ) G RmX', with p jN ^s)} =  p{N2(s)} =  1. If Nj(s) =  N2(s) Q(s), where Q(s) G R,x '[s], 

det {Q(s)} ^ 0, then 0

Proposition (2.12): Let Nj(s), N2(s) G RmXi[s] be two polynomial bases of the same polynomial 

module N. Then, there exists a unimodular matrix Q(s) G R,X i, det {Q(s)J =  c G R — {0} such 

that Nj(s) =  N2(s ) Q(s). □

Thus, unimodular matrices represent co-ordinate transformations of a polynomial module.

Proposition (2.13): Let N(s) G RmX,[s] be a basis of the polynomial module Mb^. Then the degree of 

N(s) is an invariant of Mbyy, or in other words if Nx(s) G RmX,[s] is any other basis of Mbyy then

1 - 3 4 -
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deg{N(s)} =  deg{Nx(s)}. 0

Proposition (2.14): Let Nx(s), N2(s) G RmX,[s], m > 1, p{Nx(s)} =  1, p{N2(s)} =  1 and let dx =  deg 

{N 1(s)}, d2 =  {N2(s)j. If Nx(s) =  N2(s ) Q(s ), Q(s ) G R, x '[s], deg (detQ(s)} =  q >  1. then

(i) dx =  d2 + q

(ii) C ~&n 2

where are the polynomial modules generated by the polynomial matrices Nx(s), N2(s),

respectively. □

Clearly, the above conditions represent the extraction of a right divisor Q(s) of the polynomial 

matrix Nx(s). This observation leads us to the following conclusions: Let Nx(s) G RmX,[s], m > 1, 

p{N(s)} =  1 be a polynomial matrix which can be written in terms of its columns as Nx(s) =  [nj(s), 

n}(s)j. Let us assume that Nx(s) is not irreducible and let ¥ =  span^^ĝ {n}(s), ■■■, n j(s)},

=  span^|-gj{n}(s), •••, n}(s)} be the rational vector space ¥ and the polynomial module spanned

be its columns. Then, if Q; (s), i =  1, 2, are right divisors of Nx(s), i.e.

Ni(s) =  Ni + 1(s) Q,(s), i =  1, 2, (2.73)

and the deg {detQ,(s)} =  qf > 1 are such that qx < q2 < q3 < • ••, and if Q,(s) divides QI+i(s), 

then

(2.74)

and

deg {Nx(s)} > deg {N2(s)} > deg (N3(s)} > (2.75)

Moreover, if QG(s) is a greatest right divisor of Nx(s) so that Nx(s) =  N(s) QG(s), then

allt* deg {Nt(s)} > deg (N(s)} (2.76)

The polynomial module is the maximal R[s]-module of the rational vector space ¥ and all its

polynomial bases are least degree, or irreducible polynomial matrices. In other words, if we consider

I - 3 5 -  1
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the set of all polynomial vectors in T then this set coincides with the module defined above.

Definition (2.12) [For. 1]: A polynomial matrix N(s) £ RmXi[s], m> 1 and p{N(s)} =  1 is said to be 

minimal basis of the rational vector space f , V =  col sp {N(s)}, if:

(i) N(s) is least degree

(ii) N(s) is column reduced. □

Remark (2.7): Let N^s) £ RmX,[s], m > 1, piN ^s)} =  1. If N(s), N*(s) G RmXi[s] are two minimal 

bases of the rational vector space T spanned be the columns of N(s), the N(s) =  N*(s) Q(s), where 

Q(s) is an R[s]-unimodular matrix □

Theorem (2.8) [For, 1]: Let N(s) =  [n^s), •••, n,(s)] 6 R'nX,(s), m > 1, p{N(s)} =  1 be a minimal 

basis of a rational vector space T N =  col sP|[̂ s){N(s)} and let S{ =  deg n^s), i =  1, •••, 1. The 

degrees {<$,-, i =  1, 1} are invariants of T N. □

Forney has defined the indices {¿b, i =  1, •••, 1} as the invariant dynamical indices o f f a n d  
i

their sum 6 — J J S j  as the invariant dynamical order of T N. The set {é t-, i =  1, •••, 1} does not
i—i

define a complete [Bir. & McL. 1] set of invariants for A complete invariant is defined by the

“echelon form” minimal basis of Y N [For, 1],

2.8.2 Further Properties of Rational Matrices

Some further results on the properties and structure of rational matrices related to MFDs and 

minimality of realisations are summarised here.

Proposition (2.15) [Kai. 1]: Let G(s) £ RmX,(s), p{G(s)} =  min {m, 1} be a rational matrix and let 

{D r(s), Nr(s)} be a right MFD of G(s), i.e. G(s) =  Nr(s) D f^s). Then any realisation of G(s) with 

order equal to the degree of the determinant of the denominator matrix (i.e. n =  deg {det Dr(s)} ) will 

be minimal (or equivalently, observable and controllable), if and only if the MFD is coprime □

Proposition (2.16) [Kai. 1]: Suppose (N¿(s) D“1(s), i =  1, 2} are two coprime MFDs of the rational 

matrix G(s) £ RmXÍ, p{G(s)} =  min{m, 1}. Then there exists a unimodular matrix Q(s) £ RmX,[s], 

such that D^s) =  D2(s) Q(s) and Nj(s) =  N2(s) Q(s). □

I - 3 6
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Proposition (2.17) [Kai. 1]: If {D(s), N(s)} is any MFD of G(s) G RmX,(s) with p{G(s)} =  min{m, 

1} and (D(s), N(s)} is a coprime MFD of G(s), then there exists a polynomial matrix R(s) G IR,x , [s], 

not necessarily unimodular, such that D(s) =  D(s) R(s) and N(s) =  N(s) R(s). □

Proposition (2.18) [Kai. 1]: The determinantal degree of the denominator matrix of any right CMFD 

of G(s) G RmX,(s) with p{G(s)} =  min{m, 1} is equal to the determinantal degree of the denominator 

matrix of any left CMFD of G(s). □

The most important tool in the study of the properties of rational matrices is the Smith- 

McMillan form which is defined next [Ros, 2], [Kai. 1],

Theorem (2.9) [Smith-MacMillan): Let G(s) G RmX,(s), p{G(s)} =  t < min{m, 1}. Then there

always exist unimodular matrices Qx(s) G R”lXm[s], Q2(s) G IRiX ,[s] such that

Q i(s) G(s) Q2(s ) =  M(s)

where M(s) G RmXi(s) is defined by

~c ( s)
V’i(s)

M(s) =

C (s)
V’i (s )

Î

t

I

Î

m — t

1

1 - t

(2.77)

(2.78)

The pairs of monic polynomials {¿¿(s), "0»-(s)} are co-prime i =  1, t, uniquely defined and satisfy 

the division properties: t/\+i(s)/0,-(s), i =  1, t-1, e,(s)/ei+1(s), i =  1, 2, •••, t —1. If D(s) is the

monic least common multiple of the denominators of the elements of G(s), then D(s) =  0(s). □

The sum of the deg V’,(s)i i =  1, •••, t is called the MacMillan degree of G(s) and for strictly 

proper G(s), it is equal to the determinantal degree of the denominator matrix of any co-prime MFD of 

G(s).
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Proposition (2.19) [Kai. 1]:

(i) The (right or left) numerators of coprime MFDs of G(s) all have the same Smith form.

(ii) The denominators of coprime MFDs of G(s) all have the same non-unity invariant polynomials

□

Let G(s) G RmX,(s) be a rational transfer function matrix. We say that G(s) is proper if 

lim G(s) <  oo and that G(s) is strictly proper if lim G(s) =  0. An important result characterising 

these properties of a G(s) are given below.

Proposition (2.20) [Kai. 1]:

(i) If G(s) G RmX,(s) is a strictly proper (proper) rational transfer function matrix and G(s) =  

N(s) D-1 (s), then every column of N(s) has degree strictly less than (less than or equal to) that 

of the corresponding column of D(s).

(ii) If D(s) is column reduced, then G(s) =  N(s) D-1 (s) is strictly proper (proper) if and only if

each column of N(s) has degree less than (less than or equal to) the degree of the corresponding 

column of D(s) □

2.8.3 Poles and Zeros of Rational Matrices

The Smith-MacMillan form of a rational matrix provides the means for a natural extension of the 

definition of poles and zeros [Ros, 2], [MacF. k. Kar., 1] from the scalar to the matrix case

Definition (2.13): Let G(s) G RmXi(s). Then,

(i) The zeros of G(s) are defined as the roots of the numerator polynomials {e,(s)} of the Smith- 

MacMillan form.

(ii) The poles of G(s) are defined as the roots of the denominator polynomials (Vq(s)} of the

Smith-MacMillan form. □
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The polynomials defined by

z(s) =  El G(s)> P(s) =  El V’i(s) (2-79)
i=l i=l

are referred to as the zero , pole polynomial respectively of G(s). From the results of the previous 

section we have the following alternative characterisation of poles and zeros.

Proposition (2.22) [Kai. 1]: Let G(s) £ RmX,(s) and let G(s) =  D^(s)_1Njr(s) =  Nfi(s) D^(s) 1 be 

left, right coprime MFDs. Then,

(i) The pole polynomial p(s) of G(s) is given by p(s) =  det {D^(s)} =  c det {D fi(s)}, c £ R 0.

(ii) The zero polynomial z(s) of G(s) is given by the product of the invariant polynomials of N£ (s),

or equivalently N r (s)- D

Consider now a G(s) £ RmX,(s), m > 1, p{G(s)} =  1 and let {D(s), N(s)} be a right coprime 

MFD pair. If Z(s) is greatest right divisor of N(s), we may write

G(s) =  N(s) D(s)“ 1 =  N(s) Z(s) D (s)"1 (2.80)

where N(s) is a least degree basis matrix for 9Gg = c o1 — span^s^{G(s)}. Using the above factorisation 

of G(s) we have p(s) =  det (D(s)}, z(s) =  det {Z(s)} and thus

C;(N(s)) =  C,(N(s) Z(s)) =  C,(N(s))z(s) £ ,(?)XG (2.81)

Clearly, eqn (2.81) implies:

Remark (2.5): If N(s) is a numerator of a coprime MFD of G(s), then the zero polynomial z(s), is the 

greatest common divisor of the polynomial entries of C,(N(s)) □

Let us suppose now that G(s) is a rational transfer function matrix with G(s) £ RmX,(s), 

p{G(s)} =  min{m, 1} and that {D^(s), N^(s)}, (D fi(s), Nfi(s)} are left and right MFDs of G(s), 

respectively, not necessarily coprime. Then by Proposition (2.17) the corresponding realisations of G(s) 

corresponding to those two MFDs are not minimal. It can be proved [Ros. 1] that:

I - 3 9 -  [
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(i) the (Smith) zeros of [D ^s), N^(s)] correspond to uncontrollable modes of the equivalent state 

space realisation and they are termed input-decoupling (i.d.) zeros of the MFD

(ii) the (Smith) zeros of
Nfl(s)

correspond to unobservable modes of the equivalent state space

realisation and they are termed the output-decoupling (o.d.) zeros of the MFD.

To distinguish the transfer function zeros from the decoupling zeros, we often call the transfer 

function zeros transmission zeros.

Proposition (2.23): Let G(s) £ RmX,(s) with p{G(s)} =  min{m, 1} and let {D^(s), N^(s)}, (D fi(s), 

N^j(s)} be left and right MFDs of G(s), respectively, not necessarily coprime. Then

Cm[D£(s) Njr(s)] =  Cm { t £ (s) }  Z ,, (s), C,
N*(s)

c . { T fi(s)}z0.,.(s) (2.82)

□
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Chapter 3

DECENTRALISED CONTROL OF LARGE SCALE 
DYNAMICAL SYSTEMS

3.0 Introduction

During the last decade, a great number of researchers in the field of automatic control engineering have 

concerned themselves with the mathematical analysis and synthesis of complex dynamic systems which 

are also called integrated systems, interconnected systems, decentralised systems, hierarchical systems 

or large-scale systems. Most of the references up to 1980 dealing with the above topics can be found in 

the books of [Wynn.l], [Sae. 1], [Mic. & Mil. 1], [Sil.l] and in the special issue of the Transactions in 

Automatic Control published by IEEE [IEEE.l].

Decentralised control systems are defined to be large dynamic systems with several automatic 

controllers each operating on the system with partial information on the states of the controlled 

system. This definition due to [McFa. 1] suggests that there are certain architectural constraints on the 

controlled system as well as on the feedback matrix of the resulting closed-loop system. With the 

constraints imposed, controllability of the systems does no longer imply stabilisability.

Given a large-scale interconnected system, a useful assumption must therefore be made that no 

control agent, such as a supervisory controller, possesses the complete information which describes 

mathematically the controlled system and the environment in which the system is to operate. Since 

each local automatic controller has access to a different set of the state variables of the whole 

controlled system state, it is possible for the system to become unstable in the absence of 

communication among the autonomous controllers. Therefore, when considering the decentralised 

control of a large-scale system using autonomous controllers the properties of controllability and 

observability of the controlled system are far from sufficient for its automation, contrary to the 

situation in a centralised framework suggested by the classical multivariable control theory.

Hence the main objective of this chapter is to give the definition of fixed modes in

I - 4 1 -
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decentralised control of large-scale systems as well as their different characterisations with respect to 

different mathematical descriptions of the controlled systems. Also, a short survey of the various 

methods appeared in the literature to avoid these decentralised fixed modes, is given. But fixed modes 

are not the only theme of this thesis and because we are mainly interested in the control problems 

associated with the automation of large scale systems, we also review some known results associated 

with the controllability (pole assignability) or stabilisability of a decentralised dynamic system using 

different structures of automatic controllers such as decentralised constant state feedback, and 

decentralised dynamic output feedback etc.

3.1 Fixed Modes of Decentralised Systems.

The concept of decentralised fixed modes introduced by [Wan. and Dav. 1] plays a critical role in many 

control problems of large-scale systems such as the control of large space structures (LSS) which is the 

current hottest topic of research. For example, the stabilisation problem or the controllability problem 

as defined by [Won. 1] depends on the properties of these modes. The presence of fixed modes in the 

right half plane of the classic root-locus diagram, shows that decentralised stabilisation is impossible 

while the presence of any sort of fixed modes does not allow arbitrary frequency assignment under 

decentralised control.

Thus, the characterisation and determination of decentralised fixed modes has received much 

attention by the control engineers in the last years. A detailed mathematical review of the most 

important results by previous researchers is as follows:

3.1.1 Definition of Decentralised Fixed Modes Using The State-Space Description Of Dynamic 

Systems.

The mathematical description to be considered is a k-channel linear dynamic system given by the state- 

space description (SSD):

x(t) =  Ax(t) +  £  B ,Ut(t)

y ,(t) =  Cix(t); i =  1,2, ,k (3.1)

where A € RnXn, B, 6 RnX‘\ C t € IRm‘ Xn, i G k = {1, 2, ..., k}, u ; (t) and y ,(t) are the vectors of

control inputs and measured output variables associated with channel i.
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We shall assume that (3.1) is controllable from all controls _u,(t), similarly jointly observable 

but not necessarily controllable from any single control u; (t) and similarly not necessarily observable 

from any single output y ,(t). Of course, if [C; , A, B J  is complete that is if (C,-, A) is observable and 

(A, B t) controllable for some i, the problem is trivial. Also, the above hypothesis for joint 

controllability and observability does not imply that the integrated system, E, where E =  {C {, A, B t : 

k} is controllable or observable through a simple subsystem. This result is proved by [Won. 1] within 

the framework of geometric approach.

A controller for the above integrated system is called decentralised if each autonomous 

controller U;(t) depends only on local measurements, yi (t) for its autonomous operation. A generalised 

description of the local autonomous controller for the it,lchannel is a linear dynamic system, E,-, whose 

inputs include the measure of local output of the system, y ,(t), as well as command inputs, v ,■ (t), from 

other echelons in the controller, E ; , is used as the control input, u ,(t) for the subsystem, i. Also the 

i" 1 controller admits a dynamic mathematical description of the form:

¿¿00 =  H,z,.(t) +  L ,y t.(t) +  R,v,.(t)

Ui(t) =  M ,zt(t) +  F ,y ,(t) + G,-Vj(t) (3.2)

In the case of autonomous local controller with constant feedback of Decentralised-Constant 

Output Feedback (D-COF). We have that

M,(t) =  F, y ,(t)  +  v ,(t), F< G R,tXm* (3.3)

If the local autonomous controllers (3.3) are applied to the controlled system (3.1), then the 

mathematical description of the integrated system is:

¿ 0 0  =  (A +  £  * 0 0  +  £  B i v ; (t)
j — 1 * — 1

(3.4)

y ,-(t) =  C jx(t), i e k

Definition (3.1) [Wan k, Dav. 1]: The fixed modes of the integrated system (3.1) under decentralised 

constant output feedback (D-COF) are the roots of the fixed polynomials 0 s) defined by:

6d (s; A, B, CIF^) =  g.c.d. |sln—Ap | =  g.c.d.{det(s In — A —BFC)|F£)£«?} (3.5)
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where Ap =  A + B^F.C,-, VF; £ T = vector space of all block diagonal matrices, B =  [Bx,
i—i

B2, • • • , B t ], B, 6 RnX,i and CT =  [Cx, C2, - -  , Ct ], C, £ Rm,‘X".

Definition (3.2) [Wan fc Dav. 1]: Given the system (3.1), let F D given by :

F d  =  block-diag{Fx, F 2, •••, F *}, F f £ R*1*

The decentralised, fixed modes of (3.1) with respect to F are given by:

$£> =  A (A, B, C; F d ) =  0  (A + B F DC) (3.6)
F D£ T

where (i) <r(A +  BFp,C) denotes the spectrum (eigenvalues) of the matrix A +  B FDC and (ii) the 

intersection is indexed over all appropriately partitioned block diagonal matrices F D.

Definition (3.3): Consider the system £(A, B, C), where A £ IRnXn, B £ RnXi, C £ RmXrl and B 

and C are partitioned as B =  [Bx, B2, B fc], B t- £ R ', CT =  [Cx, C2, •••» Cfc], Ct- £ R ' ,

respectively. The Centralised Fixed Modes of £(A, B, C) underV Fc £ R,Xm are given by the roots of 

#c(s) where:

0e(s; A, B, C | F c) =  g.c.d.|det(sln —A —BFC) | F c £ R,Xm}  (3.7)

or

$c(A,B,C; Fc) =  O ' 7 (A +  B F cC) (3.8)
F c£ R ,Xm

Remark (3.1): The roots of the centralised fixed polynomial 9C(s) are the uncontrollable or 

unobservable characteristic values of A and 9C(s) obviously divides 0D{s).

Remark (3.2): Closely related to the pole assignment problem, is the problem of determining whether 

the whole system, E, can be stabilised with decentralised control. A system with no decentralised fixed 

modes or with only stable decentralised fixed modes in general, may not be stabilisable by a feedback 

law of the form (3.3). However, stabilisation can be achieved with dynamic feedback of the form:
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u =  Gz + Ily

^ =  Dz + Ky (3-9)

where:

D = diag(Dj, D2, •" ,  Dt ), Dt G IRr‘ Xr’
_r • X  m;

K = diag(K!, Ko, •" ,  Kfc), Ki G IR '

G = diag(Gn G2, ■" ,  Gfc), G, G IR,' Xr‘ (3.10)

H = diagfH!, H2, •" ,  Ht ), H,- G IR1' Xm*

The relation between static controllers (D-COC) described by (3.3) and dynamic controllers of 

Decentralised-Dynamic Output Feedback as described by (3.9) is clarified by the following theorem.

Theorem (3.1) [Wan & Dav. 1]: (a) For any decentralised feedback law of the form (9), the 

decentralised fixed polynomial 0£,(s) is a factor of the characteristic polynomial of the closed loop 

system defined (1) and (9). (b) For every open subset S of the complex plane, there exists a 

decentralised dynamic output feedback (D-DOF) law of the form (9), such that the characteristic 

polynomial of the closed-loop system (1) and (9) has the form 9D(s)-6(s), where the zeros of f?(s) are 

contained in S.

Remark 3.3: The above theorem is a pure existence statement which says that the fixed modes cannot 

be moved and the non-fixed modes can be shifted into arbitrary positions by the decentralised dynamic 

output feedback.

3.1.2 Computations of Fixed Modes

The following technique has been suggested by [Dav fc Ozg. 1] and shows that the decentralised fixed 

modes of a system may be calculated in a very simple manner The main steps of the technique are as 

follows:
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Step 1: Calculate the eigenvalues of A.

Step 2: Select arbitrary matrices F i , i =  1,2,- --,k possibly using a pseudorandom number

generator.

Step 3:

Step 4:

k
Compute the eigenvalues of A +  ^  B ^ C ; .

i—i
k

The decentralised fixed modes are contained in those eigenvalues of A +  5Z B^F^C,-
¿=i

which are common with the eigenvalues of A.

Step 5: If in doubt as to which the decentralised fixed modes of (1) are, choose new arbitrary

matrices F ; , in step 2 and repeat steps 3 and 4.

3.1.3 Fixed Modes of an Elastic Spacecraft System

An example illustrating the calculation of fixed modes is given by [West et al, 1] where it is attempted 

to control a large scale dynamical system, the spacecraft of order 100, using decentralised actuators and 

sensors. It is also shown there, that the decentralised fixed modes are identical to the centralised fixed 

modes a result already obtained mathematically by Saeks [Sae.l], The physical meaning of the fixed 

modes result when a sensor or an actuator is located at a node of an elastic mode. This phenomenon 

was well known to the early pioneers of rocketry, since the crucial location of sensors and actuators in 

an open loop unstable vehicle such as a rocket have resulted in spectacular catastrophes. Another 

conclusion of the above mentioned papers is that a solution of the decentralised control problem exists 

if and only if a solution exists for the centralised control problem. Also, due to the uncertainty of 

locating sensor and actuators at the same position such as the nodes of the system’s elastic modes, 

there are actually no “precise fixed modes” but only “approximate”. Another interesting result of the 

above application of decentralised control is the elimination of the “spillover phenomena” usually 

associated with the excitation of unmodeled high-frequency elastic modes of the large space structure. 

The “spillover phenomena” are very common in large scale systems such as aerospace systems, where 

the practice of using centralised (multivariable) control leads to the stabilisation and control of only a 

subset of the eigenvalues of the controlled system.

- 4 6 -  I



Chapter 3

3.1.4 State-Space Characterisation of Decentralised Fixed Modes

The following six theorems characterise the fixed modes of a decentralised system and were obtained by 

Davison and Ozgiiner [Dav. and Ozg. 1].

Theorem 3.2 [Dav. and Ozg. 1]: Given a k-control agent decentralised system with k =  2, then A 6 

sp(A) is NOT a decentralised fixed mode of the system (3.1) for k =  l, 2 if and only if the following 

conditions all hold:

(i) A is NOT a decentralised fixed mode of

X  = Ax + BlUl + B2u 2

yi = C j X (3.11)

y 2 = C2x

A -A I Bi
0 0 rank > n (3.12)

Cr 0

A -A I b 2
(iii) rank

c 2 0
> n (3.13)

In the case where A is diagonal then with two control agents we have:

x =

Ar 0 0

0 • 0 B 2*
x + Ui +

Br b 2

0 0

H 2

yi c f  c x (3.14)

y2 = c 2* Cx

I - 4 7 -  1
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where u: £ r \  u2 £ r '2, y x £ IR™1, y2 G R™2, Xi £ C, Bl, B2 are lx> 12 row vectors respectively and 

C*, C2 are nrij, m2 column vectors respectively.

Let

B j = [ b i  b2 ••• b J J ,  B 2=  [  b2 , 2
1 d2 ,]

(3.15)

C ^ = [ c l  c2 c ^ J ,  C j = [ c 2 c 22 c2mJ

and assume that Al5 A2, •••, An are all distinct and occur in complex conjugate pairs.

Theorem 3.3 [Dav. and Ozg. 1]: In system (3.14) Xx is NOT a decentralised fixed mode if and only if 

the following conditions are all satisfied:

(i) detĵ  B j B2 J  yf 0 and det
Cl

c; *  0 (3.16)

(ii) The condition B j=  0 and C2=  0, and Xx is a transmission zero of

, b2j  V i € [1, 2, •••, r2], V j G [1, 2, •••, mx]

does not hold.

(iii) The condition B 2=  0 and C2=  0 and X1 is a transmission zero of

A„

, b n  V i G [1,2,  - ,  r i], v j  G [1, 2, m2]

does not hold.

(3.17)

(3.18)

Theorem 3.4 [Dav. and Ozg, 1]: Given the k-control agent decentralised system with k > 3, then A £ 

sp(A) is not a decentralised fixed mode of (3.1) if and only if A not a decentralised fixed mode of any of 

the following k-1 control agent systems for (3.1).
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Consider, now, the systems consisting of a number of arbitrary interconnected subsystems.

X =
An A12

X + Oi +
0

A21 A22 0 b 2

Yi = I„! 0 x (3.19)

y 2; 0 In,

, . ^ n i  Xr i i  . „ n o X n - i
where An G R 1 \ A22 € (R 2

Theorem (3.5) [Dav. and Ozg. 1]: The system (3.19) with two control agents, has no decentralised fixed 

modes if and only if

(i) (A,-, B ,) is controllable for i =  1,2

(ii)
B x 0

0 b 2
is controllable

(3.20)

Consider now the k-agent interconnected system

A n A 12 A 13 A lfc

A 21 A 22 A 23 ' A  2k

A 31 A 32 A 3 3  ' ' A  3k

A i i Af c 2 Af c3  • ' ' A  kk

---
--

1

K?
3

__
_1 1

O __
_1

1-----
O

0 b 2 0

0 9i + 0 u2 +  • • • + 0

1
0

 
•

1
• 
0
 

_____
1

Bjfc
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Yi = [ lnv  0, 0, • -, 0] x

y 2 = [ 0, In2! ' 0] x

y* = [ 0 ,0 , 0, » InJ  ï

System (3.21) has decentralised fixed modes if

(i) ( A,-,, B ,) is controllable for all i =  l, 2, k

(Ü)

A ,  , 
*1*1

A :  : *1'2
A ,  ,

*1' 9

A i  ;12 • 1
A ;  ; 

' 2*2 ■ A  i ,‘ 2 ' 9

A ; i *i*i A ;  i' 9 ' 2
A ,  ,
l 9 l 9

1

0 0

0
B *2

0

0 0 B.

is controllable where

i1= 1, 2, •••, k - g  +  1; 

h — 'i +  li h + 2, •••, k —g +  2; 

Ì3 — Ì2 +  l> *2+2, ) k — g +  3;

where g =  2, 3, ■ • k

(3.21)

□

The above results characterise the behaviour of large scale systems in which local state feedback is 

allowed. It implies that given two interconnected subsystems in which each subsystem is controllable 

and in which the total integrated system is jointly controllable, can always be stabilised using local 

state feedback with dynamic compensation.
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In the case of output feedback we have the following system

A n A 12 A 13 A  ik

A 21 A 22 A 23 ' ' A  2k

X  = A 31 A 32 A 33 ' A  3k

A fci A j t2 A fc3 ' A  kk

1

w __
__

1 1-------

0

1

O

__
__

_1

0 Bo 0

0 H i  + 0 u 2 +  ■ ■ ■ + 0

1

0
 

•

1__
__

__
__

1

• 
O

 

_______
1

—
I

_______
1

Yl =  [ Ci, 0, 0, 0] x

y 2 =  [ 0, C2, 0, •••, 0] x

y* = [ o, o, o, •••, c t ] x

(3.22)

where A,-■ =  B i j Kl ;Ci j , i =  l, 2, k, j  =  1, 2, k, i^ j where Ki; is the interconnection gain and 

B i; and Ci;- are arbitrary.

Theorem (3.6) [Dav. and Ozg, 1]: Given the above system (3.22), assume that (C,-, Ai;-, B t) is 

controllable and observable, then this implies that (3.22) has no decentralised fixed modes, for almost 

all interconnection gains K -•. □

If it is assumed that (3.22) has the following special structure

A jj =  B,- K0. i^ j

the following result is due to [Dav. 3] and [Sae. 2]:

(3.23)
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Theorem 3.7: Given the system (3.22) with the structure (3.23) then necessary and sufficient conditions 

for the system 3.22 to have no decentralised fixed modes are that (C,-, AtJ, B ; ) be controllable and 

observable. □

It should be mentioned that the above results rely heavily on the following characterisation of 

decentralised fixed modes obtained by Anderson and Clements [And. &; Cle. 1],

Proposition (3.1) [And. fc Cle. 1]: Consider the system (3.1). Then a necessary and sufficient condition 

for A G sp(A) to be a decentralised fixed mode of (3.1) is that for some partition of the set {1, 2, •••, 

k} into disjoint sets {ix, i2, i9} and {is+1, ii+2, }i then

A- AI Bn B,2 • ■ B.-f

0 0 0

C’i + 2 0 0 0 <  n (3.24)

0 0 0

The above proposition avoids the computation method suggested by Davison where for several 

controllers chosen randomly, one computes the resulting closed-loop frequencies. Then if certain 

frequencies are common to all controllers with probability one, these are fixed modes. The above result 

of Anderson and Clements has rich geometric properties since it is helpful in identifying the parts of 

the overall system which may be held responsible for the fixed modes.

3.2 Frequency Domain Characterisation of Fixed Modes

Although the definition of multivariable poles is unique, various definitions of multivariable zeros have 

been proposed some of which are overlapping in some definitions [Ros. 1], [McFar &, Kar. 1]. 

According to Davison and Wang [Dav. & Wan. 4], for a linear multivariable system

x =  A x +  B u 

y =  C x + D u

I - 5 3 -
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where x £ R", u £ Rm, y £ R(, the transmission zeros of (A, B, C, D) are defined as those values of 

A which satisfy

rank
A- AI

C

B

D
<  n +  min(m,l) (3.26)

The Smith zeros of Rosenbrock’s system matrix commonly called invariant zeros, do not coincide with 

transmission zeros, generally. Mac Farlane and Karcanias discussed the relation between transmission 

zeros defined as the zeros of the transfer matrix and the invariant zeros. The invariant zeros include 

the transmission zeros of Mac Farlane and Karcanias plus some of the decoupling zeros. However, 

when the system is complete, [Won, 1], that is {C, A} is observable and (A, B) is controllable, the sets 

of invariant zeros and transmission zeros are the same.

The observation that a characterisation of decentralised fixed modes may be obtained in terms 

the transmission zeros of certain subsystems has been made by Fessas [Fes. 1], A recent result due to 

Davison and Wang [Dav. & Wan. 5] is provided by the following system

x — A x + B u x =  A x +  [B j, B2, •••, B, ]u

y — C x y =  [Clt C2, •••, Cm]T x (3.27)

where x £ R", u £ R1, y £ IRm. Assume, the following controller, u =  K(s)y, whose structure is 

constrained by

K =  I  (*u jx)5 (iii J2)! '"> Oit> Jit) }  (3.28)

where i £ [1, 2, • - -,1], j p £ [1, 2, •••, m], p =  1, 2, k, i.e. all elements of K(s), except for the (ip, 

jp) elements corresponding to the ipth row and j pth column of K(s) are considered to be zero. Then, 

system (3.27) with a dynamic output feedback (DOF) controller whose architecture is as (3.28), has a 

decentralised fixed mode at A £ sp(A) with respect to K(s) if and only if A is a transmission zero of all 

the following subsystems

1 - 5 4 -
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(3.29)

Pi =  l, 2, •••, k + l - s ,  p2=Pi +  l, P i+ 2, •••, k +  2 - s ,  ps= ps_, +  l, P ,_ i+  2, •••, k for s =  1,

2, ■ • •, min(m,l) □

It is clear that the above subsystem correspond to the subsystems associated with all 

nonsingular l x l ,  2x2, min(l,m)xmin(l,m) matrices of the controller matrix K(s).

From the above theorem, the following two corollaries follow immediately.

Corollary (3.1): Consider the plant (3.27), subject to the controller structure (3.28); then

i) If any of the subsystems (3.29) have transmission zeros which are disjoint from the eigenvalues of 

A, this implies that the system (3.27) has no decentralised fixed mode with respect to K.

ii) If any of the subsystems (3.29) are minimum phase, this implies that any decentralised fixed modes 

with respect to K of the plant are stable.

iii) Let’s m =  1, then if K(s) is nonsingular, this implies that a necessary condition for A G sp(A) to be 

a decentralised fixed mode with respect to K is that A be a transmission zero of (3.27).

Corollary 3.2: Given the system (3.27) assume that A G sp(A) is a decentralised fixed mode with 

respect to the controller structure (3.28) then A is a decentralised fixed mode of the system with respect 

to a new controller structure ^k, if and only if is a transmission zero of all the following

subsystems

(  C, , A, B • )
l  J p + i ’ ' p + i j

(3.30)

and

c ljpi

c Ip 2

A, B ■ , B> ’ ’P f  *P 2*P2 ’ ’ ^ * P j ’ P*  + l
(3.31)

C l

IPs 

J Pk + l
- 5 5 -  1
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Pi =  1, 2, k + l - s ,  p2 =  px +  l, P i+ 2 , •••, k +  2 - s ,  ps =  p,_i +  l, P ,_ i+ 2 , k for s 

=  1, 2, •••, min(m,l) — 1 □

The above is a characterisation of decentralised fixed modes, theorem 3.8 is a necessary and 

sufficient condition for a pole to be a decentralised fixed mode under certain controller structure, 

provided that the system is controllable and observable. Theorem 3.8 also gives a way of choosing a 

new controller structure, under which the system has no decentralised fixed mode.

A sufficient condition which can be used to verify that the system {C, A, B; K} where K =  

block diag{Kj, •••, IvN}, Iv £ R 1 ‘ has no centralised fixed mode under K, is given by the following

corollary.

v * X  r ■
Corollary (3.3): If there exists a subsystem {C,-, A, B,-; K *}, K* £ R ‘ 1 which has no transmission

zeros for all A £ sp(A), that is

=  n +  VAesp(A) (3.32)
¿=1

then the system {C, A, B; K} has no decentralised fixed modes under controller structure, K. □

rank
A -A I B,.

C, 0

The above results can easily be extended to the frequency domain. The transfer function 

matrix corresponding to the SSD (3.27) is

G(s) =  C (si —A)_1B (3.33)

and the characteristic polynomial p(s) of (3.33) is

p(s) =  det (si —A) (3.34)

1 - 5 6 -  |
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Consider now the Rosenbrock system matrix

P(s)
si —A B 

- C  0
(3.35)

where A, B, C are i n X n  o  n X / o  m X n matrices. But

In

C (s l-A )-1

si —A B 

- C  0

si —A B

0 C(sl —A)_1B

si —A B

0 G(s)

hence, for a square system, in =  I, we have

det
si —A B si —A B

C 0

------1
COoo____i

=  det (si —A), det G(s) =  p(s) det G(s) (3.36)

From the above relation, and the usual definition of the transmission zeros, we have:

Lemma (3.1) [Dav. & Wan. 5]: For a given SSD of a decentralised dynamical system (C, A, B; K) the 

transmission zeros (T.Z) of C, A, B , TZ(C, A, B) are:

T.Z(C, A, B) =  |A: A<e C; p(s) detG(s)|s=;;A =o| (3.37)

Again, corollary (3.3) is a sufficient condition that the system (3.27) has no decentralised fixed mode 

where now the rank test of a certain subsystem is replaced by the condition that the characteristic 

value of the system A should not be a root of (3.37)

A more complete characterisation of fixed modes in the frequency domain has been obtained by 

Anderson [And. 2] who gives the necessary and sufficient conditions on the transfer function matrix for 

the existence of fixed modes.

57— I
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3.3.1 Decentralised Fixed Modes Using Constant Output Controllers.

Consider the multivariable (Multiple Input-Multiple Output) linear time-invariant dynamic system 

described by

A j(s) A2(s ) ••• Am(s)

y i(s) 
y 2 00

ym(s)

Bi(s) B 2(s ) ••• Bm(s)

Hi 00
u 2 ( s )

Um(s)

or

or

A(s) y(s) =  B(s) u(s)

y(s) =  A_1(s) B(s) u(s) =  G(s) u(s)

(3.38)

(3.39)

(3.40)

where each y*(s), U;(s) is a vector and the At(s), B ; (s) are polynomial matrices with no polynomial 

left divisor of A1(s), •••, Am(s), B^s), Bm(s) with non-constant determinant and G(s) is the 

rational transfer function matrix description of the linear multivariable dynamical system. By 

assuming a decentralised constant output controllers of the form

Hi =  - K i Y i +  l i  > i =  1, 2, m (3.41)

the closed-loop system is given by

y 00 =  Ak \ s) B00 y(s) (3.42)

where

Ajk(s) — [A|(s) + B 1(s)K1, A2(s ) + B2(s)K2? •••, Am(s)-FBm(s)Km] (3.43)

I - 5 8 -  1
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Definition (3.4): The linear multivariable system (3.39) is said to have a decentralised fixed mode at 

s0 under feedback controller structure (3.31) if and only if for all constant K,- of appropriate dimension

det [Ax(s0) + B 1(s 0)K1, A ,(s0) +  B2(s0)K2, Am(s0) +  Bm(s0)K m] =  0 (3.44)

A necessary and sufficient condition for existence of a fixed mode at s0, independently of K{, is 

provided by the following theorem.

Theorem (3.8) [And. 2]: The dynamical system (3.40) with matrix fraction description A_1(s) B(s) has 

a fixed mode at s0 under Decentralised constant output controllers (D-COC) if and only if there exists 

a non-empty subset < ix, i2, • ■ - , ia ) of < 1, 2, • • - , m >, for which

rank A .jK )  A,-2(s 0) Ai«(so) B ^ S q) B ,2(s 0)

a
<  (number of columns of A{ ) 

j - 1  1

B ,a (so) <

(3.45)

3.3.2 Decentralised Dynamic Output Controllers (D-DOC) 

Consider the use of decentralised dynamic controllers of the form

9 . ( s ) =  K . ( s ) Y i ( s ) +  Y i ( s )

=  B*(s) A*- 1(s) y,(s) +  v,.(s)

Then, the closed-loop system has a transfer function matrix

A*(s)

A5(s)

Arri (s)

[A^s) A1*(s) +  B 1(s) Bî(s) Am(s)Am(s) + Bm(s) Bm(s)]- 1B(s)

(3.46)

(3.47)

(3.48)

- 5 9 -  1
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Definition (3.5): The dynamical linear system (3.38) is said to have a decentralised fixed mode at s0 

under D-DOC of the form B*(s) A[- 1(s) if and only if

det [A^so) A j(s0) +  B1(s0) B[(s 0) ••• Am(s0)A^(s0) +  B m(s0) B^(s0)] =  0 (3.49)

Theorem (3.9) [And. fc Cle. 1]: Consider the linear multivariable dynamic system whose MFD is 

A- 1(s) B(s). Suppose the above system has a fixed mode at s0. Then, the closed-loop system using D- 

DOC of the form (3.46) has a fixed mode at s0. □

Another transfer function test for the existence of a decentralised fixed mode is provided by the 

following theorem [And. 2]:

Theorem (3.10): Consider a transfer function matrix

W u (s) W12(s) 

W21(s) W22(s)
(3.50)

Let a(s) be the characteristic polynomial of W(s) and suppose W n (s) has /? rows and W2i(s) has /? 

rows. Then under a control structure of the form u;- =  K; y;- +  v;-, j = 1 , 2 the following conditions 

are equivalent.

(i) With [Ax(s) A2(s )]_1[B1(s ) B 2(s )] a left coprime MFD of W(s)

rank [A^Sq) B^Sq)] <  /? (3.51)

and the fixed mode has degree k where the degree of the fixed mode s0 is defined as the 

largest positive integer k such that all /lx/? minors of [Ax(s) B^s)] have a zero at s0 of 

order at least k.
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(ii) Suppose o-(s0) has a zero of order k. Let e( j1 j2 j  be the number of zeros at s0 of

W l l  *2 "  ’ *P

ll 2̂ " '
!p I which represent the minor formed from rows (ilt i2, •••, ip) and columns

(ll! 12 ! "  ! I?)’ Let e! l” ... 0 corresponding to no poles or zeros, e *i " '  *p
. ll I2 "  ' Ip ,

<  0 corresponding to there being negative number of poles at s0 and c( ^ jP 0 0

corresponding to a minor which is identically zero. Let m =  /? +  /? and

ir(il ¡2 ••• ip) ~ l^1’ n i 1,2’ 4
where

(3.52)

{ i i ,  ■■■) Ipj- U î ,̂ im-p^ — ^1) 2, •••, mj- (3.53)

and

‘-(li i:) -  K1» - •  * '}n t1- *■ •••■ t> (3.54)

Then, there exists 0 <  A <  k such that whenever 8r +  8C > ¡3

e f ¡ 1 122 ;;; n  > (a - io  +  (« r+ « e -  /?) (3.55)

for all minors of k(s).

The above result says that there is a fixed mode of degree k if and only if certain minors have s0 as 

a zero of certain minimum order, or a pole of limited multiplicity, while at the same time, s0 must 

be a pole of W(s). Also, the quantity 8r computes the number of rows in the first ¡3 rows of W(s) 

which are not in the minor under scrutiny, while dc computes the number of columns in the first 7 

columns of W(s) which are in the minor under scrutiny and of the quantity 8r +  8C — (3 is 

associated with the position of the minor.

We also mention the transfer function characterisation proposed by Davison and Ozgumer 

[Dav. & Ozg. 1], Vidyasagar and Viswanadham [Vid. 1] that express the above result of Anderson



Chapter 3

in terms of the greatest common divisor of certain minors of the transfer function matrix and its 

characteristic polynomial.

3.4 Structural Fixed Modes.

The concept of structural fixed modes has been introduced recently by Sezer and Siljak [Sez. & Sil. 1]. 

The motivation for this introduction was the ill-posed numerical problem associated with the 

computations of the rank of the relevant matrices which characterised all the existence tests for fixed 

modes. Decentralised fixed modes may originate from two distinct sources. It is either a consequence 

of a perfect matching of system parameters in which case a slight change of the parameters can 

eliminate the mode or it is due to special geometric structure of the system. In the latter case, no 

matter how much a parameter is changed, the mode remains fixed. Hence to control a decentralised 

dynamic system, it is necessary to change the structure of the system or the architecture of the 

controllers.

The main result of Sezer and Siljak for structural fixed modes is as follows:

Theorem (3.11): Consider the system, S

N
x =  Ax + ÇB.-u,-

(3.56)

li =  Cx,.; i =  1, 2, ■■■, N

where x(t) £ Rn, ut-(t) £ R ’ , y t- £ R ’ . When decentralised output controllers (D-DOC)

u, =  K ,y,, i =  1, 2, N (3.57)

are applied to (3.56), then the system has structural fixed modes with D-DOC if and only if either of 

the two following conditions holds:

I - 6 2 -
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(i) If there is a partition of N *= j l ,  2, •••, n | into disjoint subsets Nt =  |i], i2, •••, it j-, 

N^= ^it+1, ijt+2i iN}  and a permutation matrix P such that:

N*

An O O __
_1

p t a  p  = A21 A22 0

A31 A32 A33

B ^ 0

p t b  k = B f* T N*
, p t b -" k _ 0

cc “
3 B f  'Nk

(3.58)

N-N,
C *P = Cx

N*-Nk N*-Nk N*-Nk

N;
where B” fc =  [ B,v  B,v  B,.J, c " *  =  [CT, C ? , •••, C]

(i) There exists a N t C N* such that

B

N * -N u
<  n (3.59)

where p =  generic rank =  max
d e R 1'

{p[M (d)]} and where is is the number of non-zero arbitrary

entries of a structured matrix, M. M(d) is obtained by replacing the arbitrary non-zero entries of

M by the corresponding components of d € R^.
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3.4.1 How to Avoid Fixed Modes in Decentralised Control

When a decomposition of the system is not imposed it is possible to choose a certain structure of the 

system which has no fixed modes with a decentralised control.

Problem Statement: Suppose we are given a multivariable linear dynamic system described by

x =  Ax +  Bu

y =  Cx (3.60)

x G (Rn, u G R', y G Rm

Under what conditions (3.60) can be decomposed in N subsystems S*. with 1* and m k inputs and 

outputs such that the system has no fixed modes with respect to decentralised feedback law (3.57)

In the case of structural fixed modes, system (3.60) can be put in form (3.58) in which case the 

inputs are partitioned into two sets U5 and U5 5 while the outputs into Y § and Y s s^of dimensions 

15 and ls_s  and m5 and m s s  respectively. In that case, fixed modes are avoided when

N N
¿ 1, =  1. ¿ m ,= m ,  N> 2.
* = 1 * = 1

t h ï  1 OR j2  m; m5 , 1 < r <  N
i = i *

(3.61)

Surely, the above conditions are necessary to destroy the particular structure of matrices B and C in 

the form (3.58).

3.4.2 How to Eliminate Fixed Modes in Decentralised Control

According to the basic concept of a system, the decomposition is always determined by physical 

constraints. These constraints may be geographical as in the case of telecommunication systems, power 

generation systems or functional as in the case of an automatic spacecraft where the navigation, 

guidance, communication, propulsion and payload operation are clearly distinguished. In those cases, if 

the decomposed system has fixed modes, it is critical for the operation of the integrated system to find 

a way of elimination of those undesirable modes.
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In the case of undesirable fixed modes several methods for their elimination have been proposed 

in the control literature. Based upon the information exchange between subsystems, Armantano and 

Singh [Arm. 1] characterise fixed modes by means of block-diagonally dominant matrices. Their 

procedure is based upon the following description of the system.

Let

N
Si : X, =  Ajixi +  B ,u ! +  £  AtjXj, i =  1, 2, •••, N

(3.62)

y,- =  c ;x t., x ; e Rn\ u; G R \ y,. GR m’

be the description of the interconnected subsystems S; that form the system E.

Let

A =  |At j , i =  1, 2, N; j =  1, 2, •••, N| G RnXn

B =  block-diag/B!, B2, •••, B^,j- G RnXi (3.63)

C =  block-diagjC!, C2, •••, C^v} G RmXn

Then (3.62) can be rewritten as

E: x =  Ax +  Bu (3.64)

y =  Cx

By applying the decentralised feedback control

M, =  K,-,y, (3.65)

y =  Ky; K =  block-diag[ Kn , K m ] (3.66)

A + BKC =

A + BKC is written

An A12 A lN

A2 Â22 A 2N
(3.67)

a m AjV2 ANN
- 6 5 -
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where A,-, = A (1+ E^K^C,-, i =  1, 2, Then if the diagonal submatrices A,, are non-singular

and if

|AT,-11“1 >  ¿| | A 0.||, V i G N (3.68)
j  =  i 
3 A  i

the closed-loop matrix is strictly block diagonal dominant.

Theorem (3.12) [Arm. 1]: If the closed loop matrix under decentralised control, A +  BKC is strictly 

block-diagonally dominant, then A + BKC is non-singular.

Corollary (3.4) [Arm. 1]: If A G T is a decentralised fixed mode, then 

||(A,, -  AI,-)-1! - 1 < V k,,- G
3 — 1

for at least one i, i G N =  {1, 2, •••, N}.

(3.69)

Based upon the corollary, Armentano and Singh, derive a technique to determine the minimum 

crosstalk between controllers when there is information exchange between the decentralised controllers, 

to eliminate fixed modes.

Similar procedures have been obtained by Locatelli et al [Loc. 1] using graph theory, Senning 

[Sen. 1] using optimisation techniques and Groumpos and Lopanor [Gro. 1] using a hierarchical 

approach to stabilise the unstable fixed modes using a global controller. Another interesting 

application which is very innovative indeed in decentralised control is that by Trave et al [Tra. 1]. 

They use the classic practical approach of harmonic (vibrational) control to cancel the unstable fixed 

modes. The principle of harmonic control consists in the introduction of harmonic functions (periodic 

vibrations) on the parameters of the system matrix A such that we obtain a time-varying system.

x =  [A +H(t)] x (3.70)

where
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il i jW  =  ai ; sin wij (3-71)

Application of harmonic control results in a time-varying feedback matrix and clearly resembles the 

result of Anderson and Moore [And. 3] who have showed that time-varying feedback laws can 

eliminated fixed modes under certain structural conditions. Also, in the case of scalar sub-systems 

Purviance and Tylee [Pur. 1] have showed that a sinusoidal feedback can eliminate fixed modes in case 

of decentralised control with better performance than a time-varying control law.

3.5 Mathematical Analysis of the Stabilisation and Pole 
Assignment Techniques Using Decentralised Controllers

The mathematical description of the problem of stabilising decentralised control systems using 

automatic controllers, each operating with partial information on the states of the subsystems is as 

follows :

3.5.1 The state-space description of Decentralised Systems

Consider a linear invariant dynamical system of high-order with k local controllers described by 

x =  Ax + £  B,u

(3.72)

y,- =  c ,x

where x is the n-dimensional integrated state vector, u, is the 1; -dimensional control vector (Actuator 

output) where i =  1, 2, ■■■, k.

I - 6 7 -  I
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Since the system is decentralised then

Ml h

u =
m 2

> z  =
1 2

M k i k

l • m •
where u; (t) GiR y(t) GR \ i =  1, 2, •••, k and 1< =  1, Y1 mi — m-

3.5.2 Architecture of Decentralised Automatic Controllers

We distinguish between two categories of controllers. (1) Static and (2) Dynamic controllers.

(1) Static Controllers: This kind of controllers generate control commands proportional to the 

current information obtained by the sensors, that is

u(t) =  F(t) y(t) +  v(t) (3.74)

where

u(t)T =  [Ml( t ) T u 2(t)T, u t (t)T] (3.75)

y (t)T =  [y i(t)T, y 2(t)T, y fc(t)T] (3.76)

v(t)T =  [v^tJT, v2(t)T, v t (t)T] (3.77)

(2) Dynamic Controllers have the following dynamic structure

¿ ( t )  =  L z(t) +  M y(t) (3.78)

u(t) =  K_z(t) +  v(t) (3.79)

or

AM L M z(t)

M(t) K 0 y(t)

1 - 6 8 -  I
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where z(t) is the controller state vector and where

z ( t ) T =  [z1(t)T, z 2(t)T, Z.fc(t)T]

k
dim z_(t) =  r, dim z t-(t) =  rt-, r =

i =  1

(3.81)

3.5.3. Stabilisability of Dynamic Systems Using Decentralised Controllers

When the controller (3.80) is connected to the dynamic system (3.72), the system description of the 

coupled system is

X A BK X
+

B

Ï MC L 0

When the controller is static, then (3.82) reduces to

x =  (A + BFC) x +  B v (3.83)

Statement of the Problem: The fundamental problem of decentralised control is whether there exist 

matrices L, M, K, F with the required block diagonal structure, such that the closed-loop system (3.82) 

has preassigned eigenvalues (pole assignment) or is asymptotically stable (D-stabilisability).

When no structural constraints are imposed on F and C, it is well known that the pole 

assignability of (3.83) is equivalent to the controllability of A and B. The question of stabilisability of 

(A, B) is equivalent to the controllability of the unstable modes of A. It is obvious that pole 

assignment or stabilisability of classical centralised methods is a necessary condition for the 

controllability property to hold in the decentralised case; however, the condition is not sufficient since 

in decentralised control the matrices F, C are constrained to be of particular structure.
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3.5.4 Decentraliscd-Static Output Controllers (D-SOC)

We first investigate the question which eigenvalues of the system matrix, A, can be shifted by 

decentralised static output controllers (D-SOC). To do so, we need some concepts about the 

controllability or better the uncontrollability for the case of centralised control systems. The main 

concept is that of fixed mode of a dynamic system which we defined already in section 3.1.

Under static output control, the centralised fixed modes of the dynamic system are those 

eigenvalues of A which are invariant with respect to the arbitrary static controller, K. In the case of 

the state-space description of the dynamic system, the fixed modes are completely determined by those 

eigenvalues for which the following two rank tests fail to satisfy

rank
A I-A _

^  n, rank A I-A  B
C -

±  n (3.84)

Hence the interplay between the uncontrollable and unobservable subspaces isolates the centralised 

fixed modes.

In the case of decentralised static output controllers of the form

=  F .y¿ (3.85)

the closed loop system matrix is

AD~  A +  E  (3.86)
• =  i

which is an explicit expression of the classical centralised system matrix, A +  BFC, in the case F is a 

block-diagonal matrix. Then, necessary and sufficient conditions for a characteristic value to be a fixed 

mode under decentralised static control of the form (3.85) are given by Anderson and Clements [And. 

& Cle. 1] based on the rank criterion of a special matrix.

3.5.5 Decentralised-Dynamic Output Controllers

Ii is well known that for centralised control, the arbitrary eigenvalue assignment can be achieved using 

dynamic output controllers. Indeed, the theory states that those eigenvalues which can be moved by



Chapter 3

static controllers can be arbitrarily placed by dynamic controllers, whereas those eigenvalues which are 

fixed under all static controllers are also fixed by dynamic controllers. This characterisation of the pole 

assignment properties using dynamic controllers in terms of the pole assignment properties using static 

controllers has been helpful in the synthesis of centralised controllers. This particular approach consists 

of using static controllers to make the system controllable from a single input channel and observable 

from a single output channel. Then the dynamic controller for arbitrary pole assignment can be 

considered for the system with a single input - single output. The above approach for synthesis of 

centralised controllers has been extended by Corfmat and Morse [Cor. & Mor. 1] and Fessas [Fes. 1] to 

the synthesis of decentralised controllers. For this type of synthesis, the idea of strongly connected 

subsystems dominates the whole system engineering process.

3.5.6 Hierarchical System Decomposition into Strongly Connected Subsystems

According to Corfmat and Morse [Cor. & Mor. 1] the decentralised control of dynamic systems can be 

solved after the system has been decomposed into strongly connected subsystems which can be dealt 

with as completely independent thus forming a hierarchy of controllers. Although such a 

decomposition is not always possible, it is useful to know when it is possible to do the decomposition. 

Then it is assured that a fixed mode of the centralised system may be, with respect to the relevant 

subsystem either uncontrollable or unobservable and hence a fixed mode with respect to centralised 

output feedback in the subsystem or only a fixed mode with respect to the decentralised control of the 

subsystem.

The approach of Corfmat and Morse is based on the following topological terms

Definition (3.6): The graph of the linear dynamic system E =  {C,-, A, B ; ; k } described by (1) is 

defined as a pair (k, T) consisting of k nodes labelled 1, 2, k, with node i representing the i^  

channel of E and a function F mapping Ir into its power set according to the rule T(j) =  {i : 0};

Hij =  C,(AI — A)_1B ; is the transfer function from input u; of E to system output y,-. This function is 

geometrically represented by the directed arc drawn from node j  to node i just in case ut influences yt- 

in the sense that 0. Hence, the graph of E is the usual signal flow graph between the channels of

E.

- 7 1 -
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For example, the system matrix

gll Sl2 0 S14
0 822 S23 0 (3.87)

§31 0 0 834

can be represented by the following system graph

(3.88)

It is seen from above that the graphs of E are directed finite graphs with no loops or parallel arcs.

Intuitively, it may be expected that if (A^,, B^) is controllable for some feedback F where 
k

A.d =  A +  B^F.-C,-, then each mode of the system graph must be reached from node j  along a
i — 1

directed path in G^. Hence a necessary condition for the decentralised controllability of an 

interconnected system is the following proposition:

Proposition (3.2): If some j  € k and F x, F 2, •••, F*., the resulting closed loop system is controllable 

from u¿, i.e. the pair

(A/), B .)  =  (A +  £  B.-F.-C,., B ■) (3.89)
* =  1

is controllable, then for each i £ lc with i ^  j ,  there exists a directed path in G^ from node j to node

□

Applying the above-mentioned proposition to a two input - two output system, it is seen that 

the conditions of proposition 1 are equivalent to G 2i (s ) ^  0 and G12(s) yf 0. But this is only a 

necessary condition since another condition is the completeness of the interconnection. (A system 

(C, A, B) is complete if (C, A) is observable and (A, B) is controllable.) Hence the generalisation to 

the MIMO case, we introduce the following concept of complementary subsystems [Corfmat & Morse, 

1976].

I - 7 2
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Consider a decentralised system E =  {C,-, A, B, : k } determined by the SSD (3.72). If s is a 

nonempty subset of k, with elements ilt i2, •••, iP ordered so that ix<  i2< - <  ip, then we define Bs 

and Cs so that

B, [ B,v B. B. ,], c 7 =  [ c,v  c i2, c ,p] (3.90)

Hence, (Cs2, A, B5l) is a subsystem of E with the inputs u,-, i G s.x, and outputs y;-, j  G .s 2> f° which 

we associate the transfer matrix

G?2,5l= C52 (si —a )_1 b 5i (3.91)

Definition (3.7): If E is a decentralised system described by (1) and ŝ 2 a proper subset of k_, then the 

subsystem (C j 2, A, B Sl) with ŝ 2 =  k — s  ̂ is called the Complementary Subsystem o f  E.

□

We have seen earlier that for a given system E, and some fixed j  G k> it is possible to find 

some decentralised static output controller, F,- such that (C j, A^, B ; ) is a controllable, observable 

system. If an F with this specialised structure exists, F is a block diagonal matrix, then it turns out 

that such F exists for each and every j G k and when this is so we say that E can be made controllable 

and observable through a single controller with decentralised static output feedback. But, the 

proposition is only a necessary condition hence we have the following theorem due to Corfmat and 

Morse.

Theorem (3.13): Let E be a decentralised control system described by (3.72). Then there exists a 

decentralised static output controller of the form u, =  F ,y,, i G k, such that the resulting closed-loop 

system is controllable and observable from a  single controller j G k , if and only if each complementary 

subsystem of E which contains input channel j,  is complete.

□

Using the concept of fixed mode, Wang and Davidson and Corfmat and Morse showed that the 

eigenvalues of a decentralised system can be placed in an arbitrary region of the complex plane using 

D-dynamic controllers such as those of (3.80) if and only if the fixed modes lie in that region. 

According to Corfmat and Morse, the fixed modes represent the set of eigenvalues of the system A 

which cannot be moved by any family of decentralised dynamic controllers while all the remaining 

eigenvalues of the system A, can be arbitrarily placed by an appropriate choice of D-DOC. This can be

I - 7 3 -
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represented by the following theorem due to Corfmat and Morse [Cor. fc Mor. 1]

Theorem (3.14): Let £  =  {C^ A, B t; k_} and j satisfy the hypotheses of Theorem 1, and write a D(\) 

for the uncontrollable polynomial of ( A B ; ). Then

(i) For all F £ if where T the space of diagonal matrices

V s£k(j), p (C *_ ., A, B ,) divides a D(\)

where p(---) is the remnant polynomial of SSD (A ,B ,C) defined as the product of the 

transmission polynomials of the transfer matrix C(AI — A)-1 B, in the case where the transfer 

matrix rank is less than the number of these polynomials. When the rank transfer matrix is 

greater than the number of the transmission polynomials then p(L, A, B) =  1 which is the 

condition for the system to be complete (both controllable and observable).

(ii) If in addition, for each j £ Jr with i ^  j there is a path in the system graph G^, from node j to

node i, then the uncontrollable polynomial, a 0 (A), is independent of the static decentralised 

controller, F, where F £ and »¿»(A) divides p (Ck_ , , A, B„) where k(j) denotes the class 

of all proper subsets of k which contain j.  G A(j)

The above results are valid for so-called interconnected subsystems, where the subsystems are 

interconnected only through their inputs and outputs.

Consider the subsystems

ii =  A i*> +  B.u,- (3.92)

yi =  C,x,  +  D,u,, i =  1, 2, •••, k

which are interconnected according to the rule

9, =  E  F 0-yj -v ,., i =  1, 2, •••, k
j =i
i i zi

, . __Tl; Tl: _  71 ■ A l :  „   TTl ■ A Tl; „

where A,-£R , B.eIR C,£lR , F,-; eD

I - 7 4 -
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These systems may be written in the form (3.1) where

Ai B i F 12C 2 B j F ^ C ,

A =
B 2B 21C 1 A 2 B 2 F 2JtC t

( 3 . 9 3 )

Bfcl* fciCi BjfcFjt,jt-iCjt _ 1 A t

B = diag [ B x, B 2 , ••■> B t ] ( 3 . 9 4 )

C  = diag [ C l5 C 2 , • ■ , c t ] ( 3 . 9 4 )

The composite SSD for (3.92) is

x =  Ax +  Bu, y =  Fy +  y (3.95)

y =  Cx +  Du

where x =  c o ^ x j, y =  col(u,), A =  diag [Al5 A2, At ], B =  diag [B j, B2, •••, B t ], C =  

diag [Ci, C2, •••, C J  and F =  mat [Ft j ].

By combining (3.95) into a single equation for the overall integrated system, we obtain the 

integrated SSD.

x =  ADx +  Bu (3.96)

y =  Cx

where

Ad =  A +  B F C  (3.97)

Since the above integrated form of the state-space description (SSD)

By =  £ B ,y ,-  (3.98)
1 =  1

and
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y,- =  C ,x, i =  1, 2, •••, k

where

B, =  col [0, 0, B,-, 0, •••, 0] (3.100)

C, =  col [0, 0, , C,-, 0, 0]

we can see that (3.96) decomposes into the form of the decentralised controllers of (3.72). Using the 

above special forms for the interconnected subsystems Saeks [Sae. 2] obtained the following theorem:

Theorem (3.15): For the interconnected systems of the form (36) we have that

(3.101)

□

Thus, in order to show that the decentralised controllers can place the eigenvalues of the 

system in prespecified locations, if and only if there exist centralised controllers which can place the 

eigenvalues of those positions, Saeks establishes that the set of fixed modes of the centralised, 

decentralised and those of the interconnected subsystems are the same.

However, although the above theorem says that the fixed modes of the centralised controlled 

system and the decentralised controlled system coincide, it does not imply that local output feedback, 

complex or real, will assign an arbitrary set of characteristic values. Indeed, Desoer and Chan [Des. & 

Cha. 1] have shown that local dynamic output controllers or local constant state controllers are 

sufficient for stabilisation purposes of dynamical systems, but not sufficient for arbitrary eigenvalue 

assignment.

In order to arbitrarily assign the eigenvalues of the overall system, the feedback matrix should 

be block-diagonal instead of diagonal. In this case, the controllers measure the state or the outputs of 

certain subsystems called strongly connected and whose outputs are fed into each component of the 

strongly connected subsystems. This again stresses the importance of the hierarchical decomposition of 

the overall dynamic system into strongly connected subsystems.

One approach to identifying the strongly connected subsystems which constitute the different 

levels of a hierarchical system with a minimum number of components per level, uses the system 

adjacency matrix, A. Every component in a strongly connected subsystem affects the input of every

<M A, B, C; F c ) =  <i>D(A, B, C; Fd ) =  U<I>C(A„ Bf, C.)

- 7 6 -  1
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other component in the subsystem either by direct connection or indirectly through other components. 

Hence, the basic steps for hierarchical decomposition of the system is first to identify the strongly 

connected subsystems and then to place them on the appropriate level of the hierarchy.

The two main techniques in decomposing a large-scale dynamic system into a multilevel 

hierarchy of strongly connected subsystems are the arithmetic and the geometric methods. The 

arithmetic method uses sparse matrix techniques manipulated on a computer, while the geometric 

method involves the adjacency graph of an interconnected dynamical system. The adjacency graph is a 

generalised polyhedron which has a vertex for each system component. An edge connects two vertices 

of the adjacency graph, say i, j if the output of component j directly feeds the input of component i.

The two components lie in the same strongly connected subsystem if and only if the two 

components lie in a common directed circuit. By a common directed circuit we mean a loop in which 

all edges are oriented in the same direction around the loop.

The importance of the above hierarchical structure of strongly connected subsystems lies in the 

simplicity of analysis and synthesis of decentralised controllers. In this case the analysis of a complex 

dynamic system is based on the independent analysis of the strongly connected subsystems of the 

system. Then certain results about the motion of the dynamic system can be deduced from the study 

of these subsystems. For example, the integrated system consisting of a set of independent strongly 

connected subsystems is stable if and only if each subsystem is stable. The main results of the 

interconnected subsystems using decentralised controllers can be summarised in the following way:

Theorem (3.16): Let E =  {C,-, A, B,- : lc } be a jointly controllable singly observable system. Then 

with decentralised control, the closed-loop spectrum of E can be

(i) freely assigned if and only if the sum of the dimensions of E ’s strongly connected subsystems is 

equal to the dimension of E and spectrum assignment is possible for each strongly connected 

subsystem.

(ii) stabilised if and only if the complement of the disjoint union of the spectra of E ’s strongly 

connected subsystems in the spectrum of E is stable and stabilisation is possible for each strongly 

connected subsystem.
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Chapter 4

THE DETERMINANTAL FREQUENCY ASSIGNMENT PROBLEM
OF

DECENTRALISED CONTROL SYSTEMS

4.0 Introduction

The purpose of this chapter is to provide a unifying framework for the study of problems of pole 

assignment by decentralised state, output feedback and for the problem of zero assignment under 

decentralised squaring down. An abstract mathematical problem is formulated, that is the 

decentralised determinantal assignment problem that unifies all decentralised frequency assignment 

problems. This problem is shown that may be reduced to the study of a linear problem of zero 

assignment of polynomial combinants [Kar. Gia. Hub. 1] and a multilinear problem of decomposability 

of multivectors under certain constraints. The present approach is based on recent results [Kar. & Gia.

1] on the unifying study of frequency assignment problems of centralised systems. Thus, the present 

approach is an extension of the approach developed in [Kar. fe Gia. 1] for centralised systems to the 

case of decentralised control. The centralised case is briefly discussed first and then the case of 

decentralised control is considered.

4.1 Mathematical Description of Centralised Control Problems.

In general, we consider a linear time-invariant system described by the following state-space description 

(SSD).

S(A, B, C, D): x(t) =  A x +  B u(t) 

y (t) =  C x +  D u (t)

(4.1)

where x £ Rn, y £ IRm, û £ are the state, the input, and the output vectors respectively and
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A G RnXn, B £ IRnXi, C G RmXi, D G RmXi are real constant matrices.

The operational method based on the Laplace transformation has been extensively used for the 

synthesis of classical controllers and represents one of the most convenient and powerful mathematical 

tools for the treatment of a wide variety of mathematical problems. Hence, if we take the Laplace 

transform of (4.1) with zero initial conditions, the result is another mathematical description known as 

the transfer-function matrix description. Equations (4.1) then lead to the input-output description

y (s) =  G(s) u(s) (4.2)

where s is the complex variable of the Laplace transform and y (s) and u(s) are the Laplace transforms 

of the output y(t) and input u(t) of the control system.

The transfer function matrix, G(s), may be represented by left, right coprime matrix 

descriptions (MFD) as:

G(s) =  D ^(s) N£ (s ) =  N*(s) D ^(s) (4.3)

where N£ (s), NR(s) G RmX,[s], D£ (s) G RmXm[s] and Dfi(s) G R,x , [s] are polynomial matrices with 

real coefficients.

We next define the main frequency assignment problems in control theory for the case of 

centralised control.

Problem Statement 1: Pole Assignment by Centralised State Feedback

Controllers

We are given (4.1) and a symmetric set of desired complex numbers {A,} with respect to the real axis. 

Find a real lx n  matrix L G R,X '\ such that the eigenvalues of A +  BL are precisely those of the 

symmetric set {A,}.

Clearly, when the state feedback controller u = L x + y  is applied to (4.1) then: 

x =  (A +  BL) x +  Bv (4.4)

and the characteristic polynomial of the closed loop system is:
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P £ (s) =  det [ si — A, —BL ] =  det [ A^(s) L

ihere

A£ (s) =  [ si -  A, - B  ], L =
In

L

For the problem of pole assignment under state feedback, we desire that:

det [ A^(s) L ] =  a(s)

where a(s) is the desired polynomial whose roots are {A,}.

(4.5)

(4.6)

(4.7)

□

Problem Statement 2: Pole Assignment by Constant Output Feedback

Given a symmetric set of desired complex numbers {A,}, i =  1, 2, •••, n find a real lxm matrix F, 

such that the eigenvalues of A 4- BFC are given by the set {A,}.

Under the feedback control law of the following structure:

u =  Fy + u c (4.8)

where u c are the command inputs, the state-space description of (4.1), the so called closed loop form  is 

given by:

x =  Ax + Bu =  Ax +  B(Fy +  u_c) =  (A + BFC) x +  Bu_c

(4.9)

y =  Cx

If instead of (4.1) we use the transfer function description, then the closed loop transfer 

function under constant output feedback is given by:
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T(s) =  [ Im +  G(s) F ]~l . G(s) =  G(s) [ I, +  FG(s) ]~l (4.10)

Also, by using expressions (4.3) for the description of the transfer function matrix G(s), we 

have the following expressions for the closed-loop transfer function:

T(s) =  [ D l (s ) + N l (s ) F r 'N L(s) =  Nfl(s) [ D *(s) +  F Nfi(s) p 1 (4.11)

The closed-loop polynomial P^.(s) is given by:

PfOO =  det [ Dl (s ) + N£ (s ) F ] =  det [ D *(s) + F N*(s) } (4.12)

By defining the following matrices:

G i(s) =  [ D£ (s), N£ (s ) ], Gfl(s) =
Dfl(s)

Nfi(s)

F R = l h  F ]

(4.13)

then the closed-loop characteristic polynomial is

PF (s) =  det [ G l (s ) F £ ] =  det [ FR G R{s) } (4.14)

Then the pole assignment problem by constant output feedback is reduced to choosing an F G RiXm 

such that if a(s) is the polynomial whose roots are{A; }, then:

PF (s) =  a(s) (4.15)

□

Problem Statement 3: Zero Assignment Rectangular (Non-Square)

Linear System

Standard linear multivariable feedback control schemes consider feedback loops between a selected set 

of measured output variables and an equal number of independent control inputs. If the number of

81
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outputs is greater than the number of inputs, it is well known fact that independent control of all 

outputs is not possible to achieve. Thus, in such cases of “non-square” plants we always have to decide 

which is the desirable subset of measurements, which will serve as variables to be controlled.

It has been established by Kouvaritakis and MacFarlane [Kou. k  McF. 1] that squaring-down 

procedures which are necessary in the case of the number of measured variables exceeds the number of 

outputs, generate multivariable zeros which affect the dynamic performance of the system.

The problem of combining the outputs of the system together to create a new set of controlled 

outputs whose number is equal to the number of commanded inputs has been called “squaring-down” 

by the above authors. The general situation of the squaring down procedure is to insert a post 

compensator, K after the system transfer function, G(s). Then, the feed forward transfer function is 

given by:

G(s) =  K G(s) (4.16)

-  K N *(s) D ^(s) (4.17)

As it can be seen from (4.17), where we make the use of right coprime fraction description of 

the transfer function matrix G(s), the controlled system has a new set of zeros given by:

Z *(s) =  det [ K N*(s) ] (4.18)

It is clear that (4.17) represents a matrix fraction description, which is not necessarily coprime. For a 

generic G(s), we have no zeros; however, G(s), as a square transfer function matrix has always zeros. 

Clearly, “squaring-down” introduces new zeros. As it has been shown in Chapter 2, an mxl 

polynomial matrix may always be factorised as N^(s) =  N(s) Z(s), where N(s) is an mxl least degree 

matrix and Z(s) an lx l greatest right divisor. Hence, (4.18) yields

zK (s) =  det [ K Nfi(s) ] =  det [ Z(s) ] det [ K N(s) ] =  z(s) det [ K N(s) ] (4.20)

where z(s) is the zero polynomial of G(s) and N(s) is an mxl polynomial matrix having no zeros. 

Clearly, z(s) divides the zero polynomials of all “squared down” systems and thus the newly introduced 

zeros are those defined by det [ K N(s) ]. The zero assignment problem may thus be expressed as:

I - 8 2 -  1
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Problem Statement: Find a constant post compensator K £ [R,Xm such that:

z,f(s) =  det [ K N(s) ] =  a(s) (4-21)

where a(s) is the desired arbitrary polynomial to be assigned.

4.1.1 The Dctcrminantal Assignment Problem Using Centralised Controllers

The three fundamental control problems listed above are special cases of a more general unifying 

abstract mathematical problem. This is the so-called determrnantal assignment problem (DAP) defined 

by Karkanias and Giannakopoulos [Kar. k, Gia. 1] and formulated as follows:

pXr
Let M(s) £ R [s] be a given real polynomial matrix with rank r and r <  p. Also, assume a

r x p
real constant matrix H £ IR with rank r, i.e. p{H} =  r. Then the determinantal assignment 

problem is to find H such that:

fM(s, H) =  det {H M(s)} =  a(s)

where a(s) is an arbitrary polynomial.

If we write:

II =

h i

hr

and M(s) =  [ m^s), m 2(s), •••, m r(s) ]

Cr(II) =  h^A h jA  A h ? =  h T A £ R1Xa

Cr(M(s)) =  m 1(s) A m 2(s) A A m r(s) =  m(s)A £ RcrX1[s]

where er =  J and Cr( ) is the r-th compound matrix of (•).

(4.22)

(4.23)

(4.24)

(4.25)

I - 8 3 -
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If we apply the Binet-Cauchy theorem to (4.22) we have: 

fM(s, H) =  det [ H M(s) ] =  Cr[ H M(s) ] =  Cr(H) Cr(M(s)) =  < h T A, m(s)A> (4.27)

where <•, •> denotes the scalar product.

Let also hu,, mu,(s), u> — (ix, ir ) £ Qr,p denote the co-ordinates of the multivectors h T A, 

m(s)A respectively, then:

fAi(s’ H) =  E  m»(s) =  (s) M  (4.27)
tufüQr.p

The coefficients a; of f^ (s, H) may be seen either as multilinear skew symmetric functions 

ay(h,*,) of the entries hik of H (h«, is the rxr minor or II which corresponds to the w set of columns of 

H) or as linear functions a^hu,) of the coordinates h^ of the multivector associated with H. This 

suggests how the study of multilinear skew symmetric functions a^h,^) can be referred to the simpler 

study of linear functions, so the DAP may be reduced to the following problems.

(i) Linear Problem: Set a  =  h T A =  k_T £ IR15̂ ,  m(s)A =  p(s) £ 1R<t X1[s] and assume k

to be free. Find the conditions under which vectors k exist such that the polynomial f(s, k) 

has a given set of zeros, where:

f(s,k) =  k Tp(s) =  k- pt(s) (4.28)
i=r

(ii) Multilinear Problem: Assume that the linear problem has a solution and 3G is the family of

vectors 1< for which f(s, 1< ) has a given set of zeros. Find whether there exists k, £ 3G which is

decomposable. If such a vector exists, determine an H £ RrXp such that h A =  lcT. □

4.2 Mathematical Description of Decentralised Control Problems

The decentralised assumption in the study of the automatic control of linear systems implies a special 

structure for the feedback matrices involved in various frequency (pole-zero) assignment problems 

discussed before. This special structure characterises certain controllers under autonomous operation in 

which case the feedback matrices assume a diagonal, or block diagonal form. Under this autonomous
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decentralised operation the sensors measure local variables used by the controllers to drive local 

actuators. In the case of autonomous controllers the determinantal frequency assignment problems 

may be formulated as follows:

Problem Statement 1: Pole Assignment by Decentralised State Feedback

When the control system under consideration has a decentralised structure, then the control law is 

based on a number of autonomous (block-diagonal) controllers such that the control action, u(t) 

consists of N control inputs such that:

u(t) =  [ u 1(t)T , u 2(t)T, •••,ui(t)T]T, u,.(t) G R ' (4.29)

and N partial output information available at each controller

y(t) =  [ y i(t)T , y 2(t)T, •••, y ,( t )T]T , y ,(t) g  Rm' (4.30)

In this case u ; (t), y,-(t), i =  1, 2, •••, N represent the output, input signals available by and at the ith 

local controller.

Let the actuator matrix, B, be partitioned as:

B =  [ B j, B 2i B n  ] (4.31)

nXl-
where B ; G R , and the sensor matrix, C, as:

C = rT rT^1 ) ^2 i c T iT 
N I (4.32)

m • /*v n
where Ct- G IR . Then the decentralised control system obtained from the centralised with 

partitioned inputs and outputs can be described as:

x (t) =  A x +  E  B; u ,(t)
i=i

y.-(t) =  C,. x(t), i =  1, 2, N.

(4.33)

In the case of autonomous decentralised controllers we have that
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Hx — Li i n  H 2 — L2 X.2i " ' i l j v  — L yy x tv

/ 1 X  n ■
where L,- G R or

Hi

[OOos1____

1

*1

h 2 —
0 L2 0 0 *2

Hat

ooo
______1

XI
______1

or

(4.34)

u =  x (4.35)

when =  block-diagonal [ Ll7 L2, L yy ]

Problem Statement: Find l d  G R1X", such that the closed-loop equation under the control structure 

(4.34), given by:

x =  (A +  B L ß)  x +  B u (4.36)

has a characteristic polynomial given by:

p l (s> l d ) =  det [ sI -  A> B ] =  det [ si — A, — B ] (4.37)

whose roots are those of the given polynomial polynomial a(s). □
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Feedback
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In the case where local constant output feedback is allowed for control, then the control inputs may be
f • xm •

written as u,- =  K;y, where K, £ IK and hence:

Hi

rooo1____ I I

H 2
=

o°CN
«o

y. 2

— N 1
o o o

l__
__

__

I n

or

u =  KD y

(4.38)

(4.39)

The closed-loop transfer function (4.11) under the decentralised control law (4.30) becomes:

P /C(s, Kd ) =  det [ D,(s) + N,(s) K ,̂ ] =  det [ Dr(s) + K D Nr(s) ] (4.40)

where (N;(s), D,(s)), (Nr(s), Dr(s)) are left, right coprime factorisations of the rational transfer 

function matrix G(s).

By defining the matrices:

Tj(s) =  [ D,(s), N,(s) ] £ RmX(m+,)[s]

T r(s) =
D r (s) 

N r(s)
£ R(m+,)Xm[s]

(4.41)

(4.42)

KD
I n

K,
£ R(m+' )Xm, KD —

. i X ( m  +  i) (4.43)

we have that

PK (s, K d ) =  det [ T,(s) K'd  ] =  det [ K rD T r(s) ] (4.44)

I - 8 7 -  |
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Problem Statement: Find the decentralised controller K D of appropriate dimensions such that the 

closed-loop pole polynomial, Pff(s, KD), given by (4.44), is equal to a given arbitrary polynomial a(s)JH

Problem Statement 3: Decentralised Squaring Down Problem

The general squaring-down problem in the decentralised case can be represented by the following 

diagram:

u(s) => G(s)

Fi 0 0

0 F2 • 0

. . 
o

• • 
o

=>• c(s)

The decentralised squared-down transfer function matrix G(s) is given by:

G(s) =  F d G(s ) (4.45)

where

F d  =  block-diag [ F j, F 2, •••, F jV ], f, G (4.46)

Let [ NR(s), Dfi(s) ] be a right fractional representation of G(s), i.e.

G(s) =  Nfi(s) D ^ (s) (4.47)

Then, by substituting G(s) in (4.45) by (4.47) we have that:

G(s) =  F d  N r (s ) D-r \ s ) (4.48)
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The zero polynomial for the decentralised case, Zp(s) may be written as:

z(s, F c ) =  det [ F d  N * ( s ) ] (4.49)

Also, if Zfi(s) is a greatest right divisor of NR(s) then:

N*(s) =  N(s) Zfi(s) (4.50)

Using (4.50) in (4.49) we get

z(s, Fd ) =  det [ F d  N(s)Zfi(s) ] =  det [ FD N(s) ] z(s) (4.51)

where z(s) =  det [ Zfi(s) ] is the zero polynomial of the transfer function matrix G(s).

Therefore, the general problem of decentralised zero assignment (D-ZAP) is to find F D of a 

special structure (block-diagonal) such that G(s) has a given zero structure. This problem of choosing 

the controller Fjr, to assign zeros of the system is of extreme importance in the synthesis of large scale 

dynamic systems and may be thought of as the generalisation of Rosenbrock’s zero assignment problem 

[Ros. 1]

Problem Statement of D-ZAP: Find F^,, where F/) is of the special structural form (4.46), such that:

zD(s, Fd ) =  det [ F flN(s) ] =  a(s) (4.52)

where a(s) is the desired polynomial, whose zeros are located in a desirable region of the complex plane.

□

4.3 The Decentralised-Determinantal Assignment Problem (D- 
DAP)

All problems studied so far, are special cases of a more general problem which may be defined as 

follows:

Let M(s) € RrXp[s] be a polynomial matrix, p <  r, and let p{M(s)} =  p. Consider the 

following families of matrices:

- 8 9 -
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(i) Let H, G RP' i =  1, 2, N. Then we define by HD the matrix

=  block-diag {Hx, •••, Hyy} G IR! Xr (4.53)

— p  • X r • ~ .
(ii) Let Ht G U , i =  1, 2, •••, N. Then we define by the matrix

H/, =  [ I P,H fl] G R pXr (4.54)

where

R d  =  block-diag { H1( • • •, Hyy } G RpX(r P) (4.55)

Two types of decentralised assignment problems may be defined on M(s), according to whether 

matrices of RD, or type are considered. In the following the problem defined on II ̂  type matrices 

is considered. The formulation of R q  type matrices is similar.

4.3.1 Decentralised Determinantal Assignment Problem (D —DAP)

Find an H0 type matrix such that the polynomial

fM(s, Hc ) =  det [ R d M(s ) ] (4.56)

has a given set of zeros, or

fM(s, R d ) =  det [ R d M(s ) } =  a(s) (4.57)

where a(s) is a desired polynomial.

If we denote by h j ,  i G p, the rows of and by m,(s) G p the columns of M(s), then: 

CP(HD) =  h jA • • • Ahp =  h^A G IR1* ^  (4.58)

the columns of M(s), then

1 - 9 0 -
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Cp(M(s)) =  m j(s) A • • • Amp(s) =  m(s)A G R<‘P') =  p(s)

where Cp(.) is the p<h compound matrix of (.). Then, by the Binet-Cauchy theorem: 

fM(s, Hd ) =  C p(Hd )-C p(M(s )) =  < h D A, m(s)A> =  a(s)

(4.59)

(4.60)

where < , > is the scalar product.

The above general problem may be reduced to two problems:

(i) Linear Subproblem of DDAP: Assume h^A =  k J  =  [ kl5 •••, k,-_j, k,-, ki + 1, •■■]T where the 

non-zero elements in k p  are arbitrary. Find the conditions under which vector k_D exists such 

that the polynomial f(s, k D) has a given set of zeros, i.e.

f(s, k D) =  ¿ d £ ( s ) =  k J-m (s)A  =  a(s) (4.61)

(ii) Multilinear Subproblem of DDAP: Let p(s) be a subvector of p(s) defined by those co-

ordinates which do not correspond to the zero co-ordinates of k J .  Assume that K  represents 

the family of solution vectors for which (4.61) has a given set of zeros. Find whether there 

exists lrD 6 K, which is decomposable and the solution of the exterior equation h AT =  k^ 

has the decentralised structure (4.54). □

A polynomial such as f(s, Jc^,) in (4.61) is known as a Polynomial Combinant; it is generated 

by the polynomial vector p(s) =  m(s)A and its structure and properties play a key role in the study of 

assignment problems in decentralised control. The main difference between centralised control studied 

by Karkanias et al [Ivar.3] and decentralised control of the present investigation are the additional 

conditions imposed by the decentralised matrix of the problem. Such conditions imply that certain co-

ordinates of the controller-parameter vector k in (4.61) are zero and hence only a subset of the 

elements p,(s), of p(s) are essential for the study or the zero distribution of f(s, kf))-

For the centralised case, it is known that h A =  Cr(H) =  h iA h2A---Ahr =  k T, hA G
( r )  ( r )R F has a solution, if and only if k is a decomposable vector of IR F , or when k corresponds to a point

of the Grassmann variety Q(r, p) of the projective space P (P )-i

1 - 9 1 -  I
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( )The decomposability of the parameter vector lc implies that lr is not a free vector of R , but 

its co-ordinates satisfy the set of Quadratic Plucker Relationships(QPR), which define the Grassmann 

variety fi(r, p). As it will be shown later in the thesis, the decentralised assumption for the 

autonomous operation of a linear dynamic system implies that some of the co-ordinates of the 

decentralised parameter vector k are zero; hence in the study of Decentralised-Determinantal 

Assignment Problems (D-DAP) the vector .k is not free but corresponds to a point of a subvariety 

f2£,(r, p) of G(r, p), this is defined by the set of Quadratic Plucker Relationships and the fixed zeros in

k. In the following, we shall restrict ourselves to the study of the linear sub-problem of D-DAP and 

we shall investigate the conditions under which f(s, k^) has fixed, or almost fixed zeros for all vectors 

k generated by the decentralised control matrix IIp.

I - 9 2 -
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Chapter 5

INDICES OF DECENTRALISATION 
AND

DECENTRALISED GRASSMAN INVARIANTS

5.0 Introduction

In the previous chapter where the various frequency assignment problems have been discussed, it has 

been demonstrated that a number of important polynomial matrices emerge. Such matrices are

[s i-A , B],
si —A

-C
[D,(s), Nj(s)],

D r (s) 

Nr(S) ’
N r(s) (5.1)

The above polynomial matrices form the cornerstone of the polynomial system theory developed by 

such authors as Rosenbrock [Ros. 1], Wolovich [Wol. 1, Wol. 2], Forney [For. 1], Kucera [Kuc. 1] and 

Callier and Desoer [Cal. and Des. 1],

From the mathematical point of view, the polynomial matrices (5.1) define bases of rational 

vector spaces which play a fundamental role in the theory developed by the above authors. These 

spaces are

$ A b  =  row-span [si —A, B] 

$ A f~ =  col-span
si —A

- C

31, =  row-span [D,, N,

Dr
9Gr =  col-span

Nr

(5.2)

1 - 9 3 -  I
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2GC =  col-span{Nr(s)}

The classical theory of Rosenbrock, Wolovich and Forney deals with the study of polynomial 

matrices and rational vector spaces. One method to obtain the coprime polynomial matrices on which 

the algebraic approach heavily relied upon is to obtain polynomial matrices of special structure the so- 

called polynomial echelon form. This depends on the existence of a minimal polynomial basis and 

according to Forney, the column-degrees of all minimal bases for a given linear vector space over the 

rational functions are invariant.

For the study of the determinantal frequency assignment problems this description of 

invariants is not very convenient. Its alternative set of invariants for rational vector spaces have been 

recently introduced by Karcanias and Giannakopoulos [Kar. & Gia. 1] in terms of the canonical 

Grassmann representatives, or the Pliicker matrix of a rational vector space.

The new invariants are naturally connected to the structure of the determinantal frequency 

assignment problems. For the case of decentralised control, the nature of the partially fixed structure 

of the controllers imposes some restrictions in the Grassmann and Pliicker matrix invariants of the 

various problems. The aim of this chapter is first to review the standard results of Grassmann 

representation and Pliicker matrices of the various rational vector spaces emerging in decentralised 

control of linear dynamic systems. As a result, the decentralised Grassmann, Pliicker invariants 

emerge as the important natural tools for the study of decentralised control of large scale dynamic 

systems.

This chapter is organised as follows: In section 5.1 we review the results of Karcanias et al 

[Kar. 3] on Grassmann representatives of rational vector spaces and Pliicker matrices of the various 

rational vector spaces used in decentralised control are examined in section 5.2. first and then the 

results are specialised for the various decentralised control problems. An essential part of this study is 

the definition of the decentralised set of indices for the various cases. We then proceed in section 5.3 to 

derive the Decentralised Pliicker matrices associated with the abstract decentralised problems.

5.1 Grassmann Invariants and Their Use in Pole-Zero Assignment 
Problems Using Centralised Controllers.

In this section we present some of the basic results concerning the study of the centralised

I - 9 4 -  I
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determinantal assignment problem [Kar. fc Gia. 1] using multivariable controllers. These results 

provide the starting point for the study of decentralised determinantal assignment problems.

Let 1̂h(s) =  {M(s): M(s) £ IRpXr(s), r<p, p {M (s)}=r. The matrices M(s), M^s) £ t̂h(s) will 

be called column-equivalent over IR(s) and shall be denoted by M(s)§M,(s), if there exists 

Q(s) £ IRrXr(s), let det Q(s) =  c ^  0, such that

M'(s) =  M(s) Q(s). (5.3)

The above equation, (5.3), defines an equivalence relationship, 6, on .dh(s). S(M) will denote 

the equivalence class (orbit) of M(s) £ t̂h(s) and M(s)/8 will denote the set of equivalence classes 

(quotient orbit) of M(s) under 8. Each orbit partitions M(s) and each orbit 8(M) is a rational vector 

space 9Em =  col-span(M(s)}. The vector space has dimension r, dim SGm= r, 9GcRP(s) and hence 

M(s)/S is the Grassmannian §(r,Rp(s)). The set of invariants which characterise the rational vector 

space SGm is based on the following result.

Lemma (5.1) [Hod. fc Ped. 1]: Let X be a linear vector space over a field T, d im f = p  and let 

xA =  X jA -’ -Axr =  Z.J A • • • Az.r be two decomposable non-zero elements of ArT. Let us further 

denote by Xx — span { x lt X r } ,  X z — span {z 1, •••, z . r }  the subspaces of X defined by x A ,  z A ,  

respectively. The necessary and sufficient condition for Xx — Xz is that

X jA -'-xA  =  c-ZjA - AZr, c £ T  — {0} (5.4)

□

Let M(s) £^tl(s), m^s) £lRpX1(s), 

Q3i(s) A -  • Amr(s) and let 3>m =  col-span^^ĝ  

result may be obtained.

i £ _r_ be the column vectors of M(s), m(s)A =  

{M(s)}. Then using the above Lemma the following

1 - 9 5 -  |
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Proposition (5.1) [Kar & Gia. 1]: Let M(s), M, (s)e^ tt(s ) .  Then M(s ) g M , (s ) if and only if either of the 

two equivalent conditions hold true

T m =  9G ,
m

There exists q(s)GR(s) , q(s)7̂ 0, such that

m,(s)A =  q(s)-m(s)A

□

The a  — (j. j  co-ordinates of the polynomial vector m(s), are the co-ordinates of the subspace Ar9Gm 

and are known as the Plucker co-ordinates, mu,(s). Then

m(s)A =  [ — , m«,(s), m„,(s)GR(s), w =  (ilt • • •, ir )GQr,P (5.5)

If cf =  ( p) - l ,  then the Plucker co-ordinates of 9Gm can be considered as the homogeneous co-

ordinates of a point in the projective space P—(R(s)). However, not every point in P^(R(s)) represents 

an r-dimensional subspace of Rp(s); the points of P—(R(s)) which characterise r-dimensional subspaces 

of Rp(s) are those associated with decomposable vectors of RCT(s). Hence, only decomposable vectors of 

Ra(s) uniquely define r-dimensional subspaces of Rp(s). By associating to every $ mGQ(r, Rp(s)) its 

Plucker co-ordinates jm »(s)) the map p:Q(r, Rp(s)) —*■ PT (s) is defined and is known as Plucker 

embedding of Q(r, RP(s)) in the projective space P7 (R(s)). The Plucker image of the Grassmannian 

space Q(r, Rf (s)) is an algebraic variety known as the Grassmann variety o f the projective space.

If 9G m£Q(r, R (s)), then any non-zero decomposable multivector m(s)A — m^(s) A • • ■ Amr(s), 

mt(s)G9Sm is called a rational Grassmann Representative (R(s) —GR) of 9Gm and it is the exterior 

product of the columns of a matrix M(s) =  [m1(s), m2(s), •••, m r(s)] G f̂t>(s); the R(s) —GR of 9Gm all 

differ only by a non-zero scalar factor q(s)GR(s). If m(s) has its elements from the ring of polynomials 

R[s], it will be called a polynomial-GR (R[sj —GR). If m(s)/\=[---, m,(s), • • ■]t GR<7[s], then we may 

write:

m(s)A = £  PiS1: 
* — 0

:P ded(s) (5.6)

- 9 6 -



Chapter 5

where Pd= [P 0, P 1( •••, P d]£R  ̂  ̂ and it will be called the basis matrix, .ed(s) =  [l, s, sd]T

and d =  max{deg m; (s)} denotes the degree of m(s)A. An [R[s] — GIR will be called reduced, if the 

polynomials {m ; (s), j£cr} are coprime and it will be called monic if ||Pd|| =  l.

Proposition (5.2) [Kar. & Gia. 1]: Let M(s) =  [m1(s), m r(s)]G^tt(s), m(s)A = m 1(s)A • • • Amr(s), 

S(M) =  £Gm and let p(s) and z(s) be the monic pole and zero polynomials respectively of M(s). There 

exists a reduced and monic R[s] —GR, n(s)A of such that m(s)A may be uniquely factorised as

m (s)A =c
z(s)
p (s)

n(s)A, c GR (5.7)

□

The reduced and monic R[s] —GR is defined as the canonical polynomial Grassmann 

representative (C —R[s] —GR) of 9Gm and shall be denoted by g(9Gm). Because g(9Em)= n (s)A , where 

N(s) =  [■••, n(s),---] is a basis of the maximal R[s]—module of $ m, we have the following.

Remark (5.1) [Kar. & Gia. 1]: g(9S m) is ci decomposable vector of [R [s], c  — 3-nd deg{g(9G m)} — 6

where 6 is the Forney dynamical order [For. 1]. g(2Gm) is uniquely defined module cgR and may be 

represented by

g(9Bm) P6e ,(s), P<e R 5X (H l) , e j (s) =  [l, s, sf ]T (5.8)

The basis matrix P̂  of g(T>m) will be referred to as the Plucker Matrix of 3>m.

Theorem (5.1) [Kar. k  Gia. 1]: g(9G m) or the Plucker matrix P̂  is a complete invariant for matrices 

M(s )G^»(s ) under R[s]-column equivalence. □

Hence a subspace 9DmgG(r, Rp(s)) is uniquely characterised by the decomposable reduced and 

monic vector g(9Gm)£ R <7[s] or by the Plucker matrix P { is a complete or basis free, invariant for 

subspaces 9GmeG (r, Rp(s)).

- 9 7 -
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When a linear multivariable system is described by the transfer function matrix G(s), where 

G (s)eR mXI(s), m >l, ran k^ ^ {G (s)} =  l or by a right coprirne fractional representation G(s) =  

Nr(s)Dk1(s), we may associate the following rational vector spaces:

9GC =column-span^^ĝ {G(s)}

9G j  =column- spanR(s)̂
Dr(s)'
Nr(s)

(5.9)

Then ££c characterises the family of systems G^s) derived from G(s) under a rational full rank pre-

compensation, that is G ^ s )  =G(s)Q(s), Q(s ) g R,X,(s ) and not the particular G(s); 9GC will be referred 

to as the precompensator space of the system. On the other hand, SGy is a space characterising the 

particular G(s) and will be referred to as the right rational fractional representation space of the 

system. The canonical polynomial Grassmann representatives, (C — IR[s] — GR), of 9GC and will be 

denoted by g(9Gc) and g(96y).

Remark (5.2) [Kar. & Già. 1]: 

9Gc-g(95y) =  PÌe.u(s) where p £ g

g ($c) =  P^e,(s) where P ‘ GR( ' )><(' +l) and 6 is the Forney order of

r , +')x (»+i) and v is the McMillan degree of G(s).

If G(s) =  Nrc(s)Drc(s) =  Nr(s)Dr 1(s) where (Nr(s),Dr(s)) right coprime, but (Nr(s), Dr(s)) not 

necessarily so, then if

/m\
Nrc(s) =  [n1(s), •••, nj(s)], g(2Ec) =  p c(s)GR ' (s)

and

Tr(s) =  [ t l(s), •••,!,(s)] =  [Dr(s)T Nr(s)T]T g(çg ) =  p ' ( 8) 6 R
/m + l \

l >
(s)

then by proposition (5.2) we have that
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(5.10)

t(s)A =  i  i(s)-•• AÌ ,(s) =  c-z(s)-p(s) =  c-z(s)-P£e(s)

where z(s) is the zero polynomial of G(s) and z(s) the output decoupling zero polynomial of the state- 

space description associated with the non-coprime fractional representation Nr(s) D r1(s).

Using Pliicker matrices, the determinantal frequency assignment problems as defined in 

chapter 4 section 2 may be expressed as follows:

(i) Determinantal zero assignment problem: Let z(s) be the zero polynomial G(s), 

k T A £R 1Xr, r =  ̂ '[“̂ , be the exterior product of the squaring down compensator k and 

let k p be an arbitrary vector of IRr . For a given k pGRr investigate the zero 

distribution properties of the polynomial

Z(s, k p) =  c-z(s)-kp P^e.i (s), c G R — {0} (5.11)

Also, if k p assigns the zeros of z(s) at given locations in C, determine whether there 

exists K such that k T A =  k j .

(ii) Detcrminantal Pole Assignment Problem: Let fT AGR1Xt;, =  be the exterior

product of the composite feedback matrix Fr =  [I( F]g R  ̂ and let _fp be an 

arbitrary vector of Ru. Then for jf pGlR1', investigate the zero properties of the 

polynomial

p(s, fp) =  c ' - i j  P Ì  e„(s), c' G R —{0} (5.12)

Also, if f p assigns the zeros of p(s) at given locations in C, determine whether there 

exists F such that_fT A =  _f J .

1 - 9 9 -  I
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If the zero polynomials of G(s) and KG(s) are z(s), z^s) respectively, then

zt (s) =  z(s) z (s ,k p) (5.13)

where

z (s,kP) — k? kp g  ®(Pr _ 1) (5.14)

The maximal degree of z(s,kp) is equal to the Forney degree 6 of 9Gy. The problem of finding k p E 

[Rr , r =  ̂ ™̂  such that

T (s,kP) =  a(s) =  a>s‘ (5.15)
1 =  0

where a,- E R will be referred to as the linear determmantal zero assignment problem  (LDZAP). The 

solution of this problem is reduced to the study of the equation

(P i)Tk p =  a > a =  K ,  •••, a(S]T E R (5.16)

A system for which equation (5.16) has a solution kp G RT for all a E R^ 1 will be called 

linearly zero assignable (LZA). Furthermore, if for every a equation (5.16) has a solution lc p where k p 

is also decomposable, then the system will be called completely zero assignable (CZA).

The linear determinantal pole assignment problem (LDPAP) may be defined in a similar 

manner. Then the solution of LDPAP is reduced to the study of the equation

(p£)Tf p=  b, b E R(v +  1)f p E Rv (5.17)

I - l o o -  1



Chapter 5

where

b =  [b0, bv] e.v(s) =  b Te.t<(s) (5.18)

Similarly, we may define linearly pole assignable (LPA) systems and completely pole assignable 

(CPA) systems.

The dynamic system will be called genencally pole assignable (GPA) if the set of all coefficient 

vectors b for which the pole assignment problem is solvable is open and dense in R1"*”1 and its 

complement has measure zero. This ensures that the system is pole assignable for “almost all” 

a £lR' "b1. More details concerning the notion of genericity can be found in Willems k, Hesselink [Will. 

& Hes. 1],

A system for which all decomposable vectors ¿ P are such that "z (s,k p)^ c , cgR will be called 

strongly zero non-assignable (SZNA), and similarly a system for which there is no decomposable vector 

_f p such that f(sX p)=c, cgR —{0} will be called strongly pole non-assignable (SPNA).

The following theorems of Ivarkanias and Giannakopulos [Kar. & Gia. 1] provide some useful 

conditions concerning the pole-zero assignability property of a system.

Theorem (5.2): Let P^=[p0, •••, p^] =  [p0, P c] gR  ̂ ^   ̂ be the Pliicker matrix of the vector 

space 9GC associated with G(s) and let 7rc=rank P̂  and 7rc = ran k{P c}.

1) G(s) is LZA if and only if 7rc= 6 + l or ^ ^ > ¿ + 1  and 7rc =  <$+l

2) Necessary conditions for G(s) to be CZA are ^7 ) — ‘-’+1 an<̂  7Tc =<5+1

3) Sufficient conditions for G(s) to be SZNA are and x c =  ^7 ) □

The corresponding result for the pole assignment problem may be stated as follows:

- 1 0 1 -
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Theorem (5.3) [Kar. k, Gia. 1]: Let p i =  [p0, • p v] =  [p0) P^Jg R  ̂  ̂ be the Pliicker matrix of

the vector space SG associated with G(s) and let 7Ty=rank{p{} and ify =  rank{P^}

1) G(s) is LPA if and only if t t j =  v +1 or ^m;+,^ > v + l and tTj = v +1

2) Necessary conditions for G(s) to be CPA are and 7fy =  i;+ l

3) Sufficient conditions for G(s) to be SPNA are and n j =  □

The case of generically pole assignable systems is characterised by the following result

Proposition (5.3) [Kar. & Gia. 1]: A necessary condition for a system to be generically pole assignable 

is rankjPt,} =  u+1. □

The above results when applied to the centralised control problems provide the following 

Pliicker matrices.

(i) Pole assignment using centralised-constant state controllers

If we represent by b T(s)A the exterior product of the rows or the matrix pencil 

B(s) =  [sl —A, B]g R  ̂ [̂s] then

b T(s)A = C „ {[s l-A , B ]} =  e J(s )  P^ (5.19)

where C {-} is the n^1 compound matrix of {•} and P n the Pliicker matrix. If g(T) is 

the canonical polynomial Grassmann representative of the rational vector space

T B =column-span^^ĝ {BT(s)} (5.20)

then b(s)A may be uniquely factorised as

b T(s)A = c-zB(s) g (T ) = c-z B(s) P(A,B) e„(s) (5.21)
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where the roots of zB (s) correspond to the uncontrollable modes of the system and 

P(A,B) is the controllability Plucker matrix. If the system is controllable, then

b T(s)A =  c g ( f B) =  c P(A,B) e„(s) (5.22)

where P(A,B) =  P„£ll
r n+')x(n  + 1)

If we assume

b T(s)A = e ï ( s )  P(A,B) (5.23)

where

P(A,B)

bi

Jn —  1

— +

an — 1 &n — 1

b I P(A,B)

— +  —

1 I 0

(5.24)

[bT, 1] = [b 0, •••, b „ _ 1] is the coefficient vector of the polynomial det{sl —A}, 

p =  ̂ n̂ "i ,̂ aE R 11"*"1, then P(A,B) is called the reduced controllability Plücker matrix.

For the case of pole assignment by constant state controller (CSC), the

equation

( nZ')
P(A,B) k =  a , a 6 Rn +  \ k 6 R " (5.25)

1 - 1 0 3 -  1
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takes the form

b P(A,1 

1 0T

or

P(A,B) k =  a - b  (5.27)

where [1, ¿ ] T is the exterior product of the columns of [In, LT]T, L GR,Xrl and [aT , 1] 

=  [a0, alt •••, an_ 1 1] is the coefficient vector of the polynomial to be assigned. For 

details see Chapter 4 and equations (4.4)-(4.7).

Pole assignment using centralised constant output controllers

Let G(s) £ R mX,(s), ran k^ ĝ {G(s)} =  min{m,l} and let [Drc(s), Nrc(s)] be a right 

coprime fractional representation of G(s) i.e. G(s) =  Nrc(s)Drc(s)_1, where 

Nrc(s)GRmX,[s] ,Drc(s )e R ix ,[s] are coprime and Drc(s) is column-reduced i.e. 

degdet Drc(s) =  í c¡Drc(s) where 8ci is the degree of the \th column of D(s). If
¿ =  i

I C T r ) =  c C ,{ [D t (s ) N t (s )]t }, c  G R - { 0 }  (5.28)

is the canonical polynomial Grassmann representative of T R =  

col-span|[D7c(s), N^c(s)]T |  then the first entry of g (‘PR) is c det{Drc(s)} and by 

assuming that G(s) is strictly proper transfer function matrix then all other co-

ordinates of g(‘PR) have degrees strictly less than the degree of det Drc(s). Thus we 

may write

(5.26)

g ( r R) =  P (T R)e „ (s ) (5.29)
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where

P(Tr ) =

Po Pi P„-i i

p 2r0 p 2 P2n - 1 0 =

p £ P 1 P?r n - 1 0

p t 1

(T r ) 0

n +  l )
is the Pliicker matrix of -  r r 1)

(5.30)

whileand P (Tr ) £ l< is ttie Piucker matrix ot 7 R, q

P (T r ) (E IR̂ ?  ̂ will be referred to as the reduced Plucker matrix of the vector 

space T r . Also, the first row of P (TR) represents the characteristic polynomial of the 

open-loop system i.e.

Po + Pis + p2s2 + ■ • ■ + p„-isn_1 + s" =  [pT, 1] e (s) =  £ det |Drc(s) j  (5.31)

then the linear problem of pole assignment by centralised constant output controllers 

formulated as:

P t (T r ) k =  a , a<ElRn +  \ k G IR*. q =  (5.32)

where the roots of the polynomial a(s) =  a T£ n(s) are the poles to be assigned, may be 

formulated as

P p (T r ) t 1 â

L 0 T k 1
(5.33)

where [1, k] is the exterior product of the rows of [IL, F] and [a, 1] =  [a0, ax, •••, 1] 

are the coefficients of the desired polynomial. The matrix [I, F] has already been 

defined in Chapter 4 Problem 2. Again a necessary condition for generic assignability
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by centralised controllers is provided by Proposition 5.3.

(iii) Zero assignment by centralised squaring down controllers

We have seen in Chapter 4, Problem 3, that the zero polynomial of the squared down 

system is given by

z*(s) -  det (KNR(s)} (5.34)

If z(s) £ R,x , [s] is the greatest right divisor of NR(s) then

NR(s) =  N(s) Z(s) (5.35)

where N(s) € !RmX,[s] is a minimal basis of the rational vector space 9GC spanned by 

the columns of NR(s). Then, equation (5.34) is written

zt (s) =  det (KN(s) Z(s)}

and by the Binet-Cauchy theorem equation (5.36) yields 

zk(s) =  C ,(k) C,{N (s)} z(s) =  Z/(s) z(s)

where z(s) =  det Z(s) is the zero polynomial of G(s). Since N(s) is a minimal basis of 

9dc, then C; {N(s)} may be written as

C,{N (s)} =  c g(S5e) =  c Pf e s(s), c £ R - { 0 }  (5.36)

where g(9Ec) is the canonical polynomial Grassmann representative of $ c and P^G 

IRP \ p =  the Pliicker matrix while 6 is the dynamical order of the rational

vector space SGC.

Again, a necessary condition for the generic zero assignment (GZA) problem 

specified by the already familiar equation

Ps k =  a , a £ >6 +  1, k £ (5.37)

I - 1 0 6 -  I
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is provided by the proposition (5.3) that is rank {P { } =  6+1.

5.2 Decentralisation Indices for Decentralised Control Systems

We have seen in chapter 4 that the controllers in the case of decentralised control assume the following 

structure:

and

K =
Ir

Kn
>pXr k D —

K l 0

0 K2

0 0

G ü r X r , V =  p - r (5.38)

Kj =  {KX) K2, - ,  Kn) €

To investigate the above structure, we introduce the following definitions:

Definition (5.1): Let Qr,P denote the set of strictly increasing sequences of r integers (1 < r < p) 

chosen from 1, 2, p. Dr,P denotes the set of sequences of r distinct integers chosen form 1, 2, •••, p 

and Sr,P the totality of r integers chosen form 1, 2, p. Thus, Dr,P is obtained from Qr,P by 

associating with each sequence w £ Qr,P the r! sequences obtained by reordering the integers in all 

possible ways. Qr , p has  ̂ —y| sequences in it, Dr,p has =  ^ y ,  sequences in it and

Sr,p has prsequences in it.

Definition (5.2): Let K £ IRpXr, r<p, rank{K} =  r and to — { i lt i2, •••, ir } 6 QrlP and let (i-) be 

the subset of the integers from 1, 2, r which correspond to the non-zero elements of K matrix in the

i j  r o w

(i) We define as the index u  in K the set

I(oi,K) =  {(q ), (ir)} (5.39)

1 - 1 0 7 -  I
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The sequence ui will be called complete in K, if for all j  £ X , { i ; } 7̂  0; otherwise it 

will be called noncomplete in K.

(ii) For a to £ Qr,p which is complete in K we define as the span o f to in K  the set of 

sequences

sp(u,K) =  {z: z—(j! J 2i• ■ *jr) £ Sr,p| ji £ (ii),-' j r  €(ir)} (5.40)

(iii) For u> £ Qr,p which is complete in K we define as the basis o f uj in K  the subset of 

sequences of span(u>,K) defined by

b(o>,K) =  {v:v=(k1,---,kr) £ Dr,p and v £ span(u;,K)} (5-41)

(iv) A sequence to £ Qr>p will be called degenerate in Iv if it is noncomplete in K, or if it is 

complete in K and b(u>,K) =  0. If to is complete in K and b(w,K) 0, then it will be 

called nondegenerate in K.

(v) If to is nondegenerate in K and v =  (kl5 k2, •••, k„) £b(w,K), we define {v} as the 

representation o f v in u> the set of ordered pairs

{ v} =  {(ii> ĥ ), (i2, k2), (ir,kr)} (5.42)

the set of representations of all v £ b(w,K) is denoted by

(b(w,K)} =  {v : v £ b(w,K)} (5.43)

and will be called representation o f ui in K.

□

Using the Laplace expansion theorem for determinants the following result may be readily established.

Proposition (5.4): Let K =  K .’ '• ' ■ = K  , be the minor of K which corresponds to the set {1, 2 ,
’i»*2r  ' ')lr

• • r} columns and the set to =  { il5 i2, • • ir } rows then

I - 1 0 8 -
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(i)

00

Ku)j=  0, if u> is degenerate in K

Kw]=  sign(p) a t- a » 2 fc 2 ' ' ‘ a irkr i w is nondegenerate in K and where a -  are the elements

of K. □

The following example illustrates the above definitions and proposition.

Example (5.1): Let K be defined as

1 0 0

0 1 0

0 0 1

0 0 0

0 ii 0

(5.44)

The set of Q3 5 sequences defining the g(K) multivector and the corresponding bases of the sequences w 

£ Q3 5 in K are:

1(1,2,3) =  {(1),(2),(3)} 

1(1,2,4) =  { (1),(2) ,(1)} 

1(1,2,5) =  {(1),(2),(2,3)} 

1(1,3,4) =  {(1),(3),(1)} 

1(1,3,5) =  {(1),(3),(2,3)} 

1(1,4,5) =  {(1),(1),(2,3)} 

1(2,3,4) =  {(2),(3),(1)} 

1(2,3,5) =  {(2),(3),(2,3)} 

1(2,4,5) =  {(2),(1),(2,3)} 

1(3,4,5) =  {(3),(1),(2,3)}

-  b(1,2,3) =  {(1,2,3)} 

-> b( 1,2,4) =  0

-  b(1,2,5) =  {(1,2,3)}

-  b(1,3,4) =  0

-  b(1,3,5) =  {(1,3,2)}

-  b(1,4,5) =  0

-  b(2,3,4) =  {(2,3,1)}

-  b(2,3,5) =  0

-  b(2,4,5) =  {(2,1,3)}

-  b(3,4,5) =  {(3,1,2)}

(5.45)

By inspection of the bases of u G Q3 5 sequences the representations of b(w,K) are defined and from 

these the minors. Hence,

{b (l,2 ,3)} =  {(1,1),(2,2),(3,3)} ~+ k123 — 1

(1,2,4) : degenerate

OliCNÎ

{b (l,2 ,5)} =  {(1,1),(2,2),(5,3)} —*■ 1̂25 I3

I - 1 0 9 -  I
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{1,3,4) : degenerate ~H’’ k l 3 4  = 0

{b( 1,3,5)} =  {(1,1),(3,3),(5,2)} —* ^ 1 3 5  = -1;

(1,4,5) : degenerate ~1" k145 = 0

{b(2,3,4)} =  {(2,2),(3,3),(4,1)} ~ ^ 2 3 4  = l l

(2,3,5) : degenerate k235 = 0

{b(2,4,5)> =  {(2,2),(4,1),(5,3)} —* ^ 2 4 5  = l l

{b(3,4,5)} =  {(3,3),(4,1),(5,2)} k345 = l l

The zero entries in the multivector g(K) are those which correspond to the degenerate 

sequences u j(EQ3 5 in K and they are

{k124, k134, k145, k235} (5.47)

An alternative procedure for finding the location of zeros in g(K) is by using the procedure for 

writing down the set of Reduced Quadratic Pliicker Relations [Kar. Già., 1], The procedure may be 

illustrated by the same example as above.

Example (5.2): Let Iv£lR5X3 be the matrix with structure as in Example (5.1) and let g(K) =  [k123, 

^I24i k1251 k134, k135, k145, k234, k235, k245, k345] be a decomposable vector with k123 — 1. dhe 

matrix K which corresponds to g(K) is then defined by

1 0 0

0 1 0

0 0 1

1^234 ■1T34 k l 2 4

^235 ”1^135 1^125

(5.48)

For the decentralised case we must have

^134— ^124— ^235 — 0 (5.49)

- 1 1 0 -  I
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The set of Reduced Quadratic Plücker Relations may then be expressed by the nontrivial 

relations in the equation

C3(K) =  g(K) (5.50)

that is

1̂23 ^123 1) 1̂24 k124, k125_  k125, k134— k134, k135— k135,

1̂45 =  ~ k 125k134 +  k124k135, k234 = k 234, k235= k 235,

2̂45 “  ~ k 234k125+k124k235, k345 =  — k234k135 + k 134k235 

From the set of conditions (5.49) it follows that

(5.51)

□

^145— k123-0 + 0'^135 — 0 —*■ k145— 0 (5.52)

and hence we have the conditions

{^134— 0, k124— 0, k235 _  0, k145— 0} (5.53)

which are similar to the conditions of (5.47).

The conditions for decentralisation and decomposability thus become

1̂23 =  k123 =  1, k124 = k 124 = 0, k125= k 125, k134 = k 134 = 0, 

k i35= k135, k145 =  0, k145= 0, k234 = k 234, k235 = k 235 =  0, 

^245 =  ~ k125k234, k345 =  —k234k135 (5.54)

The above example demonstrates an alternative procedure for deriving the location of zeros in

k D A or 1 D A we first note:

Lemma (5.2) [Kar. & Gia. 1]: Let k =  [-• kw, ■••]T £ R ‘7, o' — (P r) be a decomposable vector and let 

ki 2 . ..  r =  l. A basis matrix for the subspace characterised by kmay be defined by

K =
Ir

R
E R pXr, r  e u {p~ r)xr (5.55)

-111-
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where

R =

( - l ) r _ 1 k2,- - ,r ,r + l ( - l) r - 2k13,  • • • , r ,r +  l ki,2 * , r  — l , r  +  l

(- l)r _ 1k2 ( - l) r _ 2k1 ■ - , r , p k1,2,- • - , r - l , p

(5.56)

□

Proposition (5.5) [Kar. h  Gia. 1]: A set of Reduced Quadratic Pliicker relations (RQPR) for points of 

with the first Pliicker coordinate k1 2 . .. r =  l is given by

k
I r

R
(5.57)

□

Based upon the above results of algebraic geometry we may formulate now the alternative 

procedure for the computation of fixed zeros in the decomposable vector k characterising a 

decentralised control structure

Proposition (5.6): The zero coordinates of the decomposable vector k =  kw, •••]T € IR*7, & =  (r)

which characterises a decentralised control system are given by

(i) The decentralisation assumption implies that a set of Pliicker coordinates in the 

expression of R must be set equal to zero.

(ii) An extra set of zero Pliicker coordinates is obtained by introducing those zero 

coordinates defined in (i) into the set of reduced quadratic Plticker relations. The 

above procedure yields some extra zero Pliicker coordinates.

The two procedures defined above yield the number of fixed zeros in the multivector 

C u(K )= liDA where K is defined by (5.38). The following Theorem summarises the results so far the

- 1 1 2 -  I
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case of decentralised control systems.

Theorem (5.4): Let K G RpXr be the decentralised control matrix

K
K

, K D -
D

.r .x r .

Ki 0 ... 0

0 K2 ... 0
G RrX r, r =  p —r (5.58)

0 0 ••• k n

1’ WtV , uqm) be the set of degenerate in K sequences of Qr,P. For

generic values in the elements of the submatrices K, in KD, the set of zero Pliicker coordinates in the 

decomposable vector k A =  Cr(K) =  [ l ,-• -,kW)-• -]T g R“7, cr =  (f!) is given by

0  = (5.59)

The proof of the above result follows immediately from proposition (5.4).

The set of degenerate in K sequences of Qr,P, $  =  •••, wim} which define the fixed

zeros in k A will be called the set of decentralisation indices (DI) of the system. Since the set <ï> 

characterises the structure of decentralisation, its importance in decentralised control will be examined 

next.

5.3 Decentralised Plücker matrices and the Decentralised 
Grassmann Subvariety

We have seen in Chapter 4 that the decentralised determinantal pole assignment problems may be 

characterised by the following multivectors

(i) Decentralised Constant State Controllers (D-CSC)

The determinantal polynomial equation is given by

- 1 1 3 -
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P|_(s>Ld ) — detjc(s) L q | — c.(s)TA d D

where

(5.60)

(5.61)

(5.62)

¿ ( s)t A:= exterior product of the rows of (5.61)

_]_□: =  exterior product of the columns of (5.62)

(ii) Decentralised Constant Output Controllers (D-COC)

Again as shown in Chapter 4, the determinantal polynomial equation is

C(s) =  [sl —A, - B ]

Lo =  [̂ n

n ,  X J  -
Lq  = block-diag{L1, L2, •••, LN}, L.gIR

Pk (s ,Kd ) =  d et{T ; (s) K 1D}  =  det{K [)T r(s)} (5.63)

P k (s >Kd ) =  ( a ^ s ) ) A ,k !D) =  (k r)T A -tr (s)A (5.64)

where (.)Tis the transpose of (.).

Here the multivectors _t/r (s)A and J_(s)T A are polynomial Grassmann representatives

-1 1 4
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(R [s]-G R ) of the rational vector spaces defined by G(s) and T f(s) =  [D,(s) N,(s)]. The coprimeness 

hypothesis of T ;(s) =  D,— x(s) N;(s) implies that the multivector _t ¡(s)T A is reduced and the 

controllability hypothesis also implies thatj_(s)T A is reduced.

If P<~ and PL are the controllability, left fractional Plucker matrices then

i ( r (s) A =  e j( s )  P L (5.65)

c.T(s)A =  ¿ J ( s ) P c (5.66)

where

eX(s) =  [1, s, (5.67)

( n - f - l ) X r
P L € RV , ( (5.68)

( n - f - l ) X p
P c  e Rv ; , | (5.69)

Hence, from (5.60) and (5.63) we have

1
P l (s> I'd ) — e l( s )  P c

I d
(5.70)

PK(s, Kd ) =  e.n(s) PL
1

— D
(5.71)

and for pole assignment, we have that

P l (s ,Ld ) =  $ L(s) (5.72)

P k (s ’Ld ) =  < M S) (5.73)

where <]>|_(s) and $ K(s) are the arbitrary desired polynomials.

- 1 1 5 -



Chapter 5

1

1

o
__

__
__

_
1

a

1
Û-*l

____1 an — 1 
1

1

Let <f>k(s) =  iLn(s) [a0, ax, •••, arl_ 1, 1]T E R[s] be the desired polynomial. Then, equations 

(5.71) and (5.73) are reduced to the following two subproblems.

(i) Determine whether there exists a solution for some arbitrary k £lRn and any vector a£[Rn of 

the equation

(5.74)

(ii) Let 9G(a) be the family of solutions of (5.74) for a given a. Then, the decentralised pole 

assignment problem (DPAP) is defined by the following statement.

DPAP Statement: Determine whether there exists a decomposable vector [1 k D]T G 36(a) which 

satisfies also the decentralised assumptions i.e. it has a set of zero co-ordinates at the locations of the 

decentralisation indices, $  =  |wti,

We, therefore, conclude that the study of the pole assignment using decentralised control is reduced to 

the investigation of the properties of the Pliicker matrices Pc and P L. The Pliicker matrix Pc is the 

object of study for the case of state feedback while P L assumes the central interest for the case of 

decentralised control using constant output feedback. Another important concept for the case of 

decentralised control is the motion of ^-decentralised subvariety, 'J'(0-,<f>) introduced by the following 

proposition.

Proposition (5.7): Let <t> =  {w^, u ir), •••, be the subset of degenerate sequences of Qr,P. The set 

of equations describing the <f>-decentralised subvariety of D(r,p), 'î'(<r,<ï>), where <x =  (f) is given by the 

set of nontrivial equations defined by

R CT =

1

=  Cr
I r

R
(5.75)

ko;.- — 0 (5.76)

- 1 1 6 -  I
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where R is a matrix which is a function of {kw} and is given by

( - 1), - V . , r , r + 1 ( - l ) r " X 3 . - . r , r +i

R =

( - l ) ’- 1k2,.. . ,r,p ( - l ) r - 2k1,3,•• • ,r,p

k l ,2 , r  — l , r  +  l

(5.77)

k1,2,- • - , r - l , p

□

It is then known [Kar. & Gia., 1] that the solution of the linear subproblem defined by (5.74) is a 

linear variety of PCT(R). The decentralised decomposable vectors [1 k D]T also define a variety of 

PCT(R); such a variety has been defined above by equations (5.75) and (5.76) and been called $- 

decentralised subvariety of the Grassmann variety fi(r,p). (r =  m, p =  m +  l, a — of the projective

space P CT(1R). Also, the existence of the decomposable vector

1

k D

6 K(a)

implies that K(a) and ^(u,«!») must intersect at real points.

(5.78)

We may therefore summarise the above observations by the following result.

Proposition (5.8): Necessary and sufficient conditions for the existence of a decentralised feedback 

controller that will assign arbitrary the poles of the closed-loop system is

K(a) R  * ( * , * )  #  0 (5.79)

and that the set of common points contains at least one real point.

The set of equations defining 4'(<7,<i>) can be demonstrated by the following example.

Example (5.3): Let

k — [k123, k124, k125, k134, k135, k145, k234, k235, k245, k345]

1 - 1 1 7 -  1
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be the co-ordinates of a point in R(a) »10

Let us also assume that the set

=  {(1,3,4), (1,2,4), (2,3,5), (1,4,5)}. 

Then the set of equations describing the (10,$) variety are

1*134= 1*124 = 1*235 — 1*145 — 0

1*123 =  1*123 = 1, 1*124 =  1*124 == 0, k125 =  k125,

1*134= 1*134 = 0, 1*135= 1*135! 1*145 =  0, k234 =

1*235= 1*235 = 0, 1*245 =  —1*125k234i k345 — —k

k234i

2 3 4 ^ 1 3 5

from the above equations, the nontrivial set

^ 1 2 3  —  1 )  ^ 1 2 4 — ^ 1 3 4 — ^ 1 4 5 — ^ 2 3 5  — 0

k24 5 — ^125^234i k345=  —k234k135 

describes the decentralised subvariety of '¡ '( 10,$).

□

Note that if a point of — j satisfies the equations of $((7,$ ) defined by (5.75) and (5.76) then a 

decentralised controller is defined by

K =
I r

R ($)
(5.80)

where R ($ ) is the matrix defined by (5.77) with the conditions kWi =  kWi =  •■• =  kWî  =  0 imposed 

on its structure.

Example (5.4): The set of equations describing (10,$) where $  =  {(1,3,4), (1,2,4), (2,3,5), (1,4,5)} is 

given by

1̂23 — 1̂24 — 1*134 — 1*145 — 1*235 — 0 

1*245— 1*1251*234) 1*345 =  “ 1*2341*135

I - 1 1 8 -  I
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The set of the above conditions may be linearised in the following ways. Let

0  k 125 —  a i k 135 = b

Ü) k 2 34  =  7

These two linearisation schemes yield the following structure for the controllers

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 to II 0 0 1

k 2 3 4 0 0 7 0 0

0 - b a 0 " k 135 k 125

For K j and K2 the corresponding multivectors are 

k.i =  [1, 0, a, 0, b, 0, k234, 0, k245, k345]

k.2— [1) 0, k125, 0, k135, 0,7 , 0, k245, k345]T

and for decomposability of k j and k_2 the following linear conditions must hold true

¿ i : k 24 5  a k 234>  k 3 4 5  — b k 234

k  2 : k 2 45  = — k 125i  k 3 4 5  —  '- 7 k i 35

Attention is now focused on the derivation of necessary conditions for pole assignability by 

decentralised feedback. The fixed zeros of the set <ï> are used to define the decentralised Pliicker 

matrices.

Given that G(s) has been assumed strictly proper, the first column of P L is defined by the 

coefficients of the pole polynomial < det D,(s) > and hence we may write

- 1 1 9 -
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P/
1

— D

T o a 2 • a 0 a 0

2 <7
7 i a l  ' • '  a i

. .

1 0 0

a0

ai

an-l
(5.81)

or

7

1 1

(5.82)

1 2 0 -  |
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correspond to the set of decentralisation indices <E> =  uq2, P/ will be referred to as the

Reduced decentralised left fractional Plücker Matrix (Reduced decentralised controllability Pliicker 

matrix).

A vector of the type k D £ IRCT M \ a  =  may always be thought as a subvector of a

general vector [1 1( q ]T £ RCT which may be obtained from [1 1<q ] by dropping out the co-ordinates 

|kw: x=  1, kU)<i=  0, ••• , ka.i^ =  o|; the co-ordinates of are characterised by the set of sequences 

5> =  |w2, •••, w<i+1, uq^+1, which is a complementary set to that of =

|uq, (wi =  (1, 2, •••, m)). Vectors of the kD type with co-ordinates parametrised by

the set <ï> will be called <3>-indexed vectors of R(7-/Ì-1

Note that every vector of R° fl 1 may become ^-indexed by enumerating its co-ordinates by 

the set of indices. The vector [1 Jî q ] is decomposable and its co-ordinates satisfy conditions (5.77).

and by dropping out the obviousBy inserting kuq. =  kuq2 =  • • • =  kWi.^= 0 into [1 k D] =  Cr 
identities, a set of nontrivial conditions on the co-ordinates of kp  is obtained, such a set of relations is 

defined as the set of decentralised Reduced Plücker Relations (<Ï>-DRPR). A <ï>-indexed vector kp 

which satisfies the set «Ê-DRPR will be called $- decomposable.

Proposition (5.9): Let [1 lip ]T =  [1, ku,2, ku,CT] £ RCT, <r <E> =  : uq̂ j - be a set of

sequences of Qr>p, kWii=  =  k̂ q. =  0 and let ¿ p  be the ^-indexed vector obtained from [1 

k £ ]Tby dropping the co-ordinates j^k^ =  1, kWii =  ••• =  kŵ =  o|. Then [1 k p ]T is 

decomposable if and only if, kp  is ^-decomposable.

□

The above result implies that the set of «L-DRPR may be used instead of the set RQPR. The 

investigation of the decomposability of [1 l(p]T with decentralisation indices <ï>, may thus be reduced 

to a study of 4>-decomposability of the smaller dimension vector k p.

When $-decomposability of je p is established, decomposability of the vector [1 k p ]T follows 

immediately and reconstruction of the [Ir R]T matrix associated with [1 ]<p]T is achieved in the way 

described before. If kp  is a ^-indexed vector, then the vector [1 It p]Tobtained by inserting in the 

appropriate order of the set of co-ordinates |ku,1=  1, kWi. =  0, ••• , kWi.^= o j will be referred to as 

the <ï>-completed vector of the “P-indexed vector kp . Proposition (5.9) then states that a <f>-indexed 

vector is ^-decomposable if and only if the ^-completed vector is decomposable.
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Example (5.5): For the vector k of Example (5.1) where k =  [k123 =  1, k124 =  0, ki25-ki34 =  0, 

ki35.ki45 =  k234*k235 =  0, k245, k345]T G R10, the « -̂indexed vector of R5 is £  =  [k125, k135, k234,

k245) k34s] £ R and the set of *F-DR.PR. is k24g ki25k234> k345 -~ k234>ki35 the vector lr is

the <E>-completed vector of R10 which is derived from the « -̂indexed £  D of RJ .

Within the framework of exterior algebra, the problems of decentralised pole assignment by 

state, or output controllers may be formulated as follows:

(i) Decentralised Pole Assignment by state controllers: Let •••, be the set of

indices of decentralisation, P c be the reduced decentralised controllability Pliicker matrix and 

a , 7 be the reduced coefficient vectors of the closed-loop and open-loop polynomial, 

respectively.

(a) Determine whether there exists a solution of the equation

P c i D = a - T = b  a <E Rn (5.87)

(b) Let L (a) be the family of solutions of (5.87). Index according to $  every vector_[D £ 

L(a) and determine whether there exists a <!>-indexed vector £ L (a) which satisfies 

the ^-decentralised reduced Pliicker relations.

(ii) Decentralised Pole Assignment by output feedback: Let <!> =  |wti, aqj> be the set of 

indices of decentralisation, P, be the reduced decentralised left fractional Pliicker matrix, a , 7 

be the reduced coefficient vectors of the closed-loop and open-loop polynomial, respectively.

(a) Determine whether there exists a solution of the equation

P, =  a — 7 =  b for V a 6 Rn (5.88)

(b) Let K (a) be the family of solutions of (5.88). Index according to every vector k D £ 

K (a) and determine whether there exists a <3>-indexed vector k D £ K (a) which 

satisfies the <F-indexed reduced Pliicker relations.
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Chapter 6

FIXED, ALMOST FIXED MODES AND ZEROS 
IN DECENTRALISED CONTROL

6.0 Introduction

The objective of this chapter is to provide a new characterisation within the exterior algebra framework 

of fixed modes and zeros of linear dynamic systems, extend these concepts to the case of “almost 

fixed” and finally apply these concepts to the case of Decentralised control. The desire to extend the 

above concepts of fixed modes,zeros to those of almost fixed, stems from the critical importance of 

multivariable poles and zeros in the analysis and synthesis of automatic systems and their 

mathematical characterisation by the common divisor of a set of polynomials. Because, the usual 

definitions of multivariable zeros involves the rank test of a special matrix [Ros. 1; McFar & Kar. 1] as 

well as the uncertainty involved in the mathematical description of dynamic systems, the precise 

concepts of modes and zeros are of little relevance from a computational and practical point of view. 

The same observation may be extended to the classical concepts of controllability and observability.

The problem of restoring the various concepts of exact modes and zeros for multivariable 

systems with uncertainty in the parameters has been studied by Karcanias et al [Kar., 1] using the 

classical centralised control approach. Their main achievement is the extension of the concept of exact 

zero of a set of polynomials to that of “almost zero”. Since the dynamical interpretation of an exact 

zero involves the minimisation of a certain function, the generalisation of an “almost zero” is again 

based on the minimum of a certain measure function defined on a set of polynomials.

In section 6.2 fixed modes and zeros for decentralised control are introduced as a natural 

vehicle of unifying the frequency assignment problems of centralised control to the decentralised case. 

Following the definition and discussion of almost zeros of a set of polynomials in section 6.2, we 

extend the notions of fixed modes and fixed zeros to those of almost fixed modes and almost fixed zeros 

in section 6.4. In section 6.3 we study the invariance properties and provide a new characterisation for 

the greatest common divisor of a set of polynomials. Using the decentralised Grassmann representative 

we show that for special families of decentralised systems, for which arbitrary assignment is not



possible, the family of decentralised strongly nonassigned systems the concept of almost fixed zero is 

introduced. A careful examination of the properties of almost fixed zeros shows that for all 

decentralised controllers, the corresponding decentralised polynomial combinant has at least one zero in 

a finite radius disk. The general properties and computational aspects of the radii of the “trapping 

disks” are discussed in section 6.5 and a new necessary condition for stabilisability is given in terms of 

the almost fixed zeros. New criteria for fixed, almost fixed modes and fixed, almost fixed zeros are 

given for the case of decentralised control in section 6.7 while in section 6.6 we provide quick tests for 

the existence of fixed modes and fixed zeros.

Chapter 6 |

6.1 The Decentralised r [s ] - Grassmann Representative, Fixed 
Modes, Zeros.

The study of D*,2DAP is intimately related to the investigation of the properties of f^ (s, H), when II 

€ 3€r,p, or Such an investigation provides a new characterisation of fixed modes under

DOF(DSF) and fixed zeros under DSD and yields new necessary conditions for the solvability of pole 

assignment under DOF(DSF), zero assignment under DSD. The nature of fixed zeros of f ^ s ,  H) for 

Mr,p, or %q,P will be investigated in this section; this investigation leads to a new criterion for the 

computation of the fixed zero polynomial fwOb H).

Let M(s) G R! X?[s], p <  q, p^^ĝ {M(s)} =  p, r =  q — p, 3p, 3r be given ^-partitions of p, r 

respectively, %r,p the corresponding set of matrices and (̂HGr.p) its decentralisation characteristic. If 

M(s) has zeros, then we may write M(s) =  Z(s) M^s), where Z(s) G RpXp[s] is a greatest left divisor,

|Z(s)| =  z(s) is the zero polynomial of M(s) and M^s) G RpX?[s] is a full rank matrix with no zeros; 

such a factorisation of M(s) will be referred to as a prime factorisation. The multivector m T(s)A 

Rix<7[s], a  — is known as an R[s]-Grassmann Representative (R[s]-GR).

Proposition (6.1) [Kar.5]: Let M(s) =  Z(s) Mr(s) be a prime factorisation and let

=  ro w -sp an ^  (M(s)}.

(i) If m ,T (s)A is the multivector of M^s), then

mT(s)A =  z(s)-m,T (s)A (6.1)

is also a prime factorisation of m T(s)A.
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(ii) m(s)T A is a complete invariant of modulo t(s) G R[s] and m,T (s)A is a complete

invariant of %M modulo c E R.

(iii) If 6 is the Forney dynamical order of 9£w , then deg m' (s)A =  S.

□

The coprime polynomial multivector m ,T (s)A is also an R[s]-GR of and has been called a 

canontcal-R[s]-GR (C-R[s]-GR).

Definition (6.1): Let {m Wt(s), wi G QPl9, i G ^pj} be the lexicographically ordered set of the Pliicker 

co-ordinates of m(s)T A and let =  {m, . G QPl?, j  G p} be the decentralisation characteristic

of %r,p- The subvector of m T(s)A obtained by dropping the Pliicker co-ordinates that correspond to 

^(Kr.p), i.e.

-  T  m (s)A =  [mWi(s), m Wj.i _ 1(s), m Uji+1(s), m w^ _ 1(s), m w,^ + 1(s), •••

-, m W; (s)] G IR1X<<7 ^[s] (6 .2)

will be called the % ï:P-decentrahsed-R[s]-GR (3€riP-D-R[s]-GR) of M(s). □

The 3f,riP-D-IR[s]-GR of M^s), m ,(s)A, is defined in a similar manner. Clearly, by eqn. (6.1) 

we have that

m T (s)A =  z (s)-m ,T (s)A (6.3)

Note that although m ,T (s)A is coprime, the corresponding rh,T (s)A vector is not necessarily coprime. 

Thus, let d(s) G R[s] be a greatest left divisor of m ,T(s)A. We may write m ,T (s)A =  d(s)-mT(s)A 

and thus

(s)A =  z (s)-d(s)-m T (s) A (6.4)

mT(s)A will be called a canonical M(iP-D-R[s]-GR (C-3tr,p-DR[s]-GR) and d(s) an M.rif 

decentralisation polynomial (M rP-DP) of M(s).

Proposition (6.2): The C -K (iP-D-R[s]-GR m T A and Jf>riP-DP of M(s) are invariant modulo c G R of 

all JEriP type D-DAPs defined on polynomial basis matrices M(s) of 9&M. □
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This result readily follows from the invariance of C-R[s]-GR, m /T(s)A. Note that different 

95^ rational vector spaces may have the same m T(s)A and d(s) (may have the same subset of Pliicker 

co-ordinates apart from those defined by the T(3£rlP) sequences).

In the following we shall denote m (s)A =  p (s) G R [s]. If ip =  deg d(s), then deg

p(s) =  6 — ip =  61 and p(s) =  P e  ,(s), where P £ R1’  mfx (5 +1 ) an(j  ̂ Sj ..  ̂ s{ ]T. The
<5 6

real matrix P, uniquely defines p(s) and will be referred to as the %r,p-decentralised Plücker matrix 

(3€riP-DPM) of M(s). By Proposition (6.2) we have:

Remark (6.1): The 3t)iP-DPM P is invariant (mod c, c G R) for all 3GriP type D-DAPs defined on 

polynomial basis matrices M(s) of 95^. 0

If k =  h A is the reduced vector of JG G 3GriP, then the combinant fAi(s, H) may be expressed 

as

f^ (s, H) =  <m(s)A, h A> =  z(s) d(s) <m(s)A, h A> =  z(s) d(s) f^ (s, H) (6.5)

f^ (s, H) =  p(s)T k will be referred to as the %r,P-canonical combinant and it is completely defined by 

the 3f>riP-DPM P- The factorisation (6.5) is crucial in the study of fixed zeros of fAi(s, H), as well as in 

the investigation of the zero location of the nonfixed zeros.

Definition (6.2): The 56riP-type D-DAP defined on M(s) has a fixed zero at s =  A G C, if for V II G 

K rjP the combinant fM(s> H) has a fixed zero at s =  A. □

The characterisation of the set of FZs of D-DAP is considered next. To establish the main 

result of this section we need the following lemma.

Lemma (6.1) : The Grassmann variety D(p,q) lies in the projective space P*7-1, a  =  ^pj and not in a 

space of lower dimension. □

Theorem (6.1): Necessary and sufficient condition for s =  A G C to be a FZ of the DGriP-D-DAP 

defined on M(s), is that A is a zero of f(s) =  z(s) d(s).

Proof: By eqn.(6.5) it follows that every zero of z(s) d(s) is a zero of f ^ (s, H), V II G 3GriP and this 

proves the sufficiency. To prove the necessity, consider the combinant f£f(s, H) generated by the 

coprime polynomial vector p(s) and assume that f j^ s , H) has a fixed zero A for V £  G By the
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coprimeness assumption for p(s), p(A) =  P e  ,(A) ^  0 and thus
6

rM(s, H) =  k T P e ,(A) =  0, £  G (6.6)
6

implies that k T G J f ({p(A)}, where dim i f ({p(A)} =  a  — p — 1. By expanding the reduced vector 

lc to the ^(Kr.p^structured vector k (by reintroducing the set of zero co-ordinates that correspond to 

^(DG^p)), it follows that .k must satisfy the set of QPRs defining the Grassmann variety G(p,q), as 

well as the conditions (6.6), which define a linear space of P*7-1; since those two properties must hold 

true for all ÎD(3f.rip)-structured vectors k, it follows that fl(p,q) is contained in a linear space of P*7-1 

of lower dimension than P"7-1 which contradicts the fundamental property of Q(p,q) established by 

Lemma (6.1). □

The polynomial f(s) == z(s) d(s) will be referred to as the %r,P-fixed polynomial (HGriP-FP). 

Given that for any k G IR̂ Ir.p the first co-ordinate is always equal to 1 we have:

Remark (6.2): The K?,p-FP f(s) of the M^p-D-DAP defined on M(s) =  [M^s), M2(s)] G IRpX?[s], 

M1(s) G IR? Xp[s], divides |M1(s)|. □

The 3Gr,p-fixed polynomial is defined in a similar manner; however, the property described by 

Remark (6.2) is not any longer valid. Our attention is focused next on the zero distribution properties 

of the 36r p-canonical combinant h ).

6.2 Almost Zeros of a Set of Polynomials

As it has already been stated, due to parameter uncertainty or round off computational errors, the 

notion of exact zeros is of little relevance to engineering system models. This led to the definition of the 

extended notion of almost zeros.

6.2.1 Almost Zero Equivalence [Kar.3]

Let IP =  {p,(s): p,(s) =  a'0 -fa js  +  a^s2 -|------ |-aj _jS * +a'd s ' }  be a set of polynomials and let d =

max {d£, i G m }. We may always associate a polynomial vector p(s), p(s) G Rm(s), where
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P 2 O5)

p(s) =
Pfc(s )

Pm(s)

a 0 a l ••• a d x 0

1-----

O
1

2
a 0

2

“ 2
0 0 S

2
S

k k
a 0

m m

O

1

d

\

P 0 a m s

=  Pd e d(s), P , G R mX(d+1) (6.7)

The polynomial vector p(s) is characterised by the matrix P d £ RmX(d+1), which is defined as 

the basis matrix of p(s) and the polynomial vector e_d, e^(s) £ R^d + 1\s).

When s £ C, p(s) defines a vector valued analytic function with domain C and co-domain C m; 

the norm of p(s) is defined as a positive definite real function with domain C as

||p (s)|| =  J ( p V )  P ( s ) )  =  -J(e J(s*) P j  Pd e d(s)) (6.8)

where s* is the complex conjugate of s and ( . )T denotes transposition. Note, that if q(s) =  s +  a is a 

common factor of the polynomial p,(s), i £ m, then for all i £ m p,( —a) =  0, p( — a) =  and thus 

||p( — a )I =  0. This observation leads to the following definition.

Definition (6.3): Let iP be a set of polynomials of IR(s), p(s) be the associated polynomial vector and 

let <f>(<T,vr) =||p(s)||, where s =  <7+jw £ C. An ordered pair (z^e*), zk £ C, ek £ IR and ek >0, 

defines an almost zero of <3> at s =  zk and of order ek, if 4>(<j ,w ) has a minimum at s =  zfc with value

From the set % =  {(zk, ek), k £ x }  of almost zeros of '3>, the element (z, l)  for which e =  inf 

{ eki k G i }  >s defined as the prime almost zero o f ‘¡P.
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It is clear that if 'D5 has an exact zero, then the corresponding e is zero. The magnitude of e at 

an almost zero s =  z provides an indication of how well z may be considered as an appropriate zero of 

IP; we could note however, that t depends on the scaling of the polynomials p,(s) in iP by a constant 

c, c £ R — {0}.

The set T1 may be standardised in various ways. We shall adopt the following standardisation: 

Let p(s) be written as

P(s) =  P0 +  pts +  Pd-is"*-1 +  p dsd, £ Rm; i =  0, 1, d (6.9)

The polynomial vector p(s) will be said to be monic if || p d|| =  1. In the case where ||pd|| ^  1, 

p(s) may become monic by dividing all p,(s) by || pd||.

The polynomial vector p(s) may also be expressed around s =  a , a  £ C by a Taylor type 

expansion as

P (w) =  b 0 +  wb x +  • • • +  wd +  wdb d =  [ B J  e(w) (6.10)

w =  s —a, b,- £ Cm

b 0 =  P(«) and b, =  i dI{p (s)} l  . , 0 i . ,. i 1 — F 2, •• -, d+1 
d s

(6.11)

For all a  £ C the highest vector coefficient b d in (6.10) is equal to the highest vector 

coefficient p d of equation (6.9).

If s =  q  is an almost zero of c5> then the corresponding order e is equal to |jb0|| ° f  equation

( 6 . 11) .

6.2.1.1 The notion of Normal Equivalence.

Let <3P/ “D , be two sets of polynomials in R(s) and let p^s) =  P ^ s ) ,  p,,(s) =  P,,e.(s) be their 

respective polynomial representation, where Pi £ RrX(^ +1\ p "  £ R *X d̂ + 1) are the corresponding 

basis matrices. The sets c? n , will be said to be normally equivalent (NE), and shall be denoted as 

P i S P^, if there exists an orthogonal matrix Q such that

I - 1 3 0 -



Chapter 6

P' =  Q P "
Or_ , ’

Q £ RrXr, if r > k

or

P'
O k - r

=  Q P", Q £ RkXk, if k > r

(6.12)

□

It should be noted that such an equivalence is defined between sets of polynomials of R(s) 

which have the same degree, but not necessarily the same number of polynomials.

Proposition (6.3): The almost zero structure of a set of polynomials '5P which is defined by ||p(s)||, is 

invariant under normal equivalence. □

An important consequence of this proposition is that the almost zero structure of iP may be 

studied on any set <íP, of the normal equivalence class, S('tP), of IP.

6.2.1.2 Singular Value Decomposition of the Basis Matrix

Let P G pm X n and rank (P) =  p < min(m,n). Then there exist two orthogonal matrices Q, R, of

order m, n respectively such that

P = Q
r

o
r t  =  [Y, y ']

r

o

u 1

u /T Y f U 1 (6.13)

where P =  diag {7^ 7 ,̂}, 7 , >  0 and Y TY =  Ip =  UTU.

The set of 7?, i £ p , are common positive eigenvalues of PTP and P PT, the columns of Y  are 

the eigenvectors of PTP corresponding to 7  ̂ and the columns of U are the eigenvectors of P TP 

corresponding to 7;2.

The above result defines the singular value decomposition (SVD) of P. In the case where the 

7i are distinct, then Y and U are uniquely defined.

Thus, for example, it can be shown that P and T UT have the same almost zero structure.
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6.2.2 The Location of Prime Almost Zeros: The Prime Disc

If 7 and 7 are the maximum and minimum singular values of P respectively, then the ratio 7/7  =  8 

is defined as the condition number o f P. It is important to know that the general shaping of the 

almost zeros of a set of polynomials depends on 8 and the maximum degree d of the polynomials.

Let “IP be a set of polynomials of R(s), P d £ RmX(d+1') be the basis matrix of <iP and let 7 , 7 

be the maximal, minimal singular values of Pd, respectively. Then

T || e.rf(s)|| <  $ (0-, w) <  7 I e.d(s)|| (6.14)

So if (z, £2) is a minimum of || p(s) ||2, s £ C, z £ C, e >  0, then (z, e) is a minimum of ||p(s)|| 

and vice versa. Thus the prime almost zero of “IP is always within the circle centred at the origin of the 

complex plane and with radius p, defined as the unique positive real solution of the equation

1 + r2 + +  r2d =  7 2/t2 =  82 (6.15)

The disc [0, p] within which the prime almost zero lies, will be referred to as the prime disc of 

IP. The radius p of the disc is defined by the degree d of the condition number 8 of <3>. Clearly p is an 

invariant of S(‘3P). The following general results may be stated for the radius p.

If d is the degree and 9 is the condition number of iP then the radius p =  f(d, 6) of the prime 

disc is a uniquely defined function of d and 8 and it has the following properties:

(i) the radius p is invariant under the scaling of the polynomials of <3P by the same non-zero 

constant c.

(ii) the radius p is monotonically decreasing function of d and 1 ¡9.

(iii) the radius p is within the following intervals:

if d +  1 >  82, then 0 < p <  1

if d +  1 >  62, then 1 <  p <  £?1/2

if d +  1 =  62, then p — 1.

(a)

(b)
(c)
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Thus scaling all polynomials of IP by the same non-zero constant c implies multiplication of all 

singular values of Pd by |c| and thus does not affect the condition number 9; because p is a function of 

9 and d only, the invariance of p follows.

6.2.2.1 Conditioned Sets of Polynomials

The conditioning of the polynomials plays an important role in determining the position of the prime 

almost zero. In fact, the prime almost zero is always in the vicinity of the origin of the complex plane. 

The uncertainty in its exact position is measured by the radius of the prime disc. Well conditioned sets 

of polynomials iP (i.e. 0 ~  1) have a very small radius prime disc, even for very small values of the 

degree d. Badly conditioned sets of polynomials IP (i.e. 9 > >  1) have very large radius disc, even for 

large values of the degree d .

Thus, necessary, but not sufficient condition, for the prime almost zero of a set iP to be away 

from the origin of the complex plane, is that IP is badly conditioned and its degree is relatively small.

Examples demonstrating the effects of the condition number on the distribution of almost zeros 

will be given later.

6.2.3 Computing the Almost Zero

The results on the prime disc also establish the existence of at least one almost zero for every set of 

polynomials.

Let ltP be a set of polynomials of R[s], p(s) =  Pd e. d(s) be the polynomial vector associated 

with <D5 and Pd <E 1R + ■* be the corresponding basis matrix. Necessary conditions for z £ C to be 

an almost zero of IP are

e j( z * )  A t  P j  P d e d(z) =  0

and (6.16)

e J ( z * ) P j  Pd A e d(z) =  0

where
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A =

0 0

0 0 

0 0 

0 0 

0 0
, ( d  +  l ) X ( d  + l) (6.17)

In fact it can be seen that the two conditions (6.16) are not independent, the first is just the 

complex conjugate of the second and vice versa. For the case where z £ R, the two conditions coincide. 

These conditions are necessary but not sufficient.

Sufficient conditions for a solution z =  a  +  jw £ C of conditions (6.16) to be almost zero are:

e j(z * )  { (At)2 P j  +  2A t  P j  PdA +  P j  Pd A 2} e d(z) >  0 (6.18)

and

2 { e j(z * )  A t  P j  Pd A e d(z)}2 >  { e j(z * )  (AT)2 P j  Pd e d(z) }2 +

+ { e J ( z . ) P j  Pd A2 e d(z) }2 (6.19)

These results may be used for the analytic computations of the almost zeros. In practice, such 

analytic computations are tedious, therefore a numerical technique, of the hill climbing type, has to be 

used for the computation of almost zeros. A programme was developed that plots the norm of each of 

the polynomial vectors p(s) as well as the surface of ||p(s)|| over a selected rectangle of the complex 

plane where $(<7, w) has a minimum. A standard minimisation routine is then used to compute the 

almost zero . In the case where we are interested in computing the prime almost zero, we compute the 

radius of the prime disc and then we select a point inside the prime disc as the initial guess of the hill 

climbing algorithm[Gia. 1],
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Example (6.1): Let the set of polynomials T1 be defined by the polynomial vector p(s)

1.2 4- 3.1s +  2s2 -f s3 1.2 3.1 2 1

3 4~ 2.2s 4~ s2 4~ 2.1s3 3 2.2 1 2.1

Again using the same computer programmes we perform the following calculations: 

The singular values of P are

7 =  4.7836059 7 =  0.5358303

The radius of the prime disc is

1 +  r2 +  r4 =  O7/7)2 =  79.699619 

so

p =  2.895749

The almost zero is located at 

(0.002234, 1.038991)

and its norm

e =  9.019537

Example (6.2): Let the set of polynomials be defined by the polynomial vector p(s)

1.1 4- 2s 4- s 24- 3s 3 i . i 2 1 3

-.8 4* 2.5s 4* s3 = -.8 2.5 0 1.0

1.7 4~ 2s 4" s 24- «5s 1.7 2.0 1.0 .5
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The singular values of P are:

y =  3.425584 y =  1.55466 y 0 =  1.86547

these singular values have been calculated, using a computer package such as MATLAB and then we 

can use the same computer programmes,[Gia.l], to find the radius of the prime disc.

1 +  r2 + r4 +  r6 =  (7 / y f  =  3.3715116

so

p =  0.98204

The almost zero is found, using the computer programme to be located at 

(-0 .029640, 0.834804)

Now we scale the polynomials and observe the effect on the almost zero and the plot of the 

vector norm.

2 0 0

0 3 0

0 0 1

the almost zero is at

1.1 2 1 3

-.8 2.5 0 1.0

1.7 2.0 1.0 .5

(-0.010193, 1.093143)

Example (6.3): This example is to verify proposition (6.1). Let p(s) be a polynomial vector with P as 

its basis matrix. Y and U are defined as the eigenvector matrices of P P T and P T P respectively. The 

purpose is the show that P and T UT have the same almost zero pattern.

1 - 1 3 6 -  I
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1 + 2s + s2 1 2 1 1

3 + 5s = 3 0 5 s

2 +  6s + s2 2 6 1 s2

The singular values are:

7 =  7.4070200 7o =  5.1120706 7 =  0.0528189

1 + r2+ r4 =  (T /7)2 =  19665.651

So the radius of the disc is

p =  11.82081.

6 8 15 14 14 18

p = 8 34 11 PT P = 14 40 8

15 11 41 18 8 27

.94 .33 -.07 .84 .47 .26

Y = -.12 .54 .84 U = -.19 .72 -.67

-.31 .78 -.54 -.5 .51 .7

.05 0 0 .04 -.1 -.03

F = 0 7.41 0 r u T = 3.48 5.34 3.78

0 0 5.11 1.33 -3.42 3.50

The almost zero of “3s is at:

o- =  -0.190770 w =  0 e =  11.349000

The almost zero of F UT is at:

<7 =  -0 .1904  w =  0 e =  11.219206

Thus we note that P and F UT have the same almost zero structure.

- 1 3 7 -
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It can also be shown that the scaling of both matrices by the same factor C where C 6 R -  

{0} does not affect the position of the almost zero, however, the new norm becomes the product of the 

factor C and the previous norm.

10 0 0 10 20 10

0 10 0 p = 30 0 50

0 0 10 20 60 10

almost zero at z =  —0.191024 +  j0.

However, the scaling of the two matrices by different factors results in different almost zero 

distributions.

1 0 0 1 2 1

0 5 0 P = 15 0 25

0 0 3 6 18 3

almost zero z =  —0.082927 — jO.602197 e =  67.888891.

1 0 0 .04 -.1 -.3

0 5 0 r  u T = 17.4 26.7 18.9

0 0 3 3 .99 - 10.26 10.74

almost zero at z =  -0.339018 -  jO.298271 e =  82.678486. □

6.2.4 The Scaling of the Polynomials

The foregoing example reveals that the almost zero structure is not invariant under scaling. The sets 

of polynomials CJ> =  {p,(s), i G m } and =  {k ; p,(s), k{ G R — {0}, i G m, kt ^  k̂  for at least 

two i, j G m} do not belong to the same normal equivalence class. If k, =  k for all i G m, then 

4>(<7, w) =  |k| 4>((T,w) and ÎP, have the same almost zero distribution. If (z,-, e,), (z -̂, e1 are 

almost zeros of ÎP, respectively for which zi — z1 then e1, =  |k| e,.

- 1 3 8 -
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6.2.5 The Pinning of Zeros of the Combinants of P by the Almost Zeros

Let <3F> =  { p,(s), Pj(s) £ R[s], i £ m }, p(s) =  Pd e_d(s) be a polynomial vector representative of <3), 

Pd £ IRmX(ci+1\ and let lc £ RmX1. The polynomial

f(s, k) =  k T Vd e d(s) =  Y  k.' P.'(s)
i = i

is defined as a combinant of '5P.

The zeros of all combinants f(s, ck), c £ R — {0}, are the same and thus, whenever we are 

interested in the properties of zeros of combinants we may assume the ||k|| =  1. If s =  z is an exact 

zero of <3>, then s =  z is also an exact zero of f(s, k) for all vectors lr. Under certain conditions, if l3> 

has an almost zero at s =  z, then f(s, k) has a zero in the vicinity of z for all choices of the parameter 

vector k .

(6 .20)

6.3 An Algorithmic Procedure for the Computation of Fixed 
Mode, Zero Polynomials

Using the concept of extended-R-equivalence (E-R-E) and the shifting operations on real matrices 

introduced by Karcanias a systematic new method for the computations of the greatest common 

divisor(g.c.d) of a set of polynomials is suggested which may be applied for the computation of the 

fixed mode, zero polynomials

6.3-1. Extended-R-Equivalence

Let “31mXd = { Pj(s) : Pj(s)£R[s] , i£m  , deg p^s) , d =  max (dt) } be a set of

polynomials of R[s] ; m , d will be referred to as the dimension and the degree of d respectively .

Let us define the sets {3*^} =  { <3>m d , m■ £ Z+ , d£ Z+ } and < c3,d > — { P Z”*~ , d'< d,
. 1 ’ rnitd

d£Z }. Given a set of polynomials we define the polynomial vector

I - 1 3 9 -
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P m ( s )  = [ Px(s), .... , pm(s) ] =  Pme d(s) , e j( s )  = [ 1 s s2 .....sd ] , P m e RmX<d+1)

( 6 .21)

will be referred to as the vector representative (v,r) and the matrix Pm as the basis matrix (b,m) of 

<5)m d . The basis matrix , P m , may also be expressed as

Pm =  [ 0 m,c ; pc + 1 ... pd + 1 ] , p ,  Ê Rm , i £ m , pc+1 ^  0 ( 6 .22)

where c £ {0,1,2, ... } . The integer c will be referred to as the order of ltPmd. The set iPmdwill be 

called proper if c=0 otherwise it will be called nonproper.

Let de {  <$d }, m *£Z + , m* > m . An m*-description  , dis defined by expanding 1Pmd 

by m *-m  zeros and the corresponding basis matrix Pm»will be referred to as an m*-extension of Pm 

and has the form

P =A m  * —

0 m *  —  m , d  + 1

ra*  X  (d +  1)
(6.23)

Definition (6.4): Let (ïP(n d,‘iP2 , £ { 9  , }, m* = max (m1,m2) and let P* » , i= 1, 2 be the basis 

matrices. The sets d , d will be called Extended - R - Equivalent (E-R-E) and will be denoted

by V im j ,d s g> d if there is exists a matrix Q £ IQI ¿̂0 , such that

Q P1 * (6.24)

□

It can be shown that 8(8n) is an equivalence relation on { iPd } and the corresponding equivalence

1 - 1 4 0 -  1
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class of iPm d G { <D5(f } will be denoted by 8 ( d ) .

6.3-2: flermite forms

By performing elementary operations a square matrix can be transformed to a canonical form such as 

the triangular form.

Let Pm G K and p(Pm) = r<m in(m ,d+1). There exists Q g R ’ , |Q|y£0 such that

P^ = QPm =
pH

Qm- r,<f+ 1

, P^ G RrXd+1 (6.25)

where P^ = ( h;j- ) is a matrix known as the left-echelon-form  (LEF) of Pm having the following 

structure

nl n2 nr

0 . .. 0 1 * ... * 0 * 0 * ..

0 ... 0 0 0 ... 0 1 * 0 * .. *

0 ... 0 0 0 ... 0 0 * 0 * .... *

0 ... 0 0 0 .. . .  0 0 0 ...0 1 .. *

(6.26)

The properties associated with the LEF are as follows

(i) p( P^ ) =  r

(ii) There is a sequence of integers n1,n2, ... ,nr , 1 <nj < n 2 <  .....  < n r < d -fl such that ht j =0,

j =  l ........ n, -1, hin.= 0 , t= l ,  ... , i-1, i+1 , ... , r .

(iii) The rest of ĥ  ■ G R and they are uniquely defined .

I - 1 4 1 -
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Example (6.4) : Let

0 0 0 0 1 1 1

0 2 6 2 0 0 4

0 1 3 1 1 0 1

0 1 3 1 2 1 2

By performing the following row operations

(i) Interchange the first and the third rows

(ii) Substract two times the first row from the second row

(iii) Substract the first row from the fourth row

we transform the A matrix into the row equivalent matrix

0 1 3 1 1 0 1

0 0 0 0 -2 0 2

0 0 0 0 1 1 1

0 0 0 0 1 1 1

Finally after further elementary operations we reduce the B matrix into the following Hermite form

I - 1 4 2 -  I
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0 1 3 1 0 0 2

0 0 0 0 1 0 -1

0 0 0 0 0 1 2

0 0 0 0 0 0 0

For this example it can seen that nx = 2, n2 =  5, n3 = 6, and r = 3

It also has been shown by Karcanias that P^ is a complete invariant of S ( '3Jm d ) . An 

equivalent complete invariant for S(‘iPm d) *s defined by the space % (P m) = row-span {"IPm} • Also the 

set of polynomials Pd} defined by the basis matrix(b.m) P  ̂ (the LEF) is a canonical form for

the e ('35m1d)-

Another important function defined on any tiPm d £ { <5>d} is the g.c.d. which is also an 

invariant of § (<3’m d) . For the computation of the g.c.d the canonical set will be used because

this set happens to have the least dimension and the simplest structure . Then the vector 

representative of has the following form

pH(s) =  PH ed(s)= s "r l p^(s) (6.27)

where

pH =  [  p° : p1 : p2 ]  (6.28)

0  .. . 1 a i l  • • ■ a ifc1 0

0 .. . 0 0 0 1

0  . . .  0 0 0 0

I - 1 4 3 -
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a ! i j ^ r - l

a 21 a 2 C - l

• 
o

0

1

?r a lfc

a 21 • • •  a 2lfc

a r l • • •  a r/t

Remark 6.3: Let 4>(s), ip(s) be the g.c.d.s of <3>m ^,‘3’* it where IP* k =  {^(s), i£ r} and t,(s) are
Li

the coordinates of p f  (s). Then

<p(s)= c s 1 ip(s), and c € R-{0} and ^ (0)^ 0. (6.29)

□

Proposition 6.4: Let t3’m d £ {iPd} be a proper set of a minimal degree <5

(i) If 4>(s) is a g.c.d of <iPm d, then deg <f>(s) < 8

(ii) If 8 =  0, then !35m d is coprime

(iii) If Pm is a basis matrix of ef  d and p(P m)= 8 + l, then 1Pm is coprime .

□

Definition 6.4 : (i) Let a T  £ R1XA: be a vector of the following structure

a~*~= [ 0 ............  0 a0 aj ........... afc, ] , a0 ^  0 (6.30)

and let the number of zero elements be tr-1, <r£Z + . a  will be called the index of a . Let A £R mX\ 

aj1" be the ith row of A and let o^be the corresponding index.Then the matrix A will be referred to as 

an (cri,cr^, ... , a m)-indexed matrix.

I - 1 4 4 -  |
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(ii) On an indexed vector a T £ R1X<: we define the shifting operation DaT — a ' where

a-"1” = [ a0 aj ......... afc, , 0 ............  0 ] £ (R1Xfc (6.31)

where again the number of zero elements are cr-l. Similarly we may define the shifting operation □ for 

the rows of the matrix A

(iii) Let cJ‘rn d £ { <$ d} and Pmthe corresponding basis matrix . The shifting operation may be defined on 

{ (3’£i} by DIP,,, ¡¡—̂ m d G < <3>d >  where the basis matrix of iPm dis defined by P =D Pm . The set <31m d 

will be referred to as the shifted set of <3‘ d .

□

Theorem 6.2: Let <3>m d £ {'iPm} be (o’!, <72, .... , a m)~ indexed, <t?m i  = DiPm d 

and let <f>(s), t/>(s) be the g.c.d.s of <3>m d , Pm d respectively . Then

<j>(s) =  c s  1 ip ( s) , c £ R - { 0 } ,  <^ (0 )^0  (6.32)

Proof: The vector representatives p(s) and pm(s) of cPm d and cJ>m d respectively are related by

Pm(s) = diag { s ° m ~ 1
S } Pra(s) = D(s, <7; ) pm(s) (6.33)

If 1Pm d is non proper <xt >  1 then s 1 divides ^(s); furthermore, by the shifting operation p(0) ^  0, 

i.e. (/>(0) ^  0. Let z£C - {0} be a zero of <?!>(s) of multiplicity r. Then, from (6.33) and given that |D(z, 

cr()| ^  0, we have pm(z) = 0. Let us denote

P0 ) (s) d_j
ds7 P(s) (6.34)

and

C T j + j - l
S

O m + j - 1
}D^*(s, <7t) =  diag { s (6.35)
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Then by (6.33)

Pra(s)  =  D(;)(S, <7,) pm (s) , j  =  1, (6.36)

Since |D^(z, cr,•)| ^  0, then for s = z and j = 1, r — 1, (6.36) implies that pm\z) =  0 = D ^ (z , 

(7;) pm (z) and thus p „  (z) = 0 for j  = 1, r —1. Therefore an elementary divisor (s — z)r of <j>(s) is 

also a factor in d>(s) with degree at least r . By considering (6.36), (6.33) for the zeros of </>(s), it is 

readily seen that (¡>(s) divides <̂>(s) and this completes the proof. □

6.3-3 : A new algorithm for the computation of the g.c.d. of (3‘m d

Let ¿ S f t }  ) <Ks) be a g,c.d. of the <3>m d, Pm€[RmXd+1be a basis matrix of ^  mtd,p(Pm) =  r and 

let c> 0 be the order of <U’m d . The computation of <f>(s) is according to the following method .

(i) Non - proper sets: If c > l ,  then Pm= [ 0m,c,Pm ] , s° is an elementary divisor of </>(s) at s=0 and we 

may write <j>(s) =  sc (j) (s) , where <j> (s) is a g.c.d. of the proper set defined by the basis matrix Pm .

(ii) Proper sets: If c=0 the first column of Pmis non-zero and </>(0) ^  0 . To compute <f>(s) for the case 

of proper sets we apply the following algorithm .

Step 1: If r = d-f 1 , then the set t3‘m d is coprirne 

Step 2: If r< d + l , we distinguish the following two cases

(a) If r= l , then any non-zero polynomial in c3‘m d defines the g.c.d.

(b) If r> 1 , we define a maximal, linearly independent set of r vectors amongst the rows of Pm 

and we denote by Pr £  IRrX<i + 1the corresponding submatrix of Pm The set <3flr d C <3F’m ddefined by the 

basis matrix Pr will be called a normal subset of '3C j

Step 3: Let r> l and c$ r dbe a normal subset of <3’m ¿with b.m Pr Compute the LEF P f or Prand thus 

the canonical set <3 y d . Let t(s)= 1+ajS-f- ... -l-a ŝ be a minimal degree polynomial of □ <3F’r d . Then

(a) If i  = 0 , then the set c3>m d is coprirne ;

(b) If 6 > 1 , then cj)(s) divides t(s); to compute <f>(s) we distinguish the following two cases :

(i) If 6 = 1,2, then compute the zeros of t(s) and test whether or not they are zeros of a v.r of
cp

m , d  *

(ii) If 6 > 3  , then by the combined action of E.R.E transformations and shifting we obtain a 

¿-reduced set ‘3’* s of d having t(s) as a first element; <3)* 6 and d have the same g.c.d.

- 1 4 6 -  I
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Definition 6.5: The M(s) £ R1 X9[s], p <  q, p^^{M (s)} =  p will be called %r,P-lineariy assignable

(3fr,p-LA), if eqn. (6.38) has a solution for all a otherwise, it will be called %r,P-hnearly
6

nonasstgnable (M>riP-LNA). M(s) will be called Dtr,p-restricted assignable (3trlP-RA) if it is 36riP-LA 

and the multilinear subproblem of D-DAP has a solution for at least one solution of eqn. (6.38). If 

M(s) is 3£r,p-RA and f(s) =  c, c £ R —{0}, then it will be called %rtP-completely assignable (3fr,p- 

CA). Finally, M(s) will be called %r,P-strongly nonassignable (M> r,P-SNA), if for all reduced vectors lc

of K ?iP, FM(s, II) ±  c, c £ R - { 0 } .  □

Note that if M(s) is 3triP-SNA, then there is no II £ 3fr,P such that f^ (s, H) has all its zeros 

at infinity. Similar definitions may be given for the % r,p-D-DAP. The above definitions are within 

the framework of those given for the centralised case [Kar.l]. Following the results in [Kar.l] we have:

Proposition 6.5: Let P =  [p0, p j, p ,] =  [p0, P; ] be the 3fr,p-DPM of and let 7r =  p {P }, rr1

=  Pi  P'}-

(i) M(s) is K^p-LA if an only if it  =  61 +  1.

(ii) Necessary condition for M(s) to be 3friP-RA is that 7r =  61 +  1.

(iii) If — pL < S1, then M(s) is 3fr,p-LNA and thus it is not 3fr,p-RA.

(iv) If — fi < 61 and n' =  — /i, then M(s) is J&r)P-SNA. □

Note that the zero assignment properties characterised by the above result in terms of the 

%r,p-DPM, refer to families of M(s) matrices having the same P matrix and not to a particular matrix. 

The zero distribution properties of the non-fixed zeros of the Kr,p-D-DAP are examined next. Of 

particular interest is the study of “almost fixed zero” phenomena.

Definition 6.6: The 3friP-D-DAP defined on M(s) has an almost fixed zero (AFZ) at s0 £ C of order 

R, 0 < R <  oo, and shall be denoted by (s0, R), if for V II £ X  r.p, fM (s,H) has at least one zero in 

the disk D[s0, R] =  {s: |s—s0| < R }. □

The above definition of AFZs clearly covers the case of FZs, since then R =  0 and the disk 

becomes a point. Those AFZs for which 0 <  R < oo will be referred to as essential. The search for 

essential AFZs is connected to the study of ,H) canonical combinant[Kar.6].
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Lemma 6.2 : Let p(s) £ Rm[s], s0 £ C, w =  s — s0, deg p(s) =  d and let

P (w) =  Qo +  wqj +  ••• + wd q d, q; £ Cm (6.39)

be the Taylor expansion of p(s) at s =  s0. For every k =  Rm, the combinant f(s,_k) =  k Tp(s) has at 

least one zero in the minimal radius disk D[s0, R(s0,k)], where

R(s0, jk ) =  min
¿ T q ,

(6.40)

□

The above result provides the means for the investigation of the AFZ phenomena in the %r,p- 

D-DAP.

Theorem 6.3: The D€riP-D-DAP defined on M(s) has an AFZ (s0, R0) for V s0 £ C, if and only if 

M(s) is D6r,p-SNA.

Proof: Let p(s) =  [p0, p x, •••, p ,]e  ̂ ,(s) =  [p0, P^ e. ,(s) be the C-3f>r,P-D-R[s]-GR and let ^M(s>
6 6 6

H) =  ¿ T p(s) be the corresponding canonical combinant. If p(w) =  [q0, q lt q ,] e ,(w) =  [q0,
6 6

Q'l ê ,(w) =  Q je ,(w), w =  w — s0, is the Taylor expansion at s =  s0 of p(s), then

£o =  p e ,(s0), q ,• =  P 
6

A e i (s) 
i ! d s' ~6,y ’

, i £ 6'
J s = s nd s‘ s'

and thus Q =  P R, where R is a full rank, lower triangular matrix. Thus,

(6.41)

rM(s, II) =  t T P e  ,(s) =  k T Q R_1e ,(w), w =  s -  s0 (6.42)
6 6

where R_1 is also lower triangular.

If R(s0, k) is finite for V reduced vector from 3triP, then clearly M(s) is 3frjP-SNA, since 

otherwise, i.e. Cvf (s .11) =  c, c £ R for some H, the corresponding radius could become infinite. Thus, 

if (s0, R0) is an AFZ, then M(s) is 3&r,p-SNA.
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Assume now that M(s) is M>riP-SNA. By Lemma (6.2), it follows that a necessary condition for 

the radius R(s0, k) to become infinite for some k, is that ¿ T =  0, V i £ 61. If such a vector k

exists, then ,H) =  q 0 constant and this contradicts the assumption that M(s) is HGriP-SNA. 

Thus, for V H £ 3f>riP the corresponding radius is finite and FL0 m =  max {R(s0, k, V k } exists and it 

is finite.

This result establishes that if M(s) is %riP-SNA, then V s0 £ C is AFZ. The radius

R0 m =  max {R(s0, k), V k reduced from 3fr,P} (6.43)

defines the minimal disk that contains at least one zero for all m̂ (s’ H) combinants. Thus, for % (iP- 

SNA, M(s) matrices the mobility of every s0 £  C as a zero of ,H) is always restricted within the 

disk D[s0, R0 m]. An estimation of upper bounds for D[s0, R0 m] is given by the following result.

Theorem 6.4 : Let p(s) £ R*“ ^[s] be the C-D6r,P-D-R[s]-GR of an 3fr,P-SNA M(s), s0 £ C, p(w) =
~i ' ’ ~

q 0 + wqp + + w° q ,, w =  s — s0 be the Taylor expansion of p(s) at s =  s0 and let \ £ R . A
6

sufficient condition for

Ro,m < -----7----- =  R(so- X) (6-44)
-  1

is that the matrix Q(s0, x) defined by

r\! \ iA * T 2 i ,  , * 2 2Q(so> x) =  q / q / x +  - + q j q ,  x - q 0 qo
6 6 6

to be positive semidefinite.

(6.45)

□

This result is an adaptation of a result from [Kar.3] and may be used in two different ways

(i) x € R+ is given, then positive semidefiniteness of Q(s0, x) implies the existence of an R(s0, x) 
upper bound for R0 m.

(ii) Find the minimum x £ f°r which Q(s0, x) is positive semidefinite. In this case the 

smallest R(s0, x) type upper bound is sought.
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Theorem (6.4) is valid for all points s0 £ C. The size of the radius R 0;m maY vary for the 

different points of C. Recent work [Kar.5] has shown that there exist certain points of C, defined as 

“almost zeros” for which certain upper bounds of the zero radius are minimised. A summary of the 

results from [Kar.5] applied to our case is given next.

Definition 6.7: Let p(s) £ IR<<7 ^[s] be the C-3triP-D-R[s]-GR of M(s), s =  <7 +  ]u> be the complex 

variable and let

| P(s)|| =  0(o-, w) =  \ p(s*)Tp(s), s* =  a  -  jw (6.46)

A z £ C will be called an %r,p-decentrahsed almost zero (3triP-DAZ) of M(s), if z is a minimum of 

0(cr, w). The global minimum of ui) is defined as the prime 36riP-DAZ (K r,p-DAZ) of M(s). □

The distribution of 3triP-DAZs in C and their computational aspects are discussed in [Kar.3]. 

Note that this new notion is a straightforward extension of the algebraic exact notion. Since it is 

defined by the invariant p(s), we have:

Remark (6.3): The set M>riP-DAZs is invariant for all K riP-D-DAPs defined on the basis matrices 

M(s) of a given rational vector space 95^. D

The importance of MriP-DAZs as “strong poles” of attraction for the zeros of rM(s, h ) 

combinants is highlighted by the properties of certain families of upper bounds of the R(s0, k.) radii.

Lemma (6.3) : A family of upper bounds for the minimal radius disk R(s0, k) of Lemma (6.1) may be 

defined for the following families of vectors k £ IRm. (i)

(i) If k T pd ^  0, then

Rd(so, k ) (6.47)

(ii) If k T p d =  k T p d_1 =  ■■■ =  k T p i + 1 =  0 and k T p, ^¿0, then

R-i(so. k) (6.48)
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where p ; denote the coefficient vectors of p(s). □

The importance of Df>riP-DAZs is then indicated by the following result [Kar.5].

Proposition 6.6: Let p(s) =  p0 +  spi +  + s'5 p , G IR1,17 ^[s] be the C - l r (P-D-R[s]-GR of a
6

M>riP-SNA M(s) and let z1, z be an 3£riP-DAZ, the Df^p-PDAZ of M(s), respectively. For all k G

R(,<T ^  such that k T p , — =  k T p ¿ + 1 = 0 ,  and k T p i ^  0 and for all i, i =  S1, 61 — 1, • ■ 1, we
6

have:

(i) R ; (z\ k) < R ; (s0, k_), for all s0 G C: |s0— z'\ < e.

(ii) R,(z, k) <  R ,(s0, k), for all s0 G C.

□

Thus, for the general families of k vectors defined above, the radii R ,(s0, k) are locally 

minimised when s0 is an K r,P-DAZ and are globally minimised when s0 is the %r,p-PDAZ. This result 

indicates that the 3£r,p-DAZs act as strong poles of attraction for the zeros of H).

For %r,p-SNA matrices M(s), the mobility of the zeros of H) is restricted within finite

radius disks, the radii of which may be estimated by Proposition (6.6); we shall refer to such disks as 

zero trapping disks. If for some s0 G C+, the disk d[s0, R(s0, x)] lies entirely in C+, then s0 will be 

called entirely unstable (EUS). If the K riP-D-DAP defined on M(s) has at least one EUS point s0, 

then M(s) will be called !Hir,p-decentralised strongly unstable (3fr,p-D —SUS) and, clearly, rM(s, H) 

cannot be stabilised under any H G Kr,p. Theorem (6.4) may be used to provide the following test for 

the above property.

Corollary 6.1: A sufficient condition for M(s) to be JGr>P-D — SUS is that for some s0 G C+ the matrix 

Q(s0, x) is positive semidefmite for x =  ('21/'6 — 1)-Re(s0).

Proof: If for some s0 and x =  (2^^ — 1)-Re(s0), Q(s0, x) ¡s positive semidefinite, the predicted 

upper bound is R(s0, x) =  Re(s0) and the disk lies entirely in C + .

□

- 1 5 3 -  I
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6.5 The Computation of an Upper Bound for the Minimal 
Radius Disc

It has been established that the almost zeros of 'IP act as poles of attraction for the zeros of the k- 

combinant f(s, k) of <3>. The radius R(s0, k.) of the disc D(s0, k) within which an exact zero of f(s, k) 

may always be found will be referred to as the zero radius at s =  s0.

Let i  be a set of polynomials, p(s) =  p0 + spx + ••• +  sdp d be a polynomial vector 

representative of p(w) =  b 0 +  wb: + •■■ +  wdb d, w =  s —s0, be the Taylor expansion of p(s) 

at s — s0, s0 6 C, let 6{ be the angle of ]< G Rm with the p t- vector. Sufficient condition for the 

existence of a  G R+ and a family of k vectors such that R(s0, k ) < a  are:

(i) if k.TPd ^  0 then [1]

a  > (6.49)

IcosflJ > II —( a d =  cos 0 d(s0, a) (6.50)

(ii) k Tpd =  k T p d_! =  ■ ■ • =  k Tp I + 1 =  0, and k Tp ,• ^  0 then

a  > (d\ IJM
u  y ii Piii

l/i
(6.51)

|cos<,‘l -  (i)tirl1 =  cos 9 f (s0, a) (6.52)

The above conditions for k are sufficient but not necessary for R(s0, Ir ) to be less than or equal 

to some a satisfying conditions (6.49), or (6.51); this is due to the fact that the R ; (s0, k) upper

- 1 5 4 -  I
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bounds have been used. The set of conditions (6.50) and (6.51) define families kt(s0, a) of parameter 

vector J< where k,(s0, a)  =  jk_: k.TP j = 0 ,  j =  i +  1, •••, d, k Tp, ^  0, |cos 0t| > cos ^¿(s0, a)| 

and i =  d, d —1, i, such that for all k G k,(s0, a), R(s0, k) < a  the following result can be 

stated.

Let z G C be an almost zero of CJ>, s0 G C and let a  G M+, where

a  > max (?)
| o (so ) ||

IIP.I

n1/*
, for all I s0 — z I <  e (6.53)

for all a  satisfying (6.53) and for all i for which the families kt(s0, a)  are defined then kt(s0, a)  C 

ki(z, a) with equality holding when s0 =  z.

Now let p(w) =  b 0 + wbx +  ■•■ + wdb d, w =  s — s0, be the Taylor expansion of the 

polynomial vector representative p(s) of the set of polynomials T at s =  s0, s0 G C and let 011 be the 

angles of k G Rm and b t.

For all a  G R+ and all k such that

< d jj 0 jj and I cos 0\ I > a  ■1 
J2i d bo

(6.54)

then R(s0, k) < a.

The properties of the zero radius discussed so far depend on the particular choice of the 

parameter vector k or on some family of parameter vectors. Now we want to find an upper bound for 

the zero radius, which is independent of the parameter vector k.

Let p(w) =  b 0 +  wbx +  ••■ +  w =  s—s0, be the Taylor expansion of the polynomial

vector representative p(s) of the set of polynomials <iP at s =  s0, s0 G C and let x G R+. A sufficient 

condition for R(s0, k) < x/(21/,d — 1) for all 1c G Rm, is that the matrix B(s0, x) is positive 

semidefinite, where

B(s0, x) =  b d b^T x2d +  ■■■ + b j b tT x2-  b 0 b ST (6.55)



Chapter 6

This result can be used in two different ways:

(i) If x € R+ is fixed, then the positive semidefiniteness of B(s0, x) implies the existence of an 

upper bound R(s0, x) of R(s0, k.) which is independent of k.; R(s0, x) of R(s0, k) which is

independent of k ; R(s0, x) is then given by [Kar.3]:

R(s0, x) (6.56)

(ii) find the minimum positive x for which B(s0, x) is positive semidefinite. In this case the 

smallest of the (6.56) type upper bounds for R(s0, k ) which are independent of k is defined.

The above ideas are illustrated in the following example.

Example (6.4): Let

s +  1.1

s2 + s

Using the optimisation programme,[Gia.l], we find an almost zero at s =  —1. The Taylor expansion 

of p (s) at

P(w) 0.1
0 +  w 1

-1 + bjW -f b 2w2, w =  s + 1

Thus we may compute B( —1, x) as follows

B( — 1, x) =  b 2 b ; 1 +  b x b* 1 x2 -  b 0 b5Ty =
- x 2 x4 + x 2

X  €

(i) Assume that we wish to test whether R( —1, k.) < 1 for all k- Then, the equation x/(21//~ — 1) 

=  1 gives that x =  0.41; it may be readily verified that B( —1, 0.41) is positive definite and 

thus R( — 1, k) < 1 for all k-

(ii) Since R( — 1, k) < 1, we may search for smaller bounds for R( — 1, 1c).

1 - 1 5 6 -
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Using again the optimisation programme, we find the minimum positive x for which B(s0, x) 

is positive semidefinite and this gives a minimal , independent k_ upper bound for R( — 1, k) which is 

R* =  0.71.

The family of k-combinants of <3> for the above example is defined by 

f(s, Ji) =  k (s —(—1.1) +  s (s+1)

Finding the roots of f(s, 1c) as a function of the scaler parameter k, is equivalent to a single-

input-output root locus problem with a transfer function

=  k (s+1.1) 
s (s+1)

From the root locus associated with g(s) , the minimal radius disc D( — 1, R min) which contains at 

least one zero for all values of k, may be computed graphically. R mtn — 0.43 and thus R* =  0.71 is a 

good estimate for the minimal radius. □

6.5.1 Use of the Sensitivity to Scaling for Improved Bounds of the Zero Trapping Region

We know that each disc has an almost zero at its centre, and each disc contains at least a zero, so now 

the objective is to reduce the uncertainty in the location of the zeros. We apply different scaling and 

for each one we find the almost zero i.e., the position of the centre of the disc, and its radius. Thus we 

get a number of overlapping circles and the region common to all the circles defines the most likely 

place where a zero can be found.

An example is given to illustrate this technique. It shows how we get a considerable reduction 

in the zero trapping region. For the calculations, various computer programmes have been used.

Example (6.5): Let the basis matrix be:

.6 1.6 1
P =

2.5 3 2
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So

p(s) =
.6 +  l-6s + s2 

2.5 + 3s + 2s2

and

s0 =  - .7 5  -  j  .74

This gives the vectors:

1r—o*'—5 100to\
1 ____

, =
.1 + j 1.48

, b 2 =
1

.29 - j  2.96 2

Therefore x =  0.41, and R(s0, x) =  0.41/ (21̂ ~— 1) =  0.9898. Using the scaling (3, 1) gives

P(s)
1.8 + 4.8s + 3s2 

2.5 + 3s + 2s2

and

s0 =  - .7 6  -  j  .43

- .6 8  -  j  .11
, h i  =

.24 + j 2.58
1 2 —

3

.29 - .0 4  - j  2.96 2

Therefore, x =  0.32, and R(s0, x) =  0.32 / (21/~— 1) =  0.7725. Using the scaling (1, 3) gives

p(s) =
.6 + 1.6s + s2 

7.5 + 9s + 6s2
and s0 - .7 5  -  j  .82

71 -  j .01 .1 -  j 1.64 1
. h i  = , b 2 —

.09 - j  9.84 6

Therefore, x =  0.501 and R(s0, x) =  0.501 / (21/2-  1) =  1.2095 .

I - 1 5 8 -
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6.6 Quick tests for existence of fixed modes and fixed zeros

Assume that

Pde d(s) =  gfl(s)

is the reduced Grassmann representative, i.e. we have dropped from the Grassmann representative the 

co-ordinates corresponding to zeros in the compensator matrix K.

Proposition 6.8: Let be the reduced Pliicker matrix corresponding to the Grassmann representative, 

i.e. we define P  ̂ a submatrix of P̂  by dropping those rows which correspond to indices of 

decentralisation. Then, if

if r (P i)  =  {0} there exist fixed zeros in D —DAP (6.57)

• M p 4) *  {0} we may or may not have zeros in D —DAP (6.58)

□

For the case of zero assignment we investigate the effect of decentralisation structure on the 

degree of the Grassmannian g^(s). Then, if

< % ( s)] (6-59)

then no matter how we select the controllers, we assign zeros at infinity.

Example 6.6 : Investigate the fixed zero structure aspects of the system described by the transfer 

function matrix, G(s), where

1 s2+ l

s 0

s +  1 1

0 s+1

- l
(s+2)2 1

0 (s-p3)(s+2)
N(s)D(s)-1

I - 1 5 9 -  1
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under the following decentralised squaring down structures

k l 0 0 0

0 ^ 2 * 3 k4

k i ^ 2 0 0

0 0 k 3 k4

k i ^ 2 k 3 0

0 0 0 k4

The Grassmann representative of G(s) is given by

C j{G (s)}  =  [det ax, det a2, det a3, det a4, det a5, det a6]

where

det a4

det a2

det a3

1 s2 +  l 

s 0

1 s2 + l 

s +  1 1

1 s2 +  l 

0 s+ 1

=  —s (s2 +  l) =  —(s3 +s)

=  1 -  (s+ 1) (s2 +  l) =  - ( s 3 +  s2 +  s)

=  S +  1

det a4 —

det a5 —

s 0

s+ 1 1

s 0

0 s+1

=  s — 0 =  s

— s(s+ 1)

1 - 1 6 0 -  1
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det afi
s+ 1 1

0 s+1
(s+ 1)2 =  s2+ 2s +  1

The g (s) of N(s) is

g T(s) =  [~' (s3 +s) —(s3 + s2+s) s + 1 s s2+s s2 +  2s +  1 ]

The Pliicker matrix corresponding to the above polynomial vector is

0 - 1 0 - 1

0 - 1 - 1 - 1

1 1 0 0

0 1 0 0

0 1 1 0

0 2 1 0

Now let us examine the multi-vectors which correspond to the various architectures of the 

decentralised squaring down controllers

(i) Decentralised Controller Kj =
k 1 0 0 0

0 k2 k3 k4

The multi-vector corresponding to the above structure is 

ki =  [ki2> k13, k14, k23, k24,k34]

where

kio —
k x 0

0 k., ki3 —
kx 0

0 ko
ki4 —

k x 0 

0 k4

I - 1 6 1 -  1
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0 0 0 0 0 0

2̂ 3̂
> k24 —

2̂ k4
i k34 —

3̂ k4

or

ki =  [ î 2̂> kik3, k jk4, 0, 0, 0]

The reduced Plucker matrix due to the above decentralised structure is defined by

k TP i e^ s) =

=  [kik2, k jk3, k1k4, 0, 0, 0]

0 - 1 0 - 1

0 - 1 - 1 - 1

1 1 0 0

0 1 0 0

0 1 1 0

0 2 1 0

1

s

s2

S
3

and is given by

-1 0 -1

-1 -1 -1

1 0 0

Clearly, the reduced Pliicker matrix corresponding to the decentralised structure has full rank and thus 

we have no fixed zeros. Clearly the reduced Grassmann representative is defined by
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and it is a prime vector.

§i(s) =
s+1

(ii) Decentralised Controller K2
kj k2 0 0

0 0 k3 k4

The multi-vector corresponding to the above structure is

— 2 — [k 1 o, k1 2 ’ ^ 1 3 )  K 14ki4, k23, k'•24;  k 3 4 ]

where

kj k2 ki 0 ki 0
; k13 — ; k23 —

0 0 0 k3 0 k4

k2 0 k2 0 0 0

0 k3

11CN

0 k4
; k34 =

k3 k4

0, k jk3, kj k4; k2k3, k 2 k 4, 0]

The reduced Plücker matrix corresponding to K2 is

0 - 1 - 1 - 1

1 1 0 0

0 1 0 0

0 1 1 0

I - 1 6 3 -  1



and the Grassmann representative is

g(s)

3 2
—  S — S — S

S + l

s

s(s+ l)

which has full rank and thus the corresponding system has no fixed zeros.

(iii) Decentralised controller

Chapter 6

K3 =
k | k 9 k 3 0

0 0 0 k4

The corresponding multivector is defined by

where

~3 — [ 1̂2 i k]_3 , k14 , k23 , k24 , k34 ]

1̂2 —
ki k2

0 0
i k13 —

k) k3 

0 0
k)4 _

kx 0 

0 kd

v23
2̂ 3̂

0 0
ki
0

: k 34

k3 0 

0 k4

and thus

k 3 — [ 0 0 k4k4 0 k2k4 k3k4 ]

The corresponding reduced Grassmann representative is given by

2 iTg3(s) =  [ s + l  s (s+ l) (s + l)  ]

I - 1 6 4 -
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and thus clearly we have a fixed finite zero fo this control structure at s =  —1. Also we should note 

that the centralised combinant has degree 3, whereas the corresponding decentralised is

=  kjk4(s + l)  +  k2k4s(s+ l)  + k3k4( s + l ) 2

and has degree 2. Thus, apart from finite fixed zero we also have a fixed zero at s =  oo for this 

particular structure.

6.7 The Decentralised Pole, Zero Assignment Problems: Fixed 
and Almost Fixed Modes, Zeros

We may specialise the results on 3fr,P — D-DAP, D-DAP to the cases of D-PAP by DOF

(DSF), D-ZAP by DSD respectively, since the control theory problems are special cases of the 

corresponding abstract formulations.

Given that DOF covers also the DSF case, the D-PAP by DSF will be examined. Note that 

the essential difference between D-PAP and D-ZAP lies in the interpretation of the zeros of the 

corresponding combinants; thus, in the first case they express closed —loop poles, while in the second 

zeros of squared down systems.

The term mode (pole) will be used for a zero of the combinant of D-PAP, while the term zero 

will be retained in the cases of D-ZAP; all other terms and definitions will be used with the same 

meaning throughout this section. Note that for the D-PAP, D-ZAP the role of M(s) is played by the 

matrices T ((s), Nr(s) respectively.

The R[s]—GRs of T,(s), Nr(s) are defined by

Cm(T,(s)) =  p 1(s)T G R1Xr 

C,(Nr(s)) à p 5(s) G RP[s],

[s], T =  deg p x(s) =  V (6.60)

P =  (m)> deg p s(s) =  d (6.61)

- 1 6 5 -
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where v is the McMillan degree of G(s) and d is the degree of Nr(s). The families of decentralised 

output feedbacks, squaring down compensators will be denoted by

36V

I , m =  {K d
K„

(6.62)

where Kd, F d arc block diagonal matrices of fixed dimension blocks which are defined by

u =  block— diag { K j, , K„} y =  Kd y ; K,- G R 1 *; i G i>

and

z =  block —diag { F lt • , F ^} y =  F d y ; F,- G R 1 i G v

respectively.

The D-PAP by DOF and the D-ZAP by DSD will be denoted in short by m — D-PAP and 

^ ¡ m — D-ZAP respectively. Let <3>(Tf'm) be the decentralisation characteristics of the above

sets and let p,(s), p 9(s) denote the 3GJ'm —, <$ ‘i m — D — R[s] — GEs respectively, Then,

Corollary 6.2: (i) The fixed pole polynomial, fP(s), of 3GJ'm— D-PAP is given by the zero polynomial 

Pl(s). (ii) The fixed zero polynomial, D(s), of <ï j ' m — D-ZAP is given by the zero polynomial of p i (s). □

If Cm (Kj) =  k G « r, Kd G % lm, C ,(Fd) =  f T G R1X/\ F d G and k, 1 T are the

corresponding reduced vectors, then the pole, zero combinants may be expressed as

P A'(S> Kd) =  fp(s) ‘i T £ ; ( s) =  fp(s) Pa (s i Kd) (6.63)

zF (s, F d) =  fz (s)-iT p s(s) =  fz(s) z*F (s, F d) (6.64)

where p(s) G R(T_ü)[s], £ 9 ( s ) G R ^ ^ f s ]  are the C-3G^,m - D - R [ s ] - G R ,  C - T f m- D - R [ s ] - G R  

respectively and /(, it / denote the number of elements in I3)(3Gf'm), D(Tf'm) correspondingly; p^(s, Kd), 

Zf(s, F d) represent the corresponding canonical combinants. If deg p(s) =  v, deg p g =  6, then

P i (s) =  P d(T i) efi(s), Pj(s) =  P d(G)e (s) (6.65)
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where Pd(T () £ R( +  g R^p 11 are the 3G|'m—, 'ÏJ'm — Decentralised Plücker

Matrices respectively. Using Pd(T (), Pd(G) we may state the following results for the solvability of 

3Gr,m-D -P A P , =F?,m-D-ZAP.

Corollary 6.3:

(a) Necessary conditions for G(s) to be completely pole assignable by DOF are:

(i) p,(s) is coprime, (ii) p{Pd(T ,)} =  0 + 1 .

(b) Necessary conditions for G(s) to be completely zero assignable by DSD are:

(i) p g(s) is coprime, (ii) p{Pd(G)} =  6 +  1. □

The MFD representation T ; (s) is assumed coprime and thus noncoprimeness of p ((s) may be 

the result of decentralisation. For the zero assignment problem, however, noncoprimeness of p j(s) may 

be the result of zeros present in G(s) as well as of the decentralisation.

For families of pole, zero nonassignable systems almost fixed mode, almost fixed zero 

phenomena occur. Thus, we have:

Corollary 6.4: Let P d(T,) =  [p0, P*(T,)], Pd(G) =  [p0, Pd(G)]. Then,

(i) If JFr{P d(T ,)} =  {0}, then for V A0 £ C, the closed loop pole polynomial has a A0— almost 

fixed mode for all DOF Kd.

(ii) If -N 'r{Pd(G )}  =  {0}, then for V z0 £ C, the zero polynomial of the squared down system has

a z0— almost fixed zero for all DSD compensators Fd □

The presence of entire unstable A0— almost fixed modes, z0 — almost fixed zeros implies that 

the system cannot be stabilised by DOF, cannot be made minimum phase by DSD respectively. 

Thus, we have:

Corollary 6.5: Let ^ r { P d(T ,)} =  {0}, and -N~r{Pd(G)} =  {0}. Then,

- 1 6 7 -  I
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(i) Necessary conditions for G(s) to be stabilisable under DOF are that G(s) has no unstable fixed 

mode and no entirely unstable almost fixed mode.

(ii) Necessary conditions for G(s) to be minimum phase under DSD are that G(s) has not right 

half plane fixed zero and no entire unstable almost fixed zero.

□

6.8 Conclusions

The study of the abstract Decentralised determinantal assignment problem provides a unified 

framework for the study of large scale systems. Central to this approach are the concepts of 

Decentralised Grassmann representative and Decentralised Plucker matrix. The computation of fixed , 

almost fixed modes via the exterior algebra tools , advocated in the present thesis illustrates the 

mechanism responsible for the generation of non-fixed modes and zeros and also leads to new necessary 

conditions for complete pole, zero assignability. The concepts of almost fixed modes and zeros is a 

natural extension of the fixed mode, zero concept and their presence imposes considerable obstacles in 

the stabilisation of pole, zero combinants. Testing the non-existence of entirely unstable almost fixed 

modes, zeros is not an easy process and further work is needed along these lines.

I - 1 6 8 -  |
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Chapter 7

A NEW ALGEBROGEOMETRIC FRAMEWORK AND 
CONDITIONS FOR DECENTRALISED ASSIGNMENT 
PROBLEMS

7.0 Introduction

In this chapter the problem of pole assignment by Decentralised output feedback is first considered as a 

problem of intersection of the Decentralised Grassmann variety and a linear variety associated with the 

assignment of a given polynomial.

A new necessary and sufficient condition for the existence of a decentralised complex, constant 

controller is derived which clearly provides a new necessary condition for the existence of a real 

decentralised controller.

The methodology developed may also be applied to a variety of further D —DAP problems. 

The essential part of the approach is the computation of the dimension of the corresponding 

Decentralised Grassmann variety which is demonstrated here for the case of Decentralised Output 

feedback.

Another topic covered in this chapter is the extension of the framework developed for the 

constant D —DAP to dynamic compensation problems associated with the assignment of frequencies. It 

is shown that the centralised or decentralised problems of pole, zero assignment with controllers of the 

P —I, P —D, P —I —D or restricted McMillan degree type may be reduced to equivalent constant DAP 

or D —DAP problems and this demonstrates the broadness of the DAP approach.

I - 1 6 9 -
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7.1 Algebraic Varieties

Let Pn(T) be a projective space over a field F  with dim P n(T) =  n. [f we choose an allowable 

co-ordinate system in Pn{F) then the set of points whose coordinates satisfy the equations

fi(xi.x2- ••• ,x«) = 0 ; i= 1,2,3, r (7.1)

where f^Xj, x2, •••, x) are homogeneous polynomials over F  is called an Algebraic Variety, V. It may 

happen, of course that there are no points satisfying the equations. While this is of no general interest, 

the varieties considered here will be assumed to have at least one point satisfying (7.1).

Clearly an algebraic variety in P n(F) has been defined in a particular coordinate system. It can 

be shown that if an aggregate of points in P n(F) forms an algebraic variety in one coordinate system, 

then they form an algebraic variety in any other allowable coordinate system although the equations in 

the two systems, may be different.

If V1 and V2 are two varieties given by the equations

fi(x i>x2> •••) x.) =  0 ; i =  1, 2, •••, rx (7.2a)

gy(xi> x2> ■■■ >x ;) =  0; j  =  1, 2, r2 (7.2b)

respectively, the points common to Vb and V2 satisfy both sets of equation simultaneously and 

therefore define a third algebraic variety which is called the intersection of T j and V2 and is denoted 

by V, n  V2.

The points which satisfy the set of equations

f;(xn x2> x.) g j(x i, x2> xn) =  0; i =  1, 2, •••, rx; j  =  1, 2, r2 (7.3)

define another algebraic variety which is called the sum of V1 and V2 and is symbolised V1 +  V2.

If every solution of the equation of 7.2a satisfies equation 7.24 then Vx is said to be contained 

in V2 or V1 is said to be a subvariety of V2 and this is denoted by C V2-

- 1 7 0 -  I
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A variety, V, is said to be reducible if it can be expressed as the sum of two algebraic varieties 

each distinct from V; in other words, necessary and sufficient condition for the reducibility of a variety, 

V, is the existence of a product of two forms f(xj, x2, •••, xn) and g(xx, x2, •••, xn) which vanishes at

all points of V without either form having this property. A variety which is not reducible is said to be

irreducible.

Let V be an irreducible algebraic variety in Pn(F) and let us suppose that V is not contained 

in x0=  0 and that (sl5 s2, •••, sn) are the non homogeneous co-ordinates of a generic point. Then there 

exists an integer 0 <  d <  n such that

(i) a set of points P, say P^, P ,2, ■ ■ ■, P; is algebraically independent over F, but

(ii) any set of (d+1) -  points Pt is algebraically dependent over F.

Hence, if d<n then there exist non zero polynomials 

g2(x i> x2> •••. xd- xd+i) =  0 in F[xj, x2, ■■■ , xd, xd+1] 

which are such that

g j(p«y •••> p , y pt j ) =  0 ; j  = d +  1, • ",n

where ilt •••, id, id+1, in is a rearrangement of 1, ■ ■ ■,n. In none of the polynomials g; (X[, •••, xd, 

xd+1) = 0 can all terms containing xd+1 be absent, for this would imply the algebraic dependence of 

P,’i, . The integer d with 0< d < n  is called the dimension of the variety V; i.e. dim V — d.

The dimension of an irreducible variety V and the dimension of the projective space P n(F) are 

such that

H e q s +  h — II

where ne?i denotes the minimal number of equations which define the variety V.

Thus V is an irreducible variety of dimension n—1 if and only if it is defined by a single 

irreducible equation ^Xq.Xj , xn) = 0. Such a variety is called primal when the equation is linear

so that the variety is a linear space which is called a prime. In general, the subspaces Pn 1 of a 

projective space Pn are called primes or tangential spaces.

- 1 7 1 -  |
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An irreducible variety of dimension d is a d-linear space if and only if it is defined by n-d 

linearly independent linear equations.

7.1.1 Intersection of Varieties

The following result on the intersection of varieties play a crucial role in the solution of the D-DAP 

problem.

Lemma 7.1: Let V1 and V2 be two irreducible varieties of dimension dj and d2 respectively in Pn(F), 

where F is an algebraically closed field, then P jf] V2 is generically empty if dt + d 2 <  n . If d !+ d 2 > 

n the intersection |"| V2 does always exist. □

It is clear that if VY is a generic linear space of dimension n-d then it meets an irreducible 

variety V2 of dimension d in a finite number of points; this number g of points is called the order of 

the variety V2. Also note that if V2 is also linear then V{ and V2 meet in an only one projective point 

and thus g= l.

Generally it can be proved that the order of a variety V is equal to the degree of the 

homogeneous polynomial defining V when they are in a special form called the Cayley-form .

- 1 7 2 -



7.2 Dimension of Decentralised Varieties Hr p, Hq p

In computing the dimension of Kr,p- we will be using the theory of the dimension of Grassmann 

variety fi(r,p) which is a follows

Let the matrix

ip

— Pi — 

r\ Kj

P2 —

k 2

Chapter 7

?
r3
1

where K, £ Rr5><P3, r, £ Ir =  { r3, s £ v }, p3 € Ip =  { ps, s £ v }. Let II be a generic element of 

K riP, and let

h — k — k^2) • • ■ i ktof_ x, 0, k ^ k ujt-_ ,̂ 0, k u, ̂  p ̂ k  u, ] ̂  £ IR

where wfj- £ Qr,p.

The set <tD(J€rlP) =  { vvt £ Qrp , j £ m, k w. = 0 } has been defined as the Decentralisation 

Charactenstic(DC) of H £ 3f>r,P

The subvector of k obtained by dropping the Pliicker co-ordinates that correspond to the 

decentralised characteristic D(3f>riP), i.e.

h =  k =  [kto,-, ktu^j, kWj+1, kw]T £ Rr " (7.4)

will be referred to as the reduced vector of H £ %r,P- Also, the point (..., w -, ...)  corresponds to a 

generic H£>r,P of iP'7 J (R) and on the Grassmann variety f2(r,p).

Hr,p =

- 1 7 3 -  I
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Lemma 7.1: p is a subvariety of the Grassmann variety. □

To find the dimension of 3LriP, we first normalise the co-ordinates of a generic point. From equation 

(7-4) none of the wt-• is zero. We normalise the co-ordinates so that 1. If we define N points B'

=  (b), ..., bp), i =  1, r where b) =  k«,- (i =  1, . . r; j  =  1, . . p) where r points determine a 

basis for the 3triP with Grassmann co-ordinates (..., w -, ...). Since B 1, B 2, Br form a basis for 

the generic %rjP and b‘ =  ku,i  ̂ all Grassmann co-ordinates of this can be expressed integrally in

terms of the co-ordinates k Wi- (i — 1, r ; j  =  1, . . p) where kWj=  1. When j  =  1, . . i —1, i +  1, 

..., r the corresponding co-ordinate is zero. Hence, the Grassmann co-ordinate of a generic can be
V

expressed integrally in terms of (r)r3p3 co-ordinates ku,.. (i =  1, ..., r; j =  r + 1, . . p) which are
5 = 1 11independent. This follows from the fact that there exists an 3€riP determined by r+1 points

B 1 -  (1, o, .. ., 0, b* + 1, . bp)

B2 =  (0, i, .. ., 0, bj!+1, .. bP)

B r =  (0, 0, .. •? 1} ^r-f 1 ’ • •., brp)

which the b' which appears in (7-2.3) are independent co-ordinates. The Grassmann co-ordinates of 

this J t , riP are given by the equations k ^ .. =  b1 and since we have proved above that the dimension’ 1J J
V

of a generic point on fl(r,p) is at most J()r3p3, ^le construction of a point on Q(r,p) with dimension
V  ^  =  1  V

^2 r5p5 over R proves that the dimension of a generic point is r5p5. Hence we have the result
5=1 5=1

v  VTheorem 7.1: The subvariety J f r iP is irreducible and of dimension r3p3
5 =  1

Proof: By theorem 2.4, the Grassmann variety is an irreducible variety and we know that a subvariety 

of an irreducible variety is irreducible itself. Id

7.3 Conditions for the Solvability of Decentralised Pole- 
Assignment Problems Using Constant (Proportional) 
Controllers

Consider the D-PAP defined in Chapter 4 and let us denote by s {, i £ m the columns of and by 

_t ¿T(s), i £ m the rows of T,(s); then by the Binet-Cauchy theorem, the decentralised closed loop pole 

polynomial is expressed as

I - 1 7 4 -  1
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PK(S> Kd ) =  <s A, t(s)A> (7.6)

We may reduce the D-PAP to the following two problems

(i) Linear Subproblem: Let a  =  sA =  k £ RCT, t(s )T A =  P;(s)T € IRlx<7[s] and assume

that k is free. E'ind conditions under which there exist vectors k such that the polynomial

Pk (s >Bd )

PK(s ,Kd ) =  k P,(s)T (7 .7 )

has a given set of zeros Z.

(ii) Multilinear Subproblem: Assume that the linear problem has a solution and that k(z) is the 

family of vectors k for which pK( s, K D) has a given set Z of zeros. Determine whether there exist 

a k £ K(Z) such that

k =  Cm[Im, KD]

m-  X  ( m  ■ X  / ■)
where [Im, ] £ R

□

The key idea behind the present approach is the investigation of complex intersections of the 

linear variety defined by the linear subproblem with the Grassmann variety. The advantage of the 

approach lies in its algorithmic nature. In terms of the new invariant, the decentralised Pliicker matrix, 

stronger necessary conditions for complex and for generic pole assignability are given.

Let a(s) £ R[s] be the polynomial to be assigned. Then if deg a(s) =  b,

a(s) =  [a0, ..., aT;]e^(s) and the problem of finding K ,̂ £ 9Ge,m such that P£(s, Kp) =  a(s) is 

reduced to the solution of

Pd(T,)Tk =  a -, P d (T ,)t  £ k € (7.8)

where k is the corresponding reduced vector. Thus, the following results are readily established.

- 1 7 5 -
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Proposition 7.1: A necessary condition for G(s) to be CPA under Decentralised constant output 

feedback is that

(i) p [p d (t ; )] =  Ü +  i

(ii) P/(s) ¡s co-prime □

If the linear subproblem has always a solution, then D-PAP is completely solvable if and only 

if among the solutions of the linear subproblem there exists at least one vector k =  [1, kT]T which 

belongs to the Grassmann variety D(r,p) of the projective space Pr ’ (IR). Since the family of the 

solutions of the linear subproblems defined by equation (7.5) is a (cr — fi — n) linear space of the 

projective space Pr 1 (IR), then the solution of D-PAP is reduced to a classical problem of intersection 

of irreducible varieties.

Theorem 7.2: Let PD(T,) =  [p0) P £(T ,)] =  (p0(T,), p ^ T ,), p v (T,)] be the 3Ĝ m DPM. Let G(s)

£ RmX,(s) be the strictly proper transfer function matrix. Then if the system has no fixed modes, we 

have:

(a) A sufficient condition for G(s) to be GPA by a complex output feedback, K, £ C
l.Xt

that

Ë  ! .mi > v and p {P ^ (T ,)} =  v
i -  1

i i j i1 j .
(b) A sufficient condition for G(s) to be CPA by a complex output feedback, Kt- £ C is that

E  l ,m, > U +  1 and p {P d (T ,)} =  v
¿=1

(c) A necessary condition for G(s) to be CPA or GPA by a real output feedback I<; £ IR 1 

i £ v is that

E 1. 1». > v
1 =  1

Proof:

(a) If p jP j^ T ,)}  — v, then the linear subproblem is always solvable. Let 3G be the family of the 

vectors k — [I, kT]T for which P 0 (T ,)Tk =  au. Then k is (a  — n — p) linear space of the 

projective space —^s) which is an irreducible variety of the same projective space. If

I - 1 7 6 -
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dim f2(r,p) +  dim k =  ]C 111,1, +  c  — n —// >  a — 1
¿ = 1

and also by Lemma 7.1 the two varieties k and fi(r,p) always intersect. Note that in this case 

complete pole assignability cannot be guaranteed due to the extra condition on k, that the first 

co-ordinate is non-zero, however, it can be readily verified that the set of all coefficient 

vectors a(s) which cannot be assigned by such vectors k lie in a hyperplane.

V

> v  then
¿=1

V

(b) The extra condition on k, that the first co-ordinate is non-zero can be expressed in terms of a 

linear equation k0= c, c £ IR — {0} and so the linear variety k in this case has dimension
V

a  — n — m — 1. So, if y^ni-k, > 0  +  1, then the varieties k and Q(r,p) always intersect.
* = i

V

(c) Clearly, > v is a necessary condition for G(s) to be CPA or GPA by a real output
¿ = i

feedback because otherwise there is not even a complex feedback which solves D-PAP.

□

Corollary 7.1: Necessary conditions for the strictly proper G(s) to be CPA or GPA by real output
V

feedback are that > v and p {P ^ (T ()} =  {). If the system is proper the the above conditions
t'=i

hold true for the b +  1 instead of v.

Example 7.1: Let

G(s)
sJ + s ~ - l

s+1 s (s+ l) 

s (s+ l)  1

be the transfer matrix of a system. A right co-prime MID of G(s) is given by

G(s) =
0 - ( s + 1 ) ’

- 1 0

— s 

1 -s(s + l)
=  Nr(s)Dr (s)

c. |Dr(s)
|Nr(s)

— s 

1 

0

- 1

1

- s ( s + i ;

- ( s + 1 )

0

177 —

s3 + s 2- l  

s2 +s

1

- ( s + 1 )

- ( s 2+s)

— (s +  1 )
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- 1 0 1 1

0 1 1 0

1 0 0 0

- 1 - 1 0 0

0 - 1 - 1 0

- 1 - 1 0 0

1

s
=  PaSsis)

It can be easily verified that p {P 3}= 4  =  £ + 1

Now consider a decentralised output feedback of the form

k
1 0 ki 0

0 1 0 2̂

Since m ^ l ,  m2 =  l, 1L =  1, 12 =  1 and the condition ^  m,l, > v is not satisfied here since 2> 3. So, the

above system is not pole assignable.

Example 7.2: Consider the dynamic system described by the polynomial matrix M(s) G RjX2

□

s+1 0

0 s + 1

25 0

0 s

0 1

D(s)
N(s)

The associated Pliicker matrix has dimension crx(£ + l) where <x =  ̂ ”l j  and £ is the Forney’s 

dynamical order of M(s). Hence, =  10, £> + 1 = 2 + 1 = 3  and PyGlR10X3. The Pliicker matrix of

M(s) is given by
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s2 +  3s + 2

C2( m (s ))  =  C2

0

s+1 0 s2+s

0 s +  2 -2 5 s 2+45

25 0 0

0 s 0

0 1 25

25

0

2 3 1

0 0 0

0 1 1

0 - 4 _ 2

0 0 0

0 0 0

0 0 2

0 2 0

0 0 0

1

=  p2e2(s)

Clearly, rank of P2 is d =  u + l and so M(s) is linearly pole assignable 

Now consider a decentralised output feedback of the form

k
1

0

0 ki

oo

1 0 k 2 k3

applied on the above system and so we have

O
E 111; 1. =  m l * l + m 2 12 + m 3 13 =  1 +  1 +  1 =  3
.=1

and the condition for CPA system is satisfied. In fact, if

k — [1, kj, k2, k3, k4, k5, k6, k7, k8, k9] E R

I - 1 7 9 -  1
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is a solution of D-PAP, then it has to satisfy the linear equations

P 2t  k =  a

and a set of reduced QPR. We therefore have

p 2t k = cöiII
k5 — k j k 4 + ^2^3 =  0

8̂ -  ktk7 + k2k6 =  0

k9 — k3k7 + k4k6 =  0

or, equivalently

kj £ R k2 G IR — {0} k3 — &Q—2 k4 E R k5 — k4k4

k4(k ,—20 -  y ( k ! - l ) + "cr(a2 —1) + \ (ao ~ ai + l-)
k7 =  i  (2kKg —

2̂

kg — 2 (4^4 k2+ a ; a0 1) k9 — k3k7 — k4k6 k2 yi 0

Thus, any polynomial a(s) =  a0 +  a^  +  a2s2 can be assigned by a decentralised real feedback 

controller. □

7.4 Determinantal Assignment Problems Using Multivariable 
Dynamic Controllers

Consider the general multivariable system with unity feedback whose plant transfer function 

matrix(TFM) is G(s ) g R" i X,(s ), and with forward controller TFM C(s)£lR,Xm(s) and assume the 

following coprime MFD as

G(s)= A ^ B j = B2A2 \ C(s) = D f'N j = Nj Dj 1 (7.9)

Under unity feedback the characteristic pole polynomial of the closed-loop system is

- 1 8 0 -
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where

f(s) =  IF j (s) I =  I F2(s) I

Fr(s) =  A1(s )D2(s ) +  B 1(s )N2(s ) 

F 2(s ) =  D j (s )A2(s ) +  N1(s ) B 2(s )

Thus we may write

f(s) = [DiOO Nj(s)] A2(s )
B 2(s )

[Ai (s ) B x(s)] D2(s )
N2(s )

Remark 7.1: The general feedback structure covers all the cases m> 1 or m <1. In fact

(i) If 1> m , then C(s) may be interpreted as a precompensator

(ii) If l<m , then C(s) may be interpreted as a feedback compensator

Let the multivariable controller be given by

C(s) = K0+ s " IK1+ sK 2 £ R 'Xm[s], K0,K x,K2 £ R,Xm 

= [si/] 1 [s 2K2+ s K0 +  K1]

=[s2K2+sK 0 +  K1][sIm] - 1

Remark 7.2: Left MFD coprime iff /?[0,Kx] = 1

Right MFD coprirne iff p

Thus, if l<m  use left MFD ; if l>m  use right MFD

(7.10)

(7.11)

(7.12)

(7.13)

(7.14)

□

(7.15)

- 1 8 1 -  1
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7.4.1 Multivariable P -I controller

C(s)=K0 + s -1 K1 = [slf]_1 [sK0 +  K J  = [sKo +  K jfsIm ]-1

(i) l<m : p(K j) =  1 for coprimeness of L-MFD

f(s) = (si, sKo +  K j j A2(s )
B2(s )_

= [C K0 Kj]

s A2(s )

s B2(s )

B2(s)

|F, T?[s]|

F, = [I, K0 K,] 6 I

s A2(s )

/ X ( l  +  2 m )

T ?(s) = sB2(s)

B2(s )

( l  +  2 m ) x i

(ii) l>m : /9(Ki) =  m for coprimeness of R-M FD

f(s) = [ A r ( s )  B ^ s ) ] s l m
s Kq +  K ì

s  A x( s )  +  s B 1( s ) K 0 +  B 1( s ) K 1

I m

[s A i ( s ) s B ^ s )  B j ( s )  ] K 0

K i

T f  (s) Fr

F r K0

T f ( s )  =  [sA^s) sBj(s) B^s) ] £ ¡r ’7>x (''i +  -0 [ s]

Conclusions: Using multivariable dynamic P -I controllers the DAP is reduced to

problem.

K m  : f(s) (h  K0 K j)

s A2(s )

s B2(s )

B2(s )

(7.15)

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21) 

constant DAP

(7.22)

1 - 1 8 2 -



Chapter 7

> m  : f(s) = [ s A i ( s )  s B ^ s )  B ^ s )  ]

1

? 
°

1__________

K r

(7.23)

New invariants and solvability conditions are introduced by the Plucker matrices of T 2 (s), T j* (s)

7.4.2 Multivariable P D Controllers

Let C(s) = K0 -f- s k , = [ 1;] —1 [ sI\2 +  K0 ] — [ sI\2 +  K0 ] [ Im ] 1 (7.24)

The above MFD are always C - coprime but not necessarily coprime at s = oo

Remark 7.3 : If we denote by

C,(s) = [ I„ sK, +Iv0 ] G R ' X(m+,) , Cr(s) =

(i) L-M FD is coprime at infinity if and only if either of the following equivalent conditions hold 

true

(a) C,(s) has no zeros at s = oo

(b) C; (s) as a pencil has no nonlinear oo-ed

s K 2 +  K 0 

Im
( m X I ) X m

G R  ( s ) (7.25)

(ii) R-M FD is coprime at infinity if and only if either the following equivalent conditions hold

true:

(a) Cr(s) has no zeros at s = oo

(b) Cr(s) as a pencil has no nonlinear oo-ed

□

Remark 7.4 : (i) If p(K2) = 1, then L-MFD is coprime at oo

(ii) If p(K2) = m then MFD is coprime at oo

□

Remark 7.5: Using matrix pencil theory we can readily characterise the conditions for coprimeness at s

=  oo

I - 1 8 3 -  1
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Remark 7.6: Use of P -D  feedback may result in a singular closed loop system. Conditions 

on (Ko, K2) such that we guarantee internal properness.

Again we may distinguish the following two cases 

(i) l<m  (feedback compensation)

f(s) =  |[I/i sK2 +  K0][A2(s), B2(s )]t | = | A 2(s ) + s K2B2(s ) +  K0B2(s )| 

=  |[I„K0,K2][A2(s ),B2(s ),s B2(s )]t | = | f ; T 2(s )|

where

t? ri \rF/=lI/>K0-K2 je |R

To(s)

A2(s )

B2(s )

s B2(s )

f
1
I
Îm
i
îm
i

(ii) l>m (Precompensation Configuration) 

f(s) =  |[Ai(s),B1(s)][Im, s K2 +  K0]t | = | A 1(s ) + s B1(s )K2 +  B1(s )K0 

=  |[A1(s), B^s), sB,(s)][Im, K0,K2]T| =  |Tf(s)  F r |

where

T?(s) Ai(s) B j(s) sB^s) I m X ( m  + 2 i )tri g R v ’

□

defined

□

(7.26)

(7.27)

(7.28)

(7.29)

(7.30)

<-m-*
I - 1 8 4 -  1
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F r = [Irn, K0, K2]t  G R(m+2,)Xm (7.31)

Conclusion: Dynamic P-D  Determinantal Assignment Problem(DAP) is reduced to a constant DAP

problem:

1 < m: f(s) = |I,A2(s ) +  K0B 2(s ) +  K2sB2(s)| (7.32)

1 > m: f(s) = | AjfsJIm + B, (s)Ko +  sB1(s)K2| (7.33)

Remark 7.7 : Additional conditions for internal properness are also needed on the top of the solvability 

conditions for the constant DAP problems.

7.4.3 Multivariable P -I-D  Controllers

Let

C(s) =  K0 +  s_1K1 +  s K2 =

=  [si,]“ 1 [s2 K2 + s K0 + K,] = [ s2 K2 + s K0 + K, ] [ s Im ]_1 (7.34)

Remark 7.8 : Conditions for coprimeness at s = oo as well as in C and internal properness of the 

feedback are needed.

(i) 1< m (feedback configuration)

f(s) =  |s A2(s ) +  s2 K2 B2(s ) +  s K0B2(s ) +  K1B 2(s)| (7.35)

=  | [ I, K0 K, Iv2 ] [ sA2(s) s B2(s ) B2(s ) s 2B2(s ) ]t |

=| F T 2 (s) I (7.36)

where

- 1 8 5 -  I
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F, =  [ I, K0 K! Iv2 ] e  R,X(' + 3m) (7.37)

T 2(s) = [ sA2(s) s B 2(s ) B2(s ) s 2B 2(s ) ]t  e R(' + 3m)X' (7.38)

(ii) 1 > m ( Precompensation configuration )

f(s) =| sA^s) s 2B1(s )K2 + sB1(s)K0 + B 1(s)K1 |

= | [ sAj(s) sBj(s) B j(s) s2B1( s ) ] [ I m K0 Kl K2 ]T |

= | 17(8) F r | (7.39)

where

T/(s) = [sA jis) sBj(s) B,(s) s2B 1(s) ] £ RmX(m +  3°  [ s ] (7.40)

Fr =  [lm  K 0 K! K , ]T £ R(m + 3' )Xm (7.41)

Conclusion: The dynamic P -I-D  Determinantal Assignment Problem (DAP) is reduced to a constant 

DAP problem

1 < m : f(s) =| [ I , K„ K , K 2 ] [  s A2(s ) s B 2(s ) B 2(s ) s 2B 2(s ) ]t | (7.42)

l > m :  f(s) =|[ sA^s) sB^s) B^s) s2B1(s) ] [ I,„ K0 Kt K2 ]t | (7.43)

7.5 Multivariable Controllers of Bounded Dynamic Order

Consider the multivariable system G(s) 6 R,Xm(s) such that

C(s) =  D r‘ (s)N1(s) = N2(s )D2 1(s ) (7.44)

Assume that MFD's are coprime and reduced and let

T,(s) = [D 1(s) N,(s) ] =  Tps" +  + ••• +  T„) (7.45)

- 1 8 6 -
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T r(s) = [ D,(s) N2(s ) ] =  T .s "  +  T ^ s " - 1 +  ■•■ + T 0 (7.46)

where /r is the observability index of the minimal system i.e., the maximal of the observability indices 

and u is the controllability index i.e., the maximal of the controllability indices.

The above descriptions do not guarantee properness of the resulting transfer functions therefore 

additional conditions are needed to make sure we have a proper controller. Although these descriptions 

cannot also guarantee a fixed McMillan degree compensator, they define an upper bound limit for it.

Lemma 7.3 : The extended McMillan degree ¿^(C) °f C(s) '-e-' total number of finite and infinite 

poles is

^M = ^M  ̂ l";(s)) ] = [ Cm(T r(s)) ]

where . ] denotes the matrix degree defined as the maximum of degrees of maximal order minors.

□

The above result [Kar.7] holds for a general system and leads to the following proposition

Proposition 7.2 : A dynamic system described by (7.43), (7.44) has maximum extended McMillan

degree

(i) 1̂ ( if ( 7.43) system description is used

(ii) mu if (7.44) system description is used

□

Using the descriptions (7.43) and (7.44) we may consider the pole assignment problem

f(s) =  |[ Dj(s) Nj(s) ][ A2(s ) B2(s ) ]t |=|[ A l (s) B ^ s ) ][ D2(s) N2(s) (7.47)

(i) 1 < m i.e. feedback configuration

f(s) =  | [ D^s) Nj(s) ] [ A2(s ) B2(s ) ]t  I = |( T .s "  +  ••• +  T„) ( P 2(s) ) 1=

[ T J h  ••• T „ ] [ s mP 2(s ) s " - 1P 2(s ) ... P 2 ]t | =

I - 1 8 7 -
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= | Ff PS(8) |

where

P2(s) =  [ A 2(s ) B2(s ) ] t  , Fj1 =  [ T m T #j_ 1 T 0 ] 

P2OO = [ s " P 2(s) s'1-1P2(s) ■■■ P2 (s)]T

(7.48)

(7.49)

(7.50)

clearly this problem is reduced to a constant Determinantal Assignment Problem (DAP).

(ii) 1 > m i.e., Precompensation Configuration

f ( s ) =  I [ Aj(s) B,(s) ] [ D 2(s ) N2(s ) ] t |

=  | P x(s) ( T„ s" +  +  To ) I

=  I [ s"P 1(s) s '- 'P ^ s )  ■■■ P1( s ) ] [ t o  T 1/-1 ••• To ]T|

= I P?(s) F$ I (7.51)

where

P 1(s) =  [A 1(s) B j(s )]  Pi(s) = [ s"P 1(s) s '- 'P ^ s )  ■■■ Pj(s) ]

F2 = [T o  T ^ - i  t o  ]T (7 .52 )

Again this is a problem of a constant DAP type.

7.6 Decentralised Control Problems

We consider the pole-assignment problems for the decentralised case and we shall show that the fixed 

dynamics control problems are reduced to constant versions of the decentralised DAP

Assume the R[s]-coprime MFD’s

G(s) =  A-1 B =  B Ä -1 

C(s) =  D_1N =  ND 1

mxl

Ixm

I -1 8 8

(7.53)

(7.54)
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and that C(s) is decentralised, i.e.

C(s)

Cris) 0

o c t (s)

(7.55)

_ ,  -  -  _ .  I ■ X m ■
If C,(s) =  D, l N: =  Nj-D, 6 IR 1 '(s) are the particular controllers, where the MFD’s are R[s]

co-prime. Then

C(s)

Nr(s) ••• 0

0 ••• Nt (s)

D^s) 0

0 Dt (s)

=  N D 1 (7.56)

D i ( s )  ■ 0
-1

N ! ( s )  • 0

0 ■ D t ( s ) 0
—

• D fc( s )

Remark 7.9: The MFD’s in (7.56), are co-prime iff t he C; (s) =  1NI- =  NtDt 1 MFDs are 

co-prime.

□

7.6.1. Expression of Decentralised Closed-Loop Pole Polynomial

T Ä(s) T
f(s) = D(s) N(s) l

1
1+m

*- 1+m —» B(s) 1

_ [Tm
h

D(s) I
f(s) = A(s) B(s) m+1

<- m+1 -* _N(s)_ l
<-m->

(7.57)

(7.58)

- 1 8 9 -  I
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Taking into account the special form of (N, D), (N, D), the above conditions may be rewritten

as

Di(s) 0

0 D*(s)

f(s) = [Ai(s), At (s) ; Bj(s), ■ -, B*(s)]

Ni(s) 0

0 N,

Dr(s)

Ni(s)

Î

1

0

«-m

f(s) = EA 1 (s) î B 1(s)'; • 
mr+lr

• :A*(S)> Bfc(s)]m

Dt (s)

0 Nt (s)

Tr(s) 0

[Pi(s), •■■,Pt (s)]

0 T t (s)

or decentralised formula I

f(s) = Pi(s) T j(s): :P t (s) T t (s)

here

P,(s) =  [A,.(s), B,.(s)] G RmX(m.+ '. ) [ s]

D,(s)

N,(s)

(7.58)

(7.59)

T ,(s) =
( m i + / i. ) X m i

(7.60)
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A similar formalisation may be given for other expression of f(s), i.e.

f(s) =

Di(s) Nj(s)

* -  l l + I T l j  - »

Î
1

Ai(s)

B'i(s)

1
I

*~h+m k~*

Dt (s) Nt (s) Àfc(s)

B*(s)

or Decentralised Formula II

f(s) =

Ti(s) Pi(s) 1

T t (s) P*00

(7.61)

where

P.-00
Â.-(s)
B,(s)

G |R(,‘+m’ )X,*[g] (7.62)

T,(s) =  [D,(s), N,.(s)] G
/ • X  ( / • + m  ■ )j i v i i '[s] (7.63)

Remark 7.10 : The set of {P^s), i G k}, {P^s), i G k} are system invariants modulo left, right 

R[s]-equivalent, respectively.

□

- 1 9 1 -  I
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7.6.2 Transformation of Decentralised Dynamic Control Problems to Constant Decentralised 

Problems

From decentralised formulae (I), (II) it follows that the nature of each channel controller may be 

treated individually i.e. one controller may be constant, the other P -I, P-D , or any other type. Central 

to this analysis are the channel matrices defined by:

(a) Right i-th  Channel Matrix (from formula I)

Q.(s) =  P,(s) T,.(s) G RmXm,[s]

P,(s) =  [A,.(s), B,(s) ] G Rlm' +' l)Xm‘ [s]

T,(s)
D,(s)
N,(s)

( m  • 4-/ • ) X  m  ■
G Ik  1 ‘ s

(b) Left i-th  Channel Matrix (from formula II)

1X1
Q',(s) =  T ,(s) P,(s) <E 

P,.(s) =
Aj(s)

B,(s)
G R(,<+"*iJX '[s], T,.(s) =  [D,.(s), N,.(s)] € r '1 Xl' ,+m,)[s]

(7.64)

(7.65)

(7.66)

(7.67)

All previous results on transforming dynamic problems to constant DAP problems are 

applicable here in the following way.

Case (1): Constant Controllers

T,(s) - I
N,-

T ,(s) =  [I, N,]

Thus,

Q*(s) =  [A,-(s), B,-(s)]

N;
=  P.-(s)Ff

Q'i(s) =  [I, N,]
Ä,(s)
B t(s)

=  F f  P,(s)

(7.68)

(7.69)

(7.70)

1 - 1 9 2 -  1
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Case (2): P -I Controllers

_ slm-
sK0. + Kj

Q,(s) =  [A,.(s), B,(s)]

T ,(s) =  [si/., sK0j. + K jJ

: sAi(s)+ sB i (s)K0 + B ,(s )K 1.* 1
si

sKo. +  Ki

=  [sA; (s), sB^s), B j(s)]
I",-

KC
K,.

=  Pf(s) F m.

Q'(s) =  [si, sK0. + !<!.] Â,(y)
B,(s)

— sÂ1(s) + K0 B I(s)-s +  K1.B I(s) —

K0, K,

I-+ <-m-+ «-m-»

sÂ,.(s)

sB,(s)

B,(s)

=  Fr.p“(s)

(7.71)

(7.72)

Note 7.1: a  refers to P -I, o to constant controller

Remark 7.11 : Similar analysis applies to the other forms of controller. We may use the previous case 

results (P-D , P -I-D , etc.).

□

Summary: Let ( r t) denote the type of controller that corresponds to i-th  channel. Then the matrices 

Q,(s), Q/(s) may be factorised as

Q,-(s) =  P,(s) T,.(s) =  p ST<)T,.(s ) =  P ^ ' ^ - F ^  

Q'i(s)  =T,.(s) P,(s) =  F ;T,)-p ‘T,)(s )

(7.73)

(7.74)

where P̂  (s), P ; ' (s) are the i-th  channel polynomial matrices defined from the (7",)-type and
-  ( T j’ ) ( T*)

Pt(s), P,(s) and F, , F, are constant design parameter matrices defined from the ( r t)-type of 

controller.
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From Decentralised formulae vve have:

f(s) =

‘ (ri )
Fi

S -i)

S Tk)

r p (; i } (s)

P iT<)(s) |k +p * (s )|

f(s) =

> S Tl) o

1

[p !Ti )(s ), •" . P ^ O O .  •; P l Tk)(s)l

1
O

' *<'■>

P*(s) K*

(7.75)

(7.76)

which are both in the form of decentralised constant DAP.

Assume P -I decentralised controllers, then from the second formula we have:

f(s) =

0

where

Ff . — [I; .i K 0 Kj  ] G
,'<X(/,.+ 2m,.)

P “ (s) € R(' i+2m,)X'[s]

(7.77)

(7.78)

(7.79)

Conditions, necessary , for solvability, fixed modes etc. may be discussed within this 

framework.

1 - 1 9 4 -
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7.7 Conclusions

Although the algebrogeometric tools have been applied only in the case of Decentralised pole 

assignment by constant output feedback, the results readily extend to the case of zero assignment. It is 

worth pointing out that the machinery based on Schubert varieties and calculus which has been used in 

the centralised case for the derivation of conditions for existence of real solutions does not apply here in 

a straightforward manner. Further work is needed for the derivation of sufficient conditions for the 

existence of real solutions.

- 1 9 5 -
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CONCLUSIONS

An Exterior Algebra and classical Algebraic Geometry framework has been developed which 

handles both generic and exact problems arising in Decentralised control of large scale systems. The 

same philosophy provides also a computational framework for the evaluation of various control 

architectures as possible solutions to control problems.

Dynamic problems of frequency assignment may also be reduced to the same formulation of a 

constant DAP or D-DAP and this demonstrates the generality of the approach as far as variety of 

problems that may be handled. Although Decentralised control problems have been considered here, 

the special machinery developed for D-DAP is also suitable for simple type of control where simple 

refers to a control scheme with sparse structure. In the latter case the technique may also be used for 

the development of diagnostics for the suitability of certain control structures.

Although Exterior Algebraic tools create no problems as far as D-DAP , the Algebraic 

Geometry tools are underdeveloped for the specific application and this is reflected in the fact that 

necessary and sufficient conditions for the frequency assignment problems by complex Decentralised 

controllers may be derived, but there are no sufficient conditions for constant controllers as in the 

centralised case. The advantages and disadvantages of the present framework are considered next 

together with a set of tasks for further research.

The root of the difficulties in deriving sufficient conditions for the existence of solutions lies in 

that there is no theory of Schubert varieties of the Decentralised Grassmann variety. Because of that it 

is difficult to establish sufficient conditions by deploying the order of such varieties which is the basis 

of the technique used for the centralised case.

The development of generic solvability conditions heavily relies on further work on this 

mathematical area and this is an important task for future research. The investigation of tools which 

may provide an alternative working environment to that given by the Schubert varieties is also worth 

examining. This research plan may contribute to the derivation of alternative sufficient conditions.
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In summary control problems with partially fixed control structure may be handled with some 

difficulty when we address the question of sufficient conditions but necessary conditions are readily 

derived since computation of dimensions of corresponding varieties can cause no problem. These 

necessary conditions characterise general features of the Decentralised control scheme and may be used 

in a negative way that is for the exclusion of bad control structure options.

The exterior algebra tools such as the Decentralisation Index, Decentralised Plucker matrices 

provide alternative necessary conditions for the solvability of Decentralised frequency assignment 

problems. In fact in this way they may be used as complementary tests for the selection of control 

structure. It should also be mentioned that the algebraic-geometry based criteria are parameter 

independent since they are defined by the Decentralisation groupings, the McMillan degree and the 

Forney order whereas exterior algebra based tools explicitly depend on model parameter as well as the 

decentralised groupings.

The Decentralised framework described by D-DAP has been shown to be suitable for studying 

problems of fixed dynamic complexity of sparse decentralised structure. Problems such as Decentralised 

pole assignment by P-I, P-D, P-I-D controllers is reduced to the D-DAP framework. Necessary 

conditions for solvability of such problems may be derived using similar procedures for the constant 

case. There are some technicalities associated with causality of the resulting control scheme but the 

procedure in general is quite similar. Such tests may also be used for the evaluation of control 

structures. Extension of the approach to that area is also important and it is left for future work.

The new characterisation of fixed modes ,zeros and the extension of the notion to that of 

almost fixed mode,zeros has two distinct advantages. First it is connected to the general computational 

framework of the D-DAP approach and second it provides an interesting dynamic characterisation of 

the almost fixed modes as modes with restricted mobility under feedback compensation.

The technique for the evaluation of the trapping discs may be easily implemented and it also 

leads to narrow bounds for frequency mobility . An important problem in this area which has not been 

addressed before is the behaviour of almost fixed modes, zeros under dynamic Decentralised schemes. 

Preliminary results in this area although not reported in the thesis indicate an increase in the 

dimension of the trapping discs but no significant influence on the location of almost fixed modes, 

zeros. Deriving results in this area is important since they may be used to qualify the minimal order 

dynamics for which trapping discs may become infinite and thus permit unbounded mobility of modes, 

zeros under compensation. The key notion of almost zero as it has been introduced in [Kar.4] needs 

some improvement as far as defining the location of almost zero. It should be noted that this definition

1 - 1 9 7 -  |
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depends on scaling of the polynomials and needs some improvement.This is also a task for future 

research.

For the concepts and tools to be useful in practice for the evaluation of control structures there 

is a need for the development of the computational framework of D-DAP. Work in this area has 

already progressed for the centralised case (Ph.D thesis M.Mitrouli) and the basic algorithms for the 

exterior algebra computations is addressed there and may also be used for D-DAP. The additional 

feature here is the computation of the Decentralisation Index which has been described in the 

appropriate chapter.

The computation of solutions of DAP may be reduced to an optimisation problem where the 

linear part defines a performance index to be minimised and the quadratic Plucker relations define the 

equality constraints. The same philosophy and algorithm may also be applied to the D-DAP. In fact 

the additional characteristics are those defined by the Decentralised constraints. This computational 

method has the potential to develop to a C.A.D. technique for constant or simple dynamic 

decentralised controllers for large scale systems. In fact when the necessary conditions are satisfied the 

algorithm may be used for the computation of solutions despite the fact that sufficient solutions may 

not exist. In this design approach the optimisation algorithm is of high importance and the resulting 

solutions are the appropriate ones. Two important tasks here are the selection of the algorithm which 

may perform well with arbitrary initial conditions, its convergence and second the interpretation of the 

approximate frequency assignment solutions. Those two problems should not be underestimated and 

need to be seriously addressed in order for the D-DAP methodology to form the basis of a design 

technique for Decentralised sparse, simple dynamic order controllers. Its ability to tackle all the latter 

cases indicates that there is a lot of potential in that area.

D-DAP as well as DAP address the problem of frequency assignment and also stabilisation in 

an indirect manner. Addressing the problem of stabilisation within DAP is difficult since the coefficient 

vectors of stable polynomials do not have easily handled properties by the present algebrogeometric 

tools. The exterior algebra tools however may also be used for the decentralised stabilisation and this 

is a topic under investigation.

In summary D-DAP was shown to be a useful methodology for addressing issues associated to 

the selection of control structures and synthesis of Decentralised controllers. It also has the potential to 

form the basis of a C.A.D technique which may handle arbitrary sparse structure and limitations in 

dynamic order of the controllers. For the time being such techniques do not exist....

- 1 9 8 -
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