
              

City, University of London Institutional Repository

Citation: Guzmán-Iñigo, J., Sipp, D. & Schmid, P. J. (2014). A dynamic observer to capture

and control perturbation energy in noise amplifiers. Journal of Fluid Mechanics, 758, pp. 
728-753. doi: 10.1017/jfm.2014.553 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/29236/

Link to published version: https://doi.org/10.1017/jfm.2014.553

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Under consideration for publication in J. Fluid Mech. 1

A dynamic observer to capture and control
perturbation energy in noise amplifiers
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In this article we introduce techniques to build a reduced-order model of a fluid system
which accurately predicts the dynamics of a flow from local wall measurements. This is
particularly difficult in the case of noise amplifiers where the upstream noise environ-
ment, triggering the flow via a receptivity process, is not known. A system-identification
approach, rather than a classical Galerkin technique, is used to extract the model from
time-synchronous velocity snapshots and wall-shear stress measurements. The technique
will be illustrated on the case of a transitional flat-plate boundary layer, where the snap-
shots of the flow are obtained from direct numerical simulations. Particular attention is
directed to limiting the processed data to data that would be readily available in exper-
iments, thus making the technique applicable to an experimental setup. The proposed
approach combines a reduction of the degrees of freedom of the system by a projection of
the velocity snapshots onto a POD basis combined with a system-identification technique
to obtain a state-space model. This model is then used in a feedforward control setup
to significantly reduce the kinetic energy of the perturbation field and thus successfully
delay transition.

1. Introduction

Fluid systems that fall under the category of noise amplifiers are characterized by a
globally stable spectrum despite the presence of convective instabilities. Boundary layers
are examples of this type of fluid behavior. External perturbations permeate the near-
wall region during the receptivity phase and initiate disturbances that are amplified into
Tollmien-Schlichting waves as they are swept downstream. If these instabilities reach
sufficient amplitudes, breakdown of the flow into turbulent fluid motion can occur. Much
effort has been expended to understand and control this breakdown into turbulence by
manipulating the underlying instability processes.

While many open-loop control techniques have been developed to delay the transition
process, closed-loop approaches, where actuation depends on sensor measurements, are
more effective and efficient (Kim & Bewley 2007). However, under realistic flow condi-
tions, the direct application of closed-loop control techniques is often not tractable. The
high degrees of freedom of fluid systems (often O(106)) are far beyond the capabilities of
current control devices which typically can handle O(102) variables. As a consequence,
the full fluid system has to be properly reduced, before a controller can be designed for
the reduced-order model. This methodology has been demonstrated to yield successful
control designs, see Bagheri et al. (2009) and Barbagallo et al. (2009), among others.
In these investigations, model reduction is accomplished by a flow decomposition (e.g.,
POD or BPOD decomposition) followed by a Galerkin projection of the equations onto
the reduced basis.
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In the case of noise amplifiers, external perturbations strongly influence the system
dynamics. Thus, it is very important for the reduced-order model (ROM) to accurately
capture the noise environment. In particular, ROMs obtained by means of Galerkin
projections require detailed knowledge of the spatial distribution of the upstream noise
sources. This requirement imposes great limitations, especially in experimental situations
where information about the noise environment is neither directly nor sufficiently avail-
able. A promising alternative to control design based on Galerkin projections derives from
system-identification techniques as proposed in Hervé et al. (2012); this approach also
constitutes an encouraging step towards the control of noise amplifiers in experimental
situations.

This paper intends to provide a methodology to obtain reduced-order estimators for
noise amplifiers without using Galerkin projections. While in Hervé et al. (2012) the
model describes only the dynamics between one sensor (upstream measurement) to an-
other (downstream measurement), here we aim to capture the dynamics between up-
stream measurements and the entire perturbation field. This will allow the reconstruction
of the full flow field and, consequently, the design of controllers that target the kinetic
energy of the full perturbation field, not only the variance of a wall-measurement sig-
nal. This reminds the Galerkin-based output projection technique introduced by Rowley
(2005) that captures the full perturbation field from a given input. However, the latter
technique requires precise knowledge of the spatial distribution of the input, which is
generally not available in amplifier flows. Therefore, Dergham et al. (2013) has extended
it to also account for any possible input, so as to obtain a model that captures any input
to any output. In the present work, we aim at obtaining a similar model — capturing the
dynamics from unknown input to any output — but with identification methods. The
proposed approach consists of a reduction of the degrees of freedom of the system by
(i) a projection of the velocity fields onto a reduced basis combined with (ii) a system-
identification algorithm to obtain the dynamic operators of a reduced-order system. In
particular, a link between velocity fields (e.g., from TR-PIV data) and time-synchronous
wall-shear stress measurements is established, and a dynamic observer is determined. A
key feature of our procedure is its reliance on a Galerkin model structure but on the deter-
mination of the model matrices by system identification rather than integral expressions
(Galerkin projections).

The link between velocity fields and wall measurements is reminiscent of linear stochas-
tic estimation (LSE) techniques (Adrian 1979; Guezennec 1989; Bonnet et al. 1994; Tin-
ney et al. 2006; Hudy et al. 2007; Taylor & Glauser 2004; Tu et al. 2013) where multiple,
measured inputs are correlated to simultaneous, multiple outputs by averaging over many
realizations. Our proposed technique generalizes this static approach by accounting for
the dynamics of either measurement data. The comparison between LSE and dynamic
observers obtained by Galerkin projection has already been considered in Rowley & Jut-
tijudata (2005) showing the superiority of dynamic estimators. A further relation can
be demonstrated to data-assimilation techniques, specifically, to the online variant (see,
e.g., Lewis et al. 1989) where streaming data are matched to an underlying model which
is then used to predict future measurement signals. Once a model has been extracted
by our technique from measured data, it can straightforwardly be used in a closed-loop
control application, as will be illustrated below.

The present study is structured as follows. After a brief description of the flow con-
figuration and the governing equations (§ 2) we present a dynamic observer obtained
by Galerkin projection (§ 3) and by the identification procedure (§ 4). § 5 will compare
the identified observer with different well-known approaches, while § 6 will demonstrate
how to include the identified model in a control framework. A summary of results and
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conclusions are given in § 7. The appendix gives details about the employed subspace
system identification techniques.

2. Problem formulation

2.1. Governing equations

We choose a zero-pressure gradient boundary layer — a classical and generic flow that
acts as a noise amplifier — as our configuration to design and test the dynamic observer.
This flow is globally stable but selectively amplifies upstream disturbances by convective
instabilities. In a low-amplitude noise environment, two-dimensional Tollmien-Schlichting
waves appear as a result of this instability mechanism.

We consider the dynamics of disturbances u around a base-flow U0, which we take
as a Blasius boundary layer. The disturbances u are additionally driven by an external
forcing term, Fww(t), which acts as an upstream disturbance source of unknown origin.
For simplicity, we assume that w(t) is a random process of zero mean and variance W,
while Fw describes a spatial two-dimensional Gaussian distribution centered at (xw, yw)
of spread (σx, σy) and amplitude A. The spatio-temporal evolution of the total flow field,
Utot = U0 + u, is governed by the incompressible Navier-Stokes equations, augmented
by a forcing term,

∂tUtot +Utot · ∇Utot = −∇Ptot +Re−1
δ∗
0
∆Utot + Fww(t), ∇ ·Utot = 0. (2.1)

The variables are non-dimensionalized using the displacement thickness δ∗0 of the boundary-
layer at the computational inlet (x0 = 0) and the free-stream velocity U∞. Consequently,
the Reynolds number is defined as Reδ∗

0
= U∞δ∗0/ν. All simulations were performed at

Reδ∗
0
= 1000, which ensures the presence of strong Tollmien-Schlichting instabilities since

Reδ∗
0
> Recritδ∗ = 520.

The governing equations (2.1) are solved in a computational domain Ω of size (0, 1000)×
(0, 40), sketched in figure 1. A Blasius profile of unit displacement thickness is prescribed
at the left boundary, outflow conditions are employed at the upper and right boundaries,
and a no-slip condition is imposed at the wall. We use the spectral-element code Nek5000
(see https://nek5000.mcs.anl.gov) to perform the computations below.
With the base flow U0 as a solution of the unforced (w = 0) steady Navier-Stokes

equations (2.1), the perturbations u are governed by the following equations

∂tu+U0 · ∇u+ u · ∇U0 = −∇p+Re−1
δ∗
0
∆u+ Fww(t), ∇ · u = 0, (2.2)

where the nonlinear term u ·∇u has been omitted since only low-amplitude noise W ≪ 1
will be considered. This assumption ensures linear perturbation dynamics, as well as
a linear response to the noise w. During the DNS simulations, white noise is imposed
via w(n) to mimic upstream excitations of unknown source and distribution (mimicking
conditions in physical experiments). We use a time-step of dtdns = 0.1.

2.2. Perturbation dynamics

Choosing the Blasius boundary layer as an example of a noise amplifier and assuming
a low-noise environment, perturbations may be amplified by two different instability
mechanisms: (i) the Tollmien-Schlichting instability which takes advantage of a critical
layer as well as a wall layer to generate a non-zero Reynolds stress, and (ii) the Orr
instability where initial perturbations lean against the mean shear but grow in amplitude
as they are tilted by the mean velocity (Butler & Farrell 1992). The details of these
mechanisms can be studied within a local stability framework, considering perturbations
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Figure 1: Sketch of the flow configuration. The computational domain Ω is of size
(0, 1000) × (0, 40), represented by the light gray box. The upstream receptivity of the
boundary layer to external perturbations is modeled by the noise w which is placed
at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0) will identify incoming
perturbations, while a velocity window (represented by the dark gray box) is used to
quantify the effect of the forcing on the velocity field.
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Figure 2: Neutral curve obtained by a local spatial stability analysis in the computational
domain.

of the form ei(αx−ωt), with ω as the frequency and α as the streamwise wavenumber
of the perturbation. An analysis of this type shows that the Blasius boundary layer is
convectively unstable to Tollmien-Schlichting waves when the Reynolds number based
on the local displacement thickness δ∗(x) is larger than the critical value of Re = 520.
In figure 2, the neutral curve obtained from a local spatial stability analysis performed
with wall-normal profiles extracted from the base flow U0 is displayed. The unstable
frequencies fall in the interval 0.055 < ω < 0.13 at the computational inlet and 0.015 <
ω < 0.052 at the end of the domain. When a localized disturbance is placed inside the
boundary layer, the response is a wavepacket which convects downstream at the local
group velocity vg = dω/dα. The group velocity is a very important parameter, as it sets
a characteristic time for the perturbation, and can easily be obtained from the dispersion
relation ω = ω(α). In figure 3, the dispersion relation is represented for three different
Reynolds numbers (corresponding to streamwise locations at the computational inlet,
middle and outlet). For the considered configuration, the group velocity is estimated as
vg ≈ 0.375U∞ using the real-axis approximation.
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Figure 3: Spatial dispersion relation for the convectively unstable frequencies at three
different positions within the domain.

2.3. Measurements

This paper aims at providing a data-based technique that is applicable in an experimental
setting. For this reason, special care must be taken to only use data which is readily
available in an experiment. We first consider a wall-friction sensor s (see figure 1), located
at xs = 200 and of spatial extension in the streamwise direction ∆x = 0.5, which measures
the wall shear-stress:

stot =

∫ xs+∆x

xs

∂utot

∂y

∣∣∣∣
y=0

dx+ g =

∫ xs+∆x

xs

∂U0

∂y

∣∣∣∣
y=0

dx+

∫ xs+∆x

xs

∂u

∂y

∣∣∣∣
y=0

dx+ g

︸ ︷︷ ︸
s(t)

,
(2.3)

where s denotes the fluctuating part of the measurement, which may be obtained by
subtracting the time-averaged value of stot from the signal stot. For the case of low-
amplitude forcing, i.e., for linear perturbation dynamics, the time-averaged value also
corresponds to the base-flow value. The sensor stot (or s) may be corrupted by white
noise g, of variance G (with G small and of the order of magnitude of W ).
In addition to the wall-friction sensor s, we also consider velocity snapshots usnap in a

given domain Ωsnap, which may be chosen smaller than the computational domain Ω (see
figure 1). The fluctuating parts of the velocity field may again be obtained by subtracting
the time-averaged snapshots from the total snapshot sequence. In an experimental setup,
the velocity snapshots may be obtained by a PIV technique. In what follows, we will
consider time-series of composite skin-friction measurements and velocity snapshots.

3. Structure of a dynamic observer using Galerkin projection

In this section the model reduction technique based on Galerkin projection will be
briefly discussed to motivate the use of identification methods in the design of reduced-
order models (ROMs). Special attention will be paid to the structure of the resulting
model since it will form the basis of the system-identification approach. We proceed by
developing and analyzing the ROM that would result from a projection of the linearized
Navier-Stokes equations onto a POD basis (§ 3.1) which is followed by the introduction
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of a Kalman filter allowing us to replace the unknown driving term w(t) by the known
measurements s(t) (§ 3.2).

3.1. Reduced-order model with Galerkin projection by approximation of the

controllability Gramian

A common method used to obtain a reduced-order model of a dynamical system is based
on Galerkin projection, i.e., a projection of the Navier-Stokes equations (2.2) onto an
appropriate basis, such that the input-output behavior of the full system is preserved
as accurately as possible. The choice of basis is critical. The two most common options
are based on: an approximation of the controllability Gramian which yields a POD basis
(Rowley 2005; Barbagallo et al. 2009) that maximizes the energy captured by the reduced-
order model, and an approximation of the controllability and observability Gramians
which yields a balanced basis (Moore 1981; Rowley 2005; Bagheri et al. 2009) that directly
focuses on the input-output relation of the reduced system. In this article, only ROMs
obtained by approximating the controllability Gramian will be considered.
After extracting the POD modes (taking data from the full computational domain)

from the approximation of the controllability Gramian by an impulse response of the
full system (see Barbagallo et al. (2009) for details), the governing equations (2.2) are
projected onto the first k modes to obtain a reduced state-space representation of the
system according to

dX

dt
= A′

wX(t) +B′
ww(t), (3.1a)

s(t) = C′X(t) + g(t). (3.1b)

where X(t) is a vector containing the k POD coefficients at time t. Denoting by 〈·〉
the energy based-inner product that has been used to extract the POD modes, the
components of the matrix A′

w and of the vectors B′
w, C

′ are obtained as follows: A′
w,ij =

〈Φi,A Φj〉 (with A as the linearized Navier-Stokes operator (2.2) on Ω),B′
w,i = 〈Φi,Fw〉

and C′
i = CΦi (with C as the measurement operator).

A Galerkin projection usually provides a continuous-time format for the state-space
system (3.1). With the remaining article pertaining to system identification methods, it
is more convenient to express the governing equations in a discrete-time framework. In
the discrete-time domain, the mapping of the state-vector X from time t (index n) to
t+∆t (index n+ 1) reads

X(n+ 1) = AwX(n) +Bww(n), (3.2a)

s(n) = CX(n) + g(n), (3.2b)

with Bw =
∫∆t

0
exp[A′

w(∆t − τ)]B′
w dτ associated with the discrete driving term, Aw =

exp(A′
w∆t) denoting the evolution matrix over a time interval ∆t and C = C′.

3.2. Kalman filter

When dealing with noise amplifiers, it is critical to accurately account for the disturbance
environment, as it both triggers and sustains the dynamics of the system. Despite this
requirement, in an experimental setup, access to accurate information about the noise
environment is, at best, very difficult or, in most cases, impossible. We thus have to intro-
duce an observer where the noise source-term Bww(t) is replaced by a measurement term
Ls(t) which drives, as best as possible, the estimated state of the system. Formally, the
observer may be obtained in a straightforward manner by introducing a linear estimator
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of the form

Xe(n+ 1) = AwXe(n) + L [s(n)−CXe(n)] = AsXe(n) + Ls(n), (3.3)

where Xe(n) is the estimated state, s(n) is the measurement signal from the friction
sensor (defined by (2.3)) and L represents the gain of the estimator which can be selected
by the designer to achieve different objectives. If the gain L is selected to statistically
minimize the error ‖Xe −X‖2, the estimator is referred to as a Kalman filter and L is
obtained by solving a Riccati equation (see Burl (1999)) of the form

P = AwPA
∗
w − AwPC

∗ (CPC∗ +G)
−1

CPA∗
w +BwWB∗

w, (3.4a)

L = AwPC
∗ (CPC∗ +G)

−1
. (3.4b)

In short, the dynamic observer (3.3) consists of a linear relationship between two
subsequent state-vectors Xe(n+ 1),Xe(n) and the measurement s(n). Its dynamics are
fully determined by the evolution matrix As = Aw − LC and the observer gain L. We
stress that this estimator is effective, only if the measurement s remains constant over
the sampling time ∆t; for this reason, a spectral analysis of the measurement s must be
employed to determine its frequency content and thus the sampling time ∆t.

3.3. Limitations of Galerkin-based methods

Galerkin models based on Gramians are a popular choice for model reduction, owing to
their ease of use in feedback applications, the availability of mathematical bounds on
their convergence, and their link to physically relevant flow structures. But despite their
wide-spread use, Galerkin-based methods for the computation of reduced-order models
suffer from notable limitations when they are applied to experimental situations.

The favorable properties of the Galerkin model presented in this section stem from the
fact that the POD modes were obtained by accurately discretizing the integral involved
in the controllability Gramian. This requires that an impulse of w(t) can be generated
and its response can be analyzed using velocity snapshots; furthermore, a very small
delay between two successive snapshots and a very long series of snapshots is desirable.
If such requirements are not met, Galerkin projection then provides POD-based models
which may even become unstable: a posteriori regularization and calibration techniques
are then required to render the models stable again (Bergmann et al. (2009)).
One of the most important limitations of Galerkin-based models is linked to the re-

quirement of a very accurate distribution of the noise sources in the experiment for
amplifier flows, since these sources will drive the dynamics of the system. Generally,
the noise distribution in experimental setups will be complex, difficult to represent, and
mostly unknown, so that triggering by an impulse in w(t) is nearly impossible.

4. Dynamic observer using system-identification techniques

This section introduces an alternative method to obtain a dynamic observer. We will
present a data-driven approach, based on system identification techniques, that solely
relies on observations of the system in the presence of unknown upstream noise w(t).
System identification techniques represent a family of algorithms which efficiently deter-
mine the coefficients of an underlying model directly from observed input-output data
via a statistical learning process. This section aims at obtaining a dynamic observer
model such as Eq. (3.3) directly from observations of the system. In the following, we
will first briefly recall the basics of system identification techniques, which generate a
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Figure 4: Procedural steps of system identification techniques. Step 1: The system is
forced with a frequency-rich input signal and data is acquired. The forcing term w(n)
driving the system should be either known, or replaced by a known proxy measurement
s(n). Step 2: After selecting a model structure and appropriate parameters, the model
coefficients are then computed by maximizing the fit between the output of the system
and the prediction of the model for a part of the available data. Step 3: The model
is tested on a dataset different than the one used for learning. If the model does not
reproduce the system dynamics with the required accuracy, a different model structure,
a different parametrization or even a different experiment should be considered.

model governing the dynamics of given outputs from known inputs (§4.1). Second, we
will define the output of our system as the coefficients of the velocity snapshots in a POD
basis (§4.2). Third, we will introduce the model structure of the dynamic observer (§4.3),
identify the coefficients of the model (§4.4) and validate the model (§4.5). Finally, the
influence of various parameters on the quality of the model will be assessed (§4.6).

4.1. System identification based on subspace techniques

System identification comprises a wide range of methods of varying applicability and
complexity (see Ljung (1999)). In our case, we aim at obtaining a linear time-invariant
(LTI) multiple-input-multiple-output (MIMO) system, such as the one given in Eq. (3.3).
In general, we have u(n) as known inputs, w(n) as unknown white plant noise and y(n)
as known outputs corrupted by unknown white noise v(n). We aim at determining the
system matrices (A,B, C and D), which govern a state x(n) such that

x(n+ 1) = Ax(n) + Bu(n) + w(n), (4.1a)

y(n) = Cx(n) +Du(n) + v(n). (4.1b)

The coefficients of the system matrices are chosen such that the estimated output ye(n),
obtained by time-marching (4.1) with w(n) = v(n) = 0, is as close as possible to the
measured output y(n) (subject to the white-noise sources w(n) and v(n)), knowing the
inputs u(n). We stress that the state x(n) does not necessarily have to have a physical
interpretation.

System identification consists of three procedural steps (see figure 4). First, the system
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is excited by known and unknown input signals u(n) and w(n) while the outputs y(n)
(corrupted by noise v(n)) are recorded. In a second step, a parametrized model is chosen,
in our case a LTI system characterized by the system matrices A,B, C and D, together
with an appropriate identification algorithm. A subsample of the full data set, referred
to as the learning dataset, is then processed to determine the system matrices of the
model. In a third step, a different part of the data, known as the testing dataset, is used
to drive the identified system, and the output ye(t) produced by the model is compared
to the measured true output y(t); based on this validation test, the model is accepted,
adapted or rejected.

The form of the model given in (4.1) makes subspace identification algorithms a con-
venient choice. Appendix A presents a brief introduction to these techniques; a more
comprehensive description is given in Qin (2006) and Van Overschee & De Moor (1996).
In this study, the N4SID algorithm (Van Overschee & De Moor 1994) has been used to
obtain all the models.

4.2. Outputs as coefficients of velocity snapshots in a POD basis

We would like to describe the system at each time instant with velocity snapshots usnap.
The large number of degrees of freedom in these snapshots makes direct application
of identification techniques excessively, or prohibitively, expensive. It is thus necessary
to reduce the dimensionality of the measured data. In this article, we use the proper
orthogonal decomposition (POD) modes (Lumley 1967; Sirovich 1987) to form a reduced
basis. Note that, contrary to the previous section, the velocity snapshots used to build
the POD basis are obtained in the presence of the true, but unknown, noise environment
w(t).

We consider a sequence of m velocity snapshots {Vsnap(n)}n=1..m extracted from the
Ωsnap-domain and containing the effect of upstream noise w. The sequence needs to
cover a sufficiently large time range to explore all states of the system. Therefore, even
though not mandatory, the time-delay between two snapshots can be taken as quite
large, so as to obtain nearly uncorrelated successive snapshots. The proper orthogonal
decomposition then enables us to compute a ranked orthonormal basis {Φi}i=1..m of
flow fields, satisfying 〈Φi,Φj〉 = δij , i, j = 1, 2, ...,m, which can be expressed most
conveniently as a linear combination of these m snapshots. Here, the scalar-product 〈·〉
is associated with the energy-based inner product:

〈
u1
snap,u

2
snap

〉
=

∫
Ωsnap

(u1
snapu

2
snap +

v1snapv
2
snap) dx dy. Any velocity field V in Ωsnap can then be projected onto the first k

POD modes according to

yi = 〈Φi,V〉 , i = 1, 2, ..., k, (4.2a)

V′ =

k∑

i=1

Φiyi, (4.2b)

to produce the approximate flow field V′. Properties of the POD guarantee that, for
all k, the error ‖V − V′‖2 = 〈V −V′,V −V′〉 is minimal for the set of m measured
snapshots. For the subsequent derivations, we define the reduced state vector given by
the k POD coefficients by Y = [y1, y2, ..., yk]

T
and denote the reduced POD basis by

U = [Φ1,Φ2, ...,Φk].
In what follows, snapshots have been obtained with the smaller Ωsnap-domain of di-

mension (150, 950)×(0, 40). A total of 1500 snapshots sampled each ∆tpod = 5 have been
used to obtain the POD basis. From figure 6 a cut-off for the lower frequencies can be
established at f ≈ 10−3 which, considering the total length T of the time data used to
compute the POD basis (T = 1500× 5 = 7500), guarantees that the lowest physical fre-
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Figure 5: (a) First 100 POD eigenvalues λi of the correlation matrix. (b) Contours of the
streamwise velocity component of the first (Φ1) and tenth (Φ10) POD-mode.

quencies f ≈ 10−3 have been explored approximately 7500×10−3 ≈ 8 times. Figure 5(a)
shows the corresponding eigenvalues of the correlation matrix, confirming a steady decay
over about three decades in the first thirty modes (95 % of the energy is contained in the
first ten modes). Two selected POD modes, Φ1 and Φ10, are displayed in figure 5(b).

The time-evolving POD coefficients Y(n) constitute the output of the system. In the
next section, we will seek a model structure for a dynamic observer that is able to
accurately predict Y(n) from the input to the system.

4.3. A dynamic observer obtained by identification techniques

An approximation Ye of the temporal evolution of the reduced state vector Y can be
obtained by time marching a dynamic observer equation, whose structure is similar to
the one given in (3.3), that is,

Ye(n+ 1) = ÃsYe(n) + L̃s(n). (4.3)

The quantities Ãs, L̃ and C̃ will be obtained with system identification techniques that
solely rely on knowledge of input-output datasets {s(n),Y(n)}n=1..m , rather than by
performing a Galerkin projection and solving a Riccati equation. A relation between the
general formulation of subspace algorithms defined in § 4.1 and the dynamic observer
notation can straightforwardly be defined as Ãs = CAC−1 and L̃ = CB, assuming that
D = 0.

The input s(n) is related to the state Ye(n) according to

s(n) = C̃Ye(n), (4.4)

where C̃ is a measurement matrix which can be obtained using two different procedures:
its exact definition or an identification techniques. In the first case, we combine equations
(2.3) and (4.2) to get

C̃exact,i =

∫ xs+∆x

xs

∂(Φi · τx)

∂y

∣∣∣∣
y=0

dx, τx =

(
1
0

)
. (4.5)

The evaluation of this expression involves either measuring the POD modes or combining
the measurements {s(n)}n=1..m associated with the velocity snapshots {Vsnap(n)}n=1..m,
that were used for the construction of the POD basis in §4.2. In the second case, we use
a simple least-squares method applied to a composite time-series {s(n),Y(n)}n=1..m of
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Galerkin projection System identification

Reduced-order state X(n) Y(n)

ROM matrices Aw,Bw Ãw, B̃w

Estimated state Xe(n) Ye(n)

Observer matrices As,L Ãs, L̃

Measurement matrix C C̃exact (obtained by definition)

C̃ (obtained by least-squares)

Table 1: Notation used for the Galerkin-projection- and identification-based design of a
dynamic observer.

10-4 10-3 10-2 10-1

10-10

10-9

10-8

10-7

10-6

Frequency

|S
|

Figure 6: Spectrum of the input signal s(t) obtained from the shear-stress sensor placed
at x = 200.

the learning dataset. It is straightforward to show that

C̃ = [s(1) · · · s(m)][Y(1) · · ·Y(m)]†, (4.6)

where † denotes the Moore-Penrose pseudo-inverse.

As shown in §3.1, the true evolution matrix for Y is not Ãs but Ãw. Considering a
model-structure for Y similar to the one obtained by Gakerkin projection in (3.2), we
see that the state Y(n) is governed by

Y(n+ 1) = ÃwY(n) + B̃ww(n), (4.7a)

s(n) = C̃Y(n) + g(n), (4.7b)

where the known input L̃s(n) has been replaced by the unknown driving term B̃ww(n).

The true evolution matrix Ãw in (4.7) can thus be obtained from the observer matrix Ãs

via

Ãw = Ãs + L̃C̃. (4.8)

The different notations used for the models obtained with Galerkin projection and iden-
tification techniques are summarized in table 1.
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Figure 7: Learning dataset: (a) the measurement s capturing the influence of external
noise and (b) and (c) the POD coefficients yi obtained by projecting the flow field onto
the POD modes Φ1 and Φ10, respectively.

4.4. Identification of model coefficients with learning dataset

We obtain data by performing a linearized direct numerical simulation of the boundary
layer in the presence of unknown noise. We use a sampling interval ∆t = 5 for the velocity
snapshots and the shear-stress measurements s. This choice of sampling interval can be
justified by regarding figure 6, where the frequency spectrum of the input signal S(f)
is represented. This figure shows that the frequency content of s is rather low near the
Nyquist frequency fnyquist = fs/2 = 0.1 defined by our sampling interval ∆t = 1/fs. The
datasets to be processed are composed of the input signal from the sensor s and several
outputs yi corresponding to the projection of the snapshots onto the set of POD modes
{Φi} (figure 7). Using the N4SID algorithm (Van Overschee & De Moor 1994) and the

Moore-Penrose pseuso-inverse, the model parameters Ãs, L̃ and C̃ are then determined
by fitting the model output to the true, measured output, as the model is forced by the
recorded input. A reduced-order model has been determined with k = 90 POD modes
and a learning data set of length Nsnap = 2000.

4.5. Assessment of model performance with testing dataset

The validity of the identified parameters is subsequently confirmed by using a different

data set (referred to as the testing data set) and by comparing the model output to the
true output. As this testing data set has not been used in the identification of the model,
we can assess the predictive capability of the identified model in this manner. The kinetic
energy defined as E(t) = 〈usnap,usnap〉 ≈ Y∗Y is an important variable of the system
since it represents the global dynamics of the flow. The quality of fit between the energy
of the DNS, denoted by E(t), and the value predicted by the model, denoted by Ẽ(t),
can be stated as

FIT[%] = 100


1−

∥∥∥E(t)− Ẽ(t)
∥∥∥

‖E(t)−mean(E(t))‖


 (4.9)

and can be used to quantify the performance of the estimator. Figure 8(a) displays the
measured input signal s from the wall shear-stress sensor, from which all subsequent
flow variables (figure 8(b-e)) can be derived using the identified model. In our case,
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Figure 9: Snapshots of the streamwise disturbance velocity component obtained (a) from
the DNS and (b) recovered from s(n) via the model for t = 3000 and t = 4000. See
supplementary movie 1.

we show the evolution of energy (b), the first and tenth POD coefficient (c,d) and the
output from a friction sensor (e) placed at x = 600. After a short transient period, the
predicted flow variables closely track their true DNS-equivalents, which yields a relative
match of FITener = 93.72% when evaluated over the time interval t ∈ [4000, 10000]. The
length of the transient period, estimated as Ttrans ≈ 2000, can be directly linked to the
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convective time of the disturbances. As previously mentioned, Tollmien-Schlichting waves
are convected with a group velocity equal to vg = 0.375. This convective velocity defines
the characteristic time Tconv necessary for the wavepacket to cover the distance between
the sensor s and the downstream edge of the domain Ωsnap. This time (Tconv ≈ 2000)
accurately predicts the duration of transient effects Ttrans. This match between the time
the estimator needs to propagate information and the time the system needs to convect
a wavepacket confirms that the input-output behavior of the system is well-captured
by the model. From the POD coefficients in Ye the full flow field can be reconstructed
from the basis U. Two examples of this reconstruction, visualized by the streamwise
velocity component, are shown in figure 9 and compared to the equivalent full DNS
simulation. The first instant at t = 3000 has been taken during the transient phase and
shows a promising but incomplete match over the entire flow domain; a second instant
at t = 4000 displays an excellent agreement between the flow structure recovered from
s(t) via the identified model and the full DNS solution.

4.6. Influence of some model parameters on performance

System-identification techniques usually contain numerous model parameters which have
to be determined with care in order to obtain a representative and robust model of the
underlying physical process. Subspace identification methods are particularly advanta-
geous in this respect, when compared to parametrized models (see Hervé et al. (2012)),
due to the relative simplicity of their parametrization; in fact, the size of the state-space
model is the only user-defined parameter for subspace techniques.

In this section, we study the influence of the state-space size k (in other words, the
number of POD modes), as well as the number of snapshots Nsnap contained in the learn-
ing dataset, on the quality of our identified reduced-order model. Figure 10 represents
the statistical mean and standard deviation of the fit between the validation dataset and
the predictions of different models. Both graphs have been obtained by computing, for
each point on the curves, ten models obtained from distinct sections of a long learning
dataset. The total length of the learning dataset is Nsnap = 8000 (40000 time units) and
the different learning sections i begin at different time instants, tiniti=0..9 = 2500+500i. Fig-
ure 10(a) shows, for a fixed number of POD modes (k = 90), the influence of the number
of snapshots Nsnap: we observe that a minimum number of snapshots are necessary to
obtain an accurate model. This observation is common in identification techniques, since
the algorithm requires sufficiently long time sequences from the dynamical system to
arrive at statistically converged data. In our case, the identification procedure requires
about 1500 × 5 = 7500 characteristic time units to obtain satisfactory results (signal
components of the lowest system frequency f = 10−3 have been explored about 8 times).

The influence of the number of POD modes k on the model quality (fit) observed in
Figure 10(b) is far less trivial. For a fixed number of snapshots Nsnap = 2000, a minimum
number of k = 40 − 50 POD modes are required to obtain a good performance of the
dynamic observer: this is related to the concept of observability of the POD basis.

Intuitively, a necessary condition for an observable system requires that the input s(n)
and the state Y(n) are well correlated or, in other words, that the measurement s(n)

must be accurately representable by the POD coefficients according to s(n) ≈ C̃Y(n).
Figure 11 shows the relative error between the measurement s(n) given by the sensor

in the DNS simulation and the measurement s = C̃Y, with Y obtained by projection
of the velocity snapshots onto the POD modes. The solid and dashed lines respectively
represent the relative error for the case where C̃ is obtained by measuring the POD
modes (Eq. (4.5)) and by the pseudo-inverse (Eq. (4.6)). Both curves show a similar
behavior, reflecting the fact that, after a minimum number of POD modes are taken into
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account, the POD basis accurately captures the temporal behavior of the measurement
signal s(n). The relatively high degree of the system (Npod = k = 90) is related to
the inherent lack of observability of the POD basis. Proper orthogonal decomposition
maximizes the energy captured by a few orthogonal modes and, as is the case for the
boundary layers (and, more generally, flow amplifiers), the most energetic structures are
commonly localized downstream in the domain of interest. Consequently, the first POD
modes do not show much spatial support in the upstream part of the domain, and higher
modes are necessary to represent the full dynamics of s(n). Figure 12 demonstrates this
tendency, showing that the energy content of the modes at the location of the estimation
sensor is nearly zero up to the 22nd POD-mode.
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5. Comparison of model obtained by system identification with other

techniques

In this section, we compare the performance of our identified dynamic observer to that
of a more common Galerkin-based observer (§5.1) and to that of a Linear-Stochastic-
Estimation (LSE)-based observer (§5.2).

5.1. Comparison with model obtained by Galerkin projection

The identification-based dynamic observer presented in this article is similar to the one
obtained by Galerkin projection. However, the identification process will introduce a bias
in the obtained model; this bias will be analyzed below. In figure 13, we compare the
performances of the dynamic observer established in (3.3) by Galerkin projection and
the one obtained in (4.3) by identification methods. Even though the temporal evolution
of the POD coefficients is quite similar in both models, a slight overestimation in en-
ergy is observed in the identified system. The temporal evolution of the POD coefficients
furthermore shows small oscillations in the signal of the identified model (noticeable
for sufficiently small signal amplitudes; see 3000 < t < 4000 in figures 13(a,b)). This
oscillatory effect often appears in identified models and stems from an inadequate repre-
sentation of some frequencies. It is important, however, to keep in mind that both models
are associated with slightly different bases, but a fair comparison has to be performed
on a common basis. To this end, we have chosen to project the estimated state Xe onto
the POD basis U used to obtain the identified model.

5.2. Comparison with model obtained by LSE

Linear stochastic estimation (LSE) postulates a static linear relationship between a set
of input signals (measurements from sensors) and a set of output variables of the flow.
The LSE estimator can be formulated as

Ye(n) = R̃S(n), (5.1)

where Ye(n) ∈ R
k and S(n) ∈ R

m are vectors containing, respectively, the k estimated
output variables by LSE at time n and the measurements from m sensors at time n, and
R̃ is a matrix obtained by minimizing the mean-squared error between the true output
and the one predicted by the model, in other words, ‖Y −Ye‖

2
.

In our numerical experiments, a linear estimator has been computed based on input
from ten shear-stress sensors (equispaced between x = 500 to x = 950) and 20 POD
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modes representing the flow state. Figure 14 shows a comparison of DNS results with
results obtained from applying either LSE or a dynamic observer. It appears that, in
the case of LSE, a great many more sensors are required to obtain a model of similar
quality (performance) than the one provided by the dynamic observer. This observa-
tion corroborates the need of the estimator to correctly identify the wavelengths of the
Tollmien-Schlichting waves – a requirement that can be met with very closely spaced sen-
sors. By comparing different POD coefficients, this point can be further substantiated.
For instance, in figure 14, the first POD coefficient y1 (corresponding to a structure with
large wavelengths) is well represented by the model, while the tenth and twentieth POD
coefficients (y10 and y20), associated with far shorter wavelengths, deviate more notice-
ably from the DNS results. Moreover, the energy predicted by the LSE-model appears
rather noisy compared to the DNS. This feature arises, again, from the poor representa-
tion of the shorter wavelengths of the flow, but it also stems from the inherent lack of
accuracy of first-order truncated stochastic models. This second source of inaccuracies
can be alleviated by considering higher-order terms, while adding closer-spaced sensors
will achieve a better representation of the poorly estimated wavelengths. It is also im-
portant to notice that the linear stochastic estimator does not contain a transient phase,
as the dynamic observer does. Furthermore, it needs fewer POD modes: the dynamic
observer requires a large number of POD modes to fulfill the observability condition dis-
cussed in §4.6, whereas the linear stochastic estimator is not subjected to this constraint.
It has been verified that including more than 20 POD modes does not further improve
the performance of the LSE model.

Figure 15 represents snapshots of the streamwise disturbance velocity at a given in-
stant (t = 8000) for six different cases. The first two snapshots represent results from
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Figure 14: Performance of LSE compared to the dynamic observer. The input data used
by the LSE model comes from ten equispaced shear-stress sensors between x = 500
to x = 950, while the dynamic observer uses a single sensor located at xs = 200 .
(a-d) Comparison between the linearized DNS (black), the identified dynamic observer
prediction (red dashed) and the LSE model (blue) for three variables from the testing
dataset: (a) the energy of the system and (b-d) the POD coefficients yi for the first, tenth
and twentieth mode, respectively.

the DNS and from a reconstruction by the identified dynamic observer based on a sin-
gle sensor located at xs = 200, respectively. The last four snapshots are obtained via
LSE using different numbers of sensors placed at different positions. In the first of the
LSE-cases (figure 15(c)), seventeen equispaced sensors, located between x = 150 and
x = 950, are considered. A satisfactory prediction of the velocity field is obtained with
this configuration, even though the structures far upstream are not as well represented
when compared to the dynamic observer. In figures 15(d,e) ten sensors have been placed
equidistantly, in one case, between x = 500 and x = 950 and, in a second case, between
x = 150 and x = 600. When the ten sensors are concentrated in the downstream part
of the domain, upstream information is lost and vice versa for an upstream placement
of the sensors. Finally, figure 15(f) uses only two sensors (at x = 200 and x = 950):
this time, LSE fails to recover any relevant information about the flow structures. These
results underline the fact that linear stochastic estimation requires spatial support of the
input information (sensors) over the whole domain due to the strong convection, while
the dynamic observer only needs information from a localized input signal. In summary,
the above numerical experiments show that a dynamic observer model is preferable over
a linear stochastic estimator (LSE) model in providing an accurate approximation of the
flow field from localized and sparse measurements.
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Figure 16: Results of the LQR-control design based on the dynamic observer. (a) Tem-
poral evolution of the perturbation energy E(t) for the uncontrolled simulation (red) and
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signal s, which is the same in all simulations discussed in this figure.
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6. Application of optimal control

The successful recovery of full-state information from single wall shear-stress mea-
surements by a dynamic observer enables the design of a variety of effective control
schemes, which we demonstrate next. For this purpose, a control signal u is placed at
(xu, yu) = (250, 1) (downstream of the sensor s), which constitutes a feedforward control
configuration. The governing equations (3.3) of the dynamic observer are modified to
reflect this addition. We have

Ye(n+ 1) = ÃsYe(n) + L̃s(n) + B̃uu(n). (6.1)

Following Hervé et al. (2012), the system is excited with a frequency-rich signal u in

order to identify the new term B̃u. The unknown system matrices Ãs, L̃ and B̃u may
then be determined in a similar way as described in § 4. From there, the true linear system
matrix Ãw which governs the perturbation dynamics ((4.7) with added control term) can
be extracted following (4.8). This matrix is then used for the design of an LQR-optimal
controller u(n) = KY(n), which minimizes the cost functional

∑∞
n=0 Y(n)∗QY(n) +

ℓ2|u(n)|2, where Q is a positive definite weight matrix and ℓ is a user-specified parameter
to balance disturbance energy and exerted control energy. Following standard procedure
(see Burl (1999)), the control gain K can be obtained by solving a Riccati equation

involving Ãw, B̃u, Q and ℓ.
Two different control objectives Q have been considered: (i) the suppression of the

energy E(t) inside the velocity window (Q = I) and (ii) the control of the signal variance

recorded by the downstream friction-sensor cp (Q = C̃∗
pC̃p, with C̃p as the measurement

vector associated with cp and obtained with the least-squares technique introduced in

§ 4.3 to obtain C̃s). We use a model that comprises 50 modes computed on a shorter
domain (Ωsnap = (200, 700) × (0, 40)). In the controlled simulation, the measurement s
is used to reconstruct the full perturbation field Ye based on the identified model, and
the control law is obtained by applying the control gain K to this state. Results are
shown in figure 16 together with the control signal u(t) and the friction-sensor signal s.
In both cases, a substantial reduction in the respective objectives can be accomplished.
The energy E(t) has been reduced by nearly two orders of magnitude (a reduction of
96.81% in the mean perturbation energy), while the rms-value of the friction sensor signal
has been lowered by about 88.01%.

7. Summary and conclusions

A dynamic observer recovering full-state information from single wall shear-stress mea-
surements has been designed that relies on a POD basis (from measured snapshots)
and system identification techniques. For noise-amplifier flows, it successfully reproduces
the perturbation dynamics (velocity fields) throughout the full sampling domain and
furnishes information about the flow that can subsequently be used by itself, for flow
diagnostics or, in a second step, for LQR-control design.

Within the limits of linear perturbation dynamics, the design process for the dynamic
observer extracts the system matrix from a sequence of snapshots; this system matrix
describes a globally stable flow configuration that is sustained by selectively amplified ran-
dom perturbations from the noise environment. The proposed method thus successfully
separates the intrinsic, stable perturbation dynamics from the external noise excitation,
which previously could only be quantified in its entirety.

A wide variety of flow analyses is possible once the system matrix has been extracted.
In the present case, we chose to design a closed-loop control scheme which, owing to the
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known system matrix, could now be accomplished using full-state information control
(LQR) algorithms. As a consequence, a significant reduction of the perturbation energy
or sensor signal rms-values could be achieved. Even though system identification could
have been used to determine a direct input-to-output control law targeting the variance
of a downstream wall-sensor (Hervé et al. 2012), the retrieval of full-state information
gives a far more physical and structural view of dynamic processes.

The input data for the design procedure of the dynamic observer are readily available
in experiments, and an application of a dynamic observer in a suitable experiment is cur-
rently planned and will be explored in a future effort. However, difficulties not accounted
for in the present paper are expected to arise in an experimental situation: noise corrupt-
ing the PIV and friction measurements, the presence of non-localized external forcing or
the presence of non-linearities are some examples. These challenges will be addressed in
a forthcoming study.
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Appendix A. Subspace identification algorithms

Subspace identification algorithms consider the state-space formulation of a stochastic
linear system. Such a system can be written in the following process form

x(n+ 1) = Ax(n) + Bu(n) + w(n) (A 1a)

y(n) = Cx(n) +Du(n) + v(n) (A 1b)

where y(n) ∈ R
ny , x(n) ∈ R

n, u(n) ∈ R
nu , w(n) ∈ R

n, v(n) ∈ R
ny are the system out-

put, state, input, state noise, and output measurement noise, respectively. The matrices
A, B, C and D are system matrices of appropiate dimensions. The noise covariances of
the system are defined as

E

{(
wj

vj

)(
wi

vi

)T
}

=

(
Q S
ST R

)
δij (A 2)

where E{x} stands for the expected-value operator.
The general problem of subspace identification consists of obtaining the system matri-

ces A, B, C and D, as well as the covariance matrices Q, S, and R, from observing a set
of input-output measurements.

A.1. Reformulation of the state-space system

The state-space system (A1) can be rearranged into two equivalent formulations that
emphasize either prediction or estimation (Qin 2006). Considering either formulation, the
one-step linear equations can be written as a multi-step matrix-based expression which
will form the foundation of subspace system-identification techniques.
Assuming that the system is observable, a Kalman filter can be designed to estimate

the state variable. We have

x̂(n+ 1) = Ax̂(n) + Bu(n) +K [y(n)− Cx̂(n)−Du(n)] (A 3)
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which (omitting the ̂) leads to the following innovation form

x(n+ 1) = Ax(n) + Bu(n) + Le(n) (A 4a)

y(n) = Cx(n) +Du(n) + e(n) (A 4b)

where L is the Kalman gain (which can be obtained from a Riccati equation) and
e(n) = y(n)− Cx̂(n)−Du(n) is the measurement error.

A third equivalent representation, the predictor form, can be written as follows

x(n+ 1) = Aex(n) + Bez(n) (A 5a)

y(n) = Cx(n) +Du(n) + e(k) (A 5b)

where z(n) =
[
uT (n), yT (n)

]T
,Ae = A−LC, and Be = [B − LD,L]. It should be stressed

again that the three model forms can represent the input and ouput data (u(n), y(n))
exactly. We thus have the choice of using any of these models according to convenience.

As a next step, the above one-step vector-based linear difference equations are recast
into multi-step matrix-based expressions. We first define an extended state sequence
X(n) =

(
x(n), x(n+ 1), . . . , x(n+N − 1)

)
which contains N columns describing

the state at N consecutive time steps. By iterating p times the predictor form (A5) it is
straightforward to derive the following extended equation,

X(n) = LpZp +Ap
eX(n− p) (A 6)

where

Lp =
(
Be, AeBe, . . . , Ap−1

e Be

)
, (A 7a)

Zp =




z(n− 1) z(n) . . . z(n+N − 2)
z(n− 2) z(n− 1) . . . z(n+N − 3)

...
...

. . .
...

z(n− p) z(n− p+ 1) . . . z(n− p+N − 1)


 . (A 7b)

Under the assumption that all eigenvalues of the estimator matrix Ae fall strictly inside
the unit circle and in the limit p → ∞, the term Ap

e can be neglected. This result can
be proven valid even for finite p (Van Overschee & De Moor (1994), Van Overschee &
De Moor (1996)). Equation (A 6) can then be simplified to

X(n) = LpZp. (A 8)

In addition, if a similar recursive iteration technique is applied to the innovation form (A4)
we obtain

Yf = OfX(n) +HfUf + GfEf (A 9)

where the subscript f denotes the future horizon. Next, the input, output and innovation
data are arranged into Hankel matrices, denoted respectively by Uf , Yf and Ef . The
structure of these matrices is as follows

Uf =




u(n) u(n+ 1) . . . u(n+N − 1)
u(n+ 1) u(n+ 2) . . . u(n+N)

...
...

. . .
...

u(n+ f − 1) u(n+ f) . . . u(n+ f +N − 2)


 , (A 10)

and similar for Yf and Ef .
Furthermore,Of is the extended observability matrix, andHf , Gf are Toeplitz matrices

of the form
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Of =




C
CA
...

CAf−1


 , (A 11a)

Hf =




D 0 . . . 0
CB D . . . 0
...

...
. . .

...
CAf−2B CAf−3B . . . D


 , (A 11b)

Gf =




I 0 . . . 0
CK I . . . 0
...

...
. . .

...
CAf−2K CAf−3K . . . I


 . (A 11c)

Combining (A 8) and (A 9) we obtain

Yf = HfpZp +HfUf + GfEf (A 12)

where Hfp = OfLp is the product of the process observability matrix and the predictor
controllability matrix. Equation (A 12) plays an essential role in subspace identification
algorithms.

A.2. Extraction of the observability matrix Of

The goal of the subsequent steps is to recover the matrix HfpZp, and then Of from
it. First, Uf is eliminated from equation (A 12) by post-multiplying by the projection
onto its orthogonal complement P⊥

Uf
= I −UT

f (UfU
T
f )

−1Uf . In addition, if we assume

that the innovation sequence e(n) is composed of a stationary, white noise completely
uncorrelated with the input u(n) we have EfP

⊥
Uf

= Ef which yields

YfP
⊥
Uf

= HfpZpP
⊥
Uf

+ GfEf . (A 13)

It is also known from Kalman filter theory that Ef is uncorrelated to Zp. Consequently,
the noise term Ef can be removed by multiplying (from the right) equation (A 13) by
ZT

p which yields

YfP
⊥
Uf

ZT
p = HfpZpP

⊥
Uf

ZT
p , (A 14)

and

HfpZp = YfP
⊥
Uf

ZT
p (P

⊥
Uf

ZT
p )

−1. (A 15)

Finally, from equation A8 we obtain that HfpZp = OfX(n). Assuming that the input
u(n) is sufficiently rich in temporal behavior to excite all the observable dynamics of the
system, matrix X(n) is ensured to be full row-ranked. In addition, Of has full column-
rank under the assumption of full observability. These properties suggest applying a
singular value decomposition (SVD): (i) to determine the order of the identified system
as the rank of OfX(n) and (ii) to isolate Of . Mathematically, this amounts to

HfpZp =
(
U1 U2

)(S1 0
0 S2

)(
VT
1

VT
2

)
, (A 16)

where the diagonal matrix S has been partitioned so that S2 is negligible compared to S1.
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The size of S1 then represents the order of the identified system. Moreover, the extended
observability matrix Of can be extracted according to

Of = U1S
1/2
1 . (A 17)

A.3. Extraction of the system matrices

Based on Of , two different approaches may be adopted to extract the system matrices.
The first one, denoted as estimation focus, extracts only the system matrices A, B, C
and D from the data. On the other hand, if the noise covariances are needed, a more
complex algorithm, a simulation focus technique, is called for. In this article, we will
briefly introduce the first approach, while a detailed description of the second one can be
found in Van Overschee & De Moor (1994), Van Overschee & De Moor (1996) or Juillet
et al. (2013).

The first step consists in extracting the matrices A and C from Of . This can be
accomplished rather easily by computing the matrix Of−1 as previously done with Of

and by recalling that, by definition, both matrices are related by the equation

(
I 0
0 Of−1

)(
C
A

)
= Of , (A 18)

which can be solved by least-squares techniques. To determine the remaining matrices B
andD, one uses the fact that the problem is linear in these matrices; a simple least-squares
matching to the output data may be used to find the remaining matrices (Van Overschee
& De Moor (1996)).
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