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Unsteadiness in noise amplifier flows is driven and sustained by upstream environmental
perturbations. A Dynamic Mode Decomposition (DMD) performed with snapshots taken
in the statistically steady state extracts marginally stable dynamic modes, which mimic
the sustained dynamics but miss the actual intrinsic stable behaviour of these flows. In
this study, we present an alternative data-driven technique which attempts to identify
and separate the intrinsic linear stable behaviour from the driving term. This technique
uses a system-identification algorithm to extract a reduced state-space model of the flow
from time-dependent input-output data. Such a model accurately predicts the values
of the velocity field (output) from measurements of an upstream sensor that captures
the effect of the incoming perturbations (input). The methodology is illustrated on a
two-dimensional boundary layer subject to Tollmien-Schlichting instabilities, a canonical
example of flow acting as a noise amplifier. The spectrum of the identified model compares
well with the results reported in literature for the full-order system. Yet, the comparison
appears to be only qualitative, due to the poor robustness properties of eigenvalue spectra
in noise-amplifier flows. We therefore advocate the use of the frequency-response between
the upstream sensor and the flow dynamics, which reveals to be a robust quantity. The
frequency response is validated against full-order computations and compares well with
a local spatial stability analysis.

1. Introduction

Unsteadiness in open flows can be classified into two main categories (Huerre & Rossi
1998): (i) oscillator-type flows, which are defined by a global instability resulting in
self-sustained oscillatory fluid behaviour (intrinsic dynamics); and (ii) noise amplifiers,
which are characterised by selectively amplifying environmental noise that is present in
the upstream flow (extrinsic dynamics). Dynamic mode decomposition (Rowley et al.

2009; Schmid 2010) provides a powerful post-processing tool for analysing oscillator-type
flows from a sequence of measurement snapshots. DMD assumes that a linear mapping
A links the n-th flow field u(n) to the subsequent flow field u(n+1), that is u(n+1) =
A u(n). This technique has been proven to successfully recover the oscillatory modes and
frequencies in flows with self-sustained oscillations (Schmid et al. 2011; Schmid 2011;
Seena & Sung 2011; Bagheri 2013). In the presence of environmental noise, the time-
period of such flow fields may slightly be affected. The effect of such uncertainties on the
DMD analysis may be assessed and quantified theoretically (Bagheri 2014).
The recovery of the intrinsic dynamics of amplifier flows, on the other hand, is a more

challenging problem. Amplifier flows are globally stable, but selectively amplify upstream
disturbances by convective instabilities. Consequently, the system dynamics are entirely
driven by the environmental noise. If this driving term is statistically stationary, the
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flow is maintained in a statistically stationary state. Since a DMD analysis does not
distinguish the external driving from the inherent dynamics, marginally stable eigenvalues
are predicted, which is in contradiction with the inherent, globally stable dynamics of
such flows. For this reason, an alternative data-based technique, which takes into account
the noise-driven characteristics of the flow, is needed for the case of amplifier flows.
In this article, we propose to separate the noise from the inherent dynamics using

a localised sensor together with system identification. Over the past few years, system
identification has proven to be a promising approach for the extraction of amplifier-flow
models from input-output data. Several applications to closed-loop control have been
successfully carried out in numerical simulations (Hervé et al. 2012; Juillet et al. 2013)
and experimental setups (Juillet et al. 2014; Gautier & Aider 2014). While in previous
studies the models focus on the dynamics between one upstream and one downstream
sensor, Guzmán Iñigo et al. (2014) extended the technique to capture the dynamics be-
tween upstream measurements and the entire velocity field. In this work, we employ this
latter technique to extract the inherent dynamics of a boundary layer. More specifically,
the eigenvalues and associated eigenvectors of the identified model will be extracted from
data sequences of the noise-driven flow and, the flow characteristics will be compared to
results obtained from global stability analyses (Ehrenstein & Gallaire 2005; Alizard &
Robinet 2007; Åkervik et al. 2008). Yet, in the latter articles, it was found that the
spectrum of boundary-layer flows is rather sensitive to the conditions imposed on the
downstream boundary, as well as to the extent of the domain in the streamwise direc-
tion. This sensitivity was due to the fact that the computational domains in these studies
did not contain the full wavemaker region of the analysed Tollmien-Schlichting modes.
Brandt et al. (2011) indeed showed that the wavemaker region of those modes extends
from the branch I up to the branch II-location. For energetic Tollmien-Schlichting waves
(F ≈ 50, for example), this region is rather large and is generally never entirely contained
in the computational domain. We will similarly give a theoretical argument indicating
that DMD modes are converged only if the DMD window includes the entire wavemaker
region. A second reason explaining the sensitivity of the spectrum in noise-amplifier flows
is the high non-normality of the Jacobian operator in such flows, which renders eigen-
values a mathematically ill-posed quantity (Trefethen et al. 1993; Schmid & Henningson
2001; Sipp et al. 2010). We therefore suggest to instead identify input-output quantities
in order to characterize the dynamics of noise-amplifier flows. Ideally, we would have
liked to determine pseudo-resonances (Trefethen et al. 1993), which for given frequencies
extract the optimal gain, forcing and response. Such quantities accurately and robustly
characterize the instability potential of noise-amplifier flows (Sipp et al. 2010; Sipp &
Marquet 2013). Yet, in an experimental setup, since the upstream forcing is generally
unknown in such flows, the only input-output quantity at hand is the frequency response
from the upstream sensor (which accounts for the unknown upstream forcing) to the flow
dynamics. We believe that in an experimental setup this quantity is the relevant one to
quantify the dynamics of noise-amplifier flows with a data-based technique.
The article is organised as follows. After a brief description of the flow configuration

and the governing equations (§ 2), the results obtained from a DMD-analysis of a noise-
driven boundary layer are reported in § 3. These results demonstrate that DMD does not
manage to separate the dynamics produced by an external driving term from the inher-
ent dynamics of the flow and, consequently, predicts marginally stable eigenvalues. We
also show that a DMD analysis applied to snapshots obtained from an impulse released
upstream succeeds in identifying stable global modes, characteristic of the inherent stable
dynamics of boundary layer flow. Yet, this constitutes a thought-experiment that cannot
be done in reality, due to the unknown characteristics of the upstream noise environment.
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We propose a new method to overcome this difficulty, which is based on an identified
model introduced by Guzmán Iñigo et al. (2014). After a brief presentation of the model
in § 4, we show in § 5 that the eigenvalue spectrum presents a branch of stable global
modes, similar to the branch obtained by the DMD analysis with the impulse response.
Yet, the agreement is only qualitative due to the sensitivity of the eigen-spectrum in
boundary-layer flow. We therefore (§ 6) turn our attention to the frequency response be-
tween the upstream sensor and the velocity field, which is a relevant and robust quantity
to characterize the inherent dynamics of boundary layer flow. A summary of results and
conclusions are given in § 7.

2. Flow configuration and governing equations

The flow configuration chosen to illustrate the proposed techniques and concepts con-
sists of a transitional two-dimensional boundary layer over a flat plate. This flow consti-
tutes a classical and generic example of a noise amplifier, i.e., a globally stable system
which selectively amplifies upstream disturbances by convective instabilities. In a low-
amplitude noise environment, two-dimensional Tollmien-Schlichting waves appear as a
result of this convective instability mechanism.
We consider the spatio-temporal evolution of small-amplitude disturbances u about

a given base-flow U0, which we take as a zero-pressure gradient boundary layer. The
disturbances u are driven by an external forcing term, Fww(t), which represents and
models an upstream disturbance source of unknown origin. For simplicity, we assume that
w(t) is a random process of zero mean and variance W, while Fw describes a spatial two-
dimensional Gaussian distribution centred at (xw, yw) = (50, 0.95), of width (σx, σy) =
(1, 0.1) and amplitude A = 0.1. The spatio-temporal evolution of the entire flow field,
Utot = U0 + u, is governed by the incompressible Navier-Stokes equations, augmented
by the forcing term. With the base flow U0 as a solution of the unforced steady Navier-
Stokes equations, the evolution of the perturbations is given by the following equations

∂tu+U0 · ∇u+ u · ∇U0 = −∇p+Re−1
δ∗0

∆u+ Fww(t), ∇ · u = 0, (2.1)

where the nonlinear term u ·∇u has been omitted since only low-amplitude noise W ≪ 1
will be considered. This assumption ensures linear perturbation dynamics, as well as a
linear response to the noise w.During the direct numerical simulations (DNS), white noise
is imposed via w(t) to mimic upstream excitations of unknown source and distribution
(mimicking conditions in physical experiments). For the temporal evolution, we use a
time step of dtdns = 0.1 (CFL = 0.379). The flow variables are non-dimensionalised using
the displacement thickness δ∗0 of the boundary layer at the computational inlet (x0 =
0) and the free-stream velocity U∞. Consequently, the Reynolds number is defined as
Reδ∗0 = U∞δ∗0/ν. All simulations were performed atReδ∗0 = 1000,which guarantees strong
amplification produced by the Tollmien-Schlichting instability. Convective instabilities
can be studied within a local stability framework by considering perturbations of the
form ei(αx−ωt), with ω as the frequency and α as the streamwise wavenumber of the
perturbation. An analysis of this type shows that the Blasius boundary layer is subject
to convectively unstable Tollmien-Schlichting waves, when the Reynolds number based
on the local displacement thickness δ∗0 surpasses the critical value of Reδ∗0 = 520. In
figure 1, the neutral curve obtained from a local spatial stability analysis performed
with wall-normal profiles extracted from the base flow U0 is displayed. The unstable
frequencies fall within the interval 0.055 < ω < 0.13 at the computational inlet and
0.015 < ω < 0.052 at the end of the domain.
The governing equations (2.1) are solved in a computational domain Ω of size (0, 1000)×
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Figure 1: Neutral curve obtained by a local spatial stability analysis; the grey area rep-
resents the extent of the computational domain.

(0, 40), sketched in figure 2. A Blasius profile of unit displacement thickness is prescribed
at the left boundary, outflow conditions are employed at the upper and right boundaries,
and a no-slip condition is imposed at the wall. The base flow U0 is imposed at the ini-
tial time for noise-driven simulations; the data used to compute the models is collected
after a initial transient phase is passed. We use the spectral-element code Nek5000 (see
https://nek5000.mcs.anl.gov) to perform the computations below. The computational
domain is discretized using a mesh consisting of 8000 elements of spectral order 7.
Two different measurements are extracted from the simulations in order to compute

the reduced-order model. Special emphasis is directed towards the use of data that may
be readily available in an experiment, since the application of our technique to an ex-
perimental setup is the final objective of the procedure described in this article. We first
consider a wall-friction sensor s (see figure 2), located at xs = 200 and of spatial stream-
wise extent ∆x = 5, which records the wall shear-stress stot. The fluctuating component
s may be obtained by subtracting the time-averaged value of stot from the signal stot.
For the case of low-amplitude forcing, i.e., for linear perturbation dynamics, the time-
averaged value also corresponds to the base-flow value. In addition to the wall-friction
sensor s, we also consider velocity snapshots usnap, taken in a given domain Ωsnap of size
(200, 900)× (0, 40), (see figure 2). The fluctuating components of the velocity field may
again be obtained by subtracting the time-averaged snapshots from the total snapshot se-
quence. The wall-friction sensor was placed at the upstream edge of the velocity window.
For a chosen velocity window, this setup is optimal (not shown here) for the reconstruc-
tion of the flow field due to the highly convective behaviour of the flow. In what follows,
we will consider time series of composite data comprising skin-friction measurements and
velocity snapshots. The reduced-order model will be extracted from these data.

3. Dynamic mode decomposition of noise-driven amplifier flows

This section is concerned with the application of the traditional DMD technique for
boundary layer flow. After a brief reminder on the underlying assumtion of DMD (§ 3.1),
we show that the DMD modes of boundary layer flow driven by upstream noise consist
in marginally stable modes (§ 3.2), which is in contradiction with the inherent stable
nature of this flow. For comparison, we then (§ 3.3) perform a DMD analysis of an
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Figure 2: Sketch of the flow configuration. The computational domain Ω is of size
(0, 1000) × (0, 40), represented by the light gray box. The upstream receptivity of the
boundary layer to external perturbations is modelled by the noise w which is placed
at (xw, yw) = (50, 0.95). A sensor located at (xs, ys) = (200, 0) will identify incoming
perturbations, while a velocity window of extent (200, 900)× (0, 40) (represented by the
dark gray box) is used to quantify the effect of the forcing on the velocity field.

impulse released by w and show that the spectrum is qualitatively close those obtained
in global stability analyses.

3.1. Reminder on DMD

Starting point of a dynamic mode decomposition (DMD)-analysis is a temporal sequence
of Nsnap data field snapshots u(n) written as

V
Nsnap

1 = {u(1),u(2), . . . ,u(Nsnap)} . (3.1)

The sampling time between each snapshot ∆t in the above sequence is assumed to be
constant. DMD assumes that the sequence (3.1) is related by the mapping

u(n+ 1) = A u(n). (3.2)

Using the classical Arnoldi idea that the vectors of the sequence (3.1) become sooner or
later linearly dependent, the mapping (3.2) can be expressed by

A V
N−1
1 = VN

2 ≈ V
N−1
1 S. (3.3)

The eigenvalues of S (also known as the Ritz values) approximate some of the eigenvalues
of A (Ruhe 1984); the eigenvectors of S contain the coefficients for the reconstruction
of dynamic modes expressed within the snapshot basis. The matrix S can be computed
from the above equation by a least-squares approximation based on the two data sets
V
N−1
1 and VN

2 . We obtain

S = R−1QHVN
2 , (3.4)

where Q and R stand for the QR-decomposition of the dataset VN−1
1 , i.e, QR = V

N−1
1 .

QH denotes the Hermitian operation (complex conjugate transpose) of Q. The time-
discrete eigenvalues of S (λ = λr + iλi) can be mapped to the time-continuous domain
ω = ωr + iωi using the relation λ = e−ω∆t.

3.2. Case of driven simulation

In this section, the DMD spectrum was extracted from data obtained by performing a
linearised direct numerical simulation of a boundary layer excited in w by white noise.
We used a sampling interval ∆t = 5 for the velocity snapshots. A dataset of length
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Figure 3: Dynamic mode spectrum in the (ωr, ωi)-plane extracted from two different
datasets: white-noise-driven simulation (blue squares) and impulse response (red cir-
cles). The size of the symbols represents the relative amplitude of the velocity snapshots
projected onto the Dynamic modes.

Nsnap = 2000 (T = 9995) was extracted from this simulation. This same dataset will be
used in § 4 to extract the dynamic observer.
The dynamic mode spectrum in the (ωr, ωi)-plane is represented in Figure 3. The

horizontal and vertical axes correspond, respectively, to the frequency ωr and the growth
rate ωi. The figure is symmetric with respect to ωr = 0, and eigenvalues in the half plane
ωi < 0 represent stable eigenmodes. The velocity field was projected onto the DMD
modes to obtain the time dependent dynamic mode coefficients. The relative amplitude
of such coefficients is represented by the size of the symbols and indicates the importance
in the dynamics of each mode.
The spectrum obtained from the driven simulation (blue squares) shows marginally sta-

ble eigenvalues. The interpretation of this result implies that the boundary layer presents
self-sustained oscillations (even if the system is globally stable). This contradiction arises
from DMD interpreting the unsteadiness produced by the external driving term as oscil-
lations intrinsic to the flow. An alternative approach which separates the external driving
term from the inherent stable dynamics is therefore required.

3.3. Case of impulse response

A first attempt to separate the driving term from the inherent dynamics is to perform
a DMD analysis of snapshots obtained with an impulse response in w. This amounts
to perform a linearized Navier-Stokes simulation with u = Fw as initial condition. A
DMD analysis of such snapshots should clearly identify stable global modes, which would
accurately characterize the inherent dynamics of the flow.
A sampling interval ∆t = 1 was used to extract a dataset of length Nsnap = 2800

(T = 2799). A certain amount of time is necessary for the wavepacket to reach the
velocity window, since the forcing term w is located upstream of it. This time-range,
corresponding to snapshots Nsnap = 0 to Nsnap ≈ 250 (T ≈ 250), has been removed
from the dataset before performing the DMD analysis.
We observe in figure 3 that the eigenvalues obtained from a DMD analysis with the

impulse response (marked as red circles) are stable (as expected) and present a parabolic
distribution characteristic of convection-diffusion systems. These results favourably com-
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pare with the spectra obtained from global stability analyses previously reported in
literature (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007; Åkervik et al. 2008).
The shape and amplification rate of the Tollmien-Schlichting branch roughly correspond
to those reported in these articles. Yet, agreement is only qualitative since it was found
that the details of these spectra (damping rate and separation distance between succes-
sive eigenvalues) were strongly influenced by the location and nature of the downstream
boundary (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007).
Such results clearly characterize the inherent stable dynamics of boundary layer flow.

Yet, in an experiment, it is not possible to perform an impulse response, since the up-
stream driving term is unknown. We therefore need a different databased technique to
separate the inherent dynamics of the flow from the external forcing in case of a driven
flowfield. This technique is presented in the next section.

4. A reduced-order dynamic observer

We first (§ 4.1) recall the technique introduced by Guzmán Iñigo et al. (2014) to
obtain a reduced dynamic observer, which captures the input-output dynamics from the
upstream sensor s (which stands as a proxy of the upstream driving term w) to the
velocity field. Then, in § 4.2, based on the snapshots of the driven simulation introduced
in § 3.2, we compute the dominant POD-modes and build the reduced-order state-space
model of the flow.

4.1. Reminder on identified dynamic observer

Considering Eq. (2.1), the evolution of small-amplitude perturbations u about a given
base flow for the case of a noise amplifier can be represented in the time-discrete domain
by u(n + 1) = Awu(n) + Fw(n), where Aw denotes the linear system operator, Fw(n)
represents the driving by external perturbations and n stands for the nth time-step.
The system dynamics are entirely driven by the term Fw(n), which generally represents
a random external noise of unknown distribution. In the present work, we propose to
capture the influence of the forcing term Fw(n) by means of a localised sensor, specifically
wall-shear stress measurements s(n). This approach implies the loss of the receptivity
information by correlating the effect of the noise at a single point with the effect on the
entire domain. A dynamic observer which describes the dynamics of ue(n) based on the
input s(n), instead of Fw(n), is introduced according to

ue(n+ 1) = A ue(n) + L s(n). (4.1)

The matrices A and L are chosen to render the temporal evolution of ue as close as pos-
sible to the temporal evolution of u. We use the approach introduced by Guzmán Iñigo
et al. (2014) which consists of the extraction of the above matrices from time-evolving
data using system-identification techniques. However, the large number of degrees of free-
dom contained in the snapshots u makes direct application of identification techniques
excessively expensive. It is thus mandatory to reduce the dimensionality of the measured
data. To this end, we use proper orthogonal decomposition (POD) modes Lumley (1967);
Sirovich (1987) to form a reduced basis. We process a sequence of m velocity snapshots
extracted from the simulation in the presence of the upstream noise w. The proper orthog-
onal decomposition then enables us to compute a ranked orthonormal basis {Φi}i=1..m

of flow fields, satisfying 〈Φi,Φj〉 = δij , i, j = 1, 2, ...,m, which can be expressed most
conveniently as a linear combination of these m snapshots. Here, the scalar-product 〈·〉
denotes the energy-based inner product:

〈
u1,u2

〉
=

∫
Ω
(u1u2+ v1v2) dx dy. Any velocity

field V from the domain Ω can then be projected onto the first k POD-modes according
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to

yi = 〈Φi,V〉 , i = 1, 2, ..., k, (4.2)

to produce the approximate flow field V′ =
∑k

i=1 Φiyi. Properties of the POD guarantee
that, for all k, the error ‖V − V′‖2 = 〈V −V′,V−V′〉 is minimal for the set of m
measured snapshots. For the following derivations, we define the reduced output vector
given by the k POD-coefficients by Y = [y1, y2, . . . , yk]

T
and denote the reduced POD

basis by U = [Φ1,Φ2, . . . ,Φk]. The velocity snapshots u are projected onto these modes
to obtain the time-evolving POD coefficients Y(n) which constitute the new output of
the system. The equation governing the dynamic observer (4.1) can be projected as well
onto the POD basis, leading to the equation

Ye(n+ 1) = ÃYe(n) + L̃s(n), (4.3)

where Ãi,j = 〈Φi,A Φj〉 and L̃i = 〈Φi,L 〉. We will seek to recover and analyse the
dynamics of the system by computing these reduced-order matrices from the projected
data.
System identification aims at determining the systemmatrices such thatYe(n) recovers

as close as possibleY(n) from the time-series of input-output data {s(n),Y(n)}, with n =
n0, . . . , nf , using statistical methods. A wide range of system-identification algorithms
are available. For our case, subspace identification is a particularly convenient choice since
our formulation relies on a state-space formulation (see eq. (4.3)). A detailed explanation
of the algorithm is beyond the scope of this work; a comprehensive description is given
in Qin (2006). More specifically, the N4SID-algorithm (Van Overschee & De Moor 1994)
has been used to obtain all models in this study.
Our choice of the discrete-time formulation emerges naturally when data-based meth-

ods are considered to analyse experimental situations. However, some of the concepts of
dynamical-systems theory that are introduced in the subsequent sections, such as modal
analysis or the frequency response, have a more direct physical interpretation and defini-
tion when a continuous-time framework is employed. The continuous formulation of the
dynamic observer (equation (4.3)) reads

dYe/dt = Ã′Ye(t) + L̃′s(t). (4.4)

The time coordinate t is related to the time-index n by t = n∆t, with ∆t representing
the sampling time. A relation between the matrices of equation (4.3) and equation (4.4)

can be derived, resulting in L̃ =
∫∆t

0 exp[Ã′(∆t − τ)]L̃′ dτ associated with the discrete

driving term and Ã = exp(Ã′∆t) denoting the evolution matrix over a time interval ∆t;
see Antoulas (2005) for a more comprehensive description of the discrete-to-continuous
time transformation.

4.2. Model

A total of Nsnap = 4000 snapshots have been extracted from the linearised simulation.
This data has been split into two parts: (a) a learning dataset, used to obtain the model
and, (b) a validation dataset, used to assess its performance. The learning dataset is
composed of Nsnap = 2000 (T = 9995) and corresponds to the same snapshots as those
used for the DMD analysis of the driven system in § 3.2. A POD-basis has been computed
using a total of 1500 snapshots. Guzmán Iñigo et al. (2014) reported that this length was
sufficient to capture the slowest time-scale (frequency) of the system.
Figure 4(a) shows the corresponding eigenvalues of the correlation matrix, confirming

a steady decay over about three decades in the first thirty modes (95% of the energy
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Figure 4: (a) First 100 POD eigenvalues λi of the correlation matrix. (b) Contours of the
streamwise velocity component of the first (Φ1) and tenth (Φ10) POD-mode.
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Figure 5: Learning and validation datasets: a model is obtained using a segment of the
data (with length T = 9995 (grey box)); the performance of the model is then assessed
in a different interval, initialised by Ye = 0 at t = 12500. The input of the system
is (a) the measurement obtained from the wall-shear sensor s capturing the influence of
external noise. (b-d) Comparison between the DNS (black) and the model prediction (red)
recovered from the input for three variables: (b) the perturbation energy of the system,
and (c) and (d) the POD-coefficients yi for the first and tenth mode, respectively.

is contained in the first ten modes). Two representative POD-modes, Φ1 and Φ10, are
displayed in figure 4(b).
The datasets to be processed are composed of the input signal from the sensor s and

several outputs yi corresponding to the projection of the snapshots onto the basis of
POD-modes Φi (figure 4). Using the N4SID algorithm, the model parameters Ã and

L̃, can then be determined by fitting the model output to the true, measured output,
as the model is forced by the recorded input. The ability of the model to capture the
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Figure 6: Eigenvalue spectrum in the (ωr, ωi)-plane for two different, identified reduced-
order models using 60 (red circles) and 100 (blue triangles) POD-modes. The black
rectangles and diamonds represent the dynamic mode spectra depicted in Figure 3.

dynamics of the system is then assessed on a different part of the data. For this purpose,
we use the perturbation kinetic energy E = 〈usnap,usnap〉 ≈ Y∗Y taken from the

system measurements and predicted by the model Ẽ(t). The quality of the model can be
quantified based on the fit between the temporal evolution of both magnitudes. Figure 5
shows a reduced-order model determined using k = 60 POD-modes and a learning data
set of length T = 10000. Figure 5(a) displays the measurement from the shear-stress
sensor s from which all the subsequent variables (figure 5(b-d)) can be recovered using
the identified model. The plotted outputs correspond to the energy (b), and the first
and tenth POD-coefficients (c-d). The gray box represents the data falling within the
interval t ∈ [2505, 12500] used to compute the model to FITener = 96.87%. The model is
then initialised to Ye = 0 at t = 12500 and, after a transient period, the performance
is evaluated within the interval t ∈ [14505, 20000], which yields a relative match of
FITener = 97.26%.

The length of the transient period, estimated as T ≈ 1900, can be directly linked to
the convective time-scale of the disturbances. Tollmien-Schlichting waves are convected
with a group velocity equal to vg = 0.375 U∞ (see Guzmán Iñigo et al. (2014) for more
details). This convective velocity defines the characteristic time Tconv required by the
wavepacket to cover the distance between the sensor s and the downstream edge of the
domain Ωsnap. This time (Tconv ≈ 1900) accurately predicts the duration of transient
effects. This agreement between the time the estimator needs to propagate information
and the time the system needs to convect a wavepacket confirms that the input-output
behaviour of the system is properly captured by the model.

The numbers of POD-modes considered here is rather high (60 and 100) due to the
requirement for the model to accurately reconstruct the upstream measurement from the
coefficients of the POD basis (Guzmán Iñigo et al. 2014). This requirement is therefore
linked to the observability of the sensor by the reduced basis.
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5. Global modes of dynamic observer

We now turn to the computation of the eigenvalue spectrum of the identified input-
output model. Considering equation (4.3), the temporal global spectrum of the system
may be obtained by introducing an exponential time-dependence of the form Ye(t) =

Ŷee
−iωt. We consequently obtain a generalised eigenvalue problem for (ω, Ŷe) ∈ C of

the form

Ã′Ŷe = −iωŶe. (5.1)

5.1. Results

The eigenvalues ω = ωr + iωi are displayed in figure 6 with red (k = 60 POD modes)
and blue (k = 100) symbols. The spurious eigenvalues were removed by projecting the
velocity snapshots onto the obtained eigenmodes, computing the mean amplitude of the
time-dependent coefficients and ranking the modes as a function of this amplitude. We
observe that, for the two models k = 60 and k = 100, all extracted eigenvalues are stable
and show similar growth rates. The damping rate and shape of the branch of identified
Tollmien-Schlichting eigenvalues is again similar to those reported in global stability
studies (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007; Åkervik et al. 2008).
Figure 6 also offers a comparison with the spectra obtained from the DMD-analyses

reported in § 3. The black squares and black diamonds respectively correspond to the
results of the DMD analyses presented in figure 3 for the driven siumulation and the
impulse response. We observe that the eigenvalue spectra obtained with the dynamic
observers are similar to the DMD spectrum obtained with the impulse response, but
that the overall damping rate is different. These slight discrepancies are linked to the
appreciable sensitivity of the eigenvalues in such flows. This idea will further be supported
by the analysis given in the next section.
The associated global modes can be recovered using the relation V̂ = UŶe. Based

on the spectrum of the model composed of 60 POD-modes, the modal structure for
eigenvalues with ωr ≈ 0.036, ωr ≈ 0.05, ωr ≈ 0.059 and ωr ≈ 0.08 are displayed in
figure 7. Contours of the real part of the streamwise velocity component V̂ are depicted,
and the perturbations are seen to be located near the wall, with the typical wavelength of
the structures decreasing with increasing frequency. The amplitudes of the modes grow
in the downstream direction for the three lowest frequencies, while the highest frequency
presents a maximum that can be linked to the branch-II location for that particular
frequency.
In the next section, we will show that the characteristics of the velocity window (size,

location) in the case of a DMD analysis or in the case of global modes determined from a
dynamic observer play a role similar to the characteristics of the computational domain
(size, location) for explaining the sensitivity of the obtained eigenvalue spectra.

5.2. Sensitivity of global modes to the location of the velocity window

We will argue in this section that the overlap region of the direct and adjoint modes
(the wavemaker region) should be fully contained in the velocity window in order to ob-
tain converged, insensitive eigenvalues with a DMD technique or an identified dynamic
observer. More precisely, we are interested in determining the sensitivity of a specific
eigenvalue λ to a change in the size of the velocity window Ωsnap. To this end, let us
consider a standard eigenvalue problem of the form Av = λv and introduce a small per-
turbation δA of the operator A. The sensitivity δλ of the eigenvalue due to the structural
perturbation δA is given by

δλ = wHδAv, (5.2)
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Figure 7: Contours of the real part of the eigenmodes associated with four of the eigen-
values depicted in figure 6 corresponding to the model based on k = 60 POD-modes.

with AHw = λHw and wHv = 1, (Giannetti & Luchini 2007). If we partition the
computational domain into two subdomains, we can recast the matrix A, and vectors v
and w according to

A =

(
A11 A12

A21 A22

)
, v =

(
v1

v2

)
, w =

(
w1

w2

)
, (5.3)

where the subindices 1 and 2 represent the elements corresponding to each subdomain.
Let us perturb the operator A by

δA = −

(
0 A12

A21 A22

)
, (5.4)

leading to

A+ δA =

(
A11 0

0 0

)
. (5.5)

The eigenvalue problem for this new matrix can be written as A11z = µz. If δA is
small, then

µ− λ = δλ = wHδAv =
(
wH

1 A12v2 +wH
2 A21v1 +wH

2 A22v2

)
. (5.6)

Considering that A is a local operator and that the pressure term in the linearized
moment equations is weak, the terms |wH

1 A12v2| and |wH
2 A21v1| are small. We can,

therefore, conclude that µ ≈ λ if |wH
2 A22v2| ≪ 1. If v2 or w2 are close to zero, then

|wH
2 A22v2| ≪ 1 and µ ≈ λ. This condition implies that the second subdomain must be

outside of the ”wavemaker”.

6. Frequency response of dynamic observer

A more robust alternative for studying the dynamics of noise amplifiers involves the
frequency response. Assuming that the system 4.3 is forced by a harmonic input s(t) =
eiωt, a response is sought in the form Ye(t) = Yee

iωt, which leads to the expression

R(ω) = Ye(ω)/s(ω) =
(
iωI− Ã′

)
−1

L̃′, (6.1)

where R(ω) is defined as the frequency response and links the harmonic forcing to its
associated response. The frequency response from the input s to the first k = 60 POD-
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Figure 8: (a) Transfer function from s to the first 60 POD-coefficients of the full-order
system (blue, solid line) and of an identified reduced-order model of size k = 60 (red,
dashed line). (b) Streamwise component of the real part of the transfer function (fre-
quency response) from s to the velocity field V for two given frequencies, ω = 0.05 and
ω = 0.06. The velocity field has been reconstructed from the identified reduced-order
model depicted in (a).

modes can also be computed from the full-order model. In this case, we cannot rely on
an explicit matrix expression for Rf (ω). Instead, we need to apply an impulse in w to
the system, compute the Fourier-transform of the responses in s and Y and finally apply
the relation Rf (ω) = Y(ω)/s(ω).

In figure 8(a) the 2-norm of the vector R(ω) at each ω (which represents the square-
root of the kinetic energy of the perturbation) is shown (using a blue-solid line) for the
full-order system and (using a red-dashed line) for the reduced-order model composed
of k = 60 POD-modes. We can report a close agreement between both models over a
wide (and interesting) range of frequencies. Keeping in mind that the frequency response
for the full-order system has been based on an impulse on w, the former result implies
that the bulk of the forcing noise is transmitted through the boundary layer and can be
detected by a wall sensor. The response of the reduced-order model at a given frequency
can be expressed in the full-order state using, once more, the relation V(ω) = UYe(ω).
The streamwise component of the real part of the frequency response for ω ≈ 0.05 and
ω ≈ 0.06 are depicted in figure 8(b). The response for both frequencies is located near
the wall, and decreasing wavelengths are observed as the frequency is increased. These
characteristics have also been observed in the eigenmodes computed in section 5.

The two-dimensional temporal modes exhibit a growth in amplitude as they progress

downstream; this growth may be quantified by computing A(x) =

√∫ yPIV

0 |V|2dy, where

| · | denotes the complex modulus, and compared to the amplitude growth due to a
convective instability, as predicted by a local stability analysis with u = û(y)ei(αx−ωt) and
ω and α as the frequency and streamwise wavenumber of the perturbation, respectively.
The comparison between the streamwise growth of the frequency response and the locally
parallel flow prediction has been undertaken for the two frequencies depicted in figure 8.
The corresponding A(x)/A(0) are compared in figure 9. We notice a similar trend for
the two approaches (local analyses and identified global structures), which means that a
identified reduced-order model robustly captures the intrinsic dynamics of the flow. The
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Figure 9: Normalised amplitude A(x)/A(0) as a function of the streamwise distance x for
the reconstructed velocity field at the two frequencies shown in figure 8(b); comparison
with a local stability analysis (solid and dotted lines).

slight disagreement between the curves can be attributed to the non-parallelism of the
flow (Gaster 1974).

7. Summary and conclusions

The extraction and analysis of the inherent dynamics of noise amplifiers from exper-
imental data represents an important challenge due to the difficulty of separating the
intrinsic (globally stable) behaviour from the surrounding noise environment that con-
tinuously drives and maintains the system.
A dynamic observer which accurately recovers full-state information from a single wall

shear-stress measurement has been designed that relies on a POD-basis and system iden-
tification techniques. Within the limitations of linear perturbation dynamics, the design
process for the dynamic observer extracts the system matrix from a sequence of snap-
shots and shear-stress measurements. The spectrum of the system matrix describes a
globally stable flow configuration that is sustained by selectively amplified random per-
turbations from the noise environment. The proposed method thus successfully separates
the intrinsic, stable perturbation dynamics from the external noise excitation; previously
only the combined (statistically stationary) dynamics could be described. The present
approach can also be employed to extract the frequency response of the system. This
type of analysis is significantly more robust than a spectral (eigenvalue) analysis and
provides insight into the non-modal behaviour of the system.
Two main limitations that may be encountered in an experimental implementation of

the dynamic observer are: (a) the restriction to linear dynamics, and (b) the restriction
to two-dimensional configurations. In the first case, an extension of the present approach
to nonlinear identification is possible, but its higher computational cost and challenging
convergence characteristics make this extension a nontrivial undertaking.
The extension to three-dimensional flows involves using several sensors to capture the

spanwise distribution of the incoming noise, as well as three-dimensional velocity mea-
surements. Since 3D-PIV measurements require complex experimental setups that are
not always feasible, an alternative solution can be obtained by measuring the velocity
field of two-dimensional planes of relevant areas of the flow. In this case, the sensitivity
of the eigenvalues to the extent and location of subdomains and to low-dimensional rep-
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resentations derived in this paper can be used to assess the quality of the experimentally
obtained spectra.
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and Nonlinear Instabilities( eds C. Godrèche & P. Manneville), pp. 81-294 . Cambridge
University Press.

Juillet, F., McKeon, B.J. & Schmid, P.J. 2014 Experimental control of natural perturba-
tions in channel flow. J. Fluid Mech. 752, 296–309.

Juillet, F., Schmid, P.J. & Huerre, P. 2013 Control of amplifier flows using subspace
identification techniques. J. Fluid Mech. 725, 522–565.

Lumley, J.L. 1967 The structure of inhomogeneous turbulent flows. Atmos. Turb. and Radio
Wave Prop. pp. 166–178.

Qin, S.J. 2006 An overview of subspace identification. Comp. & Chem. Eng. 30 (10), 1502–1513.
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