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ABSTRACT

The work of this thesis concerns computational issues arising from various 

fields of Algebraic Control Theory. Efficient algorithms covering the 

following classes of problems are developed.

(i) Exterior Alqebra Comoutations : For aiven matrices AeRmxn. BeRmx^rsl
--------  and L J

algorithms achieving the computation of Cp(A) ,^tq(B), l<q<1 are formulated. An 

algorithm for the evaluation of Plucker matrices is also proposed. Most of 

these algorithms are used in the development of a unifying numerical algorithm 

for the solution of the Determinantal Assignment Problem.

(ii) Numerical Techniques for handling nonqeneric computations : Several 

numerical tools for the diagnosis of certain properties in an "almost sense", 

and the definition of procedures attaining the termination of algorithms are 

developed.

(iii) Evaluation of the Greatest Common Divisor of polynomials : A new 

numerical algorithm for the evaluation of the greatest common divisor of any 

set of polynomials is formulated.

(iv) Almost Zero Computations : Algorithms achieving the evaluation of the 

Prime almost zero of a polynomial set and the computation of the zero radius 

are given. Useful comments about the achievement of improved bounds for the 

zero trapping region are also presented.
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NOTATION AND ABBREVIATIONS

Throughout this thesis, the following notation and abbreviations will be 

used.

R, C, R(s)

Z

Z+

R[s]

Rn, Cn, Rn(s) 
pmxn

Rmxn[s]

Rn[s]

Nr(H), N-, (H) 

p f (A)

Qm,n

•Alim-àu/ m

Cp (A) 

E(P)

^m,d 
<P ( A )

A

r- •n

A B

C D

n m

dim X 
det(A) 

diag(di) 

deg{r(s)}

the field of real, complex numbers and rational

functions respectively.

the set of integers.

the set of positive integers.

the ring of polynomials over R.

the n-dimensional vector spaces over R, C, R(s).

the set of mxn matrices with elements from the field, or

ring F.

the set of mxn matrices with elements from the ring of 

polynomials over R.

the nxl column vectors with elements from R[s].

the right, left null space of a map FI.

the rank of a matrix AeFmxn over the field F.

the p-th exterior power of the vector space V.

the set of lexicographic ordered, strictly increasing

sequences of m integers from 1,2,...,n.

the exterior product of the vectors a],...,am of a

n-dimensional vector space V where <o=(ii,...,im)eQm?n.

the p-th compound matrix of AeFmxn, p<min{m,n}.

the equivalence class of a set P.
the set of m polynomials of maximal degree d.

the spectral radius of a matrix A.

the complex conjugate of a matrix A.

will denote that AeFnx*<, BeFmx*S CeFnx^, DeFmx^.

the dimension of X.
the determinant of a matrix A.

the diagonal matrix with elements d-j.

the degree of a polynomial r(s).
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a(s)|b(s) 

sp{xi, i=l,.

INI 

II »2 

II I f 

II IU
l

will denote that polynomial a(s) divides polynomial b(s). 

.n} the space spanned from the vectors x-j. 

will denote any norm, 

the 2-norm or spectral norm, 

the Frobenius or Euclidean norm, 

the maximum row sum norm, 

denotes orthogonality of vectors.

Re{a}

Im{a}

iff

the real part of a complex number, 

the imaginary part of a complex number, 

means if and only if.

« means much smaller.

» means much larger, 

means equal by definition, 

means approximately equal.

ien

a t

i e{1,2,...,n}.

the transpose of a matrix.

the transpose of a vector.

g.c.d. greatest common divisor.

a.z. almost zero.

u.f.d.

DAP

unique factorization domain. 

Determinantal Assignment Problem.

S.V.D. Singular Value Decomposition.

P.R.S. Polynomial Remainder Sequence.

b.m. basis matrix.

v.r. vector representative.

Small underlined letters will denote vectors e.g. a. 

Capital letters will denote matrices e.g. A.

Italic letters will denote sets e.g. A.
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LIST OF ALGORITHMS

1) EXTERIOR ALGEBRA ALGORITHMS
Alqorithm Description oaqe

CONSEQ For given integers p,m constructs the set of 

lexicographic ordered sequences Qp>m.

38

P-PRIME For given integers k,qeZ+, it tests if a sequence 

ueQk^kq is P-Prime and if it is, it computes its 

sign and its weight.

42

N-PRIME
m

Forgiven integers k^, i = l,2,...,m, Ijljk-j, it 47

tests if a sequence oeQm)£ is N-Prime. If it is,

it evaluates its weight.

COMREL For a given matrix AeRmxn and an integer p, 

l<p<min{m,n}, it computes the p-th compound 

matrix of A, Cp(A).

49

COMPOL1 For a given polynomial matrix M(s)eRmx^[s], m>l, 54

COMPOL2
>

they evaluate the p-th compound matrix Cp(M(s)), 

p=min{m,l}.

61

C0MP0L3 For a given polynomial matrix M(s)eRmx^[s], m>l, 

l<p<l, it computes the p-th compound matrix Cp(M(s)).

67

SMITH For a given polynomial matrix M(s)eR^ [s], it 

evaluates the invariant factors of the Smith form 

of the matrix.

69

PLUCKER For a given polynomial matrix M(s)eRPx^[s], p>q, 

Vm =c o1-s p r(s){M(s)} it computes the Plucker matrix 

of VM .

76

DAP It computes approximate solutions of the Determi- 

nantal Assignment Problem.

241

2) ALGORITHMS CONCERNING NONGENERIC COMPUTATIONS
Alqorithm Description paqe
UNCBAS For a given matrix AeRmxn, it computes an 

uncorrupted base for the row space of A.

115

NORMAL For a given matrix AeRmxn, it computes the 

normal ization Â | of A.
116

RANKMA For a given matrix AeRmxm and e a specified 

tolerance, it computes the numerical e-rank,

119



XI

Pe(A), of A.

GRAM For a given set of vectors, it evaluates their 

Gram matrix.

119

RINDMA For a given matrix AeRmxn, it finds the row inde-

pendent matrix containing the lowest possible 

combination of row indices.

123

3) ALGORITHMS RELATED TO G.C.D. COMPUTATION
Algorithm Description page

DIV Performs division of two polynomials. 126

EUCLID For given two polynomials a(s), b(s)eF[s], 

it finds the g.c.d. of them.

128

SETPOL Computes the g.c.d. of several polynomials. 129

ROUTH Calculates the g.c.d. of two polynomials 

using the method of Routh.

132

COMPAGCD Calculates the g.c.d. of several polynomials 

using the companion matrix method.

147

SYLVESTER Calculates the g.c.d. of several polynomials 

using the Sylvester's Resultant method.

152

BLANKISHIP Calculates the g.c.d. of several polynomials 

using the method of Blankiship.

159

MAIN A new algorithm, computing the g.c.d. of any 

set of m polynomials of maximal degree d.

178

4) ALGORITHMS CONNECTED WITH ALMOST ZEROS AND TRAPPING DISCS
Algorithm Description page
ALMZERO It computes a prime almost zero of a given 

set of polynomials.

201

TRAPDISK For a given polynomial vector representative 222

fi(s), sq an almost zero of the set, it provides 

an upper bound for the zero radius.
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Control Theory and Control Systems Design have demonstrated the importance 

of many areas of mathematics for the study of problems with real engineering 

significance. The development of the algebraic approach [Ros., 1], [Kail., 1], 

[Vid., 1] etc; geometric approach [Won., 1] and algebrogeometric approach 

[Kar. & Gia., 1,2], have demonstrated the need for algebraic computations and 

motivated the development of areas in computations, which otherwise could have 

been thought of no relevance. More specifically, areas such^computational 

issues of polynomial, rational matrices, matrix pencil theory, exterior 

algebra, Riccati equations etc, could never have been considered as of any 

practical significance, if it was not for their role in Control Theory and 

Design.

The importance of computational issues in the Control Theory design area, 

has been realised in the last decade, [Laub, 1], [VanDoor., 1] etc, but the 

work has mainly concentrated to problems related to state space computations, 

which involve standard Numerical Linear Algebra. The topic of algebraic 

computations, such as those of transformations and computation of canonical 

forms and invariants of polynomial and rational matrices, solution of 

polynomial matrix equations, factorisations etc, have not been properly 

addressed so far from the computational view point. Issues related to the 

algebrogeometric approach [Kar. & Gia., 1,2] such as exterior algebra 

computations of real and polynomial matrices, have not been considered before; 

however, because of the significance of the approach, the latter issues are of 

particular current interest. Theoretical procedures for evaluation of 

algebraic entities, which may be performed by pencil and paper, are not always 

the best, when it comes to their computer implementation. Reduction of 

algebraic computational procedures to standard Numerical Linear Algebra 

problems, is in general something desirable, but not always feasible.

It seems that the development of symbolic languages and packages for 

symbolic calculations may assist greatly in the development of the algebraic 

computations, but there are many issues which still have to be addressed using 

traditional Numerical Analysis tools and techniques. One of these issues has 

to do with the computation of system invariants which generically do not exist 

on a family of models, such as zeros of nonsquare systems, noncoprimeness of 

polynomials etc. For such problems theoretical algorithms applied on generic 

models almost always converge to the generic solutions. Devising tools for

"catching up" of approximate solutions is an important issue, of great
ron\i£'oVvo'ftaI

engineering significance, and rather difficult to tackle with means. An 

additional task emerging here is the development of an appropriate "analytic" 

interpretation for concepts which originate from algebra.
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This dissertation is concerned with the development of appropriate numerical 

methods for handling several important computational problems that arise from 

various fields of Algebraic Control Theory. Since the number of crucial and 

complicated computational problems existing in Control Theory is quite 

remarkable, the derivation of stable numerical techniques for handling them is 

important.

In the present thesis efficient numerical algorithms are proposed for the 

following three classes of problems :

(i) Computations based on Exterior Algebra

(ii) Issues Related to Nonoeneric Computations

(iii) Computations involving almost zeros and trapping discs

In Chapter 2, some basic concepts and results from Algebraic Theory of 

Linear Systems are presented. Several descriptions and approaches for Linear 

Dynamic Models are mentioned and the most important computational problems 

arising from their introduction are analytically formulated. Some definitions 

and classification concerning system invariants and unstructured generic 

systems are summarized in Chapter 3. The notions of generic and nongeneric 

computations are also introduced and the reasons for computing approximately 

the values of nongeneric invariants are explained.

In Chapter 4, the problem of Exterior Algebra computations is considered. 

In the beginning, useful definitions concerning sequences of integers are 

introduced. The notions of P-Prime and N-Prime sequences are introduced and in 

the sequel these definitions are applied for the evaluation of compound 

matrices. For given matrices AeRmxm, BeRmx^[s], algorithms attaining the 

evaluation of Cp(A), l<p<min{m,n}, C](B), Cq(B), l<q<l are proposed. A 

numerical technique evaluating the Smith-Normal form of a polynomial matrix 

using as tools the notion of compound matrices is developed, and finally an 

efficient numerical technique for the evaluation of Plucker matrices is 

formulated.

The problem of handling nongeneric computations is introduced in Chapter 5. 

Stable numerical techniques for facing such computations are demonstrated. 

Useful tools providing the means for encountering nongenericity are 

introduced. More specifically, the Chapter starts with a brief description of 

the Singular Value Decomposition theorem. This theorem is applied almost 

always when nongeneric computations are required. The notion of rank of a 

matrix is replaced by the numerical e-rank, for a given accuracy e, and the 

notions of e-independent, numerically £-dependent, strongly e-dependent, fuzzy
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e-dependent sets of vectors are introduced. The properties of strongly e- 

dependent sets of vectors are carefully studied and necessary and sufficient 

conditions relating the numerical £-rank of such sets and their singular 

values are formulated. Efficient criteria for choosing the "best" 

representative of such sets are also defined.

The problem of selecting a "best uncorrupted" base for the row space of a 

matrix is also mentioned. Applying the theory of Gram matrices and compound 

matrices, a stable numerical algorithm achieving this selection is proposed.

Finally, a detailed survey concerning the most important properties of the 

Gramian of given vectors and the Schur complement is presented. Due to their 

properties, the Gramian and the Schur complement form efficient tools useful 

in coping with nongeneric computations.

The problem of finding the greatest common divisor (g.c.d.) of a set of 

polynomials is very frequently encountered in problems of Control Theory. 

Thus, a detailed survey of methods for computing the greatest common divisor 

of polynomials is presented in Chapter 6. These methods are classified in two 

main categories. The first category contains methods based on the well known 

Euclid's algorithm. Except Euclid's algorithm, the generalized Euclid's 

algorithm is discussed and other variations such as Collin's and Routh's 

algorithm are also mentioned. Furthermore, the extension of all the above 

algorithms to unique factorization domain is developed. The algorithms in this 

category are appropriate only when the g.c.d. of two polynomials is required.

The second category contains numerous matrix methods. Numerical algorithms 

due to Blankiship, Sylvester and Barnett are analytically demonstrated. All 

the matrix-based algorithms can compute the g.c.d. of several polynomials.

In Chapter 7, a new numerical method for the computaion of the g.c.d. of a 

m-set of polynomials of R[s], Pmj(j of maximal degree d, is presented. This 

method is based on a recently developed theoretical algorithm [Kar., 1] that 

uses elementary transformations and shifting operations; this algorithm takes 

into account the nongeneric nature of g.c.d. and thus uses steps which 

minimize the introduction of additional errors and defines the g.c.d. in an 

approximate, or almost sense. For a given set Pm ĉj, with a basis matrix Pm , 

the method defines first the most orthogonal uncorrupted base Pr from the rows 

of Pm , where r=p(Pm)<m. By applying successively Gaussian transformations and 

shifting on the basis matrix PreRrx(d+1) we produce each time a new basis 

matrix Pz with z=p(Pz)<r. The method terminates when the rank of Pz is 

approximately equal to 1; the coefficient vector of the g.c.d. is then defined 

as a row of the unit rank matrix Pz. The method, defines the exact degree of
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the g.c.d., evaluates successfully an approximate solution, and works 

satisfactorily with large numbers of polynomials of any fixed degree.

Several subjects connected with the almost zero notion are discussed in 

Chapter 8. The most important properties of almost zero are summarized in the 

beginning. In the sequel, an algorithm evaluating the prime almost zero of a 

given polynomial set is proposed. A detailed study concerning the almost 

zero's sensitivity is developed next. The new notions of B-scaled, normalized, 

loo row-scaled almost zero, are defined and several useful remarks about the 

effect that the distribution of the original polynomials' roots causes in the 

almost zero's position are derived.

The problem of fixed polynomial combinants is also considered. After a 

brief presentation of their most important properties, an algorithm computing 

an upper bound for the zero radius is developed. Useful remarks on how we can 

attain improved bounds of the zero trapping region if the sensitivity of 

almost zero to scaling is applied, are also concluded.

Finally, the definition of dynamic combinants is established. Conditions 

providing zero assignability and strong nonassignability of fixed order 

dynamic combinants are also proved.

In Chapter 9, the problem of formulating a computational framework for the 

solution of the Determinantal Assignment Problem (DAP) [Kar. & Gia., 1,2] is 

introduced. Many of the exterior algebra algorithms developed in Chapter 4 are 

applied in this concrete Chapter. A unifying algorithm which treats DAP as a 

constrained optimization problem is suggested. The introduction of such an 

algorithm is really very useful, since this algorithm may be used as a basis 

of a design technique centered around the frequency assignment problems.

Throughout the thesis, several numerical examples illustrating the 

applications of the proposed algorithms are presented. Most of the algorithms 

were programmed on a CYBER 170-730 computer. This machine has double precision 

accumulator, arithmetic base p=8, number of digits of machine's word t=60 and 

arithmetic precision for single precision computations about 10"^. All 

the source lists of algorithms can be found in [Mit. & Kar., 1].
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2.1 INTRODUCTION
The nature of Control Theory always depends on the type of system model. The 

types of system model that are frequently used are:

(i) Diagraph Models (Linear graphs)

(ii) Steady-State Models (Linear and Nonlinear)

(iii) Linear, Time invariant, Lumped-parameter Dynamic Models of 

the state space, Transfer Function matrix, or Matrix Frac-

tion description type.

The last family is referred in short as Linear Dynamic Models (LDM). The 

family of LDMs is the richest of the three families. Pi <jraph Models (DM) and 

Linear Steady-State Models (LSSM) may be considered models describing certain 

aspects of the structure of LDMs and they may be discussed within the general 

framework of LDMs. The specific objective of this Chapter is to provide a 

short review of descriptions and Analysis-Design approaches for LDMs on the 

one hand and on the other hand to formulate the most important computational 

problems arising from the various descriptions and approaches of LDMs.

2.2 BASIC SYSTEM DESCRIPTIONS [Kar., 3]

A linear dynamic system [Chen, 1] is a set of four linear spaces U,V,Z,Y 

and linear maps g,f,h,e interrelated in the manner illustrated in Figure 2.1

(« •dtorw ird  map

Figure 2.1
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Such a model, because it involves internal as well as external variables, will 

be called internal model. The feedforward map e expresses the direct coupling 

of inputs-outputs which occasionally may be present. If the system is 

represented by the linear spaces U,Y and the linear map w:U— >Y, then the 

representation will be called input-output, or external.

Note that in the external representation, internal variables are ignored; 

thus, an implicit assumption in external descriptions is that all internal 

variables have zero initial values. A system with all internal variables 

having zero initial conditions will be called initially relaxed.

The nonzero initial state of internal variables may be taken into account only 

in internal descriptions. A diagram illustrating the families of linear models 

is given next.

Figure 2.2

Concrete mathematical descriptions for the above types of models are briefly 

discussed next.

2.2.1 Internal models
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The basic two families of internal models for linear systems are the state- 

space and the polynomial models and they are discussed next.

(i) State Space Models:

Consider the linear system described by

S(A,B,C,D): .

x = Ax + Bu (2.1a)

 ̂ y = Cx + Du (2.1b)

where AeRmxn, BeRnx^, CeRmxn, DeRmx^, 

functions. Such a model is known as

and xeRn, yeR^ are real-valued vector 

a state-space model (see for instance

[Chen, 1], [Won ., 1]. A is called the internal dynamics matrix and its

properties stem from the natural dynamic characteristics of the system. The 

matrices B, C are called input-, output- matrices respectively and they 

express the coupling of input, output variables u, y to the internal variables 

x, known as states; thus, B, C represent the cummulative effect of selecting 

actuators (B matrix) and sensors (C matrix) for the system; because of the 

latter property, we may also refer to B as the actuator matrix and to C as the 

sensor matrix. The internal variables of this model are the states x and its

derivatives x.

A standard "block diagram" representation of the system is indicated in Figure 

2.3.

Figure 2.3
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A state space model with D constant is called proper (or causal) »whereas if 

D=0, is called strictly proper. If in (2.1b) D is not a constant but a 

polynomial matrix in p=d(.)/dt, then the system is called nonproper. 

Nonproper systems may be represented in terms of singular models 

(Ex=Ax+Bu, | E|=0) [Lew,1], which are useful in describing the fast dynamics 

under failure conditions in circuits etc.; however, such models do not seem to 

be relevant for process applications.

The number of states n of the state-space model is defined as its order. It 

is always assumed that the measurements and actuation variables are 

independent and thus m<n, l<n and p(B)=l, p(C)=m .

If p=d(.)/dt denotes the derivative operator, the description (2.1) may be 

expressed as

pI-A -B X = 0
-C -D u -1

<=> P(P) £(t) « 0
-1 ( 2 . 2 )

where P(p) is a special type of a polynomial matrix, referred to as the system 

matrix pencil [Ros., 1]. Matrix pencils [Gant., 1], appear as simple linear 

operators of the type sF-G, F, GeRPx*S s an indeterminate, and are naturally 

associated with state-space type problems. The theory of the structure and 

invariants of state-space models is described by the structural 

characteristics of appropriate matrix pencils. Matrix pencil theory [Gant., 

1], is intimately related to the generalised eigenvalue-eigenvector problem 

[Wi1k., 2] and is thus central to state space computations. The model 

described by (2.2) will be called a matrix pencil description of S(A,B,C,D). A 

consequence of the indépendance of actuation and measurement variables is that 

p(P(X))=min{n+m, n+1} for almost all values of the complex number X; Systems 

with such a property will be called nondegenerate. Well designed systems 

always have this property.

(ii) Polynomial Models:

The state space description of a linear system assumes that the system is 

described in terms of first order differential equations; however, this is not 

the most general internal description for linear systems. For a number of 

processes, the most natural description is that defined by the general 

differential system [Ros., 1]
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( A(p)v(t)=B(p)u(t)

Ip: «

I Y(t) = C(p)v(t)+D(p)u(t)

(2.3)

where A(p), B(p), C(p), D(p) are polynomial matrices in p [Gant., 1] of 

dimension nxn, nxl, mxn respectively, and v(t) is a vector valued function 

with values in Rn known as pseudo-state vector [Cal. & Des., 1]. The above 

description is known as Polynomial Model Description (PMD) and may also 

represented as

A ( p ) -B(p) Y(t) 0
<=> T(p)x(t) =

0

-c (p ) -D(p) M(t) -Y(t) -Y(t)
(2.4)

where T(p) is known as the Rosenbrock's System matrix [Ros., 1]. The 

relationship between PMDs and state space models is extensively treated in 

[Ros., 1], [Kail., 1]. It seems that such models, although important for 

electromechanical systems, are not directly relevant to process applications.

2.2.2 External models

The two basic families of external (input-output) models are the time- 

domain (convolution) and frequency domain (transfer function) models and are 

briefly presented.

(i) Convolution Models:

The time domain, input-output description of linear, causal, time invariant 

systems, which are assumed, to be initially relaxed, gives a mathematical 

description betwee’n the input and output vectors, which is expressed by [Chen,

1]
i t

y(t) = / s ( t  - T ) U ( T ) d T = G(T)u(t-T)dT (2.5)

where t=0 is the initial time and G(t) is an mxl matrix-valued function with 

G(t)=0 for t<0. The integral in (2.5) is known as a convolution integral and



-10-

the matrix G(t) as an impulse response matrix. For a Psfate space model 

S(A,B,C,D) the impulse response matrix is expressed by

G(t) = CeAtB+D5(t) (2.6)

where 5(t) is the Dirac impulse. The above description is called a convolution 

desorption, G(t) may be obtained by carrying out experiments on the plant and 

thus it is of importance in the identification of a linear model (see for 

instance [Des. & Var., 1], [Kal., 1]. For analysis and design purposes an 

alternative input-output description is more suitable and it is considered 

next.

(ii) Transfer Function Matrix Models:

For systems which are describable by convolution integrals, it is of great 

advantage to use Laplace transform, because it will change a convolution 

integral in the time domain into an algebraic equation in the frequency 

domain. Thus, let y(s), u(s) be the Laplace transforms of y(t), u(t) vector 

functions. Then, the convolution description (2.5) becomes

Y(s) = G(s) u(s) (2.7a)

G(s)

CO

= yG(t)e‘stdt (2.7b)

0

The matrix G(s), defined as the Laplace transform of the impulse response 

matrix is called the system transfer function, and (2.7a) a transfer function 

matrix model. Whenever transfer function is used, the system is always 

implicitly assumed to be relaxed at t=0. For single input single output 

systems, (2.7a) may be written as

9(s)
y(s)

u(7) relaxed at t=0
(2.7c)

and this demonstrates that G(s) may be experimentally determined by frequency 

response tests (amplitudes and phase characteristics, when the system is 

excited by sinusoidal signals). A transfer function is not necessarily a 

rational function of s. Delay terms, such us e's^ and transcendental functions 

such as cosh(as) etc may also be included in G(s) and this indicates that
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transfer functions may also be used to represent distributed-parameter 

characteristics, elements of process models.

A rational matrix G(s)eRmx^[s] is said to be proper if G(®) is finite 

(zero, or nonzero) constant matrix and strictly proper if G(®)=0; otherwise, 

ifsome of the elements in G(®) tend to infinity it will be called nonproper. 

The set of proper rational functions (the ring of proper rational functions 

[Vard., & Lim. & Kar., 1]) is denoted by Rpr(s). The properness condition of a 

transfer function is essential for the physical realisability of a transfer 

function and it is a condition that should be taken into account in control 

design (the only possible exception is the case of derivative feedback, 

whenever it can be applied).

For a state space model S(A,B,C,D)the transfer function matrix is defined 

by

G(s) = C(sI-A)“1B+D (2.8)

which is a proper transfer function matrix. For every G(s)eRpr(s)mxl there 

always exists a state space model S(A,B,C,D) for which (2.8) holds true [Chen, 

1]; such state space models are called realisations of G(s) and they are not 

uniquely defined. A realisation of G(s) with the least possible order 

(dimension of A) is called minimal realisation and this minimal dimension is 

denoted by 5^(G(s)) and referred to as the McMillan degree of G(s) [Kal., 2].

Different approaches for working out minimal, or irreducible realisations 

of G(s) are discussed in [Chen, 1], [Kail., 1], and efficient numerical 

procedures exist in standard control CAD packages. Computing the McMillan 

degree may be achieved algebraically, or in terms of the rank properties of 

Hankel matrices [Chen, 1].

Certain factorisation of transfer functions which provide alternative 

representations of the system are the polynomial and rational fractional 

representations; such representations are crucial in many of the modern 

control synthesis-design approaches. The polynomial fractional representation 

is briefly presented next.

(ii.a) Polynomial Matrix Fraction Descriptions:

If R[s] is the set of polynomials (ring) in s variable and with real 

coefficients then a rational function g(s)eR(s) may be expressed as 

g(s)=n(s)/d(s), where n(s)eR[s] is the numerator and d(s)eR[s] is the 

denominator, i.e.

g ( s )  = n(s)  d ( s ) ' 1 = d ( s ) _1n(s) (2.9)
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Such a representation of g(s) is called a polynomial fractional description 

(R[s]-FD). Such a description is called coprime R[s]-FD if n(s), d(s) have

no common zeros.

If G(s)eR(s)mx^, then it may be also represented as

G(s) = Nr(s)Dr( s ) = Di(s)-1Ni(s) (2.10)
rl D,CsD\+o

where Nr(s), Ni (s)eR[s]mx^, Dr(s)eR[s] ̂ , Di(s)eR[s]mxm with 1 1Dr(s) | ={=0.

Nr(s), Dr(s), Ni(s), Di(s) are known [Kail., 1] as Rfsl-Right Matrix Fraction 

Descriptions (R[s]-R-MFD), Rfs1-Left-Matrix Fraction Descriptions (R[s]-L-MFD) 

respectively. Every transfer function has R[s]-R-MFDs and R[s]-L-MFDs and such 

descriptions are not uniquely defined.

If G(s)=Nr(s)Dr(s)'1=Di(s)_1Ni(s), then deg{|Dr(s)|}, deg{|Di(s)|} is defined 

as the order of the R-MFD, L-MFD respectively. A R-MFD, or L-MFD is

called irreducible. if deg{|Dr(s)|}, deg{|Dn(s)|} is minimal amongst all 

other MFDs. For all irreducible MFDs (left or right), of proper transfer 

functions we have [Kail., 1]:

mi n{deg(|Dr(s)|}} = min{deg{|Di(s)|)) = 5m (G(s)) (2.11)

Irreducible MFD's are not uniquely defined, but all of them provide equivalent 

minimal representations of G(s). The theory of MFD's is quite rich and plays a 

key role on the development of the modern algebraic approaches for the 

analysis and synthesis of multivariable control systems.

2.3 CONTROL SYSTEM ANALYSIS AND DESIGN-SYNTHESIS 
APPROACHES [Kar., 3]

In the study of properties of linear systems, as well as the analysis and 

design of control systems, a variety of approaches have been developed so far. 

The classification of the different approaches is based on the model that the 

approach uses, as well as the tools which are deployed. The aim of this 

section is to discuss briefly the basic characteristics and tools 

(mathematical and computational) of the different approaches. A diagram that 

summarizes the different schools of philosophy for the analysis and design of 

control systems is given in Figure 2.4.
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Fiqure 2.4

A brief description of the most important approaches is given below.

2.3.1 State space Approach

The state space approach is well developed and suited for the study of 

system properties such as redundancy, minimality, controllability, 

observability etc. Within the state space framework a variety of techniques 

has been developed for the solution of design problems and feedback 

compensation, such as pole-shifting controllers, quadratic regulator 

synthesis, state observers and estimators, non interactive control etc. The 

structural characteristics (invariants and indicators) are well developed 

within this framework and the computational tools are those of standard 

Numerical Linear Algebra. Software for computations is readily available (such 

as NAG Libraries, MATLAB etc.) An advantage of the approach is that the 

instrumentation maps (B,C) are explicitly stated in the model and thus the 

mechanism of exploring the formation of indicators and invariants are present, 

although no systematic effort has been made so far for such a study. A 

disadvantage of the state space approach is that it is sensitive to 

uncertainty about the system dynamics and cannot cope well with delay and 

other factors which are present in process control models. Some systematic 

approaches developed within the state-space framework are:
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(i) Geometric Approach

A systematic approach for the study of state-space problems has been 

developed by Wonham and coworkers [Won., 1].

The geometric approach provides an elegant solution to a large family of 

synthesis problems; however, the solvability conditions are expressed as pure 

geometric conditions and thus they are not easily testable. For problems of 

partially fixed structure controllers (such as decentralized control) the 

solvability conditions become almost untestable. As a conceptual tool for the 

study of linear systems, this approach is of immense value; however, the pure 

geometric solutions are not in a suitable form for design purposes.

An

additional disadvantage of the approach is that it does not describe well 

system invariants which are mostly of an algebraic type and has difficulties 

in expressing the degree to which a property holds in system (aspects related 

to property indicators).

(ii) Matrix Pencil Approach .
the, VQcr

A number of difficulties of the geometric approach arise due to/that the 

algebraic aspects of the structure of the system are ignored. In fact, a 

variety of system properties have a natural algebraic character and an attempt 

to characterise algebraic concepts in pure geometric terms, creates unecessary 

complications. Different attempts to algebrise the geometric theory have been 

made. The most natural and general is the matrix pencil approach [Kar., 2] and 

it is based on linear polynomial matrices, known as matrix pencils [Gant., 1]. 

Matrix pencils are natural operators associated with first order linear 

ordinary differential equations and their importance for the study of linear 

systems has been recognised by the work of Kalman [Kal., 3], Rosenbrock [Ros., 

2] etc. As a tool for characterising geometric concepts, matrix pencils were 

first used in [War. & Eck., 1].

The matrix pencil approach provides a complete characterisation and 

classification of invariants of linear state space models [Kar. & MacB., 1] 

and a characterisation of all families of invariant spaces of the geometric 

theory [Won., 1], [Wi1., 1] in terms of the invariants of a space restriction 

pencil [Kar., 2], [Jaf. & Kar., 1]. The matrix pencil approach is well 

developed as an analysis tool for linear systems, but underdeveloped as a 

synthesis, design tool. Matrix pencils have the great advantage that describe
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all aspects of state-space models, such as algebraic, geometric and 

computational.

2.3.2 Transfer Function Approach

The pioneering and extensive studies of Rosenbrock [Ros., 1] (and then 

Popov [Pop., 1], Forney [Forn., 1], Wolovich [Wol., 1] and others) clarified 

the power of the transfer function approach and the benefits to be gained by a 

better understanding of the relationships between it and the state space 

approach. Two main different roads have emerged from the transfer function 

description of a linear system, the albegraic approaches and the frequency 

response approaches. The first family of approaches treates the system as an 

operator between rational vector spaces and the basic tools are algebraic 

(polynomial matrix theory, integral matrices, theory of rings); the second, 

views the system as a map between spaces of periodic signals and thus its 

tools are those of complex analysis. The algebraic approaches are most 

suitable for addressing structural questions related to the system and 

synthesis problems. The complex variables approaches, on the other hand are 

most suitable for describing quantitative properties, design indicators and 

design problems.

Hybrid approaches, combining both philosophies have also recently emerged 

and a typical representative is the H-® optimization [Fra., 1]. The general 

futures of the different approaches are discussed below:

(i) Algebraic Approaches

A rational function may be always considered as the fraction of special 

rational functions (rings) such as the polynomials R[s] and the proper and 

stable rational functions Rp(s). Thus, transfer function matrices may be 

represented in terms of matrix fractions from R[s], or Rp(s). Thus, according 

to the type of MFD used to describe the system, we distinguish the:

(a) Polynomial Fractional Approach (PFA)

(b) Proper and Stable Fractional Approach (PSFA)

The main philosophy for analysis and synthesis is common in both of the 

above approaches. Different types of control problems are formulated as 

problems, the solution of which is reduced to a solution of a matrix equation 

over the rings R[s] [Kuc., 1], or Rp(s) [Vid., 1]. The structure of R[s], 

Rp(s) is similar (Euclidean rings); however, there are some fine differences, 

which create some divergence between the results that may be obtained. The
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types of problems that may be studied are stabilisation, tracking, disturbance 

rejection, noninteracting control, simultaneous control of many plants, robust 

design etc. The central result that dominates the overall approach is that the 

controllers that stabilize a given plant may be analytically defined in a 

closed parametric form parametrisation [Kuc.,1] . The various synthesis 

problems are then solved within the family of stabilising controllers. For the 

two approaches defined above we have the following special characteristics.

(a) Polynomial Fractional Approach: The basic tools are those of polynomial 

matrix theory and the computations may be reduced to linear algebra problems. 

The computational aspects is an area where more work is needed, before the 

approach develops to an efficient synthesis methodologies. Advantage of the 

approach is the simplicity of the underlying structure of polynomials and the 

richness of the available results. A disadvantage of the approach is that 

questions of properness and generalised performance regions are handled with 

some difficulty.

(b) Proper and Stable Fractional Approach: The basic tools are those of 

matrices with elements from Rp(s) ring [Vard. & Kar., 1,2]. Computations may 

be reduced to a polynomial framework (as before), or to state space 

computations. Advantage of the approach is that it can handle simultaneously 

questions of properness and generalised performance regions. A disadvantage of 

the approach is that the background mathematical tools are more complicated 

and the literature less rich.

As far as analysis, the first method is more suitable, whereas the second 

more appropriate for defining the solution of synthesis problems. It should be 

stressed that no ready made software is readily available for both of the 

approaches. An important main advantage of both approaches is that they handle 

easily the design problem of high complexity controllers (large dynamic 

order), whenever such controllers are needed.

The above two approaches deal with linear time invariant finite dimensional 

systems. Extensions to systems which are linear-time invariant and distributed 

parameter, as well as nonlinear systems exist, but not as systematic 

synthesis-design methoWogies [Cur., & Glo., 1], [Ham., 1].

(i i) Algebrogeometric Approach

For the study of problems of linear systems synthesis-design which are of 

the determinantal type (such as pole, zero, assign ment, stabilization) a
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specific school of thought has developed that is specially suited to tackle 

such problems. This framework is referred to as algebrogeometric, because it 

relies on tools from algebra and algebraic geometry. Two distinct approaches 

have emerged within this general framework, that is:

(i) The modern algebraic geometry approach.

(ii) The exterior algebra-classical algebraic geometry approach.

The first [Mar. & Her., 1], [Bro. & Byr., 1] consider the plant and 

controller as elements of algebraic varieties of an affine space and studies 

the solvability of pole assign ment, (by output feedback), simultaneous

stabilisation etc. by using tools from modern algebraic geometry. A

disadvantage of the approach is that the nongeneric cases are difficult to 

handle and that no systematic procedure for computing the controllers, 

whenever they exist, are suggested (the approach is not conductive).

The second approach [Kar. & Gia. 1,2,3], is referred to as the

Determinantal Assignment Problem Approach. It has been formulated as a 

unifying approach for all problems of frequency assign ment (pole, zero) and 

its basic idea is that determinantal problems are of multilinear nature and 

thus they may be naturally split to a linear problem and multilinear problem 

(decomposability of problem of multi vectors). The final solution is thus

reduced to the solvability of a set of linear equations (characterising the 

linear problem) together with quadratics (characterising the multilinear 

problem of decomposability). Classical algebraic geometry (in a projective, 

rather than affine space) is used to determine the existence of solutions. The 

approach heavily relies on exterior algebra and this has implications as far 

as computability of solutions (reconstruction of solutions, whenever they 

exist) and introduction of new sets of invariants (of a projective character), 

which characterise the solvability of the problem.

The distinct advantages of the DAP approach, with respect to the first, 

are that it provides the means for computing the solutions, it can handle both 

generic and exact solvability investigations and introduces new criteria for 

the characterisation of solvability of different problems. The computation of 

solutions is reduced to an optimization problem of a function with quadratic 

equality constraints. The development of such a technique is essential for the 

method to become a design technique for frequency assign ment.

The DAP approach is quite promising, since it is the only one that can 

handle easily design problems where the compensator has a partially fixed
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structure (because of decentralization and engineering constraints). It may 

also be used as an analysis tool for evaluating the relative merits of closing 

different feedback loops. As far as selection of instrumentation, the 

technique can be used for the selection of the gains of sensors and actuators, 

when their number and location has been previously specified. This approach 

can handle both problems of analysis and design of constant compensators. 

Further work and development is needed for the method to handle the case of 

dynamic compensators. The latter problem together with the development of an 

efficient numerical optimization algorithm are topics which need further 

consideration. In Chapter 9 of this thesis an efficient algorithm solving DAP 

is proposed.

2.4 SYSTEM PROPERTIES AND PROPERTY INDICATORS:
DEFINITIONS AMD CLASSIFICATION [Kar., 3]
Property indicators express the state, value of a certain system 

property, which however, may change under compensation.

Let M be the family of system models (internal or external); M will be 

referred to as the model set. By A we shall denote the set of all possible 

attributes (characteristics), that may be associated with every model MeM and 
shall be referred to as the model attributes set. We denote by B a general set 

with elements, numbers, graphical statements, criteria etc, and we shall call 

it the criteria set.

Definition (2.1): A system property is a function P:M— >A. I f  P(M) is the 
image of M under P then a p-propertv test is a function g:P(M)— and the 

composition f:M— >B defined by f=goP will be called a P-propertv indicator.

Example (2.11: Consider the family A/=(x=Ax) of state space models. We may 

illustrate the definition by the following diagram

Models Models Attributes Property indicator Property Criteria

Asymptotic stability Eigenvalues of A Negative real parts

of free motion
x=Ax

Insensitivity of response Ei genframe of A orthogonality of frame 

to parameter variations
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In simple terms, a property indicator is a function defined on the system 

model and whose values characterize the property. Depending on whether the 

model is internal, or external, the property will be referred to as internal, 

or external respectively.

If the attribute associated with the property expresses a qualitative 

property of dynamic behaviour of the system [Hir & Sma., 1], which may be 

defined on a general family of models, then it will be called dualitative 

(examples of such properties are stability, controllability, existence of 

periodic motions etc.).

The criteria set for such properties are of a binary nature (the model 

has, or does not have the property). If the attribute associated with the 

property has a quantitative character, that is numerical values are involved 

in its definition (for instance, stable step response with overshoot less than 

10%) then it will be called quantitative; for such properties the criteria set 

is not of a binary nature, but it may contain a range of values, which express 

a "degree" of possessness of the property by the model.

The distinction between qualitative and quantitative properties is not 

clear cut; in fact a quantitative property may also have quantitative aspects 

(for instance controllability is a qualitative property, but assessing the 

energy cost of controlling a system state has a quantitative character). 

Frequently a property indicator may be used to assess both qualitative and 

quantitative properties of a given property.

A further classification of properties is in terms of the notions of 

genericity and robustness. If M is a family of models characterised by a 

common fixed structure (for instance a given linear graph), but with otherwise 

arbitrary parameters, then with every model MeM we may associate a parameter 
vector a(M) in the parameter space RN. A property is called generic, if it 

holds true for almost all MeA/; otherwise, the subset M of M for which the 

property does not hold true have parameter vectors a(M) which belong to a 

proper variety V of the parameter space [Won, 1], [Hir. & Sma., 1]

The property that is valid on a proper variety of R^ is called 

nonqeneric. For the set of nxn real matrices, the property of having distinct 

eigenvalues is generic, whereas having repeated eigenvalues is a nongeneric 

property. A property that holds true not only for an MeM, but for some 

neighborhood R(M) of models around M (use the parameter vectors and 

appropriate topology) is called well posed. If the neighborhood of models R(M) 

is large, the property is called robust, otherwise nonrobust. Robustness, is
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thus connected to the size of permitted perturbations on the nominal model 

parameters before the property, that holds true on the nominal model, is 

violated. The gain and phase margins are typical examples of robustness 

measures for external stability. A generic property may also be referred to as 

structural. A property depending on the internal mechanism model will be 

called simple and if it depends on the interaction of internal mechanism and 

environment it will be called composite (internal stability is a simple 

property, but controllability is a composite property).

A property indicator that is used for assessing a single property will be 

called simple; if many different properties are assessed through the same 

indicator, then it will be called multiple. If a property indicator is an 

explicit, implicit function of the models parameters, then the indicator will 

be called explicit, implicit respectively (the controllability matrix is an 

explicit indicator for controllability, the Nyquist diagrams are implicit 

indicators for closed-loop stability). For a given property we may use two 

alternative indicators; such indicators used for evaluation of the same 

property are called equivalent (the controllability matrix and the 

controllability pencils are equivalent indicators, as far as assessing 

controllability property).

The above classification is summarized in the following diagram.

Figure 2.5

2.5 NEEDS FOR SPECIALISED ALGEBRAIC COMPUTATIONS
From the above paragraphs concerning the description of linear systems, 

the main design approaches and the definition and classification of property
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indicators, it is apparent the need for various algebraic computations. Some 

of the most important computational aspects arising from Control Theory are:

(i) Computation of the Greatest Common Divisor of polynomials

The greatest common divisor of polynomials is essential in the study of 

problems such as multivariable zeros, controllability, observability, fixed 

models, solvability of Diophantine equations over R[s] etc.

(ii) Computation of the MFDs

An efficient algorithm for evaluation of irreducible right or left MFDs is 

very useful in the development of algebraic system theory and related control 

problems.

(iii) Exterior Algebra Computations

In the development of the DAP approach [Kar. & Gia., 1,2], the existence of 

numerical algorithms handling various exterior algebra computations are 

indispensable.

(iv) Computation of property indicators and invariants

When the state space approach is used, computational tools concerning the 

evaluation of the structural characteristics (invariants and indicators) are 

required. For that purpose, tools from Numerical Linear Algebra are used. The 

most important indicators used in the computations are:

(a) The eigenvalues of the internal dynamics matrix with their corresponding 

structure (as well as the poles). Eigenvalues and poles are indicators of 

stability.

(b) The controllability matrix, the controllability pencil, the restricted 

controllability pencil, the observability matrix, the observability pencil, 

the restricted observability pencil. All of them are equivalent indicators for 

the controllability, observability properties.

Since controllability, observability tests are based on the notion of 

rank of matrices, which generically is full, the degree nonsingularity, 

singularity measured by the smallest singular value, or the condition number 

is important indicator of "how well" the system is controllable, observable.

(c) The control 1ability-observability-Plucker matrices, P(A,B), P(A,C), [Kar. 

& Gia., 2]. These two indicators play an important key role in state space 

design.
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2.6 CONCLUSIONS
The aim of this Chapter was to review the basic system representation, 

Control Analysis and Design approaches. A systematic description and 

classification of system properties and property indicators was also 

presented. Finally the most important computational problems arising in 

Control Theory were briefly described. As such it serves the following 

purposes:

(i) It provides a quick review of the various approaches and methodofedgies 

developed in the area of linear systems.

(ii) It provides a summary of some crucial computational problems of Control 
Theory.



C H A P T E R  3

NONGENERIC INVARIANTS AND THE NEED FOR 

THEIR APPROXIMATE COMPUTATION
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3.1 INTRODUCTION
On a given system we may apply different types of transformations, some of 

them corresponding to a change of representation and some others having a 

compensation or feedback interpretation. The theory of system invariants is 

important for Control Theory and design since they describe structural 

characteristics which remain unaffected under the transformation and thus 

indirectly are related to the limits of compensation.

The specific objective of this Chapter is to provide a short review 

concerning the definition and classification of system invariants. A 

systematic description of the unstructured generic systems is also presented. 

The generic properties of linear systems and the generic values of system 

invariants are also briefly developed. Finally, is explained why in many 

applications of Control Theory we need nongeneric computations.

3.2 SYSTEM INVARIANTS: DEFINITIONS AND CLASSIFICATION
System invariants are functions defined on the model, which remain the 

same under certain types of transformations; thus, they characterise not only 

a single model but a whole family (equivalence class).

Let M be a family of linear models, £ an equivalence relation defined on 

M, £(M) the equivalence class of MeM and let M/E be quotient set of orbit 

(se of all equivalence classes). We may define [MacL. & Bir., 1]:

Definition (3.1); Let M be a family of models, I a set, £ an equivalence 

relation defined on M .

(i) A function f:M--- >1 is called an invariant of £, when M j£M2 implies

f(M])=f(M2 ). Also, f is called a complete invariant for £, when f(M2)=f(M2 ) 

implies Mj£M2 .

(ii) A set of invariants {f-j: fy.M— >//, i=1,2,..., k) is a complete set for £ 

on M, if the map f defined by

k
f:M--->x I] : M--->f(M) = {fi(M),__,fk(M))

i = 1

is a complete invariant for £ on X. The complete set of invariants is called 

independent, if there is no subset which is also complete.

Note that a complete invariant defines an one-to-one correspondence 

between £(M) equivalence classes and the image of f in I. The notion of 

independence is essential in the minimal parametrisation of £(M) by
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invariants. An important issue for system identification and control analysis 

is that of canonical form for £(M).

k
If f:M— >x 7-j is a complete and independent invariant for £ on 

i=l

M by specializing the invariant f such that its image C is in M, we define a 

canonical element or a canonical form

Definition (3.2): A set of canonical forms. C for £ equivalence on M, is a 

subset of M such that for every MeM there exists a unique CeC for which M£C.

Canonical forms are uniquely defined elements of M, which have the simplest 
possible structure (least number of parameters) and which describe the 

invariant in the language of the model (in terms of a simple model).

Canonical forms, are often used as analysis tools and describe the 

simplest possible type of model that may be defined under the set of 

transformations defining the equivalence relation.

The set of canonical forms provides a system of canonical distinct 

representatives for M/E.

The classification of invariants to internal / external. simple / 

composite, explicit / implicit is the same to that given for properties. An 

invariant will be called global, if it takes nontrivial values for all MeM; 
otherwise, that is, it takes nontrivial values only on a proper variety of the 

model parameter space RN, it will be called local.

The value of a global invariant will be called generic, if it is constant 

for almost all MeA/. That is the models for which the value may differ from the 

constant is a proper variety of RN, such values will be called nongeneric.

An invariant of representation transformations will be referred to as a 

representation invariant, whereas those of compensation transformations will 

be called a compensation invariant. An invariant will be called strong, or 

weak, if it is preserved or not preserved under more general types of 

transformation.

The following diagram summarizes the classification of system invariants.
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Figure (3.1)

Since a variety of invariants and canonical forms are defined, the need 

for computing algebraically some of them arises. The most fundamental types of 

invariants that require algorithms for their computation are:

1) The Jordan canonical form that may be computed algebraically by use of the 

Smith form (computation of set of ed's)

2) The Kronecker canonical form

3) The Smith McMillan forms over a ring

4) The Hermite, Hermite McMillan forms

5) In the study of determinantal assignment problems (DAP) (pole, zero, 

assignment) alternative forms of invariants are essential such as the Plucker 

matrices [Kar. & Gia., 2],

3.3 UNSTRUCTURED GENERIC SYSTEMS [Kar., 3]

The problem of model uncertainty and its effect on control design is one of 

the important issues in contemporary Control Theory and Design Model 

uncertainty may be structured, or unstructured. By structured uncertainty we 

mean that certain model parameters vary within certain range, whereas by 

unstructured uncertainty we mean that certain property indicators vary within 

a certain range of values. Studying the effect of uncertainty on the 

preservation of certain properties of the nominal model is referred to as 

"robustness analysis". A related topic, that is the study of properties of a 

whole family of models having fixed certain fundamental parameters (such as
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numbers of inputs, states, outputs, McMillan degree), but with the rest of the 

parameters taking generic values is referred to as structural analysis of 

unstructured models and the main issue here is the study of properties that 

hold for the generic element of the family.

We consider unstructured linear systems described by state space or 

transfer function type models. The family of systems which are considered are 

the linear, proper time invariant. The unstructured assumption about the model 

implies that there is no special assumption about the structure of 

interconnections between the input, output and state variables of the model 

and that the corresponding parameters take generic values. The unstructured 

model assumption has different implications for state space and transfer 

function models. Thus,

(i) For state space models S(A,B,C,D), it is assumed that the number of inputs

(1), outputs (m), states (n) are fixed, but the parameters in A,B,C,D 

matrices are generic. This family is denoted by T(l,m,n).

(ii) For transfer function models G(s), where G(s) is proper, it is assumed

that the number of inputs (1), outputs (m) are fixed, but the g-jj(s) 

elements of G(s) are generic proper rational functions. This family is 

denoted by Ipr(l,m).

The r(i,m,n), Ipr(i,m) families of generic systems are not equivalent since 

the McMillan degree of the elements of Ipr(l,m) may vary. In the following, it 

is natural to examine separately the results concerning the two families.

3.3.1 Generic Properties of linear systems

Under the genericity assumptions stated above the system properties are 

considered here and classified to generic and nongeneric. We summarize the 

basic properties by the following result [Won., 1].

Result (3.11: For generic S(A,B,C,D) system of the r(],m,n) family, the 

following properties hold true:

(i) The set of eigenvalues of A are generically distinct and complex, where 

the complex appear in complex conjugate pairs. Thus, A is generically 

cyclic and diagonalisable (under similarity transformations).

(ii) The system is genericaly controllable and observable and thus also 

stabilisable and detectable.
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The existence of Jordan forms, as well as uncontrollability, 

unobservability are nongeneric properties for systems of r(l,m,n). Some 

further properties related to poles and zeros are listed below.

Result (3.21: For generic systems of the r(l,m,n), Ipr(l,m) families the 

following properties hold true:

(i) The transfer function matrix has full rank (equal to min{m,l} over 

R(s)). If m<l, then the generic system is output function controllable.

(ii) If m=(=l the system has no finite zeros. If m=i, the generic proper system 

has no finite zeros and the generic strictly proper system has n-m 

finite zeros.

(iii) The number ofvfdivisors at infinity of the generic S(A,B,C,D) system is 

equal to min{m,l}; furthermore, if D=f=0 (proper) then all such 

divisors are linear and if D=0 (strictly proper) then all such
A

divisors are of the s^ type.

(iv) The generic element of Ipr(l,m) has no infinite zeros. If the system is 

strictly proper, then the generic system of Ipr(i,m) has min (m,n,l) 

number of first order infinite zeros.
■

Properties such as stability, instability they cannot be inferred from 

genericity arguments since they depend on the parameters of the A matrix. The 

concept of zeros is generic for square systems and nongeneric for nonsquare 

systems. For proper square systems the generic number of finite zeros is equal 

to the number of states, whereas for strictly proper square systems we always 

have m first order infinite zeros and n-m finite zeros. Genericity arguments 

cannot infer minimum, or nonminimum phase properties. The presence of higher 

order (than one) infinite zeros is a nongeneric property thus, the generic 

asymptotic pattern of root locus is rather simple and can be compensated. For 

strictly proper square systems, the generic numbers of finite zeros, n-m, is a 

measure of difference between states and inputs (outputs). By increasing the 

number of inputs, outputs for such systems, we decrease the number of finite 

zeros and increase the number of first order infinite zeros and vice versa.
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3.3.2 Generic values of system invariants

The values of the invariants for generic systems of the unstructured 

r(l,m,n), Epr(i,m) families are important elements in the solvability 

conditions of exact control synthesis problems and they are examined here.

Remark (3.1): The generic number of finite and infinite zeros, as well as 

the values of orders of infinite zeros have been defined in the section 

(3.3.1). For a generic system the finite zeros are distinct and they appear in 

pairs of complex conjugate zeros.

For state space models, the remaining invariants are those defined by 

column, row minimal indices of corresponding matrix pencils. The following 

result [Kar. & Had., 1] provides the means for the characterisation of generic 

values of invariants of state space models.

Result (3.3): Let F,GeRmxn, men, and assume that (F,G) is generic (that is 

the matrices, F,G are generic). For the generic pencil sF-G the following 

holds true:

(i) sF-G has only column minimal indices (cmi); that is it has no finite, 

infinite e.d. and no row minimal indices (rmi).

(ii) If p=min{k eZ+ :p>m/(n-m)) then the set IC(F,G) of cmi of the generic sF-G 

is defined by:

(a) If p=n/(n-m) then IC(F,G) = ( (ej ,/7j) :ej=p-l, /7j=n-m); that is it has 

one cmi s\ with multiplicity n\.
(b) If p=f=n/(n-m), then IC(F,G)=( (ej ,n\), (s^,^) :frl=P-*» /7j=p(n-m)-m, 

£2=P> /72=n-p(n-m)); that is we have two values ej, e2 with

corresponding multiplicities n\, 112-

A similar result may be stated for pencils with m>n and this defines the 

generic values of row minimal indices . From the above result and its dual we 

have:

Result (3.4): For the generic system of T (l,m,n), the generic values of 

controllability indices Ic and observability indices I0 are defined by:

(i) If p is the smallest integer such that p>n/l, then 

(a) If p=n/]+l, then Ic=((/'l>/7l):^l=n/l, ^=1}
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(b) If p+n/i+1, then Ic={(/'l,n1), (//2 ,/72), //¡=p-l, 

n\=pl-n, /v2=p, /72=n+l-pl).

where //-j are distinct values of controllability indices and n-\ are the

corresponding multiplicities.

(ii) If p is the smallest integer such that p>n/m, then

(a) If p=n/m+l, then I0={( , aj):ri=n/m, ai=m}

(b) If p+n/m+1, then I0={(^1»al)>(r2» ) :rl=P"1» 
aj=pm-n, r2=p, a2=n+m-pm}

where rj are distinct values of observability indices and o\ are the

corresponding multiplicities.

An equivalent statement of the above result may be found in [Won., 1]. 

This result established the generic values of the controllability and 

observability indices.

Remark (3.2): The generic value of the controllability, observability 

indices //, r are defined by:

(a) fj is the smallest integer for which /v> n/1 ,

(b) t is the smallest integer for which r> n/m.

For the types of invariants defined in terms of Grassmann vectors, or 

Plucker matrices, the generic results are summarized below [Kar. & Gia., 2]:

Result (3.5): The controllability, observability Plucker matrices P(A,B), 

P(A,C) of a generic system of T(l,m,n) have full rank. The Plucker matrices 

PC(G) (if m>l), Pr(G) (if mcl), as well as P(T¡), P(Tr) have also full rank 

for a generic system of Ipr(1 ,m).

3.4 THE NEED FOR GENERIC AND NONGENERIC COMPUTATIONS
From the above it is apparent that there is a need for the computation of 

system invariants which may be generic, or nongeneric on a given family of 

unstructured linear systems models. We shall refer to the computations of 

nongeneric invariants, as "nongeneric computations", whereas those of generic 

invariants, as "generic computations". The issues involved in the two cases 

are different and deserve some attention.
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In the case of nongeneric computations, such as for instance the 

computation of zeros of nonsquare systems, the greatest common divisor 

(g.c.d.) of polynomials etc, the attention has to be focussed on the 

appropriate termination of the computational algorithm that will allow the 

"catching up" of the approximate solutions. The accuracy of the original data 

determines the threshold, where an algorithm has to terminate and give an 

approximate solution and where it has to continue. In the case of generic 

computations, such as eigenvalues, attention is focussed on the computational 

accuracy of the functions, rather than the existence, or non existence of 

values.

It is implicit from the above, that an integral part of the derivation of 

procedures for nongeneric computations is the relaxation of certain algebraic 

definitions, and their embedding in an analytical set up. Thus, a g.c.d. of 

polynomials has to be relaxed to that of "almost zeros" of polynomials, the 

concept of dependence or independence of vectors to that of "almost 

dependence, or independence" etc. Appropriate tools have to be devise to 

indicate degree of presence, or distance from strong possession of a certain 

property.

The issues related to generic computations are well developed in the 

appropriate literature. The aim of this thesis is to address issues related to 

nongeneric computations, such as development of tools for diagnosis of certain 

properties in an "almost sense", definition of procedures for termination of 

algorithms, which if they are let to run for sufficient number of iterations 

will converge to generic values, and address a number of specific problems 

such as the computation of g.c.d. etc.

Since in Control Theory very frequently nongeneric computations are 

required, in Chapter 5 useful tools for handling such computations are 

analytically described.

3.5 CONCLUSIONS
The aim of this Chapter was to review the basic definitions and 

classification concerning system invariants and thus provide some motivation 

for the computational issues addressed in this thesis. A briei description of 

unstructured generic systems was also presented. As such it serves the 

following purposes:

(i) It provides a quick review of the generic properties of linear systems 

and of the generic values of system invariants

(ii) It illustrates the need for introducing nongeneric computations.



C H A P T E R  4

EXTERIOR ALGEBRA COMPUTATIONS
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4.1 INTRODUCTION
The present Chapter is concerned with a major computational problem arising 

mostly from the DAP approach of LDMs, the Exterior Algebra computations. In 

the beginning, a brief summary of definitions and background results from 

Exterior Algebra are presented. The important notions of exterior product of 

vectors and compound matrix are formulated. In the sequel, useful definitions 

and algorithms concerning sequences of p integers out of m are developed. The 

notions of P-Prime and N-Prime sequences are defined and algorithms 

appropriate for their evaluation are suggested.

Next, algorithms suitable for the evaluation of compound matrices are

described. The case of real matrices is considered first and then the

complicated case of polynomial matrices. For a given M(s)eRmx^[s]> ¿wo 

algorithms for the evaluation of C](M(s)) are proposed. The one is based on 

the notion of P-Prime sequences and the second on the notion of N-Prime 

sequences. An algorithm for the evaluation of Cp(M(s)), l<p<l is also

described. Moreover, the computation of Smith-Normal form of a polynomial

matrix based on compound matrices is developed.

Finally, the problem of computing Plucker matrices is also encountered and 

an efficient algorithm attaining this evaluation is suggested.

Most of the algorithms developed in this Chapter will be used in Chapter 9, 

in order to derive an efficient algorithm for the solution of DAP.

Throughout the Chapter, several numerical examples illustrating the 

application of the corrresponding algorithms are presented.

4.2 EXTERIOR ALGEBRA: BACKGROUND RESULTS

4.2.1 Exterior powers of a vector space

Let V be an arbitrary vector space and p>2 be an integer. Then a vector

p
space A V together with a skew symmetric p linear map

p p p *p
A : x V---> A V: (xi,X2 ,•••,*p)-----> xiA><2A...AXp (4.1)

i = l

is called a p-th exterior power of V if the following conditions are 

satisfied:

P P
(i) The vectors A (xj,...,Xp) generate A V
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P
(ii) If i|j is any skew symmetric p-1 inear map of x V into an arbitrary vector

i = 1
space U, then there exists a linear map:

f:A*\— > U such that i^foA*3.

Suppose that V is a vector space of dimension n over the field F (R or C).
p

Then the p-th exterior power of V, A V is a vector space. If e^, i = l,2,...,n 

is a basis of V then the products

eijAe^A.. -Aeip, l<i i<i 2< - - -<ip<n 

p
span the vector space A V. It can be proved that e^Ae-j^A...Ae-j are linearly

p
independent and thus form a basis for A V. Clearly then 

dim A*3V = (p), p = 0 ,1 ,2 ,...,n

p
and A V=0 for p>n. An element of the form xiA><2A...AXp where xi,...,xpeV 

is called decomposable.

4.2.2 Exterior powers of linear maps

Theorem (4.1) [Marc. & Mine, 1]: Let V,U be finite dimensional vector 

spaces over a field F, and let h:V--->U be a linear map.
A

Then, there is a unique homomorphism h:AV— >AU of the exterior algebras

A A p p
such that h(x)=h(x) for all xeV. Notice that h maps A V to A U for all p.

■

The above result simply means the following: If h is a linear map of a 

vector space V into a vector space U over F, then the map

P p V
: x V A U: (xj ,X2 ,... ,xD)----> h(x^)Ah(X2) a • • .Ah(Xp) (4.2)
i = l

P p
defines an alternating multilinear map of x V into A U.

i = 1
By the definition of the exterior product there exists a unique linear map h

of APV into A^U such that:
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P P
h:A V— > A U:x i a x 2 a ...AXp — > h(xj)Ah(x2 )A-..Ah(xp) (4.3)

p
We write A h for h and we call it the p-th exterior power of the linear 

map h.

4.2.3 Representation theory of exterior powers of linear maps [Kar., 4]

Let V be an n-dimen^ional vector space over the field F and
p

A V, p<n be the p-th exterior power of V. If (v-j, i=l,2,...,n} is a basis

of V, then APV is spanned by the vectors of the basis

(Yw :o=( i 1 ,i2 ,...,ip), l<i i<.. .<ip<n, ^  /Vj a . . ^ ^  }.
r r 1 2 p

Every vector veA V can be written as v={I a ^ } .  Let the map:
(0

rJ:APV— > RP :v-- > rj(v)=[...,au,...]* (4.4)

P P
then rv is linear and it is called the representation map of A V associated

with the basis {v-j, i=1,2,...,n}.

Let V,U be vector spaces over F of dimensions, n,m, respectively and let h 

be a linear map of V into U. The linear map h can be represented with respect 

to the bases Bv=(v^:i=1,2,...,n), Bu={u^:i=l,2,...,m} of V and U by a matrix

HueFmxn which is defined by the following commutative diagram

1

m

Applying the representation result for linear maps for the linear map 

P P P
A h:A V---> A U we have the following commutative diagram

Fig. 4.1
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Fiq. 4.2

(m)x(n)
p v p p v

The description of A HueF in terms of Hu will be defined in 4.2.4 by

using the notion of the compound matrix.

4.2.4 Compound matrices and Grassmann products [Marc. & Mine, 1].

Some useful notation and definitions on the sequences of integers and on 

submatrices of a given matrix are stated next.

(i) Notation (4.1):

(a) Qp>n denotes the set of strictly increasing sequences of p integers 

(l<P<n) chosen from l,...,n, e.g. Q2 ,3=((l>2 )> (1,3), (2,3)).

Thus, the number of the sequences which belong to Qp>n is 'p»-

If a,(3eQp;n we say that a precedes p (a<P), if there exists an integer 

t (l<t<p) for which ai=Pi,... ,at_i=Pt-l> at<t)t» where a^p^ denote the 

elements of a,p respectively, e.g. in the set (3,5,8)<(4,5,6). This

describes the lexicographic ordering of the elements of Qp;n- The set of 

sequences Qp>n from now on will be assumed with its sequences 

lexicographically ordered and the elements of the ordered set Qp>n will be

denoted by Qp,n(t), t=l,...,(^) or simply by u.

(b) Qp>n denotes the subset of Qp)t1 whose sequences do not contain any of the 

indices of a given aeQp)fl, e.g.
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Q2^5 = ((3,4), (3,5), (4,5)}, if a=(l,2)

n-p
This set has ( ) elements and will be also assumed to be lexicographically

ordered. The elements of Qp>n will be denoted 

n-p
t=l,...,( ), or simply by oaj.

(c) If c^j.^jCn are elements of the field F and 

sequence in Qp>n, - <P<n> then the product q^ c^ ^...q

Cg.

by
°)

Qp,n(t)» where

u=(i1 ,i2 »•••,ip) is 3 

will be designated by

(d) Suppose A=[a-jj]eFmxn , let k,p be positive integers satisfying l<k<m, 

l<p<n and let a=(i1 ,...,i|c)eQ|c>m and 0=(jj, • • •, Jp)eQp ?n. Then A[a|0 ]eFkxP 

denotes the submatrix of A which contains the rows il,♦•♦,ik and the columns 

J1 , - - ♦,Jp- We use the notation A(a|0] to designate the submatrix of A which 

excludes rows il,•..,ik and includes columns ji,...,jp. The submatrices 

A[a|p) and A(a|0) can be defined similarly.

(ii) Compound matrices

Let AeFmxn and l<p<min{m,n}, then the p-th compound matrix or p-th

.. m n
adjugate of A is the ( ) x ( ) matrix whose entries are

P P
det(A[a|p]),

aeQP)I11, peQp?n arranged lexicographically in a and 0. This matrix will be 

designated by Cp(A). For example if AeF3x3 and p=2, then Q2 ,3 ={(1 *2 ), (1,3), 

(2,3)} and

C2 (A)=

det(A[(l,2)|(1,2)3) det(A[(l,2)|(l,3)]) det(A[(l,2)|(2,3)]) 

det(A [(1,3)|(1,2)]) det(A[(1,3)|(1,3)]) det(A[(l,3)|(2,3)]) 

det(A[(2,3)|(1,2)]) det(A[(2,3)|(1,3)]) det(A[(2,3)|(2,3)])

or setting for convenience det(A[a|0])=ap we have
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r 1 , 2 1 , 2 ]
a l , 2 a l , 3 a 2 , 3

1 , 3 1 , 3 1 , 3
a l , 2 a l  , 3 a 2 , 3

2 , 3 2 , 3 2 , 3
a l , 2 a l  , 3 a 2 , 3

Properties of compound matrices

(a) If AeFnxn, l<p<n and also A is non-singular 

(i) [Cp(A) ] - 1 = Cp(A_1) (4.6)

(ii) Cp(A)=[Cp(A)]*, where A* is the conjugate (4.7)

(iii)

transpose of A(F=C)

Cp(AT)=[Cp(A)]T (4.8)

(iv) Cp(Ä) = Cp(A), (4.9)

(v) Cp(kA) = kpCp(A), for any keF (4.10)

(Vi) ^p(ln) = l^n^ (4.11)

(vii)

P

n-1

det(Cp(A)) = (detA)^p'^ Svlvester-Franke Theorem (4.12)

(viii) Cn(A)=detA (4.13)

(b) If AeFmxn and BeFnx*< and l<p<min{m,n,k}, then

Cp(AB) = Cp(A)Cp(B) Binet-Cauchy Theorem (4.14)

(c) If AeFpxn and the p rows of A are denoted by aj,...,ap in succession

(l<P<n), then Cp(A) is an (^)-tuple and it is called the Grassmann

-t -t
product or skew symmetric product of the vectors ai,...,ap for reasons 

which will become apparent later on. The usual notation for this

n -t -t
(p)-tuple of subdeterminants of A is aiA...Aap and it denotes a row
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vector. The Grassmann product of the columns of a matrix AeFnxp (l<p<n) may 

be defined in a similar manner; the product in this case, however, will be an

n
(p)-column vector. If aj,...,ap are the columns of A, then in this case this

(p)-tuple of subdeterminants of A will be denoted by aiA...Aap. By the pro-

perties of determinants, if oeSp (where Sp denotes the totality of permuta-

tions of 1 ,...,p), then

a0 (i)A...Aa0(p) = sicjuo ajA...Aap (4.15)

If BeFnxn, AeFnxp, then by the Binet-Cauchy theorem it follows that

Cp(B)aiA...Aap = Baj a ,.,a Bap (4.16)

Grassmann products suitably deployed may greatly reduce the complexity of 

the expressions in compound matrices. Thus, let AeFmxn and l<p<min{m,n). The 

matrix A may be written in terms of its rows or columns respectively as

-t

A =

-t
lm

or A = [ai,...,an] (4.17)

Let w=(i i,..., ip)eQp>rn and <t>=(Jl, • • •, jp)eQp>n and let us denote by aj the 

„ -t -t
Grassmann product a-j . .Aa^ and by a^ the Grassmann product

ajjA.. ..Aajp. The p-th compound matrix of A may then be expressed in 

either of the following forms

CP(A)=
-t
1(0 ueQp,m or Cp(A)-[... ,a<j) ,...]^ cpéGlp^ (4.18)

which will be referred to as row, columns representations of Cp(A)
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respectively. If {x-jj,... ,Xi^} is a set of vectors of V, u= (i 1 »i2 »• • • >ik)

p
eQk,n »then Xi ̂ a . . .a x ^ = xu a denotes their exterior product and A V deno-

p
tes their exterior product and A V denotes the r-th exterior power of V.

p v v
The matrix A Hu of (Fig. 2) is exactly the Cp(Hu).

4.3 COMPUTATION OF SEQUENCES

All the algorithms and techniques required for handling problems of 

exterior algebra are based mostly on sequences of integers. Therefore, it is 

indispensable to develop separately few things concerning generally sequences 

of integers.

Very frequently, in our evaluations it is required for given integers p,m 

to find the set Qp?m defined in 4.2.2. Next an algorithm evaluating all the 

sequences ueQp)[T1 is presented.

Algorithm CONSEQ

For given integers m,p, l<p<m, the following algorithm produces the 

elements io=(<oi,«2 » • • .,wp)eQp?m

STEP 1: for i = 1,...,

u-j := 1

Print (o

STEP 2: while (oi<m-p+l

P

k : =0

while Wp_k = m-k 

k : =k+l

up-k := up-k+l 

for i = p-k+1 ,...,p 

W-j = U-j _ 2 + 1 

Print u

Alg: 4.1
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Implementation of the algorithm

Each new sequence of Qp>m is printed immediately after its construction. 

In this way, we need only one array of dimension p.
m

In case that we would like to keep in the memory all the ( ) sequences of

m
Qp,m> we would need (̂ ) arrays of dimension p each. For large m, this is

utterly unaffective and it is not recommended unless we are obliged to do so 

from the requirements of our problem.

Example (4.1): For m=5, p=3 algorithm CONSEQ prints the following 

sequences weQ3 ,5 •

«=(1,2,3), «=(1,2,4), «=(1,2,5), «=(1,3,4),

«=(1,3,5), «=(1,4,5), «=(2,3,4), «=(2,3,5),

«=(2,4,5), «=(3,4,5).

As it will be developed in the sequel, during the evaluation of compounds 

of polynomial matrices many zero entries are appeared. Therefore, it is 

required to have the ability of choosing out of a given Qp?m, some concrete 

sequences satisfying certain properties and corresponding to the nonzero 

entries. In order to accomplish this, we need some more notation and

definitions.

Notation (4.21: For given k,qeZ+ let us denote by

/Vk,q={l,2,3,...,q,q+l,...,2q,...,kq) the set containing all the integers 

starting from 1 till a specified multiple (kq) of q. Nk?q can be partitioned 

into q subsets with k elements each. Thus, we can obtain the set: 

/?q,kq={F’i,/72 ) • • • »F’q}» where each P], i=1 ,2 ,...,q is of the form:

/Ji = (Pi1 >Pi2 ’" * ’Pik) with Pij = (i-l)k+j, j=l,2 , — ,k.

Definition (4.1): Let k,qeZ+ be given integers.

(i) For each PjePq^q, i=l,2,...,k we define as weight of F!j

w(/>i) E q-i
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(ii) For each integer ne/Vk5q there exists a ¿Ye^q,kq:n£Pr- The weight of n 

with respect to Pq^kq partitions, is defined by

w(n) = w(/»

(iii) The order of n with respect to ^q,kq partitions, is defined by o(n) 

which is the order n appears in

/Jr=(Pr1 »Pr2 »---»Prk)

(iv) For u=(ui j ,<0i2, . . .  ,Wik)eQk,kq we define as order of co

0(w) = (o(uil),o(«i2),...,o(wik))

(v) ueQk?kq is P-Prime if 0(w) has distinct elements.

(vi) If co is P-Prime, we define as sign of co 

sgn(co) E sgnn(o(uil)o(wi2 )...o(uik))

where sgnn(o(co^)o(co-j2).. .0 (00̂ )) is the sign of the permutation

0 (0 (10̂ )  o(«i2)) — o(oik)).

(vii) If (o is P-Prime, then we define as weight of 0

k
W(io) E I w(uj ) 

j = l J

Remark (4.1): Parts (iv), (v), (vi) and (vii) of the above definition can 

hold for any sequence coeQp^kq with l<p<k. Particularly in this case, for a 

given sequence r=(ri ̂ » r ^ , .. ,rip)eQp>k the sequence w= (wjx,«j2 , • • • ,ujp)eQp,kq

is said to be r-Prime if

v iOjr  1-1 ,2 , —  ,p ] ri(n, m=l,2 ,... ,p: 0 (uj1 )=rijn

All the above notions will be applied in section 4.5 in order to compute 

effectively the compound of a given polynomial matrix.

Example (4.2): Let k=5, q=3 be given integers.

/V5,3={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
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/?3,5-3=/?3,15={/31 ^ 2 ’/33) with 
^  = (1 ,2 ,3,4,5), w ( P l ) = 2  

P2=(6,7,8,9,10), w(p2)=l 

P3=(ll,12,13,14,15), w(p3)=0

For an integer n=7e/V5 } 3 J ^2e^3,15: 7e7>2

w(7) = w(P2) = 1, o(7) = 2

For any sequence weQ5 i5 we can test whether it is P-Prime or not. 

For w=(2,4,7,10,ll)eQ5?15,

0(w)=(o(2),o(4),o(7),o(10),o(ll))=(2,4,2,5,l)
Thus, u is not P-Prime.

For u=(l,5,9,12,13)eQ5?15,

0(w)=(o(l),o(5),o(9),o(12),o(13)) = (1,5,4,2,3)

Thus, (o is P-Prime. sgn(w)=sgnn(l 5 4 2 3)=-l

For a given sequence r-(ri,r2 ) = (2,5)eQ2 , 5 the sequence u=(ui,tt2 )=(1 0 ,1 2)eQ2 15 

is r-Prime because 0(wj)=0(10)=5=r2 and O(i02)=O(1 2)=2=ri. On the contrary the 

sequence (o=(ui,U2 ) = (7,1 1)eQ2 , 1 5 is not r-Prime because 0(ui)=0(7)=2=ri, but 

0 (w2)=l =(= rj,r2.

The above theory is leading us to the following procedure for testing the 

P-Prime property of a sequence.

Algorithm SEQUEN1

For given integers k,qeZ+ the following Algorithm constructs the set F’q^kq 

and for a given sequence w=((Oi 1 ,10̂ ,... ,Uik)eQ|c>|cq it tests if it is P-Prime.

In the sequel, it computes the weight(W) and the sign(SIGN) of the P-Prime u.

construct Pq? kq=(/5l ̂ 2> • • • >Pq)

Each Pi := (Pix,Pi2,-..,PiR)

Pij := (i-1)J+k, j=l,2,...,k
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for 1 = 1,...,k

Specify appropriate indices j,x 

such as u^ePj, w ^ - p ^

) := q-j 

:= x

for 1 = 1,...,k-l

for j = 1+1 ,...,k

If o(w] )=o(w-j .) then 
J

(o is not P-Prime 

quit

u is P-Prime 

k

W := I w(ui )
1=1

s:=number of pairs (ui ,w,- ) for which
'm 'n

Wi >Oi but Ui precedes Ui in u 
'm 'n 'm nn

if s=even then 

SIGN:=1

else

SIGN:=-1

Alq: 4.2

Due to the special construction of the set £q,kq and to the definition 

concerning the determination of the P-Prime property of a sequence ueQk^q, 

when algorithm SEQUEN1 is to be implemented to a computer, the following 

modified form can be used.

Algorithm P-PRIME

For given integers k,qeZ+ and a sequence <o=(oi,... ,(0|<)eQ|<5kq> the 

following algorithm tests if it is P-Prime. If it is, it computes its 

weight(W) and its sign(SIGN).
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for i = 1 ,...,k

if tdi mod k=0 then

cond := 1

else

cond := 0

s-j : = u-j mod k + cond'k 

P-Prime := True 

for i = 1 ,...,k-1

for j = i+1 ,...,k 

if Si=sj then

P-Prime := False 

if P-Prime = True 

w := 0

for i = 1 ,..., k

if (Oi mod k =)= 0 then

cond := 1

else

cond := 0

w := w+q-(ui div k)-cond 

SIGN := 1 

for i = 1 ,...,k-l 

for j=i+l,...,k 

if Sj>sj then

SIGN := SIGN*(-1)

Alq: 4.3

In section 4.2 it was mentioned that the number of sequences 

kq
to Qk,kq (  ̂ ) • After the definition of the P-Prime sequences of

belonging 

a set, it
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is reasonable to examine what is the number of them. The following Proposition 

will help us to handle the above issue.

Proposition (4.1): Given a matrix A=(aij)eRmxn with a-jj<a-j ? j+i,

, i=l,2 ,...,m, j=l,2 ,...,n, the number of the sequences

(ailJi’ai2J2’ ' * ’ ’ainJn) uncler the restrictions:

3i 1Jl<3 i2J2< * * '<ain V  Jl4:J2=l=* • -^Jn (4.19)
• 'OTS Yo .

Proof: We notice that the required sequences can be constructed in the 

following way: We take the orderings of the m rows of matrix A by n with 

repetition (without restriction). Each ordering is of the form

o=(oj,0 2 ,...,on), o-je{l,2,...,m) i=l,2,...n and let I the set all of them. It 

is known [Char., 1] that the number of these sequences is m11 (N(Z)=mn, where 

N(I) is the cardinal number of I).
Let M:Rn— > Rn a function that orders in ascending order the sequences 

(xi,X2 ,...,xn) of Rn e.g. M(xj,X2 ,...,xn)=

(Xi ... »Xi^), x̂  <x^ <.. .<Xin- To each sequence o=(o],0 2 ,...,on)e! we

correspond the sequence M(a0. .»an- _,...,an )
1 , 1 2 , 2  n,n (a0 i .• *ao 

1 1 ’1 1
l i ,a°i i ^
2’ 2 V  n

and let the set aH  of them. For reasons due to their construction, each 

sequence of satisfies restrictions (4.19). It is evident now, that the 

sequences whose number we are asked to find, are precisely the elements of If/]. 

N(lM)=mn, so the required number is mn.

Example l4.3): Let A=
1 2 3

4 5 6

O yO
eRtAJ be a given matrix. What is the number

of the sequences (aÌ2Ji,aÌ2J3 ,aÌ3J3  ̂ uncler ^ e  restrictions: 

ai l'ìl<aÌ2'Ì2<a 3̂'Ì3’ J l=l=J2=t=j3 (4.20)

We construct the set I containing the orderings of the 2 rows of A taken 
by 3 with repetition.

I = {(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,2),(2,1,2),(2,2,1),(2,2,2)}
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Now to each element o=(oj,0 2 ,...,on)eI we correspond the element 

M(a0l 1 ?a02 2 ,...,a0n n). More explicitly to

(2.1.1) 61-- >M(a2 i,ai2 ,ai3 )=M(4 ,2 ,3 )=(2 ,3 ,4 ). So we produce the set:

IM = {(1 ,2 ,3),(1 ,2 ,6 ),(1,3,5),(2,3,4),(1,5,6 ),(2,4,6 ),(3,4,5),(4,5,6 ))

The required sequences (aijjj>ai2j2 ,ai3J3  ̂ satisfying restrictions (4.20) are 

exactly the elements of The number of them is mn=23=8.
■

If we regard the matrix A=(ajj)eRqxk with au=l, a-jj=a-j ? j-i+1, 

ai+l,l=ai,n+l, i=l,2,...,q, j=l,2,...,k, then according to Proposition

(4.3.1) , the number of the sequences (ai^j^, ai2j2»* * *» ai | < J satis^ in9 :

ai 1 ̂ l<ai2^2<* ’ *<aikJk’

is qk. But these sequences are exactly the P-Prime sequences of Qk,kq• 

Therefore, for a given set Qk,kq the number of its P-Prime sequences is q^.

Notation (4.2) and Definition (4.1) can be restated in a different way, 

which will give us the ability of facing the problems of section 4.5 in 

another manner different than the one provided from the notion of P-Prime 

sequences. (Both ways will be fully developed in section 4.5). The following 

notation and definitions are required.

m
Notation (4.3): For given integers k],k2 ,...,kmeZ+, E= I kj we denote by

i=l

/V£={1,2,3,...,1} the set containing all the integers starting from 1 till I. 

The set Ni can be partitioned into m successive subsets containing k-j elements 

each:

/vi = (nki _1+1»• * * >nkj)» i=l,2,...,m, nje/Vj, j=ki_1,..., k-j, n ^  =0 

e.g. ^={1,2,3, ...,nk ), ^ “{nfc +1,.. .»n^ },..., tyn={nkm_1+1, • • • ,nkm}

Definition (4.2): For an integer jeNi there exists a /V̂ c/V̂ :je/V̂

(i) The degree of j with respect to N  ̂ is defined by

d(j) = k
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(ii) The order of j with respect to %  is defined by o(j) which is the order 

j appears in N\̂ minus one.

(iii) For «=(0  ̂ ,w-| ,... ,(Jim)eQm> j; we define as degree of u 

D(u) = (d(«i1),d(ui2),...,d(«im))

(iv) (o is N-Prime if D(u) has distinct elements.

(v) If u is N-Prime, then we define as weight of u

m

W(u) = I o(«i ) 
j = l J

We may illustrate the above definitions with the following example.

Example (4.41: For lq=2, k2=3 eZ+, m=2, 1= l kj=5 the set Ni={1,2,3,4,5}
i = l

and the partitions are N\={ 1,2), ^2={3 ,4 ,5 }. For an integer j=3eNi ] /V2 :je/V2> 

d(3)=2, o(3)=0

For o=(l,2 )eQ2 ,5 » D(o)=(d(I),d(2))=(1,1), u is not N-Prime 

For u=(l,5)eQ255, D(u)=(d(l),d(5))=(l,2), u is N-Prime and 

W(u)=o(l)+o(5)=2.
■

Now, except the notion of a P-Prime sequence we have also the notion of a 

N-Prime sequence. For a concrete sequence of a given lexicographically ordered 

set, we can test if it is P-Prime or N-Prime (respectively to what kind of 

integers' sets we have used) and if it does, we take it into account in later 

calculations. This technique will be exclusively used for the evaluation of 

the compounds of polynomial matrices.

The above theory is leading us to the following procedure for testing the 

N-Prime property of a sequence.

Algorithm SEQUEN2
m

For given integers kj,k2 ,...,kmeZ+, 1= I ki,
i=l

constructs the sets N-¡, i=l,2,...,m and

the

for

following 

a given

algorithm

sequence
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(n)=(u-j ,Ui )eQmjj; it tests if it is N-Prime. It also finds the weight

of the N-Prime sequences.

for i = 1 ,. . ,m

construct /V-j={n̂  +l,...,n|^}

nij := "i-l.^.j+j* j=l»2 ,... ,ki, n0 > 0 =0

for 1 = 1 ,.. • ,m

Specify appropriate indices j,x

such as (Oî /Vj, Wi]=njx

d(wi-j) = J

o(«i1) = X

for 1 = 1 ,.. . ,m-l

for j = 1 + 1 ,... ,m

if d(w-j )=d(co-j .) then 
J

to is not N-Prime

quit

(0 is N-Prime

m
W : = I O(«0i )

1= 1 '

Alg: 4.4

Due to the special construction of the subsets 7V-j i=l,2,...,m of the set 

Ni and to the definition concerning the determination of the N-Prime property 
of a sequence ueQmj£, when algorithm SEQUEN2 is to be implemented to a 

computer, the following modified form can be used.

Algorithm N-PRIME
m

For given integers kj,k2 ,...,kmeZ+, 1= I kj and a sequence
i = l

u=(uj,U2 ,... ,<Jm)eQm>¡r the following algorithm tests if u is N-Prime. If it 

is, it evaluates the weight(W) of the sequence.
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for i = 1 ,...,m 

W := Iq 

j := 1

while <q>W

j J+l 

W := W+kj

di := j

s-j := <»)i-(W-kj)-1 

N-Prime := True 

for i = 1,..., m

for j = i+1 ,...,m 

if di=dj then

N-Prime := False 

if N-Prime := True 

m
W := l Si 

i=l

Alg: 4.5

Finally, before closing this section, one more question can be set about 

the number of the N-Prime sequences of a given set Qm ,i- This can be easily 

answered using simple notions of Combinatorial Analysis.

Let o=(ui1 ,«i2 ,...,Wim) be a sequence of Qm>$; . Then, can be chosen

from N\ in kj ways and for each way iq can be chosen from in k2 ways,...,

and for each way «i can be chosen from Nm in km ways. Therefore, applying

the multiplicative law [Char., 1] the elements Ui, ,un- ,... ,u-j can be chosen
1 2 m

m
in ki,k2 ,...,km ways. Thus, the number of N-Prime sequences is n k^.

i=1
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4.4 COMPUTATION OF COMPOUNDS OF REAL MATRICES
4.4.1 The numerical algorithm

Let AeRmxn be a given matrix. Using specific tools of section 4.3, the 

following algorithm computes the compound of a real matrix.

Algorithm COMREL

For a given matrix AeRmxn and for an integer p, l<p<min{m,n), the
m n

following algorithm computes the p-th compound matrix of A Cp(A)eR (p)x(p)

for each sequence r=(rj,r2,... ,rp)eQpjin 

for each sequence c=(cj,C2,...,Cp)eQPjn 

r
comp := ac 

Print comp

Alg: 4.6

Implementation of the algorithm

Applying this algorithm to a computer there is no need to store in the 

memory all the sequences of the sets QPjIT1 and Qp,n, somcUmgthat requires two

m n
arrays of dimension (( )xp), (( )xp) each. Also there is no need to keep all

P P

the elements of the compound matrix Cp(A), which would need an extra array of

dimension
m n

((p )x (p
)). This ability is very useful especially if m and n are

large. (For instance, if m=20, n=18 and we want to compute C2 (A) for AeR39x^, 

it is completely impractical to store in the memory all the elements of 

C2 (A)eR190x153!)

Algorithm COMREL uses only two arrays of dimension p each, for storing 

temporalily the elements of Qp>m and Qp>n.

These elements are computed according to algorithm CONSEQ of section 4.3. 

In order to avoid keeping in memory all the elements of the sets Q p m and 

Qp,n> f°r each sequence of Qp?m all the sequences of Qp>n are found and for 

each pair the corresponding element of the compound matrix is computed and 

printed directly without been kept in memory. For each evaluation subroutine 

F03AAF of NAG Library is used and 0(p3) flops are required. Doing so, we save
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memory but on the other hand we introduce extra evaluations. Taking into 

account the facts that computer memory costs a great deal and that the extra 

evaluations needed are only simple additions, which are done very fast without 

any more cost, we claim that it is preferable to save memory than simple 

arithmetic additions.

In order to combine both less memory and less arithmetic operations an 

alternative way based on the previous discussion is to keep in memory only the 

sequences of Qp?n and for each sequence of Qp?m do not find again all the 

sequences of Qp>n but take them directly from the memory.

Algorithm COMREL was programmed [Mit. & Kar., 1] and tested for several 

cases. Some numerical examples illustrating its application are presented in 

Appendix A.

4.4.2 Applications of the numerical algorithm

The evaluation of the compound of a real matrix can have several 

applications in many fields. Some of the most important are:

(I) Computation of exterior products

Let xi,x2 >...,xne^m be given vectors, m<n. These vectors form the matrix 

A=[x i ,X2 >...,xn]eRmxn. The n-exterior product xi*X2A...AXn can be expressed 

using the notion of compound matrix. More specifically,

n
XiA^A.^AXp = Cm (A) = [r1 ,r2 ,...,rfi], p= (J

(II) Computation of Decentralization characteristics

In [Kar., Lai. & Gia., 1] the Decentralized Determinantal Assignment

Problem (DDAP) and the Decentralization Characteristic (DC) are defined. Using

compound matrices, a procedure for the

evaluation of D(H(III) * V ), D(HV ) can be derived.
r,p q,P

The formulation of this algorithm is still under consideration.

(III) Computation of an uncorrupted base

In Chapter 5 a convenient technique for selecting a best uncorrupted base 

for the row space of a matrix based on compounds of real matrices, is 

developed. This approach will be very useful in several computational problems 

arising from Control Theory and requiring the selection of linearly

independent sets of vectors.
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4.5 COMPUTATION OF COMPOUNDS OF POLYNOMIAL MATRICES
Let M(s)eRmx^[s], m>l be a given polynomial matrix, q the maximum degree 

of polynomials. For a given integer p<l, we want to compute Cp(M(s)). 

According to the values of p, we discriminate the following cases.

4.5.1 For M(s)eRmx1fsl. evaluation of Cq fMisi 1

According to the way that matrix M(s) can be expressed, we develop 

separately two different methods of tackling this evaluation.

a) Matrix M(s) can be written in the form:

M(s)=Aqscl+Aq.iscil"̂ +.. .+Aqs^= I A-js^, where AieRmx ,̂ i =0,1,...,q
i=0

More explicitly,

M(s)-[Aq Aq_i...Aq ]

s^ I] 

S^ ' 1 I]

S® I]

(4.21)

where AeRmxl (c>+1), BqjeR 1 (cl+ 1 ) x1 [ s ], I]eRlxl the identity matrix.

We are interested in evaluating C](M(s)). Using expression (4.21) we have:

Cl (M(s ))=Ct (ABqjl) = CitAJ-C^Bq,!) (4.22)

C] (A) can be easily computed using algorithm COMREL of section 4.4, since A is 

a real matrix. Let us discuss the evaluation of C-j(Bqj). Matrix Bqj can be 

expressed analytically in the following form:
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Bq,l “

0 0 ... 0 1 row

0 0 ... 0 2nc* row

0 0 0 ... s<i 1 row

sq-h 0 ... 0 1+1 row

0 s<H 0 ... 0 :

Ó Ò 6 ::: 21 row eR1 ^ +1)xl[s] (4.23)

1 0 0 ... 0 1q+1 row

0 1 0 ... 0 •

0 0 0 ... 1 1 (q+l)row

hat Bq,l has a special structure with many zero entries.

entries of the column matrix

Xl[s] will be zeros. The point is, that we
r / n x nf^q+l)
C1 (Bq,1 )£R^ 1

must try to specify the nonzero elements of C-](Bq}]) and attempt to evaluate 

only these entries, ignoring the other zero ones. Thus, the following question 

arises. Is there any way to assess exactly the nonzero entries of C](Bqj) and 

write them directly by using some formula?

Next, a Proposition based on notions defined in section 4.3 and answering 

the above question is developed.

Proposition (4.2): Let BqjeR^+l)*! [s] be a polynomial matrix of the 

form (4.23). Let (Bq> -] ) = [aWl (s), —  , a^C s) ] teRoxl,

1 (q+1)
o=( i ), «ieQi (q+i), i=l,2,...,o, be the 1-th compound matrix of Bqj.

(i) For some i=l,2,...,o, ay.ts^O iff WieQij(q+i) is P-Prii

(ii) The nonzero entries aUi(s) are given by:

ime.

, , W ( u H )
a^is) = sgn(ui)s 1 (4.24)
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Proof: It is defined, that each element a ^ s )  of C](Bqj) is

equal to det(Bq;] [u-j/ ]), eQq ̂ i (q+i) - Thus, in order to compute the elements 

of the compound, we must choose sequences of 1 rows from the given set of rows 

{1,2,... ,1(q+1)}. This set can be partitioned in the subsets: P\={1,2,...,1}, 
/?2={1+1> • • • >21},... ,Pq+i={lrirl.. • • ,l(<i t-i)j. From the special structure that 

matrix Bqj has, we remark that the only sequences 

rj=(rj1 ,...,rji), je{0 ,1 ,...,o}, of matrix rows that give a nonzero lxl

determinant are those satisfying o(rj1)=fo(rj2)={:.. .^o{rj^) with respect to

P\ ,^2 » • • • »F’q+i partitions.

(i) If u-j = (Wi j,w-j2,...,Wii )eQi,i (q+i) is P-Prime, then 

0 (u i 2) 4"° (w i 2 ) t * * * =1=0 (u i -j) ar)d Thus det(Bqj [w-j/ ] )=aUi (s)=fO. On the contrary, 

if det(Bqj  [w-j/ ])=au (s)+0, for some t>i«(ui ,«, ,... ,uil )eQi j  (q+1), 

then o(io-j ̂=1=.. .=fo(u-,̂ ) with respect to P\ ,P%,... ,Pq+\ partitions, which 

means that Ui is P-Prime.

(ii) Each row of the elements det(Bqj [u^/ ]), «ieQ-j ?i (q+i) P-Prime, has

only one nonzero element of the form sJ, for some j=0,l,...,q and all the rest 

elements are zeroes. Also all these nonzero elements appear in a different 

position in each row.

Thus, for a given Ui = (<i>i ,... ,cij )eQ-j j  (q+i), P-Prime the 

element det(Bq)][u^/ ]) will be of a form:

(4.25)

We remark that each u, . belongs to some P\,Pz,... .Pq+iJet us say to Pm.
J s

The
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weight of u-j . is equal to w(u-j .)=w(Pm)=q+l-in. If we expand the determinant 
J J

(4.25) we remark that is equal to

sgn(ui)-s
W(U" > + - +W(Wi1) _ W(Ui)'1 sgn(<0i)-s

Combining (4.21), (4.22) and the preceding Proposition we conclude the 

following result.

Proposition (4.31: Let M(s)eRmx^[s], m>l, q the maximum degree of the 

polynomials, be a given polynomial matrix that can be expressed in the
m

form (4.21). Then, the rows ri(s), i=1,2,...,(^ of C](M(s))eR^ ̂ [ s ]  are 

given by:

r-j (s) = I sgn(io) •det(A[a-j/(o])sW(u  ̂ (4.26)
w

where a-j = (a-j ,0 -^,... , a ^ ) eQq ?m, <*>eQ-| j  (q+]) P-Prime, AeRmxl(q+1) the matrix 

of (4.21).
■

Proposition (4.3) gives us a convenient formula for the computation of the 

rows of C-| (M(s)). The main advantage of (4.26) is that it does not use all 

1 (q+1)
the ( i ) sequences of Ql, 1 (q+1) but only the P-Prime ones, that are

(q+1)^. Formula (4.26) can be used for the construction of an algorithm for 

the evaluation of C](M(s)). Next, we present such an algorithm.

Algorithm C0MP0L1

Let M(s)eRmx^[s], m>l, p=l , q the maximum degree of the polynomials and 
AeRmxl(q+l) matrix 0f (4.21). The following algorithm evaluates

m

Cp(M(s))=(comp)ijeR(l)Xl[s].
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for each sequence a=(a-ĵ ,a-j ,... ,ai )eQ] >m

for each sequence u=(«i ,«i ,...,«i )eQij(q+i)

if u is P-Prime then 

1

W := I w(0 i ) 
i=l J

sgn := sgn(u)

comp := sgn’aQ’s”

Print comp

Alg: 4.7

Implementation of the algorithm

As in algorithm COMREL, in order to avoid keeping in memory all the 

sequences of Q-|jrn and Qi, 1 (q+1)» we Perf°rni a bit more computations and for 

each sequence of Q]>m all the sequences of Ql,l (q+1) are found and for those 

that are P-Prime the corresponding element of the compound is computed. This 

element is directly printed so it does not have to be stored in memory. The P- 

Prime elements of Ql,l(q+1) will be found using algorithm SEQUEN1.

An alternative way for the previous algorighm which combines both economy 

in memory and in arithmetic operations, is to keep in memory only the P-Prime 

sequences of Ql,1 (q+1)* Then, for each sequence of Q]>m and for all those P- 

Prime elements, we evaluate the elements of the compound matrix. This way will 

be used later in algorithm COMPOL2.

Example (4.91:

Let M(s)=

3s+l 2s

5s+2 s+4

3s+l s+2

eR3x2 [s], q=l

We want to evaluate C2 (M(s)) = (comp)-jjeR^Xl[s]
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3 2 1 0

M(s) = 5 1 2 4

3 1 1 2

A'B] , 2

Applying algorithms COHPOL1 and SEQUEN1 for k=l=2, q := q+l=2 we 

^2,4=^1>^2) »^1=0,2}, P2={3,4}

For a=(l,2 )eQ2 , 3

For u=(l,2)eQ2>4, 0(<o) = (l,2) P-Prime, W(u)=2, sgn(u)=l
12 p o

comp := ai2 ,si- = -7sc 
For u=(l,3 )eQ2 )4 , 0(u)=(l,l) not P-Prime 

For o=(l,4 )eQ2 j4 , 0(<o) = (l,2) P-Prime, W(o)=l, sgn(u)=l 
14

comp := ai3 ’s = 1 2s

For u=(2 ,3 )eQ2 >4 , 0(u)=(2,l) P-Prime, W(u)=l, sgn(u)=-l 
23

comp := -ai3 ’s = -3s

For u=(2 ,4 )eQ2 >4 , 0(u )=(2,2) not P-Prime

For w=(3,4)eQ2 ?4 , 0(o) = (l,2) P-Prime, W(u)=0, sgn(u) = l 
23 n

comp := ai3 *su = 4 

cornpu := -7s 2+12s -3s+4

For o=(l,3)eQ2 ) 3

For u=(l,2 )eQ2 >4 , 0(u)=(l,2) P-Prime, W(<o)=2, sgn(u)=l
12 o o

comp := a2 3 's^ = -3$*- 

For u=(l,3 )eQ2 ?4 , 0(io) = (l,l) not P-Prime

For o=(l,4 )eQ2 >4 , 0(io) = (l,2) P-Prime, W(o)=l, sgn(u) = l 
14

comp := ai3 *s = 6s

For u=(2 ,3 )eQ2 >4 , 0(u)=(2,l) P-Prime, W(u)=l, sgn(u)=-l 
23

comp := -ai3 ‘s = -s

For io=(2 ,4 )eQ2 >4 , 0(u) = (2,2) not P-Prime

For u=(3 ,4 )eQ2 > 4 0(u)=(l,2) P-Prime, W(u)=0, sgn(u)=l 
34

comp := ai3 ’s = 2 

comp2i := -3s 2+6s -s+2

have
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For a=(2 ,3 )eQ2 ) 3

For u=(l,2 )eQ2 >4 , 0(<o) = (l,2) P-Prime, W(u)=2, sgn(u) = l
12 p p

comp := a2 3 'si- = 2 s

For u=(l,3 )eQ2 ?4 , 0(u)=(1,1) not P-Prime

For u=(l,4)eQ2>4, 0(io) = (l,2) P-Prime, W(u)=l, sgn(u)=l
1 4 ’

comp := a23 *s = -2 s

For u=(2 ,3 )eQ2 >4 , 
23

comp := -a23 ‘s

For u=(2,4)eQ2j4,

For (0=(3 ,4 )eQ2 >4 ,
34 o 

comp := a2 3 ‘su
O

comp3 i = 2 s -2 s+s+0

0(u)=(2,l) P-Prime, W(u)=l, sgn(u)=-l

= s

0(io) = (2,2) not P-Prime

0(u)=(l,2) P-Prime, W(u)=0, sgn(u)=l

= 0

-7s2+12s-3s+4 -7s2+9s+4

Finally C2 (M(s)) = -3s2+6s-s+2 = -3s2+5s+2

2s 2-2s + s+0 2 s 2 -s

Algorithm COMPOL1 was programmed [Mit. & Kar., 1] and tested for several 

cases. Some numerical results illustrating its application are presented in 

Appendix A.

b) Matrix M(s) can be written in the form:

M (s)=[mi(s),m2 (s),...,mi(s)]eRmx^[s] and let d^, i=l,2 ,...,l be the maximum 

degree of each column. Each column m-j(s), i=1,2,..., 1 is a polynomial vector 

which can be expressed in the form

mx(d.:+l) p d.: f
mi (s)=M-j *ec|i (s), where M^eR 1 and e ^  (s) = [l,s,sS ... ,s ']L .

Therefore, matrix M(s) can be analysed as follows:

edj(s) 0

M(s) = [Mi M2 ... M]]• ed2 (s) = M-Bd>1

0 ed](s)
(4.27)
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where MeRmxd, Bd 1eRdxl, d = E (d-j+1).
’ i=l

We are interested in evaluating C](M(s)). Using expression (4.27) we

have:

Ci(M(s)) = C-j (M‘ Bd> -| ) = C-| (M)*C-|(Bd,-|) (4.28)

C] (M) can be easily computed using algorithm COMREL since M is a real matrix. 

Let us discuss the evaluation C](Bdj). Matrix Bd j  can be expressed 

analytically in the form:

Bd,l eRdxl[s]

1
s

0

(4.29)

Matrix Bd j  has a similar structure with matrix Bqj that was developed 

before. Thus, for the evaluation of C-|(Bdj) the same question as in the 

evaluation of C](Bqj) arises: Is there any way to assess exactly the nonzero 

entries of C](Bdj) and write them directly by using some formula?

Next, a Proposition based on notions defined in section 4.3 and answering 

the above question is developed.
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Proposition (4.4): Let BdjeR 

(4.9). Let C-i(Bd>1) = [aWl(s),...,

HyI[s] be a polynomial matrix of the 

alo0 (s)]teRoxl, o=(^), <0ieQi>d>

form 

., o,

be the 1 -th compound matrix of B^j.

(i) For some i = l,2,...,o, a^^ (s)=(=0 iff u-jeQ-|>c| is N-Prime

(ii) The nonzero entries aWi(s) are given by:

a«i(s) (4.30)

Proof: It is defined, that each element a ^ s )  of C](Bdj) is equal to

det(Bd}] [w^/ ]), <0ieQ-|>d. Thus, in order to compute the elements of the 

compound, we must choose sequences of 1 rows from the given set of rows 

(1,2,...,d). This set can be partitioned in

i -1
the subsets:/Vi={Ii= I dj+i,... ,d-j+Ij} i = l,2,...,l. From the special structure

j=l

that matrix Bd?] has, we remark that the only sequences rj=(rj,...,rj^),

je{0 ,l,...,o}, of matrix rows that give a nonzero lxl determinant are 

those satisfying d(rj^) =}=... =j=d(rj^) with respect to /Vj partitions.

(i) If Ui-(«i1 ,Ui2 ,...,Ui1 )eQij(j is N-Prime, then d(«i )+d(uj )+...+d(«i ) 

and consequently det(Bd j  [u-j/ ]) =aw_. (s)4=0.

On the contrary, if det(Bdj  [i^/ ])=au . (s)=)=0, for some <0i = (ui ,«i ,.. ,m  ̂ ) 

eQl,d, then d (wi j )=(=d (wi 2 )=J=.. .=(=d («i ) with respect to N-j partitions, which 

means that is N-Prime.

(ii) Each row of the elements det(Bd>-| [w^/ ]), UieQ-|>d N-Prime, has only one 

nonzero element of the form sJ, for some j=0 ,1 ,...,d^, i=l,2 ,...,l and all 

the rest elements are zeros.

Thus, for a given u-j = ( u ^ ,... ,u^ )eQ] >c|, N-Prime the element det(Bd j  [w-j/ ])

will be of a form:
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det

«i

.Jl

-J2

.Jl

... ,d-j}, i,k-l,2....1

(4.31)

We remark that each <0jj belongs to some N-¡, let us say to Nm. If we expand

W(W .)
the determinant (4.31) we observe that is equal to: s 1

Combining (4.27), (4.28) and the preceding Proposition we conclude the

following result.

Proposition (4.51: Let M(s)=[mj(s),..., n (s)]eRmxl[s], m>l, be a polynomial 

matrix. Let d-j, i = l,2,...,l be the maximum degree of

1
each column and d= I (dj+1). Matrix M(s) can be expressed in the form (4.27).

i = l
m

Then, the rows rj(s), i = l,2,...,(f|1) of C] (M(s) )eR^ ̂  [s] are given by:

n(s) = I det(M[ai/(o])sW(u) (4.32)
u

where a -j = ( a -j ̂ , ai ̂ , • • • )eQi ,m , ueQ-|>c|, N-Prime, MeRmxĉ  the matrix of (4.27)

Next we present an algorithm for the computation of polynomial compound 

matrices based on Proposition (4.5).

Algorithm COMPOL2

Let M(s) = [mi(s),m2 (s),...,m-|(s)]eRmxl[s], m>l, p=min{m,l), d= I (d-j+1 ),
i = l

dj the maximum degree of each column D!i(s),  and MeRmxĉ  the matrix of (4.27).
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The following algorithm evaluates Cp(M(s)) = (comp)-j jeR

m
(l)xl

[S] .

Find the N-Prime elements of Q]>cj

for each sequence a=(a-j ,a-ĵ > • • • > ai-| )eQl ,m

for each N-Prime sequence u=(u^ of Q]>c|

comp := mg • sw (u)

Print comp

Alo: 4.8

Example (4.6):

Let M(s)

3s+l 2s2

5s+2 2s+3

3s+2 5s2+1

eR3x2 [s], d1=l, d2=2, d=5

We want to evaluate C2 (M(s)) = (comp)-j j e R ^ Xl[s]

M(s)

1 3 0 0 2

2 5 3 2 0

2 3 1 0  5

1 0

s 0 

0 1 

0 s 

0 s2

= M-B5 } 2

Applying algorithms C0MP0L2 and SEQUENC2 for m=l=2, I := d=5 we have 

/Vd={ 1,2,3,4,5}, Ni={ 1,2}, /V2={3,4,5}

For «=(1 ,2 )6 6 2 ,5 , °(w)=(l»l) not N-Prime 

For w=(l,3 )eQ2 ,5 , 0(u)=(l,2) N-Prime, W(<o)=0 

For <o=(l,4 )eQ2 ,5 , 0(«) = (1,2) N-Prime, W(u)=l
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0(u)=(l,2) N-Prime, W(u)=2 

0(u)=(l,2) N-Prime, W(u)=l 

0(u)=(l,2) N-Prime, W(u)=2 

0(u)=(l,2) N-Prime, W(u)=3 

0(u)=(2,2) not N-Prime 

0(<o) = (2,2) not N-Prime 

0(u)=(2,2) not N-Prime

For u=(l,5 )eQ2 ,5 ,

For u=(2 ,3 )eQ2 ,5 ,

For u=(2 ,4 )eQ2 .5 ,

For u=(2,5)eQ2 5 ,

For u=(3 ,4 )eQ2 )5 ,

For u=(3,5)eQ2>5,

For u=(4,5)eQ2>5,

For a=(l,2)eQ2 j 3

For w=(l,3)eQ2>5, 

For u=(l,4)eQ2>5, 

For (0=(l,5 )eQ2 >5 , 

For u=(2,3)eQ2>5, 

For u=(2 ,4 )eQ2 5 5 ,

comp
13

:= m12'

COII
O00

14
s=2 scomp := m 1 2 '

comp
15

:= m12'
O 0
si-=-4si-

23
s=9scomp := m12'

comp
24

:= m12•s 3 = 6 s 3

25 3comp := m12'sJ=-1 0sFor u=(2,5)eQ2>5, 

compu := 3+2s-4s^+9s+6s^-10s^

For a=(l,3)eQ2 } 3

For u=(l,3 )eQ2 ?5 , comp 

For (0=(l,4 )eQ2>5, comp 

For u=(l,5 )eQ2 >5 , comp 

For to=(2 ,3 )eQ2 >5 , comp 

For u=(2 ,4 )eQ2 ?5 , comp 

For u=(2 ,5 )eQ2 )5 , comp
O O

comp2i := l+s^+3s+0sJ

For a=(2,3)eQ2>3

For u=(l,3)eQ2>5, comp 

For w=(l,4)eQ2>5, comp 

For u=(l,5 )eQ2 >5 , comp 

For u=(2 ,3 )eQ2 ,5 , comp 

For u=(2 ,4 )eQ2 >5 , comp 

For u=(2,5)eQ2>5, comp

m1 3 . - 0  im13 s =1 
14

m1 3 -s=0

15
mi3's

2
23

mi3 ‘s=3s
24 o 

mj3 -s£-=0

25 o , 
mi3'sJ=9sJ

13 n 
m23‘s =-4
14

m23's=-4s
15 p o

m23's -lOs^
24

m23's="4s
24 p p

m23's
25 3 3

m2 3 ’s -25s°
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comp3 i := -4-4s+10s2-4s-6s2+25s3

Finally C2 (M(s))

3+1ls+2s2 -10s3 

l+s2+3s+9s3 

-4-8s+4s2+25s3
eR3xl[s]

Remark (4.2): Comparing the two different ways for the evaluation of the 

compound of a polynomial matrix M(s)eRmx^[s] mentioned previously, we remark 

that the main difference between them is in the dimension of the matrices

arising from the analysis of M(s) into a product of a real and a polynomial

matrix. Analysis of (4.21) ends up into matrices AeRmx^ c,+̂ ,

BqjcR** [s], q is the maximum degree of polynomials. Analysis of (4.27)

ends up into matrices MeRmx<̂ , B(j -| eR°*x^, d= I (d-j+1), d-j, i=l,2,...,l the
’ i=l

maximum degree of each column.

Generally, d<l(q+l) thus the matrices taken using the second way are of lower 

dimension comparing them with those taken using the first way. It is evident 

that for matrices M(s)eRmxl [s] with dj=dj, i, j=l,2,... ,1, i=fj the dimensions 

are exactly the same in both ways. In case that there is a considerable 

difference between the di's i=l,2 ,...,l of M(s), the application of the second 

way for the evaluation of its compound matrix is strongly recommended.

4.5.2 For M(s)eRmx*fsl„ evaluation of Cp(M(s)K 1 < p <1

Based on formulas (4.21), (4.22), (4.23) and using tools from section 4.3 

we can derive the following Proposition.

Proposition (4.6): Let Bq;]eR^ ̂ +^ x  ̂[s] be a polynomial matrix of the form 

(4.23). For a given integer p: l<p<l let

/l(q+l)\XO 1
cp(Bq, 1 ) = [mUl (s),... ,ai(0o(s) ]eR^ p > ,o=(p), uieQp,l be its P'th compound

matrix. Each column IDto ̂ (s) °f ^ ( B q j )  is of the form:

r r r
1 2 k t v

m(oi(s) = [mui(s)» mUi(s),...,mu (s)] eR\ i = l,2,...,o, ^jeQp,l(q+1)>
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r .
(i) For some i = 1,2

and Ui-Prime.
r .

(ii) The nonzero entries mu .(s) are given by:

(4.33)

Proof: It is defined that each element of column m ^ s )  of Cp(Bqj) is

equal to det(Bq?][rj/«i]), «-¡eQpj, rjeQpj (q+i) • Thus, in order to compute 

the elements of each column, for a given sequence «-¡eQpj corresponding to p 

columns of Bqj, we must choose sequences of p rows from the given set of rows 

of Bqj and evaluate the relevant determinant. The set of rows

(1,2,...,1(q+1)} of Bqj can be partitioned in the subsets: P\={1,2,...,1), 
/J2=(l+1,•••>21},..., Pq+i=(lq+l,...,1(q+1)}. From the special structure that 

matrix Bqj has, we remark that for a given sequence of columns 

Ui=(ui1 ,...,Uip)eQp,i the only sequences of rows rj^rjj,•••>rjr)eQp,l(q+1)

that have det(Bqj [rj/«-j])=fO are those with the property: o(rj j)^.. .=|=o(rĵ )

and for all rj^} o-ĵ : °(rjz)=(Jim with respect to P\,Pz, • • • ,Pq+i partitions.

(i) If Mi = («il,...,«ip)eQpj and rj=(rjj,... ,rj )eQpj  (q+i) is P-Prime and

«■¡-Prime then o(r-j, )=b. .4o(r-i ) and v r-j 1 «, : o(r-i )=«, with respect to

r.

which means that rj is P-Prime and «-¡-Prime.

(ii) Each row of the elements det(Bqj  [rj/«i]), «¡eQpj, ^jeQp,l (q+l), rj P- 

Prime and «-¡-Prime, has only one nonzero element of the form s*S for some
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k=0,l,...,q and all the rest elements are zeroes. Also all these nonzero

elements appear in a different position in each row. Thus, each
r .

nta.(s) will be of the form: 
i

1
,k-je{0,1,... ,q}, i = 1,2,...,p

(4.34)

We remark that each rj^ belongs to some P\,...,Pq+\, let us say to Pm. The 

weight of rj^ is equal to w(rj.)=w(Pm)=q+l-m. If we expand the determinant

(4.34) it is equal to
sgn(rj) • s

w(r. )+. .+w(r. 
Jr

)
= sgn(rj)•s

Wir,-)

Combining (4.21), (4.22) and the above Proposition the next result 

readily follows:

Proposition (4.7): Let M(s)eRmx^[s], m>l, q the maximum degree of the 

polynomials, be a given polynomial matrix that can be expressed in the form

(4.5.1). For l<p<l let Cp(M(s))=

-[ffiujU),..

m

-»mWo(s)]eR P , o
1
( ) be its p-th compound matrix. Then each

element of columns m<j.(s) = [mu . (s),...,mw . (sJj^eR^
1 « 1 1  ̂K

m
M p), is of the form:

mu (s) = I sgn(r)-det(A[aj|r])sw(r), j-1,2, —  ,k 
' » J ^

(4.35)
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where UieQpj, aj=(aj],... ,ajp)eQPjnl, reQp>-| (q+1), P-Prime and «i-Prime, 

AeRmxl(q+l) ^ g  matrix of (4.21).

Combining Proposition (4.1) and Remark (4.1) we conclude that for a given 

sequence UieQpj the number of P-Prime sequences of Qp,i(q+i) that are Ui- 

Prime too, is (q+l)P. Therefore, Proposition (4.7) implies a remarkable 

reduction in the number of opertions required for the evaluation of 

Cp(M(s)). More explicitly, instead of taking for each of the possible 

i i(q+i)
( ) column combinations all the possible ( ) row combinations, we

actually use only the (q+l)P of them.

Example (4.71: Let

s s s-1

M(s) = 2s6+s s2+2s s2-l

2 s 2 -2s s 2 -2s 2s2-3s+2

We want to calcul ate C2 (M(s))=[mw

eR3x3 [s] be a polynomial matrix.

Matrix M(s) can be analysed as:

0 0 0 1 1 1 0 0 -1

M(s) = 1 1 1 1 2 0 0 0 -1

2 1 2 -2 -2 -3 0 0 2

s2 0

1---o

0 s2 0

0 0 s2

s 0 0

0 s 0

0 0 s

1 0 0

0 1 0

0 0 1

- A *Bq,l
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where AeR3x ,̂ BqjeR^x3 [s].

For Ui=(l,2 )eQ2 , 3

For a1=(l,2)eQ2 , 3 a

(s) = I sgn(r)ar -sW(r)=s2 where 
’ r

rel={(l,2), (1,5), (1,8), (2,4), (2,7), (4,5), (4,8), (5,7), (7,8)) 

the set of all the P-Prime and uj-Prime sequences of Q2?g 

For a2=(l,3)eQ2 ? 3

mUl 2 (s) = Z sgn(r)ar2 -sw(f) = -s3, re!
’ r

For a3=(2,3)eQ2 ) 3 a

m^ o(s) = E sgn(r)ar3 ,sW r̂  ̂ = -s4 -6s3+2s2, reZ 
r

!D(o1 (s) = [s2, -s3, -s4 -6 s3+2s2]t

The same process will be repeated for the rest sequences w2=(l,3) and U3 =(2 ,3 )

of ^2,3- Finally we obtain that

C2 (M(s ))==[mWl(s),mW2 (s),mw ,̂(s)>

s2

ro00
C

\Ji -s2+s

= -s3 - 4 s 3 + 3 s 2 s3

-s 4 -6s 3+2 s 2 - 7 s 3 + s 2 s 4 + 3 s 3 - 3 s 2 + 2 s

Next we present an algorithm for the evaluation of Cp(M(s)).

Algorithm COHPOL3

Let M(s)eRmx^[s], m>l, l<p<l, q the maximum degree of the polynomials and 

AeRmxl(q+l) the matrix of (4.21). The following algorithm evaluates each

m 1 

(n)x(n)element of Cp(M(s))=(comp)jjeR R  ̂ [s] and directly prints it.
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for each sequence u=((o^,... ,u-j )eQpj

for each sequence a=(ai,,ai_,... ,ai
1 Z p

for each sequence r=(ri »r̂

If r is P-Prime and u-Prime

)eQp,m

■r1p)eQp,l(q+l)

then

comp := sgn(r)•a^'s^(r) 

print comp

Alo: 4.9

Remark (4.3):

(i) A similar technique for computing the p-th compound matrix of a 

polynomial matrix M(s)eRmx^[s], l<p<l based on analysis (4.27) can be 

developed.

(ii) All the algorithms discussed so far deal with matrices M(s)eRmxl[s], m>l. 

If we want to evaluate Cp(M(s)), of a given matrix M(s)eRmxl, m<l, 

l<p<m, we form M^(s)eR^xm[s], l>m and we compute Cp(M^(s)). Then 

applying Property (4.8) of compound matrices we have:

Cp(M(s)) - (Cp(MT(s))T

(iii) If M(s)eRmx^[s], m=l then Cm(M(s))=det(M(s)). Thus, one way of computing 

the determinant of a polynomial mxm matrix is by finding its m-th 

compound matrix.

4.5.3 Applications of the numerical algorithm

The evaluation of the compound of a polynomial matrix can have a lot of 

interesting applications in various fields. Some of the most useful are:

(I) Computation of Smith Normal Form

We recall [Ayr., 1] that every square polynomial matrix A(s), of rank r 

can be reduced by elementary transformations to the Smith normal form
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fl(s) 0 0 0

0 f2 (s) ... 0 0

• .......... 0 0

0 0 f r ( s ) • • • 0

0 0 0 0

0 0 0 0

(4.36)

where each f-j(s) is monic and f-j(s) divides fi+i(s), i=l ,2,... ,r-l. The

polynomials fj(s),...,fr(s) are called invariant factors of M(s).

One way of achieving the Smith normal form of a polynomial matrix is by using 

the notion of compound matrices. Next this technique is demonstrated.

Algorithm SMITH

For a given polynomial matrix M(s)eR^ [s], p(M(s))=r7 the following 

algorithm computes the invariant factors of the Smith normal form of matrix 

M(s).

Implementation of the algorithm

For the evaluation of Cp(M(s)), algorithm COMPOL3 can be used. The 

computation of the greatest common divisor (g.c.d.) of the polynomial entries
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of each Cp(M(s)) can be done by applying the algorithm developed in Chapter 7. 

In this case, the construction of the basis matrix of each polynomial set

{(cij), i,j=l,2 ,...,(p)} requires careful handling.

Example (4.8): Determine the Smith normal form of the matrix: 

s s s -1

M(s) 2s^+s s2+2s s2-l

2s2-2s s2-2s 2s2-3s+2

eR3x3 [s], p(M(s))=3

D0 (s) = 1, Ci(M(s)) = M(s), D!(s ) = 1, fi(s) = 1.

From Example (4.7) we have that

s2 -2s3 - s2+s

C2 (M(s ))= -s3 -4s3+3s2 s3

-s ^-6 s 3+2 s 2 -7s3+s2 s^+3s

D2(s) = s, f2 (s) = s

Using Algorithm COMPOL1 or COMPOL2 we can fin

C3 (M(s)) = s3, f3 (s) = s2

Thus, the Smith normal form of M(s) is:

N(s) =

1 0 0

0 s 0

(II) Computation of Plucker matrices

Let M(s)= [mi(s),...,mq(s)]eRPxcl[s], p>q, o =( P ), PR(S)(M(s)) = q, and

assume that M(s) has no finite zeros. If we denote = col-s p r (s )(M(s)}, then 

mi(s )a ...Amq(s) = m(s)A = g(V^) is Known as a Grassmann Representative (GR) of 

VM [Kar. & Gia., 1].
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3 (V^) uniquely characterises (mod R(s)) and if 5 r deg (a(V^)}, then we may 

write

a(VM) = P5 ’fi5 (s), P5eRox{5+1), fi5 (s)=[l,s,...,s5]t (4 .3 7 )

The basis matrix Pg of fl(V̂ ) is referred to as the Plucker matrix of 

[Kar. & Gia., 1].

Using an analysis similar with that developed in (4.27) we will formulate a 

procedure achieving the evaluation of Plucker matrices.

a. General formulation

Let M(s)=[mi(s),...,mq(s)]eRPx^[s], pc(M(s))=q, v seC, deg{mi(s)}=5i,

px(5j+l)
m-j (s)=M-jegi (s), M^eR 1 and assume that M(s) is also column reduced and 

ordered according to ascending degrees (i.e. 0<5j<...<5q), then

% ( $ )

M(s)=[M],...,Mq]‘ = TM ‘S(s ) (4.38)

e5q(s)

where T ^ e R ^ ,  k= I (5-j+l) is the coefficient matrix of M(s) and S(s)eR^x^[s] 
i = l

is the structure matrix of M(s) defined by the index J=(5-j :0<5-j<.. .<5q).

Combining the definition of column Grassmann product of matrix M(s) and

(4.38) we conclude that

Cq(M(s))=PM *eS(s) = Cq(TM)Cq(S(s))
Note that

(4.39a)

Cq(S(S))=g(SCsT) = pS’ê5 (s) = as(s) (4.39b)

where
i-

y k q (n)x(5+l)
a(S(s))eRv[s], v=( ), deg{gs(s))=5= Ï 5i} and PseR ^

q i=l

Thus

pM = cq(TM)pS (4.40)
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Since the structure of P$ will define which part of CgiT^) is essential 

for the structure of P^, the problem of defining the structure of g^(s) is 

considered first.

b. Properties and evaluation of ĝ (s")

Every entry in gs(s) can be parametrised by a sequence 

<o=(ui,U2 ,... >Uq)eQq,k and thus g$(s) may be denoted by g.s(s) = C • • -9u(s) • • • ]^> 

u=(il»i2 »•••jiq)eQq,k-9u(s) are referred to as Plucker coordinates of S(s).

The issues arising are: 

i) Define ueQq5|< such that gu(s)E0

ii) Define the form of nonzero gu(s) and their corresponding location (in 

terms of to)

We introduce first some notation:

Notation (4.4): The interval of integers [l,...,k] is parti ioned into 

intervals as shown below:

Ai=[l,2,...,5j+l], A2=[5i+2,...,5j+52+2],...,Aq=[5j+...+5q_]+q,...,k] (4.41)

For each integer 1e{1,...,k} we associate two parameters, its index E 

u(1), indicating the interval where it belongs and its stathm E o(l) 

indicating the relative order in its interval.
i -1

If leAj, then its stathm o(l) is defined by: o(l)=k- I (5j+l)-l.
j =1

Proposition (4.8): The Plucker coordinates gu(s), io=(ij,..,iq)eQq?  ̂ have 

the following properties:

(1) gu(s)+0 , i f f  i l eAj, i 2eA2 , . . . , i qeAq.
(ii) gu(s)E0, if at least two indices in u are taken from the same interval

(iii) If ijeAi, i2eA2 ,...,iqeAq, then

9u(s)
otiji+.-.+otiq)

(4.42)

Definition (4.31: A sequence u=(ij,...,iq)eQq?  ̂ for which ijeAj, 

i2eA2 ,...,iqeAq is called nonsingular; otherwise, i.e. if more than one 

indices are taken from the same interval is called singular. The set of 

nonsingular sequences of Q q ^  is denoted by Dq,k(^l, • • • ,5q).



-73-

From Proposition (4.8) it is evident that the singular sequences of Q q ^  

define the zero Plucker coordinates, whereas the nonsingular ones the nonzero 

elements.

In the sequel, a procedure defining the set Dq,k(^l>.••,5q) is suggested.

Algorithm NONSINGSEO

Let q, 0<5i<...<5q be given integers,
q

.= I (5^+1). The following algorithm 
i=l

evaluates the nonsingular sequences uefiq}k(5i,... ,5q).

STEP 1:Define the index sets 

for i = 1 ,..., q

Ai={5i+ ...+5^_i+i,5j+.. . _ i+T+ 1 ..... ,51+6 2+...5^+1}

STEP 2:Each weOq,k(sl,* *•,sq) is defined as a path passing once 

through the elements of each of the A-j index sets.

Alq: 4.11

The following algorithm computes the so called stathm representative o((o) of 

of each sequence w=(i], i2 , • • •,iq)efiq,k(&i, • • • ,5q).

Algorithm STATHMREP

STEP 1: Define the stathm sets {A^}

for i = 1 , • •, q

(Ai) = (0 ,1 ,..

STEP 2: for each u= (i 1 » * • •>iq)£0q}k(5i,...,5q)

o(<o) : = (°(il) ,o(i2 ),...,o(iq))

Alg: 4.12
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There is an one to one mapping between nq ^q) an<̂

E{Qq5k(Si,•••,5g)> where I{Hq,k(5 l>•••>sq)) is the set °f the stathms 
representatives of all oefiq k̂ ( 5 ] , . . .  , 5 q ) .

The vector consisting only from the nonzero Plucker coordinates of the 

Grassmann vector g$(s) is defined as the

r t  q
reduced Grassmann vector g$(s)eR> T= ^ ( 5 ^ + 1 ).

The submatrix of P$ obtained by deleting the zero rows (that are 

parametrised by a singular sequence ueQq^k) without changing the relative

position of the rows characterised by the nonsingular sequences, is defined as
r t x ( 5 + 1 )

the reduced structure matrix and it is denoted by P$eR

By computing the sets {A-j} i=l,2,...,q defined by algorithm STATHMREP, we
r r

derive the following procedure for the construction of g$(s) and P$ .

Algorithm GRASREP

STEP 1: Define the composition set {Aj,...,Aq_j}

(ûj) := (i>>i (1) :(*>i ( 1 ) = (i ( 1 ) - 1 ) > i (l)e5]±l)

={(0),(1),...,(5])} ordered lexicographically 

for m = 2,...,q-l

(ûi,Û2 ,... ,Am}:={<0i (l).. .i (m-l)i (m) :ui (1).. .i (m-l)i (m) 

= (wi (1).. .i (m-1)»"• (m)-l) »

for all wi(1)...i(m-1)e{A1 ,...,Am,1} and Umjebm+l} 

STEP 2: for every «i (l)... -j (q-1)=(x1,... ,xq-i)e{bi,... ,Aq_!}

_ Xi+...+Xn_i
fX2 ,x2 ,...»Xq.j := s ' Ê5q(s)
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From the above, the following Proposition readily follows:

Proposition (4.91: If <o=(xi,... ,xq)e{Ai,... ,Aq) is a stathm representation, 

then

9u(s)
Xi+Xo+. 

S 1 6
.+xq

c. Computation of Plucker matrices

Using the analysis developed in b., we are led to the following 

formulation.

The submatrix of Cq(TM) obtained by deleting all columns associated with 

the singular sequences of Q q ^  without changing the relative position of the 

columns associated with the nonsingular sequences, is called the reduced

r
compound and denoted by Cq(Tfl). Clearly,

PM = cq(TM)'pS (4.43)
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In the sequel, we present an algorithm for the evaluation of the Plucker 

matrix P^.

Algorithm PLUCKER

Let I'm be the matrix of (4.38). The following algorithm evaluates the 

Plucker matrix Pm=[£o »E1*•••>E5] using the analysis established in b.

STEP 1 : Construct the sets 0q,k(5 l»•••>5q)» £{Aq,k(5 l»•••>5 q))

STEP 2 : for m = 0 ,..., 5

construct the set

(io-(xj,...,Xq):ueflq̂  |̂ (5j,...,5q), xj+X2+...+Xq m}

STEP 3: Construct
p

Cq(T^) = [•••»ty»•••]

STEP 4: for m = 0 ,• • •) 5

fim : =  ̂ ty
wenm

Alg: 4.14

Example (4.9): Let

M(s) =

M(s) =

3s+l 2 s2

5s+2 2s+3

3s+2 5s2+1

P=3, q==2 , 5j

1 3 0 0

2 5 3 2

2 3 1 0

eR^x2 [s] be a polynomial matrix.

Then, p=3, q=2, 5j=l, 5 2=2 , k=5, 5=3. Matrix M(s) can be expressed as:

1

s

0

0

0

0

0

1

s

= tM ' S(s)
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Thus, pM = cj>

3 0 

5 3 

3 1

0

2

0

r
PS

Applying algorithm PLUCKER and using also algorithms NONSINGSEQ and STATHMREP 

we have:

02,5(1,2)={(1 3), (1 4),(1 5),(2 3), (2 4) , (2 5)}

-̂{̂ 2 ,5(1 ’ 2)=( (0,0),(0,1),(0,2),(1,0),(1,1),(1,2)} 
n0={(o,o)}, Qi={(o,i),(i,o)}, q2={(o ,2),(i,i)}, n3={(i,2)}

r
3 2 -4 9 6 -10

c 2 (TM )= 1 0 1 3 0 9

-4 -4 10 -4 -6 25

[Ì13 t14 t15 Ì23 Ì24 Ì2 5 ]

Finally,
PM = [fì0’fìl»fì2’fì3] »where 

fi0=ìl3» fil=ìl4+Ì23> È2=Ì15+Ì24» £3=Ì25» thus

3 11 2 -10

1 3 1 9

-4 -8 4 25

■

Remark (4.4) : If we are given a matrix M(s)eRPx^[s] that is not column 

reduced, using appropriate transformations we can modify it to the form 

required for the above analysis.

4.6 CONCLUSIONS
The aim of this Chapter was to develop efficient numerical algorithms for 

handling computations arising from Exterior Algebra. A brief summary of the
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most important results from Exterior Algebra was presented in the beginning 

and in the sequel were defined some new notions concerning sequences of 

integers. These definitions were applied for the development of algorithms 

achieving the computation of compounds of polynomial matrices. Thus, this 

Chapter serves the following purposes:

(i) It provides a quick review of the most important results from the area 

of Exterior Algebra.

(ii) It provides efficient algorithms for computing the exterior product of 

real vectors and the compounds of real matrices.

(iii) It provides efficient algorithms for computing the compounds of 

polynomial matrices.

(iv) It provides an efficient algorithm for the evaluation of Plucker 

matrices.



C H A P T E R  5

SPECIAL NUMERICAL TECHNIQUES FOR 

HANDLING NONGENERIC COMPUTATIONS
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5.1 INTRODUCTION
In this Chapter special numerical techniques handling nongeneric 

computations are presented. The notion of nongeneric computations was 

analytically introduced in Chapter 3. As a matter of fact, a lot of 

substantial computational problems possess a nongeneric nature ( g.c.d. of 

polynomials, rank deficiency of a matrix). When we are trying to derive 

numerical algorithms for them, extra care must be taken and special techniques 

must be deployed in order to end up with a stable algorithm catching 

correctly the desired solutions.

In the beginning of this Chapter it is briefly reported the most powerful 

tool, that provides the means for encountering the nongenericity, the Singular 

Value Decomposition theorem. The most characteristic properties of the 

singular values are also summarized. In the sequel, other useful numerical 

techniques are demonstrated. The replacement of the usual notion of the rank 

of a matrix with the corresponding numerical s-rank, for a given accuracy e is 

introduced. The notion of numerical e-rank will be used in almost all the 

proposed methods.

When we are given a set of vectors it is required to determine the 

relationship between its members. Therefore, the notions of e-independent, 

numerically s-dependent, strongly e-dependent, fuzzy e-dependent sets of 

vectors are introduced. The strongly e-dependency property of a set provides 

its unity numerical e-rank.

Since in many nongeneric computations the appearance of sets of vectors 

with unity numerical e-rank takes place, a cautious study of their properties 

is something indispensable. A useful theorem providing necessary and 

sufficient conditions between the numerical e-rank of a strongly e-dependent 

set and its singular values is developed. The problem of selecting a "best" 

representative of such sets is also faced.

The selection of a "best uncorrupted" base for the row space of a matrix is 

considered next. A useful algorithm combining the notions of Gram matrix and 

compound matrix is demonstrated analytically.

Furthermore, a detailed survey concerning the most important properties of 

the Gramian of given vectors and the Schur complement -tools extremely useful 

due to their ability in handling determinants- is presented.

5.2 THE SINGULAR VALUE DECOMPOSITION (S.V.D.)
One of the basic and most important tools of modern Numerical Analysis, 

particularly Numerical Linear Algebra, is the singular value decomposition.



-80-

Theorem (5.1) [Gol. & Loan, 

matrices
U = [Ml,...,Mm] eRmXm 

and
V = [vj,...,vn] eRnxm

such that U^AV = I

1]: If AeRmxn then there exist orthogonal

(5.1)

where IeRmxn a "diagonal" matrix, with nonnegative "diagonal" elements o-j, 

i.e. with li i =o-j and l] j=0 (i=j=j), satisfying oi>0 2>.. .>Omin{m,n}^°*

The numbers ^  are the nonnegative square roots of the eigenvalues of 

AA^, and hence are uniquely determined. The columns of U are eigenvectors of 

AA^ and the columns of V are eigenvectors of A^A (arranged in the same order

2
as the corresponding eigenvalues Oi).

The "diagonal entries" 0 ,=!^, i=l,2,..., p=min{m,n} of Z are known as 

the singular values of AeRmxn (sometimes only the nonzero ones are so termed), 

and the columns of U and V are the (respectively, left and right) singular 

vectors of A. The factorization (5.1) is known as the Singular Value 

Decomposition of A (S.V.D.). It is easy to verify that

Av-j = OiUi

Â u-j = o-jV-j

Some of the most important results characterizing the S.V.D. of a matrix 

are summarized next.

Corollary (5.1) [Gol. & Loan, 1]: If the S.V.D. of matrix AeRmxn is given 

by Theorem (5.1) and oj>...>or>or+j=...=Op=0, then

(i) p(A)=r

(ii) N(A)=span{yr+1 ,...,vn)

(iii) R(A)=span{ui,U2 ,...,ur)

r t T
(iv) A= I OiUiVi = UrIrVr where Ur=[ui,...,ur] 

i=l

Vr = [Yi,...,yr] and Ir=diag(oi,...,or)

2 2 2 
(v) ||A|p = oj+.. .+op
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(vi) ||a ||2 = 0 1 .

Corollary (5.2) [Gol. & Loan, 1]: Let the S.V.D. of AeRmxn be given by 

Theorem (5.1). If k<r=p(A) and

k t
Ak = l oiuiVi (5.2)

i = l

then min |A-B||2 = ||A-Ak ||2 = ok+i
P(B)=k

■

Corollary (5.2) says that the smallest singular value of A is the 2-norm 

distance of A to the set of all rank-deficient matrices.

Corollary (5.31 [Horn, 1]: Let A,BeRmxn, let E=B-A, and let p=min{m,n). 

If 0 1>0 2>.. .>0 p are the singular values of A and, ti>t2>...>Tp are the 

singular values of B, then

(a) |Oi-T-j |<||E||2, i=l,2, —  ,q

(b) [ I (Oi-Tj)2]1^  < ||e ||2
i = l

If p(B)=r, i.e. t i =0, i=r+l,...,n then (b) becomes

P 2 2
2 Oi < |e | 2

i=r+l

The great virtue of the singular value decomposition is that it enables

us to deal sensibly with the concept of matrix rank. The plain fact is, that

the simplest of the factorizations (Gaussian elimination, QR) give no reliable 

indication of the proximity of a matrix to rank deficiency even when rounding 

errors are not involved. On the contrary, the S.V.D. gives a perfectly

reliable indication and it can be performed in such a stable manner that

rounding errors do not bring any significant complications.

Notice that the rank r of A is equal to the number of nonzero singular values 

of A, thus one way to compute the rank of A numerical 1 v, is to compute a 

S.V.D. and take the rank of A to be the number of singular values that are 

larger than some threshold. The key quantity in rank determination is 

obviously or. Moreover, this number gives a dependable measure of how far 

(in a || 12 sense) a matrix is from matrices of lesser rank. But or alone is

(5.3)
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clearly sensitive to scale so that a better measure is or/1|A||2 * But ||A||2=0 1 , 

therefore the important quantity is or/oi which turns out to be the 

reciprocal of the number k(A) = ||A||2 IIA+||2 » the so called "condition number of 

A". In the case when A is invertible, k(A) = ||a ||2 ¡A"1 1| 2 is the usual spectral 

condition number. The numerical determination of the rank of A is easier and 

more accurate if 1/k(A) is not near to zero.

The algorithm in most common use for the S.V.D. is due to [Gol. & Rein.,

1] and is extremely stable. It can be shown that the computed singular values 

are the exact singular values of some matrix A+G where

IIGII2  < |a | | 2  * f(n,m)

0 '^ being the computer precision and f(n,m) a very "modest" function of n and 

m. Hence if A is close to rank degeneracy this will be revealed reliably even 

by the computed o^, i=l,2,...,r. In fact, when A arises from physical 

measurements, then unless the computer precision is exceptionally low, the 

equivalent perturbation in A resulting from rounding errors will usually be 

far smaller than the original perturbation in A arising from inaccuracies in 

the data.

5.3 RANK DEGENERACY-THE NUMERICAL E-RANK
The usual mathematical notion of rank is not very useful when the 

matrices in question are not known exactly. For example, suppose that A is a 

mxn matrix that was originally of rank r<n but whose elements have been 

perturbed by some small errors (e.g. rounding or measurement errors). It is 

extremely unlikely that these errors will contribute to keep the rank of A 

exactly equal to r; indeed what is most likely is that the perturbed matrix 

will have full rank n. Nonetheless, the nearness of A to a matrix of 

defective rank will often cause it to behave erratically when it is subjected 

to statistical and numerical algorithms.

One way of overcoming the difficulties of the mathematical definition of 

rank is to specify a tolerance and say that A is numerically defective in rank 

if to within that tolerance it is near a defective matrix [Gol. & Klem. & 

Stew., 1] . Specifically we might say that A has e-rank r with respect to the 

norm ||'|| if

r = inf{p(B): ||A-B||<e) (5.4)
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However, this definition has the defect that a slight increase in £ can 

decrease the numerical rank. What is needed is an upper bound on the values 

of £ for which the numerical rank remains at least equal to r. Such a number 

is provided by any number 5 satisfying

£<5<sup{n:||A-B||<n p(B)>r) (5.5)

Accordingly we make the following definition.

Definition (5.1) [Gol., Klem. & Stew., 1]: A matrix A has numerical rank 

(5,e,r) with respect to the norm ¡•|| if 5,£, and r satisfy (5.4) and (5.5).

When the norm in Definition (5.1) is either the 2-norm or the Frobenius 

norm, the problem of determining the numerical rank of a matrix can be solved 

in terms of the singular value decomposition of the matrix.

The following Theorem was stated in [Gol., Klem. & Stew., 1] without

proof.

Theorem (5.21 [Gol., Klem. & Stew., 1]: Let oi>0 2>...>Op, p=min(m,n} be the 

singular values of AeRmxn. Then A has numerical rank (5,e,r) with respect to 

the || ¡ 2 if and only if

or > 5 <£ >or+j (5.6)

Proof: Suppose that (5.6) holds. Then by (5.2) if ¡A-B||2<5 we must have 

p(B)>r. Consequently, 5 satisfies (5.5). This also shows that

min{p(B): ||B-A|<e)>r

But the matrix B=UIiV^, where U,V are the orthogonal matrices of the S.V.D. of 

matrix A (i.e. A=UIVT) and Ii=diag(oj,0 2 ,...,or,0,...,0) has rank r 

and satisfies ||B-A||2<£. Hence £ satisfies (5.4).

Conversely, suppose 5,e, and r satisfy (5.4) and (5.5). Then by (5.2), 

5<oy. Also £>crr+i; for if not by (5.4) there is a matrix B of rank r 

satisfying ||A-B||<crr+i which contradicts (5.5).

Remark (5.11: If we use the Frobenius norm, Theorem (5.2) can be stated as: 

A has numerical rank (5,e,r) with respect to the || ||p if and only if

2 2 2 o o 2 2
Or+Or+l+...+0p >5 >£ >Or+l+...+Op
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The proof is quite similar with that of the || ¡ 2 norm.
■

Because of the simplicity of the characterization (5.6) we shall restrict 

ourselves to rank defectiveness measured in terms of the spectral norm.

According to the previous definitions of numerical e-rank, the notion of 

numerical e-nullity (ne(A)) can be defined as well.

Definition (5.2). [Fost., 1]: The numerical e-nullity of a matrix AeRmxn is 

defined by:

ne(A) = max{nullity(B):|A-B|2<e)• (5.7)
■

Given a vector y in Euclidean space Rm, and a subspace S of Rm , we define 

the distance between y and S by dist(y,S)=min{||y-z|| :zeS). A more simplified 

condition for the determination of the numerical e-rank (pe(A)) and the 

numerical e-nullity (n£(A)) of a matrix A is given next.

Theorem (5.3) [Fost., 1]: For a matrix AeRmxn, and a specified tolerance e 

pe(A)=min{dimension (S): S is a subspace of Rm such

dist(Ax,S)
that xeR^x^O ----— --- < e)

pg(A)=number of singular values of A that are > e

n£(A)=max{dimension (S):S is a subspace of Rn such
s

I Ax I
that xeS, x=j=0 ---- < e)

n£(A)=number of singular values that are <e 

p£(A)=n-ne(A).

(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

The results (5.8) and (5.10) are geometrical, (5.8) stating that the 

numerical e-rank is the smallest dimension of a space that approximates well 

vectors in the range of A, and (5.10) stating that the numerical e-nullity is 

the largest dimension of a space that is approximately annihilated by A. A 

subspace S of dimension n£(A) that satisfies (5.10) will be called an e-null 

space of A. The results (5.9) and (5.11) suggest one method of calculating 

the numerical rank of A-via the S.V.D.



-85-

Let /l={ai,a2 ,... ,an) be a set of n vectors aieRmxl, i=l,2,...,m. This 

set can be expressed in terms of a matrix A=[aj,a£,...,an]teRmxn, having as 

its rows the given vectors. Let o\>02>...>or, be the singular values of A. 

It is extremely useful to determine the relationship of vectors a^, 

i=l,2,...,n in terms of the S.V.D.

Definition (5.3): For a given tolerance e

(i) The set A is s-independent if o-j>e, i=l,2,...,r i.e. all 

the singular values are greater than e.

(ii) The set A is numerically e-dependent
if o-j>s and oj<e for some i,j, i<j i.e. some singular 

values are greater than e and others are smaller than e.

(iii) The set A is strongly e-dependent 
if ope, o-j<e, i =2 ,3,... ,r

i.e. the maximal singular value is greater than e and all 

the others are less than e.

(iv) The set A is fuzzy e-dependent if o-j<e, i = l,2,...,r 

i.e. all the singular values are less than e.
■

Since scaling affects the singular values of a matrix, the above definition 

will be more suitable when it is applied in a normalized set of vectors. By 

normalizing, the given data are kept under control and thus strange

situations as fuzzy e-dependency of vectors, that are mostly

encountered when we are dealing with data of extremely low values ( e.g. < 1 0" 

®), are avoided. Throughout this work, normalized sets of vectors will be 

exclusively used in most cases.

Remark (5.2):

(i) If the set A is e-independent, then pe(A)=r.
(ii) If the set A is numerically e-dependent, then pe(A)=g<r.

(iii) If the set A is strongly e-dependent, then pe(A)=l.

Due to the fact that the singular values alone are clearly sensitive to 

scaling, a better measure for vector's dependency

might be
°i
---. Thus, Definition (5.3) can be stated in the following
° 1

way when a modest constant c=f(e,oj) is used.
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Definition (5.4): For a given constant c
°i

(i) The set A is c-independent if —  >c, i=l,2,...,r

(ii) The set A is numerically c-dependent if 

°i °j
—  >c and —  <c for some i,j 
oi 0 !

(iii) The set A is strongly c-dependent if 
Oi

—  < c < 1, i=2,3,...,r
oi ■

Remark (5.3): Definition (5.4) avoids the determination of the particular 

case of fuzzy e-dependent sets of vectors and thus it can be considered as an 

improved version of Definition (5.3).

Example (5.1): (i) Let

^={l1=(0 .1 ,l,l,0 )t, a2=(2.01,3,l,0)t, a3 =(0.01,2,3,l)t}

be a set of vectors ¿ i e R ^ ,  i =1,2,3. The corresponding matrix

A=[ai,a2 ,l3 ]^eR^x  ̂has singular values:

0 | « 4.99, o2 ~ 2.25, 03 « 0.31

For any tolerance e, less than some satisfying accuracy (e.g. e<10“3) the set 

is e-independent

(ii) Let

^={a1=(5,2,5,2,0,0)t, a2=(1,1,1,0,0)1, a3=(4,1,4,1,0,0)1, a4=(5,3,5,3,0,0)1,

a5=(6,6,14,6,8,0)t, a6=(15,0,18,0,3,0)1,a7=(3,3,7,3,4,0)1,a8=(0,7,0,15,0,8)1} 

be a set of vectors aieR6x ,̂ i=l,2,...,8. The corresponding matrix 

A=[aj,a2,a3 ,a4 ,a5 ,a6 ,a7 ,a8 ]eROAU has singular values:

O!«0.33*102, o 2~0.192*102, 03̂ 0.778*10, o4«0.297*10,

o 5=0.304*10"13, o 6~0.104*10“13

For e=0.1*10' 13 the set is numerically e-dependent

(iii) Let

7Hai=(0.000678, 0.000339)t, a2=(0.000013, O.OOOOOeS)11) be a set of vectors 

a-jeR2x ,̂ i=1,2. The corresponding matrix A=[aj,a2 ]eR2x2 has singular values:

0 ! « 0.757*10‘3, o2 * 0.173*10_17
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For e=0.1*10' 3 the set is strongly e-dependent
■

5.4 STRONGLY e-DEPENDENT SETS OF VECTORS
Frequently, in many applications sets of vectors with numerical s-rank 

equal to unity appear. Therefore, it is necessary to examine what properties 

characterize such sets. Since such sets owe their definition to the values of 

their singular values according to some specified accuracy e, a first issue 

that should be examined is whether the above singular values satisfy any other 

relations too, apart from these derived from Definition (5.3). A thorough 

investigation of the conditions governing the corresponding singular vectors 

must be made too. Another subject that should be also examined has to do with 

the problem of finding a "best", in a sense to be made precise later, 

representative of such a set. In other words, since all the vectors of a 

strongly e-dependent set are very close to each other, it is necessary to 

determine a vector that could be considered as the "best" approximation of the 

set.

Some useful theoretical tools for tackling the above mentioned issues are 

examined below.

Definition (5.6) [Horn, I]: Let a, beRn be given. The vector b is said to 

ma.iorize the vector a if

k k
min{ I b-j• : 1<ii<.. -<ik<n}> niin{ £ au : 1<i¡<.. .<i|<<n} (5.13)

j=l 3 J=1 3

for all k=l,2,...,n with equality for k=n. If we arrange the entries of a 

and b in increasing order aji-aj2~'**-ajn’ b ^ i b ^ l . . .<bmn, the defining 

inequalities can be restated in the equivalent form

k k
I bm . > I aj. for all k=l,2,...,n 
i=l 1 i=l 1

with equality for k=n.

Thus, the real vector b ma.iorizes the real vector a if the sum of the k 

smallest entries of b is greater than or equal to the sum of the k smallest 

entries of a for k= 1 ,2 ,... ,n-l, and the sums of the entries of b and a are 

equal. Notice that the entries of b and a may be permuted arbitrarily 

without affecting whether b majorizes a.

(5.14)
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The notion of majorization arises in many places in matrix theory as the 

precise relationship between two sets of real numbers. One example of this 

phenomenon is the following theorem of Schur (1923).

Theorem (5.4) [Horn, 1]: Let AeCnxn be Hermitian. The vector of diagonal 

entries of A majorizes the vector of eigenvalues of A.

The following result was suggested in [Horn, 1] without proof.

Proposition (5.1): Let A=[ri,1 2 ,...,rm]teRmxn. Order the set of Euclidean

norms of the rows {¡r-j ¡2 : i=l ,2 ,... ,m) in increasing order and denote the

resulting ordered values by Ri<R2<-•.<Rm . The singular values of A are

ordered with ..<oj. Then,

k k
2 2

I om-i+i < I Ri for k=l,2,...,m (5.15)
i=l i=l

Proof: We form the matrix A*AT=CeRmxm. Matrix C is symmetric with diagonal 

t 2
entries c-j-¡ = ||r-j¡2 » i = l,2,...,m. From Theorem (5.4), the vector of diagonal 

entries of C majorizes the vector of eigenvalues of C. If the eigenvalues of 

C are ordered with A^Am-j^.. .<Aj and let cj j <cj j <.. .<cj j be a
1 1  2 2 m m

rearrangement of the diagonal entries of C into increasing order, then

k k

1 cj ij i ^ 1 xm-i+1 
i- 1 i-1

2
But A-j=Oi, i=1,2,... ,m ,thus

k k2 2
I om-i+i < I Ri for k=l,2 ,...,m 
i- 1 i- 1

Remark (5.4): Proposition (5.1) shows that if matrix A has a "small" row, 

then it must also have a "small" singular value.
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If A=[ri,i2 ,...,Em]teRmxn, then the normalization of A is a matrix 

An=[yi ,V2 ,... ,vm]^eRmxn with the property: v-j =r-j/||r-j ¡ 2 » i = l,2,...,m; it is 

obvious that v-jeRnxl, i=l,2,...,m are unit length vectors ( ||y i || 2=1 ) *

Applying Proposition (5.1) to the case of normalized matrices we readily 

obtain the following result.

Proposition (5.2): Let A=[rj,£2 ,••., lj11]^eRmxn, m<n^P normalized matrix with 

singular values o^Om-ii.. .<0 1 . Then,

Oi < vm-i+1, i=l,2,...,m. (5.16)
■

Actually Proposition (5.2) provides an upper bound for the singular 

values of a normalized matrix.

More results concerning normalized matrices are given next.

Proposition (5.3): A matrix A=[rj ,1 2 ,..., rm]^eRmxn, r-ĵ O, i = l,2,...,m has 

p (A) = 1, if and only if the normalization of A is of the form 

An=[Yi ,Y2 , ... ,Ym]teRmxn, where Yi=a‘Yi> i=2,3,...,m and a=+l,-l.

Proof: Suppose that matrix AeRmxn has p(A)=1. Then, only one row of A is

linearly independent. Without loss of generality we can suppose that 
t

rj is that row. Then,

t t
r-j = a^'rj, a-jeR, i=1,2,..., m 

The normalized A^ is of the form:
t

t t ri
An=[Yi ,Y2 ,•••>Ym]> Yi = -----. i=l,2,...,m

From relation (5.17) we conclude that

(5.17)

(5.18)

2=||a-ri ai i= 1 ,2 ,...m

Combining (5.17), (5.18),
t

t a m
Yi = ---------  =

(5.19) we have 

ai t
-— r 'Yl* i=2,3,... ,m 
lail

(5.19)

which can be expressed as:
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t t
v-j = a'vi, aeR, a=±l (5.20)

Conversely, let = [vi,V2 ,. 

t t t
A=[r1 ,r2 ,...,rnl]L. If vi=a-y1, i=2,3,

>Ym]teRnixri the normalization 

.,m, a=±l then,

of

t

which is equivalent to

£i i-2,3,. ,m. Thus,

t
li

t
aiTi, i =2 ,3, ,m, ai (5.21)

Relation (5.21) shows that all the rows of A are linear combinations of the 

first row, therefore p(A)=l.

The following Proposition will be used in the sequel. 

Proposition (5.4): For a,beR, a,b=j=0 the matrix

A=[r1 ,r2 ,...,rn]t = 

has det(A)=b<vi' * (na+b).

Proof: We apply to matrix A the following transformation:

a+b a a ... a

a a+b a ... a eRnxn

a a a ... a+b
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STEP 1: for i := 1,2, —  ,n-l

t t t 
li -  Ei-Ei+1

Thus,

0 ... 0 

-b ... 0

0 0  . ..b -b

a a ..a a+b

STEP 2: for i := 1,2,...,n-1

t t a t 
In := En-i—  li

Thus, A becomes:

b

A = 0

-b

b

0 0

0

-b

b

0

0

0

0 0  . b -b

0 0  0 na+b

From this upper triangular form we conclude that 

det(A)=bn~l(na+b).

From the above results we may derive a criterion for the singular values 

of normalized strongly e-dependent sets.

Theorem (5.5): Let A=[rj ,£2 »... ,rm]teRmxn, m<n, r^O, i = l,2,...,m. Then 

p(A)=4, if and only if the singular values om<om_i<...<oi of the normalization 

An=[vi,V2 ,...,vm ]teRmxn of A satisfy the conditions:

0 } = Vm^ o-j — 0, i = 2,3,... ,m (5.22)
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Proof: Suppose that p(A)=1. Then according to Proposition (5.3) the 

normalization of A is of the form:

An=[Yi ,Y2, • • • >¥m]teRmxn, Yi=a>y1, i=2,3,...,m, a=±l (5.23)

where ||y.i||2~1 * This condition yields (Yi'Yi ) ̂ = 1  or

Yi ‘ Yi = 1 (5.24)

The matrix A^'An = CeRmxn is real and symmetric with real eigenvalues. 

From (5.23), (5.24) we conclude that

Ic i j| = 1, i,j=l,2,...,m (5.25)

In order to evaluate the eigenvalues of C we form the determinant:

D = det(XI-C) (5.26)

Using relation (5.25) and the fact that if any row or column of a matrix is 

multiplied by a scalar d then the determinant of this matrix is multiplied by 

d, relation (5.26) yields:

Applying Proposition (5.4) we have: D= Xm_1 (X-m).

From Xm'^(X-m)=0, it follows that the eigenvalues of C are: m, 

multiplicity m-1. The singular values of A^ are thus: oi=,/m7 

i =2 ,3,...,m.

(5.27)

0 with

°i=0 ,

Suppose now that the singular values of An=[vj ,V2 ,... ,Ym]teRniXn are 

ô JOT, Oi=0, i=2,3,...,m. Then, the eigenvalues of

C=An ‘An eRmxm, are m, 0 with multiplicity m-1.

Thus det(XI-C) must be of the form:

D = Xm"1 (X-m) (5.28)

From (5.27), Proposition (5.4) and (5.28) we conclude that:
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(

X-l -1 -1

\

D = det -1 X-l ... -1
►

[
-1 -1 ... X-l

)
Therefore CeRmxm has |c-j j | =1, i, j=l,2,... ,m with c-j j = (vj* v-j) 

i t ,
Iv-i • i j  = l,2 ,...,m

(5.29)

and consequently 

(5.30)

(5.24) and (5.30) yields vj * Yi=l= | v-j' vj |, i=2,3,...,m which implies that

t t
¥i = a'vj, i =2,3,...,m, a=+l

From (5.31) and Proposition (5.3) we conclude that p(A)=l.

(5.31)

The numerical version of Theorem (5.5) may be stated as:

Theorem (5.6): Let A=[ri ,r£,..., r^] ̂ eRmxn, m<n, r-j=)=0, i = l,2,...,m. Then 

pe(A)«l, if and only if the singular values o^Om.ii.. .<o\ of the 

normalization A^= [vj,\/2»* • •,v^]teRmxn of A satisfy the conditions:

oiWrn^ o-j<£, i=2,3,...,m for some e. (5.32)
■

From the previous results we derived conditions that hold for the singular 

values of normalized strongly e-dependent set of vectors. The next step is to 

search for any conditions holding for the corresponding singular vectors.

Proposition (5.5): Let A=[ri,r2 ,... ,rm]^eRmxn, m<n, rj^O, p(A) = 1. Let 

An=[¥i ,V2, • • • j V ^ e R 1™ 11 be the normalization of A with S.V.D. of the form 

UIW^, where U=[ui,U2 ,... ,um]eRl71xm, W=[wj,W2 ,... ,wn]eRnxn orthogonal matrices 

and IeRmxn with Iii=o-j and lij=0 (i=fj). Then, the first column uj of matrix U 

is defined by:

uii = ± --- , i = l,2,...,m (5.33)
m

Proof: Let C=A‘A^eRmxm a real symmetric matrix. From Theorem (5.5) we have 

that the eigenvalues of C are m and 0 with multiplicity m-1. The first column
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u\ of matrix U is the eigenvector of C corresponding to the eigenvalue X=m. 

Vector uj satisfy the equation:

C'uj = X‘ui (5.34)

or in matrix terms:

cll C12 ... Clm
i
r—HZJ

1___
C21 c22 ••• c2m U21 U21

= nr

cml cm2 ••• cmm uml uml

(5.35) can be written as: 

m
Z Cij'Uji = nruii, i=l,2,...,m 

j = l

(5.35)

(5.36)

From Theorem (5.5) it is known that |c-j j | = 1.

Thus, after taking absolute values in (5.36) we obtain the following system of 

equations:

m
Z |ujj| = m | u-j 1 1, i=l,2,...,m (5.37)

j=l

or explicitly

|uii|+...+|u,i|+...+|umj|=m|Uii|, i=l,2,...,m (5.38)

Taking into account the orthogonality of vector uj e.g.

2 2 2
U1 1+U2 1+...+umi=l, the equations (5.36) are true for

v/iT
Iu1 1 1= Iu 2 1 1 = ••• = IumlI = ---

m

Therefore, the coordinates of vector uj satisfy:

u ii = ± —  , i = 1 ,2 ,... ,m 
m

(5.39)

(5.40)

Remark (5.5): The result of Proposition (5.5) can also be stated as: For a 

given normalized matrix AeRmxn with p(A)=l, the coordinates of the left
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singular vector corresponding to the largest singular value o^ have value ±---
m

The numerical version of Proposition (5.5) may be stated as:

Proposition (5.6): Let A=[rj ,1 2 ,... ,rfn]teRmxn, m<n, r^O, pe(A) = 1 for some 

e. Let Â j= [vj,v.£» • - • »v^]teRmxn be the normalization of A with S.V.D. of the 

form UIW^, where U=[uj,U2>... , UmJeR1™ 111, W=[wj,W2 ,...,wn]eRnxn orthogonal 

matrices and IeRmxn with Iü=Oi and lij=0 (i=fj). Then, the first column u^ of 

matrix u is defined by:

x/irT
Uii « ± --- , i=l,2,...,m

m
(5.41)

Example (5.2):

Let A
0.365 0.730 0.548 0.183

-0.049 -0.098 -0.073 -0.024

O y A
eR*"^ be a given matrix

The normalization of A is :

An =
0.365 0.730 0.548 0.183

-0.365 -0.730 -0.548 -0.183
eR2x4

The S.V.D. of An is: An=UIWT, with U=[ui,M2 ]eR2x2,

I =
oi

o2
eR2x4, WTeR4x4 and o^O. 141421 • 10 « Jl,

02=0.158051 * 10"H<e=0.1 * 10'1®, thus pe(A) = l. The column uj of U is

J2~ i
Mi = (-0.7071 0 .7071)t  «  ( ------ , ------ ) .

2 2
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5.5 APPROXIMATION OF MATRICES
Let A,BeRnxn be given matrices and suppose we wish to determine whether 

A was produced by a two-sided "rotation" of B; that is, is A=UBV for some 

orthogonal matrices UeRmxm, VeRnxn ? More generally, if we consider all the 

possible two-sided "rotations" UBV of the given matrix B, how well can we 

approximate A in the sense of least squares?

We seek to choose orthogonal matrices UeRmxm and VeRnxn to minimize

I|a -u b v||f .

It can be proved [Horn, 1] that for A,BeRmxn and p=min{m,n}

P 2 / 2
min{||A-UBV||p:UeRmxm and VeRnxn orthogonal }=[ Z [o-j (A)-o-j (B)]^] (5.42)

i=1

In particular, A is a "two-sided rotation" of B i-( and only if A and B 

have the same set of singular values.

This result can be applied when it is desired to find a matrix A 2eRmxn 

that has p(Aj)=k^<k and most closely approximates a matrix AeRmxn, p(A)=k in 

the Frobenius norm.

Let A=VZW^ be a singular value decomposition of A. Let I2 be the same 

as I except that only 0 1 ,...,ok are used; the remaining n-kj "diagonal"

entries of I] are zero. Then the matrix Ai=VIiW^ has the required property.

In fact, this is true because:

min{||A-Ai||p}=min{||A-VIiW^Hp:VeRmxm and WeRnxn orthogonal}=

k k
9 1/2 o 1/2

[Z [Oi (A)-Oi (Z2)]2] =[ Z [0i(Z)-0 i(Zi)]2] =ok +1(Z)+ok +2(Z)+...o-Ka) (5.43)
i=l i=l

The value attained in (5.43) is actually the smallest value that relation

(5.42) can take in that specific case.

The preceding result can be stated as:

Proposition (5.71: Let AeRmxn, p(A)=k>0, A=VZW^ the singular value 

decomposition of A, kj<k. The matrix A 2eRmxn with p(Aj)=k2 that most closely 

approximates A in the Frobenius norm is given by Aj = V Z j , when Z2 is the 

same as Z except that only 0 1 ,...,ok  ̂ are used; the remaining n-k] 

"diagonal" entires of l\ are zero.

The following question arises immediately from Proposition (5.7).
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Is the given approximation "best" only for the Frobenius norm or and for 

other norms as well?

The following tools are useful for obtaining an answer to the previous 

question.

Notation (5.11 [Horn, 1]: We recall that a vector norm ¡•|| on Rmxn is said 

to be unitarily invariant if

II WAV || - | A |

for all AeRmxn and for all orthogonal matrices UeRmxm, VeRnxn.

If AeRmxn is a given matrix and if A=VIWT is a singular value 

decomposition of A, then ||A|| = ||VIWT|| = ||l|| for any unitarily invariant norm ||*||. 

Thus, a unitarily invariant norm of a matrix of a given size depends only on 

the set of singular values of the matrix.

Two familiar examples of unitarily invariant norms are the Frobenius 

(Euclidean norm) and the spectral norm. If the singular values of 

X=[x-j j]eRmxn are o\>02>..->0p>O, p=min{m,n), then

„ , " m . , 2 1 / 2 P 2 1 / 2
11% - ( i i |x ij|2) - ( i 0,)

l|x| 2 = max
INI;

y=fO II y II2

T 1/2
- [<p(X1X)] =0 1=max{0 1 ,...,0 p}

Theorem (5.7) [Horn, 1]: Let A,BeRmxn, be given matrices with singular

value decompositions A=ViI(A)wj and B=V2 ^(B)W2 with orthogonal Vi,V2eRmxm 

and orthogonal Wi,W2eRnxn and in which the "diagonal" elements of both 1(A) 

and 1(B) are arranged in decreasing order. Then || A-B|| >|| I (A)-1(B) || for every 

unitarily invariant norm ||*|| on Rmxn.

One consequence of Therorem (5.7) is a generalization of the problem of 

finding a best (in the sense of least squares) rank kj approximation to a 

given matrix AeRmxn p(A)=ki>0, considered before for the Frobenius norm. If 

||*|| is a unitarily invariant norm and if AieRmxn has rank kj, then

oi(Ai)>o2 (A1)>...>O|<1 (A1)>0=Ok1+1 (A1)=...=Op(A1), where p=min{m,n). Thus,

l|A-A]|| > ||l(A)-I(A])|| -
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= ||diag(o1 (A)-o1 (A1),...,okl(A)-okl(A1),0 |<1+1 (A1),...,0 |<(A))|| > 

||diag(0,0,...,okl+1 (A),...,ok(A))||

where we have used the fact that a unitarily invariant norm on diagonal 

matrices is a monotone norm because it is a symmetric gauge function of the 

diagonal entries. [Horn, 1].

Furthermore, equality is possible for A^VIiW^, where A=VIW^ is a singular 

value decomposition for A and Ei=diag(oi(A),...,ok (A),0,...,0).

Thus for any AeRmxn, p(A)=k and any AieRmxn of rank kj<k, we have the

bounds

||A-Ai|| > ||diag(0,...,0,okl+1 (A),...,ok(A))|| >

°k(A)||diag(0 ,.. .0 ,1 ,... ,1)||

for any unitarily invariant norm (there are kj zero terms on the diagonal of 

the last expression) in which the first inequality, but not generally the 

second, is sharp.

The second inequality (which follows solely from monotonicity of symmetric 

gauge functions if A is nonsingular and is trivial if A is singular) has the 

advantage that its dependence on the norm is a function of k only and not of 

A. In particular, this says that for any nonsingular matrix AeRmxn, p(A) =k 

and any unitarily invariant norm||*||, we have the sharp bound

||A-Ai|| > ok(A)||diag(0,...,0,1)|| (5.44)

for the distance between A and any singular matrix Aj; that is, the minimum 

distance from A to the closed set of singular matrices (with respect to the 

unitarily invariant norm ||-||) is ok(A)||diag(0,... ,0,1)|| and

II X
M l  2 T 1 / 2

2 = ™ax T T *  " [*<X'X>] - ° 1 ■ max(oi,...,op)
y+0 |y|2

The case of approximating a given matrix AeRmxn by a rank 1 matrix Aj 

occurs frequently enough in the applications that it deserves special mention. 

Applying Proposition (5.7) for k̂  = l we have that the matrix AieRnw'° with 

p(Ai)=kj that most closely approximates A in the Frobenius norm is given by 

Aj=VZiW^=V’diag(oi,0 ,... ,0 ) •w"*"=oiywt, where is the largest singular value 

of A, and y and w are the first columns of the orthogonal matrices V and W in 

a singular value decomposition of A, respectively. A useful observation about
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v and w is that they are unit vector solutions of the pair of the symmetrical 

eigenvalue-eigenvector problems

T 2 T ^
AA v = oi’v, A A'w = oj’w

where is the largest eigenvalue of the positive semidefinite matrix A^A 

(and AAT). This observation does not uniquely determine v and w, of 

course; one difficulty is that the eigenspaces associated with 
2 2

oi need not be one-dimensional. If oi is a simple eigenvalue of A^A (and 

hence of AA^), however, the eigenvectors v and w are determined up to scalar 

factors of modulus 1 and must therefore be scalar multiples of the respective 

first columns of the orthogonal matrices V and W in a singular value 

decomposition A=VIW^.

When we have to do with strongly e-dependent sets of vectors the 

following problem arises:

Given a normalized matrix AeRmxn with p£(A)«l find a "best" rank 1 

approximation to A.

According to the previous results, if A=VZW^ is a singular value 

decomposition of A, then a "best" rank 1 approximation to A in the Frobenius 

norm is given by Ai=0 ]*yw^, where oi is the largest singular value of A that 

is greater than the given accuracy £, and y and w are the first columns of the 

orthogonal matrices V and W of the singular value decomposition of A, 

respectively.

Thus, A 1=[r1 ,r2 ,...,rm]t=oi-v-wt =

o r

VII °lvllwll °1vllw21 ... olVllwnl

V21 *[wn W2 i ... wnl] = °lv21wll °iv21w21 ... o1v2iwnl

vml °lvmlwll °lvmlw21 ... ormiWn!

(5.45)

and taking into account Proposition (5.5) we conclude that |Hi| = IJ221 = * 

which actually shows that p(Aj)=l.

. = m-Mnl »

All the above results can be applied in order to encounter the following

issue:
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Problem: Given a set of m unit length vectors ¿ieRnxl, i=l,2,...,m that 

for a given tolerance e are strongly e-dependent, which is the "best" 

representative of the set?

The notion of "best" is considered in the following sense. The "best" 

representative of a set is considered to be a vector that forms equal angles 

with all the vectors of the set.

The vectors a^, i=l,2,...,m form the normalized matrix A=[aj,¿2 ,...,am ]t with 

p£(A)«l. This matrix is approximated bythe rank 1 matrix Ai-oi'yj-wi1 , where 

oj is the largest singular value of A that is greater than e, and vj, wj are 

the first columns of the orthogonal matrices V and W of the singular value 

decomposition VIW^ of A, respectively. From (5.45) we deduce that the rows 

ii, i=l,2,...,m of matrix A are approximated by:

¿i = oi-Vii'W! (5.46)

Generally, we can say that each vector a^, i = 1,2,...,m of the original 

set is approximated by (5.46).

Let wj the right singular vector that corresponds to the singular value 

oj. Then,
t t

<wi,Ii> = ai'wj = ojv-jiwi'wi, i = 1,2,..., m (5.47)

(5.47) can be written as

W11

[oiviiwn olVilw2i ... olVilwnl]
W21 2 2 2 

°lvi1W 1 l+0 lvilw2 1+-••+°lvi¡wni =

wnl

2 2 2
=oivii(wn+w2 i+.. .+wni) = 0 !Vi l 5 i = 1 ,2 ,...,m (5.48)

From Proposition (5.5) we conclude that:

J\rT
<w i , a^> = ± 0 1---- , i=l,2,...,m (5.49)

m

Finally the angles 0̂  between the vector wj and the vectors ai are given by:

I <wj, a-j > | TnT
cosQi = ----------  = oi ---- , i = 1,2,...,m (5.50)

b i h k i l z
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From (5.50) it is evident that the vector forms equal angles with the 

approximations of the original vectors thus, it can be considered as the 

"best" representastive of the given set.

Remark (5.6): For a given strongly e-dependent set of vectors with 

corresponding matrix A=VIWT, where VIWT the S.V.D. of A, the "best" 

representative of the set is the singular vector wj of W corresponding to the 

singular value 0 .̂

Example (5.41:

Let /l={a1=(0.6571407, -0.7118352, 0.2463886, -0.0273753)t, 

a2=(-0.6571219, 0.7118482, -0.2464010, 0.0273773)t) 

be a set of normalized vectors. The corresponding matrix A has S.V.D. of the

form A=VIW^ with V e R ^ ,  1= 1 eR2x4 , W = [wi,w2 ,W3 ,W4 ]eR4x4

where ox « 0.141421-10 = J2, o2=0.18446936'10'4 <0.1 -10"3 .

Evidently, for £=0.1 * 10_ 3 the set is strongly e-dependent. The best

representative of the set is given by:

wx = (-0.6571313, 0.7118417, -0.2463948, 0.0273763)t.

5.6 THE GRAMIAN OF GIVEN VECTORS AND THE SCHUR COMPLEMENT
Two useful tools that can be successfully used when we are dealing with 

nongeneric computations are the Gramian of given vectors and the Schur 

complement. Both of them have widespread applications in several areas of 

matrix theory and a brief presentation of them is given in the sequel.
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Definition (5.7) [Gant., 1]: Let xi,x2,•..,Xm vectors eRn. The matrix

G =

(xrxi)(xi*X2)

(x2 *xi)(x 2 *X2 )

(ar*n)

U 2 ‘Xm) eRmxm

(Xm'xi)(xm ‘x2) ••• (Xm'Xm)

(5.51)

is called the Gram matrix of the vectors xj,x2,•••>Xm and the determinant Gm = 

G(x i ,x 2 ,•..,Xm)=det(G) is called the Gramian of the vectors x\,x2 ,...»x^.

Characteristic Properties of the Gramian and the Gram matrix

(I) One of the most important abilities of Gramian is that it provides us

with an important criterion about the linear dependency of vectors.

Theorem (5.8) (Grain's criterion) [Gant., 1]: The vectors xj,x2, • • • >2<m are 

linearly independent if and only if their Gramian is not equal to zero.

The following Corollary is implied from the preceding Theorem.

Corollary (5.4) [Gant., 1]: If any principal minor of the Gramian is zero, 

then the Gramian is zero.
■

(II) Gram matrices are related with positive definite matrices. In fact, a 

positive definite Hermitian matrix and a Gram matrix can be made equivalent.

Theorem (5.9) [Horn, 1]: Let GeC*0^  be the Gram matrix of the vectors 

{wi,w2 ,...,wk}cCn with respect to a given inner product (.,.), and let 

W=[wj ,w2,... ,wk]eCnx*c. Then

(a) G is positive semidefinite;

(b) G is nonsingular if and only if the vectors 

wi,w2 ,...,wk are independent;

(c) There exists a positive definite matrix AeCnxn such that G=W*AW;

(d) p(G)=p(W)=maximum number of independent vectors in the set (wj,w2 ,...,wk)
■

Corollary (5.51 [Horn, 1]: Let AeCnxn be a given matrix. Then A is

positive semi-definite with rank r<n if and only if there is a set of vectors 

S={wj,w2 ,...,wn}cCn containing exactly r independent vectors such that A is 

the Gram matrix of S with respect to the Euclidean inner product.
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Corollary (5.5) proves that a substantial characterization of positive 

semidefinite matrices is that they are always Gram matrices.

(Ill) Orthogonal projections of vectors into subspaces can be expressed using 

the Gramian. [Gant., 1]

Let x be an arbitrary vector in a unitary or Euclidean space R and S an m- 

dimensional subspace with a basis xi,X2 >•••>Xm- It can be shown that x can be 

represented (and moreover, represented uniquely) in the form

x = xs + XM
where (5.52)

xseS and Xf̂ -S

( orthogonality to a subspace means orthogonality to every vector of the 

subspace) xs is the orthogonal projection of x onto S, Xfj the projecting 

vector. xs and x^ can be expressed in the terms of the given vector x, the 

basis of S and the Gramian Gm=G(xi,X2 ,...,Xm) as follows:

Gm

(x-xi)...(x-xm)
—s = - ---------------

Gm

xi

Gm
£m

(x*xi)...(x-xm) x
XN=X‘̂ s = -------------------  (5.54)

Gm

We draw attention to another important formula, 

the vector x^. Then, by (5.52) and (5.54),

o G(xj,X2 , • •.,X|fl, x)
h2 = -----------------

G (x i, x 2 ,..., Xfp)

The quantity h can also be interpreted in the following way:

Let the vectors xi,X2 ,...,xm > x issue from a single point and construct on 

these vectors as edges an (m+1)-dimensional parallelepiped. Then h is the

We denote by h the length of

(5.55)

xi

^m

0



- 1 0 4 -

height of this parallelepiped measured from the end of the edge x to the base 

S that passes through the edges xj,X2 ,... >£m-

Mostly based on (5.55), it can be proved the next extremely useful 

Proposition.

Proposition (5.81 [Gant., 1]: The Gramian of linearly independent vectors 

is positive, that of linearly dependent vectors is zero. Negative Gramians do 

not exist, e.g. for arbitrary vectors xi,X2 >---

(IV) The Geometrical meaning of the Gramian and some inequalities are 

considered next.

Let xi,X2».*.»Xm be arbitrary vectors. We call Vm the volume of the m- 

dimensional parallelepiped spanned by the vectors xi,X2 >•••>Xm- Then,

We denote by X]k,X2 k, • • • >xn|< the coordinates of x^, k=l,2,...,m in an

orthonormal basis of R and set X=[xi|<], i=l,2,...,n; k=l,2,...,m. Due to the 

fact that if x^, i = l,2 ,...,n are the coordinates of a vector x in an

orthonormal basis then

G(x i ,X2 , ... ,x„,) > 0

(5.56)

n
(x*x)= I Ix-j I2, the Gramian Gm, can be writen as: 

i=l

Gm - |XT X

and therefore

2

xijl xij2 ••• xi^m

xi21 xi2  ̂ ••• xi2m

(5.57)

This equation has the following geometric meaning:
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The square of the volume of a parallelepiped is equal to the sum of the 

squares of the volumes of its projections on all the m-dimensional coordinate 

subspaces.

From relations (5.52) and (5.55) it is easily obtained [Gant., 1] the so- 

called Hadamard inequality

G(xi,X2 >-**>Xm) < G(x1)G(x2 )...G(xm) (5.58)

where the equality sign holds if and only if the given vectors xi,X2 ,...,Xm 

are pairwise orthogonal. The inequality (5.58) expresses the following fact, 

which is geometrically obvious:

The volume of a parallelepiped does not exceed the product of the lengths of 

its edges and is equal to it only when the parallelepiped is rectangular.

As an immediate consequence of Hadamard's inequality, for any given set of 

unit length vectors xj,X2 >•••>xm the following inequality always holds

G(xi,X2 ,...,Xm) < 1 (5.59)

In the sequel, a generalization of Hadamard's inequality is given:

G(xi >X2 >... ,xm) ^ G(xj,X2 ,...,Xp) G(Xp_j_j,... ,Xpi) (5.60)

The inequality (5.60) has the following geometric meaning:

The volume of a parallelepiped does not exceed the product of the volumes of 

two complementary "faces" and is equal to this product if and only if these 

faces are orthogonal or at least one of them has volume zero.

(V) The well known inequalities of Schwarz and Bessel can be easily derived 

using the Gramian. For arbitrary vectors x,yeR Schwarz's inequality states 

that

|(x-Y) | 2 < ( r x ) ' ( n )  (5.61)

The validity of Schwarz's inequality follows simply from the inequality 

established above

G(x,y)
(x’xHx'Y)

(rx)(ry)
> o

For an orthonormal sequence of vectors zj,Z2 ,...,(z) the so-called Bessel 

inequality is produced in the following way: Let x be an arbitrary vector. We 

denote by £p the projection of x onto Zp:
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Sp = (x’Zp), P-1,2,...

Then the projection of x onto the subspace Sp=[zi,Z2 ,...,Zp] can be 

represented in the form (see (5.53))

xSp =£l Z.l+^2—2"̂ • • • "*"?p̂ p ’ P=l>2,...

2 2 i 12
But Usp ’X s p H S l I  + t a l  +-*-+ISpl < (x'x)

Therefore, for every p,

l5i|2+l52|2+...+l5p|2 * U'x) (5-62)

This is Bessel's inequality.

In the case of a space of finite dimension n, this inequality has a completely 

obvious geometrical meaning. For p=n it goes over into the theorem of 

Pythagoras

■ -2 , -2 , , 2 , , 2 
|5ll + 1521 +--- + I M  = M

Although most of the recent books establish Schwarz's inequality

independently, it can be derived from Bessel's inequality. In [Ever. & Rys.,

1] it is proved that Schwarz's inequality is a trivial case of the Bessel 

inequality.

(VI) Gramian is connected with the singular values of a given set of vectors 

and satisfies certain inequalities according to the numerical s-rank of this 

set.

Let /I=(a.i, a.2 , • • •, an) be a set of n vectors a-jeRm , i=l,2,...,m with 

corresponding matrix A= [a-jj]eRmxn. Let o\>02>-• .>or, r=min{m,n) be the 

singular values of matrix A. Then, the Gramian of the vectors a^, i=l,2,...,n 

is given by the next formula:

r 2
Gn=G(ai ,¿2 , • •. ,an)=det(AT,A)= il ô  (5.63)

i=l

It is apparent that the next equality is always satisfied.

2
Gn > r,0l (5.64)

In virtue of (5.63) and from Definition (5.3) and Remark (5.3), the following 

bounds for the Gramian of dependent sets of vectors can be derived.
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(i) If the set A is e-independent with p£(A)=r, then

G„ > r-6 2 (5.65)

(ii) If the set A is numerically e-dependent with pe(A)=g<r 

then,

2
Gn < g'oi(n-g)e2 (5.66)

(iii) If the set A is strongly e-dependent with pe(A)=l then,

o 2
Gn < (n-l)e^'Oi (5.67)

iC Ijdi IU = 1
Due to Theorem (5.5),/relation (5.67) can be written as:

Gn < e2 (5.68)

From the above, it is evident that the Gram matrix of given vectors and 

their Gramian, have widespread applications and it can be used in many cases. 

More properties of the Gramian and two methods for expanding it as well, one 

based on Pythagorean equality and another based on Gram-Schmidt 

orthonormalizing process of elements in a Hilbert space, can be found in 

[Wong., 1].

(b) The Schur complement

Definition (5.8) [Carl., 1]: Let

M =
A

C

B

D

eptnxn (5.69)

where F is any arbitrary field, with AeFkxk and nonsingular. The classical 

Schur complement of A in M is the matrix SeF^^'^'Vjiven by the formula

S = D-CA-1B (5.70)

and is denoted by (M/A).
■

The idea of the Schur complement matrix goes back to Sylvester (1851). 

It is well known that the entry s-jj of S, i=l,...,m-k, j=l,...,n-k, is the 

minor of M determined by rows 1,...,k,k+i and columns 1,...,k,k+j, a property 

which was used by Sylvester as his definition.

When MeCnxn is Hermitian, then C=B* and
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S = D-B*A_1B (5.71)

is also Hermitian.

The name Schur is suggested by the well known determinantal formula (for 

the case where M is square) [Cotl., 1]

detM = detA-det(D-CA_1B) (5.72)

Matrices of the form D-CA_1B are very common; perhaps their most 

frequently encountered manifestation is in ordinary or "generalized" Gaussian 

el imination.

(b.l) Classical Results [Carl., 1]

In this section we derive some of the classical uses of the Schur 

complement formula (5.70). First, applying Gaussian elimination (without 

pivoting) successively to the first k rows of the matrix (5.59) (with A 

nonsingular) yields the matrix

I 0 A B A B

1
t—t

1<Cc_>i
____

i

C D

II

0 S=D-CA_1B
(5.73)

Thus, the Schur complement arises naturally in discussions of Gaussian 

elimination, and in mathematical programming. Applying column operations to 

(5.73) to eliminate B yields

I 0 A B

i

1 >—
* 

UD
__

__
__

__
_

i

A 0

1--
--

--
--

--
--

-
l O >

i t—
» 

t-
H

1__
__

__
__

_

C D 0 I 0 S

from which several facts are clear:

(i) p(M)=p(A)+p(S)

(ii) If M is nxn, then detM=detA‘detS

(iii) If M is nxn and nonsingular, then S is also nonsingular

(iv) If M is nxn and nonsingular, then using (5.74) to write M as a product 

of three matrices, and inverting, we obtain the formula of Banachiewicz for 

M'1:

I -A_1B

i----------------

Ot-H<
1 __________

I 0

0 I

-----------------1

1G
O

O

I
1 o >

1

»—
1

«
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A ' U a ^ B S ^ C A " 1 -A^BS ' 1 

-S^CA ' 1 S ' 1
(5.75)

(v) If F=C and M is Hermitian, then InM=InA+InS, where InM is 

the inertia of M.

(vi) If F=C and M is Hermitian, then M is nonnegative definite if and only if 

A and S are.

All the above results were including evaluations with partitioned matrices. 

In such cases the following theorem always hold.

Theorem (5.10) [Gant., 1]: If to the a-th row (column) of the blocks of the 

partitioned matrix A we add the fl-th row (column) multiplied on the left 

(right) by a rectangular matrix X of the corresponding dimensions, then the 

rank of A remains unchanged under this transformation and, if A is a square 

matrix, the determinant of A is also unchanged.

From Theorem (5.10) there follows also another classical result 

concerning the Schur complement.

Theorem (5.111 [Gant., 1]: If a rectangular matrix R is represented in 

partitioned form

R =
A

C

B

D
(5.76)

where A is a square nonsingular matrix of order n (|a |=(=0), then the rank of R 

is equal to n if and only if

D = CA_1B (5.77)

■
From Theorem (5.11) there follows an algorithm for the construction of 

the inverse matrix A ' 1 [Gant., 1] and, more generally, the product CA_1B, 

where B and C are rectangular matrices of dimensions nxp and qxn.
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(b.2) The quotient property

A nice property of the Schur complement called the quotient property is 

concerned next. [Cotl., 1]

A B E F
If M = and A =

C D G H

where A and E are nonsingular, then

(M/A) = [(M/E)/(A/E)] (5.78)

The nonsingularity of (A/E) follows from that of A and E via Schur's 

determinantal formula (5.72). Moreover, it turns out that (A/E) is the 

leading block of (M/E) so the grand Schur complement on the right-hand side of 

equation (5.78) is well-defined. One implication of the quotient property is 

that under the given hypotheses on A and E, the calculation of the Schur 

complement of A in M can be carried out in two stages. Also, the quotient 

property is a very useful tool in providing or verifying a special kind of 

formulas [Temp., 1]:

Given a matrix A and an algebraic relation between entries which all can 

be viewed as Schur-complements, each of a submatrix of A with respect to 

another submatrix of A, choose as matrix E the "greatest common submatrix" of 

all the submatrices mentioned above.

By the quotient property, each coefficient of the formula may now be 

interpreted as a Schur-complement of a submatrix of A/E with respect to 

another submatrix of A/E. Since the dimension of A/E is smaller than of A, 

the representation of the coefficients has become simpler, so one may verify 

the formula to be proved by elementary calculations. Tempelmeier has used 

this method to simplify and unify the proofs of a number of important 

extrapolation algorithms. In [Temp., 1] he proves the cross-rule for Wynn's 

e-Algorithm applying the Schur complement method.

(b.3) Usage of the Schur complement in a Determinantal test [Cotl., 1]

In some circumstances, it is desirable to know whether the leading 

principal minors of a square matrix M=[m-jj] are all nonzero (or, of a 

particular sign, say positive). This can be determined by pivoting and use of 

the quotient formula.

Let M be of order n and denote by M[l,...,k] its leading principal 

submatrix of order k where k=l,...,n:
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M [ 1,... ,k]
m n  ••• mlk

mkl ••• mkk

Now suppose m u  is nonzero (positive). Using m u  as the pivot leads to the 

Schur complement

M^1) = (M/mil),

in which the leading entry is

(1) m12m21
m u  = m22" ------

m u
(M[1,2]/M[l])

Moreover,

(1) detM[l,2]
detmn = ---------

detM[1]

In general, if the procedure is not interrupted by the discovery of a leading 

entry (i.e. leading principal minor) of zero (nonpositive) value, then after 

k<n steps

mil = (M[l,...,k+l]/M[l,...,k]) 

and

(k) (k) detM[l,...,k+l]
m u  = detmn = ---------------

detM[l,...,k]

It should be emphasized here that at each stage, the entries of the new Schur 

complement are easily computed from the matrix currently at hand. This is 

done by pivoting just as in the case of Gaussian elimination. With M=m (°), 

the individual entries of M^) are given by the formula

(k-1) (k-1)
(k) (k-1) mi+l,l ml,j+l

mij - mi+l,j+l ‘
(k-1)

m y

The procedure above has an obvious application to the well known determinantal 

test for positive definiteness.

More applications of Schur complement in computing inertias of matrices, 

covariance matrices of conditional distributions can be found in [Cotl., 1].
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Also applications to eigenvalue problems are given in [Hayn., 1]. Interesting 

results concerning generalized inverses, solutions of optimal rank problems, 

shorted operators are cited in [Carl., 1].

5.7 "BEST UNCORRUPTED" BASES OF SETS OF VECTORS

5.7.1 Introduction

The already known methods for finding bases, orthogonal or not, for given 

sets of vectors are based on the fact that they virtually transform the 

original data by using mostly Gaussian or orthogonal techniques. Evidently, 

they obtain new sets and amongst the new vectors they choose the required ones 

that span the original set. Thus, the base will be consisted from vectors 

completely different from the given ones. The following problem is considered 

next: For a given set of vectors we would like to choose a "best uncorrupted" 

base, the "best" in a sense to be made precise later. By the term 

"uncorrupted" we mean that we want to find a base for this set without 

transforming the original data and evidently introducing roundoff-error even 

before the method starts. Of course, especially when orthogonal techniques 

are used for the transformation of the given data the roundoff-error is not 

actually remarkable. But when we are dealing with nongeneric computations and 

the evaluation of a base out of a given set of vectors is required, it is 

important to select this base from the original set of data for the following 

reasons:

1) If we are given for example a numerically e-dependent set of vectors by 

using orthogonal techniques the original set will be transformed and the new 

set might not have the initial property any more.

2) When we are interested in evaluating the g.c.d. of a given set, it is 

extremely important to begin the calculating process using the concrete set of 

data or a subset of it.

3) The singular values of the original set will be altered when orthogonal 

techniques are used, therefore the computations will start with a different 

set of singular values.

Let 71={ri ,£2 ,... ,rm} be a set of m given vectors rieRn, i = 1,2,... ,m. 

This set can be expressed in terms of a matrix A=[r]i ,£2 ,... ,rm]teRmxn. Then, 

the problem of finding a "best uncorrupted" base for the set A is transferred 

into finding a "best uncorrupted" base for the row space of matrix A.

For the evaluation of an uncorrupted base without the restriction of 

being in a sense "best", the row-searching algorithm [Chen, 1] can be used. A 

better stable algorithm that applies Gaussian elimination with partial
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pivoting or Householder transformations to the columns of the given matrix can 

also be found in [Wilk., 2], [Chen, 1].

In the sequel, we develop a method for the selection of a "best 

uncorrupted" base of a given set of vectors.

5.7.2 A method of selecting a "best uncorrupted" base for the

row space of a matrix

The following problem is encountered.

For a given matrix AeRmxn with p(A)=r<min{m,n} we want to find a "best" ,in 

some sense, uncorrupted base for its row space.

Combining the preceding theory and the theory developed in Chapter 4 

about the compound matrices, we can easily prove the following important 

Proposition, which gives us an effective algorithm for the selection of an 

uncorrupted base for the row space of a matrix.

Proposition (5.91: Let A= [r^,1 2 ,... p(A)=r<min{m,n},

AN=[y i ,V2 ,...,Vm]teRmxn the normalization of A. Suppose GeRmxrn the Gram

m vr\

matrix of the vectors vj ,V2 ,... ,vm and Cr(G) = [ĉ  j]eR^r^ Tthe r-th compound 

matrix of G. If c-j-j =det(G[a/a]), a=(i], i2 »• • • >ir)eQr,m is the maximum 

diagonal element of Cr(G), then a most orthogonal uncorrupted base for the row

space of A, consisits from the vectors:
{Ei1,Ei2,.-.*Eir}.

The proof of the above result readily follows from the relationship 

between Cr(G) and the Gramian.

Proposition (5.9) provides us an uncorrupted base for the row space of a 

given matrix and if we regard the rows of this matrix as given vectors we 

obtain an uncorrupted base for this set of vectors. Due to the constructive 

process, this base contains vectors that are mostly orthogonal, therefore if 

we define the notion of a "best base" as a base consisting of vectors that are 

mostly orthogonal, the previous defined base satisfies this definition.

Remark (5.7): The most orthogonal uncorrupted base may not be uniquely 

defined. In the following, any such base will be referred to, as a best 

uncorrupted base.
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Example (5.4): Let >1=(a.i = (3,1,0)^, a£= (-3,2,1)^, a3=(6,5,l)t} be a given 

set of vectors. We want to find a best uncorrupted basis for this set.

The corresponding matrix to the given set A is:

3 1 0

A=[a1,a2,a3]t = -3 2 1 eR3x3, p(A)=2<3

6 5 1

The normalization of A is

3/7l0 l/TTo 0

aN = [Yi,v2,v3]t -3/714 2/714 1/714

6/762 5/762 1/762

The Gram matrix of vectors vi,v2,V3 is:

G a N'aNT =

1 -7/(7To7l4)

-7/(MM) - 1

23/(7Io762) -7/(MM)

23/(710762)

-7/(MM)
1

In the sequel, we evaluate C2 (G)eR (2)x (2)

c = c2(G)

0.65 0.30914 -0.78

0.30914 0.15 -0.37

0.78 -0.37 0.94

The maximum diagonal element o f  C2(G) is C33 and is given by: 

c33 = det(G[a/a), a = (2,3)eQ2>3

Therefore, a best uncorrupted base for the set A is consisted from the 

vectors a2,a3 and analytically is:

Bu = (bi=(-3,2,l)t, b2 = (6,5,l)1}.
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5.7.3 The numerical algorithm of the method and its analysis 

a. The numerical algorithm

Given A=[a],1 2 ,.. • and e a specified tolerance, the following

algorithm overwrites A by the row independent matrix.

Algorithm UNCBAS

STEP 1: A^ := the normalization of A 

An := [yi,y2,...,vm]teRnixn 

P := Pe (An )

G := the Gram matrix of the vectors Y i ,V2 ,...,ym 

m!
numb := --------

P !(m-p)!

STEP 2: for i = l,...,numb

construct all the sequences

ri = (ri|>ri2’*••>rip)eQp,m

STEP 3: for i = l,...,numb

r .

Ci := gri 

ind-j := i

STEP 4 : Reorder the pairs (c-j,ind-j), i=l,2,... ,numb 

such as. cj^C2^*. *^pumb

STEP 5: The row independent matrix is given by 

for i = 1,..., p 

for j = 1,..., n

aij arir)d ,.J 
1,1

Alg: 5.1
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Algorithm UNCBAS is consisted from some elementary algorithms that are 

developed seperately.

a.l Algorithm NORMAL

Given AeRmxn, the following algorithm computes the normalization A^ of A. 

Matrix A is overwritten by A^.

Computational complexity: 2mn flops

Error Analysis of algorithm NORMAL

Let A =

a n  a12 ... a!

a21 a22 ••• a2n

aml am2 ••• amn

eRmxn be a given matrix

and let A^eRrr’xn be its normalized form. Using floating point arithmetic and 

according to backward error analysis we shall prove that:

(i) fl(An )=An+En , where E^ a matrix accounting for the roundoff error.

(ii) Matrix E^ is suitably bounded.

Let us develop the above assumptions more analytically:

1ij(i) Each element v^j of A^ is equal to — -

( i 4 j ) %
j=l

. Thus we must
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analyse the floating point evaluation fl

is performed executing the following steps.

n 2
STEP 1 : Evaluate a = f12 ( I aij)

j=l

STEP 2 : Evaluate b = fl(a1/2)

ai i
STEP 3 : Evaluate c = f1(— ) , i=l,2,...,m, j=l,2,.

b

This computation

>n.

Following an analysis cited in [Wilk., 1] we carry out the succeeding 

evaluations.

2 2 2 _ 2 2 
STEP 1 : a = fl2(aii+a-j2+ * • *+ain) = ail(1+£) + * • •+ain(1+E) »

1 1 1 1-2t2e|<n-U3 , where U3 =(l+----)----p c.
P 2

2t2=2t-0.08406,

P is the machine base, t is the number of digits of machine word. 

It can be easily proved that:

2 2 2 l Z
a = fl2(ail+ai2+ -•-+ain) = (ail+---+ain)(1+£)> |s|<1.00001 * u (5.79)

where u = •*

1
pi"* if rounded arithmetic is used

the unit roundoff error

,1 -t if chopped arithmetic is used 

n
It is important the above computation l a-jj to be accumulated with a

j=l
2t-digit mantissa and thus we used f12 () computation for its evaluation. 

STEP 2 : b = fl (a1/2) = a1/2(l+n) = J an+...+a?n >/I+e ( 1+n),

n < 1.00001 * u (5.80)

We set J1+e (l+n)=l+^ and finally we have
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b = fl(a(ii) 1/2)=aV2(i+^), | ̂  | <2.00002 * u

STEP 3
di j

c = fl (— ) =
aij

l1/2(1+5)
d+k), <u

1+k
We set l+0i i = —

J 1+5
and from (5.80), (5.81) we derive that | j | <3.003*

c = fl(— ) = —  (l+Oij), 10ij |<3.003*u 
b b

Combining (5.80), (5.81), (5.82) we remark that 

fl(Vij) = v-j j(l+0-j j), 10i j | <3.003' u

Therefore it is evident that fl(An )=A^+E^, where

V11011 v12e12 ••• vlnel

En = v21e21 v22022 ••• v2n02n eRmxn is the error matrix

vml0ml vm20m2 ••• vmn0mn

(ii) In order to bound matrix we set £ij=Vij0ij. 

We remark that each v-jj<l, thus

l£ijl = Ivij®ijI - 3.003‘u

Consequently,

|Ê l < 3.003'u

1 1 

1 1

1

1

1 1 ... 1

If the || I« is used, ¡En I«, < 3.003n’u.

(5.81)

u

(5.82)

(5.83)
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a.2 Algorithm RANKHA

Given AeRmxn, r=min{m,n}, o^, i-l,2,...,r oi>0 2>...>or>0 the singular

values of A, e a tolerance, the following algorithm computes the numerical 

e-rank, pe(A) of matrix A.

rank := 0 

for i = 1,..., r 

if Oi>e then 

rank := rank+1

Alg: 5.3

a.3 Algorithm GRAM

Given A=[aj,¿2 ,... ,am]teRnrixn, the following algorithm evaluates the Gram 

matrix GeRmxm of vectors a^,1 2 ,...,am .

Computational complexity:

III

/(m-i)n
2 2 nrn n m n

--- - mn + - a 0(---) flops
2 2 2

Error Analysis of algorithm GRAM

Let 1 1 ,1 2 ,... ,am be a given set of vectors with a-jeRn and let G=(g-jj)eRmxm

be their Gram matrix. Using floating point arithmetic and according to 

backward error analysis we shall prove that:
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(i) fl(G)=G+E, where E a matrix accounting for the roundoff error.

(ii) Matrix E is suitably bounded.

Let us discuss the above assumptions more specifically.

t t
(i) From Definition (5.7) g -j j =a-j*aj, i ,j=l,2,...,m. Thus, f 1 (9 i j )=fl(li’ij)

Since each g^j is actually an inner product, from [Wi1k., 1] we conclude that

flUi'ij) = ii-aj+eij , where

| £i j |<ui((n+l) |a-j! | * | aj! | +n | a-j2 1 * | aj21 + . --+2 1 ain | * | ajn |}

ui

(
1 .

—  Pi_T if rounded arithmetic is used 
2

<
T=t-logp(l.01),

if chopped arithmetic is used

V
(3 is the machine base and t is the number of digits of machine word.

Therefore fl(G)=G+E, E=(e-jj)eRmxm

(ii) From (5.84) we remark that

(5.84)

EI < (n+1)*uj

U l l H i l l  I ai |1 * | a2 1 ... Ill I1* |lm 

I a.21t ' U21 U211 * U21 ••• U21t * I am (5.85)

The relative error is given by the expression 

|G-fl(G)|
Rel = ---------  . Taking into account (5.85), we have

IG |
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Ml4-Ull l « l ‘ - 1*2 1 ••• Ui

42I4' Uil 1a2!4 - 1*2 1 ••• U2

UmU'Ull Um|t *|a2| ... |am| | am|
Rel<(n+1)’uj• ----------------------------------------  (5.86)

1 t 1 1 t 1 t 1
U r  ail U r■S2 I U r  ami

1 t , 1 t 1 1 1
U2*ail U 2 'A2 I U2‘ m̂l

1 1 1 1 1 1 1 1 1
Um '^1 1 U r n ' l l  •• Um‘-Sml

l  . | . 4- . .

If Ui *aj|«|li | | a.j | for i, j=l,2,... ,m then the relative error in fl(G) 

may not be small and evidently algorithm GRAM may not be stable.

b. Implementation of the algorithm

For the implementation of algorithm UNCBAS, some subroutines performing 

basic tasks are required. Such subroutines can be found in various libraries 

and can be taken from them.

For the evaluation of the singular values of a matrix AeRmxm we use 

subroutine F02WCF of NAG Library. The computational complexity of this 

subroutine is approximately proportional to:

8n^(m+n/2) flops, m>n 

10m^(n+m/2) flops, men

For the evaluation of the determinant of a given matrix AeRmxm, 

subroutine F03AAF of NAG Library is used. The computational complexity of 

F03AAF is proportional to O(m^) flops.

The selection of all the sequences rieQp?m, i=1,2, ( ) is achieved by 
P

using algorithm CONSEQ that was developed in Chapter 4 and is accomplished in 

0{(p)} flops.
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In the sequel, we discuss few things about the space complexity of UNCBAS. 

Basically, algorithm UNCBAS needs one mxn array for storing the original

matrix and two mxm arrays for the Gram matrix and the determinantal
m

evaluations. Moreover, it requires an ( )xp array for keeping in memory all

the sequences of QP)[T1. Also, it uses an ( ) array for storing the diagonal

elements of the constructed compound matrix. These extra requirements can

be avoided if immediately after the evaluation of each
m ,

sequence r-j of Qpjm, i = l,2,..., ( ), we compute the corresponding element

r .
gr  ̂ of the compound matrix. We compare this element with the previous one

and keep in memory only the largest one. Therefore, except the basic memory 

requirements, we need only one more array of dimension p.

Algorithm UNCBAS was programmed [Mit. & Kar., 1] and tested for several 

cases. Some numerical examples illustrating its application are presented in 

Appendix B.

5.7.4 Further Comments

In some cases it is required to choose an uncorrupted base out of a given 

set of vectors that will satisfy some concrete initial restrictions. 

Therefore, sometimes we are more interested in finding an uncorrupted base 

fulfilling certain conditions no matters whether it is "best" or not. Next we 

develop such a case.

Suppose we are given a set of vectors {r\,1 2 ,...,rm) with corresponding 

matrix A= [ , 1 2 ,... ,rm]^eRmxn, p(A)=q<min{m,n) and we want to find the row 

independent matrix under the restriction that between all the possible 

combinations of linearly independent rows, the one with the smallest row 

indices is preferred, e.g. For m=6, n=8, q=4, between the possible sets

(r'i’r3 >r5 ’r7 )> (ri,r5 ,r7 ,rg) the set (rj ,r3 ,r5 ,r7 ) is preferred. This

restriction can be applied in the case of evaluating the g.c.d. of several 

polynomials (Chapter 7). Before starting the evaluation process, sometimes it 

is required to select a base amongst them. Then, taking as vectors the 

polynomials ordered in increasing order and as matrix A their coefficient 

matrix, we want to find the row independent matrix A under the previous 

condition. The base selected in that way contains as more polynomials as
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possible of lowest degree and evidently the computational process will be more 

simplified.

Algorithm RINDMA

Let A=[r1,r2,...,rm]teRmxn be a given matrix, p(A)=q<min{m,u}, e a given 

tolerance. The following algorithm finds the row independent matrix

A=[ri1,r-i2,... ,r^]teRqxn under the restriction that {ii,i2 » • • -»iq) is the

smallest possible combination of row indices. The variables rind and rdep 

count the number of independent and dependent rows of matrix A, respectively.

rind := 0 

rdep := 0 

for i = 1,...,m-l

STEP 1: Compute the Gram matrix G 

of vectors rj,r2,... »r-j+j 

if G(r1 ,r2,...,ri+1)>e then 

rind := rind+1 

if rind = q then 

quit

el se

rdep := rdep+1 

throw row r-j+j from A 

A: = [ri,r2,...»rm-rdep]1 

repeat STEP 1

Alg: 5.5

5.8 CONCLUSIONS
The aim of this Chapter was to provide efficient numerical techniques 

dealing with issues in nongeneric computations. The new notions of e- 

independent, numerically e-dependent, strongly e-dependent, fuzzy e-dependent
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sets of vectors were defined and a necessary and sufficient condition relating 

the numerical e-rank of a strongly e-dependent set and its singular values was 

proved. The substantial problems of choosing a "best" representative of a 

strongly e-dependent set and of selecting a "best uncorrupted" base for the 

row space of a matrix were also considered. Therefore, this Chapter serves the 

following purposes:

(i) It provides a detailed survey concerning the most characteristic 

properties of the Gramian of given vectors and the Schur complement.

(ii) It provides efficient numerical tools for handling nongeneric 

computations.

(iii) It provides a stable algorithm for selecting a "best uncorrupted" base 

for the row space of a matrix.



C H A P T E R  6

SURVEY OF METHODS FOR FINDING THE 

GREATEST COMMON DIVISOR OF POLYNOMIALS
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6.1 INTRODUCTION
The problem of finding the greatest common divisor (g.c.d.) of two or more 

members of a Euclidean ring has interested mathematicians for a very long 

time, and has widespread applications. In the theory of linear multivariable 

control systems, when the elements are polynomials, g.c.d. determination 

arises in the computation of the Smith form of a polynomial matrix and 

associated problems such as minimal realization of a transfer function matrix 

[K&1., Fal. & Arb., 1], [Pac. & Bar., 1]. There are also applications in 

network theory [Fry., 1]. When the ring is the set of integers, construction 

of g.c.d. occurs in solution of systems of linear diophantine equations and 

integer linear programming [Pac. & Bar., 1].

Since the existence of a common divisor of polynomials is a nongeneric 

property, small errors in its computation can lead to incorrect results. 

Therefore, extra care is needed in order to develop efficient algorithms 

calculating correctly the required g.c.d.

The algorithm associated with Euclid is the oldest known solution to the 

greatest common divisor problem. This algorithm computes the positive greatest 

common divisor of two given positive integers. However, it is readily 

generalized to apply to any other Euclidean ring and thus to polynomials in 

any number of variables over any unique factorization domain in which greatest 

common divisors can be computed.

In nineteenth century the developing apparatus of determinants was applied 

to the greatest common divisor problem by J.J. Sylvester. Other methods that 

came out later on, were either a variation of Euclid's algorithm or they used 

Sylvester's Resultant on different guises.

The purpose of this Chapter is to give a comprehensive survey of algorithms 

for computing the g.c.d. of many polynomials. The algorithms presented here 

are divided into two categories.

The first category consists of algorithms which are based on Euclid's 

algorithm. Examples of these include Collin's algorithm, generalized Euclid's 

algorithm, and Routh's algorithm. The algorithms in the above category are 

also extended to unique factorization domain.

In the second category, some well known matrix methods for computing the 

g.c.d. are presented. These include methods due to Blankiship, Sylvester, and 

Barnett.

In both categories, numerous examples are presented to aid the underlying 

theories in the g.c.d. calculations.
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6.2 EUCLID AND RELATED ALGORITHMS FOR COMPUTING THE 

G.C.D. OF POLYNOMIALS [Knu., 1]

Let F field and G[s] the ring of polynomials over F. Let a(s), b(s) be 

two given polynomials eF[s] with b(s)=)=0. Then, it is well known that there 

exists unique polynomials q(s), r(s)eF[s] such that a(s)=q(s)b(s)+r(s)with 

either r(s)=0 or 0<deg{r(s)}<deg(cj(s)}.

The following algorithm may be used to determine q(s) and r(s)

Algorithm DIV (Division of polynomials over a field!

Given polynomials

a(s)=amsm+am_ism'1+...+ajs+ao, b(s)=bnsn+bn_isn"1+...+bis+bo 

over a field F, where bn=(=0 and m>n>0, this algorithm finds the polynomials

q(s) = % - n s,t1'n+-• -+qo> r(s) = rn-lsn l+-• -+r0 (6.1)

over F with either r(s)=0 or 0<deg{r(s)}<deg{cj(s)}.

When the algorithm is terminated an_j=rn_i,...,ao=rQ. The computational 

complexity of this algorithm is proportional to n(m-n+l). For some reason 

this procedure has become known as "synthetic division" of polynomials. Note 

that explicit division of coefficients is only done by bn; so if b(s) is a 

monic polynomial (with bn=l), there is no actual division at all.

If bn has a very small absolute value, large errors may arise on a 

digital computer implementation of this algorithm. Hence this method may not 

be numerically stable. (This situation is similar to the Gaussian elimination 

without any pivoting).

Definition__(6.1) [God., 1]: Let pj(s),P2 (s),...,pn(s)eF[s] be given

polynomials. The polynomial d(s)eF[s] which satisfies:
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(i) d( s )  |p-j ( s ) , i=1,2,... ,n

(ii) If <p(s) |pi ( s ) , i=l,2,... ,n then <p(s) |d(s )
(iii) d(s) is monic

is called the greatest common divisor (g.c.d.) of p-j ( s ), i = l,2,...,n and we 

denote it by d(s) = (pj(s),P2 (s),...,pn(s)). If d(s) is a nonzero constant 

(independent of s), then the polynomials are said to be relatively prime or 

coprime.
■

Proposition (6.1) [God., 1]: Let a(s),b(s)eF[s] be given polynomials. Then 

they have a uniquely defined g.c.d. d(s)eF[s] which can be expressed as

d( s )  = o(s)a(s)+T(s)b(s) (6.2)

for o ( s ) , T ( s ) e F [ s ] .
■

Proposition (6.21 [God., 1]: Let Pi(s),P2 (s),...,pn(s)eF[s] be given

polynomials. If d1(s)=p1(s), d2(s)=(d1(s),p2(s)),

d3(s) = (d2(s)>P3(s))>--->dn(sM dn-l(s)> Pn(s))> then

dn(s) = (Pi(s),p2(s),...,pn(s)) (6.3)
■

We present now a method for the evaluation of the g.c.d. Given two 

polynomials a(s) and b(s), by a sequence of long divisions often called the 

Euclidean algorithm, we can write

a(s) = qi(s)b(s)+rj(s) deg(r1(s)}<deg{b(s))

b(s) = q2 (s)n(s)+r2(s) deg(r2(s) }<deg{r] (s)}

y'l (s) = q3 (s)r2(s)+r3(s) deg{r3(s))<deg(r2(s)}

............................................... (6.4)

rp-2(s) = Qp(s)rp-1 (s)+rp(s) deg{rp(s)}<deg{rp_1(s)}

rp-l(s) = dp+l(s)rp(s)+0

This process will eventually stop because the degree of rj(s) decreases 

at each step. We claim that rp(s)=(a(s),b(s)).

From the first equation we see that (a(s),b(s))|rj(s). Using this fact 

and the second relation we have (a(s),b(s))|r2(s). Proceeding downward in the 

same way, finally we conclude that

(a(s),b(s))|rp(s) (6.5)
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From the last equation we have: rp(s)|rp_j(s). Proceeding upward we have 

^p(s)|rp-2(s),...,rp(s)|b(s), rp(s)|a(s). Thus,

rp(s)|(a(s),b(s)) (6.6)

From (6.5), (6.6) we infer that rp(s)=(a(s),b(s)).

Therefore for a(s), b(s)eF[s] given polynomials with deg{a(s)}> deg(b(s)} 

the Euclidean algorithm produces successive divisions according to the 

formula:

ri(s) = qi(s)ri+1(s)+ri+2(s), 1=1,2,... (6.7)

where ri(s)=a(s) and r2(s)=b(s). The polynomials q-j, ri+2 are unique and 

deg{ri+2(s)}<deg{ri+1(s)}.

The set of polynomials C3 ‘r3 (s), c^r^s), C5 *r5 (s),___  where c-j are

arbitrary nonzero constants is called a Polynomial Remainder Sequence (P.R.S.) 

and the essential feature is constructed as part of the process of obtaining a 

g.c.d.

Let di=deg{ci *r-j (s)}, i =3,4,... and note that d3 >d4 >d5>.. .>0. Let 5j =

d-j-d-j+j>0, i =3,4_____ If 5-j =1 for all i>3, the P.R.S. is called normal

otherwise it is called abnormal.

The above method can be formulated into the next algorithm:

Algorithm EUCLID (G.C.D. of polynomials over a field)

Given polynomials a(s), b(s)eF[s], deg(a(s)}>deg(b(s)} this algorithm 

finds the greatest common divisor d(s)eF[s] of them. This procedure is called 

Euclid's algorithm for polynomials over a field; it was first used by S. 

Stevin in 1585.

STEP 1: if b(s)=0 then

d(s) := a(s) 

quit

Calculate the remainder r(s) using Algorithm DIV

(It is unnecessary to calculate the quotient polynomial q(s))
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if r(s) = 0 then 

d(s) := b(s)

quit

else if deg{r(s)} = 0 then

Replace b(s) by the constant polynomial "1" 

d(s) := b(s)

quit

STEP 2: a(s) := b(s) 

b(s) := r(s) 

Repeat STEP 1

Alg: 6.2

Using algorithm EUCLID and Proposition (6.2) we can calculate the g.c.d. 

of a set of polynomials.

Algorithm SETPOL (G.C.D. of set of polynomials over a field)

Given polynomials pj(s),P2 (s),...,pn(s)eF[s] with deg{pi(s))>deg{p2 (s)})>... 

>deg{pn(s)}, this algorithm finds d(s) = (pj(s),P2 (s),...,pn(s))eF[s]. The 

concrete algorithm uses the fact that if two of the n polynomials are coprime, 

then all of them are coprime.

d^s) := Pits)

for i = 2,3,... ,n

Using algorithm EUCLID evaluate

d i (s) := (d-j _i (s), Pi(s))

if deg{d-j (s))=0 then

d(s) := 1

quit

d(s) := dn(s)

Alg: 6.3
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Example (6.1): Let us find the g.c.d. of three polynomials:

Pi(s)=s^+s3- s - l , P2(s)=s3+s2- s - l , P3(s )=s ^+2 s 2 -s -2

di(s)=Pi(s)=s^+s^-s-l

d2(s) = (d]_ (s) ,P2 (s) )=(s^+s3-s-l ,s3+s2-s-l)=s2-l

d3(s)=(d2(s),P3(s))=(s2-l,s3+2s2-s-2)=s2-l

d(s)=d3(s)=s2-l
■

In Appendix C, the extension of Euclid's algorithm to unique factorization 

domains is presented.

6.3 ROUTH ARRAY METHOD OF CALCULATING THE GCD OF POLYNOMIALS
6.3.1 Background [Fry., 1]

Consider two polynomials a(s), b(s)eF[s]

a(s) = aism+a2Sm"1+...+ams+am+i
n n 1 (6‘8)b(s) = b ^  +b2s" x+.. .+bns+bn+]

with m>n.

A technique which is essentially equivalent to Euclid's algorithm uses

the Routh array. This has the form:

1st row [rij] al a2 a3 • ..........  am am+l

2nd row t r2 j 1 bl b2 b3 • ........  bn bn+l

3rd row tr3j] M l M 2 M 3  • • • • Mj+1

4th row tr4j] M l r42 M 3  • • • • Mj+1

i-2 row tn-2,j] ri-2,1 ri-2,2 • • • • ri-2,j+1

i-1 row tn -i j] ri-1,1 ri-l,2 • • • • ri-1,j+1

ith row tnj] ri 1 ri2 • • • M j

The third, and each subsequent row is evaluated from the preceeding two 

rows by means of a systematic form of calculation
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ij

ri-2,1 ri-2,j+1

n-i,i n - u + i -
ri-1,1

i =3,4,5, (6.9)

where nj=aj, r2j=bj» J = 1 »2,3,....
Each row is constructed from the preceeding two rows, by forming all 2x2 

determinants involving the first column.

The process terminates when a row consists entirely of zeros the previous 

row being composed of the coefficients of the g.c.d. There is a possibility 

of course that certain elements in the array vanish. Unless the first column- 

member vanishes, the computation proceeds without difficulty: the array 

becomes roughly triangular and terminates with a row having only one element. 

The vanishing of the first column-member creates a special case since, in the 

formula (6.9) for the next row, division by zero would be required.

The numbers in the two first rows of Routh's array are the coefficients 

of the original polynomials. The numbers in the other rows also corresponds 

to coefficients of polynomials, and it is easy to show the relationship of the 

various rows »regarded as polynomials, to one another. Consider the long 

handed division of a(s) by b(s) in (6.8), process being stopped after one 

subtraction (one cycle):

aisrtl+a2Sm"l+...........

-alsIT1- l ^ b2s
m-1

(32- - ^ b 2)sm-1+(a3-
bl

b2)sn

.. +ams+am+i bisn+b2sn"^+...+bns+bn+i

ai cm-n

m-2+ .......

bl S

The coefficients in the first remainder are exactly the members of the 

third row of Routh's array. Thus if the rows are regarded as polynomials, the 

third row is the first remainder when the second row is divided into the first 

row, and the numerical coefficients of the single quotient term is the ratio 

of 1 (a) =ai to l(b)=bj. More generally, the nth row is the first remainder, 

when the (n-l)tb row is divided into (n-2)tb row, and the numerical 

coefficients of the quotient term is the ratio of the leading term in the (n-

2)th row to that of the (n-l)th row. The Routh's algorithm therefore proves 

to be a method for making a repeated division process, where each division 

consists of only one cycle, that is, one quotient term and one subtraction.

Therefore, the above process is analogous to the previously described 

Euclid's algorithm. More specifically, considering the rows [r̂  j] as 

polynomials in s we have:

r i j ( s ) = q i ( s ) r i+1 j + r i+2 j ( s ) ,  i = l,2,... (6 .10)
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The following p.r.s. is produced:

9i (s)=r2i - 2, lsl1”1+1+r2i-2,2sfl_ 1 + * * •+r2i -2,n-i > i=3,4,... (6 .11)

The relationship between the and the Euclidean remainders in (6.7) is given 

by:

r3(s) = 93(s)

ri (s) I2i_firl..‘r2i -3,1 
r2i-r,1"r2i-4,1

9i(s), i>3

apart from possible differences in sign.

(6 .12)

Example (6.2): Consider the polynomials 

a(s) = s4-3s3+5s2+7s+2, b(s) = 2s3+5s2+s+3

From (6.7), r3(s)=-Ps2+^|-s+^-, r4(s) = - 10524 3728
5329s+ 5329

The first six rows of the array defined by (6.9) are: 

Table 6.1

[nj] 1 -3 5 7

tr2j] 2 5 1 3

tr3j]
11
2

9
' 2

11
2

[Mj]
73
"11 -3 41

"11

[r5j]
510
73

627
73 2

(r6j)
2631 932
510 510

Thus, from (6.11) g3(s) = -y|-s2-3s-3y-, 94(s) = -f frs+ff§

and from (6.12) it is easily verified that

r3^=-(-T)g3csV 4  = (f§ff)94Cs)

6.3.2 The numerical algorithm 

Algorithm ROUTH

Let us consider the two polynomials of (6.8). This algorithm calculates 

a greatest common divisor d(s) of a(s) and b(s).
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STEP 1: Construct the two first rows

for j = 1,2,. ..,m+l

rlj := aJ

for j = 1,2,. ..,n+l

r2j =- bj

for j = n+2,.. . ,m+l

r2j := 0

rowl := row2 := m+1

i := 2

STEP 2: i:= i+1

Construct the new row

for j = 1,2,.. .,row2 -1

rij := -(r1-2,r ri-l ,j+l)/ri-l,l+ri-2,j+1

if rij=0, vj then

row r^.j contains the coefficients of the g.c.d. d(s)

quit

else if r-ji =0 then

shift row r-j to the left until r-ji=|=0

fill with zeros the empty positions

if r-jj=0, vj+1 then

d(s) :=1

quit

rowl := row2

if ri-l,row2+° then

ri,row2 := 0

el se

row2 := row2-l

Alg: 6.4
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Implementation of the algorithm

We should point out that in order to construct the elements of the i-th

row from formula (6.9) the two former rows i-2 and i-1 must contain the same

number of elements. Taking into account that the method starts with m>n which 

means that always the first row will generally contain more elements than the 

second row and that the number of elements of each new row is always one less

than the elements of the previous one, it is possible that row i-2 will have

one element less than row i-1. In that case if the extra element of the i-1 

row is different than zero, we add a zero in the last position of row r-j. (If 

the extra element is zero we actually delete it from row r-j.j because its 

useless in formula (6.9).)

Example (6.3): Suppose we want to find the g.c.d. of the following 

polynomials:

Pl(s) = s5+2s4+3s3+3s2+2s+l, P2 (s) = s2+3s+2 

we form the Routh table by using (6.9)

Table (6.2)

jSt row 1 2 3 3 2 1

2nd row 1 3 2 0 0 0

3rd row -1 1 3 2 1

4th row 4 5 2 1 0

5th row 9
4

7
2

9
4 1

6th row 11
" 9 -2 7

9 0

7th row 2
‘ 11

9
11

1

8 th row 15
2

15
" 2

0

gth row 1 1

1 0th row 0

Thus we conclude that the g.c.d. of pj(s) and P2 (s) is: 

d(s) = s+1

Example (6.4): Find the g.c.d. of the following two polynomials:
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Pl(s) = s^+2s3+s2+14s+6, P2(s) = 2s3+4s2+s+21 

Using (6.9) we have:

Table (6.3)

We conclude that the g.c.d. of Pi(s) and P2 (s) is:

,,c, _ 329 987 329,.
d(s) ~ 47s+ 47 “ 47(s+3)

Remark (6.1): It should be clear that any row of the array r^j can be 

multiplied by any arbitrary nonzero scaling factor before the next row is 

computed, without doing more than introducing an extra constant factor in the 

form of the resulting g.c.d. Therefore, we can multiply any complete row 

either by a negative or positive constant. For instance in the example above, 

the row written (1/2,7/2,6,0) would more conveniently be expressed as 

(1,7,12,0).

Example (6.5): Find the g.c.d. of the following two polynomials: 

Pl(s) = s3+6s2+11s+6, P2(s) = s3+lls2+38s+40

Using (6.9) we have the following Table:
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Table (6.41

j st row 1 6 11 6

2nd row 1 11 38 40

3 rd row -5 -27 -34 0

4th row 28
5

156
5 40

5th row 24
28

48
28 0

6th row 20 40

7th row 0

Finally, the g.c.d. of Pi(s) and P2 (s) is: d(s) = 20s+40 = 20(s+2)

In Appendix C, the extension of Routh's algorithm to unique factorization 

domains is presented.

6.4 MATRIX METHODS FOR COMPUTATION OF THE G.C.D.

6.4.1 Companion matrix method for finding the G.C.D.

(a) Theoretical background

Let a(s)=sm+am_ism‘1+am.2 Sm'2+...+ais+ao (6.13)

b(s)=bnsn+bn_isn_1+bn_2 Sn"2+..,+bis+bg (6.14)

be two given polynomials. In this method we assume a(s) to be monic e.g. am=l 

if this is not the case, it can be made so by dividing each coefficient of 

a(s) by am .

Definition (6.2) [Lips., 1]: A companion matrix associated with a(s) is an 

mxm matrix of the form:

0 1 0

0 0 1 0

0 0 0 1 0

0 • • • . . .  1

-ao ~al 'a2 • • • 'am-2 ~am-l
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or

-ao | -aj ... -am_i

where Im_i denotes (m-lx(m-l) unity identity matrix.

Theorem (6.1) [Lips., 1]: The characteristic polynomial of Cm is a(s) e.g.

det(sIm-Cm) = sm+am_ism'1+.. .4-ais+aQ. (6.16)

Remark (6.21: (i) Let e-j denote the i ^  row of the identity matrix Im . 

From (6.15) we conclude that the (i-l)th row of C is e-j, for i=2,3,...,m. 

This property can be conveniently written as:

e-j _i *C = ej, i = 2,3,... ,m (6.17)

(pre-multiplication of any matrix by ej_i simply picks out its (i-l)^ row)

(ii) The first rows of C,C2,...,Cm"1 are e2 ,e3 ,...,em .

(iii) The identity (6.16) shows that the roots sj,S2 ,...,sm of a(s) are the

eigenvalues of C, so in particular detC=si’S2 .... sm , showing that C is

singular if and only if a(s) has a zero root.

(iv) If we transpose C, we obtain a different form of companion matrix C^, 

given below

0 1 -ao

1 "al

!m-l

*am-l

(6.18)

that has the same properties as C.

A key feature in the development of the g.c.d. problem, is the study of 

polynomials in matrix C, that is if b(s) is the polynomial in (6.14) we 

construct,

b(C) ~ bnCn+bn_iCn ^+bn_2Cn 2+...+bjC+bgIj^ (6.19)
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Let r-j, i = l,2,...,m denote the rows of matrix b(C). If deg{b(s)}=n<m, 

then from Remark (6.2) the first row rj of b(s) is:

rl=bnen+l+bn-len+-•.+b0e1 = [b0,b1,...,bn.],bn] (6.20)

For the remaining rows we have by definition:

r i = e i*b(C) (6.21)

and substitution of (6.17) into (6.21) gives,

ri = e-j_!*C*b(C) = ei_!*b(C) C (6.22)

using the fact that C commutes with b(C).

Combining (6.21) and (6.22) shows that (6.22) can be written as:

ri = ri-l‘C> i = 2,3,...m (6.23)

Since rj is given by (6.20), the recurrence relation (6.23) provides a simple 

way of constructing b(C).

Another way of writing b(C) is obtained by noting that (6.23) implies 

that r2=rj'C, r3 =r2 *C=rj'C2, and so on, so that we have established:

Theorem (6.2) [Kal., 3]: For b(s) in (6.14) with deg(b(s) }=n<m and C in 

(6.15), the matrix b(C) has rows

n , rj-C, ri*C2,...,r1-Cm*1

where rj is given by (6.20).

The resultant of a(s) and b(s) (R(a,b)) can be expressed in the terms of 

this companion matrix formulation.

If s^, i =1,2,... ,m are the roots of a(s) and t j , j = l,2,...,>l are the roots of 

b(s) then

m m n
R(a,b) = bn ^  (Si-Tj) (6.24)

Using the facts that if sj,S2 ,...,sm are the eigenvalues of C, then those of 

b(C) are b(sj) ,b(s2 ),... ,b(sm) and that the determinant of a matrix is equal 

to the product of its eigenvalues, (6.24) can be written as:

n n n
R(a,b) = bn n (si-Tj)-bn (1 (s2-Tj)...bn il (sm-Tj)

j=l J=1 j=l

= b(s1)-b(s2)-"b(sm) = det(b(C))
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Theorem (6.3) [Mac., 1]: The resultant of a(s) and b(s) in (6.13) and 

(6.14) respectively is given by

R(a,b) = det(b(C))

where C is the matrix of (6.15). In other words, b(C) is nonsingular if and 

only if these polynomials are coprirne.

Fxanrole (6.6): Let a(s)=s3-3s2+s+5, b(s)=2s2-3s+l be two given polynomials. 

The companion matrix (6.15) of a(s) is,

Matrix b(C)=2C2-3C+l eR3x3 and has rows rj,r2 ,r3 .

From (6.20) we have ri = [1,

r3=r2‘C=[-15, -13, 8].

Hence

1 -3 2

b(C) = -10 -1 3

-15 -13 8

Note that since the first row of b(C) is given by (6.20), it follows that 

b(C)=0 if and only if rj=0, which is equivalent to having b(s)=0. Thus there 

is no nontrivial polynomial of degree less than m such that b(C)=0.

Theorem (6.1) and the Cayley-Hamilton theorem together imply

a(C) = Cm+am.1-Cm-1+...+a1-C+a0 = 0 (6.25)

In Theorem (6.2) it was assumed that deg{b(s))<deg{a(s)) but (6.25) gives us 

way of removing this. Suppose deg(b(s}=n>m; then we can divide a(s) by b(s) 

to give

b(s) = a(s)qi(s)+r(s) (6.26)

where deg{r(s)}<m. Since above is an identity, we can replace s by C to give
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b(C) = a(C)qi(C)+r(C) = r(C) (6.27)

by virtue of (6.25).

Hence to compute b(C) when deg{b(s)}>deg{a(s)}, simply divide b(s) by 

a(s), and the desired expression is obtained by applying Theorem (6.2) to the 

remainder polynomial r(C). In particular, when deg{a(s)}=deg(b(s)}=n then,

r(s)=(bn_1-bnan.1)sn_1+(bn.2-bnan_2 )sn‘2+...+(bo-bnao) 

so b(C) has first row

n  = [bQ-bnao,.... > bn_2-bnan_2,bn_i-bnan_i] (6.28)

In addition (6.27) reveals that if a(s) divides b(s), then T(s)=0.

Example (6.7): Let a(s)=s3-3s2+s+5, b(s)=s4+5s3-20s2+6s+44 be two given 

polynomials. The companion matrix is the same as above. Since 

deg{b(s))>deg{s(s)} we first do the division by a(s), which gives:

b(s) = (s+8)a(s)+(3s2-7s+4)

so b(C)=3C2-7C+4l3. Theorem (6.2) shows that b(C) has rows 

n  = [4, -7, 3], r2 = rr c = [-15, 1, 2], 

r3 = r2-C = [-10, -17, 7]

(b) G.C.D. by using companion matrix

It has been shown above that the det(b(C)) forms the resultant of a(s) 

and b(s). If the polynomials a(s) and b(s) are not coprime, then their g.c.d. 

itself can be obtained in an easy way from the matrix b(C). In the discussion 

below the companion form will be used. It follows that

R0 E b(CT) = [b(C)]T

so the columns ei,e2,...,em of Rg are equal to the transpose of the rows of 

b(C). If deg{b(s))=m<n=deg{a(s)} then (6.20) gives

el = [b0,b1,...,bn_1,bn]t (6.29)

(6.22) and (6.23) become

ê  = C^-ei_i, i=2,3,...,m (6.30)

and Theorem (6.2) implies that

R0 = b(CT) = [e1,CTe1,...,(CT)m_1e1] (6.31)
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Theorem (6.41 [Bar., 1]: The degree of the g.c.d. d(s) of a(s) and b(s), 

with deg{a(s)}>deg{b(s)}, is equal to m-p(Ro).
■

Let d(s)=s*<+d|<_is*<‘ +̂d|<.2 S^'^+.. .+djs+do, (6.32)

be the g.c.d. of a(s) and b(s), k<m=deg{a(s)}.

Theorem (6.5) [Bar., 1]: The last m-k rows of Ro=b(C^) are linearly

m
independent and if r-j= I xij rj» i=l>2,...,k where r-j denotes the i-th row

j=k+l

of Rq , then

°*k-p - xk+l-p,k+l> p=l,2,...,k (6.33)

Example (6.8): Let us find the g.c.d. of the following two polynomials: 

a(s) = s3-3s2+s+5, b(s) = s2-4s+5 

Form the companion matrix from the polynomial a(s):

CT

0

1

0

0 -5 

0 -1

1 3

Now from (6.29), (6.30) and (6.31) construct matrix Rq

R0=b(CT) =

5 - 5  5

-4 4 -4

1 -1 1

- > n

->r2

->r3

P(Rq )=1, therefore the degree k of the g.c.d. is equal to m-p(Rg) = 3-1=2. 

The g.c.d. d(s) of a(s), b(s) is of the form: d(s)=s2+dis+dQ.

From Theorem (6.5) we have:

rl = x13'r3 

r2 = x23’r3

It is evident that x j 3=5 and x23=-4. Thus,

di=x23=-4, dg=xi3=5 and d(s)=s2-4s+5.
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Remark (6.3): (i) If b(C) is used instead of b(C^), the rows r-j in the 

statement of Theorem (6.5) become the columns c-j of b(C). In particular, 

(6.33) is replaced by,

m
Ci = I xii'cj, i=l,2,...,k 

j=k+l

(ii) The solution of system (6.33) is not always as simple as in Example 

(6.8), thus a numerical technique must be used for the evaluation of x^j.

In the sequel, we present the application of the above method to more 

than two polynomials and the numerical technique used for the solution of the 

corresponding linear system.

Let il be a set of polynomials. It can be assumed that, after division if 

necessary, one polynomial can be denoted by

a(s) = sm+a[tl.ism'1+.. .+ais+ao (6.34)

and the remaining members of 11 by

b-j (s) = b-jm-ism_ 1+bim-2sm_2+.. .+b-jO, i=l,2,...,n

where the b^m-1 need not, of course, be nonzero. Let

0 0 ... ~a0

1 0 ~al

0 1 'a2 (6.35)

0 0 ~am-l

be a companion matrix of a(s), and form the matrix polynomials

bi (C^) = bim-1 (CT)m~l+b-jm-2(CT)m"2+.. .+bi()Im> i=l,2,...,n

Theorem (6.6) [Bar., 2]: The degree of the g.c.d. of the set il is k=m-p(R), 
where

R = [b1(CT),b2(CT),...,bn(CT)] (6.36)
■

Corollary (6.1): The polynomials a(s), bj(s),...,bn(s) are relatively prime 

if and only if the matrix R has rank m.



-143-

Theorem (6.7) [Bar., 2]: If the rows of R are denoted by n, r£ ,...,rm then 

rk+l»rk+2»•••>rm are linearly independent and if

m
n  = I x-j j * rj, i=l,2,...,k (6.37)

j=k+l

then the unique monic g.c.d. of il is d(s)=s*c+d|c.is^‘^+.. .+djs+do, where

^k-p = xk+l-p,k+l> p=l,2,...,k
■

The usefulness of Theorems (6.7) and (6.8) can be increased by 

establishiing a simple expression for the matrix R in (6.36). It is easily 

proved [Bar., 2] that R can be expressed as

R = [B, CTB, (CT)2B,..., (CT)m‘1B],

where

(6.38)

b10 b2o bn0

bn b21 bnl

blm-l b2m-l bnm-l

The matrix on the right in (6.38) is recognized as the well-known 

controllability matrix [Chen, 1] for the constant linear control system 

x=Ax+Bu. Thus the controllability criterion for the above system is

equivalent to the Corollary (6.1).

Computationally the solution of (6.37) 

following numerical technique [Pac. & Bar., 1],

R1 r2

. R3 r4 .
mn-m+k m-k

is encountered by using the 

If R is partitioned as

(6.39)

then R can be decomposed into the product of two matrices by performing a type 

of Gaussian elimination, i.e. determining (mxm) matrices Jj such that

'Im-k 'Im-k-l ••• ^2^1R = b (6.40)

where, typically
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Ji =

1 0 _X1 , m+1- i

1 !

• 'xm-i,m+l-i 

1

and

L = --
--
--
--
--

1

1
o

1

i----------1
O

i

L i
l 2

k

m-k

mn-m+k m-k

In [Pac. & Bar., 1] it is proved that

R=[Jm-kJm-k-l---J2Jl]'1,L =
I Ul

_ . .

0 u2

k m-k

(6.41)

(6.42)

It is also proved in [Pac. & Bar.l] that the first column of Uj gives the 

coefficients of the monic g.c.d. of il.

Example (6.91: Let a(s) = s^+s^-9s^-5s^+16s+12, b(s) = s^-3s^+s^+3s-2 

be given polynomials. We want to evaluate their g.c.d. using the companion 

method.

Form the companion matrix corresponding to polynomial a(s)

0 0 0 0 -12

1 0 0 0 -16

0 1 0 0 5

0 0 1 0 9

0 0 0 1 1

(6.43)
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Construct matrix Rq

R0 = b(CT) =

-2 -12 48 -168 504

3 -18 52 -176 504

1 8 -38 122 -386

-3 10 -28 88 -256

1 -4 14 -42 130

degree of the g.c.d. is m

perform the UL-decomposition defined by (6.42) to matrix Rg. Matrices U,L 

will be of the form

U =
I Ul 2

, L =

r
0

1
0

0 u2 3 Ll l2

2 3 2 3

In fact,

1 0 -2 10 2 0 0
1
0

I
0 0

U = 0 1 -1 3 3 ,L = 0 0 0
1

0 0

0 0 1 -6 1 0 0 32
I

-64 268

0 0 0 1 -3 0 -2 14
I

-38 134

0 0 0 0 1 1 -4 I14 -42 130

A comparison of (6.44) and (6.45) shows that

(6.44)

(6.45)

-2 10 2
Ul- and thus its first column contains the

- 1 3  3

coefficients of the g.c.d. Therefore, the g.c.d. of the given polynomials is 

d(s)=s2-s-2.

Example (6.10): Let have the set

n ={a(s) = s^+s4-9s^-5s^+16s+12, bj(s) = s4-3s^+s^+3s-2, b£(s) = s^+5s-14 } 

We want to calculate their g.c.d. using the companion method.
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The companion matrix corresponding to polynomial a(s) is given by (6.43).

Matrix Rq is equal to [B, (CT)B, (CT)2B, (CT)3B, (CT)4B]. More analytically,

-2 -
1

14
1
-12 0 48 0

1
-168

I

1
-12

I
504 -48

3
1

5 1 -18 -14 52 0
1
-176

I
-16

I
504 -76

R0= 1
1

1
1

8 5 -38 -14
1

122
I

1
5

I
-368 4 (6.46)

-3
1

0 1
10 1 -28 5 88

I

1
-5

I
-256 41

1
1

0 1 -4 0 14 1
1

-421
1

4 i 130 -9

Notice that each 5x2 block of matrix Rq is obtained by premultiplying the 

preceeding block by C^. p(Ro)=4 and thus the degree of the g.c.d. is m-

P(Ro)=5-4=1. Matrices U,L of the UL-decomposition of matrix Rq will be of the 

form

U =
I U l II

_
1

i—H 
^

0

l • 
O

i

0 C ro
i__

__
__

4 L l

--------1
CVJ 

_
1

1 4 1 4

More precisely,

1 -2 10
'll 10 -2

0 1 17
'll 3 3

0 0 1 -6 1

0 0 0 1 -3

0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

0 ~n  'o ' 11 U 0 '192'
11

Ì882~
11

'384'
11

192'
11

2034
11

'1306
11

0 1 0 11 32 -189 -64 43 306 17

0 0 -2 1 14 -25 -38 7 134 14

1 0 -4 0 14 1 -42 4 130 -9

(6.47)

(6.48)
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A comparison of (6.47) and (6.48) shows that 
10

Uj = [-2 — jy 10 -2] and thus the g.c.d. of the given set fl is d(s)=s-2.

The above analysed method of finding the g.c.d. of several polynomials 

using the companion matrix, is summarized to the following algorithm.

Algorithm COMPANGCD

Let il be a given set consisting of the subsequent polynomials 

a(s) = sm+am_ism_1+...+ais+ao

bi (s) = bim_ism_1+b-jm_2Sm_2+.. .+bils+bi0, i-1,2, —  ,n

The following algorithm evaluates the g.c.d. of the above set using the 

companion matrix method.

STEP 1: Construct the companion matrix CT of a(s)

STEP 2: Form matrix B=[bj,...,bn]eRmxn, where 

bi = [t)-j0 bi 1 . • • b-jm-1 ] > i = l ,2,... ,n.

STEP 3: Construct matrix Ro=[B, CTB, (CT)2B,...,(CT)m"1B] 

k := p(R0)

STEP 4: Perform the decomposition Ro=U,L where 

U,L are given from (6.42)

The first column of the (m-k)xk part of U contains 

the coefficients of the g.c.d. of il

Alg: 6,5

Comments about the implementation and the computational complexity of 

algorithm COMPANGCD can be found in [Pac. & Bar.,1].
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6.4.2 Sylvesters Resultant matrix method for finding the G.C.D.

(a) Theoretical background 

Let

a(s) = aosn+aisn'1+...+an_is+an, ag^O, n>0 

b(s) = bosm+bism_1+...+bm_is+bm, bo+0, m>0 

be two given polynomials.

Definition (6.3) [Boch., 1]: The following (m+n)x(m+n) matrix

a0 al a2 • • . an 0 . . . 0 . . . 0

0 a0 al a2 an . . . 0 . . . 0

0 0 a0 al a2 • • • an .......... 0

Ó Ò .
• O

 
(T3

• O

......... an-l an

bo bl b2 bm 0 ........... 0

0 bo bl b2 bm .......... 0

Ó « • • . b0 bl .......... bm

(6.49)

is called Sylvester's matrix 

Sylvester's Resultant.

and its determinant
a0’ ••• ’ an 
 ̂t>o > • • • >bm^ i s called

Theorem (6.81 [Boch., 1]: A necessary and sufficient condition for two 

polynomials to be relatively prime is that their resultant do not vanish.

In some applications it is more convenient to use a slightly different 

form of S in which the last n rows are in reversed order. In this case, 

construct centrally situated sub-matriceds by successively deleting a row and 

a column all the way round. For example, if n=3, m=2 we get

a0 al a2 a3 0

0 a0 al a2 a3

0 0 b0 bl b2

0 b0 bl b2 0

bo bl b2 0 0
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Definition (6.4) [Boch., 1]: By the i-th subresultant Ri of two polynomials 

is understood the determinant obtained by striking out the first i and the 

last i rows and also the first i and the last i columns from the resultant of 

these polynomials.
■

Thus if n=3, m=2 R is a determinant of fifth order, Rj of third and R2 of 

first as indicated below:

a0 al a2 a3 0

0 a0 al a2 a3

0 R1= II(XI
C
d

0

b0 bl b2

0 b0 bl b2 0

bo bl b2 0 0

Theorem (6.91 [Boch., 1]: The degree of the greatest common divisor of a(s) 

and b(s) is equal to the subscript of the first of the subresultants Rq=R, Ri, 

R2 ,... which does not vanish.

Theorem (6.10) [Boch., 1]: If i is the degree of the greatest common 

divisor of two polynomials a(s) and b(s), then this greatest common divisor 

may be obtained from the ith subresultant of a and b by replacing the last

element in the last row of coefficients of a by a(s), the element just above

this by s a(s), the element above this by s2a(s), etc.; and replacing the last

element in the first row of coefficients of b by b(s), the element below this

by s*b(s) etc.
■

Example (6.11): Let a(s) = s3-3s2+s+5 and b(s)=s2-4s+5 be two given 

polynomials. We want to calculate their g.c.d.

The Sylvester matrix for the above two polynomials is given below:

1 -3 1 5 0

0 1 -3 1 5

1 -4 5 0 0

0 1 -4 5 0

0 0 1 -4 5
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The first non vanishing subresultant is R2=5 thus the degree of the g.c.d. is 

2. We replace 5 by b(s)=s2-4s+5 and therefore the g.c.d. of a(s) and b(s) is 

equal to s2-4s+5.

(b) G.C.D. of several polynomials via Sylvester's matrix

Consider a set fl of m+1 polynomials whose maximum degree is n, so that 

one polynomial can be written without loss of generality as

a(s) = sn+aisn"l+...an (6.50)

and the remaining members of /7 as

b-j (s) = biQSn+bi isn_1+.. .+bin, i=l,2,...,m (6.51)

Suppose that the maximum degree amongst the polynomials bj(s),...,bm (s) in 

(6.51) is p<n, i.e. b-j^.p^O for at least one i, but b-jj=0 for j<n-p, all s. 

Define a px(n+p) matrix associated with a(s)

1 ai 32 ... an 0 .. 0 0

So = 0 1 al ••• an-l an .. 0 0 (6.52)

0 0 0 1 . an-l an

and an nx(n+p) matrix associated with bi(s):

bi ,n-p bi,n-p+l ••• bin 0 ..0 0

Si = 0 ^i,n-p ••• ^i,n-l bin •• 0 0 (6.53)

0 0 0 • t>i,n-p b-j>n- 1 bin

for i=1,2,...,m.

The extended Sylvester resultant matrix for the set il can then be defined by

so

s =

Si

s 2

Sm

(6.54)



-151-

and has dimensions (mn+p)x(n+p). When m=l, S is the classical Sylvester 

matrix.

Theorem (6.11) [Bar., 4]: The degree of the g.c.d. of the set il is equal to 
the rank defect of S.

■

More explicitly, Theorem (6.11) states that if k is the degree of the 

g.c.d. of FI, then k=(n+p)-p(S).

Corollary (6.2) [Bar., 4]: The polynomials a(s), bj(s),...,bm (s) are 

relatively prime if and only if S has rank n+p.

Theorem (6.12) [Bar., 4]: If the extended resultant matrix (6.54) is put 

into row echelon form using row transformations only, then the last 

nonvanishing row gives the coefficient of a g.c.d.

A different proof of the above Theorem, for the case of m=l, can be found 

in [Lai,1]. Another version of Theorem (6.12) can be also found in [Vard. & 

Sto., 1].

Example (6.121: Let us find the g.c.d. of the following three polynomials 

using the Sylvester's matrix method.

a(s) = s 3+6 s 2+11 s +6

bj(s) = s^+2s-3

b2 (s) = s^+s-6

The highest degree polynomial is chosen as a(s), thus n=3 and p=2. In the 

sequel we form matrices Sq , Sj , S2 as follows:

S0 -
1 6 11 6 0

0 1 6 11 6

1 2

CO1 0

1
0

1 1 -6 0

l-----
O

0 1 ro

CO1 0 » s 2 = 0 1 1 -6 0

1--
--
-

O 0 1

OsJ

CO1

1
0 0 1 1 -6
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The extended resultant matrix is of the form:

1 6 1 1 6 0

0 1 6 1 1 0

1 2 - 3 0 0

0 1 2 - 3 0

0 0 1 2 - 3

1 1 - 6 0 0

0 1 1 - 6 0

0 0 1 1 - 6

p(S)=4. Thus the degree of the g.c.d. is 5-4=1. The above matrix is reduced 

to row echelon form and the resulting matrix is given below:

sech

1 6 1 1 6

l-----------
O

0 1 6 1 1 6

0 0 1 2 - 3

0 0 0 - 6 »—
*

00

l
o

I

Thus the g.c.d. is given by the last nonzero row:

-6s-18 = -6(s+3).

The above analysed method of finding the g.c.d. of several polynomials 

using the Sylvester's Resultant matrix, is summarized to the following 

algorithm.

Algorithm SYLVESTER

Let n be a given set of m+1 polynomials. The following algorithm 

evaluates the g.c.d. of the above set using the Sylvester's Resultant matrix 

method.
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STEP 1: Choose a(s) the highest degree polynomial of /7 

n := deg(a(s))

p := the maximum degree amongst the rest polynomials 

of n

STEP 2: From formulas (6.52), (6.53) form matrices 

SoeRPx(n+P), sieRnx("+P), i=l,2,...,m 

S [Sq ,Sj,...,Sm]T

STEP 3: Reduce matrix S to its row echelon form Sech

STEP 4 : The last nonzero row of Sech contains the coefficients 

of the g.c.d. of fl.

Alq: 6.6

Useful comments about the implementation of algorithm SYLVESTER can be 

found in [Pac. & Bar., 1]. An advantage of using Sylvester's matrix method 

for finding the g.c.d. of polynomials is that S can be immediately written 

down, compared with the construction of b(C^). However, a disadvantage is 

that S has dimensions (n+p)x(n+p), compared only with nxn for b(CT) in the 

case of two polynomials. This becomes more important when we have more than 

two polynomials.

6.4.3 Blankiship's method for calculating the G.C.D. of polynomials [Blan., 1] 

Given a set of polynomials 0={p](s),p2(s),...,pn(s)} the previous 

developed Euclid's algorithm provides a method of computing the g.c.d., d(s), 

of these polynomials. If the steps performed during the algorithm are traced 

back it is possible to deduce multipliers xj(s), X2 (s),...,xn(s) such that:

d(s) = p1(s)x1(s)+p2(s)x2(s)+...+pn(s)xn(s).

Blankiship's method uses a trick, well-known to the computing trade, of 

carrying along a matrix to keep track of the operations which have been 

performed. The g.c.d. and the multipliers are determined by performing 

elementary row operations on the matrix B=[P | In], where
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PT = [Pl(s), P2 (s),...,Pn(s)]

and In is an nxn identity matrix. The operations are performed on this matrix 

until there is only one nonzero element in the first column. If we refer to 

the first element of a row as the leader of that row, the algorithm can be 

summarized as follows:

Algorithm BLANKISHIP (Outline)

STEP 1: For a given set of polynomials

0 = (pi(s), P2 (s),...,pn(s)} construct matrix

B =

Pl(s)

P2(s)

Pn(s)

STEP 2: Select the row of B with the leader of the lowest 

degree and call it the "operator".

STEP 3: Select any other row with a nonzero leader and call it 

the "operand".

if there is not such row then

the remaining row with non-zero leader is 

d(s) xj(s) X2(s) . . . xn(s) and 

d(s)=pi(s)x1(s)+P2(s)x2(s)+...+pn(s)xn(s) 

quit

STEP 4: Divide the leading term of the leader of the operator 

into the leading term of the leader of the operand, 

ignoring the remainder, and call the quotient q.
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STEP 5: Subtract q times the operator from the operand,

recording the result as a new row and striking out 

the operand.

Repeat STEP 2.

Alq: 6.7

The fact that the process terminates is easily seen by noting that every 

time STEP 5 is performed, the degree of column leader decreases but never 

becomes negative. Hence the sum of the degrees of column leaders is a 

strictly decreasing positive integer. Since it cannot decrease more than

I degp-j(s) times, the process must terminate, 
i

We next note that elementary row operations (such as in STEP 5) 

preserve the greatest common divisor of the polynomials; that is

g.c.d.[p1 (s),p2 (s),...,pn(s)]=g.c.d.[p1 (s)+apj(s),...,pn(s)]

for any integer a and j<n different from 1 .

When the last step is reached all the leaders are zero except that of the 

previous operand and that polynomial must be the g.c.d. of the original set of 

leaders. These operations can be represented by nonsingular matrices such 

that the final result is of the form

--- M3M2Mi [P|In] [M* P|M] (6.55)

Ò

where M is the produce of the . If the g.c.d. occurs in the jth row then 

from (6.55)

d(s) = rj[M]P,

where rj[X] denotes jth row of X, and M is now overwritten on the unit matrix. 

This completes the proof that the algorithm works. It is also useful to
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remember that a row of the matrix B at any stage of the algorithm, represents 

a linear equation relating the leader of that row to a linear combination of 

the original polynomials. Thus performing elementary row operations on matrix 

B until only one nonzero element remains in the first column produces a g.c.d. 

(not necessarily monic) and a set of multipliers.

Example (6.13): Let us compute the g.c.d. of the set 

$={pi(s)=s4+4s3+4s2+4s+3, P2(s )=2s 3+11 s 2+16s +3, P3 ( s )=s 2 +5 s +6 }

PI (s)

Matrix B is of the form P2 (s) I3 and more explicitly

P3 (s) |

s^+4s3+4s2+4s+3 1 0 0

B = 2s3+11s2+16s+3 0 1 0

s 2+5s +6 0 0

O
Iteration 1: "operator": s^+5s+6

-s3-2s2+4s+3

B = 2s3+11s2+16s+3 0 1 0

s2+5s+6 0 0

Iteration 2: "operator": s2+5s+6

"operand": -s3 -s2+4s+3 

q = -s3/s2=-s

3s2+10s+3 1 0 -s2+s

B = 2s 3+11 s 2+16s +3 0 1 0

0s2+5s+6 0 1
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Iteration 3: "operator": s2+5s+6

"operand": 2s3+lls2+16s+3 

q=2s3/s2=2s

3s2+10s+3 1 0

1---00+
CVI001

B = s2+4s+3 0 1 -2s

s2+5s+6 0 0 1

Iteration 4: "operator": s2+4s+3 

"operand": 3s2+10s+3 

q=3s2/s2=3

-2s- 6 1 -3 -s2+7s

B = s2+4s+3 0 1 -2 s

s2+5s+6 0 0 1

Iteration 5: "operator: -2s-6 

"operand": s2 -4s+3 

q=s2/-2 s=-l/2 s

r 1
-2s-6 1 -3 -s2+7s

s+3 s/2 s3 7s31-3/2S -2s— ¿ - + y ~

s2+5s+6 0 0 1

Iteration 6: "operator": s+3

"operand": s2+5s+6 

q=s2/s=s

B =

-2s-6

s+3

1 -3

s/ 2  1-3/2 s

3s2-s2 / 2 -s+^~

-s2+7s

$3 7 $ 2
-2s- b ¿s 2 + 2

1+252+4-  - ^2 s + 6
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Iteration 7: "operator": s+3 

"operand": -2s+6

_ -|

0 1 + s - 1  - 3 s - s 3 + 6 s 2 + 3 s

s + 3 s / 2 1 - 3 / 2  s
s 3  7 s 2 

- 2 s -  2 I 2

2 s + 6 -s 2/2 - s + 3 s 2 / 2 1 + Z s 2 +  f - 7 f

L

Iteration 8 : "operator": s+3 

"operand": 2s+6

->
0 1+s -1-3s -s3+6s2+3s

B = s+3 s/2 l-3/2s
s3 7s2 _2 s- +/b¿s 2 1 2

0
o 3s2

-s 2/2- s ^|-+2 s -2 s3 - ^ - 5 s2+1^- +4s+l
-1

Therefore the g.c.d. of the set $ is s+3. At the same time we have 

obtained a set of multipliers, that is,
3 1

xi (s)=s/2 , x2 (s)=l- — s, x 3 (s )=-2s — + 1-j -

and we have,

s+3 = p1 ( s ) x 1 (s)+P2 ( s ) x 2(s)+P3 ( s ) x 3 ( s ) .

Implementation of Blankiship's algorithm

In order to implement Blankiship's method to a computer, we must represent 

the polynomials by vectors consisting of its coefficients. The entries of the 

unit matrix must be replaced too by corresponding vectors e.g. when the 

maximum degree of the polynomials is 4, entry 1 of the unit matrix will be 

replaced by the vector (0 ,0 ,0 ,0 ,l)t that represents the polynomial 

0,s^+0,s3+0,s2+0-s+l-s°. Consequently, if the number of given polynomial is 

n, matrix B will have the form B=[Bj |b2 | |Bn] where submatrix

Bj represents the coefficients of the polynomials and submatrices B2 ,...,Bn 

represent the corresponding unit matrix. The steps of the algorithm will now 

become:
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STEP 1: For a given set of n polynomials

Construct matrix B= [Bj | B2 1 |Bn]

STEP 2: if the first entries of some rows = 0 then 

apply shifting to these rows transferring 

the zeros to the end of them.

if the last columns of all submatrices{B-j,i = l,2,.. .,n}=0 then 

delete them

STEP 3: Select the row with the smallest nonzero leader and 

call it the "operator"

STEP 4: Select any other row with a nonzero leader and call it 

the "operand".

if there is no such row then

the remaining one with nonzero leader 

gives the coefficients of the g.c.d. and 

of the multipliers, 

quit

STEP 5: Divide the leader of the operator into the

leader of the operand, ignoring the remainder.

Denote the quotient by q.

STEP 6: Subtract q times the operator from the operand,

recording the result as a new row and striking out 

the operand.

Repeat STEP 2.

Alg: 6.8
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Example (6.14): Find the g.c.d. of the set 

Pl(s) = s^+4s3+4s2+4s+3 

P2(s) = s3+2s2+s+2

Matrix B has the form B =
1 4 4 4 3 0 0 0 0 1 0 0 0 0 0

0 1 2  1 2 0 0 0 0 0 0 0 0 0 1

B1 B2 B3

We apply shifting to the second row and

1 4 4 4 3 0 0 0 0 1 0 0 0 0 0

1 2 1 2 0 0 0 0 0 0 0 0 0 1 0

— > row 1 

— > row 2

Iteration 1: "operand": row 1 

"operator": row 2 

q = 1 / 1 = 1

0 2 3 2 3 0 0
I

0 0 1 0 0 0 -1 0 shifting to

1 2  1 2  0 0 0 0 0 0 0 0 0 1 0
>

row 1

2 3 2 3 0 0
I

0

1 2 1 2
1

0 0
1

0

Delete the zero columns

2 3 2 3 0 0 0

1 2 1 2 0 0 0

0 1 0
I

0 0 - 1 0 0

0 0 0
1

1
0 0 0 1 0

of submatrices Bl, B2, B3

1 0 0 -1 0 ---> row 1

0 0 0 0 1 ---> row

C\J

Iteration 2: "operand": row 1

operator": row 2 

q = 2 / 1 = 2



-161-

B =

B =

0 -1 0 -1 0 0 0 1 0 0 -1 - 2 shifting
-------- >

1 2 1 2 1 0 0 0 0 1 0 0 0 1 to row 1

-1 0 -1 0 ^ 0 0 1 0 ^ 0 -1 - 2 0 ---> row 1

1 2 1 2 0 0 0 0 0 0 0 1 > row 2

Iteration 3: "operand": row 2 

"operator": row 1

B =

B =

q = 1 / - 1 = -1

-1 0 -1
1

0 0 0 1 
1

1
0

1
0 -1 - 2

0 2 0 2 0 0 -1

1
0

1

0 -1 - 2

-1 0 -1
1

0 0 0 1
1

1
0

1
0 -1 -2

2 0 2 0 0 - 1  0 
1

0
1

-1 - 2 1

Delete the zero columns of submatrices

-1 0 -1  ̂ 0 0 1 ^ 0 -1 - 2 --->

shifting 

to row 2

B =
0 0 0-1 2 -1 -4 -3 -> row 2

The method terminates and rowl contains the coefficient of the g.c.d. and 

of the multipliers too. The g.c.d. is -s2-l or s2+l and the multipliers are 

xi(s)=-l and X2(s)=s+2. It holds that s2+l=pi(s)xj(s)+P2 (s)x2 (s).

The computational complexity of algorithm BLANKISHIP can be found in 

[Pac. & Bar., 1].
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6.5 REHARKS-DISCUSSIOW
The most important methods for the computation of the g.c.d. of 

polynomials were presented. The methods mentioned were divided into two main 

categories.

The first category was including methods related to Euclid's algorithm. In 

Euclid's algorithm and its generalizations (Appendix C), we constructed a 

sequence of polynomials of successively smaller degrees. Unfortunately, as 

polynomials decrease in degree, their coefficients tend to grow, so the 

successive steps tend to become harder as the calculation progresses. If the 

g.c.d. of these inflated coefficients are required, the problem is aggravated. 

If the coefficient domain is not a field, this same remark applies to any 

g.c.d.'s of numerators and denominators that are required to simplify the 

inflated coefficients. If coefficients in a field are not simplified, the 

division steps become harder faster (as illustrated in Example (C.6 )), and the 

final result, though formally correct, may be practically useless.

The first major advance in controlling the phenomenon of coefficient growth 

was the discovery by Collins [Col., 1] of an algorithm that effectively 

controlled coefficient growth without any g.c.d. computations in the 

coefficient domain.

Routh's algorithm for computing the g.c.d. was another variation of Euclid's 

algorithm. This was due to the fact that the rows in Routh's array are 

successively remainders when the (n-1)1̂  row is divided by (n-2)1̂  row. The 

extension of Routh's algorithm to unique factorization domain highlighted the 

problem of rapid coefficient growth and a scheme for tackling this was given 

in section C.2 of Appendix C . An alternative array scheme can be also found 

in [Bar., 3].

The classical Routh's array has the drawback that it involves divisions. 

Hence if one starts with integer polynomial entries one ends up with rational 

numbers or rational functions. If Routh's array is modified so as to avoid 

divisions then the elements of the array grow very fast and storage problems 

might be encountered. A solution might be to divide each row by its g.c.d., 

but finding the g.c.d. is again time consuming. The optimal fraction free 

Routh array presented in section C.2 of Appendix C avoids rapid coefficient 

growth without computing the g.c.d.

The second category was including several matrix methods. Companion 

matrices were introduced and a solution to the g.c.d. problem was given in 

terms of these matrices.
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Sylvester's matrix was also employed in the g.c.d. calculations and the 

well known Sylvester's Resultant played an important role in the derivation of 

the g.c.d.

Finally Blankinship's method for integers was generalized to deal with 

polynomi als.

A detailed comparison concerning the computational complexity of some of 

the above methods (Routh array, Companion matrix method, Blankiship's method) 

can be found in [Pac. & Bar., 1]. This comparison yielded that the method of 

B1ankiship is preferred over all others since it combines both the calculation 

of g.c.d. and multipliers for two or more polynomials. When only the g.c.d. is 

required, the method of Routh is somewhat faster.

Other methods for the calculation of the g.c.d. are developed in [Wein., 1], 

[Akr., 1]. The method of [Akr., 1] works with integer-preserving arithmetic.

In the following Chapter a completely new method for the evaluation of the 

g.c.d. of polynomials will be described.

6.6 CONCLUSIONS
The aim of this Chapter was to provide a comprehensive survey of the most 

important methods for calculating the g.c.d. of polynomials. Due to the 

extremely wide range of applications requiring the computation of the g.c.d. 

of polynomials, the present survey can help as index for finding the suitable 

numerical method wanted each time. Therefore, this Chapter serves the 

following purposes:

(i) It provides a survey of the most important numerical methods achieving the 

computation of g.c.d. of polynomials using mostly extensions and variations of 

the Euclid's algorithm. All these methods are suitable and convenient for the 

evaluation of g.c.d. of two polynomials.

(ii) It provides a survey of the most important numerical methods attaining 

the evaluation of g.c.d. of polynomials using matrices. Basically, these 

methods are applicable when the g.c.d. of several polynomials is required.
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DIVISOR OF POLYNOMIALS
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7.1 INTRODUCTION
The problem of finding the greatest common divisor (g.c.d.) of a set of m 

polynomials of R[s], of maximal degree d, Pm>c| ,has attracted a lot of 

attention (Chapter 6 ) and has widespread applications in linear 

systems,network theory etc. [Pac. & Bar., 1]. Most of the procedures for

finding the g.c.d. of a PmjCj involve the use of some type of generalized 

resultant test [Bar., 2], [Bar., 5].

The aim of the present Chapter is to provide a new numerical method for the 

computation of the g.c.d. of a given Pm>(j. This method, is based on a

theoretical algorithm suggested in [Kar., 1] which establishes that the g.c.d. 

of a given Pm,d is invariant under the combined action of Extended-R-

Equivalent (E-R-E) and shifting operations. Briefly, this theoretical 

algorithm starts by selecting a base Pr?(j of Pm ,d> applying

successively E-R-E and shifting transformations on the basis matrix 

PreRrx(^+l) of Pr>d, the rank is successively reduced and finally leads to a 

matrix Pr' with rank one; any non zero row of the unit rank matrix defines 

the coefficients of the g.c.d. of the given set Pm ,d*

When this theoretical algorithm is to be implemented as a numerical

procedure, extra care must be given to avoid the numerical difficulties 

arising from the fact that the existence of a nontrivial g.c.d. of Pm>(j is a 

nongeneric property. Special numerical procedures are needed to avoid the 

introduction of additional numerical errors and help in the "catching up" of 

approximate solutions. It should be emphasised that if measures to define 

approximate solutions are not incorporated in the algorithm, then almost 

always, due to numerical errors and the nongeneric nature of the g.c.d. , the 

answer to this search will be that the g.c.d. is one. A number of concrete 

issues should be addressed in defining the g.c.d. algorithm, in order to avoid 

the problems raised above. More specifically:

(i) The selection of a base for the row space of Pm should be performed on the 

existing data by avoiding any transformations that may corrupt the original 

data. Defining an orthogonal basis by using standard procedures is avoided for 

the above reasons. A selection of the best uncorrupted base for the row space 

of Pm using the tools developed in Chapter 5 is applied . This procedure 

chooses amongst the existing elements of Pm c j and without transforming them, a 

most orthogonal linearly independent subset Pr^  which forms an uncorrupted 

base for j.

(ii) Instead of unstable E-R-E transformations that are exclusively used in 

the theoretical procedure, Gaussian transformations and shifting are applied



successively on the basis matrix PreRrx(d+1) of Pr > c producing each time a 

new matrix PzeRzx(cl+1 ),z<r. The rank of the matrix Pz should be computed in a 

numerically sensible way; we use the notion of the numerical e-rank defined in 

Chapter 5 . In order to check the unit rank property of Pz and thus terminate 

the algorithm, we use the notion of strongly e-dependent sets of vectors and a 

singular value based test is deployed. This test is based on the properties of 

singular values of normalized matrices and states that almost unit rank is 

achieved, when the maximal singular value of the normalized Pz is equal to Jz.
The latter test is essential in the termination of the algorithm and the 

derivation of the approximate solution; otherwise, we will always end up with 

a conclusion that the original set of polynomials is coprime.

We must notice the fact that this method evaluates always satisfactory 

approximate solutions according to specified accuracies and that it can be 

applied to any set Pm  ̂ without any restrictions to the sizes of m,d. (The 

more polynomials we have the quicker it converges.) Also by the selection of 

an uncorrupted base we achieve a serious reduction in the number of the 

original data required for the process.
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7.2 A THEORETICAL ALGORITHM FOR COMPUTING THE G.C.D.

OF POLYNOMIALS [Kar.,1]

7.2.1 Extended-R-Equivalence on sets of polynomials

Let Pm,d = {pi(s):pi(s)eR[s],iem,di=deg{pi(s)},d=max{di,iem}} be the set of

polynomials of R[s]; m,d will be referred to as the dimension, degree of Pm ,cj

respectively. We define the sets:

{Pd} = {Pm ,d,mieZ+,deZ+ fixed } 
and

<Pd> = {Pm-,d',mieZ+,d'<d,deZ+ fixed ).

{^d)><^d> are the sets °f all polynomial sets from R[s] of degree d,maximal 

degree d respectively.

For a ¿ V d 6^ ) > the polynomial vector

Pm(s)

Pl(s)

Pm(s)

= Pfned(s) ,ed(s) = [l ,s, sd]t,Pm eR"“ (d+1>

(7.1)

will be referred to as a vector representative (v.r.) and the 

matrix Pm as a basis matrix (b.m.) of Pm ,d . Pm* or Hm(s) uniquely
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defines Pm,(]l up to permutation of its elements. We may always

express Pm as

Pm=[^m»cl£c+1 > • • • >£d+l]» £ieRm » ieID> Pc+1^0 (7*2)

where ce{0,1,2,...}. The integer c will be referred to as the

order of Pm,d and clearly defines the degree of the elementary

divisor (e.d.) at s=0 in a greatest common divisor (g.c.d.) of Pm , d

The set Pm,̂  will be called proper, nonproper, if c=0,ceZ+

respectively.

Let /?m ,c|e{Pc|},m*eZ+,m*>m. An m*-description, °f pm>d
is defined by trivially expanding Pm ,d by m*-m zeros; the 

corresponding basis matrix Pm* will be referred to as an

m -extension of Pm and it has the form

nr
Om*-m>d+l

eRm*x(d+l) (7.3)

1 2 *  1
Definition (7.1): Let / ^ » d ’̂ ’d e(^d)> m =max{mi,m2 ) and let Pm*, i=1,2

* i
be the m -extensions of the Pm^, i=1,2 basis matrices. The sets

1 2
^mj’d ’ r̂ri2 ’d will be called extended-R-equivalent (E-R-E) and shall be

1 2  * * 
denoted by ¿ m ^ d ^ n ^ d  » if there is a QeRm xm , |Q14=0, such that

Pm* = QPm* (7.4)

1 2  1 2
If Q is orthogonal, then we write d,EnPm ,̂̂  and ,d» ’d will be called

normally extended-R-eauivalent (NE-R-E).
■

It is readily shown that E[En) is an equivalence relation on

(P(j) and the corresponding equivalence class of Pm, de{/>d)
will be denoted by E(Pm,(jl). The characterisation of E(Pm,(]l)
by invariants is examined next.
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Letnnia (7.1) : Let PmeRmx( d+1 ) and p(Pm) = r < min{m,d+l). There exists 

QeRmxm, | Q14=0, such that

H .
Pm - Qpm=

Om-nd+l

H rx(d+l) 
, PreR

H
where Pr= (h-5j) is a matrix having the following properties:

(i) p(pj)«r.

(ii) There is a sequence of integers ni,...,nr, l<.nj<n2< • • .<nr<d+l 

such that h-j j=0 , j=l,...n-j-1 ,h-jn =1 , i = l,... ,r and h^n^ =0 ,

t=l,..., i-1 ,i+1 ,...,r.

(iii) The rest of hijeR and they are uniquely defined.

(7.5)

Pm is known as the Left-Hermite-Form (LHF) and Pr will be referred to 

as the Left-Echelon- Form (LEF) of Pm . More explicitly,

Pr =

0 .
0 .
0 .

nl *?2I I
.* 0 *. 
.0 1 *. 
. 0 0 *.

*

*
*

0 *. 
0 *. 
0 *.

*

*
* (7.6)

.0 0 0 . . . 0  0 0 . . . 0  1 *.

where * denotes unspecified entries. The uniqueness of Pr provides the 

means for the characterization of £(Pm>d) by invariants.

Theorem (7.1): Let ^m,de(^d}» pm a b.m. 
H
Pr is a complete invariant of E{Pm ¿).

H
and let Pr be m.the LEF of P,
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Remark (7.1): An equivalent, complete invariant for E(Pm>C|), 

is defined by the space /?(Pm) E row-span{Pm}.
■

H H
Remark (7.21: The set of polynomials ^r,de(^d) defined by the b.m. Pr

(the LEF), is a canonical form for £(Pm>cj).
■

Corollary (7.11: Let F’m,d=(Pi (s) > ieffl}e(^d) and let

/J,r,d={Pj(s)>JeC> be a subset of Pmf(j. P'r.d^m,d» if and only if

row-span{P'r) = row-span{Pm) (7.7)

An important function defined on any 

The effect of E-R-E transformations on 

examined next.

pm,de(pd) is the 9 -c.d. 
the g.c.d. of Pm>(j is

Proposition (7.11: Let £m,de(^d} and 

Pm>(j. Then, <p(s) is an invariant of f(/?m,d)*

let <p ( s ) be a g.c.d. of

The invariance of the g.c.d. under E-R-E transformations 

suggests that any set in £(8m)C|) may be used for its computation.

The canonical set Pr>c| has least dimension and the simplest structure. 

This set will be used for the computation of the 

g.c.d. of Pm>(j. We first note:

Remark (7.3): The canonical set PrjCj of £(Pn1)C|) may be computed from any 

subset p'r,d °f pr,d which satisfies condition (7.8) of 

Corollary (7.1). Furthermore, any subset of Pm^  which satisfies 

condition (7.8) has the same g.c.d. with PmjCj.
■

7.2.3 The q.c.d. of Pm j and the shifting operation

H H
Let £r>(j be the canonical form of E[Pm^). Then the v.r. of £r>(j is of the

following form:
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H
£r(s) =

I1 I2 r1 1 1 \ 2 r-1 ▼ r r
0 . . . 0  1 a 11 * * •a 1 k j 0 an--- •alkr.i 0 an .•-aikr

2 r-1 r r

• 
o

• 
o

• 
o 0 ... 0 1 a21--- •a2 kr-i 0 a2n ••a2 kr

• • • • • • •
; r rooo

0 ... 0 0 0 ... . 0 1 ari.•-arkr

H AH nr  
= s 1

1 AH
Pr'ed(s)

i“H1cs-
oL. —iII :Pr]'£d(s) Pr‘ed'(s) =

£d(s)

n -1 AH
s * Pr(s), d'=d-ni+l (7.8)

AH AH
Clearly, the order of Pm^  is c=nj-1 and the set Prj(j , defined by Pr(s), or

aH
Pr will be referred to as the reduced canonical set of E{Pm^ ) .

Remark (7.4): Let (p(s), <p(s) be the g.c.d. of Pm,d, Pr,d> respectively.
n -1 A A

Then <p(s) = cs 1 *<p(s), ceR-{0} and <p(0)̂ 0.
■

AH AH
Let /Y}d,={ti(s)>ie£} where ti(s) are the coordinates of Pr(s). By eqn.

(7.8) it is clear that t-j (s)=sni n* ti(s),ier and the set of polynomials 

Pr,d' = (t-j(s),ier) is also an invariant of £(Pm>d)-

Let t(s) =l+ais+.. .+ags5 be a minimal degree polynomial of Pr d';the minimal 

degree 5 will be referred to as the characteristic of Pm>d-

Proposition (7.2): Let Pm^  e{Pd) be a proper set of characteristic 5.

(i) If <p(s) is a g.c.d. of Pm,d>then deg <p(s) < 5.

(ii) If 5 = 0, then Pm)d is coprime.

(iii) If Pm is a b.m. of Pm?d and p(Pm)=d+l, then d is coprime.
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Remark (7.5):

Pm?(j set to be

(ii) P(Pm)<d -

Necessary conditions for the g.c.d. of a proper 

different tha.n a unit of R [ s ] are: (i) 5eZ+,

If p(Pm)<d> or the strongest condition 5eZ+ is satisfied the

search for the g.c.d. should continue. We first define the

following operation.

Definition (7.2): (i) Let ateRlxk be a vector of the following type:

â - [0 ?..... » 0 » 3q > a j,..., a|̂  ] ,
<---£ - 1--->

ao+° (7.9)

where eeZ+ . £ will be called the index of and at will be

referred to as an e-indexed vector. Let AeRmxk, âl‘ be the

i-th row of A and let £, be the corresponding index. Then A will

be referred to as an (£j.... eml-indexed matrix

(ii) On
4* 1 y 1/

an e-indexed vector a eR we define the shifting

operation shf: shf(at)=a,t, where

a ' 1 = [ao,ai,...,a|c,0 ,...... ,0 ]
<— £-1— >

eRlxk (7.10)

If AeRmxk is (ei,£2 ,.•.,em)-indexed, we define the shifting

operation shf:shf(A)=A'eRmxk, where the i-th-rows a-ĵ ,a - ' 1 of A,A'

respectively are related by: a-j '̂  =shf(ait) , iem.

(iii) Let pm,de(pd̂  and pm a corresponding b.m. The shifting

operation may be defined on {P by: (f’m,d)_^ ,m,de<^d>» where

the b.m. of p'm,d Is defined by P'm=shf (Pm). The set p'm,d will

be referred to as the shifted set of Pm 4.

A set may always be assumed to be (ej,... ,% )-indexed, since

every matrix Pm is always indexed by some integers (ej,...,em). 

Furthermore, since a b.m. Pm is not uniquely defined we may

assume that 0<£i<...<em . Such an ordering of the s^'s will be
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assumed in the following. Note that if e j >1 (the min{ei}), then 

shf(Pmjd) has degree less than d and thus shf[Pm,d)e<pd>'

Theorem (7.2): Let Pm.d^d) be (el> • • •,%)-indexed, /J,m ,d=shf (pm,d) and 

let <p(s),<p'(s) be the g.c.d.s of Pm>(\, P'm,d respectively. Then

ei -1
<p(s) = c s  i •ip'(s), ceR-{0} and ^'(O)^ (7-11)

■

Corollary (7.21: If Pm,de(pd) is proper, then the g.c.d. of 

Pm ,d is invariant under the combined action E-R-E transformations 

and shifting operations.
■

Remark (7.61: Let de{^d) be a nonproper set of order c,

pm',d'e<pd> be any set obtained from Pmj(j under the combined

action of E-R-E transformations and shifting operations and let 

<p(s),<p'(s) be the g.c.d.s of Pm,d̂ pm',d' respectively. Then,

<p(s) = a*sC*<p,(s), aeR-{0} and (p' (0)4=0 (7.12)

7.2.4 The computation of the q.c.d. of Pm tj

The invariance of the g.c.d. of a proper set Pm  ̂ under E-R-E 

and shifting transformations suggests that such transformations 

may be deployed for the computation of the g.c.d.

Remark (7 .7 ) : If de{75d) is proper, then the combined action 

of E-R-E and shifting operations produces proper sets Pm',d'e<pd> 
with m'<m and d'<d. Thus, the g.c.d. of Pm  ̂ and Pm> <j' are equal 

(mod. aeR-{0}).

The result stated next provides an essential step in the computation of a 

g.c.d. of .
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Proposition (7.31: Let pm,de(pd̂  be a Pr0Per set, pr,d its canonical
H X

form, P'r?d = s h f ^ d )  and let t(s)=l+ais+...+ags° be a least degree polyno-
|_|

mial of P'r,d- By the combined action of E-R-E and shifting operations 
H *

Pr>d may be reduced to a set Pr,de<pd> with the following properties:

*
(i) pr d is proper and its degree is 5.

*
(ii) The g.c.d.s of Pr^  and pm,d are eQual (mod. aeR-(0}).

* *
(iii) A b.m. Pr of Pr>d has the form

Pr

1 ai...ag 0...0 
* * . . . *  0 . . . 0

[prl°r,d-5]eR
rx(d+l) (7.13)

■

The set Pr 5 defined by the Pr eRrx^ +^  b.m. will be called a 5-reduced
H ’ *

set of Pr>d and has degree 5. The simpler set Pr ^5 may then be used for the

computation of the g.c.d. of /^d*

*  ^  A *

Remark (7.8): Let be a 5-reduced set of Pr?d and let Pr be a b.m. for

*  A *  A *

Pr?5 . If p(Pr)=l, then a g.c.d. of Pm^  is t(s)=l+ais+..,+ags . If p(Pr)=5+l, 

then Pm5d is coprirne.

*
The derivation of Pr 5 from Pm j completes a cycle of the search for

A*
the g.c.d. of Pm d- If PiPrH 1>5+1, then the search has to continue on 
*
Pr?5 . A systematic theoretical procedure for the computation of the g.c.d 

of Pm?d is described next.
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The procedure described in (II) corresponds to a cycle of the

searching process.Note that if the search does not terminate in a 

cycle, it produces a set of smaller degree. Because the dimension 

and the degree of the equivalent sets are reduced within a cycle

the search eventually terminates. We may illustrate the above procedure by 

an example.

Example (7.1): Let /J3 4 =(ti(s)=s4+s3 -s-l, t2 (s)=s3+3 s2 -s-3 , t3 (s)=s4 -l). 

In the following, by Pi— >P2 , Pi*— >P2* we mean that P2 ,P2* are obtained 

from Pi, Pi by elementary row operations, shifting respectively. A b.m. of 

P3 > 4 is defined by

■1 - 1 0  1 1

> P(P3 )=rP3 = - 3 - 1 3 1 0  

-1 0 0 0 1

H
Since, r=3<4+l=5 we compute the LEF P3

E
P3— >

-1 0 0 0 1
E

1 0 0 0 - 1

0 -1 0 1 0 ---> 0 1 0 - 1 0

0 -1 3 1 -3 0 0 1 0 -1

H
= P3

H o
The minimal degree polynomial in shf(P3 >4 ) is t(s)=s -1.

0

Clearly ±1 are roots of t-j(s),i=l,2,3 and thus <p(s)=s -1. 

Alternatively, from P3 4  we may compute a 5-reduced set as:

shf
1 0 0 0 -1 1 0 -1 0 0

H
shf(P3)= 1 0 -1 0 0

E
— > 0 0 0 0 -1

1 0 -1 0 0 0 0 0 0 0

1 0 -1 0 0 1 0 -1 0 0
shf E

----> 1 0 -1 0 0 — > 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

- P3#

P3' is the b.m. of the 2-reduced set and t(s)=l-s2 = <p(s).
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Remark (7.91: Generally, the transformations on the b.m. 

when all the rows of the matrix become linear dependent 

the row that contains the minimal degree polynomial.

stop

with

7.3 NUMERICAL PROBLEMS OF THE THEORETICAL ALGORITHM 
AND THEIR SOLUTION

The nongeneric nature of a nontrivial g.c.d. of a set of polynomials

necessitates the need for extra care in trying to 

formulate a numerical procedure for its computation. In order to implement the 

main steps of the algorithm in [Kar., 1], in an effective numerical manner, 

that catches the exact degree of the g.c.d. and obtains a satisfactory 

approximate solution, we have to resolve a number of issues related to the 

theoretical algorithm. Some important problems that arise are:

(PI) For a given set Pm>c\ we must choose an uncorrupted base /Y,d- By the term 

"uncorrupted" we mean that we want to find a base for Pmj(j without 

transforming the original data and evidently introducing coaAdoff-error 

even before the method starts. Already known techniques for the 

evaluation of bases, based on Gram-Schmidt orthogonalization are 

excluded, because they transform the original data.

(P2) Instead of using E-R-E transformations which generally are numerically 

unstable we should apply for the same purpose an appropriate stable 

numerical method, which leaves invariant the row-space of the basis 

matrix. This numerical method must also retain the zero entries of the 

b.m. obtained at each iteration. The preservation of this zero structure 

helps us in reducing the degree of the polynomials after each iteration. 

Therefore, orthogonal techniques such as Householder transformations 

cannot be used because they spoil the zero structure of the matrix.

(P3) We must search for an effective criterion that corresponds to the 

theoretical condition p(Pr)=l. This criterion must allow the termination 

of the method only when the exact degree is found, thus permitting the 

method to provide a satisfactory approximate solutionj otherwise, the 

algorithm may converge to the generic solution, which is that of coprime 

polynomials.



We consider next the solution of the previously stated numerical problems.

(PI) Selection of a best basis from an existing set

If (x-j, iem} is a set of vectors of Rn, X = sp{x-j, iem} and dim X < m, then 
the selection of a basis for 7 is a problem that may be handled by the 

Gram-Schmidt orthogonalization procedure, or use of the Singular Value 

Decomposition. Such procedures yield orthogonal bases, but transform the 

original data. The nongeneric existence of g.c.d., necessitates the 

minimization of all unnecessary round off errors and thus leads to the 

problem of selecting the "best" (according to some normality criterion) 

basis from the existing vectors of (x-j, iem}. This problem may be 

referred to as selection of the best uncorrupted basis. The technique 

proposed in section 5.7.2 of Chapter 5 can be used. More specifically, 

algorithm UNCBAS developed in section 5.7.3 can be applied for the 

selection of the best uncorrupted basis Pr^  of Pn^d-

(P2) Stable row operations preserving specified zero entries

We apply successively Gaussian elimination with partial pivoting which 

leaves invariant the row space of a matrix. Then, an L-U factorization of 

the b.m. Pr of Pr>c| is obtained and an upper triangular, or trapezoidal 

form is used instead of the LEF. Due to the fact that Gaussian 

elimination zeroes the linearly dependent rows of a matrix (except one of 

them), after each iteration zero rows might appear to b.m. Pr. In such a 

case all this zero rows must be dismissed. Gaussian elimination with 

partial pivoting has also the property that leaves invariant the first 

row of the matrix. Taking advantage of this property (and having in mind 

that the degree of the g.c.d. of Pr>c| will be less than or equal to the 

degree of the lowest degree polynomial), in the beginning of each 

iteration we reorder the polynomials of Pr cj and set always in the first 

row of b.m. Pr the polynomial of lowest degree. By doing this we preserve 

all the zero entries of the b.m. obtained at each iteration. 

Consequently, a serious reduction to the degrees of all remaining 

polynomials is achieved, and the rank of b.m. Pr will be substantially 

decreased after a finite number of steps.
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(P3) The termination criterion

In Sect. 7.2, it was noticed that the theoretical algorithm will always 

converge after a finite number of steps. Consequently, the corresponding 

numerical method will converge after a finite number of iterations. The
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main issue now is that we have to introduce a specific criterion that 

will allow the termination of the method, when the exact degree of the 

g.c.d. is found. From Definition (5.3) and Remark (5.3) developed in 

Chapter 5, we conclude that the theoretical condition p(Pr)=l which 

specifies the termination of the theoretical algorithm, numerically can 

be applied as p£(Pr)=l for a given accuracy e. Thus, we can formulate a 

criterion for the termination of the method as follows:

Criterion (I) : For a given Pm^  we start the method with a set A= 

{£¡^»£2 »̂ - * • »Pr^) °f r linearly independent vectors £iteRlx^ +1^, 

i=l,2,...,r. By applying successively Gaussian transformations and 

shifting we produce each time sets Aq=(Si^ ’ • • • ’Gz^) with z<r. After a 

number of iteration cycles, the process terminates when we obtain a set 

Aq which is strongly e-dependent for a given tolerance e. i.e. it has 

pe(AG)=l.

Criterion (I) has the feature that is closely connected with a given 

tolerance e. It is evident that different sets Pm^  may require different 

values of e, depending on their coefficients. It is impossible to assess 

from the beginning the appropriate value of e for each Pm d̂. Therefore, 

we have to formulate an improved criterion which is convenient for all 

sets Pm>(j without having an explicit dependence on the specified 

tolerance e.

Theorems (5.5) and (5.5) formulated in Sect. 5.4 of Chapter 5 form the 

basis for developing the following specific criterion which allows the 

termination of the method.

Criterion (II) : For a given Pm (j we start the method with a set 

A={£i^,£2 ,̂ • • • of r linearly independent vectors £-j teRlx (d+l), 

i=l,2,...,r. By applying successively Gaussian transformations and 

shifting we derive at the end of every cycle sets Aq=(Qi^,Q2^»•••>Qz^>Q^) 

with z<r. This process terminates when the maximal singular value oj of 

the normalization of Aq is approximately equal to Jz and all the other 

singular values vanish.

Remark (7.10): Actually when the set Aq satisfies the condition of 

Criterion (II) it is a strongly e-dependent set set for some value of e.
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Remark (7.10): Actually when the set Ag satisfies the condition of 

Criterion (II) it is a strongly e-dependent set set for some value of e. 

Therefore, Criterion (II) is an improved, more specific and convenient, 

version of Criterion (I).
■

Remark (7.111: By applying normalization at each new set Aq , we keep the 

data in reasonable size and consequently our process will never end up 

with a fuzzy c-dependent set.
■

Remark (7.121: For some tolerance e, it is evident that the numerical 

e-rank of a normalized set AN={vit,V2t,...,vzt) satisfying Criterion 

(II), is equal to one. Thus, all the vectors of such a set are linearly 

dependent. If we select any of them, this contains the coefficients of 

the g.c.d. (mod aeR-{0)).

A more accurate selection could be achieved if the approach concerning 

the selection of a "best" representative of a strongly e-dependent set, 

developed in Sect. 5.5 of Chapter 5, is applied.

7.4 THE NUMERICAL ALGORITHM OF THE METHOD AND ITS ANALYSIS

7.4.1 The numerical algorithm

To describe our algorithm we assume that Pm;(j e ^ } ,  <p(s) a g.c.d. of Pm?(j> 

Pm eRmxn, n=d+l a basis matrix of Pm ,d> p(Pm)= r > c>0 the order of Pm?c| , 

Oi ,i=l,2,...min{m,n} the singular values of Pm, e, ej given tolerances.

Algorithm MAIN

STEP 1: if Pm is nonproper (c>l) then

Pm := [ Om,c > ^m ]

sc is an e.d. of <p(s) at s= 0

<p(s) := sc*<p(s), where <p(s) is a g.c.d

of the proper set defined by the b.m. Pm
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el se

Pm is proper (c= 0)

The first column of Pm is nonzero

*(0 )+ 0

STFP 2: if p£(Pm)= n then

the polynomials are coprime

<P(s) := 1

quit

else if Pe(Pm)= 1 then

any nonzero row of Pm gives the 

the coefficients of <p(s) 

quit

if Pe(pm) + m then

find a best uncorrupted basis of p£(Pm)=r vector 

amongst the rows of Pm and Pr eRrxn r<n the 

corresponding submatrix of Pm .

pm := pr

STEP 3: 3.1 Reorder the rows of Pm in decreasing order 

according to the number of zeros in them.

3.2 if (deg{p-j(s)} the same for all i = l,2,...,m} then

find oi>0 2>...>om the singular values of Pm 

if {oj « Jm and o-j < e, i = l,2 ,...,m} then

any row of Pm gives the coefficients of <p(s) 

quit

3.3 Apply Gaussian elimination with partial pivoting to

Pm and transform it to an upper trapezoidal or 
G

triangular form Pm .
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3.4 Pm := the normalization of Pm

3.5 Apply shifting to Pm

3.6 Repeat STEP 3

Alg: 7.1

7.4.2 Implementation of the algorithm

For the implementation of the previous algorithm, several subalgorithms 

are required. Most of them were constructed especially for the needs of the 

above algorithm. Two basic ones were taken from NAG Library. In the sequel, an 

analytical description of the most important of them is presented. Their 

computational complexity is measured by using the concept of flops [Gol., 1]. 

Whenever necessary, their error analysis is also developed. Useful hints 

concerning the implementation of the steps of the above algorithm are also 

given.

(i) Algorithm PROPER

Given AeRmxn, the following algorithm checks if A is proper or not.

(i i) Algorithm BSCALE

It has been observed empirically, that if the elements of the coefficient 

matrix Pm vary greatly in size, then it is likely that loss of significance
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errors will be introduced and that the rounding error propagation will be 

worse. To avoid this problem, in the beginning of the evaluations we scale 

matrix Pm , so that its elements vary less. A specific row-scaling, named El- 

scaling [Atk., 1] which uses the machine's arithmetic base p and does not 

cause any rounding errors is applied. The following algorithm scales the 

original matrix using the computer number base p. After the application of 

this scaling the elements of A satisfy:

P ' 1 < max | a-j j | < 1  , i = 1,2, ...,m
l<j<n

Matrix A is overwritten by the scaled matrix.

for i = 1 ,2 ,...,m

s-j := max | â  j | 
l<j<n

riDetermine the smallest integer r^eZ so p '>s-j 

di := l/p1" 1 

for j = 1 ,2 ,...,n 

aij := aij 'di

Alo: 7.3

Remark (7.13): This scaling is extremely useful because

no rounding error is involved in defining the new ajj. 

It only appears a change in the exponent in the floating 

point form of a-jj.

(iii) For the evaluation of the singular values of matrix Pm we use subroutine 

F02WCF of NAG Library, (see section 5.7.3 of Chapter 5).

(iv) For the selection of an uncorrupted basis for the row space of the matrix 

Pm , algorithm UNCBAS of section 5.7.3 is used.
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(v) Algorithm REORD

Given A = [r^,]^, ••• >rmt]eRmxni the following algorithm

reorders the rows of the matrix, in ascending order 

according to the number of zeros in them and throws the

zero rows (lzero) from it. To each row r i ̂ we correspond 

the pair (metrj, indrow-j) where metr-j counts the zeros of

each row and indrow-j contains the index of each row.

Order array metr-j in descending order

Each new metrj retains invariant its previous

row index (indrowj)

lzero := 0

for i=l,2 ,...,m

if metrj := n then 

Izero := lzero+1

else

li-lzero*' := lindrowj 

Alg: 7.4

Computational complexity of REORD [Krön., 1]

The computational complexity of the algorithm is measured by

the inumber of comparisons between the elements of array metrj

(key comparisons). If we use the simple sei ection sort this

number i s :

(m-l)+(m-2 )+. ..+2+1 = nr (m-l) / 2  « 0 (m2)

Notation f7.1): For large arrays other faster methods can be used for 

sorting them, (such as Quicksort)

(vi) It is evident that only when all the polynomials of a set have the same 

degree it is likely for their b.m. to have numerical s-rank one, for some
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tolerance e. In order to avoid unnecessary calculations we check whether 

Criterion (II) holds true, only when all polynomials in Pr>(j have the same 

degree. After testing a variety of examples, it had been observed that when oj 

« 7m all the rest o-j become less than some tolerance £\. Thus, instead of 

checking if ( o\ » Jm and ô  < ej, i=2,3,...,m ) for some ej that we must 

specify from the beginning, we only check if {o^ « 7m }. When this is 

achieved, 02 determines the value of ej. From the examples it seems that the 

value of specifies the number of significant digits in the final result. 

The condition oj * 7m is translated into | oj-Tm | < n, for some 

accuracy n.

(vii) Algorithm APRSCA

Let A = [rit,r2t,...,rmt]eRmxn a given matrix. Its first

row after the application of algorithm REORD contains 

the maximum number of zeros. We want this first row to be

retained in the same position after the application of 

partial pivoting. So, we scale appropriately each row of 

matrix A that has first coefficient greater than the first 

coefficient of the first row.

if a n  < 0 then

r ^  := -rit

for i = 2,3,.. . ,m

if laill > a n  then

numbz := minimum power of 10 so the

integer part of a n  * 1 0 num^ z >0

r .t .= 1/ 10numbz.£ .t

Alg: 7.5
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Error analysis of APRSCA [Wilk., 1]

The multiplication of the i-th row of matrix A by 

scale factor (lets say X) is equivalent by a left

of A by a diagonal matrix D with 1 on diagonal

factor X in the i-th position. Then,

1 M l  M 2  ••-aln all a12 • • • aln
• a21 a22 •••a2n a21 a22-•• a2n

X • ail ai2 ••-ain = Xail Xai2. • -^Mn

1 aml am2 •••amn aml am2---^amn

fl(DA) =

all M2

Xaii(l+eii) Xai2(l+£i2 )

aml am2

Mn

^Mn(l+£in)

1mn

D-A + Xa i1M 1 ^ai2£i2 Xai n£incm £ijl < u 

j—1,2,..., n

The relative error is given by the expression:

Rel = | fl(DA) - DA I
iDAl

an appropriate 

multiplication 

and the scale

We remark that:
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0

l ^ i l l

Ó

| X a i 2 | .

ò  !

. | Xa-j n  |

! ó

1 a i l  1 1 a 1 2 1 • l a l n l

1 a 2 11 1 a 2 2  1 • • 1 a 2 n  1

lX a i l l | X a i 2 | . • l ^ a i n l

1 a m l  1 1 a m 2 1 • • 1 a m n 1

Thus, the relative error is always very small.

(vii) Algorithm GAUSS

In Appendix D, an analytical description of this algorithm is presented. 

Furthermore, its computational comlpexity and its error analysis are also 

fully discussed.

(ix) The normalization of the matrix is achieved using algorithm NORMAL 

proposed in section 5.7.2 of Chapter 5. A slight variation can be added. If 

zero entries exist amongst the rows of the matrix Pm , subroutine NORMAL will 

not take them into account; and therefore the number of flops will be 

seriously decreased.

(x) The space complexity of the algorithm depends on the size of the given 

matrix Pm . Basically, it requires an mxn array for storing the original data 

and all the intermediate transformations are kept on the same array. Some 

auxiliary arrays of one or two dimensions are also used but they do not occupy 

much extra storage.

7.4.3 Error Analysis of the algorithm

According to the technique of backward error analysis, we will prove that 

after the end of the k-th iteration:
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(i) M-f^= P ^  E , where E is a matrix of small elements which 

accounts for the rounding errors and M a matrix accounting for the norma-

lization and the Gaussian transformations performed at each step.

(ii) The size of E is properly bounded.

In fact, it is observed that:

(i) During the k-th iteration, the application of Gaussian
(k-1) G(k)

partial pivoting in the b.m. Pm produces a b.m. Pm 

[WiIk., 1]:

p£(k)= L' 1 • (p(k_1) + Eg ), || Eg IU < 2 .0 1u-(m-l) 2

el imination with 

that satisfies

(7.14)

where LeRmxm a unit lower triangular matrix with nondiagonal elements 

less than unity, EGeRmxn the error matrix, u the unit round off.

(see Appendix D).

As it was proved in section 5.7.3 of Chapter 5, the normalization

D(k) G(k)
Pm of Pm satisfies:

(k) G(k) „
Pm = N-PmV ' + EN, || EN |U < 3.003n-u (7.15)

where NeRmxm = d i ag (d j ,d2,... ,dm), d ^ i  /(/l |PmG!l| | V \  i = l,2,...,m,
kj=l 1J

E|s|eRmxn the error matrix.

G(k)
There is no loss of generality in assuming that Pm < 1 since this can

achieved by scaling (without rounding error), and therefore we can

suppose that || N"^ I* < Jn.

(7.14), (7.15) yields:

(k) t (k-1)
Pm ' = N ’L' 1 • (P̂ , EG ) + EN (7.16)

By setting (N*L-^)-  ̂ = MeRmxm , (7.16) can be written as:
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(7.17)

where E = Eg + M ‘E^ eRmxn the error matrix.

(ii) From (7.17) we notice that

II E IU < II EG 1„ + II h -en II00 (7.18)

Combining relations (7.14), (7.15) and from the fact that

Il M J* < || L I* • I N ' 1 1« < n-Jn

we conclude that:

Il E I« < 2.01-u-(m-l)2+3.003-u-n5/2 (7.19)

The previous analysis leads us to the formulation of the following result 

, which establishes the stability of each iteration step.

(k )
Theorem (7.3): The matrix P̂, , computed by the method in the k-th itera-

tion, using floating-point arithmetic with unit round off u, satisfies the 

properties:

The previous numerical method was programmed [Mit. & Kar., 1] and a variety 

of examples were tested. Next we present some representative ones. Because the 

computer was operated on a time sharing principle, each example was run 

several times and the timings averaged. To clarify the algorithm, in the first 

example all the required intermediate steps are described analytically before 

the final result.

The following tolerances are required: 

e - specifies the initial numerical e-rank of Pm 

eg - specifies the accuracy of Gaussian elimination (values less 

than eg will be set equal to zero during Gaussian elimination) 

n - specifies the accuracy of our final result.

|| E I« < 2.01 *u* (m-l)2+3.003-u-n5/2 (7.20)

7.5 NUMERICAL RESULTS - DISCUSSION
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Example 17.2) : Find the g.c.d. of the set:

P6>4 = ( Pl(s) = s4-15s3- 8 s+1 2 0,

P2(s) = s4-8s3-101s2-59s-15,

P3(s) = s4-14s3-14s2-14s-15,

P4(s) = 2s4-9s3-302s2-85s-1650,

P5(s) = s4-36s3+322s2-66s-585,

P6(s) = 139s4-1585s3-7389s2-648s-1525 }

Using 5 decimal digits and by setting s = £q = n = 10"^ the following results 

are obtained.

THE MATRIX IS PROPER

THE GIVEN MATRIX IS

1 2 0 . 0 0 0 0 0 -8 . 0 0 0 0 0 . 0 0 0 0 0 -15.00000 1 . 0 0 0 0 0
-15.00000 -59.00000 -1 0 1 . 0 0 0 0 0 -8 . 0 0 0 0 0 1 . 0 0 0 0 0
-15.00000 -14.00000 -14.00000 -14.00000 1 . 0 0 0 0 0

-1650.00000 -85.00000 -302.00000 -9.00000 2 . 0 0 0 0 0
-585.00000 -6 6 . 0 0 0 0 0 322.00000 -36.00000 1 . 0 0 0 0 0

-15255.00000 -648.00000 -7389.00000 -1585.00000 139.00000

SINGULAR VALUES 
. 17118E+05 
. 71733E+03 
. 11223E+03 
.65364E+02 
.14080E-11

THE NUMERICAL RANK OF THE MATRIX IS 4

THE ROW INDEPENDENT MATRIX IS

120.00000
-15.00000
-15.00000

-1650.00000

- 8.00000
-59.00000
-14.00000
-85.00000

.00000
- 101.00000
-14.00000

-302.00000

-15.00000
- 8.00000

-14.00000
-9.00000

1.00000
1 . 0 0 0 0 0
1 . 0 0 0 0 0
2 .00000

THE B-SCALED MATRIX IS

.23438
-.02930
-.23438
-.40283

-.01563
-.11523
-.21875
-.02075

.00000
-.19727
-.21875
-.07373

-.02930
-.01563
-.21875
- . 0 0 2 2 0

.00195

.00195

.01563

.00049

WE BEGIN GAUSSIAN TRANSFORMATIONS TO THE MATRIX
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STEP 0

MATRIX A(I,J)

23438 -.01563 . 0 0 0 0 0 -.02930 .00195
02930 -.11523 -.19727 -.01563 .00195
23438 -.21875 -.21875 -.21875 .01563
40283 -.02075 -.07373 - . 0 0 2 2 0 .00049

NUMBER OF NONZERO ROWS = 4

THE REORDERED MATRIX IS

40283 -.02075 -.07373 - . 0 0 2 2 0 .00049
23438 -.01563 . 0 0 0 0 0 -.02930 .00195
02930 -.11523 -.19727 -.01563 .00195
23438 -.21875 -.21875 -.21875 .01563

SINGULAR VALUES
#59359E+00

•
33044E+00
12091E+00
75649E-02

THE APPROPRIATE SCALED MATRIX IS

40283 .02075 .07373 . 0 0 2 2 0 -.00049
23438 -.01563 . 0 0 0 0 0 -.02930 .00195
02930 -.11523 -.19727 -.01563 .00195
23438 -.21875 -.21875 -.21875 .01563

THE 1NORMALIZED MATRIX IS

98238 .05061 .17981 .00536 -.00119
0 0 0 0 0 -.59374 -.50519 -.62475 .04407
0 0 0 0 0 . 0 0 0 0 0 -.67355 .73770 -.04619
0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 -.99779 .06652

STEP 1

MATRIX A(I,J)

.98238 .05061 .17981 .00536 -.00119

.59374 -.50519 -.62475 .04407 . 0 0 0 0 0

.67355 .73770 -.04619 . 0 0 0 0 0 . 0 0 0 0 0

.99779 .06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

NUMBER OF NONZERO ROWS = 4

THE REORDERED MATRIX IS

.99779 .06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

.67355 .73770 -.04619 . 0 0 0 0 0 . 0 0 0 0 0

.59374 -.50519 -.62475 .04407 . 0 0 0 0 0

.98238 .05061 .17981 .00536 -.00119
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THE APPROPRIATE SCALED MATRIX IS

.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
-.67355 .73770 -.04619 . 0 0 0 0 0 . 0 0 0 0 0
-.59374 -.50519 -.62475 .04407 . 0 0 0 0 0
.98238 .05061 .17981 .00536 -.00119

THE NORMALIZED MATRIX IS

.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0

. 0 0 0 0 0 .99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0

. 0 0 0 0 0 . 0 0 0 0 0 -.99779 .06652 . 0 0 0 0 0

. 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 .99779 -.06652

STEP 2

MATRIX A (I,J)

.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0
-.99779 .06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0
.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

NUMBER OF NONZERO ROWS = 4

THE REORDERED MATRIX IS

.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0
-.99779 .06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0
.99779 -.06652 .00000 . 0 0 0 0 0 . 0 0 0 0 0

SINGULAR VALUES
. 20000E+01 
. 95934E-15 
.00000E+00 
.00000E+00

WE FIND THE GCD OF THE POLYNOMIALS

-15.00000 1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0

Therefore the g.c.d. of Pg,4 is <P(s) = s-15. The required time was 0.574

sec.

Remark (7.14): A better approximation can be achieved if Remark (5.6) is 

applied. The S.V.D. of the final reordered matrix M is given by M=VIW^, where 

M=[mi^>m2 >̂ni3 1:>!!!4 *'] .The matrices are:

MATRIX M
.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0

-.99779 .06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
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MATRIX V
.50000 . 0 0 0 0 0 .86603 . 0 0 0 0 0
.50000 -.15430 -.28868 .80178

-.50000 .61721 .28868 .53452
.50000 .77152 -.28868 -.26726

MATRIX WT
.99779 -.06652 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
.06652 .99779 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
. 0 0 0 0 0 . 0 0 0 0 0 -1 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0
. 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 -1 . 0 0 0 0 0 . 0 0 0 0 0

Since it is required a "best" representative of the strongly e-dependent

set {mit>!S2t>n!3 t,D!41'}, this is the singular vector wj =(.99779 -.06652 .0000

.0000 .OOOO) 1 of W.
■

Example (7.31 : Find the g.c.d. of the set: 

P3j5 = ( Pits) = 2.9s2+14.85s+15.75,

P2(s) =  6 . 1 s 2 + 1 1 . 6 5 s 2 + 1 1 . 8 5 s + 1 2 . 1 5 ,  

P3(s) =  3 . 7 s 3 + 1 7 . 0 5 s 2 + 3 0 . 3 5 s + 1 9 . 6 5  }

After two iterations the method finds <p(s)=s+1.5. This result was achieved by 

setting e = eg = 10'11. The required time was 0.3sec.

Example (7.41 : [Pac. & Bar., 1] Find the g.c.d. of the set:

^2,16 = { Pl(s) = s 1 6 - 3 0 s 1 5 + 4 3 5 s 1 4 - 4 0 6 0 s 1 3 + 2 7 3 3 7 s 1 2 - 1 4 0 7 9 0 s 1 1 +

5 7 3 1 0 5 5 s 1 0 - 1 8 7 7 9 8 0 s 9 + 4 9 9 7 7 8 8 s 8 - 1 0 8 1 9 3 8 0 s 7 +

1 8 9 5 9 4 6 0 s 6 - 2 6 5 7 0 9 6 0 s 5 + 2 9 1 5 3 8 6 4 s 4 - 2 4 1 7 8 8 0 0 s 3 +

14280000s2-5360000s+960000,

P2(s) =  s 1 4 - 1 4 0 s 1 2 + 7 4 6 2 s 1 0 - 1 9 1 6 2 0 s 8 + 2 4 7 5 4 7 3 s 6 -  

15291640s2-5401600 }

After 21 iterations the method finds:

<p(s) » s4-9.9997s3+34.99734s2-49.9923s+23.99288 ( the accurate g.c.d. is <p(s)

= s 4 - 1 0 s 3 + 3 5 s 2 - 5 0 s + 2 4  ) This result was achieved by setting e = eg =  1 0 ' 1 1 ,  n 

=  1 0 ~ 6 . The required time was 3 . 6 5 6  sec.
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Example (7.5) 

pll, 21 = { pi(s)

P2(s) =

p3(s) - 

P4 (S ) = 

P5(s) =

P6 (s) =

P7(S) =

P8(s) =

Pg(s) =

Find the g.c.d. of the set: 

s^ + 4 s^ + 7 s^ + 2 1 s^ + 5 4 s^ + 8 2 s^ + 6 1 s^ + 2 9 s^ +  
36s12+47sH +26s10+7s9+15s8+20s7+12s6+6s5+27s4+ 

1 3 1 s 3 + 2 8 6 s 2 + 3 1 8 s + 1 4 0 ,

s 28+3s ^9+4s ^9+2s ^7+3s ^4+9s ^3+12s ^2+6s ^ + 5 s ^ +

Pl0(s)

Pll(s)

15s9+22s8+16s7+9s6+7s5+4s4+2s3,

s 2 8 + 3 s ^ 9 + 4 s ^ 8 + 2 s ^ 7 + s ^ 3 + 3 s ^ 2 + 4 s ^ + 2 s ^ 8 + s 8 + 3 s 8 +

1 5 s 4 + 3 5 s 3 + 4 4 s 2 + 2 2 s ,

5 s 2 0 + 1 5 s 1 9 + 2 0 s 1 8 + 1 0 s 1 7 + 4 s 1 3 + 1 2 s 1 2 + 1 6 s H + 8 s 1 0 +

2 s 8 + 6 s 7 + 8 s 6 + 4 s 5 + 1 0 s 3 + 3 0 s 2 + 4 0 s + 2 0 ,

- s 2 8 - 3 s ^ 9 - 4 s ^ 8 - 2 s ^ 7 - s 8 - 3 s 7 - 4 s 8 - 2 s 8 + 3 0 s 3 + 9 0 s 2 +

1 2 0 S + 6 0 ,

s 2 8 + 3 s ^ 9 + 4 s ^ 8 + 2 s ^ 7 - 2 s ^ 8 - 6 s ^ 8 - 8 s ^ 4 - 4 s ^ 3 + s ^ 2 +

3 s 1 1 + 4 s 1 0 - s 9 - 9 s 8 - 1 2 s 7 - 6 s 6 + 1 1 s 3 + 3 3 s 2 + 4 4 s + 2 2 ,

s 2 8 + 3 s ^ 9 + 4 s ^ 8 + 2 s ^ 7 + 1 1 s ^ 8 + 3 3 s 9 + 4 4 s 8 + 2 2 s 7 + 2 0 s 3 +

6 0 s 2 + 8 0 s + 4 0 ,

s 2 8 + 3 s ^ 9 + 7 s ^ 8 + 1 1 s ^ 7 + 1 2 s ^ 8 + 8 s ^ 8 + 6 s ^ 4 + 8 s ^ 3 + 4 s ^ 2 +

5 s 9 + 1 5 s 8 + 2 0 s 7 + 1 0 s 6 + 9 s 3 + 2 7 s 2 + 3 6 s + 1 8 ,

s 2 8 + 3 s ^ 9 + 4 s ^ 8 + 3 s ^ 7 + 3 s ^ 8 + 4 s ^ 8 + 5 s ^ 4 + 9 s ^ 3 + 1 3 s ^ 2 +

9 s ^ + 9 s ^ 8 + 1 7 s 9 + 2 0 s 8 + 1 0 s 7 + s 8 + 3 s 8 + 4 s 4 + 5 s 3 + 9 s 2 +

12S+6,

=  s 2 8 + 2 s ^ 9 + s ^ 8 - 2 s ^ 7 - 2 s ^ 8 + s ^ 2 + 3 s ^ + 4 s ^ 8 + 2 s 9 - s 8 -  

3 s 7 - 4 s 6 + 2 s 5 - 4 s 3 - 1 2 s 2 - 1 6 s - 8 ,

=  s 2 8 + 3 s ^ 9 + 1 5 s ^ 8 + 3 5 s ^ 7 + 4 4 s ^ 8 + 2 2 s ^ 8 + 3 s ^ 4 + 9 s ^ 3 +  

1 3 s 1 2 + 9 s 1 1 + 4 s 1 0 + 2 s 9 + 3 0 s 3 + 9 0 s 2 + 1 2 0 s + 6 0  }

After 5 iterations the method finds:

<p( s )  »  s 3 + 2 . 9 9 9 9 9 9 9 9 9 9 9 7 s 2 + 3 . 9 9 9 9 9 9 9 9 9 9 9 5 s + l . 9 9 9 9 9 9 9 9 9 9 9 6  ( t h e  a c c u r a t e  g . c . d .
o p  11

is <p(s)=s +3sH4s+2 ). This result was achieved by setting e = 10- , eg = n =
O

10-°. The required time was 12.169 sec.

The following example demonstrates the "catching up" of approximate 

solutions when a "best" uncorrupted base is used.

Example (7.6) : Find the g.c.d. of the set 

p3,l = ( Pl(s) = s+3, P2(s) = s+2.999, P3(s) = 2s+5.999 }

We select a most orthogonal uncorrupted base of the above set
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flunc = ( Pl(s) = s+3, P2 (s) = s+2.999 }. Then, for n = 10' 5 the method catches 

up an approximate g.c.d. equal to s+3.

On the contrary, if we select an orthonormal base

fiorth = ( pl(s) = 0.3162752S+0.948667, P2(s) = 0.948667s-0.3162752 }

the method ends up with a coprime set of polynomials.

Thus, although in some cases (specially when m is large) the selection of a 

most orthogonal uncorrupted base compared with the selection of an orthonormal 

base might seem much more tedius, it provides an efficient technique able to 

catch up approximate solutions.
■

Remarks

Computationally, the method is attractive because you can easily evaluate 

the g.c.d. of any Pm ^^; it requires the forming of the basis matrix Pm 

eRmx(d+l) directly from the coefficients of the original polynomials and then 

the application of Gaussian transformations and shifting on it. The dimensions 

of b.m. Pm are far lower than the dimensions of the matrices used in 

generalised resultant based methods. For a given Pm^  , the following table 

shows the precise dimensions of the initial matrix A used for the evaluation 

of the g.c.d. of Pm^  in some of the existing methods.

The present method A e Rmx(d+1)

Barnett's method A e Rdx(m-l)d

A e R[(m-l)d+p]x(d+p)> p is the

Sylvester's method maximum degree of the poly-

nomials P-j(s), deg{P-j ( s ) }<d -1

Blankiship's method A e [ Pm(s) | Im ]

One of the advantages of the method is that of choosing a linearly independent 

subset of the original set of polynomials and initiates the process with this 

subset. Thus, we have a remarkable decrease in the number of polynomials used 

by this step. For example, if we are given a P\s,Z0 set’ with P(Pl5)=5 the 

method will find a most orthogonal basis for the row space of Pj5 and starts 

the evaluations using only five polynomials. On the contrary, most of the
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other methods will start their evaluations with the whole set of fifteen 

polynomials.

From the previous numerical examples it is clear, that the method deals 

successfully with polynomials of high degree and with large coefficients. 

Also, it works extremely satisfactorily with sets containing a large number of 

polynomials. The more polynomials we have the fewer iterations required for 

the convergence of the algorithm.

In case that we have polynomials with nearly equal factors, the method
O

catches an approximate g.c.d. of the set. For example, for Pj(s) = (s-1)̂ -* (s- 

2)*(s-2-e), P2(s)=Pi,(s), £<10'® [Pac. & Bar., 1], we get an approximate 

g.c.d. of the set which equals to s^-3.0005s+2.0005 (using 4 decimal 

digits). A modification of the method that may compute a better estimate of 

the g.c.d. of such polynomials is under study.

The value of n used in STEP 3 of the algorithm should not be fixed, but 

will vary according to the given data. In examples (7.4) and (7.5), where we 

have large coefficients and a large number of polynomials respectively, the 

right values of n that catches the correct degree of the g.c.d. are 1 0"®, 1 0" 

®. On the other hand, in example (7.2) it is 10“^. It seems that perhaps a 

mathematical relation between the original data and n exists. It might be 

possible to express n as a function of Pm>c\ and of the computer's accuracy. It
O

must be also noticed that results corresponding to small values of n ( n<1 0- ) 

are far more accurate than others corresponding to larger values of n.

From the examples, the following observations about the values of

tolerances eg and e are made. The value eg is influenced from the original

data; this is why its value may vary. ( But generally it will be less than

10"®, the upper bound is achieved for sets such as P\\t20 )• The value of e 

will be common for any set of data (e.g. 10"^ ). Of course, both of them are 

closely connected with the computer's accuracy.

Unless we know exactly the degree of the g.c.d. of a Pm)Cj we cannot specify 
from the beginning the number of iterations required by the algorithm. In case 

that the degree of the g.c.d. is known, let us say k, the maximum number of 

iterations needed for a given ^2,d set is 2(d-k). For m>2 this number is

seriously decreased. Amongst all the sets Pm>c| the one that requires the 

maximum number of iterations for the evaluation of its g.c.d. is a set P2 ,d °T 

coprime polynomials (i.e. k=0). Such a set requires 2d iterations. Since the 

least degree dm-jn of the polynomials in Pm^  defines an upper bound for the 

number of iterations needed for the convergence of the method.
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7.6 CONCLUSIONS
The aim of this Chapter was to provide a new numerical method for the 

computation of the g.c.d. of polynomials. The main advantages of this new 

method were:

(a) The simplicity in constructing the basis matrix.

(b) The remarkable decrease in the polynomials used by the method.

(c) The success in handling a large number of polynomials having high degree 

and large coefficients.

(d) The ability to catch up approximate solutions.

Thus, this Chapter serves the following purpose:

- It provides an attractive and stable numerical algorithm evaluating the 

g.c.d. of any set of polynomials of R[s].



C H A P T E R  8

COMPUTATION OF ALMOST ZEROS AND

ZERO TRAPPING DISCS
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8.1 INTRODUCTION
In dealing with engineering systems models, on the one hand the uncertainty 

about the true value of the parameters, and on the other hand, because of the 

finite number of significant digits used in a computer, a mathematically 

singular matrix is indistinguishable from a "nearly singular" matrix. Thus, it 

might seem that the precise concepts of zeros (multivariable zeros, decoupling 

zeros) that are defined as those frequencies where certain polynomial matrices 

lose rank, are of little relevance for engineering system models, since 

either parameter uncertainty or round off computational errors make the test 

of those exact concepts rather impossible. Therefore, the notion of almost 

zero was developed in [Kar., Gia. & Hub., 1].

The aim of this Chapter is to study several aspects arising from the almost 

zero definition. In the beginning, a brief description of the most important 

properties characterising the almost zero is presented. In the sequel, an 

efficient algorithm evaluating the prime almost zero of a given polynomial set 

is developed. The major issue of almost zero's sensitivity is also considered. 

The notions of B-scaled, normalized, || ||w row-scaled almost zero are 

introduced and a variety of examples applying different scalings to the 

original polynomials are tested. Useful results concerning the relation 

between almost zero's position in the complex plane and the distribution of 

the roots of the original polynomials are derived.

Next, our study is focused on polynomial combinants of a set of 

polynomials. An efficient algorithm computing an upper bound for the zero 

radius is presented. The sensitivity of almost zero to scaling is used for the 

specification of improved bounds for the zero trapping region. Finally the 

definition and the most important properties of the fixed order dynamic 

combinants are introduced.

8.2 ALMOST ZEROS OF A SET OF POLYNOMIALS OF Rfsl

8.2.1 Almost Zero Equivalence [Kar., Gia. & Hub., 1]

We recall, from Chapter 7, that if

/MPi (s) :Pi ( s ) = a o + a j s + . . .-t-â s ^eR[s], a ^ ^ O ,  i=l,2,...m) is a  set of

polynomials and d=max{di, i=1 ,2 ,...,m), then a polynomial vector 

fi(s) = [ P i ( s ) , . . . , P m ( s ) ] t = Pcj-eci(s)eRni[s] may be always associated with the set 

P, where P(jeRnix̂ +^  is the basis matrix of £(s) given by Eqn (7.1) and 

ed (s)=[l,s,...,sd]t. When seC, g(s) defines a vector valued analytic function
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with domain C and co-domain Cm; the norm of jd(s ) is defined as a positive 

definite real function with domain C as

Ilfi(s)|| = s*)fi(s) = Vedt(s*)PdTPded(s) (8 .1)

where s is the complex conjugate of s. Note, that if q(s)=s+a is a common 

factor of the polynomials p -j (s), i = l,...,m, then for all i=l,...,m Pi(-a)=0, 

(- a) = 0 and thus ||fi(-a)||=0. This observation leads to the following 

definition.

Definition (8.1): Let P be a set of polynomials of R[s], jd[s] be the 

associated polynomial vector and let <p(o,w) = ||j)(s)||, where s=o+wjeC.

An ordered pair (zk,£k), z^eC, s^eR and £|<>0, defines an almost zero (a.z.) of 

P at s=Z|c and of order e^, if <p(o,w) has a minimum at s=Z|< with value e^. 

From the set Z={(z^,e^), k=l,...,r) of almost zeros of P the element (z*,e*) 

for which e =min{£|0 k=l,... ,r} is defined as the prime almost zero of P.

It is clear that if P has an exact zero, then the corresponding £ is 

zero. Clearly, Definition (8.1) is an extension of the concept of exact zero 

to that of the almost zero. The magnitude of e at an almost zero s=z provides 

an indication of how well z may be considered as an approximate zero of P; we 
should note, however, that £ depends on the scaling of the polynomials p^(s) 

in P by a constant c, ceR-{0}.
The set P may be standardized in various ways; we shall adopt the 

following standardization: Let £(s) be written as

fi(s) = £0+£ls+---+fidsd (8 -2 )
The polynomial vector £>(s) may also be expressed around s=a, aeC, by a Taylor 

expansion as

fi(w)=bo+biw+.. .+b(jWc*=B(j ' e (j (w), w=s-a, eCm (8.3)

where

1
bo=fi(a) and b-j= ----

i!

di{fi(s)}

ds^
s=a

i 1 } • • • ,d (8.4)

Definition (8.2): Let P' , P" be two sets of polynomials in R[s] and let 

fi' (s)=PcT *£d(s)» fi"(s)=P<j"‘£d(s) be their respective polynomial vector repre-

sentations, where P(j/eRrx^ +^, P^’eR^d+l) are the corresponding basis
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matrices. The sets P' ,P" will be said to be normally equivalent (NE) and 

shall be denoted by P'E P", if there exists an orthogonal matrix Q such that

Pd'= Q
°r-k

, QeRrxr, if r>k or

Pd'

Qk-i
= QPd" , QeRkxk, if k>r

(8.5)

Note that such an equivalence is defined between sets of polynomials of 

R[s] which have the same degree, but not necessarily the same number of 

polynomials.

Proposition (8.11: The almost zero structure of a set of polynomials P, 
which is defined by ||j)(s)| is invariant under normal equivalence.

■

Note that the elementary row operations which reorder the rows of a 

matrix belong to the family of orthogonal transformations. Thus we have that 

the particular ordering of the polynomials p-j(s) of P in the vector jd(s ) does 

not affect the almost zero structure of P.
An important consequence of Proposition (8.1) is that the almost zero 

structure of P may be studied on any set P of the normal equivalence class 

E{P) of P.

If s=z is an exact zero of P, then s=z is also an exact zero of 

P'={ ki’Pi(s), k-j eR-{0}, i=l,2,... ,m). This property, however, does not extend 

to the case of almost zeros; in fact, the almost zero pattern of a set P is 
affected by the scaling of the polynomials by different nonzero constants.

Remark (8.1): The sets of polynomials P={Pi(s), i=l,...,m) and 

P'={ki’Pi(s), kjeR-{0}, i=l,...,m, k-ĵ kj for at least two i,j) do not belong 

to the same normal equivalence class. If k-j =k for all i=l,2,...,m then 

<p'(o,w) = |k|<p(o,w) and P' ,P have the same almost zero distribution. If 

(z i, s -j), (z i', £ -j') are almost zeros of P, P' respectively for which Zj=Zj', 

then s-j' = | k | £i.
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8.2.2 The Location of Prime Almost Zeros: The Prime Disc [Kar., Gia.& Hub.,1] 

The general properties of the distribution of the almost zeros of the set 

of polynomials P on the complex plane are briefly considered next.

Proposition (8.2): Let P be a set of polynomials of R[s], PcjeR,Tlx̂ +^  be 

the basis matrix of P and let y, y be the maximum, minimum singular values of 

Pd. Then

Y||ed(s)|| < <p(o,w) < y||ed(s)|| (8 .6 )
■

Lemma (8.1): If (z,e2) is a minimum of ||fi(s)||2, seC, zeC, e>0, then (z,e) 

is a minimum of ||fi(s)|| and vice versa.
■

Lemma (8.1) implies that <p(o,w) 2 may be used for the computation of 

almost zeros instead of <p(o,w) = ||j3(s)||. The location of prime almost zeros is 

defined by the following result.

Theorem (8.11: The prime almost zero of P is always within the circle 

centered at the origin of the complex plane and with radius p*, defined as the 

unique positive solution of the equation

l+r2+.. .+r2c* = y2/y2 = 0 2 (8 .7 )
■

The disc [0,p*] within which the prime almost zero lies, will be referred 

to as the prime disc of P. The radius p* of the prime disc is defined by the 

degree d and the condition number 0 of P. Clearly p* is an invariant of E[P). 
The following general results may be stated for the radius p*.

Corollary (8.1): If d is the degree and 0 is the condition number of P. 
then the radius p*=g(d,0 ) of the prime disc is a uniquely defined function of 

d and 0 and it has the following properties:

(i) the radius p* is invariant under the scaling of the polynomial of P by 

the same nonzero constant c;

(ii) the radius p* is monotonically decreasing function of d and 1/0 ;

(iii) the radius p* is within the following intervals:

a) if d+l>0 2, then 0<p*<l

b) if d+l<0 2, then 2<p*<0 ^ / 2

c) if d+l=0 2, then p*=l
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The conditioning of the polynomials plays an important role in 

determining the position of the prime almost zero. In fact, the prime almost 

zero is always in the vicinity of the origin of the complex plane. The 

uncertainty in its exact position is measured by the radius of the prime disc. 

Well conditioned sets of polynomials P (i.e. 0«1) have a very small radius 

prime disc even for very small values of the degree d. Badly conditioned sets 

of polynomials P (i.e. 0»1) have very large radius disc, even for large 

values of the degree d. Thus, for well conditioned sets of polynomials which 

are also characterized by a large d, the prime almost zero is very close to 

the origin. Necessary, but not sufficient condition, for the prime almost 

zero of a set P to be away from the origin of the complex plane, is that P is 
badly conditioned and its degree is relatively small.

8.2.3 The Computation of Almost Zeros

In this section, the conditions defining the exact location of almost 

zeros are considered, as well as a numerical technique for their calculation.

Proposition (8.3) [Kar., Gia. & Hub., 1]: Let P be a set of polynomials of 

R[s], fi(s)=Pcfec|(s) be the polynomial vector associated with P and PdeRmx(c*+l) 
be the corresponding basis matrix. Necessary conditions for zeC to be an 

almost zero of P are

edt(z*)ATPdTPd -ed(z)=0 and edt(z*)PdTPdAed(z)=0 (8 .8 )

where

0 0 0 ... 0 0

1 0 0 ... 0 0

A = 0 2 0 0 0

0 0 

0 0

0

0

Remark (8.2) [Kar., Gia. & Hub., 1]: If we set ed (s)=r+flj, where 

r=Re(ed(s)}, fl=Im{ed(s)}, s=o+wj, then conditions (8 .8 ) are reduced to the 

following equivalent set

rtATPdTPdr+fltATPdTPd ,a=0 and rtATPdTPdii-fltATPdTPccr=0 (8.9)
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The components r^, q-j of r, cj are given in terms of o,w by

n  = t C. 11)o1'k(wj)k_1,
k=odd

( 8 . 10)

Qi = I (k’l)oi'k(wj) k_1
k=even

Conditions (8 .8 ) or the equivalent set (8.9) are necessary conditions for 

determining the location of an almost zero, but not sufficient. A set of 

sufficient conditions is discussed next.

Proposition (8.4) [Kar., Gia. & Hub., 1]: Sufficient conditions for a 

solution z=o+wjeC of conditions (8 .8 ) or (8.9) to be an almost zero of P are

2
edt(z*){(ûT) PdTPd+2ûTPdTPdû+PdTPdû2}ed(z)>0 

and

2{edt(z*)ATPdTPdûed(z)}2>{edt(z*)(ûT)2pdTPded(z)}2+

(Êdt(z*)PdTPdA2ed(z) } 2

(8.11)

( 8 . 12)

The results of Proposition (8.3) and (8.4) may be used for the analytic 

computation of the almost zeros of a set of polynomials P. In practice, such 

analytic computations are tedious and therefore it is recommended to avoid 

their use in a convenient numerical method. Due to this restriction the 

following numerical algorithm is suggested for the computation of a prime 

almost zero.

Algorithm ALHZERO

Let P be a set of polynomials of R[s], fi(s)=Pd *ed (s) be the polynomial 

vector associated with P and PdeRmxn, n=d+l be the corresponding basis matrix. 

The following algorithm computes a prime almost zero z=o+wjeC of the given set 

P.
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STEP 1: Find the singular values , i=l,2,..,r=min{m,n}

of matrix PdeRmxn.

Determine the maximum index je{2,3,... ,r}:oj=}=0 

° 1

STEP 2: Evaluate the radius p* of the prime disc

p := the unique positive solution of the equation 

l+x2+..>+x2 (n-l) = 02

STEP 3: Determine an initial value for s=o+wjeC 
P

o := —
3 *

P
w : = ----

3

Evaluate the vector ed(s)=r+cjj, r,(jeRn

for i = 2 ,...,n

for k = 1 ,...,i

if k=even then
k-2

qi := 1 (! !)0 1"kwk'1 (-l)_7~ 
k K' 1

else k-1

H  := Ï L  !)o1'kwk'1 (-l)_^~ 
k K_1

Evaluate the function

func(s): = ||fi(s)||2=edt(s*)-PdTPd-ed(s)

STEP 4: Find min{func(s)} 
s

z := the value of s that minimizes func(s) 

e := the value of the minimum at z

Alg: 8.1
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Implementation of the algorithm

For the implementation of this algorithm several routines from NAG 

Library were used. The evaluation of the singular values was attained using 

the routine F02WCF which was described in Chapter 5. For the evaluation of 

the radius p*, subroutine C02AEF was used. This subroutine finds all the 

roots of the (n-l)th order polynomial equation, using the method of Grant 

and Hitchins. Its computational complexity is approximately proportional to 

0(n2). The minimization of function func(s) is achieved by using subroutine 

E04KCF. This subroutine uses a modified Newton algorithm for finding a 

minimum of a function f(xj,...,xn). The number of iterations required depends 

on the number of variables, the behaviour of f(x) and the distance of the 

starting point from the solution. The number of operations performed in an 

iteration of E04KCF is roughly proportional to n3+0(n2). In addition, each 

iteration makes at least m+1 calls of FUNCT2, where m is the number of 

variables. FUNCT2 evaluates the value of f(x) and its first derivatives. For 

the evaluation of function value f(x) the computation of (s) and P<jT 'Pd are 

required. This task requires 0(n3) and n2m flops respectively. In the

sequel, the evaluation of the function func(s) needs n2+n flops. For the 

computation of the first derivatives of function func(s) with respect to o and 

4n3
w, 0 (— ) flops are required.

3

Example 18.11: Let the set of polynomials be defined by the polynomial 

vector jd(s )

Pl(s) s 3 + 5 . 5 s 2 + 1 1 s + 7 . 5 7 . 5  1 1  5 . 5  1 1

P2(s) = s2-l = - 1 0  1 0 •

P3(s) s-2 - 2 1 0 0 - -

=P3 ’e3 (s),P3eR3x 4

We want to evaluate the almost zero z of the above set of polynomials.

Applying algorithm ALHZERO we obtain the following results (they are 

written using an accuracy of five decimal digits).

The singular values of matrix P3 are: 

oi = 14.44295, o2=2.42926, o3=l.00000

oi
0 = --- = 14.44295

03
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The radius p is the unique positive solution of the equation 

l+r2+r4+r6=(14.44295)2. We obtain that p*=r=2.35644.

The almost zero is located at the point: 

z=(-0.99999, 0.)

and the corresponding function norm has the value e=1 0 .0 .

Example (8.2): Let the set of polynomials be defined by the polynomial 

vector jd(s )

fi(s) =

Pl(s)

P2 (s )

2sJ+ 3s+ 2s+ 3

10s3+15s2+14s+21
GO 2

CO C\J

21 14 15 10

1
s„
s2
s3

=P2 *e3 (s), P2eR2x4.

It is known that the above two polynomials Pi ( s ) ,  p2 (s) are not coprime 

and they have an exact zero at -1.5. Consequently their almost zero z=o+wj 

must be located somewhere in the area of -1.5. In order to achieve this 

desired result, the value of the initial point required for starting the 

minimization process must be taken into account.More analytically, the 

following results were obtained (They are given using an accuracy of five 

digits):

The singular values of P2 and the condition number are:

oi=31.42157, o2=0.82746, 0=37.97367

The radius of the prime disc is p*=3.30798

initial point almost zero io.wl norm
* * 
P P

( ) (-0.00044, -1.17635) 2.236
3 3

(-1 , -0 .2 ) (-1.5, 0) 0.26177*10"14

i—Hoooo1i (-1.5, 0) -0.93213*10'11

(-2, 0.5) (-1.5, 0) 0.13644 * 10" 11

(1 , 1) (-0.00044, 1.17635) 2.236

We should make the remark that when the initial point is somewhere in the area 

of the exact zero, then the final value of the almost zero is very close to
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the exact one. On the other hand, if we select an initial point that does not 

belong to the same halfplane with the exact zero, then the final computed 

value of the almost zero varies significantly from that of the exact zero. 

Therefore, when we have a set of noncoprime polynomials and the value of the 

initial point belongs in an area of a common root, the almost zero algorithm 

specifies this root.

For a given noncoprime set of polynomials, the following example 

illustrates a procedure for the specification of the roots of their greatest 

common divisors.

Example 18.3): Let the set of polynomials be defined by the polynomial 

vector jd(s )

fi(s) =
s4 -5s3+5s2+5s-6

s4-10s2+9

- 6 5 5

9 0 -10

-5

0
=P2 -e4 (s), P2eR2x5.

The singular values of P2 are 02=15.993, o2=6.1819. Thus, p(P2 )=2<d+l=5. 

From Remark (7.5) we conclude that the polynomials are not coprime and a 

greatest common divisor cp(s) exist.

Applying Proposition (7.3) we compute the LEF P2 of P2

20 1
1 0 ---- 0 —

18 18

0 1 -  ----------------  -1  2
15

The minimal degree polynomial in the shf(P2 4 ) is t(s)=2s3 -s2----s+1.
’ 15

Therefore deg{<p(s)}<3. Using algorithm ALMZERO the following results were 

obtained:

The condition number of P2 is 0=2.5871 and the radius p* of the prime disc is 

equal to 1.07065

E
P2 ------>
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initial Doint almost zero (o,w) norm

* *
P P

(—  , -----) (1 . 0 0 , 0 .0 0 ) 0.28422*10-13
3 3

* *
P P 

(- —  - — ) (-1 . 0 0 , 0 .0 0 ) 0.49364*10"13
3 3

(0.5, -0.5) (1 . 0 0 , 0 .0 0 ) -0.19895*10'12

(-0.5, -0.5) (-1 . 0 0 , 0 .0 0 ) 0.11369*10-12

i—Hooo1COC\J (2.999999094, 0.00) -0.10515*10-9

(1 , 1) (1 . 0 0 , 0 .0 0 ) -0.11369*10-12

(-1 , 2.5) (-1 . 0 0 , 0 .0 0 ) 0.56851 *10" 12

We remark that after the application of various initial points, the 

values of almost zeros corresponding to the lowest values of norm are 

approximately equal to 1, -1, 3. Taking into account the fact that <p(s) can 

have three roots or less we conclude that the roots of <p(s) are 1, -1, 3.

A major disadvantage in specifying the roots of the greatest common 

divisor of a polynomial set is due to the uncertainty in choosing the initial 

points. The whole process is considered to be successful only if the selected 

initial points are quite close to areas of the initial roots.

8.2.4 Sensitivity of Almost Zeros

The objective of this section is to investigate the sensitivity of almost 

zeros and define the parameters which affect it.

It has been shown that the scaling of the polynomials by the same nonzero 

constant does not affect the pattern of the almost zeros, however this does 

not hold true when the polynomials are scaled by different nonzero constants. 

In such cases, the position of the almost zero varies according to the scaling 

which is used. An obvious question arising is whether we can use this 

property of scaling the polynomials to shift the almost zero to a particular 

position in the complex plane.

Before discussing analytically the effect that scaling of the original 

polynomials causes in the position of the almost zero, we must first discuss 

the type of scalings which can be applied to the polynomials. In section 7.2 

of Chapter 7 was shown that each polynomial set Pm)C| can be expressed using 

the basis matrix PmeRmx(cl+̂  and the polynomial vector e^s) . Thus, the
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problem of scaling the original polynomials is equivalent to premultiplication 

of Pm by a diagonal matrix DeRmxm. The diagonal elements of the matrix D can 

be chosen randomly or can be properly adjusted to provide a "heavy" or "light" 

scaling of specific polynomials.

In Numerical Analysis it is generally agreed that the best way to scale a 

matrix AeRnxn is to make the condition number of the transformed matrix as 

small as possible. (Recall that cond(A) = ||A|| • ¡A“*||, so the solution depends on 

the choice of norm). Given that the quality of numerical computations is 

generally improved if the condition number of the matrix concerned is reduced, 

the following four minimization problems are investigated in order to get 

optimal pre-scaling of a matrix.

(i) inf
Dl,D2

cond (D1AD2 ), (ii) inf
d 2

cond (AD2 )

ii) inf
Dl

cond (D]A), (iv) inf
D

cond (D^AD) for Hermitian A

In [Bau., 1] a serious study of the above problems is developed. In [Gol. & 

Var., 1] it is proved that a matrix A with singular value decomposition of the 

form A=UIV^ is best scaled in the Euclidean norm if the first and last columns 

of U and V have components of equal magnitude. This is referred to as the EMC 

property. More things concerning optimal scaling of square matrices can be 

found in [For. & Str., 1].

In our case, the given matrices Pm are generally rectangular and since 

the above mentioned determination of optimal scaling has not been extended to 

rectangular matrices (only in [Gol., & Var., 1] this problem is introduced and 

a conjecture regarding a possible best scaling is made), the following 

scalings will be used:

(a) Normalization: This kind of scaling was developed and used in previous 

Chapters. (Chapter 5)

(b) B-scaling: This kind of scaling was also developed in section 7.4.1 of 

Chapter 7.

(c) || ||co -row scaling: For a given matrix AeRmxn this scaling is defined

in the following way:

We choose the diagonal factors d-j, i=l,2,...,m of matrix D according to the 

formula:
1

di = — ------  f i= 1 »2 ,... ,m

 ̂ la i j l  
j =l
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The absolute row sums of DA are then all equal. When AeRnxn the above defined 

matrix D minimizes || DAHo, * ¡A" ̂ D" ¡oo [Nob. & Dan., 1]

Remark (8.3): For a given matrix AeRmxn, normalization and || 1«, row 

scaling provide a standardization for the equivalent class £={A'eRmxn:A'=D‘A, 

D=diag{di)eRmxm}. In fact, the normalization and the || ¡c row scaled form of 

A are invariants of the class £.
■

According to which kind of scaling is applied to the original basis 

matrix, the following definitions can be formulated:

Definition (8.3): Let P be a set of polynomials of R[s] and ¿(s^P^‘e^s) 

be the associated polynomial vector. The almost zeros of Dg*Pd'Sdis), 

DN‘Pd‘ed(s)i Dr*Pc|.ec|(s) where Dg, D^, Dr are the diagonal matrices that El- 

scales, normalizes, || I® row scales matrix Pj are defined as the B-scaled, 

normalized, || I« row-scaled almost-zero of P respectively.

Next, we present some characteristic examples illustrating the different 

positions of almost zero's appearance in the complex plane, attained after the 

application of specific scalings to the original basis matrix. Each example 

demonstrates a different situation in relevance with the distribution of the 

roots of the original polynomials. The numerical results were achieved by 

programming Algorithm ALMZERO [Mit. & Kar., 1].

Example (8.41: Polynomials with wel1-separated roots 

Let the set of polynomials be defined by the polynomial vector jd(s ):

s3+5.5s2+11s+7.5 7.5 11 5.5

fi(s) = s2-l = -1 0 1

s-2 -2 1 0

100

s2

s3

=P3*e3 (s), P3 eR3x 4

We apply scaling to matrix P3, each time with a different matrix D and 

for each occasion we evaluate the radius of the prime disc, the almost zero 

and the corresponding function norm. In the following matrix we demonstrate 

the obtained results. (All the values that are less than 10'® are set equal to 

zero)
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scaling radius p
initial

guess
almost zero z=(o,w) norm

d i ag{1,1, 
1}

2.35644
p/3,-p/3

(-0.9999, 0) 10
-p/3,-p/3

normali za- 
tion

1.042
p/3,-p/3

(0.02179, 0) 1.5697
-p/3,-p/3

B-scaling 1.13623
p/3,-p/3

(0.2289, 0) 0.089
-p/3,-p/3

IIIU row 
sealing

1.03
p/3,-p/3

(0.434, -0.4) 0.7241
-p/3,-p/3

d i ag{20, 
20,20}

2.35644
p/3,-p/3

(-0.9999, 0) 0.4-104
-p/3,-p/3

d i ag{0.5, 
0.5,0.5}

2.35644
P/3,-P/3

(-0.9999, 0) 2.5
-p/3,-p/3

diag{2,8,
5}

1.47
P/3,-p/3

(-0.78, 0) 215.864
-p/3,-p/3

di ag{1,1, 
100}

5.85
p/3,-p/3

(1.794308, 0) 3000.71
-p/3,-p/3

di ag{1,1, 
300}

8.47301
p/3,-p/3

(1.971939, 0) 3471.7897
-p/3,-p/3

diag{l,l,
900}

12.23511
p/3,-p/3

(1.9966935, 0) 3540.3573
-p/3,-p/3

d i ag{100, 
1,1}

11.28792
p/3,-p/3 (-1.4995, 0) 13.8091

-p/3,-p/3 (-1.999598,-0.9997) 36.989

diag{500,
1,1)

19.3188
p/3,-p/3 (-1.999, -0.999) 36.9995

-p/3,-p/3 (-1.99998,-0.999989) 37.0

diag{800,
1,1}

22.59813
p/3,-p/3

(-1.99999,-0.99999) 0.37-102
-p/3,-p/3

di ag{ 1, 
200,1}

5.44
p/3,-p/3 (0.999, 0) 623.5729

-p/3,-p/3 (-1, 0) 10

d i ag( 1, 
0.0001, 
0.0001}

52.45957
p/3,-p/3 (-1.999, -1)

0.37 *10'6
-p/3,-p/3 (-1.9999,-0.99999997)

d i ag{1, 
300,300}

3.66827
p/3,-p/3

(1.1641, 0) 0.75-105
-p/3,-p/3

Matrix 8.1
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Next, a figure showing the movement of the a.z. towards the roots of the 

given polynomials is presented.

movement of the almost zero towards the roots

+ : denotes the roots of Pi(s) 
* : denotes the roots of P2(s) 
x : denotes the roots of P3(s) 
0 : denotes the almost zero

Example (8.51: Polynomials with overlapping roots 

Let the set of polynomials be defined by the polynomial vector fi(s):

fi(s) =

+2s -3 

-2s -3 

+2s 2-3 s -10

-3 2 

-3 -2 

-10 -3

1
1 0 s

1 0 s2 =P3 'e3 (s), P3 eR3x 4

2 1 s3

Following the same process as in the previous example, the subsequent matrix 

is obtained.
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scaling radius p
initial

quess
almost zero z=(o,w) norm

d i ag{1 ,1 ,1) 2.61851
P/3,-p/3 (1.91991, 0) 32.14

-p/3,-p/3 (-1.546306,0) 38.16

normaliza- 
tion

2.30633
P/3,-p/3 (1.517454, 0) 1.75

-p/3,-p/3 (-1.207723,0) 1.412

B-scaling 2.82778
p/3,-p/3 (1.080865, 0) 0.274

-p/3,-p/3 (-1.0418956,0) 0.259

Il Ileo rOW
sealing

2.2998
p/3,-p/3 (1.559064, 0) 0.7

-p/3,-p/3 (-1.225756,0) 0.562

diag{30,30,
30}

2.61851
p/3,-p/3 (1.91991, 0) 0.3 *105

-p/3,-p/3 (-1.546306,0) 0.3'1 0 5

diag{1 0 0 0,
1 0 0 0,1 0 0 0}

2.61851
P/3,-p/3 (1.91991, 0) 0.3.108

-p/3,-p/3 (-1.546306, 0) 0.4.108

di ag{1 0 0,1 , 
1}

8.42128
P/3,-p/3 (1.00025, 0) 115.99

-p/3,-p/3 (-2.99865, 0) 243.7

d i ag{800,1, 
1}

17.54788
p/3,-p/3 (1.000003, 0) 116

-p/3,-p/3 (-2.9999833, 0) 244

di ag{1 ,1 0 0, 
1}

6.76958
p/3,-p/3 (2.993597, 0) 81.34

-p/3,-p/3 (-1.000149, 0) 51.98

d i ag{1 , 
1 0 0 0,1}

14.62443
p/3,-p/3 (2.999935, 0) 819.93

-p/3,-p/3 (-1.0000015, 0) 52

diagli,1 , 
1 0 0}

11.86578
p/3,-p/3 (1.9999917, 0) 34

-P/e ,-P/3 (-1.999953,-0.999941) 71.996

diagli,1 , 
2 0 0 0}

32.24164
p/3,-p/3 (1.99999998, 0) 34

-p/3,-p/3 (-1.99999988,-0.9999998) 72

di ag|0 .0 1 , 
1 ,0 .0 1 }

6.76958
p/3,-p/3 (2.993597, 0) 0.08

-p/3,-p/3 (-1.00014996, 0) 0.0052

Matrix 8.2
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Next, a figure illustrating the movement of the a.z. towards the roots of 

the given polynomials and according to the results achieved in the above 

matrix is presented.

movement of the almost zero towards the roots

+ : denotes the roots of pj(s)

* : denotes the roots of p£(s)

x : denotes the roots of P3 (s)

° : denotes the almost zero

Example (8 .6 ): Polynomials with neighbouring roots

Let the set of polynomials be defined by the polynomial vector fi(s):

s2 +s +1 1 1 1 1

fi(s) = 3s2 +2s +1 = 1 2 3 s = P2 'e2 (s), P2eR3x 3

6 s2 +3s +1 1 3 6 s2

Applying the process demonstrated in the above examples, the next matrix 

is achieved (The column of initial guess is omitted because although different 

initial guesses were used, the same results were always obtained)



- 2 1 3 -

scaling radius p almost zero z=(o,w) norm

diag (1,1,1) '7.84078 (-0.2888, -0.37) 0.6

normalization 6.99178 (-0.3675, -0.509 0.1206

B-scaling 7.84078 (-0.2888, -0.372 0.094

|| II* row scaling 6.94 (-0.3563, -0.485 0.0432

d i ag(15,1,1) 13.32897 (-0.4757, -0.7989) 18.1393

d i ag{100,1,1) 33.88821 (-0.49935,-0.86427 21.89

diag(800,1,1) 95.83202 (-0.499999,-0.8659 21.998

diagfl,800,1} 121.62907 (-0.333333,-0.4714) 1

di ag{1,1,800) 201.66459 (-0.25,-0.3227 0.6944

diagfO.00001,1,1} 1835.05 (-0.273,-0.3558) 0.13218

di ag(1,0.001,1) 206.886 (-0.27555,-0.3458) 0.5066

diagfl,1,0.001} 99.95688 (-0.36586,-0.5218) 0.2973

diagfO.01,0.01,0.01} 7.84078 (-0.2888,-0.3725) 0.6-10'4

diagfO.01,0.02,0.03) 10.75882 (-0.26485,-0.34192) O.ll’lO'3

diag{9,1,2} 11.26995 (-0.3929,-0.5617) 26.355

diag{2,1,2} 9.73554 (-0.279,-0.353) 2.1356

Matrix 8.3

Next, a figure showing the movement of the a.z. is presented.

1

0.8 

0.6 

0.4 

0.2 

0

- 0.2 

-0.4 

-0.6 

- 0.8 

-1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

+ : denotes the roots of pi(s)

* : denotes the roots of P2(s)

x : denotes the roots of P3(s)

° : denotes the almost zero ■

movement of the almost zero towards the roots
_T---------------------1--------------------- 1--------------------- 1--------------------- 1---------------------I -

i i______________ i_



-214-

General Remarks

It can be seen from the previous examples that the effect of scaling on a 

given set of polynomials is to move their almost zero (a.z.) within an area of 

the complex plane which is surrounded by the particular zeros of the original 

polynomials.

From the results obtained by the application of various scalings to many 

different sets of polynomials, the following observations were derived:

1) The a.z. always appears to the halfplane where most of the polynomials' 

roots are gathered. In some cases (Example (8.5)), it was noticed that for a 

different initial value of the a.z., a completely different solution was 

obtained meaning that the a.z. is not uniquely determined. From that fact, a 

general question arises: Can we specify some convenient criteria that will 

help us to determine from the beginning and without knowing the location of 

the original polynomials's roots, an area into which the a.z. always lies?

2) When we apply normalization, we remark that in cases where the polynomials' 

roots are scattered in both halfplanes then the a.z. is moved closer to the 

origin of the axis (Example (8.5)). In the specific case when the original 

zeros of the polynomials are well separated and far from each other, the a.z. 

is located very close to the origin (Example (8.4)). Also, when all the roots 

of the given polynomials belong to the same halfplane, then the a.z. is 

approximately moved towards the centre of the area enclosing the roots. 

Besides, when the basis matrix Pj is square and a || I® row scaling is applied, 

the obtained position of the a.z. is almost the centre of the area enclosed 

from the original polynomials' roots. This position is the best amongst all 

the positions of the a.z. achieved after the application of different 

scalings. This is due to the fact that, || 1«, row scaling is best in the 

sense of minimizing ||DA||0o,||A'1D‘*||0O , where D is the scaling matrix.

Similar remarks are stated about the application of B-scaling and 

|| I. row scaling. Particularly, when the roots of all the given polynomials 

were gathered in the same halfplane, the application of B-scaling did not 

actually alter the initial position of the a.z. (Example (8 .6 )). 3

3) By scaling heavily a concrete polynomial pj (with this term we mean that we 

scale only the particular polynomial using as scaling factor a rather high 

number) the a.z. is pushed towards a particular zero of that polynomial.

As the scaling factor increases, i.e., the number by which the polynomial is 

multiplied increases, the polynomial becomes stronger in the sense that its 

zeros attract the almost zero closer to their location. In this respect we
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can see from the examples that a set of three polynomials can be reduced to a 

set of two polynomials with the same almost zero. For instance, in Example 

(8.4), the scaling (1,300,300) gives an almost zero located at z=1.1641 and 

for a set of two polynomials consisting of only the second and third 

polynomials, the a.z. is located at z=1.1654. It is important to emphasize 

the fact that this property holds only when the scale factor is rather high. 

If for example, the scaling (1,20,20) is used then the a.z. of Example (8.4) 

is located at z=0.91985 which is virtually different from the one achieved 

using only the second and third polynomials.

An obvious question arising when heavy scaling is applied on a given 

polynomial concerns the determination of the particular zero of the polynomial 

which will attract the a.z. After testing a variety of examples, it has been 

observed that initially the a.z. is attracted from the most close to the 

origin polynomial root. The following four cases are distinguished:

a) If this root is real and somewhere further from the location of a complex 

root , then as the scale factor increases the a.z. moves towards the complex 

root (Example (8.4)).

b) If this root is complex and somewhere further from the location of a real 

root , then the a.z. always remains inside the area surrounding the complex 

root no matter how large scaling has been applied. For example, let

4 6 4 1

8 2 -5 1

1.5 1 -3.5 1

1.5 -2.75 -1 1

is a given basis matrix and -l±i, -2 are the roots

of the first polynomial pj(s)=s3+4s2+6s+4. After the application of the 

scalings (500,1,1,1), (1000,1,1,1), (2000,1,1,1) the following values of a.z. 

were respectively found: (-0.99987, -0.99977), (-0.99997, -0.99994), 

(-0.99999, -0.99998).

c) If this root is real and somewhere further away from another real root, 

then the a.z. always remains inside the area surrounding the closer to the 

origin real root no matter how large scaling has been applied. For example,
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2 -2 1

-2 1 0

1.5 -3.5 1

is a given basis matrix and 0.5, 3 are the roots of the

third polynomial P3(s)=s2-3.5s+1.5. After the application of the scalings 

(1 ,1 ,1 0 0), (1,1,800), (1 ,1 ,2 0 0 0) the following values of a.z. were 

respectively found: (0.50004, 0), (0.50000, 0), (0.50000, 0)

d) If this root is complex and somewhere further another complex root exists 

too, then the a.z. reaches first the closer to the origin root and then as the 

scale factor goes higher it approaches the furthest complex root. For 

example, let

10 18 15 6 1

2 -3 1 0 0
is a given basis matrix and -l±i, -2±i are the roots

of the first polynomial pj(s)=s4+6s3+15s2+18s+10. After the application of 

the scalings (200,1,1), (900,1,1), (2000,1,1) the following values of a.z. 

were respectively found: (-1.9999, -0.99997), (-2.00000, -1.00000), 

(-2.00000, -1.00000). The initial position of a.z. was located at (-0.60977, 

-0.41446).

From all the above cases it is always evident that the application of any 

heavy scaling did not force the a.z. outside the region surrounded by the 

particular zeros of the polynomials. Thus the sensitivity depends on the area 

of this region and the farther these zeros are from each other, the more 

sensitive the a.z. is.

If instead of applying such heavy scalings we apply scaling, the 

achieved results will be exactly the opposite to those obtained after the 

application of heavy scaling. More specifically, in this case the a.z. is 

attracted from the roots of the least-affected polynomial. Analogous remarks 

about which particular zero of this polynomial will attract the a.z. can be 

derived. A variety of such cases was demonstrated in Examples (8.4), (8.5) 

and (8 .6 ). Generally, this type of scaling must be used with caution because 

if the scaling factors are very low the corresponding entries of the basis 

matrix and therefore its singular values will become very small. Consequently 

the radius of the prime disc will be quite large. Thus, the scaling of the 

original polynomial set with low scaling factors (<1(T3) is not recommended.

4)According to Remark (8.1) if (z],si) is the a.z. of the original polynomial
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set and {z\' ,ei'2) is the one achieved after the application of a uniform 

scaling (having equal scaling factors dj=d2=-••=dm=d) then the following 

relations hold: z\'=z\, ei'^=|d|^ei .

5) When we scale the polynomials randomly we can not say anything specific 

about the position of the a.z. but only that it depends on the concrete values 

of the scaling factors.

6 ) Generally, after the application of various forms of scalings the value of 

the norm and the radius of the prime disc increases. The question arising is 

whether there exists some optimal scaling in the sense of decreasing the above 

values. After testing a variety of examples, it was concluded that in most 

cases B-scaling provided the lowest value of norm || fl«, row scaling and 

normalization has resulted in low values too, but not as low as the ones 

achieved using B-scaling. The minimum value of the radius of the prime disc 

was achieved using || I*, row scaling. Normalization gave low values too. On 

the contrary, the application of B-scaling was not effective in finding a low 

value for the above radius.

From the above discussion it is evident that the almost zero's position is 

related to the distribution of the roots of the original polynomials. Thus, an 

issue arising is whether it could be possible to formulate a geometric almost 

zero definition based on the roots of the given polynomials. For example, for 

a given set Pm?cj if R-\ are the sets containing the roots of the i-th 

polynomial, i=l,2,...,m the a.z. might be defined as a point in C having the 

lowest distance from the sets R-j. For such a formulation the notions of 

distance between sets and between set and a point must be defined too. The 

whole problem is under consideration.

8.3 POLYNOMIAL COMBINANTS OF A SET OF POLYNOMIALS OF RTsT

8.3.1 Properties of Polynomial Combinants [Kar., Gia. & Hub., 1]

Let P={pi (s) rp-j (s)=aZ+a? s+.. -+ai. sc*1eR[s], a], =f=0, i = l,...,m)

be a set of polynomials and let d=max{d-j, i=l,...,m}. Let £(s)eRm[s] be the 

associated to P polynomial vector. p.(s) can be expressed as n(s)=Pc|*e^Cs). 

If we consider a keRm , then the k-polynomial combinant of P may be written
as
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m
f(k>£(s)) = I k-jp-j (s) = k ^ d ’edts) (8.13)

i = l

For a set of polynomials P represented by a basis matrix Pj, the zero 

assignment problem for polynomial combinants may be defined as follows:

Find a keRm, such that

f ( k , E ( s ) )  = k V d ' e d i s )  = a ( s )  (8.14)

where a(s)eR[s] is an arbitrary polynomial. It is clear that the maximum 

degree of a(s) has to be equal to the degree d of fi(s). Let us write now 

a(s) =ag+ais+.. .fa^s01 = [ag,ai,...,a^] '^(s) = a^e^s), aeRd+1, then the zero 

assignment problem is reduced to the following linear problem:

k^'Pd = or equivalently P^'k = a, aeRd+  ̂ (8.15)

A set P for which the zeros of its combinants may be assigned arbitrarily 
will be called C-assignable or in short assignable; otherwise, P will be 

referred to as non-C-assignable. If for some k, the zeros of f(k,fi(s)) may be 

assigned at s=®, then P will be called »-assignable; if there is no k for 

which f(k,fi(s))=c, ceR, i.e. the zeros of some combinants of P cannot be 

assigned at s=», the P will be referred to as nonassignable. Note that 

assignability implies »-assignability, but the opposite is not always true; 

furthermore, nonassignability implies non C-assignabi1ity, but the opposite is 

not always true.

The following Proposition gives the necessary and sufficient conditions 

under which a set of polynomials P is assignable or nonassignable.

Proposition (8.5): Let P be a set of polynomials and let Pj be the basis 

matrix of the polynomial vector associated with P, where

Pd=[£o.Ei>---»fidM£o>Pd]. PdeRmx(d+1) (8.16)

(i) The set P is assignable if and only if p(P,j)=d+l;

(ii) The set F> is »-assignable if and only if N] (Pd)=(={0},

(iii) The set P is non-assignable if and only if N-j (Pd)={0} or in other words 

p(Pd)=m.
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8.3.2 The "Pinning" of Zeros of the Combinants of P by the 
Almost Zeros [Kar., Gia. & Hub.,1]

For a given set of polynomials P, let f(k,fi(s)) be the corresponding 

polynomial combinant of P. The zeros of all combinants of f(c‘k,£(s)), ceR- 

{0 }, are the same and thus, whenever we are interested in the properties of 

zeros of combinants we may assume that ||k||=l. If s=z is an exact zero of P 
(root of a common divisor of all p-j(s)), then s=z is also an exact zero of 

f(k>£(s)) for all vectors k; therefore, the exact zeros of P are fixed zeros 
of f(k,fi(s)) for all parameter vectors k. The following Lemma gives a useful 

property of the exact zeros of P.

Lemma (8.21: Let ^(p^ (s)eR[s], i = 1,2,...,m} be a set of polynomials and 

let

f(k,fi(s)) = I kiPi(s) = J^Pd'fidts) 
i=l

be the corresponding k-polynomial combinant of P. Necessary and sufficient 

condition for f(k,fi(s)) to have a fixed zero z for all parameter vectors k is 

that z is an exact zero of P, or in other words p-j(s) have to be not coprime.
■

The property of the exact zeros of P to be fixed zeros of f(k,fi(s)) for 

all parameter vectors k, motivates the investigation of the links between 

almost zeros of P and the exact zeros of various combinants of P. The 

following Theorem shows that for a given k the combinants f(k,fi(s)) have 

always at least one zero in a disk D[sg,R], where sgeC and R finite; almost 

zeros will emerge as those points of the C-plane where R becomes minimal.

Theorem (8.2): Let P={Pi(s)eR[s]. i = 1,2,...,m} be a non-assignable set, 

P(jeRmx(c*+l) be a basis matrix of P, sgeC and let

fi(w)=bo+biw+.. .+b(jwc*, w = s -s q , ecm (8.17)

be the Taylor expansion of the polynomial vector representative of P around 
s = s q . For every keRm , the combinant f(k,fi(s)) of P has at least one zero in 

the finite, minimal radius disk

D[so,k]={s:|s -s q I<R(s0 ,k),
d ! bo| i/i 

R(s0 ,k)=min{[( )— ;— -]
|klbi|

i=l,...,d) ( 8 . 18 )
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Theorem (8.2) establishes the important fact that for every keRm and for 

every sgeC there exists a minimal radius disk D[sg,R] which includes at least 

one zero of the k-combinant of P; we must emphasize the fact that Theorem 

(8.2) makes no distinction between a general point sgeC and the almost zeros 

of P. The importance of almost zeros in the investigation of the zeros of the 

combinants of P is demonstrated by the following results.

Proposition (8 .6 ): Let fi(s)=pg+j)is+. . .+fi(jsC* be a polynomial vector 

representative of P and let fi(w)=bo+bjw+.. .+b(jw ,̂ w=s-sg, be the Taylor 

expansion of j)(s) at s-sg, sgeC. For the various choices of keRm , upper

bounds for R(sg_J<), are defined by the numbers Rn-(sg,k) as follows:

(i) if k^Ed^O then

Rd(so>k)={-
1/d

(ii) if ^ £ ¿ = 0  and k^Ed-i^O, then

d ho\\ 1/d- 1
Rd-i(s0 , k M ( d J — ---- -}

d_1 Ik1£d-1 1

(iii) if ^ £ ¿ = ^ £ ¿ - 1  = .. .=ktP-j+i=0 and k^E^O, then

Ri (s0 ,k)=(( )
d II boll 1/i

1 1 k^i

(8.19)

(8 .20)

( 8 . 21)

Theorem (8.3): Let £ be a nonassignable set of polynomials, z be an almost 

zero and z' be the prime almost zero of P. Then

(i) for all keRm such that k^E^O

(a) Rd(z,k)<Rd(so/,k) for all sg'eC:|sg'-z|<s

(b) Rd(z',k)<Rd(sg,k) for all sgeC

(ii) for all keRm such that kt£d=.. •=J<t£i+i=0, k̂ E-ĵ O

(a) R-j (z,k)<Ri (sg7 ,k) for all sg'eC: | sg'-z|<e

(b) R-j (z7 ,k)<R-j (sg,k) for all sgeC.
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The above result shows that for a given k the radius R-j(sg,k) is locally 

minimized when sg is an almost zero, and it is globally minimized when sg is 

the prime almost zero. Thus, the almost zeros of P act as poles of attraction 
for the exact zeros of the k-combinants of P. The radius R(sg,k) of the disk 

D(sg,k) within which an exact zero of f(k,fi(s)) may always be found will be 

referred to as the zero radius at s=sg.

8.3.3 Computation of an upper bound for the zero radius

Since the zero radius is clearly a function of k, the following problem 

is considered;

Find an upper bound for R(z,k), where z is an almost zero, independent of 

the parameter vector k.

The finding of such an upper bound is the subject of the next Theorem.

Theorem (8.4) [Kar., Gia. & Hub., 1]]: Let p(w)=bg+b]W+...+b(jŵ , w=s-sg be 

the Taylor expansion of the polynomial vector representative g(s) of P around 
s=sg, sgeC and let xeR+. A sufficient condition for

x
R(sg,k) < -7-n—  (8 .2 2 )

2 1/d_ 1

for all keRm, is that the matrix B(sg,x) is positive semidefinite, where

*t 2d *t *t
Bisg.x^bdbd x£U+... +bjbj x -bgbg (8.23)

The above result can be used in two different ways:

(i) If xeR+ is fixed, then the positive semidefiniteness of B(sg,x) implies 

the existence of an upper bound R(sg,x) of R(sg,k) which is independent of k; 

R(sg,x) is then given by

x
R(s°’x) = T / h—  (8.24)

2 1/d-1

(ii) Find the minimum positive number x for which B(sg,x) is positive 

semidefinite. In this case the smallest of the (8.22.) type upper bounds for 

R(sg,k), which are independent of k, is defined.

In the sequel, we present an algorithm for the computation of such type 

upper bounds for R(sg,k).
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Alqorithm TRAPDISK

For a given polynomial vector representative fi(s)=Pci,ec|(s), P(jeR,11x̂ +^, 

s q an almost zero of this set, the following algorithm evaluates the minimum

, , xmin
positive number xm-jneR for which — — —  provides an upper bound for the zero

21/d-l
radius R(so,xmin). In the algorithm, x denotes an initial value of xm^n,

maxstep a maximum number of iterations and step a number determining the 

increase in x.

Construct the coefficients bieRm of the Taylor expansion 

of j)(s) around s q . 

bg := fi(so)

1
bi := —  

i !

d1{fi(s0)}
* i“l*2 , —  ,d

ds^
L J O00II00

xmin x

for i = 1 ,...,maxstep

Construct matrix B(sQ,x)eRmxrn

B(sq,x) := I bibi x2l-b0b0 
i=d

evaluate the eigenvalues r-j, i=l,2,...,m 

of the Hermitian matrix B(sq,x) 

if {ri>0 for all i=l,2,..,m) then 

if x<xmin then

xmin := x 

x: = x/2 

else
x := x+step

xmin
R(s0»xmin) := ~TJa 2 1/d-i

Alg: 8.2



-223-

Implementation of the algorithm

For the implementation of algorithm TRAPDISC, several numerical routines 

are required. For the evaluation of the coefficients b^, the algorithm of 

Florner for finding the derivatives of given polynomials is used [Atk., 1], 

The computational complexity is analogous to m(d+l) 2 flops. For the

evaluation of B(sg,x), m2 (d+l) flops are required. The computation of the 

eigenvalues of a Flermitian matrix is achieved using subroutine F02AWF of NAG 

Library. The computational complexity of F02AWF is proportional to m3 . The 

initial value of xm^n should be a quite large number which will guarantee the 

initial positive definiteness of matrix B(sq,x). In the sequel, assigning to 

maxstep a rather large integer, a better approximation of xm-jn will be 

calculated. Since we are dealing with complex numbers the storage

requirements of the algorithm are rather important. Roughly, we can say that 

the algorithm uses seven two dimensional arrays for storing the original 

matrix, some intermediate results and finally the computed matrix B(sq,x).

Example (8.7): Let the set of polynomials be defined by the polynomial 

vector £(s):

7.5 11 5.5 1

- 1 0  1 0

Applying algorithm ALMZERO we located an almost zero at s=-1.199. The Taylor 

expansion of £(s) at w=s+1.199 is p(w)=bo+biw+b2W2+b3W3=

0.494 2.124 1.903 o 1
+ w + w2+

0.438 -2.398 1 0

=P2'e3(s),P2eR2x4fi(s) =
s3+5.5s2+lls+7.5

s2-l

In the sequel B(-1.199,x) is computed.

B(-l.199,x)=b3b3tx6+b2b2tx4+bibitx2-bobot=

x 6+3.61x 4+4.51x 2-0.244

1.9x 4-5.09x 2-0.216

1.9x 4-5.09x 2-0.216 

x 4+5.75x 2-0.19
eR2x2, xeR+

Assume that we wish to test whether R(-1.199, k)<l for all k.
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Then, the equation — — —  = 1 gives x=0.2599. For that x we must check
2 1/ -1

whether B(-1.199, 0.2599) is positive definite or not. The answer is

negative, therefore the upper bound for R(-1.199, k) will generally be

x
larger than 1. The equation ——  = 3 gives x=0.77976 and for that x,

2 1/ -1

B(-1.199, 0.77976) is positive semidefinite. Since R(-1.199, k)<3 we may

search for smaller bounds for R(-1.199, k). Using algorithm TRAPDISK we

locate the minimum positive x=0.55984 for which B(-1.199, 0.55984) is 

positive semidefinite. This value of x gives a minimal independent of k upper 

bound for R(-1.199, k) which is found to be equal to 2.15388.

x

8.3.4 Use of sensitivity to scaling for improved bounds 

of the zero trapping region

It is already known that each disk D(sQ,k) having as its centre the prime 

almost zero s q of a polynomial set P, contains at least one zero of the 

combinant f(s,k). An upper bound for the zero radius of this disk was given 

above. Due to the fact that most of the times the area of the disk is quite 

large and evidently the uncertainty in the location of the zeros is important, 

we try to invent a technique which will help us to determine more precisely 

the position of the zeros inside D(so,k). Since almost zero is sensitive to 

scaling we apply different scalings to the original set and for each one we 

locate the corresponding almost zero i.e. the position of the centre of the 

disk and its radius. Therefore, we get a number of overlapping circles and 

the region common to all the circles defines the most likely place where a 

zero can be found.

In the sequel, some examples illustrating the above technique are 

presented.

Example (8.8): Let us consider again Example (8.4). After programming 

algorithms ALMZERO and TRAPDISK [Mit. & Kar., 1], the following results are 

achieved:
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sealing almost zero=o,w) zero radius

d i ag{1,1,1} (-0.9999, 0) 14.658 (xmin=3.81)

normali zation (0.02179, 0) 13.466 (xmin=3.5)

B-scaling (0.2289, 0) 13.312 (xmin=3.46)

row seal ing (0.434, 0) 13.158 (xmjn=3.42)

diag{l,1,100} (1.7943, 0) 11.773 (xm-jn=3.06)

d i ag{500,1,1} (-2.0, -0.99999) 19.9676(xmin=5.19)

Matrix 8.4

Next, a figure showing the above defined trapping disks is presented.

trapping disks

-10 0 10 20 30
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Example (8.9): Let us consider again Example (8.5). Applying consequently 

the algorithms ALMZERO having initial guess of the almost zero equal to

P P
(- --- , -----) and TRAPDISK, the following results are achieved:

3 3

scaling almost zero z=(o,w) zero radius

diag{1 ,1 ,1} (-1.5463, 0) 12.196(xmi n=3.17)

normalization (-1.2077, 0) 10.965(xmi n=2.85)

B-scaling (-1.04189, 0) 10.426(xmin=2.71)

m row sealing (-1.2258, 0) 11.042(xrnin=2.87)

di ag{1 0 0 ,1 ,1} (-2.99865, 0) 18.159 (xm-j n=4.72)

Matrix 8.5

Next, the above defined trapping regions are presented in a figure.

trapping disks

■
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Example (8.10): Let the set of polynomials be defined by the polynomial 

vector p(s):

£ ( s )  =
s-2

s^+5s^+9s+5

• 2 1 0 0  

5 9 5 1

1
»—
*

__
_1

s„
ŝ

1
(/> 

1 
CO

1__
_ = P2 '^3(s)> p2eR

2x4

After the application of algorithms ALMZERO with initial guess of almost zero

(- -) and TRAPDISK the following matrix is obtained:

scaling almost zero s=(o,w) zero radius

d i ag{1 ,1} (-0.7057, 0) 10.965 (xmin=2.85)

normalization (0.0473, 0) 9.811 (xmin=2.55)

B-scaling (0.3267, 0) 9.58 (xmin=2.49)

a, row scaling (0.2083, 0) 9.6953(xmi n=2.52)

diag{0 .0 0 1 ,1} (-1.999999,-0.9999) 16.005 (xmin=4.16)

Matrix 8 . 6

The following figure, illustrates the position of the above defined trapping 

disks.

25 

20 

15 

10 

5 

0 

-5 

-10 

-15
-15 -10 -5 0 5 10 15 20 25

trapping disks
1 I I----- T
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General Remarks

From the above examples we remark that amongst the various applied 

scalings those giving lower values for the zero radius are normalization, fi-

scal ing and || I«, row scaling. Of course some scalings chosen randomly gave 

low values too, but since we can not define precisely such kind of scalings we

do not consider them as important in our effort to specify a small area

enclosing a zero of the given polynomial combinant. Therefore, we claim that

the intersection of the circles having as their centres and radii the almost

zeros and the zero radii corresponding to the normalized, B-scaled and || I« 

row scaled original set of polynomials, is a region containing a zero of the 

combinant f(k,fi(s)). We must point out that due to the method used for the 

determination of the zero radius, this area is not very small and thus the 

determination of the zero is not immediate. However, this area is considered 

to be quite satisfactory because any other disk defined by random scaling 

overlays this area.

8.4 ALMOST ZEROS AND DYNAMIC COHBINANTS
So far, we have examined fixed polynomial combinants of the form :

m
f(k,fi(s))= I k-jPi (s) , keRm . 

i=l

If instead of real vectors keRm we use polynomial vectors k(s)eRm [s], then the 

notion of a dynamic polynomial combinant f(k(s),fi(s)) is defined, which is 

discussed next.

Let P={pi(s)eR[s], iem, d=max{deg(pi(s)}} be a set of polynomials. Let 

jD(s)eRm [s] be the associated to p polynomial vector. It is known that jd(s ) 

can be expressed as:

- 1

fi(s) =

Pl(s)

= [J2 0>£1 > • • • »fid!

s
0

Pm(s)

=Pm,d‘ed(s) (8.25)

Let also K={ki(s)eR[s], iem, v=max{deg{ki(s)}}} be a polynomial set. The 

polynomial vector associated to k, k(s), can be expressed as:

kt(s)=[ki(s),...,km (s)]=svki+sv'1kv-i+...+ski+ko (8.26)
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The v-th order combinant fv(k(s) >£(s)) of a polynomial set P is defined in the 
following way:

fvU ( s),ê (s ) ( s )ê (s ) = l ki(s)pi(s)=k$fi(s)+skifi(s) + ...+svkJfi(s) (8.27)
i=l

fv(J<(s) >Ê(s)) can be also expressed as follows:

t t t
fi(s)

sfi(s)

svfi(s)

t
m̂, v= km \/ "£^ ( S ) (8.28)

Definition (8.41: The polynomial set Pv defined by the vector

fiV( s ) =

fi(s)

S£(S) =

SV£(S)

£0 fil ••• fid 0 • • • fi 

0 £0 fil ••• fid ••• fi

0 . . .  £0 fil fid
.v+d

- Pm,d’fiv+d(s) (8.29)

is called the v-th order set of P and Pm>c| is the v-th Toeplitz of Pm?d,

Remark (8.4): The zero distribution properties of the v-th order combinant 

may be equivalently studied as a zero distribution of a constant combinant
v

defined on the v-th order of P, Py. Thus, the matrix Pm>c| will be mostly used 

in our study concerning the properties and applications of a given v-th order 

combinant fv(k(s), fi(s)) of a polynomial set P.
■

For a given polynomial set P, a first question arising when we are 

dealing with the v-th order sets of P, concerns their zero assignability or 

zero nonassignability.

More specifically, when we are given a strongly zero nonassignable set P it is 
extremely interesting to examine under what circumstancies the derived v-order 

sets of P will remain nonassignable or they will become zero assignable. In
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the sequel, conditions providing the minimal order vmin that guarantee the 

zero assignability or the zero nonassignability of them are examined.

8.4.1 Conditions for zero assignability of fixed order 

dynamic combinants

Assume P to be strongly zero nonassignable. Then, the basis matrix Pm>cj 

can be expressed in the following form:

Pm,d = [ê 0>E1»•••» Ed]eRmx ̂d+1^

Matrix Pm?c| can also be written as:

pm,d = [£o»P]> where P = [£i> p2 >•••>£d]eRmxd

According to Proposition (8.5) the set P is strongly zero nonassignable if 

and only if N-|{P}={0} or equivalently p(P)=m, m<d. Let

v
pm,d

p0 £l ••• pd 0 • •

0 £o £l —  £d • •

0

0

e^m(v+l)x(d+v+l) (8.30)

• £0 £l •••

be the basis matrix of the v-order set of P. The next Proposition readily 

follows from Proposition (8.5).

Proposition (8.7): Let P be a given strongly zero nonassignable polynomial 

set. The v-order set of P is completely zero assignable if and only if

P(pm,d) = d+ v+1 (8.31)

Thus, a necessary condition providing the zero assignability of a v-order 

polynomial set is

d+v+1 < m(v+l)

Proposition (8.81: If P is a coprime polynomial set, then there exists v 

such that Pw is zero assignable.
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The proof of the above Proposition follows from the solvability of the 

Diophantine equation [Kuc., 1]

kl(s)Pi(s) + .. -+km(s)prn(s)=cp(s) (8.32)

where q>(s) is arbitrary polynomial.

An immediate consequence of Proposition (8 .8 ) is the subsequent 

Corollary.

Corollary (8.21: The set P is coprime, if and only if there exist indices v 

such that

P(pm,d) = d+v+1

Coprimeness thus guarantees the existence of indices v for which we have 

assignement.

Corollary (8.3): Let v be an integer for which Pv is zero assignable. 

Then,
d

v > —  - 1 (8.33)
m -1

The above Corollary defines the range of values v for which dynamic 

assignability may hold. An obvious question arising is whether we can define 

the minimal value of v, vmi-n for which assignability is guaranteed. By

testing ranks of Pmj(j this may be determined algorithmically. In the sequel,

the following example demonstrates the above technique.

Example (8.111: Let

p3,3 =

3 1 3 1

1 2 1 2 be a basis matrix eR^x<*

3 -3 -2 2

1 3 1 \
2 1 2 ==3<d=3, thus we have a
-3 -2 2 /
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nonassignable polynomials.

For an integer v>---- 1=1 the set may be zero assignable. Actually, for v=l

p3,3 =

m -1

3 1 3 1 0 0

1 2 1 2 0 0

3 -3 -2 2 0 0

0 3 1 3 1 0

0 1 2 1 2 0

0 3 -3 -2 2 0

has P(P3 ,3 ) = 5

and therefore vm-j n=l.

An obvious issue arising is whether some of the properties of Pmjd may be 

adequate to predict vm-jn, without going to the algorithmic procedure of the 
v v

rank tests of A given Pm>d of the form (8.30) will be zero assignable

if its d+v+1 columns are linear independent that is if it does not exist

vector keR^+v+l, k=|=0 such as Pm?c|'k=0- Thus, our problem is transfered to 

the following equivalent one. For a specific Pm cj = [Pq ,£1 , • • • ,£dl can we

d
specify the minimum integer vmin> ---- 1 , which provides the existence of a

m -1

d+vmin+l
vector keR 11,1,1 satisfying:

d
I k-j p-j = 0 
i=0

j+d
T k] p].j = 0, j=l,... ,vm-jn.

l=j

The above case is still under consideration.

(8.34)

8.4.2 Conditions for strong nonassignability of fixed order 

dynamic combinants

According to 8.4.1 if we assume that P is a strongly zero nonassignable 

set, then Pm,d=[£o>p] has p(P)=m<d. If we now consider
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v
pm,d

Eo

0

Pi ?2 •••• Ed 0 .... 0 

Eo Ei .......Ed —  0

=[Eo PV]eRm(v+1)x(d+v+1) (8.35)

0....... 0 P0 ¿i ...........  £d

Then for all v such that

p(Pv) = m(v+l) < (d+v) (8.36)

the set Pw is strongly nonassignable and thus the almost 

of discs of dynamic combinants up to the order v.

From (8.36) we have:
d-m

mv+m<d+v or (m-l)v<d-m from which we derive that v<—  =
m -1

zeros act as centre

d -1
—  -1 
m -1

Corollary (8.4): Necessary condition for dynamic strong nonassignability is 

that

d-m d -1
v < --- = --- -1 (8.37)

m -1 m -1

The above condition is not sufficient since m(v+l)<(d+v) does not imply

p(Pv)=m(v+l). However, it provides a range of values of v for which the rank 
v

of Pm?d should be tested.

Example (8.12):

Let p2,3=
1 0  2 3

0 1 1 4
be a basis matrix eR^x^

(i) The possible values of indices for which v-dynamic nonassignability holds 

are:
d -1

0 < v < —  -1 = 1 
m -1

For such values, p(Pv) has to be tested for the p(Pv)=m(v+l) property. Indeed,



- 2 3 4 -

for v=0

0 2 3
1 1 4

=2 < d=3 and thus P2 ?3 is nonassignable.

1 0 2 3 0 / 0 2 3 0

For v=l P2 ,3 = 0 1 1 4 0 , p i p1) - p/ 1 1 4 0

0 1 0 2 3 l 1 0 2 3

0 0 1 1 4 V 0 1 1 4

= 4

and therefore P* is nonassignable.

The following values of almost zeros and zero radii were achieved

V almost zero z=(o,w) zero radius

0 (0.09069, -0.498092) 2.732 (xmin=0.71)

1 (0.09010, -0.490844) 148.93 (xmin=28.179)

Matrix 8.7

(ii) The range of integer values v for which dynamic assignability may hold is
d

defined by: v > -----1 = 2
m -1

For v=2 P2 53

1 0 2 3 0 0

0 1 1 4 0 0

0 1 0 2 3 0

0 0 1 1 4 0

0 0 1 0 2 3

0 0 0 1 1 4

has P(P2 ,3 ) = 6 and thus vmjn=2 .

Example (8.131: Let

1 0 2 0 0 6 4 0

P3,7 0 2 3 1 2 0 3 0

0 1 5 1 0 2 0 1

be a basis matrix eR3x 8
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(i) The possible values of indices for which v-dynamic nonassignability holds 

are:
d -1

0 < v < -----1 = 2
m-1

For such values, p(Pv) has to be tested for the p(Pv)=m(v+l) property. Indeed, 

for v=0

P

0 2 0 0 6 4 0

2 3 1 2 0 3 0

1 5 1 0 2 0 1

=3 < d = 7 and thus P3 ^ 7 is nonassignable.

-1 1
For v=l, p(P3 57 )=6 and therefore P3 ?7 is nonassignable.

-2 2
For v=2, p(P3 s7 )=9 and evidently P3 57 is nonassignable

The following values of almost zeros and zero radii were achieved.

V almost zero z=(o,w) zero radius

0 (0.159-10'12, -0.50578-10"12) 0.6725 (xmin=0.7)

1 (0.244* 10“11, -0.60694*10-11) 7.9827 (xmin=0.7225)

2 (0.452*10"12, -0.10228-10-11) 65.982 (xmin=5.2825)

Matrix 8.8

(ii) The range of integer values v for which dynamic assignability may hold is 

defined by:
d

v > —  -1 = 3 
m-1

Actually for v=3, p(P3 ,7 )=ll and therefore vmin=3.
■

Assuming that P1, i=0,1,2,...,v are strongly nonassignable sets, the 

following questions arise:

(i) What is the relationship between their almost zeros, as we go from 

smaller to larger values of i.

(ii) What is the behaviour of the radii of zero trapping discs as we go from 

smaller to higher i.
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From Examples (8.12) and (8.13) we remark that the almost zeros of P1, 

i =0,1,2,...,v are subjected to very slight changes. On the contrary, the zero 

radius of the trapping discs grows tremendously as the i increases, which 

indicates increase in our ability to assign the zeros, when we increase the 

dynamic order of combinants.

8.4.3 The almost zero generating function

In the above discussion about the v-th order sets of P, the vector

fi(s) 

sfi(s)

svp(s)

was mainly used. The same vector leads us to formulate the following 

definition.

Definition (8.5): For a given integer v and for some seC, the v-th order 

almost zero's generating function is defined by ^

<pv(s) = fivt(s*)fi(s) = <p°(s) (l+s*s+.. .+s* sv), (8.38)

where <p0(s)=£t(s*)fi(s)
■

From (8.38) it is evident that for each integer value of v the generating 

function is modified by a mere multiplication by the function:

v
(l+s*s+...+s* sv)

Based on Definition (8.5), a separate study of the almost zero properties 

of an v-th order polynomial set Pw can be developed.

8.5 CONCLUSIONS
The aim of this Chapter was to develop numerical techniques arising from 

the almost zero definition. Several properties of the almost zero were 

summarized and the new notions of B-scaled, normalized, || 1«, row-scaled almost 

zero were analytically introduced. Therefore, the Chapter serves the following 

purposes:

(i) It provides an efficient algorithm for computing the prime almost zero.

P V ( S )  =
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(ii) It provides a detailed study concerning the sensitivity of almost zero 

to scaling.

(iii) It provides an algorithm for computing an upper bound for the zero 

radius. Hints for improving this bound by using the sensitivity of almost zero 

to scaling are also given.

(iv) It provides a formulation for the Dynamic Combinants.



C H A P T E R  9

THE COMPUTATIONAL FRAMEWORK OF THE 

DETERMINANTAL ASSIGNMENT PROBLEM
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9.1 INTRODUCTION
The Determinantal Assignment Problem (DAP) has emerged as the common 

formulation of a variety of Control Theory problems such as the pole, zero 

assignment problems [Kar. & Gia., 1,2], [Gia. & Kar., 1] under different types 

of compensation (feedback). This problem (DAP) is of a multilinear nature and 

it is naturally reduced to a linear problem of zero assignment of polynomial 

combinants and a standard multilinear problem, that of decomposability of 

multivectors [Marc., 1], The solvability of DAP is thus reduced to the 

solvability of a set of linear equations (characterising the linear 

subproblem) together with a set of quadratics (known as Quadratic Plucker 

Relations (QPR) which characterize the decomposability of multivectors [Marc., 

1], [Kar. & Gia., 2]. Classical algebraic geometry [Hod. & Ped., 1] (in a

projective, rather than affine space) is used to determine the existence of 

solutions [Gia. & Kar., 1], [Kar. & Gia., 2]. The approach heavily relies on 

exterior algebra and this has implications on the computability of solutions 

(reconstruction of solutions, whenever they exist) as well as on the 

introduction of new sets of invariants (of a projective character), which 

characterize the solvability of DAP.

The main advantages of the DAP approach are that it provides the means for 

computing solutions, it handles both generic and exact solvability

investigations and it finally introduces new criteria for the characterization 

of solvability of different problems.

The aim of this Chapter is to develop the numerical framework, as well as a

numerical algorithm for the computation of solutions of DAP. This algorithm
¿exifeced ot-cound vVys.

may be used as a basis of a design technique/assignment problems. ^

Some of the important numerical techniques developed in Chapter 4 are 

applied in the present Chapter. More specifically, the algorithms concerning 

the evaluation of compounds of real matrices and the computation of Plucker 

matrices are mostly used for the specification of a computational framework 

for the formulation of a unifying algorithm solving DAP . The computation of 

solutions of DAP is reduced to an optimization problem of a function with 

quadratic equality constraints. A convenient algorithm appropriate for the 

computation of solutions of DAP is presented. Finally an analytical example 

demonstrating the application of the above technique is given.
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9.2 THE DETERHINANTAL ASSIGNMENT PROBLEM FOR LINEAR SYSTEMS
Linear Control Theory problems such as those of pole assignment by state, 

output feedback (centralised or decentralised) , and zero assignment by input, 

or output squaring down, may be reduced to a standard common problem known as 

the Determinantal Assignment Problem (DAP) [Kar. & Gia., 1], which is defined 

below:

The Determinantal Assignment Problem

Let M(s)eRp*̂ ], q<p, and let Pr (s)(M(s)) = q and let A/=(H:HeRc,xP, p(H)=q }. 

Finding an He// such that the polynomial:

fM(s,H) = det(HM(s)) (9.1)

has a given set of zeros, has been defined as the Determinantal Assignment 

Problem (DAP). If h^, nii(s), iecj, denote the rows of H, columns of M(s) 

respectively, then

Cq(H) = hitA...Ahqt = eR°

and Cq (M( s)) = m-j (s )a . .. Am^(s) = m(s)A eR°[s], o = (P)

and by the Binet-Cauchy theorem [Marc. & Mine., 1] we have that

fM(s,H)= Cq(H)Cq(M(s)) = < ¿a , m(s)A > = I hu m<j(s) (9.2)
ueQq,p

where <.,.> denotes the inner product, u = (ii,..., iq)eQq?p, and hy, m^s) are 

the coordinates of hA, m(s)A respectively. Note that hu is the qxq minor of H 

which corresponds to the u set of columns of H and thus hu is a multilinear 

alternating function of the entries h-jj of H. The initial problem may be 

reduced to a linear subproblem and a multilinear subproblem as it is shown 

below.

(i) Linear subproblem of DAP : Set m(s)A =p(s) eR°[s], Determine whether there 

exists a keR°, k=f 0, such that:

f M ^ ’JO^fii5) = £ k-jp-j(s) = a(s), ie o, a(s)e R[s] (9.3)

(ii) Multilinear subproblem of DAP : Assume that K is the family of solution 
vectors k of (9.3). Determine whether there exists

= [ h],...,hq] where HeRPXC|, such that:

h^A... Ah(j = k, ke K (9.4)
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Polynomials defined by Eqn. (9.3) are linear combinations of polynomials of 

R[s] and they are called polynomial combinants [Kar. & Gia., 1]; the zero 

assignability of them provides necessary conditions for the solution of DAP. 

The solution of the multilinear problem is strongly related to the well known 

notion of decomposability of multivectors [Marc., 1] of exterior algebra. Note 

that notions and tools from exterior algebra play also an important role in 

the linear subproblem, since fM(s,k) is generated by the decomposable 

multivector m(s)A.

9.3 THE COMPUTATIONAL FRAMEWORK OF DAP
The approach adopted for the solution of DAP uses the notion of 

decomposability of multivectors [Marc., 1] and the geometry of Grassmann 

variety [Hod. & Ped., 1] in an essential way. The general reduction of DAP 

introduced before, leads to a numerical procedure for the computation of 

solutions, whenever such solutions exist. The computational framework and the 

general algorithm are discussed here.

Let M(s)= [mi(s),...,mq(s)]eRPxc1[s], p>q, o = (P) ,

PR(s )(m (s)) = 9» and assume that M(s) has no finite zeros. If we denote = 

col-s p r (s ){M(s )}, then mi(s )a ...Amq(s) = m(s)A = g(V^) is Known as a 

Grassmann Representative (GR) of [Kar. & Gia., 1].

g(V|v|) uniquely characterises (mod R(s)) and if 5 = deg (a(V^)}, then we may 

write

3(Vm ) = P5'e5(s)> P5eR0X(5+1\  gg(s)=[l,s,...,s5]1 (9.5)

The basis matrix P5 of g(V^) is referred to as the Plucker matrix of 

[Kar. & Gia., 1].

Let a(s)eR[s] be an arbitrary polynomial with deg{a(s)} < 5. The DAP 

defined in Section 9.2 can be reduced to the following two problems.
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(i) Linear subproblem of DAP: Set o =(P) , m(s)A = Cq(M(s)) =fi(s)eR0X^[s].

Find the conditions under which vector k exists such that:

= a(s) or equivalently Pg^'k = a, aeR5+1 (9-6)

(ii) Multilinear subproblem of DAP : Assume that the linear subproblem is 

solvable and that K is the family of solution vectors keK which ¿tee, 

decomposable i.e. satisfies the set of Quadratic Plucker Relations (QPR) 

[Marc., 1]. If such a vector k exists, determine an HeRPxP, p(H)= q such that 

Cq(H)=c-kt, ceR-{0}.

From the above analysis it is clear that the solvability of DAP, as well as 

the computation of its solutions, is reduced to the problem of solving a 

system of (5+1) linear equations (defined by (9.6)) together with the set of 

quadratics known as QPRs. The set of QPRs defines the Grassmann variety of the 

corresponding projective space [Hod. & Ped., 1], but the quadratics in this 

set are not algebraically independent. A minimal algebraically independent set 

has been defined in [Gia., Kal. & Kar., 1] and it is Known as Reduced QPRs 

(RQPRs); this set has o-q(p-q)-l quadratics with o parameters. The set of 

RQPRs may thus be used for the study of the computational aspects of DAP. The 

solution of linear and quadratic equations may be formulated as an 

optimization problem where the linear equations define a perfomance index to 

be minimized and the RQPRs, define equality constraints. The following 

theoretical algorithm illustrates the numerical issues involved in the 

computation of solutions of DAP.

An Optimization Algorithm for the study of DAP

For a given M(s)eRPxP[s] and a(s)eR[s] and with the assumptions stated 

before, a numerical procedure for the computation of approximate solutions of 

DAP, (whenever such solutions exist [Kar. & Gia., 3]) ,may be formulated, the 

basic steps of which are:
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Alqorithm DAP

STEP 1: Derive the Plucker matrix PgeR0X^ +^  of M(s).

STEP 2: Produce a set of RQPRs

and express them in the form:

9i(k) = J^Qik = 0 , i- 1 .... t, t=o-q(p-q) -1

where eR0X0 are appropriate matrices.

STEP 3 : Minimize f(k) = || P5t'k - a ||2

subject to the constraints g-j(k) = Jĉ Q-jk = 0 , i = l,...,t

STEP 4: If k* is a solution of STEP 3, then find HeR^xP, 

p(H) = q such that 

Cq(H) = c-k*1, ceR-{0}

Alg: 9.1

In order to implement the main steps of algorithm DAP in an effective 

numerical manner, the following important computational problems must be 

solved first:

(PI) For a given matrix HeR^xP, determine a convenient algorithm for the 

evaluation of the compound matrix

(q) fp)
C](H)eRV1'x V , l<l<q

For the case when l=q this algorithm will evaluate the Grassmann product 

Cq(H)eRlxo of H.

(P2) For a given polynomial matrix M(s)=[mi(s),...,mq(s)]eRpxc|[s], Pr (s )(M(s)) 

= q, define an algorithm for the computation of its Grassmann vector and thus 

PIucker matrix i.e.

g(M(s))=Cq(M(s))=m1 (s)A...Amq(s)e Ro x l [s].

(P3) Specify the RQPRs for a vector

(P4) Produce an efficient algorithm for solving the minimization problem 

defined in STEP 3.
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(P5) Determine a matrix HeR^xP, p(H) = q such that Cq(H)= ck*^, ceR-{0},
•jc _

where k is a solution of the minimization problem defined in STEP 3.

Of course, the above problems are considered when DAP has at least a 

complex solution in a generic sense. The solvability conditions of DAP have 

been investigated in [Kar. & Gia., 3] and are summarized below:

(a) If q=l, or q=p-l then the solution of DAP is defined by the solvability of 

the linear system (9.6), that is it is solvable for all a(s), deg{a(s)}=5 if 

and only if p(P5 ) = 5+1

(b) If p>q and q =f 1,p-1, then DAP is solvable for any a(s) with 

deg{a(s)}=5 by a complex H, when q(p-q)>5+1 and p(P5 ) = 5+1

A variety of conditions for the existence of real solutions are given in 

[Kar. & Gia., 3]. The numerical problems associated with DAP are considered, 

when either (a) or (b) conditions are satisfied. In the case (a), the 

conditions guarantee the existence of a complex solution. The optimization 

formulation of the problem, defines in the latter case an approximate real 

solution. In fact, for the keR° solution of the optimization problem there 

exists a number s>0 and a vector e eR^+* for which

min f(k) = e subject to the constraints gi(k)=0 , i=l,2 ,...,t 

and Ps^'k = a + s, k^Qik = 0 , i=l,2 ,...,t

Thus in this case, a matrix HeR^xP, p(H) =q may be found which is such that 

det(HM(s)) = (at+et)*e5 (s) where the vector a+e is as close as possible (in 

the Euclidean sense) to the vector a. It can also be proved [Mard., 1] that 

the zeros of the polynomial (a^+e^) '€g(s) are in the neighbourhoods of the 

zeros of the polynomial a^’£5 (s), if e is small. Thus if e is very small, the 

matrix HeR^xP found by the algorithm solves approximately the problem and 

places the zeros in small discs centered at the roots of the given a(s).

The basic problems (P1-P5) listed above are considered in detail next.

Computational problems (PI), (P2) were encountered in Chapter 4. Algorithms 

COMREL and PLUCKER developed analytically in sections 4.4 and 4.5 can be 

applied when the solution of (PI) or (P2) is required. Techniques dealing with 

the problems (P3),(P5) are fully developed in [Gia. ,1], [Kar. & Gia., 2] 

respectively. In [Kar. & Gia., 2] an alternative method for reconstructing the 

compensators, from their exterior products, using the Singular Value
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Decomposition (computation of a basis for the right null space of a matrix), 

is given using the notion of Grassmann; the latter method leads to an 

algorithm.

Computational problem (P4) attracts a lot of attention. Since the 

minimization problem defined in STEP 3 of algorithm DAP may not have a unique 

solution, the specification of an efficient algorithm able to solve it, is not 

an easy task. Already known optimization techniques concerning problems with 

quadratic constraints are not appropriate since they are very general. The 

facts that we do not know exactly an approximation of an initial solution and 

of the number of the required steps indicate that any hill-climbing algorithm 

may not be suitable for (P4).

An algorithm developed in [Mar., 1] has been used. In the sequel, we 

briefly present this algorithm.

9.4 A FIRST ORDER METHOD FOR SOLVING AN EQUALITY 
CONSTRAINED PROBLEM [Mar., 1]

9.4.1 Introduction

In this section a first order method is presented for solving the finite 

dimensional equality constrained problem 

min{ g°(x) : g(x)=0 }
(P)

g°( ■) : Rn--->R, g(-) : Rn— > Rm, m<n

This method is iterative in nature, i.e. starting from a given point xq eRn 

it constructs a sequence (xq-) according to the rule: xq+i = xq+aqh-j, where 

hqeRn is the search direction and aqeR is the step length at iteration 

i =0,1,... It can be proved that, under reasonable assumptions, any

accumulation point of the sequence xq satisfies first order necessary 

optimality conditions for problem (P).

The proposed method has the following salient features:

(i) It constructs a single sequence of points (xq) converging directly to a 

solution of (P) No feasibility requirements are made on the xq's.

(ii) The search direction hq is made up of two components. The "horizontal" 

component is determined from the projection of the cost gradient on the 

hyperplane H approximating the feasible manifold r={xeRn: g(x)=0} to first 

order at xq< The "vertical" component of the search direction is the vector of 

minimum length from xq to the hyperplane H. Thus the "horizontal" component is 

a descent direction for the cost and the "vertical" component is a 

displacement from xq towards the feasible manifold f.
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(9.7)

g(x)

(iii) A convenient stepsize is determined by a line search (along h-j) on the 

exact penalty function
m

Y(x,c) = g°(x) + c I |gj(x)|
j=l

where gJ(‘) is the jth constraint function (i.e. 

[g1(x)...gJ(x)...gm (x)]t) and c a real positive parameter.

(iv) A scheme for automatically increasing the parameter c in order to ensure 

exactness of the penalty function y is also incorporated in the method.

This first order method attempts to exploit the stabilizing effect that 

the exact penalty function y(x,c) of (9.7), can produce, when used together 

with a simple iterative scheme on a linearization of the original problem at 

each point x-j. This linearization yields the search direction described in 

(ii).

9.4.2 The numerical algorithm

The following notation is required for the development of the algorithm. 

Notation (9.11 : Given a function f: Rn— >R we denote by

(i) bf (x) the partial derivative of function f(x) at x.
bx

(ii) Vf(x) the gradient of f(x) at x. Vf(x) is always treated as a column

vector, hence: Vf(x) = [ bf(x).... bf(x11t

bxJ bx'

Notation (9.2) : (i) Given a function g: Rn--->Rm , we denote by its

Jacobian matrix at x. This is an mxn matrix whose i,j-th element is bq^(x),

hence:
bx̂ 1

?>q(x) = 
bx

V ( x )1

Vg^x)1

(ii) The Langrangian L(.,.):RnxRm--->R is defined by: L(x,X) = g0(x)+g(x)t'X
■

The numerical algorithm requires also as input data an initial 

approximation xq to the solution xeRn of the minimization problem and the 

constants f}>0, c.j>0, 5>0, ae(0,l) and ne(0,l). Moreover, Subprocedure B 

requires as input data three more constants, 1, L and e satisfying 0<1«1, L>1 

and 0<e«l.
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Alqorithm OPTIH

STEP 0: i:= 0

STEP 1: X(x-j) := -[ bq(x) bgfxl* ]_1 bg(x) Vg°(x)
bx bx bx

p°(x-j) := H-bqfx)1 [ bq(x) M M 1 ]_1 M M ]  Vg°(x) 
bx bx bx bx

h(x-j) := -bgix)1 [ bg(x). bglxjt ]_1 g(x) 
bg(x) bx bx

STEP 2: Normalize the projected gradient p°(xj) using either 

either Subalgorithm A or B (take f(.) to be either g°(.) or 

L(-, X (x-j))), to obtain the normalizing parameter u(x-j) 

h(xj) := h(xi)-u(xi)p°(xi)

m

STEP 3: if (Cj-i-P) |gJ(Xj)|-X(xj)tg(xi) > 0 then 

c i : = c j. i
else

Cj := max{ P+X(xj)t g(xi ) , c-j_!+5 } 

m

£  |gj(xi) |
j=i

m

STEP 4 : 0 ( X i , 0, )  Vg°(xi ) t h ( x i ) - c i E  |gJ (Xj)| 

if eiXi.Cf) = 0 then J

quit

STEP 5: Compute the smallest nonnegative integer x(xj) such that: 

Y(xi+nK(xl)h(xi),ci)-Y(xi,Cj) < a-nK(xl^0(xj,Cj)

STEP 6: Xj+1 := Xj+nK(xi)h(xj) 

i := i+1 

Repeat STEP 1

Alg: 9.2
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Subprocedure A (Armigo's Rule)

Compute the smallest nonnegative integer t (x-j) such that: 

f(xi-nT(xi)p°(xi))-f(xi) < -a-nT(xi)-||p°(xi)||2 

u(xi) := nT(xi)

Alg: 9.3

Subprocedure B (Quadratic Interpolation)

Alg: 9.4
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The development of a better minimization algorithm suitable for the needs 

of algorithm DAP is still under consideration.

In the sequel, a numerical example illustrating the application of 

algorithm DAP is presented.

9.5 NUMERICAL EXAMPLE

Let M(s)=

-s 1

1 -s(s+1)

0 -(S+l)

-1 0

eR4x2[s], p=4, q=2, o=(P)=6, 5=3 and let

a(s)=s3+3s2+4s+2 be a given polynomial.Applying algorithms DAP and PLUCKER we 

have:

P3

matri x P3 of M(s) is

-1 0 1 1

0 1 1 0

1 0 0 0 eR6x4

-1 -1 0 0

0 -1 -1 0

-1 -1 0 0

2(4- 2) >4, p(P3)=4 guarantee the solvability

a(s) with deg(a(s )}=3 by a complex H.

STEP 2: For a vector k=[ko,ki,k2 ,k3 ,k4 ,k5 ]eR® the number of the RQPRs are: 

nRQPRs = i^)-2(4-2)-1 = 1 

and specifically this relation is

klk4-k2k3 = kQk5

This relation can be also be expressed as:
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k^-Q-k = 0 where

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 -1

1 0

0 0

0 0

0 0

1

0

0

0

0

0

eR6x6

STEP 3: Using algorithm OPTIM we solve the following optimization problem

minimize f(k) = ||P3 'k-ajj 

subject to k ^ Q k = 0

A solution to the above problem is

k*=(l.001, 1.998, 0.997, -501.006, 0.00459, 498.998)

STEP 4: For the above k* we specify the following matrix HeR2x^

H =
1.001

0

0

1.001

501.006 -0.00459

1.001 0.997

In this case

P^k = a + e , e =[0,-0.00259,-0.00559,O.OOl]1

Thus, algorithm DAP assigns as closed loop pole polynomial 

the polynomial

(at+et)e3(s)= 1.001s3+2.994s2+3.997s+2 

whose roots

(-0.996,-0.9975+1.0055i,-0.9975-1.0055i} 

are close to the desired poles (-1,-1+i,-1-i}.

9.6 CONCLUSIONS
The aim of this Chapter was to provide the means for the formulation of a 

computational framework suitable for the solution of the Determinantal
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Assignment Problem (DAP). In this formulation the exterior algebra algorithms 

developed in Chapter 4 and concerning the computation of compound and 

Grassmann product of real matrices and the evaluation of Plucker matrices are 

principally used. This formulation requires also an efficient numerical 

algorithm solving an equality constrained optimization problem.

Thus, this Chapter serves the following purpose:

It provides the determination of an appropriate algorithm for the 

computation of solutions of DAP, which as it was shown, may be formulated as a 

constrained optimization problem.



C H A P T E R  10

CONCLUSIONS
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The main aim of this thesis was to provide several numerical techniques for 

handling computational problems arising from Algebraic Control Theory. 

Basically, it contributes in developing numerical methods dealing with 

Exterior Algebra computations, nongeneric computations and computations 

involving the almost zero notion. More specifically, the present thesis has 

aimed in achieving a number of goals such as:

(i) Derivation of Exterior Algebra algorithms

The developed algorithms are classified in two categories. The first category 

deals with computations concerning real vectors and matrices and produces 

techniques for the evaluation of the exterior product of vectors and of the 

compounds of matrices. The computation of the Decentralization characteristics 

[Kar., Lai. & Gia.,1] using the notion of compounds is being examined for the 

moment.

The second category deals with computations concerning polynomial vectors and 

matrices and produces techniques for the evaluation of polynomial compounds 

and Plucker matrices. The evaluation of Plucker matrices can be applied for 

the formulation of a computational framework for the Determinantal Assignment 

Problem (DAP). [Kar. & Gia, 1]. The whole issue is under consideration. The 

improvement of the proposed algorithm for the solution of DAP is still under 

consideration. In this area, research should be focussed in the development of 

more efficient hill climbing optimization methods, as well as investigation of 

significance of approximate solutions of DAP. Extension of the present 

framework of DAP to the case of Decentralized and Dynamic DAP is also 

feasible.

The material developed in this area of work provides the essential tools 

for the development of a Computer Aided Design environment for the solution of 

Frequency Assignment Problems such as pole assignment by output feedback or 

precompensation and zero assignment by squaring down. For the development of 

such techniques the optimization algorithm part of the approach should be 

modified to handle also inequality constraints.

(ii) Derivation of efficient techniques for tackling nongeneric computations

Most of the proposed techniques are based on the new notions of e- 

independent, numerically e-dependent, strongly e-dependent, fuzzy e-dependent 

sets of vectors. The most crucial technique, which in concrete cases will 

specify the termination of an algorithm , concerns the relationship between 

the numerical e-rank of a strongly e-dependent set and the singular values of 

its normalized matrix representation. Based on the above notions the
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selection of a "best" representative of a strongly e-dependent set is 

obtained.

An efficient technique for choosing a "best uncorrupted" base for the row 

space of a matrix is also developed. This technique in several nongeneric 

problems will allow the "catching up" of approximate solutions.

Furthermore, based on the definitions of numerical e-rank and numerical e- 

nullity, the notion of approximate null space can be introduced. A study 

concerning definitions , properties and general description of approximate 

null space is under consideration. The connection between approximate null 

space and numerical range is also investigated.

(iii) Derivation of a new numerical algorithm for the evaluation 

of the greatest common divisor of polynomials

This algorithm is really very useful because it provides the means for a 

convenient and efficient computation of the g.c.d. of any polynomial set Pmy(\. 
The generalization of this algorithm so as to compute the right or left g.c.d. 

of matrices as well as polynomials solving the Diophantine equations are still 

under development.

Extension of the results to the case of matrix divisors is by no means 

trivial and requires additional effort.

An alternative algorithm for computing the g.c.d. and which is based on 

matrix pencil theory [Kar., 5] allows the possibility for defining almost 

zeros using the notion of numerical range and almost null space. This may 

allow the definition of almost zeros in a manner independent from the scaling 

of the polynomials.

(iv) Derivation of almost zero's algorithms

These algorithms are based on the existing almost zero definition [Kar., 

Gia. & Hub.,1]. From the comprehensive study of the almost zero's sensitivity 

to scaling, is derived that the almost zero's position is influenced from the 

position of the roots of the original polynomials. A new definition of a norm 

independent almost zero, based on the roots of the given polynomials is under 

consideration. Further research can also be done for a theoretical 

specification of the minimal value vm-jn of v for which a v-th order strongly 

zero nonassignable polynomial set P becomes zero assignable.

The topics examined in this thesis, by no means cover all the numerical 

issues faced in Algebraic Control Theory problems. As far as development of 

numerical methods for algebraic computations, the main obstacle in the matrix 

case is the reduction of the algebraic problem to a standard Linear Algebra
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problem. In this area, important problems to be considered are efficient 

computations of common matrix divisors, common matrix multiples, Matrix 

Fraction Descriptions (MFDs), as well as factorization of rational matrices 

and construction of ordered minimal bases. Each of the above issues requires 

an appropriate real matrix formulation and subsequent definition of an 

efficient numerical algorithm. It should be pointed, that alternative means 

using tools from symbolic computations have to be examined.
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Some numerical results achieved after the application of algorithm COHREL 

,developed in section 4.4 of Chapter 4, are presented next.

Example (A.11:

THE GIVEN MATRIX A IS

2.00000 4.00000 3.00000 5.00000 7.00000
1.00000 7.00000 2.00000 1.00000 9.00000
1.50000 2.00000 3.00000 12.50000 1.00000
2.00000 3.00000 8.00000 6.00000 2.30000

EVALUATION OF THE P = 3 COMPOUND MATRIX OF A

ELEMENTS OF COMPOUND

ROWS OF A

1 2 3

COLUMNS OF A 1 ROW

1 2 3 8.50000

1 2 4 84.50000

1 2 5 -31.50000

1 3 4 11.00000

1 3 5 -12.50000

1 4 5 -83.50000

2 3 4 -83.50000

2 3 5 52.00000

2 4 5 207.50000

3 4 5 -55.50000

ROWS OF A

1 2 4

COLUMNS OF A 2 ROW

1 2 3 51.00000

1 2 4 7.00000

1 2 5 -36.00000

1 3 4 16.00000



A - 2

1 3 5 -59.70000

1 4 5 3.10000

2 3 4 149.00000

2 3 5 113.10000

2 4 5 120.70000

3 4 5 209.90000

ROWS OF A

1 3 4

COLUMNS OF A 3 ROW

1 2 3 -8.50000

1 2 4 15.50000

1 2 5 .90000

1 3 4 -86.00000

1 3 5 35.45000

1 4 5 -73.75000

2 3 4 -216.50000

2 3 5 39.80000

2 4 5 -95.50000

3 4 5 -500.25000

ROWS OF A

2 3 4

COLUMNS OF A 4 ROW

1 2 3 -34.00000

1 2 4 87.00000

1 2 5 -4.05000

1 3 4 -44.00000

1 3 5 50.00000

1 4 5 -122.70000

2 3 4 -516.00000



A - 3

2 3 5 52.10000

2 4 5 -71.85000

3 4 5 -691.40000

Example (A.2):

THE GIVEN MATRIX A IS

2.00000
4.50000
6.20000

4.10000 5.60000
8.00000 10.50000 
2.60000 11.00000

EVALUATION OF THE P = 3 COMPOUND MATRIX OF A 

THIS COMPOUND IS EQUAL WITH THE DETERMINANT

ELEMENTS OF COMPOUND

ROWS OF A 

1 2 3

COLUMNS OF A 1 ROW

1 2 3 -26.88000

Example (A.3):

THE GIVEN MATRIX A IS

3.00000 4.00000 2.00000 1.00000 5.00000
6.00000 1.00000 2.00000 3.00000 4.00000
1.00000 2.00000 1.00000 2.00000 1.00000
2.00000 3.00000 4.00000 1.00000 3.00000
5.00000 6.00000 1.00000 3.00000 4.00000
1.00000 1.00000 1.00000 1.00000 1.00000

EVALUATION OF THE P = 5 COMPOUND MATRIX; OF A

THIS COMPOUND IS A COLUMN VECTOR CALLED

THE GRASSMAN PRODUCT OF THE COLUMNS



A - 4

ELEMENTS OF COMPOUND

ROWS OF A

1 2 3 4 5

COLUMNS OF A 1 ROW

1 2 3 4 5 -301.00000

ROWS OF A

1 2 3 4 6

COLUMNS OF A 2 ROW

1 2 3 4 5 10.00000

ROWS OF A

1 2 3 5 6

COLUMNS OF A 3 ROW

1 2 3 4 5 36.00000

ROWS OF A

1 2 4 5 6

COLUMNS OF A 4 ROW

1 2 3 4 5 -105.00000

ROWS OF A

1 3 4 5 6

COLUMNS OF A 5 ROW

1 2 3 4 5 27.00000

ROWS OF A

2 3 4 5 6

COLUMNS OF A 6 ROW

1 2 3 4 5 -4.00000

Example (A.4):
THE GIVEN MATRIX A IS

4.00000 2.00000 3.00000 1.00000
2.00000 1.00000 3.00000 2.00000
1.00000 1.00000 1.00000 1.00000



A - 5

EVALUATION OF THE P = 3 COMPOUND MATRIX OF A 

THIS COMPOUND IS A ROW VECTOR CALLED 

THE GRASSMAN PRODUCT OF THE ROWS

ELEMENTS OF COMPOUND

ROWS OF A

1 2 3

COLUMNS OF A 1 ROW

1 2 3 -3.00000

1 2 4 -3.00000

1 3 4 3.00000

2 3 4 3.00000

In the sequel, some examples attained after the application of algorithm 

COMPOL1 developed in section 4.5 of Chapter 4, are presented.

Example (A.5):

3s+l 2s2

M(s) = 5s+2 2s+3

3s+2 5s 2+1

THE COEFFICIENT OF POLYNOMIALS AUGMENTED MATRIX IS

.0000 2.0000 3.0000 .0000 1.0000 .0000

.0000 .0000 5.0000 2.0000 2.0000 3.0000

.0000 5.0000 3.0000 .0000 2.0000 1.0000

EVALUATION OF THE P= 2 COMPOUND MATRIX WHICH IS A COLUMN MATRIX

ELEMENTS OF COMPOUND

ROWS OF A 

1 2

PRIME COLUMNS OF A 1 ELEMENT

(ADD THE NEXT TERMS ) 
.000*S** 41 2
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1 4 .000*S** 3

1 6 .000*S** 2

2 3 -10.000*S** 3

2 5 -4.000*S** 2

3 4 6.000*S** 2

3 6 9.000*S** 1

4 5 2.000*S** 1

5 6 3.000*S** 0

FINAL ELEMENT

3.000*S** 0

11.000*S** 1

2.000*S** 2

-10.000*S** 3

ROWS OF A

1 3

PRIME COLUMNS OF A 2 ELEMENT

1 2
(ADD THE NEXT TERMS 

.000*S** 4

1 4 .000*S** 3

1 6 .000*S** 2

2 3 9.000*S** 3

2 5 1.000*S** 2

3 4 ,000*S** 2

3 6 3.000*S** 1

4 5 .000*S** 1

5 6 1.000*S** 0

FINAL ELEMENT 

1.000*S** 0 

3.000*S** 1

1 .0 0 0 *S * *  2
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9.000*S** 3

ROWS OF A 

2 3

PRIME COLUMNS OF A 3 ELEMENT

1 2
(ADD THE NEXT TERMS 

.000*S** 4

1 4 .000*S** 3

1 6 ,000*S** 2

2 3 25.000*S** 3

2 5 10.000*S** 2

3 4 -6.000*S** 2

3 6 -4.000*S** 1

4 5 -4.000*S** 1

5 6 -4.000*S** 0

FINAL ELEMENT 

-4.000*S** 0 

-8.000*S** 1 

4.000*S** 2 

25.000*S** 3

Example (A.6):

2 s 2 + 3 8s+l 5 s 2 + 9

2s+4 7 3 s 2 + 1

4s+5 6 s 2+2 4

6s+ll 2s2 15s+8

THE COEFFICIENT OF POLYNOMIALS AUGMENTED MATRIX IS

2.00 .00 5.00 .00 8.00 .00 3.00 1.00 9.
.00 .00 3.00 2.00 .00 .00 4.00 7.00 1.
.00 6.00 .00 4.00 .00 .00 5.00 2.00 4.
.00 2.00 .00 6.00 .00 15.00 11.00 .00 8.

00
00
00
00
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EVALUATION OF THE P= 3 COMPOUND MATRIX WHICH IS A COLUMN MATRIX

ELEMENTS OF COMPOUND

ROWS OF A

1 2 3

PRIME COLUMNS OF A 1 ELEMENT

1 2 3
(ADD THE NEXT TERMS ) 

-36.000*S** 6

1 2 6 .ooo*s** 5

1 2 9 -12.000*S** 4

1 3 5 .ooo*s** 5

1 3 8 -12.000*S** 4

1 5 6 .000*S** 4

1 5 9 .ooo*s** 3

1 6 8 ,ooo*s** 3

1 8 9 52.000*S** 2

2 3 4 60.000*S** 5

2 3 7 66.000*S** 4

2 4 6 .ooo*s** 4

2 4 9 108.000*S** 3

2 6 7 .000*S** 3

2 7 9 198.000*S** 2

3 4 5 96.000*S** 4

3 4 8 -108.000*S** 3

3 5 7 120.000*S** 3

3 7 8 -138.000*S** 2

4 5 6 .ooo*s** 3

4 5 9 -32.000*S** 2

4 6 8 .ooo*s** 2

4 8 9 -220.000*S** 1

5 6 7 .ooo*s** 2
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5 7 9

6 7 8

7 8 9

-88.000*S** 1 

.000*S** 1 

-176.000*S** 0 

FINAL ELEMENT 

-176.000*S** 0 

-308.000*S** 1 

80.000*S** 2 

120.000*S** 3 

138.000*S** 4 

60.000*S** 5 

-36.000*S** 6

ROWS OF A

1
PRIME

2 4
COLUMNS OF A 2 ELEMENT

1 2 3
(ADD THE NEXT TERMS 

-12.000*S** 6

1 2 6 .000*S** 5

1 2 9 -4.000*S** 4

1 3 5 .000*S** 5

1 3 8 .000*S** 4

1 5 6 .000*S** 4

1 5 9 .000*S** 3

1 6 8 210.000*S** 3

1 8 9 112.000*S** 2

2 3 4 20.000*S** 5

2 3 7 22.000*S** 4

2 4 6 .000*S** 4

2 4 9 36.000*S** 3

2 6 7 ,000*S** 3

2 7 9 66.000*S** 2

3 4 5 144.000*S** 4
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3 4 8

3 5 7

3 7 8

4 5 6

4 5 9

4 6 8

4 8 9

5 6 7

5 7 9

6 7 8

7 8 9

ROWS OF A 

1 3 4
PRIME COLUMNS OF A

1 2 3

1 2 6

1 2 9

1 3 5

1 3 8

1 5 6

1 5 9

-192.000*S** 3 

264.000*S** 3 

-352.000*S** 2 

-240.000*S** 3 

-80.000*S** 2 

-30.000*S** 2 

-388.000*S** 1 

-480.000*S** 2 

-168.000*S** 1 

255.000*S** 1 

-546.000*S** 0 

FINAL ELEMENT 

-546.000*S** 0 

-301.000*S** 1 

-764.000*S** 2 

78.000*S** 3 

162.000*S** 4 

20.000*S** 5 

-12.000*S** 6

3 ELEMENT

(ADD THE NEXT TERMS ) 
.000*S** 6

180.000*S** 5

80.000*S** 4

.000*5** 5

,000*S** 4

.000*S** 4

. 0 0 0 *S * *  3
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1 6 8 60.000*S** 3

1 8 9 32.000*S** 2

2 3 4 -140.000*S** 5

2 3 7 -280.000*S** 4

2 4 6 ,000*S** 4

2 4 9 -252.000*S** 3

2 6 7 270.000*S** 3

2 7 9 -384.000*S** 2

3 4 5 .000*S** 4

3 4 8 -60.000*S** 3

3 5 7 .000*S** 3

3 7 8 -110.000*S** 2

4 5 6 -480.000*S** 3

4 5 9 -64.000*S** 2

4 6 8 -60.000*S** 2

4 8 9 -116.000*S** 1

5 6 7 -600.000*S** 2

5 7 9 32.000*S** 1

6 7 8 15.000*S** 1

7 8 9 -146.000*S** 0

FINAL ELEMENT 

-146.000*S** 0 

-69*S** 1 

-1186.000*S** 2 

-462.000*S** 3 

-200.000*S** 4 

40.000*S** 5

ROWS OF A

2 3 4
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PRIME COLUMNS OF A

1 2 3

1 2 6

1 2 9

1 3 5

1 3 8

1 5 6

1 5 9

1 6 8

1 8 9

2 3 4

2 3 7

2 4 6

2 4 9

2 6 7

2 7 9

3 4 5

3 4 8

3 5 7

3 7 8

4 5 6

4 5 9

4 6 8

4 8 9

5 6 7

5 7 9

6 7 8

7 8 9

4 ELEMENT

(ADD THE NEXT TERMS ) 
.000*S** 6

,000*S** 5

.000*S** 4

.000*S** 5

.000*S** 4

.000*S** 4

.000*S** 3

.000*S** 3

.000*S** 2

-84.000*S** 5

-168.000*S** 4

180.000*S** 4

52.000*S** 3

360.000*S** 3

104.000*S** 2

.000*S** 4

-36.000*S** 3

.000*S** 3

-66.000*S** 2

.000*S** 3

.000*S** 2

-360.000*S** 2

-36.000*S** 1

.000*S** 2

.000*S** 1

-405.000*S** 1

70.000*S** 0

FINAL ELEMENT
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-70.000*S** 0 

-441.000*S** 1 

-322.000*S** 2 

376.000*S** 3 

12.000*S** 4

-84.000*S** 5

Example (A.71:

2s+l 5s 3s+4 8s

5s+3 4s+3 2s 3

4s 8s 3s+4 2s+l

2s+2 2s+4 4s+2 4s

5 3s+2 8s 5s+2

THE COEFFICIENT OF POLYNOMIALS AUGMENTED MATRIX IS

2.00000 5.00000 3.00000 8.00000 1.00000 .00000 4.00000 .00000
5.00000 4.00000 2.00000 .00000 3.00000 3.00000 .00000 3.00000
4.00000 8.00000 3.00000 2.00000 .00000 .00000 4.00000 1.00000
2.00000 2.00000 4.00000 4.00000 2.00000 4.00000 2.00000 .00000
.00000 3.00000 8.00000 5.00000 5.00000 2.00000 .00000 2.00000

EVALUATION OF THE P= 4 COMPOUND MATRIX WHICH IS A COLUMN MATRIX

ELEMENTS OF COMPOUND

ROWS OF A

1 2  3 4 
PRIME COLUMNS OF

1 2 3 4

1 2 3 8

1 2 4 7

1 2 7 8

1 3 4 6

1 3 6 8

1 4 6 7

1 ELEMENT

(ADD THE NEXT TERMS ) 
-376.000*S** 4

-16.000*S** 3

-156.000*S** 3

-22.000*S** 2

292.000*S** 3

22.000*S** 2

408 .000 *S * *  2
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1 6 7 C
O

2 3 4 5

2 3 5 8

n
o 4 5 7

2 5 7 8

3 4 5 6

3 5 6 8

4 5 6 7

5 6 7 8

28.000*S** 1 

-400.000*S** 3 

58.000*S** 2 

-180.000*S** 2 

-18.000*S** 1 

136.000*S** 2 

-58.000*S** 1 

180.000*S** 1 

-78.000*S** 0 

FINAL ELEMENT 

-78.000*S** 0 

132.000*S** 1 

422.000*S** 2 

-280.000*S** 3 

-376.000*S** 4

ROWS OF A

1

PRIME

2 3 

COLUMNS

5

OF A 2 ELEMENT

1 2 3 4
(ADD THE NEXT TERMS 

-1075.000*S** 4

1 2 3 8 119.000*S** 3

1 2 4 7 500.000*S** 3

1 2 7 8 68.000*S** 2

1 3 4 6 650.000*S** 3

1 3 6 8 -70.000*S** 2

1 4 6 7 120.000*S** 2

1 6 7 8 -40.000*S** 1

2 3 4 5 -891.000*S** 3

2 3 5 8 153.000*S** 2

2 4 5 7 -4.000*S** 2
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2 5 7 8 -68.000*S** 1

3 4 5 6 -157.000*S** 2

3 5 6 8 7.000*S** 1

4 5 6 7 -156.000*S** 1

5 6 7 8 36.000*S** 0

FINAL ELEMENT

36.000*S** 0

-257.000*S** 1

110.000*S** 2

378.000*S** 3

-1075.000*S** 4

ROWS OF A

1 2 4 5

PRIME COLUMNS OF A 3 ELEMENT

1 2 3 4
(ADD THE NEXT TERMS 

418.000*S** 4

1 2 3 8 -262.000*S** 3

1 2 4 7 -130.000*S** 3

1 2 7 8 -16.000*S** 2

1 3 4 6 -670.000*S** 3

1 3 6 8 280.000*S** 2

1 4 6 7 340.000*S** 2

1 6 7 8 160.000*S** 1

2 3 4 5 -22.000*S** 3

2 3 5 8 -32.000*S** 2

2 4 5 7 -150.000*S** 2

2 5 7 8 24.000*S** 1

3 4 5 6 -278.000*S** 2

3 5 6 8 -28.000*S** 1

4 5 6 7 150.000*S** 1
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5 6 7 8  -144.000*S** 0

FINAL ELEMENT 

-144.000*S** 0 

306.000*S** 1 

144.000*S** 2 

-1084.0000*S** 3 

418.000*S** 4

ROWS OF A

1 3 4 5

PRIME COLUMNS OF

1 2 3 4

1 2 3 8

1 2 4 7

1 2 7 8

1 3 4 6

1 3 6 8

1 4 6 7

1 6 7 8

2 3 4 5

2 3 5 8

2 4 5 7

2 5 7 8

3 4 5 6

CO 5 6 8

4 5 6 7

5 6 7 8

4 ELEMENT

(ADD THE NEXT TERMS ) 
590.000*S** 4

-98.000*S** 3

-152.000*S** 3

-20.000*S** 2

-672.000*S** 3

108.000*S** 2

112.000*S** 2

72.000*S** 1

-136.000*S** 3

28.000*S** 2

-248.000*S** 2

-4.000*S** 1

300.000*S** 2

-48.000*S** 1

328.000*S** 1

-100.000*S** 0

FINAL ELEMENT

-100.000*S** 0

348.000*S** 1
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280.000*S** 2 

-1058.000*S** 3 

590.000*S** 4

ROWS OF A

2 3 4 5

PRIME COLUMNS OF A 5 ELEMENT

1 2 3 4
(ADD THE NEXT TERMS 

-378.000*S** 4

1 2 3 8 398.000*S** 3

1 2 4 7 380.000*S** 3

1 2 7 8 50.000*S** 2

1 3 4 6 310.000*S** 3

1 3 6 8 -360.000*S** 2

1 4 6 7 -280.000*S** 2

1 6 7 8 -180.000*S** 1

2 3 4 5 -190.000*S** 3

2 3 5 8 100.000*S** 2

2 4 5 7 148.000*S** 2

2 5 7 8 -58.000*S** 1

3 4 5 6 -94.000*S** 2

3 5 6 8 160.000*S** 1

4 5 6 7 -228.000*S** 1

5 6 7 8 162.000*S** 0

FINAL ELEMENT 

162.000*S** 0 

-306.000*S** 1 

-436.000*S** 2 

898.000*S** 3

-378.000*S** 4
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Some numerical results achieved after the application of algorithm UNCBAS, 

developed in section 5.7.3 of Chapter 5, are presented next.

Example (B.l):

THE GIVEN MATRIX IS

1.00000 2.00000 3.00000 4.00000 5.00000 6.00000
4.00000 3.00000 2.00000 1.00000 1.00000 3.00000
5.00000 5.00000 5.00000 5.00000 6.00000 9.00000
2.00000 2.00000 1.00000 3.00000 7.00000 4.00000
2.00000 4.00000 6.00000 8.00000 10.00000 12.00000

THE NORMALIZED MATRIX IS
.10483 .20966 .31449 .41931 .52414 .62897
.63246 .47434 .31623 .15811 .15811 .47434
.33942 .33942 .33942 .33942 .40731 .61096
.21953 .21953 .10976 .32929 .76835 .43906
.10483 .20966 .31449 .41931 .52414 .62897

SINGULAR VALUES 

.21110428284770677010E+01 

.66004115092776061147E+00

.32839588215599135879E+00 

.24521006424345813728E-14 

.68724980510094294777E-15 

THE NUMERICAL RANK OF THE MATRIX IS 3

THE GRAM MATRIX IS

1.00000
.71272
.95357
.92051

1.00000

.71272
1.00000
.89088
.65950
.71272

.95357

.89088
1.00000
.87925
.95357

.92051

.65950

.87925
1.00000
.92051

1.00000
.71272
.95357
.92051

1.00000

VALUE OF COMPOUND ELEMENT 

ROWS
2 4 5

VALUE OF COMPOUND ELEMENT 

ROWS
1 2 4

VALUE OF COMPOUND ELEMENT 

ROWS
2 3 4

.0750992982920681839686949

.0750992982920655194334358

.0314932541224790529810207
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VALUE OF COMPOUND ELEMENT 

ROWS
1 3 4

VALUE OF COMPOUND ELEMENT 

ROWS
3 4 5

VALUE OF COMPOUND ELEMENT 

ROWS
1 4 5

VALUE OF COMPOUND ELEMENT 

ROWS
1 2 5

VALUE OF COMPOUND ELEMENT 

ROWS
2 3 5

VALUE OF COMPOUND ELEMENT 

ROWS
1 2 3

VALUE OF COMPOUND ELEMENT 

ROWS
1 3 5

.0138431886252656233260439 

.0138431886252650127033803 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151

THE ROW INDEPENDENT MATRIX IS

4.00000 3.00000 2.00000 1.00000 1.00000
2.00000 2.00000 1.00000 3.00000 7.00000
2.00000 4.00000 6.00000 8.00000 10.00000

Example (B.2):
THE GIVEN MATRIX IS

3.000000 
-3.000000

6 .0 00000

1.000000
2.000000
5.000000

.000000
1.000000
1.000000

THE NORMALIZED MATRIX IS

.948683 .316228 .000000
-.801784 .534522 .267261
.762001 .635001 .127000

SINGULAR VALUES

.14879237062104166966E+01

.88661324403419783380E+00

.00000

.00000

.00000

.1675915145415478752IE-14



A-20

THE NUMERICAL RANK OF THE MATRIX IS 2

THE GRAM MATRIX IS

1.000000
-.591608
.923702

-.591608 .923702
1.000000 -.237595 
-.237595 1.000000

VALUE OF COMPOUND ELEMENT

ROWS 
2 3

VALUE OF COMPOUND ELEMENT

ROWS 
1 2

VALUE OF COMPOUND ELEMENT

ROWS 
1 3

.9435483870967651398586895

.6500000000000021316282073

.1467741935483877213641790

THE ROW INDEPENDENT MATRIX IS

-3.000000 2.000000 1.000000
6.000000 5.000000 1.000000

Example (B.3):

THE GIVEN MATRIX IS

2 .0 0000
2.01000
1.99000

-4.00010

-3.00000
-3.01000
-2.99000
8.00010

1.00000
1.00000
1.00000

-5.00000

.00000

.00000

.00000
1.00000

THE NORMALIZED MATRIX IS

.53452 -.80178 

.53528 -.80159 

.53376 -.80197 

.38852 .77703

.26726 .00000

.26631 .00000

.26822 .00000
-.48564 .09713

SINGULAR VALUES 

. 19851980525568890812E+01

.24287485504548289583E+00

.70491905426943099466E-03

.43420128603753502768E-14
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THE NUMERICAL RANK OF THE MATRIX IS 3

THE GRAM MATRIX IS

1.00000
1.00000
1.00000
-.96047

1.00000
1.00000
1.00000
-.96016

1.00000
1.00000
1.00000
-.96079

-.96047
-.96016
-.96079
1.00000

VALUE OF COMPOUND ELEMENT 

ROWS
2 3 4

VALUE OF COMPOUND ELEMENT 

ROWS
1 3 4

VALUE OF COMPOUND ELEMENT 

ROWS
1 2 4

VALUE OF COMPOUND ELEMENT 

ROWS
1 2 3

.0000000770119228163670822

.0000000193907768259228475

.0000000191157336380346166 

.0000000000000000055511151

THE ROW INDEPENDENT MATRIX IS

2.01000
1.99000

-4.00010

-3.01000
-2.99000
8.00010

1.00000
1.00000

-5.00000

.00000

.00000
1.00000

Example (B.4):

THE GIVEN MATRIX IS

5.00000 2.00000 5.00000 2.00000 .00000
1.00000 1.00000 1.00000 1.00000 .00000
4.00000 1.00000 4.00000 1.00000 .00000
5.00000 3.00000 5.00000 3.00000 .00000
6.00000 6.00000 14.00000 6.00000 8.00000
15.00000 .00000 18.00000 .00000 3.00000
3.00000 3.00000 7.00000 3.00000 4.00000
.00000 7.00000 .00000 15.00000 .00000
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THE NORMALIZED MATRIX IS

.65653 .26261 .65653 .26261 .00000

.50000 .50000 .50000 .50000 .00000

.68599 .17150 .68599 .17150 .00000

.60634 .36380 .60634 .36380 .00000

.31277 .31277 .72980 .31277 .41703

.63500 .00000 .76200 .00000 .12700

.31277 .31277 .72980 .31277 .41703

.00000 .42289 .00000 .90618 .00000

SINGULAR VALUES

.25395180945207727063E+01

.10700166210341848227E+01

.60922160887804821527E+00

.18644385103219995869E+00

. 16198621995376863465E- 14

THE NUMERICAL RANK OF THE MATRIX IS 4

THE GRAM MATRIX IS

1.00000 .91915 .99083 .98724 .84876 .91718 .84876 .34903
.91915 1.00000 .85749 .97014 .83406 .69850 .83406 .66453
.99083 .85749 1.00000 .95667 .82248 .95834 .82248 .22793
.98724 .97014 .95667 1.00000 .85973 .84706 .85973 .48352
.84876 .83406 .82248 .85973 1.00000 .80768 1.00000 .41569
.91718 .69850 .95834 .84706 .80768 1.00000 .80768 .00000
.84876 .83406 .82248 .85973 1.00000 .80768 1.00000 .41569
.34903 .66453 .22793 .48352 .41569 .00000 .41569 1.00000

VALUE OF COMPOUND ELEMENT 

ROWS
2 5 6 8

VALUE OF COMPOUND ELEMENT

ROWS
2 6 7 8

VALUE OF COMPOUND ELEMENT

ROWS
2 3 5 8

VALUE OF COMPOUND ELEMENT

ROWS
2 3 7 8

VALUE OF COMPOUND ELEMENT

ROWS
4 5 6 8

.0122848865183593503047632

.0122848865183591282601583

.0080646666791121535133868

.0080646666791121535133868

.0078695537755854028105773
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VALUE OF COMPOUND ELEMENT 

ROWS
4 6 7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 6  7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 5  6 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  5 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  7 8

VALUE OF COMPOUND ELEMENT

ROWS
3 6 7 8

VALUE OF COMPOUND ELEMENT

ROWS
3 5 6 8

VALUE OF COMPOUND ELEMENT

ROWS
3 4 5 8

VALUE OF COMPOUND ELEMENT

ROWS
3 4 7 8

VALUE OF COMPOUND ELEMENT

ROWS
2 4 5 8

VALUE OF COMPOUND ELEMENT

ROWS
2 4 7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 4  5 8

VALUE OF COMPOUND ELEMENT

ROWS
1 4  7 8

VALUE OF COMPOUND ELEMENT

ROWS
2 3 6 8

.0078695537755851252548212

.0050855194018255278631813

.0050855194018254168408788

.0047275632256858490798379

.0047275632256858490798379

.0030387028123360776410422

.0030387028123360221298910

.0025828017469058800470449

.0025828017469058800470449

.0017921481509130463005697

.0017921481509130463005697

.0007724776512556923158126

.0007724776512556923158126

.0007479327968533122650285
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VALUE OF COMPOUND ELEMENT 

ROWS
1 3  5 8

VALUE OF COMPOUND ELEMENT

ROWS
1 3  7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  6 8

VALUE OF COMPOUND ELEMENT

ROWS
3 4 6 8

VALUE OF COMPOUND ELEMENT

ROWS
2 4 6 8

VALUE OF COMPOUND ELEMENT

ROWS
1 4  6 8

VALUE OF COMPOUND ELEMENT

ROWS
1 3  6 8

VALUE OF COMPOUND ELEMENT

ROWS
1 4  5 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  4 6

VALUE OF COMPOUND ELEMENT

ROWS
1 4  6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  5 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  4 7

VALUE OF COMPOUND ELEMENT

ROWS
1 5  6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  4 7

.0005561839089040024330934 

.0005561839089040024330934 

.0004384433636721897509236 

.0002395340329792898861894 

.0001662072881892613304688 

.0000716410724955290033333 

.0000515815721971253811351 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151 

.0000000000000000055511151
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VALUE OF COMPOUND ELEMENT 

ROWS
1 5  7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  4 6

VALUE OF COMPOUND ELEMENT

ROWS
2 3 4 5

VALUE OF COMPOUND ELEMENT

ROWS
2 3 4 6

VALUE OF COMPOUND ELEMENT

ROWS
2 3 4 7

VALUE OF COMPOUND ELEMENT

ROWS
2 3 4 8

VALUE OF COMPOUND ELEMENT

ROWS
2 3 5 6

VALUE OF COMPOUND ELEMENT

ROWS
2 3 5 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  3 6

VALUE OF COMPOUND ELEMENT

ROWS
2 3 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  4 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  3 7

VALUE OF COMPOUND ELEMENT

ROWS
2 4 5 6

VALUE OF COMPOUND ELEMENT

ROWS
2 4 5 7

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151
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VALUE OF COMPOUND ELEMENT 

ROWS
1 2  5 6

VALUE OF COMPOUND ELEMENT

ROWS
2 4 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 4  5 6

VALUE OF COMPOUND ELEMENT

ROWS
1 3  4 5

VALUE OF COMPOUND ELEMENT

ROWS
2 5 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  3 4

VALUE OF COMPOUND ELEMENT

ROWS
2 5 7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  3 5

VALUE OF COMPOUND ELEMENT

ROWS
3 4 5 6

VALUE OF COMPOUND ELEMENT

ROWS
3 4 5 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  6 7

VALUE OF COMPOUND ELEMENT

ROWS
3 4 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 3  5 6

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151
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VALUE OF COMPOUND ELEMENT 

ROWS
3 5 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  4 8

VALUE OF COMPOUND ELEMENT

ROWS
3 5 7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  5 7

VALUE OF COMPOUND ELEMENT

ROWS
4 5 6 7

VALUE OF COMPOUND ELEMENT

ROWS
1 2  3 8

VALUE OF COMPOUND ELEMENT

ROWS
4 5 7 8

VALUE OF COMPOUND ELEMENT

ROWS
1 2  4 5

VALUE OF COMPOUND ELEMENT

ROWS
5 6 7 8

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

.0000000000000000055511151

THE ROW INDEPENDENT MATRIX IS

1.00000
6 .0 0000
15.00000

.00000

1.00000
6 .0 0000

.00000
7.00000

1.00000
14.00000
18.00000 

.00000

1.00000
6 .00000

.00000
15.00000

.00000

.00000

.00000

.00000
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In the present Appendix, we present the extension of some algorithms 

developed in Chapter 6, to unique factorization domains.

C.l EXTENSION OF EUCLID'S ALGORITHM TO UNIQUE 
FACTORIZATION DOMAINS [Knu., 1]

If we restrict consideration to polynomials over a field, we are not 

dealing directly with many important cases, such as polynomials over integers, 

or polynomials in several variables. Working with polynomials over integers

is of principal importance, because it is often preferable to work with 

integer coefficients instead of arbitrary rational coefficients.

Let us therefore now consider the more general situation that the 

algebraic system S of coefficients is a unique factorization domain, not 

necessarily a field. This means that S is commutative ring with identity, and 

that

(i) u’v=(=0, whenever u and v are nonzero elements of S;

(ii) every nonzero element u of S is either a "unit" or has a "unique" 

representation of the form

u = Pi ... pt, t>l (C.l)

where pj,...,pt are "primes".

Here a "unit" u is an element such that u-v=l for some veS: and a "prime" 

p is a non unit element such that the equation p=q*r can be true only if 

either q or r is unit. The representation (C.l) is to be unique in the sense 

that if pj..-Pt=qi• • -Ps> where all the p's and q's are primes, then s=t and 

there is a permutation (ni,...,nt) such that

Pl=aiqn^,... ,Pt=at(lnt f°r some units a},...,at.

In other words, factorization into primes is unique, except for unit multiples 

and except for the order of the factors.

Any field is a unique factorization domain, in which each nonzero element 

is a unit and there are no primes. The integers form a unique factorization 

domain in which the units are +1 and -1, and the primes are ±2, ±3, ±5, +7,...

It can be proved and it is an important fact, that the polynomials over a 

unique factorization domain [Hod. & Ped., 1] form a unique factorization 

domain. A polynomial which is "prime" in this domain is usually called an 

irreducible polynomial.

A set of elements of a unique factorization domain is said to be 

relatively prime if no prime (of the unique factorization domain) divides all
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of them. A polynomial over a unique factorization domain is called primitive 

if its coefficients are relatively prime.

Lemma (C.l) (Gauss's Lemma) [Knu., 1]: The product of primitive polynomials 

over a unique factorization domain is primitive. I

Lemma (C.2) [Knu., 1]: Any nonzero polynomial u(s) over a unique 

factorization domain S can be factored in the form u(s)=c*v(s), where c is in 

S and v(s) is primitive. Furthermore, this representation is unique, in the 

sense that if u(s)=ci*vj(s)=C2 *V2 (s), then ci=a*C2 and V2 (s)=a’v^(s) where a 

is a unit of S.
■

Therefore, we may write any nonzero polynomial u(s) as

u(s) = cont(u)-pp(u(s)) (C.2)

where con(u), the "content" of u, is an element of S and pp(u(s)), the 

"primitive part" of u(s), is a primitive polynomial over S. When u(s)=0, it 

is convenient to define cont(u)=pp(u(s))=0. The combination of Lemmas (6.1) 

and (6.2) gives us the relations

con(u’v) = a'cont(u)’cont(v) 

PP(u(s) ’v(s) = b-pp(u(s))-pp(v(s))
(C.3)

where a and b are units, depending on u and v, with ab=l when we are working 

with polynomials over the integers, the only units are +1 and -1, and it is 

conventional to define pp(u(s)) so that its leading coefficient is positive; 

then (C.3) is true with a=b=l. When working with polynomials over a field we 

may take cont(u)=the leading coefficient of the polynomial, so that pp(u(s)) 

is monic; in this case again (C.3) holds with a=b=l, for all u(s) and v(s).

Example (C.l): If we are dealing with polynomials over the integers, let 

u(s)=-26s2+39, v(s)=21s+14. Then

cont (u) = -13, PP(u (s )) = 2 s 2 - 3 ,

cont (v) = 7, pp(v(s)) = 3s+2, 

cont(u*v) = - 9 1 ,  pp(u(s)•v(s)) = 6 s 2 + 4 s 2 - 9 s - 6 .

From equations (C.3) we can deduce the important relations 

cont((u,v)) = a1(cont(u),cont(v)),
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pp((u(s),v(s))) = b*(pp(u(s)), pp(v(s)))

where a and b are units. Equations (C.4) reduce the problem of finding

greatest common divisors of arbitrary polynomials to the problem of finding 

greatest common divisors of primitive polynomials. Clearly cont(u) is a 

greatest common divisor of the coefficients of u, and pp(u(x))=u(x)/cont(u).

Algorithm DIV (section 6.2 of Chapter 6) for division of polynomials over 

a field, can be generalized to a pseudodivision of polynomials over any 

algebraic system which is a commutative ring with identity. We can observe 

that Algorithm DIV requires explicit division only by 1(b), the leading 

coefficient of b(s), and that the main process of this algorithm is carried 

out exactly m-n+1 times; thus if a(s) and b(s) start with integer 

coefficients, and if we are working over the rational numbers, then the only 

denominators which appear in the coefficients of q(s) and r(s) are divisors of 

l(b)m-n+l> This sugges^s that we can always find polynomials q(s) and r(s) 

such that

1 (b)m-n+la(s) = q(s)b(s)+r(s), deg(r(s))<n (C.5)

where m=deg(a(s)), n=deg{b(s)}, and m>n, for any polynomials a(s) and b(s)=(=0.

Algorithm PDIV (Pseudodivision of polynomials)

Given polynomials

a(s)=amsm+...+ajs+ao, b(s)=bnsn+..,+bis+bg, bn=f=0, m>n>0,

this algorithm finds polynomials q(s)=qm.nsm'n+...+qg and r(s)=rn_isn'1+ 

...+rg satisfying (C.5)

(C.4)

When the algorithm is terminated an_i=rn_i,...,ao=rg. In the second loop 

of the above algorithm when j becomes < k we treat b.j, b_2 ,.-., as zero. It
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is worth noting that this algorithm does not use any divisions. The 

coefficients of q(s) and r(s) are themselves certain polynomial functions of 

the coefficients of a(s) and b(s). If bn=l, the algorithm is identical to 

Algorithm DIV. If bn=fO and if a(s) and b(s) are polynomials over a unique 

factorization domain, we can prove as before that the polynomials q(s) and 

r(s) of (C.5) are unique; therefore another way to do the pseudodivision over 

a unique factorization domain, which may sometimes be preferable, is to

m-n+1
multiply a(s) by bn and apply Algorithm DIV.

Example (C.2): Let a(s)=3s2+3s+4, b(s)=2s+3 be two given polynomials.

(i) If we take them over a field e.g. over R[s], then after applying 

Algorithm DIV we get:

q(s) = s- -|-, r(s) = -jp and therefore 

3s 2+3s+4=(-|- s - - p  )(2s+3)+ — ■

(ii) If we take them over the integers which forms a unique factorization 

domain, then after the application of Algorithm PDIV we get:

q(s)=6s-3, r(s)=25 and the next relation holds

22(3s 2+3s+4) = (6s-3)(2s+3)+25

Algorithm PDIV can be extended to a "generalized Euclidean algorithm" for 

primitive polynomials over a unique factorization domain, in the following 

way: Let a(s) and b(s) be primitive polynomials with deg{a(s)}>deg{b(s)}, and 

determine r(s) satisfying (C.5) by means of Algorithm PDIV. Now 

(a(s),b(s))=(b(s),r(s)): For any common divisor of a(s) and b(s) divides b(s) 

and r(s); conversely, any common divisor of b(s) and r(s) divides l(b)m_n+  ̂

a(s), and it must be primitive (since b(s) is primitive) so it divides a(s). 

If r(s)=0, we therefore have (a(s),b(s))=b(s); if r(s)=fO, we have 

(a(s),b(s))=(b(s), pp(r(s))) since b(s) is primitive, so the process can be 

iterated.

Algorithm GEUCLID (Generalized Euclidean algorithm or The primitive 

P.R.S. algorithm)

Given nonzero polynomials a(s)=amsm+...+ais+ao and b(s)=bnsn+..,+bis+bo 

over a unique factorization domain S, this algorithm calculates a greatest
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common divisor d(s) of a(s) and b(s). We assume that an auxiliary algorithm 

exists for calculating greatest common divisors of elements of S.

STEP 1: cont(a) := (am ,am-i,...,aj,ao) 

cont(b) := (bn,bn_i,...,bi,b0) 

d := (cont(a), cont(b)) 

pp(a(s)) := a(s)/cont(a) 

pp(b(s)) := b(s)/cont(b) 

a(s) := pp(a(s)) 

b(s) := pp(b(s))

STEP 2: Calculate the remainder r(s) using Algorithm PDIV 

(It is unnecessary to calculate the quotient 

polynomial q(s)). 

if r(s) = 0 then 

d(s) := d-b(s) 

quit

else if deg{r(s)}=0 then

Replace b(s) by the constant polynomial "1"

d(s) := d-b(s)

quit

STEP 3: a(s) := b(s)

b(s) := pp(r(s))

Repeat STEP 2

Alg: C.2

Example (C.3): Let us calculate the greatest common divisor of 

a(s) = s8+s6-3s4-3s3+8s2+2s-5, 

b(s) = 3s8+5s^-4s3-9s+21
(C.6)
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(i) over the integers using Algorithm GEUCLID 

(ii) over the rational numbers using Algorithm EUCLID.

(i) These polynomials are primitive, so STEP 1 sets d :=1.

In STEP 2 we do the pseudodivision:

1(b)m-n+la(s)=q(s)b(s)+r(s) and we find 

33a(s)=(9s2-6)b(s)+(-15s4+3s2-9)

In the sequel, in STEP 3 a(s) is replaced by b(s) and b(s) by pp(r(s))=5s4- 

s 2 + 3 .  The subsequent calculations may be summarized as follows:

a(s)

s8+s8-3s4-3s3+8s2+2s-5

3s6+5s4-4s2-9s+21

5s4-s2+3

b i l l

3 s 6 + 5 s 4 - 4 s 2 - 9 s + 2 1

5 s 4 - s 2 + 3

13s^+25s-49

4663 s-6150

rlii

- 1 5 s 4 + 3 s 2 - 9  

- 585s2- 1125s+2205 

-233150S+307500 

14319386913s +25s-49

Thus, d(s)=1 and evidently the polynomials are coprime, 

(ii) The following sequence occurs:

alii

s8+s8-3s4-3s3+8s2+2s-5 

3 s 6 + 5 s 4 - 4 s 2 - 9 s + 2 1  

-5/9s4+l/9s2-1/3

IIZs2_9s+ M I
25s as+ 25

bli!

3 s 6 + 5 s 4 - 4 s 2 - 9 s + 2 1  

-5/9s4+l/9s2-1/3 

-117/25s2-9s+441/25

2331505 102500-s-6591 2197

rill

-5/9s4+l/9s2-1/3

-117/25s2-9s+441/25

2331505. 102500
6591 S_ 2197

1288744821
543589225

To improve that algorithm, we can reduce a(s) and b(s) to monic polynomials at 

each step, since this removes "unit" factors which make the coefficients more 

complicated than necessary; this is actually Algorithm GEUCLID over rationals:

a (ii bill r(s)

s8+s6-3s4-3s3+8s2+2s-5 s8+^ s4- ^ s2-3s+7 *4- î  l
s6+ ^ s4- ^ s2-3s+7 *4- i * l ^  f f  -  ff

l̂ l̂  f f  -  f f
_ 6150 

4663

a  f f  -  f f
. 6150 
s‘ 4663 1
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Comparing (i) and (ii) we conclude the following: In (ii) the sequence of 
polynomials is essentially the same as in (i), which was obtained by Algorithm 
GEUCLID over the integers; the only difference is that the polynomials have 
been multiplied by certain rational numbers. Whether we have 5s -s +3 or 
- -|- s4+ -y- s2- -y- or s4- - y  s2+ -y, the computations are essentially

the same. But either algorithm using rational arithmetic will run noticeably 
slower than the all-integer Algorithm GEUCLID, since rational arithmetic 
requires many more evaluations of gcd's of integers within each step. 
Therefore it is definitely preferable to use the all-integer algorithm instead 
of rational arithmetic, when the g.c.d. of polynomials with integer or 
rational coefficients is desired.

Collins's Algorithm [Col., 1] An ingenious algorithm which is generally 
superior to Algorithm GEUCLID, and which gives us further information about 
Algorithm GEUCLID's behavior, has been given by Collins [Col., 1]. His 
algorithm avoids the calculation of primitive part in STEP 3, dividing instead 
by an element of S which is known to be a factor of r(s):

Algorithm COLLINS (The reduced P.R.S. algorithm). This algorithm has the 
same input and output assumptions as Algorithm GEUCLID, and has the advantage 
that less calculations of greatest common divisors of coefficients are needed.

STEP 1: cont(a) := (am,am_i,...,ai,ao) 

cont(b) .— (bp,bp_j,...,bj,bg) 

d := (cont(a), cont(b)) 

pp(a(s)) := a(s)/cont(a) 

pp(b(s)) := b(s)/cont(b) 

a(s) := pp(a(s)) 

b(s) := pp(b(s)) 

c := 1

STEP 2: f := l(b)m'n+1



A-35

Calculate the remainder r(s) using Algorithm PDIV 

(It is unnecessary to calculate the quotient polynomial q(s)) 

if r(s) = 0 then 

d(s) := d*pp(b(s)) 

quit

else if deg{r(s)} = 0 then

Replace b(s) by the constant polynomial "1"

d(s) := d*pp(b(s))

quit

STEP 3: a(s) := b(s)

b(s) := r(s)/c 

c := f

Repeat STEP 2

Alg: C.3

Example (C.41: If we apply this algorithm to the polynomials (C.6) 

considered earlier, the following sequence of results is obtained:

a £ s i b U i c

s ® + s ® - 3 s 4 - 3 s ^ 8 s 2 + 2 s - s 3 s 6 + 5 s 4 - 4 s 2 - 9 s + 2 1 1

3s5+5s+4s2-9s+21 - 1 5 s 4 + 3 s 2 - 9 2 7

- 1 5 s 4 + 3 s 2 - 9 5 8 5 s 2 + 1 1 2 5 s - 2 2 0 5 ( - 1 5 )

5 8 5 s 2 + I 1 2 5 S - 2 2 0 5 - 1 8 8 8 5 1 5 0 s + 2 4 9 0 7 5 0 0 ( 5 8 5 )

At the end of the algorithm, r(s)/c=527933700. The sequence of 

polynomials concists of integral multiples of the polynomials in the sequence 

produced by Algorithm GEUCLID. The example shows that in spite of the fact 

that the polynomials are not reduced to primitive form, the coefficients are 

kept to a reasonable size because the reduction factor c is large.
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C.2 EXTENSION OF ROUTH'S ALGORITHM TO UNIQUE FACTORIZATION DOMA
To extend Routh's array [r-jj] developed in section 6.3 of Chapter 6 to 

unique factorization domain (u.f.d.) we must avoid the divisions by rj.^j 

used in formula (6.9). This can be achieved by setting:

sij=rlj’ s2j=r2j> sij=ki'rij>

where (C.7)

^3=r21» k4=r21-r31, ki=ki.1*ki.2*ri.ljl, i>5 

which is equivalent to defining

s i -2,1 s i -2, j+1

si-1,1 si-1, j+1
*ij i=3,4, (C.8)

and in equation (C.4) the r̂  j are replaced by s-jj to give polynomials ĝ  (s). 

Starting with polynomials with integer coefficients and applying successively 

formula (C.8), the generating elements will remain in the integers so the 

array [s-jj] can be termed fraction free.

Example (C.5): We construct the array defined by (C.7), (C.8) for the 

polynomials

a(s) = s^+5s^+2s^+4s+3, b(s) = 4s^+3s^+s+2

Table (C.l)

[Slj] 1 5 2 4

[s2j] 4 3 1 2

[s3j] 17 7 14 12

[s4j] 23 -39 14

[s5j] 824 560 276

Cs6j] -45016 -17884

[s7j] -104772544 -12424416

[s8j] -372006533760
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However the elements of the above array are growing very fast and one 

might encounter storage problems. This could be dealt with by dividing each 

row through its g.c.d. However, finding the g.c.d. is again time consuming.

The following technique proposed in [Jel., 1] avoids the phenomenon of 

rapid coefficient growth without computing a g.c.d.

Let P[a,b] be the ring of polynomials in the variables a^, bj, 

i=l,2,...,m, j=1,2,...,n and R[a,b] the rational functions in the same 

variables. The rows rjj, r2j are polynomials in P[a,b] of degree 1.

Definition (C.l) [Jel., 1]: An array s[k]={s-jj} is called scaled free Routh 

array if there exist scaling factors k-jeR[a,b] such that

Si j = k-j - r-j j eP[a, b] (C.9)

Definition (C.2): The normalized degree v̂  of the i-th row of a scaled 

fraction free Routh array is the largest degree of s-ji,s-j2» * - * - considered as 

polynomials in P[a,b].
■

For the array s-jj one gets from (C.8) easily the recursion relation

Vi = v-j_i+v-j_2, i=3,4,. . .  (C.10)

and from (C.7) one obtains vi=V2=l.

Hence the normalized degrees are the Fibonacci numbers which are known to grow 

exponentially. This implies that the computational complexity will grow

exponentially. Hence it is natural to ask for the scaled fraction free Routh

array with smallest normalized degrees.

Theorem (C.l) [Jel., 1]: The optimal fraction free Routh algorithm which 

achieves v-j = i is given by the recurrence relation

where

niU  " "di
ni - 2 , 1  n i - 2 , j+1  
n i - 1 , 1  n i - 1 , j+1

> j-1,2,3,

di =

for i =3,4

ni-3,l for 1=5,6,

(C.ll)

(C.12)
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The recursion is started with 

nij = rij = aj

, J = 1,2,3,... (C.13)

n2j = r2j = bj
■

As long as d-ĵ O one has no breakdown in the algorithm. The case with d̂  =0 

for some i has to be handled in similar ways as in the regular Routh 

algorithm.

Remark (C.ll: Algorithm ROUTH can be easily modified so as to be extended 

to u.f.d. The only modifications needed are slight changes in the formulas 

(C.2) defining the rows of the Routh array accordingly to (C.8) if only 

fraction free Routh array is required or in the formulas (C.ll), (C.12) if 

optimal fraction free Routh array is desired.

Example (C.61: We construct the array defined by (C.ll) and (C.12) for the 

polynomials in Example (C.5).

Table (C.2)

[nij] 1 5 2 4

[ n2 j ] 4 3 1 2

[n3j] 17 7 14 12

tn4j] 23 -39 -14

[n5j] 206 140 69

["6j] -662 -263

[n7j] -1674 -1986

[ n8 j ] -4245

We can see from the above values that optimal fraction-free Routh array has 

produced a remarkable reduction in the magnitude of the elements compared with 

the array in the Example (C.5).
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In the present Appendix, we present a description of algorithm GAUSS, 

required for the development of the main algorithm of Chapter 7 that achieves 

the computation of the g.c.d. of several polynomials. The computational 

complexity of algorithm GAUSS and its error analysis as well, are also 

described.

Algorithm GAUSS [Gol. & Loan, 1]

Let A = [1 1 ^,1 2 ^,...,rmt]eRmxn a given matrix. The 

following algorithm transforms A into upper trapezoidal 

form if men or into upper triangular form if m>n using 

the strategy of partial pivoting.

for k = 1,2,...,min{m-l,n}

Determine p e{k,k+1,...,m } so

Iapkl = max |aik| 
l<i<m

Swap rk* and rp^ 

for j = k+1»...,n

wj := akj

for i = k+1,...,m

v := aik/akk 

aik := 0

for j = k+1,...,n 

aij := aij-vwj

Alg: 7.6

Computational complexity of GAUSS [Gol. & Loan, 1], [Stew., 1]

The computational complexity is measured by the number of 

flops and comparisons required by the algorithm. (We shall use

C.B. Moler's concept of a flop. A flop is more or less the amount 

of work associated with each program statement). 

The entire algorithm requires:
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s=min{m-l,n}

Z  (m-k)•(n-k) flops 
k=l

It is possible to evaluate this sum using standard formulas.

However, we are only interested in the sum involving the highest

power of s in the final result. To obtain this, we may approximate the sum by 

an iterated integral; namely we replace the sum by integral with the summation 

limits as limits of integration.

s s

J~( m-k)‘(n-k)dk = ^(mn-(m+n)k+k^)dk =

= s3/3-(m+n)-s^/2+mns+m+n-mn-l/3 « 0(s3/3)

Thus, the time required for the execution of the algorithm is proportional 

to s3/3.

The number of comparisons required are given by: 

s=min{m-l,n}

Z  (m-k) 
k=l

We approximate the sum by the integral: 

s 1

J[ m-k)dk = -s2/2+ms-m+l/2 = 0(s^/2)

1

Error Analysis of GAUSS [Wilk., 1], [For. & Mol., 1]

Because pivoting only involves permutations of 

subscripts, is irrelevant to our 

tion of matrix AeRmxn consists of 

ces A ^ ) =  A, A(2),...,A(S) where

below the diagonal in the first 

is obtained from A^) by subtracting a multiple of the k-th row 

from each of the rows below it the rest of A ^ )  is left unchanged. The 

multipliers are chosen so that if there were no rounding errors, A ^ +^  would 

have zeros below the diagonal in the k-th column. We do not calculate this

elements but take them to be zero by definition. More precisely, let A^)
L , (k)
have elements a^j. Then let

the row 

error analysis. The decomposi- 

computing a sequence of matri- 

s=min{m-l,n} and A^ ) is zero 

k-1 columns. The matrix A ^ +1)
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(k) (k)
mi,k = ^  ( aik / akk ) > i>k+l (D.l)

and

(k+l)_ 
aij “

0 for i>k+l, j=k

fl ( a-jj-m-j k'^kj ) for i>k+l, j>k+l
(k)

aij otherwi se

(D.2)

These steps are carried out for k= l,2,...,s.

Finally, let

U = A<s) and L =

1
m21 1 
ITI31 m32  1

mml mm2 mm3 1

(D.3)

Clearly L is lower triangular and U is upper triangular or upper 

trapezoidal.

According to the technique of backward error analysis we will prove that:

(I) L’U = A + E , where E is a matrix of small elements which account for

the rounding errors.

(II) We must bound the size of E.

Let us examine them separately:

(I) The error in the calculation of the multipliers m^k is 

expressed by
(k) (k) , .

mik = Uik / akk ) (1+e) . IeI < u

or „ _ ( k) (k) (k)
0 -  a i k ' mik akk+aik e

That is,

00 (k) ||
eik = aik'e > i > k+1 , |e| < u

(D.4)

(D.5)

. i (k+1)
is the error made by setting a^k equal to zero.
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For the second case of (D.2) we have :

(k+1) (k) (k) (k) (k)
aij = fl (aij-f 1 (mik'3kj) = fl (aij-m-jk*akj(1+£1)) =

,(k) (k) I , , ,
= (aij-mik-akj(l+e1))*(l+e2) , |q|,|e2| < u

The error in the calculation of the a-jĵ ls:

(k)_ (k+1) (k) (k)
eij “ aij ' ( aij * mik akj )

(D.6)

(D.7)

(k) (k+1)
(that is e-jj is the difference between the accepted value a^j and the

(k) (k)
exact value which would be obtained using the computed a^j ,mik , akj.)

Relation (D.7) using relation (D.6) becomes:

(k) ,(k+l) W M  I (k) I I I I
£ij = (aij * e2)/(l+£2 )"mi k* akj 'e2 , |ei|,|e2 | < u 

for i > k+1, j > k+1 and k= l,2,...,s

(k) (k+1)
Thus, the previous e^- is the error in calculating the a^j 'for the new

part of A^k+^. The rest of A^k+l) is taken directly from A^k), so there is

no error. In summary,

(k)
a-jk‘e for i>k+l, j=k

£i j = (aij’e2)/(1+e2)*mik'akj'el for i>k+l, J>k+1

0 otherwise

(k)
(D.8)

Thus if we let E^k) be the matrix with elements and let

L(k) =

0 ... 0 ... 0
0 ... 0 ... 0

0 mk+lk 0
• mk+2k •

0 mmk 0

then the equation
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A(k+D = A ^ - L ^ A ^ U e ^

completely describes one step of the decomposition, including the rounding

error. Adding these equations for k= l,2,...,s we have 

L( l ) . A( l ) tL(2).A(2)+ . . . +L( s - l ) . fl( s - l ) +A( s L A( l ) +E( l ) tE(2)+ +E(s-1)

The matrix L ^ ' A ^  depends upon only the k-th row of A^k), and this row is 

equal to the k-th row of a (s). Thus we have:

(l(1)+l(2)+...+l(s'1)+i)-a(s) = a(1)+e(1U...+e(s'1) (D.9)

That is, L-U = A^)+E , E = E ^ + E ^ U . . .+e (s_1) (D.10)

where L,U are defined by (D.3) and E is the sum of the errors

at the individual steps.

(II) It is clear that if we are to obtain a satisfactory bound for the
(k) (k)
eij we will need good bounds for the m-ĵ  and ajj which appear in the
(k)
e-jj. Pivoting is used just to keep these bounds small and to ensure that

I m-j ̂  | <1 for all i,k. This is done by partial pivoting. We shall denote the

maximum element in any |A^r |̂ by g. There is no real loss of generality in 

• i (i)assuummg |a-jj| < 1 since this may be achieved by scaling (without rounding 

errors). The equation L-U=A^)+E is true, provided A^) is used to denote 

the original matrix with its rows suitable permuted.

Let us give bounds for the error expressed in (D.8)

(k) , (k) (k)
ijl = I (aij‘£2)/U+£2)'mik'akj'£l I < g-u/(l+u)+g-u<(2.01)g-u

k) i
k'£l < g -u < (2.01)-g*u

, (k) _ | (k) 
• i j l  “  lail

Thus

£ij “

(2.01) *g *u , i>k+l, j=k

(2.01) •g *u , i>k+l, j>k+l (D.11)

0 otherwi se
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Combining relations (D.10), (D.ll) we have

0 0 0 ............  0 0
1 1 1 ...........1 1

El < (Z.Ol)-g-u 1 2  2 ............ 2 2
1 2  3 ...............3 3

i 2 3 : : : : !(s-o (s-ij

In practice, using pivoting, g is almost invariably of order unity 

quite unimportant.

From relation (D.12) taking norms we have:

II E ||co < s2 * (2.01) *g• u 

(k)
Since we are assuming that all a^j are less than unity, then 

II E ||co < s2* (2.01) *u

We conclude, giving the following theorem:

Theorem (D.l): The matrices L,U computed by Gaussian elimination 

partial pivoting, using floating-point arithmetic with unit round 

satisfy

L-U = A+E
with

II E ||Co < (2.01) ‘s^'u

(D.12) 

and is

with 

-off u

(D.13)

In other words L and U form the exact decomposition of some slightly 

perturbed matrix.
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