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Abstract

This thesis investigates the asset pricing implications of different issues arising in

the commodity futures market: the parameter uncertainty problem in commodity

style integration, the role of investors’ sentiment and the limited attention effect

in the commodity futures market.

We review the mainstream long-short strategies in commodity futures markets and

the theories underpin them in the first chapter.

In the second chapter, we solve the parameter uncertainty problem arising in com-

modity style integration by utilizing a Bayesian framework. Commodity style

integration is appealing because by relying on a composite signal that combines

multiple commodity characteristics, the integrated portfolio ought to capture a

larger premium consistently over time. A key decision that a style-integration in-

vestor face is which criteria or model to use for determining the style weights at

each portfolio formation time. By adopting a Bayesian framework, it is allowed

that the investor to account for parameters uncertainty. Focusing on the allocation

problem of a commodity futures investor that seeks exposure to the hedging pres-

sure, term structure, momentum, skewness, and basis momentum styles, we assess

a Bayesian integrated portfolio versus the naive equal-weight integrated (EWI)

portfolio and other sophisticated integration approaches. The results suggest a

Bayesian optimization approach outperforms the others according to diverse per-

formance criteria. The findings are robust to transaction costs, variants of the
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scoring schemes, longer ranking windows, and economic sub-periods analysis.

In the third chapter, we argue that the overall tone of recent news articles serves

as a proxy for commodity futures investor sentiment. Studying a cross-section

of commodities in the energy, agriculture, livestock, and metals sectors the find-

ings indicate that media tone is able to predict subsequent commodity futures

returns after controlling for well-known predictive signals such as hedging pres-

sure, momentum, and roll yield inter alia. Sentiment-adjusted long-short portfolio

allocation strategies significantly enhance the performance of traditional long-short

commodity portfolios. Time-series and cross-sectional pricing tests suggest that

the media tone has pricing ability over and above known commodity risk factors.

In the fourth chapter, we investigate the spillover effect of investors’ attention from

the equity market to the commodity market. We argue that investors’ attention

to a specific firm will spill to its related commodity futures market. This effect

helps to construct a limited attention measure for commodity futures contracts.

We show that the thus constructed measure is associated with higher returns of

commodity futures in the future week, after adjusting for a battery of risk and

characteristic benchmarks. Time-series and cross-sectional pricing tests suggest

that the attention measure has pricing ability over and above known commodity

risk factors.
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Chapter 1

Introduction

Over the past decade, commodity futures have attracted more attention from in-

stitutional investors. According to the Commodity Futures Trading Commission

(CFTC), the fund inflows to various commodity futures indices from early 2000

to June 30, 2008 accounts for $200 billion (CFTC, 2008). Furthermore, commodi-

ties futures have increasingly been viewed as an alternative financial asset class

for portfolio diversification. Specifically, commodity futures offer portfolio diver-

sification benefits given their high expected returns with a low correlation with

traditional asset classes such as equity and bonds. However, the source of the

commodity futures premium is still under debate. Mainstream long-short strate-

gies in commodity futures markets are based on signals such as roll yield, inventory

levels, hedging pressure or past performance. We will review next the theories that

underpin these signals.

1.1 Strategies Based on the Theory of Storage

The theory of storage, as put forward by Kaldor (1976), Working (1949), and

Brennan (1976), states that commodity prices are driven by the cost of storage
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1.1. STRATEGIES BASED ON THE THEORY OF STORAGE

(transportation, warehousing and insurance costs). According to the theory, when

commodity inventories are abundant, the commodity can be bought easy (rela-

tively low price) in the spot market. Therefore, the benefit of holding the physical

inventories (convenience yield) is low and the market is said to be in contango or

with an upward-sloping term structure of commodity prices. The futures price of a

contangoed contract is expected to decrease in value as maturity approaches. On

the other hand, if the inventories are scarce, the term structure of futures prices

slopes downward and markets are said to be in backwardation. In this scenario,

the convenience yield to hold the physical inventories is higher than the cost of

storage. The futures price of a backwardated asset is deemed to appreciate with

maturity. Thus, a long position is likely to be profitable.

As the theory suggests, trading strategies based on the theory of storage shall use

the roll yield and inventory levels as trading signals which capture the fundamen-

tals of backwardation and contango. Specifically, a significant term structure pre-

mium is extracted by taking long positions in commodity futures with downward

sloping future curves (higher basis) and simultaneous short positions in commod-

ity futures with upward sloping future curves (lower basis) (Erb & Harvey, 2006;

Gorton & Rouwenhorst, 2006; Koijen et al., 2018; Szymanowska et al., 2014).

Although the basis signal is widely used as a measure for convenience yield, Gu

et al. (2019) argue that basis is determined not only by the convenience yield

but also by other commodity-specific characteristics, most notably the “cost of

carry”, which includes both the interest rates (financing cost) and the storage

cost. As a result, basis is a noisy proxy for the convenience yield with many con-

founding factors. Instead, they propose a purer measure, relative basis, which is

defined as the difference between the prices of the first-nearby futures contract

and second-nearby contract minus that between the prices of the second-nearby

and the third-nearby contract. They argue that commodity specific characteristics

2



1.2. STRATEGIES BASED ON THE HEDGING PRESSURE
HYPOTHESIS

that determine storage and financing costs are persistent over time. Thus, taking

the difference between the short term and long term basis can get rid of elements

from storage and financing costs, and therefore is a more precious measure for

convenience yield.

1.2 Strategies Based on the Hedging Pressure

Hypothesis

For a long history, commodity futures markets have been serving commodity pro-

ducers to hedge their commodity price risk. One strand of literature that explains

the source of risk premia of commodity futures is the longstanding normal back-

wardation theory of Keynes (1930), Hicks (1939) and Hirshleifer (1988). They

posit that the commercial hedgers are on net short positions and need to offer pos-

itive risk premia to attract speculators to take the opposite position. This could be

done by setting the futures price today below the expected maturity spot price of

the futures contracts. This means the future prices are expected to rise when ap-

proaching maturity. Thus, the speculators in the long position will earn a positive

risk premium for taking the risk transferred from the hedgers. Though the hedgers

are in a net short position, they are not necessarily short. Cootner (1960) proposes

the hedging pressure hypothesis which allows the net long hedgers. When hedgers

are net long, the future prices should be set higher than the expected maturity spot

price. Thus, by the theory, the hedging pressure premium is extracted by longing

those commodities with the highest hedging pressure (short minus long hedgers

positions over total hedgers positions) and shorting those commodities with the

lowest hedging pres- sure; see e.g., Dewally et al. (2013), Basu and Miffre (2013).

3



1.3. TREND-FOLLOWING STRATEGIES

1.3 Trend-Following Strategies

In equity markets, trend following strategies are popular and proved to be success-

ful. Jegadeesh and Titman (1993) document that equities with the highest average

return in the recent past outperform those with the worst past performance for up

to 12 months. This strategy is referred to as cross-sectional momentum.

In the commodity futures market, the momentum strategy has been implemented

by Miffre and Rallis (2007), Fuertes et al. (2010), Asness et al. (2013), and Bakshi

et al. (2019). Momentum premium could be obtained by longing (shorting) those

commodities with best (worse) past performance. The rationale for the positive

average returns of the momentum strategy in the commodity market is still un-

clear. While many traditional risk factors fail to explain commodity momentum

premium, possible explanations have been brought forward in both a behavioural

and a rational pricing direction. From the behavioural perspective, Miffre and

Rallis (2007), Shen et al. (2007), and Moskowitz et al. (2012) show that the mo-

mentum benefits will reverse beyond a year after portfolio formation. This can be

explained as a sign of initial under-reaction and subsequent mean-reversion which

supports the sentiment-based behavioural theories of Barberis et al. (1998), Daniel

et al. (1998), and Hong and Stein (1999).

From the rational pricing perspective, it is argued that the momentum signals

implicitly select commodities that other theories would choose as well. This has

been shown by Miffre and Rallis (2007), Gorton et al. (2013), and Bianchi et al.

(2015). Align with this argument, Bakshi et al. (2019) show that innovations in

a commodity-based measure of speculative activity are positively related to the

momentum factor.

A common feature of previous works is that they focus on the first nearby futures

contract of different commodity futures markets. While this approach parallels

the methodology of studies on the equity market, it does not exploit an impor-

4



1.4. STRATEGIES FOCUSED ON TAIL RISK

tant dimension of commodity futures markets: the term structure. This motivates

Paschke et al. (2020) to implement the momentum strategy within individual fu-

tures curves by trading different maturities of the same commodity. The curve

momentum strategy involves long–short fully collateralized positions in the first 2

nearby contracts of each commodity futures curve. The curve momentum signal is

calculated using all excess return observations of the previous 12 months and open

a long position in the nearby contract with the higher curve momentum signal

and a short position in the other nearby. The curve momentum strategy offers

a better risk-return trade-off than the conventional commodity momentum and

carry strategies.

1.4 Strategies Focused on Tail Risk

Besides fundamental risk, market-wide higher moments are important indicators of

market-wide risk which does not co-vary perfectly with volatility risk. For instance,

Chang et al. (2013) show that stocks exposure to market skewness exhibit low re-

turns on average. In commodity futures market, Fernandez-Perez et al. (2018)

argues that systematically buying commodities with the most negative skewness

and shorting commodities with the most positive skewness yield a Sharpe ratio of

0.78 which cannot be fully explained by the fundamentals of backwardation and

contango.

The effect of downside risk has also been explored in the financial economics lit-

erature. Many studies have empirically tested the relationship between downside

risk and equity returns in the US market. For instance, Ang et al. (2006) study

the systematic downside risk measured by downside beta and motivate a role for

this risk metric by relying on the disappointment utility function of Gul (1991).

Atilgan et al. (2019) measure downside risk using value-at-risk and expected short-

5



1.5. STRATEGIES FOCUSED ON VOLATILITY/LIQUIDITY RISK

fall and uncover a negative relationship between these metrics and future equity

returns. The authors name this phenomenon left-tail momentum and attribute it

to the under-reaction of retail investors to negative price shocks. Following their

study, we measure the commodity market downside risk by value-at-risk (VaR),

specifically, the 1st and 99th percentile VaR. Downside risk premium could be ob-

tained by longing/shorting commodity futures contracts that have high/low VaR1

and VaR99 signals.

1.5 Strategies Focused on Volatility/Liquidity Risk

As a modification to the term structure and momentum approaches, Boons and

Prado (2019) proposes a strategy that uses the basis momentum as a signal for

asset allocation. It is measured as the difference in momentum between first- and

second-nearby future contracts. The resulting long-short basis-momentum port-

folio generates a Sharpe ratio that is higher than that obtained on the standard

basis or momentum strategies and cannot be explained by factors proposed by

Szymanowska et al. (2014) and Bakshi et al. (2019). The authors argue that the

basis-momentum predictability is related to volatility and liquidity risk. They

find that nearby and spreading basis-momentum returns are increasing in lagged

volatility. The evidence is therefore consistent with the interpretation that basis-

momentum captures the returns to liquidity provision by speculators who absorb

imbalances in the supply of and demand for futures contracts, with these returns

increasing in volatility.

Aside from basis momentum, a widely used measure for liquidity is the one pro-

posed by Amihud (2002). Marshall et al. (2012) and Szymanowska et al. (2014)

have applied this measure in the commodity futures market. The trading signal

is calculated as the daily price change per dollar volume on average over the past

6



1.6. STYLE INTEGRATION

trading days in the last two months. The liquidity risk premium is obtained by

longing/shorting the contracts with high/low liquidity measures.

1.6 Style Integration

We have discussed many trading styles based on different theories or perspectives.

However, the performance of a standalone trading style could experience time-

variation or cyclicality; namely, a successful style or factor may be gone or less

useful over certain periods. A way to mitigate this problem is to construct a port-

folio with exposure to multiple styles which can be cast as the “don’t put all your

eggs in the same basket” notion applied to style investing or the trading diversi-

fication idea. A recent and fast-growing literature has deployed style-integration

through different approaches to determine the style weights. Brandt et al. (2009)

formalize the idea of style-integration into an allocation framework and derive an

optimization based integration approach where the style-weights are the result of

maximizing the expected utility of the integrated portfolio. In the commodity

futures market, Fernandez-Perez et al. (2019) define the style weights as propor-

tional to the ability of each style (or factor) to explain the cross-sectional variation

in excess returns of the assets. They reveal that the equally weighted portfolio in-

tegration is unrivalled in terms of risk-adjusted performance while it sustains a

relatively low turnover, which echoes DeMiguel et al. (2009). A possible explana-

tion is that the gain from optimal diversification is more than offset by estimation

error.

In the first paper, we propose a Bayesian framework to solve the estimation error

problem. Specifically, we incorporate economically motivated prior information

into the widely used Brandt et al. (2009) integration approach. The resulting

method, called Bayesian Optimal Integration (BOI) is confronted with the coun-

7



1.7. INVESTORS’ SENTIMENT AND ATTENTION

terpart plain-vanilla approaches and with the challenging naive equal-weighted

integration (EWI) approach. The BOI approach integrates out the unknown pa-

rameter space of mean returns and co-variance. The findings according to various

portfolio evaluation criteria suggest that, in contrast with the other portfolios,

the BOI portfolio that combines mean-variance utility maximization and Bayesian

elements is able significantly to outperform the naive EWI portfolio.

1.7 Investors’ Sentiment and Attention

The role of sentiment in asset pricing is the subject of a fast-growing behavioural

finance literature that has by far focused predominantly on equities. However, the

huge influx of capital into commodity futures since the early 2000s bears out the

importance of studying the role of sentiment also in this asset class. The few pa-

pers that do so have largely focused on the intensity of internet searches (according

to specific keywords) as a proxy for investor attention in general or for investor

fear in particular, both of which are associated with the demand for information

(Han et al., 2017a; Han et al., 2017b; Vozlyublennaia, 2014; Fernandez-Perez et

al., 2020). Exceptions are Gao and Süss (2015) who study the role of sentiment

on commodity prices through proxies such as the VIX and the Baker and Wurgler

(2006) sentiment index inter alia, and Borovkova (2015) who conducts an event

study to examine how commodity futures prices react to the news.

In the second paper of the thesis, we construct a weekly commodity sentiment

measure that subsumes the tone of the recent news articles obtained by textual

analysis algorithms. We then aggregate the media tone scores into a media-tone

index that proxies the investor sentiment in the overall commodity market. Using a

predictive regression analysis and a tactical portfolio allocation analysis, we verify

the presence of the predictive elements of the media-tone measure and media-tone

8
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index. Both time-series and cross-sectional pricing tests confirm that the pricing

ability of media tone is not a compensation for exposure to known risk factors.

Besides sentiment, limited investors’ attention is another well-documented be-

havioural bias in the asset pricing literature. Traditional asset pricing theory as-

sumes investors to pay sufficient attention to the asset. But, attention is a scarce

resource (Kahneman, 1973). Investors have limited attention, especially when

faced with the possibility of allocating their wealth to many alternative assets.

Few investors will check whether the attributes of each of the assets satisfy their

preferences and beliefs. However, when testing theories of attention, researchers

face an important challenge: it is difficult to build a measure of investor attention

that directly captures the limited attention effect as measures that reflect investor

attention in previous literature are typically also associated with fundamental in-

formation.

In the third paper, we propose a novel measure of limited attention in the com-

modity futures market by utilizing the spillover effect of attention from the equity

market to the commodity futures market. Specifically, when news of firms linked

to a certain commodity sector arrives, investors’ attention about those firms will

transfer to the related commodity futures market. Then the corresponding com-

modity futures market will face more buying/selling pressure and should experi-

ence higher/lower returns in the subsequent weeks. Following this argument, we

construct a weekly attention spillover variable for each commodity futures con-

tract, computed as the average amount of firm-specific fundamental news within

a week, which are news about firms’ fundamentals. This measure excludes fun-

damental information from the commodity market and thus helps to identify the

causal effect of limited attention effect in the commodity futures markets. We test

the predictive ability of this novel measure of limited attention through a long-

short commodity portfolio strategy. Both time-series and cross-sectional pricing

9
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tests confirm that the pricing ability of limited attention cannot be explained as

exposure to well-known risk factors.
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Chapter 2

A Bayesian Perspective on Style

Investing: Exploiting Multiple

Commodity Risk Premia

“Probability is orderly opinion and inference from data is nothing other than the

revision of such opinion in the light of relevant new information.”– Eliezer S.

Yudkowsky

2.1 Introduction

In line with the theory of storage (Brennan, 1976; Kaldor, 1976; Working, 1949)

and the hedging pressure hypothesis (Cootner, 1960; Hirshleifer, 1988), long-short

commodity portfolios or investment styles based on either a term-structure slope

signal or a hedging pressure signal, respectively, as return predictors ought to cap-

ture a risk premium1. The term structure or carry premium is extracted by taking

1The theory of storage contends that commodity futures prices are driven by inventory levels
and hence it associates a backwardated or downward-sloping futures curve with scarce inventories
and a high convenience yield. The hedging pressure hypothesis states that there is a risk transfer
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long positions in commodity futures with the most downward sloping forward

curves and simultaneous short positions in the commodity futures with the most

upward sloping forward curves (Erb and Harvey, 2006; Gorton and Rouwenhorst,

2006; Koijen et al., 2018; Szymanowska et al., 2014). The hedging pressure pre-

mium is extracted by longing the commodities with the largest hedgers’ hedging

pressure, defined as short minus long hedgers positions over total hedgers posi-

tions, and shorting those with the smallest hedgers’ hedging pressure (Basu and

Miffre, 2013; Dewally et al., 2013).

Another popular commodity style that has been associated with the inexorable

backwardation versus contango phases is the trend-following or cross-sectional mo-

mentum strategy which captures a premium by simultaneously longing (shorting)

the commodities with the best (worse) past performance (Asness et al., 2013;

Fuertes et al., 2010; Miffre and Rallis, 2007). Echoing a large empirical literature

on equities, recent evidence has been adduced in favour of a commodity skewness

style; portfolios that are long (short) the commodities with the most negative (pos-

itive) skew capture a premium which has been rationalized in terms of investors’

preferences for lottery-type payoffs (Fernandez-Perez et al., 2018). More recently,

Boons and Prado (2019) put forward a basis-momentum style that captures a risk

premia that is related to imbalances in the supply and demand of futures contracts

that materialize when the market-clearing ability of speculators and intermediaries

is impaired.

Individual factors can undergo time-variation or can be arbitraged away; namely,

styles that have captured a sizeable premium over a period of time may temporar-

ily weaken or wane (see e.g., Bhattacharya et al., 2017). One way to mitigate this

mechanism from hedgers or commercial traders (consumers or producers of the commodity) to
speculators and thus, the futures price is set low (high) relative to the expected future spot price
when hedgers are net short (long) so as to attract net long (short) speculation. The rise (fall) in
the futures price as maturity approaches is the premium or compensation received by speculators
for absorbing the net hedging demand.

12
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problem is constructing a long-short portfolio with exposure to many styles, known

as style-integrated portfolio. This is the old adage “don’t put all your eggs in the

same basket” applied to style investing that seeks to benefit from predictive-signal

diversification. A key decision that a style-integration investor faces is the impor-

tance or weight to give to the styles at each portfolio re-balancing time t. With

historical data on returns for each of the K standalone styles, the investor can

estimate the style-weights, ω1,t, ..., ωK,t that can be cast as “optimal” according to

some performance or utility criteria. However, these optimized style-integrations

(OIs) suffer from parameter estimation risk. Style-integration is thus an invest-

ment problem that remains open for a Bayesian study.

The present paper aims to contribute to the style-integration literature. First,

we propose a novel Bayesian optimized style-integration (BOI) that allows the in-

vestor to determine the style-weights at each re-balancing time in a manner that

accounts for parameter estimation risk. Specifically, we utilize a Bayesian frame-

work that allows the investor to exploit prior information and beliefs into the style-

weighing decision. Second, we document empirically the problem of an investor

who seeks joint exposure to the basis, hedging pressure, momentum, skewness and

basis-momentum factors to capture risk premia by exploiting a cross-section of 28

commodity futures contracts. This enables evidence to illustrate the merits of the

proposed Bayesian perspective to style-integration vis-à-vis the challenging EWI

and a battery of OIs.

The findings suggest that the commodity BOI portfolio is able to capture a signifi-

cantly larger risk premia than the EWI portfolio, in contrast with the sophisticated

OI portfolios, and in a relatively steady manner over time. These findings are not

challenged by robustness tests that study the impact of considering transaction

costs, longer rolling estimation windows or expanding windows in an attempt to

reduce parameter estimation error in the sophisticated OI approaches, and alter-
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native commodity scoring schemes within each style such as standardized signals,

standardized rankings, simple binary buy-versus-sell signals or winsorized signals.

Our findings speak to a recent literature on style-integration as a mean of capturing

risk premia and to a long-standing literature on whether it is beneficial to deviate

from the equal-weighted portfolio rule. In a comparison across style-integration

methods, Fernandez-Perez et al. (2019) compare the näıve equal-weight style in-

tegration (EWI) rule and various sophisticated optimized integrations (OIs). The

latter include the Brandt et al. (2009) approach where the style-weights maximize

the expected power utility of the integrated portfolio. The evidence in Fernandez-

Perez et al. (2019) suggests that the näıve EWI portfolio is unrivalled in terms

of risk-adjusted performance by sophisticated style-integrated portfolios, a finding

that echoes the DeMiguel et al. (2009) portfolio allocation conclusion “of the var-

ious optimizing models in the literature, there is no single model that consistently

delivers a Sharpe ratio or a certainty-equivalent-return (CER) higher than that of

the 1/N portfolio, which also has a very low turnover, which indicates that, out-

of-sample, the gain from optimal diversification is more than offset by estimation

error.” Our study complements this literature by showing that once estimation

error is dealt with using notions from Bayesian analysis, it is possible to extract

a larger “alternative risk premia” or style-integrated premia that hinges on signal

diversification.

Our paper complements also an extant literature that applies Bayesian princi-

ples to asset allocation and portfolio choice. Early theoretical studies examined

optimal asset allocation and argued that parameter uncertainty should not be ig-

nored (Brown, 1979; Jobson and Korkie, 1980; Klein and Bawa, 1976; Zellner

and Chetty, 1965). These and other studies suggest using Bayesian principles to

mitigate the sampling variability of the optimal portfolio weights due to the sam-

ple variability of the covariance matrix and especially the mean returns vector.
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Although from the different viewpoint of commodity style-integration our arti-

cle complements recent advances in Bayesian portfolio allocation rules (Bauder

et al., 2021; Pástor and Stambaugh, 2000; Polson and Tew, 2000; Tu and Zhou,

2010). For instance, Pástor and Stambaugh (2000) study the portfolio choices

of mean–variance–optimizing investors who use sample evidence to update prior

beliefs centred on either the risk-based or characteristic-based pricing models.

The remainder of the paper is organized as follows. Section 2 presents the method-

ology. Section 3 describes the data and the properties of individual styles. Section

4 presents the comparison of style-integrated portfolios and robustness checks. A

final section concludes.

2.2 Methodology

2.2.1 Asset Allocation Framework

This paper builds on the framework laid out in Fernandez-Perez et al. (2017)

to conduct a structured study of alternative style-integration approaches. Let

k = 1, ..., K the set of standalone styles or factors under consideration by the com-

modity investor, and i = 1, ..., N the cross-section of commodity futures contracts

available. She can construct a style-integrated long-short portfolio at time t as

dictated by the N × 1 asset allocation vector Φt given by

Φt ≡ Θt × ωt =


θ1,1,t . . . θ1,K,t

...
. . .

...

θN,1,t . . . θN,K,t




ω1,t

...

ωK,t

 =


φ1,t

...

φN,t

 (2.2.1)

where Θt is a N×K score matrix and ωt is a K×1 style-weights vector. The sign

of the allocations indicates the futures position; a positive value ϕi,t ≡ ϕL
i,t > 0
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(negative value ϕS
i,t < 0) represents a long (short) position on the ith commodity

futures contract at time t.

Following Brandt et al. (2009) and Barroso and Santa-Clara (2015) inter alia,

we start by using the standardized-signals approach; namely, each column of Θt

contains the predictive signals per style (standardized) with zero mean and unit

standard deviation, i.e. θi,k,t ≡ x̃i,k,t = (xi,k,t − x̄k,t)/σ
x
k,t where xi,k,t is the kth

characteristic or observed signals for asset i at time t.

The commodity allocations Φ̃t = (ϕ̃1,t, ..., ϕ̃N,t) are obtained through Equation

2.2.1 by combining commodity scores per style θi,k,t and style weights ωk,t. The

normalized allocations ϕ̃i,t = ϕi,t/
∑N

i=1 |ϕi,t| ensure 100% investment of the in-

vestor’s mandate
∑N

i=1 |ϕi,t| = 1. The style-integrated portfolio thus formed at

time t is held for one month with excess return

RP,t+1 = Φ̃′
tRt+1 =

N∑
i=1

ϕ̃i,tRi,t+1 (2.2.2)

where Rt+1 ≡ (R1,t, R2,t, ..., RN,t)
′ is the N × 1 vector of time t excess returns for

the standalone styles, Ri,t = ln(
ffront
i,t

ffront
i,t−1

) with f front
i,t denoting the time t front-end

futures contract price for the ith commodity. This procedure based on Equation

2.2.1 is iterated at portfolio time t + 1 to obtain a new allocation vector Φ̃t+1,

and so forth. The framework encapsulated in Equation 2.2.1 nests not only many

possible style integrations, but also any standalone style k (that we describe next)

using a sparse vector ωt with the kth entry set at 1 and all other entries set at 0.

Broadly-speaking, two perspectives can be adopted to decide the weight or relative

importance to assign to the styles at each portfolio formation (rebalancing) time:

identical weights across styles which sidesteps estimation issues or time-varying,

style-heterogeneous weights that are estimated from past data on returns for the

styles. We discuss this aspect next.
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2.2.2 Commodity Styles and Style-Integrations

Various commodity investment styles or factors have been suggested in the liter-

ature. Without loss of generality, in this paper we focus on the fairly well-known

basis, momentum, hedging pressure, skewness, and basis-momentum styles. At

each portfolio formation time, the corresponding long-short portfolio buys (sells)

the commodity quintile which is expected to appreciate (depreciate) the most ac-

cording to the predictive signal that underlies the style. The predictive signal for

the term structure or carry style (Koijen et al., 2018) is the futures basis defined

as the spread between spot and futures prices usually proxied by the difference in

logarithmic prices between the front- and second-nearest maturity contract. The

hedging pressure style is based on the net short positions of hedgers (or commercial

traders) defined as the number of short minus long positions over total positions

on average over the prior 12-months (Basu and Miffre, 2013). The momentum or

past performance signal is the average past 12-month commodity futures return

(Miffre and Rallis, 2007). The skewness portfolio exploits the degree of asym-

metry of the commodity futures return distribution estimated with the Pearson

coefficient of skewness using a year of daily data (Fernandez-Perez et al., 2018).

Finally, the basis-momentum style (Boons and Prado, 2019) exploits the differen-

tial momentum between the first- and second-nearest futures contract along the

term structure curve.

The simplest way to form a long-short style integrated portfolio that benefits from

signal diversification is the EWI approach that assigns identical exposures to the

K individual styles or commodity characteristics, ωt = ω = (1/K, ..., 1/K). The

EWI has proven highly effective for several reasons (Fernandez-Perez et al., 2018).

One is that EWI does not suffer from estimation error. Further, it reduces the

possibility of data mining as it does not require a ranking of the K individual styles

at each portfolio formation time using past data which entails choices such as the
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length of estimation window. Another is that it circumvents the perfect-foresight

bias; namely, even assuming away parameter uncertainty, an “error” is incurred if

the ranking of styles at month-end t by their past returns does not apply during

the holding month t+1; in other words, if recent performance is not representative

of prospective returns. Last but not least, the turnover of the EWI portfolio is

typically low which lessens trading costs.

An investor seeking exposure to multiple risk factors can resort instead to op-

timized style-integration approaches (OIs) that are inspired from the portfolio

allocation literature. We outline various OIs next. For this purpose, let N denote

the number of commodity futures contracts available to form the style-integrated

portfolio. Let the first two moments of their return distribution, Et(Rt+1) and

V art(Rt+1), be parameterized as µt and Vt, respectively, the N×1 vector of mean

excess returns, and the N × N commodity covariance matrix. These parameters

are estimated at each portfolio formation time t using a length-L window of past

return data.

Mean-Variance Maximization (MV).

In the MV approach to style-integration the signal- or style-weights ωt are the

time t solution of an optimization problem under a quadratic or mean-variance

loss function

Maxωt Et[UP,t+1] = Et[RP,t+1]−
1

2
γV art[RP,t+1],

= Φ′
tµt −

γ

2
Φ′

tVtΦt

= (Θtωt)
′µt −

γ

2
(Θtωt)

′Vt(Θtωt) (2.2.3)

where RP,t+1 = (Θtωt)
′Rt+1 is the style-integrated portfolio return from time t

to t + 1, and γ is the coefficient of relative risk aversion; as in Fernandez-Perez

et al. (2018) and Brandt et al. (2009) inter alia, we adopt γ = 5. By solving the
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first-order maximization conditions,
∂Et[U(RP,t+1)]

∂ωt
, the MV optimized style-weights

at time t are given by

ωt =
1

γ
(Θ′

tVtΘt)
−1Θ′

tµt (2.2.4)

As noted above, the commodity scores matrix Θt multiplied by the optimized

style-weight vector ωt gives the commodity allocations, Equation 2.2.1, which are

normalized as ϕ̃i,t = ϕi,t/
∑N

i=1 |ϕi,t| with
∑N

i=1 |ϕ̃i,t| = 1; we normalize ϕi,t likewise

in all other OIs that follow.

MV Maximization with Shrinkage (MVshrinkage).

Forming a mean-variance efficient portfolio requires estimating the assets’ covari-

ance matrix. Let Vt denote the true N×N covariance matrix of commodity excess

returns and V̂t the usual estimator or sample covariance matrix. When the num-

ber of assets is large (large dimension N), the usual covariance matrix estimator

is typically not well-conditioned meaning that its inverse amplifies the estimation

error, and may not even be invertible. Ledoit and Wolf (2004) propose a shrinkage

covariance matrix estimator St that is both well-conditioned and more accurate

than the usual covariance matrix estimator. Thus inspired, one can implement a

mean-variance OI method with shrinkage covariance matrix to reduce estimation

risk defined as

St = (1− λ)V̂t + λIt (2.2.5)

where It the N×N identity matrix, and λ ∈ (0, 1) is a tuning factor that measures

the degree of shrinkage; St ≈ V̂t if λ → 0, and St ≈ It if λ → 1. Ledoit and Wolf

(2004) show that the optimal shrinkage parameter conceptualized as the λ∗ that

minimizes the distance between the shrunk estimator of the covariance, St, and
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the true covariance matrix Vt, is given by

λ∗ = max{0,min{ κ
T
, 1}} (2.2.6)

where T is the estimation window length for V̂t, and κ is a parameter that can

be consistently estimated as detailed in Appendix 2.6.1. Finally, replacing the

standard covariance estimator by S∗
t in the MV style-weights solution, Equation

2.2.4, the MVshrinkage style-weights are given by

ωt =
1

γ
(Θ′

tS
∗
tΘt)

−1Θ′
tµt (2.2.7)

For further details on the MVshrinkage style-weights estimation approach, see

Appendix 2.6.1.

Variance Minimization (MinVar)

The MinVar style-weights are the solution of an optimization problem where the

focus is on the second moment or expected risk of the style-integrated portfolio

(Fernandez-Perez et al., 2019). Thus, the style-integration investor solves at each

time t the variance minimization problem

MinωtEt[(RP,t+1 − R̄P )
2] = V art(RP,t+1)

= Φ′
tVtΦt

= (Θtωt)
′Vt(Θtωt) (2.2.8)

with first-order condition
∂V ar(RP,t)

∂ωt
= 0. The solution provides the MinVar style-

weights

ωt =
(Θ′

tVtΘt)
−1Θ′

t1

1′Θt(Θ′
tVtΘt)−1Θ′

t1
(2.2.9)
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with Θt representing the N × K score matrix, Equation 2.2.1, and Vt the N ×

N commodity covariance matrix, respectively. Essentially, the MinVar style-

integration approach reduces the dimensionality of the MV parameter space by

focusing attention on the integrated portfolio risk.

Style-Volatility Timing (StyleVol).

Kirby and Ostdiek (2012) develop a portfolio allocation method which also focuses

on variance minimization and assumes zero covariances across assets to reduce the

parameter dimensionality. The resulting solution is to allocate wealth to each

asset proportionality to the inverse of the asset’s risk as measured by its past

variance which is known as volatility timing. This approach has been adapted

to style-integration by shifting the emphasis to the risk of each individual style

(Fernandez-Perez et al., 2019). The weight assigned to the kth style at time t is

ωk,t =
1/σ2

k,t∑K
k=1 1/σ

2
k,t

, k = 1, ..., K (2.2.10)

with σ2
k,t denoting the kth entry of the K ×K style-covariance matrix Σt. Thus,

the more volatile a given style is, the less weight it receives in the style-integrated

portfolio. The implicit assumption of the SyleVol integration approach is indepen-

dence among the underlying styles.

Diversification-Ratio Maximization (MaxDiv)

Choueifaty and Coignard (2008) define the diversification ratio of a portfolio as

the ratio of the aggregate individual assets’ volatilities divided by the portfolio’s

volatility. Adapted to the present context the diversification ratio of the style-

integrated portfolio can be defined as

D(Φt) =
Φ′

tΩt√
Φ′

tVtΦt

(2.2.11)
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where Φt ≡ Θtωt is the commodity allocation vector, Equation 2.2.1, and Ωt =

(σ2
1, ..., σ

2
N) is the diagonal of the commodity excess return covariance matrix Vt.

Accordingly, the optimal MaxDiv style-weight vector ωt is obtained by solving the

following maximization problem

MaxωtD(ωt) =
(Θtωt)

′Ωt√
(Θtωt)′Vt(Θtωt)

(2.2.12)

As no closed-form solution exists for 2.2.12, one can obtain the MaxDiv weights ωt

through the BFGS algorithm that belongs to the Quasi-Newton group of numerical

optimization methods. To our best knowledge, the MaxDiv style-weights have not

been utilized as yet in the literature.

Power Utility Maximization (PowerU)

Using quadratic (mean-variance) utility has the advantage of parsimony vis-à-vis

power utility but the latter takes into account the higher moments of the return

distribution of the integrated portfolio which can be important if returns are not

Normally distributed. The PowerU style-weights are those that maximize the

expected power utility of the style-integrated portfolio

Maxωt Et[U(RP,t+1)] = Et[
(1 + RP,t+1)

1−γ − 1

1− γ
] (2.2.13)

where RP,t+1 =
∑N

i=1 ϕ̃i,tRi,t+1 with ϕ̃i,t = ϕi,t/
∑N

i=1 |ϕi,t| =
∑K

k=1 θi,k,tωk∑N
i=1 |

∑K
k=1 θi,k,tωk|

the

normalized ith asset allocation, and γ the coefficient of relative risk aversion as in

Equation 2.2.3. The PowerU style-weights ωt can be obtained by solving 2.2.13

numerically via the BFGS algorithm. In the PowerU style-integration approach, as

originally put forward by Brandt et al. (2009), the N asset allocations are defined

as optimal deviations from the benchmark portfolio (e.g., value-weighted equity

market portfolio) allocations denoted Φ̄t. The general style-integration structure,

Equation 2.2.1, can be rewritten as Φt = Φ̄t +
1
N
(Θt × ωt) with ωt the PowerU
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style-weights, to nest the Brandt et al. (2009) parametric portfolio approach. The

above optimization problem, Equation 2.2.13, is thus the Brandt et al. (2009)

approach adapted to assets in zero-net-supply (ϕ̄i,t = 0) such as futures or curren-

cies, as implemented in Fernandez-Perez et al. (2018) and Barroso and Santa-Clara

(2015), respectively.

Power Utility with Disappointment Aversion (PowerDA)

Constant relative risk aversion (CRRA) preferences cannot generate non-participation

at any level of risk aversion, except in the presence of large transactions costs which

would be implausible, especially in the case of futures contracts (Liu and Loewen-

stein, 2002). As a result, traditional portfolio choice models often predict large

equity positions for most investors and fail to generate the observed cross-sectional

variation in portfolio choice. A way to mitigate this problem is to incorporate loss

aversion into the utility function.

Gul (1991) develops an axiomatic model of preferences which can generate dis-

appointment aversion, and includes expected utility as a special case. Ang et al.

(2005) extend this model for both the static and dynamic portfolio choice prob-

lems and show that it can robustly generate substantial cross-sectional variation

in portfolio holdings, including optimal non-participation in the stock market. In-

spired by their argument, Fernandez-Perez et al. (2019) implement an OI approach

that incorporates disappointment aversion. Let the power utility function of the

certainty equivalent return (CER), parameterized as δ, be given by

(1 + δ)1−γ − 1

1− γ
=

1

K

(∫ δ

−∞
U(RP,t+1)dF (RP,t+1) + A

∫ ∞

δ

U(RP,t+1)dF (RP,t+1)
)

(2.2.14)

where U(RP,t+1) =
(1+RP,t+1)

1−γ−1

1−γ
, with RP,t+1 = RP,t = Φ̃′

tRt+1 = ω′
t(Θ

′
tRt+1)

with Rt+1 the N × 1 vector of commodity futures excess returns. The scaling
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parameter K is defined as

K = Pr(RP,t+1 ≤ δ) + APr(RP,t+1 > δ) (2.2.15)

In this setting, the probability of losses (outcomes below the CER) and gains (or

outcomes above the CER) are qualified by the disappointment aversion parameter

A ∈ [0, 1). We employ A = 0.6 as Fernandez-Perez et al. (2019)2. The PowerDA

style-weights ωt and CER value δ are obtained by solving simultaneously 2.2.14

and the following first-order condition

1

A
E
[dU(RP,t+1)

dω′
t

1{RP,t+1≤δ}

]
+ E

[dU(RP,t+1)

dω′
t

1{RP,t+1>δ}

]
= 0 (2.2.16)

where 1 is an indicator function. Appendix 2.6.2 provides details on the PowerDA

implementation.

2.2.3 Bayesian Optimized Integration (BOI)

The purpose of this section is to design a Bayesian optimized style-integration

(BOI) approach that incorporates Bayesian elements in order to account for esti-

mation risk. The goal is to improve upon the challenging EWI that does not suffer

from estimation risk and upon extant OIs that are contaminated by parameter

estimation uncertainty.

As argued by DeMiguel et al. (2009), estimation risk is a source of uncertainty

that lies behind the poor out-of-sample performance of the Markowitz’s mean-

variance (MV) portfolio allocation versus the näıve 1/N allocation. In the MV

style-integration, the investor at time t chooses his style weights ωt so as to max-

imize the quadratic utility of his portfolio, Equation 2.2.3. The solution is given

2The disappointment aversion parameter value A = 1 gives rise to the CRRA preferences
case.
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the Equation 2.2.4 where µt and Vt denote the first moments of Rt. In order to

implement the MV style-integration method, the investor ought to choose a length

L for a past observation window to estimate m̂ut and V̂t giving the plug-in style

weights ω̂t =
1
γ
(Θ′

tV̂tΘt)
−1Θ′

tµ̂t. This approach can suffer from a low signal-to-

noise ratio problem, namely, the utility U(ω̂t) can deviate notably from the true

utility U(ωt). In order to account for estimation risk, Zellner and Chetty (1965)

proposed a Bayesian portfolio optimization solution that maximizes the expected

utility under the predictive distribution which we adapt to the present purpose of

style-integration. Let Ft denote the information set available at time t, and U(ωt)

the utility of the style-weights ωt portfolio that is formed on N commodities with

excess returns Rt. The Bayesian optimized-integration (BOI) weights are defined

as

ωB
t = argmaxωt

∫ +∞

−∞
U(ωt)pr(Rt+1|Ft)dRt+1

= argmaxωt

∫ +∞

−∞

∫
µt

∫
Vt

U(ωt)pr(Rt+1,µt,Vt|Ft)dµtdVtdRt+1 (2.2.17)

with the predictive density pr(Rt+1|Ft) obtained by integrating out the unknown

parameters as

pr(Rt+1|Ft) =

∫
µt

∫
Vt

pr(Rt+1,µt,Vt|Ft)dµtdVt

=

∫
µt

∫
Vt

pr(Rt+1|µt,Vt,Ft)pr(µt,Vt|Ft)dµtdVt

(2.2.18)

where pr(Rt+1|µt,Vt,Ft) is the conditional probability, and pr(µt,Vt|Ft) the pos-

terior probability. Intentionally our BOI approach rests on the widely used mean-

variance framework3. Accordingly, priors are required on the expected commodity

excess returns vector µt and corresponding covariance matrix Vt to obtain the

3The BOI approach proposed can be easily generalized to any non-quadratic utility.
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posterior distribution. The prior for Vt is the inverse Wishart distribution which

is a standard assumption for Bayesian estimation of a covariance matrix. A key

idea behind the BOI proposed is that investors do not need directly to form a

prior for µt. They can harness their beliefs (or information) on the past relative

performance of the styles to form a prior for ωt which can next be mapped onto a

prior for µt.

The MV style-integration solution establishes a one-to-one relation between the

style-weight parameter vector ωt and the commodity return distribution mean

vector µt as

µt = γVΘωt (2.2.19)

where VΘ = (Θ′
t)

−1(Θ′
tVtΘt). The BOI method that we propose uses priors for

the style-weights ωt order to incorporate the investor’s objective beliefs about the

relative merit of the styles. Then we map the priors on the style-weights ωt into

priors on the parameters of the commodity excess return distribution. Specifically,

we begin by forming a Normal prior on ωt

ωt ∼ N(ωt,0,
1

γ
V −1

Θ Vµ) (2.2.20)

where Vµ is the variance of the prior of µt. Equation (2.2.20) says that the style-

weight vector ωt is Normally distributed with prior mean ωt,0 and covariance

1
γ
V −1

Θ Vµ which represents the confidence about the prior. The prior distribution

for ωt provides the prior distribution of µt as

µt ∼ N(γVΘωt,0,Vµ) (2.2.21)
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where the magnitude of Vµ represents how close µt is distributed around the prior

mean or the degree of confidence on the prior mean. Following Tu and Zhou

(2010), we adopt Vµ = Vt

s2
where s2 is the average of the commodity return vari-

ances or diagonal elements of Vt. Given the success of the näıve equal-weight rule

in traditional portfolio allocation (DeMiguel et al., 2009) and in style-integration

(Fernandez-Perez et al., 2019) we adopt ωt,0 = 1/K as our informative prior for

the style-weights mean, Equation (2.2.21). However, we should stress that any

other informative prior that reflects the investor’s beliefs or knowledge is feasible,

e.g. an investor with diminished confidence on a given style k can set its prior to

zero ωk,t,0 ≈ 0.

A history of commodity excess returns within a length-L observation win-

dow {Rt−(L−1), . . . , Rt−1, Rt} can be used to update the above priors in order to

obtain the posterior distribution pr(µt,Vt|Ft) at time t. To obtain the poste-

rior distribution, we resort to the Markov Chain Monte Carlo (MCMC) method

widely used in Bayesian statistics. This method allows us to sample from the

commodity return history which enables M simulated commodity excess return

sequences {Rm,t−(L−1), . . . ,Rm,t−1,Rm,t}Mm=1. These simulated returns are then

inputs to approximate the first two moments of the stationary posterior distribu-

tion pr(µt,Vt|Ft) using the Gibbs sampling algorithm which is one of the most

popular MCMC methods (e.g., see Chen et al., 2012). In our empirical analysis

below we employ M = 10, 000 replications. Finally, with the posterior density at

hand the MV portfolio optimization problem, Equation (2.2.3), is solved at each

portfolio rebalancing time t to obtain the BOI style-weights ωt. Further details on

the BOI implementation are provided in Appendix .
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2.3 Data and Empirical Results

2.3.1 Data

The empirical analysis is based on settlement prices, and open interest data for fu-

tures contracts on a cross-section of 28 commodities pertaining to various sectors:

agriculture (cocoa, coffee, corn, cotton, frozen concentrated orange juice, oats,

rough rice, soybeans, soybean meal, soybean oil, sugar 11, wheat and lumber),

energy (PJM electricity, gasoline RBOB, heating oil, light sweet crude oil, natural

gas of Henry hub and un-leaded gas), livestock (feeder cattle, frozen pork bellies,

lean hogs, live cattle), and metal (high-grade copper, gold, palladium, platinum,

silver 5000). Daily prices are obtained from Refinitiv Datastream. Open interest

data is available weekly from the Commitment of Traders report of the U.S. Com-

modity Futures Trading Commission (CFTC). The sample period is January 1992

to December 2021.

As in Fernandez-Perez et al. (2018), the standalone styles and style-integrated

portfolios are formed at month-end and held for one month. We carry out the

usual rolling procedure; namely, futures returns are calculated using the price of

the front-end futures contract up to the month preceding the maturity month when

positions are rolled to the second-nearest contract.

2.3.2 Preliminary Data Analysis and Relative Performance

of Styles

Table 2.1 summarizes the distribution of excess returns for the 28 commodity

futures contracts and cross-correlations. The average excess return is generally

insignificant over the sample period. Monthly returns show little evidence of pre-

dictability based on sample autocorrelations. Gasoline RBOB has the largest
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autocorrelation of 0.217. The distributions of returns are broadly symmetri-

cal–exceptions with a large negative skew sugar, gasoline and platinum, and coffee

with a positive skew. Some futures contracts exhibit the heavy-tailed property

such as sugar, electricity, gasoline and platinum with kurtosis coefficient of 8.707,

6.829, 10.622 and 5.235, respectively. The average pairwise correlations of each

commodity futures excess returns with the excess returns of the commodities in

the same sector indicate that the within-group price dynamics is highly similar

but far more independent across groups.

Table 2.2 summarizes the performance of the individual styles–basis, hedging

pressure, momentum, skewness and basis-momentum – over the full sample pe-

riod (Panel A), and over non-overlapping 6-year windows (Panel B), analogous to

Fernandez-Perez et al. (2019).

According to the static analysis shown in Panel A, the reward-to-risk profiles sug-

gested by the Sortino, Omega, and Sharpe ratios alongside the crash risk profiles

(max drawdown, 99% VaR, and semi-deviation) endorse the skewness and basis-

momentum portfolios. But this is not so over sub-periods as the skewness style

ranks last in the second sub-period and the basis-momentum ranks almost last

in the third sub-period. The fact that their relative performance is unstable–no

individual style emerges as consistently superior–poses a challenge for investors

in terms of choosing an individual style to adhere to. This motivates the notion

of signal diversification that can be harnessed through a style-integration strat-

egy; namely, style-integration may serve as hedge against individual style under-

performance over specific periods.

Figure 2.1 plots the cumulative Sharpe ratio of the standalone styles. The first

point in the graph is calculated from the monthly excess returns accrued over a

60-month investment window and the last point is based on returns until the end

of the sample period. The graph confirms the instability in individual style rank-

29



2.3. DATA AND EMPIRICAL RESULTS

Figure 2.1: Cumulative Sharpe ratios of standalone styles.

The figure plots the cumulative Sharpe ratio of long-short commod-

ity futures portfolios or standalone styles based on the basis, hedgers’

hedging pressure, momentum, skewness and basis-momentum signals

as return predictors. The first feasible 60-month excess returns win-

dow is expanded by one month at a time. The analysis is based on

commodity futures data from January 1992 to December 2021.

ings over time which calls for style-integration.

Next we examine the extent of overlap among the standalone styles. In or-

der to provide a complete picture, Table 2.3 reports three different measures of

(non)linear dependence. The widely used Pearson correlation (Panel A) suggests

that the five styles are mildly overlapping. This is confirmed by the Spearman

rank-order correlation (Panel B), and the Kendall correlation (Panel C) that addi-

tionally capture nonlinear relationships4. All three statistics concur in suggesting

4The Spearman correlation between two variables is the standard correlation between their
rankings. While Pearson’s correlation assesses linear relationships, Spearman’s correlation cap-
tures monotonic (linear or not) relationships. Kendall’s correlation is analogous to Spearman’s
correlation but outperforms it because it is more robust to outliers and has better small-sample
properties.
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that the premia captured by the five styles under consideration stems from different

risk (or behavioural bias) sources. Thus, seeking to benefit from signal diversifi-

cation, our representative investor pursues a style-integration strategy. Next, we

compare various methods.

2.3.3 Style-integration Strategies

Table 2.4 reports summary statistics for the distribution of excess returns obtained

with the various sophisticated optimized style-integrations (OIs) which include the

new Bayesian approach (BOI), alongside the challenging EWI benchmark. Panel

A reports the results over the entire sample period (static evaluation), and Panel

B over non-overlapping 6-year sub-sample periods (dynamic evaluation). For now,

all the style-integrations employ as entries of Θt, the score matrix Θt in Equa-

tion 2.2.1, directly the standardized signals. This aspect of the style-integration

methodology will be revisited below in robustness tests. Also for now, the estima-

tion of the style-weight vector in the (B)OI strategies is carried out over 60-month

rolling windows. Later in the robustness tests, this estimation window length L

is expanded so as to re-assess the merit of BOI when the parameter uncertainty

that affects OIs is lessened.

The easy-to-deploy EWI strategy stands out as very effective at extracting com-

modity risk premia. The EWI portfolio excess return of 8.0% p.a. surpasses

each one of the standalone-style portfolios’ excess returns ranging from 3.6% p.a.

(Hedging Pressure) to 5.1% (Basis-Mom). On a risk-adjusted basis, the Sharpe

ratio of the EWI portfolio at 0.815 represents a pervasive improvement in reward-

to-risk: 40% gain in Sharpe ratio across all styles on average, and between 18%

(Basis-Mom) and 65% (HP) individually. The Sharpe ratio gain of EWI versus

the standalone styles is reiterated by the Sortino and Omega ratios. Last but

not least, the EWI portfolio has a favourable crash risk profile vis-à-vis the stan-
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dalone styles as suggested by the semi-deviation, maximum drawdown and 99%

VaR measures. These findings overall confirm that predictive signal combination

via an EWI long-short portfolio approach is fruitful.

The next issue to investigate is whether a sophisticated OI strategy can improve

upon the style-integrated portfolio obtained with the näıve EWI strategy. Does

a time-varying, heterogeneous (optimized) factor exposure deliver improvements

versus the time-constant, equal exposure? Table 2.4 addresses this question by re-

porting summary statistics for the excess returns of the sophisticated OI portfolios

outlined in Section 2.2.2, and the novel BOI portfolio developed in Section 2.2.3.

The findings from our somewhat different set of styles specific to commodities and

longer sample period are well aligned with the evidence in Fernandez-Perez et al.

(2019).

It is noticeable that with a mean excess return of 5.2% p.a., Sharpe ratio of

0.588, maximum drawdown of -0.296 and 99% VaR of -0.058, the PowerU style-

integration of Brandt et al. (2009) fails to outperform the EWI with corresponding

values of 8.0% p.a., 0.815, -0.243 and -0.061. The näıve EWI portfolio is thus not

only able to extract a larger commodity risk premium, but also exhibits a bet-

ter crash risk. Introducing the disappointment aversion parameter A = 0.6 in the

commodity style-integration with power utility (PowerDA) does not improve upon

the baseline PowerU approach and hence, the EWI portfolio remains unchallenged

5. Likewise, the OI method with focus on quadratic or mean-variance utility (MV),

and the OIs that seek to reduce the dimensionality of the mean-variance parame-

ter space (MVshrinkage, MinVar, and StyleVol) or employ a diversification ratio

as objective function (MaxDiv) are also unable to challenge the näıve EWI ap-

proach. The style-integrated portfolios formed by the MinVar, StyleVol and Max-

5With a Sharpe ratio of 0.371, maximum drawdown of -0.225, and 99% VaR of -0.055 the
PowerDA style-integrated portfolio deployed with larger disappointment aversion (A = 0.2) is
still unable to outperform EWI. Additional performance measures for the latter are available
from the authors.
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Div methods are quite competitive but not superior to the EWI portfolio. The

p-values of the Ledoit and Wolf (2008) and Opdyke (2007) tests, H0 : SRjSREWI

vs HA : SRj > SREWI clearly indicate that the reward-to-risk of each of the OI

portfolios (denoted j) is either smaller or indistinguishable from that of the EWI

portfolio.

By contrast, building on the fully parametric mean-variance setting but account-

ing for parameter estimation uncertainty through BOI delivers a style-integrated

portfolio that outperforms all other OI portfolios and the challenging EWI port-

folio as regards both the reward-to-risk and crash risk profiles. The small p-values

of the Ledoit and Wolf (2008) and Opdyke (2007) tests, as shown in Table 2.4

panel A suggest at the 5% significance level or better that the Sharpe ratio of the

BOI portfolio is superior to that of the naive EWI portfolio. This evidence based

on a static (full sample) appraisal of portfolio performance is reinforced by the

dynamic (non-overlapping 6-year rolling estimation windows) appraisal shown in

Table 2.4, Panel B. The dynamic Sharpe ratio and the corresponding ranking of

the EWI and OIs reiterates the superiority of the BOI approach. Thus, embedding

an extant OI method into a Bayesian framework to account for estimation risk al-

lows investors to harness multiple commodity factor exposures more efficiently to

extract a sizeable risk premia consistently over time.

Further to illustrate the dynamic performance of the BOI portfolio vis-a-vis the

competing EWI and OI portfolios, we plot in Figure 2.2 their cumulative Sharpe

ratio, mean and volatility. The cumulative Sharpe ratio of the BOI portfolio,

Panel A, surpasses rather steadily over time the Sharpe ratio of the näıve (non-

parametric) EWI and competing sophisticated OI portfolios. This is the result of

its superior ability to capture a risk premia as borne out by the larger mean excess

return, Panel B, combined with relatively low risk (only the MinVar integrated

portfolio has lower volatility), as shown in Panel C. The upshot is that the BOI
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Figure 2.2: Performance of integrated strategies

(a) Sharpe ratio

(b) Mean return

(c) Volatility

The figure plots the Sharpe ratio, annualized mean excess return and volatility of style-
integrated portfolios based on their annualized monthly excess returns within expanding
windows. The strategies are näıve equal-weights integration (EWI), and optimized in-
tegrations (OIs) formed according to mean-variance utility maximization (MV), mean-
variance with shrinkage maximization (MVshrinkage), variance minimization (MinVar),
style-volatility timing (StyleVol), diversification ratio maximization (MaxDiv), power
utility maximization (PowerU), maximized power utility with disappointment aversion
(PowerDA), and Bayesian optimized integration (BOI). The analysis is based on com-
modity futures data from January 1992 to December 2021.
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approach benefits both from the sophistication of an optimized style-weighing ap-

proach (by contrast with the näıve EWI) and from an improved signal-to-noise

ratio due to the Bayesian elements (by contrast with the OIs). The ability of BOI

to improve the style-weights ωt decision leads to a more informative combination

of sorting or predictive signals (basis, hedging pressure, momentum, skewness, and

basis-momentum) and thus, to a more fruitful joint exposure to multiple factors.

2.4 Robustness Tests

In this section we deploy various robustness tests to ensure that the findings are

not influenced by transaction costs, and survive variants of the OI methods, and

longer estimation windows.

2.4.1 Turnover and Transaction costs

Trading intensity can erode the risk premium captured by investment styles due

to trading costs. To study the role of trading costs, we calculate the portfolio

turnover (TO) as

TOj =
1

T − 1

T−1∑
t=1

N∑
i=1

(|ϕ̃j,i,t+1 − ϕ̃j,i,t+ |) (2.4.1)

where t = 1, · · · , T denotes each of the month-end portfolio re-balancing times,

ϕ̃j,i,t+1 is the ith commodity allocation weight at t+ 1 by the jth portfolio, while

ϕ̃j,i,t+ = ϕ̃j,i,te
Ri,t+1 is the actual portfolio weight right before the rebalancing at

t+1 with Ri,t+1 denoting the monthly return of the ith commodity from month-end

t to month-end t+1. The TO measure thus provides the average of all the trades

incurred and embeds the mechanical evolution of the allocation weights due to

within-month price dynamics. Figure 2.3, Panel A, shows the TOs. 2.3 Panel A.
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The style-integrated portfolios are not more trading intensive than the standalone

styles, even though potentially they invest in all N commodities whereas the latter

invest, by construction, only in 40% of the N commodities. Among the standalone

styles, the highest TO is exhibited by the basis portfolio and the lowest by the

HP portfolio. Among the style-integrated portfolios, MinVar has the lowest TO

followed by MaxDiv and StyleVol. Most importantly for the present purposes, in

relative terms the BOI portfolio does not have a large TO which suggests prima

facie that its superior performance will not be wiped out by transaction costs.

Next, using proportional trading costs of 3.3 bps (Locke & Venkatesh, 1997) and

the more conservative 8.6 bps (Marshall et al., 2012), we calculate the net return

of each portfolio and the corresponding net Sharpe ratio which is plotted in Figure

2.3, Panel B. We observe, first, that the erosion of performance due to trans-

action costs does not undermine the style-integrated portfolio proposition versus

individual-style investing. Second, among the competing style-integrated portfo-

lios, the BOI remains the one delivering the best reward-to-risk profile. Thus,

altogether the findings endorse the BOI approach as highly efficient at signal di-

versification.

R̃P,t+1 =
N∑
i=1

ϕ̃i,tRi,t+1 − TC
N∑
i=1

|ϕ̃i,t − ϕ̃i,t−1+ | (2.4.2)

2.4.2 Alternative Scoring Schemes

Thus far we have implemented the long-short portfolios using as entries of the

score matrix Θt, Equation (2.2.1), the standardized signal θi,k,t ≡ x̃i,k,t = (xi,k,t −

x̄k,t)/σ
x
k,t with xi,k,t the kth characteristic or predictive signal for commodity i at

time t. Now we consider three alternative score schemes that could mitigate the

biases induced by outliers in the signal measurement.

As in Fernandez-Perez et al. (2019) we implement a score scheme with binary
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Figure 2.3: Turnover and net Sharpe ratio of individual and integrated portfolios.

(a) Turnover

(b) Net Sharpe ratio

The figure reports the monthly turnover averaged over the entire sample period and the
net Sharpe ratio of each long-short portfolio strategy using a lax trading cost estimate
of 3.3 b.p. (Locke & Venkatesh, 1997) and a conservative 8.6 b.p. estimate (Marshall
et al., 2012). The analysis is based on commodity futures data from January 1992 to
December 2021.
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short-versus-long entries θi,k,t ∈ {−1, 1}, a standardized ranking scheme with

θi,k,t ≡ z̃i,k,t = (zi,k,t − z̄k,t)/
z
k,t where zi,k,t ∈ {N, . . . , 1} is the ranking given to

each commodity as candidate for a long position (N denotes top, and 1 denotes

bottom) according to the kth predictive signal. As in DeMiguel et al. (2009)

we implement a commodity scoring approach where each commodity character-

istic or signal is winsorized cross-sectionally {xi,k,t}Ni=1; that is, we set as bottom

(top) threshold the first (third) quartile minus (plus) three times the interquartile

range, any observation outside those thresholds is shrank towards the correspond-

ing threshold. Table 2.5 reports appraisal measures for the style-integrated port-

folios implemented with the aforementioned scoring schemes. The earlier finding

that the BOI method is unsurpassed by the challenging EWI benchmark and al-

ternative OI methods remains unchanged. As a by-product, we observe that for

most style-integrations the binary {-1,1} and standardized ranking scores deliver

the largest reward-to-risk ratios by reducing the outlier effects in the signals.

2.4.3 Role of Estimation Window Length

Thus far we have relied on 60-month rolling windows of commodity excess returns

{Rt−(60−1), . . . ,Rt} to estimate the style-weights ωt. As the estimation sample

widens the parameter uncertainty ought to decrease and hence, the merit of the

BOI method versus extant OIs could be diluted and likewise, the superiority of

the non-parametric EWI could diminish. To assess this conjecture, we deploy the

BOI and competing OIs using: (i) recursive estimation windows starting from a

60-month length at the first portfolio formation time which is then expanded by

one month at a time, and (ii) longer 120-month rolling estimation windows.

Figure 2.4 presents the cumulative risk-adjusted performance of the OI portfolios

alongside the EWI. The BOI strategy still delivers long-short portfolios with the

best Sharpe ratio (Panel A) which reflects the larger mean excess return (Panel
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B) captured with lower risk (Panel C). Figure 2.5 graphs the cumulative per-

formance of integrated portfolios with style-weights estimated with 120-month

rolling windows. Since longer estimation windows ought to alleviate the parame-

ter uncertainty problem, it is not surprising to see that the performance of some

sophisticated OI portfolios such as MaxDiv and DeMiguel et al. (2009) through

simulations, unfeasible large estimation windows of 3,000 months are needed to

overcome estimation risk in a general portfolio allocation problem and outperform

the 1/N benchmark.

2.5 Conclusion

Commodity style-integration is an intuitive and clearcut proposition to capture

a superior risk premium by forming a unique long-short portfolio with simulta-

neous exposure to lowly correlated factors. However, this factor diversification

idea requires in practice choosing an appropriate blend of factor exposures at each

portfolio rebalancing time. Extant strategies for this purpose are the equal-weights

integration (EWI) that sets equal exposures constantly over time, and sophisti-

cated style-integrations where the style-weights are the solution of an optimization

problem. Echoing the portfolio allocation literature, the EWI strategy has proven

very resilient vis-à-vis optimized integrations because it does not suffer from esti-

mation risk.

This paper designs an optimized style-integration that incorporates Bayesian prin-

ciples into a mean-variance framework to account for uncertainty in parameter

estimation. Specifically, it maps the investor’s prior beliefs and available infor-

mation about the relative performance of the standalone styles onto priors on the

commodity return mean and covariance parameters.

Using data on a cross-section of 28 commodities from January 1992 to December
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Figure 2.4: Performance of integrated strategies using recursive sample

(a) Sharpe ratio

(b) Mean return

(c) Volatility

This figure plots the cumulative Sharpe ratio, mean excess return and volatility of the
style-integrated portfolios with style-weights estimated at each month-end using recur-
sive windows. The strategies are equal-weights integration (EWI), and optimized in-
tegrations (OIs) formed according to mean-variance utility maximization (MV), mean-
variance with shrinkage maximization (MVshrinkage), variance minimization (MinVar),
style-volatility timing (StyleVol), diversification ratio maximization (MaxDiv), power
utility maximization (PowerU), maximized power utility with disappointment aversion
(PowerDA), and Bayesian optimized integration (BOI). The analysis is based on com-
modity futures data from January 1992 to December 2021.
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Figure 2.5: Performance of integrated strategies using 120 months window

(a) Sharpe ratio

(b) Mean return

(c) Volatility

This figure plots the cumulative Sharpe ratio, mean excess return and volatility of
the style-integrated portfolios with style-weights estimated at each month-end us-
ing 120-month rolling windows. The strategies are equal-weights integration (EWI),
and optimized integrations (OIs) formed according to mean-variance utility maximiza-
tion (MV), mean-variance with shrinkage maximization (MVshrinkage), variance mini-
mization (MinVar), style-volatility timing (StyleVol), diversification ratio maximization
(MaxDiv), power utility maximization (PowerU), maximized power utility with disap-
pointment aversion (PowerDA), and Bayesian optimized integration (BOI). The analysis
is based on commodity futures data from January 1992 to December 2021.
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2021, and focusing on the carry, hedging pressure, momentum, skewness and basis-

momentum styles, we confront the Bayesian optimized style-integration (BOI),

with the EWI and various optimized integrations (OIs) inspired from the portfolio

optimization literature.

The findings confirm the benefits of commodity style-integration, and reveal that

it is important to deal with estimation risk. By contrast with the sophisticated

OI portfolios, the BOI portfolio outperforms the EWI portfolio by extracting a

significantly larger premia over time and offering an appealing crash risk profile.

This finding stems from static and dynamic analyses, and survives trading costs,

various commodity scoring schemes, and longer estimation windows. We conclude

that the Bayesian approach to account for parameter uncertainty is an efficient

way to diversify across commodity risk factors for premia extraction.

2.6 Appendix

2.6.1 Mean-Variance-with-Shrinkage Style Integration

Following Ledoit and Wolf (2003), the shrinkage estimator of the commodities

covariance matrix Vt is a linear combination of the standard estimator V̂t and the

identity matrix IN

St = (1− λ)V̂t + λIN (2.6.1)

where the parameter λ ∈ (0, 1) dictates the degree of shrinkage. Let ||Z||F denote

the Frobenius norm of the N × N symmetric matrix Z with entries (zij)i,j=1,..,N
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defined as

||Z||F =

√√√√ N∑
i=1

N∑
j=1

z2ij (2.6.2)

The optimal λ minimizes the expected Frobenius norm of the difference between

the shrinkage estimator St and the true covariance matrix Vt, i.e. E(||Ŝt −Vt||F ).

Under the assumption that N is fixed and T tends to infinity, Ledoit and Wolf

(2003) prove that the optimal value λ∗ asymptotically behaves like a constant over

T . This constant, called κ, can be written as

κ =
π − ρ

γ
(2.6.3)

The optimal shrinkage parameter is given by

λ∗ = max{0,min{ κ
T
, 1}} (2.6.4)

where T is the length of the estimation window to obtain V̂t. A consistent estimator

of π is

π̂ =
N∑
i=1

N∑
j=1

π̂ij, with π̂ij =
1

T

T∑
t=1

(Rit − R̄i)(Rjt − R̄j)− σ2
ij
2

(2.6.5)

where Rit is the excess return of the ith commodity, and σ2
ij is the ijth element of

the standard covariance estimator V̂t. A consistent estimator of ρ is given by

ρ̂ =
N∑
i=1

π̂ii +
N∑
i=1

N∑
j=1,j ̸=i

η̄

2
(

√
σ2
jj

σ2
ii

v̂ii,ij +

√
σ2
ii

σ2
jj

v̂jj,ij) (2.6.6)
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where

v̂ii,ij =
1

T

T∑
t=1

{(Ri,t − R̄i)
2 − σ2

ii}{(Ri,t − R̄i)(Rj,t − R̄j)− σ2
ij} (2.6.7)

and

η̄ =
2

(N − 1)N

N−1∑
i=1

N∑
j=i+1

ηij (2.6.8)

with ηij =
σ2
ij√

σ2
iiσ

2
jj

. Finally, a consistent estimator of γ is given by

γ̂ =
N∑
i=1

N∑
j=1

(fij − σ2
ij)

2 (2.6.9)

where fij = η̄
√
σ2
iiσ

2
jj with σ2

ii (commodity variance) representing the ith diagonal

entry of V̂t.

2.6.2 Disappointment Aversion Power Utility Style-Integration

(PowerU ).

Let Rp,t,s = ΘtωtRt,s denote the excess return of the style-integrated portfolio

associated with the potential states s, and let ps ≡ pr(RP,t,s) denote the likeli-

hood of this excess return. To solve equation (2.2.14) and (2.2.17) simultaneously,

the concept of quadrature is used to approximate the certainty equivalent returns

(CER) of the style-integrated portfolio, parameterized δ, as follows

(1 + δ)1−γ =
1

K

( ∑
s:RP,t,s≤δ

psR
1−γ
P,t,s +

∑
s:RP,t,s>δ

ApsR
1−γ
P,t,s

)
(2.6.10)
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and the first-order-condition in (2.2.17) as

∑
s:RP,t,s≤δ

psR
−γ
P,t,sexp(Rt,s) +

∑
s:RP,t,s>δ

ApsR
−γ
P,t,sexp(Rt,s) = 0 (2.6.11)

Let the commodity futures excess return vector in any state s out of S possible

states be denoted as Rt,s
S
s=1 with probability weights ps

S
s = 1. Assuming that the

commodity futures excess return vector Rt ≡ (R1,t, ..., RN,t) follows a multivariate

Normal distribution: Rt ∼ MVN(µt,Vt), the vector of returns from the MVN

distribution can be sorted from low to high across the S states. The certainty

equivalent return δ∗ corresponding to the optimal weights vector ω∗
t (and style-

integrated portfolio return Θtω
∗
t ,Rt) could lie within any interval

[Θtω
∗
tRt,1, Θtω

∗
tRt,2),

[Θtω
∗
tRt,2, Θtω

∗
tRt,3),

...

[Θtω
∗
tRt,N−1, Θtω

∗
tRt,N)

where Θtω
∗
t is the N × 1 optimal allocation vector, Equation (2.2.1), and thus

R∗
P,t,s = Θtω

∗
tRt,s is the excess return of the style-integrated portfolio associated

with the potential state s. Suppose δ∗ lies within [Θtω
∗
tRt,i, Θtω

∗
tRt,i+1), then

ω∗
t is the solution of the first-order condition

∑
s:RP,t,s≤Θtω∗

t Rt,i

psR
∗−γ
P,t,sexp(Rt,s) +

∑
s:RP,t,s>Θtω∗

t Rt,i

ApsR
∗−γ
P,t,sexp(Rt,s) = 0 (2.6.12)

Equation (2.6.12) can be interpreted as the first-order condition of a maximization

problem with probabilities πi that are linked with the original portfolio return
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probabilities as

πi =
(p1, ..., pi, Api+1, ..., ApN)

(p1 + ...+ pi) + A(pi+1 + ...+ pN)
(2.6.13)

The certainty equivalent return δ∗ can thus be written as

δ∗ =
( N∑

s=1

(R∗
P,t,s)

1−γπis

)
(2.6.14)

The algorithm of bisection search can be used to find the optimal style-weight

vector as follows:

1. Start with a guess of state i (for example, a value of 0.001 for the style-integrated

portfolio return). Solve ω∗
t by equation (2.6.13).

2. Compute the CER of the style-integrated portfolio δ∗ by equation (2.6.14).

3. If δ∗ ∈ [Θtω
∗
tRt,i, Θtω

∗
tRt,i+1) then ω∗ is the optimal style-weight vector at

time t and the algorithm ends. If δ∗ is instead larger (smaller) than the above

upper (lower) bound, we go back to step 1 and search within the upper (lower)

half of the state space, and so on.

2.6.3 Bayesian Style Optimal Integration Implementation

Let the random variable Rt denote the N × 1 vector of commodity future ex-

cess returns with mean vector µt and covariance matrix Vt. Investors can form

objective-based priors for µt as µt ∼ N(γVΘωt,0, σ
2
ρ(

1
s2
Vt)) where N(.) is the Gaus-

sian density, and VΘ is a direct function of Vt given by VΘ = (Θ′
t)

−1(Θ′
tVtΘt)

with Θt the commodity score matrix in Equation (2.2.1). Thus, the prior for µt is

determined by the equal style-weight scheme ωt,0 = 1/K and inverse Wishart dis-

tribution Vt ∼ IW (Λ−1
0 ) where the scale matrix Λ0 is usually the identity matrix.

As it is seldom possible to obtain a closed-form expression for the posterior den-
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sity of the parameters (leaving aside the special case where the posterior and prior

densities are in the same parametric family of densities) we utility the Markov

Chain Monte Carlo (MCMC) method to approximate the posterior distribution

by simulation. The investor obtains the posterior distribution pr(µt,Vt|Ft). The

method unfolds in three steps: (1) Using a Markov chain generate M + M0 se-

quences of commodity excess returns {Rt−(L−1), ...,Rt−1,Rt}Mm=1 from the priors;

we use M = 10, 000 and M0 = 2, 000; (2) discard the first M0 “burn-in” samples

to ensure the Markov chain has converged; (3) use the remaining M return sam-

ples to obtain the mean and covariance parameters that approximate the posterior

distribution, namely, (µt,Vt)M .

These steps can be directly performed using the PyMC3 package of Python. After

setting the priors of µt and Vt, and the observed commodity future returns from

t − 60 to t as input, {Rt−(L−1), ...,Rt−1,Rt}, the package generates the posterior

density (µt,Vt)M using the MCMC algorithm known as Gibbs sampling. This

posterior is then used to solve the mean-variance optimization problem, Equation

(2.2.3), to derive the BOI style-weights ωBOI
t .
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Table 2.2: Performance of Individual Commodity Styles

Basis HP Momentum Skewness Basis-Mom

Panel A: Static portfolio evaluation
Mean 0.043 0.036 0.044 0.047 0.051

(3.030) (2.784) (3.001) (3.343) (3.757)
StDev 0.081 0.078 0.088 0.072 0.077
Semi-deviation 0.221 0.224 0.247 0.192 0.216
Skewness 0.270 0.076 -0.081 0.091 -0.211
Skewtest 2.097 0.597 -0.636 0.720 -1.648
Kurtosis 0.448 0.436 0.519 0.284 1.513
Kurttest 1.664 1.631 1.855 1.183 3.823
JB test 0.025 0.203 0.109 0.426 0.000
AR1 -0.011 -0.023 0.040 0.044 0.042
Max Drawdown -0.248 -0.140 -0.189 -0.209 -0.259
99% VaR -0.051 -0.049 -0.055 -0.044 -0.047
Sharpe ratio 0.563 0.495 0.533 0.680 0.689
Sortino ratio 0.943 0.788 0.869 1.160 1.124
Omega ratio 1.533 1.440 1.488 1.663 1.696

Panel B: Dynamic Sharpe ratio (style ranking)
Jan 1992 - Dec 1997 0.468(5) 0.476(4) 0.876(3) 1.178(1) 0.892(2)
Jan 1998 - Dec 2003 1.256(1) 0.544(4) 0.996(2) 0.291(5) 0.937(3)
Jan 2004 - Dec 2009 0.907(1) 0.837(3) 0.393(5) 0.902(2) 0.482(4)
Jan 2010 - Dec 2015 0.324(4) 0.279(5) 0.552(3) 0.664(2) 1.012(1)
Jan 2016 - Dec 2021 -0.129(5) 0.274(3) -0.096(4) 0.440(1) 0.278(2)

This table summarizes the performance of five styles or long-short portfolios formed according to different com-
modity futures return predictors (as sorting signals): basis defined as log futures price difference between front-
and second-nearest contract, hedging pressure or net hedgers’ short positions over total positions, momentum or
past-year average return, Pearson coefficient of skewness of the commodity futures return distribution estimated
with past-year daily returns, and basis-momentum or differential momentum between front- and second-nearest
contracts. Mean and standard deviation are annualized. Panel A reports statistics over the full sample period
January 1992 to December 2021. Panel B reports Sharpe ratios over 6-year non-overlapping sub-periods and
corresponding style ranks in parenthesis with 1 denoting top risk-adjusted performance.
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Table 2.3: Dependence between Individual Commodity Investment Styles

Panel A: Pearson correlation Basis HP Momentum Skewness Basis-Mom

Basis 1.000 0.162 0.416 0.150 0.263
HP 1.000 0.240 0.071 0.124
Momentum 1.000 -0.046 0.322
Skewness 1.000 -0.146
Basis-Mom 1.000

Panel B: Spearman rank-order corr. Basis HP Momentum Skewness Basis-Mom

Basis 1.000 0.179 0.343 0.101 0.317
HP 1.000 0.173 0.090 0.029
Momentum 1.000 -0.088 0.303
Skewness 1.000 -0.124
Basis-Mom 1.000

Panel C: Kendall correlation Basis HP Momentum Skewness Basis-Mom

Basis 1.000 0.126 0.240 0.069 0.223
HP 1.000 0.120 0.062 0.021
Momentum 1.000 -0.061 0.217
Skewness 1.000 -0.086
Basis-Mom 1.000

The table reports measures of dependence between the monthly excess returns of the standalone
styles. Panel A reports the Pearson correlation (linear dependence). Panels B and C reports
the non-parametric Spearman rank-order correlation and Kendall correlation, respectively, that
capture linear and nonlinear dependence. The sample period is January 1992 to December 2021.
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Table 2.4: Performance of Integrated Commodity Styles

Optimized Style-Integrations (OI)

EWI MV MVshrinkage MinVar StyleVol MaxDiv PowerU PowerDA BOI

Panel A: Static portfolio evaluation

Mean 0.080 0.054 0.051 0.075 0.082 0.083 0.052 0.052 0.092
StDev 0.101 0.094 0.094 0.084 0.102 0.096 0.093 0.094 0.087
Semi-deviation 0.272 0.258 0.258 0.209 0.275 0.248 0.258 0.262 0.212
Max Drawdown -0.243 -0.297 -0.287 -0.158 -0.255 -0.219 -0.296 -0.296 -0.174
99% VaR -0.061 -0.058 -0.058 -0.050 -0.062 -0.057 -0.058 -0.059 -0.051
Sharpe Ratio (SR) 0.815 0.606 0.577 0.904 0.823 0.886 0.588 0.587 1.060
Sortino ratio 1.393 1.012 0.960 1.677 1.400 1.566 0.976 0.970 1.987
Omega ratio 1.900 1.599 1.563 2.041 1.918 2.023 1.576 1.574 2.309
DSR (gain versus EWI) 0.286 0.257 0.584 0.503 0.566 0.268 0.266 0.740
Ledoit-Wolf test p-value 0.883 0.931 0.222 0.383 0.128 0.902 0.901 0.005
Opdyke test p-value 0.199 0.128 0.888 0.915 0.774 0.173 0.101 0.042

Panel B: Dynamic Sharpe ratio (style ranking)

Jan 1992 - Dec 1997 1.108(7) 1.296(3) 1.107(8) 1.293(4) 1.103(9) 1.265(6) 1.278(5) 1.300(2) 1.373(1)
Jan 1998 - Dec 2003 0.999(4) 1.000(3) 0.860(8) 0.671(9) 1.002(2) 0.902(7) 0.923(6) 0.931(5) 1.005(1)
Jan 2004 - Dec 2009 1.115(2) 0.378(9) 0.464(6) 1.058(5) 1.113(3) 1.076(4) 0.411(7) 0.398(8) 1.314(1)
Jan 2010 - Dec 2015 0.979(4) 0.513(9) 0.604(6) 1.042(3) 0.977(5) 1.055(2) 0.547(8) 0.558(7) 1.180(1)
Jan 2016 - Dec 2021 0.193(5) 0.116(6) 0.089(7) 0.496(2) 0.194(4) 0.381(3) 0.081(8) 0.072(9) 0.583(1)

The table reports summary statistics for the excess returns of the equal-weight style integrated (EWI) portfolio and optimized style-integrated (OI)
portfolios with the style-weight vector determined at each portfolio rebalancing time by quadratic utility maximized weights (mean variance; MV),
mean-variance with shrinkage maximization (MVshrinkage), variance minimization (MinVar), style-volatility timing (StyleVol), diversification-ratio
maximization (MaxDiv), power utility maximization (PowerU), maximization of power utility with disappointment aversion (PowerDA), and Bayesian
optimized integration (BOI). The length of the rolling estimation window for the style-weights is 60 months and the style-integrations are based on
a matrix Θt in Equation (2.2.1) with standardized signals as commodity scores. Mean and standard deviation are annualized. The hypotheses for
the Ledoit and Wolf (2008) and Opdyke (2007) tests are H0 : SRi − SREWI ≤ 0 versus HA : SRi − SREWI > 0 where i is each of the OI strategies.
Panel A reports statistics over the full sample period January 1992 to December 2021. Panel B reports Sharpe ratios over 6-year non-overlapping
sub-periods and corresponding style-integrated portfolio ranks in parentheses.
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Table 2.5: Performance of Alternative Scoring Schemes

Optimized Style-Integrations (OI)

EWI MV MVshrinkage MinVar InvVar MaxDiv PowerU PowerDA BOI

Panel A: Binary scores

Mean 0.079 0.055 0.052 0.076 0.078 0.078 0.055 0.054 0.094
StDev 0.076 0.072 0.071 0.075 0.076 0.076 0.072 0.072 0.074
semi StDev 0.186 0.195 0.195 0.187 0.187 0.189 0.194 0.196 0.175
Max Drawdown -0.097 -0.159 -0.136 -0.115 -0.101 -0.105 -0.150 -0.151 -0.089
99% VaR -0.044 -0.044 -0.044 -0.044 -0.044 -0.045 -0.044 -0.044 -0.042
Sharpe Ratio (SR) 1.040 0.786 0.744 1.012 1.034 1.028 0.787 0.770 1.243
Sortino ratio 1.938 1.327 1.245 1.862 1.914 1.904 1.340 1.299 2.420
Omega ratio 2.196 1.798 1.741 2.145 2.184 2.173 1.808 1.793 2.555
DSR (versus EWI) -0.254 -0.296 -0.028 -0.005 -0.012 -0.253 -0.270 0.203
Ledoit-Wolf test 0.961 0.982 0.630 0.570 0.577 0.963 0.972 0.000
Opdyke test 0.130 0.072 0.839 0.963 0.924 0.130 0.103 0.045

Panel B: Standardized rankings

Mean 0.084 0.067 0.059 0.083 0.084 0.082 0.068 0.067 0.099
StDev 0.083 0.083 0.083 0.081 0.083 0.082 0.083 0.083 0.081
semi StDev 0.209 0.219 0.224 0.201 0.207 0.207 0.216 0.216 0.195
Max Drawdown -0.129 -0.197 -0.258 -0.151 -0.130 -0.169 -0.171 -0.185 -0.140
99% VaR -0.049 -0.050 -0.051 -0.047 -0.049 -0.048 -0.050 -0.050 -0.046
Sharpe Ratio (SR) 1.009 0.824 0.733 1.033 1.017 1.006 0.836 0.824 1.204
Sortino ratio 1.846 1.434 1.245 1.909 1.863 1.829 1.471 1.446 2.305
Omega ratio 2.168 1.889 1.748 2.263 2.189 2.205 1.907 1.891 2.565
DSR (versus EWI) -0.185 -0.276 0.024 0.008 -0.003 -0.173 -0.185 0.196
Ledoit-Wolf test 0.919 0.984 0.375 0.385 0.516 0.910 0.922 0.000
Opdyke test 0.252 0.073 0.860 0.945 0.979 0.281 0.243 0.037

Panel C: Winsorized signals

Mean 0.072 0.061 0.052 0.074 0.072 0.072 0.062 0.061 0.086
StDev 0.075 0.077 0.076 0.074 0.075 0.074 0.076 0.077 0.074
semi StDev 0.186 0.201 0.205 0.182 0.185 0.183 0.199 0.200 0.174
Max Drawdown -0.167 -0.170 -0.171 -0.162 -0.162 -0.171 -0.173 -0.171 -0.151
99% VaR -0.044 -0.046 -0.047 -0.044 -0.044 -0.044 -0.046 -0.046 -0.042
Sharpe Ratio (SR) 0.961 0.812 0.701 1.003 0.974 0.976 0.823 0.811 1.166
Sortino ratio 1.776 1.420 1.192 1.855 1.803 1.809 1.445 1.423 2.258
Omega ratio 2.078 1.854 1.694 2.178 2.109 2.130 1.862 1.846 2.439
DSR (versus EWI) -0.149 -0.260 0.042 0.013 0.015 -0.138 -0.150 0.205
Ledoit-Wolf test 0.881 0.978 0.252 0.261 0.383 0.875 0.889 0.000
Opdyke test 0.323 0.072 0.735 0.904 0.902 0.357 0.311 0.019

The table summarizes the excess returns of the nine style-integrated portfolios based on a score matrix Θt in Equation
(2.2.1) with binary entries (-1,+1) in Panel A, standardized rankings in Panel B and cross-sectionally winsorized signals
in Panel C. The length of rolling windows for the style-weight estimation is 60 months. Mean and standard deviation
are annualized. p-values are reported for the Ledoit and Wolf (2008) and Opdyke (2007) tests H0 : SRi − SREWI ≤ 0
versus HA : SRi −SREWI > 0 where i denotes an OI strategy. The sample period is January 1992 to December 2021.
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Chapter 3

On the Information Content of

Media Tone in Commodity

Futures Markets: What does it

tell us?

3.1 Introduction

The asset pricing role of investor sentiment has been the subject of a burgeoning

literature. Advances in data science in the recent decade have opened the possibil-

ity to access novel data sources such as newspaper articles, internet search queries,

and posts on social media to characterize the information environment and its

impact on financial markets. In a seminal paper, Tetlock (2007) provides evidence

that media tone obtained from an automated content analysis to the Wall Street

Journal (WSJ) Abreast of the market column predicts U.S. stock price changes.

Specifically, pessimistic tone is associated with subsequent falling market prices

and a reversal to fundamentals. If the column reveals new information then a
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complete reversal should not be observed. If the column contains stale informa-

tion then media pessimism should not be able to predict falling prices. On this

basis, Tetlock argues that negative media tone acts as a proxy for investors’ mind-

set or sentiment that contains pricing information over and above fundamentals.

Subsequent studies have also mainly focused on equities as the main asset class.

Commodities provide three benefits to investors’ portfolios of stocks and bonds:

protection against inflation, diversification and sizeable risk premia. In fact, with

the development of commodity futures indexes and investment vehicles that bench-

mark against these indices, commodities have evolved as an asset class since the

1990s. Seeking to understand whether and how commodity prices respond to the

tone of commodity-related news can not only be fruitful towards designing new

trading strategies, or refining traditional allocations, that may capture larger risk

premia, but it can also provide asset pricing insights in commodity futures markets.

The goal of this paper is to quantify the role of commodity media tone in com-

modity markets. For this purpose, the paper adopts a purely statistical (predictive

regressions) framework, an economic (tactical portfolio allocation) framework, and

an asset pricing framework.

Through textual analysis algorithms applied to news articles, we begin by con-

structing a media-tone signal for each commodity and aggregate it into a media-

tone index as proxy for overall market sentiment. This commodity sentiment index

is highly positively correlated with widely-used sentiment proxies in the finance

literature such as the VIX, Baker and Wurgler (2006) sentiment index, and the

Michigan Consumer Sentiment Index.

Predictive regressions in a panel setting using the commodity-specific media tone

signals, and in a time-series framework using the aggregate commodity market

media-tone both reveal that media tone has predictive content for commodity

price movements. Expanding this regression framework to accommodate nonlin-
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earities, we document that pessimistic media tone has stronger predictive content

than optimistic media-tone. Consistent with this finding, the results further sug-

gest that the predictive ability of media tone exacerbates during crisis stages of

the business cycle. These findings are relevant for investors’ market timing.

Third, we find that embedding commodity-specific media tone in traditional tac-

tical allocations such as, for instance, those carried out according to roll-yield and

hedging pressure signals enables portfolios with more favourable reward-to-risk

profiles. In addition to these significant larger premia captured by media tone-

adjusted long-short portfolios, time-series and cross-sectional tests confirm that

there is pricing ability in media tone beyond compensation for exposure to tra-

ditional commodity risk factors. The pricing findings lend support to traditional

theories while not ruling out the presence of investors’ behavioural biases.

The paper expands a sparse literature on the role of investors’ psychology in com-

modity markets. A few papers use internet search volume as a proxy for the de-

mand of information revealing investor attention or fear (Fernandez-Perez et al.,

2020; Han et al., 2017a; Han et al., 2017b; Vozlyublennaia, 2014). Gao and Süss

(2015) studies the role on commodity prices of market sentiment proxies such as

the CBOE’s volatility index (VIX) also know as “fear gauge” or “gear index” and

the Baker and Wurgler (2006) sentiment index. We instead construct a sentiment

proxy from commodity media tone and study if it can predict commodity returns.

The paper speaks to a rapidly growing literature that applies textual analysis to

news articles or internet posts in social media to quantify the information en-

vironment and investigates its relation with financial markets in order to test

behavioural finance theories. De Long et al. (1990) formulate a model where

noise traders driven by investor sentiment coexist with rational investors. Their

model suggests that pessimistic sentiment temporarily influences stock prices. Tet-

lock (2007) hypothesizes that newspapers tone can proxy investor sentiment and
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3.2. DATA AND MEDIA-TONE MEASURE

provides supportive evidence to suggest specifically that the WSJ Abreast of the

market column reveals traders’ moods and expectations which are channeled into

prices via trading activity. In the words of Tetlock (2015) “even when there is no

causal channel, media content can be a useful window into investors and managers’

beliefs.” Subsequent studies have documented that investor sentiment proxied by

the linguistic content of media reports or internet postings on social networks

has predictive content for stock market activity (e.g., Garcia, 2013; Bollen et al.,

2011; Karabulut, 2013). We expand this literature by focusing our analysis on

commodity media tone. Our finding that pessimistic media-tone on commodities

has stronger predictive ability than optimistic tone is consistent with prospect (or

loss-aversion) theory and echoes a parallel literature which contends that negative

information has a stronger psychological impact and is more thoroughly processed

by individuals than positive information (e.g., Baumeister et al., 2001; Rozin and

Royzman, 2001).

The remainder of the paper is organized as follows. Section 2 presents the data and

our media tone measures. Section 3 explores the explanation power of the media

tone measures. Section 4 contains the in-sample predictive regression analysis and

robustness checks. Section 5 shows the out-of-sample test. Section 6 explains the

sources of predictability contained in our media tone measures. A final section

concludes.

3.2 Data and Media-Tone Measure

3.2.1 Commodities Sample

This research employs data on a cross-section of 28 commodity futures contracts

comprising 17 agricultural (4 cereal grains, 4 oilseeds, 4 meats, 5 miscellaneous

other softs), 6 energy, and 5 metals (1 base, 4 precious). For each of the com-
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3.2. DATA AND MEDIA-TONE MEASURE

modities, end-of-day futures settlement prices and daily dollar trading volume are

obtained from Refinitiv Datastream, and open interest data from the Commitment

of Traders Report of the Commodity Futures Trading Commission. The observa-

tions are sampled at the weekly frequency from January 1, 2000 to July 31, 2019.

Excess returns are calculated as ln(F T1
i,t /F

T1
i,t−1).

3.2.2 Data from Ravenpack

The paper employs sentiment scores for commodity articles (or “news events”)

published in the following financial newspapers/magazines: Dow Jones Financial

Wires, Wall Street Journal, Barron’s and Marketwatch. The article-specific event

sentiment scores (ESS) are constructed by the data analytics provider Ravenpack

using textual analysis algorithms. A comprehensive sample of ESS data is obtained

from the Wharton Research Data Services (WRDS) Ravenpack section. The sen-

timent of each news article is encapsulated in its ESS ranging between 0 and 100;

a value of 50 means neutral sentiment, values above 50 are given to articles with

the overall positive (or optimistic) sentiment, and values below 50 represent neg-

ative sentiment. Table 3.1 is an example of the dataset: The news is recorded in

Table 3.1: Ravenpack Dataset Example

RP ENTITY ID ENTITY TYPE ENTITY NAME POSITION NAME RELEVANCE ESS AES AEV ENS ENS SIMILARITY GAP RPNA DATE UTC RPNA TIME UTC TIMESTAMP UTC
120B6A CMDT Rough Rice 100 50 43 79 18 0.05951 20190801 32:30.7 32:30.7
120B6A CMDT Rough Rice 33 43 79 20190801 07:44.6 07:44.6
120B6A CMDT Rough Rice 12 43 79 20190801 35:57.6 35:57.6
120B6A CMDT Rough Rice 14 43 79 20190801 16:10.1 16:10.1
120B6A CMDT Rough Rice 100 50 43 79 13 0.23396 20190801 09:24.8 09:24.8
120B6A CMDT Rough Rice 100 50 43 79 10 0.03128 20190801 54:27.7 54:27.7

milliseconds. Our data sample starts from Jan 01, 2000 which is the earliest date

that can be tracked in Ravenpack to July 31, 2019. We extract from RavenPack

the following variables.

• ENTITY NAME indicates the name of a certain commodity product.

• Event Sentiment Score (ESS) is a value ranging from 0 (negative) to 100
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(positive) where 50 represents an article with a neutral tone. It is available

for each article that measures the media tone of a given commodity.

• Relevance is an index provided by RavenPack that indicates the relevance

of a news article to a given commodity product. This takes values ranging

from 0 (least relevant) to 100 (most relevant). If the type of the article

can be identified and the commodity product plays an important role in the

main context of the story – e.g. the price of this product is rising – then

the Relevance score is 100. If the commodity is mentioned but plays an

unimportant role, then it gets a low Relevance score.

• ENS is the event novelty score which represents how novel a story is within

the 24-hour time window. Any two stories that match the same event for

the same entities will be considered similar according to ENS.

• RP STORY EVENT COUNT represents the total entity records published

by RavenPack per news story. It works as a proxy for media coverage.

We will use the above-mentioned variables to build up our media-tone measure.

von Beschwitz et al. (2020) verify the appropriateness of the threshold by ex-

amining the response of stock prices to articles with different relevance scores.

RavenPack recommends “filtering for Relevance greater than or equal to 90 as this

helps reduce noise in the signal.” Thus, in this study, we focus on news that has

RELEV ANCE score higher than 90.

3.2.3 Commodity-specific Media Tone Equation

As in Borovkova (2015), the paper assumes that the impact of media tone or

sentiment on commodity prices decays with the staleness of the news1. Accord-

1Tetlock (2011) also establishes in equity markets that the extent of the investor reaction to
media tone decreases with the staleness of the news.
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ingly, an exponentially weighted average of daily ESSs is used to calculate a novel

commodity-specific sentiment score. Let i denote the commodity at hand and t the

sample week; In this paper, without loss of generality t denotes the Monday of each

week. Suppose that as of the Monday of week t the ith commodity has received re-

cent (past 7 days) coverage by articles published, respectively, on the Monday, and

on the preceding Sunday and Friday. The media-tone score 0 ≤ MedTonei,t ≤ 100

is calculated as follows

MedTonei,t =
0.90 ∗ ESSMon,i + 0.91 ∗ ESSSun,i + 0.93 ∗ ESSFri,i

0.90 + 0.91 + 0.93
(3.2.1)

where ESSMon,i is the sentiment score for the specific article about the ith com-

modity published on Monday, and so forth; and 0.9 is the decay factor adopted

by Borovkova (2015). Among various robustness checks, the authors consider an

alternative media-tone score defined as an equally-weighted average of the ESSs.

Table 3.2 presents summary statistics for the commodity futures excess returns

and media tone (mean, standard deviation, first-order autocorrelation, and Ljung-

Box test statistic for the null hypothesis that the first four autocorrelations are

jointly zero). Weekly excess returns show little evidence of predictability based

on sample autocorrelations; the Ljung-Box test is only able to reject the null

hypothesis of no autocorrelation up to order 4 for live cattle, cocoa, coffee and

gasoline RBOB. The weekly MedTone signal, as defined in Equation (3.2.1), shows

variability over time and although more highly autocorrelated than the excess

returns, the null hypothesis of zero autocorrelation up to week four is also generally

not rejected.
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3.2. DATA AND MEDIA-TONE MEASURE

3.2.4 Commodity Media Tone Index

Next the commodity media tone scores are aggregated into an index that proxies

commodity investor sentiment, −1 ≤ Sentimentt ≤ 1, by weighing more heavily

the sentiment scores of those commodities that have tended to receive greater

media attention. Formally, the commodity investor sentiment index is obtained as

follows

Sentimentt =
1/N

∑N
i=1 coveragei,t ∗Medi,t − 50

50
(3.2.2)

with the loading coveragei,t defined as the average number of news articles pub-

lished on the ith commodity within the most recent 4-week window reflecting the

commodity-specific trend in the intensity of news as a proxy for investor attention.

Thus, the market Media-Tone Index for week t is defined as a weighted average of

Medi,t using coveragei,t as weights. Figure 3.1 shows a comparison between the

monthly market media tone index, Baker and Wurgler Sentiment Index (BW sen-

timent index hereafter) and the SP-GSCI commodity market index levels which is

a proxy for the commodity futures market as a whole. Compare with the BW sen-

timent index, our constructed media tone index fits the fluctuations of the market

index much better.

Reassuringly, the commodity media tone index thus constructed is positively

correlated with widely-used sentiment measures in the empirical finance litera-

ture such as the VIX, Baker and Wurgler (2006) sentiment index, and Michigan

Consumer Sentiment Index at -0.0062, 0.2171 and 0.3745, respectively. Table 3.3

reports the correlation coefficients.
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3.3. METHODOLOGY

Figure 3.1: A Plot of Media-Tone Index and Commodity Market Index Levels

This figure illustrates the Media Tone index, CBOE’s VIX index, Baker and Wurgler
Sentiment Index, Michigan Consumer Sentiment Index, and the S&P-GSCI Commodity
Market Index over the sample period from January 2000 to July 2019. All indices are
in monthly frequency and are re-scaled between -1 to 1.

3.3 Methodology

3.3.1 Predictive Ability of Media Tone Index for Commod-

ity Market Movements

We begin by assessing the predictive ability of media tone for commodity futures

returns through the following two-way fixed effects panel regression model:

ri,t+1 = ηi + µt + γMedTonei,t + θZi,t + ϵi,t+1 (3.3.1)

where ri,t+1 denotes the excess return of the ith commodity futures contract on

week t + 1, the coefficients ηi (fixed effects) capture unobserved heterogeneity
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3.3. METHODOLOGY

Table 3.3: Correlations between Media Tone Index and Other Sentiment Indices

MedTone ∆VIX BW MSCI
MedTone 1.000 0.016 0.251 0.367
∆VIX 1.000 0.054 0.052
BW 1.000 0.316
MSCI 1.000

among commodity futures contracts, µt accommodates also unobserved time ef-

fects that are common to all contracts, MedTonei,t is the commodity media tone

or sentiment score for the ith commodity measured on week t (Monday), and

the control vector Zi,t contains 9 commodity futures characteristics employed in

the commodity futures markets literature as predictive signals for subsequent re-

turns. Using the taxonomy in Fernandez-Perez et al. (2020), these characteristics

are classified as related to fundamentals (roll yield, momentum, hedging pressure,

convexity), tail risk (skewness, 1%VaR, and 99%VaR) and volatility/illiquidity

(basis-momentum and illiquidity) as control variables; the sorting signals and back-

ground references are provided in Table 3.4. The null hypothesis that media tone

has no predictive ability, H0 : γ = 0, is tested with a t-statistic based on White

Period standard errors that accommodate arbitrary heteroscedasticity and within

cross-section serial correlation. Towards a more complete assessment of the pre-

dictive role of media tone, the following time-series regression is estimated for the

commodity market as a whole:

rMKT
t+1 = α + γSentimentt + θSt + ϵt+1 (3.3.2)

where rMKT
t+1 is the cumulative excess return from the entire commodity market

as proxied by the SP GSCI index. Sentimentt is the week t commodity investor

sentiment index as defined in Equation (3.2.2), and the control vector St contains

the VIX, the Baker and Wurgler (2006) investor sentiment index and the Michi-
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3.3. METHODOLOGY

Table 3.4: Sorting Signals and Background References

Panel A: Long-only portfolio

Equally-weighted weekly rebalanced portfolio of all commodities AV Gt =
1
N

∑N
i=1 ri,t All commodities Observations at time t Erb and Harvey (2006), Gor-

ton and Rouwenhorst (2006),
Bakshi2019

Panel B: Long-short portfolios
Basis Roll yield or basis defined as difference in log

prices of the nearest and second-nearest futures
contracts with maturity time T1 and T2, respec-
tively

ln(F T1
i,t )− ln(F T2

i,t ) Higher signal Observations at time t Gorton et al. (2013), Szy-
manowska et al. (2014), Bakshi
et al. (2019), Koijen et al. (2018)

Momentum Average weekly excess return of the commodity
over the past year (W = number of weeks within
the past year)

1
W

∑W−1
w=0 ri,t−w Higher signal Observations in the 52 weeks

preceeding t
Erb and Harvey (2006), Miffre and
Rallis (2007), Bakshi et al. (2019)

Hedging pressure Standardized weekly net open interest of hedgers
(short positions minus long positions over total
positions) on average over the past year

1
W

∑W−1
w=0

Hshort
i,t−w−Hlong

i,t−w

Hshort
i,t−w+Hlong

i,t−w

Higher signal Observations in the 52 weeks
preceeding t

Basu and Miffre (2013), Bianchi et
al. (2015)

Convexity Difference between front and further-into-the-
curve basis scaled by the maturity time difference

ln(FT1
i,t )−ln(FT2

i,t )

T2−T1
− ln(FT2

i,t )−ln(FT3
i,t )

T3−T2
Higher signal Observations at time t Gu et al. (2019)

Skewness Cefficient of skewness for distribution of daily re-
turns over past year (D = number of trading days
within the previous year)

∑D
d=1(ri,d−µi)

3

D
Lower signal D = Number of days in the

year preceeding t
Fernandez-Perez et al. (2018)

VaR1 1st percentile of the distribution of daily returns
within the past year (d = 1, . . . , D)

ri(1)|P (ri,d > ri(1) = 99%) Lower signal Daily observations in the
year preceeding t

Atilgan et al. (2019)

VaR99 99th percentile of the distribution of daily returns
within the past year (d = 1, . . . , D)

ri(99)|P (ri,d > ri(99) = 1%) Lower signal Daily observations in the
year preceeding t

Atilgan et al. (2019)

Basis momentum Difference in momentum of front contract and sec-
ond nearest contract

MomT1
i,t −MomT2

i,t Higher signal Observations in the 52 weeks
preceeding t

Boons and Prado (2019)

Liquidity Daily price change per dollar volume on average
over the past D2 days (D2 = number of trading
days in the 2 months preceding t)

1
D

∑D2−1
j=0

|ri,t−j |
$V olumei,t−j

Higher signal D = Number of days in the
2 months preceeding t

Amihud (2002)

gan Consumer confidence index which are widely-used proxies of market sentiment

in the literature. The null hypothesis is that sentiment has no predictive ability

(γ = 0) for the dynamics of the commodity market, in which case Equation (3.3.2)

reduces to the constant expected return model (rMKT
t+1 = α + ϵt+1). The first-

order autocorrelation coefficient or correlation between the current week and the

prior week’s value of prediction (returns) is 0.01 and that of the predictor is 0.47.

The no-predictive-ability hypothesis is assessed via t-tests with Newey-West h.a.c

standard errors and, as in Huang et al. (2015) by means of the wild bootstrapped

empirical p-value that accounts for general forms of the return distribution. Pro-

cedures of bootstrapped empirical p-value are shown in Appendix 3.8.2. Since the

BW and Michigan Consumer Sentiment index observations available are month-

end, Equation (3.3.2) is estimated at a monthly frequency. For this purpose, the

weekly sentiment indices obtained as in Equation (3.2.2) for weeks one to four on

each month-end are aggregated into an end-of-month sentiment index using an
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3.3. METHODOLOGY

exponential-decay weighted average,

Sentimentt,month =
0.90 ∗ Sentimentt + ...+ 0.93 ∗ Sentimentt−3

0.90 + ...+ 0.93

3.3.2 Extensions of Predictability Analysis: General Forms

of Asymmetry

The predictive regression tests based on Equations (3.3.1) and (3.3.2) are refined

in two directions to study asymmetries in the impact of investor sentiment on

commodity futures prices. First, the predictive ability of positive and negative

media tone is gauged by generalizing Equations (3.3.1) and (3.3.2) as

ri,t+1 = ηi + µt + γ+MedTonei,t × I+t + γ−MedTonei,t × (1− I+t ) + γZi,t + ϵi,t+1

(3.3.3a)

rMKT
t+1 = α + γ+Sentimentt × I+t + γ−Sentimentt × (1− I+t ) + θSt + ϵt+1

(3.3.3b)

where I+t is an indicator function equal to 1 if the sentiment index, Equation

(3.2.2), is positive and 0 else. Second, as in Rapach et al. (2010), the Bai and Perron

(1998) test for structural breaks is deployed in the context of Equations (3.3.1)

and (3.3.2) to investigate whether there are changes over time in the predictive

ability of sentiment.

3.3.3 OOS Predictive Ability of Media Tone Index for Com-

modity Market Movements

In order to shield the preceding analyses from the potential criticism of look-ahead-

bias or the problem that in-sample predictability does not necessarily translate into
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3.3. METHODOLOGY

predictability in real time (e.g. Goyal and Welch (2008) the paper provides an out-

of-sample predictive analysis. For this purpose, the panel fixed effect model, Equa-

tion (3.3.1), and time-series model, Equation (3.3.2), are estimated sequentially

over rolling windows of fixed size T0 weeks. This approach facilitates a sequence

of one-step-ahead OOS forecasts, each of them is conditional on the sentiment

prevailing on the last week of the rolling window; namely

r̂i,t+1 = η̂i + µ̂t + γ̂MedTonei,t, i = 1, ..., N (3.3.4a)

r̂MKT
t+1 = α̂ + γ̂Sentimentt (3.3.4b)

respectively for Equation (3.3.1) and (3.3.2). They also compute the historical

average return over each rolling window r̄i,t+1 and r̄MKT
t+1 which represents the

prediction from the constant expected return model. Thus they compute the OOS

predictability measure of Campbell and Thompson (2008)

R2
OOS = 1−

∑N
i=1

∑T
t=T0

(ri,t+1 − r̂i,t+1)
2∑N

i=1

∑T
t=T0

(ri,t+1 − r̄i,t+1)2
(3.3.5a)

R2
OOS = 1−

∑T
t=T0

(rMKT
t+1 − r̂MKT

t+1 )2∑T
t=T0

(rMKT
t+1 − r̄MKT

t+1 )2
(3.3.5b)

giving the proportional reduction in mean squared error that a predictive model

attains versus the historical average benchmark. The initial estimation window

contains 260 weeks (T0) and thus R2
OOS is based on 1022 forecasts (T1 = T − T0).

For completeness, the authors also provide a comparative analysis of the OOS

predictive power of different commodity characteristics, R2
OOS,j where j denotes

either the commodity-specific media tone scores, or either of the traditional com-

modity characteristics (roll-yield, momentum, hedging pressure, convexity, skew-

ness, VaR1, VaR99, basis-momentum and illiquidity). A pooled regression for all

i = 1, .., N commodities with a predictive horizon of one week (h = 1) is estimated
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3.3. METHODOLOGY

sequentially over rolling windows of fixed size T0 weeks. This approach facilitates

a sequence of one-step-ahead OOS forecasts, each of them obtained conditionally

on the commodity characteristic measured on the last week of the rolling win-

dow, e.g. r̂i,t+1 = µ̂+ γ̂MedTonei,t for the media tone scores and likewise for the

other commodity characteristics. The size of the initial estimation window is as

indicated above, 260 weeks (T0) and thus R2
OOS,j summarizes a total of T1 × N

forecasts (T1 = T − T0 = 1022 and N = 26). A similar OOS forecasting exercise

is computed for each of the alternative commodity characteristics.

3.3.4 Long-short Sentiment Portfolios

The paper further assesses whether it is possible to exploit media tone to generate

economic value from a portfolio perspective. For this purpose, the paper begins by

deploying a novel portfolio strategy using the media tone scores per commodity,

Equation (3.2.1), as sorting signal θi,t ≡ Medi,t on the Monday of each sample week

t. Accordingly, the commodity futures contracts are grouped into quintiles and a

long-short media tone portfolio is formed where long (short) positions are taking

on the commodity futures contracts in the top (bottom) quintile Q1 (Q5) which

are those with the most positive (negative) media-tone scores. The commodities

in the long and short legs of the portfolios are equally weighted and the investor is

fully invested; that is, the final allocation weights are θ̃i,k,t = θi,k,t
∑Ñ

i=1 |θi,k,t| such

that
∑Ñ

i |̃θi,k,t| = 1 with θi,k,t = 1, and Ñ = 2
5
N and

∑L
i θ̃i,k,t =

∑S
i |θ̃i,k,t| = 0.5.

The long-short portfolios are held for one week on a fully-collateralized basis; thus

the excess returns are given by half the longs returns minus half the shorts return

(Q1/2-Q2/2).

The intuition is that the optimistic (pessimistic) news tone may have a short-

term demand effect that will exert an upward (downward) pressure on prices so

a short-term price increase is expected in the commodity futures contracts of Q1
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3.3. METHODOLOGY

(Q5). This intuition is aligned with the findings in Borovkova (2015) and Gao

and Süss (2015) which suggest that adverse sentiment predicts lower commodity

futures returns.

The performance of the sentiment portfolio is appraised in the context of a

battery of benchmarks as in Fernandez-Perez et al. (2020). A long-only equally-

weighted and weekly-rebalanced portfolio of all commodities (AVG) are considered

as broad commodity market factors (Bakshi et al., 2019; Erb and Harvey, 2016;

Gorton and Rouwenhorst, 2006). Additional risk factors are the excess returns of

long-short portfolios inspired by the fundamentals of backwardation and contango;

specifically, backwardated commodities with high roll-yield (Bakshi et al., 2019;

Erb and Harvey, 2016; Gorton and Rouwenhorst, 2006), high past average returns

(Bakshi et al., 2019; Erb and Harvey, 2016; Miffre and Rallis, 2007), high net-short

hedging (Basu and Miffre, 2013; Bianchi et al., 2015; Kang et al., 2020) or a convex

price curve (Gu et al., 2019) are expected to outperform contangoed commodities

with opposite values of the aforementioned characteristics. It is also possible to

motivate tail risk factors constructed as the returns of long-short portfolios sorted

by skewness (Fernandez-Perez et al., 2018), 1% and 99% Value-at-Risk, hereafter

denoted as VaR1 and VaR99 (Atilgan et al., 2019; Bali et al., 20092) . Finally, the

excess returns of the sentiment portfolio could relate to liquidity and volatility risks

factors obtained as the returns of long-short portfolios where the sorting signal

is the basis-momentum of Boons and Prado (2019) and the illiquidity measure

suggested by Amihud (2002).

2As dictated by rational asset pricing theory, higher risk is associated with higher expected
returns. Thus the skewness and VaR1 factors are constructed as the returns of portfolios with long
positions in the futures contracts with the most negative skewness and VaR1 signals (see Table
3.4). Since investors have preferences for lottery type assets, the VaR99 factor is constructed as
the returns of a portfolio with long (short) positions in futures contracts with the least (most)
positive VaR99 signal.
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3.3.5 Sentiment-adjusted Tactical Allocations

The next task is to embed the media tone information into extant tactical al-

location strategies which rely on the commodity futures characteristics (sorting

signals) listed in Table 3.4.

This paper’s novel idea is to adjust the sorting signals to incorporate the infor-

mation content of media tone. For example, if commodity i has a highly positive

roll-yield (i.e., it is a good candidate for the long leg of the carry portfolio) the

adjusted roll-yield signal is higher (lower) if the media tone score is extremely pos-

itive (negative), making it a more (less) attractive candidate for the long portfolio

than otherwise it would have been. Vice versa, if commodity i has a relatively low

(negative) roll-yield and is therefore a good candidate for the short leg of the carry

portfolio, the adjusted roll-yield signal makes it a more (less) attractive candidate

for the short portfolio if the media tone score is extremely negative (positive). The

adjusted signals x∗
i,t are derived from the original signals xi,t as follows

x∗
i,t =

xi,t + 1{MedTonei,t∈D10} − 1{MedTonei,t∈D1}∣∣∣∑N
i=1 xi,t−1 + 1{MedTonei,t−1∈D10} − 1{MedTonei,t∈D1}

∣∣∣ (3.3.6)

where 1{MedTonei,t∈D10} and 1{MedTonei,t∈D1} are indicator functions equal to 1 if the

ith commodity is in the 10th and 1st decile, respectively, of the commodities sorted

by MedTonei,t in ascending order. The baseline long-short portfolio essentially

uses xi,t/
∑N

i=1 xi,t−1 as sorting signals whereas the adjusted long-short term struc-

ture portfolio uses x∗
i,t as sorting signal; the adjusted portfolios strategy proceeds

otherwise (equal-weighting allocation scheme θ̃i,k,t = 1/Ñ , full-collateralization

and one-week holding period) as described earlier.
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3.4 Empirical Results

3.4.1 Predictive Ability of Media Tone Index

The statistical tests based on the 2-way panel fixed effects regressions reported

in Table 3.5 reveal that the coefficient of the one-week-lagged commodity-specific

media tone score, γ in Equation (3.3.1), is significant and positive in the base

model, and after controlling for fundamental (roll yield, momentum, hedging pres-

sure, and convexity), tail-risk (skewness, VaR1, and Var99) and liquidity signals

(basis-momentum, and Amihud measure). The positive coefficient suggests that

an optimistic media tone exerts a short term upward effect on the commodity

futures prices. This in-sample predictability of commodity-specific media tone is

confirmed by the results in Table 3.6 which reveal that the news sentiment index,

Equation (3.2.2), can significantly anticipate short term changes in the SP-GSCI

index after controlling for other widely-used measures of broader market senti-

ment. Specifically, the in-sample predictive ability (Adj.-R2) of the baseline model

with the news sentiment index at 3.70% only increases slightly when the model

also incorporates either the BW index (4.60%) or the Michigan Consumer Con-

fidence Index (4.90%). The second row in Panel B shows that out-of-sample the

predictive ability of the news sentiment index at 3.28% is greater than that of the

BW index (1.54%) and Michigan index (1.31%).

As regards the out-of-sample predictive ability, as shown in Panel B of Table

3.5, the R2
OOS in a model with media tone as a single predictor at 10.43% is in many

cases similar to the R2
OOS in the same model augmented with one other commod-

ity characteristic ranging from 11.20% (base model augmented with skewness) to

15.35% (basis-momentum). The last row reports the R2
OOS of the different single-

predictor models. The last two columns reveal that the out-of-sample predictive

ability of the full model can be increased by about 10.92% by adding the media
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3.4. EMPIRICAL RESULTS

tone predictor. Table 3.6 reports the R2
OOS for the SP-GSCI index which indicates

that the predictive ability of the commodity investor sentiment measure proposed

in the paper is superior to that of widely-used sentiment measures which are more

general as opposed to specific to the commodity market.

The analysis of asymmetries adduces more pervasive evidence (across different

horizons) of predictability when the sentiment index reveals pessimism than when

it reveals optimism. A structural break test applied to Equation (3.3.2) reveals

two breaks and accordingly, three sub-periods of media-tone predictive ability: pre-

crisis from January 1, 2000 to February 23, 2008, crisis from February 24, 2008 to

November 18, 2012, and the post-crisis period from November 19, 2012 to July 31,

2019. The predictive ability of media tone in commodity markets is highest during

the crisis period which aligns with the notion of wake-up calls namely, commodity

futures investors pay more attention to the tone of news during crisis periods and

loss aversion. The tests confirm the strongest predictive ability of media tone

during the 2008 financial crisis. The evidence is interpreted as suggesting, in line

with prospect theory, that institutional investors tend to behave as rational agents

with Bayesian beliefs when they are within their comfort zone, namely, when news

sentiment is optimistic, but reacts more strongly to adverse news (which acts as

a wake-up call) due to loss aversion in potentially high-risk environments such as

the 2008-2012 crisis period.

3.4.2 Long-short Sentiment Portfolios

A trading strategy that longs the top quintile of commodities with the most pos-

itive sentiment, defined as in Equation (3.2.1), and shorts the bottom quintile

with the most negative sentiment generates attractive excess returns of 11.9% per

annum (p.a.) and a high Sharpe ratio of 0.832 which compares with that of tradi-

tional long-short allocation strategies. The performance of the Q1 to Q5 quintiles
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3.4. EMPIRICAL RESULTS

and Q1-Q5 portfolio formed according to the sentiment measure are summarized

in Table 3.8.

Table 3.8: Long-Short Sentiment Portfolios

Long Short

Q1 Q2 Q3 Q4 Q5 Q1-Q5

Mean 0.071 0.015 -0.031 -0.063 -0.048 0.119
(2.27) (0.44) (-0.81) (-2.63) (-2.24) (3.88)

Volatility 0.138 0.151 0.163 0.153 0.140 0.143
Downside risk 0.212 0.244 0.271 0.264 0.235 0.198
Skewness -0.422 -0.569 -0.682 -0.857 -0.535 0.177

(-5.33) (-6.99) (-8.17) (-9.85) (-6.61) (2.30)
Excess Kurtosis 2.631 2.616 4.497 4.736 2.558 0.681

(8.24) (8.21) (10.50) (10.72) (8.12) (3.52)
JB normality test p-value 0.000 0.000 0.000 0.000 0.000 0.000
AC1 -0.011 0.047 0.020 -0.024 0.100 -0.044
1% VaR (Cornish Fisher) -0.043 -0.048 -0.053 -0.051 -0.046 -0.044
Max drawdown -0.421 -0.537 -0.820 -0.799 -0.703 -0.271
Sharpe ratio 0.512 0.103 -0.188 -0.410 -0.345 0.832
Sortino ratio 0.732 0.139 -0.249 -0.522 -0.452 1.324
Omega ratio 1.211 1.039 0.932 0.857 0.879 1.349
CER (power utility) 0.012 0.001 0.005 0.002 0.004 0.000

Firs five columns of this table report the performance of the Q1 to Q5 quintiles portfolios
formed according to the sentiment measure MedTonei,t. Column six reports the perfor-
mance of a trading strategy that longs the top quintile of commodities with the most
positive sentiment, defined as in Equation (3.2.1), and shorts the bottom quintile with the
most negative sentiment. All measures are annualized.

The excess returns of the sentiment-sorted long-short portfolio are mildly cor-

related to those of traditional long-short portfolios formed according to an array

of commodity characteristics such as hedging pressure, roll-yield, momentum and

convexity. Details are shown in Table 3.9. For concreteness, the largest correlation

in absolute value is 0.0699 for the sentiment portfolio and skewness portfolio and

the smallest is 0.0044 for the sentiment portfolio and momentum portfolio.
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3.5. PRICING ROLE OF MEDIA TONE

3.4.3 Sentiment-Scaled Tactical Allocations

The sentiment-adjusted long-short portfolios are shown to accrue larger excess

returns and/or lower volatility than the baseline (plain-vanilla) long-short portfolio

counterparts which results in significantly larger Sharpe ratios. Results are shown

in Table 3.10. For instance, the sentiment-adjusted momentum portfolio accrues

a Sharpe ratio of 0.9294 which is significantly larger than the Sharpe ratio of the

baseline momentum portfolio at 0.3830 according to the Ledoit and Wolf (2008)

differential Sharpe ratio test (H0 : ∆SR = 0) p-value of 0.0057. Likewise for the

carry portfolio (0.8903 vs 0.4945; p-value = 0.015), HP portfolio (0.9167 versus

0.6434; p-value = 0.045), BM portfolio (1.2154 vs 0.8882); p-value =0.016, and

convexity portfolio (0.8130 versus 0.2685; p-value = 0.009). These results are

not challenged in a battery of robustness checks. To give an intuitive view of

the performance of sentiment-adjusted long-short portfolios, we plot in Figure

3.2 cumulative Sharpe ratios of the baseline (plain-vanilla) long-short portfolios

against their sentiment adjusted counterparts.

3.5 Pricing Role of Media Tone

3.5.1 Time-series Test

The analysis thus far has revealed that the media tone sentiment strategy is able

to capture attractive mean excess returns in commodity futures markets. We

now test whether the significant sentiment premium is merely compensation for

exposure to risk factors. For this purpose, we start with the three-factor model of

Bakshi et al. (2019) that includes the AVG, basis and momentum risk factors and

estimate an OLS time-series spanning regression for the excess returns of the media

tone sentiment portfolio. We then augment this baseline specification with various
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3.5. PRICING ROLE OF MEDIA TONE

Figure 3.2: Cumulative Sharpe Ratios of Portfolios

This figure shows cumulative Sharpe ratios of portfolios constructed on 9 different char-
acteristics and their media tone corrected counterparts using a 5-year rolling window.

factors, in turn, that emanate from the literature on the pricing of commodity

futures (hedging pressure and convexity), tail-risk (skewness, VaR1 and VaR99)

or the liquidity and volatility of commodities (basis- momentum and illiquidity).

For each of the specifications, we look at the sign and significance of both the betas

and alpha where the latter represents the average excess return of the sentiment

portfolio that is not a compensation for the hypothesized risk factors.

Table 3.11 reports the results and shows that the excess returns of the media

tone portfolio is insensitive to the risk factors considered. The last column of Table
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3.5. PRICING ROLE OF MEDIA TONE

3.11 reports the “kitchen-sink” model that includes all the risk factors. The only

significant term is annualized alpha. Thus, compensation for risk factor exposures

does not explain the media tone factor.

3.5.2 Cross-sectional Test

A cross-sectional pricing exercise a la Fama-MacBeth further uses N = 54 portfo-

lios as tests assets (the quintiles obtained according to the 9 signals – media tone,

roll-yield, HP, momentum, BM and convexity – and the equally-weighted weekly

rebalanced portfolios of the commodities grouped into 3 (sub)sectors – agriculture,

energy, and metals – suggests that the media tone factor is significantly priced,

over and above traditional risk factors. We first estimate full-sample betas via

OLS time-series regressions

ri,t = αi + βi ∗ Ft + ϵi,t, t = 1, ..., T (3.5.1)

where ri,t is the time t excess returns of the quintile portfolios sorted on (a) the

media tone (b) the 9 characteristics we listed before, and (c) the equally weighted

and weekly-rebalanced portfolios from the 4 commodity sub-sectors. Thus, we

have N = 54 portfolios together. Ft includes the sentiment factor as well as the

9 characteristics. In step two, we estimate each week the following cross-sectional

regression of average excess returns on the step-one estimated full-sample betas

r̄i = λ0 + λβ̂i + ϵi, i = 1, ..., N (3.5.2)

where λ is a vector containing the prices of risk associated with each of the factors.

The baseline model entertains the three risk factors of Bakshi et al. (2019). We

subsequently expand this model by cycling through each of the additional long-

short risk premia considered in the time-series spanning tests, and then all together
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3.6. ROBUSTNESS CHECK

(“kitchen-sink” model). The second set of models adds to these pricing models

the media tone factor. We assess the added value of the media factor through the

adjusted- R2 (%) and mean absolute pricing error, MAPE(%) = 100
N

∑N
i=1 |ϵ̂i| of

each model.

Table 3.12 reports the OLS estimates {λ̂0, λ̂} and the significance of t-test

based on the Shanken (1992) robust standard errors. Thus, consistent with the

significantly improved performance of the media tone-adjusted tactical allocations,

these cross-sectional pricing tests further reveal that the pricing ability of media

tone is not subsumed by the pricing ability of systematic risk factors.

3.6 Robustness Check

3.6.1 Decay Parameter

When we calculate the media-tone scores, we assume that the impact of sentiment

on commodity prices decays with the staleness of the news. Following Borovkova

(2015), we model the staleness of media-tone in Equation (3.2.1) using a decay

factor of 0.9. In this section, we explore the effects of different decay factors. We

define the media-tone scores with different decay factors, decay, as follows:

MedTonei,t =

∑
j∈Nj

decaytj ∗ ESStj∑
j∈Nj

decaytj
(3.6.1)

where i is the ith commodity future contract, t is the tth week, Nj denotes the

total amount of news of ith contract in week t. We check decay factors decay ∈

[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. When decay = 1.0, we define the media-

tone score as an equally weighted average of the news articles.

Figure 3.3 plots the Sharpe ratios of long-short portfolios based on media-tone

scores using different decay factors. We construct the portfolios using the same
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3.6. ROBUSTNESS CHECK

method as in Chapter 3.4.2. The Figure shows that the Sharpe ratio peaks when

the decay factor equals 0.8. When it is higher than 0.8, the predictive power

declines slightly. However, the equally weighted media-tone measure still has a

strong predictive component. When the decay factor is smaller than 0.8, the

Sharpe ratio decreases with the decline in the decay factors. But even when the

decay factor equals 0.1, there is still significant predictability from the media-tone

measure. Therefore, the choice of decay factor will not significantly influence our

results.

Figure 3.3: A Plot of Sharpe Ratios with Different Decay Factors

This figure shows the Sharpe ratios of the long-short sentiment portfolios with different
decay factors.

3.6.2 Turnover and Transaction Costs

In this section, we consider the influence of trading intensity on trading strategies.

We measure the portfolio turnover(TO) defined as the time averaging of all the
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3.6. ROBUSTNESS CHECK

trading incurred

TOj =
1

T − 1

T−1∑
t=1

N∑
i=1

(|ϕ̃j,i,t+1 − ϕ̃j,i,t+ |) (3.6.2)

where t = 1, · · · , T denotes each of the portfolio formation period. ϕ̃j,i,t+1 is

the ith commodity allocation weight at week t by the jth trading style while

ϕ̃j,i,t+ = ϕ̃j,i,te
ri,t+1 is the actual portfolio weight right before the next rebalancing

at t+ 1 with, the weekly return of the ith commodity from weekend t to weekend

t + 1. Thus the TO measure captures the mechanical evolution of the allocation

weights due to within-week price dynamics. Figure 3.4 plots the turnovers of

the long-short portfolios sorted on the media-tone score and other signals shown

in Table 3.4. The figure suggests that the sentiment portfolio does not have a

significant higher turnover rate. It has a higher turnover than hedging pressure,

convexity, VaR1, VaR99, and liquidity portfolios but is lower than the others.

Thus, transaction intensity will not significantly influence the economic benefit of

utilizing media tone.

We also consider the influence of transaction cost. Using proportional trading

costs of 3.3 bps (Locke & Venkatesh, 1997) and 8.6 bps (Marshall et al., 2012), we

calculate the net return of each media tone gauged portfolio as:

r̃P,t+1 =
N∑
i=1

ϕ̃i,tri,t+1 − TC

N∑
i=1

|ϕ̃i,t − ϕ̃i,t−1+ | (3.6.3)

In Figure 3.5, we compare the Sharpe ratios for trading strategies with/without

gauge by media tone under different transaction cost. The figure shows that in-

corporating media tone into other trading signals generates significant higher eco-

nomic benefits. In addition, when transaction cost equals 3.3bp, the net Sharpe

ratios of the gauged strategies are still significantly higher than the un-gauged
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Figure 3.4: A Plot of Turnover for Different Trading Strategies

This figure shows the turnover of the long-short portfolios sorted on media-tone score
and signals shown in Table 3.4.

ones. When transaction cost is 8.6bp, the economic benefits of carry, momentum,

convexity, skewness, and liquidity are still significant after the gauge. Others are

only slightly smaller than the original strategies. Thus, the economic benefit from

the media tone is not influenced by including conventional proportional trading

costs.

3.7 Conclusion

This paper explores the predictive and pricing role of news sentiment in commod-

ity futures markets. Media tone scores based on the articles published over a week

window are measured for each commodity and aggregated into an overall commod-

ity sentiment measure. The predictability analysis suggests that the commodity-

specific media tone scores are able to forecast the returns of commodity futures a

week ahead after controlling for other well-known commodity characteristics such

as roll-yield, hedging pressure or momentum. The sentiment index has greater pre-

dictive power for commodity market returns, in- and out-of-sample, than extant
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Figure 3.5: A Plot of Net Sharpe Ratios for Different Trading Strategies

This figure shows the net Sharpe ratios of the long-short portfolios sorted on media-
tone score and signals shown in Table 3.4. Blue pillars show the Sharpe ratios of trading
strategies without gauging by media tone. Other pillars show the Sharpe ratios of trading
strategies after gauging by media tone with different transaction costs.

measures of sentiment in the broad financial market such as the VIX, the Baker

and Wurgler (2006) sentiment index, and the Michigan consumer confidence index.

Positive (negative) sentiment anticipates higher (lower) returns but the forecast

power is stronger for negative or pessimistic sentiment and, accordingly, it plays a

stronger role as a driver of prices in periods of crises.

Long-short portfolios sorted on media tone accrue significant excess returns

that are not compensation for exposure to known systematic risks. Thus moti-

vated, the paper puts forward a simple strategy to enhance traditional long-short

portfolio allocations by embedding the information content of media tone into

traditional sorting signals. The paper provides an empirical cross-sectional asset

pricing exercise suggesting that there is pricing ability in media tone over and

above that of traditional risk factors. Overall, it is concluded that the presence of

“animal spirits” (paraphrasing the British economist John Maynard Keynes) can-
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not be ruled out in commodity futures markets, namely, media tone can induce

commodity futures mispricing and more so when the news is pessimistic or during

overall market downturn periods. This specific asymmetric in the predictive role

of sentiment for commodity futures prices is consistent with behavioural theories

of investor risk aversion.

3.8 Appendix

3.8.1 Ravenpack Data Field Descriptions

RELEVANCE

A score between 0-100 that indicates how strongly related the entity is to the un-

derlying news story, with higher values indicating greater relevance. For any news

story that mentions an entity, RavenPack provides a relevance score. A score of

0 means the entity was passively mentioned while a score of 100 means the entity

was prominent in the news story. Values above 75 are considered significantly

relevant. Specifically, a value of 100 indicates that the entity identified plays a

key role in the news story and is considered highly relevant. RavenPack’s analysis

is not limited to keywords or mentions when calculating relevance. Automated

classifiers look for meaning by detecting the roles entities play in specific events

like acquisitions or legal disputes or when announcing corporate actions, executive

changes, product launches or recalls, among many other categories. An entity will

be assigned a high mark of 100 if it plays a main role in these types of stories

(context-aware).

If an entity is referenced in the headline or story body, it will receive a value be-

tween 0 and 99 (context-unaware). The score is assigned by a proprietary text

positioning algorithm based on where the entity is first mentioned (i.e. headline,

first paragraph, second paragraph, etc.), the number of references in the text, and
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the overall number of entities mentioned in the story. Usually, a relevance value

of at least 90 indicates that the entity is referenced in the main title or headline

of the news item, while lower values indicate references further in the story body.

For example, a news story about IBM where the company is referenced in the

headline of the story receives a minimum value of 90. If the headline read “IBM In

Software Pact With Raytheon Unit For Navy Program” then IBM and Raytheon

would receive a relevance score of 100 since they both play a key role in the story.

If a headline reads “Bank of Spain: Data Points To 2Q GDP Contraction”, the

system automatically infers this story is about the country “Spain”. Since this

story would match the event category “gdp-guidance-down” designed to match a

country, the entity “Spain” would receive a relevance score of 100 and the entity

“Bank of Spain” a score of 90 or above.

If an entity is detected in a so-called “low-relevance” role, then it automatically

gets a score of 20. For example, a brokerage or analyst firm making a recommen-

dation on a company’s stock (i.e. upgrade or downgrade) plays a low-relevance

role and therefore receives a default relevance score of 20.

If an entity is identified in a “source” role, then it’s given a lower score of 10. A

source may be a publisher, data provider, or firm that authored, originated, or is

referenced in the story. However, if an entity is identified in a source role but also

detected as a non-source role within the story, then the source role is disregarded

(for the purpose of computing relevance), and it’s treated the same as any other

entity described above.

Entities not detected as explicitly mentioned in a story are not given a relevance

score. While a story about Yahoo! might be considered in some other context to

be relevant to Google, the company Google (US/GOOG) will not be given a rele-

vance score unless that story explicitly mentions Google. The classifier detecting

entities has access to information about each entity including short-names, long
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names, abbreviations, securities identifiers, subsidiaries information, and up-to-

date corporate actions data. This allows for “point-in-time” detection of entities

in the text. A news story relevant to multiple entities generates scores for each

entity in separate “entity-level” records, each with their own relevance score.

ESS – EVENT SENTIMENT SCORE

A granular score between 0 and 100 that represents the news sentiment for a

given entity by measuring various proxies sampled from the news. The score is

determined by systematically matching stories typically categorized by financial

experts as having short-term positive or negative financial or economic impact.

The strength of the score is derived from a collection of surveys where financial

experts rated entity-specific events as conveying positive or negative sentiment and

to what degree. Their ratings are encapsulated in an algorithm that generates a

score ranging from 0-100 where 50 indicates neutral sentiment, values above 50

indicate positive sentiment and values below 50 show negative sentiment.

ESS probes many different sentiment proxies typically reported in financial news

and categorized by RavenPack. The algorithm produces a score for more than

2,000 types of business, economic, and geopolitical events ranging from earnings

announcements to terrorist attacks. The score is determined by systematically de-

tecting entities and the roles played by that those entities in a story using Raven-

Pack’s proprietary technology and extensive database of time sensitive information

about entities. The algorithms then can dynamically assign an ESS score based on

score ranges assigned by the experts and by performing analysis and computation

when factors such as magnitudes, comparative values or ratings are disclosed in

the story.

For example, the algorithm is capable of interpreting actual figures, estimates,

ratings, revisions, magnitudes, and recommendations disclosed in news stories. It

can compare actual vs. estimated figures about earnings, revenues or dividends
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and produce an ESS score based on the comparisons. It calculates percentage

differences between financial figures and identifies and interprets stock and credit

ratings disclosed by analysts. The ESS algorithms can factor information such

as the Richter scale in the case of an earthquake or the number of casualties in

a suicide bombing event. The use of emotionally charged language by authors is

also factored when shaping the strength component of the ESS.

The ESS algorithm has embedded information on rating scales from all major bro-

kerage firms, investment banks, and credit rating agencies. It uses this information

to differentiate and assess the various actions taken by analysts. For example, the

algorithm generates a lower (more negative) ESS score for stories about an analyst

downgrade from a “Strong Buy to a Strong Sell” than from a “Buy to a Neutral”.

In the case of stories about financial results or economic indicators, it computes

the percentage change between the disclosed actual figures vs. the street consensus

or any other benchmarks disclosed in the story. For example, a company beating

earnings by 70% will receive a higher (more positive) ESS score than a company

exceeding a benchmark by 1%.

ENS – EVENT NOVELTY SCORE

A score between 0 and 100 that represents how ”new” or novel a news story is

within a 24-hour time window across all news stories in a particular package (Dow

Jones, Web or PR Editions). Any two stories that match the same event for the

same entities will be considered similar according to ENS. The first story reporting

a categorized event about one or more entities is considered to be the most novel

and receives a score of 100. Subsequent stories from the same package about the

same event for the same entities receive scores following a decay function whose

values are (100 75 56 42 32 24 18 13 10 8 6 4 3 2 2 1 1 1 1 0 ...) based on the

number of stories in the past 24- hour window. If a news story is published more

than 24 hours after any other similar story, it will again be considered novel and
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start a separate chain with a score of 100.

Note that for any particular story, the ENS score is based on the number of similar

stories in the most recent 24-hour window preceding that story. However, a chain

of similar stories can span more than 24 hours, provided no two similar stories are

more than 24 hours apart. Occasionally, the ENS score of a story which arrives

more than 24 hours after the first story in the chain can be equal to or greater

than the ENS score of some story earlier in the chain.

3.8.2 Bootstrap p-value Procedure

Assume there is no predictability for media tone index and the predictor follows

an AR(p) process. The data are generated from the following model:

rMKT
t = a0 + ϵ1,t (3.8.1)

Media Tonet = b0 + b1Media Tonet−1 + ...+ bpMedia Tonet−p + ϵ2,t (3.8.2)

where the error term vector ϵt = (ϵ1,t, ϵ2,t)
′ is i.i.d. with covariance matrix Σ. Then

estimate Eq. (3.8.1) and (3.8.2) by OLS. Identity lag p in Eq.(3.8.2) using AIC

criteria. After estimation, we can obtain OLS estimates â0, b̂0, ..., b̂p and residuals

ϵ̂t = (ϵ̂1,t, ϵ̂2,t)
′. Then we randomly draw (with replacement) T + 100 times from

the residuals in tandem to preserve the correlation between the error terms of

Eq. (3.8.1) and (3.8.2). This pseudo-series of residuals is denoted as {ϵ̂∗t}T+100
t=1 .

Using the pseudo-series of residuals, OLS estimates â0, b̂0, ..., b̂p, and Eq. (3.8.1)

and (3.8.2), we can calculate a pseudo-sample of T + 100 observations for rt and

Media Tonet. Set the initial observations for (Media Tonet, ...,Media Tonet−p)

to be 0 and drop the first 100 pseudo observations, leaving us a pseudo-sample of

T observations which is the same size as the original observations. Then we can

calculate the t− statistics corresponding to γ̂ in the in-sample predictive regression
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model. Repeat this process for 1000 times. Then p−value of γ̂ is the proportion

of the bootstrap statistics that are greater than the statistics calculated using the

original sample.
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Chapter 4

Attention Spillovers between

Equity and Commodity Futures

Markets

4.1 Introduction

Limited attention is a widely documented behavioural bias in the psychological lit-

erature, and asset pricing theories have used it to explain a wide range of market

phenomena. Traditional asset pricing theory requires investors to pay sufficient

attention to the asset. But, attention is a scarce resource (Kahneman, 1973).

Investors have limited attention, especially when faced with many assets. Few

investors will check whether the attributes of each of the assets satisfy their pref-

erences and beliefs. Odean (1999) and Barber and Odean (2008) suggest that

investors will choose a small subset of assets that attract their attention. They

argue that people tend to pay more attention to more salient choices which are

those that differ most noticeably on observed attributes. However, when testing

theories of attention, researchers face a substantial challenge: it is difficult to build
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a measure of investor attention that directly establishes the causal effect of limited

attention. Variables that reflect investor attention in previous literature (e.g., trad-

ing volume, google search volume) are typically also associated with fundamental

information.

During the past decade, a huge influx of institutional funds flew to commodity

futures markets in the early 2000s, referred to as the financialization of commodi-

ties. Tang and Xiong (2012) find that after 2004 the behaviour of index commodi-

ties has become increasingly different from that of non-index commodities, with

the former becoming more correlated with oil, and more correlated with the equity

market. Cheng and Xiong (2014) also document that the correlation of commodity

prices with prices in the equity market trended upward from 2004 to 2008 and has

increased significantly since the collapse of Lehman Brothers in 2008. Since then,

they have stayed at elevated levels compared with historical periods.

In this study, we exploit the financialization of commodity prices to study the

limited attention effect in the commodity market. More specifically, we assume

there is a spillover effect of investors’ attention from the equity market to the

commodity futures market. For example, when news of firms in the energy sector

arrives, investors’ attention about the firms will transfer from the equity market

to the commodity futures market. Thus, the corresponding commodity futures

will face more buying/selling pressure and should experience higher/lower returns

in the subsequent weeks. Consequently, we arrive at the following key hypothesis:

a commodity futures’ return is associated with the amount of news of companies

within the correlated sector.

To test the hypothesis, first, we construct a weekly attention spillover variable

(SpillAtt) for each commodity futures contract, computed as the average amount

of firm-specific news, which is news about firms’ fundamentals. This measure

helps to identify the causal effect of limited attention effect in the commodity
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futures market as firm-specific fundamental news are exogenous to fundamentals

of commodity contracts and thus providing a cleaner identification. We then form

quintile portfolios based on SpillAtt variable, and we find that the portfolio return

increases as SpillAtt increases. Specifically, the equal-weighted long-short portfolio

constructed by longing the quintile with the highest SpillAtt and shorting the

quintile with the lowest SpillAtt earns an annualized return of 4.6% (t-stat =

2.46). Third, we show that these results remain significant after controlling for

fundamental risk factors (roll yield, momentum, hedging pressure, and convexity);

tail risk factors (skewness, 1% Cornish-Fisher VaR, and 99% Cornish-Fisher VaR);

volatility and illiquidity risk factors (basis-momentum and illiquidity). In addition,

we test whether the significant spillover attention premium is merely compensation

for exposure to risk factors. For this purpose, we start with the three-factor model

of Bakshi et al. (2019) that includes the AVG, basis and momentum risk factors

and estimate an OLS time-series spanning regression for the excess returns of

the media tone sentiment portfolio. We then augment this baseline specification

with various factors we mentioned before. Results suggest that the predictive

ability of the SpillAtt variable is not stemmed from the current known risk factors

in the commodity market. Third, since the attention spillover effect should be

transitory, we also test the long-term holding period return for portfolios sorted on

SpillAtt. Evidence suggests the annualized alpha of the equal-weighted attention

portfolio peaks at week 3 and is completely reversed thereafter which suggests the

effect is indeed temporary. Lastly, as Stambaugh et al. (2012) argue, a mispricing

driven anomaly should have a strong effect during the high-sentiment period. We

test this assumption by applying a double sort portfolio analysis method. We

first construct quintile portfolios of commodity futures contracts based on the

corresponding media tone measures that we applied in Chapter 3. Then within

each quintile, a long-short equally weighted portfolio is constructed by longing the

96



4.1. INTRODUCTION

top 50% contracts with the higher SpillAtt and shorting the 50% with the lower

SpillAtt. Results confirm our assumption and suggest that the long-short portfolio

return is the highest when sentiment is high.

The contribution of this paper is three folds. First, we contribute to the lim-

ited attention literature. In limited attention literature, researchers have developed

many proxies to measure attention, such as abnormal trading volume and extreme

return (e.g., Barber and Odean, 2008; Hou et al., 2009; Corwin and Coughenour,

2008); Google search volume index (e.g., Da et al., 2011); Bloomberg search volume

and readership (e.g., Ben-Rephael et al., 2017); media coverage (e.g., Huberman

and Regev, 2001; Fang and Peress, 2009; Kaniel and Parham, 2017). In the com-

modity futures market, Han et al. (2017a) study the effects of investor attention

by utilizing the Google search volume as a proxy. In this study, we obtain a weekly

commodity-specific attention measure by using firm-specific news articles cover-

age obtained by textual analysis algorithms. Second, this measure separates the

asset pricing effect of attention from fundamental news. Firm-specific news is ex-

ogenous to the fundamentals of commodity contracts and thus provides a cleaner

identification. Third, we contribute to the commodity financialization literature

by providing a possible explanation for the co-movement of equity and commodity

prices.

The remainder of the paper is organized as follows. Section 2 presents the data

and the construction methods of the key variables. Section 3 presents the empirical

evidence of the attention spillover effect on the commodity futures market. Section

4 contains the pricing ability test of our attention spillover factor. We also test the

transitory effect and its relationship with sentiment measures. The final section

concludes.
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4.2 Data and Firm-specific News

4.2.1 Commodities Sample

This research employs data on a cross-section of 28 commodity futures contracts

comprising 12 agricultural (4 cereal grains, 1 oilseeds, 3 meats, 4 miscellaneous

other softs), 3 energy, and 3 metals (1 base, 2 precious). For each of the com-

modities, end-of-day futures settlement prices and daily dollar trading volume are

obtained from Refinitiv Datastream, and open interest data from the Commitment

of Traders Report of the Commodity Futures Trading Commission. The observa-

tions are sampled at the weekly frequency from January 1, 2000 to July 31, 2019.

Excess returns are calculated as ln(F T1
i,t /F

T1
i,t−1).

4.2.2 Firm-specific News

To construct the attention spillover measure, the first step involves identifying firms

that are related to a certain futures contract. For computational reasons, we limit

ourselves to S&P 500 subsection companies with at least 20 trading days during

the period. We match a company with its related commodity futures contract

by its Standard Industial Classification (SIC) code. For example, companies with

SIC code 0111 are matched with wheat contracts, companies with code 0115 are

matched with corns contracts, etc. Details of SIC codes and related contracts are

shown in Table 4.1

Following Boudoukh et al. (2019), in this paper, we define firm-specific news

as the firm-level public news which is relevant public information tied to spe-

cific firm events. For example, consider the news related to the employment of

a company. Changes in the CEO, an executive of the firm or a board member;

executive compensation; and employment issues including, strikes and changes in
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Table 4.1: SIC codes and related commodity contracts

Commodity contracts SIC Description

Agriculture
Wheat 0111 Wheat
Rice 0112 Rice

2044 Rice Milling
Corn 0115 Corn

2046 Wet Corn Milling
Soybeans 0116 Soybeans
Soybean oil 2075 Soybean Oil Mills
Cocoa 2066 Chocolate And Cocoa Products
Cotton 0131 Cotton

0724 Cotton Ginning
Coffee 2095 Roasted Coffee
Feeder cattle 0211 Beef Cattle, Feedlots
Live cattle 0212 Beef Cattle, Except Feedlots
Lean hogs 0213 Hogs
Lumber 0811 Timber Tracts

0831 Forest Nurseries And Gathering Of Forest Products
0851 Forestry Services

Energy
Light crude oil 1311 Crude Petroleum And Natural Gas

1381 Drilling Oil And Gas Wells
1382 Oil And Gas Field Exploration Services
1389 Oil And Gas Field Services, Not Elsewhere Classified
2911 Petroleum Refining

Natural gas 1311 Crude Petroleum And Natural Gas
1321 Natural Gas Liquids
1381 Drilling Oil And Gas Wells
1382 Oil And Gas Field Exploration Services
1389 Oil And Gas Field Services, Not Elsewhere Classified
4922 Natural Gas Transmission
4923 Natural Gas Transmission And Distribution
4924 Natural Gas Distribution

Unleaded gas 2911 Petroleum Refining
5541 Gasoline Service Stations

Metals
Copper 1021 Copper Ores

3331 Primary Smelting And Refining Of Copper
3351 Rolling, Drawing, And Extruding Of Copper
3366 Copper Foundries

Gold 1041 Gold Ores
Silver 1044 Silver Ores

This table shows the commodity futures contracts and their related Standard Industrial Classi-
fication (SIC) codes. Description column shows a short description of the industry a code stands
for.

99



4.2. DATA AND FIRM-SPECIFIC NEWS

the workforce are classified as firm-specific news. These pieces of news are largely

uncorrelated with the fundamentals of the commodity market. To identify the

firm-specific news, we apply measures from the Wharton Research Data Services

(WRDS) Ravenpack section. Ravenpack uses machine learning algorithms to pro-

cess text from not only the Dow Jones Newswire but also the Wall Street Journal,

direct regulatory feeds, and thousands of social media websites, into machine-

readable content to identify a company’s news in terms of “relevance”. Relevance

score from 0 to 100. While this score is a black box, a relevance score of 100

generally coincides with the company playing a main role in the story and the

article type being identified. Therefore, we select pieces of news that have rele-

vance scores of 100 as firm-specific news. The observations are sampled at the

millisecond frequency. At each weekend t, we aggregate news for each firm j into

a weekly frequency measure, countj,t, by taking the count of the news of firm j

within a week. Then we construct the spillover limited attention measure (limited

attention measure thereafter) for a commodity futures contract as the average of

firm-specific news of its related firms. Specifically, for commodity futures contract

i, its spillover attention measure at week t is defined as,

SpillAtti,t =
1

Ni

Ni∑
j=1

countj,t (4.2.1)

where Ni is the number of related firms for commodity futures contract i.

4.2.3 Control Variables

To tease out the effects of attention spillover, we control for different categories of

variables that are known to affect commodity futures returns.

The performance of the attention portfolio is appraised in the context of a battery

of benchmarks as in Fernandez-Perez et al. (2020). A long-only equally-weighted
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and weekly-rebalanced portfolio of all commodities (AVG) is considered as a broad

commodity market factor (Bakshi et al., 2019; Erb and Harvey, 2016; Gorton and

Rouwenhorst, 2006). Additional risk factors are the excess returns of long-short

portfolios inspired by the fundamentals of backwardation and contango; specifi-

cally, backwardated commodities with high roll-yield, roll (Bakshi et al., 2019; Erb

and Harvey, 2016; Gorton and Rouwenhorst, 2006), high past average returns, mo-

mentum (Bakshi et al., 2019; Erb and Harvey, 2016; Miffre and Rallis, 2007), high

net-short hedging pressure, HP (Basu and Miffre, 2013; Bianchi et al., 2015; Kang

et al., 2020) or a convex price curve, convexity (Gu et al., 2019) are expected to

outperform contangoed commodities with opposite values of the aforementioned

characteristics. It is also possible to motivate tail risk factors constructed as the

returns of long-short portfolios sorted by skewness (Fernandez-Perez et al., 2018),

1% and 99% Value-at-Risk, hereafter denoted as VaR1 and VaR99 (Atilgan et

al., 2019; Bali et al., 20091). Finally, the excess returns of the attention port-

folio could relate to liquidity and volatility risks factors obtained as the returns

of long-short portfolios where the sorting signal is the basis-momentum of Boons

and Prado (2019) and the illiquidity measure suggested by Amihud (2002). In

addition, we include a commodity market media tone measure to compare the

investors’ sentiment and limited attention effect. Following Chapter 3, the media

tone measure, MedTonei,t is calculated as a weighted average of sentiment per

piece of news extracted using textual analysis. Details of control variables and

background references are provided in Table 3.4.

1As dictated by rational asset pricing theory, higher risk is associated with higher expected
returns. Thus the skewness and VaR1 factors are constructed as the returns of portfolios with
long positions in the futures contracts with the most negative skewness and VaR1 signals. Since
investors have preferences for lottery type assets, the VaR99 factor is constructed as the returns
of a portfolio with long (short) positions in futures contracts with the least (most) positive VaR99
signal.
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4.2.4 Summary Statistics

Figure 4.1 shows the average of the limited attention measure, SpillAtti,t, across

time. The crude oil futures contract has received far more firm-specific news than

others, which is consistent with our expectations. Gold received the second-highest

attention from investors, followed by natural gas, copper, and 1unleaded gasoline.

Agriculture futures contracts, on average, received fewer media coverage.

Table 4.2 reports the correlation between the limited attention measure and other

Figure 4.1: Average Limited Attention Measure for Commodity Futures over Time

This figure illustrates the average of the limited attention measure, SpillAtti,t, over the
sample period from January 2000 to July 2019 for 18 commodity futures contracts.

control variables. Generally, the correlations between them are low. The largest
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positive correlation is between SpillAtti,t and convexity which is 0.350. The most

negative one is with 1% VaR which is -0.357. The lowest correlation in absolute

value is 0.033. This suggests the limited attention measure may capture different

predictive elements from the media tone measure.

4.3 Methodology and Empirical Results

This section explores the ability of SpillAtt variable to explain future returns of

the commodity futures contract. We start with a one-way portfolio analysis. To

rule out potentially confounding effects, we also conduct a series of characteristic

adjusted two-way portfolios sorts.

4.3.1 One-Way Sort Portfolio Analysis

We assess whether it is possible to exploit the limited attention measure to gen-

erate economic value from a portfolio perspective. For this purpose, the paper

begins by deploying a portfolio strategy using the limited attention measure per

commodity, as sorting signal θi,t ≡ SpillAtti,t at the end of each sample week t.

Accordingly, the commodity futures contracts are grouped into quintiles and a

long-short limited attention portfolio is formed where long (short) positions are

taking on the commodity futures contracts in the top (bottom) quintile Q1 (Q5)

which are those with the most positive (negative) media-tone scores. The com-

modities in the long and short legs of the portfolios are equally weighted and the

investor is fully invested. The long-short portfolios are held for one week on a

fully-collateralized basis; thus the excess returns are given by half the longs re-

turns minus half the shorts returns.

Table 4.3 reports the results for the one-way sort portfolio results. All returns

are annualized and the t-statistics are computed based on standard errors with
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4.4. PRICING ROLE OF MEDIA TONE

Newey-West adjustments of 12 lags. The results suggest a clear monotonic rela-

tion between SpillAtt and future returns. The difference between Q1 and Q5 is

around 4.6% per year, and the t-statistics is 2.46. The intuition is that an increase

in investors’ attention results in temporary positive price pressure. As Barber and

Odean (2008) argue, when investors are buying, they have to choose from a large

set of available alternatives. However, when they are selling, they can only sell

what they own. This means that shocks to attention should lead, on average, to

net buying from these uninformed traders. Therefore, higher attention leads to a

short-term demand effect that will exert an upward (downward) pressure on prices

so a short-term price increase is expected in the commodity futures contracts of

Q1 (Q5).

4.4 Pricing Role of Media Tone

4.4.1 Time-series Test

The analysis thus far has revealed that the limited attention strategy is able to

capture attractive mean excess returns in commodity futures markets. We now

test whether the significant premium is merely compensation for exposure to risk

factors by simultaneously controlling for various confounding factors. For this pur-

pose, we start with the three-factor model of Bakshi et al. (2019) that includes

the AVG, basis and momentum risk factors and estimate an OLS time-series span-

ning regression for the excess returns of the limited attention portfolio. We then

augment this baseline specification with various factors, in turn, that emanate

from the literature on the pricing of commodity futures (hedging pressure and

convexity), tail-risk (skewness, VaR1 and VaR99) or the liquidity and volatility of

commodities (basis- momentum and illiquidity). Specifically, we are testing the
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4.4. PRICING ROLE OF MEDIA TONE

Table 4.3: Long-Short Limited Attention Portfolios

Long Short
Q1 Q2 Q3 Q4 Q5 Q1-Q5

Mean 0.037 -0.003 -0.069 -0.049 -0.056 0.046
(2.94) (-1.45) (-1.33) (-1.99) (-2.24) (2.46)

Volatility 0.139 0.157 0.176 0.167 0.148 0.073
Downside risk 0.216 0.269 0.305 0.272 0.248 0.103
Skewness -0.214 -0.467 -0.751 -0.251 -0.438 0.253

(-2.24) (-4.71) (-7.14) (-2.62) (-4.45) (2.64)
Excess Kurtosis 1.753 1.210 2.642 1.650 2.552 0.366

(5.40) (4.31) (6.74) (5.22) (6.63) (1.80)
JB normality test p-value 0.000 0.000 0.000 0.000 0.000 0.005
AC1 0.034 0.082 0.079 0.020 0.092 -0.025
1% VaR (Cornish Fisher) -0.044 -0.052 -0.058 -0.055 -0.049 -0.023
Max drawdown -0.479 -0.768 -0.820 -0.676 -0.602 -0.126
Sharpe ratio 0.268 -0.462 -0.394 -0.293 -0.378 0.638
Sortino ratio 0.379 -0.595 -0.501 -0.395 -0.495 0.997
Omega ratio 1.105 0.844 0.862 0.898 0.868 1.251
CER (power utility) 0.010 0.015 0.010 0.005 0.023 0.008

Note: in the top (bottom) quintile Q1 (Q5) are those with the highest(lowest).
First five columns of this table report the performance of the Q1 to Q5 quintiles portfolios
formed according to the limited attention measure SpillAtti,t. Column six reports the
performance of a trading strategy that longs the top quintile of commodities with the
highest attention, and shorts the bottom quintile with the lowest attention. All measures
are annualized.

following model:

SpillAttt+1 = α + β1AV Gt + β2Rollt + β3Momentumt + θZt + ϵt+1 (4.4.1)

where Zt includes other augmented risk factors. For each of the specifications,

we look at the sign and significance of both the betas and alpha where the latter

represents the average excess return of the limited attention portfolio that is not

a compensation for the hypothesized risk factors.

Table 4.4 reports the results of the two-way sort portfolio analysis. The ad-
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4.4. PRICING ROLE OF MEDIA TONE

justed return spread is around 4.10%–5.13% per year after adjusting for different

characteristics. The last column of Table 4.4 reports the “kitchen-sink” model

that includes all the risk factors. The annualized alpha is still significant. Thus,

compensation for risk factor exposures does not fully explain the limited attention

factor.

4.4.2 Cross-sectional Test

A cross-sectional pricing exercise a la Fama-MacBeth further uses N = 54 portfo-

lios as tests assets (the quintiles obtained according to the 9 signals – limited at-

tention, roll-yield, HP, momentum, BM and convexity – and the equally-weighted

weekly rebalanced portfolios of the commodities grouped into 3 (sub)sectors – agri-

culture, energy, and metals – suggests that the limited attention factor is signifi-

cantly priced, over and above traditional risk factors. We first estimate full-sample

betas via OLS time-series regressions

ri,t = αi + βi ∗ Ft + ϵi,t, t = 1, ..., T (4.4.2)

where ri,t is the time t excess returns of the quintile portfolios sorted on (a) the lim-

ited attention (b) the 9 characteristics we listed before, and (c) the equally weighted

and weekly-rebalanced portfolios from the 4 commodity sub-sectors. Thus, we have

N = 54 portfolios together. Ft includes the limited attention factor as well as the

9 characteristics. In step two, we estimate each week the following cross- sectional

regression of average excess returns on the step-one estimated full-sample betas

r̄i = λ0 + λβ̂i + ϵi, i = 1, ..., N (4.4.3)

where λ is a vector containing the prices of risk associated with each of the factors.

The baseline model entertains the three risk factors of Bakshi et al. (2019). We
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4.5. ADDITIONAL RESULTS

subsequently expand this model by cycling through each of the additional long-

short risk premia considered in the time-series spanning tests, and then all together

(“kitchen-sink” model). The second set of models adds to these pricing models

the media tone factor. We assess the added value of the media factor through the

adjusted- R2 (%) and mean absolute pricing error, MAPE(%) = 100
N

∑N
i=1 |ϵ̂i| of

each model.

Table 4.5 reports the OLS estimates {λ̂0, λ̂} and significance of t-test based on

the Shanken (1992) robust standard errors. Thus, consistent with the performance

of the one-way and two-way sort portfolio allocations, these cross-sectional pricing

tests further reveal that the pricing ability of limited attention is not subsumed

by the pricing ability of systematic risk factors.

4.5 Additional Results

4.5.1 Long-run Return of the Limited Attention Portfolio

If the higher return in the next week predicted by a higher SpillAtt variable is

indeed coming from attention spillover, the price impact should be temporary and

revert in the long run.

Figure 4.2 plots the equally weighted annualized cumulative alphas of the long-

short portfolio Q1-Q5 based on SpillAtt from week t to week t+12 after including

all controlling variables in Eq. 4.4.1. We see that the alpha of the equally weighted

portfolio peaks from the beginning and is completely reversed by the 4th week.

This outcome suggests that the price impact is indeed temporary and unlikely to

be explained by related firms’ fundamentals.
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4.5. ADDITIONAL RESULTS

4.5.2 Moderating Effect of Investor Sentiment

We then examine how the return pattern we document varies with the investor

sentiment. When investor sentiment is higher, we expect the return pattern to be

stronger as correction of such mispricing becomes more difficult. Following Chapter

3, we employ their media tone measure as a proxy for investors’ sentiment. At the

end of each week t, we first sort the commodity futures contracts into five groups

by their SpillAtt measure. Then within each group, we sort the contracts into the

”High” category if their media tones are positive. Otherwise, we sort them into

the ”Low” category. Finally, we calculate the return spread (High-Low).

Table 4.6 reports the return of SpillAtt strategy in high versus low sentiment

periods. For each quantile, the return pattern is significantly stronger in high-

sentiment periods. Meanwhile, when attention is the highest (Q1), the spread is

4.69% which is the highest. Therefore, consistent with our conjecture, the return

pattern is indeed stronger in high-sentiment periods.

Figure 4.2: Long-run Annualized Alphas of the Limited Attention Portfolios

This figure shows the long-run annualized alphas of equally-weighted limited attention
portfolios over 11 weeks horizon.
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4.6. ROBUSTNESS CHECKS

Table 4.6: Limited Attention and Investors’ Sentiment

Q1 Q2 Q3 Q4 Q5

Media Tone High 0.203 0.031 0.018 0.046 0.058
Low -0.266 -0.104 -0.019 -0.042 -0.023
High-Low 0.469 0.135 0.036 0.087 0.082
t-statistic 11.084 2.914 2.070 2.187 2.434

This table shows the return of SpillAtt strategy in high versus low
sentiment periods.

4.6 Robustness Checks

4.6.1 Turnover and Transaction Cost

In this section, we consider the influence of trading intensity on trading strategies.

We measure the portfolio turnover(TO) defined as the time averaging of all the

trading incurred

TOj =
1

T − 1

T−1∑
t=1

N∑
i=1

(|ϕ̃j,i,t+1 − ϕ̃j,i,t+ |) (4.6.1)

where t = 1, · · · , T denotes each of the portfolio formation period. ϕ̃j,i,t+1 is

the ith commodity allocation weight at week t by the jth trading style while

ϕ̃j,i,t+ = ϕ̃j,i,te
ri,t+1 is the actual portfolio weight right before the next rebalancing

at t+ 1 with, the weekly return of the ith commodity from weekend t to weekend

t + 1. Thus the TO measure captures the mechanical evolution of the allocation

weights due to within-week price dynamics. Figure 4.3 plots the turnovers of the

long-short portfolios sorted on the limited attention and other signals shown in

Table 3.4.

The figure shows that the turnover of the attention portfolio does not signifi-

cantly higher than other strategies. It is higher than hedging pressure, convexity,
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4.6. ROBUSTNESS CHECKS

Figure 4.3: A Plot of Turnover for Different Trading Strategies

This figure shows the turnover of the long-short portfolios sorted on limited attention
and signals shown in Table 3.4.

skewness, VaR1, VaR99 and liquidity strategies but is lower than carry, momen-

tum, and basis momentum strategies. Thus, the trading intensity does not have a

significant influence on attention trading strategy.

We then consider the influence of transaction cost. Using proportional trading

costs of 3.3 bps (Locke & Venkatesh, 1997) and 8.6 bps (Marshall et al., 2012), we

calculate the net returns of the long-short limited attention portfolio and portfolios

sorted on other signals as:

r̃P,t+1 =
N∑
i=1

ϕ̃i,tri,t+1 − TC

N∑
i=1

|ϕ̃i,t − ϕ̃i,t−1+ | (4.6.2)

Figure 4.4 shows the net Sharpe ratios of different trading strategies. After de-

ducting a proportional 3.3bp or 8.6bp as the trading cost, the limited attention

portfolio still has a higher net Sharpe ratio than other trading strategies except
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4.7. CONCLUSION

for the hedging pressure and basis momentum. Thus, the economic benefit of the

limited attention measure is not significantly influenced by transaction cost.

Figure 4.4: A Plot of Net Sharpe Ratios for Different Trading Strategies

This figure shows the net Sharpe ratios of the long-short portfolios sorted on limited
attention and signals shown in Table 3.4.

4.7 Conclusion

This paper explores the limited attention effect in commodity futures markets.

Specifically, we verify there is an attention spillover effect between the equity

market and the commodity futures market. Investors’ attention to firm-specific

news will spill to their related commodity futures market which results in buying

behaviours. Therefore, we create limited attention scores for each commodity

futures contract by coverage of their related firm-specific news. The portfolio

analysis suggests that the commodity-specific limited attention scores are able

to forecast the returns of commodity futures a week ahead after controlling for
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4.7. CONCLUSION

other well-known commodity characteristics such as roll-yield, hedging pressure or

momentum.

Long-short portfolios sorted on limited attention accrue significant excess re-

turns that are not compensation for exposure to known systematic risks. The

paper provides an empirical cross-sectional asset pricing exercise suggesting that

there is pricing ability in limited attention over and above that of traditional risk

factors. To further verify the limited attention effect, we test the long-run return

of the equally weighted limited attention portfolio. The alphas of the portfolios

reverse after 4 weeks which suggests that the impact of limited attention is indeed

temporary. We also show that when investors’ sentiment is high, the effect of lim-

ited attention is stronger as correction of such mispricing becomes more difficult.

Overall, it is concluded that the presence of the limited attention effect cannot

be ruled out in commodity futures markets, namely, limited attention of investors

can induce commodity futures mispricing and more so when an investor’s sentiment

is high.
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Chapter 5

Conclusions

This thesis contributes to the empirical literature on the commodity futures mar-

ket. As the commodity futures are used more widely for portfolio diversification,

it is important to figure out the sources of commodity futures premium. In this

thesis, we extend the current understanding by answering the following questions:

• Is it possible to exploit multiple commodity risk premia using style integra-

tion?

• What is the role of sentiment in the commodity futures market?

• How to identify the causal effect of the limited attention effect in the com-

modity futures market?

We answer the first question in the second chapter. We confirm the benefit of style

integration in the commodity market and find out the best sophisticated integra-

tion approach that incorporates model and parameter uncertainties. Specifically,

we start by calculating five standalone style portfolios which are term structure,

hedgers’ hedging pressure, momentum, skewness, and basis momentum. After

that, we combine the five standalone styles with several integration methods. An

equally weighted approach (EWI) is first calculated as a benchmark in order to
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confirm the benefit of style integration. Alternative integration portfolios based

on sophisticated strategies are calculated after that and compared with the bench-

marks. To conquer the parameter uncertainty problem, we solve the style weights

via a Bayesian portfolio optimization method which incorporates investors’ objec-

tive view of the portfolio.

Our key finding is that style integration is confirmed to be more efficient in cap-

turing the risk premia of commodity futures. Incorporating parameter uncertainty

into the sophisticated approach will bring significantly better performance in terms

of both reward-to-risk and crash risk measures. This result is robust to turnover,

trading cost, sub-period analysis, using alternative score schemes, and different

estimation windows. Thus, we conclude that parameter uncertainty plays an im-

portant role in style integration. By considering this, investors will have a better

way of constructing portfolios and could be more efficient in assets diversification.

In the third chapter, we study the role of sentiment in the commodity futures

market. We construct media tone measures, which serve as proxies for investors’

sentiment, from news articles published over a week window for each commodity

contract. The predictability analysis suggests that the commodity-specific media

tone scores are able to forecast the returns of commodity futures a week ahead af-

ter controlling for well-known commodity characteristics such as roll-yield, hedging

pressure or momentum, etc. We then aggregate media tone scores into a market-

wide sentiment index. The sentiment index has greater predictive power for com-

modity market returns, in- and out-of-sample, than extant measures of sentiment

in the broad financial market. We also confirm the asymmetric effect of sentiment

on the market i.e. negative or pessimistic sentiment has stronger forecast power

and it plays a stronger role as a driver of prices in periods of crises.

Long-short portfolios sorted on media tone accrue significant excess returns that

are not compensation for exposure to known systematic risks. Thus motivated, the
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paper puts forward a simple strategy to enhance traditional long-short portfolio

allocations by embedding the information content of media tone into traditional

sorting signals. The paper provides an empirical cross-sectional asset pricing ex-

ercise suggesting that there is pricing ability in media tone over and above that of

traditional risk factors.

We identify the causal effect of limited attention in the fourth chapter. To create

a clear measure for investors’ attention, we utilize the attention spillover effect be-

tween the equity market and commodity futures market. We argue that investors’

attention to firm-specific news will spill to their related commodity futures mar-

ket which results in buying behaviours of investors. Therefore, we create limited

attention scores for each commodity futures contract by coverage of their related

firm-specific news. The portfolio analysis suggests that the commodity-specific

limited attention scores are able to forecast the returns of commodity futures a

week ahead after controlling for other well-known commodity characteristics.

Long-short portfolios sorted on limited attention accrue significant excess returns

that are not compensation for exposure to known systematic risks. The paper

provides an empirical cross-sectional asset pricing exercise suggesting that there is

pricing ability in limited attention over and above that of traditional risk factors.

To further verify the limited attention effect, we test the long-run return of the

equally weighted limited attention portfolio. The alphas of the portfolios reverse

after 4 weeks which suggests that the impact of limited attention is indeed tem-

porary. We also show that when investors’ sentiment is high, the effect of limited

attention is stronger as correction of such mispricing becomes more difficult.
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