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Interbank markets allow credit institutions to exchange capital for purposes of liq-
uidity management. These markets are among the most liquid markets in the financial
system. However, liquidity of interbank markets dropped during the 2007-2008 finan-
cial crisis, and such a lack of liquidity influenced the entire economic system. In this
paper, we analyze transaction data from the e-MID market which is the only electronic
interbank market in the Euro Area and US, over a period of eleven years (1999-2009).
We adapt a method developed to detect statistically validated links in a network,
in order to reveal preferential trading in a directed network. Preferential trading be-
tween banks is detected by comparing empirically observed trading relationships with
a null hypothesis that assumes random trading among banks doing a heterogeneous
number of transactions. Preferential trading patterns are revealed at time windows of
3-maintenance periods. We show that preferential trading is observed throughout the
whole period of analysis and that the number of preferential trading links does not
show any significant trend in time, in spite of a decreasing trend in the number of
pairs of banks making transactions. We observe that preferential trading connections
typically involve large trading volumes. During the crisis, we also observe that trans-
actions occurring between banks with a preferential connection occur at larger interest
rates than the complement set — an effect that is not observed before the crisis.

Keywords: Interbank markets, interbank rates, preferential links, statistically validated networks.

JEL Classification: G15, G21

1. Introduction

Interbank markets play a key role in banks liquidity management by allowing credit institutions
to exchange capital to overcome short-term liquidity shocks. The interest rates determined in
this market represent the marginal cost of capital for credit institutions. Variations in interbank
rates are rapidly transmitted to the entire term structure, affecting borrowing conditions for
households and firms. Interbank dynamics thus influence the whole economic system. In normal
times, interbank markets are among the most liquid in the financial sector. Due to the short term
nature of the exchanged deposits banks have accepted non collateralized loans and both liquid-
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ity and credit risks were perceived as negligible. During the 2007-2008 financial crisis though,
liquidity in the interbank market has considerably dried up, even at short maturities, and an
increasing dispersion in the credit conditions of different banks has emerged. A number of stud-
ies have investigated how movements in borrowing costs depend on bank specific characteristics
such as their size and creditworthiness (1, 2), or on banks ability to exploit changing market
microstructure conditions (3).

The combination of trust evaporation arising from informational asymmetries and increased
counterparty risk have been identified as important factors in the dry up of liquidity in interbank
exchanges such as the e-Mid (4), (5), the Fedfunds and the EONIA (6), (7).

Several authors have suggested that the interbank market freeze was the result of a high
degree of financial interrelation and interaction among market participants ((8), (9), (10)) and
have called for the adoption of network analysis to fully understand the stability of the banking
sector (11).

A substantial number of papers have adopted computational techniques to assess the possible
extent of contagion via interbank liabilities, starting either from real exposure data (see (12)
for an extensive review), or from agent based models simulated data. Agent-based models have
addressed complementary issues including: the relationship between the network structure of the
interbank market and its resilience to different kind of shocks ((9), (13), (14), (15), (16), (17)
); the effects of assets fire-sale (18); roll-over risk and portfolio overlaps ((19), (20)); feedback
loops between the macroeconomy and the financial sector ((21), (22)).

On the empirical side the network literature has aimed at characterising the observed topol-
ogy of the interbank market checking for regularities and stylised facts. Ref (23) analyses the
microstructure of the e-Mid market over the period 1999-2002 and observe a fairly random dis-
tribution of links without preferential lending or intermediaries. Ref (24) performs an empirical
analysis of the e-Mid market between 1990 and 2008 and report an increasing high degree of
banks concentration with fewer banks acting as global hubs for the whole network. Ref (25)
shows that the network resulting from Fedfunds exchanges is sparse, exhibits small world phe-
nomena and is disassortative. In addition reciprocity and centrality measures are predictors of
interest rate loans. Ref (26) also tests whether measures of centrality can explain the heteroge-
neous patters in the interest rates paid on the e-Mid overnight market. Ref (27) analyses tiering
in the German interbank market and identifies a core-periphery structure. Ref (28) analyses the
Mexican banking network combining data from the payment systems and interbank exposures.
The authors provide a number of non-topological measures for the analysis of banking networks
and their systemic risk. In addition authors show that the measure of interconnectedness of a
bank is not necessarily related with its asset size.

On the theoretical side network models of the banking sector focus their attention on how the
incentives of single agents to form linkages, and their degree of risk aversion, affect the resulting
network structure ((29), (30),(31)). Issues considered include how agents’ behavioural rules and
moral hazard affect the stability of the resulting network ((32), (33)).

While economic network theory predicts that the worsening of credit condition may affect
the way banks choose their trading counterparties, identifying regularities in the way trading
partnerships are formed is a relatively new, but growing, area of empirical research. Lasting
interbank relationships in overnight interbank markets, have been observed both in over-the-
counter markets such the Portuguese (34) and the German ones (35) and in transparent markets
such as the e-MID (electronic Market for Interbank Deposit).

The first paper to explore interbank relationship lending is (34). Looking at data from the Por-
tuguese interbank market, from January 1997 to March 2001, the authors find that both lenders
and borrowers obtain more favourable rates when they trade with their preferred counterparties.
In general small borrowers tend to establish relationships with larger banks as lenders and vice
versa. Borrowers with higher default risk tend to rely more on interbank lending. These risky
borrowers pay higher interest rates, but achieve better prices if they trade with those banks with
whom they have established strong relationships. In Ref. (35), interbank transactions among
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German banks, from March 2006 to November 2007, extracted from the TARGET payment
system are analysed. The author finds that, before August 2007, lenders imposed higher charges
to banks with whom they had a relationship. However at the pick of the crisis, lenders provided
lower rates to their relationship counter-parties, compared to other institutions. The author’s
interpretation of this result is that during normal times borrowers pay a premium to secure rela-
tionships, however during periods of financial distress relationship borrowers receive better rates
from their closer counterparties due to the better information on the borrower creditworthiness
at the lender disposal.

In Ref. (36) the focus is on e-MID monthly data, spanning from June 1998 to April 2009.
The author shows that stable interbank relationships were established prior to the subprime
crisis, and lasted during its subsequent unfolding. Using the same dataset, in ref. (37) no impact
of relationship lending on rates is found before the financial crisis. During the crisis though,
and in particular after the Lehman Brothers collapse in September 2008, having relationships
benefited both lenders and borrowers. Nonetheless, while the impact of trading with a preferential
counterparty was substantial for transactions initiated as a borrower quote, it was negligible
for transactions initiated as a lender quote. In Ref. (38) the authors examine bank to bank
relationships in the Dutch interbank market and show that market participants affect each
other riskiness through trading connections.

In all the above papers the strength of lending relationships is measured by the concentration
of lending/borrowing activity between banks. More precisely, for every lender and borrower a
preference index is computed, equal to the ratio of total funds that a lender (borrower) has lent
to (borrowed from ) a borrower (borrower) during a given period, over the total amount of funds
that the lender (borrower) has lent in (borrowed from) the interbank market during the same
period. This measure nonetheless does not take into account the heterogeneity of the banking
system and the fact that large banks may have no alternative than to trade with each other if
they need to exchange large volumes.

In this paper we compare the trading relationships empirically observed in the e-MID market
with a null hypothesis of random trading among banks performing a heterogeneous number
of transactions as borrower and/or lender. We do this in two ways. First we compare empirical
results with a directed weighted configuration model obtained via sequential edge local rewiring of
the real transactions. The weights are given in terms of the number of transactions done by banks
as lenders and/or borrowers. Then, we provide a probabilistic description of the null hypothesis
using the theoretical framework of the so-called statistically validated networks. We show that
the reshuffling procedure can be efficiently described by the probabilistic model and therefore
one can investigate the whole system by using the statistical validated networks approach.

Our working hypothesis is that bilateral trades whose intensity is preserved in the randomised
ensemble can be traced back/explained as consequences of the heterogeneity in banks activity.
If system heterogeneity cannot explain alone the number of trades among specific pairs of banks
we will take this as evidence of trust (or distrust) among such banks leading to preferential
relationships. Our specific objective is to provide empirically based answers to the following
questions: does preferential trading and/or avoidance of trade exist between pairs of banks? If
so, are these occurrences stable in time for a given pair of banks, and is there any change in
preferential trading during (or leading up to) the financial crisis of 2007/2008?

Our results confirm that during crisis periods credit relationships between banks are polar-
ized in the two opposite and complementary directions: (i) relative increase of the trustworthy
relationships and (ii) elimination of some of the not-trustworthy ones. We also observe that pref-
erential trading connections typically involve larger trading volumes and that transactions occur-
ring between banks with a preferential connection occur at higher interest rates after Lehman’s
bankruptcy. This last observation is consistent with the results of (34) and suggests that it is
mostly the riskier banks that rely on relationship lending, particularly during periods of financial
distress.

The remainder of the paper is organized as follows: in section 2. we will present the e-MID
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dataset. In section 3. we will illustrate the methodologies we will use to investigate the system.
In section 4. we will present our results and in section 5. we will draw our conclusions.

2. Data

Interbank markets can be organized in different ways: physically on the floor, by telephone calls,
or on electronic platforms. In Europe, interbank trades are executed in all these ways. The
only electronic market for Interbank Deposits in the Euro Area and US is called e-MID. It was
founded in Italy in 1990 for Italian Lira transactions and became denominated in Euros in 1999.
When the financial crisis started, the market players were 246, members from 16 EU countries:
Austria, Belgium, Switzerland, Germany, Denmark, Spain, France, United Kingdom, Greece,
Ireland, Italy, Luxembourg, Netherlands, Norway, Poland, and Portugal.

The number of transactions decreases whereas the volume increases until the beginning of the
financial crisis. According to the European Central Bank e-MID accounted, before the crisis, for
17% of total turnover in unsecured money market in the Euro Area. The last report on money
markets (39), recorded around 10% of the total overnight turnovers.

Trading in e-MID starts at 8 a.m. and ends at 6 p.m. Contracts of different maturities, from
one day to a year can be traded but the overnight segment (defined as the trade for a transfer
of funds to be effected on the day of the trade and to return on the subsequent business day at
9 : 00 a.m.) represents more than 90% of the transactions.

One distinctive feature of the platform is that it is fully transparent. Trades are public in
terms of maturity, rate, volume, and time. Buy and sell proposals appear on the platform with
the identity of the bank posting them (the quoter may choose to post a trade anonymously but
this option is rarely used). Market participants can choose their counter-parties. An operator
willing to trade can pick a quote and manifest his wish to close the trade while the quoter has
the option to reject an aggression.

The database is composed by the records of all transactions registered in the period from
25-Jan-1999 to 7-Dec-2009. Each line contains a code labeling the quoting bank, i.e. the bank
that proposes a transaction, and the aggressor bank, i.e. the bank that accepts a proposed
transaction. The rate the lending bank will receive is expressed per year; the volume of the
transaction is expressed in millions of Euros. A label indicates the side of the aggressor bank,
i.e. whether the latter is lending/selling (“Sell”) or borrowing/buying (“Buy”) capitals to or
from the quoting bank. Other labels indicate the dates and the exact time of the transaction
and the maturity of the contract. We consider only the overnight (“ON”) and the overnight long
(“ONL”) contracts. The latter is the version of the ON when more than one night/day is present
between two consecutive business day. The banks are reported together with a code representing
their country and, for Italian banks, a label that encodes their size, as measured in terms of
total assets.

The period of time in which credit institutions have to comply with the minimum reserve
requirements is called the reserve maintenance period. During each reserve maintenance period
minimum reserve levels are calculated on the basis of banks’ own balance sheet and is usually
equivalent to one calendar month, i.e. about 23 trading days. In the investigations we will
present hereafter, we have aggregated the maintenance periods in groups of three. In fact, these
aggregated periods better capture the natural economic cycles that are usually organized on
a nearly 3-monthly basis. We therefore will consider 44 3-maintenance periods ranging from
25-Jan-1999 to 07-Dec-2009. In these aggregated time period the main crisis event occur at
the 3-maintenance period 35 (13-Jun-2007/11-Sep-2007) and 3-maintenance period 40 (10-Sep-
2008/09-Dec-2008), which corresponds to the Lehman Brothers bankruptcy.

We model the credit relationships of bank loans in the e-MID market as a network in which
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Figure 1. Summary statistics of the trading network for the period from 25-Jan-1999 to 7-Dec-2009. Top-left
panel: Number of nodes (banks). Top-right panel: edges. Bottom-left panel: average out degree (equal to average
in-degree). Bottom-right panel: edge density, that is the ratio between the observed number of directed edges and
its maximum possible number, i.e. N (N − 1). We consider here the whole set of e-MID transactions.

nodes are banks and a directional link is set from bank i to bank j if i lent money to j, the
weight of the link being the number of times in which that event occurred in the considered time
period.

In Fig. 1 we show the number of nodes (top-left panel), edges (top-right panel), average out
degree (equal to average in-degree) (bottom-left panel) and edge density (bottom-right panel) for
the period from 25-Jan-1999 to 7-Dec-2009. The vertical bars correspond to the sub-period from
08-Aug-2007 to 11-Sep-2007, i.e. when news of the mortgage crisis in the US was prevalent in
the media, and to the sub-period from 08-Oct-2008 to 11-Nov-2008, i.e. when Lehman brothers
collapsed. The major general decline in the financial activities between banks in connection with
the 2007-2008 financial crisis is evident, see Figs 1 and 2 below.

The three plots of Fig. 2 show the total number of transactions, the mean number of lending
transactions per bank and the mean number of transactions per existing link. The role of the
2007-2008 financial crisis is evident in both figures. The major general decline in the financial
activities between banks in connection with the 2007-2008 financial crisis is therefore evident.
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Figure 2. Summary statistics of transactions. Top-left panel: total number of transactions. Top-right panel: mean
number of transactions per bank. Bottom-left panel: maximum number of transactions per bank. Bottom-right
panel: mean number of transactions per link. We consider here the whole set of e-MID transactions.

3. Methods

Our aim is to asses the statistical significance of the observed interbank transaction records in
order to reveal preferential credit relationships amongst banks during market activity. In order
to asses the statistical significance of the observed interbank credit relationships it is crucial to
compare the empirically observed networks against an appropriate null hypothesis. Here we will
investigate a shuffling procedure applied to empirical data and we will compare the numerical
results obtained in terms of a probabilistic description based on the hypergeometric distribution.
Using the shuffling procedure allows one to include, in the null hypothesis, the constraint that
a bank cannot lend money to itself. However, this procedure is computationally demanding and
provides results with a precision that scales like the inverse of the square root of the number
of nodes of the shuffled network. On the other hand, the probabilistic description based on the
hypergeometric distribution provides analytical results that are only approximated because the
probabilistic description does not avoid the possibility that a bank can lend money to itself. In
this section, we discuss in details both the approaches and show that the probabilistic description
of the null hypothesis well describes the numerical outcomes of the shuffling procedure, due to
the sparsity of the network.

6
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3.1 A null hypothesis for the number of loans between two banks

For each link in the network, we perform a statistical test to check whether two banks prefer-
entially traded in a given 3-maintenance period. Our test is done by using a recently proposed
method (40, 41) that is a directional variant of the method presented in Ref. (42, 43). The sta-
tistical test is implemented as follows. For each 3-maintenance period, we define NT as the total
number of trades among banks in the system and focus on two banks i and j to check whether
i preferentially lent money to j, that is, j preferentially borrowed money from i. Let us call nil
the number of times bank i lent money to any other banks, and njb the number of times bank j

borrowed money from any other bank. Assuming that nijlb is number of times bank i lent money

to j then the probability of observing such nijlb trades, assuming that j borrows money randomly
and i lends money randomly, is given by the hypergeometric distribution

H(nijlb |NT , n
i
l, n

j
b) =

( ni
l

nij
lb

) (NT−ni
l

nj
b−n

ij
lb

)
(NT

nj
b

) . (1)

We use this probability to associate a p-value with the observed number nijlb of trades from

bank i to bank j as p(nijlb) =
∑Min[ni

l ,n
j
b]

X=nij
lb

H(X|NT , n
i
l, n

j
b), that is the probability of observing

by chance a number of trades from i to j equal to nijlb or larger. This p-value is calculated by
taking the sum of probabilities over the right tail of the hypergeometric distribution. Therefore
a “small”1 value of the p-value statistically indicates that the link from i (the lender) to j (the
borrower) is over-represented, in terms of number of loans, with respect to the null hypothesis
of random trading. Analogously we can statistically validate a link between i and j that is
under-represented with respect to a random null hypothesis by taking into account the left
tail of the hypergeometric distribution. In this case one should compute the left-tail p-value as

p(nijlb) =
∑nij

lb

X=0H(X|NT , n
i
l, n

j
b).

The hypergeometric distribution can be used to describe variable nijlb because the problem can

be mapped into an urn model (44). Let’s consider an urn with njb blue marbles and NT − njb
red marbles. The probability p(nijlb) is the probability that, randomly picking nil marbles from

the urn without replacement, nijlb of them are blue colored, and the hypergeometric distribution

is the one that provides p(nijlb). Please notice that the symmetry properties of hypergeometric

distribution allows one to obtain the same probability p(nijlb) by reversing the role played by

lender and borrower. Specifically p(nijlb) can also be obtained if we consider an urn with nil blue

marbles and NT − nil red marbles, and nijlb represents the number of blue marbles among njb
randomly drawn marbles. It is to notice that mapping the problem of randomizing bank loans
into such an urn model is done at the cost that we get rid of the constraint that a bank cannot
lend money to itself. This fact makes our analytical solution for the random system just an
approximation of what we would obtain by randomly rewiring data and forcing the condition of
no self loans to be respected, as discussed in the next subsection.

If we were just interested in calculating p-values of over-representation only for all the directed
edges, E in our network, then we should run E statistical tests. To avoid a large number of false
positive validated links, due to the large number E of statistical tests, it is advisable to consider
a method to control the family-wise error rate. This control can be done by applying the so-
called Bonferroni correction (45). This correction requires that the univariate level of statistical
significance, e.g. pu = 0.01, is corrected in presence of multiple tests. Specifically, the multivariate
level is set to pm = pu/E = 0.01/E. The Bonferroni correction is the most conservative multiple

1This point will be quantitatively discussed later in this section.
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hypothesis test correction.
In the following, we set pu = 0.01 and say that bank i preferentially lent money to bank j if

the estimated p(nijlb) is less than pm = 0.01/E. In this case, we will set a link from bank i to
bank j in a “filtered” network that is named Bonferroni network (42).

3.1.1 Simultaneous test of over- and under-expression. In many situations, it is con-
venient to study simultaneously over- and under-expressed links in a given network. This clearly
affects the way in which the statistical threshold should be corrected for multiple comparison,
because it changes the total number of tests. Below we show a simple way to compute the correct
statistical threshold pm in this case.

Let us consider a specific time period — e.g. a 3-maintenance period a — and call Ea the
number of pairs of banks that actually traded at least once in that time period; call La (Ba) the
number of banks that have done at least one trade as a lender (borrower) in the time window,
and call NBL

a the number of banks that have done at least one trade as a lender and at least
one trade as a borrower in the a-th time period.

The number of tests for over-expression that we need to run is Ea. In general Ea ≤ La×Ba−
NBL

a . In fact, the quantity La×Ba−NBL
a gives the maximum expected number of links, given a

certain number of lenders and borrowers. However, many of these links might not actually exist
in the network, because trades between some bank pairs may not occur. Therefore, for some i
and j it is possible that nijlb = 0, which, necessarily, cannot indicate an over representation of

loans from i to j, and therefore should not be tested for over representation. However, nijlb = 0 is
an excellent candidate to test under representation of loans from i to j—that is to test whether
i avoids to lend money to j or j avoids to borrow money from i. This means that such cases
should be included in the test for under representation. So, in the case of under representation,
we have to run the test for all the pairs of active banks in the system (La×Ba) minus the cases
in which lender and borrower are the same bank, that is NBL

a . Therefore La ×Ba −NBL
a is the

number of tests of under-representation that we have to run. As a result, the total number of
tests, for both under- and over-representation, in a given time window, is

Ta = Ea + La ×Ba −NBL
a . (2)

It is worth mentioning that a possible alternative would be Ta = 2(La×Ba−NBL
a ). However we

believe that this choice is unnecessariliy conservative as it involves testing the null hypothesis in
cases that are clearly not relevant for the over-expression analysis (those with nijlb = 0).

3.2 A null hypothesis from shuffling and a probabilistic approach

For each time period labeled by time t a directed weighted graph can be defined over a set of banks
V by considering their interbank transactions. More formally, each observed graph is represented
by the asymmetric weight matrix W o(t) = {wo

i,j(t)}∀i,j∈V (with no self-interactions allowed)

where wo
i,j(t) is the number of loans from bank i to bank j. It follows that soi,out(t) =

∑
j

wo
i,j(t) ,

the out-strength of bank i, is the total number of observed transactions in the period with bank

i acting as a lender and soi,in(t) =
∑
j

wo
j,i(t) is the total number of observed transactions in the

period with bank i acting as a borrower.

3.2.1 The directed weighted configuration model. As a null model we now consider a
random network characterized by a strength distribution equal to the one observed empirically
for each time period (see (46) and references therein). For directed and weighted representations
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we can construct a randomization using the edge swap procedure (that now conserves the vertex
in-out strength sequence but not the in-out degree sequence) in the following way. Each weighted
directed edge with weight wi,j is further inserted wi,j − 1 times in the network and all edges
have their weights set to 1. The resulting multigraph is then rewired as a directed unweighted
graph where each edge now indicates a single transactions and the number of edges between i
and j correspond to their number of transactions. The rewired multigraph is then collapsed to
a directed weighted graph via the reverse procedure (i.e. all m directed and unweighted edges
between j and i are collapsed into a single edge with weight m) and the quantities of interest
are then computed in this final graph. Note that, as it stands, this process only works for graphs
with integer weights. Moreover, this reshuffling algorithm does not preserve the in- and out-
degree of nodes: only the strengths are preserved. This is because in order to redistribute the
integer weights evenly between pairs a number of edges must be created. Of course this would
not be the case if all weights were equal in value. An advantage of the multigraph rewiring
phase used here is that more edge swaps are permissible (resulting in statistical bias reduction)
with respect to the unweighted case. An edge swap selects two ordered pairs (x, y),(u, v) and
swaps the endpoints (target nodes) while keeping the sources fixed such that two new pairs will
be inserted in the graph (u, y),(x, v) and the original pairs deleted. For example if any of the
final edges in the transformation (x, y)(u, v)→ (u, y)(x, v) are already in the set of edges this is
not an allowed transformation in the directed unweighted case, whereas the multigraph rewiring
side-steps this problem.

Statistically speaking rewiring by local edge swaps generates a micro canonical ensemble.
When applied to such integer valued weighted graphs, the directed configuration model can
generate an in and out strength-preserving ensemble of graphs. A sample of size n is chosen and
for each graph and for all 3-maintenance period we generate a corresponding ensemble whose
members are defined by the weight matrices {ws

i,j(t)}∀s∈S with S = {1, 2, ..., n} an index set
for the configuration model ensemble. These graphs, acting as one of possible null models, are
characterized by soi,x(t) = ssi,x(t) ,∀i ∈ V and for x ∈ {in, out} but are otherwise random. This
fact allows one to investigate the extent at which banks’ heterogeneity, in terms of number of
transactions, determines the structure of the e-MID market and its persistence over time.

For each of the 44 3-maintenance periods we generate the weighted directed network, in which
weights are positive integers indicating the number of (directed) trades between two banks,
and we calculate the weighted Jaccard index between each pair of these network. The weighted
Jaccard index is a generalization of the usual Jaccard index that allows to take into account link
weights:

JW (net1, net2) =

∑
i,j Min[w1

i,j , w
2
i,j ]∑

i,j Max[w1
i,j , w

2
i,j ]
, (3)

where w1
i,j is the weight of link i → j in the first network, net1, and w2

i,j is the weight of link
i → j in the second network, net2. For an unweighted network JW (net1, net2) reduces to usual
Jaccard index:

JU (net1, net2) =
|E1 ∩ E2|
|E1 ∪ E2|

, (4)

that is the number of directed links that belong to both network over the number of links in the
union network. It is worth mentioning that the weighted Jaccard of Eq. (3) can be interpreted as
a Tanimoto coefficient (47) if: (i) the length L of the vectors used in the definition of Tanimoto
coefficient is set to the maximum number of directional transactions amongst all bank pairs
and (ii) the vector Vij = {vaij}, a = 1, · · · ,L associated with the two banks, i and j, doing tqij

9
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Figure 3. Contour plots of the weighted Jaccard index between all pairs of 3-maintenance periods. The left panel
shows the weighted Jaccard index between original networks, and the right panel provides the same measure for
rewired networks. The rewiring procedure preserves the total in- and out-strength of each node.

transactions in network q is defined as:

vaij =
{ 1 a ≤ tqij

0 a > tqij
(5)

In the left panel of Fig. 3 we show the contour-plot of the weighted Jaccard index for each
pair of 3-maintenance periods. The right panel of Fig. 3 shows a contour plot of the weighted
Jaccard index between the randomly rewired1 networks obtained in each 3-maintenance period.
The left panel of the figure shows that network structure is rather persistent over time. However,
the right panel shows that such a persistence is still present after a strength-preserving rewiring.
Therefore the persistence is mostly due to the fact that the heterogeneity of banks is maintained
over time. In fact, the contour plots reported in the two panels are very similar, and the only
quantities that are not randomized in rewired networks are the in-strength and out-strength (in
terms of number of transactions) of banks. This result indicates that banks’ heterogeneity must
be suitably considered in any analysis that aims at revealing preferential trading patterns.

3.2.2 Comparison of probabilistic predictions and network shuffling. To establish
a connection between the probability that a link occurs in n out of Ns shuffled datasets and
the probabilistic description of link weights based on the hypergeometric distribution we focus
on a lender l and a borrower b and on a certain maintenance period, e.g., a 3-maintenance
period. We assume that l (b) acted as a lender (borrower) nl (nb) times and that l lent money
to b in nlb occasions. Finally, NT is the total number of loans among all the banks, in the given
maintenance period.

The probability that l lends money to b at least in one shuffled dataset can be calculated as
p = 1 − Plm(0), where Plm(0) is the probability of observing no loan from l to m according to

1Each rewired network is obtained through 106 link swaps.
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the hypergeometric distribution, H(nlb = 0|nb, nl, NT ). We have:

p = 1− Plm(0) = 1−H(nlb = 0|nb, nl, NT ) =

(6)

1−
(
nl

nlb

)
·
(
NT−nl

nb−nlb

)(
NT

nb

) ∣∣∣∣∣
nlb=0

= 1−
(
NT−nl

nb

)(
NT

nb

) ,

where it is implicitly assumed that NT−nl ≥ nb. If this is not the case then Plm(0) = 0 and p = 1.
The probability p is the probability that a link from l to b occurs in the network associated with
a shuffled dataset. Therefore the probability that a link occurs in n out of Ns shuffled datasets is
given by the probability mass function of a Binomial distribution with parameters p (probability
of success), n (number of successes), and Ns (number of trials):

P (n) =

(
Ns

n

)
pn (1− p)Ns−n. (7)

According to this probability, the expected value of n is given by

E(n) = Ns p = Ns

[
1−

(
NT−nl

nb

)(
NT

nb

) ]
, (8)

while the variance is

σ2 = Ns p (1− p) = Ns

(
NT−nl

nb

)(
NT

nb

) [
1−

(
NT−nl

nb

)(
NT

nb

) ]
. (9)

These equations can be used to compare the null hypothesis obtained by rewiring the original
network and the null hypothesis described by the hypergeometric distribution. Indeed, from
a theoretical point of view, a null hypothesis of random transaction among banks based on
shuffling the data according to the edge swapping algorithm and a null hypothesis based on the
hypergeometric distribution are not exactly equivalent. In fact, the hypergeometric distribution
does not forbid self links, that is trades can occur between a bank and itself. However, in cases
where links are rather sparse, as in the present investigation, the probability that such an event
occurs by chance is very small. This observation suggests that our approximate approach provides
a good description of sparse networks.

To prove such a conclusion we show the results of two distinct although complementary in-
vestigations. On one side, the number of independent randomly rewired networks (out of a total
of 1000) in which a directed link occurs between two given banks, despite the weight, is tested
against the Binomial distribution P (n) described above. None of the resulting p-values is below
the Bonferroni threshold, and therefore we cannot reject the hypothesis that the results from
shuffling follow the indicated binomial distribution, and are in agreement with the underling
hypergeometric distribution. In left panel of Fig. 4 we show the scatter-plot of expected value
of links obtained from Eq. (8) versus the number of link occurrences detected in the shuffling
experiments. In the second investigation we take into account links weights. In the right panel of
Fig. 4 we report a scatter plot of the expected number of transactions between each (directed)

pair of banks according to the hypergeometric distribution (nil n
j
b/NT between lender i and bor-

rower j) and the average number of trades observed between each pair of banks over the 1000
shuffling experiments. Also these results confirm that the probabilistic modeling well describes
the reshuffling procedure.

11
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Figure 4. Left panel: scatter plot of the expected number of times in which a link is expected in the random case,
according to Eq. (8) with Ns = 1000 versus the number of times in which a link has been observed in the 1000
shuffling experiments. Right panel: scatter plot of the expected number of transactions between each (directed)
pair of banks according to the hypergeometric distribution (ni

l n
j
b/NT between lender i and borrower j) versus the

average number of trades observed between each pair of banks over the 1000 shuffling experiments. The dataset
used to perform the shuffling experiments is the list of transactions occurred in the 3-maintenance period from
24-Dec-2004 to 23-Mar-2005.

3.2.3 Z-score. In both the random edge swapping algorithm preserving the strength of each
network node and the probabilistic description of the null model of e-MID it might be useful
to consider z-transformed variables. In fact, an analytical form of the z-score can be associated
with the number of transactions, nolb, observed between a lender, l, and a borrower, b, as follows:

zlb =
nolb − E(nlb)

σ(nlb)
=

nlb − nl nb/NT√
nl nb

NT
(1− nl/NT ) (1− nb/NT )

, (10)

where the approximation NT ' NT − 1, has been used. The right term of the above equation
can be interpreted as a correlation measure between two binary vectors of NT components with
nl and nb non zero elements and intersection nlb. The correlation coefficient between these two
binary vectors (43) is

ρlb =
nlb − nl nb/NT√

nl nb (1− nl/NT ) (1− nb/NT )
. (11)

It follows that:

zlb =
√
NT ρlb. (12)

The Z-score can be used to investigate the consistency between the two approaches. Specifically,
for each link, the weights observed in the 1000 rewired networks are considered, and the average
weight is compared with the expected value provided by the hypergeometric distribution, through
a one-sample t-test. Due to the limited number of rewired networks, 1000, cases in which the
sum of all the weights over all of the 1000 networks was less than 5 have been excluded from this
analysis. Also in this case, none of the p-values is below the Bonferroni threshold, indicating that
the hypergeometric distribution provides a good description of link weights obtained according
to the edge swapping algorithm.

In Fig. 5, a scatter plot between the z-scores based on the 1000 rewired networks and those
obtained under the hypothesis of an underlying hypergeometric distribution (zlb given above)
is shown for the period 24-Dec-2004 to 23-Mar-2005 (which correspond to three maintenance

12



October 21, 2013 Quantitative Finance paperEMID˙12

Figure 5. Scatter plot of the z-scores based on 1000 rewiring experiments versus the z-scores obtained with the
probabilistic modeling, for the 3-maintenance period from 24-Dec-2004 to 23-Mar-2005.

periods). Also this figure shows an excellent agreement between the two approaches.

4. Empirical results

A credit institution that first come to the market with a proposal to lend or borrow is called
the quoter, and those who can pick a quote and exercise a loan proposal is called the aggressor.
We will consider three different sets of data, depending on the type of the aggressor: the lender-
aggressor dataset where the lender acts as aggressor in all transactions, the borrower-aggressor
dataset where the borrower acts as aggressor in all transactions and the whole dataset where we
include all transactions independently of the side of the lenders and borrowers. The role of the
aggressor in the market is asymmetric. Specifically, we observe that on average 70.6 ± 5.9% of
transactions are of the lender aggressor type. When we con sider volume, we observe that on
average 72.4± 7.5% of transactions are of the lender aggressor type.

4.1 The e-MID market

In Table 1 we show the number of transactions (second column) and the exchanged volume
(seventh column) between banks in each of the 44 3-maintenance periods for the whole dataset.
The decline in the number of transactions, shown in the top-left panel of Fig. 2 is evident. In
the third, fourth, fifth and sixth column we show the percentage of transactions amongst Italian
banks, between Italian and foreign banks, between foreign and Italian banks and amongst foreign
banks, respectively. The same information is reported in the eight to eleventh column for the
exchanged volume. It is worth noticing that most of the transactions are amongst Italian banks.
A significant part of the exchanged volume is relative to transactions occurring amongst Italian
banks or amongst foreign banks. In fact, the volume exchanged between Italian and foreign
banks is on average 12.9% of the whole exchanged volume. Based on these observation, we will
consider hereafter only the Italian segment of the e-MID market.

4.2 The Italian segment of the e-MID Market

In Fig. 6 we show the dynamics of the fraction of directed links where the lender acts only as
aggressor (red line), the borrower acts by aggressor only (blue line), and both the lender and
borrower act as aggressors (black line). The figure shows that there exists a dynamics in the
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3-period trades trades trades trades trades volume volume volume volume volume
ALL IT-IT IT-F F-IT F-F ALL IT-IT IT-F F-IT F-F

number % % % % MEur % % % %
01 28391 100 0 0 0 434834.38 100 0 0 0
02 44837 100 0 0 0 633682.49 100 0 0 0
03 43092 100 0 0 0 592231.16 100 0 0 0
04 39038 99 1 0 0 598948.43 98 1 0 0
05 39071 100 0 0 0 677539.28 99 1 0 0
06 41234 99 1 0 0 848558.77 96 2 1 1
07 36286 98 1 1 0 729806.35 93 1 5 0
08 34361 97 1 2 0 793091.44 87 2 9 2
09 32647 97 1 2 0 724048.63 83 2 10 6
10 32650 97 2 1 1 757021.86 79 8 4 9
11 30539 96 2 1 0 740106.92 80 8 4 7
12 34265 94 4 1 1 826929.53 74 15 2 9
13 34414 93 5 1 1 866837.01 69 18 2 11
14 35143 95 4 1 1 861243.7 74 13 5 8
15 33187 95 4 1 1 886143.52 73 13 4 10
16 32931 92 6 1 1 935672.46 66 19 2 13
17 31135 92 3 2 2 925252.34 67 10 6 17
18 30642 90 6 2 2 961911.7 62 18 4 15
19 30880 91 4 2 3 1.0214383 106 59 14 5 22
20 28143 91 4 2 3 1.00813273 106 53 17 5 25
21 27158 91 4 2 3 977063.7 59 11 5 25
22 28430 87 4 3 6 1.27433051 106 49 11 6 35
23 28613 88 3 4 5 1.23952144 106 50 9 8 33
24 28828 86 3 5 6 1.29990264 106 49 9 12 30
25 27379 85 3 5 7 1.26115423 106 47 8 9 36
26 27210 85 6 2 6 1.22476130 106 50 13 5 32
27 27295 86 3 4 7 1.26343835 106 49 6 9 36
28 27368 85 3 5 7 1.22835554 106 45 7 9 39
29 21339 84 2 6 8 1.1188875 106 41 5 11 43
30 28086 83 4 6 8 1.45326181 106 42 7 11 41
31 23848 84 3 5 8 1.309460780 106 44 9 7 40
32 27222 83 4 4 9 1.43526061 106 37 11 7 44
33 25180 80 4 5 11 1.56399547 106 31 9 8 52
34 23143 81 5 4 10 1.38353729 106 33 11 5 51
35 26264 84 2 7 7 1.32691567 106 39 6 13 43
36 24800 87 3 3 7 1.0552792 106 46 8 7 39
37 23103 89 1 4 6 848769.64 48 4 10 38
38 21943 90 2 3 5 799662.5 52 7 8 33
39 19801 88 1 4 6 815732.04 50 3 11 36
40 18472 94 1 1 4 595271. 66 2 4 28
41 14886 96 1 1 3 385821.9 66 1 2 31
42 14942 96 1 1 3 388590.39 70 2 4 24
43 13201 98 0 0 1 238483.3 90 0 2 7
44 12234 98 0 1 1 269520.4 80 1 5 14

Table 1. Summary statistics of the number of transactions (second column) and of the exchanged volume
(seventh column) between banks in each of the 44 3-maintenance periods in the case of the lender-aggressor
dataset. In the third, fourth, fifth and sixth column we show the percentage of transactions amongst Italian

banks, between Italian and foreign banks, between foreign and Italian banks and amongst foreign banks,
respectively. The same information is reported in the eight to eleventh column for the exchanged volume.

type of pair relationships in the network. In particular, the directed links where the lender acts
only as aggressor starts increasing from the beginning of 2005. A specular decline in the ratio
of directed links where the borrower acts only as aggressor and when the banks act as both
borrower and lender-aggressor is also observed. This implies that, starting from 2005, the ratio
of borrowers who only act as quoters increases in turn and the markets become more and more
borrower driven. This effect may be interpreted as an early indication that liquidity becomes
scarcer in the interbank market, forcing borrowers to come forward and compete for loans long
before the crises fully develops.

4.2.1 Preferential links. Further insights about the system can be obtained by considering
the statistically validated networks discussed in section 3.1. Specifically, we will consider here
only the statistically validated networks obtained by using the Bonferroni correction for multiple
comparison. In Fig. 7 we show the Bonferroni network for the 3-maintenance period 40 (10-Sep-
2008/09-Dec-2008), restricted to the italian banks only and the lender-aggressor dataset. The
nodes in the networks are colored according to the node membership to the partitions detected
by using the Radatool algorithm (unweighted option) (48). The links are colored according to
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Figure 6. Time evolution of the fraction of directed links where the lender acts only as aggressor (red line), the
borrower acts as aggressor only (blue line), and both the lender and borrower act as aggressors (black line). The
analysis is performed on the Italian segment of the e-MID market.
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Figure 7. Bonferroni network for the 3-maintenance period 40 (10-Sep-2008/09-Dec-2008) of the lender-aggressor
dataset. The different colors indicate the node membership to the partitions detected by using the Radatool
algorithm (unweighted option) (48). Red links are under-expressed links, while blue links are over-expressed ones.
The analysis is performed on the Italian segment of the e-MID market.

the fact that they are over-expressed (blue) or under-expressed (red). In this network, is worth
noticing that under-expressed links usually connect nodes belonging to different partitions. Such
feature is indeed observed in the networks relative to all the 44 3-maintenance periods. The
role of the under-expressed links is currently under investigations and will be presented in a
forthcoming paper.

15



October 21, 2013 Quantitative Finance paperEMID˙12

Figure 8. In the top-left panel, we show the number of links observed in the original network. In the top-right
panel, the number of over-expressed links (red) and under-expressed links (blue) observed in the Bonferroni
network is reported. In the bottom panel, we show the ratio between the number of over-expressed links observed
in the Bonferroni and in the original network. The dotted line refers to the August 2007 market freezing, while
the dashed line refers to the Lehman’s bankruptcy. These data refer to the lender-aggressor dataset. The analysis
is performed on the Italian segment of the e-MID market.

For the lender-aggressor dataset, in the top-left panel of Fig. 8 we show the number of links ob-
served in the original network and in the top-right panel the number of over-expressed (red) and
under-expressed (blue) links in the Bonferroni network. The panels show a decline of the number
of links in the original networks and an approximately constant profile in the Bonferroni net-
work. In the bottom panel of Fig. 8 we show the ratio between the number of over-expressed links
observed in the Bonferroni and in the original network. When considering the ratio one clearly
sees that the fraction of over-expressed links increases after the Lehman’s bankruptcy (dashed
line in the bottom panel of the figure). This is also observed in the ratio of under-expressed links
(not shown). Similar results occur for the borrower-aggressor dataset. The Bonferroni network
therefore reveals a change in the structure of the relationships between banks after the Lehman’s
crisis.

4.2.2 Stability of links. We have investigated the stability of the network over the 44 3-
maintenance periods in order to see whether the crisis events introduce major changes in the
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Figure 9. Average lagged Jaccard index between the network of the 3-maintenance period t with respect to the
network of the 3-maintenance period t + L, where L is the time-lag ranging from 1 to 40. The data shown in the
figure are the average values and standard deviations (error bars) taken over all the 3-maintenance periods, for
the lender-aggressor dataset. We show results relative to the original network (black) and the Bonferroni network
(red). Open circles and squares refer to randomly rewired networks. The rewiring procedure preserves the node
degree. These data refer to the lender-aggressor dataset. The analysis is performed on the Italian segment of the
e-MID market.

network. Specifically we have computed the Jaccard index between the networks, as defined
in section 3.2.1. In Fig. 9 we show the (lagged) Jaccard index between the network of the 3-
maintenance period t with respect to the network of the 3-maintenance period t + L, where
L is a lag ranging from 1 to 44. The data shown in the figure are the averages and standard
deviations (error bars) taken over all the 3-maintenance periods, for the lender-aggressor dataset.
We show the results relative to the original network (black circle) and the Bonferroni network
(red squares).

Surprisingly, the (lagged) Jaccard index between the original networks is higher than the
Jaccard index between the Bonferroni networks. Naively one would have expected the opposite,
on the ground that links non explained by a random null hypothesis are supposed to be more
persistent. Our working hypothesis is that such difference is due to the different structure of the
degree distribution of the two networks.

In order to test our working hypothesis let us now compare the Jaccard index of the original and
Bonferroni networks with that measured for surrogate networks generated by using a rewiring
procedure that maintains the degree of each node. The rewiring procedure is different from the
one used in section 3.2, where the strength and not the degree of each node was preserved. In
Fig. 9 we also show the rewired original network (black open circle) and the rewired Bonferroni
network (red open squares). We observe that the value of the Jaccard index at different lags
is very similar in the original network and the reshuffled ones suggesting that the reshuffling
procedure does not manage to destroy correlations imposed by the degree preserving contrains.
Degree heterogeneity in the system appears to be the main responsible for the stability of a
(still relatively small) ratio of links in the real networks. In the Bonferroni network instead the
randomisation succeeds in redistributing the links, reducing the Jaccard index at lag one by an
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Figure 10. Contour plots of the Jaccard index between all pairs of 3-maintenance periods. The left panels show
the Jaccard index between original networks (top) and between Bonferroni networks (bottom). The right panels
provide the same measure for rewired networks. The rewiring procedure preserves the degree of each node. These
data refer to the lender-aggressor dataset. We consider only the over-expressed links of the Bonferroni network.
The analysis is performed on the Italian segment of the e-MID market.

order of magnitude. This suggests that stable links in the Bonferroni network are not imposed
by the constrains of the system but result from banks deliberate choices of counterparties.

This effect appears even more clearly in Fig. 10 where we show the contour plots of the Jaccard
index between all pairs of 3-maintenance periods. The left panels show the Jaccard index in
the original network (top) and in the Bonferroni network (bottom). The right panels provide
the same measure for rewired networks. One can see that both the original and Bonferroni
networks display larger stability in the central periods while stability fades away towards the
end of the investigated periods, i.e. after the Lehman events. In general, the stability of the
empirical networks is larger than that of the rewired networks. However, it is evident that the
rewiring does not completely destroy the network structure of the original network, as it is the
case for the Bonferroni network. This shows again that the degree heterogeneity has a crucial
role in determining the stability of the empirical interbank networks.

4.2.3 Volumes and Interest Rates of the banks belonging to the Bonferroni net-
works. There are several possible reasons that explain why banks tends to have preferential
relationships amongst them. One first feature we want to investigate is related to the interest
rates associated to each transaction. For the lender-aggressor dataset and for each 3-maintenance
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period in our dataset, in Fig. 11 we show the average interest rates rB observed in the trans-
actions between banks connected in the Bonferroni network (top-left panel) and the average
interest rates rNB relative to transactions which are not included in the Bonferroni network (left
panel). Averages are computed over the transactions occurred in each 3-maintenance period.
Error bars are the corresponding standard deviations1. The middle-left panel shows the average
interest rate r of all transactions occurred in a 3-maintenance period, without distinguishing
whether or not these transactions are included in the Bonferroni network. The middle-right
panel shows the difference rB − rNB, while the bottom-left panel shows the relative difference
(rB − rNB)/r. The middle-right panel indicates that there is no peculiarity in the interest rates
of transactions occurring within or outside the Bonferroni network. Such difference starts to be
significant at the end of 2008, i.e. after the Lehman crisis events. This is confirmed by looking
at the bottom-left panel. In other words after the Lehman bankruptcy event the cost of the
credit for the preferential links increased. A more quantitative analysis of this effect is shown
in the bottom-right panel of the figure where we show the t-statistics computed for the case of
samples with unequal size and different variance. The two horizontal lines above and below zero
represent the threshold corresponding to a 1% p-value, that is any point over the top line or
below the bottom line indicates that the null hypothesis of equal mean should be rejected at a
1% significance level.

Similar results are also shown when considering the borrower-aggressor dataset, see Fig. 12,
thus suggesting that the determinants of preferential links with a given counter parties are
independent on the role played in the transaction, i.e. whether the banks acts as quoter or as
aggressor. In particular it does not appear to be the case that banks pick preferentially the
counterpart that offer the best available rate. The results rather suggest that the riskier banks,
who pay the highest rates, are the ones that most depend on relationship lending.

In a second investigation, we consider the volume exchanged in the transactions. For the
lender-aggressor dataset, and for each 3-maintenance period in our dataset, in Fig. 11, we show
the average volumes VB exchanged, per transaction, between banks that are connected in the
Bonferroni network (top-left panel), and the average volume VNB exchanged per transaction
between banks that are not connected in the Bonferroni network (top-right panel). Averages
are computed over the transactions occurred in a 3-maintenance period. The error bars are the
corresponding standard deviations. The middle-left panel shows the exchanged volume V of all
transactions occurred in a 3-maintenance period, without distinguishing whether or not these
transactions are included in the Bonferroni network. The middle-right panel shows the difference
VB − VNB, while the bottom-left panel show the relative difference (VB − VNB)/V . The middle-
right panel indicates that the difference VB −VNB is almost always positive thus indicating that
in the Bonferroni network we find transaction on average larger than those observed outside the
Bonferroni network. Moreover the bottom-left panel shows that the relative amount transacted
within the Bonferroni network has slightly decreased after the crisis. Again, a more quantitative
analysis of this effect is shown in the bottom-right panel of the figure we show the t-stastics
computed for the case when one has unequal sample sizes and unequal variances.

Analogous results are shown in Fig. 14 for the borrower-aggressor dataset, showing again a
similar picture to the one observed in lender-aggressor dataset. It should be noticed that in this
case during the period of crisis the relative volume difference of the borrower-aggressor dataset
(bottom-left panel of Fig. 14) remains high from August 2007 to March 2009.

Our results indicate that preferential links facilitated large transaction volumes, particularly
before the subprime crisis. After the crisis, although large sums were still traded within the
Bonferroni network, possibly thanks to better information on each other trustworth acquired
via previous trading relationships, their volume decreased and lenders required a higher interest
rate premium than before.

1In each 3-maintenance period, the analysis of interest rates and volumes only includes banks that traded both through
links belonging to the Bonferroni network and through links not included in the Bonferroni network.
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Figure 11. For each 3-maintenance period, the figure shows the average interest rates rB observed in the trans-
actions between banks connected in the Bonferroni network (top-left panel) and the average interest rates rNB

relative to transactions which are not included in the Bonferroni network (top-right panel). Averages are computed
over the transactions occurred in a 3-maintenance period. The error bars are the corresponding standard devia-
tions. The middle-left panel shows the average interest rate r of all transactions occurred in a 3-maintenance period,
without distinguishing whether or not these transactions are included in the Bonferroni network. The middle-right
panel shows the difference rB − rNB , while the bottom-left panel shows the relative difference (rB − rNB)/r. In
the bottom-right panel of the figure it is shown the unequal sample sizes and unequal variance t-statistics for
rB and rNB . These data refer to the lender-aggressor dataset. We consider only the over-expressed links of the
Bonferroni network. The analysis is performed on the Italian segment of the e-MID market.

5. Conclusions

In this paper we have compared the empirically observed transactions in the e-MID market with
a null hypothesis assuming random trading between banks that perform a heterogeneous number
of transactions as borrowers and lenders. Specifically, we have compared empirical observations
with a directed weighted configuration model obtained via sequential edge local rewiring of the
real data. The weights are given in terms of the number of transactions done between two linked
banks in which one bank was the lender and the other one was the borrower. We have also
provided an analytical probabilistic description of the null hypothesis within the theoretical
framework of statistically validated networks. The result that the weighted configuration model
can be efficiently described by an analytical probabilistic model motivated us to investigate the
properties of statistically validated networks of the e-MID interbank market and their evolution
over the investigated time period of more than ten years.

We have detected preferential trading among banks over time, studied its dynamics over
the time window 1999-2009 and characterized it in terms of the associated interest rate and
transaction volume. The average transaction volume between banks linked through a preferential-
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Figure 12. For each 3-maintenance period, the figure shows the average interest rates rB observed in the transac-
tions between banks connected on the Bonferroni network (top-left panel) and the average interest rates rNB rela-
tive to transactions which are not included in the Bonferroni network (top-right panel). Averages are computed over
the transactions occurred in a 3-maintenance period. The error bars are the corresponding standard deviations.
The middle-left panel shows the average interest rate r of all transactions occurred in each 3-maintenance period,
without distinguishing whether or not these transactions are included in the Bonferroni network. The middle-right
panel shows the difference rB − rNB , while the bottom-left panel shows the relative difference (rB − rNB)/r. In
the bottom-right panel of the figure it is shown the unequal sample sizes and unequal variance t-statistics for rB
and rNB . These data refer to the borrower-aggressor dataset. We consider only the over-expressed links of the
Bonferroni network. The analysis is performed on the Italian segment of the e-MID market.

trading relationship was typically higher than the average transaction volume of the remaining
transactions, and this observation was persistent over time, even during the crisis. Before the
crisis, we did not observe a significant difference, in terms of interest rate, between transactions
within and outside the statistically validated networks. However, during the crisis, the average
interest rate of transactions between banks who had established preferential-trading relationship
resulted to be higher than the average interest rate of the remaining transactions. These results
suggest that, before the crisis, preferential trading was associated with a trustworthy relationship
between two banks, which allowed for larger trading volumes at no extra-cost. On the other
hand, during the crisis, while the trustworthy relationship persisted to some extent, and still
allowed larger trading volumes for the borrower aggressor transactions, this came at a price of
larger interest rates. Such an interpretation is also supported by the fact that the number of
preferential-trading relationships remained, besides fluctuations, constant over time, while the
total number of connections among banks displayed an apparent decreasing trend.
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Figure 13. For each 3-maintenance period, the figure shows the average volume per transaction VB exchanged in
the transactions between banks connected in the Bonferroni network (top-left panel) and the average volume per
transaction VNB relative to transactions not included in the Bonferroni network (top-right panel). Averages are
computed over the transactions occurred in a 3-maintenance period. The error bars are the corresponding standard
deviations. The middle-left panel shows the average volume per transaction V of all transactions occurred in a
3-maintenance period, without distinguishing whether or not these transactions are included in the Bonferroni
network. The middle-right panel shows the difference VB − VNB , while the bottom-left panel shows the relative
difference (VB −VNB)/V . In the bottom-right panel of the figure it is shown the unequal sample sizes and unequal
variance t-statistics for VB and VNB . These data refer to the lender-aggressor dataset. We consider only the
over-expressed links of the Bonferroni network. The analysis is performed on the Italian segment of the e-MID
market.
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