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Abstract

Online marketplaces are the main engines of legal and illegal e-commerce, yet their empirical properties are poorly understood due
to the absence of large-scale data. We analyze two comprehensive datasets containing 245M transactions (16B USD) that took place
on online marketplaces between 2010 and 2021, covering 28 dark web marketplaces, i.e. unregulated markets whose main currency
is Bitcoin, and 144 product markets of one popular regulated e-commerce platform. We show that transactions in online market-
places exhibit strikingly similar patterns despite significant differences in language, lifetimes, products, regulation, and technology.
Specifically, we find remarkable regularities in the distributions of transaction amounts, number of transactions, interevent times,
and time between first and last transactions. We show that buyer behavior is affected by the memory of past interactions and use
this insight to propose a model of network formation reproducing our main empirical observations. Our findings have implications
for understanding market power on online marketplaces as well as intermarketplace competition, and provide empirical foundation
for theoretical economic models of online marketplaces.

Keywords: online marketplaces, complex networks, buyer–seller networks, dark web marketplaces

Significance Statement:

Online marketplaces have become very successful in the past 20 y, with dark web marketplaces (DWMs) also proliferating on the
dark web to satisfy the demand for illicit goods. However, the networks that result from interactions between buyers and sellers on
these platforms are poorly understood. Here, we investigate these networks by analyzing 245M transactions on one e-commerce
platform and 28 DWMs. Despite many differences between the marketplaces, we find remarkable regularities in user behavior
and propose a simple model reproducing the main empirical observations. The results shed light on buyer–seller networks and
their formation mechanisms, highlighting the central role of buyer memory and preferential attachment mechanism, and have
important implications for the understanding, design, and regulation of these platforms.

Introduction
Much of online trade happens on regulated and unregulated on-
line marketplaces. Regulated online marketplaces include Ama-
zon, Craigslist, eBay, Walmart, Alibaba (China), Rakuten (Japan),
Gumtree (UK), and Mercado Libre (South America). Unregulated
online marketplaces, such as Silk Road, AlphaBay, and Hydra,
which specialize in the sale of illicit goods, have proliferated on
(and disappeared from) the dark web since the introduction of
Bitcoin (1–4). The amount of transactions in online marketplaces
is vast and growing. For example, in 2020 Amazon reported a
net revenue of 386B USD (5), while in 2019 the ecosystem of

dark web marketplaces (DWMs) had reached a total volume of 4B
USD (2).

Online marketplaces are commercial websites that allow par-
ticipating buyers and sellers to exchange information about prices
and products and to execute transactions (6–8). Sellers can usu-
ally post an ad for their product that includes a product descrip-
tion, a price and a shipping method. Buyers instead can see all
relevant product ads matching search keywords, and have access
to reviews and seller ratings. When a purchase is made, the pay-
ment is processed through the platform, while shipping is usually
taken care of by the seller.
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Despite the importance of online marketplaces for e-commerce
and global trade (9, 10), little is known about their empirical prop-
erties, transaction patterns and the resulting buyer–seller net-
works. The properties of the transaction network could, however,
provide important insights into the presence of market power (11,
12), the nature of interplatform competition (13, 14), product de-
sign (15), the effects of reputation on sellers’ revenue growth (16),
and the long-run sustainability of the platforms (17). Moreover,
measuring properties of the buyer–seller networks could help pro-
vide empirical foundations for theoretical models of online mar-
ketplaces, from the estimation of model parameters to suggest-
ing specific model mechanisms. However, buyer–seller networks
in online marketplaces have specific features that make them
different from other networks (e.g. social networks): they exhibit
a naturally bipartite structure; most transactions (links) occur
between anonymous agents; transaction activity might be infre-
quent and sporadic. Moreover, the structure of buyer–seller net-
works could depend on the nature of the traded products, on
the types of buyers and sellers, on the user experience on the
marketplace, or even on the legal, institutional and geographic
constraints.

One strand of prior work relevant to our paper has touched
on various aspects of regulated online marketplaces. For exam-
ple, the role of reputation and feedback (18–20) has been iden-
tified as one of the main drivers of the worldwide success of
regulated online platforms (21). Other work has looked at con-
sumer search and the effect of rankings on product choice (22–
25), online auction markets (26–29), market microstructure (30,
31), and price formation in online markets (32–36). [For a more
complete but less up-to-date review, see ref. (6).] Another strand
of research has studied unregulated marketplaces. This work
has focused on country-specific studies (37–39), the effects of
closures and law enforcement raids (2, 3, 40–42), the charac-
terization of the trade of specific goods (43–45), the impor-
tance of geography (46, 47), or sociological interview-based stud-
ies (39, 48). However, most work on unregulated online market-
places was limited to specific markets, and focused on infor-
mation available from public listings (e.g. using crawled data)
(1, 40, 43–46).

In this paper, we focus on patterns in transactions, which typ-
ically cannot be publicly observed either on regulated or unreg-
ulated online marketplaces. We analyze two datasets. The first
dataset contains 220M transactions between 99M buyers and 7.4M
sellers, which occurred in 144 randomly sampled product markets
of one regulated e-commerce platform between 2010 and 2020, for
a total volume of over 10B USD. The second dataset contains 25M
transactions involving 17M entities with a total volume of 4.2B
USD, which occurred in 28 major DWMs between 2011 and 2021,
for a total volume of 4.2B USD (for more details on the datasets see
the “Materials and methods” Section). In both cases, the datasets
cover all transactions, which occurred in each corresponding mar-
ket.

We observe striking similarities in user behavior across online
marketplaces, despite their significant differences. First, we find
that the number of transactions, amount, interevent time and
time between first and last transaction are highly heterogeneous
across users but follow consistent fat-tailed distributions across
all marketplaces. Then, we show that individual behavior is influ-
enced by past purchases similarly (albeit less strongly) to what is
observed in the renewal of past ties in social networks (49, 50). Fi-
nally, we propose a simple model of buyer–seller interactions that
reproduces the main stylized facts of the data and emphasizes the

critical role of preferential attachment (51, 52) and memory in the
market dynamics.

Results
Empirical properties of buyer–seller networks
In order to characterize the buyer–seller networks, we start by an-
alyzing different aggregate user-level quantities. First, we study
the distributions (for each market) for the number and amount of
user transactions. Results for all DWMs and for each e-commerce
market are shown in Figs. 1(a) to (d), where black and yellow lines
are obtained by aggregating all users in the respective datasets.
Single distributions display common behavior, spanning several
orders of magnitudes. It is important to note that distributions are
computed without any rescaling or manipulation of the data, and
that higher values generally reached by the regulated platform
in all distributions are exclusively due to the different platform
sizes. The slight discrepancy between the distributions in the to-
tal number of received transactions can be ascribed to the differ-
ent nature of the two datasets: While in the DWM dataset sellers
can withdraw the earnings from several market trades at once,
in the e-commerce data each transaction corresponds to a single
purchase.

We then analyze the temporal dimension of the data. We fo-
cus on the distribution of user lifetimes, defined as the time
between the first and last user transaction in the market, and
the interevent time between two successive transactions of the
same user. Again, we find remarkable regularities across differ-
ent DWMs and different regulated product markets, as shown
in Figs. 1(e) to (h). In these distributions, as before, we also ob-
serve the effects of different sizes of marketplaces. The similar-
ity between different distributions is particularly pronounced in
the meaningful timescales between an hour and a month/year.
Discrepancies for longer periods are due to the different lifetimes
of the markets, whereas discrepancies for shorter timescales can
be explained by the different nature of the two datasets: precise
timestamps on transaction data for the regulated marketplaces
vs. times at which the transaction is actually added to the Bitcoin
blockchain (which depends on its algorithm) for the DWM dataset.

Having considered buyers and sellers separately, we now in-
vestigate the dynamics of buyer–seller relationships and the evo-
lution of the buyer–seller network. We limit this analysis to e-
commerce markets, since DWMs data do not contain buyer–seller
links (see the “Materials and methods” Section for more details).
We first consider how single users distribute their purchases
across sellers: for example, buyers could purchase equally from
multiple sellers or, alternatively, buyers could show loyalty to one
seller from which they do most of their purchases. A standard way
to quantify how distributed or concentrated this pattern is to com-
pute the normalized entropy for the purchases of each buyer i as
in Eq. 1, and then compute its distribution for all markets. The
normalized entropy is defined as

ei = −
J∑

j=1

nj
i log2(nj

i )/ log2(J), ((1))

where nj
i is the share of buyer i’s purchases from seller j and we

sum over the J sellers the buyer purchased from. Fig. 2(a) shows
that the distributions, computed for each market, are fat-tailed,
with buyers populating the full [0,1] support but with most of
the mass toward the top, meaning that most buyers buy a sim-
ilar number of times from the different sellers they purchase
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Fig. 1. Online marketplaces show strikingly similar patterns according to different aggregated quantities. Top (a to d): distributions of 4 analyzed users
aggregate quantities: money and number of transactions both sent and received. Bottom (e to h): distributions of four analyzed users temporal
quantities: the interevent time (time between successive transactions) and the lifetime (time between first and last transaction) both measured in
days. Each blue line represents one DWM, the black line is the distribution built aggregating all DWMs together, each dashed red line represents one
e-commerce platform market, while the dashed yellow line is the distribution aggregating all e-commerce markets. Similar patterns are observed
between different markets in the same platform, but also across regulated and unregulated online marketplaces.

from. Buyers with zero entropy, who buy from just one seller,
were excluded from the figure for visual clarity, but these were
almost exclusively buyers who only made a single purchase (see
Fig. S1 in the Supplementary Material). In Fig. S2 in the Supple-
mentary Material, we further compare the distributions against
a null model obtained reshuffling the transactions in the dataset
(preserving buyers activity and sellers attractiveness), where we
find lower heterogeneity and higher tendency toward high values
of entropy. This implies that the empirical entropy distributions
show a broader non trivial range of behaviors interpolating be-
tween perfect exploration and exploitation.

The observed normalized entropy distributions are compatible
with different kinds of temporal patterns produced by two possi-
ble choices: either buyers choose to engage with new sellers they
have never purchased from (i.e. exploration) or they return to a
known seller (i.e. exploitation). We investigate these dynamics by
leveraging insight from the social networks literature, where sev-
eral studies have investigated how users explore and exploit social
connections by renewing previously activated ties or by establish-
ing new ones (49, 50). Indeed, across different types of social net-
works, the temporal evolution of links that a person forms with
their contacts can be captured by the following expression:

P(n) = (1 + n/c(kmin ))−β(kmin )
, ((2))

where— now using the language of online marketplaces —P(n) is
the probability that a buyer (node) of degree n (who has already
bought from n different sellers) chooses to buy from a new seller,
while c and β are positive constants, depending on the final de-
gree of the buyer, which measure their propensity to explore new
sellers and thus the effect of memory. Following the procedure
proposed in (49) (see Supplementary Material for more details),
we group nodes in different classes according to the final degree:
a buyer is in class kmin if the final degree k satisfies kmin ≤ k ≤ 2 kmin

− 1, starting from kmin = 2. For this computation, we aggregate

all markets together in order to have a representative sample in
classes with higher kmin. If a user is present in multiple markets,
we keep its activity in different markets separated (i.e. effectively
considering her as different users). We then fit Eq. 2 to each node
class obtaining a value of c(kmin) and β(kmin) (see Table S1 in the
Supplementary Material).

Results are shown in Fig. 2(b). Since different classes feature
different values of β and c, we plot a rescaled P(x)1/β as a function
of n/c. Indeed, Eq. 2 becomes 1/(1 + x) (dashed line in Fig. 2b) for
every degree class kmin, where x = n/c. In other words, we re-scale
both axes assuming the empirical behavior is captured by Eq. 2. As
shown in Table S1 in the Supplementary Material, the parameter
values are independent of the degree class and suggest a weaker
(β ∼ 10−1) effect than previously observed in social networks (0.48
≤ β ≤ 2) (50). The close fit of the data to the predicted memory for
different kmin indicates the applicability of Eq. 2 in the dynamics
of buyer–seller relationships. While users have different propen-
sities to explore new sellers, they follow the same mechanism: the
more sellers a user has bought from, the less likely is their next
purchase from a new seller.

Modeling buyer–seller networks
In order to understand possible mechanisms that drive the prop-
erties of buyer–seller networks, we propose an agent-based model
aimed at capturing the patterns observed in the previous section.
The main features of the model are:

(1) Activity. The rate at which buyers make transactions. As
shown in Fig. 1, in both e-commerce and DWMs buyers fea-
ture heterogeneous propensities to make purchases.

(2) Memory. When making new transactions buyers can either
choose a seller they already bought from or pick a new one.
As shown in Fig. 2(b) and discussed above, buyers have a
memory of the sellers they had interacted with, and this
memory affects their future purchases.
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Fig. 2. Buyer memory affects their purchase decisions. (a) Normalized
buyer entropy distribution for each e-commerce market (red), and the
whole e-commerce platform (yellow), excluding users with zero entropy
(mostly users with one transaction, see Fig. S1 in the Supplementary
Material) for visual clarity. The fat-tailed distributions span the full [0,1]
range, with most buyers almost equally buying from multiple sellers. (b)
P(n) is the probability to buy from a new seller after a buyer has already
bought from n different ones. Each degree class kmin ≤ k ≤ 2 kmin − 1 is
rescaled according to the fitted value of c and β (see Table S1 in the
Supplementary Material for the values), with Eq. 2 (dashed line) well
reproducing the memory effect on the buyers’ behavior: the more sellers
they try, the less likely they are to buy from a new one.

(3) Preferential attachment. The attractiveness (i.e. popularity) of
a seller is proportional to the number of their sales. This at-
tractiveness captures the fact that, in online marketplaces,
sellers are rated based on the feedback they receive from
the buyers (i.e. customer reviews), and buyers prefer sellers
with higher ratings, other things equal (18, 19, 53–55). Here,
we focus on the number of sales rather than sale volume to
capture the fact that it is mainly frequency of transactions
that matters for seller reputation.

Given these three ingredients the model dynamics is as follows.
The system consists of N buyers and M sellers. At t = 0 we assign
the activity ai to each buyer i. Each seller j starts with attractive-
ness Aj = 1. At each time step t, each buyer makes a purchase with
probability ai · �t, where �t is the simulation time step (fixed to
1 from now on). A buyer who interacted with n sellers in the past
has probability P(n) = (1 + n/c))−β of choosing a new seller and 1
− P(n) of returning to a known one. In the first case, the buyer se-
lects a new seller j proportionally to their attractiveness (56) Aj,
in the latter, the buyer selects it proportionally to the number of
previous interactions. In other words, buyers select sellers either
according to past purchases or to their popularity. In both cases
the attractiveness of the seller is increased by μ. This model pro-
duces a bipartite temporal network: at each time step t we build
a network in which two types of nodes— buyers and sellers—are
linked if the buyer has purchased from that seller at time t. These
networks are then combined together in an aggregated network,
where each buyer–seller link is weighed according to the number
of purchases between that buyer and that seller across time.

Compared to other activity-driven models developed to capture
the temporal evolution of different social networks (49, 50, 57),
our model extends the framework to bipartite networks of buyers

Fig. 3. Empirical activity distributions. (a) Activity distribution for all
e-commerce markets in red, and activity distribution of all aggregated
markets in yellow. (b) Activity distribution for all DWMs in blue, and
activity distribution of all aggregated DWMs in black.

and sellers and introduces the preferential attachment guiding
the buyer selection process. Henceforth, we will refer to the model
lacking preferential attachment, proposed in (49), as Model NoPA.
We will also consider a version of the model that does not include
the memory element (Model NoMem). Comparing these versions of
the model will allow us to identify the role played by the different
mechanisms.

A standard way to define and measure user activity in a (so-
cial) network is ai = ni/��n�, where ni is the number of purchases
made by buyer i, where the sum is over all buyers in their mar-
ket. In Fig. 3, we show the activity distributions of all e-commerce
markets (a) and all DWMs (b). While curves exhibit fat-tailed be-
havior, they no longer overlap due to different activity ranges and
shapes in different product markets. As a result, we need to use
market-specific empirical activity distributions as inputs for our
model.

We now fit the model to the e-commerce data. As mentioned
above, since the DWM dataset does not contain the full bipartite
buyer–seller network, we cannot test all the model predictions on
the DWM data. We employ a data-driven approach, fine-tuning
the model to each single market so we can more faithfully com-
pare the simulation results with the empirical buyer–seller net-
works. In the main text, we show results for two different product
markets, 26 more are shown in Figs S3 to S6 in the Supplementary
Material, for a total of 28 markets (see Supplementary Material for
the sampling procedure). We fix parameters β = 0.1 and c = 0.001,
which we fitted previously (see Table S1 in the Supplementary Ma-
terial), and use the empirical activity distributions as measured in
the data (see Fig. 3a) to reflect the observed heterogeneity across
different markets. The value of μ is determined with Maximum
Likelihood Estimation for each market (see Supplementary Mate-
rial for more details, and Table S3 for the fitted values).

Results are in Fig. 4. We first compare the model’s output with
the empirical distributions of the final seller attractiveness and
degree. The attractiveness of a seller j is their market share Aj =
sj/��s�, where sj is the total number of sales of seller j and the sum
is over all the sellers. Fig. 4 shows that the model reproduces both
distributions well, while the NoPA variation of our main model
(without preferential attachment) fails to capture the heterogene-
ity (up to six orders of magnitude) of these curves, emphasizing
how preferential attachment is key to reproducing the presence
of very active sellers. We then consider the buyer side of the net-
work. We first study the degree distribution. Fig. 4 shows that the
model captures the empirical distributions, while the absence of
buyer memory generally leads to a small overestimation of the
tails, since it does not induce the repetition of past interactions
with a subset of buyers.
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Fig. 4. The model reproduces different properties of buyer–seller networks. Each row corresponds to a different market (see Figs. S3 to S6 in the
Supplementary Material for other markets), whose simulations parameters are individually calibrated as detailed in the main text. From left to right,
we show distributions for different quantities: attractiveness, seller degree, buyer degree, link weight and seller entropy. The comparison with the two
model variations, without preferential attachment or without memory, shows the key role of both parameters in shaping the network: preferential
attachment is crucial in reproducing highly active sellers, whereas buyer memory is fundamental to capture the heterogeneity of buyer–seller
relationships.

Thus far, we have considered node-level properties aggregating
detailed information on the links. For example, the attractiveness
only accounted for the total number of links, whereas the degree
only captures the total number of different buyers or sellers that
the user has interacted with. To better understand how the model
performs in reproducing finer details of the buyer–seller network
structure, we test our model against two other properties of the
aggregated network: link weight—the number of transactions be-
tween a buyer and a seller—and the buyer entropy, as defined in
Eq. 1. Our main model outperforms its two variations in reproduc-
ing the shape and tails of the link weight distribution. In particu-
lar, the memory mechanism appears to be fundamental in repro-
ducing repeated transactions between a buyer and a seller. The
buyer entropy distribution is again well-captured by the model
and shows how the memory mechanism is key to capturing the
diversity of relationships buyers establish with different sellers.
Indeed, the NoMem model produces only entropy values close to
0 and 1; this happens because without memory, a buyer almost
never finds any previous seller, hence buyers making more than
one purchase almost always buy from new sellers.

We have seen that our model is able to capture various aspects
of the final aggregated buyer–seller network. The next step is to
see whether our model can also reproduce the temporal evolu-
tion of the buyer–seller network. To investigate this, we focus on
the degree of top sellers since we previously showed these sell-
ers generate the largest activity and volume on these markets. We
measure time by the total number of purchases made. Results are
shown in Figs. 5(a) to (c), where we plot the temporal evolution of
the top 50 (a), 100 (b), and 200 (c) seller degree distribution for one
illustrative product market. In doing so, we compare the model to
its two variations and the data. Results for more product markets
are shown in Figs. S7 to S10 in the Supplementary Material. The
main model is able to reproduce the temporal evolution of the dis-
tributions, as clearly shown by the cores (i.e. interquartile ranges)
overlapping at different times. We further compute the absolute
value of the difference between the mean of the models’ distribu-
tion and the mean of the data, for each of the nine equally spaced

time steps and for all 28 simulated product markets. As shown in
Figs. 5(d) to (f), the model is better able to reproduce the tempo-
ral dynamics for all simulated markets. Indeed, the median of the
distance distributions is always smaller in the main model than
the two other model variations.

Discussion
In this paper, we have analyzed 244M (25B USD) transactions oc-
curring on regulated and unregulated online marketplaces. First,
we have revealed remarkable regularities in the aggregate static
and temporal properties of the buyer–seller networks, both for
buyers and sellers. Then, we have revealed how buyers are af-
fected by the memory of past interactions. Finally, we have pro-
posed a model, which captures the main stylized facts of the data,
based only on three well-known network formation mechanisms
of online marketplaces: buyers have different propensity to make
purchases, they remember the sellers they purchased from, and
they are more likely to buy from successful sellers.

It is important to highlight the limitations of our study, which
also represent directions for further work. First, while our study is
based on (pre-processed) blockchain data, access to DWM server
logs could provide more detailed information on some specific
markets, for instance, the directed buyer–seller links, which are
not observable in our data. Second, the model could be further en-
riched with other known mechanisms: pricing dynamics (58, 59),
product search ranking (22–25), variable (e.g. also negative) cus-
tomer reviews (20), sellers entering or leaving the platform (60),
and recommendation algorithms (61). Finally, including richer
economic incentives (e.g. strategic behavior) to model buyers’ and
sellers’ decisions could shed light on how agents could exploit
their market power. In particular, the inclusion of strategic behav-
ior would also to drop phenomenological rules such as preferen-
tial attachment, which would naturally result from the agents’
behavior (62, 63). A deeper understanding of economic incen-
tives and equilibrium behavior in buyer–seller networks could ul-
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Fig. 5. Model reproduces the temporal evolution of the top sellers degree distribution. Top (a to c): Temporal evolution of the degree distribution of the
top 50 (a), 100 (b), and 200(c) sellers, representing the distribution at nine equally spaced time steps with boxplots ranging from the first to the third
quartiles, whiskers extending from 2.5th to 97.5th percentiles. Results are shown for one product market, all other markets are shown in Figs. S7 to
S10 in the Supplementary Material. Bottom (d to f): Distribution of the distance between the empirical and model(s) median degree of the top 50(left),
100(center), and 200(right) sellers, for all product markets and time steps, and the three considered models. Vertical lines represent the distributions
median, showing that the model median is always smaller than the alternatives. The model better captures the temporal evolution of the top sellers
degree for all product markets than the alternatives neglecting either the preferential attachment or the memory mechanism.

timately inform market design and regulation of online market-
places.

Nevertheless, our work supports and extends previous findings.
The fat-tailed heterogeneous curves in Figs. 1(a) to (d) substanti-
ate previous observations of high concentration in DWMs: whole-
sale (47), few sellers (40), or few buyers (46) were found respon-
sible for the largest part of volumes in smaller samples of data.
The fat-tailed interevent time distributions, spanning times be-
tween a second and a year, are compatible with the bursty nature
of several social activities (64, 65), and the finding about a shared
memory kernel further points to a similarity between social and
economic activities (49, 50). Taken together, our results could in-
form and enrich economic models where heterogeneity assump-
tions are now commonplace (14) but empirical evidence on the
structure of buyer–seller networks has not yet been introduced.

The regularities observed in Fig. 1 are surprising given the dif-
ferences in the marketplaces covered by our data: transactions on
the clear web with state enforcement of contracts (66) vs. trans-
actions on the dark web that rely mainly on reputation and self-
governance (54); the sale of only regulated products vs. mainly un-
regulated products; and the use of fiat vs. the use of cryptocurren-
cies. And, indeed, there is both substantial heterogeneity in prod-
uct markets in the e-commerce dataset and several differences
across marketplaces in the DWM dataset (e.g. existence time pe-
riod, geography, product focus, etc.). Our model suggests specific
mechanisms that drive the regularities across the two datasets.
Sellers build a reputation that makes them more attractive to buy-
ers who, in turn, are affected by their memory of the sellers they
already purchased from. In particular, the presence of both mem-
ory and preferential attachment is fundamental in reproducing
both local and global properties of the buyer–seller network, as
already shown for the intrinsically different social networks (49,
51, 52, 64). However, commercial interactions exhibit important
differences compared to social interactions, with preferential at-
tachment playing a dominant role in the market dynamics.

Our results point toward alternative strategies to attempt
to reduce trading of illicit goods on DWMs. Historically, DWMs
have been closed after long and expensive operations target-
ing the market admins in order to arrest them and shut down
the servers (67). However, the high degree of concentration, the
importance of preferential attachment, and the memory ker-
nel in the buyer dynamics, all suggest that limited observa-
tions of the market dynamics could give a clear enough pic-
ture of who the key actors of these networks are. For instance,
key sellers will most likely attract most of the observed pur-
chases from the more active buyers, and stopping them would
effectively stop a large part of the market trade. In this re-
gard, our model could also be used to produce candidate syn-
thetic DWM buyer–seller networks to quantitatively study and
simulate the effects of targeting “key players” on marketplaces
(68).

Finally, a better understanding of buyer–seller network forma-
tion could have consequences for market design and regulation.
For example, fat-tailed distributions show a high degree of con-
centration on both buyer and seller sides of the marketplaces: just
a few agents (both on the buyers and seller sides) are responsible
for a vast majority of the transaction volume. While buyer market
power appeared in analyses of labor monopsony and retailers (69,
70), our empirical finding of buyer concentration calls for a deeper
understanding of buyer power in online marketplaces. Moreover,
these observations can also inform theoretical economic mod-
els of online marketplaces, providing empirical backing to hetero-
geneity assumptions and suggesting specific values for parame-
ters or shapes for distributions. Also, we find signs of both local
(memory) and global (reputation) mechanisms in the structure
and evolution of buyer–seller relationships. Thus, the inclusion
of memory and reputation in previously developed models can
improve our understanding of the pricing of network effects (12),
interplatform competition (14) and long-run sustainability of the
platforms (17).
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Materials and methods
DWMs
DWMs are illegal unregulated commercial websites. They op-
erate similarly to other online marketplaces, such as Gumtree
or Craigslist. To improve anonymity DWMs are reached through
browsers supporting the onion protocol, and use cryptocurren-
cies, mainly Bitcoin, as the main currency. While all Bitcoin trans-
actions are publicly available, they record money exchanges be-
tween addresses, and a user can generate a new address (identi-
fier) at each transaction to favor anonymity. As a result, the data
need to be preprocessed to cluster addresses into individual en-
tities in order to perform any economic analysis. Our dataset has
been preprocessed by Chainalysis Inc. (71) to map addresses into
entities (see Supplementary Material for more details).

Our dataset contains the entire transaction data of 28 entities
corresponding to DWMs between 2011 June, and 2021 February
(see Fig. S11 and Table S2 in the Supplementary Material). These
markets all have an average daily volume of more than 15,000
USD, in order to be able to reliably measure different observables,
and include all relevant DWMs as identified by law enforcement
agencies (67). The data contain all transactions received or sent
by DWMs, excluding services such as exchanges (Bitcoin trading
exchanges allow users to trade Bitcoin). Note that the data hide
the direct buyer–seller link, because the money pass through the
platform during the transaction.

E-commerce platform
E-commerce platforms are regulated online marketplaces where
sellers can post ads for products. Buyers and sellers can generally
be both individuals or businesses. The payment is usually pro-
cessed by the platform, but the shipping is handled by the seller.
Sellers receive feedback from buyers, which together with prod-
uct categorization helps people navigate the platform and choose
what to buy.

The data used in this study consist in all the purchases made on
144 product markets from a popular e-commerce platform since
2010. The 144 product markets have been randomly selected from
the markets that were active during the entire time period. The
data cover only one geographical region. Similarly to the DWM
data, the transaction data include: timestamp of the transaction,
pseudonyms for buyer and seller, and the amount spent in the
transaction. One key difference is that the data show the direct
link between buyer and seller, forming a bipartite buyer–seller
network and allowing for a more fine-grained analysis. For more
details on the data see Fig. S12 in the Supplementary Material.

Model simulation
Each simulation is tuned to simulate one specific product market.
We fix the agents population according to the data: number of
sellers N, number of buyers M, and simulation total number of
time steps T, to fix the average total number of transactions in our
simulations as in the data: 〈ai · �t · T · N〉 = t, where ai is the buyer
activity as defined in the main text, �t is the simulation time step
(fixed to 1) and t is the total number of transactions present in the
data. We realize 30 different realizations for each parameter set,
and aggregate the final results.
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