

City, University of London Institutional Repository

Citation: Summers, R. (1992). A methodology for the design, implementation and

evaluation of intelligent systems with an application to critical care medicine. (Unpublished
Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29318/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Methodology for the Design, Implementation
and Evaluation of Intelligent Systems

with an Application to Critical Care Medicine.

RONALD SUMMERS

Thesis submitted for the degree of Doctor of Philosophy

City University

Research Centre for Measurement and Information in Medicine

Decemberl992

02025257-2

DECLARATION

I grant powers of discretion to the University Librarian to allow this thesis to be copied in

whole or in part without further reference to me. This permission covers only single
copies for study purposes, subject to normal conditions of acknowledgement.

l

ACKNOWLEDGEMENTS

Special thanks are extended to the following: Prof. Ewart Carson, research
supervisor and mentor; to Prof. Derek Cramp for providing clinical support and
introductions in the early stages of the work and guidance in the latter; and Dr. Mark
Leaning for giving technical support during the critical first year of research. My clinical

colleagues at the Royal Free Hospital, London, also deserve a special mention: Dr.
Doreen Browne, for providing access to the Intensive Therapy Unit; Mr. Dominic Cox

for his technical assistance; and the many clinical staff who contributed towards the

p ro ject.

Thanks also to my fellow students within the the Research Centre for
Measurement and Information in Medicine for creating a stimulating atmosphere from
which I am sure we all have gained. My special thanks extend to Dr. John Chelsom for

being a friend as well as a colleague.
Many thanks to Mr. Andy Morrison for drawing the diagrams, Mr. Paul Worthy

for proof-reading, and to Mrs. Joyce Bernard for completing that unenvied task of typing

the references.

u

ABSTRACT

This thesis illustrates the technology required to provide a new generation of
clinical instrumentation systems for critical care medicine. This advance in measurement
science is gained from the use of a knowledge-based component able to process

information as well as data. To implement a clinical information system using

knowledge-based technology requires prior knowledge of human and computer-based
activity within the critical domain. A historical perspective is given to both of these topics
which reflects the genesis of current practice. The application area is introduced by
investigating a control system approach to managing patients who require ventilatory

therapy.

It was found that no current methodology is wholly appropriate when a
knowledge-based component is included in the technological paradigm. Therefore, a
novel methodology for system design, implementation and evaluation is proposed, and its

utility tested in the aforementioned application domain. The detailed processes involved
in the evolution of a prototype system which aids the clinical user in the art of ventilatory
therapy are shown. Three levels of machine intelligence are shown to be required, based
on: context-sensitive deterministic mechanisms; pattern cognition; and decision support
elements. A wider discussion of the important points raised in the practical use of the
methodology focuses upon the philosophical basis of clinical information systems and the

processes of knowledge elicitation, knowledge representation and intelligent system

evaluation.

iii

C O N TEN TS

Declaration i
Acknowledgement ii
Abstract iii
List of Contents iv
List of Tables vii
List of Figures viti

Chapter 1: Introduction

1.1 Background 1
1.2 Problem Definition 4
1.3 Outline Plan of this Thesis

PART I

5

Chapter 2: Historical Review of Artificial Intelligence i
Historical Development of the Critical Care Unit

and

2.1 Introduction 8
2.2 Historical Review of Artificial Intelligence 8
2.3 Historical Development of the Critical Care Unit 22
2.4 Summary 26

Chapter 3: Critical Review of a Control Systems Approach and
an Artificial Intelligence Approach to Ventilatory
Management

3.1 Introduction 28
3.2 A Control Systems Approach to Ventilator Management 31

3.2.1 ETPC02 as an Indication of PaC02 (Ohlson
et al., 1982)

31

3.2.2 Automatic Control of a ventilator using ETPCO2
as the Controlled Variable (Smith et al., 1978)

34

3.2.3 Investigation of the Response to Hypoxia and
Hypercapnia using ETPO2 and ETPCO2 as the
Controlled Variables (Kawakami et al., 1981)

34

3.2.4 Use of ETPCO2 as the Controlled Input to
Investigate Ways of Optimising Drug Therapy
(Swanson et al., 1971)

37

3.2.5 A Breath - By - Breath Method to Automatically
Control a Ventilator Using ETPCO2 as the
Controlled Variable (Bhansali and Rowley, 1984)

37

3.3 An Artificial Intelligence Approach to Ventilator
Management

40

3.3.1 A MUMPS - based Ventilator Consultation System
(Menn et al., 1973)

40

3.3.2 VM (Fagan, 1980) 43
3.3.3 VQ - ATTENDING (Miller, P.L., 1984) 47
3.3.4 KUSIVAR (Rudowski et al., 1988) 49
3.3.5 ESTER (Hernandez et al., 1989) 49
3.3.6 COMPAS (Sittig et al., 1988) 52

3.4 Summary 53

IV

Chapter 4: Methodological Analysis for Management of
Clinical Information

4.1 Introduction 54
4.2 System Engineering and Technological Change 55

4.2.1 Structured Analysis Design Technique 62
4.2.2 Software Requirements Engineering Methodology 63
4.2.3 Technology for the Automated Generation of 68

Systems
4.2.4 Computer Aided Control Environment 72

4.3 A Systems Methodology for Design, Implementation and 76
Evaluation
4.3.1 Requirement 7 9
4.3.2 System Architecture 79
4.3.3 Early Prototype System 80
4.3.4 Knowledge Engineering Design Cycle 80
4.3.5 Interface Design 80
4.3.6 Late Prototype System 81
4.3.7 Program Tuning 81
4.3.8 Intelligent Knowledge-based System 81
4.3.9 Needs Evaluation 81
4.3.10 Formative Evaluation 82
4.3.11 Summative Evaluation 82
4.3.12 Meta - evaluation 82

4.4 Summary 82

PART II

Chapter 5: Specification for an Artificial Intelligent Respirator
System

5.1 Introduction 86
5.2 PROLOG: An Overview 86
5.3 Respiratory (Patho-) physiology 89
5.4 Design Specification for AIRS 91

5.4.1 Requirement 91
5.4.2 System Architecture 92

5.5 Needs Evaluation 96
5.6 Summary 97

Chapter 6: Implementation and Evaluation

6.1 Introduction 98
6.2 Early Prototype System 99
6.3 Knowledge Engineering Design Cycle 100

6.3.1 First Level of Intelligence: AIRS start up 102
6.3.2 Second Level of Intelligence: AIRS maintain 102
6.3.3 Third Level of Intelligence: AIRS wean 108

6.4 Interface Design 121
6.4.1 Data Transfer at the Machine - level Interface 121
6.4.2 Data Presentation 123

6.5 Late Prototype System 123
6.6 Program Tuning 123
6.7 Intelligent Knowledge - based System 124
6.8 Formative Evaluation 124
6.9 Summative Evaluation 126
6.10 Meta - Evaluation 127
6.11 Summary 129

v

PART III

Chapter 7: Discussion

7.1 Introduction 131
7.2 Clinical Information Systems 131
7.3 Knowledge Elicitation 139

7.3.1 Structured Interviews 141
7.3.2 Other Techniques for Knowledge Acquisition 143

7.4 Knowledge Representation 146
7.4.1 Rule-Based Systems 146

7.5 The Human-Computer Interface 150
7.6 Evaluation 152

Chapter 8: Conclusion 157

References 160

Appendix I: Critical Review of Artificial Intelligence in Medicine

1.1 Introduction 169
1.2 Artificial Intelligence: General Medical Systems 169
1.3 DENDRAL 170
1.4 MYCIN 171
1.5 CASNET 175
1.6 PIP 180
1.7 HEARSAY-II 182
1.8 INTERNIST 184
1.9 Summary 188

Appendix II:Selected Program Listing

II. 1 Creating the Window Environment 190
II.2 Menu Selection 192
II.3 First Level of Intelligence 195
II.4 Second Level of Intelligence 196
II.5 Third Level of Intelligence 197

II.5.1 Structure of die Rulebase 197
II.5.2 The Role of the Premise Requirements 198
II.5.3 The Inference Engine 199

II.6 Data Capture 199
II.7 Data Presentation 203
II. 8 Program Listing for the Third Level of Intelligence 205

vi

LIST OF TABLES

3.1 Primary Data-set for the Mumps Based Consultation System 41

3.2 Ventilator Setting which are Critiqued in VQ-Attending 48

3.3 Treatment Goals of VQ-Attending 48

3.4 Ventilator Therapy Protocols used in ESTER 51

3.5 Rule Bases used in ESTER 51

4.1 Types of SADT Applications 65

5.1 PROLOG representation of Cardiac Index 87

6.1 Diagnostic States 103

6.2 Machine Communication in PROLOG 121

6.3 Data Compression in PROLOG 122

6.4 Comparison of Initial Settings in three Diagnostic Groups 128

7.1 Examples of Patient Data 138

7.2 The Format for a Production Rule 146

7.3 Two General Production Rules 147

7.4 A Goal Tree'Representation 147

7.5 The Top-goal of the Weaning Rule Set 148

7.6 AIRS Meta-rule 149

7.7 A General Meta-rule 149

vii

LIST OF FIGURES

2.1 An example of a difference table for the function y = + 2x + 6 10

2.2 Architecture of the Analytical Engine 11

2.3 von Neumann Architecture 11

2.4 A Turing Adding Machine 13

2.5 Summary of Historical Development of Computing 27

3.1a Basic Elements of the Respiratory Control System 29

3.1b Basic structure of Neural Respiartory Conrol 30

3.2 Closed Loop System used by Ohlson 33

3.3 Control System for Arterial Blood Gases 36
(After Kawakami et al., 1981)

3.4 Algorithm for adjusting minute ventilation 39
(From Bhansali and Rowley, 1984)

3.5 General Format of a VM Rule 45

3.6 Example of a VM Rule 45

4.1 Stages in the Development of a Systems Engineering Project 58

4.2 Stages involved in the Design Process 61

4.3 The structure Analysis Box of the SADT Methodology 64

4.4 Overview of the Steps of the SREM Methodology 67

4.5 Current Practice: Software Paradigm 69

4.6 AutomatedPractice: Software Paradigm 69

4.7 TAGS Methodology 71

4.8 TAGS Development Life Cycle With System Engineering 73
Activities Of Each Phase In Descending Order Of Importance

4.9 Functional Structure of CACE 75

4.10 Diagram showing methodology for intelligent system design, 78
implementation and evaluation.

4.11 Themes Involved during Summative Evaluation 83

5.1 Diagrammmatic Overview of System Architecture for AIRS 96

6.1 The Banner Screen - AIRS 101

6.2 Initialisation Screen for a Cardiac Patient 104

v n i

6.3 Action Screen for a Cardiac Patient 105

6.4 Explanation Screen for a Cardiac Patient 106

6.5 Maintain: Tidal Volume 107

6.6 Knowledge-Based System Design Cycle 109

6.7 Conceptual Model of the Weaning Process 111

6.8 Verbal Description of Conceptual Model of Implantation 112

6.9a Rule Associations for Fit_to_wean 113

6.9b Rule Associations for Fit_to_wean 114

6.9c Rule Associations for Fit_to_wean 115

6.9 d Rule Associations for Fit_to_wean 116

6.9e Rule Associations for Fit_to_wean 117

6.10 Progression Rules 119

6.11 Regression Rules 120

7.1 Transformations within an Information System 133

7.2 Relations between Natural and Formal Systems 135

7.3 General Measurement System 136

7.4 Evaluation Strategy Coverage 154

A-1.1 A Typical Production Rule Found in the MYCIN System 172

A-I.2 Three-Level Description of Disease Process 176
(Kulikowski & Weiss, 1982)

A-I.3 Partial Causal Network for Glaucoma 178
(Kulikowski & Weiss, 1982)

A-I.4 Program Organisation of PIP 181
(Pauker et al., 1976)

A-I.5 Sample Inemist I Disease Profile For Aortic Dissection 185
(Miller R A, 1984)

A-II.l Creating the Window Environment 190

A-II. 2 Program Code for the Pull-down Menus 193

A-II.3 Initialisation of a Cardiac Patient 195

A-II.4 Value-matching Algorithm for PC02 Limit Alarm 196

A-II.5 Rule for Impaired Energy Supply 198

IX

A-II.6 The Inference Engine 200

A-II.7 Program Code for Data Capture 201

A-II.8 Program Code for Data Presentation 203

X

1 : INTRODUCTION

1.1 Background

This study focuses on the problems associated with

introducing an intelligent measurement and information system into a

medical environment. Clinicians use physiological measurement as a

means of providing information about the well-being, or state, of a

patient. If patient state is regarded as a dynamic entity then

clinical measurement provides the basis from which patient state

trajectory can be determined. Both patient state and its trajectory

pattern have a direct bearing on clinical diagnosis and subsequently

on the therapy or treatment regimes required for a successful outcome.

This outcome may be defined as the return of the patient to normal

physiological function, or alternatively may be more generally defined

as the return of the patient to a less morbid state.

The medical environment of interest is the Critical Care

Unit, an umbrella term which encompasses all high dependency

environments, such as the Intensive Care Unit, Coronary Care Unit,

Post-operative Recovery Ward, Spinal Injuries Unit, Burns Unit and

Special Care Baby Unit. These environments are distinct units within a

hospital system which cater for "...the care of patients who are

deemed recoverable but who need continuous supervision and need or are

likely to need the prompt use of specialised techniques operated by

skilled personnel", (British Medical Association, 1967). Although this

definition is over twenty years old, it is the one adopted by the

Royal College of Nursing.

There have been many recent technological advances taking

place within the Critical Care Unit which have mirrored those taking

place in associated fields of medicine and bio-engineering. For

instance, all of the following have influenced a change in patient

management, (after Gregory, 1983) :-

i) development of new surgical procedures,

ii) development of new therapies and treatment regimes,

iii) an increase in general measurement technology,

iv) development of instrumentation systems to monitor the
effects of the proposed therapy.

The advancement in surgical procedures, especially in cardiac

and vascular surgery, has meant that a greater proportion of people

can be treated for what were untreatable conditions a matter of years

ago. This has had the effect of increasing the throughput of patients

1

who spend time in the Critical Care Unit as a normal part of their

rehabilitation from surgery.

Progress in the use of new therapies and treatment regimes

can be considered as having two distinct strands of development. The

first are those developments which are necessary to cope with the new

surgical procedures described above; the second are those instances

where clinical research has indicated that an advance can be made on

therapies and treatments in current use.

The increase which is evident in general measurement

technology can be illustrated by observing the increase in sensitivity

of sensors whilst their physical size and cost have been diminishing

rapidly. Both the increase in sensitivity and decrease in physical

size have contributed to improvements in the measurement process, for
it is one of the corner-stones of measurement theory that a measuring

system should not disturb the natural behaviour of the system of

interest. In practice this is rarely possible, so one should always be

aware of the sources of measurement error, a full account of which can

be found in the literature, (eg. Barry, 1978; Hofmann, 1982). As

advances are made in measurement technology, novel ways of measuring

variables previously unmeasurable become apparent, which as a

consequence increases the number of variables available to describe

patient state. These, following appropriate processing, yield

additional information for the clinician. However, more information

about patient state does not necessarily lead to a more accurate

diagnosis or a more beneficial treatment regime. Instead it may lead

to a situation where extra information actually clouds the diagnostic

process, and therefore has a resultant negative effect on patient

management. Hence there is a need for concomitant development of

instrumentation systems which can cope with the increased complexity
of measurement.

Advances in instrumentation are closely related, and in most
cases subservient, to increases in component technology. Emphasis has

been placed on the development of electrical and electronic

instruments where massive miniaturisation has become possible. Perhaps

the best examples of this new generation of medical instrumentation

are the computer-based or microprocessor-based instrumentation

systems, developed in response to a general increase in the complexity

of measurement. Not only can a computer-based system deal with the

increased number of measured variables, but it can also process the

2

information at a rate of the order of magnitude of a million

instructions per second. Thus, if necessary, quite complex processing

functions can be dealt with in real-time. Another advantage of a

computer-based instrumentation system is its capability to store and

archive information by down-loading it to a permanent storage medium,

(eg. magnetic diskette). These storage media are small, cheap,

portable and information is easily transferred back to the working

memory of the computer. With large increases in information handling

capacity a need became apparent to assign a utility function which

describes the pragmatic value of each piece of information. This

function can then be used to find an automatic way of filtering out

redundant data from those which are more useful. Such a function can

be defined by increasing the knowledge content of the controlling

software: intelligent instrumentation systems came about as a logical

consequence of this requirement.

Given that intelligent measurement and instrumentation

systems are an emergent technology, there is still some confusion over

what constitutes intelligence in measurement. One author has suggested

that the term ’intelligent instrumentation’ has come to mean "...the

use of a measurement system to evaluate a physical variable employing

usually a digital computer to perform all (or nearly all) the

signal/informat ion processing" (Barney, 1985). This definition is

unsatisfactory as most measurement systems, whether or not they employ

a computer to do some signal or information processing, would fall

within its scope. Another study describes intelligent measurement as a

three level hierarchy: inferential measurement; pattern cognition; and

measurement as part of an integrated information system (Carson et al,

1986; Finkelstein and Carson, 1986). It is this description which is

adopted for the purpose of this study. Intelligent instrumentation

employs software techniques drawn from Artificial Intelligence. This

includes various distinct processes which contribute to the evolving

intelligent system: the elicitation of domain dependent human
expertise; the representation of that expertise in a form which can be

utilised directly by the computer; methods of obtaining intelligible

input and meaningful output to the system; and a coherent software

control strategy capable of being able to reproduce the same output
from the same set of inputs.

3

1.2 Problem Definition and Objectives of the Research Programme

One specific situation where intelligent instrumentation is

required is in the process of artificial ventilation. This requires

the use of a ventilator, which is a medical machine that allows the

mechanical ventilation of a patient who is unable to breathe

spontaneously. Currently, the settings of the ventilator which control

respiratory performance are defined heuristically. This requires the

clinician to have prior knowledge of the factors involved in this

process. To counter any vagueness in this respect, an intelligent

module is required which makes the rules for changing the ventilator

settings more explicit. The objective of the study described here is

to develop and implement a prototype Artificial Intelligent Respirator

System (AIRS) which interfaces such an intelligent module with a

modern ventilator.

In normal clinical practice patients who undergo surgery

where a general anaesthetic agent is administered require mechanical

ventilation until normal respiratory function returns. This usually

occurs whilst the patient is still in the recovery room, which is part

of the operating theatre complex. However for some surgical

procedures, such as prolonged cardiac surgery, a patient may be

transferred to a Critical Care Unit to await recovery. A patient may

also require ventilatory therapy as a consequence of some respiratory

dysfunction. This is the main category of patient for which AIRS has

been designed.

AIRS can be described as a management system for adult

patients who require respiratory support. It is NOT a diagnostic

system, indeed the diagnostic state of the patient forms an important

information source. The system is centred on the Puritan-Bennett 7200a

microprocessor-controlled s e r vo - v e n t i 1 a t o r . This microprocessor

fulfils the dual role of control and display of an extensive primary
data-set. For the former function strategically placed sensors in the

pneumatic sub-system of the ventilator yield control data on pressure,

flow and temperature of the inspired gas; for the latter function the

data-set used by the ventilator is organised into a form that can be

interpreted readily by the end-user. AIRS adds a knowledge-based

component on top of that system. This allows computei— based advice to

be given in the form of a suggestion for an appropriate action to be

taken, acting on the basis of incoming data and knowledge of the
current state of the patient.

4

The top-goal of this study is to specify the problems and

provide solutions for the successful introduction of an intelligent

instrumentation system into a specialised clinical unit, with an

emphasis on clinical applicability and acceptability. To reach this

goal a number of contributary objectives become apparent. These

include: an appreciation of current working practice in the Critical

Care Unit; the development of a novel methodology which caters for the

design, implementation and evaluation of technological change; and an

illustrative application of this methodology to the domain of

respiratory management of adult patients undergoing mechanical

ventilatory therapy. These goals and sub-goals are reflected in the

organisation of the thesis.

1.3 Outline Plan of this Thesis

This thesis consists of three parts. The first part, which

encompasses Chapters 2, 3, and 4, contains the reviews necessary to

place this study in historical context and provides a new

methodological advance which is able to cope with the introduction of

an intelligent system capability into what is already a highly

technological environment. Chapter 2 contains a historical review of

Artificial Intelligence and historical development of the Critical

Care Unit. This makes the reader aware of the great progress made in

both of these areas during the last thirty years. Chapter 3 contains

a critical review of techniques used in both a control systems

approach and Artificial Intelligence approach to respiratory

management. This provides an appreciation of technology employed

currently in this domain. The need for a novel methodology for

technological change is described in Chapter 4. This methodology is

created from previous work in Requirements Engineering, Design

Engineering, and methodologies which are not wholly appropriate for

dealing with change at the technological level.

The second part comprises Chapters 5 and 6. These chapters

describe the domain dependent aspect of the study. Chapter 5 contains

the system specification for the implementation of AIRS. This utilises

one element of the design methodology presented in the previous

chapter. This chapter also contains a brief introduction to PROLOG,

the computer language used in the implementation. Chapter 6 includes

specific details of the implementation and evaluation of AIRS,

illustrated by extracts from the actual program.

The third part consists of the last two chapters - Chapters 7

5

and 8, which attempt to place AIRS in context with other intelligent

measurement and instrumentation systems, from which the appropriate

conclusions can be drawn. The discussion in Chapter 7 can be divided

into two parts. It begins with a general discussion on intelligent

systems, and then focuses upon topics which are relevant to this

particular study. One of the central themes of this part of the

discussion is the evaluation of intelligent knowledge-based systems. A

systems framework is utilised which permits the study of existing

evaluation strategies from other fields of interest. Those strategies

which contribute towards the more meaningful evaluation of computer

systems which exhibit some sort of intelligent behaviour can then be

elicited. Chapter 8 contains the conclusions drawn from this work

together with recommendations for the future. This last comment

perhaps emphasises the fact that AIRS should not be considered as a

static piece of research work, rather development of it will continue

as knowledge-based systems, like their human counterparts, evolve as

new knowledge is acquired.

There are two appendicies. A critical review of Artificial

Intelligence, with applications in medicine as the dominant theme, is

presented in Appendix I. This introduces the concepts and constructs

used in the domain and is useful as background information for the

implementation of AIRS. An annotated program listing of several
aspects of the implementation is given in Appendix II.

6

PART I

2 : HISTORICAL REVIEW OF ARTIFICIAL INTELLIGENCE AND
HISTORICAL DEVELOPMENT OF THE CRITICAL CARE UNIT

2.1 Introduction

Artificial intelligence and the environment of the critical

care unit are the two distinct themes which are of concern in this

study. Current perspectives in artificial intelligence have their

origins in the theory of numbers and computability, which itself is

based on the fundamental concepts of measurement. However, it would be

pedantic to begin this part of the review with the measurement system

devised by the Egyptians in 3,500 B.C.! An alternative criterion for

the onset of the review is revealed when we consider the history of

artificial intelligence as being intertwined with the development of

the modern computer with which it is inextricably linked. Therefore,

the chosen starting point is 1812, the year in which Charles Babbage

first conceived a fully mechanised automatic system to compute numbers

- the Difference Engine. Where applicable within this review, emphasis

has been placed on developments in the medical domain, which provide

the necessary clinical relevance.

The historical review of the development of the critical care

unit proved less problematical in defining a suitable time origin. The

need for a specialised area within a hospital for critically ill

patients was perhaps first realised in 1863 by Florence Nightingale.

2.2 Historical Review of Artificial Intelligence

Today the accuracy of tables which describe certain

mathematical functions is taken for granted. However, in the early

ninteenth century most mathematical tables contained numerous errors,

much to the chagrin of the mathematicians, scientists, and engineers

of that time. Therefore there was a real need to check the values

contained within these tables; if done by hand this process would have

been both time consuming and laborious and as a result may well have

introduced further errors. In 1812 Charles Babbage attempted to solve

these problems by his conception of the ’Difference Engine’. This was

a mechanical device to compute and print tables of mathematical

functions automatically. The principle on which the machine worked is

that any mathematical function can be approximated to sufficient

accuracy by means of a polynomial ’fit’. This polynomial can be

inferred by using simple additions, that is, by constructing a

difference table. It was this process that Babbage proposed to

mechanise. The specification for his device was to compute tables of

8

sixth degree polynomials to twenty decimal places. An example of a

difference table of a second degree polynomial can be found in Figure

2.1. Technology of the time was typified by Arkwright's steam mill,

developed thirty years previously, a product of the industrial

revolution used in the textile industry. A working prototype of the

Difference Engine was capable of tabulating quadratic functions to

eight decimal places. However, to progress to a fully mechanised

system and as a result of the high precision required, all of the

components were individually manufactured. This was a contributing

factor for the renunciation of any further work on the Difference

Engine in 1842. However some scientific profit was made from this

project. In 1854 a Swedish engineer, Georg Scheutz, built a machine

using Babbage’s design which could tabulate fourth degree polynomials

to fourteen decimal places.

The major reason Babbage abandoned work on his machine

was that the Government of the day refused a request for further

funding. He then became involved in a project to design a more

universal mechanical machine which he called the 'Analytical Engine’.

Included in the design specification were devices for input and

output, a memory store (which Babbage described as a mathematical

'mill') and a control unit. If we substitute 'arithmetic logical

unit’ for 'mathematical mill’ then we have all the components of a

modern electronic computer! A comparison can be made between the

architecture of the Analytical Engine and the more modern von

Neumann computer architecture, (Figures 2.2 and 2.3). The memory store

of the Analytical Engine was conceived as a device to hold numbers,

whether in raw data format or as intermediate data values in the

course of a numerical calculation. The mathematical mill performed

the arithmetic operations on the numbers from the store. The design of

the control unit, which ensured that the machine performed the

desired operations in the correct sequence, was an example of the

transformation of a design concept from the textile industry, as both

processes exhibited their control by the use of punched cards. In the

Analytical Engine another set of cards constituted the input device,

each card representing the value of an input variable. The output

device displayed the result of the calculation in the form of yet

another punched card, or could print the result directly on to paper.

9

X
First Second

Difference Difference

0

1

2

3

4

5

6

y.

6

9

14

21

30

41

54

(1)

3

5

7

9

11

13

(2)

2

2

2

2

2

As the second difference is constant, the function
y=x2+ 2x + 6 is an example of a second degree
polynomial

FIGURE 2.1 AN EXAMPLE OF A DIFFERENCE TABLE
FOR THE FUNCTION y = x2+2x + 6

10

KEY

A 2 - way switch

B 3 - way switch

- data/instruction

control

FIGURE 2.2 ARCHITECTURE OF THE ANALYTICAL ENGINE

KEY

--------------- data/instructions

— — — control

FIGURE 2.3 von NEUMANN ARCHITECTURE

11

In 1886 Hollerith extended the idea of using punched cards as

devices to carry data. His system used an electrical device rather

than a mechanical means for carrying data values. That is, the

presence of a hole in the punched card would allow current to flow

whereas the absence of a hole would stop it. Thus a binary code was

used to carry data, the two states being current ’off’ and current

on .

The binary encoding of data and instructions was exploited

further by Turing in 1936. However, he anticipated the use of

continuous paper tape divided into unit squares as a form of input and

output, each unit square being binary encoded as a ’1’ or a ’O’,

(Turing, 1937). His machine, soon to be termed the 'Turing Machine’,

could erase symbols as well as reading and writing them. The Turing

machine was in fact a collection of machines, each one defined by its

own decision table, (the decision table for adding two numbers is

shown in Figure 2.4). The Turing machine was completely deterministic

and could be described by its configuration. It worked automatically

and can be considered as an early pattern recognition device. Thus, as

well as mathematical functions, the Turing machine could also act as

an automatic decision device, for example, in deciding whether or not

one number is divisable by another. Indeed, Turing constructed his

machine for the purpose of automatic decision-making. Turing’s work of

1937 is of significance for two reasons; he was concerned with

’computable numbers’ which almost coins the word ’computer’ as the

word to describe his device; and he realised the scope of his work,

even at that early stage, by comparing the workings of his machine to
the human brain.

The decade of the 1940s was an important one in the

development of the computer. In 1944, at Harvard University U.S.A.,

H.H. Aiken led a research team responsible for the Automatic Sequence

Controlled Calculator (ASCC), which can be described as a realisation

of the ’paper’ machine developed by Turing. The numbers used in the

calculations were stored in 'registers’ which consisted of sets of

wheels. Each wheel could be in one of ten states and could therefore

store the representation of a decimal digit. The storage register was

made up of a group of 24 wheels which could store a 23 digit number

plus its sign. There were 72 registers in all. The instructions for

the ASCC were fed in via paper tape which was read by an

electromechanical method. The complete machine contained approximately

750,000 parts and used more than 500 miles of wire. However, when the

12

INPUT 2 3

SCANNER

DECISION TABLE

CONFIGURATION SYMBOL SCANNED

BLANK 1

1 move R;
config 1

move R;
config 2

2
write T;
move R;
config 3

move R;
config 2

3 move L;
config 4

move R;
config 3

4 no move
config 4

erase;
no move;
config 4

OUTPUT
5

SCANNER

The task, defined by the addition decision table, is to fill in the blank space with a T , then to erase
the last T . A four configuration decision table is sufficient to define the machine: configuration
1 moves along the tape until the first T is encountered and then moves into configuration 2; when it
meets the blank separator, configuration 3 is reached; this then moves the the seamier along until it
reaches the blank after the second group of T"s, which acts as the signal to move back one space;
configuration 4 is then reached, which erases the last T and remains as a stopping state.

FIGURE 2.4 A TURING ADDING MACHINE
(from Hodges, 1983)

13

ASCC was ready to be evaluated it was already out of date, superseded

by the world’s first electronic computer. The Electronic Numerical

Integrator and Calculator (ENIAC) was designed by a research team at

the University of Pennsylvania, U.S.A., led by J.P. Echert and J.W.

Maunchly. The ENIAC consisted of 18,000 values, the majority of which

were double triodes, and 1,500 relays.

The ENIAC machine could only store 20 numbers, so a research

team led by J. von Neumann designed an improved version, termed the

Electronic Discrete Variable Calculator (EDVAC). An important

attribute of this machine was that the available memory capacity was

increased considerably . However, the first operational stored program

computer was a prototype machine designed by F.C. Williams at

Manchester University, U.K., which was demonstrated in 1948. Indeed

two English groups competed with each other to produce such a machine.

The successful Manchester group used a Cathode Ray Oscilloscope as the

storage medium, whereas a group at Cambridge University, under the

direction of M.V. Wilkes, preferred the use of mercury delay-lines in

their Electronic Delay Storage Automatic Computer (EDSAC).

By 1950, emphasis changed from hardware development to the

development of programmable software which could be used to make

computers do something. Activities on both sides of the Atlantic

concentrated on constructing programs which would allow computers to

make an intelligent decision or take an intelligent action. In the

U.K. Turing’s conjecture "...can machines think?" was a particular

driving force which stimulated research activity.

In the U.S.A., Shannon described computers as not only being

able to carry out numerical calculations, but were so general and

flexible that they could "be adapted to work symbolically with

elements representing words, propositions or other conceptual

entities" (Shannon, 1950). Shannon illustrated these concepts with the

game of chess. This problem domain was chosen because it is well-
defined, both in terms of its final goal (checkmate) and in

operational terms (a change of state occurs after each move in the

game). The computer was programmed to find a solution from a reduced

set of the whole, that is, situations where only a few of the defined

pieces were in play at any one time (to simulate chess endgames).

Thus, the problem to be solved was neither too simple nor too

difficult. Evaluation of the chess-playing program was made by playing

the computer against human chess-players of various ability.

14

The work of Turing and Shannon serves to illustrate the two

schools of thought which constituted computer-based intelligence in

the early 1950s. The view of the psychologists (Turing) was that

computer-based intelligence should be considered as analagous to human

intelligence, that is, the computer and its controlling software

should imitate the human brain and thought processes respectively.

Alternatively, Shannon champions the perspective taken by engineers,

and viewed computer intelligence as mechanistic in nature, controlled

by computer algorithms which imitate what humans do rather than how

they do it. To illustrate the currency of this divide the debate

surfaced again some thirty years later (Kolata, 1982; Waldrop, 1984).

In 1954 two precursors of artificial intelligence led to the

field of Medicine and Bio-engineering being one of the major domains

for its application. First, Meehl argued that many clinical

predictions could be made by statistical rather than intuitive means

(Meehl, 1954). Second, Savage re-introduced Bayesian statistical

decision theory (Savage, 1954), which was later to provide the basis

for value judgements in several ’intelligent’ computer-based systems.

One of the most notable landmarks in the study of computer-

based intelligence was a Summer School in 1956, held at Dartmouth,

U.S.A. and organised by J. McCarthy. The 'Dartmouth Summer Research

Project on Artificial Intelligence’ was a resounded success, as it

achieved its main aim of unifying the efforts of research groups in

the U.S.A. Along with McCarthy, present at some time during the six

weeks were, for example, Simon, Newell, Minsky and Shannon. Newell and

Simon presented a logic theorist model to their colleagues which was a

forerunner to their General Problem Solver program (Newell and Simon,

1957). The General Problem Solver was based upon a model of human

activity. That is, humans going about their everyday tasks bring some

general processes to bear for their successful completion. The General

Problem Solver was designed to separate the problem solving strategy
from the task-specific knowledge by employing a ’means-end analysis’.

This analysis considered the problem solving process as a series of

states, with a trajectory of discrete steps from 'current state’ to

’goal state’. For a successful outcome each state in the trajectory is

nearer to the goal state than its predecessor. This iterative

procedure used appropriate operators to move from state to state, with

a full list of operators used to reach the goal state termed the

'solution plan’. These operators often took the form of heuristic

rules, which meant usually that there was more than one solution plan

15

for each problem considered. This ambitious project was hampered by

several inadequacies in its implementation. For instance, the problem

of choosing which attributes to use to classify the differences

between successive states; finding appropriate operators (heuristic

rules) to act on the attributes; and only trivial problems were ever

considered, mainly because of excess computer times and memory

allocation required to compute the solution plan (Newell et al.,

1960).

In 1959 McCarthy described his programming language for non-

numeric computation. LISP was developed as a practical LISt Processing

language with a recursive function capability. Using LISP, iterative

processes such as the ones used by Newell and Simon in their program

for General Problem Solving, could be implemented more directly. The

year of 1959 was also a landmark for research in artificial

intelligence in medicine, as Ledley and Lusted published their seminal

paper on the reasoning foundations of medical diagnosis (Ledley and

Lusted, 1959). This paper described how statistics and Bayesian

analysis could be used to enhance the diagnostic process.

Entering the decade of the 1960s the first generation of

computers, which had the valve as its most fundamental component, were

being superseded by transistor-based machines. Several advantages

ensued because of this change in technology, these included: various

cost-type benefits, the most obvious being the decrease in financial

outlay for hardware purchase; the integral components were smaller,

decreasing the size of the computer; transistors dissipated less heat

than valves, so although ventilation systems were still required they

were not as specialised; and as a consequence of their size and

decrease in heat dissipated, transistor-based computer systems could

have more components built into them, thus increasing computing power.

This latter advantage was to have far reaching effects, as the scope

of the problems for which a computer-based implementation was sought
diversified.

Work began in the early 1960s to develop computer-based tools

useful for mathematicians. A heuristic-based computer program to

perform symbolic integration at University entrance level was

developed (Slagle, 1961). This proved to be the forerunner of MACSYMA,

a well known mathematical symbolic programming language developed

during the 1970s at the Massachusetts Institute of Technology, U.S.A.

Game-playing exercises were still popular to those working in

artificial intelligence, as well as chess, the strategies used in

16

draughts (American checkers) were also studied (Samuel, 1963). These

should not be considered as recreational activities as the benefits to

emerge from this work were computer-based search strategies used to

obtain successful solution paths in directed graphs and hierarchies.

Computer vision systems were pioneered in the mid-1960s

(Roberts, 1965), with the computer component of the system being

implemented to understand simple polyhedral block scenes. Much

preprocessing was required before input into the computer-based part

of the system. A pattern matching algorithm was used to compare the

current blocks scene to the one stored in computer memory.

Perhaps the most notorious program of the 1960s was ELIZA,

which simulated a non-directive psychotherapist (Weizenbaum, 1966).

ELIZA was conceived as a parody to machine understanding. The natural

language interface used in its implementation was neverthless an

indication of what would be acceptable to the future users of

intelligent systems. There is no doubt that the domain chosen helped

in the overall success of the program in achieving its objective of

demonstrating the ridiculousness of a machine being able to understand

true natural language. If a print-out of a machine - subject

interaction were studied, the level of machine understanding may at

first sight seem impressive. However, on closer examination the

deterministic nature of the program could be deduced. The program was

implemented in such a way that a deterministic reply was given on the

identification of a key word in the subjects’ answers. Likely key

words in the domain were, for example, ’mother’, ’family’ and ’sex’.

Each word would have their own predetermined answer composed in such a

way as to continue the interrogation. In the event of a reply by the

subject which contained no recognisable key words, an ambiguous answer

was given, such as ’Please continue’. This reply was chosen until the

next key word was recognised, thus extending the interview.

The period between the end of the 1960s and the start of the

1970s can be viewed as a watershed in the field of artificial

intelligence research. Groups on both sides of the Atlantic

consolidated their positions, guided by results of research in this

young science. Artificial intelligence was found to be much more

exacting than researchers first realised, where success lay not in

’general problem’ solving as at first thought, but rather in computer-

based implementations of knowledge from narrow domains of interest.

Heuristic rules were necessary to limit the number of possible

17

solutions found by computer search techniques, otherwise valuable

computer time and memory were taken up computing and storing non-

optimal pathways. There was also a further increase in computer

technology. The change of technology to this third generation of

computer hardware had all the advantages of the previous change; that

is, there were advantages of decreased financial outlay to install a

new computer, integral computer components were smaller (based on

integrated circuit technology), computing power increased while both

size and heat dissipation decreased. Two other factors could also be

identified for the necessary transition into the third generation of

machines: the standardisation of operating systems as the interface

between hardware and software; and a standardisation of component

technology (imposed and driven by the market leader in computer

manufacture).

Up to the early 1970s the LISP programming environment was

the only one specialised for research into artificial intelligence. In

1972 at the University of Marseille, France, a new programming

language was developed for PROgramming in LOGic (Roussel, 1975).

PROLOG became more popular as it became more generally available,

partly because it is a relational language based on first predicate

calculus, but also because it subsumed most of the list processing

functions performed by LISP.

Research in artificial intelligence was set to expand using

the third generation computer hardware when a set-back to its progress

occurred in the U.K. The Government of the day commissioned a report

into artificial intelligence research from the Science Research

Council (now the Science and Engineering Research Council). Its

author, the physicist Sir James Lighthill, saw no need for a separate

field for artificial intelligence and found no organised body of

techniques that represented such a field (Lighthill, 1972). Lighthill

saw the fields of automation and computer science coming together to

fill whatever research gap ensued. As a result of the report there
was an immediate cessation of work in artificial intelligence in the

U.K. Affected personnel were dispersed to other research centres,

mainly in the U.S.A., where their contributions were received gladly.

However, perhaps as a response to the Lighthill report which
had a knock-on effect in the U.S.A., research was initiated in

development of the techniques used in artificial intelligence. For

example, new knowledge representation schemes appeared, computer

search techniques began to mature and inter-domain research activity

18

became apparent, (where the medical domain was an early application

for artificial intelligence). During the 1970s feasible approaches

were demonstrated for speech understanding, language processing, and

computer vision. A sub-set of artificial intelligence called 'expert

systems’ also began to emerge.

From 1971 to 1976 the HEARSAY-II speech understanding system

was developed at Carnegie-Mel Ion University, U.S.A., (Erman et al.,

1980). One of the first tasks of this research was to define when

understanding (rather than recognition) of the spoken word had taken

place. A behaviourist view was employed which allowed understanding to

take place at several levels. The HEARSAY-II program was said to

understand speech if it could perform one of the following tasks :

give a correct answer to a question; paraphrase a paragraph; take

inferences from a paragraph; translate a paragraph into another

language; or predict what might be said next. In its summative

evaluation the program could understand sentences with 90% accuracy

from continuous speech, based on a thousand word vocabulary. The

HEARSAY project used a 'Blackboard System Architecture’, which allows

and controls information flow from multiple knowledge sources. In this

way knowledge from different levels in the task-hierarchy can be

considered at the same time.

A natural language program, SHRDLU, was developed at the

Massachusetts Institute of Technology, U.S.A., (Winograd, 1972), which

was designed to interface with an 'artificial blocks world’ (c.f. the

work by Roberts discussed earlier). The significance of SHRDLU,

although limited in extent, was that it was the first program to

integrate successfully the syntax and semantics of natural language

with a knowledge base.

Continuation of work started in the 1960s on computer vision

systems resulted in an industrial prototype (Gleason and Agin, 1979).

The purpose of this system was the assessment of quality assurance of
industrial workpieces. A special lighting system was used to

illuminate the workpiece whose edges were extracted using a continuous

scan process. Any workpiece which did not match with the

representations held in the memory of the computer were rejected.

Expert systems began to emerge in the 1970s, with the medical

domain being a keen user of the technology. (The definition of an

expert system has been given in Chapter 1, and medical expert systems

are discussed in more depth in Appendix I). The genesis of medical

19

expert systems perhaps stems from three fields of interest: the
clinical algorithm; medical databases; and clinical decision making

using decision theoretic techniques.

The clinical algorithm can be considered as a simple

decision-making tool. It has been successfully applied to the encoding

of triage protocols for use by nurses (Perlman et al. 1974), and

giving therapeutic advice for acid-base disorders (Bleich, 1972).

Deficiencies in this method are well recognised, such as its

unwieldiness in large domains and the difficulty of maintaining the

medical knowledge contained in the algorithm. The lack of any explicit

model also makes justification of a course of action difficult to

explain.

The hospital-kept patient notes form an original ’paper’

database. With the advent of advanced instrumentation systems not only

did it become possible to computerise these notes, but they could also

be cross-referenced with domain-specific databases. Indeed, large

domain-specific databases are being gathered for various clinical

problems (Weyl et al., 1975; Mabry et al., 1977). There are drawbacks

to the use of clinical database systems, which include the need for a

standard approach to nomenclature and interpretation for comparison

between similar systems, and rare disorders may have so few references

in the database that any inferences made may be statistically

inappropriate.

One statistical method employed in clinical decision-making

which provides for uncertainty is the use of Bayes theorem. For this

to be consistent, the theory requires quantitative values for the

a priori and conditional likelihoods for each disease state and

constituent manifestations under consideration. Applications which use

this method are typically from small domains, as otherwise the time

required to carry out the a posteriori mathematical calculations

required for a set of possible solutions becomes untenable. Examples

of the use of Bayes theorem in clinical decision-making are in the

management of patients with acute renal failure (Gorry et al., 1973),

and from the clinical response to digitalis therapy (Gorry et al.,

1978). The main disadvantage of this method is the difficulty in

obtaining a reasonable estimate of the a priori probabilities for

disease states and their manifestations in each domain. It follows

from this observation that large medical domains and multiple disorder

protocols are not good examples of potential areas of application.

However, there is one notable exception. A system for acute abdominal

20

pain has been in the process of development since 1972 at the

University of Leeds, U.K. (de Dombal et al., 1972; Horrocks et al.,

1972). An evaluation study has been performed which assessed the

impact of the system on clinical practice. This study involved 8

hospitals, 250 clinicians and 16,737 patients at both national and

international sites (Adams et al., 1986).

When research from all three of the above approaches are

combined, any resultant expert system would benefit from the

advantages offered by each individual approach whilst each of their

individual disadvantages are minimised. For example, a clinical

algorithm could provide the procedural knowledge required in an expert

system, while data from a domain-specific clinical database could

provide the statistical insight required to obtain the a priori

probabilities for the disease states used in a Bayesian analysis of

clinical prediction.

As research entered the 1980s it became clear that the

encapsulation of knowledge into computer-based systems was necessary

and central to the field of artificial intelligence. Suddenly ’expert

systems’ and 'intelligent knowledge-based systems’ became synonyms for

research into artificially intelligent systems. Although one

definition of ’expert system’ has already been given (Chapter 1), it

is pertinent to add a second more comprehensive definition at this

stage :

"An expert system is an intelligent computer
program that uses knowledge and inference
procedures to solve problems that are difficult
enough to require significant human expertise
for their solution. The knowledge necessary to
perform at such a level, plus the inference
procedures used, can be thought of as a model
of the expertise of the best practitioners of
the field.

The knowledge of an expert system consists of
facts and heurisitics. The ’facts’ constitute a
body of information that is widely shared,
publically available, and generally agreed upon
by experts in a field. The ’heuristics’ are
mostly private, little-discussed rules of good
judgement (rules of plausible reasoning, rules
of good guessing) that characterise expert-
level decision-making in the field. The
performance level of an expert system is
primarily a function of the size and quality of
the knowledge base that it possesses."

(Feigenbaum, 1982).

This definition emphasises the requirement for an expert system, as

21

well as dividing it into its constituent parts of facts and rules.

Facts are universally known whereas rules usually employ ’local’

knowledge, which could be one reason why expert systems are generally

not very portable.

The early 1980s also saw the wholesale manufacture of micro-

processors, which brought the cost of buying a computer down

dramatically. With the advent of the microcomputer a potential home-

computing market was established. Versions of LISP, PROLOG and other

software packages became available for use with these microcomputers,

which is perhaps one reason why expert system technology has

proliferated. In 1982 the Japanese officially began a well-funded ten

year research project to create a further generation in computer

technology. This generation of machinery will be capable of computing

in parallel, that is, perform many computational tasks concurrently.

The significance of this project to this review is twofold : first,

PROLOG has been chosen as the implementation language; and second,

computers operating in a parallel mode have a great research potential

in the field of artificial intelligence. These facts, taken in

conjunction with the fact that intelligent computer-based systems are

now found in commercial use, ensure that research in artificial

intelligence will play an ever-increasing role in the future

development of intelligent devices.

2.3 Historical Development of the Critical Care Unit

The critical care unit can be described as a specialised and

confined area within a hospital unit where critically ill patients are

gathered together. The creation of such an environment has various

consequences. For instance: the highly trained nurses required to

staff the unit can be deployed in an efficient way, more often than

not in a ratio greater than unity between nurse and patient; the

sophisticated instrumentation systems needed for enhancing patient

care are utilised for a high proportion of their operational lives,

thus expensive and specialised equipment does not sit idle for very

long; and the critical care unit provides an ideal setting for medical

training and research. All of these factors contribute to the finding

that the establishment of a critical care unit within a hospital has

the effect of reducing overall patient mortality and morbidity,

(McCleave et al, 1977). As an illustration of the popularity of this

method of dealing with critically ill patients, an American study has

shown that over 80% of all short-term General Hospitals in the U.S.A.

22

which have more than 200 beds have a critical care unit (Snyder et

al., 1981). However, this type of care is a phenomenon of the latter

half of the twentieth century, which owes much to the establishment of

the post-operative recovery room, perhaps first chronicled by Florence

Nightingale, who observed,
"It is not uncommon, in small country
hospitals, to have a recess or small room
leading from the operating theatre in which
the patients remain until they have recovered
from the immediate effects of the operation. "

(Nightingale, 1863).

One of the problems of managing critically ill patients is

that although initially there may be only one pathological condition

which accounts for the prime complaint, in a relatively short period

of time many physiological disturbances can contribute to overall

patient state. Therefore there is potential for a number of clinical

specialists to assume charge of the care of the patient. This can lead

to a most unsatisfactory situation where a conflict of management

approaches can be adopted by the different specialists. Therefore

there is a need for a holistic approach to the management of the

critically ill patient, which was first perceived by Kirschner, a

surgeon from the hospital of the University of Tuebingen, Germany,

(Kirschner, 1930). He designed and had built a dual purpose unit which

catered for post-surgical patients as well as for the critically ill.

It was the advent of World War II which brought about further

developments in critical care medicine. Due to the number of

casualties involved, a systems-type approach to the management of the

battle wounded was adopted in many places. For example, in July, 1943,

a thoracic surgical tent was established in Bizerte, North Africa, to
deal with incoming wounded. This enabled the limited number of

specialised medical personnel to be deployed in the most efficient

way. Further examples of this intensive approach to patient care in
World War II (from an American perspective) are well documented in a
series of volumes published by the Office of the Surgeon General,

Department of the Army, Washington, D.C. (U.S. Army Medical Services,
1955; 1963; 1964).

The management of civilian crises has also been responsible

for the evolution of the critical care unit. Indeed, it was one such

crisis, namely the poliomyelitis epidemic of 1952 in Scandinavia,

which ultimately provided the impetus for the creation of purpose-

designed specialist units for the management of the critically ill.

23

However in 1952 no such unit existed, so in Copenhagen, Denmark, a

hospital ward was temporarily seconded to cater for victims of the

poliomyelitis epidemic who had severe respiratory problems caused by

their primary complaint. This ward was supervised by anaesthetists,

and as technology had yet to improve on the cuirass ventilator,

intermittent positive pressure ventilation was applied manually for

prolonged periods of time on the tracheotomised patients, (Ibsen,

1954). Clinical acceptance of this treatment regime was enhanced

because evaluation of the methodology could be undertaken.

Epidemiologists compared the mortality rates from respiratory

paralysis during the poliomyelitis epidemic of 1952 to that of a

similar epidemic in Scandinavia which took place three years earlier.

Results showed that throughout Scandinavia the mortality rate during

the 1949-1950 epidemic was 85%; prior to the anaesthetists’

intervention in 1952 the mortality rate in Denmark was 87%; however

after intervention by the anaesthetists in the way previously

described, the mortality rate fell by more than half to 40%, (Lassen,

1953).

The clinical knowledge gained from these experiences had at

least two consequences. First, a technological advance was made in the

design of mechanical ventilators, which began to include an automatic

way of delivering intermittent positive pressure ventilation. Second,

a methodological advance was made in the design of a special unit

which catered specifically for the critically ill.

The first purpose-built civilian multidisciplinary critical

care units opened almost simultaneously in 1958, in Baltimore, U.S.A.,

and Uppsala, Sweden, (Safar et al, 1961; Holmdahl, 1962). Taking the

latter unit as an example of the methodological advance, the 24 bed

unit was split into two wards. The larger of the two wards contained

13 beds and was administered by anaesthetists, and could be considered

as an extension to the post-operative recovery room. This can be

visualised as the forerunner of the medico-surgical critical care

units found in most large hospitals. The other ward, which contained 9

beds, was administered by cardio-thoracic surgeons and was perhaps the

originator of the coronary care unit.

Other specialist units that can be considered under the

umbrella term of critical care include the neurological intensive care

unit and the special care baby unit. These have a more chequered

historical development, owing much to the personality of the

clinicians involved rather than any structured advancement in

24

methodology for patient care. A small three bed intensive care unit

for the post-operative management of the neurosurgical patient was in

existence in 1923 in Baltimore, U.S.A. This unit was directed by W.E.

Dandy, who realised the efficacy of this type of patient care,

(Harvey, 1974). A special care baby unit for neonatal intensive care

was first established in Chicago, U.S.A., in 1927, (Klaus and Kennell,

1970). However, treatment and methods were still crude, often using

medical instruments designed for adults on neonates. The creation of

the unit in Chicago provided an environment which allowed clinicians

to design proper sized instruments for use on neonates, (Flagg, 1928).

An increase in general instrument technology has also contributed to

the care of the critically ill. As clinical instrumentation has become

more sensitive the amount of test substance required to obtain a

reliable reading has become less. For instance, for paediatric blood-

gas analysis a blood sample of 40 ul is all that is required to obtain

a reliable measure from most modern machines. This has allowed serial

analyses of variables to be undertaken in even the smallest of

neonates. Patient management can then be optimised at regular

intervals, which increases the chance of patient survival. Further

examples of how other ’specialist’ critical care units have developed

from a clinical viewpoint can be found in an article by Hilberman

(1975).

With the establishment of the critical care unit as a

distinct entity within a hospital system, emphasis on its development

has changed from a clinical perspective to a technological one. The

use of computers to monitor continuous physiological signals first

became a tool for patient management in 1964, in Los Angeles, U.S.A.

(Jensen et al, 1966). Since then many more patient data items have

become available on-line, and to counteract a ’data-explosion’ these

must be made available to a computer-based patient data management

system (Booth, 1983). Such a system has existed in Kuopio, Finland,
since 1986 (Kari, 1988), where the entire patient data set is captured

either on-line or manually entered via a keyboard. A problem encumbent

with any system of this type is its universal appeal, as the patient

data set differs from hospital to hospital. To overcome this problem a

European initiative is underway to determine what constitutes the

minimal data set. Once this has been defined, commercial patient data

management systems should be forthcoming. The future development of

the critical care unit will then probably concentrate on interfacing

these systems with intelligent software modules capable of deciding

25

automatically when to update data for the optimal management of the

patient.

2.4 Summary

It has been shown how the history of research into artificial

intelligence is intertwined with that of the development of the modern

computer. The historical development of computer technology has been

summarised previously (Harrison, 1986), see Figure 2.5. The Analytical

Engine of 1842 comprised tonnes of brass and steel and was driven by a

steam engine. Two 50-digit numbers could be multiplied together, the

answer taking one minute to compute; addition and subtraction could be

performed at a rate of 60 operations per second. The ENIAC machine of

1946 comprised 18,000 vacuum tubes, had dimensions of 100*10*3 feet,

consumed 140kW of energy and was capable of 5,000 operations per

second. The modern computer of 1988 is much smaller, uses much less

power, costs much less and is capable of over 1,000,000 operations per

second. It can be said with confidence that a computer revolution has

taken place over the last forty years.

The intention of this chapter was to perform a historical

review of artificial intelligence and show a historical development of

the critical care unit. From these descriptions it can be seen how the

development of the former has had an application in the latter. The

use of ’high technology medicine’ has had a beneficial effect on

patient diagnosis, monitoring and therapy. One area of critical care

which would benefit from the use of advanced instrumentation is the

respiratory management of patients who require ventilatory therapy.

The modern ventilator is often controlled by a micro-processor and is

therefore capable of a ’smart’ functionality. In the next chapter a

critical review is performed on ventilatory devices which use

feedback-control and techniques from the domain of artificial

intelligence to demonstrate novel ways of increasing the ’smartness’

or intelligence in patient management processes.

26

DIFFERENCE 110 years
___________________ ENIAC

40 years
MICROCOMPUTERENGINE

evolution revolution

mechanical electrical electrical

brass/steel vacuum tubes microprocessors

FIGURE 2.5 SUMMARY OF HISTORICAL DEVELOPMENT OF COMPUTING

3 : CRITICAL REVIEW OF A CONTROL SYSTEMS APPROACH
AND AN ARTIFICIAL INTELLIGENCE APPROACH

TO VENTILATORY MANAGEMENT

3.1 Introduction

In the previous chapter the historical aspect of artificial

intelligence was given. Here the investigation of an application of

this technology to the management of patients who require mechanical

ventilatory support is considered. To achieve this objective this

chapter critically reviews external control of the human respiratory

system by use of an artificial ventilator. Two approaches to external

control of ventilation are considered: the first from a traditional

control systems perspective; and the second using the tools and

techniques of an artificial intelligence approach.

A classical control system consists of three sub-units; the

transducing element(s) from which the variables of the system are

derived; the controller, (e.g. P, P + D, P + I, PID), which computes the

degree of control required; and the actuator, which supplies the means

by which the control action is carried out on the system. The purpose

of a control system is to keep designated variables within pre-set

desirable limits. In normal physiology the respiratory system has its

own internal control mechanisms, the basic system elements are shown

in Figure 3.1 a), with a more detailed account which includes neural
respiratory control shown in Figure 3.1 b).

In situations where the physiological system which controls

respiration is not intact, an alternative external controller is

required. This is the role of an artificial ventilator; it takes over

from the respiratory control system so as to sustain life. Such

situations occur, for example, when the respiratory centre of the

brain is deranged due to supression (as in drug overdose), or
compression (as with a tumour). Many more examples exist which explain

the dysfunction of the respiratory control system.

In Section 3.2 servo-controlled ventilator systems are reviewed.

The purpose of a controlled ventilator system is to keep designated

respiratory variables within pre-set desirable limits. This enables

the production of a patient-specific management plan, the desired end-

point of which is to return the patient to a state where spontaneous

ventilation occurs. This is the point when the internal physiological

control system can regain control from the external ’artificial’
system.

2 8

INPUT OUTPUT

pons,medulla and
higher parts of the

brain

SENSORS EFFECTORS
negative feedback

mechanoreceptors respiratory
chemoreceptors muscles

Input to the controller is information from the various sensors.
Controller output affects the respiratory muscles. Changes in
ventilation are counterbalanced by the action of the respiratory
muscles via a negative feedback loop.

FIGURE 3.1 a) BASIC ELEMENTS OF THE RESPIRATORY CONTROL SYSTEM
(After Figure 8.1, West, J.B., 1979)

29

FIGURE 3.1b) BASIC STRUCTURE OF NEURAL RESPIRATORY CONTROL
(after Figure 20, Fincham and Beishon, 1973)

30

A difficulty encountered in servo-controlled ventilator

systems is that of obtaining a reliable measure of the ’controlled’

variable. For instance, clinicians would like to use PCO2 in arterial

blood (PaCC>2) as the controlled variable, as this measure reflects
respiratory status. However, to obtain this measurement an invasive

technique is required, which is fraught with its own complications,

although this procedure may be deemed beneficial for some patients in

a Critical Care Unit. To date, end-tidal CO 2 concentration (ETPCO2),

measured by a capnograph, is usually used as an indicator of PgCC^.

ETPCO2 reflects alveolar concentration of carbon dioxide which is

itself a function of PaCC>2 .

Section 3.3 illustrates the artificial intelligence approach

for the provision of a patient-specific management plan. As well as

ventilator control, the system has a domain specific knowledge-base

appended to it. This knowledge-base has the function of providing

intelligent advice to the user, which enables an optimal or near

optimal respiratory management trajectory to be set.

3.2 A Control Systems Approach to Ventilator Management

Katona describes two reasons for developing systems to

automatically control the designated respiratory variables (Katona,

1983). First, ventilator settings may have to be continually adjusted

to allow optimal gas exchange to take place for the metabolic

requirements of the patient. Second, it is sometimes desirable to keep

some of the monitored respiratory variables constant so that

interpretation of respiratory manoeuvres can be more easily made. Both

of these principles are used in the systems described below.

3.2.1 ETPCO2 as an Indication of PaC02, (Ohlson et al., 1982)

It has been indicated previously that ETPCO 2 is used as an

approximation to PgCC^. A microcomputer-based feedback control system

was designed to test this hypothesis under different physiological

conditions. The significance of this research is that in some disease

states large differences can occur between ETPC02 and PaC02 (West,

1979). As a consequence of the evaluation study performed on this

system a number of automatically controlled ventilation systems which

use ETPCO2 as a basis for their control action become compromised.

The system designed by Ohlson and colleagues was based on a

SIEMENS-ELEMA 900B s e r vo-ven t i 1 a t o r. The ventilator was modified to

accept control signals from a computer, which exhibited control of

31

both minute volume and ventilation rate. A CC> 2 analyser was used to

measure ETPCO2 , and both monitoring and lung mechanic calculator

modules were used. This configuration allowed the display of flows,

pressures and mechanical factors, (for example, resistance and

compliance).

This ventilator-computer system was tested in closed-loop

mode and evaluated using six dogs. Although only ETPCO2 was captured

by the computer, PaC02 was also monitored continuously. A model of the

closed-loop feedback control system is shown in Figure 3.2. D(z) is

the Proportional plus Integral plus Derivative (PID) controller, whose

output, ’m’, is the sum of the current error, the accumulated error

and the change in error. These parameters are related by a set of

difference equations. The sampling interval, that is, how often the

physiological variables were measured, was determined empirically and

set at 5 seconds.

System performance was evaluated under different

physiological conditions induced by the following pertubations :-

1) NaHCOg was infused intravenously.

2) A main branch of the pulmonary artery was occluded by a

Swan-Ganz balloon catheter.

3) One lumen of a double lumen endobronchial tube was occluded.
4) An air embolism was administered.

Each of these pertubations mimic a pathophysiological state, their

significance can be described as follows. Infusion of NaHCOg for 10

minutes at a rate of 0.21 mEq/kg/min simulates a change in CO2 minute

production, thereby changing the metabolic rate of the animal. This

situation occurs regularly in patients who are admitted to a Critical

Care Unit. Occlusion of one of the main branches of the pulmonary

artery effectively increases the physiological dead-space. This is of

pathological significance because it simulates disease states which

are caused by poor blood flow in the lungs, where physiological dead
space is effectively increased due to little or no gas exchange in

those areas. The left lumen of a dual lumen endobronchial tube was

occluded which meant that all ventilation was diverted to the right

lung. This mechanism simulated a right-to-1eft shunt. Air (1 ml/kg)

was rapidly infused into the right atrium of the heart via one lumen

of the Swan-Ganz catheter. This modelled a transient disturbance, and

is also effectively another method of increasing physiological dead-
space .

32

End-tidal

D(z) is a PID controller (computer software);
Ventilator acts as a zero order hold (ZOH);
The animal is considered as a continuous process G(s);
The summing junction is contained within thee computer software algorithms;
T = 5 seconds.

FIGURE 3.2 CLOSED - LOOP CONTROL SYSTEM USED BY OHLSON ET AL„ (1982)

When NaHCOg was infused, the PID controller adjusted minute

volume based on ETPCO2 measurements, and kept PgCC^ within desirable

limits even though CO 2 production increased by as much as 44%.

However, control was not as effective when the other three

pertubations were performed. One reason for this ineffectiveness could

be that all three pertubations caused large changes in the ventilation

- perfusion ratios, thus causing large differences between ETPCO2 and

PaC02. If this large ETPCO2 ~ PaCC> 2 mismatch were constant then the

PID controller set-point could be altered so as to accommodate this

change. The resulting change in minute ventilation could then bring

the PgOO2 measurement back to within desirable limits. One conclusion

of this work was to begin research into methods that would monitor

ventilation - perfusion ratio, as this could determine the ETPCO2 -

PaC02 relationship.

3.2.2 Automatic Control of a Ventilator Using ETPCOg as the
Controlled Variable (Smith et al., 1978)

A similar control system to that described by Ohlson and

colleagues (above) was proposed four years earlier. Here ETPCO2 was

measured via an infra-red CO2 analyser. The value of ETPCO2 was to be

used to control the motor rate of a fixed-volume respirator. The CO2

analyser - controller - respirator system operated in a closed-loop

mode which allowed for the automatic control of ETPCO 2 . The

instrumentation system contained a variable gain and lag compensation

network, which permitted critical damping and thus prevented

oscillation.

The purpose of this system was to investigate the

respiratory neural control of paralysed animals, where a constant

ETPCO2 was required. Tidal volume and respiratory rate (which define

minute volume) were set at values necessary to provide the desired

ETPCO2 . This measure then became the set-point value. The system

operated in a way such that if there was a change in ETPC02 the
controller would alter the rate of the respirator in a way to minimise

the effect of that change.

3.2.3 Investigation of the Response to Hypoxia and Hypercapnia
Using ETPC>2 and ETPCOg as the Controlled Variables
(Kawakami et al., 1981)

This system was developed to control PaC> 2 and PaC02

simultaneously and independently of each other. The control action

alters the inspiratory Fj02 and FjC02. The purpose of the system was

34

to investigate the ventilatory response of human subjects to hypoxia

and hypercapnia. Using the same system it was also possible to assess

the effectiveness of gas exchange while changing ventilatory pattern,

and simulate the values of the arterial blood gases for specific

conditions such as exercise.

The instrumentation system used in this study is shown in

Figure 3.3. Expiratory gases were analysed by mass spectrometry, this

is a technique capable of measuring both ETPO 2 and ETPCO 2

simultaneously. The O2 and CC> 2 controllers regulated the directions of

the movement of two pulse motors, which were connected to two mixers

which allowed the separate determination of FjC^ and FjCC^. Nitrogen,

as well as oxygen, was supplied to the 0 2 mixer, the output of which

was connected to the CC> 2 mixer. The gas mixture was available in any

concentration between 0% to 100% for both O 2 and CC^- The output of

the CO2 mixer was connected to the ventilator, (BENNETT PR-2), where

the gases were decompressed and humidified. This gas mixture was

administered to the subject via an overflow bag, J-valve and

mouthpiece. If the values of ETPO2 or ETPCO2 were at a level to bring

about a control action, under normal operation of the system the

increase in FjC> 2 and FjC0 2 occurred using a ramp function set at 2

%/min for Ĉ , and 3 %/min for CC>2 . A provision for a more rapid change

was also included where the ramp function was set at 23 %/min for O2

and 32 %/min for CC^. This rapid change function was included to off-

set any life-threatening situations. For measurement purposes it was

assumed that the end-tidal concentrations mirrored the concentrations
of the gases in arterial blood.

Three different physiological conditions were induced in the

subjects in order to evaluate the system allowing an insight into the

relationship between end-tidal and arterial blood gas concentrations.
They were:-

1) normoxia Pa°2 = 12 kPa ; paC02 = 5 kPa

2) normocapnie hypoxia Pa°2 " 5 kPa ; paC02 = 5 kPa

3) normoxic hypercapnia C
M

r
HIIC

M
O

03
Q

_ kPa ; PaC02 = 7 kPa

Arterial blood for the blood gas determinations was drawn from an

indwelling catheter placed in the brachial artery, and analysed

directly after sampling. In this way the measurements of Pa02 and

PaC02 could be compared with the end-tidal concentrations used by the

control system. All measurements were made three minutes after
reaching the steady-state condition.

35

FIGURE 3.3 CONTROL SYSTEM FOR ARTERIAL BLOOD GASES
(after Kawakami et al, 1981)

The conclusions drawn from this study were that the

instrumentation system performed well under normal physiological

conditions, that is, when the end-tidal concentrations matched the

arterial blood gas determinations. However this relationship was not

as effective under the experimental conditions which introduced

possible pathological factors.

3.2.4 Use of ETPCO2 as the Controlled Input to Investigate Ways
of Optimising Drug Therapy (Swanson et al., 1971)

This system was used for studying normal and drug-altered

respiratory physiology, and combined the use of a computer-controlled

breathing chamber together with a dynamic mathematical model of the

physiological processes. The work is of importance because it allowed

interpretation of the response of the respiratory system to the action

of new drugs. The methodology used by the system hinged upon the fact

that re-breathing of CO2 was a proven useful experimental method for

assessing the effects of drugs. However previous analysis had not

taken into account drug action in terms of its dynamic properties,

(time constants, gain, circulatory time, etc.), which was included in

this study.

System input was ETPCO2 , which could be altered using an
open-loop control system which regulated inspired CC>2 . The system

output was a control action which varied tidal volume or the ratio

between time for inspiration to time for expiration.

A dynamic mathematical model was used to describe the CO2

regulatory system, where the values of the measured data were used for

model parameter estimation. Pertubation in ETPCO2 was said to be a

function of inspired CC^, alveolar ventilation and mixed venous

concentrations of PCC^- The effective action of the drugs could be

instantiated to the change which took place in the values of the

parameters of the model. This system was designed so that the

uncertainty factor associated with each parameter was minimised, thus
helping to identify optimal drug therapy.

3.2.5 A Breath-by-Breath Method to Automatically Control a
Ventilator Using ETPCOp as the Controlled Variable
(Bhansali and Rowley, 1984)

A microcomputer controlled servo-ventilator system which

continuously monitored ETPCO2 and adjusted minute volume on a breath-

by-breath basis has been proposed. This system is similar to the one

described by Smith and colleagues (above). Alterations to minute

37

volume was the control action, taken on the basis of the measured

value of ETPCC^. The difference between the two systems is that Smith
and colleagues alter respiratory rate to change the minute volume,

whereas Bhansali and Rowley alter the tidal volume, thereby creating a

different physiological dead-space.

A modified SIEMENS-ELEMA 900B servo-ventilator was used in

this study, the modification being a variable orifice in the

compressed air-line connected to the ventilator. This had the effect

of altering air flow, which was the device used to change tidal

volume. ETPCO2 was monitored using a CO2 analyser. The algorithm used

for adjusting the minute volume is shown in Figure 3.4, and was

capable of detecting long-term and short-term changes; that is, a ramp

change between measured and set-point value of ETPCC^, and a breath-

by-breath change respectively. This algorithm was implemented in

BASIC, and operated in the following way. A set-point of ETPCO2 was

entered, (S), and compared with its current value, (Z). If Z was not

equal to S then an appropriate control action was taken; if Z equalled

S, the measure was compared to the previous value of ETPCO2 , (X). A

difference between Z and X brought about a control action in order to

increase or decrease the minute volume accordingly. The previous

sample, X, was then replaced by Z, (that is, Z was instantiated to X),

and a new sample of the ETPCO2 measure was taken.

This system was evaluated in an animal study by altering

acid-base status. An infusion of 0.5N HC1 induced an increase in

minute ventilation which required control action to maintain ETPCO2 at

a constant value. The system responded well and in real-time, although

the system response was underdamped. The authors partly attributed

this to the fact that the body acts as a physiological buffer. It was

suggested that further evaluation studies were required before using
this system on humans.

38

FIGURE 3.4 ALGORITHM FOR ADJUSTING MINUTE VENTILATION
(From Bhansali and Rowley, 1984)

3.3 An Art i f i c i a l Intel l igence Approach to Ventilator Management

This section comprises systems which use a knowledge-based

approach to ventilator management. Research using artificial

intelligence in this domain began in 1973, and the various methods by

which intelligent systems have been used are reviewed below.

3.3.1 A MUMPS-based Ventilator Consultation System
(Menn et al.,1973)

One of the first computer-based medical consultation systems

was designed and developed at the Massachusetts General Hospital,

U.S.A. (MGH). It comprised a suite of programs, each one dedicated to

a particular patient care - data management application area. One such

area was designated as the care of patients who enter the state of

respiratory failure, (Menn et al, 1973). The purpose of the system was

to provide a set of recommendations from which ventilator therapy

could be planned in an optimal manner.

The system used a specialised programming environment,

taking its name from the acronym of MGH Utility Mu 11i-Programming

System, (MUMPS). This was described as a versatile, user-friendly,

text-orientated language which allowed fast access to a dynamic

database. Program input consisted of answering a series of menu-driven

questions. The information requested included the vital statistics of

the patient, his state of consciousness, the settings of the

ventilator, arterial blood gas determinations, pulmonary diagnosis and

the type of ventilator and airway used. The program could cope with

five types of ventilator and nine different airways. The primary data

set used in the MUMPS-based consultation system is shown in Table 3.1.

Program output consisted of five areas of assessment:-

i) Oxygen Assessment
ii) Acid-Base Assessment
iii) Ventilation Assessment
iv) Weaning Assessment
v) Airway Care

Oxygen assessment yielded an ’ideal’ inspired oxygen

concentration made on the basis of the results of the arterial blood

gases. The suggested ventilator settings were then shown to attain

that particular value of Fj02.

Acid-Base assessment used a modified Bleich method to

determine acid-base status from a linear plot of PaC02 and Hydrogen

ion concentration. The program was able to distinguish between pure
and mixed acid-base disturbances.

40

P a02 Partial Pressure of Oxygen in Arterial Blood

P aC 02 Partial Pressure of Carbon Dioxide in Arterial Blood

S a 0 2 Arterial Oxygen Satuaration

A aD 02 Alveolar - Arterial Oxygen Gradient

PH pH

H C 03 Bicarbonate Concentration

EEP End - Expiratory Pressure

Fiq Fraction of Oxygen in Inspired Air

VT Tidal Volume

VD/VT Ratio between Dead Space and Tidal Volume

RR Respiratory Rate

TABLE 3.1 PRIMARY DATA - SET FOR THE MUMPS - BASED
CONSULTATION SYSTEM

41

Ventilation assessment used the fact that tidal volume,

respiratory rate, and mechanical dead space all affect the PaCC> 2 of

the ventilated patient. The program stipulated what tidal volume and

respiratory rate were required for optimal carbon dioxide elimination.

The parameters used in weaning assessment included the state

of consciousness of the patient, respiratory rate, vital capacity,

PaC02, pH, VD/VT, AaDC>2 , and FjC^. The temporal trends of all these

variables and parameters were also used in the program for weaning

assessment. Computer advice was divided into three states; the first

was where weaning could be contemplated with a high probability of

success; the second was where weaning could be started but with

increased patient observation, so that any breathing difficulties the

patient might have could be dealt with quickly and efficiently; the

third was where the program advised against weaning at that time.

For Airway Care, assessment recommendations were made for

the maximum duration for which various airways should be used before

performance of either extubation or tracheostomy.

During the initial phase of its use, all assessments made by

the advisory program were evaluated by an experienced senior

clinician. The system was used mainly by medical students so that they

could obtain a therapeutic plan an expert would use. Thus, as well as

being able to organise the vast amount of data generated by a patient

in a respiratory care unit, the system could be used as a valuable
teaching tool.

However, there were problems encountered when using the

MUMPS-based consultation system. These could be split into two groups;

operational problems, and what can be described as historical

problems. Although most input to the system was quantatative and

therefore communicable via a modem link, which allowed access to

computer advice from terminals remote to the Massachusetts General
Hospital, the original program allowed only 22 simultaneous users.

This limited the utilisation of the information contained within the

program. The historical problems associated with the system could be

described as waiting for relevant computer hardware and software to

catch up with the program specification. It must be remembered that

MUMPS was designed in the early 1970s, when the advent of the age of

the microcomputer was still ten years away.

The heart of MUMPS-based system consisted of a tree-

structured consultation mechanism with the knowledge base defined

42

implicitly in the inference mechanism. This was known to be a rigid

construct, now superseded by expert systems where the knowledge base

and inference mechanisms exist as separate software entities. As an

example of this rigidity, the validity of a MUMPS interpretation was

dependent on the accuracy and completeness of the data that were

entered. In more advanced systems, using expert system technology

that evolved in the late 1970s, both accuracy and completeness of data

are problems that can be overcome. Other lesser problems encountered

during the operation of MUMPS when it first became available were the

physical time to enter the data required by the system, and the time

taken to obtain a printed copy of the data, (both taking up to 10

minutes).

MUMPS became a popular programming environment, the source

code being exported to various other national (U.S.A.) and

international centres. This popularity can be indicated by the number

of MUMPS user-groups in existence, although that number is now on the

decline. A possible reason for its former popularity is due to the

fact that its authors were harnessing the might of the then new age of

mini-computing power to a real world medical problem. With the advent

of the microcomputer and an increase in sophistication of software

tools available, other more advanced systems were designed to help in

the care of patients who require mechanical respiratory support.

However the MUMPS-based consultation system deserves its place in this

review as it made a significant contribution to medical computing.

3.3.2 VM (Fagan, 1980)

VM was developed principally by L. M. Fagan in the

Departments of Medicine and Computer Science, Stanford University,

during the late 1970s, (Fagan, 1980; Fagan et al, 1980). The program

was designed to interpret on-line quantitative data in an ITU setting,

which were used to manage post-surgical patients receiving mechanical

ventilatory assistance. Operation of VM depended on its ability to
perform the following five tasks:-

i) to detect possible measurement errors
ii) to detect errors in the instrumentation system, and

if an error was present to suggest corrective action
iii) to summarise patient-state based on the incoming

data
iv) to suggest adjustments to the patient-specific

management plan
v)to maintain a set of patient-specific expectations

and goals for future evaluation of the program.

43

Central to the operation of VM was a model of therapeutic

procedures carried out in an ITU, enabling interpretations of the

time-varying physiological data to be made in the context of their

therapeutic value at the time of measurement. Adjustments to a

patient-specific management plan were made by comparing current

patient data with the expectations of the measurement values of the

data for that particular patient-state. Thus both patient-state

trajectory and long-term therapeutic goals had a bearing on plans of

patient management in this system.

To implement VM the EMYCIN shell was used. However, whereas

MYCIN used a goal-directed (backward chaining) approach to form a

coherent line of reasoning, VM used a data-driven (forward chaining)

approach. VM had five major rule groups, the format of which is shown

in Figure 3.5, with an example of an actual rule in Figure 3.6. The

rule groups have the following headings; Initialising rules, Status

rules, Therapy rules, Transition rules, and Instrument rules.

INITIALISING RULES set up the initial
expectations of the system defining the normal (and
therefore abnormal) ranges of the values of the incoming
measured physiological parameters.

STATUS RULES recognised the physiological status
of the patient based on incoming data.

THERAPY RULES identified the readiness of the
patient to undergo a new set of therapeutic goals. They
established future expectations with respect to the
proposed new therapy and also recommended appropriate
ventilator settings.

TRANSITION RULESwere used when the patient
transferred from one ventilator mode to another.

INSTRUMENT RULESwere used to define and
characterise artifactual data.

On examination of these rules, and using the general formula
of a production rule, that is,

IF (premise)
THEN (action)

both the premises and actions of VM rules contained three types of

entity. The rule premise could be either inputed data, description of

patient-state, or mode of ventilation; and the rule action could be

factual conclusions, suggestions for therapeutic action, or a new set
of data expectations.

44

RULE GROUP : Rule Name

DEFINITION : Rule Definition

APPLIES TO : Context(s) for Rule Evaluation

C : Comment

IF

M : Match (left - hand side of rule)

THEN

I : Intepretation

S : Suggestions

E : Expectations

FIGURE 3.5 GENERAL FORMAT OF A VM RULE

STATUS RULE : Status Hypoventilation

DEFINITION : Identify Hypoventilation and Recommend Correction

APPLIES TO : Volume, Assist, CMV, T - Piece

C : Should correct ETCO^ for PCO2 - ETCO^ gradient

IF ONE OF

M : e t c o 2 HIGH

M : PaC02 HIGH

THEN

I : Hypoventilation present

S : Hypoventilation

FIGURE 3.6 EXAMPLE OF A VM RULE

45

VM used symbolic values in the rule premise demonstrated by

looking at Figure 3.6, where ETCC> 2 and PaCC^ are described as ’high’.

Numeric input to the program was converted into symbolic data via

tables found in the Initialising rules. These rules defined the normal

range; those values which were outside this range were divided into

degrees of abnormality. These numeric - symbolic conversion tables

differed according to the mode of the ventilator, so that what may

have been an acceptable value in one mode of operation may be
described as either ’high’ or ’low’ in another mode of operation.

A problem with the knowledge-base architecture of VM was

that the domain-dependent knowledge was defined implicitly. This is

not necessarily a disadvantage, but it is to be avoided in domains

such as medicine where knowledge is constantly being updated. Past

experience with production rule systems has shown that if new

knowledge presents itself, it is difficult to incorporate the

concomitant new rules into the system without affecting the pre-

existing rules. The outcome of this is that the whole system has to be

’tuned’ again, with appropriate re-evaluation and re-va1idation.

Ironically, as Hunter has pointed out, (Hunter, 1986), it is an

increase in instrument technology rather than medical knowledge which

makes VM redundant. For example, in modern ventilators the mode of

operation is available automatically as an item of data, whereas VM

has specialised Transition rules to infer the current mode of

vent ilat ion.

VM remained a developmental system, never used on-line in a

clinical setting. Instead patient data were recorded on magnetic tape

at intervals between 2 and 10 minutes; the tape was then removed from

the ITU and the data analysed via the VM program at a remote site. So

although the data used by VM were not on-line, in a sense it was still

in real-time. Data which represented the complete record for one

patient over 24 hours took up 15 minutes of CPU time on the computer.

The evaluation of VM was performed on the equivalent of five days

worth of patient physiological data, although the outcome of the study

has never been recorded. One of the off-shoots of this research

programme was the PUFF system for interpreting respiratory laboratory

data, (Aikins,1983). To date, this is one of the few computer systems
actually in clinical use on a permanent basis.

46

3.3.3 VQ-ATTENDING (Mi 11er,P.L., 1984)

The ATTENDING system, implemented using LISP, was developed

at the Department of Anaesthesiology, Yale University School of

Medicine, (Miller, P.L., 1984). Like the MUMPS-based consultation

system the ATTENDING system comprises a suite of programs. Others in

the series investigate anaesthetic management, pharmacological

management of patients with hypertension, and the management of

patients with a suspected phaeochromocytoma. Of interest to this study

is VQ-ATTENDING which investigates ventilator management. The purpose

of this system is to investigate the feedback loop between arterial

blood gas determinations and ventilator settings.

A feature of the ATTENDING system is that it can be

described as a goal-directed critiquing system. In systems such as
MYCIN, 'inference goals’ are implicitly defined in the IF... THEN

production rules. VQ-ATTENDING uses 'treatment goals’ which are

defined explicitly. This has important consequences in the software

design of the system, as the knowledge-base is split into two parts.

Defined explicitly is the 'strategic' knowledge about treatment goals

which is separate from the 'tactical' knowledge about the management

choices applicable for achieving those goals, which are defined

implicitly in the production rules of VQ-ATTENDING.

Program input involves describing the patient in terms of

age, sex and weight; and any underlying diseases the patient has which

may influence ventilator management are also requested. Data required

by the system include pH, PO2 , PCO2 , minute ventilation and

respiratory rate. Finally the current ventilator settings followed by

the proposed new ventilator settings are required. The particular

ventilator settings the system critiques are shown in Table 3.2. The

treatment goals thought to be relevant for a particular patient are

chosen, and are activated by the production rule inference mechanism.

The critique of the management plan entered by the clinician then
occurs from the perspective of those treatment goals.

In its critical analysis the program looks at treatment

goals with respect to the patient’s oxygenation status, then
ventilation status is investigated. These treatment goals are shown in

Table 3.3. More than one goal can be activated at any one time, and

conflicting goals can be handled.

An attractive feature of VQ-ATTENDING is that the critique

is in the form of prose, as the system has a natural language

47

f I ° 2 Fraction of Oxygen in Inspired Air

PEEP Positive End - Expiratory Pressure

RR Respiratory Rate

TV Tidal Volume

MODE Mode of the ventilator
(A/C - Assist/Control;
IMV - Intermittant Mandatory Ventilation)

DEAD SPACE Amount of Extra Tubing in Patient Circuit

TABLE 3.2 VENTILATOR SETTINGS WHICH ARE CRITIQUED
IN VQ - ATTENDING

A) OXYGENATION GOALS

1. To achieve an oxygenation (PO2)
2. To maintain an adequate PO 2
3. To avoid the risk of potential oxygen toxicity
4. To reduce the risk of potential oxygen toxicity
5. To avoid the risks associated with high PEEP
6. To reduce the risks associated with high PEEP
7. To reduce the level of oxygenation support
8. To maintain FIO 2 at maintenance levels
9. To maintain PEEP at maintenance levels

B) VENTILATION GOALS

1. To maintain a normal PCO2 and normal work of breathing
2. To achieve a normal PCO2 and normal work of breathing
3. To maintain a moderate hypocapnia
4. To achieve a moderate hypocapnia
5. To maintain a moderate hypercapnia
6. To achieve a moderate hypercapnia
7. To counteract, if possible, the patient's primary hyperventilation
8. To reduce the level of ventilatory support

TABLE 3.3 TREATMENT GOALS OF VQ-ATTENDING

48

interpreter. This allows for a comprehensive understanding of the

program output, a feature to be encouraged in all medical consultation

systems.

3.3.4 KUSIVAR (Rudowski et al., 1988)

KUSIVAR is an on-going co-operative project between Linköping

University, the South Hospital in Stockholm, and a ventilator

manufacturer, (SIEMENS-ELEMA). The aim of this project is to develop

and clinically evaluate a knowledge-based system for ventilator
management, (Rudowski et al., 1988). This includes both the monitoring

of patient data and its use to semi-automatically alter patient

therapy. The algorithms contained in such a control system use an

extant microcomputer-based system so that relevant patient data are

provided on-line. Advanced measurement techniques are used to obtain

data pertaining to carbon dioxide, oxygen, and their flow

characteristics within the lungs. From this the state of the
respiratory system can be inferred.

Developmental work on the project is being carried out using

the SIEMENS-ELEMA servoventi1 at or 900-1 connected to a SPERRY-EXPLORER

workstation. It is envisaged that for clinical use the KUSIVAR system

will be downloaded to an advanced PC. The user interface will allow

interaction to take place in various modes, including advisory (c.f.

VM), critiquing (c.f. VQ-ATTENDING), and a semi-automatic mode. For

the latter mode, ethical, moral and legal perspectives will have to be

taken into consideration. A new knowledge-base is being developed and

the expert system within which it resides uses KEE, (Knowledge

Engineering Environment). It is hoped that the use of the fully

developed KUSIVAR system will allow the optimal control of therapeutic

planning for patients who require mechanical ventilatory support.

3.3.5 ESTER (Hernandez et al., 1989)

ESTER is a system for ventilatory therapy advice undergoing

development in the Department of Applied Physics, University of

Santiago de Compostela, Spain (Hernandez et al., 1989). It is designed

for use in the post-surgica 1 recovery room where it gives clinical

advice about weaning the patient from a ventilator. For the process of

weaning to be successful ESTER divides the problem into four sub-

tasks. These are: a semi-quanatitative estimate of the risk associated

with a change in ventilatory protocol is obtained using information

from the past history and diagnostic state of the patient;

physiological variables are monitored in order to infer current

49

patient state; a therapeutic regime is recommended; and finally this

recommendation is checked for clinical prudence.

The risk assessment is applied by using the APACHE-II

clinical scoring criteria (Knauss et al., 1985), the outcome of which

is a numerical morbidity factor. This factor can be converted to a

qualitative value by using a simple look-up table. For example, a

morbidity factor of greater than 80% could translate to a risk

assessment of ’very high’, whereas a value of less than 10% could

translate to a risk assessment of ’very low’, with a full qualitative

spectrum between these values.

Current patient state is inferred by consideration of the

current values of variables which measure haemodynamic and respiratory

status, together with respiratory gas analysis and a measure of

cardio-respi ratory stability. This potentially rich data-set must be

captured automatically in the fully implemented system, as the time

scale with which ESTER operates is on a minute-to-minute basis.

On the basis of current patient state one of eight possible

therapy regimes is chosen. These range from full mechanical

ventilation to full spontaneous (endogenous) respiration, (see Table

3.4 for the complete range). Once the therapy regime has been

suggested by the system a ’censorship’ procedure is used, which

ensures that the therapy protocol and the risk assessment are

compatible with each other. This procedure also makes certain that

’aggresive’ changes to therapy protocols are eliminated.

The knowledge base of ESTER is organised according to

criteria of no r m a 1 i t y/abno r ma 1 i t y, so that the time taken to infer

patient state is optimised. Its inference engine is controlled by a

set of meta-rules which select which one of the eight rule bases to

apply, (see Table 3.5 for a list of these rule bases). Both backward

and forward chaining of rules are employed in the execution of the
program: backward chaining to obtain the data and for user

interaction; forward chaining to allow the reasoning process to be

elucidated. In this way a simple ’how’ explanation query can be dealt

with, that is, tracing the antecedants and precedants of the rules

used to get to a certain point constitute the reasoning strategy.

ESTER is currently implemented on an advanced microcomputer,
using the GENIE knowledge engineering tool (Sandell, 1984), which

itself is a LISP-based environment.

50

1 . CMV 100% mechanical ventilation

2. SIMV1 90% mechanical ventilation + 10% endogenous respiration

3. SIMV2 70% mechanical ventilation + 30% endogenous respiration

4. SIMV3 60% mechanical ventilation + 40% endogenous respiration

5. SIMV4 40% mechanical ventilation + 60% endogenous respiration

6. SIMV5 30% mechanical ventilation + 70% endogenous respiration

7. SIMV6 10% mechanical ventilation + 90% endogenous respiration

8. SPONT 100% endogenous respiration

TABLE 3.4 VENTILATOR THERAPY PROTOCOLS USED IN ESTER

1. R -H EM O D : haemodynamic analysis

2. R -R E S P : respirator parameter analysis

3. R -ESTA B : evaluation of cardio - respiratory stability

4. R -G A SO N : respiratory gas analysis

5. R -ESTA D : patients diagnostic state

6. R -TERAP : proposed therapy regimes

7. R -C O N T : censorship procedure

8. R -C L A S : risk assessment

TABLE 3.5 RULE BASES USED IN ESTER

51

3.3.6 COMPAS (Sittig et al., 1988)

The Computerised Patient Advice System (COMPAS) is under

development at the University of Utah Scool of Medicine, U.S.A.

(Sittig et al., 1988). It invokes the use of the well-known Health

Evaluation through Logical Processing (HELP) system, which is an on-

going database development programme that was initiated in 1973 (Pryor

et al., 1983). The HELP system allows for automatic data capture in

all clinical environments. It is the ultimate goal of the development

programme to have a hospital-wide distributed database system. In its
present implementation the data required for each patient in the

Intensive Care Unit are ’on-line’, with a computer terminal for access

to the database at every bedside.

COMPAS was designed specifically to test the viability of

using the HELP system to assist in the management of patients

undergoing a controlled clinical trial. The subject of the trial is

Extra-Corporeal Carbon Dioxide Removal (ECCO2 R) therapy together with

the use of continuous positive pressure ventilation for the treatment

of patients with Adult Respiratory Distress Syndrome (ARDS). This is

an ill-defined syndrome which can affect severely ill patients. ARDS

also has a high mortality, hence the use of extreme measures such as

ECCO2 R therapy, a procedure which constitutes an artificial lung. The

purpose of COMPAS is to judge the effectiveness of using open-loop

ventilator control and to ’lead’ the physician step-by-step through

the clinical protocols used. The intelligent advice is obtained from a

data-driven expert system which is needed because the clinical

knowledge is new and known only to a few human experts, and also in

order to maintain a strict compliance with the detailed clinical care

protocols established for the pertinent conduct of the clinical trial.

Preliminary evaluation of COMPAS has identified several types

of problem inherent in the system. For example, one of the stimuli for

this research was to implement an expert systems approach to problem

solving within the HELP system with a minimum of disruption to the

normal clinical routine. However, an operational problem concerning

the length of time taken to access the patient database when the file

was already open (due to a prior query) was identified and

subsequently rectified. The summative evaluation of COMPAS using

retrospective data revealed that 84% of its therapy suggestions were

valid, (320/379 therapy suggestions over a time period of 624 hours).

It is evident that the success of COMPAS owes much to the

clinical environment in which it is being developed and implemented.

52

3.4 Summary

Two approaches to the external control of the respiratory

system have been considered in this chapter. First, using classical

control methods and second, using an artificial intelligence approach.

The critical variable for both of these methods is arterial PCC^,

which alone is effective in determining the respiratory state of the

patient. The value of arterial PCO2 is inferred from alveolar PCO2 ,

which itself is measured usually by the PCO2 of the end-tidal

fraction. The relationship between arterial PCO2 and end-tidal PCO2 is

good in normal physiology but in pathological conditions the

relationship may not be as adequate. Thus, classical control systems

may not be founded on a true representation of pathophysiology, as

shown by Ohlson and colleagues in Section 3.2.1. An artificial

intelligence approach is based on a deeper knowledge-based

representation, so altered data relationships caused by pathological

changes can be accounted for in the rules which infer the knowledge.

Physiological measurement technology is gradually catching up

with the demands made of it, for example, witness the advances made in

non-invasive transcutaneous monitoring of the arterial blood gases,

(Mendelson and Peura, 1984); and the use of a mass-spectrometer in a

system for long-term, continuous, on-line monitoring of respiratory

gas exchange, (Bertrand et al., 1986). The use of these and other

research techniques will further advance the knowledge of respiratory

pathophysiology in a clinical setting, benefiting the patient

undergoing mechanical ventilatory support in the process.

Of the systems reviewed which employ a control systems

approach, the emphasis of much of the work is to ’close’ the control

loop between arterial PCO2 and the controlling ventilator settings.

However recent evidence suggests that such opaque systems would meet

much clinical resistance to their use. Knowledge-based ventilator

systems offer an alternative, giving intelligent advice which allows
the clinician to ’close’ the control loop. The form of this

intelligent advice depends on the patient data-set on which it is
based and the sophistication of the mechanical ventilator. These

topics are included for consideration in the next chapter, where

intelligent system architecture is included as one aspect of a wider

systems methodology for design, implementation and evaluation.

53

4 : METHODOLOGICAL ANALYSIS FOR MANAGEMENT
OF CLINICAL INFORMATION

4.1 Introduction

The purpose of this chapter is to convey the practicalities

involved in the implementation of change due to the introduction of

new technology, and in particular for the introduction of intelligent

measurement systems into complex data gathering environments, such as

that exhibited by a Critical Care Unit. In this context, change can be

defined as a transition of common practice from entering data manually

to an automated means of data capture and interpretation. This can be

exemplified by the Artificial Intelligent Respirator System (AIRS), a

system designed to aid the clinical user in the management of patients

undergoing ventilatory therapy. There is a clear need for a well-

structured way of introducing this change of practice, which will

enable the transformation to continue with the minimum of resistance.

Such a structure can be imposed by the use of an appropriate

methodology able to identify strategic points in the process of

technological change. For a successful outcome the methodology must

include phases for system design, implementation and evaluation.

Before embarking on a design strategy there is a need to employ a

systems methodology which will ensure that a proper systemic approach

is adopted. There appears to be no totally appropriate methodology in

existence for dealing with technological change, therefore this

chapter reviews a number of relevant methodological strands and

synthesises from existing approaches a methodology appropriate for the

adoption of the design of a decision-support system. A major feature

of the chosen medical application area is the introduction of a new

generation of intelligent devices for clinical practice. The

methodology to be introduced also has a general applicability within

other domains where intelligent measurement has a significant role in

the development of the underlying technology.

Methodologies and techniques drawn from the domain of systems
engineering can be used to identify the components required for a

methodology to implement technological change. Systems engineering can

be defined as the domain concerned with a problem-solving paradigm for

which the design of complex systems are required. From this four

activities can be recognised : requirement analyses of the current and

proposed systems; the development of a solution, or a number of

candidate solutions; the implementation of the solution(s); and an

evaluation procedure which yields value judgements at each of the

54

recognised decision points. For example, where a number of candidate

solutions are offered the evaluation process may aid the end-user in

the decision regarding which solution should be implemented.

To increase the operational success of the proposed system it

may be prudent to perform a systems analysis. This can be defined as

the systematic process of reasoning about a problem and its

constituent sub-problems to identify what needs to be done to achieve

a particular goal or sub-goal. An essential component of this analysis

is communication between the system engineer and the full complement

of end-users. From this the multi-perspective nature of requirements

for the new system can be recognised. The analysis of the need for the

new system is a key component, for if a perceived need can not be

clearly demonstrated, the new system is doomed for the scrap-heap

before it is even implemented.

The role of systems engineering, and especially requirements

engineering, in the formation of a methodology for introducing

technological change is discussed in the following section.

Development of these ideas lead to a systems methodology for design,

implementation and evaluation for the purpose of introducing

technological change. A general format for this methodology is

introduced in section 4.3.

4.2 Systems Engineering and Technological Change

Systems engineering is an attractive way of dealing with the

problem of increasing rates of change due to a general advance in

technology. It is a discipline where the available human, capital, and

technological resources are used to ascertain that the overall

objective of a system is attained in the most efficient way. Economic

criteria can be used to optimise these resources, so for example,

human resources can be optimally assessed in terms of economic

variables. The system to which the change of technology is to apply,

termed the ’system of interest’ can be considered as dynamic in some

instances, for example, where individual sub-systems are constantly

evolving due to an increase in component technology. As systems

engineering is deeply rooted in engineering design, it is not

unnatural to review general system design methodologies as a starting

point for the provision of a methodology for coping with technological

change. As technology advances so does user expectation of the

capabilities of that technology. User expectation can be said to drive

user requirements, which have therefore been identified as a key

55

component in the design of systems able to integrate new technology.

User requirements fall into two categories : functional and non-

functional. Functional requirements seek the needs inherent in the

process for successful completion of the task or sub-task of the

system, whereas non-functional requirements impose constraints upon

the system.

A conceptual model, which is a representation of all possible

system states and system behaviour between states, helps in the

visualisation of the functional requirements. An advantage of using

such a model is that system boundaries can be defined, thus allowing

the characterisation of the reaction between different environments.

It also provides the opportunity for discourse between the system

engineer and the eventual set of users. This enables the establishment

of a definition for functional evaluation criteria of component design

(Roman, 1985).

The types of constraint which can be imposed upon the system

include interface, performance, operational, economic, and political

factors. Interface constraints define the way in which the system

interacts with the wider-system within which it resides. The wider-

system is an environment which includes the full complement of system

users, any other system to which the system of interest is linked, and

the hardware and software with which it is implemented. Performance

constraints include topics such as the computer memory requirement of

the system and the type of computer necessary for successful

implementation. Operational constraints include factors that may

affect the smooth running of the system, such as a mis-match in the

information-handling rate of each of the sub-systems. Economic

constraints deal with the cost of the system, where ’cost’ is

liberally defined in financial and non-financia 1 terms. Political

constraints include the designation of the recognised users of the

system, what level of interaction they are allowed, as well as the

more divergent legal and ethical issues.

Two papers offer an outstanding introduction to the concept

of systems engineering and the design process. Jenkins (1969)

describes succinctly the stages involved in the development of a

systems engineering project, whereas Finkelstein and Finkelstein

(1983) review the methodology of design from which a rich glossary of

domain terms can be taken. From this introduction a more directed path

is required which leads to an analysis of system requirements. Four

methodologies are investigated which fulfil the role of seeking system

56

requirements. First, the Structured Analysis and Design Technique

(SADT) developed by SofTech, USA (Ross, 1985), which is a computer-

based technique for handling the design requirements of large and

complex systems. Second, a Software Requirements Engineering

Methodology (SREM) is reviewed (Alford, 1985), which is being

developed at the TRW Huntsville Laboratories, USA. Third, the

Technology for Automated Generation of Systems (TAGS) is a methodology

which uses a computer-based tool in the design process and is being

developed at Teledyne Brown Engineering Inc, USA (Sievert and Mizell,

1985). Fourth, an expert system architecture is used for Computer-

aided Control Engineering (CACE), being developed at the General

Electric Corporate Research and Development Laboratories, USA (Taylor

and Frederick, 1984).

The piecemeal approach to engineering problem-solving can be

vastly improved if a systems engineering approach is taken (Jenkins,

1969). This imposes a disciplined and well-structured methodology for

engineering problem-solving, although restricted to applications of a

general character. This approach is not new, as the genesis of systems

engineering dates back to its use in the Bell Telephone Laboratories,

USA, in the early 1940s. Subsequent ideas were developed by the RCA

and RAND Corporations in the United States from the early 1950s

onwards. This development popularised the techniques used in systems

engineering and in so doing enhanced the view of systems as a science.

The stages in development of a systems engineering project as

defined by Jenkins are shown in Figure 4.1. They comprise the

activities of systems analysis, design, implementation, and

operation. As befits a systems approach each stage can be decomposed

into several functional units. Systems design is the modelling stage

within the development process. This includes models of the system of

interest and models of the wider-system in which it resides. Jenkins

stipulates quantitative simulation models, allowing the system of

interest to be optimised and choice of ’best’ system made. The future

environment of the system (the wider-system) must also be forecast,

allowing the proposed interaction between the two levels in the

hierarchy to be modelled.

Systems analysis includes stating the objective(s) of the

project, an operational analysis of the system, a cost-benefit

analysis, and identification of key data which will be used to

describe the performance of the system. Objectives can be defined at

any level in the systems hierarchy, but usually lead to some perceived

57

FIGURE 4.1 STAGES IN THE DEVELOPMENT OF
A SYSTEMS ENGINEERING PROJECT

(after figure 4, Jenkins, 1969)

58

improvement in the operation of the system of interest (as depicted in

Figure 4.1). To increase the transparency of the system an explanation

should be included at each phase of the operational analysis. Cost

benefits can take many forms; time, space and financial benefits being

prime examples. Key variables should be recognised. These allow an

evaluative procedure to be undertaken at a later stage in the

development of the system.

The implementation stage in the development of a systems

engineering project brings together the findings from the systems

analysis and systems design stages. Approval is then sought from some

sanctioning authority to convert the ’paper’ system generated thus far

into an operational system. Decisions at this stage include the choice

of hardware and software to be used for implementation of the system.

After implementation an alpha-evaluation should proceed, which

concentrates on quality of performance rather than operational
measures.

In the operation stage the fully-implemented system is handed

over to the end-users. A beta-evaluation can then proceed, which

includes user-orientated performance and operational measures. This is

the least well understood part of the system development process as it

includes subjective issues which are traditionally difficult to

quantify. It is at this point in the methodology where the process can
be considered as an art rather than a science.

The Jenkins methodology provides an inter-disciplinary

approach to engineering problem solving and design, for as well as the

engineering aspect itself other viewpoints are taken into

consideration. For example, economic criteria are used (such as the

appropriate use of statistical analyses and accountancy practice) to

find a solution to a particular problem in systems engineering.

Jenkins suggests that the most important part of systems anlysis is

the attainment of a correct objective. This emphasises the role of
requirements analysis to the success of the project, a topic which is

discussed below.

Jenkins also suggests that design is the central activity in

engineering but is rarely acknowledged as such. Finkelstein and

Finkelstein (1983) try to redress this balance with their paper

concerning design methodology. They describe design as

"...the creative process which starts from a requirement
and defines a contrivance or system and the methods of
its realisation or implementation, so as to satisfy the

59

requi rement."
(Finkelstein and Finkelstein, 1983)

The process by which design is realised or implemented follows a

methodology, which is summarised in Figure 4.2. This depicts a design

'unit' which can be used at any level in the hierarchical description

of a system of interest. However there are two boundary conditions: at

the most fundamental level in the hierarchy the requirements which

drive the design unit are primitive need statements, that is, those

which cannot be further decomposed; and at the highest level of

abstraction the output of the decision stage defines the information
required for the creation of the system of interest.

After a requirement has been realised, whether it be from a

primitive need statement or as a result of a requirement specification

from a previous design stage, the first step in the design process is

the gathering of information relevant to the design problem, and its

organisation into a coherent form. This stage is followed by the

formulation of the criteria which arise from the requirement. This

defines the system specification, which may or may not have

constraints imposed upon it. From this specification candidate designs

may be evaluated which generate a set of proposed candidate design

solutions. Analysis of these candidate design solutions yield

positive and negative attributes relevant to the requirement

specification. Evaluation of each candidate design solution can be

measured on the basis of the value criteria previously adopted. The

design methodology terminates with a decision step: the choice of

optimum candidate design solution. Each stage in the methodology is

iterative. For example, if none of the solutions are acceptable (the

design criteria cannot be satisfied), alteration of the requirement

specification is necessary. This may effect the requirement analysis

of the previous design stage.

Design is described by some authors as a problem-solving

exercise, an activity which has been studied extensively by Checkland
(1981). He differentiates problem-solving into two paradigms : ’hard’

problems and ’soft’ problems. A ’hard’ problem is distinguished by

clear and concise system objectives taken from a we 11-structured

problem to which a state model can be applied. The state model not

only defines the current state and the desired state, but also the

trajectory from one to the other. Alternatively, a ’soft’ problem is

characterised by objectives which are difficult to define, as the

problems to which they are applied are often ill-structured. Much

6 0

FIGURE 4.2

REQUIREMENTS FROM A
PREVIOUS DESIGN STAGE

INFORMATION GATHERING
ORGANISATION

■-

FORMULATION FOR
VALUE MODEL

1r
GENERATION OF

CANDIDATE DESIGNS

-

ANALYSIS OF
CANDIDATE DESIGNS

1-

DECISION

REQUIREMENT SPECIFICATION
TO NEXT DESIGN STAGE

STAGES INVOLVED IN THE DESIGN PROCESS
(after figure 1, Finkelstein and Finkelstein, 1983)

61

debate has been stimulated by Checkland’s assertion that ’hard’

problems can be considered as special cases in the application of a

soft systems methodology. It is not within the scope of this thesis to

enter this debate, but the reader should be aware of its presence.

Both Jenkins and Finkelstein and Finkelstein consider design

engineering as a hard problem situation, with many similarities

between their respective design methodologies. However the approach

adopted by Finkelstein and Finkelstein centres upon the generation of

design concepts for candidate solutions. Five methods of achieving

this are identified: the use of existing design concepts (most design

concepts are not created de novo but are developments of existing

design criteria); the use of analogies, taking a design concept from

one domain and applying it to another; transformation of the design

concept (the principle of parsimony is often invoked); convergent

generation of concepts (this uses a logical sequential process

starting from the basic phyisical law underlying the design principle

used); and divergent concept generation, where creative ’jumps of the

imagination’ and the relaxing of design constraints are employed. By

using these techniques design has a central place in engineering

science.

There is a similarity in the requirements analysis of both

the Jenkins methodology and the design methodology proposed by

Finkelstein and Finkelstein. The definition of the requirement of the

system is an important phase because it defines the starting state of

the system of interest. In the United States an emerging discipline

has been recognised which specialises in this issue, termed

’Requirements Engineering’. An engineering (system) requirement is

considered as a precise statement of need intended to increase

understanding about a desired result through the use of relevant

explanation. The analysis of the system necessary to achieve these

statements of need requires good communication skills with the many

types of user, as they are all potential sources of new requirements.

Requirements engineering can be typified by the following four
examplars of the emerging technology.

4,2,1 Structured Analysis Design Technique

The Structured Analysis and Design Technique (SADT -

registered trademark of SofTech Inc.) was originally developed as a

methodology to document the architecture of large and complex systems

(Ross, 1977; Ross and Schoman, 1977). Subsequently, the methodology

has been modified to allow for group decision-making strategies,

62

without losing the discipline that an individual disposition imposes

(Ross, 1985). SADT can be split conveniently into two activities:

structured analysis for which a diagrammatic language is employed; and

the design technique which implements the results from the previous

stage in the most effective way.

The premise which underpins the SADT methodology is that

complex situations can be comprehended if they are decomposed into a

hierarchy of component parts. Further, the methodology stipulates that

each level in the hierarchy should not exceed six ’entries’. Each

entry can be depicted by using a graphical language notation in the

form of a box, (see Figure 4.3), the four sides of which represent

input, output, control, and mechanism. The box represents a complete

and consistent set of activities. For a given input, under certain

control conditions and using a certain mechanism, a resultant output

can be determined. To illustrate this point consider the well-known

physiological relationship between Cardiac Output, Body Surface Area,

and Cardiac Index:-

C.O. / B.S.A. = C.I.

Cardiac Index (C.I.) as the output can be determined from the Cardiac

Output (C.O.) which acts as an input, and Body Surface Area (B.S.A.)
being a parameter of the patient constitutes the control element. It

is the arithmetic notation which acts as the mechanism and the

equation as a whole represents the ’box'. It is envisaged that the

input (C.O.) will itslf be an output from a previous structured
analysis box.

A structured analysis ’model’ is constructed when a

collection of these diagrams are connected together. Models are of two

diametrically opposite types: activity models and data models.

Although an algebraic physiological relationship is used in the

example above, most structured analysis models are verbal

descriptions. In an activity model the box names are verb phrases and

arrow labels are noun phrases, whereas in data models the box names

are noun phrases and the arrow labels are verb phrases. An attractive

feature of the SADT approach is that activity and data models can be

constructed to describe the same process. The resultant cross-

reference between items in the models serves to strengthen the

understanding of the modelled process. Example of subject areas to

which the SADT methodology has been applied are shown in Table 4.1.

The design component of SADT is not yet complete, as system boundaries

to which the methodology applies have not been fully characterised.

63

CONTROL

INPUT

FIGURE 4.3

MECHANISM

THE STRUCTURE ANALYSIS BOX
OF THE SADT METHODOLOGY

(after Figure 1, Ross, 1985)

OUTPUT

64

CATEGORY SADT MODELS MODEL PURPOSES

Requirements Present Operations

Future Operations

Operational System
hardware/software/people

Understand current procedures

Visualise future procedures

Specification and Design

Software Systems User requirements

Functional specification

System/sub-system design

Includes user needs

Identification of system
modules and interfaces

Top-level design

Project Management Project operation System development
Task assignment
Procedure definition
Communications

Simulation Man-machine interaction Analysis of performance

TABLE 4.1 TYPES OF SADT APPLICATIONS
(afterTable l,Ross, 1985)

65

4.2.2 Software Requirements Engineering Methodology

The Software Requirements Engineering Methodology (SREM) was

originally developed to manage the technical and management aspects of

large, real-time, unmanned weapon systems (Alford, 1985). It has since

been generalised for application to any Command, Control,
o

Communication and Intelligence (Cl) situation, (for example, its use

in an engineering problem concerned with the aircraft industry,

Scheffer et al., 1985). The technical aspects identify the activities

to be performed and the subsidiary goals to be achieved before the

designated top-goal can be reached. They also define any computer-

based tool used to improve the efficacy of the requirements analysis.

The management aspects provide techniques for project planning and

evaluation of the intermediate products of the methodology, and have

the overall objective of reducing costs and development time.

From these underlying principles three goals can be

identified for the successful operation of SREM. The first is the

development of a structured language medium in which requirements of a

system can be tested for their unambiguity, testability, modularity,

communicability, and design freedom. Secondly, the development of an

integrated set of computer tools to ensure consistency, completeness,

automatabi 1 ity, and correctness. Thirdly, by the interaction of the

first two goals a direct method for the validation of the system

requirements can be obtained.

To be testable the requirements must be specified in terms of

data input and data output. The processing steps between input and

output, which include the the intermediate data values and functions

between the two, are termed a ’path’. Various performance criteria can

be instantiated at ’validation points’ on these paths. As this can

invoke an increase in complexity due to the number of possible paths

involved, a Requirements Network (R-Net) is established. The R-Net is

implemented in a formal language, RSL, as this reduces ambiguity and

provides a direct input to the support software. Automated software

tools, integrated into a Requirements Engineering and Validation

System (REVS), checks the requirements for completeness and

consistency, maintains the traceability between the originating

requirements and simulations, and generates simulations to validate

the correctness of the requirements. This integrated methodology

produces intermediate products which can be evaluated for completeness

before advancement to the next phase is granted. Figure 4.4

illustrates an overview of the steps involved in the methodology,

66

PRODUCTS EVALUATION
CRITERIA

- PROBLEM REPORTS
- RSL

- R-NETS
- ALPHAS
-DATA

2M -FUNCTIONAL
TS TRACEABILITY

-PLANS

- FUNCTIONAL
COMPLETENESS

- CONSISTENCY
- REVIEW OF
REQUIREMENTS
DECISIONS

- ACCEPTABILITY OF PLANS

/ ------ t
PROCESS

PERFORMANCE
REQUIREMENTS

ANALYTICAL 11
FEASIBILITY

DEMONSTRATION

SIMULATION
RESULTS

- REFINED RSL
- DECOMPOSITION APPROACH
- PERFORMANCE TRACEABILITY
- VALIDATION POINTS

- TECHNICAL REVIEW OF
DECOMPOSITION
DECISIONS

- CONSISTENCY

- PERFORMANCE SENSITIVITY
- PERFORMANCE STATEMENTS
- PPR
- FUNCTIONAL SIMULATION

- EXAMPLE ALGORITHMS
- SIMULATOR

- CONSISTENCY
- COMPLETNESS
- SIMULATION/

SPECIFICATION
TRACEABILITY

- REVIEW OF ALLOCATIONS

- PPR 1 SATISFIED
- ORIGINATING

REQUIREMENTS
SATISFIED

FIGURE 4.4 OVERVIEW OF THE STEPS OF THE SREM
METHODOLOGY

67

indicating the products generated from each step and the criteria used

for evaluation of their completeness.

4.2.3 Technology for the Automated Generation of Systems

Technology for the Automated Generation of Systems (TAGS) was

developed as a response to a perceived crisis in the existing software

paradigm (shown in Figure 4.5). This crisis has occurred because of

the opaqueness of software program code to the end-user. This often

means that the maintenance phase of the software development cycle is

ill-defined because it is at too abstract a level for the end-user to

comprehend. Balzer and colleagues (1983) identified a further flaw

which exacerbated this problem: there was no technology available (in

1983) to manage knowledge intensive requirements analysis and design

activities. Further indications of the software crisis could be

evidenced by projects overrunning in terms of both time and cost, and

by the fact that the final software product did not always reflect

user expectation. To counteract these problems an automation-based

paradigm was proposed, as shown in Figure 4.6. The major difference

between the two paradigms is that in the automated approach software

maintenance is defined in terms of its underlying requirements anlysis

and formalised specification. At this level the end-user can

understand the issues involved in software maintenance, as they are

described at a higher level of abstraction. Other differences in the

two paradigms can be visualised by comparing Figures 4.5 and 4.6.

TAGS was developed to take advantage of the automation-based

software paradigm (Sievert and Mizell, 1985). It is composed of three

basic elements: the input-output requirements language (IORL); a

computer-based software toolbox for system development purposes; and
an underlying TAGS methodology.

Development of the IORL began in 1972, initiated in response
to problems associated with general system propogation. In order for

the language to be effective it had to meet various requirement
criteria, as listed below:-

i) to enforce a rigorous methodology for system propogation
ii) to have a general applicability for all types of system
iii) it must be easy to use by a wide range of end-users; and

conversely, it must be hard to mis-use
iv) it must have a user-friendly interface, allowing engineers

to input system performance characteristics and algorithms
in a form in which they are well-versed, (for example, the
use of matrix notation)

v) from a systems perspective, it must use symbols which are
derived from general systems theory.

68

Informal specification
Prototyping uncommon
Code validated against intent
Prototype discarded
Manual implementation
Code tested
Final source program maintenance
Design decisions lost
Maintenance by patching

FIGURE 4.5 CURRENT PRACTICE: SOFTWARE PARADIGM
(after figure la, Sievert and Mizell, 1985)

INFORMAL
REQUIREMENTS'

DECISIONS AND
RATIONALE

Ï__f
REQUIREMENTS FORMAL MECHANICAL

ANALYSIS SPECIFICATION OPTIMISATION

VALIDATION

FORMAL
DEVELOPMENT

OF FINAL
SOURCE PROGRAM

MAINTENANCE

T T I M T M G1 U F N IF N C J

AUTOMATION-BASED PARADIGM

Formal specification
Prototyping standard
Specification is the prototype
Prototype validated against intent
Prototype becomes implementation
Machine-aided implementation
Testing eliminated
Formal specification maintained
Development automatically documented
Maintenance by replay

FIGURE 4.6 AUTOMATED PRACTICE: SOFTWARE PARADIGM
(after figure lb, Sievert and Mizell, 1985)

69

The IORL also differentiates between data flow and control flow, where

data flow analysis also includes the time response characteristics of

each data component. These criteria have been met, the result of which

is a functional input-output requirements language. Using the IORL any

individual system component can be identified, whether it be hardware,

software or management aspect of the system of interest. At the

functional level the IORL requires three items: that the component is

a part of the system of interest and interacts through data links;

that these data links are effected via an overseeing control

mechanism; and that the component and its data links constitute a

system hierarchy.

The TAGS toolbox comprises four tools which each exist for a

specific task. The first is a data storage and retrieval package which

manages the data ’seen’ at any instant by the computer-based system.

Second, a diagnostic analyser package checks the IORL for static

errors; these include syntax errors, range errors, and errors in input

or output. To illustrate the scope of TAGS there are more than 200

types of static error. Third, a simulator compiler checks the IORL for

dynamic errors, generates a definition of the run-time parameters,

simulates the system and processes the output data. Using this tool

allows the comparison between different algorithms in the IORL.

Fourth, a configuration management package uses the results obtained

in the comparisons between algorithms to establish a system which is

optimised at a whole-system level.

TAGS is based solidly on systems engineering principles that

can be characterised by four fundamental activities:-

i) Conceptualisation : a conceptual model is defined which
combines user concepts and requirements to form the base
level for further system development

ii) Definition : the conceptual model is refined in terms of
its function and performance requirements

iii) Analysis : the conceptual model is analysed to determine
(at the top-most level) if it matches with the desired
system; if not, the model is further refined

iv) Allocation : the functional and physical requirements are
allocated to specific subsytems of the whole

These four activities have been incorporated into a TAGS

methodological model. Figure 4.7 illustrates the development process

as a part of a wider system. This includes the users, the project

managers, and the processes of verification and validation. The arrows

in the diagram represent flows of information which aid in the system

development process. Each element of the methodological model has its

70

KEY:

SDP-XY: system development process - from X to Y

FIGURE 4.7 TAGS METHODOLGY
(after Figure 8, Sivert and Mizell, 1985)

71

own perspective on how development should proceed: the user provides

the initial requirement and has a role in the reviews of system

development; management have the responsibility for allocating

resources to the project, including time, financial and manpower

planning; the processes of verification and validation provide a

formal input from which decisions on future project management can be

made; and the system development process has its own intrinsic

perspective on the process of developing a target system.

A TAGS development life-cycle consists of a sequence of

specification-prototype validation duplexes, commencing with

conceptualisation of user requirements and proceeding until the

prototype matches the target system. This process is shown in Figure

4.8. On receipt of the user requirements tests are performed which

evaluate their consistency, completeness and potential for

implementation. The evaluation proceeds until the user requirements

permit the first specification phase to be realised. This

specification defines the IORL prototype which can be validated

against user intentions. When the IORL of the prototype system finally

matches the target system the translation phase takes place, which

consists of translating the IORL into the target implementation

language. This is a manual process performed at a rate of

approximately 200 commands of target coding language per day per

translator. Once the system has been fully implemented in the target

language it can be tested using conventional software evaluation
criteria.

The TAGS approach using the automation-based software

paradigm has been applied to projects from the aircraft and space

industries. Therefore it has potential use in any complex environment

such as that exhibited by critical care medicine.

4.2.4 Computer-aided Control Environment

The development of a Computer-Aided Control Engineering

environment (CACE) began in the 1960s, with a second generation

appearing in the 1970s. CACE consists of four software packages, their

functionalities being system identification, simulation, frequency

domain design, and state space design. These packages are integrated

by a unified database and command driven environment. However, a

problem persists with the user interface of the second generation

software: knowledge about control engineering and operation of the

CACE package are assumed but are not always present in the user.

72

conceptualisation analysis allocation analysis allocation analysis allocation analysis
allocation redefinition definition redefinition definition redefinition
definition
analysis

analysis analysis

Ou>

FIGURE 4.8 TAGS DEVELOPMENT LIFE CYCLE WITH SYSTEM ENGINEERING ACTIVITIES

OF EACH PHASE IN DESCENDING ORDER OF IMPORTANCE
(after Figure 10, Sievert and Mizell, 1985)

Expert system technology is being introduced to alleviate this

problem, allowing the 1 ess-than-expert user of CACE to work at a

higher level (Taylor and Frederick, 1984).

The architecture of the resultant rule-based system is shown

in Figure 4.9. This shows how the concept of having two frames

(problem and solution) linked to entities external to the expert

system via six separate rulebases can represent the functional

structure of CACE. The problem frame can be split into three

categories: the model, which describes the characteristics of the

system of interest; the constraints, which describe its operational

and/or functional limitations; and the specifications, which describe

behaviour and performance criteria used to evaluate the desired

system. The solution frame also comprises three categories: the needs,

which monitor the individual requirements of the subsystem components,

keeping a list of what has been achieved and what is yet to be done;

the status, which provides information about how the system is

developing by matching the list of what has been done to the

specification of the problem frame; and a catch-all ’other’ category,

which contains a diverse range of constituents, for example,

methodological implications derived from the order in which subsystem

design is attempted.

The rulebases which link the problem and solution frames to

external agencies have different functions, as detailed below.

Rulebase 1 (RBI) governs the interaction between the design

engineer plus plant models external to the expert system and the model

and constraint components of the problem frame. This rulebase also

interfaces with a library of analytical procedures, useful for

characterising factors which enhance system development. As an example

of such a factor, consider the controllability and observability of a

process which may be improved by a modification in the modelling

phase.

Rulebase 2 (RB2) governs interaction between the design

engineer and the specification component of the problem frame. This

rulebase guides the 1ess-than-expert user to describe a full

specification, and checks for consistency, completeness and pragmatic

utility via another set of analytical procedures. The goal of

rulebases 1 and 2 is to obtain a we 11-formu 1 ated problem, which

ensures a greater probability of success in the design stage.

Rulebase 3 (RB3) contains rules concerned with interfacing

74

L/l

FIGURE 4.9 FUNCTIONAL STRUCTURE OF CACE
and the problem and solution frames.

(after figure 4, Taylor & Frederick, 1984) RB6 governs final systems validation.

the problem to the solution frame. It deals with matters such as
identifying the amount of information in the problem frame required to

provide an acceptable solution for the fulfillment of a particular

(sub)goal. The identification process requires appropriate analytical

procedures to perform its analysis.

Rulebase 4 (RB4) governs interaction between the solution

frame and the available design procedures. That is, it takes the

information required to provide a solution identified using rulebase

3, and invokes a design procedure for the attainment of that

requi rement.

Rulebase 5 (RB5) governs interaction between the design

procedures and the problem and solution frames of the expert system.

As it is part of the solution, each time a design procedure is used

the solution frame must be updated to reflect the techniques employed.

Difficulties may arise when there is a conflict of information

contained within the solution. These can be resolved by relaxing the

original specifications, hence the link between RB5 and the problem

frame.

Rulebases 4 and 5 represent an iterative loop. System

development is cycled through this loop until all the specifications

of the problem frame have been added to the list of the solution
frame.

Rulebase 6 (RB6) governs system validation, this contributes

towards converting the idealised system design to its practical

implementation. The ultimate output of CACE is software code of the

target implementation language.

The mul ti-rulebase structure of the CACE expert system is

beneficial for application orientated end-users because it clarifies

many of the conceptual aspects of the design process. This structure

also enables easy access for updating the various rulebases. At a

higher level, the use of expert system technology shows great

potential for improving the human-computer interface, and allows a

greater divergence of personnel to be involved in the design of

products from the domain of control engineering.

4.3 A Systems Methodology for Design, Implementation and Evaluation

The level of complexity within measurement science is
increasing due to novel techniques of measuring entities thought

previously unmeasurable and a general increase in sensitivity leading

76

to an increased frequency of measurement. Technology has kept apace

with these developments by incorporating various degrees of

intelligence within the measurement device. In the first instance

'smart’ measurement systems were developed which were capable of low-

level processing, for instance, the conversion of data into

information via simple data classification techniques. Development of

these systems using advanced information technology resulted in a

further transformation of information into knowledge, via appropriate

explanation and/or justification, which constitutes high-level data

processing. This type of system has been termed an 'intelligent'

measurement system from which three measurement processes can be

identified: inferential measurement; pattern cognition; and

measurement as part of an integrated information system, (Finkelstein

and Carson, 1986). Most intelligent systems have not appeared de novo,
rather constant development of existant systems is the norm. However,

any methodology used to incorporate intelligence into a measurement

system should be able to handle both of these situations. The use of

an appropriate methodology will provide a formal framework that will

cover the entire system development process. This will ensure that

system development is well-structured and that key points within the

methodology can be identified for system evaluation. To introduce an

intelligent system capability into a measurement system requires the

activities of design, implementation and evaluation. A methodology for

this purpose is described. Although key components can be found in

existing (but separate) methodologies, there appears to have been no
previous unifying gestalt.

A methodology to incorporate intelligence into a measurement

system has its evolution in the disciplines of engineering and

computing. One of the key components of such a methodology is

knowledge-based system design and implementation. In the past it has

been traditional to perceive knowledge-based system development as a

special case of general software development. However, for the
proposed methodology to assist in the technology transfer process of

the whole measurement system, it is necessary to widen the system of

interest. As well as software generation for the knowledge base of the

application, inclusion of sensor component technology and issues

concerned with the human-computer interface must be taken into

consideration. These points are reflected in the methodology for

design, implementation and evaluation of an intelligent measurement

system, as shown in Figure 4.10. It distinguishes between processes

undertaken and states achieved. A key feature is the means of

77

"Joo

FIGURE 4.10 DIAGRAM SHOWING METHODOLOGY FOR INTELLIGENT SYSTEM
DESIGN, IMPLEMENTATION AND EVALUATION

META-

E VALUATION

evaluation of the proposed intelligent system. To increase the chance

of a successful implementation (and therefore use) it is argued that

the evaluation procedure should be made as explicit as possible. It

should also start at the system requirements stage of the methodology,

that is, as early as possible in the development of system design.

Figure 4.10 should be viewed as a three-tier process which has

been sheared sideways : the bottom tier describes the process for

system design and implementation, the uni-directional arrows at this

level show the path of progress; the second tier 'covers’ the first,

and comprises three separate evaluation procedures (needs, formal and

summative); and the top-tier is the evaluation process (the

'evaluation of the evaluation’) which unifies the evaluation of the

system to its design and implementation. The tiers are linked with bi-

directional arrows which represent both association a 1 and iterative

links. When thought of as associational links the evaluation is being

used passively. For instance, it can be said that the 'late prototype

system’ requires a 'formal evaluation’. However, when thought of as an

iterative link the evaluation process is being used actively, that is,

evaluative queries are being made of the system which determines the

level at which the evolving system re-enters the methodology. In this

sense the evaluation of the developing system is used to fire the

associations between different levels in the methodology, which

includes passing through the 'meta-evaluation' stage if necessary.

Below is a brief description of each recognised stage in the

methodology. These descriptions will be expanded in Part II where the

methodology is applied in the context of management of patients who
require ventilatory therapy.

4.3.1 Requi rement

User requirements vary according to the expertise of the end-
users. The requirement analysis of the proposed intelligent

measurement system should reflect the different viewpoints expressed
by the full range of intended users.

4.3.2 System Architecture

The proposed system should be broken down into its most

fundamental components. Each component should be examined for optimal

design, although this should not detract from a more holistic view of

the system. Computer software and/or environments should also be

included in this analysis. This would allow, for example, the reasons

for use of a particular software package to be stated expicitly.

79

4.3 .3 Early Prototype System

The early prototype system will be generally a family of

’hollow’ systems. The computer will be incorporated into the

measurement system, but programmed to show only a possible set of user

interfaces, (windows, menus, etc.). What constitutes the intelligence

of the system is yet to be implemented. This alludes to the purpose of

this stage of the methodology, which is to demonstrate the user

interface(s) to each of the putative end-users. This allows the system

to be visualised, which may stimulate interest and allow advice for

on-screen display format. Although this process may appear to have a

low utility, it is in fact an important stage in the development of

the system and should not be undervalued. It is at this stage of

development when a rapport between the system engineer and the set of

end-users can be instigated, which is essential for success of the

project.

4.3.4 Knowledge Engineering Design Cycle

The knowledge engineering design cycle is the part of the

methodology where the intelligent decision-making of a human expert is

captured and transformed into a machine readable form. This includes

the processes of knowledge acquisition and knowledge representation.

The former describes the method by which knowledge is elicited from a

human expert, and the latter describes how the resulting ’paper’

system can be transformed into a programmable form. This constitutes

the intelligent element of a knowlege-based system. The knowledge is

of two types: domain (factual) knowledge; and task (operational)

knowledge. Domain knowledge is, for example, the simple relationship

between a measureand and its value at some instant. The value can be

of a quantitative or qualitative nature. Task knowledge is concerned

with two dynamic processes: firstly, how inferences between knowledge

entities are made; and secondly, the software control of the
programming environment, which ensures that the correct part of the

knowledge base is activated at the correct time.

4.3.5 Interface Design

The interface design cycle is concerned with the fact that no

part of the instrumentation is isolated from the rest. Therefore some

sort of interface must exist between each element of the system.

Interfaces in measurement systems are generally of three kinds: sensor

to an element of a measuring machine; inter- and intra-machine

80

interfaces; and machine element to human user (that is, the human-

computer interface). In certain circumstances three other interfaces

can also be identified: the system of interest to the sensor; user-

user interfaces; and the system of interest to the human end-user. The

latter type of interface should not be forgotten when the system of

interest is (patho)-physiological.

4.3.6 Late Prototype System

The late prototype system is the culmination of the states

achieved and processes involved thus far in the methodology. When the

expert responsible for the intelligence embedded within the system

views the late prototype system, valuable insights of how the system

can be improved can be gained from his feedback. The suggestions may

vary according to the success of the implementation, but whatever the

outcome the system is still evolving at this stage, which illustrates

the highly iterative nature of the methodology.

4.3.7 Program Tuning

Program tuning is different from the iteration between the

knowledge engineering and late prototype system stages of the

methodology. Whereas in the latter the contents of the knowledge base

can change, program tuning deals with a static knowledge base, but

certain parameters within it may change for correct system operation.

For example, the values at which patient alarms are set may be at an

inappropriate level and thus have to be changed.

4.3.8 Intelligent Knowledge-based System (IKBS)

To achieve an operational IKBS is the goal-state of the

methodology. The functional attributes of the final system must be

able to integrate its sub-system components in context.

4.3.9 Needs Evaluation

The evaluation of the need of the system is associated with

the initial requirements stage of the methodology, and has as its most

fundamental evaluative query, "What are the requirements of the system

and how can they be met?". One of the precursors necessary to answer

this query is a functional analysis of the system about to be replaced

(if one exists). This enables constraints imposed on the system to be

recognised and dealt with. It also allows for a conceptual model of

information flow within the system, which not only identifies the type

of information used but also identifies the information sources and
receptors.

81

4.3.10 Formative Evaluation

Formative evaluation describes the process which asks how the

system can be improved whilst under development. Thus, all stages in

the methodology except the initial requirements stage and the final

goal-state are associated with formal evaluation. To cope with the

different levels of development which exist, the formative evaluation

must be wide-ranging. For instance, at one level a query may be, "Is

the multi-perspective nature of the system maintained?", while at

another the query may be, "What metrics are used to describe the

efficacy of the software?". Some evaluative queries are effective at

all levels, for example, "To what extent has a specific sub-goal been

attained?". These queries will vary from system to system, dependent

on the specific domain.

4.3.11 Summative Evaluation

Summative evaluation is the type of evaluation which is most

often quoted in the literature. The goal-state is associated with the
summative evaluation, which is concerned primarily with questions of

standardisation, effectiveness and comparison (see Figure 4.11). The

outcome of a summative evaluation determines if further development of

the system is necessary. In some cases an external evaluation (beta-

testing) should be performed, which involves allowing peers to have

access to the system for the purpose of its independent assessment.

4.3.12 Meta-Evaluation

The meta-evaluation describes the ’evaluation of the
evaluation’. It is concerned with the query, "How has the evaluation

process proceeded?". This query determines the outcome of each stage

in the evaluation process. The meta-evaluation can be viewed as the

phase in the methodology which describes the degree of success of a

particular system in reaching its pre-determined goal. For this reason

its outcome can be used to ask the ultimate question in project
management: "Should development of the system proceed?".

4.4 Summary

Commonalities in the analysis and design techniques reviewed

in Section 4.2 are that they have all been developed over a number of

years by well-funded industrial and/or university concerns. They are

also only applicable to large-scale projects. To take advantage of the

apparent technology gap at the micro end of the analysis and design

spectrum, a methodology which incorporates system analysis, design and

82

STANDARDISATION : Does the system meet a set minimum standard for
accreditation?

Are Standard inter-machine interfaces used?

EFFECTIVENESS : How effective is the system in attaining its goal?

What are the effects of the system on the subject of
interest?

What are the effects of the of the system on the
end-user?

What is the cost-effectiveness of the system?

How does the system compare to the system it is
replacing? (if appropriate)

COMPARISON : How does the system compare to other similar
systems?

FIGURE 4.11 THEMES INVOLVED DURING SUMMATIVE
EVALAUATION

83

implementation has been proposed. The central tenet on which the
methodology is based is that it will assist in the technology transfer

process from the laboratory to the real-world.

As the review of requirements engineering continued, emphasis

changed to a computer-aided development model. These computer-based

development processes are perceived in various ways, ranging from

acting as an organisational aid to being used as a source of

knowledge. This wide range of techniques is indicative of the

comparative youth of the subject area. The manual methodology

introduced in Section 4.3 goes further than system analysis and

design, as implementation of the candidate design solution and an

explicit evaluation procedure are featured. This illustrates the

increased scope of the proposed methodology when compared to

those used in conventional software development.

This chapter completes Part I of this thesis. The historical

context of both the medical domain of interest and intelligent

computer-aided decision support systems have been discussed. This

allows knowledge of the level of the type of solution being sought. An

artificial intelligence and control systems approach to the management

of patients on ventilators has been included to focus upon subjects

and techniques to be used in Part II. Finally, a novel methodology has

been described, which is to be imposed upon the development processes

necessary to create an intelligent measurement system. Thus, the

research tools are in place, ready for exploitation by a suitable
application: this is described in Part II.

84

PART IT

85

5 : SPECIFICATION FOR AN ARTIFICIAL INTELLIGENT RESPIRATOR SYSTEM

5.1 Introduct ion

The methodology developed in Section 4.3 is used to impose a

framework for the introduction of an intelligent computer-based system

to aid in the management of patients who require ventilatory therapy.

Requirements for the introduction of an intelligent system capability

and the proposed system architecture can be combined to produce a

’working’ specification. This constitutes the design phase of the

methodology. Essential components of the design phase of any computer-

based system are the choices of hardware and software to be used for

its implementation. The instrumentation system to be described is

being developed and implemented in a microcomputer environment using

PROLOG as the language base. PROLOG is becoming increasingly popular

as a means of incorporating intelligence into a system. To illustrate

this finding, a brief section in this chapter is devoted to its

fundamental functionality. To complete the background study necessary

to understand the complexities of the application domain a brief

section which explains the pertinent respiratory physiology is also

included.

The Artificial Intelligent Respirator System (AIRS) is a

patient management system designed specifically for use in an adult

Critical Care Unit. AIRS is one element of a wider integrated

information system able to assist clinical and nursing personnel with

all aspects of management of the critically ill patient (Carson et

al., 1988). The system combines a microprocessor controlled ventilator

and intelligent microcomputer-based advisory system from which a

wealth of patient data are produced. Three degrees of intelligence are

exposed in the data analysis module of AIRS: the use of context

sensitive information processes; the use of pattern matching

algorithms; and the use of expert system technology.

The specification of AIRS defines the design phase of the
methodology introduced in the previous chapter. To complete this

assignment Section 5.5 introduces the needs evaluation associated with
the requirement of the system.

5.2 PROLOG : An overview

PROLOG is an interactive language designed primarily for

symbolic, non-numeric data processing. It is based on the predicate

calculus, a powerful subset of classical logic for the definition of

relationships between data terms (Roussel, 1975). A major attraction

86

of programming in PROLOG is that the code generated is both concise

and readable, and therefore more understandable than equivalent code
written in conventional programming languages, (for example, FORTRAN,

C and PASCAL). PROLOG programming has minimal syntax, indeed it is

possible for programmers to define their own syntax for specific

applications.
The basic structure in logic programming is the ’term’. A

term can be a constant, a variable, or a compound version of itself. A

constant is either an integer or an atom (beginning with a lower case

letter), whereas a variable begins with an underscore character or

upper case letter. PROLOG programming consists of three main tasks

i) declaring facts about objects and their relationships

ii) defining rules about objects and their relations

iii) querying objects and their relations

Consider the following example shown in Table 5.1, in which facts are

declared that define the cardiac_output and body_surface_area of

different patients, where a rule is defined for obtaining

cardiac_index from the given facts, and a query used to find patients

with a similar cardiac_index, where ’similar’ is defined as values

within +/- 5% of each other. This type of query may be useful when

classifying patient cohorts for a drug trial.

facts
cardiac_output(patientl,8.25).
cardiacoutput(patient2,5.86).
cardiac_output(patient3,2.52).
cardiacoutput(patient4,2.12).

body_surface_area(patienti,3.380).
body_surface_area(patient2,1.139).
body_surface_area(patient3,8.708).
body_surface_area(patient4,3.609).

rule
cardiac_index(Pat ient,Cardiac_index)
cardiac_output(Patient,Cardiac_output),
body_surface_area(Patient,Body_surface_area),
Cardiac_index is Cardiacoutput / Body_surface_area.

query
answer(Ptl,Cardiac_indexl,Pt2,Cardiac_index2)
cardiac_index(Pt1,Cardiac_indexl),
cardiac_index(Pt2,Cardiac_index2),
Cardiac_indexl > Cardiac_index2,
20 * Cardiac indexl < 21 * Cardiac index2.

TABLE 5.1 PROLOG representation of Cardiac Index

87

The syntax used in this example can be used to describe its mode of

operation. The 'cardiac_output’ and ’body_surface_area’ predicates

have four clauses. Each clause can be interpreted in the following

way: -

cardiac_output(patientl,8.25). ------ > the cardiac_output of
patientl is 8.25 litres

In the clause, ’patientl’ is written with its first letter in lower

case to denote that it is a constant. If an upper case initial letter

were used denoting a variable, the interpretation of the clause would

be meaningless.
In the ’cardiac_index’ rule the symbol is interpreted as

’IF’, and the commas are interpreted as ’AND’. This rule also

illustrates the principle of unification which is often used in

PROLOG. Unification embodies pattern matching that can be applied to

data structures of any complexity. To fire the ’cardiac_index’ rule

the ’Patient’ argument of the ’cardiac_index’ clause must be

instantiated. If ’Patient’ is instantiated to ’patientl’, then the

cardiac_output and body_surface_area clauses can be fully unified,

from which ’Cardiac_index’ can be instantiated, allowing the
’cardiac_index’ rule to succeed in the process.

To fire the query the patients whose cardiac_index are to be

compared should be entered by the user, for example

?-answer(patientl,Cardiac_index1,patient4,Cardiac_i ndex2).

The ’cardiac_index’ rule is called twice, the first time to determine

the cardiac_index of patientl, and the second time to determine the

cardiac_index of patient4. A simple numerical algorithm in the query

clause then checks to see if the results are within 5% of each other.

PROLOG has many features which can be considered as unique

advantages when compared with conventional programming languages. For

example, the following features are all used in the implementation of
AIRS :-

* clauses can represent data or rules and can be treated as arguments

to higher level clauses allowing data to be manipulated by appropriate

meta-clauses which effect software control

* software procedures can be multi-purpose and have more than one
input and output

88

* required iteration (via backtracking of goals) can be handled and

controlled by a special purpose ’built-in’ predicate, (the ’cut’

operator)

* incomplete data structures are allowed, using pattern matching to

unify variables

* for database applications the terms themselves define the record

structure; any number of fields are allowed, and there is no

restriction imposed on field-type

* a declarative clausal form is allowed as well as the more normal

procedural form

This last feature is important as it uses the relational nature of

PROLOG programming to determine the declarative meaning of WHAT the

output of the program will be. This can be compared to the procedural

meaning, which is concerned with HOW the output of the program is

obtained.

PROLOG has been applied to many programming tasks from a wide

spectrum of domains. For example, understanding natural language,

mathematical logic, symbolic equation solving, and many areas within

the field of artificial intelligence. PROLOG was also chosen as the

implementation language for the Japanese Fifth Generation Computer

System initiative. This necessitated software able to cope with highly

parallel computer architectures; the logic and relational nature of

PROLOG met this requirement.

There are many versions of PROLOG available, from main-frame
to microcomputer implementations. AIRS has been developed and

implemented on a standard microcomputer using PROLOG-2 (Chemical

Design Ltd.). This version of PROLOG was chosen because it offered

over 300 ’built-in’ predicates (including predicates for creating a

windows environment), code could be interpreted and compiled, and it

conforms to the (pseudo)-standard of Edinburgh syntax.

5.3 Respiratory (patho)physiology

The respiratory system is critical for immediate survival.

Air contains a number of gases, the two which contribute to the

maintenance of living organisms are oxygen and carbon dioxide. The

respiratory process can be viewed from two perspectives : external

respiration, which describes the exchange of gases between the lungs

and the bloodstream; and internal respiration, which is the exchange

of gases in solution, between the bloodstream and cells. Thus, the

89

overall purpose of respiration is to acquire oxygen which is

eventually distributed to the cells for metabolism, and to eliminate

carbon dioxide which is accumulated from the effects of cellular

metabolic activity. The metabolic utilisation of oxygen can be

described by the following mass-balance equation:-

FOOD + OXYGEN --- > CARBON DIOXIDE + WATER + by-products
+ ENERGY

The rate at which the products of the right-hand side of the above

equation are formed from the initial components on the left-hand side,

termed the metabolic rate, differs from person to person. For example,

the metabolic rate of a person lying motionless in a Critical Care

Unit is much less than that of an athlete, and therefore their

respective respiratory demands are also very different.

Artificial mechanical ventilation is used when patients are

unable to breathe spontaneously. To understand the reason for

mechanical replacement therapy consider the physiological system it

is to supersede. The respiratory system can be arbitrarily divided

into four functional units, as follows:-

i) Airflow mechanics; this incorporates movement of the chest wall

under the influence of the pressure difference between internal

and external environments, causing air to be drawn into the

alveolar spaces, as well as the physical properties of the lungs
and air themselves.

ii) Blood flow mechanics; this describes the distribution of blood

in the lungs.

iii) Diffusion and Gas exchange; this describes the transfer of

respiratory gases through the alveolar membrane, and the

interacting effects of blood and airflow on oxygen and carbon

dioxide concentrations.

iv) Regulation of respiration; this describes the control mechanisms

involved in the respiratory process. The regulation of

breathing can be described by two parameters, respiratory rate

and tidal volume. Respiratory rate is the number of breaths per

unit time, and tidal volume describes the amount of air

inspired during normal breathing. Normally, these two

parameters are controlled by the nervous system and a

homeostatic mechanism which monitors the partial pressure of
carbon dioxide in the bloodstream.

90

The first and the last of these functions are replaced when there is

no endogenous respiratory function, that is, when the mechanical

ventilator is in Continuous Mandatory Ventilation mode (CMV). The

machine can be preset to deliver the required respiratory rate, tidal

volume and air/oxygen mixture in the correct pressure-time cycle. When

limited physiological control returns, the ventilator can be switched

to Synchronised Intermittant Mandatory Ventilation mode (SIMV), which

allows a preset ratio of spontaneous to ventilator-induced breaths. To

wean the patient from the ventilator this ratio is gradually changed

until the patient is breathing spontaneously and independent of the

mechanical assistance. For successful ventilatory therapy the

physiological mechanisms which contribute to the other functions of
the respiratory system must remain intact. As indicated, the

parameters set by the ventilator can influence the amount of venous

blood oxygenation, and can therefore indirectly contribute to the

control of metabolic rate.

5.4 Design Specification for AIRS

5.4.1 Requi rement

A question of fundamental importance to be asked before any

system development work commences is: —

"Is there a need for the proposed system, or would it
be, perhaps, an example of unnecessary technology which would be
infrequently used?"

At the highest level of definition the purpose of AIRS is to assist in

the management of patients who require artificial ventilation. This

group of patients are often sub-optima 11 y managed (Sittig, 1988),

therefore there is a need for a system such as AIRS.

Pragmatically, an evolutionary system must be better than the

system it replaces, otherwise it will remain redundant technology. In

the context of AIRS the term "better" has two meanings: first, in the

operation of the system; and second, the system must lead to enhanced

patient care. The first of these meanings depends upon the

’friendliness’ of the Human-Computer interface. To be ’better’ this

interface must be attractive to use and quick to learn and exploit.

The ability to enhance patient care depends upon how the user

perceives the change of working practice instigated by the new

technology. When a computer-based data-logging device (the data

capture functionality of AIRS) replaces the manual system employed

currently, much of the clerk-type role of the nurse will disappear,

91

freeing time for more valuable nursing activities. The need for

automatic data-logging is emphasised by a clear trend in the number of

parameters included in an intensive care primary data set,which has

increased approximately threefold in sixteen years (Price and Mason,

1986). Nurses record 45% of these data, the rate of which can be up to

2000 items per patient per day.

The advisory mode of AIRS can be used as a means of dealing

with complexity. In respiratory critical care there is often an

overload of sometimes conflicting data. A computer-based advisory

system can organise the patient management options into a suitable

format for selection. Such a system would also serve a useful role for

educational and training purposes.

5.4,2 System Architecture * *

AIRS consists of four functional units (patient, operator,

ventilator system and computer system) which can be further sub-

divided into constituent subsystem elements, (Figure 5.1).

The patient can be considered as a complex physiological super-

system, whose constituent systems are interlinked in such a way as to

optimise the process for sustaining life. Of interest in this study is

the respiratory system.

Each category of operator will have a different level of

system interaction depending on their status. The users of the system

will include doctors, nurses, paramedical staff, system engineers, and

medical students and student nurses. A brief indication of system
interaction at each level is given below.

* Doctors

+ to enter the initial settings of the ventilator

+ to enter the initial alarm settings

+ to enter any changes in ventilator settings as the
patient progresses

+ to enter any change in alarm settings

+ to delegate any of the above to another system user

* Nurses

+ to enter data via the computer keyboard or alternative

means of data entry

+ to be aware of the meaning of the audible and visual alarm

92

r i
COMPUTER
SYSTEM

VISUAL
DISPLAY

UNIT

'OU> Í

L --I

!--------------
VENTILATOR
SYSTEM

OPERATORS

Student Nurses
Nurses

J L I-
L

MACHINE - LEVEL INTERFACE

KEYBOARD
OR

1 * Doctors L KEYBOARD
DISPLAY

MICROPROCESSOR
CONTROL

PNEUMATICCOMPUTER

PEREX PAD
Paramedics
System Engineers * 1 M o l CJVl

Ï 1 l l

PRINTER

I

PATIENT

PATIENT
SERVICE
SYSTEM

Í

GAS
SUPPLY
SYSTEM

1

____ I

EXTERNAL
SOURCE
OF GAS

FIGURE 5.1 DIAGRAMMATIC OVERVIEW OF SYSTEM ARCHITECTURE

signals and to take appropriate action

* Paramedics

+ to enter data via the computer keyboard or alternative means

of data entry

+ to be aware of the meaning of the audible and visual alarm

signals and to take appropriate action

+ to have superficial knowledge about the operation of AIRS

+ to have superficial knowledge about the operation of

AIRS

+ to liaise with the system engineer

* System Engineer

+ to have knowledge about AIRS at every level

+ to manufacture appropriate computer software

+ to obtain the primary data-set used for subsequent

information processing.

+ to investigate alternative methods of data entry

+to decide on computer output format (in conjunction with

other users)

+to decide on the format for printer output (in conjunction
with other users)

+ to liaise with all other system users

* Medical Students and Student Nurses

+AIRS should have an educational and training role

The ventilator system comprises six functional units: the

microprocessor control unit, the gas supply system, the pneumatic

system, the patient service system, the keyboard display, and the

printer.

The microprocessor control unit is responsible for the

control action of the ventilator. It receives inputs from the keyboard

display unit and from pressure, flow and temperature sensors found in

the gas supply, pneumatic, and patient service systems. A controlled

output port leads to the pneumatic system which generates and controls

gas flow. An output to the keyboard display unit indicates patient and

ventilator performance. The microprocessor control unit has a fail-

94

safe mechanism which contains instructions for use in emergency

situations, for instance, when another part of the ventilator is

functioning incorrectly. A battery-powered back-up unit is on stand-by
if the mains power supply is interrupted.

The gas supply system allows two inputs (air and oxygen) from

the external source (the wall supply). Filters on the input side

prevent particles larger than 0.3 microns and moisture from entering

the ventilator. As the wall supply pressure is between 35 and 100

pounds per square inch - gas (psig), an internal pneumatic regulator

is required to reduce the pressure to a nominal 10 psig for ventilator

operation. If wall supply pressure falls below 35 psig, or if working

pressure falls below 7.5 psig, an automatic switching circuit becomes

active which transfers the ventilator into emergency mode. In these

situations the ventilator settings are pre-set by the manufacturer,

the values being stored in the microprocessor control unit.

The pneumatic system consists of two parallel circuits, one

for air and the other for oxygen. A pair of solenoid valves which

monitor gas flow are important elements in this system. The solenoids

are adjusted continually which allow the desired volume and

composition of gas to be delivered to the patient. For patient safety

there is a valve on the ventilator output port which prevents the

patient from receiving gas at either too high a pressure or flow

rate. There are also pneumatic sub-systems for: temperature

correction; providing gas flow to the patient via a nebuliser;

providing pressure to a balloon valve, (this seals the exhalation port

during inspiration); and uni-directional check valves that prevent gas

backflow.

The patient service system describes the patient-specific

elements of the ventilator system. It includes the pipe circuitry

which delivers the gas to the patient and returns the exhaled gas to

the ventilator. A humidifier and/or nebuliser can be placed in the
patient input side of the circuit. A flow sensor is situated on the

patient output side, when integrated this signal yields the volume of

exhaled gas. The patient service system also contains bacterial

filters on both input and output sides, which confines any bacterial

contamination to within the humidifier or patient delivery system.

Moisture from exhaled air is prevented from entering the ventilator by

a water trap. Unidirectional valves in the patient mouthpiece prevent
any gas backflow.

95

The keyboard display system can be divided into three functional

units. Patient data can be viewed and stored; patient and ventilator

status can be inferred from the alarm unit; and ventilator setting

adjustments can be made.

The printer is capable of making a hard-copy of four types of
report; a patient data log, a chart summary, ventilator status, and

ventilator self-test.

The computer system comprises the system unit, a keyboard

and/or alternative methods of data entry, and a visual display unit to

observe the output of the system. An example of an alternative device

for data entry is a pressure sensitive graphics pad where the
function and size of the input area can be p r e-spec i f i ed. Up to 256

A4-size paper overlays can be designed, allowing capture of a wide

spectrum of data. Advantages of using this type of pad for data entry

include: personnel do not have to learn typing skills (however

rudimentary they may be); it can be quicker than keyboard entry; and

non-numeric or qualitative data can be contemplated.

5.5 Needs Evaluation

In current practice much of the patient-related information

flow is the concern of the nurse, so much so that a clerk-type role is

assumed, (taking care of the data rather than taking care of the

patient). This is unsatisfactory for both the nurse and the patient.

Introducing an automatic means of data capture offers the potential

for a reduction of this clerk-type nurse workload. Nurses often

mistrust computer-based (automatic) monitoring systems, possibly due

to the 'black box’ approach commonly adopted. To combat this fear of

new technology an effort was made to make AIRS as transparent as

possible to the end-users.

For AIRS to be used on a regular basis it must fulfil various

requirement criteria, the most important of which is that it should be
better than the existing manual system. In this sense "better" means

more cost-effective, measured in terms of amount of time and resources

saved. The system must also lead to more enhanced patient care.

To enhance the care of the patient is the driving force for

this study. In a similar study in the United States, an attempt was

made to determine if correct ventilator adjustments were made in

instances where patient Pa02 fell below 50 mmHg (Sittig, 1988).

Current expert opinion suggests that in such cases either Fj02 and/or

PEEP be increased as soon as possible, or that mode of ventilation be

96

changed to SIMV or CMV. The results of this study showed that a

correct action was taken in 85 % of the cases within 26.5 minutes

(S.D. = 19.4, n = 41). However in 12.5 % of the cases (n = 6) a

confirmatory blood-gas analysis was obtained, a procedure which took

on average 46 minutes (S.D. = 24.1). This delay before any corrective

action was taken constitutes a life-threatening event. It is suggested

that such a delay would be less likely if a computer-based decision

support system were in situ.

Resource constraints imposed on the development of AIRS

meant that the ventilators used for the development of the system were

in almost constant use within the High Dependency Unit. Therefore the

system was developed off-line, where ironically most implementation

time was devoted to a manual means of entering patient data.

Nevertheless a means of converting the data output of the ventilator

to a computer readable form was successfully identified.

5.6 Summary

The first two elements of a methodological framework imposed

to introduce an intelligent component into an existing data-rich

environment have been used to define the specification for its

implementation. This constitutes the design phase of the methodology

introduced in Section 4.3. An evaluation of the needs for a system

such as AIRS reveals both user requirements in terms of replacing the

clerk-type activity of the nurse and system requirements in terms of

dealing with the complexity of incoming data and its transformation

into a more meaningful form. Patient care is enhanced as a result of

this change in technology.

The background information to achieve the implementation

has been addressed, and includes details of the programming

environment (PROLOG) together with a basic introduction to respiratory

physiology. In the next chapter these strands are drawn together for
the implementation of the system.

97

6 : IMPLEMENTATION AND EVALUATION

6.1 Introduction

This chapter draws upon both the methodology for intelligent

system design, implementation and evaluation described in Chapter 4

and the set of design features generated in the last chapter.

A PROLOG programming environment is used for the

implementation of AIRS. There are several reasons why this is an

attractive alternative to the use of commercial expert system

development packages: the style of programming mimics the ’test-and-

hypothesise’ cycle used by clinicians; modular programming is

supported which allows ease of maintenance of the program; software

routines and program features can be written for any type of

application (for example, management and/or diagnosis); and the

program source code is more readable than conventional programming

languages, as discussed in the last chapter. There are two drawbacks

in using PROLOG for the implementation of the system. First, the

memory allocated to ’workspace’ within the environment is not large

enough to accommodate the processing required in complicated cases.

Second, the time taken to execute some clauses within the program can

be extremely slow, causing problems with user acceptance of the human-

computer interface. However, as AIRS is a prototype system, the

constraints of workspace size and speed of execution can be relaxed.

It can be argued that the purchase of an (expensive) software

development environment would have decreased the time taken to

complete the implementation. This can be offset by the number of

features that can be included in a customised implementation taken

together with the number of redundant features in a commercial

development package.

In Section 6.2 the Early Prototype System is described. This

illustrates the user interface, denuded of a knowledge base and other

features of a fully integrated system. The purpose of this phase of
the development cycle is to show the Human-Computer Interface to a

putative set of end-users. Sections 6.3 and 6.4 describe the Knowledge

Engineering Design Cycle and Interface Design Cycle respectively.

These processes illustrate the way in which intelligence is

incorporated into a computer system. Both processes are highly

iterative in nature. Within the Knowledge Engineering Design Cycle the

sub-processes of knowledge acquisition and knowledge representation

are documented. It is these phases of the implementation where the

98

information processing functionality is included in AIRS. This

capability elevates AIRS above the data processing functionality of

most existing instrumentation systems for patient care in this area.

Although the Interface Design Cycle describes the off-line version of

AIRS, the modification necessary for on-line operation is illustrated.

When the output of both the Knowledge Engineering and Interface Design
phases are brought together a ’Late Prototype System’ is formed. This

is described in Section 6.5. This version of the system can be fine-

tuned until the clinical users are confident that the resulting

knowledge-based system can be improved no further. This milestone in

system development is formalised in Section 6.6. The output of the

methodology, an intelligent knowledge-based system, is detailed in

Section 6.7. The ability to build knowledge-based systems has been

evident for the past decade, yet there are only a tiny proportion of

such systems in routine operation. Perhaps one reason for this is that

an appropriate evaluation strategy has yet to be formulated. The

evaluation of AIRS follows the development procedure from the

requirements phase. A formative evaluation (Section 6.8) occurs at

every intermediate phase of development; a summative evaluation is

performed when the system has reached fruition (Section 6.9); and an

overarching meta-evaluation (Section 6.10) ensures that the evaluation

procedure has proceeded in an orderly manner.

Where appropriate, some features of the implementation are

presented. Accompanying annotated software code listing can be found
in Appendix II.

6.2 Early Prototype System

The early prototype system provides an opportunity to

demonstrate several types of screen interface to the clinical and

nursing staff who form the end-users of AIRS. From informal but close

questioning about the use of computers in clinical medicine, it was

recognised at an early stage that a Windows-I cons-Menus-Pul1 downs

(WIMP)-type interface would be potentially the most acceptable format

for screen display and control. This choice was influenced by users

comparing the facilities offered by a DOS-based IBM compatible

microcomputer with the WIMP interface of an Apple Macintosh

microcomputer. Using PROLOG it is possible to implement a WIMP-type

interface (the ’W’, ’M’ and ’P’ components provide no problem, but the

’I' is more difficult to implement and is excluded in this prototypic

version). Menus are used to control the logical flow of operation in

99

AIRS, the outcome being a nested hierarchy of screens. In all menu-

formats an option is given to return to the preceding menu or to go to

the ’top’ (i.e. first) menu encountered in the system.

The clinicians and nurses advised on the screen display

format and use of peripheral devices, thereby refining the early

prototype system. For example, using a computer keyboard to operate

the screen interface was too slow. To counter this problem a ’mouse’

was included as a peripheral device to speed up screen management and

data entry, although some users had difficulty initially in using the

device. The order of the menu options was also chosen at this stage,

though some changed subsequently as development of the system

progressed. A more fundamental change in menu options involved the use

of the explanation facility. Instead of having just one menu entry to

the explanation facility at the top-menu level, an explanation option

was included in each of the relevant sub-menus. The result of this

change allowed the explanation screen to be viewed with far fewer key-

clicks, also saving time in the interaction between the user and the

system. This had the effect of increasing the acceptance of the
system.

Figure 6.1 shows the screen output of the top-menu screen

display, this complements the program code excerpt given in Appendix

II (AII.l and All.2) which describes the implementation of the WMP-

system interface.

6.3 Knowledge Engineering Design Cycle

To the user, the levels of intelligence embedded within AIRS
are exhibited in the analysis option of the topmost menu of the

system. In fact three levels of system intelligence can be defined

which match the three phases of ventilation. Within the AIRS start-up

phase context-sensitive information is portrayed. This yields advice

and explanation about the initial machine settings as the patient is

connected to the ventilator. The maintain phase uses a data-driven

algorithm to define the respiratory state of the patient in terms of

alarm status (normal, high, low). A higher level of intelligence is

employed in this phase than the previous one as each item of data is

checked using a pattern-matching algorithm and classified accordingly.

The highest level of intelligence is exhibited in weaning the patient

from the ventilator. In this phase knowledge-based technology is used
to represent the weaning process.

1 0 0

AIRS Off-Line v2.0 Pt Name: John SMITH Pt 01

AIRS - Artificial Intelligent Respirator System

WELCOME !

.-TOP-MENU
Patient name
Input data
Database
Analyse data
Action
Explanation
eXit

FIGURE 6.1 THE BANNER SCREEN - AIRS

6.3.1 First level of intelligence: AIRS start-ap

To initialise the patient on the ventilator the working

diagnosis is required so that patient state can be established.

Patient state can be described in various ways, some of which are

variations on a single theme. For instance, it seems fashionable to

try and assign a quantitative value to a number of diagnostic

findings, which in turn contribute to a final patient ’score’. It is

the deviation of this score from the norm which determines patient

state. Studies by research groups in the United States seem

particularly to favour this type of technique (Siegal, 1981; Shoemaker

et al.,1982). In AIRS the diagnostic category in which the patient

resides is sufficient evidence to establish patient state.

A retrospective analysis of the Intensive Therapy Unit log
book at the Royal Free Hospital, London, between May 1986 and December

1988 revealed that the 630 patients who spent more than 24 hours in

the Unit could be classified into 14 independent diagnostic states.

Only 5 patients (0.008%) in this database were unc1 assifiab1e, (see

Table 6.1). It follows that to match a patient to the correct start up

settings, 14 separate options are required, one for each of the

dignostic states. To illustrate the data processing involved, software

source code for the ventilator start up settings for cardiac patients
is shown in Appendix 11—3. Whereas the initialisation screen shows the

various ventilator settings, two further options are also possible:

the action screen and the explanation screen. The action screen takes

into account the weight of the patient, so gives patient-specific

ventilator settings. The explanation screen gives a context-sensitive

description of why a particular ventilation strategy is favoured.

Figures 6.2, 6.3 and 6.4 show respectively the initialisation, action

and explanation screens for a particular cardiac patient.

6.3.2 Second level of intelligence: AIRS maintain

At the centre of the programming module which describes the

second level of intelligence is a value-matching algorithm. The

information which forms the basis of this algorithm was elicited from

clinical personnel. Clinical indicators which describe some aspects of

patient respiratory state were prioritised, the resulting seven

indicants being partial pressures of oxygen and carbon dioxide in

arterial blood, pH, tidal and minute volume, respiratory rate and peak

inspiratory flow rate. Figure 6.5 shows the form in which information
for one indicator, tidal volume, was gained.

102

CLASSIFIER No. Patients

HEALTHY LUNG 180

POST-OPERATIVE 229

FLAIL CHEST 5

LEUKAEMICS 33

PNEUMONIAS 55

SEPSIS 31

ARDS 11

CARDIAC 54

PULMONARY EMBOLUS 5

ASTHMATICS 8

COAD 5

MULTIPLE ORGAN FAILURE 29

RENAL 28

EPIGLOTTITIS 6

UNCLASSIFIED 5

NB: 54 patients are in two groups

TABLE 6.1 DIAGNOSTIC STATES

103

AIRS Off-Line v2.0 Pt Name: John SMITH Pt 01

o

Suggested Ventilator Settings
for Cardiac Patients:

RR 12 per min
TV 10 ml per Kg
I:E 1
PEEP 5 cm H 20 ***
FI02 0.5

[—INITIALISE---------
Group 1 POST-OP
Group 2 HL
Group 3 PNEUM___
Group 4 CARDIAC
Group 5 LEUK
Group 6 SEPSIS
Group 7 MOF
Group 8 RENAL
Group 9 ARDS
Group 10 ASTHMA
Group 11 EPIG
Group 12 CO AD
Group 13 PE
Group 14 FLAIL
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.2 INITIALISATION SCREEN FOR A CARDIAC PATIENT

AIRS Off-Line v2.0 PtName: John SMITH Pt 01

Suggested Ventilator Settings
for Cardiac Patients:

RR 12 per min
TV 10 ml per Kg
I:E 1
PEEP 5 cmH20 ***
FI02 0.5

r—INITIALISE---------
Group 1 POST-OP
Group 2 HL
Group 3 PNEUM
Group 4 CARDIAC
Group 5 LEUK
Group 6 SEPSIS
Group 7 MOF
Group 8 RENAL
Group 9 ARDS
Group 10 ASTHMA
Group 11 EPIG

The suggested ventilator settings for John Smith are

RR 12 per min, TV 800 ml, I:E 1, PEEP 5 cmH20, FI02 0.5

** WARNING **
Only use PEEP when MAP >75 mmHg and BP (sys) > lOOmmHg

Use of Dopamine ? Lasix ?

Group 12 CO AD
Group 13 PE
Group 14 FI Al l .
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.3 ACTION SCREEN FOR A CARDIAC PATIENT

AIRS Off-Line v2.0 PtName: John SMITH Pt 01

1. Try CPAP before CMV.

2. It is possible to alter the ventilator settings slightly
so as to endure adequate ABG's.

R R < 1 6 p erm in , TV < 16 ml per Kg, I:E < 2, PEEP < 10 cm H20

** WARNING ** : Only use PEEP if both MAP > 75 mmHg and BP (sys > 100 mmHg.

It is imperative to increase intra-alveolar pressure in order to reverse
the Starling equation. Therefore, if BP is low infuse fluid (colloid) if
renal function is O.K. Consider Dopamine (increases BP, CO, and renal
function), and then LASIX to excrete excess water. Check K ions !

-IN IT IA L IS E -----------
Group 1 POST-OP
Group 2 HL
Group 3 PNEUM
Group 4 CARDIAC
Group 5 LEUK
Group 6 SEPSIS
Group 7 MOF
Group 8 RENAL
Group 9 ARDS
Group 10 ASTHMA
Group 11 EPIG
Group 12 COAD
Group 13 PE
Group 14 FLAIL
ACTION
EXPLANATION
Reset
Back to Topmenu

FIGURE 6.4 EXPLANATION SCREEN FOR A CARDIAC PATIENT

107

VARIABLE ABBREV. UNITS OF
M’MENT

FREQ OF
M’MENT

SET-POINT
ALARM

HIGH LOW

TREND ALARM ACTION
SET-POINT TREND

TIDAL VOLUME vx nil h** 3 0 m l K g 'l l m l K g 'l if < 50% of

| C M V i

patient check for leak

TV
(P B 7 2 0 0 * M a n u a l)

mlkg-1
(when calculated)

1
(P B 7 2 0 0 * M a n u a l)

or as necessary
previous recorded

value.
disconnected

(leak)
machine

malfunction

| S1MV |

patient . . , .
disconnected + rate of machine

(leak) breaths by two
machine

malfunction

t rate of machine
breaths patient
malfunction

| SPONT |

re-initialise patient h a s R P t 9
to ventilator ¡s patient tired ?

are ventilator. is V j low because
settings 0f respiratory

appropriate . depressants ?

FOR ALL ALARMS CHECK FOR
INAPPROPRIATE VENTILATOR

SETTINGS

* PB7200: Puritan-Bennett 7200a ventilator
** Present time resolution of paper record system is hourly

FIGURE 6.5 MAINTAIN: TIDAL VOLUME

Great care was used in the design of the maintain screen, one

of the more important design concepts was to obtain a display which

appeared uncluttered yet still had sufficient information content to

remain useful. Each window icon (box) associated with one of the

indicators is split into two sections: the top-half displays the set-

point alarm state, and the bottom-half displays the trend alarm state.

By using this combination of set-point and trend alarms it is the aim

of the program to keep patient-threatening events to an acceptable

minimum.

Appendix 11—4 illustrates the software code for PCO2 when the

ventilator is in ’Controlled Mandatory Ventilation’ mode. Before this

level is reached, various pre-processing modules have checked the data

for completeness and have set up the window presentation system which

gives a qualitative interpretation of the chosen measurements. In the
first instance, this design feature has been achieved by using the

colour green for a value in the normal range, blue if the value is low

and red if the value is high. At an earlier prototyping stage, a

flashing blue window signified a value in the ’very low’ range and a

flashing red window corresponded to a value in the ’very high’ range.

If requested by the users, this facility can be re-installed.

6.3.3 Third level of intelligence: AIRS wean

The weaning phase differs significantly from

AIRS: initialisation and AIRS: maintain, as knowledge is processed

rather than data or information. This requires the use of knowledge

engineering techniques to transfer knowledge from a human expert to an

internal computer representation. A diagrammatic representation of the

knowledge-based system design cycle is shown in Figure 6.6. In the

development of AIRS: wean various ’experts’ were used, covering

technical as well as clinical domains. This allowed the capture of

knowledge about machine malfunction together with patient dysfunction.

Knowledge elicitation, the process by which a ’paper’ system of

expertise can be constructed, was performed by a series of structured

interviews (see Chapter 7 for further discussion). This process was

exacerbated by rotation of clinical staff. Paradoxically, the

resultant knowledge base may be more widely acceptable because of the

increased scope afforded by the different perspectives from the many

staff involved in knowledge elicitation.

Knowledge is represented as premise-action PROLOG clause

pairs. The control and reasoning strategy is entirely data driven.

108

EXPERT

KEY

0 knowledge store

1 1 phases in development

— ► logical flow of knowledge

— ►- putative flow of knowledge

FIGURE 6.6 KNOWLEDGE-BASED SYSTEM DESIGN CYCLE

109

Associated with each premise of the clause pairs is a list of data

findings which must be known (instantiated) before the premise can be

evaluated, (see Appendix All.5 for more details).

A conceptual model of the weaning process is shown in Figure

6.7. The start state is depicted as the patient on the ventilator in

controlled mandatory ventilation (CMV) mode, that is, the ventilator

is in complete control of patient ventilation. It is possible, and is

common in current practice, for the patient to be connected to the

ventilator in synchronised intermittent mandatory ventilation (SIMV)

mode, that is, the ventilator initiates inspiration when triggered by

patient inspiratory effort with a fail-safe mechanism of delivering a

set number of breaths per minute. In the model the patient progresses

form the start state to the goal state of spontaneous ventilation via

a number of intermediate states.

Five types of rule become apparent to implement this

conceptual model, as shown in Figure 6.8: weaning rule, progression

rule; regression rule; termination rule; and a fail-safe meta-rule. If

CMV mode is the start state, then the ’fit to wean?’ criteria of the

weaning rule must be met before progress to the intermediate states

can commence. These criteria are quite extensive and cover causal

mechanisms for respiratory muscle fatigue, f1uid-e 1 ectro1yte

imbalance, physiological system failure, and patient anxiety. Figure

6.9(a-e) illustrates the causal mechanisms and relationships in a

conceptual diagram. Similar conceptual diagrams are used to show the

progression and regression rules (Figures 6.10 and 6.11 respectively).

110

FIGURE 6.7 CONCEPTUAL MODEL OF THE WEANING PROCESS

111

WE ANING_RULE_ 1 : IF START_STATE
and fit to wean
THEN go to ENTERMEDIATE_S TATE_ 1.

PROGRES S ION_RULE_2 : IF INTERMEDIATE_S TATE_N
and progression rules succeed
THEN go to INTERMED IATE_S TATE_N +1.

REGRES SION_RULE_3 : IF INTERMEDIATE_STATE_N
and regression rules succeed
THEN go to INTERMEDIATE_STATE_N-1.

TERMINATION_RULE_4 : IF GOAL STATE
THEN STOP.

META_RULE_1 : If regression conditions succeed
and progression conditions succeed
THEN do REGRESSION_RULE_3

FIGURE 6.8 VERBAL DESCRIPTION OF CONCEPTUAL MODEL
OF IMPLEMENTATION

112

respiratory_muscle_failure

f_e_imbalance

fit_to_wean----------------- NOT system_failure

anxiety

feeding_problems

FIGURE 6.9a RULE ASSOCIATIONS FOR FIT_TO_WEAN

-increased.respiratory.resistance-------
increased_oxygen.
consumption

increased_work_
of_breathing

increased_C02_production

_excessive_muscle
demands fever infection

breathing_circut_inappropriate — sensitivity
increased.

—bronchospasm----------------- dynamic.
-obesity resistance

—ascites

respiratory.muscle.failure —

-im paired.oxygen.delivery

impaired.energy
.supply

-^lutritional.deficiency ------------ catabolic

FIGURE 6.9b RULE ASSOCIATION FOR FIT.TO.WEAN (Contd.)

hypovolaemia c_v_pres sure_lo w

anaemia haemoglobin_count_low

f_e_imbalance pulmonary _oedema

potassium_level_out

------------- p_a_wedge_pressure_high

------------- colloid_osmotic_pressure_high
potassium_high

potassium_low

phosphate_level phosphate_high

FIGURE 6.9c RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)

system_failure

respiratory_failure

cardiac_failure

ventilatory_failure -----------------------

inefficient_pulraonary_gas_exchange

cardiac_output_low-----------------------

acu te jv f ----------------------------------

tidal_volume_low

capAa-D02

cardiac_index_pressure_low
p_a_wedge_low

systolic_blood_pressure_low

neurological

metabolic_acid_base

metabolic_alkalosis

renal_problem

hepatic_problem-

creatinine_high

lft_deranged

FIGURE 6.9d RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)

sleep_deprivation sleeping_draught

primary_anxiety anxiolytic_agent

anxiety

pain

local_blocker

infiltration

sedation sedative

FIGURE 6.9e RULE ASSOCIATION FOR FIT_TO_WEAN (contd.)

THIS PAGE IS LEFT BLANK
INTENTIONALLY

118

progress

not progress

not progress

review_in_30_mins

ph_up_paco2_same

ph_up_paco2_down

ph_down_paco2_same

ph_down_paco2_down

ph_same_paco2_up

ph_same_paco2_same

ph_same_paco2_down

regress

ph_up_paco2_up

ph_down_paco2_up

FIGURE 6.10 PROGRESSION RULES

respiratory_muscle_weakness/fatigue

RR>25 min with TV_4- 4-

abnomal
_breathing-
_pattem

----- abnormal_paradox

— respiratory_altemans

decreased_respiratory_drive tidal_volume / insp_time_increase

increased_re spiratory_drive

airway_occlusion_pressure_> 6cmH20

C02_production_'t‘ t

FIGURE 6.11 REGRESSION RULES

6.4 Interface Design

6.4.1 Data Transfer at the Machine Level Interface

At the machine-level software interface the PROLOG

programming environment can deal directly with a list of ASCII

characters that would form the output from the digital communications

interface of the ventilator. Equally, characters which specify

instrument commands can be converted into a list of ASCII characters,

allowing commands from the computer to be interpreted by the

ventilator. This two-way communication link is implemented by use of

two built-in predicates which have the effect of converting a list of

ASCII characters into the required atom notation; they are

list(List .String) and n am e(At om , S t r i n g). (Note: in some PROLOG

implementations this conversion is made even more simple, as the name

built-in predicate is defined as name(Atom ,Li st)). In the program code

illustrated below in Table 6.2 pdtest/O is the clause which defines

communication from the ventilator to the computer, and describes a

list of patient data. To decode what the data represent needs further

information obtained from an ASCII look-up table (not shown).

pdtest: —

list([80,68,44,49,51,58,52,53,32,44,49,50,46,49,32,32,
44,54,46,48,54,32,32,44,48,46,57,32,32,32,44,49,
46,51,32,32,32,44,48,46,53,48,32,32,44,48,46,48,
48,32,32,44,52,46,52,32,32,32,44,52,46,50,32,32,
32,13],X),

name(Y,X),

write(Y).

TABLE 6.2 Machine Communication in PROLOG

The two arguments in the list/2 predicate are a PROLOG list and an

ASCII string. In the example above, X becomes instantiated to

"PD,13:45 ,12.1 ,6.06 ,0.9 ,1.3 ,0.50 ,0.00 ,4.4 ,4.2“

Apart from the string identifier PD, there are nine data fields each

consisting of six characters. These data fields comprise the time of

measurement and eight items of patient respiratory function. The last

character in the list is ASCII(13), this is a non-printable character

which represents "carriage return". Thus, when the name/2 predicate is

reached, whose arguments are an atom and a string containing the

characters of the name of the atom, the string has become instantiated

121

and its atom equivalent is returned. This is then used by the write/1

built-in predicate to send the patient data to an output device. At

this point the data are in the following format :-

PD,13:45 ,12.1 ,6.06 ,0.9 ,1.3 ,0.50 ,0.00 ,4.4 ,4.2

To convert this output into a more acceptable form a data compression

routine can be employed. This can be achieved in a number of standard

ways. Illustrated below in Table 6.3 is a routine to eliminate each

occurrence of a space character (ASCII equivalent is 32), adapted from

Bratko (1986).

squeeze:-
getO(C),
put(C),
dorest(C).

dorest(13) :- !. /* ASCII(13) = carriage return */

dorest(32) :- !, /* ASCII(32) = space */
get(C),
put(C),
dorest(C).

dorest(Letter)
squeeze.

TABLE 6.3 Data Compression in PROLOG

The getO/1, get/1 and put built-in predicates are used for character

input and output. This routine will read the first character of any

output atom, and then continues character processing in one of three

ways. If a carriage return is met the routine terminates; if a space

is met it is disregarded; if any other printable character is met it

is returned to the output. Notice the powerful use of recursion in

this procedure. If the patient data from the previous illustration is
compressed in this way, the output will become :-

PD,13:45,12.1,6.06,0.9,1.3,0.50,0.00,4.4,4.2

Further list processing is required to obtain the standardised data

format for PROLOG input to other modules, where each number must be

separated by a comma (rather than a colon, as in the time data field).

This example shows that PROLOG can handle data conversion at

the machine-level software interface. However, in the development of

AIRS this approach was abandoned due to pragmatic constraints. Indeed

1 2 2

it is doubtful whether PROLOG processing is fast enough to cope with

the required data-rate, and other faster commercial packages are

available which provide the same functionality with a higher utility.

Further investigation is required in this area before any firm

conclusions can be reached.

6.4.2 Data presentation

Presentation of data occurs at two levels. The first uses a

six-line ’data capture’ window (ventdb) and the second uses the full

screen to display values in the ’database’ window (ventdatdb). The

reason for this dual display is that users require some immediate

visual feedback of the data being entered, hence the data capture

window. For ease of use a similar menu to that used for data capture

is employed to display data in the database window. Whilst in the

database facility, it is possible to view the previous 22 values of

any data item captured by the system.

6.5 Late Prototype System

This phase in the development of an intelligent system can be

viewed as an important milestone, it brings together concurrent work

in knowledge engineering and interface design. It allows the different
levels of intelligence employed and the user interface to be examined

by end-users. Whereas the early prototype system is denuded of

knowledge, the late prototype system is a functioning system. To take

advantage of bringing the users and full system together for the first

time, the system engineer or developer may seek advice on how to

improve the system and take note of the comments made by the full

range of intended users. This milestone leads naturally to the next

phase of development, which is to adapt the program for specific use.

6.6 Program Tuning

From the perspective of the system engineer, program tuning

can be defined as the modification (and evaluation) of the software to

improve performance so as to meet specific objectives. It is a two

stage process: detection of problems in performance of the system (for

example, response times); and modification of the system to correct

the detected problems. Intuitively, this is an iterative process in

which improvement of the system is heuristic. This indicates, perhaps,

that a successful outcome is due to more artistic merit than
scientific endeavour.

The techniques involved in program tuning include improving

123

the code and enhancing the file structure. In AIRS a significant
improvement in response times was achieved by optimising the items

contained in the PROLOG database. For example, the clauses used most

often were placed at the top of the list in the database. The file

structure was also changed so that a patient index number linked

demographic data files to the time-stamped clinical data collected and

archived by the system. This allowed the write-once only demographic

data files to be accessed when necessary rather than take up valuable

working memory.

Three ’laws’ became evident when in this phase of

development. A law of diminishing returns: it is estimated that 80% of

results are obtained with 20% of effort, but it takes the remaining

80% of effort to achieve the remaining 20% of results (although rarely

achieving the ’perfect’ system). A law of pragmatism: there may be

many interesting facets of development within a system, but if

inappropriate behaviour is the outcome, effort has been wasted.

Finally, Ockham’s Razor: the simplest (or most obvious) way of doing

something is often the way to proceed. All three laws were involved

during the tuning of the AIRS software.

6.7 Intelligent Knowledge-based System

The development of the intelligent knowledge-based system

into a final product is another important milestone. However

development of the system does not stop once this phase has been

reached. It is crucial to realise that AIRS will remain viable only

as long as the knowledge it embodies remains current clinical

practice. Knowledge in the domain of respiratory therapy is dynamic,

new treatment regimes are being reported at regular and frequent

intervals. The onus is on the clinicians and knowledge engineers alike
to incorporate new knowledge into the system.

6.8 Formative Evaluation

The Formative Evaluation is an amalgam of evaluative queries

active at different times in the development process of the system.

This is reflected in the way that this evaluation process is presented
below.

The components of the AIRS architecture comprise a

ventilator system, a computer system, a range of possible end-users

and the patient (the system of interest). Only functional

decomposition of the computer system was allowed, the other systems

124

being standard. To enhance the acceptability of computer hardware a

high resolution screen is used for data presentation, and an

alternative means of manual data entry other than the QWERTY keyboard

is being sought. The use of large, high resolution screens allows

their content to be intelligible from a distance, freeing the nurse

from the immediate environs of the patient yet still allowing a

constant check on patient data.

The Early Prototype System shows the type of interface that

is possible to the end-users. AIRS has a window-based menu system

which is acceptable to all categories of end-user (student nurse to

senior clinician). Speed of data entry was increased by using a

mouse, although initial difficulties in handling the device meant that

data entry was in fact slower before any benefit could be obtained.

Menu-options were chosen at this stage, which were subsequently

changed as development of the system progressed. A more fundamental
change involved the use of the explanation facility: instead of having
just one option at the main-menu level, an explanation option was

included in each of the relevant sub-menus. Therefore far fewer key-

clicks were necessary, thus saving time before an explanation was

generated, which increased user acceptance of the system.

Within the off-line version of AIRS there are four types of

interface: the hardware interface; the software interface; the human-

computer interface; and the inter-personnel interface. In the on-line
version of AIRS a physical connection must exist between the

ventilator and the computer system so that data and instructions can

be transferred between the two. It is forseen that this link will be a

standard RS-232 or similar. The ventilator system issues data to its

output port in terms of an ASCII equivalent to the character set. As

shown in Section 6.4.1, the translation of ASCII characters back into

alphanumeric format is a trivial problem using PROLOG. However in the

off-line version of AIRS it was decided to omit this stage of data

processing, as lists of numbers (ASCII code) do not enhance the

transparency of the system. Instead much work was involved in the

design of the human-computer interface, which uses a hierarchy of

menus for manual data capture. It was important to make this method of

data entry attractive, even though the majority of the interface would

become redundant in the development of the on-line system. The

evaluation of the inter-personnel "interface" can be viewed in terms

of the educational needs of the persons involved. This functions at

two levels: how to operate the system itself, and how to use the

125

information contained within the system. The first question should be

addressed initially by the system engineer, and the second by senior

nursing or clinical personnel. In AIRS the "interface" between

clinical personnel and the patient remains an important aspect of the

system. Evaluation of all these interfaces can be couched in terms of

levels of communication between the sub-systems. If any one breaks

down the integrity of the whole system is compromised.

The Formal Evaluation of Knowledge Engineering Design is

linked in many ways to the formal evaluation of later phases of the

methodology, and to the summative evaluation of the fully developed

product. For example, the quality of the rule-set will not be known

until various outcome measures are known. These include knowledge base

"coverage" (that is, completeness of the knowledge base) and relevance

of action suggested or explanation generated. This illustrates the

iterative nature of the knowledge engineering design process.

The evaluation of the Late Prototype System is a first

opportunity to query AIRS task knowledge. That is, does the system do

what you want/expect it to do? This is the phase in the methodology

when various teething problems can be identified and dealt with. Minor

problems did occur at this stage in the development of AIRS, but these

were all found to be faults with the program rather than errors in

the process of operation.

Evaluation of the Program Tuning stage of AIRS is involved

with observing the levels at which the set-point and trend alarms are
set. It is also important to ensure that the correct action and

appropriate explanation are generated for each alarm state. The system

is able to handle situations where more than one alarm is active at
any one time.

6.9 Summative Evaluation

The summative evaluation deals with that part of AIRS which

is involved with data processing and interpretation. Therefore the

analysis option of the main-menu is the focus of attention. For the

purpose of this study the ventilatory process is deemed to consist of

three separate functional stages: initialisation of the patient on the

ventilator; maintaining the respiratory needs of the patient; and
weaning the patient off the ventilator.

The initialisation stage involves knowledge of patient

diagnosis. For each diagnostic state there are specific ventilator

settings that should be used to initialise the patient. The maintain

126

option of the analysis sub-menu is concerned with keeping certain

measured variables from the patient within desirable physiological

limits. This is an alarm-driven technique which uses pattern cognition

to elicit a visual alarm when the monitored data go outside the pre-

set limits. Weaning a patient off the ventilator is the stage where

expert system technology is used. The problem addressed is the

determination of the point when the patient is fit enough to start the

weaning process, and then move progressively through the SIMV mode of

ventilation until spontaneous respiration is restored once again.

To provide a summative evaluation of AIRS a retrospective

case study was undertaken. This utilises a computerised database which

contains patients who have passed through the Intensive Therapy Unit,

Royal Free Hospital, London, from May 1986 to December 1988. As it is

routine practice to admit some post-surgical patients before they

return to their surgical ward, all patients who entered the unit for

less than twenty-four hours have been eliminated from the database.

This leaves a total of 630 patients entered between May 1986 and

December 1988; of these 427 (67 %) were ventilated at some time during

their stay. These patients have been classified into fourteen

diagnostic states (as previously seen in Table 6.1, p.103) which

enables a grouped data analysis. Patients from each diagnostic group

present their own challenge to the management of ventilatory

performance. To meet this challenge AIRS has fifteen complementary

management strategies. Preliminary results for three diagnostic groups

which compare the initial ventilator settings as suggested by AIRS to

those obtained from the retrospective study are shown in Table 6.4.

This table shows the differences in respiratory rate (RR), tidal

volume (TV), and the fraction of oxygen in the inspired air (FjC^). A

more detailed statistical analysis awaits further data.

6.10 Meta-evaluation

From the evaluation of requirements, the need for an

instrumentation system such as AIRS is strongly indicated. Progress

in this field would be enhanced even if the system were used to

identify possible problem areas for a subsequent generation of

intelligent instrumentation. An attractive user-interface has been

developed which has a fully integrated data presentation and

storage/ret reival system as a by-product of the off-line
implementation.

127

RETROSPECTIVE
STUDY

AIRS

PNEUMONIAS

RR TV FI02

14.4 + 3.1 0.74 + 0.12 0.67 + 0.18

12 0.75 0.5

CARDIAC

RR TV FI02

11.3 + 0.1 0.76 + 0.01 0.55 + 0.20

12 0.75 0.5

HEALTHY LUNG

RR TV FI 02

12.7+1.7 0.76 + 0.11 0.43 + 0.07

10 0.75 0.4

TABLE 6.4 COMPARISON OF INITIAL VENTILATOR SETTINGS IN THREE DIAGNOSTIC GROUPS

6.11 Summary

The methodology introduced in Section 4.3 and applied

throughout Part II of this study covers total system development,

incorporating software development and wider issues of technology

transfer. As well as providing coverage for the entire development

process, the application of a methodology provides a framework for

support for system evolution, and is necessarily an open-ended

process.

The methodology employed allows the development process to be

partitioned into discrete phases, these are necessary to define

milestones for evaluation purposes. This enabled the creation of

decision points in the development of the system which facilitated the

direction of effort.

Part III of this study considers the decision-support process

from a wider perspective, although it builds on work presented in

Parts I and II. It illustrates some of the processes undertaken to

achieve the implementation of AIRS and gives information on how and

why particular avenues of thought were pursued.

129

PART III

130

7 : DISCUSSION

7.1 Int roduct ion

Part I of this thesis described the evolution of the

components which comprise an intelligent instrumentation system to be

applied to the domain of critical care medicine; Part II illustrated

how a methodology for system design, implementation and evaluation

could be used to generate a specific application; Part III now brings

together these two strands and includes the wider issues on which the

research is based.

For ease of discussion this chapter is divided into five

sections which reflect the different methodological activities

introduced in Part II. Section 7.2 discusses clinical information

systems in terms of their underlying measurement and control

functionality and indicates how intelligence can be embedded into such

systems by using a knowledge-based formalism. This description

illustrates the design concept of an intelligent measurement system.

For its implementation, knowledge derived from human experts has to be

transformed into a set of symbols which represent machine-readab1e

software code. Two distinct phases can be identified within this

transformation process: knowledge elicitation and knowledge

representation. Discussion of each of these phases can be found in

Sections 7.3 and 7.4 respectively. No matter how well knowledge is

acquired and represented the intelligent system will not be used

unless the interface to the user is attractive and meets other defined

user requirements. These matters are discussed in Section 7.5, the

Human-Computer Interface. A measure of the worth of the intelligent

system can be determined at various points during its evolution. This,

and a more general discussion of the evaluation of intelligent systems

can be found in Section 7.6. Both specific and general conclusions of
this study follow in Chapter 8.

7.2 Clinical Information Systems

Clinical information systems are underpinned by clinical

measurement, which itself can be defined as those data collected in

context of providing information about the physiological well-being,

or state, of a patient. If patient state is regarded as a dynamic

entity, then clinical measurement provides the basis from which

patient state trajectory can be determined. Although this is a

description which many clinicians would fear, the concept of patients

131

residing in a ’state space’ has been used with some success by several

clinical groups (Siegal, 1981; Shoemaker et al., 1982). Such an

approach is favoured because it is more rigorous than the more

traditional diagnostic-based approach to patient management issues.

Measurements, data, information and knowledge are related to

each other by a series of transformations (see Figure 7.1). When

recorded measurements of a particular variable are ordered, for

example as a time series, they can be described as data. To transform

these data into information requires classification of the data

elements. Finally, knowledge can be obtained by interpretation of

information together with appropriate explanation and/or
justification.

For a complete understanding of clinical information systems

employed in a critical care unit it is crucial to comprehend the

general principles of measurement which form their base. A definition

of measurement can be given as:-

"Measurement is the process of empirical objective
assignment of numbers to the properties of objects and
events of the real world in such a way as to describe them."

(Finkelstein, 1982)

If this definition is accepted then it is imperative to realise that

measurement is concerned with two complementary systems: the natural

system of the ’real’ world and the formal system of the ’model’ world.

Natural systems comprise some perceived aspect of the real

world which we wish to study. There is a set of qualities in which

exist definite relations. A perceived quality can be termed an

’observable’, which is the most fundamental unit of the natural

system. Relations between two or more observables can be termed a

’linkage’. Thus, the study of natural systems can be described in

terms of system observables and linkages. For example:-

"If an interaction between any two natural systems sj, S2 >
causes some change in S2 , say, then the vehicle responsible
for this change is an observable of Si, and conversely."

(Rosen,1985)

Quantitation can be introduced into the analysis of natural systems by
noting that:-

"...if a quality of such a system corresponds to an
observable, a quantity corresponds to a specific value of an
observable. "

(Rosen,1985)

132

MEASUREMENT
sense
of order

FIGURE 7.1 TRANSFORMATIONS WITHIN AN INFORMATION SYSTEM

This introduces the formal system which can be described in terms of

mathematical entities and the mappings between them together with the

relationships that they satisfy.

To establish the essential relationship between natural and

formal systems, the entities and linkages contained within each system

are deemed synonymous. Figure 7.2 depicts the degree of synonymity.

Within the natural system there are two entities, ’A’ and ’B’, with a

causal link between them, that is, a relationship exists between a

cause and effect of an action in the natural world. The encoding

relation transforms observables and linkages in the natural system via

observation and measurement into symbols and propositions that

represent ’A’ and ’B’ in the formal world. This defines a modelling

relation between the natural and formal worlds. Within the formal

system ’A’ and ’B’ can be linked in various mathematical ways, but of

interest to this study is if they are linked by inference rules. That

is, IF antecedent conditions are true THEN consequents fire an action

(IF A THEN B). If a set of related entities from the natural system,

which define some body of knowledge, are represented in the formal

system by a set of inference rules, then the encoding relation can be

termed knowledge-based modelling. Examples of knowledge-based systems

from the medical domain which illustrate variations on this type of

modelling can be found in Appendix I. The decoding relation can be of

a multipurpose nature: for description, explanation, control and/or

prediction. Most knowledge-based measurement systems (including AIRS)

describe, explain and control (in open-loop mode) the processes that

they represent. However, predictive models provide a powerful tool

when it is important to gain information about a future state of a

natural system. For example, being able to predict future patient

state on the basis of some control action.

To be aware of how these philosophical issues relate to day-

to-day activity within a critical care unit, the measurement system

can be viewed from another perspective. Figure 7.3 shows the elements

of a general measurement system, which when errors are ignored

comprises the system of interest, the measuring system and the method

of display. However, errors are introduced inherently into the

measuring system, so it becomes important to realise that the measured

value of an observation will not be exactly the same as its true

value. A full account and classification of these errors can be found

in the literature (for example, Barry, 1978; Hofmann, 1982).

134

ENCODING

U)

causal
link

rules of
inference

FIGURE 7.2 RELATIONS BETWEEN NATURAL AND FORMAL SYSTEMS

ERROR

SYSTEM OF
INTEREST

true value MEASURING measured value DISPLAY
of observable SYSTEM of observable SYSTEM

FIGURE 7.3 GENERAL MEASUREMENT SYSTEM

For the management of patients who require intensive care a

large and diverse range of physiological data are required. There are

also a range of measuring techniques to cope with the different types

of data encountered (see Table 7.1). A set of sensors is required

which can detect changes in pressures, flows, volumes, temperatures,

inputs, outputs, input-output relations, biochemical processes and

elect rophysiological signals. Some sensors, such as those found in

most modern ventilators (flow, pressure, volume and temperature), are

in direct contact with the system of interest. Others have indirect

contact, with varying degrees to which they are abstracted from the

physiological process of interest. For example, for the on-line

measurement of arterial blood pressure a saline-filled cannula is

introduced into (say) the brachial artery of the arm, the other end

being attached to a cuvette in which the pressure transducer resides

and is external to the patient. The pulsatile nature of the arterial

blood pressure can be observed through the transparent cannula as

oscillations in the level of the blood-saline interface. Blood

pressure is therefore recorded as the action of the saline fluid on

the transducer. The accuracy of this measure depends on factors such

as the compressabi1ity of the saline fluid, the rigidity of the walls

of the cannula, and the characteristics of the pressure transducer
itself.

For monitoring purposes a basic set of observations can be

identified which allows the state of the patient to be inferred at any

point in time. This set of variables differs slightly between

institutions dependent upon the varying clinical specialities catered

for within each hospital. When a time series has been collected the

detection of trends becomes possible, allowing the patient-specific
treatment plan to be optimised (Blom et al., 1985).

In critical care medicine it is often desirable to keep

certain key physiological variables within well defined limits. If

these limits are exceeded a control action brings about a change so

that the system returns to within the accepted levels. AIRS

demonstrated this feedback principle in open-loop mode: if minute

volume decreased to an unacceptable level, advice was given to the

user to raise the respiratory rate and/or tidal volume. Closed-loop

feedback systems have also been used in clinical situations, for

example to control arterial blood pressure in hypertensive patients by

intravenous administration of nitroprusside (Sheppard, 1980).

As measurement technology has advanced there has been a

137

PRESSURES

Arterial blood pressure (systolic, diastolic)
Venous blood pressure
Pulmonary capillary wedge pressure
Intra-cranial pressure

FLOWS

Blood flow
Respiratory gas flow

VOLUMES

Tidal volume
Minute volume

TEMPERATURE

Core temperature
Peripheral temperature (big toe)

INPUTS

drugs / doses

OUTPUTS

Cardiac output

INPUT - OUTPUT RELATIONSHIP

Fluid - electrolyte balance

ELECTROPHYSIOLOGICAL SIGNALS

Electrocardiogram
Electroencephalogram
Evoked responses

BIOCHEMISTRY

Haematological
Liver function tests

TABLE 7.1 EXAMPLES OF PATIENT DATA

138

shift towards integrating microprocessors or microcomputers into

biomedical instrumentation systems. This is evident in the ventilator

component of AIRS, where a microprocessor sends and receives control

signals from pressure, flow and temperature sensors mounted at

strategic places in the ventilator system. This data processing

functionality has been defined previously in the Introduction as

giving rise to a ’smart’ instrument; for an instrumentation system to

be described as ’intelligent’ there must be incorporated within it an

information processing requirement for a knowledge-based component.

Thus, this type of instrumentation system differs from conventional

technology by having as a necessary requirement mechanisms to elicit

expert-level knowledge and to represent that knowledge in a way that

is programmable by computer. The way this is achieved in AIRS is

discussed below, comparisons can also be made with other methods of
knowledge elicitation and representation.

7.3 Knowledge Elicitation

It has been shown previously that the difference between

’smart’ microprocessor controlled instruments and intelligent advisory

systems is the level of knowledge embodied in the latter. This

knowledge does not appear de novo, rather it is acquired from the

literature and human experts. The process of knowledge acquisition

has been described as a "bottle-neck in expert system construction"

(Hayes-Roth et al., 1983), so it is not suprising to see a plethora of

techniques becoming available to try and address this issue. This

section will identify some of the most popular techniques for

knowledge elicitation, that is, that branch of knowledge acquisition

which deals with human experts. It is common for experts to fall into

one of three categories: academics, practitioners and domain ’Tsars’.

Generally, academics provide a theoretical base for a given domain;

practitioners have experience of using a particular body of knowledge

and therefore provide a pragmatic base; and domain Tsars have the

ability to combine theory and practice. Knowledge engineers must be

aware of the scope and limitations of their human experts, and be

prepared to accept that the perception one expert has to a particular

problem may not be the same as another. In situations where there is a

clash of opinion, a ’gold standard’ should emerge when knowledge is

elicited from a range of experts. It is recognised that this method of

acquiring a gold standard may not be feasible in some domains. For

example, in situations where there is a lack of agreement between

experts, problem solving may be considered an art rather than a

139

science, and therefore any attempt at formal representation of the

problem domain is unlikely to succeed.

To compound the difficulties faced by the knowledge engineer

there are different types of knowledge, given by the following

epistemological classification of expertise (Shadbolt and Burton,

1989):

i) Domain level knowledge

This is defined as knowledge that describes the concepts and

elements in the domain and the relations between them. That is, a

declarative description is obtained about what is known for each

concept in the domain.

ii) Inference level knowledge

This is defined as knowledge about how the individual

components of expertise in the domain are organised and used in the

overall system; this type of knowledge may be implicit from a

pragmatic viewpoint.

iii) Task level knowledge

This is defined as procedural knowledge which deals with how

goals should be reached.

iv) Strategic knowledge

This is defined as knowledge which monitors and controls the

systemic problem-solving strategy. For example, strategic knowledge

deals with problems associated with conflict resolution.

Thus, if the overall aim of knowledge elicitation is to

specify a body of knowledge which is complete, consistent and as

correct as possible, then several overarching questions must be borne

in mind:

* What is the role of the intelligent advisory system?

* How is the domain mapped out in terms of significant concepts and

relationships?

* What is the task structure of the domain? Are there any ’special’

relationships between concepts?

* Is there a need for more than one type of strategic knowledge?

Knowledge elicitation can therefore be a complex process,

best dealt with by a range of techniques. In this study a ’structured

140

interview’ elicitation technique is used and is discussed below in

some detail. Other elicitation techniques are discussed for

comparative purposes and indicate potential areas for future

development in this field.

7.3.1 Structured Interviews

The most popular knowledge elicitation techique is the

structured interview. There are various formats that can be used

within a structured interview, two of the simplest methods are

outlined below. Using the first method the expert is given a list of

variables that are used to describe the domain and a list of

conclusions which describe all possible outcomes of the system.

Production rules of the format:

IF <variable 1> <value>

and <variable 2> <value>

and «variable N> <value>

THEN «conclusion A>

can then be derived which link the two lists. It is important for the

knowledge engineer to attempt to formalise all rules stated, whether
they be explicit or implicit in nature.

In the second method the expert is given a brief verbal

outline of the target task, such as ’weaning patients off ventilators

using synchronised intermittent mandatory ventilation’. Topics

covered in the outline should (as before) include a description of the

possible solutions to the problem and a description of the variables

which may affect each solution. However, in this method a list of

major rules which connect the variables to the solution should also be

stated explicitly. The task for the knowledge engineer is then to

take each elicited rule in turn and enquire about the conditions

required which increase or decrease its appropriateness. This
procedure reveals the scope of each rule, and in its test for

relevancy new rules may be generated. This cyclic nature of rule

generation continues until it is clear that the expert will not

produce any additional information.

It is possible to use both of these methods in conjunction

with one another, where the first method produces the rule list for

the second method. In both cases the knowledge engineer should

attempt to keep his contribution to the structured interview process

141

to a minimum. This can be achieved by careful phrasing of the trigger

questions. A "Why..." query is useful as it converts an assertion

made by the expert into a rule. Similarly, a "How..." query generates

rules at a lower level in the knowledge hierarchy. A “What if..."

question simulates a forward scenario for which new rules may be

generated. To reveal the scope of a rule, or of a set of rules, a

“When..." query could be used which could also act as a catalyst for a

new rule set. Finally, if the goal of the knowledge engineer is to

generate further dialogue when the expert has come to a temporary

lull, the "Can you tell me more about..." is a good device to use.

In the development of AIRS both methods of performing

structured interviews were employed to elicit knowledge. For example,

after identification of the seven variables which appear on the AIRS-

maintain screen, the possible action and explanation outcomes were

elicited by forward scenario simulation of each alarm state.

Conversely, the full set of trigger question types were required to

elicit knowledge for AIRS-wean. Concepts used in weaning patients off

ventilators were eventually organised into a hierarchy, described

previously in Section 6.3.3.

The advantages of the structured interview approach to

knowledge elicitation are threefold: the expert only has to put aside

a small amount of time in what is usually a busy schedule; the

experts generally enjoy this method of knowledge elicitation; and the

method can be used to elicit knowledge from any domain. However

there are also a number of disadvantages which can be split into two

sub-groups: those which deal with the expert as subject; and those
which deal with the knowledge engineer.

In the former category it is sometimes difficult to get

experts to obey instructions as generally they do not respond in a

systematic manner and are prone to give anecdotes rather than rules.

In some domains it is difficult to establish clear rules in

production rule format. To obtain maximum efficiency of transfer

between the human expert and the computer-based system it is essential
for the expert and the knowledge engineer to have a good rapport. To

engage in any meaningful knowledge transfer it is worth spending some

preliminary sessions mapping out the knowledge domain, which also

enables the knowledge enginer to have an opportunity to get to know

the expert and his way of conceptualising a problem.

From the point of view of the knowledge engineer the

142

structured interview technique requires a priori knowledge of the

domain so that trigger questions are meaningful and lead to the

capture of a large amount of rules. For the knowledge transfer

sessions to go well the knowledge engineer needs to be astute and

alert to changes in theme. From a resource stand-point this method is

very time consuming for the knowledge engineer. To aid the ease of

knowledge elicitation most meetings are tape-recorded from which a

written transcript is obtained, and many iterations of the technique

are necessary before a ’complete’ rule set is obtained.

7.3.2 Other Techniques for Knowledge Acquisition

Although the structured interview technique was favoured for

the elicitation of knowledge for AIRS, various other techniques have

become available in recent years, including: Protocol analysis; 20

questions; Laddered grids; Repertory grids; and Automatic techniques.

A brief description of each follows.

Protocol analysis is a generic term used to describe several

similar methods of knowledge elicitation. Their common theme is that

the knowledge engineer records the routine activity of an expert

during the solving of a particular problem task. Protocols are then

made from the written transcripts of the record (for example, on

audio/visual tapes) from which rules can be extracted. To be

successful the knowledge engineer must be acquainted with the domain

of interest; if this is not the case an alternative strategy can be

used where another expert ’shadows’ the expert performing the

problem-solving task in order to explain the nuances of what is

happening. In general protocol analysis elicits the "when...“ and

"how..." of using different items of the knowledge base as well as

revealing the various reasoning strategies. A problem with protocol

analysis is that it is very time consuming, and only a small section

of the domain can be addressed each session.

The 20 Questions knowledge elicitation technique is useful
in the initial stages of knowledge structuring. Initially the expert

is provided with little or no information about a particular problem

to be solved. The expert must then ask the knowledge engineer for

specific data or information that is required to solve the problem,

(the knowledge engineer can qualify any answer given). Using this

format, processing rules can be formed from the requests for

information from the expert, where not only what is requested but also

in what order the information is requested, are important knowledge

143

sources.

An obvious disadvantage of this technique is that the

knowledge engineer has to be an expert in the domain to answer
questions from the expert. Other disadvantages include: the technique

is time consuming to prepare, it is sometimes difficult to infer

rules, and experts do not like being relegated to role of

subordinate.

The laddered grid technique provides a graphical

representation for a hierarchy of domain knowledge. A qualitative

two-dimensional graph is produced which shows ’concept nodes’

connected by 'labelled arcs’. To construct this graph the knowledge

engineer and expert confer, starting with a seed item which is

mutually agreed. The position of the nodes in the domain map is an

important item of information and several verbal devices can be used

to distinguish the place for each node. These include, "How__" or

"Can you give an example__“ to move down the conceptual map;

"What...." to move up the conceptual map; and "Give me

alternatives...." to move across. The knowledge engineer can choose

the order in which the map is drawn by using the appropriate verbal

cue.

A repertory grid is a technique in which the expert is

presented with a set of cards. Each card has a single concept written

on it and represents an element in the domain of interest. To

construct the repertory grid the expert chooses three cards, two of

which are similar and one of which is different. A label is given to

the feature which provides the reason for discrimination. This process

continues with different triads of elements until the expert can think

of no further discriminating constructs. The outcome of this

technique is a matrix of ’similarity ratings’ which relate the

elements and their labels. To analyse the results the statistical

technique of cluster analysis is used. Rules can be elicited directly
from the grid.

The advantage of this technique is that it uses a formal
method to elicit information which may not have been forthcoming using
a conventional interview technique. However, analysis can be very

time consuming and sometimes difficult to interpret. To aid the

knowledge engineer, there is a software program available which

performs the repertory grid analysis interactively with the domain

expert (Shaw and Gaines, 1987). This technique is best suited to

small scale domains even when the computer-aided method is used.

144

In each of the knowledge elicitation techniques discussed

thus far, a limiting feature has been that the knowledge engineer

acts a filter for information and if a control engineering analogy is

taken some signal is invariably lost. To counter this problem

automatic knowledge elicitation procedures are becoming popular. These

are techniques where the expert imparts knowledge directly into the

computer-based system. There are two main methods in use: machine

induction and knowledge-base browsing.

Machine induction has the longer history, with perhaps the

best known algorithm for rule capture being ID3 (Quinlan, 1979). The

ID3 algorithm is implemented on a computer and uses a statistical

pattern recognition technique to infer rules from training examples

that the experts provide. These training examples are solved problems

from the domain of interest. An expert system shell is available

which is based on this algorithm (’First Class’, Programs in Motion

Co.). The machine induction technique does not provide a complete

solution to automatic knowledge elicitation as the knowledge engineer

together with the expert have to decide what metrics to measure to

reach particular conclusions. A major disadvantage of machine

induction is its way of handling causality. The fact that a

particular set of precursors co-occurs with a particular conclusion

does not necessarily imply a causal relationship.

A more recent development in automatic knowledge elicitation

is the knowledge base browser approach (Chelsom, 1990). This method

has become possible due to the rapid development of computer hardware

and software, where a major emphasis has involved the human-computer

interface. In this technique the expert first establishes a taxonomy

of classes in the form of a hierarchy. The data which are required to

provide information about the whole domain are established. The task

of the expert is to then go through each ’knowledge node’

systematically, detailing which items of data are important for that
particular node and to indicate at what value each item of data change

their levels of significance. A subjective measure of ’belief’ is

also added at this stage. The outcome of this procedure is the

definition of a ’problem hypothesis space’ which can be interrogated

at will. A disadvantage of this technique is that the problem to be

studied has to be classifiable into a hierarchy. The expert must also

be familiar with state of the art technology used at the human-
computer interface.

145

7.4 Knowledge Representation

Knowledge representation can be achieved in numerous ways:

frame-based systems (eg. PIP); systems which use semantic nets (eg.

CASNET); and the use of a blackboard architecture for software control

and knowledge representation (eg. HEARSAY-II). Further discussion of

these techniques and systems, together with an operational description

of MYCIN which uses a rule-based formalism, can be found in Appendix

I. As AIRS uses a rule-based representation itself, this method of

knowledge representation is discussed below.

7.4.1 Rule-based Systems

There are three necessary constituents which make up a

rule-based system : a database of pertinent facts which can be updated

and modified; a knowledge base consisting of rules which relate items

of data; and an inference engine which matches rules in the knowledge

base with facts about a particular event as they are entered by the

user. Thus, the information model that this type of system uses is to

infer intermediate data findings from the rules executed from data

input by the user, which has the effect of gaining extra information

about a particular problem. The rule execution cycle continues until

an impasse is reached, that is, when no conclusions can be formed from

the data input by the user (the system then may request more data),

or the top-goal of the system can be concluded from the data already

available, this stops the execution cycle.

Rule-based systems are typified by a production rule
inference mechanism, shown in Table 7.2:

IF <antecendent 1>
<antecendent 2>

Antecedent N>

THEN •«consequent >

TABLE 7.2 The Format for a Production Rule

Each system consists of many rules of this type, these may

be chained together by allowing rule antecedents in one part of the

rule-base to be a consequent of another rule in another part of the

rule-base. For example, let a mythical list of antecedents and

consequents for a particular application be represented by the letters

A to G; further, let two rules be defined as described in Table 7.3:

146

RULE 1

IF i)A and
ii)B and

iii)C

THEN D

RULE 2

IF i)E and
ii)F and
iii)G

THEN C

TABLE 7.3 Two General Production Rules

This example illustrates the principle of rule chaining, as

in evaluating the antecedents of Rule 1 a consequent of another rule

(that is, Rule 2) is met. Thus, for the consequent D to be asserted

as a fact, sub-goals A,B,E,F and G have to be evaluated. In a

simple system these sub-goals could all be user queries about patient

findings which establish the existence of a pathphysiological

disorder. In some systems, including MYCIN, the consequents can also

have weightings attached to them which indicate the likelihood of a

particular event occurring. When rules chain together these likelihood

values interact in a way to reflect the conditional probabilities of

two or more events happening simultaneously.

Another way of conceptualising the rule-base is to think of

the rules organised into hierarchical sets, sometimes referred to as

’goal trees’ because of the order of rule execution. In the simple

two rule example above this corresponds to the representation

illustrated in Table 7.4:

D

A

TABLE 7.4 A ’Goal Tree’ Representation

By considering the rule-base as an ordered hierarchical set,

both the control strategy and explanation facility of rule-based
systems can be formulated.

When the inference engine matches the consequents of rules
in the knowledge base with data in the database a forward-chaining

inference mechanism is defined. Conversely, if the match is with the

antecedents of the rules, then a backward chaining inference mechanism

147

is the outcome.

In more detail, the forward-chaining mechanism starts with

data in the database from which all antecedents of satisfiable rules

are fired in order of appearance in the rule-base. The successful

antecedents then become further items of data and are added to the

dynamic database. Of course, the antecedents which succeed may be the

consequents of rules at a higher level in the goal tree, and so the

inference mechanism is reiterated. This process continues until more

data are requested or the top-goal is reached. In systems which use a

forward chaining inference mechanism, for example the 0PS5 environment

(Forgy, 1981), the efficency of the system is determined by the order

of rules in the rule-base.

Backward chaining inference systems start with the top goal

in the goal tree from which its consequents must be evaluated. These

invoke further rules whose antecedents are the consequents of the top

goal. Again, this procedure continues until confirmatory data

required by the system are requested. If these data already exist in

the database the leaf nodes succeed, that is, the goal nodes at the

base of the goal tree are satisfied. These in turn send a wave of

goal successes back up the goal tree, ultimately leading to the

success of the top goal rule. However, if the confirmatory data does

not exist in the database, goals which require user interaction are

fired in order that the required data may be input. The EMYCIN shell

used by the MYCIN system uses this form of inference mechanism, where

the top goal is a therapy rule which asks if there are any organisms

present which require therapy (Shortliffe, 1976). The normal

execution cycle of PROLOG also mimics a backward chaining mechanism.

In.AIRS there are three types of rule : weaning, regression

and progression. The top goal of the weaning rule set is given in

Table 7.5:

premise (0.1, weaning, [fit-to-wean])
equals (0,1, weaning, fit-to-wean, yes).

where first argument is the Rule Number
second argument is the Premise Number
third argument is the Rule Type
fourth argument is/are the Dependent Variables.

TABLE 7.5 The Top-goal of the Weaning Rule Set

148

To satisfy the goal ’ fit-1o-wean’ six further rule

hierarchies have to be satisfied (see Section 6.3.3). A backward

chaining inference mechanism is used where the leaf nodes fire

questions to the user in order to add items of data to the database.

Two types of explanation are possible in these systems : WHY

explanations and HOW explanations. WHY queries are dealt with by

ascending the goal tree and show which items of data are required to

determine the antecedents of sub-goals. Conversely, HOW explanations

descend the goal tree, chaining together the events which are

necessary to reach a particular conclusion. In AIRS, both types of

explanation are given in terms of a list of the goal nodes passed

through to reach a particular conclusion.

One problem encountered in rule-based systems is that of

conflict resolution; that is, if a condition arises that both negates

and satisfies a particular rule. The most common solution to this

impasse is to invoke a meta-rule. In AIRS there is one meta-rule,

which is shown below in Table 7.6:

IF progression rules succeed
regression rules succeed

and

THEN regress

TABLE 7.6 AIRS Meta-rule

Thus, AIRS errs on the side of safety. This is an important

principle which many researchers take one step further (Table 7.7):

IF no conclusion(s) apparent

THEN do nothing

TABLE 7.7 A General Meta-rule

Here, if the system is unable to come to any conclusion then

current opinion dictates that the system takes no action rather than

an action which may be erroneous. Although this maxim can be applied

to any type of knowledge representation it is particularly true for

production rule systems where there is usually only one consequential
action.

149

7.5 The Human-Computer Interface

There are many synonyms which describe the interface between

the (human) user and computer, including ’man-machine interface’ or

more simply ’user interface’. These are attributable perhaps to the

relevant newness of the area of research. The choice here of ’Human-

Computer Interface’ (HCI) is deliberate, for it is a phrase which

describes the juncture between two of the components featured

previously in the design phase of AIRS (see Figure 5.1).

Research themes which include the investigation of the HCI

are popular due to the rapid proliferation of computer systems in all

sectors of society. Whereas there may be an increasing number of

people able to program computers, there is still an order of magnitude

greater number of people who can be described simply as computer

operators. This mul ti-perspective view of the HCI becomes more

apparent when dealing with knowledge-based systems in highly complex

environments such as that exhibited by a High Dependency Environment.

For example, at certain times there may be a conflict of interest

between efficient programming capability and the interface

requirement. To identify the pertinent issues involved in HCI

design, the user requirements for the system are an important source

of information. It is essential that computer programmers (system

designers) take into account these issues when creating computer-based

systems for widespread use, for if not it is probable that the system,
when implemented, will remain unused.

An integrated approach to HCI issues is required which

matches what the user wants from the system to the type of interface

available using the programming environment. Traditionally the HCI

consists of a keyboard for input into the computer system, and a

visual display unit (VDU) or printer for display of the output. By

using an integrated approach, the HCI can be categorised in terms of

type of alternative device for input/output; graphics capability of

the system; and other more specific configurable features.

A need for peripheral devices which provide an alternative

method for input into the system became apparent as soon as computer-

based technology reached the business community. Many computer

operators have limited keyboard skills which means that as a

consequence data input is a rate-limiting step. To counter this

problem two types of input device have evolved : the pointing device

which must be used with associated software; and devices which use

1 5 0

pressure-sensitive sensors. The most popular pointing device is the

mouse, although it is becoming evident that control of a trackerball

requires less dexterity. The trackerball also has the advantage of

having a smaller ’footprint’. A transparent pressure-sensitive

overlay placed on a VDU screen is the sensor for another pointing

device - the finger of the user. More recently the sensing element has

evolved to an infra-red matrix, this method of location is more

reliable than its predecessor. In the design phase of AIRS an external

pressure-sensitive graphics pad is specified as an alternative input

medium (described in Chapter 5).

Changes in input/output device have heralded further changes

in the quality of screen interface. Graphics packages are becoming

the norm, a ’windows interface’ with associated menus and pull-down
screens being a popular configuration. It is also possible to perform

multi-tasking with advanced graphics packages. This has obvious

advantages in complex environments, for example, data can be collected

continuously from on-line monitoring devices whilst historical trends

or trend predictions are being computed and displayed simultaneously.

Other features of the HCI include its capability for

handling communications, being user-friendly for all types of end-
user, being maintainable and its robustness. Increasingly, stand-

alone computers are being networked into larger communications

systems, either via a local network or as part of a wider commercial

communications system. This is an attractive feature for computer

systems employed in High Dependency Environments, as messages relating

to patient care can be left on the system or sent to/from a remote

source. If the system is connected to a commercial network it is

possible to form diagnostic-related databases for the benefit of

future patient care. For example, by its very nature a rare clinical

condition occurs infrequently, the chance that the same hospital will

admit further similar cases is therefore also rare. However, if a

clinical database for all such cases is created at one national site,

clinicians can send electronically the details of particular patients

which will complement the database. In return the clinician can

receive management guidelines generated from previous attempts at

treating similar conditions. Indeed, there is nothing to prevent the

formation of an international database for particular clinical

findings. Creation of such databases would enable research into the

clinical time course of the disease and could lead to improved therapy

planning.

151

Research into how users use computer-based management

systems has revealed that expert users may look at specific items

whereas the novice user requires a more general picture. The notion

here is that the expert has a ’mind model’ based on experience of

looking at similar cases, and uses the system to fine-tune some of the

parameters. However, the novice user has no such experiential

knowledge to draw upon, and therefore uses the system to help form a

model. Any HCI must therefore cater for both types of user - the

expert ’vertical-mode’ user and the novice ’horizontal-mode’ user.

For the HCI to be maintainable there is a requirement for

modular programming. This allows redundant features of the HCI to be

removed and new features or upgrades of existing features to be added.

The HCI must also be robust for users to gain confidence in using the
system.

Although the current ’ w i n d o w s -1 y p e ’ HCI of AIRS is

attractive and easy to use, it is too slow. The requirement for fast

access into the system and faster screen management can now be

achieved using commercial software packages written in real-time

programming environments. Extra facilities are also available, for

example, a notepad data entry screen for free-text input together with

a word-processing functionality. Both of these facilities are useful

for generation of patient care reports.

The HCI of the future may be more general than those

available at present, sculpted by a user interface management system

(UIMS). Essentially the UIMS is a software device which is placed

between the user and the application program and graphical

presentation manager. It comprises a set of software tools which

support the implementation and evaluation of interactive human-

computer dialogues. The overwhelming advantage of this type of system

is that high quality user interfaces can be generated by the end-user.

The result of this collaboration should be that the software
application will be used effectively and efficiently because the user

has defined the HCI rather than the applications programmer.

7.6 Evaluation

In the formulation of a strategy for evaluation, analogies

have been drawn from evaluation studies in domains which have a richer

history than knowledge-based technology. These are: mathematical

modelling; clinical trials of a new pharmaceutical; and the social

152

sciences. Figure 7.4 shows a different perspective of knowledge base

development than used previously in this study, its emphasis is on

knowledge processing rather than whole system development. The figure

illustrates the mappings between a basic process model of knowledge

engineering and the evaluation issues that can be ’covered’ by

strategies in the analogical systems.

The validation of mathematical models can be defined as the

extent to which a model satisfies the objectives for which it was

formulated. Two types of criteria can be applied to such models;

internal and external (Leaning, 1980). The mappings in Figure 7.4

indicate that the internal criteria cover the development of the

intelligent decision aid, whilst the external criteria cover program

tuning and the goal state where data are required for validation

purposes.

Internal criteria for mathematical model validation comprises

consistency, completeness and algorithmic validity. Consistency and

completeness refers to the finding that the model should not contain

any logical, mathematical or conceptual contradictions, and should

represent all possible aspects of model configuration. Algorithmic

validity refers to the requirement that any algorithm used in the

model is appropriate and leads to accurate solutions. The analogies to

knowledge-based technology drawn from this work are clear -

consistency and completeness can be applied directly to the
development of the knowledge base, and algorithmic validity can be
applied to the adequacy of knowledge representation.

External validation comprises empirical validity, theoretical

validity, pragmatic validity and heuristic validity. Empirical

validity describes the extent to which the mathematical model

corresponds to available data over the intended range of application;

theoretical validity requires any model to be consistent with accepted

theory; pragmatic validation describes the extent to which the model

satisfies its initial objectives; and heuristic validation assesses

the potential of the model for scientific explanation. The external

validation criteria for development of mathematical models map into

the issues of system effectiveness, acceptability and usability when

applied in the knowledge-based system domain.

Clinical trial protocols can be divided into three phases. In

Phase I the safety aspect of the drug is determined, for example, the

measurement of maximum tolerated dose. Phase II tests the efficacy of

the drug, and Phase III uses a multi-centre trial to assess the

153

PROCESS |
M ODEL OF KBS .
DEVELOPM ENT 1

1

M ATHEMATICAL
M ODELLING

1
1
I

CLINICAL |
TRIALS

1

SOCIAL
SCIENCES

i
REQUIREMENT |

1 '

1
1
1

I
I Needs Assessment

Front-end Analysis

▼ 1
KNOWLEDGE
ACQUISITION 1

1
1

1
1

i !
KNOWLEDGE
REPRESENTATION 1

1
1
1

1
1

Phase I 1

Decision-
focused
Evaluation

1 i
PROTOTYPE
SYSTEM 1

I 1

Internal
Validation

1
1
1
1

—

1
1
1
I

Internal
Evaluation

T 1
PROGRAM TUNING

1 ,

1
1
1

L
I Phase II |

1

Formative
Evaluation

▼
INTELLIGENT
DECISION AID | 1__

_1 External
Validation

1

1

1 1__
_1

I

Phase III
External Evaluation
Summative Evaluation
Impact Evaluation

Meta
Evaluation

FIGURE 7.4 EVALUATION STRATEGY COVERAGE

effects of the new treatment regime and compares it to the best

available existing therapy. From Figure 7.4, it can be seen that the

safety aspect has been mapped into the process for producing the first

prototype system from the initial stage of knowledge acquisition.

Clearly, the Phase II objective of producing the desired effect can be

mapped into the program tuning phase of system development. The third

phase of multi-centre trial maps to the evaluation of the goal state,
and can be considered as summative evaluation.

The methodology described in this thesis suggests one way of

introducing an intelligent information system into a pre-existing data

processing environment. Its emphasis is on the evaluation process, as

this has been identified as a route towards ensuring a high user

acceptance. Different facets exist in the evaluation process,

demonstrated by the lack of consensus for its definition and

terminology when applied to intelligent systems. A possible (and

candidate) solution to this problem comes from the social sciences,

where a ’user-focused’ approach has been used to define a multi-

perspective view of evaluation, as follows:-

"...the systematic collection of information about the
activities, characteristics, and outcomes of programmes,
personnel, and products for use by specific people to
reduce uncertainties, improve effectiveness, and make
decisions with regard to what those programmes,
personnel, or products are doing and affecting. This
definition of evaluation emphasizes 1) the systematic
collection of information about 2) a broad range of
topics 3) for use by specific people 4) for a variety of
purposes."

(Patton, 1982)

This definition is favoured because it places emphasis on a systematic

approach to the information requirements of the different end-users.

The "systematic collection of information" reflects the information

gathered at each stage of the methodology; the "broad range of topics"
reflect the different types of evaluation which cover different

aspects of the underlying phases of the methodology; the specific

users of the system are identified at an early stage in the

methodology; and the "variety of purposes" are reflected in the

interest in the evaluation shown by the different type of user.

Hence, evaluation protocols taken from the Social Sciences

have the broadest scope, and the types of evaluation from this domain

illustrated in Figure 7.4 are by no means exhaustive. The various

strategies shown are also not mutually exclusive, as indicated by the

155

high degree of integration. Unlike the domains of mathematical

modelling and clinical trials, evaluation in the Social Sciences

investigates the requirement for a proposed system. A needs assessment

matches what the user requires to solve a problem with the resources

that are available. Front-end analysis describes a more strategic

level of analysis than a needs assessment, providing guidance in the
planning and implementation of programmes. Internal evaluation is

performed ’in-house’ and comprises decision-focused evaluation and

formative evaluation. Decision-focused evaluation provides the

information required to make a specific decision on progress at a

specific juncture in the programme; and formative evaluation

investigates how the present system can be improved. The former maps

into the development of the knowledge base, whereas the latter covers
the iterative process of program tuning. External evaluation is

performed by ’third party’ assessors, and can consist of summative

evaluation and impact evaluation. In the Social Sciences, summative

evaluation investigates whether or not the programme should be

continued; impact evaluation considers the extent to which there is a

change in the environment in which the programme resides. In the

knowledge-based domain this can represent the evaluation of the goal

state. Also, in the Social Sciences the evaluation process of a

programme is sometimes evaluated, this ’meta evaluation’ covers the

entire development process, from initial requirement to achievement of

the final product. Such a concept would also be useful in the

knowledge-based domain.

It is evident from this study that the evaluation of

knowledge-based systems should be considered as an essential and on-

going activity. However, this process is hampered in the medical

domain, being partly due to its multi-perspective nature in a clinical

setting. Other factors which must be overcome include the volume and

complexity of the incoming information, the time and other resource

demands made on already busy personnel to perform the evaluation

study, and the professional sensitivity of clinical personnel involved

in the management of the evaluation study. To combat these

difficulties the evaluation process needs a clear and coherent

structure. In formulating an evaluation strategy it has been shown how

the evaluation process from three different domains have been drawn

together in order to synthesise such a structured framework. This

process was incorporated into a novel methodology for intelligent

system design, implementation and evaluation, as discussed previously.

156

8: CONCLUSION

Part I of this study provided the necessary background and

historical information for the introduction of intelligent

instrumentation into a High Dependency Environment. As a key element

in this process, a novel methodology was proposed which provides a

structure for the incorporation of a knowledge-based component into

the measurement process. This methodology covers the entire

development process, from the requirement for a particular

measurement system to the evaluation of the final product. As a

consequence the methodological weaknesses of existing approaches (for

example, from either a software or control engineering paradigm) were

highlighted and the benefit of using the novel methodology espescially

designed for technological change was exposed. For instance,

evaluation of the system throughout its development phase was

identified as a key component in the procurement of the final product.

The methodology is iterative in nature and provides support for system

evolution and is therefore necessarily open-ended.

Part II detailed a specification and implementation for a

prototype patient management system designed for those patients who

require ventilatory therapy as part of their overall management

strategy. Three levels of decision-support were implemented to match

the three phases of ventilation identified: the start-up phase of

ventilatory support was implemented using simple deterministic rules

obtained by analysis of a database of retrospective patient data; the

maintain phase was equated with a pattern-matching algorithm, the

boundary values of the data classifiers in the algorithm were

established by consultation with expert clinicians; and the weaning

phase was implemented using production rule technology which again

required expert clinicians from which knowledge could be elicited.

Evaluation of the prototype system, which was implemented
entirely in PROLOG, had some unexpected findings. For example, novice

users were more impressed with the windows display of the start-up

advice screen than those which were implemented using more advanced
knowledge representations. One reason for this conclusion is that the

more advanced knowledge technology did not match user expectation in

terms of time taken to reach a recommendation for action. A paradox

becomes evident here, as although the time taken for a human expert to

arrive at the problem location (and then reach a decision for action)

may be orders of magnitude greater than the time the computer takes to

157

reach its decision, users still expect computer-generated advice to be

instantaneous. The underlying psychology responsible for this outcome

may be due to the fact that time is an important commodity in the

Critical Care Unit, and clinical staff should not waste it waiting for

the output from slow-acting high technology found at the bedside.

From this phase of the research programme several general

conclusions can be made that would enable successful introduction of

intelligent instrumentation systems in the Intensive Therapy Unit.

These include:

* the system must make life easier for staff in the Intensive

Therapy Unit, especially the nurse who is the main care

provider.

* the system must improve the quality of data available.

* interpretation of data within the system must be made in

context of the clinical situation at that time.

* the system must include a facility for trend prediction

* the system should make clinical audit an easier task.

Also, several technico-clinical problem areas were identified from the

use of ventilatory therapy as the application in this study,
including:

* data overload and complexity of measurement in the ITU.

* the continuity of patient management practices through the

different phases of ventilation.

* an appraisal of the worth of each item of monitored data.

These conclusions emphasise the systematic nature of the systems

enquiry. Particular problems were broken down into their constituent

parts before problem-solving was attempted.

Part III discussed the nature of intelligent instrumentation

and techniques used to incorporate the knowledge component into the

measurement process used in the development of AIRS. Comparisons were

made with other available methods of knowledge elicitation, knowledge

representation schemas, human-computer interface techniques and

evaluation issues. The nature of intelligent instrumentation from a

wider perspective was also included. From discussion, recommendations

for further work became apparent.

158

In the immediate future a reorganisation of programming

tasks should take place, so that PROLOG is used solely for that part

of the program where logic is required. That is, the part of the

system which is represented by production rule technology. The window

environment and associated menu system can be implemented more

efficiently in other high level languages such as ’C’ or ’PASCAL’.

This would also enable the development of a graphical capability. To

gain credibility work should also commence on an on-line version of

the system. For this an appropriate communications package will be

required as well as a ventilator with a digital port. However, in the

long term this type of single function program may become redundant,

superseded by machines capable of processing many parallel functions

at once, the data being pre-processed by transputers at the bedside.

A programming environment such as a parallel version of PROLOG, as

used in the Japanese Fifth Computer Generation Initiative, will become

the software of choice, although dedicated parallel PROLOG machines

may become the norm. This may be conjecture, but intelligent

instrumentation systems have a bright future and are set to pervade

all measurement processes no matter what the domain.

159

REFERENCES

AIKINS,J. S . , KUNZ,J.C., SHORTLIFFE, E.H. and FALLAT, R.J. (1983).
PUFF: An Expert System for Interpretation of Pulmonary Function Data.
Comput.Biomed.Res . , 16, 199-208.

ALFORD,M. (1985).
SREM at the Age of Eight; the Distributed Computing Design System.
Computer, 18 (4), 36-46.

BALZER,R., CHEATHAM,T.E. and GREEN,C. (1983).
Software Technology in the 1990s: Using a New Paradigm.
Computer, 16 (11), 39-45.

BARNEY,G.C. (1985).
Intel 1igent Instrumentation:
Microprocessor Applications in Measurement and Control.
London:Prentice Hall.

BARRY,B.A. (1978).
Errors in Practical Measurement in Science, Engineering and Technology.
Ed. M.D.Morris. New York: Wiley-Interscience.

BERTRAND,0., VIALE.J.P., ANNAT,G., SEBES , F . , DELAFOSSE,B., PERCIVAL.C.,
BUI-XUAN,B. and MOTIN.J. (1986).
Mass Spectrometer System for Long-term Continuous Measurements of vC^
and vCO-p During Artifical Ventilation. Med. & Biol Eng. & Comput., 24,
174-181.

BHANSALI,P.V. and ROWLEY,B.A. (1984).
A Microcomputer Controlled Servo-ventilator. J.Clin. Eng., 9 (1), 47-
51.

BLEICH.H.L. (1972).
Computer-based Consultation: Electrolyte and Acid-Base Disorders.
Arner.J.Med., 53, 285.

BLOM,J.A. de ROYTER,J.A.F., SARANUMMI.N. and BENEKEN,J.E.W. (1985).
Detection of Trends in Monitored Variables. In: Computers and Control
in Clinical Medicine. Ed. E.R.Carson and D.G.Cramp. New York:Plenum.

BOOTH,F. (1983).
Patient Monitoring and Data Processing in the ICU (editorial). Crit.
Care Med., U (1), 57-58.

BRATKO,I. (1986).
Prolog Programming For Artificial Intelligence.
Addison-Wesley: Wokingham.

BRITISH MEDICAL ASSOCIATION.(1967).
Intensive Care. Planning Report No.l.

CARSON,E.R., CHELSOM, J. J., CRAMP, D.G., SUMMERS, R. and ZARKADAKIS, G.
(1988). Towards the Development of an Intelligent ITU Workstation.
In: IEEE Engineering in Medicine and Biology Society 10th Annual
Conference. Ed. G. Harris and C. Walker. New York:IEEE, 1414-1415.

1 6 0

CARSON,E.R., CRAMP,D.G., and FINKELSTEIN,L. (1986).
Towards Intelligent Measurement in Critical Care Medicine.
In: IEEE Engineering in Medicine and Biology Society. 8th Annual
Conference Ed. G.V.Kondraske and C.J.Robinson. New York:IEEE, 799-801.

CHECKLAND,P.B (1981).
Systems Thinking, System Practice.
Chichester: John Wiley.

CHELSOM,J.J.L. (1990).
The Interpretation of Data in Intensive Care Medicine: An Application
of Knowledge-based Techniques. PhD Thesis. City University, London, UK

CLANCEY.W.J. and LETSINGER,R. (1981).
NEOMYCIN : Reconfiguring a Rule-based Expert System for Application to
Teaching. In: Proc. 7th IJCAI, 829-836.

DAVIS,R. and KING.J. (1977).
An Overview of Production Systems.
In: Machine Intelligence 8 : Machine Representations of Know ledge.
Ed. E.Elcock and D.Michie. New York : Wiley.

de DOMBAL , F.T., LEAPER,D.J., STAN I LAND , J. R ., McCANN,A.P. and
HORROCKS,J.C. (1972).Computer-Aided Diagnosis of Acute Abdominal Pain.
British Medical Journal, 2, 9-13.

EASTERBY-SMITH,M (1980).
The Design, Analysis and Interpretation of Repertory Grids.
Int.J.Man-Machine Studies, 13, 3-24.

ERMAN,L.D., HAYES-ROTH,F., LESSER,V.R. and REDDY,D.R. (1980).
The HEARSAY-II Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty. Computing Surveys, 12, 213-253.

FAGAN,L.M. (1980).
V.M: Representing Time-dependent Relations in a Medical Setting.
PhD Thesis.Stanford: Stanford University, Dept. Computer Science.

FAGAN,L.M., SHORTLIFFE,E.H. and BUCHANAN,G.G. (1980).
Computer-based Medical Decision Making: from MYCIN to VM.
Automedica, 3, 97-106.

FEIGNEBAUM,E.A. (1982).
Knowledge Engineering for the 1980s. Dept. Computer Science, Stanford
University, USA.

FINCHAM.W. and BEISHON.J. (1973).
The Human Respiratory System (T241 13/14). Walton Hall: OUP.

FINKELSTEIN,L. (1982).
The Theory and Philosophy of Measurement. In Handbook of Measurement
Science : Volume 1. Ed. P.H. Sydenham. Chichester: Wiley

FINKELSTEIN,L. and CARSON,E.R. (1986).
Intelligent Measurement in Clinical Medicine. Proc. of the 5th IMEKO
Symposium on Measurement Theory,Jena. International Meas. Confed.:
Budapest.

FINKELSTEIN,L. and FINKELSTEIN,A.C.W. (1983).
Review of Design Methodology. IEE Proc., 130 Pt A (4), 213-221.

161

FIRST,M.B., SOFFER,L.J. and MILLER,R.A. (1985).
QUICK (Quick Index to Caduceus Knowledge): Using the Internist-
I/Caduceus. Knowledge Base as an Electronic Text-book of Medicine.
Comput.Biomed.Res., 18, 137-165.

FLAGG,P.J. (1928).
Treatment of Asphyxia in the New-born. JAMA, 91, 788-791.

FORGY.C.L. (1981).
0PS5 User’s Manual. Carnegie-Mellon University.

GAMMACK,J.G. and YOUNG,R.M. (1985).
Psychological Techniques for Eliciting Expert Knowledge.
In: Research and Development in Expert Systems. Ed. M.A.Bramer
Cambridge : Cambridge University Press.

GLEASON,G.J. and AGIN.G.J. (1979).
A Modular System for Sensor-Controlled Manipulation and Inspection.
Proc. IX Int. Symp. of Industrial Robots. Washington D.C. 57-70.

G0RRY,G.A., KASSIRER,J.P., ESSIG,A. and SCHWARTZ,W.B. (1973).
Decision Analysis as the Basis for Computer-Aided Management of Acute
Renal Failure. Amer.J. Med., 55, 473-484.

GORRY.G.A., SILVERMAN,H. and PAUKER.S.G. (1978).
Capturing Clinical Expertise: A Computer Programme that considers
Clinical Responses to Digitalis. Amer.J. Med., 64, 452-460.

GREGORY,G.A. (1983).
Who Should Receive Intensive Care? (Presidential Address).
Crit. Care Med. , 1_ (10), 767-8.

GROVER,M.D. (1983).
A Pragmatic Knowledge Acquisition Methodology. In: Proc. 8th IJCAI.
Ed. A.Bundy. Los Altos: William Kaufmann 436-438.

HARRISON,T.J. (1986).
Charles and the Computer. Measurement and Control, 19 (3), 84-91.

HARVEY,A.M. (1974)
Neurosurgical Genius - Walter Edward Dandy, John Hopkins Med. J.
135, 358-368.

HAYES-ROTH,F., WATERMAN,D.A. and LENAT.D.B. (1983).
Building Expert Systems. Reading, Mass.: Addison-Wes1ey.

HERNANDEZ-SANDE,C ., MORET-BONILLO,V. and ALONSO-BETANZOS,A. (1989).
ESTER: An Expert System for Management of Respiratory Weaning Therapy.
IEEE Trans. Biomed. Eng., BME-36 (5), 559-564.

HILBERMAN,M. (1975).
The Evolution of Intensive Care Units.
Crit.Care. Med., 3 (4), 159-165.

HODGES,A. (1983).
Alan Turing: The Enigma of Intelligence. London: Counterpoint.

HOFMANN, D. (1982).
Measurement Errors, Probability, and Information Theory
In: Handbook of Measurement Science Vol.l Ed. P.H. Sydenham.
Chichester : Wiley-Interscience.

162

HOLMDAHL,M.H. (1962).
The Respiratory Care Unit. Anesthesiology,23 (4), 559-568.

HORROCKS, J.C., M cCANN , A. P ., STAN I LAND , J. R ., LEAPER.D.J., and de
DOMBAL , F .T. (1972).
Computer-aided Diagnosis: Description of an Adaptable System, and
Operational Experience with 2,034 cases. British Medical Journal, 2,
5-9.

HUNTER,J.R.W. (1986).
Artifical Intelligence in Medicine. A Tutorial Survey. Part 2:
Comparisons. Biomedical Measurement, Informatics and Control, 1_ (3).

IBSEN,B. (1954).
The Anaesthetists Viewpoint on Treatment of Respiratory Complications
in Poliomyelitis During the Epidemic in Copenhagen,1952.
Proc.Roy.Soc.Med., 47, 52.

JENSEN,R.E..SHUBIN,H., MEAGHER,P.F. and WEIL.M.H. (1966).
On-line Monitoring of the Seriously 111 Patient.
Med.Biol.Engng., 4, 265-272.

KARI.A. (1988).
Benefits and Disadvantages of Automated Data Management Systems in
Intensive Care. In: Proc. Medical Informatics 88: International
Conference on Computers in Clinical Medicine. London: British Medical
Informatics Society.

KATONA.P.G. (1983).
Automated Control of Physiological Variables and Clinical Therapy.
C.R.C. Critical Reviews in Biomedical Engineering, 8 (4), 281-310.

KAWAKAMI,Y ., YOSHIKAWA.T. and ASANUMA.Y. (1981).
A Control System for Arterial Blood Gases.
J.Appl. Physiol., 50, 1362.

KIRSCHNER,M. (1930).
Zum Neubau der Chirurgischen. Universitätsklinik Tuebingen.
Der Chirurg, 2, 54-61.

KLAUS,M.H. and KENNELL,J.H. (1970).
Mothers Separated from their Newborn Infants.
Pediat.Clin.N.Amer., 17, 1015-1037.

KNAUSS,W.A., DRAPER, C.A., WAGNER,D.P. and ZIMMERMAN,J.E. (1985).
APACHE-II: A Severity of Disease Classification System.
Crit.Care Med., 13 (10), 818.

KOLATA.G. (1982).
How Can Computers Get Common Sense? Science, 217, 1237-1238.

LASSEN,H.C.A. (1953).
Preliminary Report on the 1952 Epidemic of Poliomyelitis in
Copenhagen. With Special Reference to the Treatment of Acute
Respiratory Insufficiency. Lancet, J_, 37.

LEANING,M.S. (1980).
The Validity and Validation of Mathematical Models. PhD Thesis, Dept.
Systems Science, City University, London.

163

LEDLEY,R.S. and LUSTED, L.B. (1959).
Reasoning Foundations of Medical Diagnosis.
Science, 130, 9-21.

LIGHTHILL,J. (1972).
Artificial Intelligence: A General Survey.
Report SRC-72-72. Science Research Council, UK.

LINDSAY,R.K., BUCHANAN,B.G , FEIGENBAUM,E.A. and LEDERBERG,J. (1980).
Applications of Artificial Intelligence for Organic Chemistry:
The DENDRAL Project. New York: McGraw-Hill.

MABRY,J.C., THOMPSON,H.K., H0PW00D,M.D. and BAKER,W.R. (1977).
A Prototype Data Management and Analysis System - CLINFO : System
Description and User Experience. In: Proc. MEDINFO-77. Ed.
D.B.Shires and H.WOLF. Amsterdam: North-Hol1 and, 71-75.

McCLEAVE,D.J., GILLIGAN,J.E. and WORTHLEY,L.I.G . (1977).
The Role and Function of an Australian Intensive Care Unit.
Crit. Care.Med., 5 (5), 245-251.

MEEHL,P.E. (1954).
Clinical vs Statistical Prediction.
Minnesota: University of Minnesota Press.

MENDELSON,Y. and PEURA.R.A. (1984).
Non-invasive Transcutaneous Monitoring of Arterial Blood Gases.
IEEE Trans.Biomed.Eng., BME-31 (12), 792-800.

MENN.S.J., BARNETT,G.O., SCHMECHEL,D., OWENS,W.D. and PONTOPPI DAN,H.
(1973).
A Computer Program to Assist in the Care of Acute Respiratory Failure.
JAMA, 223 (3), 308-312.

MILLER,P.L. (1984).
Goal-directed Critriquing by Computer: Ventilator Management.
Comput.Biomed.Res., 18, 422-438.

MILLER,R.A., POPLE,H.E. and MYERS,J.D. (1982).
INTERNIST-I, an Experimental Computer-based Diagnostic Consultant for
General Internal Medicine. New Engl. J. Med., 307, 468-476.

MINSKY,M. (1975).
A Framework for Representing Knowledge.
In: The Psychology of Computer Vision, Ed. P.Winston.
New York: McGraw-Hill, 211-277.

NEWELL,A., SHAW,J.C. and SIMON,H.A. (1957).
Empirical Explorations of the Logic Theory Machine.
Proc.West. Jt. Computer Conf,, 218-239.

NEWELL,A., SHAW,J.C. and SIMON,H.A. (1960).
A Variety of Intelligent Learning in a General Problem Solver.
In: Self Organizing Systems. Ed. M.C.Yovits and S.Cameron.
Elmsferd, New York: Pergamon, 153-189.

NEWELL,A. and SIMON,H. (1972).
Human Problem-Solving. Englewood Cliffs : Prentice Hall.

164

NIGHTINGALE,F. (1863).
Notes on Hospitals
Longman,Green,Longman,Roberts and Green (3rd Ed).

OHLSON,K.B., WESTENSKOW,D.R. and JORDAN,W.S. (1982).
A Microprocessor-based Feedback Controller for Mechanical Ventilation.
Ann.Biomed.Eng., 10 (1), 35-48.

PATTON,M.O. (1982).
Practical Evaluation.
Beverley Hills: Sage.

PAUKER,S.G ., GORRY.G.A., KASSIRER,J.P. and SCHWARTZ,W.B. (1976).
Towards the Simulation of Clinical Cognition: Taking a Present Illness
by Computer. Am, J. Med., 60, 981-996.

PERLMAN,F., McCUE.J.D. and FRIEDLAND.G. (1974).
Urinary Tract Infectia (UTI)/ Vaginitis Protocol, Introduction.
Ambulatory Care Project, Lincoln Laboratory, M.I.T. and Beth Israel
Hospital, Harvard Medical School.

POPLE.H.E. (1982)
Heuristic Methods for Imposing Structure on Ill-structured Problems:
The Structuring of Medical Diagnostics.
In: Artifical Intelligence in Medicine, Ed. P.Szolovitz.
Boulder, Co: Westview Press, 119-190.

PRICE,D.J. and MASON,J. (1986).
Resolving the Numerical Chaos at the Bedside.
In: Proc. Current Perspectives in Health Computing.
Edited by J.Bryant, J.Roberts and P.Windsor.
Weybridge: BJHC.

PRYOR,T.A., GARDNER,R.M., CLAYTON,P.D. and WARNER,H.R. (1983).
The HELP System. J.Med. Sys. , 7, 87-101.

QUINLAN,J.R. (1979).
Rules by Induction from Large Collections of Examples.
In : Expert systems in the Micro-Electronic Age,
Ed.D.Michie. Edinburgh : Edinburgh University Press.

REGGIA,J.A. NAU.D.S. and WANG,P.Y. (1983).
Diagnostic Expert Systems Based on a Set Covering Model.
Int. J. Man-Machine Studies, 19, 437-460.

ROBERTS,L. (1965).
Machine Perception of Three-dimensional Solids.
In: Optical and Electro-optical Information Processing, Ed. J.Tippett.
Cambridge,USA: MIT Press, 159-197.

ROSEN,R. (1985).
Ant icipatory Systems : Philosophical, Mathematical and
Methodological Foundations. Oxford : Pergamon.

ROSS.D.T. (1985).
Applications and Extensions of SADT.
Computer, 18 (4), 25-34.

165

ROSS.D.T. (1977).
Structured Analysis (SA): A Language for Communicating Ideas.
IEEE Trans. Soft.Eng., SE-3 (1), 16-34.

ROSS.D.T. and SCHOMAN,K.E. (1977).
Structured Analysis for Requirements Definition.
IEEE Trans. Soft.Eng., SE-3 (1), 6-15.

ROMAN,G-C, (1985).
A Taxonomy of Current Issues in Requirements Engineering.
Computer, 18 (4), 14-22.

ROUSSEL,P. (1975).
PROLOG: Manual de reference et d’uti1isat ion.
Groupe d’Intel 1igence Artificielle, Marsei11e-Luminy, September, 1975.

RUDOWSKI.R., FROSTILL.C. and GILL,H. (1988).
A Know 1 edge-based Support System for Mechanical Ventilation of the
Lungs. The KUSIVAR Concept and Prototype.
Comput.Meth. Prog. Biomed., 30, 59-70.

SAFAR,P., DEKORNFELD,T.J., PEARSON,J.W. and REDDING,J.S. (1961).
The Intensive Care Unit. A Three Year Experience at Baltimore City
Hospitals. Anaesthesia, 16 (3), 275-284.

SAMUEL,A.L. (1963).
Some Studies in Machine Learning Using the Game of Checkers.
In: Computers and Thought Ed. E.A.Feigenhaum and J.Feldman.
New York: McGraw Hill.

SANDELL,H.S.H. (1984).
GENIE User’s Guide and Reference Manual.
Technical Report No. 84-003, Electrical and Biomedical Engineering,
Vanderbilt University, Nashville, Tennessee.

SAVAGE,L.J. (1954).
The Foundations of Statistics. New York: Wiley.

SCHEFFER,P.A., STONE,A.H. and RZEPKA.W.E. (1985).
A Case Study of SREM. Computer, 18 (4), 47-54.

SCHWEICKERT, R ., BURTON,A.M., TAYLOR,N.K., CORLETT, E .N., SHADBOLT.N.R.
and HEDGECOCK,A.P. (1987).
Comparing Knowledge Elicitation Techniques : A Case Study.
Artificial Intelligence Review, jL, 245-253.

SHADBOLT,N . and BURTON,M. (1989).
Knowledge Elicitation.
In : Evaluation of Human Work : Practical Ergonomics Methodology,
Ed. J.Wilson and N.Corlett. Taylor and France.

SHANNON,C.E. (1950).
A Chess-playing Machine. Sci.Amer., 182 (2), 48-51.

SHAW.M.L.G. and GAINES,B.R. (1983).
A Computer Aid to Knowledge Engineering.
In : Proc. 3rd BCS Conference on Expert Systems.
Ed. J.Fox. Cambridge : Cambridge University Press.

166

SHAW,M.L.G. and GAINES,B.R. (1987).
KITTEN : Knowledge Initiation and Transfer Tools for Experts and
Novices. Int.J. Man-Machine Studies, 27, 251-280.

SHEPPARD,L.C. (1980).
Computer Control of the Infusion of Vaso-active Drugs.
Ann. Biomed.Eng. 8, 431.

SHOEMAKER, W.C., APPEL,P.L., BLAND,R., HOPKINS, J. A. and CHANG,P.
(1982). Clinical Trial of an Algorithm for Outcome Prediction in Acute
Circulatory Failure. Crit.Care Med., 10 (6), 390-397.

SHORTLIFFE.E.H., DAVIS.R., BUCHANAN,B., AXLINE.S., GREEN,C. and COHEN,S.
(1975). Computer-based Consultations in Clinical Therapeutics -
Explanation and Rule Acquisition Capabilities of the MYCIN System.
Comput.Biomed.Res., 8, 303-320.

SHORTLIFFE,E.H. (1976).
Computer-based Medical Consultations: MYCIN.
New York: Elsevier.

SI EGAL,J.H. (1981).
Relations Between Circulatory and Metabolic Changes in Sepsis.
Ann.Rev. Med. 32, 175-194.

SIEVERT,G.E. and MIZELL,T.A. (1985).
Specification-based Software Engineering with TAGS.
Computer, 18 (4), 56-65.

SITTIG,D.F. (1988).
COMPAS: A Computerised Patient Advice System to Direct Ventilatory
Care. Ph.D. Thesis. Dept. Medical Informatics, University of Utah.

SLAGLE,J.R. (1961).
A Heuristic Program that Solves Symbolic Integration in Freshman
Calculus: Symbolic Automatic Integrator (SAINT).
Report 5G-001, Lincoln Laboratory, MIT, Cambridge, USA.

SMITH,D.M., MERCER,R.R. and ELDRIDGE,F.L. (1978).
Servo Control of End-tidal CO2 in Paralysed Animals.
J.Appl. Physiol., 45, 133.

SMITH,R.G. and BAKER,J.D. (1983).
The Dipmeter Adviser System. A Case Study in Commercial Expert
System Development.
In: Proc. 8th IJCAI Ed.A.Bundy Los Altos : William Kaufmann,
122-129.

SNYDER,J.V., McGUIRK,M ., GRENVIK,A. and STICKLER,D. (1981).
Outcome of Intensive Care: An Application of a Predictive Model.
Crit.Care Med., 9 (8), 598-603.

SWANSON,G.D., CARPENTER,T.M., SNIDER,D.E. and BELLVILLE,J.W. (1971).
An On-line Hybrid Computing System for Dynamic Respiratory Response
Studies. Comp.Biomed.Res., 4, 205-215.

TAYLOR,J.H. and FREDERICK,D.K. (1984).
An Expert System Architecture for Computer-aided Control Engineering.
IEEE Proceedings, 72 (12), 1795-1805.

167

TURING,A.M. (1937).
On Computable Numbers, with an Application to the Entscheidungs
Problem. Proc.Lond. Math. Soc., 2, 230-265.

TURING,A.M. (1950).
Computing Machinery and Intelligence. Mind, 59, 433-460.

U.S. ARMY MEDICAL SERVICES. (1955).
Surgery in World War II. Vol.II General Surgery.
Office of the Surgeon General, Department of the Army, Washington,D.C.

U.S. ARMY MEDICAL SERVICES. (1963).
Surgery in World War II. Vol.I Thoracic Surgery.
Office of the Surgeon General, Department of the Army, Washington,D.C .

U.S. ARMY MEDICAL SERVICES. (1964).
Surgery in World War II, Activities of Surgical Consultants Vol.II.
Office of the Surgeon General, Department of the Army, Washington,D.C .

WALDROP,M.M. (1984).
The Necessity of Knowledge. Science, 223, 1279-1282.

WEISS,S., KULIKOWSKI,C.A. and SAFIR,A. (1978a).
Glaucoma Consultation by Computer. Comput.Biol.Med., 8, 25-40.

WEISS,S., KULIKOWSKI,C.A., AMAREL.S. and SAFIR,A. (1978b).
A model-based method for computer aided medical decision making.
Artif. Intel., 1_1, 145-172.

WEIZENBAUM,J. (1966).
ELIZA - A Computer Program for the Study of Natural Language
Communication between Man and Machine. Comms. of the ACM,9, 36-45.

WEST,J.B. (1979).
Respiratory Physiology - The essentials.
Baltimore: The Williams and Wilkins Co.

WEYL,S., FRIES,J., WIEDERHOLD,G. and GERMAND.F. (1975).
A Modular Self-describing Clinical Databank System.
Comput. Biomed. Res., 8, 279-293.

WINOGRAD,T. (1972).
Understanding Natural Language.
New York: Academic Press.

1 6 8

APPENDIX I

CRITICAL REVIEW OF ARTIFICIAL INTELLIGENCE IN MEDICINE

1.1 Int roduct ion

Biomedical engineering is a fertile domain for the

application of new computer-based techniques that have the potential

to enhance patient care. These techniques come in many forms, and can

be classified according to the level of processing required before

their stated purpose is achieved. Low-level processing include

techniques such as signal interpretation, where a threshold value has

to be reached before an appropriate action is taken. This type of

system uses a shallow data model to transform data into a more useful

information-based format. However in this Appendix, the systems of

interest are those which provide a further transformation, that of

information into knowledge via appropriate explanation and

justification of concepts used. These knowledge-based systems have

various synonyms including expert systems, intelligent systems and

decision-support systems.

1.2 Artificial Intelligence: General Medical Systems

The criterion by which the medical systems reviewed have been

chosen is that they each illustrate some novel use of techniques found

in the domain of artificial intelligence. They have thus become

leaders in their respective fields from which other intelligent

systems have evolved.

The Dendral system was one of the first medical expert

systems to be implemented, and was the antithesis of the general

problem solving strategies of its day. It worked in a narrow and very

well-defined domain which paved the way for a plethora of similar

systems. These systems were not confined to the medical domain, for

example, geological expert systems which were of benefit to the oil

industry were constructed.

The MYCIN system is included because it is a prime example of

the use of a production rule methodology, this describes how the

knowledge required by the system is captured. A normal representation

of a production rule, (IF--THEN---), is supplemented by a
quantitative qualifier, as follows:-

IF premise

THEN action

WITH a confidence factor X.

1 6 9

This allows a clinicians degree of confidence in a decision to be

captured by the system, and at the same time aid in its transparency

to the end-user.

CASNET is a system which uses a causal-associational model to

represent the embodied knowledge. This knowledge is separated into

three different entities : manifestations present in the patient;

pathophysiological processes caused by the manifestations; and disease

states caused by the pathophysiological processes. If this is thought

as a three-plane hierarchy then the causal-associational links can be

both inter- and intra-p1 an a 1. A fourth ’therapy’ plane also links to

this hierarchy at the level of the disease state plane.

The PIP system is included because it was one of the first

intelligent systems to include a frame-type representation. This

allows the knowledge engineer to keep all similar knowledge together,

rather than have it dispersed throughout the program. Frames are

therefore useful in the development stage of the system, as the

knowledge embodied in the program remains transparent to the user and

is readily obtainable for editing purposes.

HEARSAY-II, although not strictly a medical system, is the

product of a large research programme which started in the early 1970s

and is still on-going, (HEARSAY-III is now under development). A

feature of this system is its blackboard architecture for control of

the knowledge processes intermediate to final output. Like DENDRAL it

is used for signal understanding rather than as a diagnostic system.

The INTERNIST research programme was an ambitious attempt to

combine all knowledge relevant to general internal medicine in one

system. It is included in this review to illustrate the problems

involved when techniques employed for a narrow clinical domain are
exploited for a much wider domain.

1.3 DENDRAL

DENDRAL is a system which interprets the data emergent from

the process of mass spectography, and works at a high intellectual

level. The domain is therefore vey narrow but presumes expert

knowledge in what is a difficult task domain (Lindsay et al., 1980).

At the time of its first implementation DENDRAL was a

precursor to intelligent knowledge-based systems and was responsible

for the founding of many of the techniques used in knowledge

engineering. These include both knowledge elicitation and knowledge

170

representation. The former was identified to be a ’bottleneck’ in the

design and building of intelligent systems, as although development

time could be continual it needed the prior knowledge of the expertise

to be embodied. This expertise could only be elicited in discrete

stages due to the time demands made on the human experts involved.

The evaluation of DENDRAL involved the development of a set

of analytical rules utilising a training-set of similar compounds,

(for example, cyclic ketones). Once these rules were obtained they

were applied to another five members of the same chemical group for

the purpose of rule refinement. The refined system was then applied to

the remaining compounds of the same group. The full implementation of

DENDRAL is used in both academia and industry, making it not only the

first ’expert system’, but also one of the very few in actual clinical

use.

1.4 MYCIN

MYCIN is perhaps the most cited expert system of the 1970s,

and was developed by Shortliffe and others at Stanford University,

U.S.A., (Shortliffe et al., 1975; Shortliffe, 1976). The domain of

interest is aiding in the identification process and recognising the

significance of organisms causing microbial infection, then

recommending an optimal treatment protocol. This domain is well chosen

as there is a need for such consultative advice, as microbial
infection is often secondary to the major complaint of the patient,

and the clinician responsible for the welfare of such patients may not

be an expert on infectious diseases. The treatment protocols yield

information not only on what drugs to recommend to combat particular

infections, but also on what dose should be administered, thereby

cutting down on inappropriate prescribing and antibiotic misuse.

MYCIN is an example of an expert system which uses

’production rules’ to represent the causal relationships between
individual items of factual knowledge held on the knowledge base. Such

rule-based deduction systems are procedural by nature of the way they

are constructed, that is, IF a premise condition is true THEN one can

deduce that the consequent action(s) is true. An example of a typical

MYCIN production rule is found in Figure A—1.1, and can be seen to
have the general form:-

IF premise assertions are true

THEN consequent assertions are true

with confidence weight X.

171

RULE 160

If: 1) The timeframe of the patient's headache is acute.

2) The onset of the patient's headache is abrupt, and

3) The headache severity (using a scale of 0 to 4; maximum
is 4) is greater than 3.

Then: 1) There is suggestive evidence (.6) that the patient's
meningitis is bacterial.

2) There is weakly suggestive evidence (.4) that the
patients's meningitis is viral and

3) There is suggestive evidence (.6) that the patient
has blood within the subarachnoid space.

Thus this rule has three conclusions. It is represented internally in LISP as
follows:

PREMISE (SAND SAME CNTXT HEADACHE-CHRONICITY ACUTE)
(SAND CNTXT HEADACHE-ONSET ABRUPT)
(GREATERP (VALI ONTXT HEADACHE-SEVERITY 3))

ACTION; (DO-ALL (CONCLUDE ONTXT MENINGITUS
BACTERIAL-MENINGITUS)

TALLY 600)
(CONCLUDE CNTXT MENINGITUS VIRAL-MENINGITUS

TALLY 400)
(CONCLUDE CNTXT SUBARACHNOID-HEMORRAGE
YES

TALLY 600)

FIGURE A-1.1 A TYPICAL PRODUCTION RULE FOUND IN THE
MYCIN SYSTEM

172

Notice that each production rule has associated with it a measure of

certainty. This aids in the reasoning strategy of the system, where a

value of -1 represents complete disbelief, and a value of +1

represents complete belief in the consequent assertion(s). The

assertions can be Boolean combinations of clauses each of which

consists of a predicate statement triple:-

(at tribute,object.value).

For example,

(Gramstain,E.Coli.Gramneg),

which when translated means that the Gramstain of the E.Coli organism

is Gram-negative.

The uniformity of representation for both domain-specific
inferences and reasoning goals makes it possible for MYCIN to use a

very general and simple control strategy, that is, a goal-directed

backward-chaining of the production rules. This approach can be

described in the following way. The first rule to be evaluated is the

one which contains the highest level goal, which for MYCIN is "To

determine if there are any organisms, or classes of organisms, that

require therapy". To deduce the need for therapy requires knowledge of

the infections, which is usually unknown in the first instance.

Therefore the system tries to satisfy sub-goals which originate in the

premise of the top-goal that will allow the infections to be inferred.

Rule chaining is the name given to the process by which the production

rule hierarchy is linked together; the premise portion of each sub-

goal rule fires a new set of sub-goals. This process is repeated until

the most fundamental level of the hierarchy is reached, where the

rules become assertions that can only be confirmed or denied by

directly questioning the user for the appropriate information.

After MYCIN determines the significant infections, found by

assessing the overall certainty factor which combines the individual

degrees of confidence associated with each production rule, the

organisms which account for the infections are found

deterministically. Then, if appropriate, the system proceeds to

recommend an antimicrobial regimen. To reach its decision the MYCIN

therapy selector uses a description of the infection(s) present; the

causal organisms together with a ranking of drugs by their

sensitivity; and a set of drug-preference categories. The algorithm

used within the therapy selector also calculates the drug-dose

required, and contains knowledge to modify the value if, for example,

173

the patient is in renal failure. An advantage of this therapy

selection system is that it can accept and critique a treatment

protocol proposed by the user. For this function the therapy selector

has an appropriate facility to generate explanation and justification

for its choice of action. "WHY?" queries are dealt with by displaying

the rule it is trying to imply, and if "WHY?" is asked again the query

is answered by ascending the goal-tree hierarchy. "HOW?" queries are

interpreted as the chain of rules which are fired to get to that

particular conclusion, and if "HOW?" is asked again the query is

answered by descending the goal tree hierarchy.

An advantage of using a production rule system is that each

rule is a small ’packet’ of knowledge, each one being independent of

all the others. This has two consequences: first, changing or adding

knowledge to the MYCIN knowledge base is relatively easy; and second,

addition of new rules is facilitated by a having modular data

structure. The MYCIN system is also user-friendly, characterised by

its natural language interface which translates the knowledge encoded

in the system to a form that is easy to understand and examine at the

user interface.

The MYCIN system can deal with both inexact and incomplete

information. Inexact information is inherent in this domain as many

test results are qualitative in nature, and relatively few statements

can be made with absolute certainty. Incomplete information may arise

from the time constraints involved in the identification of an

organism, that is, the time taken for an identifying laboratory test

to be completed and the result of it made known to the clinician.

A disadvantage of the system is that disease states can not

always be adequately described by a rule. Also, it may not always be

possible to map a series of desired actions into a set of production

rules. Another disadvantage is that although new knowledge can be

added by inserting a new rule, this may not interact with the existing
rules in the anticipated way.

The MYCIN system is encoded in LISP and runs under the TENEX

operating system. When compiled the system takes up approximately 50

kbytes of disk space, which includes 16 kbytes to hold the knowledge

base and 28 kbytes to hold clinical parameters, tables and working

space. A normal consultation takes on average 20 minutes, which

includes time allowed for the optional use of the explanation

facility. MYCIN has been evaluated as having a diagnostic success rate

174

of 72%. This relatively poor performance (for an expert system)

combined with clinician suspicion and resistance to new technology,

contributed to the fact that the system never went into clinical

operation. However, as a research tool it was the subject of extensive

interest in the artificial intelligence fraternity, being responsible

for a number of successful descendants. One of these, the PUFF system

developed to interpret pulmonary function test results (Aikens et al.,

1983), is one of the few medical expert systems in daily clinical use.

1.5 CASNET

CASNET is an expert system for consultation in the diagnosis

and therapy of glaucoma (Weiss et al., 1978 a,b). A feature of this

system is that the medical knowledge used in the patient-specific

reasoning process is encompassed in a causa 1-associationa 1 network

model of the specific disease process. Such a network, termed a

’semantic net’, allows the structure of the medical knowledge covered

by the system to be more coherent. A semantic network comprises nodes

connected by links, where nodes correspond to either the condition or

action part of the rules and the links are the inferences between the

two. The model of disease is separate from the decision making

strategy which allows the up-dating of both data structures to be

facilitated more easily.

The CASNET model has a descriptive component which consists of
four sets of elements, as follows:-

i) Observations - these consist of symptoms and laboratory
test results, etc., and form the direct evidence that a
disease is present

ii) Pathophysiological states - these describe internal
abnormal conditions or mechanisms that can directly
cause the observed findings. The causal relations
between states are of the form

where ni and nj are states and a — is the causal
frequency with which state n^, when present in a
patient, leads to state nj

iii) Disease categories - each category consists of a pattern
of states and observations, and is therefore
conceptually at the highest level of abstraction

iv) Treatment plans and therapies - composed of sets of
related treatments or treatment plans.

Figure A-I.2 shows a three level description of a disease process, the

175

FIGURE A-I.2 THREE-LEVEL DESCRIPTION OF DISEASE PROCESS
(Kulikowski & Weiss, 1982)

176

fourth component (the treatment plans) are associated with the

disease-state plane.

Other components of the CASNET model are the decision rules,

which state:-

i) The degree of confidence with which an inference of a
pathological state can be made from an observed pattern
of findings. In rule-form this translates to :-

QU -> n

where t ■ is finding (or observation) or Boolean
n- is a state, and Q ; ; is acombination of findings, n̂ is a state, and ~

number in the range -1 to +1 representing the confidence
with which t̂ is believed to be associated with nj. The
value of Q is then transposed to a certainty factor
which indicates how certain is the belief that the
patient is in state n-. A threshold function is then
used to determine whether or not the certainty factor
confirms, denies, or leaves undetermined a particular
state.

ii) Rules for associating disease categories and
pathophysiological states to treatment protocols are in
the form of a classification table which consists of
ordered triples,

(rij,Dj,T|), (n2 .D2 .T2)......(n-,D-,T-),

where n- is the pathophysiological state, D- is the
disease process arising from it, and T- are the
preferred treatment regimes for disease D-.

The pathogenesis and mechanisms of a disease process are

described in terms of cause-and-effect relationships between

pathophysiological states. For example, Figure A-I.3 shows a partial

causal network for glaucoma, where each box represents a node, n̂ , and

is a pathophysiological state, and each arrow represents the causal

associations between states. In this way complete or partial disease

processes can be characterised by pathways through the network. When a

set of cause-and-effeet relationships are specified the resulting
network can be described as an acyclic graph of states (Weiss et al.,

1978b). This state network is defined by a four-tuple, (S,F,N,X),

where S is the set of starting states (that is, those states which

have no antecedant causes); F is the set of final states; N are the

number of states visited between S and F; and X are the causal

relationships between the states visited (in the form of a list).

An unusual feature of CASNET is the language with which it

was implemented. The authors of the system considered that an

efficient program would lead to decreased computer response times and

177

FIGURE A -1.3 PARTIAL CAUSAL NETWORK FOR GLAUCOMA.
STATES WITH NO ANTECEDENT CAUSES ARE
MARKED BY ASTERISKS (*)

(Kulikowski and Weiss, 1982)

178

therefore an increase in user acceptance, therefore FORTRAN was chosen

for its implementation. This choice had repercussions in the

development of CASNET, as any modification to the program meant that

the source code had to be obtained, changed and recompiled. In the

1978 implementation of CASNET, the knowledge base consisted of more

than 100 states, 75 classification tables and 200 diagnostic and

treatment statements. Thus, a most comprehensive knowledge

representation had been achieved. However glaucoma is an example of a

well-defined clinical problem, (that is, not many disease processes

can overlap with it, which would make differential diagnosis more

difficult). If a more complex domain of interest were chosen one would

expect a great increase in the number of states, classification tables

and treatment statements. This may make the causal-associational model

unworkable for large-scale systems, due to the increase in complexity.

An important test for any expert system is how it copes with

contradictory information. This can occur in the CASNET system, for

example, when a particular state is confirmed even though all of its

potential causes in the network are denied. When such a situation

occurs the CASNET system advises the user that this has happened.

There are two explanations for the origin of this contradictory
information : it could be that the model of the disease process may be

incomplete (that is, one or more nodes together with their respective

causal relationships are missing from the knowledge base); or it may

be that the threshold function associated with one of the existing

causal links has been set at an inappropriately high level. The

modular structure of the knowledge base enables easy access to the

underlying reason for the contradiction, so up-dating of the knowledge
base can be facilitated.

An advantage of the CASNET system is that it can present

alternative expertise derived from different consultants. It is this

fact, coupled with the fact that glaucoma is a well-defined clinical
problem which results in an accuracy of diagnosis which contributed to

its relative success. The diagnostic accuracy of CASNET has been

evaluated at greater than 75 % for particularly difficult cases, and

greater than 90 % for cases which constitute a broad clinical

spectrum. Unfortunately the clinical utility of the system was not

assessed as high, which resulted in CASNET never being used in a

routine clinical environment. However, the system remains as a very

useful tool for research into artificial intelligence in medicine.

179

1.6 PIP

The task of the Present Hlness of a Patient (PIP) expert

system is to diagnose oedematous patients (Pauker et al., 1976). It

was developed more for understanding the cognitive processes involved

in medical decision-making rather than for use as a clinical tool.

Accordingly, a less well-defined clinical task was chosen, as oedema

represents a complex diagnostic domain.

Conceptually, there are four components to the program (see

Figure A-I.4), which are: the patient-specific data; the supervisory

program module; the 'short term’ memory; and the 'long term’ memory.

Clinical data about a specific patient is entered and passes to the

supervisory program, which in turn delivers it to the ’short term’

memory. The supervisory program then generates hypotheses about the

given set of facts, using information stored in both the ’short term’

and 'long term’ memories, transferring all relevant information to the

’short term’ memory. Additional patient-specific questions are then

generated by the supervisory program, and the data entered starts the

control cycle once more. Thus, the program alternates between asking

questions and integrating new information into a developing picture of

patient state. A typical cycle consists of characterisation of the

observations, seeking advice on how to proceed, generating hypotheses,

testing those hypotheses and selecting new questions to ask the user.

It is thought that this test and hypothesis cycle more closely mimics

the way in which clinicians make decisions than the more rigid

production rule type inference mechanisms. Whereas the procedural

production rule inference methodology is deductive by nature, the test

and hypothesis inference cycle is both declarative and abductive.

A feature of the PIP system is that the long-term memory uses

a ’frame representation’ for its collection of facts about a

particular disease, clinical state or physiological state. Using

frames to represent knowledge was first proposed in the mid-1970s
(Minsky, 1975), and since then they have become a popular medium used

by knowledge engineers to conceptualise various types of expert

system. Each frame has a number of ’slots’ for the inclusion of

specific sub-categories, such as observations, non-causal information
and rules for judging how closely a given patient might match the

disease state that the frame describes. An advantage of using a frame-

type representation is that all relevant information about a

particular disease sub-class is held close together and not spread

over the entire knowledge base as is true of production rule systems.

180

FIGURE A-I.4 PROGRAM ORGANISATION OF PIP
(After Pauker et al., 1976)

181

PIP uses a scoring system for each hypothesis generated, and

then classifies the score with the appropriate use of threshold

functions. The score originates from the uncertainty rules found

within each of the frames in the long-term memory. It has two

components: the first is a measure of ’goodness-of-fit’ of observed to

expected manifestations for the hypothesis under examination; the

second is a value which corresponds to the ’cover’ of the frame, that

is, the ratio between the number of findings explained by the

hypothesis to the total number of findings found in the frame. Once

this score, termed the ’belief function’, has been established the

focus of the system then turns to other frames where the test and

hypothesis cycle continues. This process continues until all of the

reported manifestations have been covered.

One of the problems associated with this type of system is

the maintenance of a sufficiently focused and clinically acceptable
line of reasoning. Deviation away from the line of reasoning can be

accounted for from the use of a generalised scoring system. To keep

this problem to a minimum, it was suggested by the authors that only a

well-defined and narrow clinical domain should be chosen for this type

of methodology.

The PIP system developed a knowledge base of about 70 frames,

which included frames for 20 different diseases, the rest being

representations of various clinical and physiological states which are
associated with those diseases.

1.7 HEARSAY-II

The HEARSAY-II speech understanding system is the product of

a well-financed research programme from Carnegie-Me11 on University,

U.S.A. (Erman et al., 1980). A feature of this system is its general

problem solving framework, termed the 'blackboard architecture’, which

has become the basic control model for real-time intelligent signal

understanding systems (Hayes-Roth, 1983). The blackboard architecture

contains four elements:-

i) ’entries’, which is the name given to intermediate by-
products of the problem-solving strategy.

ii) ’knowledge sources’, these are diverse and independent
sub-programs which are capable of solving a specific
problem efficiently. They can be thought of as a
condition-action duplex, where the condition premise
describes the situations to which each knowledge source
can contribute, and the action component specifies the
interaction of that particular knowledge source in the

182

overall problem-solving strategy. It is the activated
knowledge sources which produce the entries.

iii) the ’blackboard’ itself, which can be considered as a
structured database. It serves two roles : first, it
represents intermediate states of problem solving
activity; and second, as all communication between the
individual knowledge sources is carried out via the
blackboard, it can accommodate hypotheses from one
particular knowledge source that may activate a number
of others.

iv) an 'intelligent control mechanism’, which has
sufficient knowledge embodied within it to decide if and
when any particular knowledge source should be
activated, thus generating entries which are recorded on
the blackboard.

The blackboard control structure supports a hierarchical

arrangement of knowledge sources. For instance, in the HEARSAY-II

system the top-level of the hierarchy is the spoken sentence, followed

by phrase, word sequence, word, syllable, segment and phoneme

respectively. The control postulate is that of ’establish-and-refine’,

that is, each activated knowledge source in the hierarchy tries to

confirm or reject itself. If it is confirmed then it refines itself by

calling on the next immediate layer in the hierarchy to enter the same

cycle. This procedure continues until (if successful) the bottom layer

of the hierarchy is reached. Once the phonemes have established

themselves, the spoken sentence has been modelled completely. In this

way the spoken sentence is recognised as syntactically valid, which is

one of the definitions used as speech ’understanding’. Further signal

processing techniques can then be applied to obtain a more

comprehensive understanding, such as translation into another language
or paraphrasing an argument.

HEARSAY-II is implemented in the SAIL programming

environment, which is an ALGOL-60 dialect, and includes list and set

membership functions. About 40 knowledge sources were developed, each

one being a one or two person effort for a period of between 2 to 36

months. This work produced between 5 and 100 pages of source code
(with an average of 30), and on average each knowledge source has 50

kbytes of data in its local database. The kernel program comprises 300

pages of code, and was the product of a continual development process,

carried out by two full-time programmers over a period of three years.

It is interesting to investigate the development of the

HEARSAY-II speech understanding system in terms of its evaluation. The

first version of the kernel program took two persons 4 months to

complete; the first knowledge source implementation took 16 months to

183

work, although using an incomplete knowledge base; the first complete

implementation (kernel plus knowledge source plus interface

development) took 27 months, when the system had a 10 % success rate

of signal understanding with a 250 word working vocabulary; 10 months

later, (that is, after 35 months of development), the initial very

poor performance had been transformed into a 90 % success rate working

with a 1000 word vocabulary.

A disadvantage of the architecture as it is implemented in

the HEARSAY-II system, is that the blackboard has to be accessed at

each decision step. This is desirable for structuring communication
between different knowledge sources, but consumes a lot of time when

it occurs at intermediate decision points within an individual

knowledge source. Therefore a different problem solving strategy is

suggested for dealing with knowledge from within a single knowledge

source.

More processing time could also be saved if knowledge-based

meta-programming tasks were included in the kernel system. In its

present implementation time is lost in the choice process from which

the system decides which knowledge source to implement. An intelligent

decision-making module which ’sits’ on top of the kernel system could

alleviate that problem.

1.8 INTERNIST

The INTERNIST project of the University of Pittsburgh, U.S.A.

is an ambitious attempt to represent medical knowledge which would

enable diagnosis of general internal medicine (Miller et al., 1982). A

total of 15 person-years of research effort has produced an extensive

knowledge base, which in 1982 consisted of over 500 individual disease

profiles and over 3550 manifestations of disease. A disease profile is

defined as a list of manifestations (for example, patient history,

signs, symptoms, laboratory test results, as well as demographic data

and predisposing factors), which have been reported to occur in

patients with a specified disease. The profile is compiled by

reviewing the medical literature as well as by consultation with human

’experts’. An example of part of a disease profile for aortic

dissection is shown in Figure A-I.5. The knowledge base, because of

its extensive domain, is also in the form of a hierarchy of diseases.

For example, acute viral hepatitis is classified as a hepatocellular

infection, hepatocellular infection is classified as a sub-class of

diffuse hepatic parenchymal disease, and this in turn falls into the

184

The leftmost number beside each
manifestation is the evoking strength and
the rightmost number is the frequency.
The list is abridged from a
comprehensive INTERNIST disease
profile comtaining over 200 findings.

AGE 16 TO 25...0 1
AGE 26 TO 55...0 3
AGE GTR THAN 55...0 3
CHEST TRAUMA RECENT IIX... 1 1
HEART CATHETERIZATION
RECENT IIX... 1 1
HYPERTENSIONS IIX...1 4
MARFANS SYNDROME FAMILY
HX...2 2
SEX FEMALE...0 2
SEX MALE...0 4
SYNSCOPE OR SYNSCOPE RECENT
IIX...1 2

CHEST PAIN LATERAL
EXACERBATION WITH
BREATHING....1 1
CHEST PAIN SUBSTERNAL AT
REST...1 3
CHEST PAIN SUBSTERNAL
BURNING...1 2
CHEST PAIN SUBSTERNAL
CRUSHING... 1 2
CHEST PAIN SUBSTERNAL
KNIFE-LIKE OR TEARING...2 3
CHEST PAIN SUBSTERNAL
LASTING GTR THAN 20 MINUTE
<S>...2 3
CHEST PAIN SUBSTERNAL
MIGRATING TO BACK OR
ABDOMEN...3 3
CHEST PAIN SUBSTERNAL
RADIATING TO BACK...2 2
CHEST PAIN SUBSTERNAL
SEVERE...2 3
CHEST PAIN SUBSTRENAL
SEVERITY MAXIMAL AT ONSET...3
2

ARTERY <HES> CAROTID
SYSTOLIC BRUIT...1 2
ARTERY <HES> FEMORAL
SYSTOLIC BRUIT... 1 2
COMA WITH LUCID INTERVAL... 1
1
CYANOSIS ACRAL PART <S>
ONLY...1 2
FEVER...0 3
NEUROLOGIC SIGN <S>
TRANSHENT...1 2
PRESSURE ARTERIAL DIASTOLIC
95 TO 125...1 3
PRESSURE ARTERIAL SYSTOLIC
90 TO 100
PRESSURE ARTERIAL SYSTOLIC
GTR ARM <S> THAN LEG<S>...2 2

AORTA XRAY DILATATION
ASCENDING AORTA... 2 3
AORTA XRAY DILATATION
DESCENDING THORACIC...2 3
AORTA XRAY DUPLICATION OF
LATERAL BORDER...3 2
AORTA XRAY HUMP ON ARCH
cLATERAL VIEW>...2 3
AORTA XRAY RAPID SERIAL
ENLARGEMENT...3 2
AORTOGRAPHY ABDOMINAL
AORTA IRREGULARITY OF
LUMEN...2 3
AORTOGRAPHY ABDOMINAL
AORTA NARROWING...2 2
AORTAGRAPHY DOUBLE
CONTRAST COLUMN...4 3
AORTOGRAPHY THORACIC
DESCENDING AORTA
NARROWING...2 2
AORTOGRAPHY THORACIC
DESCEBDING IRREGULARITY OF
LUMEN...24
AORTOGRAPHY THORACIC
FAILURE OF CONTRAST TO FILL
MULTIPLE BRANCH ARTERY
<IES>...3 2

FIGURE A-I.5 SAMPLE INERNISTI DISEASE PROFILE FOR AORTIC DISSECTION
(Miller R A, 1984)

185

category of hepatic parenchymal disease which itself is a major sub-

class of the hepatobiliary system. Links exist in the knowledge base

between findings and disease state and there are also disease-to-

disease causal associations. A novel use (sic) of the INTERNIST

knowledge base is to use the list of disease profiles as an electronic

text book of medicine (First et al., 1985), although the original

authors themselves estimate that the knowledge base is only 75 %

complete.

Associated with each manifestation in a disease profile are

two critical parameters, these are its ’evoking strength’ and its

measure of clinical frequency. The evoking strength is a measure of

how important the manifestation is for the purpose of differential

diagnosis. It is measured on a nominal scale of 0 to 5, that is, from

non-specific (the finding occurs too commonly to be useful for

differential diagnosis) to the other extreme where the finding is

pathognomic for the diagnosis. The clinical frequency is an estimate

of how often any patient would exhibit a particular finding for a

particular disease. It is measured on a scale of 1 to 5, which

corresponds to ’very rarely’ to ’always’ respectively. Both of these

measures are extremely subjective and are assigned by the human

experts.

The reasoning strategy of INTERNIST begins in an event-driven

fashion, data entered via the keyboard evokes a set of related disease

hypotheses. For each hypothesis the system creates a patient-specific

model which consists of four lists, as follows :-

i) observed findings consistent with the disease

ii) observed findings unexplained by the disease

iii) other findings of the disease profile not observed in the
patient

iv) findings that ought to be observed if the disease is the
correct diagnosis.

A scoring system ranks the competing hypotheses and in this way the
most favoured hypothesis is found. A partitioning heuristic then

divides the remaining hypotheses into those which compete and those

whch complement the most highly ranked one. If there are more than

four competitors, the system will try to reduce the number by asking

questions about the findings that are in the disease profile of the

most highly ranked hypothesis. When the number of competitors has been

reduced to four or less, discriminant analysis is employed, which uses

the evoking strength of each manifestation in the disease profiles to

186

obtain the optimal hypothesis. In the event of a single hypothesis

with no competitors, the system will ask for data which will ’strongly

confirm' it. When this process has been completed and if there are

still some unexplained findings, then the next most highly ranked

hypothesis is partitioned, and the cycle continues until all findings

are covered. INTERNIST is therefore another example of an abductive

system, using a reasoning cycle that begins with observed findings and

ends when the best hypothesis is found.

A disadvantage of using an evoking strength parameter is that

the more favoured hypotheses usually lead to the most common diseases

being considered responsible for the set of patient-specific findings.

This would contradict one of the important functionalities of expert

systems, as their anticipated use is for the input of the more

difficult cases, (that is, where considerable diagnostic expertise is

required). Another problem encountered with the scoring regime

employed by INTERNIST is that it attaches no level of importance to

the in-coming data, which can lead to inappropriate task definition.

For example, if a wealth of data is forthcoming about a relatively

unimportant finding, the system may spend the majority of its

execution time trying to make sense of all of this data rather than
more important tasks. This will be frustrating to the user and may

erode user confidence in the system.

The system does not always reason correctly about causality.

For example, at times the system gives weight to disease hypothesis

because of a presumption concerning its ability to explain data, but

if a pathophysiological analysis was carried out it would show the

hypothesis to be incorrect. This can lead to a lot of time being

wasted as well as inaccurate decisions being made. Indeed, evaluation

of INTERNIST showed that the weakness of the system was its

inability to link findings to their proper causes.

Preliminary evaluation of the INTERNIST knowledge base was

performed using difficult cases taken from medical journals. Of the 43

patient histories reviewed, INTERNIST correctly diagnosed 58 % (25/43)

of the cases. This compares with a diagnostic accuracy of 65 % (28/43)

for non-expert clinicians, and 81 % (35/43) for expert clinicians. It

proved difficult to improve on this success rate, so research effort

concentrated on a successor program to INTERNIST called CADUCEUS. This

new system is still in its developmental stage. Other problems

associated with the INTERNIST project were its limited user interface

and its lack of an explanatory facility.

187

One of the original collaborators sums up his experience with

INTERNIST in a rather paradoxical fashion, as follows:-

"....a diagnostic reasoning program must have
access to detailed pathophysiologic knowledge in
order to permit the test of hypothesised
attributions; however, if the program is forced
into consideration of the detailed pathophysiology,
there is a danger that unifying gestalts may fail
to emerge."

(Pople,1982)

I.9 Summary

Six medical expert systems have been critically reviewed,

they have illustrated many of the knowledge engineering concepts and

techniques currently employed. One of the goals of the early

knowledge-based systems was to prove that the concept of a computer-

based diagnostic or signal understanding system was indeed a valid

one. This type of system was thought to have a sound practical future

after the success of DENDRAL. However, subsequent experience has shown

that this has not been the case, as only very few systems have reached

full clinical use. Possible reasons for this lack of achievement

include over zealous expectation from the end-users and technical

issues, such as the best way to combine uncertainties in the in-coming

data.

MYCIN was given as an example of a procedural expert system,

to be compared with CASNET, PIP and INTERNIST which are all examples

of declarative expert systems. The distinction between the two types

hinges upon the relationship between the encoded knowledge

representation and the control algorithm. In systems where the

knowledge representation and control algorithm are combined, then a

procedural definition applies. This is exemplified by the production

rule methodology, where causality is implicit in the IF __ THEN

rules. The ability to provide explanation of action, one of the

prerequisites of an expert system, can not naturally be accommodated.

However, to overcome this problem ’canned’ explanations can be used.

These are a set of fixed files, each one specific to a particular

production rule, which can be fired whenever the production rule they

represent is used. A disadvantage of this approach is that the

explanation can appear ’stale’ to an experienced user of the system.

In systems where the knowledge representation and control algorithm

are separate, then a declarative definition applies. The knowledge

representation is explicitly defined, allowing a set of algorithms to

act on it. This can include the test and hypothesis diagnostic cycle,

188

an explanation generating algorithm, and an algorithm which produces

text which constitutes computer-based advice. Both frame-based

knowledge representations and semantic networks are examples of

declarative systems.

189

APPENDIX II

ANNOTATED PROGRAM LISTING OF AIRS

AII.l Creating the window environment

To illustrate how a window environment is created, the

program code shown in Figure A—11.1 is taken from the top-level module

of AIRS, which describes the opening screen format. All the predicates

used in this listing are predefined by the PROLOG-2 environment.

make_windows:- cstream, c_screen, c_windows.

c_stream
createstr earn (banner,readwrite.byte,

window(20,78,bright yellow on black)),
createstream(header,readwrite,byte,window(1,80,white on blue)),
create_stream(blacking,readwrite.byte,window(25,80.black on black)),
create_st ream(top_menu,readwrite.byte,

window(7,14,bright yellow on cyan)),
open(banner,readwrite),
open(header,readwrite),
open(blacking,readwrite),
open(top_menu,readwrite).

cscreen:-
screen(blacking,
create(0,0,blacking,0,0,0,none,black on black,25,80,hidden)),
screen(header,
create(0,0,header,0,0,0,none,white on blue,1,80,revealed)),
screen(banner,
create(4,1.banner,0,0,0,all.yellow on black,20,78,revealed)),
screen(top_menu,
create(5,65,top_menu,0,0,0,all.yellow on cyan,7,14,hidden)).
c_windows:-
screen(blacking,unhide),
window(banner,cursor_address(10,20)),
window(banner,

text("AIRS - Artificial Intelligent Respirator System")),
window(banner,cursor_address(15,36)),
window(banner.text("WELCOME !")),
window(header,cursoraddress(0,2)),
window(header,text(" AIRS Off-Line v2.0 ")).
**
*

close_and_delete
close(top_menu),delete_stream(top_menu),
close(header),delete_stream(header),
close(banner),delete_st ream(banner),
close(blacking),delete_stream(blacking),
halt.

FIGURE A-II.l Creating the Window Environment

The essence of any PROLOG program is to satisify logical

1 9 0

goals. In the program excerpt listed above the top-goal is

make_windows/0 (the "0" indicates that make_windows has no arguments),

which will succeed only if c_stream/0, c_screen/0 and c_windows/0 all

succeed in turn. For c_stream/0 to succeed the ’built-in’ predicate

used to define a ’stream’ is called. In PROLOG-2 ’streams’ are the

data input and output channels to and from devices of various kinds. A

window environment is considered by the system to be a device, so a

means of accessing data has to be defined. This is accomplished by

using the predicate

createst ream(St reamname.Access,Datatype,Descript ion) .

’Streamname’ is the name of the stream to be created.

’Access’ specifies the type of access allowed to the stream, and

can be one of read (read only), write (write only), or readwrite

(the stream can be read from and written to).

’Datatype’ is either specified as ASCII or byte, depending on the

data’s binary form.

’Description’ describes the stream, which can be a file, a window, or

a special descriptor such as a printer.

The window descriptor also has three arguments, the first two describe

the number of rows and columns the window is to cover on the screen,

and the third argument describes the colour attributes of the window.

For example, a colour attribute of ’yellow on black’ indicates yellow

coloured text on a black background.

Nothing can be achieved with this window stream until it is
opened, using the predicate

open(St reamname.Access).

To display the defined window the screen predicate is used

screen(Name,Operat ion).

’Name’ is the name of the viewport created.

’Operation’ is the PROLOG structure which describes the desired
operat ion.

The viewport can cover the entire window or any rectangular portion of

it, however an error message will occur if the viewport is larger than

its associated window. It is advantageous to give the viewport the

same name as its window stream, thereby keeping like with like. To

create a viewport the Operation argument of the screen/2 predicate is
instantiated to

create(SY,SX,Win,WY,WX,D,M,Matt,H,W,R).

'SY and SX’ define the position of the top left hand corner of the
viewport on the screen.

191

’Win’ is the name of the associated window stream.

’WY and WX’ define the top left hand corner of the viewport on the

window.

’D’ is the depth of the viewport, that is, a depth of zero will ensure

that the whole viewport can be seen.

’M’ specifies which side of the viewport are to have margins in Left-

Right-Bottom-Top order, although more commonly "all" or "none" are

used.
’Matt’ describes the colour attributes of the margins.

’H and W’ define the size of the viewport in terms of rows and

columns.

’R’ is either "hidden" or "revealed", depending on whether the

viewport is to be seen straightaway.

Once the window has been created there are various operations that can

be used for its management, using the predicate

window(Streamname,Operation).

Two of these operations are illustrated in the source code shown,

where the operator cursor_address(Y,X) is used to position the cursor,

and the operator text(" te x t s t r i n g ") is used to enter a welcome

message.

In the code illustrated above, four windows are generated:

the "banner" displays an opening message; the "header" displays a one

line window at the top of the screen, which is used subsequently to
enter the patient’s name and identification number; the "blacking"

window is a useful utility, as its purpose is to cover up any pre-

existing windows or text on the screen before the window of interest

is displayed; and the "top-menu" window describes the options

available for continuation of the computer-based consultation.

After processing data, the windows have to be closed if the

computer memory that they take up is to be re-used. This is achieved
by using the predicate

close(Streamname).

To tidy up the memory completely, the window stream can be deleted
using

delete_stream(Streamname).

The halt predicate returns the user to the underlying disk-operating
system.

All.2 Menu selection

A menu-driven user interface has been designed which allows

192

the full potential of the windows environment to be explored. AIRS

comprises a hierarchy of menus. The code which describes the highest

level menu is illustrated in Figure A-II.2 below.

display_topmenu
retractall(menu_selection(top_menu,_)),
assert(menu_selection(top_menu,0)),
repeat,
once(menu_selection(top_menu,Selection)),
once(menu(top_menu,"TOP-MENU“,

["Patient name"-"@M-true-l-help,
"Input data"-"@"-true-2-help,
"Database"-"@"-true-3-help,
"Analyse data"-"@"-true-4-help,
"Act ion"-"@"-t rue-5-help,
"Explanation"-"@"-true-6-help,
"eXit"-"@"-true-7-help],Option,Select ion)),

once(screen(topmenu,unhide)),
once(retract(menu_selection(top_menu,Select ion))),
once(assert(menu_selection(top_menu,Option))),
once(top_menu_action(Opt ion)),
Option == 7,!. /* fails until exit selected */

top_menu_action(1)
screen(blacking,pull_up),
reconsult("rsptname.dat"),
ptname,
screen(header,pull_up).

top_menu_action(7):-
(store;true).

store
current_data(demographic,“identity",Id),
Display is_string "Archiving " & Id,
decision_box(3,55,Display,Result),
archive_patient(Result) .

FIGURE A-II.2 Program Code for the Pull-down Menus

The code shown can be split into two functional units:

display_topmenu/0 creates the menu; and top_menu_act ion/1 effects the
menu choice. Before the menu/5 predicate is encountered for the first

time in d i s p l a y _ t o p m e n u / 0 , the internal PROLOG database (the

’workspace’) is set to a dummy menu selection variable. This ensures

that no conflict of choice occurs when the menu selection is made. The

’repeat’ predicate, in conjunction with the ’once’ built-in predicate,

allows re-satisfaction of the menu options. This has the effect of

keeping cursor control within the menu until menu option 7 is chosen

("exit"). When this occurs, immediately after ’top_menu_act ion(7)’ has

been satisfied the final term of display_topmenu/0 succeeds, the ’cut’

193

operator (denoted by the exclamation mark) eliminates any back-

tracking, and display_topmenu/0 is exited.

Central to the menu selection routine is the m e n u / 5

predicate, which has the general format

menu(Window,Title,Menu,Answer.Start).

’Window’ is the name of the window and associated viewport created to

accommodate the menu. These must be of sufficient dimensions to

enclose the menu options.

’Title’ is the title of the window, and is displayed in the top margin

of the menu selection box. This is an optional feature.

’Menu’ is a list with each entry having five fields, as follows. (1)

the selection descriptor, which must be a string; (2) an accelerator

key, which must be a single character string, and has the same

function as choosing the menu selection with the cursor keys (or

mouse); (3) the enabling condition, which is a PROLOG goal that has to

succeed before the menu is displayed; (4) the term which fires the

action sequence; and (5) the string which is passed to the help system

for user clarification.

’Answer’ is the selected item.

’Start’ is the menu option where the cursor bar appears, and is in

reverse video mode.

To illustrate an application of this general format, consider

the m e n u / 5 predicate found in the example above. The window and

viewport are called "top_menu"; the menu window has the title "TOP

MENU". The seven menu options are the first fields of the entries in

the list; no accelerator keys are used, so these are all matched to

the enabling condition is the predicate true/0, which always
succeeds when called; the selected item is indicated by an integer;

and the help system is not activated. The Answer and Start arguments

of the m e n u / 5 predicate are matched to the variables O p t i o n and

Selection respectively. This allows the starting position (Selection)
of the cursor bar to be placed on the previous choice, and

instantiates "Option" to the integer of the present menu selection.

This integer is then used in the top_menu_act ion/1 predicate to effect

the appropriate action.

The predicate to p_ menu_action/1 consults one of the second

level files and initiates action by calling the top goal of the opened

file. This activates a second level menu system which operates in the

same way as the top level system. In some instances third and fourth

194

level menus are used, but each menu node must eventually exhibit some

action. For example, this may be for data capture, displaying a

database or displaying an advice screen. The file is closed

automatically when exiting from the lower level menu system, enabling
cursor control to revert to the top-menu. This successive use of menus

is the way in which control is exhibited within AIRS.

When "exit" is chosen from the top-menu, top_menu_act ion(7)

is fired which terminates the menu-driven action of the system. Before

returning to the Disk Operating System any patient details are either

updated and stored on disk or (the operator is interpreted as

"or") the true/O predicate succeeds and the AIRS consultation is

terminated immediately.

AII.3 First level of intelligence

The initialisation of the patient on the ventilator assumes

that diagnostic state is known, as it is this knowledge which

determines the information that is shown on the screen. In the program

excerpt shown in Figure A-II.3 only one of the diagnostic states is

shown. This is indicative of all the others.

init_menu_action(1) :-
analysisinit(1),
act ion(cardiac,init),
explain(cardiac.init).
**
i n i t m e n u a c t i o n (16)
screen(analysis,unhide),
screen(action,unhide) .

init_menu_action(17)
screen(explanat ion.unhide) .

analysis_init(1) :-
screen(analysis.unhide),
window(analysis,cursor_address(0,1)),
window(analysis,text("Suggested Ventilator Settings")),
window(analysis,cursor_address(1,1)),
window(analysis,text("for Cardiac Patients :-")),
window(analysis,cursor_address(3,1)),
window(analysis,text("RR 12 per min")),
window(analysis,cursor_address(4,1)),
window(analysis,text(”TV 10 ml per Kg“)),
window(analysis,cursor_address(5,1)),
window(analysis,text(“I:E 1")) ,
window(analysis,cursor_address(6,1)),
window(analysis,text("PEEP 5 cmH20 ***")),
window(analysis,cursoraddress(7,1)),
window(analysis.text("FI02 0.5")).

FIGURE A-II.3 Initialisation of a Cardiac Patient

1 95

The predicate init_menu_action/l is the action product of the

initialisation menu and is responsible for firing the goal predicates

which display the suggested ventilator settings (analysis_init/l), the

action screen (action/2), and the explanation screen (explain/2).

These latter two predicates are found in the files "rsact.pro" and

" rsexpln.pro" respectively.

A facility to switch between the analysis/action screen and

the explanation screen has been added as a feature in this menu
(init_menu_action(16) and init_menu_act ion(17) being the explicit

goals to achieve this action).

All.4 Second level of intelligence

At the centre of the sub-program which exhibits the second

level of intelligence is a value-matching algorithm. The program code

illustrated in Figure A-II.4 shows an example of the value-matching

algorithm being used in the determination of the set_point alarm

status of PC0 2 -

check_status(cmv,set_pt)
check_pco2(cmv,set_pt).

check_pco2(cmv,set_pt):-
lab_data(_,_,Index,"PC02 -,VI),
Valuel is value(VI,ir), /* numerical string to atom */
Valuel < 3 , ! , /* low < 3 KPa */
fill_top_blue(pco2_status),
action(cmv,set_pt,pco2,low), explanation(cmv,setpt,pco2,low).

check_pco2(cmv,set_pt)
lab_data(_,_,Index,"PC02 ",V1),
Valuel is value(Vl,ir), /* numerical string to atom */
Valuel > 9 , ! , /* high > 9 KPa */
fill_top_red(pco2_status),
action(cmv,set_pt,pco2,high), explanation(cmv,set_pt,pco2,high).

check_pco2(cmv,set_pt)
fill_top_green(pco2_status).

/* Not HIGH or LOW, therefore NORMAL.
Screen command required for reset. */

check_pco2(cmv,set_pt). /* catch all */

FIGURE A-II.4 Value-matching Algorithm for PCO2 Limit Alarm

The predicate check_status/2 comprises twenty-one clauses,
one for each of the seven data variables in the three modes of

ventilation recognised by the system. PaC02 is the data variable in

the illustrative example above, where the value-matching algorithm

shows the data values for changing set-point alarm status when the

196

mode of ventilation is continuous mandatory ventilation (CMV). There

are four clauses for check_pco2/2, in the first two of these the value

for PaC02 is obtained from the internal PROLOG database using

lab_data/5. This value is then converted from a string to an atom

using value/2, and tested against the set-point criterion. If the

Valuel term is passed the colour attribute of the upper half of the

window is changed accordingly. The order in which the clauses for

check_pco2/2 occur is important, as if the value fails the first two

clauses it is automatically assumed to reside within the normal range.

A fourth clause is added for check_pco2/2 which has no goal, this acts

as a software safety mechanism and returns all failures.

All.5 Third level of intelligence

All.5.1 Structure of the rulebase

The rule-based knowledge of the weaning element of AIRS is

represented in PROLOG by the clauses premise/4 and action/3. A rule of

the form:

IF condition 1

AND condition 2

OR condition 3

AND condition 4

THEN action 1

AND action 2

is represented in a general form as

premise(rule_number_l,premise_number_l,rule_type,Data)

condition 1,

condition 2.

premise(rule_number_l,premise_number_2,rule_type,Data):-
condition 3,

condition 4.

act ion(rule_number_l,Premise variable,Data)
action 1,

action 2.

The premise conditions can be any PROLOG goal, but several standard
conditions are defined:

equals/5

not_equal/5

greater_than_or_equal/5

less_than_or_equal/5

one of/5

197

Figure A-II.5 shows an example of program code, the 4th rule of the

weaning rule-set, which has two premises that deal with impaired

energy supply. The premises indicate that this situation can occur

when the patient has impaired oxygen delivery or a nutritional

deficiency. A full listing of the program code for the third level of

intelligence is found in Section All.8.

premise(4,1,weaning,[impaired_oxygen_delivery])

equals(4,1,weaning,impaired_oxygen_delivery,yes).

premise(4,2,weaning,[nut rit ionaldeficiency])

equals(4,2,weaning,nutritional_deficiency.yes).

action(4,P,[impaired_energy_supply]):-

conclude(4,P,impaired_energy_supply,transient,yes).

FIGURE A-II.5 Rule for Impaired Energy Supply

The predicates listed above test the current values of data stored in

a dynamic database defined by PROLOG facts current_value/3:

current_value(Dataname.Datatype,Datavalue).

For the action goals, one standard predicate is used to update the
current_value/3 facts, that is:

conclude/5.

All.5.2 The role of premise requirements

The 4th argument of the premise/4 clauses is a list of all

the Data-names that appear in equals/5 conditions for the premise. The

values of these data items must exist in the database if the premise

is to evaluate successfully. Hence, the list of Data-names is called
the ’premise requirements’ list for the rule premise.

Before the rules which comprise the inference engine are

fired, the predicate generate_premise_requirements/0 checks each
premise clause and asserts a fact:

premise_requi rements(Rule,Premise.Type,Requi rements)

for each rule premise, where the four arguments are the same as those
in the head of the premise/4 clause.

Whenever the value of a data item is concluded with

conclude/5 the pr em i se_requi r ement s facts are searched and the name of

the data item whose value is concluded is removed from the

198

requirements list (this is a c h i e v e d by the p r e d i c a t e

reduce_premise_requirements/2).

Whenever the value of a data item is tested using one of the

standard premise conditions (equals/5 etc.) and the test fails, the

name of the data item is added to the requirements list in the

premise_requirements/4 fact for that rule premise.

The rules for which the requirements list is empty are

suitable for testing on the next cycle of the inference engine.

All.5.3 The inference engine

The inference engine operates in a simple cycle, shown in

Figure A-II.6, activated by the predicate control_cycle/0. The set of

active rules is formed in two stages. First a set is formed of all
rules whose requirements list is empty (in premiserequirements/4

facts). Then for each rule in this set the premise is evaluated (by

calling the premise/4 goal) and the set of active rules is formed from

all rules whose premise succeeds. The two phases of rule activation

are achieved by the predicates f i r s t _p a s s_a c t i v a t i o n / 1 and
second_pass_act ivat ion/2.

The predicate schedule_rules/3 is passed the list of active

rules and returns them to be executed one at a time. The order that

the rules are scheduled is controlled by a simple algorithm:

goal top priority

weaning

regression

progression

request lowest priority

On each cycle the rule returned by schedule rule/3 is executed (that

is, the action/3 predicate is called.

AII.6 Data capture

A menu-type interface is used to enter data into AIRS. At one

level the menu options are the type of data (for example, ventilator,

monitor, nurse observations), and at a lower level the menu options

are the data items themselves (for examp 1 e ,tida 1 volume and

respiratory rate). The program excerpt in Figure A-II.7 illustrates

data capture from the ventilator, and shows two predicates :
vent_data/0 and input_data/2.

199

ventdata
repeat,
once(get_archive_time(Date,Time)),
once(vent_display([Day.Month,Year],[Hour,Min])),
once(create_data_display(Date,Time,"RR ",Display_RR)),
once(menu(input_ventdata,"Data Input",
[Display_RR-"@"-create_data_display(Date,Time,"MV ",

Display_MV)-input_data(“RR ",Index)-help,

Display_MV-,,@"-create_data_display(Date,Time, “MawP
Display_MawP)-input_data("MV “,Index)-help,

Display_MawP-”@"-create_data_dispiay(Date,Time,"IE ",
Display_IE)-input_data("MawP ",Index)-help,

Display_IE-"@"-create_data_display(Date,Time,"TV
Display_TV)-input_data("IE ", Index)-help,

Display_TV-"@"-create_data_display(Date,Time,"SMV ",
Display_SMV)-input_data(“TV ",Index)-help,

Display_SMV-"@"-create_data_display(Date,Time,"PawP ",
Display_PawP)-input_data("SMV ",Index)-help,

Display_PawP-"@"-create_data_display(Date,Time,"PP ",
Display_PP)-input_data("PawP ",Index)-help,

Display_PP-"@"-true-input_data("PP ",Index)-help,
"exit"-"@"-true-exit-help], Option,0)),

once(call(Opt ion)),
Option == exit,
window(ventdb,scroll_up),
scroll window down(ventdatdb),
closeal1.

input_data(Measurand,Index)
date(Day.Month,Year), time(Hour,Minute,Sec),
Date = [Day,Month,Year], Time = [Hour.Minute],
pt_index(Index),
screen(input_ventdata,unhide) ,
Prompt is_string Measurand,
Value_string is_string ?(Value,

fedit(5,1,30,"Input Data".Prompt,“ ".green on black.Value)),
asserta(vent_data(Date,Time,Index,Measurand,Value_st ring)) ,
display_data(Measurand,Valuestring).

FIGURE A-II.7 Program Code for Data Capture

In the vent_data/0 predicate repeat/0 is again used to keep

cursor control within the menu until the "exit" option is chosen. The

predicates get_archive_t ime/2, vent_di sp 1 a y / 2 and c r e a t e _ d a t a _

display/4 are involved with the on-screen presentation of the captured

data and are discussed in the next section.

The m e n u / 5 predicate within vent_data/0 describes a more

sophisticated menu system than previously encountered. For any option

except the last one in the menu list, the enabling condition is the

create_data_display/4 predicate of the next item in the menu. The

enabling condition of the last listed item is the predicate true/0

which automatically succeeds. To complicate the understanding of the

201

program even further, the display token of the chosen menu item is the

last argument of the previous create_data_display/4 predicate. The

corresponding argument for the first item in the list is defined

before the menu/5 predicate is fired. The return token for every menu

option is the predicate input_data/2. The data capture menus have been

implemented in this way to facilitate data processing.

When it is called, the first argument of input_data/2 is

instantiated to the chosen measureand. The date and time are then

taken from the system clock to act as a time-stamp for the data file

and the index number of the patient is checked to ensure that the
correct data is transferred. A built-in predicate fedit/8 is used as a

means to enter the data, and has the general format
fedit(SY.SX,Length,Title,Prompt,Def,Att,Ans).

’SY and SX’ define the position of the top left corner of the window

and associated viewport.

’Length’ is the width of the window (by default an fedit/8 window is

specified as having only one row).

’Title’ is the title of the window, and is optional.

’Prompt’ is the prompt which is written to the left of the window.

’Def’ is the data string to be entered.

’Att’ is the colour attribute of the window.

’Value’ is the output string.

Hence, the program excerpt shows a window that is thirty

characters long and the top left corner appears five rows down and one

column across. The window is entitled "Input Data", the prompt is the

required measurand (to be instantiated) and the characters are green

on a black background. When the input window first appears the data

entry area is blank and awaits input by the user. The value entered

can be edited as necessary, as it is not matched to "Value" until the

return key is pressed. The number inputted is converted to a string

before saving in the PROLOG workspace in the form

vent_data(Date.Time,Index,Measurand,Value_st ring).

A typical entry could be

vent_data([01,03,89],[14,30],Pt3,"RR "

This can be interpreted as, "The patient whose identity is Pt3 had a

respiratory rate of 12 breaths per minute at 14:30 hours on 1st March,
1989."

There are similar clauses for monitor data, nurse

observations etc. which have the same argument format to vent data/5

above. It is these clauses which are saved to disk when exiting from

202

AIRS. They are stored in files called "PTX.ARC", where X is the

appropriate patient number.

All.7 Data presentation

The predicates shown in Figure A-II.8 are used for data

capture and for data presentation.

get_archive_time(Date.Time)
vent_data(Date,Time,_,_,_).

get_archive_time(Date,Time)
date(Day,Month,Year), time(Hour.Minute,Sec),
Date = [Day.Month,Year], Time = [Hour.Minute].

vent_display(_,_)
date_display(Date), time_display(Time),
window(ventdb,cursor_address(5,1)) ,
Datadisplay is_string Date & " " & Time,
window(ventdb,text(Datadisplay)),
window(ventdatdb,cursor_address(0,1)),
window(ventdatdb,text(Datadisplay)).

create_data_disp1ay(Date,Time,Measurand,Datadisplay)
vent_data(Date,Time,Index,Measurand,Value),
output_format(Value.Displayvalue),
units(Measurand.Units),
Data_display isstring Measurand & Display_value & Units.

create_data_disp1ay(Date,Time,Measurand,Data_dispiay)
units(Measurand.Units),
Data_display isstring Measurand & " " & Units.

units("RR
units("MawP
units("TV
units("PawP

,,,M per min"). units("MV
cmH20"). units("IE

"," litres"). unitsC'SMV
cmH20”). units(”PP

litres").

"," litres").
,“ cmH20").

display_data(Measurand,Value)
clause(vent_tab_head/l,vent_tab_head(Measurand),Pos),
Xpos is 10 + Pos*8,
Xposdb is 10 + Pos*8,
window(ventdb,inquire_cursor_address(CY,X)) ,
window(ventdb,cursor_address(CY,Xpos)),
window(ventdb,text(Value)),
window(ventdatdb,inquire_cursor_address(CYdb,Xdb)),
window(ventdatdb,cursor_address(CYdb,Xposdb)),
window(ventdatdb,text(Value)).

vent_tab_head("RR
vent_tab_head("MawP
vent_tab_head("TV
vent_tab_head("PawP

"). vent_tab_head("MV
"). vent_tab_head("IE
“). vent_tab_head("SMV
"). vent_tab_head("PP

")-
")■
")■
”)■

FIGURE A-II.8 Program Code for Data Presentation

There are two clauses for the predicate getarchivetime/2

which is called from within the data capture menu. The first succeeds

203

if the date and time from the system clock has remained the same from

the previous call to this predicate. However if a time boundary

(minutes are the most significant time boundary) has been passed, the

first clause fails and the second clause is used to update the time

(and date, if the time is midnight). The predicate vent_display/2 is

used to display the date and time in the data capture and database

windows.

The predicate create_data_display/4 also has two clauses,

which one of them succeeds also depends on whether the time has been

updated. Its use is to return the term Data_display, which shows the

data entry options available. Within this clause, output_format/2 is

used to convert all numbers to an accuracy of two decimal places; and

units/2, as illustrated in the code above, returns the appropriate

units of measurement for the entered data.

The predicate display_data/2 is used to enter the captured

data entries into their respective positions in the data capture and

database windows. Date and time require ten columns for their entry,

so the position of the data entries are off-set by that amount. The

clauses for vent_tab_head/l are position sensitive, the variable term

Pos being matched to the numerical order of the entered Measurand.

Each data item has a field of eight columns in the database, so the

cursor position for data entry into the data capture window is given

by the term Xpos. The same algorithm is used for placing data at the

appropriate position within the database window.

204

AII.8 Program listing for the third level of intelligence

/* ________________ rswean rulebase ______________ */

/* Form of rule premises :
1st argument - Rule_no
2nd argument - Premise_no
3rd argument - Rule_type
4th argument - Dependent variables */

/* */

premise(goal,1,goal, []): -
t rue.

/* top goal always fires */

premise(terminate.l,terminate,[]):-
t rue.

/* end goal always fires */

/ * ------ Rule premises - weaning---------*/

premise(0,l.weaning,[fit_to_wean]) :-
equals(0,1,weaning.fi t_to_wean,yes).

premise(l,l,weaning,[respi ratory_muscle_fat igue]):-
equals(1,1,weaning,respi ratory_muscle_fat igue,yes).

premise(l,2,weaning,[f_e_imbalance]):-
equals(1,2,weaning,f_e_imbalance,yes).

premise(l,3,weaning,[syst em_failure]): -
equals(1,3,weaning,syst em_failure,yes).

premise(1,4,weaning,[anxiety]]
equals(1,4,weaning,anxiety,yes).

premise(l,5,weaning,[feeding_problems]):-
equals(1,5.weaning,feeding_problems,yes).

premise(2,1,weaning,[excessive_muscle_demands]):-
equals(2,1.weaning,excessive_muscle_demands,yes).

premise(2,2.weaning,[impai red_energy_supply]):-
equals(2,2,weaning,impaired_energy_supply,yes).

premise(3,l.weaning,[increased_respi ratory_resistance]):-
equals(3,1.weaning,increased_respiratory_resistance,yes).

premise(3,2.weaning,[fever_infect ion]):-
equals(3,2,weaning,fever_infection,yes).

premise(3,3,weaning,[i ncreased_co2_product ion]):-
equals(3,3.weaning,increased_co2_product ion,yes).

premise(4,l,weaning,[impai red_oxygen_delivery]):-
equals(4,1.weaning,impai red_oxygen_delivery,yes).

premise(4 , 2 .weaning, [nut rit ional_deficiency]) : -
equals(4,2 , weaning,nutri t ional_def iciency,yes) .

205

premise(5,l.weaning,[breathing_ci rcuit_inappropriate]):
equal s(5,1.weaning,breathing_circuit_inappropriate,yes)

premise(5,2 .weaning,[bronchospasm]):-
equals(5,2.weaning,bronchospasm,yes).

premise(5,3,weaning,[ascites]):-
equals(5,3,weaning,ascites,yes).

premise(5,4,weaning,[obesity]):-
equals(5,4,weaning,obesity,yes).

premise(6,l.weaning,[reduced_oxygen_consumpt ion]):-
equals(6,1.weaning,reduced_oxygen_consumption,yes).

premise(6,2.weaning,[increased_work_of_breathing])
equals(6,2.weaning,increased_work_of_breathing,yes).

premise(7,l.weaning,[cat abolic]): -
equals(7,1 .weaning,catabolic,yes).

premise(8,l.weaning,[sensitivity]):-
equals(8,1.weaning.sensitivity,yes).

premise(9,1.weaning,[i ncreased_dynamic_resistance]):-
equals(9,l,weaning,increased_dynamic_resistance,yes).

premise(10,l.weaning,[hypovolaemia])
equals(10,1,weaning,hypovolaemia,yes).

premise(10,2,weaning,[anaemia]):-
equals(10,2,weaning,anaemia,yes).

premise(10,3,weaning,[pulmonary_oedema]):-
equals(10,3,weaning,pulmonary_oedema,yes).

premise(10,4,weaning,[potassium_level_out]):-
equals(10,4,weaning,potassium_level_out,yes).

premise(10,5,weaning,[phosphate_level]):-
equals(10,5,weaning,phosphate_level,yes).

premise(ll,l,weaning,[c_v_pressure]): -
equals(11,1,weaning,c_v_pressure,yes).

premise(12,l.weaning,[haemoglobin_count]):-
equals(12,l,weaning,haemoglobin_count,yes).

premise(13,l.weaning,[p_a_wedge_pressure])
equals(13,1,weaning,p_a_wedge_pressure,yes).

premise(13,2,weaning,[colloid_osmot ic_pressure]):-
equals(13,2.weaning,colloid_osmot ic_pressure,yes).

premise(14,1,weaning,[potassium_high])
equals(14,l,weaning,pot assium_high,yes).

premise(14,2,weaning,[potassium_low])
equals(14,2 ,weaning,potassium_low,yes).

206

premise(16,1,weaning,[respiratory_failure])
equals(16,1,weaning,respi ratory_failure,yes).

premise(16,2 .weaning,[cardiac_failure])
equals(16,2,weaning,cardiac_failure,yes).

premise(16,3,weaning,[neurological]):-
equals(16,3.weaning,neurological,yes).

premise(16,4,weani ng,[metabolic_aci d_base]):-
equals(16,4,weaning,metabolic_acid_base,yes).

premise(17,l,weaning,[ventilatory_failure])
equal s(17,1,weaning,venti1 atory_failure,yes).

premise(17,2,weaning,[i nefficient_pulmonary_gas_exchange]):
equals(17,2,weaning,inefficient_pulmonary_gas_exchange,yes)

premise(18,l,weaning,[t idal_volume]):-
equals(18,1,weaning,t idal_volume,yes).

premise(19,l,weaning,[capAaD02]):-
equals(19,1.weaning,capAaD02,yes).

premise(20,l.weaning,[cardiac_output_low])
equals(20,1,weaning,cardiac_output_low,yes).

premise(20,2,weaning,[acute_lvf]):-
equals(20,2,weaning,acute_lvf,yes).

premise(21,l.weaning,[cardiac_index]):-
equals(21,1.weaning,cardiac_index,yes).

premise(22,1,weaning,[p_a_wedge_pressure]):-
equals(22,1,weaning,p_a_wedge_pressure,yes).

premise(23,l,weaning,[metabolic_alkalosi s]):-
equals (23,1,weaning,metabolic_alkalosis,yes).

premise(23,2,weaning,[respi ratory_alkalosis]):-
equals(23,2,weaning,respiratory_alkalosis,yes).

premise(23,3,weaning,[renal_probiem]):-
equals(23,3,weaning,renal_problem,yes).

premise(23,4,weaning,[hepat ic_problem]):-
equals(23,4,weaning,hepatic_problem,yes).

premise(24,1,weaning,[creat inine_high]):-
equals(24,1,weaning,creatinine_high,yes).

premise(25,l,weaning,[1ft_deranged])
equals(25,1,weaning,lft_deranged,yes).

premise(15,1 ,weaning,[phosphate_high])
equals(15,1 ,weaning, phosphate_high, yes).

premise(26 , 1 .weaning, [sleep_deprivat ion]) : -
equals(26 ,1 , weaning, sleep_deprivat ion, yes).

207

premise(26,3,weaning,[pain]):-
equals(26,3,weaning,pain,yes).

premise(26,4,weaning,[sedation]):-
equals(26,4.weaning.sedation,yes).

premise(27,1,weaning,[sleepi ng_draught]):-
equals(27,1.weaning,sleeping_draught,yes).

premise(28,1.weaning,[anxiolyt ic_agent]):-
equals(28,1,weaning,anxiolytic_agent,yes).

premise(29,l.weaning,[local_blocker]):-
equals(29,1.weaning,1ocal_blocker,yes).

premise(29,2,weaning,[infiltration]):-
equals(29,2.weaning,infiltration,yes).

premise(32,1,weaning,[sedation]):-
equals(32,1,weaning,sedation,yes).

premise(33,l,weaning,[atelactasis]):-
equals(33,1,weaning,atelactasis,yes).

premise(33,2,weaning,[decreased_vent ilatory_response]):
equals(33,2.weaning,decreased_vent i1atory_response,yes)

premise(34,l.weaning,[ineffect ive_cough]):-
equals(34,1.weaning,ineffeetive_cough,yes).

premise(35,l.weaning,[hypoxia])
equals(35,1.weaning,hypoxia,yes).

premise(35,2,weaning,[hypercapnia])
equals(35,2.weaning,hypercapnia,yes).

premise(26 , 2 , weaning,[primary_anxiety]) : -
equals(2 6 , 2 , weaning,primary_anxiety,yes).

208

/* rule premises - regression */

premise(l00,1,regression,[regress]):-
equals(100,1,regression,regress,yes).

premise(101,l,regression^respi ratory_muscle_weakness_fat igue]):
equals(101,1,regression,respi ratory_muscle_weakness_fat igue,yes)

premise(101,2,regression,[decreased_respi ratory_drive]): -
equals(101,2,regression,decreased_respi ratory_dr ive,yes).

premise(101,3,regression^ increased_respi ratory_drive]): -
equals(101,3,regression,increased_respi ratory_driv e ,yes).

premise(l02,1,regression,[rr_gt_25_and_tv_vlow]): -
equals(102,1,regression,rr_gt_25_and_tv_vlow,yes).

premise(102,2,regression^abnormal_breat hing]): -
equals(102,2,regression,abnormal_breat hi ng,yes).

premise(l03,1,regression,[abdominal_paradox]): -
equals(103,1,regression,abdominal_paradox,yes).

premise(l 03,2,regression^ respi ratory_alternans]): -
equals(103,2,regression,respi ratory_alternans,yes).

premise(l 04,1,regression^ increased_tv_inspi ratory_t ime_rat io]):
equals(104,1,regression,increased_tv_inspi ratory_t ime_rat io,yes)

premise(l05,1,regression,[p01_gt_6]):-
equal s(105,1,regression,p01_gt_6,yes).

premise(l05,2,regression,[increased_co2_product ion])
equals(105,2,regression,increased_co2_product ion,yes).

/ * ----------- rule premises - progression---------- */

premise(200,1,progression,[progress]):-
equals(200,1,progression,progress,yes).

premise(200,2,progression,[regress]):-
equals(200,2,progression,regress,yes).

premise(200,3,progression,[review]):-
equals(200,3,progression,review,yes).

premise(201,1,progress ion,[ph_same_paco2_up]): —
equals(201,1,progression,ph_same_paco2_up,yes).

premise(201,2,progression,[ph_same_paco2_same]):-
equals (201,2,progression,ph_same_paco2_same,yes).

premise(201,3 , progression,[ph_same_paco2_down]): -
equal s (201, 3 , progression,ph_same_paco2_down, yes).

209

premi se(202,2,progression,[ph_down_paco2_up]): -
equals(202,2,progression,ph_down_paco2_up,yes).

premise(203,1,progression,[ph_up_paco2_same]): -
equals(203,1,progression,ph_up_paco2_same,yes).

premise(203,2,progression,[ph_up_paco2_down]):-
equal s(203,2,progression,ph_up_paco2_down,yes).

premise(203,3,progression^ ph_down_paco2_same]):
equal s(203,3,progression,ph_down_paco2_same,yes)

premise(203,4,progression,[ph_down_paco2_down]):
equals(203,4,progression,ph_down_paco2_down,yes)

premise(204,1,progression,[ph_samel]):-
equals(204,1,progression,ph_samel,yes).

premise(204,2,progression,[paco2_upl]):-
equal s(204,2,progress ion,paco2_upl,yes).

premise(205,1,progression,[ph_same2]):-
equal s(205,1,progression,ph_same2,yes).

premise(205,2,progression,[paco2_samel]):-
equals(205,2,progression,paco2_samel,yes).

premise(206,1,progression,[ph_same3]): -
equal s(206,1,progression,ph_same3,yes).

premise(206,2,progression,[paco2_downl]):-
equals(206,2,progression,paco2_downl,yes).

premise(207,1,progression,[ph_upl]):-
equal s(207,1,progression,ph_upl,yes).

premise(207,2,progression,[paco2_up2]) : -
equal s(207,2,progression,paco2_up2,yes).

premi se(208,1,progression,[ph_downl]):-
equal s(208,1,progression,ph_downl,yes).

premise(208,2,progression,[paco2_up3])
equal s(208,2,progression,paco2_up3,yes).

premise(209,l,progression,[ph_up2])
equal s(209,1,progression,ph_up2,yes).

premise(209,2,progression,[paco2_same2])
equals(209,2.progression,paco2_same2,yes).

premise(210,l,progression,[ph_up3])
equals(210,1,progression,ph_up3,yes).

premise(202, 1 , progression,[ph_up_paco2_up])
equal s (202,1 ,progression, ph_up_paco2_up, yes).

premise(210,2 ,progression,[paco2_down2]) : -
equals (210,2 ,progression,paco2_down2, yes).

210

premise(211,2,progression,[paco2_same3])
equals(211,2,progression,paco2_same3,yes).

premise(212,1,progression,[ph_down3]): -
equals(212,1,progression,ph_down3,yes).

premise(212,2,progress ion,[paco2_down3])
equals(212,2,progression,paco2_down3,yes).

premise(213,1,progression,[ph_is_same])
equals(213,l.progress ion,ph_is_same,yes).

premise(214,1,progression,[paco2_is_up]):-
equals(214,1,progression,paco2_is_up,yes).

premise(215,l,progression,[ph_is_same])
equals(215,1,progression,ph_is_same,yes).

premise(216,1,progression,[paco2_is_same]):
equals(216,1,progression,paco2_is_same,yes)

premise(217,l,progression,[ph_is_same])
equals(217,1,progression,ph_is_same,yes).

premise(218,1,progression,[paco2_is_down]):
equals(218,1,progression,paco2_is_down,yes)

premise(219,1,progression,[ph_is_up]):-
equals(219,1,progression,ph_is_up,yes).

premise(220,1,progression,[paco2_is_up]): -
equals(220,1,progression,paco2_is_up,yes).

premise(221,l,progression,[ph_is_down]): -
equals(221,1,progression,ph_is_down,yes).

premise(222,l,progression,[paco2_is_up])
equals(222,1,progression,paco2_i s_up,yes).

premise(223,1,progression,[ph_is_up]):-
equals(223,1,progress ion,ph_is_up,yes).

premise(224,l,progression,[paco2_i s_same]):
equals(224,1,progression,paco2_is_same,yes)

premise(225,l,progression,[ph_is_up])
equals(225,1,progression,ph_is_up,yes).

premise(226,1,progression,[paco2_is_down]):
equals(226,1,progression,paco2_is_down,yes)

premise(227,1,progression,[ph_is_down]):-
equals(227,1,progress ion,ph_is_down,yes).

premise(211,l ,progression,[ph_down2]) : -
equals(211 ,1 ,progression, ph_down2, yes).

premise(228, l ,progression, [paco2_is_same]):
equals(228,1 ,progression, paco2_is_same, yes)

211

premise(230,1,progression,[paco2_is_down]):-
equals(230,1,progression,paco2_is_down,yes).

premise(229,1 ,progression, [ph_is_down]) : -
equals(229,1 ,progression,ph_is_down,yes).

/ * ___* /
/ * ------------- negative weaning conclusions ------------------ */

premi se(500,1,weaning,[f it_to_wean]):-
equals(500,1.weaning,f it_to_wean,no).

premise(501,1,weaning,[respi ratory_muscle_fat igue,f_e_imbalance,
system_failure.anxiety,feeding_problems]): -

equals(501,1.weaning,respi ratory_muscle_fat igue,no),
equals (501,2.weaning,f_e_imbalance,no),
equals(501,3,weani ng,system_failure.no),
equals (501,4,weaning,anxiety,no),
equals (501,5,weaning,feeding_problems,no).

premise(502,1,weaning,[impai red_energy_supply,
excessive_muscle_demands])

equals(502,1.weaning,impaired_energy_supply,no),
equals (502,2,weaning,excess ive_muscle_demands,no).

premise(503,1.weaning,[increased_respirat ory_resistance,
fever_infeet ion,increased_co2_product ion]):-

equals(503,1.weaning,increased_respiratory_resistance,no),
equals(503,2.weaning,fever_infeet ion,no),
equals(503,3.weaning,increased_co2_product ion,no).

premise(504,1.weaning,[impai red_oxygen_delivery,
nutritional_deficiency]):-

equals(504,1.weaning,impaired_oxygen_delivery,no),
equals(504,2.weaning,nut rit ional_deficiency,no).

premise(505,1,weaning,[breathing_circuit_inappropriate,
bronchospasm,ascites,obesity]):-

equals(505,1,weaning,breathing_circuit_inappropriate,no),
equals(505,2,weaning,bronchospasm.no),
equals(505,3,weaning,ascites,no),
equals(505,4.weaning.obesity,no).

premise(506,1.weaning,[reduced_oxygen_consumption,
increased_work_of_breathing])

equals(506,1.weaning,reduced_oxygen_consumpt ion,no),
equals(506,2.weaning,increased_work_of_breat hing,no).

premise(507,1.weaning,[catabolic])
equals(507,1,weaning,catabolic,no).

premise(508,1,weaning,[sensitivity]):-
equals(508,1.weaning.sensitivity,no).

212

premise(509,1.weaning,[increased_dynamic_resi stance])
equals(509,1.weaning,increased_dynamic_resistance,no).

premise(510,l,weaning,[hypovolaemia,anaemia,pulmonary_oedema,
potassium_level_out,phosphate_level]):-

equals(510,1,weaning,hypovolaemia,no),
equals(510,2,weaning,anaemia, no),
equals(510,3,weaning,pulmonary_oedema,no),
equals(510,4,weaning,pot assium_level_out,no),
equals(510,5,weaning,phosphate_level,no).

premise(511,l,weaning,[c_v_pressure])
equals(511,1,weaning,c_v_pressure,no).

premise(512,l,weaning,[haemoglobin_count]):-
equals(512,1,weaning,haemoglobin_count,no).

premise(513,l,weaning,[p_a_wedge_pressure_high,
colloid_osmot ic_pressure]):-

equals(513,1,weaning,p_a_wedge_pressure_high,no),
equals(513,2,weaning,colloid_osmot ic_pressure,no).

premise(514,l,weaning,[potassium_high,potassium_low]):-
equals(514,1.weaning,potassium_high,no),
equals(514,2.weaning,potassium_low,no).

premise(515,l.weaning,[phosphate_high])
equals(515,1,weaning,phosphate_high,no).

premise(516,l,weaning,[respi ratory_failure,cardiac_failure,
neurological.metabolic_acid_base]):-

equals(516,1,weaning,respi ratory_failure.no),
equals (516,2,weaning,cardi ac_failure.no),
equals(516,3,weaning,neurological,no),
equals(516,4.weaning.metabolic_acid_base,no).

premise(517,1,weaning,[ventilatory_failure,
inefficient_pulmonary_gas_exchange])

equals(517,1.weaning,vent i1 atory_failure,no),
equals(517,2.weaning,inefficient_pu1monary_gas_exchange,no).

premise(518,l,weaning,[t idal_volume]):-
equals(518,1,weaning,t idal_volume,no).

premise(519,l,weaning,[capAaD02])
equals(519,1,weaning,capAaD02,no).

premise(520,1.weaning,[cardiac_output_low,acute_lvf])
equals (520,1,weaning,cardiac_output_low,no),
equals(520,2,weaning,acute_lvf,no).

premise(521,l,weaning,[cardiac_index])
equals(521,1.weaning,cardiac_index,no).

premise(522,1,weaning,[p_a_wedge_pressure_low])
equals(522,1,weaning,p_a_wedge_pressure_low,no).

213

premise(523,1,weaning,[metabolic_alkalosis,respi ratory_alkalosis,
renal_problem,hepat ic_problem]):-

equals(523,1,weaning,metabolic_alkalosis,no),
equals (523,2,weaning,respirat ory_alkalosis,no),
equals (523,3,weaning,renal_problem,no),
equals(523,4.weaning,hepat ic_probiem,no).

premise(524,1.weaning,[creat inine_high]) :-
equals(524,1.weaning,creat inine_high,no).

premise(525,1,weaning,[lft_deranged]):~
equals(525,1,weaning,lft_deranged,no).

premise(526,1,weaning,[sleep_deprivat ion,primary_anxiety,
pain,sedation])

equals(526,1.weaning,sleep_deprivat ion.no),
equals(526,2,weani ng,primary_anxiety,no),
equals(526,3,weaning,pa in,no),
equals(526,4,weaning,sedation,no).

premise(527,l,weaning,[sieeping_draught]):-
equals(527,1,weaning,sieeping_draught,no).

premise(528,1,weaning,[anxiolyt ic_agent]):-
equals (528,1,weaning,anxiolytic_agent,no).

premise(529,1,weaning,[local_blocker,infiltration]):-
equals(529,1.weaning,local_blocker,no),
equals(529,2,weaning,infiltration.no).

premise(532,1,weaning,[sedation]):-
equals(532,1.weaning,sedation,no).

premise(533,1,weaning,[atelactasis,
decreased_vent ilatory_response])

equals(533,1,weaning,atelactasis,no),
equals(533,2.weaning,decreased_vent ilatory_response,no).

premise(534,l,weaning,[ineffect ive_cough]):-
equals(534,1.weaning,ineffect ive_cough,no).

premise(535,l.weaning,[hypoxia.hypercapnia]):-
equals(535,1.weaning,hypoxia,no),
equals(535,2,weaning,hypercapnia,no).

214

/*
/* negative regression conclusions

*/
*/

premise(600,1,regression,[regress]):-
equals(600,1,regression,regress,no).

premise(601,1,regression,[respi ratory_muscle_weakness_fat igue,
decreased_respi ratory_drive,
increased_respi ratory_drive]): -

equals(601,1,regression,respi ratory_muscle_weakness_fat igue,no),
equals(601,2,regression,decreased_respi ratory_dr ive,no),
equals(601,3,regression,increased_respirarory_drive,no).

premise(602,1,regression,[rr_gt_25_and_tv_vlow,
abnormal_breathing])

equals(602,1,regression,rr_gt_25_and_tv_vlow,no),
equals(602,2,regression,abnormal_breathing,no).

premise(603,1,regression,[abdominal_paradox,
respi ratory_alternans]):-

equals(603,1,regression,abdominal_paradox,no),
equals(603,2,regression,respiratory_alternans,no).

premise(604,1,regression^ increased_tv_i nspi ratory_t ime_rat io]):-
equals(604,1,regression,increased_tv_inspi ratory_t ime_rat io,no).

premise(605,l,regression,[p01_gt_6,
increased_co2_product ion]):-

equals(605,1,regression,p01_gt_6,no),
equals(605,2,regression,increased_co2_product ion,no).

/ * --------- negative rule premises - progression---------*/

premise(200,1.progression,[progress,regress,review]):-
equals(200,1,progression,progress,no),
equals(200,2,progression,regress,no),
equals(200,3,progress ion,review.no).

premise(201,1.progression,[ph_same_paco2_up,
ph_same_paco2_same,
ph_same_paco2_down]):-

equals(201,1,progression,ph_same_paco2_up,no),
equals(201,2,progression,ph_same_paco2_same,no),
equals(201,3,progression,ph_same_paco2_down,no).

premise(202,1,progression,[ph_up_paco2_up,
ph_down_paco2_up]):-

equals(202,1,progression,ph_up_paco2_up,no),
equals(202,2,progression,ph_down_paco2_up,no).

215

premise(203,1,progression,[ph_up_paco2_same,
ph_up_pac°2_down,
ph_down_paco2_same,
ph_down_paco2_down]):-

equal s(203,1,progression,ph_up_paco2_same,no),
equals(203,2,progression,ph_up_paco2_down,no),
equal s(203,3,progress ion,ph_down_paco2_same,no),
equal s(203,4,progression,ph_down_paco2_down,no).

premise(204,1,progression,[ph_samel,paco2_upl]):-
equal s(204,1,progression,ph_samel,no),
equals(204,2,progression,paco2_upl,no).

premise(205,1,progression,[ph_same2,paco2_samel])
equal s(205,1,progression,ph_same2,no),
equals(205,2,progression,paco2_samel,no).

premise(206,1,progression,[ph_same3,paco2_downl])
equal s(206,1,progression,ph_same3,no),
equals(206,2,progression,paco2_downl,no).

premise(207,1,progression,[ph_upl,paco2_up2]):-
equal s(207,1,progress ion,ph_upl,no),
equal s (207,2.progression,paco2_up2,no).

premise(208,1,progress ion,[ph_downl,paco2_up3]): -
equal s(208,1,progression,ph_downl,no),
equal s(208,2,progression,paco2_up3,no).

premise(209,1,progression,[ph_up2,paco2_same2]):-
equal s(209,1,progression,ph_up2,no),
equals(209,2.progression,paco2_same2,no).

premise(210,l,progression,[ph_up3,paco2_down2])
equal s(210,1,progression,ph_up3,no),
equal s(210,2,progression,paco2_down2,no).

premise(211,l,progression,[ph_down2,paco2_same3])
equals(211,1,progression,ph_down2,no),
equal s(211,2,progression,paco2_same3,no).

premise(212,1,progression,[ph_down3,paco2_down3])
equal s(212,1,progression,ph_down3,no),
equals(212,2,progression,paco2_down3,no).

premise(213,1,progression,[ph_is_same]): -
equals(213,1,progression,ph_i s_same,no).

premise(214,1,progress ion,[paco2_is_up]): -
equals(214,1,progress ion,paco2_is_up,no).

premise(215,1,progression,[ph_is_same]): -
equals(215,1.progress ion,ph_is_same,no).

premise(216,1,progress ion,[paco2_is_same]):-
equals(216,1,progression,paco2_is_same,no).

premise(2 1 7 , 1 , p rog r es s i on , [ph_ i s_same]): -
equal s (2 1 7 , 1 , p r o g r e s s i o n , ph_is_same, no).

216

premise(219,l,progression,[ph_is_up])
equals(219,1,progress ion,ph_is_up,no).

premise(220,1,progression,[paco2_is_up]): -
equals(220,1,progression,paco2_is_up,no).

premise(221,1,progression,[ph_is_down]):-
equals(221,1,progression,ph_is_down,no).

premise(222,l,progression,[paco2_i s_up]):-
equals(222,1,progression,paco2_is_up,no).

premise(223,1,progression,[ph_is_up]): -
equals(223,1,progression,ph_is_up,no).

premise(224,1,progression,[paco2_is_same])
equals(224,1,progression,paco2_is_same,no)

premise(225,1,progression,[ph_is_up])
equals(225,1,progression,ph_is_up,no).

premise(226,1,progression,[paco2_is_down])
equals(226,1,progression,paco2_is_down,no)

premise(227,1,progression,[ph_i s_down]) :-
equals(227,1,progression,ph_is_down,no).

premise(228,l,progression,[paco2_is_same])
equals(228,1,progression,paco2_is_same,no)

premise(229,1,progression,[ph_is_down]): -
equals(229,1,progression,ph_is_down,no).

premise(230,l,progression,[paco2_is_down])
equals(230,1,progression,paco2_is_down,no)

p r e m i s e (2 1 8 , l , p r o g r e s s i o n , [paco2_is_down])
equals (2 1 8 , 1 , p r o g r e s s i o n , paco2_is_down, no)

217

/*
/*

Rule ac t i ons */

Form of rule action
1st argument - Rule_no
2nd argument - Premise_no
3rd argument - Concluded variables

*/
action(goal,P,[state]):-
conclude(goal,P,state,intransient,"CMV").

action(terminate,P,[give_advice]): -
give_advice.

/ * -------- Rule actions - weaning----------*/

act ion(0,P,[state,give_advice])
conclude(0,P,state,intransient,"SIMV"),
give_advice.

act ion(1,P,[fit_to_wean]):-
conclude(1,P,fit_to_wean.transient,no).

action(2,P,[respi ratory_muscle_fat igue])
conclude(2,P,respiratory_muscle_fatigue,transient,yes).

action(3,P,[excessi ve_muscle_demands]):-
conelude(3,P,excessive_muscle_demands.transient,yes).

action(4,P,[impai red_energy_supply])
conclude(4,P,impai red_energy_supply,transient,yes).

action(5,P,[increased_respi ratory_resistance]):-
conclude(5,P,increased_respiratory_resistance,transient,yes).

action(6,P,[fever_i nfeet ion]):-
conclude(6,P,fever_infeet ion.transient,yes).

action(7,P,[nutritional_deficiency]):-
conclude(7,P,nutritional_deficiency,transient,yes).

action(8,P,[breat hing_ci rcuit_inappropriate]):-
conclude(8,P,breathing_circuit_inappropriate,transient,yes).

action(9,P,[bronchospasm]):-
conclude(9,P,bronchospasm,transient,yes).

action(10,P,[f_e_imbalance]):-
conclude(10,P,f_e_imbalance.transient,yes).

action(ll,P,[hypovolaemia]):-
conclude(ll,P,hypovolaemia,transient,yes).

action(12,P,[anaemia]):~
conclude(12,P,anaemia,transient,yes).

a c t i o n (1 3 , P , [pulmonary_oedema])
conclude(13 ,P ,pulmonary_oedema. t r ans ien t ,yes) .

218

action(14,P,[potassium_level_out]):-
conclude(14,P,potassium_level_out,transient,yes).

action(15,P,[phosphate_level]):-
conclude(15,P,phosphate_leve 1.transient,yes).

action(16,P,[system_fai Iure]) : -
conclude(16,P,system_fai Iure,transient,yes).

action(17,P,[respi ratory_fai Iure]) : -
conclude(17,P,respi ratory_fai Iure,transient,yes).

action(18,P,[vent ilatory_fai Iure]) : -
conelude(18,P,venti latory_fai Iure,transient, yes).

action(19,P,[inefficient_pulmonary_gas_exchange]):-
conclude(19,P,inefficient_pulmonary_gas_exchange.transient,yes).

act ion(20,P,[cardiac_fai Iure])
conclude(20,P,cardiac_fai Iure,transient,yes).

action(21,P,[cardiac_output_low])
conclude(21,P,cardi ac_output_low,t ransient.yes).

action(22,P,[acute_lvf]):-
conclude(22,P,acute_lvf.transient,yes).

act ion(23,P,[metabolic_acid_base])
conclude(23,P,metabolic_acid_base,transient,yes).

action(24,P,[renal_problem]):-
conclude(24,P,renal_problem,transient,yes).

action(25,P,[hepat ic_problem]): -
conclude(25,P,hepat ic_prob lem,t ransi ent,yes).

action(26,P,[anxiety]):-
conclude(26,P,anxiety,transient,yes).

action(27,P,[sleep_deprivat ion]):-
conclude(27,P,sleep_deprivation,transient,yes).

act ion(28,P,[primary_anxiety]): -
conclude(28,P,pr imary_anxi ety,transient,yes).

action(29,P,[pain]):-
conelude(29,P,pain,transient,yes).

action(32,P,[sedation]):-
conclude(32,P,sedation,transient,yes).

action(33,P,[feeding_problems]):-
conclude(33,P,feeding_problems.transient,yes).

action(34,P,[atelactasis]):-
conelude(34,P.atelactasis,transient,yes).

action(35,P,[decreased_vent ilatory_response]): -
conelude(35,P,descreased_vent ilatory_response.transient,yes).

219

action(100,P,[state,give_advice]):-
conclude(100,P,state,intransient,"SIMV"),
give_advice.

action(101,P,[regress]):-
conclude(101,P,regress,transient,yes).

action(102,P,[respi ratory_muscle_weakness_fat igue]):-
conclude(102,P,respi ratory_muscle_weakness_fat igue.transient,yes).

action(103,P,[abnormal_breathing])
conclude(103,P,abnormal_breathing,yes).

action(104,P,[decreased_respi ratory_dr ive]):-
conelude(104,P,deereased_respi ratory_drive.transient,yes).

action(105,P,[increased_respi ratory_drive]):-
conclude(105,P,increased_respi ratory_drive.transient,yes).

/ * -------------- Rule a c t i ons - r e g r e s s i o n ------------------*/

/ * -------- Rule actions - progression-----------*/

act ion(200,P,[state,give_advice]): -
conclude(200,P,state,intransient,"SIMV"),
give_advice.

action(201,P,[progress]):-
conclude(201,P,progress,transient,yes).

action(202,P,[regress]):-
conclude(202,P,regress,transient,yes).

act ion(203,P,[review]):-
conclude(203,P,review,transient,yes).

act ion(204,P,[ph_same_paco2_up])
conelude(204,P,ph_same_paco2_up,transient,yes).

act ion(205,P,[ph_same_paco2_same]):-
conclude(205,P,ph_same_paco2_same.transient,yes).

act ion(206,P,[ph_same_paco2_down]):-
conelude(206,P,ph_same_paco2_down.transient,yes).

act ion(207,P,[ph_up_paco2_up])
conelude(207,P,ph_up_paco2_up.transient,yes).

act ion(208,P,[ph_down_paco2_up])
cone1ude(208,P,ph_down_paco2_up,transient,yes).

action(209,P,[ph_up_paco2_same])
conclude(209,P,ph_up_paco2_same,transient ,yes).

act ion(210,P, [ph_up_paco2_down]) : -
conclude(210,P,ph_up_paco2_down. t rans ient ,yes) .

220

action(211,P,[ph_down_paco2_same])
conclude(211,P,ph_down_paco2_same.transient,yes)

action(212,P,[ph_down_paco2_down]):-
conclude(212,P,ph_down_paco2_down.transient,yes)

action(213,P,[ph_samel]) : -
conelude(213,P,ph_same1.transient,yes).

action(214,P,[paco2_upl]):-
conelude(214,P,paco2_upl.transient,yes).

action(215,P,[ph_same2]):-
conelude(215,P,ph_same2,transient,yes).

action(216,P,[paco2_samel]):-
conclude(216,P,paco2_samel.transient,yes).

action(217,P,[ph_same3])
conclude(217,P,ph_same3.transient,yes).

action(218,P,[paco2_downl]):-
conelude(218,P,paco2_downl.transient,yes).

action(219,P,[ph_upl]):-
conclude(219,P,ph_upl.transient,yes).

action(220,P,[paco2_up2]):-
cone 1ude(220,P,paco2_up2,transient,yes).

action(221,P,[ph_downl]):-
conclude(221,l,ph_downl.transient,yes).

action(222,P,[paco2_up3])
conclude(222,P,paco2_up3.transient,yes).

action(223,P,[ph_up2]):-
cone1ude(223,P,ph_up2,transient,yes).

act ion(224,P,[paco2_same2]):-
cone1ude(224,P,paco2_same2,transient,yes).

action(225,P,[ph_up3]):-
conc1ude(225,P,ph_up3,transient,yes).

action(226,P,[paco2_down2])
cone1ude(226,P,paco2_down2,transient,yes).

action(227,P,[ph_down2])
conclude(227,P,ph_down2.transient, yes).

action(228,P,[paco2_same3])
conclude(228,P,paco2_same3.transient,yes).

action(229,P,[ph_down3])
cone1ude(229,P,ph_down3,transient,yes).

action(230,P,[paco2_down3]): -
cone1ude(230,P,paco2_down3.transient,yes).

221

act ion(500,P,[give_advice]):-
give_advice.

act ion(501,P,[fit_to_wean]):-
conelude(501,P,fit_to_wean.transient,yes).

act ion(502,P,[respi ratory_muscle_fat igue]):-
conelude(502,P,respi ratory_muscle_fat igue.transient.no).

act ion(503,P,[excessive_muscle_demands])
conelude(503,P,excessive_muscle_demands.transient.no).

act ion(504,P,[impai red_energy_supply])
conclude(504,P,impaired_energy_supply,transient,no).

act ion(505,P,[increased_respi ratory_resistance]):-
conelude(505,P,increased_respi ratory_resistance.transient.no

action(506,P,[fever_infeet ion])
conelude(506,P,fever_infeet ion.transient.no).

act ion(507,P,[nutritional_deficiencyDr-
con elude (507, P, nutritional_deficiency.transient.no).

act ion(508,P,[breathing_ci rcui t_inappropriate]):-
conclude(508,P,breathing_ci rcuit_inappropriate,transient.no)

act ion(509,P.[bronchospasm]):-
conclude(509,P,bronchospasm.transient.no).

action(510,P,[f_e_imbalance]):-
conclude(510,P,f_e_imbalance.transient.no).

action(511,P,[hypovolaemia])
conclude(511,P,hypovolaemia,transient.no).

action(512,P,[anaemia]):-
conclude(512,P,anaemia,transient,no).

action(513,P,[pulmonary_oedema]):-
conclude(513,P,pulmonary_oedema,transient, no).

action(514,P,[potassium_level_out]):-
conclude(514,P,potassium_level_out.transient.no).

action(515,P,[phosphat e_level]):-
conclude(515,P,phosphate_level.transient.no).

action(516,P,[system_failure]):-
conclude(516,P.system_failure.transient,no).

action(517,P,[respi ratory_failure])
conclude(517,P,respi ratory_failure,transient.no).

action(518,P,[vent ilatory_failure]):-
conclude(518,P,vent i1atory_failure,transient.no).

/ * ---- negat ive ac t i on conclus ions - weaning ---- */

222

action(519,P,[inefficient_pulmonary_gas_exchange]):-
conclude(519,P,inefficient_pulmonary_gas_exchange.transient,no).

action(520,P,[cardiac_failure])
conclude(520,P,cardiac_failure,transient.no).

action(521,P,[cardiac_output_low]):-
conclude(521,P,cardiac_output_low,transient,no).

action(522,P,[acute_lvf])
conclude(522,P,acute_lvf.transient.no).

action(523,P,[metabolic_acid_base])
conelude(523,P.metabolic_acid_base,transient.no).

action(524,P,[renal_problem]):-
conclude(524,P,renal_problem.transient.no).

action(525,P,[hepat ic_problem]):-
conclude(525,P,hepat ic_probiem,t ransient.no).

action(526,P,[anxiety]):-
conclude(526,P,anxiety,transient,no).

action(527,P,[sieep_deprivat ion])
cone1ude(527,P,sleep_deprivation.transient,no).

action(528,P,[primary_anxiety]):-
conclude(528,P,primary_anxiety,transient,no).

action(529,P,[pain]):-
conclude(529,P,pain,transient, no).

action(532,P,[sedation]):-
conclude(532,P,sedation,transient,no).

action(533,P,[feeding_problems]):-
cone1ude(533,P,feedi ng_problems.transient.no).

action(534,P,[atelactasis]):-
conclude(534,P,atelactasis.transient.no).

action(535,P,[decreased_vent ilatory_response]):-
conclude(535,P,descreased_vent ilatory_response,transient.no).

223

act ion(600,P,[give_advice])
give_advice.

action(601,P,[regress]):-
conclude(601,P,regress,transient.no).

act ion(602,P,[respi ratory_muscle_weakness_fat igue]):-
conclüde(602,P,respi ratory_muscle_weakness_fat igue,t ransient,no).

action(603,P,[abnormal_breathing])
conclude(603,P,abnormal_breathing,no).

act ion(604,P,[decreased_respi ratory_drive])
conclüde(604,P,decreased_respi ratory_drive,transient.no).

action(605,P,[increased_respiratory_drive])
conclüde(605,P,increased_respi ratory_drive,t ransient.no).

/ * — negat ive ac t i on conclus ions - r eg ress ion — */

/* — Negative action conclusions - progression — */

action(700,P,[state,give_advice]):-
conclude(700,P,state,intransient,"SIMV"),
give_advice.

action(701,P,[progress]):-
conclude(701,P,progress,transient,yes).

act ion(702,P,[regress]):-
conclude(702,P,regress,transient,yes).

action(703,P,[review]):-
conclude(703,P,review,transient,yes).

action(704,P,[ph_same_paco2_up])
conelude(704,P,ph_same_paco2_up.transient,yes).

act ion(705,P,[ph_same_paco2_same]):-
conclude(705,P,ph_same_paco2_same.transient,yes).

act ion(706,P,[ph_same_paco2_down]):-
conclude(706,P,ph_same_paco2_down.transient,yes).

act ion(707,P,[ph_up_paco2_up]):-
conclude(707,P,ph_up_paco2_up,transient,yes).

act ion(708,P,[ph_down_paco2_up)):-
conelude(708,P,ph_down_paco2_up.transient,yes).

action(709,P,[ph_up_paco2_same])
conclude(709,P,ph_up_paco2_same,transient,yes).

action(710,P,[ph_up_paco2_down]):-
conclude(710,P,ph_up_paco2_down.transient,yes).

act ion(711,P, [ph_down_paco2_same]) : -
conclude(711,P,ph_down_paco2_same. t rans ient ,yes) .

224

act ion(712,P,[ph_down_paco2_down])¡-
conclude(712,P,ph_down_paco2_down,t ransient,yes).

action(713,P,[ph_samel]):-
conclude(713,P,ph_samel.transient,yes).

action(714,P,[paco2_upl])
conclude(714,P,paco2_upl.transient,yes).

action(715,P,[ph_same2]):-
conclude(715,P,ph_same2.transient,yes).

action(716,P,[paco2_samel]Ji-
co nelude(716,P,paco2_samel.transient,yes).

action(717,P,[ph_same3]): -
conclude(717,P,ph_same3.transient,yes).

action(718,P,[paco2_downl]):-
conclude(718,P,paco2_downl.transient,yes).

action(719,P,[ph_upl]):-
conclude(719,P,ph_upl.transient,yes).

action(720,P,[paco2_up2]Ji-
co ne lude (720 ,P,paco2_up2.transient,yes).

action(721,P,[ph_downl]):-
conclude(721,P,ph_downl.transient,yes).

action(722,P,[paco2_up3])
conclude(722,P,paco2_up3.transient,yes).

action(723,P,[ph_up2]):-
conclude(723,P,ph_up2.transient,yes).

action(724,P,[paco2_same2]Ji-
co ne lude (724, P, paco2_same2.tr an sien t ,yes).

action(725,P,[ph_up3]):-
cone1ude(725,P,ph_up3,transient,yes).

act ion(726,P,[paco2_down2])¡-
conclude(726,P,paco2_down2.transient,yes).

action(727,P,[ph_down2])¡-
conciude(727,P,ph_down2,transient,yes).

action(728,P,[paco2_same3])¡-
conclude(728,P,paco2_same3.transient,yes).

action(729,P,[ph_down3])¡-
conclude(729,P,ph_down3,transient,yes).

action(730,P,[paco2_down3]):-
cone1ude(730,P,paco2_down3,transient,yes).

225

premise(901,l,request,[state,increased_dynamic_resistance])
one_of(901,1,request,st at e ,["CMV"]).

premise(902,1,request,[state,sensitivity]):-
one_of(902,1,request,state,["CMV"]).

premise(903,1,request,[state,obesity]):-
one_of(903,1,request,state,["CMV"]),
not_equal(903,1,request.obesity,A).

premise(904,1,request,[state,ascites]):-
one_of(904,1,request.state,["CMV"]),
not_equal(904,1,request.ascites,A).

premise(905,1,request,[state,impai red_oxygen_delivery]):-
one_of(905,1,request,state,["CMV"]).

premise(906,1,request,[state,catabolic]):-
one_of(906,1,request,state,["CMV"]).

premise(907,1,request,[state,reduced_oxygen_consumpt ion]):-
one_of(907,1,request,state,["CMV"]).

premise(908,1,request,[state,increased_work_of_breathing]):
one_of(908,1,request,state,["CMV"]).

premise(909,l,request,[state,increased_co2_product ion]):-
one_of(909,1,request,state,["CMV"]).

premise(910,l,request,[state,c_v_pressure]):-
one_of(910,1,request,state,["CMV"]).

premise(911,l,request,[state,haemoglobi n_count]):-
one_of(911,1,request,state,["CMV"]).

premise(912,l,request,[state,p_a_wedge_pressure_high]):-
one_of(912,1,request,state,["CMV"]).

premise(913,l,request,[state,colloi d_osmot i c_pressure]):-
one_of(913,1,request,state,["CMV"]).

premise(914,l,request,[state,potassium_high])
one_of(914,1,request,state,["CMV"]).

premise(915,l,request,[state,pot assium_low])
one_of(915,1,request,state,["CMV"]).

premise(916,l,request,[state,phosphate_high]):-
one_of(916,1,request,state,["CMV"]).

premise(917,l,request,[state,t idal_volume]):-
one_of(917,1,request,state,["CMV"]).

premise(918,l,request,[state,capAaD02]):-
one_of(918,1,request,state,["CMV"]).

premise(919,l,request,[state,cardiac_index])
one_of(919,1,request,state,["CMV"]).

/ * -----------data request r u l e s - w e a n i n g ------------------*/

226

premise(920,1,request,[state,p_a_wedge_pressure_low]):
one_of(920,1,request,state,["CMV"]).

premise(921,l,request,[state,systolic_blood_pressure])
one_of(921,1,request.state,["CMV"]).

premise(922,l,request.[state,metabolic_alkalosi s]):-
one_of(922,1,request,state,["CMV"]).

premise(923,1,request,[state,respi rat ory_alkalosi s]):-
one_of(923,1,request,state,["CMV"]).

premi se(924,1,request,[state,creat i ni ne_high]):-
one_of(924,1,request,state,["CMV"]).

premise(925,1,request.[state,lft_deranged]):-
one_of(925,1,request,state,["CMV"]).

premise(926,1,request,[state,ineffect ive_cough]):-
one_of(926,1,request,state,["CMV"]).

premise(927,1,request,[state,hypoxia]):-
one_of(927,1,request,state,["CMV"]).

premise(928,1,request,[state,hypercapnia]):-
one_of(928,1,request,state,["CMV"]).

premise(929,l,request,[state,neurological]):-
one_of(929,1,request,state,["CMV"]).

premise(930,1,request,[state,sleeping_draught]):-
one_of(930,1,request,state,["CMV"]).

premise(931,l,request,[state,anxiolyt ic_agent]):-
one_of(931,1,request,state,["CMV"]).

premise(932,1,request,[state,1ocal_blocker])
one_of(932,1,request,state,["CMV"]).

premise(933,1,request,[state,infiltration]):-
one_of(933,1,request,state,["CMV"]).

premise(934,1,request,[state,sedat ive]):-
one_of(934,1,request,state,["CMV"]).

227

premise(935,1,request,[state,rr_gt_25_and_tv_vlow]):-
one_of(935,1,request.state,["SIMV"]).

premise(936,1,request,[state,abdominal_paradox])
one_of(936,1,request.state,["SIMV"]).

premise(937,1,request,[state,respi ratory_alternans]):-
one_of(937,1,request.state,["SIMV"]).

premise(938,1,request,[state,increased_tv_inspi ratory_t ime_rat io])
one_of(938,1,request,state,["SIMV"]).

premise(939,l,request, [state,p01_gt_6]):-
one_of(939,1,request,state,["SIMV"]).

premise(940,1,request,[state,increased_co2_product ion]):-
one_of(940,1,request,state,["SIMV"]).

/ * --------- data request ru l es - r e g r e s s i o n ----------- */

/ * ----- data request rules - progression-------*/

premise(941,l,request,[state,ph_is_same])
one_of(941,1,request,state,["SIMV"]).

premise(942,1,request,[state,paco2_is_up]):-
one_of(942,1,request,state,["SIMV"]).

premise(943,1,request,[state,ph_is_up])
one_of(943,1,request.state,["SIMV"]).

premise(944,1,request,[state,paco2_is_same])
one_of(944,1,request,state,["SIMV"]).

premise(945,1,request,[state,ph_is_down]):-
one_of(945,1,request.state,["SIMV"]).

premise(946,1,request,[state,paco2_is_down])
one_of(946,1,request.state,["SIMV"]).

228

/* ******** **************************** ******************** */
/* ---------------- weaning action queries ------------------ */

act ion(901,1,[increased_dynamic_resistance]):-
request("Has dynamic resistance increased significantly ? ",

yes-no,R),
conclude(901,1,increased_dynamic_resistance,transient,R).

act ion(902,1,[sensitivity]):-
request("Is sensitivity at a minimum ? ",yes-no,R),
conclude(902,1,sensitivity,transient,R).

act ion(903,l,[obesity]):-
request("Is the patient obese ? ",yes-no,R),
conelude(903,1,obesity,intransient, R).

act ion(904,l,[ascites]):-
request("Does the patient have ascites ? ",yes-no,R),
conclude(904,1,ascites, intransient,R).

act ion(905,1,[impai red_oxygen_delivery]):-
request("Is oxygen delivery impaired ? ", yes-no , R),
conclude(905,1,impaired_oxygen_delivery,transient,R).

act ion(906,1,[catabolic]):-
request("Is the patient catabolic ? ", yes-no,R),
conclude(906,1,catabolie,transient,R).

act ion(907,1,[reduced_oxygen_consumpt ion]):-
request("Is there a marked decrease in oxygen consumption ? ",

yes-no,R),
conclude(907,1,reduced_oxygen_consumption,transient,R).

act ion(908,1,[increased_work_of_breathing]):-
request("Is there a marked increase in work of breathing ? ",

yes-no,R),
conclude(908,1,increased_work_of_breathing,transient,R).

action(909,1,[increased_co2_product ion]):-
request("Is there an increase in C02 production ? ",yes-no,R),
conclude(909,1,increased_co2_production,transient,R).

action(910,l,[c_v_pressure]):-
request("Is central venous pressure low ? ",yes-no,R),
conclude(910,l,c_v_pressure,transient,R).

action(911,l,[haemoglobin_count]):-
request("Is the haemoglobin count low ? ", yes-no , R),
conclude(911,l,haemoglobin_count,transient,R).

action(912,l,[p_a_wedge_pressure_high]):-
request("Is pulmonary artery wedge pressure high ? ",yes-no,R),
conclude(912,l,p_a_wedge_pressure_high,transient,R).

action(913,l,[colloid_osmot ic_pressure]) :-
request("Is colloid osmotic pressure low ? ", yes-no,R),
conclude(913,l,colloid_osmot ic_pressure,transient,R).

229

action(914,l,[potassium_high]) :-
reqaest("Is potassium level high ? ",yes-no,R),
conclude(914,l,pot assium_high,transient,R).

action(915,l,[potassium_low])
request("Is potassium level low ? ", yes-no,R),
conclude(915,l,pot assium_low,transient,R).

action(916,l,[phosphate_high]): -
request("Is phosphate level high ? ",yes-no,R),
conclude(916,l,phosphate_high,transient,R).

action(917,l,[t idal_volume]):-
request("Is tidal volume low ? ", yes-no , R),
conclude(917,l,tidal_volume,transient,R).

action(918,l,[capAaD02])
request("Is AaD02 gradient low ? ",yes-no,R),
conclude(918,l,capAaD02,transient, R).

action(919,l,[cardiac_index]):-
request("Is cardiac index low ? ",yes-no,R),
conclude(919,l,cardiac_index,transient,R).

act ion(920,1,[p_a_wedge_pressure_low]):-
request("Is pulmonary wedge pressure low ?",yes-no,R),
conclude(920,1,p_a_wedge_pressure_low,transient,R).

act ion(921,1,[systolic_blood_pressure]): -
request("Is systolic blood pressure low ? ",yes-no,R),
conclude(921,1,systolic_blood_pressure,transient,R).

action(922,1,[metabolic_alkalosis]):-
request("Is the patient metabolic alkalotic ? ",yes-no,R),
conclude(922,1.metabolic_alkalosis,transi ent,R).

action(923,l,[respi ratory_alkalosis])
request("Is the patient respiratory alkalotic ? ",yes-no,R),
conclude(923,1,respiratory_alkalosis,transient,R).

act ion(924,1,[créât inine_high]):-
request("Is there an increase in creatinine ? ",yes-no,R),
conelude(924,1,créâti ni ne_high,transient,R).

action(925,l,[lft_deranged]):-
request(”Are the liver function tests deranged ? ", yes-no,R),
conclude(925,1,lft_deranged.transient,R).

action(926,1,[ineffect ive_cough]):-
request("Has the patient got an ineffective cough ? ",yes-no,R),
conclude(926,1,ineffect ive_cough,transient,R).

act ion(927,1,[hypoxia]) : -
request("Is the patient hypoxic ? ",yes-no,R),
conclude(927,1,hypoxia,transient,R).

action(928,l,[hypercapnia]) : -
request("Is the patient hypercapnic ? ", yes-no,R),
conclude(928,1,hypercapnia, transient,R).

230

action(929,1,[neurological]):-
request("Is there a neurological involvement ? ", yes-no,R),
conclude(929,l,neurological,transient,R).

act ion(930,1,[sleeping_draught]) : -
request(“Is the patient taking a sleeping draught ? “ ,yes-no,R),
conclude(930,1,sleeping_draught,transient,R).

action(931,l,[anxiolyt ic_agent]):-
request("Is the patient taking an anxiolytic agent ? ", yes-no, R),
conclude(931,1,anxiolytic_agent,transient,R).

action(932,1,[1ocal_blocker]):-
request("Is the patient receiving a local pain blocker

conclude(932,1,local_blocker,transient,R).

? " ,
yes-no,R),

act ion(933,l,[infiltration]):-
request

("Is the patient receiving an infiltration to relieve pain ? "
yes-no , R),

conclude(933,1,infiltration,transient,R).

act ion(934,l,[sedative]):-
request("Is the patient taking sedatives ? ",yes-no,R),
conclude(934,1,sedative,transient,R).

/* ------------- regression action queries -------------------- */

act ion(935,1,[rr_gt_25_and_tv_vlow]):-
request("Is RR >25, and TV very low ? ",yes-no,R),
conelude(935,1,rr_gt_25_and_tv_vlow,t ransient.R).

act ion(936,1,[abdomi nal_paradox]):-
request("Is breathing pattern abdominal paradox ? ",yes-no,R),
conclude(936,1,abdominal_paradox,transient,R).

act ion(937,1,[respi ratory_alternans]):-
request("Is breathing pattern respiratory alternans ? ",

yes-no,R),
conelude(937,1,respiratory_alternans,transient,R) .

act ion(938,1,[increased_tv_i nspi ratory_t ime_rat io]):-
request("Has the patient an increased tv-insp time ratio ? ",

yes-no,R),
conelude(938,1,increased_tv_inspi ratory_time_rat io,transient,R).

act ion(939,1,[pO1_gt_6]):-
request("Is the airway occlusion pressure P0.1 >6 ? ",yes-no,R),
conclude(939,l,p01_gt_6,transient,R).

act ion(940,1,[increased_co2_product ion]):-
request("Is there an increase in C02 production ? ",yes-no,R),
conelude(940,1,increased_co2_production,transient,R).

231

progress ion ac t i on quer i es */

act ion(941,1,[ph_is_same])
request("Is pH about the same ? ",yes-no,R),
conclude(941,1,ph_is_same,transient,R).

act ion(942,1,[paco2_is_up])
request("Has PaC02 value gone up significantly ? ", yes-no,R),
conclude(942,1,paco2_is_up,transient,R).

act ion(943,1,[ph_is_up]):-
request("Has pH value gone up significantly ? ", yes-no,R),
conelude(943,1,ph_is_up,transient,R).

act ion(944,1,[paco2_is_same]):-
request("Is PaC02 value about the same ? ", yes-no,R),
conclude(944,1,paco2_is_same,transient,R) .

act ion(945,1,[ph_is_down]):-
request("Has the pH value gone down significantly ? ",yes-no,R),
conclude(945,1,ph_is_down,transient,R).

act ion(946,1,[paco2_is_down]):-
request("Has the PaC02 value gone down significantly ? ", yes-no,R),
conclude(946,1,paco2_is_down,transient,R).

/ * -------------------------- Inference E n g i n e ------------------------- */

/* First pass activation - */
/* find all rules with all data in premise known */

first_pass_activation(Rule_list):-
setof((Rule_no,Premise_no),Rule_typeApremise_requi rement s(Rule_no,

Premise_no,Rule_type,[]),Rule_list),!.

first_pass_activation([]):-!.

/^Second pass activation - */
/^evaluate premise of rules that survived 1st pass*/

second_pass_act ivat ion([],[]):-!.

second_pass_act ivat ion([(Rule_no,Premise_no)1Rule_list],
[(Rule_no,Premise_no,Type)|Activated_rules]):-

premise(Rule_no,Premise_no,Type,Dependents),
second_pass_act ivat ion(Rule_list,Act ivated_rules).

second_pass_act ivat ion([(Rule_no,Premi se_no)|Rule_list],
Activated_rules):-

second_pass_act ivat ion(Rule_list,Act ivated_rules).

232

/* System control cycle */

control_cycle:- /* forward chain */
once(fi rst_pass_act ivat ion(Rule_list)),
once(second_pass_act ivat ion(Ruie_list,Act ivated_rules)),
once(schedule_rules(Ruie_no,Premise_no,Act ivated_rules)),
act ion(Rule_no,Premise_no.Conclusions),
cont rol_cycle.

cont rol_cycle.

/* kick off system */

run_wean:-
generaie_premise_requi rement s,
ret ract al 1(current_value/3),
control_cycle.

/ * ------------------ Meta rules---------------------*/

schedu1e_rules(Rule_no,Premise_no.Act ivated_rules)
member((Rule_no,Premi se_no,goal).Act ivated_rules).

schedule_rules(Rule_no,Premi se_no.Act ivat ed_rules):-
member((Rule_no,Premise_no,weaning),Act ivated_rules).

schedule_rules(Rule_no,Premise_no,Activated_rules)
member((Rule_no,Premise_no,regression),Activated_rules).

schedule_rules(Rule_no,Premise_no,Act ivated_rules)
member((Rule_no,Premise_no,progression),Acti vated_rules).

schedule_rules(Rule_no,Premise_no,Act ivated_rules)
member((Rule_no,Premise_no,request),Act ivated_rules).

/* ask a question if no rules fire */

schedule_rules(Rule_no,Premise_no.[(terminate.terminate)]):-
premise_requi rements(Rule_no,Premise_no,request,A),
clause(action/3,act ion(Rule_no,Premise_no,A):-G).

schedule_rules(termi nate,1,[(terminate,terminate)]).

233

/ * Operators */

equals(Rule_no,Premise_no,Type,A,B)
current_value(A,T,B).

equals(Rule_no,Premi se_no,Type,A,B):-
increase_premise_requirements(Rule_no,Premise_no,Type,A),!,
f ai 1.

not_equal(Rule_no,Premise_no,Type,A,B): -
not current_value(A,T,B).

not_equal(Rale_no,Premise_no,Type,A,B)
increase_premise_requirements(Rule_no,Premise_no,Type,A),!,
f ai 1.

greater_than_or_equal(Rule_no,Premise_no.Type,A,B): -
current_value(A,T,V),
A>=B.

greater_than_or_equal(Rule_no,Premise_no,Type,A,B): -
increase_premise_requirements(Rule_no,Premise_no,Type,A),!,
f ai 1.

less_than_or_equal(Rule_no,Premise_no,Type,A,B)
current_value(A,T,V),
A=<B.

less_than_or_equal(Rule_no,Premise_no.Type,A,B)
increase_premise_requirements(Rule_no,Premise_no,Type,A),!,
fail.

one_of(Rule_no,Premise_no,Type,A,B): -
current_value(A,T,V),
member(V,B).

one_of(Rule_no,Premise_no,Type,A,B)
retract(premise_requirement s(Rule_no,Premise_no,Type,[])),
assert(premise_requi rement s(Rule_no,Premi se_no,Type,[A])),!,
fail.

234

/ * Act ions */

conclude(Rule_no,Premise_no,A,Observât ion_type,B)
predicate_size(premise_requi rement s/4,N),
reduce_premise_requi rement s(A,N),
clause
(premise/4,(premise(Rule_no,Premise_no,Type,Dependents):-G)
increase_premise_requirements

(Rule_no,Premise_no,Type,Dependents),!,
ret racial 1(current_value(A,_,_)),
assert(current_value(A.Observat ion_type,B)).

convert_response("yes",yes).
convert_response("no",no).

request(Prompt,yes-no,Response):-
fedit(5,1,75,"Data Request"»Prompt,"".white on blue.R),
convert_response(R,Response).

give_advice:-
write("That’s all folks!"),nl,
listing(current_value),!,
fail.

/* fails so that control cycle ends after advice is given */

/* ------- managing premise requirements ----- */

/* generate initial premise requirements */

generate_premise_requi rements
once(ret racial 1(premise_requi rements/4)),
clause
(premise/4,(premise(Rule_no,Premise_no,Type,Dependents):-G),_),

assert(premise_requi rement s(Rule_no,Premise_no,Type,Dependents)),
fail.

gene rate_premise_requi rements.

/* reduce premise requirements for all rules */

reduce_premise_requi rements(A,1).

reduce_premise_requirements(A,N)
retract(premise_requirements/4,premise_requirements(Rule_no,

Premise_no,Rule_type,Requirements),N),
compound_delete(A,Requi rements,New_requi rement s),
assertz(premise_requirements(Rule_no,

Premise_no,Rule_type,New_requi rements)),
Next_N is N-l,
reduce_premise_requi rements(A,Next N).

235

/* increase premise requirements for specified rule */

increase_premise_requi rements(Rule_no,Premise_no,Rule_type,A): -
once(bagof(Requirements,

Premise_noApremise_requirements(Rule_no,
Premise_no,Rule_type,Requi rements),Premise_list)),

member(Requi rement s,Premi se_li st),
once(ret ract(premi se_requi rements(Rule_no,

Premi se_no,Rule_type,Requi rements))),
once(assert(premise_requi rements(Rule_no,

Premise_no,Rule_type,[Al Requirements]))), fail.

increase_premise_requi rements(Rule_no,Premise_no,Rule_type,A).

/ * --------------------- utilities--------------------------*/

/* delete element from list */

delete(A,[],[]).

delete(A,[A|L],L).

delete(A,[B!L],[B!Ll]):-
delete(A,L,Ll).

/* delete element from list if it contains the target */

compound_delete(A,[],[]).

compound_delete(A,[EJL],L1):—
member(A,E),
compound_delete(A,L,Ll).

compound_delete(A,[A|L],L1)
compound_delete(A,L,Ll).

compound_delete(A,[B|L],[B1L1]):-
compound_delete(A,L,LI).

/* member of a list */

member(A,[A !L]).

member(A,[B!L]): —
member(A,L).

236

