
              

City, University of London Institutional Repository

Citation: Al-Ali, A. A. (1993). Stability of convective flow between vertical planes. 

(Unpublished Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/29320/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Stability of convective flow between

VERTICAL PLANES

Ahmad Abdulla Al-Ali, BSc, MSc.

Submitted for the degree of PhD.

Department of Mathematics 

City University,

London.

January 1993

(i)



CONTENT PAGE

Title 1

Acknowledqments 5

Abstract 6

Chapter 1 Introduction

1.1 Background Work 7

1.2 Mathematical Model 12

1.3 Plan of Thesis 21

Chapter 2 Large Rayleigh Number Solution near the Critical 

Point at Infinite Prandtl Wiimh«»r

2.1 Introduction 30

2.2 Formulation of the Solution for A —*» 31

2.3 Leading Order Outer Solution 34

2.4 Second Order Outer Solution 37

2.5 Summary 46

Chapter 3 Critical Laver Solution

3.1 Introduction 52

3.2 Critical Layer 53

(2)



CONTENT PAGE

3.3 Leading Order Bridging Conditions 55

3.4 Second Order Bridging Conditions 62

3.5 Wall Region 69

3.6 Wall Region Solution 74

3.7 Neutral Stability Curve 79

Chapter 4 Numerical Methods and Results

4.1 Introduction 90

4.2 Statement of Equations and Boundary Conditions 90

4.3 Numerical Method 92

4.4 Results 96

4.5 Neutral Stability Curve 99

Chapter 5 Large Rayleigh Number Solution near the Critical 

Point at Large Prandtl Numbers

5.1 Introduction 130

5.2 Formulation 130

5.3 Solution Structure for A-*<x> 132

5.4 Neutral Stability Curve 138

(3)



CONTENT PAGE

5.5 Critical Wavenumber 142

Chapter 6 Lower Branch of the Neutral Stability Curve

6.1 Introduction 155

6.2 Formulation 156

6.3 Lower Branch Solution 157

6.4 Large Prandtl Number Limit 160

6.5 Numerical Solution for Large Prandtl Number Limit 165

6.6 Discussion 169

Appendices

Appendix I 180

Appendix II 185

Appendix III 187

(4)



ACKNOWLEDGMENTS

I wish to express my sincere gratitude to my supervisor, 

Professor P.G. Daniels, for his assistance and encouragement. I 

also would like to thank the U.A.E University for financial 

support.

(5)



ABSTRACT

This thesis considers instability of the convective flow 

between differentially heated vertical planes at infinite and 

large Prandtl numbers.

For infinite Prandtl number, asymptotic methods are used to 

describe the solution of the linear stability problem in the 

limit A-»oc, where A is the Rayleigh number. The solution is 

expanded in the neighbourhood of y0, where y0 is the critical 

value of a convective parameter y associated with the base flow. 

The base flow vanishes mid-way between the planes where a 

thermal critical layer forms. Matching across the critical 

layer leads to two sets of bridging conditions which allow the 

critical wavelength of the stationary disturbance to be found.

The effect of large (but not infinite) Prandtl number on 

the neutral stability equation is considered in Chapter 5, and 

in Chapter 6 the lower branch of the neutral stability curve 

for finite and large Prandtl numbers is studied. This leads to 

a complete picture of the neutrally stable stationary 

disturbances in the limit A-»oo for both large and infinite 

Prandtl numbers.
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CHAPTER ONE INTRODUCTION

1.1 Background Work

The classical problem of natural convection in a cavity, 

where one of the vertical walls is uniformly heated while the 

opposing wall is uniformly cooled, has been studied by many 

investigators experimentally, analytically and numerically. The 

buoyancy-driven flow is of relevance in a variety of 

geophysical, astrophysical and industrial areas and thermal 

properties of the flow are of interest in connection with the 

insulation of walls and windows, the cooling of nuclear 

reactors, solar collectors and certain crystal growing 

techniques.

One of the earliest studies of heat transfer, in air, was 

performed by Nusselt (1909) and many analytical and 

experimental studies have followed, notable contributions 

having been made by Batchelor (1954), Eckert and Carlson 

(1961), Elder (1965) and Gill (1966). Batchelor (1954), 

motivated by the application to window insulation, demonstrated 

that the flow in a two-dimensional cavity is uniquely 

determined by three parameters: the Rayleigh number A, based on 

the horizontal temperature difference across the cavity (and 

defined explicitly below), the Prandtl number of the fluid, a, 

and the aspect ratio of the cavity, h (height/width) . He 

discussed the form of the solution in the situation where 

conduction dominates and also suggested that for large Rayleigh
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numbers, where convection dominates, the inner region of the 

cavity has a constant temperature and a non zero constant 

vorticity. Detailed observations of the primary temperature 

distribution in air and measurements of the local heat transfer 

at the walls were made in experiments by Eckert and Carlson 

(1961) using interferometer techniques. Their observations did 

not support Batchelor's suggestion that the inner region has 

constant temperature at large values of the Rayleigh number; 

instead, they observed a region of constant vertical 

temperature gradient. This was supported by experimental 

observations by Mordchelles Regnier & Kaplan (1963) and later 

by Elder (1965) who obtained more extensive velocity and 

temperature measurements for high Prandtl-number fluids, such 

as silicon oil, in tall cavities (or slots).

Elder's experiments identified three main flow regimes, 

known as the conductive, convective and boundary-layer regimes. 

When the Rayleigh number is small, heat is transferred across 

the slot primarily by conduction but as the Rayleigh number 

increases a stable vertical temperature gradient develops in 

the core of the flow and the buoyancy-driven vertical 

velocities are progressively diminished. Finally as the 

Rayleigh number becomes sufficiently large the vertical flow is 

confined primarily to boundary layers at the side walls. Elder 

also gave a theoretical description of the flow in which he 

established that the convective flow in a vertical slot can be 

approximated by an exact solution of the Boussinesq equations 

equivalent to flow between infinite parallel vertical planes 

with a specified vertical temperature gradient, |3. The choice
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P=l/2h led to good agreement with the experimental results. 

This exact solution has formed the basis of stability analyses 

of the convective regime by, for example, Birikh et al (1969), 

Gill & Kirkham (1970), Hart (1971), Mizushima & Gotoh (1976)and 

Bergholz (1978). Elder's experiments showed that the main 

single-cell circulation becomes unstable to stationary 

multicellular convection when the Rayleigh number reaches a 

critical level. In a typical experiment stationary convection 

set in at A=5xl05 in the form of vertically-stacked transverse 

rolls near the centre of the slot. At higher Rayleigh numbers
■y

A =10 the wall regions became unstable to travelling waves.

A more complete asymptotic structure for the boundary layer 

regime was developed by Gill ( 1966). He showed that a 

consistent solution for the vertical boundary layers and the 

core led to a horizontal parallel flow across the core and to a 

core temperature field which is vertically stratified . Further 

studies of the boundary layer regime and its stability have 

been made by Gill & Davey (1969), Blythe, Daniels & Simpkins 

(1983) and Daniels (1985).

There have been many other studies of convection in 

laterally-heated vertical slots, both by experiment and 

numerical simulation. Elder (1966) obtained various numerical 

results to model his experiments. Vest & Arpaci (1969) in their 

experiments using air convected in a tall cavity, reported the 

onset of multicellular convection at sufficiently high Rayleigh 

numbers. Similar motions were observed numerically by de Vahl 

Davis & Mallinson (1975). Experiments and numerical simulations 

by Seki, Fukusako & Inaba (1978), using several kinds of fluids
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in a tall cavity with insulated upper and lower boundaries, 

focused on the effect of the Prandtl number of the fluid and 

the influence of the aspect ratio on the flow pattern. They 

observed that the primary single-cell circulation gave way to 

multicellular convection as the Rayleigh number increased, in 

the form of secondary flow inside the primary flow in the 

central region of the cavity.

The prediction of the onset of secondary motion by means of 

stability analysis has concentrated on the theoretical model 

first introduced by Elder (1965). This model, which consists of 

a fluid bounded by infinite vertical planes held at different 

temperatures and with a constant vertical temperature gradient, 

P, allows an exact solution of the Boussinesq equations which 

in many respects approximates the primary circulation in a 

vertical slot. A comprehensive stability analysis of this basic 

flow was undertaken by Bergholz (1978) covering the whole range 

of values of the three governing parameters A, a and p. Here 

the parameter p replaces the aspect ratio h of the corresponding 

cavity flow. Bergholz showed that the instability of the 

convective and boundary layer regimes is generally in the form 

of travelling waves for low Prandtl number fluids but at high 

Prandtl numbers the instability sets in as a stationary state, 

consistent with Elder's (1965) observations. Conversely, 

earlier studies by Vest & Arpaci (1969) and Korpela, Gozum and 

Baxi (1973) had demonstrated that for the conductive regime, 

time-dependent instability is preferred for sufficiently high 

Prandtl numbers, a >12.7. The stability of the boundary layer 

regime was discussed by Gill and Davey (1969) and more recently
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stationary modes of convection which arise at infinite Prandtl 

number have been discussed by Daniels (1985).

New analytical insight into the relationship between 

vertical slot flow and the flow between vertical planes with a 

specified vertical temperature gradient, was provided by 

Daniels (1987). Based on a boundary layer approximation to 

describe the convective regime at large values of both A and h 

and at infinite Prandtl number, he showed how the vertical 

temperature gradient develops in the core of the slot as a 

function of the convective parameter Z=(A/h)1/4, and that many 

of the flow properties are well approximated by the exact 

solution for infinite vertical planes introduced by Elder 

(1965). Moreover, the solution demonstrated the onset of 

instability in the form of transverse rolls at Zcrit = ll, in good 

agreement with the experimental work of Elder (1965), Vest and 

Arpaci (1969), Seki et al (1978) and Simpkins and Dudderar 

(1981). By analyzing the instability using the aforementioned 

exact solution of the Boussinesq equations, it became possible 

to identify the equivalent stability criterion in terms of the 

imposed vertical temperature gradient,p, this criterion being 

y=(P A/4)1/4 = y0= 6.30. Here y is a convective parameter for the 

exact Boussinesq system replacing the parameter Z=(A/h)1/4 of 

the vertical slot flow. With (3 = l/2h the two criteria for 

instability, Z =11 and y = 6.30, are in reasonable agreement. 

Further work on the nature of the instability and its 

development as the convective parameter increases beyond its 

critical value has also been carried out using the exact 

Boussinesq formulation for flow between infinite vertical

(11)



planes as a basis. Daniels (1987) identified the lower branch 

of a neutral stability curve stemming from y = y0, valid in the 

limit of large Rayleigh number, A-*», and corresponding to long 

wavelength disturbances, of order A relative to the gap width 

between the planes. More recently, the upper branch of the 

neutral curve has been found (Daniels 1989) and this 

corresponds to disturbances for which the wavelength is 

comparable with the gap width. One of the major properties of 

the solution that still remains to be determined is the 

critical wavelength at the point of instability and this is one 

of the key problems addressed in the present thesis.

1.2 Mathematical Model

Here the theoretical model first introduced by Elder (1965), 

and subsequently used widely in stability analyses of slot 

flows, is described. Aspects of the stability of the flow are 

also discussed.

Consider a vertical fluid layer containing fluid of 

kinematic viscosity v, thermal diffusivity k and coefficient of 

thermal expansion ô , bounded by infinite rigid vertical planes 

x*=±Z*/2, maintained at temperatures

T* = T* + AT*(pz*/l* t j) . (1.2.1)

Here x*, z*are cartesian coordinates with z* vertically upwards, 

T* is the average temperature of the two planes at z*=0 and 

PAT*//* is the uniform vertical temperature gradient.

(12)



Two-dimensional motion is assumed to be governed by the 

following system of equations, which follow from considerations 

of conservation of mass, conservation of momentum, thermal 

energy and the equation of state of the fluid :

dp*/dt* + V* . (p* u*) = 0, (1.2.2)

du*/dt* + (u*.V*)u* = F+ v V*2 u* - V^P*/p* , (1.2.3)

dT*/dt* + ( u'.V'jT* = k V*2T* , (1.2.4)

P* = P*0( 1 - 6( T* -T^ )). (1.2.5)

Here V*= (d/dx*,0, d/dz?), t* is the time, p* is the pressure,p* is 

the density, F=(0,0,-g) is the external force per unit mass 

(where g is the acceleration due to gravity),u* is the fluid 

velocity and p* is the density of the fluid at temperature T*.

Applying the Boussinesq approximation, which assumes that 

variations of density are small and can be neglected except 

where multiplied by the acceleration due to gravity, the system

(1.2.2)-(1.2.5) can be reduced to the non-dimensional form

du dw
—  + --  = 0 ,
dx dz

(1 .2 .6 )

-if du ^ du d u \  dp „2
dt dx dz dx

(1.2.7)

dw

dt
+ u dw

dx
+ w dw

dz
) = - + y2w + A T

dz
(1 .2 .8 )
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dT
= V 2T . (1 .2 .9)dT

--  ■+■
dt

u
dx

+ w
dT
dz

Here the coordinates, time and velocity components are 

non-dimensionalised by writing x*=Z*x, z*=Z*z, t*= Kt, u*=ku/f, 

w*= kw/Z* and the non-dimensional temperature, T, and reduced 

pressure,p, are defined by

T*=T* +AT*T , p*= p* -p*gz*+ p*g6AT*z*+ p*0v k P/Z*2. (1.2.10)

The Rayleigh number A is defined by

A = 6 g AT*Z*3/kv , (1.2.11)

and the Prandtl number o is defined by

o = v/k . (1.2.12)

From (1.2.6) a stream function can be defined by the 

relations

u =di|j/dz, w = -dip/dx (1.2.13)

and the boundary conditions at the vertical planes are

^ =dH>/dx = 0, T =pz± 1/2 (x =±1/2) . (1.2.14)

There is a simple exact solution of the Boussinesq system 

as defined above, which depends on the single combination of 

parameters

V = (pA/4)1/4 (1.2.15)

(Elder 1965). This solution is the steady unidirectional flow

(14)
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y=Ya=4.73. Reversal of the flow first occurs near the centre 

line when Y=Yb=7,85* The limit Y-*°° corresponds to the boundary 

layer regime and results in the formation of buoyancy layers 

near each vertical plane, with the intervening core region left 

vertically stratified and motionless. The buoyancy layer 

solution near the cold plane, x=-l/2, obtained from (1.2.19) 

and (1.2.20), is

0  (e"X cos X ) /2 , 'V - (y2 e~X sinX)/4, (1.2.24)

where X=Y(x+l/2). Profiles of the velocity and temperature for 

various values of Y ate displayed in Figures 1.1-1.4.

The stability of the above exact solution is investigated, 

in the usual manner, by superimposing a small disturbance upon 

the basic state, so that

i|> = A[»l'(x) + e<j> (x, z, t) ], T = pz+ 0(x) + £0 (x, z, t) . (1.2.25)

The linear stability equations are now obtained by substituting

(1.2.25) into the Boussinesq system (1.2.6 )-(1.2.9), 

eliminating the pressure p, and neglecting terms of 0(£2). The 

general solution of the stability equations can then be written 

in normal mode form to give

xp = A(lii(x)+ £<}> (x)eia(z_ct)), T= 0z+ 0 (x) + £0(x)eia(z_ct) (1.2.26)

where a is the vertical wavenumber, assumed to be real, and c 

is the wave speed. The functions <}> and 0 satisfy the following 

equations and boundary conditions:

(16)



()>""-2 a 2 <)>" + a 4<j) = e '  + ia [ A ^ '" ( | ) - ( c  + ')((()"-a  2(j))]/of ( 1 . 2 . 2 7 )

0" - a20 = ia[ A©'<() - (c + A W ') 0 ] — 4 y4 <})', (1.2.28)

(J) = (()'= 0 = 0 (x = ±1/2 ) . (1.2.29)

For neutral stability, so that the disturbance neither grows 

nor decays in time, the wave speed c must be real and then the 

disturbance is stationary if c=0, or represents a travelling 

wave if c^O. For sufficiently large values of the Rayleigh 

number A , such solutions exist and have been found numerically 

by Bergholz (1978) for a range of values of both the convective 

parameter y and the Prandtl number a . The nature of the 

instability was found to depend on the relative magnitudes of 

these two parameters. If the value of the Prandtl number is in 

the low to moderate range, there is a transition from 

stationary to travelling-wave instability if the convective 

parameter y exceeds a certain magnitude. However, if the

Prandtl number is large, the transition, with increasing y, is 

from travelling-wave to stationary instability. These results 

are consistent with a stability analysis of the boundary layer 

regime (y»l) by Gill and Davey ( 1969 ), who considered 

travelling-wave instabilities at finite Prandtl numbers, and 

with later results for the limit of infinite Prandtl number 

(o=oo, y > >1) by Daniels (1985) where stationary convection is 

the preferred mode of instability.

For the conductive regime (y«l) Bergholz' results 

confirmed the preference for stationary convection at low and 

moderate Prandtl numbers (a<12.7) and travelling waves at high

(17)



Prandtl numbers (a >12.7) . This was consistent with results by 

Vest and Arpaci (1969), who showed that stationary convection 

occurs for A>7880a for virtually the whole range of Prandtl 

numbers, and Gill and Kirkham (1970) who showed that travelling 

waves occur for A>9400a when a »1. The critical value of 

the Prandtl number above which travelling waves are the 

preferred mechanism was determined by Korpela, Gozum and Baxi 

(1973) as 0 =12.7.

At infinite Prandtl number, stationary convection is the 

preferred mode of instability in the convective regime and was 

shown by Daniels (1987) to occur for values of the convective 

parameter y greater than a critical value y0=6.3O. This result 

was obtained by considering the limiting case A-*oc, equivalent 

to the situation pertaining to the convective regime in a 

vertical slot where A and h are large with A/h finite. The 

usual procedure adopted in stability analyses such as those of 

Bergholz (1978) is to compute neutral curves in the A-a plane 

for given values of y. Daniels (1987) argued that the stability 

properties of the convective flow with infinite Prandtl number 

are best described by analysis based on large Rayleigh number 

A, which leads to a universal neutral curve in the (y,a) plane. 

The relevant stability equations for infinite Prandtl number 

are obtained by setting o = ® in the right-hand side of (1.2.27) 

and for stationary convection (c = 0), the equations

-2 a2 ()>"+ a4 (|) = e', (1.2.30)

0"-a2 0 = iaA(0'cj>-vI''0 )- 4 y4 <j)', (1.2.31)

must be solved subject to the boundary conditions (1.2.29). For

(18)



large Rayleigh numbers A, the neutral stability curve in the 

(y,a) plane has a form in which the wavenumber a is either small 

(of order A -1) or finite, corresponding to lower and upper 

branches of the curve respectively.

An investigation of the lower branch of the neutral curve 

was carried out by Daniels (1987). The wavenumber a is assumed 

to have the form

a-a A-1, as A-»*, (1.2.32)

where a is finite, and the leading approximation to the 

stability equations and boundary conditions is then

<)>"" = 0', (1.2.33)

6" = ia(0'<|>-lI''e)- 4y4 <j)' (1.2.34)

(j> = <j)' = 0= 0, (x = ±1/2) . (1.2.35)

It was established that real solutions for a exist only when 

the convective parameter y is greater than a critical value y0, 

where y0=6.30, and this lower branch solution is shown in Figure 

1.5. The critical position corresponds to the point at which a 

-*•<», when the convective terms on the right-hand side of

(1.2.34) dominate and a critical layer of thickness order a 1/3 

forms on the cenre-line x=0. The critical value y0 is determined 

by the requirement that there is a solution of the system

f i  —qp/i -  0? ( f i '  f i  t f i  ) — ( 0/ 0, 1) a t  x 1/2, (1.2.36)

(19)



in the region -1/2 ixSO for which /1'(0)=0. This condition 

results from consideration of appropriate bridging conditions 

across the critical layer, to be discussed in detail in 

Chapter 3. The value of y0 , based on an accurate numerical 

solution of the above eigenvalue problem by Daniels & Weinstein 

(1992) is 6.29829 to six significant figures.

The above scaling of a in (1.2.32) corresponds to the lower 

branch of the neutral curve and there is another class of 

solution of (1.2.29)-(1.2.31) in which a remains finite as 

A —»°c, equivalent to an upper branch (Daniels 1989). This branch 

also exists in the region y>y0 and is shown in Figure 1.6. As y 

increases the curve asymptotes the position yb=7.85 at which 

the base flow reverses on the centre-line of the slot. The 

upper branch equations are dominated by the convective terms on 

the right-hand side of (1.2.31) except in a critical layer of 

thickness order A-1/3 at the centre-line x=0. As y-»y0 + the 

wavenumber a decreases to zero and the upper and lower branches 

coalesce in the neighbourhood of y = y0, a =0 in the (y-a) plane. 

This is shown schematically in Figure 1.7.

The previous analyses of both the upper and lower branch 

solutions do not determine one of the most important properties 

of the instability - the critical wavenumber with which 

disturbances will occur when the convective parameter y reaches 

the neighbourhood of the critical value y0. The earlier work 

suggests that the critical wavenumber a will be such that 

a = 0(A_k) as A-»oc where 0<k<l and in fact it emerges that 

k=l/3. One of the primary aims of the present work is to 

determine the precise form of this critical wavenumber, and

(20)



more generally, the local form of the neutral stability curve 

near y0. Another aim is to relax the assumption of infinite 

Prandtl number and to discuss how the neutral stability curve 

is modified for large but finite Prandtl numbers.

1.3 Plan of Thesis

The plan of the thesis is as follows.

Chapters 2-4 are concerned with the determination of the 

critical wave number in the limit A -*<* when the Prandtl number 

of the fluid is infinite. In Chapter 2, the solution of the 

linear stability equations (1.2.30)-(1.2.31) is derived in the 

limit as A -*•<» by use of asymptotic methods, expanding the 

solution in the neighbourhood of the critical value y0. This 

leads to asymptotic forms of the perturbation functions <j) and 0 

in an 'outer' region -l/2< x <0 and 0<x<l/2 which spans most of 

the gap between the planes. The solution here breaks down as 

|x|-»0, due to the vanishing of the base flow on the centre line 

x=0, and a thermal critical layer forms.

In Chapter 3, the critical layer solutions for (|) and 0 are 

obtained, and matching with the outer solution leads to two 

sets of bridging conditions across the critical layer. This in 

turn leads to the form of the neutral stability curve near y0, 

from which the critical wavenumber a of order A-1/3 can be 

determined. Solutions in the neighbourhood of each vertical 

plane are also discussed.

(21)



Chapter 4 describes the numerical calculations needed to 

obtain the values of the various coefficients which appear in 

the equation of the neutral stability curve. These calculations 

involve the use of a Runge-Kutta scheme to solve both the 

leading order and the second order problems in the outer 

region. This allows the precise form of the critical wavenumber 

a to be determined and a comparison to be made with the 

results of full numerical simulations, experimental 

observations and stability analyses for finite values of A, 

such as that by Bergholz (1978).

In Chapter 5 the earlier results are modified to 

incorporate the effect of a large, but not infinite, Prandtl 

number. This is done by assuming the Prandtl number to adopt a 

scaling proportional to A 473 as A -»oc. The bridging conditions 

obtained in Chapter 3 are not affected but the second order 

outer solutions are, leading to a modification to the equation 

of the neutral stability curve obtained in Chapter 4.

Finally, Chapter 6 considers the lower branch of the 

neutral stability curve for finite and large Prandtl numbers, 

including numerical solutions for finite a and an asymptotic 

analysis of the solution in the limit as a-»oo. This reveals 

neutrally stable solutions in the limit A -»oc over the entire 

range of the convective parameter y>0 and an interesting 

transition to the restricted class of solutions in the range 

Y>y0 as a-»oc.

(22)
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FIGURE 1.1. Base flow temperature profiles 0 for various

values of the convective parameter, y.
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F igure 1.2. Base flow velocity profiles wxlO2 for various

values of the convective parameter, y.
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FIGURE 1.3. Base flow temperature profile 0 for the critical

value of the convective parameter, y0.

(25)



w xl 0 0

FIGURE 1.4. Base flow velocity profile wxlO2 for the

critical value of the convective parameter, y0.
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FIGURE 1.5. The lower branch of the neutral curve and the 

asymptote at y0=6.30.
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FIGURE 1.6. The upper branch of the neutral curve stemming 

from y0=6.30 with the asymptote at yh=7.85.
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FIGURE 1.7. Schematic diagram of the neutral stability curve 

in the (y, a)-plane as A-*oo.
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CHAPTER TWO : LARGE RAYLEIGH NUMBER SOLUTION NEAR

THE CRITICAL POINT AT INFINITE PRANDTL NUMBER

2.1 Introduction

The form of the solution of the linear stability equations 

for stationary disturbances with infinite Prandtl number in the 

limiting case A-*oo and in the neighbourhood of the critical 

value,y0, of the convective parameter y, is considered in this 

chapter.

In Section 2.2 the linear stability equations are stated 

and appropriate scales for the vertical wavenumber a and the 

vertical stratification y are identified. This leads to fourth 

order equations for the leading terms <J>0 and in the outer 

expansion of cf) which must be solved subject to appropriate 

boundary conditions at the walls, x = ±l/2. Near the centre, the 

solution enters a critical layer and asymptotic forms as |x|-*0 

of the leading order solution <|)0, and the corresponding 

temperature 0O, are derived in Section 2.3. Similarly the 

asymptotic forms as |x|-*0 of the second order terms, <j>x and 0̂  

are derived in Section 2.4. The form of the overall outer 

solution as x-*0± is summarized in Section 2.5 and this allows 

the relevant critical layer solution to be formulated in 

Chapter 3. The various constants which arise in the outer 

solution can only be determined following the derivation of the 

bridging conditions for <j)0 and <()1 across the critical layer.
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2.2 Formulation of the Solution for A-»qq

Consider the solution of the stability equations 

(1.2•30)-(1.2.31) for stationary convection (c=0) in the form

= A(jP ( x ) + <j) (x) eiwz) , T=pz+0(x) + 0(x)eiwz. (2 .2 .1)

In the case of infinite Prandtl number the perturbation 

functions (j) and 0 satisfy the following linear stability 

equations

<t>"" -2a<|>" + a4 <j> = 0', (2.2.2)

0" - a2 0 = i a A (0' (j) - ̂  0 ) - 4 y4 (J)' , (2.2.3)

to be solved subject to the boundary conditions

<)) = <t>' = 0 = o. (x = ±1/2 ) (2.2.4)

at the vertical planes. As indicated in Chapter 1, solutions of 

this system in the limit as A-*oc appear to exist only above a 

critical value of the convective parameter y equal to y0~6.30, 

where the corresponding wavenumber a is small. Here the form of 

the solution in the neighbourhood of y0 is investigated in 

detail.

It emerges that the appropriate scales for a and y which 

capture the form of the neutral curve near y0 are given by

a = a0 A _1/3 , A— oe , (2.2.5)

. -2/3
Y = Yo + Yi A +.. ., A-*oo . (2.2.6)

At this stage the simplest explanation of this lies in the fact

(31)



t h a t  t h e  c o r r e c t i o n  t e r m s  t o  t h e  l e a d i n g  o r d e r  t h e o r y  d e s c r i b e d  

b r i e f l y  i n  C h a p t e r  1 t h e n  c o n t r i b u t e  i n  t h e  m o s t  g e n e r a l  w a y  t o

t h e  o u t e r  e x p a n s i o n ,  a s  e v i d e n c e d  b y  t h e  a p p e a r a n c e  o f  t e r m s

2
p r o p o r t i o n a l  t o  a 0 , l / i a 0 a n d  Yi i n  t h e  e q u a t i o n  f o r  t h e  f i r s t  

c o r r e c t i o n  t e r m  ^  i n  t h e  s o l u t i o n  f o r  <|> ( s e e  ( 2 . 4 . 1 )  b e l o w ) .  

T h e  t h e o r y  c o u l d  b e  d e v e l o p e d  w i t h  m o r e  g e n e r a l  f o r m s  i n

( 2 . 2 . 5 )  a n d  ( 2 . 2 . 6 )  b u t  o t h e r  p o w e r s  o f  A  s i m p l y  l e a d  t o  a n  

a p p r o p r i a t e  l i m i t i n g  f o r m  o f  t h e  n e u t r a l  c u r v e  t o  b e  i d e n t i f i e d  

e v e n t u a l l y  i n  C h a p t e r  3 .

F r o m  ( 2 . 2 . 5 )  a n d  ( 2 . 2 . 6 )  a p p r o p r i a t e  e x p a n s i o n s  f o r  t h e  

b a s e  f l o w  f u n c t i o n s  0  a n d  W  a r e

— 2 /3
0 ( x, y ) =  6|, ( x )  + yl  A ©i ( x )  + . . . ,  A  * oo , ( 2. 2. 7 )

W ( x, v )  =  ^ ( x )  + Y l A _ 2 / 3'I, 1 ( x ) + . . . ,  A ^- o o  , ( 2. 2. 8 )

w h e r e  Gfc ( x )  =  0 ( x ,  *  ) ,  0 1 ( x )  =  0 y ( x ,  Y o ) ,  %  =  V ( x ,  Y o ) ,  ^  =  W y ( x ,  Y o ) a n d

t h e  s u b s c r i p t  y  d e n o t e s  p a r t i a l  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  

Y  • T h e  f o r m u l a e  f o r  0 0 , 0,^, ^  a n d  *1^ m a y  b e  d e d u c e d  f r o m

( 1 . 2 . 1 9 )  a n d  ( 1 . 2 . 2 0 ) .

S o l u t i o n s  f o r  t h e  p e r t u r b a t i o n  f u n c t i o n s  (j) a n d  0 ,  o f  t h e

f o r m

- 2 / 3
<P =  <t*o +  A  <t >i +  A  - * < » ( 2. 2. 9 )

0  =  0 o + A _ 2 / 3  e : +  . . .  ,  A  -»oo  ( 2 . 2 . 1 0 )

a r e  a s s u m e d  a n d  s u b s t i t u t i o n  o f  ( 2 . 2 . 7 ) - ( 2 . 2 . 1 0 )  i n t o  e q u a t i o n s

( 2 . 2 . 2 )  a n d  ( 2 . 2 . 3 ) ,  a n d  e q u a t i n g  t e r m s  o f  l i k e  p o w e r s  o f  A ,  

l e a d s  t o  t h e  f o l l o w i n g  e q u a t i o n s  a n d  b o u n d a r y  c o n d i t i o n s  f o r  (|>0

( 3 2 )



 



there. Thus the outer solution developed here also breaks down 

in the neighbourhood of x =0 where a thermal critical layer 

occurs. The outer solution is thus valid in separate regions 

-1/2 <x < 0 and 0 <x<l/2 either side of the critical layer (see 

Figure 2.1). The method by which the solution can be found in 

each of these regions is discussed in the following section.

2.3 Leading Order Outer Solution

The equation for <j)0 is

and this can be integrated once to give the third order 

equation

where k0 is an arbitrary constant. Equation (2.3.2) is to be 

solved subject to the boundary conditions <j)0 =<j)0'=0 at x = ± 1/2. 

Thus the solution in x<0 can be written in the form

where and o2 are complex constants and f1 and f2 are real

(2.3.1)

0 r (2.3.2)

<t>0 = °L /l(X) + 02 / 2 (X) , (2.3.3)

(34)



functions of x uniquely defined in the interval -l/2< x <0 by

f" fJ l - 7j77 J l = 0; (/lf /i, f'i) = (0,0,1) at x =-1/2 (2.3.4)

r m  o0 
J 2 - 7J77Ì 2 = 1; (f2> f2> f'i) = (0,0,0) at x=-l/2 (2.3.5)

Since the base profiles 0 q and W  ¿ are even and odd 

functions of x respectively, it follows that the appropriate 

solution in x >0 is

<t>o = °i+/i(-x) + o2+/2(-x ) , (2.3.6)

where o 1+ and o2+ are further complex constants.

The form of the solution as x-»0 is now considered. The 

expansions of G¿ and about the centre line x =0 are

0O' = Ho + (i2 x2 + n, x4 + (jg x6 + • • • , x-»0± , (2.3.7)

Wo' = x + (03 x3 + co5 x5 + 0)7 x 7 + • • • , x— 0± , (2.3.8)

where and are real constants whose values are given in 

Table 2.1. It follows that the functions fL (i=l,2) have the 

general asymptotic forms

/i = a± + b-jx + ciox2ln|x| + c±x2 + d±x3 + ei0x4ln|x| + e^ 4 +

gix5 + hi0x6ln|x| + h±x6+..., x-*0-, (2.3.9)

where the logarithmic terms are generated by the singularity

(35)



a s s o c i a t e d  w i t h  t h e  v a n i s h i n g  o f  t h e  b a s e  f l o w  v e l o c i t y  W 0 '. T h e  

c o n s t a n t s   b.^ a n d  c i  m u s t  b e  d e t e r m i n e d  f r o m  a  n u m e r i c a l  

s o l u t i o n  o f  ( 2 . 3 . 4 )  a n d  ( 2 . 3 . 5 )  w h i c h  i s  u n d e r t a k e n  i n  C h a p t e r  

4 ,  a n d  t h e  r e m a i n i n g  c o n s t a n t s  c i 0 , d i 7  e i 0 , . . .  c a n  b e  e x p r e s s e d  

i n  t e r m s  o f  t h e s e  a s  f o l l o w s

C i O a  ̂ S q  /  2  , d i  =  ( bi s o + i - 1 ) / 6

0•H
Q) =  C i O S o / ^ 4, e i  =  ( a i Sl  + Ci S o  -  2 6 e i 0 ) / 2 4

9 i =  ( b j S i  +  d i S o J / ô O, hi o  =  ( c i o s i e i o ® o ) ^ ^ 3 0,

h i =  ( a i S 2  +  c i S l  +  e i S o -  7 4 h i o ) / 1 2 0  . ( 2

H e r e  t h e  r e a l  c o n s t a n t s  s 0 , s x a n d  s 2 , a r e  d e f i n e d  b y  

s 0 =  M o / ® i  / %  =  ( M 2 «>i -  M o ® 3  ) / ( % 2 ,

2  2  3
S 2 =  [ ^ 40%  -   +  ^ 0  ( w 3 - 0 )1(0 5 ) 1 / 0 ^ .  ( 2 . 3 . 1 1 )

T h e  n u m e r i c a l  v a l u e s  o f  s 0 , s x a n d  s 2 a r e  g i v e n  i n  T a b l e  2 . 3 .

F r o m  ( 2 . 3 . 3 )  a n d  ( 2 . 3 . 6 )  t h e  a s y m p t o t i c  e x p a n s i o n  o f  (j)0 a s  

x - * 0 ±  c a n  n o w  b e  w r i t t e n  i n  t h e  f o r m

±  4 ±  5

±  2
:0 x  +  «

, . ±  6

+ d r ) /  Y i  =  ( a i / b if

3 , ±  4 
t  +  e 0 0  x

• • t

l n | x | +

( 2 . 3 . 1 2 )

+ + + + +

0
 1 11

+  b 0  ' C 0 0  ' c o  •

( a 2 , b 2 , c  2 0  • • • • ) r t h e

_ +  + 
r e l a t i o n s  b e t w e e n  a 0 , b 0 ,

10  * * • • ) t JL2

. . .  a n d  t h e  r e a l  c o n s t a n t s  a 1 , b 1 ,

& 2 f b 2 f • • •  a r e  g i v e n ,  i n  v e c t o r  f o r m ,  b y  t h e  f o l l o w i n g  f o r m u l a e

v 0 =   x i
+   + 

v ,  +  o 2 v 2 ( 2 . 3 . 1 3 )

( 3 6 )



Thus the asymptotic expansions of <j)0 as|x|-»0 are determined in

+ +
terms of the complex constants ĉ ', o2 , and the vectors v x and 

v2 which, in principle at least, are known from the solution of 

the two systems for f1 and f2.

Asymptotic forms of 0O as |x|-»0 can be deduced from those 

for (j)0 using equation (2.2.11). Thus

0O = A q /x  + B0 + C00 xln|x| + C0x + D0x + E00 x In | x |

+ EqX3 + • •. ,x-*0± , (2.3.14)

+ +
where the constants A0, ..., E0 are defined by

+
s0a0 1

+ + 
B0 = /

+ ±
^ 00 = S0C 00 r

±
soco

± ± ± + 
sia0' = SqCIq + sxb0 , ± ± ± 

Boo = soeoo + sicoo '

soeo +
± + 

S1C0 + S2a0 * (2.3.15)

The above asymptotic forms of <J)0 and 0O, given by (2.3.12) 

and (2.3.14), provide the behaviour of the leading order outer 

solution of the stability equations as |x|-*0. The next step is 

to carry out a similar analysis of the second order outer 

solutions, for ((̂ and 0X.

2.4 Second Order Outer Solution

Here we are concerned with finding the outer solutions for 

and 0X . The equation for is

(37)



♦ i" - -  ( -\<h ) = -  (2«02 <t>o' + Yx ̂ .1 °— ’'V; B-° J90"+4Yo 4>o
dx vu'M) xa IT/'

0 M)

(2.4.1)

and this can be integrated once to give the third order 

equation

2 a  r + Yi
©i <t»0 - ̂  e0 60"+4Yo 4»o'

iao'I'o'
+ kx , (2.4.2)

where kx is an arbitrary constant. This is to be solved subject 

to the boundary conditions (f)1 =<^' = 0 at x=±l/2. The general 

solution for can be written in the form

♦i = + 2 a o2(t>n+ Yi *t>i2 -  4>i3/i a o f ( 2 . 4 . 3 )

where the functions (j)1:L, <|) 12 anc* 1̂3 satisfy the following

equations and boundary conditions:

©o'
F i  -  - y T $ i  = * i  ; *l -?i =0 (x = ±l/2), (2.4.4)

P) '
♦"u * “¡pr^n = ♦o '* ‘hi “«Ki =° (x = ±l/2), (2.4.5)

♦"12 — t77~i ♦x2 = —  ~ri<t)o? (|>12 =<t>I2 =° (x = ±l/2), (2.4.6)W )2

(38)



  



    

   

  

 

    



+ +
where the constants au ,bn , ••• are defined in terms of the real 

constants a11,b11, . . . . , a21,b21, - • • • , by the vector relations

± ± ±
vii = or y 11+ a2 v21 , (2.4.18)

± ± ± ± ± 
where v 31 = (an, ^ cno' cn»

+
+ du*•••)/ îi =(aii'd33,c110, . . . )

and v21 =(32i'̂ >2i 'c2io /•*•)•

The solution for <J>12 in x< 0 can be written in the form 

<t>i2 = °i_/i2(x) + fl2 (x) / (2.4.19)

where the functions /i2 (i=l,2) are real and uniquely defined by

©o'/m U r
i2 ---TTrrJWn i2

©/%' - 0O'^/ 

(Wo')2 fit

( fL2 ' f’i.2 ' f'i-2 ) =(0,0,0) at x — 1/2. (2.4.20)

Symmetries of the base flow functions 0O' W q, 0{ and lP1' then 

allow the solution in x >0 to be written as

<¡>12= ai+/i2(-x) + °2+ $22 (-*)• (2.4.21)

The next step is to consider the form of <j)12 as jx| —»0 but 

before doing so, we need the appropriate expansions of the base 

flow functions and lI/1' about x=0. These are given by

®i = Mo + M? x2 + ]i4 x4 +... (x-*0 ) , (2.4.22)

W]_' = »! x + tì)3 X 3 + S 5 X 5 + —  (x-*0 ), (2.4.23)

(41)



        

      



real constants a 3 3 / 1̂2 ̂ * * * ̂ and a2 2 r b3 2 ̂ * * * * the vector

relation

+
212 = °1+ ̂ 12+ °2+ ?-22> (2.4.28)

where ± ± ± ± 
Y12 =(al2' T ̂12 ' C 1 2 0'

+ +
C12' ld12, . . . ) , — 12 = ( al2 '̂ 12 ' C120 > * * * )

and v22 = (a22'̂ 22 'C220 !•••)•

Finally we consider equation (2.4.7) where the solution for 

<J)13 in x< 0 can be written as

1̂3 = ai .̂3 (x) + °2 3̂ (x) • (2.4.29)

Here the functions /i3 (i = l,2) are real and satisfy the 

equations and boundary conditions

/nt
i3~

©0
/i3 =' Ul'H0

/ d2 ; ©¿/i 4Yo fi
Vdx- 1 \  j) + »P0' '

(2.4.30)

/i3 = /i'3 = 0 at x = -1/2 (2.4.31)

The second derivative of /i3 does not vanish as x-*-l/2 in this 

case but the third boundary condition at x=-l/2 can be taken as 

the requirement that the finite part of f'[3 vanishes as x-*-1/2, 

equivalent to the local behaviour

fi3 ~ 0 + 0.X + Di20X2ln|x| + O.X2 + ..., (2.4.32)

where X=x+l/2 and Di20 is a known constant (see Chapter 4). By 

symmetry, the solution for (j)13 in x >0 can be written in the

(43)



 



(2.4.37)Yl3 “ °1 — 13 + °2 3̂ 23 '

± ± ± ± ± ± ± 
where =(613, ^ a13, k̂ jg, ; c130, g-ci3»

^ 1 3 0  r ^13  » * * "  ̂ a n d  —23 ~ ( ^23 » ^ 23 » ^  230 » ^ 23  r * * * ) *

~  !3 ( 613, a13 '

The next step is to combine equations (2.4.10), (2.4.17), 

(2.4.27) and (2.4.36) in the overall solution (2.4.3), to 

obtain the general form of ^  as |x|-»0. Thus

+ + + + + 2  + 2 
<¡>3 = \/x + a[ + b̂ 0 xln|x| + lq_ x + c30 x In | x | + c3 x

+ 3 - - + 3
+ d10 x In | x | + d 3 x +..., x-»0±, (2.4.38)

where 6X+
+

, ax ,...are defined by the vector relations

+
Vl = vf + 2a02 vJi + Yi vf2 - vf3 /ia0 , (2.4.39)

where

+
Zi =

± ± ± ± ± ± ±  +
( ,  a3, b10 , b̂ , c30, ĉ , d10 , d|,...), (2.4.40)

_+
Vl" =

_ ± ± _± _+ +
(0, a3, 0, ^b3, c10, c3, 0, f Qj,...), (2.4.41)

+
Vll =

± ± + + +
(0, a31, 0, ibllf ciio» cn» 0» -F ̂ 1 / • • • ) r (2.4.42)

+
— 12 =

± ± ± ± ±
( 0, a12 , 0, ^ b̂ 21 1̂20 > 1̂2 • 0» •F ̂12 /•••)/ (2.4.43)

+
— 13 =

„± ± ± ± ± ± ±  ±
("13» -F %3 ' “L3 • *̂130' F C130' FC13» *̂ 130» ^13, •••) (2.4.44)

and where — ± + +
vi, vn and v 12 are extensions of the vectors defined

in (2.4.11), (2.4.18) and (2.4.28). We now have a complete

asymptotic form for the solution as | x j —»0.

The corresponding form of 0j is now obtained from equation 

(2.2.13), leading to the result

(45)



        



2.5 Summary

Using equation (2.2.*)), we can write the overall asymptotic 

forms of (j> as x-*0±:

+ + + 2  il ± 2 — 3 ± 4  I, ± 4
<|) = a0 + b0x + c00 x ln|x| + c0x + dgX + e00 x ln|x| + e0x

± 5 + 6 -2/3 . s±.+ g0 x" + h00 xuln | x | + h0xu + • • • + A ( 0̂ /x + af + fc^xln | x |

+ b{x + c{'0x2ln | x | + c[x2 + d[oX3ln | x | + d̂ x3 +...)+**»(2.5.1)

Likewise the asymptotic forms of 0 as x-*0± are

+ + + , ,  + + 2 + 3 , « + 3
0 = A n/ x + B n+ C00 xln|x| + C nx + D n x +Enn x ln[x| + En x +• • •Joo

+A 2/3 ( A x/x4 + A x/x2 + B ]/x2 + C^0ln|x | + C* +• • • ) (2.5.2)

The above forms of (j) and 0, represent the complete asymptotic 

behaviour of the outer solution as x-*0±. Since these forms are 

singular, the need for a critical layer in the neighbourhood of 

x =0 is evident, wherein it is expected that the thermal 

gradient term 0"(x) will become significant. Thus we need to 

write the above asymptotic forms of <|> and 0 in terms of an 

appropriate inner variable, which will allow the outer solution 

to be matched with corresponding inner solutions for <j) and 0 in 

the critical layer. Consideration of the critical layer 

solution will lead to the derivation of bridging conditions 

needed to complete the determination of the remaining unknown 

parameters in the outer solution and to determine the form of 

the neutral stability curve near y0. The inner forms of <j> and 0 

are discussed in the next chapter.
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i Hi COi

0 -0.27267 0.00000

1 0.00000 -0.00339

2 10.65360 0.00000

3 0.00000 -0.04544

4 71.51070 0.00000

5 0.00000 0.17756

6 -186.27000 0.00000

7 0.00000 0.34053

8 -267.92400 0.00000

9 0.00000 -0.36958

10 232.62700 0.00000

11 0.00000 0.27063

12 141.95300 0.00000

13 0.00000 0.13556

14 -60.94880 0.00000

15 0.00000 0.05120

16 -20.45560 0.00000

17 0.00000 -0.01494

18 5.22375 0.00000

19 0.00000 -0.00352

20 1.10728 0.00000

Table 2.1. Values of the real constants ^  and (i=0,..,20).
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i (T)±

0 -0.04129 0.00000

i 0.00000 0.00396

2 -5.69997 0.00000

3 0.00000 -0.00687

4 56.22620 0.00000

5 0.00000 -0.09500

6 -18.63890 0.00000

7 0.00000 0.26774

8 -380.81500 0.00000

9 0.00000 -0.03698

10 171.01800 0.00000

11 0.00000 -0.38466

12 291.91900 0.00000

13 0.00000 0.09966

14 -83.51520 0.00000

15 0.00000 0.10693

16 -55.05700 0.00000

17 0.00000 -0.02047

18 10.47540 0.00000

19 0.00000 -0.00947

20 3.6835 0.00000

Table 2.2. Values of the real constants ^  and œi (i=0,..,20).
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s o

s 2

80.54847

39866.68584

s i -4228.50775

V1

V3

-295.40954

37744.78737

v2 3965.79800

q0 -1 .17012 qi 29.13334

r o 12.17643 r i 1520.35936

Ta bl e  2 . 3 .  Va l ue s  o f  t h e  r e a l  c o n s ta n ts  s i f  vi f  ( i  = 0 , 1 , 2 ) ,  

and .
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FIGURE 2.1. Schematic diagram of the asymptotic structure of the 

flow in the limit A -*oo .
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CHAPTER THREE CRITICAL LAYER SOLUTION

3.1 Introduction

The inner forms of the outer solutions for <(> and 0 as 

|x|-*0, obtained in Chapter 2, are now written in terms of an

-2 /9appropriate inner variable H, where x =A 3=. This inner region 

is a thermal critical layer and the forms of (j) and 0 obtained in 

Section 3.2 determine the asymptotic expansion of the critical 

layer solution. Consideration of the critical layer solution 

leads to the determination of two sets of bridging conditions 

associated with the outer solutions for <j)0 and respectively. 

These bridging conditions are derived in Section 3.3 for the 

leading order solution, and in Section 3.4 for the second order 

solution. In Section 3.5 the validity of the outer solution in 

the neighbourhood of each vertical plane x=±l/2, is considered. 

It is found that inner regions of lateral extent order A are 

also relevant there, although these have no significant 

influence on the instability. It is shown in Section 3.6 that 

these inner regions allow the necessary adjustment of the 

solution to the full boundary conditions at the vertical 

planes. The bridging conditions obtained in Sections 3.3 and

3.4 lead firstly to the determination of y0 and secondly to the 

determination of Yi as a function of a0. The latter result 

constitutes the neutral stability curve and allows the critical 

wavelength of the disturbance to be found following appropriate 

numerical calculations to be undertaken in Chapter 4. The form 

of the neutral stability curve is derived in Section 3.7.

(52)



3.2 Critical Layer

This section is concerned with setting up the appropriate 

expansions for the perturbation functions <j) and 0 within a 

critical layer along the centre-line, x=0, of the vertical 

planes. Initially this involves writing the limiting form of 

the outer solution for small x, given in Chapter 2, in terms of 

a new variable, §, which it is appropriate to use for the inner 

solution within the critical layer. This variable is chosen so 

that, within the critical layer, the thermal gradient term 0" 

becomes significant, from which it follows that £ should be 

defined by

x = A~2/9̂  . (3.2.1)

The inner limit of the outer solution (2.5.1)and (2.5.2) may 

now be expressed in terms of £ as follows. For the stream 

function

(1) =a±0 + A - ^ b ^ - l A - ^ l n A c ^  ?2+ A'4/9 [ (c^lnl §| + ¿0) £2+

± <--1
]+ A - ^ f d U 3. ^ )  -|A-0-lnA(eIoor + b*10Ç) +

A-8/9[ (e*00In I ? |+ t  + (b^ In | £ |+ b̂  )£j -1 A"10/9 InA c^ 2 +

A"10/9[g0?5+ (chinili + c\ )i2]-|A'12/9lnA(h±00 £6 + d10Ç3 ) + 

A -12/9[ (hg+h oo In J § I )§6 + (d^plnl + d* )̂ 3]+... , (3.2.2)

2 .-8/9,

and for the temperature

0 = A 2/9(A0±r 1 + A* Ç* ) + Bo* -f A-2/9lnAC±00i + A-2/9[(C±00ln|§|+ 

6^)?+ c±1̂ -2] + A_4/9(D ô 2 + Bfr1 ) -|A~6/9lnA (Eoo?3+C±10) +
—6 /9 + 4. o 4. 4.

A' [(E00ln|i| + E5)r +C-10ln|||+ Ci]+... . (3.2.3)

These forms now suggest that within the critical layer the
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solutions for (j) and 0 should be expanded in the forms

<)) = + A '279 (|)1 + A”4/9lnA<j>20 + A "479 (|>2 + A 6/9 (j>3 + A 8/9 lnAcj)40 +
. -8/9r .-10/9. . r .-10/9 T .-12/9. . r .-12/9~A <t)4 + A lnA(j)50+A <i>5 + A lnA<j)60+A <p6 + . . . ,

A —*<x>, ( 3 . 2 . 4 )

0 = A 279 00 + 0 !+  A-279InA  0 2O + A "279 02 + A"479 03 + A"679 InA  0 4O +

\~ 6/9n A -8/9., . 5- .-8/9 ,5- *-10/9. a q  . a ~10/95A 0 4 + A InA  0 50 + A 0 5 + A ln A 0 6O + A 06 + . . . f

A -*oo, ( 3 . 2 . 5 )

where 0±̂ (i=0,1,2, ... ) and <j>i0'6io (i=2,4,5,... )are functions 

of the inner variable £.

We shall also require the forms of the base functions <3W3x 

and d0/dx within the critical layer. From (1.2.19) and (1.2.20) 

the relevant expansions are

dQ/dx = [lo + A 479|i2S;2 + A -679p,0Y1 + A”87V 4 |4 +. . .  ,A-*oo , ( 3 . 2 . 6 )

ôW/ôx = A 279(01Ç + A ”679a)3^ 3 + A _879 cü1y1  ̂ + . . . , A - » c c , ( 3 . 2 . 7 )

where the coefficients are those given in Tables 2.1 and 2.2. 

We are now in a position to proceed to find the inner solution 

in the critical layer and hence obtain the appropriate 

bridging conditions for the outer solution across the line x=0.

3.3 Leading Order Bridging Conditions

In this section, we begin the process of finding the 

critical layer solution by substituting the forms of d0 /<3x and 

dWdx, defined by (3.2.6) and (3.2.7), and the forms of (j) and 0,
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defined by (3.2.4) and (3.2.5), into equations (2.2.2) and

(2.2.3) and balancing terms of like powers of A.

8/9 _
Thus from terms of order A we find the equation for cj>0 is 

given by

io1V = 0,

from which it follows that

(3.3.1)

<t>o = §o + b0 | + c0 £  + ̂  i3. (3.3.2)

From (3.2.2) the boundary conditions for <j>0 are 

<¡>0 -* a±o as ±oo, (3.3.3)

and it follows that a0 = a 0 and b0= c0= d0= 0. Thus 

bridging condition across the critical layer is

the first

a o = a 0

and the solution for (¡>0 is simply

(3.3.4)

•
+ ° 
«3IIo
H3- (3.3.5)

Similarly, from terms of order A 679 the equation 

found to be

for (ĵ is

^iiv = o, 

with solution

(3.3.6)

♦i = ai + bi § + c ^ 2 + dx .

From (3.2.2) the boundary conditions are

(3.3.7)
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b 0 £+0 as £-* ±oc (3.3.8)

and it follows that bx = b 0 and a1 = c1= d 1 =0. Thus the second 

bridging condition across the critical layer is

- b0 (3.3.9)

and the solution for <j>j is

= b 0 £. (3.3.10)

From terms of order A 4/9lnA , the equation for ((>20 is found 

to be

' lv « 
P20 - 0f (3.3.11)

with solution

<¡>20 = 520 + b20 £ + c20 §2 + d20 (3.3.12)

and since the boundary conditions are, from (3.2.2),

<¡>20 “ “ -|c±oo + 0.£+ 0 as £-*±00, (3.3.13)

we have a20 = b20 = d20 = 0 and

<¡>20= c20 §2 with c20=-|c±00, (3.3.14)

This result requires c+00 = c"00 but this is the case since, from 

(2.3.10) and (2.3.13) , c~qq = a- qSq / 2 and a g = a q by (3.3.4).

4/9 ~
From terms of order A , <|>2 is found to satisfy the

equation

^21V=0o'f (3.3.15)
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w h e r e  0 O i s  t h e  l e a d i n g  t e r m  i n  t h e  t e m p e r a t u r e  f i e l d ,  t o  b e  

c o n s i d e r e d  b e l o w  ( s e e ( 3 . 3 . 2 4 ) ) .  F r o m  ( 3 . 2 . 2 )  t h e  b o u n d a r y  

c o n d i t i o n s  f o r  (j>2 a r e i

<i >2 ~ c ± o o  + c 0 i 2 + ô ±1 i “ 1 a s  ( 3 . 3 . 1 6 )

F u r t h e r  e q u a t i o n s  a n d  b o u n d a r y  c o n d i t i o n s  f o r  <j>3 , . . .  ,<})6 a r e  

o b t a i n e d  i n  s u c c e s s i o n  a s  f o l l o w s :

<l>3i V  =  S i '  ,

$ 3  ~  d o   +  a±i /  i  ^ ± 0 ° ( 3 . 3 . 1 7 )

^ 4 0 V  =  0 ;

4>4 0

2 0

2  ± 5 - 4  2 , ±  5-
9 e oo ?  9 e i o  ?  / ► ± o o } ( 3 . 3 . 1 8 )

=  0 ' 2 /

-  e 00 i 4 l n | | |  +  e 0  +  b 1 0 £ l n | § |  +  b +x | , J  ( 3 . 3 . 1 9 )

$ 5 0  -  0 '

<i> -  ~ c  £ 2 o' - i o ?  /5 0  g ' - 1 0 ► +  00 } ( 3 . 3 . 2 0 )

<t>5 1 V  =  0 3 -

<t>5 -  5* 0  +  c 10 i 2 I n  I I
* , 2  ,  }  + C 1 § , £ - * x x > J ( 3. 3. 2 1 )

( 5 7)

1



*1* 60 - 4̂0 '

‘t’ôo - 9 ^ 10? ' ^  -*±x } (3.3.22)

IV

<t>6 - h±oo^6 ln|i|+ho 6 + d+10 H3 In | £| + cf̂ 3 , | -*±oc . } (3.3.23)

In (3.3.21) and (3.3.23) we have used the fact that <j>0" = <¡>1'= 0 in 

order to simplify the equations.

Equations for the unknown temperature functions 0O,...04 are 

obtained by substituting the form of 0, as defined by (3.2.5), 

along with (3.2.6) and (3.2.7) into equation (2.2.3). At order 

A 6/9 this leads to the following equation for 0O:

0O"+ iOflCO^Oo =100^0^0/ (3.3.24)

and from (3.2.3) the relevant boundary conditions are

0O - 4  r 1 + aî r 4, ? -±« (3.3.25)

0 0 —-Us - 00“ i"1 , (i -±00) (3.3.26)

by making the transformations

. .1/3 £| = (-OoCOi) § — + 2/3 * *
0 = -OoMoaoi-^o“!) 0O(I) (3.3.27)

and using the fact that (j)0 = a^ in the right-hand side of 

(3.3.24). Consider now the modified system
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( 3 . 3 . 2 8 )
A  ̂A A | £ I A '/N
0O" -l£ e0 = -ie~ 1 , 0O ^0 as |£ I-»oo

and let 0o(p) denote the Fourier transform of 0O, so that

0O = (1/2*) /* 0oe_î  dp, 0o(O)= / ^ 0 o di. (3.3.29)

Taking the Fourier transform of (3.3.28) gives

d 0 0 / dp + p20o = 2ie/(p2+e2) (3.3.30)

and the solution for 0 O obtained by multiplying (3.3.30) by a 

suitable integrating factor, is

0O = 2ie e~p fP (ep ̂ /(p2+e2 ) )dp. (3.3.31)
— 00

Consideration of the solution for 0O in (3.3.31),in the limit as 

£—*0, leads to the result

0o(O) = i* (3.3.32)

and hence

¡ . 0 0  _ +

•loo 0od  ̂= i^Moa o/“i • (3.3.33)

Returning to the solution for (j>2, equation (3.3.15) may be 

integrated once to give <j>2"'= 0O and it follows from (3.3.24) 

that

$2V+itto®ii^', = iao0oao+ • (3.3.34)

Two integrations give the third order equation

<j>2'"+ia0a)i£$2- 2 ia0Wi <j>2 = ia0 Mo a+o?2/2 + M 1§ + M2, (3.3.35)

where M1 and M2 are arbitrary constants whose values are
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0.determined from the boundary conditions (3.3.16) as Mx = M2 =

It is expected that a solution of this equation for <j)2 can now

be found consistent with the boundary conditions (3.3.16)

. +
provided the constants c 0 satisfy a certain relation. This can 

be found by noting that

<¡>2 =/o? + k2 , ( 3 . 3 . 3 6 )

where k2 is a constant corresponding to one of the complementary 

solutions, k2|2/2, of (3.3.35). Letting S;-*±°c, it follows that

lim [$2"(A) -$2" (-A)] = r  0odi , (3.3.37)A— — oc

giving

+ _  ̂oo —
c 0-  c o = (1/2) J_x  e od § -  ( 3 . 3 . 3 8 )

The integral on the right-hand side was evaluated in (3.3.33) 

and gives the result

+ — .  + ,

C 0= C 0 + iMo Jta 0/2(0lf (3.3.39)

which represents the third bridging condition across the 

critical layer.

4/9 ~
At order A the equation for 0X is determined as 

0/+ iao(o1|01= iaQ^bo^ (3.3.40)

and, from (3.2.3), the boundary conditions are

6i ~ Mo b̂ /oil, | ̂ ±oo . (3.3.41)

Here the solution ^  = b+0 | has been used on the right-hand side
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of (3.3.40) and it should be recalled that = b 0. Thus by 

inspection

0X = n0 b̂ /co-L (3.3.42)

is the required solution. Returning to the equation for (j)3, 

since <j)3lv = 0^=0 , it follows that

<¡>3= a3 + b3£ + c3^2 + d3i3 (3.3.43)

and from the boundary conditions (3.3.17) it follows that

~ — ~ + ~ + 
b3=c3=0 and a3 = a lf d3 = d0. Thus

do = do / (3.3.44)

+ -

a x = a1 (3.3.45)

and the solution for <j>3 is

<¡>3 = d^|3 + a\ . (3.3.46)

Equation (3.3.44) represents the fourth bridging condition 

across the critical layer for the outer solution <J>0.

At this stage of the analysis we have four bridging 

conditions across the critical layer for the outer solution <j)0. 

These are summarized as follows:

a t  = a Q, ( 3 . 3 . 4 7 )

*>o = b o< ( 3 . 3 . 4 8 )

c+o = c"o + i n  Moat/20^, ( 3 . 3 . 4 9 )
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(3.3.50)

Bridging conditions across the critical layer for the second 

order solution are obtained in the next section.

3.4 Second Order Bridging Conditions

As explained in Section 3.3, in order to obtain the 

bridging conditions for , we need to proceed with the 

determination of higher order terms in the critical layer 

solution. The equation and boundary conditions for 02O are

6 20 "+ iao(0i i e 20 = i aoMo^o

®20 ~ “ '9 *-'00? > 00 t

where = --|c00i;2 , and C+00 = C 00=s0c+00 . It is easily verified 

that the required solution is 0 20 = - ̂ s0c^0 §. Since ^01V= S20 , it 

follows from (3.3.18) that

<¡>40 = ^ 4 0  + 4 e 4 0 ? 3 / ( 3 . 4 . 2 )

where b40 = - -|b+10 = - -|b 10 and e40 = - |-e+00 = - ̂ e_00, consistent

with the fact that e+00= s0c+00/24.

The equation for 02 is

02"+ iooa)1^02= R  (3.4.3)

} (3.4.1)
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where

R = ici0( a+0M2 + M̂o <t»2 “ <°3 ̂  ©o) (3.4.4)

and from (3.2.3) the boundary conditions are

02 ~ c oo £ln|£| + Bo as £ —  ±oo . (3.4.5)

Using the relation (¡)4'” = 0 2 obtained from (3.3.19) one integration 

of equation (3.4.3) gives

<j»4lv + icio £<j>4"-ia0 ¿¡>4' =/? Rd§+ k4 , (3.4.6)
o

where k4 is an arbitrary constant. Now using the outer 

behaviours

^4- e ^  ^ln^l + e^ tb^o ^Inlil + b^ | , £ -  ± oo , (3.4.7)

given by (3.3.19) and the fact that e+0 - e"0 = s 0(c+0- c_0)/24,

substitution into (3.4.6) gives the following relation:

ia0(o1(b'J-bi) = F ^  Rdi; + s0(c+0- c"0) (3.4.8)

where F denotes the finite part of the integral in the limit as 

A —»oo. The right-hand side of (3.4.8) involves non-zero

contributions from integrals of the form

= r £ i 2d$ (3.4.9)

and

I2 = F ^ ? 30od§. (3.4.10)

These may be evaluated using integration by parts and making 

use of (3.3.16) to give
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( 3 . 4 . 1 1 )11 = 2(c+0 -CoJ/SiCtoCO!

12 = - 4(c+0 -c~0)/iac(D1 . (3.4.12)

Substitution of these results into (3.4.8) with R given by

(3.4.4) and making use of (3.3.49) then yields

b* - b^ = ¡ioX (|x0 - 12o3 )a*/60 0̂)3 . (3.4.13)

The relation a* = a^ obtained in (3.3.45) represents the first 

bridging condition across the critical layer for the outer 

solution <(>x, while equation (3.4.13) represents the second.

The second bridging condition for the outer solution «ĵ is 

now confirmed by an analytical solution for 02 which can be 

obtained in the form

02 = kl^2 +kj I ̂ 2 +̂ -3?2 $2" + ̂4 §3 ̂ 21V + ̂-5l • (3.4.14)

Substitution into (3.4.3) and a balancing of like terms 

requires that the constants k̂  are given by

kj = -30)3/70̂  + îq/20̂  ; k2 = 3 a>3/7CO3; k3 =-3o)3/140)3 

^ = « 3/70)3; ^  = a+0{-Ho2/2 + 20)3̂ 2 - 15[x0o)3 /7 }/2o)3 . (3.4.15)

An exact solution for <f>4 can now also be obtained by three 

integrations of the equation (¡)4'" = 02to yield

$4 = + [ ̂  + k4§ ] 4̂2 + ^3?2^2+ (̂ 4+ ^5)?4 + Pl?2/2 + P2§ + P3

(3.4.16)

where in (3.4.16) we have used (3.3.35) to obtain expressions
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for J" <()2 d § and /(/<j)2 d§)d!; and the constants (i=l,...5) are 

given by

—  2 —  2 
= (7^0+ 204«5 ) /lSSiOflÔ  ; X2 = (7Mo - I8O005 ) /Seic^c^ ;

3̂ = ( 7ja0- 48o)3 )/leSoî  ; X4 = 1̂ a"0 (-49^0 - 276o)3 )/4032w12

(3.4.17)

where Plf p2 and P3 are arbitrary constants of integration. 

Substitution of the appropriate forms of (j)2", <j>2' and <j)2 as £-»±x 

into (3.4.16) shows that the coefficients b~x of the linear terms 

in § as E-»±oo are given by

b”i = c'00 ( 3X.x + X2 ) + 2c_0 (A.x + X2 ) + òx ( X.3 — X2 ) + P2 (3.4.18)

and this leads to the relation

b"i ~ bx = 2(Xx+ X2)(c+0- c").

Substitution of Xx and X2 from (3.4.17) confirms the bridging 

condition

bt " b’i = Mo11 (̂ o ~ 12(03 )at/6aoO)i (3.4.19)

obtained in (3.4.13). Also the choice Px=0 ensures that <J)4 

contains no quadratic term in H as |-»±oo, as required by 

(3.4.7).

Given that c 10=c'10, the solution of (3.3.20) for <|>50 is 

simply

- 2 + 2  ~ ~
5̂0 = ~ 'g C 10 ^ + b 50 ̂  + a 50' (3.4.20)
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integral on the right-hand side is not needed in the final 

analysis that leads to the equation of the neutral curve and so 

the value of the integral has not been calculated.

The equation for 04O, obtained by equating terms of order 

A -6/9lnA , is given by

®40 + ̂■a0ü)l? 6 40 = -*-a0 [Mo <l,40 + ̂ 2? *20-(O3§ ® 20 ] - ̂  Yo *20 * ( 3.4.27)

Substitution of $40, <j)20 and 02O into the above equation gives 

04O'+iaoco1|04o =pi§4 +p2? , (3.4.28)

where

Pi = ia0 ( Poe 40 +, M-2C20 — ®3s0c20 ) ' P2 = ̂ *̂0 (Pô 40 — 2oYo / ) (3.4.29)

and b40 and e40 are defined below (3.4.2). The required solution 

satisfying the outer behaviour

®40 ~ - "9 *̂00? 00 (3.4.30)

is found by inspection as

040 = (Pi £3 + P2 - 6p1/ia0a)1)/ia0(01 (3.4.31)

given that E+00=E“00 and since * 6O”' = 04o follows that

*60 = P i? 6/ 120100(0! + (P2 -  6p1 /io0ai1 )^3/ 6 ia 0a)1 + c 60 |2 + b60£ + a 60,

(3.4.32)

where a 60, b60 and c60 are constants of integration. This

solution is consistent with the outer behaviour for <jT60 defined 

by (3.3.22),
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(3.4.33)r 2.± 2 ,± .
4*60 ~ ~ 9*1 oo ? - 9 d io ? ' ? - 00 »

given that h~00 = (s03+ 24s0s1 )a“0/57 60 and that d^0 = d 10.

The final bridging condition across the critical layer for 

the outer solution (Ĵ is obtained by considering the equation 

4*6 =64+^6/ together with the outer forms

4>6r’ -• 12011*0,,S3ln|Ç| + (74^ 00+ 120h*0)S3+ 6d\0 + 6<$lt §-̂ ±00, (3.4.34)

04 - Eoo I3ln||| + ¿of +cfi0ln|§| + c\, |-*±* , (3.4.35)

defined by (3.2.2) and (3.2.3) respectively. This gives the

relation d 1 - d 1=(C1- C1)/6, and substitution for C* - C x from 

(2.4.50) yields

d V d ! = Mo3tao[so(Mo - 12(o3 )/6 - (4y04 + 3s3 + ŝ /SicoJ/ôâ cio (3.4.36)

where s0 is the constant defined in (2.3.11).

The four bridging conditions for the outer solution <1̂ are 

now summarized as follows:

+ _

a 1 = ax , (3.4.37)

bt = di + Mo31 ( Mo" 12(o3)a'J/6a0a)13 , (3.4.38)

11
+
u

c'i + \ £  (§3 ~Do?2)d£ , (3.4.39)

d+! =: d 3 + Mo 31 a otso (M̂o “ 12(o3 ) /6 - ( 4 y0 + 3s-l+ s0 /8 ) (o1]/6o)1 .

(3.4.40)

The critical layer enables the outer solutions in -l/2<x<0 

and 0<x<l/2 to be joined smoothly across the centre-line x=0
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and the two sets of bridging conditions (3.3.47)-(3.3.50 ) and 

( 3.4.37)-(3.4.40) will be used in Section 3.7 below to complete 

the outer solution, to determine Yo and to determine a 

relationship between Oq and Yi equivalent to the local form of 

the neutral stability curve near Yo* However, it is also 

important to confirm that the outer solution can adjust to the 

full boundary conditions at each vertical plane, and this 

entails consideration of further inner solutions in the 

neighbourhood of x=±l/2. These wall regions are considered in 

the next two sections.

3.5 Wall Region

This section is concerned with the validity of our solution 

of the stability equations near the walls x=±l/2. We first set 

out the form of the outer solution as x-*-1/2, based on the 

assumptions made about the boundary conditions for the outer 

functions /±, /i;j (i=l,2; j=l,2,3) and then consider the local 

solution of the linear stability equations

(j)"" - 2a 2<j>" + a4 <)) = 0', (3.5.1)

0 " - a2 0 = i a A (0’ <|) -W* 0 ) - 4 y4 f , (3.5.2)

<() = <()'= 0=0 at x = ±1/2 (3.5.3)

in which

a = A 1/3a0 , A— ao , (3.5.4)

Y = Yo + A-2/3 Yi+ • • •, A-»oo . (3.5.5)
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Near the wall the base flow functions

0 = 0 O + Yi A  2/3 0 : + . . . ; 'P = 'P q + A  2/3 lP1 + . . . , (3. 5 . 6)

may be expanded as follows. Let X = x+l/2, so that X=0 when 

x=-l/2. Using Taylor expansions about X=0, we obtain

<̂ ' = 2, M± x± / x^0 , (3.5.7)

0L = ̂  (li X1 , X-0 , (3.5.8)

_ A
where )A £ (i=0,l,2...) are real constants; their numerical

values, obtained from evaluating 0O' and ©fusing (1.2.19) are 

given in Table 3.1. Similarly, expansions for ^  and W 1’ are 

given by

'•V-g0®i Jt1.

_ /V
where (i=l,2...), are real constants whose numerical

values are given in Table 3.2.

The boundary conditions assumed for the outer functions fL 

(i=l,2) at x=±l/2 are given by equations (2.3.4) and (2.3.5). 

Thus

X—* 0, (3.5.9)

X-*0, (3.5.10)

f i = X2/2 + ^  A1± X1, x - - o , (3.5.11)

Î2 = g 3 A2i X1,

Ot (3.5.12)

where (j=1,2) are real constants whose formulae are given in 

Appendix I and whose values are given in Table 3.3. The 

solution for the leading order outer solution <)>0, in x<0, is
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given by

<t>o = °i /i( x ) + q> /2(x ) ' (3.5.13)

so that <|)0 has the form

<j>0 = J2 X 2 + J3 X3 + J4 X4 + Js X5 + ..., X —  0, (3.5.14)

where the constants J2,J3,... are given by

3*2 — / 2 , = q  A 3 ̂ t q  A2 ̂, ( i = 3,4 . . . ). (3.5.15)

Next we consider the behaviour of the functions /ij (i=l,2; 

j = l,2,3), as X-*0. The boundary conditions for the functions /i;j 

at x =- 1/2 are given in (2.4.13), (2.4.15), (2.4.31) and

(2.4.32) and it follows that as X-»0

f 1 1 = § 3 ^ 1  X 1 , (3.5.16)

00

f 21 = S 3  ^ xl ' (3.5.17)

00

f 12 = S 3  cli xl ' (3.5.18)

00

f 22 = £ 3  <*± Xl ' (3.5.19)

f 13 = D 120 X 2ln 1 X 1 + D 13 x 3 +  D 140 x 4 l n | x |  + D 14X 4 +. . . , (3.5.20)

f23 = ^220 X In | X | + D 23 X + D240 X In I X I + D 24X +..., (3.5.21)

where Bj;L, Cj ± and Djif Dji0, (j=1,2) are real constants whose 

formulae are given in Appendix I and whose numerical values are 

given in Tables 3.4-3.5. The solution for in x<0 is given by

<j)1(x) = o1_ £(x) + o~ £ (x) +2a02 [q- /u (x) + oj /21(x)] +

Yi K 7 i2(x ) + o 2-/22(x )]- [o~ f13(x) + o~ f23(x)]/iao (3.5.22)
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and it therefore follows that

<)>! = K20 X2 In | X | + K2x2 + K3 x3 + K40 X4ln I X I +...,X-^0, (3.5.23) 

where

^20 = — [°L ^120 + °2̂ 22o]/̂ -aO' ^2 = ° 1  /2,

k3 = O i X 3 + aT A23+2a02(c^Ci3+a2_C23)+Yi(ofB13+q2_&!3) -

(c*l D13+ Oj D23 )/ia0

*40 = ~ [°1 ̂*140 + °2 ̂ 240 • (3.5.24)

We may also deduce the forms of 60 and 0X as X-* 0 using 

relations (2.2.11) and (2.2.13). The leading order temperature 

field has the form

80 = RtX + R2 X2 + R3X3 + ..., X-»0, (3.5.25)

where the real constants R1/R2,... are defined as

__ _ __ _ _ __ 2
R1 “ *̂2 M'O f ̂ 1 f R2 = — ^0^2^ ̂ 1 /

* 3  = ( *i4 ^0  + ^20-2 ) /  tOi -  ( J 3 )A0 0)2 + (03 ) / ( 0 1 + J 2 ) i0 w 2 / ® 1 * ( 3 . 5 . 2 6 )

Similarly, the second order temperature field 0X is given by

6i = T0 X"1 + 1 1 + T20 X ln|x| + T2 X +..., (3.5.27)

where

T0 = 2(Ĵir0(o2 - J3£0 w^/io^co3,
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T x = [8 ( x 0 ( J 3o)2 -  ^ 0 ) 2 / 0 ) ! ) + 6 ^ | .i0a)3 -  600]^ ( J 4 ^.0 + J ^ n 2 ) _  8 '^Y o a ) i2 ] / i c t oa ) i3 »

T2o = Mo ̂ 20 /®i • (3.5.28)

Combining the results (3.5.14), (3.5.23), (3.5.25) and (3.5.27) 

and recalling that in the outer region

<t> = <t>0 + a -2/34)1 +..., e = e0 + A"2/3e1 +..., (3.5.29)

it follows that as X-»0 the overall solutions for the stream 

function and temperature perturbations have the form

2 3 —2 /3 2 2 3
<() =J2X + J 3X +...+ A (K20X ln|x|+K2X +K3X +...) + ..., (3.5.30)

0 =R1X+ R2X2 +...+ A^^fToX"1 + Tx+ T20 Xln|X| + ...) + ... . (3.5.31)

These results represent the form of the outer solution as X-*0 

and it is clear that the wall conditions (3.5.3) are not 

satisfied in full by the outer solutions. An adjustment must 

occur in a region close to the wall and the solution there is 

considered in the next section.

3.6 Wall Region Solution

The singular behaviour evident in (3.5.31) and (3.5.30) is 

caused by the absence of the highest derivative 0 ”in the outer 

approximation to the heat equation. Within the wall region this 

conduction term must come into play, requiring a local 

variation on the scale rj defined by

X = A r] . (3.6.1)
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Writing the inner limit (3.5.30) and (3.5.31) of the outer 

solution in terms of the variable i) , it follows that as r)-»°c 

the wall region solution must match with the form

(j)=A J,!] + A J4r| - gA InA K20 rj

-10/9 5 2  2
+ A (J5r) + K20r] lnr| + K2 r| ) + . . . , (3.6.2)

0 = A 2/9R1r|+ A-479 (R2t|+T0/r))+ A"6/9(R3rf+TX) - ^ A~8/9lnA T20 g

+ A 8/9 (R4 rj + T22 r)lnr| + T2t| )+..., r)-»oo.

(3.6.3)

This suggests that the inner expansions for <() and 0 in the wall 

region have the form

. A “4/9X  » -6/9 -r , . -8/9x  , .-10/9, . -r<j>=A (|)0 + A <(>! + A (j)2 + A  InA <j)30 +

.-10/9-7- ,
A <(>3 + • • • / (3.6.4)

0 = A~2/90o + A~i/9d1 + A'6/902 + A"8/9lnA03O +

A'8/903 +..., ( 3.6.5)

where <j)if 0 ± and <j>i0, 0io are functions of i) . Substitution of

(3.6.4) and (3.6.5) into equations (3.5.1) and use of the

appropriate inner versions of the base flow functions 

(3.5.7)-(3.5.10) leads successively to the following results.

At order A 4/9 in (3.5.1) we obtain

x iv /N
<i>0 = Or (3.6.6)

to be solved subject to

<i>o -♦o’-O (i)=0), 0O~ J2*\ (i)-̂ 00). (3.6.7)
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The required solution is clearly 

4*0 = l-̂rl •

2/9At order A we obtain

^ xi V = 0,

with boundary conditions

4>i = 4>i' = 0 (ri=0), J3ri3 + O.ri2 (T]— oo).

The required solution is

4>i- J3 r|3 •

At order one we obtain

4*2 = 6 0 >

where the solution for 0O is to be considered below.

-2/9
At order A InA it is found that

^30iV = 0

and the boundary conditions are

4>30 = <t>30 = 0 (11=0), $ 30 _ - 2 K 20ri2/9 (ri-»oo).

The required solution is

4*30 = -2K2oi1 / ̂ ■

At order A "279 we obtain

(3.6.8)

(3.6.9)

(3.6.10)

(3.6.11)

(3.6.12)

(3.6.13)

(3.6.14)

(3.6.15)
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( 3 . 6 . 1 6 )

with boundary conditions

<̂3 = <t>3' = 0 (r)=0), (t>3 _ J5r)5 + K20r)2 lnr) + K2r)2 (r|-»-°o). (3.6.17)

One integration gives

<j>3 = Q1 + k3 , (3.6.18)

where k3 is a real constant; the solution for 8*3 will be 

discussed below.

In the heat equation (3.5.2), substitution of (3.6.4) and

(3.6.5) into equation (3.5.2), and equating terms of like 

powers of A, leads successively to the following results. At 

order A 2/9

60 + ia0 ĉ tiOo = iajl0<j>0 (3.6.19)

and since (j)0= r̂|2, it follows that

60"+ icio (031100 =ia0iT0J2r)2. (3.6.20)

The boundary conditions for 0O are

0O = 0 (r) =0), 60 _ Rfr) (rî oo), (3.6.21)

where Rx is given by (3.5.26). By inspection the required 

solution is

60 = RiTb (3.6.22)

indicating that the leading order temperature field in the

<t>3 '^1 I
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outer solution is effectively unchanged across the wall region.

Returning to equation (3.6.12) the solution for c[>2 is 

obtained by integrating 00in (3.6.12) three times and applying 

the boundary conditions

4>2' =4>2 = 0 (11=0), <i>2~ J4ii (r|-*oo). (3.6.23)

This leads to the solution

<t>2 = J4if • (3.6.24)

At order one the equation for 0X is found to be

0i" + i«o = ia0fr0 ̂  - iao^ifOo, (3.6.25)

and since <|>1 = ĵri3 and 0o= R 1r), this reduces to the form

0V'+ ^ 1)0!= r2r)3, (3.6.26)

where

i-*i — iOo«^, £2 — ictQ̂ Q (Ĵ * R1a)2/(Aq) • (3.6.27)

The boundary conditions for 0X are

0i=O (r)=0), 0X - R2T)2 + Tor)"1 (r)->oc) , (3.6.28)

where T0 = 2(J2̂ 0a)2 - ̂ ¡XqO)!)/iô a)3. By using the transformation

0i=0 +r2r)2/r1, (3.6.29)

the system (3.6.26), (3.6.27) can be written in the simplified 

form
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(3.6.30)0" + r^O = -2r2 /rx ;0 = 0 (r] = 0), 0 -ToT)1 (1̂ 00),

for which the general solution can be expressed in terms of 

Airy functions (Abramowitz & Stegun, p.446):

— 2
0 = mx Ai (cr)) + m2 Bi (c r|) + 2 it r2 Gi (crj) /r xc (3.6.31)

where c = (-r1)”1/3 = (-idgÔ )1/3 and mx and m2 are arbitrary

constants. It is convenient to choose the argument of the Airy 

function in the sector | arg z \<j i /3 of the complex plane so that 

c is defined by c = e ‘3t:L/6(cx0co1)1/3 and the choice m 2 = 0 then 

ensures that the solution does not grow exponentially as r)-*oo. 

Indeed since Gi(cr]) _ 1/jtcr) as T]-*», it then follows that 

0 ~ T0r) 1 as r|-» oo, as required. Finally, application of the 

boundary condition 0X = O at r| = 0 gives m1 = -2r2Jt/3 rxc . The 

final solution for 0X is thus

“ 2 1/2 2 7
©i= r2r\ /rx - 2r2n A^cr))/3 rxc + 2 ji r2 Gi(cr) )/rxc (3.6.32)

In the solution for $3 it is seen from (3.6.18) that the 

term 0X will generate a logarithmic contribution of order r)2lnr) 

as T]—»00, consistent with the outer boundary condition (3.6.17). 

At this stage , we have seen that the wall region admits 

solutions for both the temperature and the stream function 

which allow the outer solution to adjust smoothly to the full 

boundary conditions at the vertical plane. This involves 

significant adjustment in the temperature field at order A 

and a corresponding adjustment in the stream function field at 

order A -10/9. This gives confidence in the boundary conditions 

assumed for the outer functions <|>0 and (ĵ, suggesting that the 

overall solution structure will be consistent in the limit as
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A-»oo.

In the next section we return to the question of the 

completion of the outer solution and the derivation of the 

neutral stability curve, making use of the bridging conditions 

across the critical layer derived in Sections 3.3 and 3.4.

3.7 Neutral Stability Curve

Derivation of the neutral stability curve requires 

application of the bridging conditions to the outer solutions 

for <t>0 and ^across the centre-line, x=0. We recall that in x<0, 

the solution for <}>0 is given by

<t>o = /1 ( x ) + ° 2  f2 ( x ) , (3.7.1)

where q and q  are complex constants and that in x>0

<l>o = °i+/i( -x ) + O2 f2 ( -x ) , (3.7.2)

where o 1+, o2+ are further complex constants. The real functions 

/1, f2 are uniquely defined by the solution of (2.3.5) and 

(2.3.4). The forms of the functions (i=l,2) as x-» 0- are 

given by

/i(x) =a± + b±x + ci0 x2ln|x| + c±x2 + d±x3 +--, (3.7.3)

where the constants aif bif ci0 , 

in the general forms of <j)0 as x-»

<t>o = ao + bjx + qf0 x2In | x | +

Cĵ and d± are related to those 

’ 0± ,

CqX2+ d„x3 +..., (3.7.4)
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by the formulae

± ± ±
Y0 = «1 Yi + o2 v2 , (3.7.5)

where the vectors v0, vx and ^  are those defined in Chapter 2. 

These are now substituted into the bridging conditions 

(3.3.47)-(3.3.50) for aj, bg, Cg and dg to give

( °f- °1+)al + ( °2~ °2)a2 = 0f (3.7.6)

(of+ 0l+)bi + (qf+ q2+)b2 = 0, (3.7.7)

(°i ~ °l+)ci + (°Î2 ~ °!2+)c2 = -i^s0(o1_a1 + o2_a2)/2, (3.7.8)

(°i~+ °i+ )dx + (of + <̂+)d2 = 0 . (3.7.9)

The system of equations (3.7.6)-(3.7.9) has more than one 

set of solutions (Daniels 1987), but the solution of interest 

here is that for which (|)0 does not vanish on the centre-line 

x=0. From (3.7.7) and (3.7.9) this leads to the requirement that 

the determinant

bi

d, (3.7.10)

Since, from (2.3.10), d1=b1s0/6 and d2 = (l + b2s0)/6 this reduces 

to the requirement that b1 = 0. This condition, equivalent to 

/i(0)= 0, effectively fixes the value of y0 , as explained 

originally by Daniels (1987). The lowest value of y for which 

(2.3.4) has a solution with f1'(0) = 0 is y = y0 =6.30 and the 

manner in which y0 can be calculated numerically from (2.3.4) is 

discussed in Chapter 4.
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Solving the above system of equations (3.7.6)-(3.7.9) now 

leads to the following relations between the constants q^, , q2+ 

and o~ :

+ 4a 2C l

4a2cx
4 â  c2 t i jt s Qâ ̂ a2 

4a1c2 - i^:s0a1a2
on (3.7.11)

o2 =
4a2C]

21 JT S q â.̂
4a1c2 - ijis0a1a2

o. (3.7.12)

and

°2 =-°2 • (3.7.13)

The value of remains arbitrary, equivalent to the fact that 

the original stability problem is a linear, homogeneous one. 

However, it is convenient to note that provided a is real the 

eigensolutions <}> and 0 can always be expressed in the form

<t> = <t><0) + i  <j)(e> , 0 = 0 (e> + i 0 (o) , ( 3 . 7 . 1 4 )

where <{/ \ 0*°̂  and (f/e ,̂ 0^  are real odd and even functions of x 

respectively. This may be achieved in the present context by 

choosing <q = -i(4a2c1 - 48^2 - i n s0a1a2 ), so that for the leading 

order outer solution

<l>o = 4»o + > (3.7.15)

where

<|)0(o) = a^sja^ix) - aa/jfx)], (3.7.16)
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and

4>0<e) = (4aic2- 4a2ci)/i(x) • (3.7.17)

+
Just as the leading order bridging conditions involving b 0 
+

and d 0 yield y0, so the second order bridging conditions 

, + +
involving b x and d_1 yield y1 as a function of a0. This relation 

constitutes the neutral stability curve. We recall that the 

solution for ((̂ in x<0 is given by

<t>i = q7i(x) + qf/2 (x) + 2a02[q7 n (x)+a2/21 (x)] +

Yi [or/i2(x) + °27 22 (x)]- [q7 i3(x) + a2_/23(x)]/iao / (3.7.18)

where the real functions /±j (i=l,2; j=l,2,3) are defined in

Chapter 2, and q  and q are complex constants. In x>0 the 

corresponding solution is

<f>i = q+/i(-x) + q+^(-x) + 2a02[q7 n(-x) +o2+/21(-x)] +

Y 1 [0l+/l2(-X) + °2+ /22(-X)]+[q+/l3(-X) +°2+/23(-X)]/iaO*

(3.7.19)
•

The forms of the functions (i=l,2; j = l,2,3) as x^-0 are

given in Chapter 2 and involve, in particular, the constants b±j 

and di;j which are related to those b* and d* in the general 

forms of (jq as x-*0± ,

<l>i = 5f/x + + bf0xln|x| + bfx + q^x2ln|x| + c* x2

+ df0x3ln|x| +dfx3 +... (3.7.20)

by the formulae

vf = vf + 2a% v* + Yi Y12 - yf3 /iq , (3.7.21)
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+  + + + + m
where the vectors v lf vlr vxl, v12 and v13 are those defined in

Chapter 2. These are now substituted into the bridging
+ +

conditions (3.4.38) and (3.4.40) for b x and cT̂ to yield

o 3 b 3 + a 2 b2 + bj + q>+ b2 + 20^ [a 3 b 13+ o 2 b 21 + a 1+b11+ a 2+

Vi[°i b i2 + °2 ^2  +° i  b 12 + o2 b 22 ] -  [a3 ^ 3  + o2 b23-  Oj b 13 -  

°2+b23) ]/iao --M-0 n (Mt> - 12a^)a+0/6a0a)13

^ J +

( 3 . 7 . 2 2 )

and

old1 + q, d2 + q+dx + q+d2 + 2a,,2 [Oj- dn +a2~ d21+ cr^dn+q^ d21] +

Y l K  d 12 + °2_ d 22 +°1+ d 12 +°2+d22 ] ~ [°1~ d 13 +Cf2_ d 23 ~ ° l  d 13 “

o2+d23)]/ia0 = -MoJtao[so(M-o-12a)3)/6 - (4Yo4+ 3si+so2/8)(0i]/ •

( 3 . 7 . 2 3 )

Since ^=0, a2+ = -a2 and a£ = 0^ 3 + o2 a2, the first of these

equations can be written in the simplified form

( qf+ q +)b2 + (o1“+o1+)(2a02 ̂  + 73^2 )-[ ( a1“-o1+)b13+2a2_b23]/ia0 

= -^oJl(Mo-1 2a)3 ) (a r a 3 + o2~a2 )/ 6a 0(o? ( 3 . 7 . 2 4 )

and the second in the simplified form

( q> + q,+)d2 +(o1" + o1+ )(2o02d11+ Yidi2 )~t ( q~ -°i+)d13+2o2~b23 ]/ia0 

= -Mo^ao [so(Mo-12w3)/6 - (4Y04+ 3si+so2/8)a)i](orai + d 2"a2)/6a0co13 .

( 3 . 7 . 2 5 )

Elimination of ( o2~+ o2+) and substitution for o*, o2~ and o* from 

(3.7.11)-(3.7.13 ) leads, after simplification, to a cubic 

equation for q, given by

«o + CiOoYi + c 2 = 0 , ( 3 . 7 . 2 6 )
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where

(̂ 2̂ 12 ^2̂ 12)
2 (t*2 ̂ii ~ *-̂2̂ 11)

( 3 . 7 . 2 7 )

c2 - (JqJi ax
(Mo—12cd3) (s0b2/6 -d2)-(o1b2(4Y04+ 3si+ s02/8)

24 C0ĵ (t^^n ~ ̂ 2̂ 11 )

+ Jt S q a2 (̂-*2̂13 2̂̂ 13 ) + a 1 (̂ 2 ̂23 ~ ̂->2(̂23 )
8 ( a.2c1 -a1c2 ) (l̂  d1:L - d2bi:L )

( 3 . 7 . 2 8 )

This equation is the neutral stability curve from which the 

critical wavelength of the instability can be obtained. In 

order to determine the coefficients cx and c2 it is necessary to 

calculate numerically the various constants a ^ b ^ c ^  ai;j ,bi;j ,0^ , 

arising in the solutions for fL and /i;j (i=l,2; j=l,2,3) as x— 0. 

This task is undertaken in Chapter 4.

(84)



Hi
/s

i Hi

0 3.16092 0.50152

1 0.00000 0.00000

2 -125.37500 -58.79610

3 524.52701 333.12400

4 -828.99600 -658.02000

5 0.00000 0.00000

6 21292.09001 2420.19001

7 -3930.42010 -4992.36002

8 3105.94002 4437.91000

9 0.00000 0.00000

10 -2737.64010 -4761.17030

11 3123.65003 5951.43001

12 -1645.61010 -3396.43000

13 0.00000 0.00000

14 717.26700 1702.97000

15 -600.16200 -1524.64000

16 237.13300 640.03100

17 0.00000 0.00000

18 -61.47490 -184.99900

19 40.60910 128.95300

20 -12.83620 42.79760

TABLE 3.1. Values of the real constants and (i=o,..,20).
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/V
i

0 0.00000 0.00000

i 0.03984 -0.00662

2 -0.25000 0.00000

3 0.526821 0.08359

4 0.00000 0.00000

5 -2.08958 -0.97994

6 4.37106 2.77603

7 -3.94760 -3.13343

8 0.00000 0.00000

9 4.34938 4.80196

10 -5.45891 -6.93384

11 3.13731 4.48274

12 0.00000 0.00000

13 -1.59536 -2.77457

14 1.43024 2.72502

15 -0.60279 -1.24411

16 0.00000 0.00000

17 0.17580 0.41739

18 -0.12258 -0.311404

19 0.04079 0.110084

20 0.00000 0.000000

TABLE3.2. Values of the real constants and <% (i=o,..,20).
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i A n A2i

0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

1 0 . 0 0 0 0 0 0 . 0 0 0 0 0

2 0.50000 0 . 0 0 0 0 0

3 0 . 0 0 0 0 0 0.16667

4 1.65303 0 . 0 0 0 0 0

5 4.14945 0.22040

6 -3 .37225 0.69157

Ta bl e  3 .3 .  V a lu e s  of  th e  r e a l  c o n s t a n t s  Aj± (j=l,2; i=o, . . . ,6 ) .
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i Dii Duo

0 0.00000

i 0.00000

2 0.00000 6249.58111

3 30180.31065

4 20661.53915 20661.53915

5 94836.28995 51864.66976

6 273001.03277

i D2i D2io

0 0.00000

1 0.00000

2 0.00000 331.95613

3 2777.59161

4 4072.38010 1097.46950

5 12226.50923 2754.87189

6 413.40865

TABLE 3.5. Values of the real constants Dj L and Dji0 

(j —1,2; i=0,...,6) .
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CHAPTER FOUR : NUMERICAL METHODS AND RESULTS

4.1 Introduction

This chapter is concerned with the numerical calculations 

required to obtain y0 and the real constants a±, b i, cif a±j, b±j 

and Cĵj (i=l,2; j=l,2,3) and hence the precise form of the cubic 

neutral stability curve. This in turn determines the critical 

wavelength of the instability. In Section 4.2, the various 

systems of equations and boundary conditions for and f — are 

listed, and in Section 4.3 an appropriate numerical method of 

solution based on series expansions and a fourth order Runge 

Rutta scheme is described. The results are reported in Section

4.4 and this leads to the precise form of the neutral stability 

curve in Section 4.5. The critical wavenumber is found and 

comparisons made with both numerical results and experimental 

observations of the instability in slot flows.

4.2 Statement of Equations and Boundary Conditions

In this section, we summarize the system of equations and 

boundary conditions for the real functions fL and fLj (i=l,2; 

j=l,2,3), which must be solved to determine the various 

constants arising in the equation of the neutral stability 

curve.

The equations and boundary conditions for fL (i=l,2), as
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given in Chapter 2, are

(4.2.2)

The equations and boundary conditions for the functions

For fL3 the second derivative does not vanish at x=-l/2 where 

the local behaviour is given by

/i3 = 0 + 0. (x+1 / 2 ) + Di20 (x+1/2)2 ln(x+l/2) + 0. (x+1/2)2 +. . .,

(x-* -1 / 2 ), (4.2.6)

where Di20 (i=l,2) are real constants whose values are given in

(i=l/2; j =1,2,3) are

(4.2.5)
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Table 3.5. The three zero coefficients are the three conditions

needed to uniquely define the solution in this case.

The method of solution of the above systems of equations 

and boundary conditions is described in the next section.

4.3 Numerical Method

The numerical method employed to solve all of the systems 

defined in Section 4.2, in the interval [-1/2,0], was a fourth 

order Runge-Kutta scheme, together with a series expansion of 

the solution in the neighbourhood of the point x=-l/2. The 

expansions for the base flow functions and the real functions 

fif fij were determined in Section 3.5 and are given below. 

Starting with the base flow functions, and writing X = x+l/2, we 

have

where values of the real constants ^  and (i =0,1,2,__,20)

are given in Tables 3.1 and 3.2.

The Taylor expansion for f1 has the form

where the real constants Axi are obtained by substituting

(4.3.1)-(4.3.3) into (4.2.1) and equating terms of like powers 

of X. Formulae for the real constants Axi are listed in

(4.3.1)

(4.3.2)

fi = X2/2 + f  A1± X1, X-*0 (4.3.3)
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for /i3 about the point X=0 contain logarithmic contributions. 

In particular

/ i 3 = D i20 X 2 In | X | + D i3X 3+ D i40 X 4ln | X | + D i4 X4 +..., X ^ O ,

( 4 . 3 . 9 )

where substitution of (4.3.9) and (4.3.1)-(4.3.3) into (4.2.5) 

yields the appropriate formulae for Di;j and Di:j0 (i = l,2) which 

are given in Appendix I.

These expansions are used to start off the numerical 

integration near x=-l/2 and at x=-l/2 + kh (k=l,2,...) they 

provide initial values of fL , f\, f'\ and and needed

to initiate the solution of (4.2.1)-(4.2.5) by a fourth order 

Runge-Kutta scheme. The Runge-Kutta integration proceeds to the 

neighbourhood of the origin, x = 0, where the solutions fir are 

singular. In general the integration is stopped just ahead of 

the origin, at x=xs, where xs is small and negative and the 

expansions derived in Sections 2.3-2.4,

/i=ai + b±x + ci0x2ln|x| + c±x2 + d±x3 + ei0x4ln|x| + e±x4 +

g±x5 + hi0x6ln|x| + h±x 6 + ..., x-*0-, (4.3.10)

/ ii= aii + b ii* + cil0x2ln|x| + c±1x2 + dixx3 + eil0x4ln|x| +

e i x4 + 9 i i x5 + h i i o x 6 l n lx l + h i i x6 + •■•# X-+0-, ( 4 . 3 . 1 1 )

/12= ai2 + bi2x + ci20 x2ln | x | + ci2x2 + di2x3 + ei20 x4ln | x| +

ei2 x4 +... , x— 0-, (4.3.12)

/i3= 6i3/x + ai3 + bi30xlnlx l + bi3X + Ci30x2ln|x| + Ci3X2 +

^i3x 3 ln | x | + di3x3 +---- X— 0-, (4.3.13)
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significant figures , when compared with solutions obtained for 

200 or 400 steps; however, the solutions obtained with 200 and 

400 steps agreed to four significant figures and it was decided 

that the main results would be obtained using the Runge-Kutta 

scheme with 400 steps. Tables 4.1 and 4.2 show a comparison of 

results obtained for f1 with 200 and 400 steps respectively.

Numerical experiments were carried out in which the 

Runge-Kutta scheme was initiated one, two and four steps away 

from the point x=-l/2, using the method outlined in the previous 

section. Starting the scheme one step or more away from x=-l/2 

made no difference to the solutions obtained to five decimal 

places and therefore all of the solutions were computed by 

starting one step away from x=-l/2.

In solving equation (4.2.1), the bisection method led to 

the determination of y0 as

Yo = 6.29829 , (4.4.1)

consistent with results given by Daniels & Weinstein (1992). 

Properties of the leading order functions f1 and f 2 are 

tabulated in Tables 4.2-4.3 and Figures 4.1-4.2 show both the 

functions and their first derivatives. The second order 

functions /¿j (i=l,2; j=1,2,3) and their first derivatives are 

shown in Figures 4.3-4.8 and quantitative information is 

contained in Tables 4.4-4.9.

In order to determine the constants a^ bif c ^  a±j, b±j and 

Cij accurately, the solutions of the systems of equations

(4.3.14)-(4.3.19) described in the previous section were tested

(97)



for accuracy and consistency, by solving each system at several 

points xs = -kh (k=0,1,2 , . . . ) . In this way it was found to be 

possible to predict the values of the constants ai7 bi7 cif ai;j, 

b.̂  and c^ accurate to about four significant figures. Relevant 

results are shown in Tables 4.10-4.13, and the predicted values 

of the various constants are

a l == 0.2413

b l == 0.000

C 1 5= 14.13

a 2 == 0.02548

b 2 == 0.03245

c2 == 1.703

a ll = 0.00395

b ll = 0.0193

C 11 = 0.372

a 21 = 3.12 x 10-4

b 21 = 1.98 x 10"3

C 21 = 3.38

a 12 := -0.0137

b 12 := -2.06

C 12 := 11.0

a 22 := -0.00367

b22 := -0.207

C 22 == 1.26

a 13 == 3.69 x 104

b 13 == -2.05 x 105

C 13 == 8.30 x 105

S 23 == 4.41x103
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b23 = -1.68 x 104

c23 = 1.58 x 105 .

These results in combination with the formulae for and dij 

given by (2.3.10), (2.4.16),(2.4.25) and (2.4.35) also give

di 0.000

d2 = 0.610

du = 0.255

d2i = 0.0321

di2 = -27.7

d22 = -2.77

1̂3 = 4.01 x 10'

d23 = 6.04 x 10!

4.5 Neutral Stability Curve

Consider the equation of the neutral stability curve 

derived in Section 3.7,

ao + Cj. a0 Yi+ c2 = 0 , (4.5.1)

where the real constants c3 and c2 are given in terms of the 

constants aif b±, c L and aijf b±j, c±j by the formulae (3.7.28) 

and (3.7.27). Inserting the numerical values gives

Cl = -53.37 (4.5.2)

c2 = 1.677 x107 . (4.5.3)

Using the transformation
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1/3
(4.5.4)

2/3
«0 = tt0C2 / Yl=  "Yi C2 /C 1  '

equation (4.5.1) can be written as

_  3 ____
a o _  a oYi + 1  = 0 , (4.5.5)

from which we obtain

Yi = (1 + “ o )/«o (4.5.6)

The minimum value of yx , obtained by setting dy1/da0= 0, occurs 

when

a0 = (1/2)
1/3

(4.5.7)

and the corresponding value of yx is given by

-2/3
Yi = 3(2) . (4.5.8)

Figure 4.9 shows the graph of y1 as a function of d0. 

Substitution of the values of c 1 and c2 into the formulae 

(4.5.4) gives the critical value of the wavenumber as

«ocrit = 20 3.2 ( 4 . 5 . 9 )

and the minimum value of yx as

Yi min = 2320 . ( 4 . 5 . 1 0 )

Thus the overall vertical wavenumber at the onset of 

instability is predicted to be

a crit -  a 0critA ' 1/3 = 20 3.2  A -1/3f A-»oc. ( 4 . 5 . 1 1 )

This result can be compared with the predictions of various
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numerical results and experimental observations for high 

Prandtl number fluids, as summarized in Table 4.14. In the 

present theory the Prandtl number is assumed to be infinite, 

while the previous results shown in Table 4.12 are for Prandtl 

numbers in the range o= 900 to 1000. The results obtained by 

Elder (1965) are from experimental observations in a slot with 

a vertical aspect ratio between 1 and 60 and with Prandtl 

number a =1000. Vest and Arpaci's (1969) results are from 

experimental observations in a vertical slot with Prandtl 

number a =1000. De Vahl Davis and Mallinson (1975) obtained 

their results by solving numerically the full, nonlinear 

Boussinesq equations for a vertical slot of aspect ratio 10 and 

for a Prandtl number, o=1000. Bergholz' (1978) result was 

obtained by a numerical solution of the full linear stability 

equations using the Galerkin method, for a Prandtl number a = 

1000, and for the convective paremeter y = 6 . 9 8 .  The present 

prediction of the critical wavenumber is seen to be in 

reasonable agreement particularly with the results of Bergholz' 

stability analysis and Elder's experiments.

Figures 4.10-4.14 show the development of the instability 

near the critical point, as given by (1.2.26), (3.7.16),

(3.7.17) and (4.5.11) for increasing values of the amplitude e. 

The vertical scale is chosen to be equivalent to a Rayleigh 

number A ^ 105. The results indicate flow patterns for the 

smaller values of £ in good agreement with experimental 

observations and full numerical simulations.
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X fl fi fi'

-0.49750 0 . 0 0 0 0 0 0.00250 1.00013

-0.49000 0.00005 0.01001 1.00207

-0.47000 0.00045 0.03019 1.02002

-0.45000 0.00126 0.05095 1.05940

-0.43000 0.00250 0.07274 1.12356

-0.41000 0.00418 0.09608 1.21562

-0.39000 0.00635 0.12157 1.33844

-0.37000 0.00906 0.14984 1.49462

-0.35000 0.01237 0.18159 1.68635

-0.33000 0.01635 0.21754 1.91524

-0.31000 0.02111 0.25845 2.18196

-0.29000 0.02673 0.30507 2.48570

-0.27000 0.03335 0.35811 2.82342

-0.25000 0.04110 0.41819 3.18866

-0.23000 0.05013 0.48576 3.56982

-0.21000 0.06058 0.56096 3.94769

-0.19000 0.07262 0.64345 4.29185

-0.17000 0.08636 0.73210 4.55534

-0.15000 0.10193 0.82465 4.66679

-0.13000 0.11935 0.91705 4.51821

-0.11000 0.13856 1.00257 3.94480

-0.09000 0.15933 1.07033 2.68834

-0.07000 0.18114 1.10276 0.31965

-0.05000 0.20302 1.07054 -3.96396

-0.03000 0.22319 0.91952 -12.06993

-0.01000 0.23818 0.51580 -32.27270

0 . 0 0 0 0 0 0.24125 0.00810 1.97E+13

TABLE 4.1. 200-step Runge-Kutta solution for f 1.
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X fl fi fi'

-0.49750 0 . 0 0 0 0 0 0.00250 1.00012

-0.49000 0.00005 0.01001 1.00206

-0.47000 0.00045 0.03019 1.02002

-0.45000 0.00126 0.05095 1.05939

-0.43000 0.00250 0.07274 1.12356

-0.41000 0.00418 0.09608 1.21561

-0.39000 0.00635 0.12157 1.33843

-0.37000 0.00906 0.14984 1.49461

-0.35000 0.01237 0.18159 1.68634

-0.33000 0.01635 0.21754 1.91523

-0.31000 0.02111 0.25845 2.18195

-0.29000 0.02673 0.30507 2.48569

-0.27000 0.03335 0.35810 2.82341

-0.25000 0.04110 0.41819 3.18864

-0.23000 0.05013 0.48576 3.56980

-0.21000 0.06058 0.56096 3.94767

-0.19000 0.07262 0.64344 4.29182

-0.17000 0.08636 0.73210 4.55531

-0.15000 0.10193 0.82465 4.66677

-0.13000 0.11935 0.91705 4.51818

-0.11000 0.13856 1.00256 3.94477

-0.09000 0.15933 1.07032 2.68832

-0.07000 0.18114 1.10276 0.31965

-0.05000 0.20302 1.07054 -3.96394

-0.03000 0.22318 0.91951 -12.06986

-0.01000 0.23818 0.51580 -32.27237

0 . 0 0 0 0 0 0.24125 0.00405 -4.14E+11

TABLE 4.2. 400-step Runge-Kutta solution for f 1 .
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X h fi Í2

-0.49750 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00250

-0.49000 0 . 0 0 0 0 0 0.00005 0.01000

-0.47000 0 . 0 0 0 0 0 0.00045 0.03014

-0.45000 0.00002 0.00126 0.05067

-0.43000 0.00006 0.00248 0.07196

-0.41000 0.00012 0.00414 0.09439

-0.39000 0.00023 0.00627 0.11841

-0.37000 0.00038 0.00889 0.14446

-0.35000 0.00059 0.01206 0.17301

-0.33000 0.00086 0.01583 0.20450

-0.31000 0.00122 0.02027 0.23930

-0.29000 0.00168 0.02543 0.27767

-0.27000 0.00225 0.03140 0.31967

-0.25000 0.00294 0.03824 0.36506

-0.23000 0.00378 0.04602 0.41309

-0.21000 0.00479 0.05477 0.46228

-0.19000 0.00598 0.06450 0.51004

-0.17000 0.00737 0.07514 0.55212

-0.15000 0.00899 0.08650 0.58174

-0.13000 0.01084 0.09825 0.58837

-0.11000 0.01292 0.10978 0.55549

-0.09000 0.01522 0.12004 0.45674

-0.07000 0.01770 0.12732 0.24761

-0.05000 0.02027 0.12867 -0.15602

-0.03000 0.02277 0.11852 -0.95524

-0.01000 0.02485 0.08291 -3.02405

0 . 0 0 0 0 0 0.02548 0.03288 -83445742364

TABLE 4.3. 400-step Runge-Kutta solution for /2.
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X / l l / l l / l l

-0.49750 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

-0.49000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00005

-0.47000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00045

-0.45000 0 . 0 0 0 0 0 0.00002 0.00127

-0.43000 0 . 0 0 0 0 0 0.00006 0.00252

-0.41000 0 . 0 0 0 0 0 0.00013 0.00426

-0.39000 0 . 0 0 0 0 1 0.00023 0.00653

-0.37000 0 . 0 0 0 0 1 0.00039 0.00942

-0.35000 0.00002 0.00061 0.01304

-0.33000 0.00004 0.00092 0.01749

-0.31000 0.00006 0.00132 0.02293

-0.29000 0.00009 0.00184 0.02950

-0.27000 0.00013 0.00251 0.03737

-0.25000 0.00019 0.00335 0.04672

-0.23000 0.00027 0.00439 0.05766

-0.21000 0.00037 0.00566 0.07028

-0.19000 0.00050 0.00721 0.08454

-0.17000 0.00066 0.00906 0.10019

-0.15000 0.00086 0.01122 0.11664

-0.13000 0 . 0 0 1 1 1 0.01372 0.13272

-0.11000 0.00141 0.01652 0.14630

-0.09000 0.00177 0.01953 0.15361

-0.07000 0.00219 0.02257 0.14779

-0.05000 0.00267 0.02527 0.11531

-0.03000 0.00320 0.02680 0.02357

-0.01000 0.00373 0.02503 -0.26642

0 . 0 0 0 0 0 0.00395 0.01936 -6780869476

TABLE 4.4. 400-step Runge-Kutta solution for /n .
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X
h \ h \ h\

-0.49750 0.00000 0.00000 0.00000

-0.49000 0.00000 0.00000 0.00000

-0.47000 0.00000 0.00000 0.00000

-0.45000 0.00000 0.00000 0.00002

-0.43000 0.00000 0.00000 0.00006

-0.41000 0.00000 0.00000 0.00012

-0.39000 0.00000 0.00001 0.00023

-0.37000 0.00000 0.00001 0.00038

-0.35000 0.00000 0.00002 0.00060

-0.33000 0.00000 0.00004 0.00089

-0.31000 0.00000 0.00006 0.00128

-0.29000 0.00000 0.00009 0.00177

-0.27000 0.00001 0.00013 0.00239

-0.25000 0.00001 0.00019 0.00316

-0.23000 0.00001 0.00026 0.00409

-0.21000 0.00002 0.00035 0.00521

-0.19000 0.00003 0.00047 0.00652

-0.17000 0.00004 0.00061 0.00802

-0.15000 0.00005 0.00079 0.00969

-0.13000 0.00007 0.00100 0.01145

-0.11000 0.00009 0.00125 0.01317

-0.09000 0.00012 0.00152 0.01457

-0.07000 0.00015 0.00182 0.01515

-0.05000 0.00019 0.00212 0.01385

-0.03000 0.00024 0.00235 0.00813

-0.01000 0.00029 0.00235 -0.01290

0.00000 0.00031 0.00200 25188657784

TABLE 4.5. 4 00-step Runge-Kutta solution for f21.
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X /l 2 fl2 fl2

-0.49750 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00004

-0.49000 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0.00071

-0.47000 0 . 0 0 0 0 0 0.00007 0.00696

-0.45000 0 . 0 0 0 0 0 0.00033 0.02109

-0.43000 0.00002 0.00097 0.04475

-0.41000 0.00005 0.00220 0.07954

-0.39000 0 . 0 0 0 1 1 0.00424 0.12699

-0.37000 0.00022 0.00737 0.18855

-0.35000 0.00041 0.01189 0.26552

-0.33000 0.00071 0.01810 0.35883

-0.31000 0.00115 0.02635 0.46874

-0.29000 0.00178 0.03696 0.59429

-0.27000 0.00265 0.05021 0.73240

-0.25000 0.00381 0.06629 0.87644

-0.23000 0.00532 0.08522 1.01408

-0.21000 0.00723 0.10667 1.12381

-0.19000 0.00960 0.12975 1.16971

-0.17000 0.01242 0.15265 1.09332

-0.15000 0.01568 0.17206 0.80134

-0.13000 0.01924 0.18231 0.14646

-0.11000 0.02285 0.17398 -1.10336

-0.09000 0.02598 0.13179 -3.31798

-0.07000 0.02773 0.03084 -7.11107

-0.05000 0.02655 -0.17040 -13.60541

-0.03000 0.01976 -0.54749 -25.37105

-0.01000 0.00237 -1.28077 -53.12595

0 . 0 0 0 0 0 -0.01373 -2.05861 2.53E13

TABLE 4.6. 4 00-step Runge-Kutta solution for f 12.
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X h.2 Í22 Í22

- 0 . 4 9 7 5 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

- 0 . 4 9 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0

- 0 . 4 7 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 5

- 0 . 4 5 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 2 4

- 0 . 4 3 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 1 0 .0 0 0 7 2

- 0 . 4 1 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 0 3 0 .0 0 1 6 3

- 0 . 3 9 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 0 8 0 .0 0 3 1 5

- 0 . 3 7 0 0 0 0 . 0 0 0 0 0 0 .0 0 0 1 7 0 .0 0 5 4 7

- 0 . 3 5 0 0 0 0 . 0 0 0 0 1 0 .0 0 0 3 1 0 .0 0 8 7 7

- 0 . 3 3 0 0 0 0 .0 0 0 0 2 0 .0 0 0 5 2 0 .0 1 3 2 1
- 0 . 3 1 0 0 0 0 .0 0 0 0 3 0 .0 0 0 8 4 0 .0 1 8 9 2

- 0 . 2 9 0 0 0 0 .0 0 0 0 5 0 .0 0 1 2 9 0 .0 2 5 9 1
- 0 . 2 7 0 0 0 0 .0 0 0 0 8 0 .0 0 1 8 9 0 . 0 3 4 0 5

- 0 . 2 5 0 0 0 0 .0 0 0 1 3 0 .0 0 2 6 6 0 .0 4 2 9 1
- 0 . 2 3 0 0 0 0 .0 0 0 1 9 0 .0 0 3 6 0 0 .0 5 1 5 9

- 0 . 2 1 0 0 0 0 .0 0 0 2 7 0 .0 0 4 7 1 0 .0 5 8 3 8
- 0 . 1 9 0 0 0 0 .0 0 0 3 8 0 .0 0 5 9 1 0 .0 6 0 3 4
- 0 . 1 7 0 0 0 0 .0 0 0 5 1 0 .0 0 7 0 6 0 .0 5 2 4 7

- 0 . 1 5 0 0 0 0 .0 0 0 6 6 0 .0 0 7 8 9 0 .0 2 6 6 2

- 0 . 1 3 0 0 0 0 .0 0 0 8 2 0 .0 0 7 9 1 - 0 . 0 3 0 4 7
- 0 . 1 1 0 0 0 0 .0 0 0 9 7 0 .0 0 6 3 2 - 0 . 1 4 0 0 8
- 0 . 0 9 0 0 0 0 .0 0 1 0 5 0 .0 0 1 7 4 - 0 . 3 3 6 8 5

- 0 . 0 7 0 0 0 0 .0 0 1 0 0 - 0 . 0 0 8 1 1 - 0 . 6 7 9 2 3

- 0 . 0 5 0 0 0 0 .0 0 0 6 7 - 0 . 0 2 7 1 0 - 1 . 2 7 5 6 0
- 0 . 0 3 0 0 0 - 0 . 0 0 0 1 9 - 0 . 0 6 2 4 0 - 2 . 3 7 6 1 4
- 0 . 0 1 0 0 0 - 0 . 0 0 2 0 4 - 0 . 1 3 1 4 0 - 5 . 0 2 6 9 9

0 . 0 0 0 0 0 - 0 . 0 0 3 6 7 - 0 . 2 0 5 0 7 2.45E+12

TABLE 4.7. 400-step Runge-Kutta solution for /22.
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X 1 0 " 3/i 3 10 -*/i3 10 “**3

-0.49750 -0.00024 -0.00017 -0.00056

-0.49000 -0.00286 -0.00050 -0.00037

-0.47000 -0.01897 -0.00105 -0.00020

-0.45000 -0.04335 -0.00135 - 0 . 0 0 0 1 1

-0.43000 -0.07199 -0.00148 -0.00003

-0.41000 -0.10175 -0.00147 0.00004

-0.39000 -0.12974 -0.00131 0.00012

-0.37000 -0.15297 -0.00099 0.00020

-0.35000 -0.16817 -0.00050 0.00029

-0.33000 -0.17161 0.00019 0.00040

-0.31000 -0.15894 0.00112 0.00053

-0.29000 -0.12511 0.00231 0.00067

-0.27000 -0.06445 0.00380 0.00082

-0.25000 0.02898 0.00559 0.00096

-0.23000 0.16059 0.00760 0.00104

-0.21000 0.33330 0.00965 0.00097

-0.19000 0.54384 0.01128 0.00058

-0.17000 0.77543 0.01153 -0.00048

-0.15000 0.98365 0.00850 -0.00286

-0.13000 1.06858 -0.00169 -0.00795

-0.11000 0.81718 -0.02702 -0.01875

-0.09000 -0.22667 -0.08531 -0.04290

-0.07000 -3.10081 -0.22205 -0.10398

-0.05000 -10.53872 -0.58568 -0.30294

-0.03000 -32.43577 -1.94647 -1.42089

-0.01000 -156.49761 -18.96095 -38.26245

0 . 0 0 0 0 0 -17590.21100 -44161.68500 -3.47E+49

TABLE 4.8. 400-step Runge-Kutta solution for /13.
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X 1 0 - 2¿3 1 0 - 5/23 1 0 “ 7 ^ 3

-0.49750 -0.00012 -0.00009 -0.00029

-0.49000 -0.00150 -0.00026 -0.00019

-0.47000 -0.00975 -0.00053 -0.00008

-0.45000 -0.02141 -0.00062 -0.00001

-0.43000 -0.03350 -0.00057 0.00006

-0.41000 -0.04332 -0.00039 0.00013

-0.39000 -0.04803 -0.00006 0.00021

-0.37000 -0.04444 0.00045 0.00030

-0.35000 -0.02883 0.00115 0.00041

-0.33000 0.00331 0.00211 0.00055

-0.31000 0.05735 0.00335 0.00071

-0.29000 0.13972 0.00495 0.00089

-0.27000 0.25789 0.00694 0.00110

-0.25000 0.42013 0.00936 0.00131

-0.23000 0.63477 0.01217 0.00149

-0.21000 0.90842 0.01522 0.00153

-0.19000 1.24239 0.01810 0.00128

-0.17000 1.62539 0.01991 0.00038

-0.15000 2.01917 0.01874 -0.00186

-0.13000 2.32976 0.01068 -0.00685

-0.11000 2.34734 -0.01252 -0.01777

-0.09000 1.60952 -0.06945 -0.04269

-0.07000 -0.95637 -0.20798 -0.10653

-0.05000 -8.21111 -0.58481 -0.31605

-0.03000 -30.58159 -2.01382 -1.49651

-0.01000 -160.69222 -19.97643 -40.40887

0.00000 -18573.07412 -46642.11203 -3.67E+49

TABLE 4.9. 4 00-step Runge-Kutta solution for /23.
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i xs=-ih al bl C 1

1 -0.00125 0.24125 0.00000 14.11680

2 -0.00250 0.24125 0.00000 14.12940

3 -0.00375 0.24125 0.00000 14.13020

4 -0.00500 0.24125 0.00000 14.13040

5 -0.00625 0.24125 0.00000 14.13050

6 -0.00750 0.24125 0.00000 14.13050

7 -0.00875 0.24125 0.00000 14.13050

8 -0.01000 0.24125 0.00000 14.13050

i xs=-ih a2 b2 c 2

1 -0.00125 0.02548 0.03245 1.70084

2 -0.00250 0.02548 0.03245 1.70217

3 -0.00375 0.02548 0.03245 1.70226

4 -0.00500 0.02548 0.03245 1.70229

5 -0.00625 0.02548 0.03245 1.70232

6 -0.00750 0.02548 0.03245 1.70237

7 -0.00875 0.02548 0.03246 1.70244

TABLE 4.10. Values of the constants aif bi and
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i x g=- i h all b n cll

1 -0.00125 0.00395 0.01929 0.37173

2 -0.00250 0.00395 0.01929 0.37193

3 -0.00375 0.00395 0.01929 0.37194

4 -0.00500 0.00395 0.01929 0.37195

5 -0.00625 0.00395 0.01929 0.37196

6 -0.00750 0.00395 0.01929 0.37196

7 -0.00875 0.00395 0.01929 0.37196

8 -0.00100 0.00395 0.01929 0.37196

i Xg = -i h a 12 b12 c12

1' -0.00125 -0.01373 -2.06367 10.89810

2 -0.00250 -0.01373 -2.06359 10.93540

3 -0.00375 -0.01373 -2.06351 10.94930

4 -0.00500 -0.01373 -2.06343 10.95900

5 -0.00625 -0.01373 -2.06334 10.96680

6 -0.00750 -0.01373 -2.06325 10.97340

7 -0.00875 -0.01373 -2.06316 10.97930

TABLE 4.11. Values of the constants aXj, b:j and cXj (j=l,2).
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i xg=-ih a13 bl3 c 13

1 -0.00125 -1.61x1011 -2.58xl014 -1.03xlO17

2 -0.00250 35930.5 -2.07xl06 -6.93xl08

3 -0.00375 36780.8 -391813 -4.69xl07

4 -0.00500 36889.2 -241165 -6.00x10s

5 -0.00625 36912.8 -215795 -680211

6 -0.00750 36920 -209598 377053

7 -0.00875 36922.9 -207629 656338

8 -0.00100 36924.4 -206845 748322

9 -0.01125 36925.5 -206454 785216

10 -0.01250 36926.4 -206209 803175

11 -0.01375 36927.3 -206026 813703

12 -0.01500 36928.3 -205870 820920

13 -0.01625 36929.3 -205729 826450

14 -0.01750 36930.3 -205598 830987

15 -0.01875 36931.4 -205474 834846

TABLE 4.12. Values of the constants a13, b13 and c13.
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i

A•H1IInX a23 b23 c23

1 -0.00125 2057.64 -8.OxlO6 -5.38x10 9

2 -0.00250 4304.28 -213736 -7.32xl07

3 -0.00375 4394.24 -36490.4 -4.88xl06

4 -0.00500 4405.74 -20556.3 -565661

5 -0.00625 4408.26 -17866 -2488.59

6 -0.00750 4409.04 -17205.8 109606

7 -0.00875 4409.36 -16994.4 139321

8 -0.00100 4409.53 -16909.4 149157

9 -0.01125 4409.65 -16866.5 153127

10 -0.01250 4409.75 -16839.6 155072

11 -0.01375 4409.86 -16819.3 156216

12 -0.01500 4409.96 -16802.2 157003

13 -0.01625 4410.7 -16786.7 157608

14 -0.01750 4410.19 -16772.3 158105

15 -0.01875 4410.31 -16758.6 158530

TABLE 4.13. Values of the constants a23, b23 and c23.

(114)



Previous Studies h A a Presentstudy

Elder1" (1965) 19 490000 2.4 2.58

Vest & Arpaci* ( 1969) 20 370000 3.5 2.83

deVahl Davis & Mallinson* 

(1975)

10 940000 2.56 2.07

Bergholz1̂ (1978) 20 360576 2.59 2.85

TABLE 4.14. Comparison of the value of the critical wavenumber 

given by (4.5.11) with the results of previous 

studies neart and above the onset of secondary 

instability.
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FIGURE 4.1. The outer function f1 --  and its derivative --- at

the critical point y0 in the interval [-0.5,0].
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FIGURE 4.2. The outer function f 2 --- and its derivative in

the interval [-0.5,0].
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FIGURE 4.3. The outer function /u --- and its derivative

the interval [-0.5,0].

(118)



0.0025

0 . 0 0 2

0.0015

0 .0 0 1

0.0005

0

FIGURE 4.4. The outer function f 21 --- and its derivative f 21

in the interval [-0.5,0].
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FIGURE 4.5. The outer function f  12 --- and its derivative

the interval [-0.5,0].
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FIGURE 4.6. The outer function f  22 --- and its derivative --- in

the interval [-0.5,0].
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FIGURE 4.7. The outer function /13--- and its derivative f 13

in the interval [-0.5,0],
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FIGURE 4.8. The outer function f 23 ---  and its derivative

f 23 in the interval [-0.5,0],
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FIGURE 4.9. The scaled convective parameter Yi as a function of 

the scaled wavenumber a0.
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FIGURE 4.10. Streamlines of the overall flow as given by

(1.2.26) for e = 0.0001 .

(125)



FIGURE 4.11. Streamlines of the overall flow as given by

(1.2.26) for e = 0.001 .
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FIGURE .12. Streamlines of the overall flow as given by

(1.2.26) for e = 0.005 .
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FIGURE 1.13. Streamlines of the overall flow as given by

(1.2.26) for e = 0.01 .

(128)



FIGURE 4.14. Streamlines of the overall flow as given by

(1.2.26) for e = 0.1 .
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CHAPTER FIVE : LARGE RAYLEIGH NUMBER SOLUTION NEAR

THE CRITICAL POINT AT LARGE PRANDTL NUMBERS

5.1 Introduction

In this chapter we consider the effect of large but finite 

Prandtl number on the local form of the neutral stability curve 

near y0. This is done by relaxing the assumption of infinite 

Prandtl number made in Chapter 2.

The problem is formulated in Section 5.2, and the form of 

the solution in the limit as A —»o° is discussed in Section 5.3. 

This involves choice of an appropriate scaling for the Prandtl 

number in terms of A that leads to modification of the equation 

of the neutral stability curve obtained at the end of Chapter 

3. The form of the modified neutral stability curve is obtained 

in Section 5.4 and a discussion of the effect on the critical 

value of y0 is given in Section 5.5.

5.2 Formulation

Consider the non-dimensional Boussinesq system defined in 

Chapter 1 by equations (1.2.6)-(1.2.9). Investigation of the 

stability of the exact solution

ip = AVfx), T = p z + 0(x), (5.2.1)

is carried out by adding perturbations, (|> and 0, to the stream
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function and temperature in (5.2.1). Substitution into the 

Boussinesq system (1.2.6)-(1.2.9), elimination of the pressure 

and linearization in the perturbations <f> and 0, leads to the 

following system of equations and boundary conditions for 

finite values of the Prandtl number:

f'"- 2a2 <}>"+ cx4(|) = 0 ' + iajA'F "'<J> - (c + A*P' ) ((()"- a2())) ]/a, (5.2.2)

0" - a20 = ia[ A0'(|) - (c + A»I»')0] - 4 y4 <))', (5.2.3)

()> = ())' = 6 = 0 (x = ±1/2 ) , (5.2.4)

as obtained in (1.2.27)-(1.2.29).

Since we are concerned with stationary disturbances the 

wave speed, c, is taken to be zero and the linear stability 

equations become

f'"-2a2 <)>'' + a4<f> -0' = iaA[̂ "'(j)- V'(<()"- a2<|>)]/a, (5.2.5)

0 " - a2 0 = iaA [©'<)> - »P '0 ] - 4 y4 f , (5.2.6)

to be solved subject to the boundary conditions

<j) = (|)' = 0 = 0 ( x= ±1/2). (5.2.7)

This chapter is concerned with large Prandtl numbers such that 

the right-hand side of (5.2.5) modifies the equation of the 

neutral stability curve obtained in Chapter 4.
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5.3 Solution Structure for A —>qq

In the limit as A-»oc, the scales of the vertical wavenumber 

and the vertical stratification y are assumed to be those 

defined in Chapter 2,

a = a0A'1/3, y = Y0 + A"2/3y1 +.. ., A-*« , (5.3.1)

and the outer solution for the perturbation functions <() and 0 is 

again of the form

0 =<l>0 + A“2/3 ((>!+... , A-»oc , ( 5 . 3 . 2 )

6 =0 O + A '2/301+ . . . ,  A » oc # ( 5 . 3 . 3 )

The scale for the Prandtl number o is chosen to bring the term 

on the right-hand side of (5.2.5) into play in the solution for 

the second order function (ĵ. This requires

a = o0 A4/3 , A-»oc , (5.3.4)

with a0 assumed to be finite. Substitution of (5.3.1)-(5.3.4) 

into (5.2.5) and (5.2.6) and equating terms of like powers of 

A, leads to the following equations and boundary conditions for

<J)0,0O, <t> ! and 0X :

(5.3.5)

<l>
t tt t
o (5.3.6)
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(5.3.7)6i gP*1 + Yi
e0 9o '+ 4y04 (l)0'

ia0%'

nn
i 0/+ 2 a 2

0 + i a 0 [%'"<)) 0 -  %'<t>o ]/a„ , (5.3.8)

<t>o = 4>o' = <f>i = <t>i'= 0 ( x = ±1/2 ). (5.3.9)

The leading order outer solutions (j)0, 0O are precisely those 

identified in Chapter 2, while the solutions for ^  and 0X are 

modified by the incorporation of the term involving o0 in the 

equation for (ĵ, which after elimination of 0j becomes

Ï "  _ —  (  ()>! )  = J L  Î2 a o2<()0' + Yi 0 i' l|,i' Ho _ 0 o,+ 4Yo4 )
dx lI'n' dx 'Pq' i a ^ ’ia0'IV

i a 0 W"<t>o- %'<t>o"]/a0 (5.3.10)

This can be integrated once to give the third order equation

or. ®°'(t>1= W t o ’iYi +
W  V/ i a  PIV±a0%

i a o [ v̂ o 4*0 ]/°o + ^i f (5.3.11)

where k: is an arbitrary constant. This is to be solved subject 

to the boundary conditions

<t>! = «h' = o (x = ±l 12) . (5.3.12)
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The solution for ^  can be written in the form

<t>i = $1 + 2«o <t>u + Yi 4>i2 - (t>i3/i«0 + ia0<t>i4/Oo , (5.3.13)

where the functions (ĵ, ())11, <() 12 and <J)13 are those determined in 

Section 2.4. In order to complete the general solution for we 

now need the particular solution (j>14 associated with o0. The 

equation for <j)14 is

1 14 “
©o'

<t>14 = 'I’0>0 -  W  > (5.3.14)

and this must be solved subject to the boundary conditions

<t>i4 = <K4 = 0 (x = ±1/2) . ( 5 . 3 . 1 5 )

The solution for <|)14 in x<0 can be written in the form

$14 = aI/i4(x) + o 2~/24(x). (5.3.16)

where /i4 (i=l,2) are real functions of x uniquely defined by

0,
/ 14 - = %"fi- %'fi; (fa'fa rf'a ) = ( 0,0,0 ) at x=-l/2. (5.3.17)

By symmetry, the solution for <))14 in x>0 can be written in the 

form

*t>i4 = - of/i4(-x) - a2-/24(-x). (5.3.18)

The asymptotic forms of the functions /i4(i=l,2) as x^-0-
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are given by

/ i 4 = a i 4 + b i 4 x + c i4o x2ln | x | + ci4x2 + di4 x3 + e i40 x4ln | x | +

(5.3.19)

Here the real constants ai4 , bi4 and ci4 must be determined by a 

numerical solution and the remaining constants are obtained in 

terms of these, in the usual way, by substituting (5.3.19), 

together with the asymptotic forms of the functions fL (i=l,2) 

and the appropriate expansions of the base flow functions into 

equations (5.3.17) and equating terms of like powers in x. This 

leads to the formulae

Ci40 = ai4So/2' di4 = ( bi4 ®o + ai«i)/6,

The constants ai4 , bi4 and ci4 were determined numerically using 

the same method as that outlined in Chapter 4. Expansions for 

the functions /i4 about the point X=x+1/2=0 were used to start 

the Runge-Kutta scheme one step away from the point X=0. These 

expansions are given by

Formulae for the real constants Eik(i=l,2; k=3,4,__) are given

in Appendix III. Tables 5.1-5.2 give the Runge-Kutta solutions 

for the functions /i4. The constants ai4, b i4 and ci4 are 

determined in the same way used to determine the constants a ^ r 

bij and c i;j (j = l,2,3) in Chapter 4 by solving the following 

system of equations for i=l,2 :

e i4o ci40sc/24, ei4 — (s0ci4+ s^^ 26e^40)/24 (5.3.20)

00

(5.3.21)
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a14 ¡̂4 + ki^i4 + ci4Xi4 = /i4(xs) + Kl4 r (5.3.22)

ai4Pi4 + î4 ̂ i4 + Ci4 Xi4 = f'i.4 (X s ) + *14 f (5.3.23)

ai4r i4 + b i4 A 14 + c i4 x' i4 0)
X•cj*ii + K"i4 , (5.3.24)

where the real functions ^i4' Xi 4 ' î4 ' their first

derivatives, denoted by r'i4, A'i4, Xi4/ Ki4 and their second

derivatives, denoted by , A"i4, x"i4# K"i 4 are defined

explicitly in Appendix III. Values of the real constants ai4, 

bi4 and c i4 are given in Table 5.3.

The asymptotic form of (|)14 as x-*0± can now be deduced from 

(5.3.16) and (5.3.18), so that

4)14 ai4+ Ki x + ci4+o X2ln|x|
+ 4

e14 x +. . ., x-»0± ,

^ ^ 'S ^ J
+ C f 4 x  + d f 4 X  + e,;n X  ln|x| +• 140

(5.3.25)

where the constants â 4 , b^, . . . , are defined in terms of the 

real constants a14,b14,..., a24,b24,..., by the vector equation

2*4 = ° i  Y14 + of v24 , (5.3.26)

where

+
= (Ta

+
14 >

, ± __ ± __ ± +
H4 r  ^  140 ' + C 14 r d 14 / •

and ¥24 = ( a 24 '̂ *24 ' C 240 ' C 24 '^24

We can now obtain the general form of ((>2 as | x | -* 0 by 

combining equations (2,4,10), (2.4.17), (2.4.27), (2.4.36) and

(5.3.25) in the overall solution (5.3.13). Thus
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(5.3.27)

where the constants 0̂ , a*,t  •  •  • are defined by the vector relation

+

Here the vectors v*, v^,
+

and v*3 are those defined in

Chapter 2 (see(2.4.41)-(2.4.44)), and

/ • • • (5.3.29)

with

+
(5.3.30)

the appropriate extension of the vector defined in (5.3.26). 

Equation (5.3.27) gives the complete asymptotic form for the 

solution <j)1 as |x|-»0. The temperature function 0X bears the same 

relation to ((ij as that given in Chapter 2, so that the 

asymptotic form for 0X is given by (2.4.52)

0X = A^/x4 + Aj /x2 + B*/x + C 30 In I x I + C\ +..., (5.3.31)

where the constants A*, Aj,... are as defined in Chapter 2, 

(2.4.46)—(2.4.50).

Combining the forms of ty0, (jî 0O and 0j as |x|-*0, the 

overall asymptotic forms of the perturbation functions <j) and 0 

are as in Chapter 2,
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+ , +  Î 2 - . i i  + 2  i + 3  + 4 - . I I  + 4= aA + bnx + c00 x In|xI + cn x + dn x + enn x ln|x| + enx■ "o -
± ..5

- oo

+ goX' + hg0 x6ln|x| + hAx6 + + A -273 (ôf/x + a* + bf0xln|x| 

+ b^x + c*0 x2ln | x | + c 4x2 + df0 x3ln | x | + d^x3 + ... ) / x-»0± ,

(5.3.32)

. + . + + - , 1 1  + + 2  ± 3 _ i . + 3= A 0/x + B0 + C 00 xln | x | + C o x + D0 x +E00x In | x | + E 0 x + —

+ A'273 ( A 4/x4 + A*/x2 + B 4/x + C^0ln|x|+C^+...)f x-*0± , 

(5.3.33)

the only difference being the new forms of the constants af,. .. 

as defined in (5.3.28) and (5.3.29). The next step is to 

consider the solution in the critical layer and to use the 

relevant bridging conditions to determine the modified form of 

the neutral stability curve near y0. This is considered in the 

next section.

5.4 Neutral Stability Curve

The order at which the extra term on the right hand side of

(5.2.5) comes into effect in the critical layer solution is 

higher by order A-279 than that required to obtain the bridging 

conditions (3.3.47 )-( 3.3.50 ) and (3.4.37)-(3.4.40) . Thus the 

bridging conditions obtained in Chapter 3 are still valid here.

We now consider the effect of the additional outer term <j)14 

on the equation of the neutral stability curve which was given 

in Section 3.7 (equation (3.7.26)). The procedure used in 

Section 3.7 to obtain the neutral stability curve is repeated 

here taking into account the additional term. We recall from
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Section 3.7, that in x<0 the solution for 0O is given by

<t>o = o^/i(x) + o2/2(x). (5.4.1)

and that in x >0

<t>i = ai+/i(-x) + o2+i(-x), (5.4.2)

where o^, a2 , o* and o2 are complex constants and the functions 

fi (i=l,2) are uniquely defined by the solutions of (2.3.5) and 

(2.3.4-). Also the forms of as x-»0- are given by (3.7.3)

leading to the general form of ()>0 as x-»0± :

<t>o = V  + bgx + c0o x2 In | x | + c0±x2 + d*x3 + ... , (5.4.3)

where the constants a*, h*,..., are related to those of fL 

(i=l,2) by the vector relation

¥o = v1 + v2, (5.4.4)

with the vectors vj, vx and v2 as defined in Chapter 2. 

Consideration of the leading order bridging conditions 

(3.3.47)~(3.3. 50) then leads to the system of equations given 

by

(°f- °i+)ai + (qf- °2 )a2 = 0, (5.4.5)

(qT+ Oi+)bi + (qf+ ĉ+)b2 = 0, (5.4.6)

(°i_ - °r )Ci + (<%- d2+)c2 = -ijrs0( ofax + o2a2 )/2 , (5.4.7)

<qf + °i )di + (q>~ + )d2 = 0. (5.4.8)

Substitution of d1 and d2 into (5.4.8) and the fact that bx is
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where the constants &f, a* , .. .,

vf = vf + 2a02 + TtvJi -

. , , — + + + 
with the vectors v x , v xl, v12,

vf4 as defined in Section 5.3.

bridging conditions

are defined by the relation

vf3/ia0+ ict0vf4/o0 , (5.4.13)

vf3 as defined in Chapter 2 and 

Substitution of these into the

(5.4.14)b i = b- Mo ™ ( M-o~ 12®3 )a o/ 6 ao“ i

and

d+i = d^ + ̂ gjca^tsoi^o-12(o3)/6 - (4v04 + 3s1 + s02/8)a)1]/6co13o0

(5.4.15)

and using the fact that b3 is zero and that a* = + ĉ "̂

leads, after simplification, to the following equations

( + o,+)b> +(q+Oi+)(2ao2 kh + Vib12) + ( o1~-o1+) [ioob^/q, - b^/ic^ ] +

( ° 2  -a2+)tiaob24/q)- b23/ia0]= —M-ô( [A0- 12(o3 ) (a^ + ofa, )/6aX}(o?l

(5.4.16)

( q f + ^ +) 4  + ( o f  + a 1+) ( 2 a 02d 11 + Yld 12 )+ ( a " - o 3+) [icto d 14/o0- d 13/ic^ ]

+ (°2 ~ °2 ) [ b24 /°b - d23 /iĉ  ] = [so (-2(% + )a0/6)

“(4 Yo+ 3s1+s02/8)a)l](ol-^ + a2~ê )/ 6 . (5.4.17)

We recall, from Chapter 3, that

+ 4a2c. - bdi.Cj + ijiSnâ a,
°i - — . ---7-JLi--- :--- 12 qr , (5.4.18)4a2c3 - 4a3c2 - urs0a1a2 '
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°2 = 1 TC Sq9.̂9-2
(5.4.19)

4a2c4 - 4a1c2 -
on

and

of = - . (5.4.20)

Substitution of (5.4.18)-(5.4.20) into (5.4.16) and (5.4.17), 

elimination of (o2~ + o2+) from the resulting equations and 

simplification then leads to the cubic equation

«o3 + c0«o2/o0 + CiOoVit c2 = 0, (5.4.21)

where

c0 = JiaiSo[ai(b2d24 - d2b24)-a2 (bjd^- d2b14 )]/B(a^ -a1c2 )(d2bn -^d^)

= -0.00108 (5.4.22)

and cx and c2 are given by (3.7.27) and (3.7.28) respectively. 

Equation (5.4.21) represents the modified neutral stability 

curve. It contains the additional quadratic term c0a02/o0 

generated by the large but finite Prandtl number of the fluid. 

In the next section we consider how this affects the critical 

wavenumber cx0 and the critical value of at the onset of 

instability.

5.5 Critical Wavenumber

We begin by scaling out the constants c0, cx and c2 from 

equation (5.4.21). This is done by use of the transformations

a0 = a0 c21/3 , (5.5.1)
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(5.5.2)Yi  _ ~ Y i  c 2 / c i •

(5.5.3)

giving

«o3 - ^2/qi - a0Yi+ 1 = 0 • (5.5.4)

From (5.5.4), yx can be written in terms of and o0 as

Yi= «o2 - a0 /q, + l/a0. (5.5.5)

The minimum value of yx is obtained by setting the derivative 

of y2 with respect to d0 equal to zero and, solving for ĉ , we 

obtain the critical value of the wavenumber a0 as

docrit = [1/4 + (1/16 + l/432d03)1/2 + l/216d03]1/3 +

l/d02[36[l/4 + (1/16+ 1/432o03)1/2 + 1/216d03]1/3 + l/6q,, (5.5.6)

The corresponding critical value of ylf ylcrit, is given by 

substitution of (5.5.6) into (5.5.5).

The behaviour of the critical wavenumber as d0 approaches 

infinity is obtained by considering the limit d0-*oo in (5.5.6). 

This gives the result

«ocrit ( 1 / 2 )1/3 as 50^oc , ( 5 . 5 . 7 )

consistent with the result obtained in Chapter 4. Consideration 

of the opposite limit shows that as the scaled Prandtl number o0 

tends to zero, the critical wavenumber has the form

«Ocrit ~ as 5o-*° • (5.5.8)

(143)



The corresponding results for the critical value of the 

convective parameter are

Yi crit ~* 3 x 2 , oQ—*x , (5.5.9)

Yi crit ~ - 1/4 o0 , 0 . (5.5.10)

Figures 5.3-5.4 show the neutral stability curve for 

various values of the scaled Prandtl number o0 and the critical 

values a0 crit and ylerit are shown as functions of the scaled 

Prandtl number q> in Figures 5.5-5.6. The graph of the critical 

vertical wavenumber a as a function of the convective parameter 

for various values of the scaled Prandtl number o0 is shown in 

Figure 5.7 and is obtained by eliminating the Rayleigh number 

from the relations in (5.3.1).
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X 105/l4 105/l4 io 5/h

-0.49750 0.00000 0.00000 -0.00001

-0.49000 0.00000 0.00000 -0.00066

-0.47000 -0.00000 -0.00013 -0.01791

-0.45000 -0.00001 -0.00104 -0.08275

-0.43000 -0.00004 -0.00265 -0.15093

-0.41000 -0.00013 -0.00721 -0.31950

-0.39000 -0.00035 -0.01604 -0.58039

-0.37000 -0.00081 -0.03117 -0.95201

-0.35000 -0.00166 -0.05497 -1.45137

-0.33000 -0.00309 -0.09018 -2.09363

-0.31000 -0.00536 -0.13976 -2.89150

-0.29000 -0.00880 -0.20694 -3.85439

-0.27000 -0.01378 -0.29507 -4.98727

-0.25000 -0.02076 -0.40755 -6.28891

-0.23000 -0.03026 -0.54769 -7.74921

-0.21000 -0.04287 -0.71843 -9.34525

-0.19000 -0.05922 -0.92213 -11.03519

-0.17000 -0.07999 -1.16001 -12.74893

-0.15000 -0.10585 -1.43150 -14.37343

-0.13000 -0.13745 -1.73318 -15.72925

-0.11000 -0.17532 -2.05702 -16.53093

-0.09000 -0.21978 -2.38769 -16.31408

-0.07000 -0.27070 -2.69762 -14.28174

-0.05000 -0.32722 -2.93706 -8.90649

-0.03000 -0.38709 -3.00858 3.49510

-0.01000 -0.44490 -2.66021 38.98888

0.00000 -0.46865 -1.91317 8.04E+11

TABLE 5.1. 400-step Runge-Kutta solution for /14
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X 1 0 6/24 1 0 6Ì24 1 0  6/24

-0.49750 0.00000

-0.49000 0.00000

-0.47000 0.00000

-0.45000 0.00000

-0.43000 -0.00001

-0.41000 -0.00005

-0.39000 -0.00016

-0.37000 -0.00042

-0.35000 -0.00095

-0.33000 -0.00195

-0.31000 -0.00365

-0.29000 -0.00640

-0.27000 -0.01062

-0.25000 -0.01683

-0.23000 -0.02563

-0.21000 -0.03776

-0.19000 -0.05400

-0.17000 -0.07521

-0.15000 -0.10233

-0.13000 -0.13623

-0.11000 -0.17773

-0.09000 -0.22742

-0.07000 -0.28547

-0.05000 -0.35123

-0.03000 -0.42253

-0.01000 -0.49377

0.00000 -0.52458

0.00000 0.00000

0.00000 -0.00003

-0.00002 -0.00249

-0.00019 -0.01826

-0.00096 -0.06657

-0.00323 -0.17250

-0.00844 -0.36477

-0.01860 -0.67380

-0.03637 -1.12995

-0.06497 -1.76205

-0.10820 -2.59588

-0.17030 -3.65274

-0.25590 -4.94771

-0.36984 -6.48757

-0.51701 -8.26785

-0.70203 -10.26850

-0.92894 -12.44741

-1.20063 -14.73026

-1.51804 -16.99455

-1.87900 -19.04367

-2.27630 -20.56271

-2.69462 -21.03687

-3.10505 -19.57901

-3.45396 -14.48360

-3.63441 -1.63012

-3.36648 36.96396

-2.60009 8.99E+11

TABLE 5.2. 400-step Runge-Kutta solution for /24
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i xs=-ih a14x 105 b14 xlO5 c14xl04

1 -0.00125 -0.46866 -1.90535 -4.03094

2 -0.00250 -0.46866 -1.90543 -4.03511

3 -0.00375 -0.46865 -1.90545 -4.03685

4 -0.00500 -0.46865 -1.90567 -4.03860

5 -0.00625 -0.46866 -1.90587 -4.04033

6 -0.00750 -0.46865 -1.90603 -4.04200

7 -0.00875 -0.46866 -1.90634 -4.04379

i xs= -ih a 24 x 106 b24x 106 2̂4 x !

1 -0.00125 -0.52458 -2.59128 -4.87413

2 -0.00250 -0.52458 -2.59128 -4.87690

3 -0.00375 -0.52458 -2.59128 -4.87708

4 -0.00500 -0.52458 -2.59128 -4.87712

5 -0.00625 -0.52458 -2.59128 -4.87715

6 -0.00750 -0.52458 -2.59128 -4.87718

7 -0.00875 -0.52458 -2.59128 -4.87721

TABLE 5.3. Values of the constants ai4 , bi4 and ci4 (i=l,2).
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FIGURE 5.1. The outer function -105/i4 --  and its derivative

--  in the interval [-0.5,0].
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FIGURE 5.2. The outer function -105f2i --  and its derivative

~l°5f 24 --  in the interval [-0.5,0],
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FIGURE 5.3. The neutral stability curve for various values of 

the scaled Prandtl number o0 .
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FIGURE 5.4. The neutral stability curve for the scaled Prandtl 

number a0=0.1 .

(151)



5

OCr'Jc.

4 ..

3--

2--

1 -■

0.5 1 1.5 2

FIGURE 5.5. The critical wavenumber a0crit as a function of the 

scaled Prandtl number a0 .
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2

FIGURE 5.6. The critical convective parameter flcrit as a function 

of the scaled Prandtl number o0 .
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a

FIGURE 5.7. The critical wavenumber a versus convective 

parameter y for various values of the scaled 

Prandtl number o0 .
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CHAPTER SIX LOWER BRANCH OF THE NEUTRAL

STABILITY CURVE

6.1 Introduction

This chapter is concerned with identifying the asymptotic 

structure of the lower branch of the neutral stability curve 

for large values of the Rayleigh number, A. Solutions are found 

for Prandtl numbers in the range 0 250, including the limit 

structure for o-*°c. The relevant lower branch stability 

equations and boundary conditions are derived in Section 6.2 

and solutions are found for various values of the Prandtl 

number and general values of y in Section 6.3 using a numerical 

method based on a fourth order Runge Kutta scheme. The limiting 

form of the neutral stability curve as o-»oo is considered in 

Section 6.4 where it is shown that for y<y0=6.30 the scaled 

wavenumber assumes a form proportional to the Prandtl number, 

while for y > y0 the scaled wavenumber is finite as o-»oo. a 

numerical solution of the appropriate limiting problem in y< y0 

is undertaken in Section 6.5. The results are discussed in 

Section 6.6 and are placed in context with those obtained in 

Chapters 2-5 for the neighbourhood of y0. This enables a general 

picture to be constructed of the form of the neutral stability 

curve for large Rayleigh numbers and Prandtl numbers.
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6.2 Formulation

The linear stability equations for the lower branch of the 

neutral stability curve are obtained, by assuming a low 

wavenumber limit in the full stability equations

(p""-2a2 <)>"+ a4(t) = 0' + iaA[W'4)''-a2(|)W'-W'"(t)]/o, (6.2.1)

0 " - a2 0 = iaA[ © cf) - '0 ] - 4 y4 f , (6.2.2)

previously derived in Chapter 1. Here the base flow functions 0 

and are defined by

0=2(D_ - D + ) sinhyxcosyx - 2(D_+ D+) coshyx sinyx, (6.2.3)

lI, = Y~3(D + D+ coshyxcosyx + D_ sinhyx sinyx), (6.2.4)

where the constants D, D+and D_ are given by (1.2.21)-(1.2.22) 

and the appropriate boundary conditions are

<|> = <)>' = 0 (x= ±1/2), (6.2.5)

0 = 0  (x = ±1/2). (6.2.6)

The lower branch system corresponds to small wavenumbers a

of order A -1 as A-»°° and is obtained from the 

(6.2.1)-(6.2.6) by assuming

system

a - a A-1, A-»oc. (6.2.7)

Substitution into (6.2.1)-(6.2.6) then shows that the leading

approximations to the perturbation functions <(> and 0 satisfy 

the reduced system
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4>"" + -V'"4>]/o = 6', (6 .2 .8 )

0 " = iâ[ 0'4> - ̂  '6 ] - 4 y4 <j)' (6.2.9)

to be solved subject to the boundary conditions

4> = 4>' = 0 (x= ±1/2) (6 .2 .10)

0 = 0 (x= ±1/2) . (6 .2 .1 1)

In the next section we consider the computation of 

solutions of the above system for general values of the Prandtl 

number and general values of the convective parameter y. A 

solution for infinite Prandtl number in the region y>y0 = 6.30 

was previously found by Daniels (1987).

6.3 Lower Branch Solution

It is clear from equations (6.2.8)-(6.2.9) that the 

functions (|) and 0 are of complex form. Thus we need to write 4> 

and 0 as

where <j)r, <j)if 0r and 0± are real functions of x. Substitution of

(6.3.1) and (6.3.2) into (6.2.8) and (6.2.9) and balancing of 

the real and imaginary parts leads to the following system for 

the real functions <j>r, 4>±, 0 r and 0± :

4) = 4>r + i 4>i / (6.3.1)

0 = 0r + i 0i , (6.3.2)

4>r"" + a  (^'"4)!- w'4)i")/o = 0 r ', (6.3.3)
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•fri" - a (V"'(|)r - = 0-, (6.3.4)

0r" + 5(0'^- V'0i) =4y4^;, (6.3.5)

0i" - a ( ©'«ft - W'0r) =4 y4 4>i •

The boundary conditions (6.2.10)-(6.2.11) now become

(6.3.6)

<f>r = <t»i= <t>r' = 4>i' = 0 (X=±l/2), (6.3.7)

0r = 0±= 0 (x = ±1/2) . (6.3.8)

Equations (6.3.3)-(6.3.6) are to be solved subject to (6.3.7) 

and (6.3.8) for specific values of a, y and a. The solution is 

obtained by converting (6.3.3)-(6.3.6) into a system of twelve 

first order equations by introducing the vector form 

Y . =  (YitY2 e • • • rYu ) f where

(y l/ Y  2 f * * * r Y  1 2 ) *  ( t * * * t • • • / ^ i ” r r 01/ © i ) • 

The required solution can then be written in the form

(6.3.9)

y = A y (1) + B y (2) + C y<3) , (6.3.10)

where A, B and C are complex constants and the vectors y(k) 

(k=l,2,3) denote the particular solutions of the system

(6.3.3)-(6.3.6) subject to the initial conditions

( *t*r / • • • f ̂t>r ' <t>i/ • • • f ^i)=:(0,0,l,0,...,0)/ (6.3.11)

(  ̂* * * ' *t*r ' <t>j/ • • • f <t*i ®i )= ( ® f ® / 0,1,0. . ,0) , (6.3.12)

( <t>r ’  * • • r '  4*1/ • • • / <j)± / 0r / 0r  , 0 j, 0 ^ )=  ( 0 , 0 ,  . . . , 1 , 0 , 0 ) , (6.3.13)
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at x=-l/2 respectively. Application of the boundary conditions 

at x=l/2 then leads to the following homogeneous system

A(yi(1)+ y5(1>) + B(y<2)+ y<2) ) + C(Yl(3)+ y5(3))=0, 

A(y2(1)+ y6(1>) + B(y<2)+ y6( 2 ) ) +  C(y2(3)+ y6<3))=0, 

A(y9(1)+ yu(1)) +B(y<2)+ yil(2)) +C(y9(3)+yn(3) )=0,

(6.3.14)

(6.3.15)

(6.3.16)

where each of the functions is evaluated at x=l/2. A non-trivial 

solution for the constants A, B and C then exists provided that 

the determinant

y r  + iy5(1) vl2) + iy5(2) yi3) + iy5(3)

y2(1) + iy6(1) y2(2) + iy6(2) y23) + iy6(3) — Dj- + iDj_

y9(1) + iyn(1) y92) + iyn(2) y93> + iyn(3) (6.3.

vanishes at x=l/2. In order to compute the determinant

(6.3.17), a fourth order Runge-Kutta scheme was used with 400 

steps across the interval [-1/2,0]. The eigenvalues a  were 

located for fixed values of the Prandtl number o and the 

convective parameter y by varying a  until the real and 

imaginary parts of the determinant, Dr and , change sign

simultaneously. The required value of a is then obtained by the 

bisection method. Tables 6.1-6.3 show bounds [alfa2] on the 

relevant values of a and the corresponding values of y for 

values of the Prandtl number a  = 50,100 and 1000. This
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determines the lower branch of the neutral stability curve in 

each case in the range OsyslO. Graphical results are presented 

following consideration now of the limiting form of the 

solution for o-*oc .

6.4 Large Prandtl Number Limit

For infinite Prandtl number, o, solutions for a in the range 

Y>Y0 = 6.30 were obtained by Daniels (1987) by solving the lower 

branch system (6.2.8)-(6.2.11) with o = oc. in the range y<y0=6.30 

it is necessary to consider solutions with 3 of order o as o->oo.

Consider the equations (6.2.8) and (6.2.9) for the lower 

branch of the neutral stability curve obtained in Section 6.2:

<K'" + iapPY' -V">]/o = 0', (6.4.1)

6" = ia [0'<|>-V'0] - 4YV ,  (6.4.2)

with boundary conditions

<t> = f = 0 (x= ±1/2), (6.4.3)

e = 0  (x= ±1/2). (6.4.4)

In order to determine the limiting form of the solution as o-*oo 

in the region y <Yo = 6.30 it is necessary to write

a = Xo (6.4.5)

and assume that X is of order one as o-*oo. Substitution of

(6.4.5) into (6.4.1) gives
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gj= [s0dj+ Sjbj - 47g j0 + î (3to3a j - co1Cj - ct)1c j0 ) ]/60 (6.4.16)

where s0 , slf co 3, w 3 are defined by (2.3.11) but where the 

expansions (2.3.7) and (2.3.8) are viewed as the expansions of 

0' and V ' at general values of y.

We now have the outer solution for (f> and the outer solution 

for 0 can be deduced from equation (6.4.9). At the centre-line 

x= 0 the singular form of the outer solution is smoothed out 

within a critical layer. This has thickness x = 0(o"1/3) which 

can be seen by considering the correspondence aA«lo, 

equivalent to a0A2/3«-» ka in the context of Chapters 2-5. Hence 

the critical layer expansions here are like those of Chapter 3 

but with a-A273 . Therefore expansions for the critical layer 

will proceed as in Chapter 3 provided that the term ik( V '())" - 

) does not contribute to the bridging conditions obtained in 

Chapter 3. To show that this is the case we consider the size 

of the term iX(W  '(J)" - V'"<|>) relative to the term <)>'"' used to 

obtain the fourth leading order bridging condition. The latter

is of order A 2/9 whereas the magnitude of V  '(j)" and 'P "'<() are

order A 2/9lnA and A -2/9 respectively. Thus the bridging 

conditions are precisely those determined in equations 

( 3.3.4-7) - ( 3.3. 5 0  ) and substitution from (6.4.15) leads to the 

following system:

Yl+ a* - vf a3 + v2+ a* - v2- a2 = 0, (6.4.17)

v^b* + vfb1 + v2+b* + v2“b2 = 0 , (6.4.18)

V  (c *—is0Jta*/2) - vfc ^  v2+ (c*-is0Jia*/2)- v2“c2 = 0, (6.4.19)
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Evaluation of this determinant leads to the requirement

â1 [b1(c2 -iSoJta2 /2 +c2) + (b2 - b 2)cf1 ]+ â b-L (c2 -is0Jta2 /2 + c2 )-
__ ^  B  ^  ^ ^  Hi
(b2 - b2 ) (c ! -isQÎiâĵ  /2)]+(â2 + â2)[-b1c1-b1(c1 -iSgJia-L / 2 ) ]=0.

(6.4.27)

The left hand side of (6.4.2 7) is real. This can be seen by 

writing (6.4.27) in the form

(â^bi+â^* )(<=*+ c2 ) + (&*cx -a1 c* )(b*-b2 )-

(bi ci +bici )(a2 +a2 )-is0ji[ (axa2 bx -ax a2 bx)-(b2 - b2 )a1a1 J/2 = 0.

(6.4.28)

Since ëj , bj and c" j are functions of X and y, this equation 

expresses a functional relation between these two parameters 

which determines the location of the neutral stability curve in 

the limit of infinite Prandtl number.

6.5 Numerical Solution for the Large Prandh! number T.imit

In order to determine the limiting form of the neutral 

stability curve, the complex constants ëj , bj and cfj must be 

found and the parameters X and y chosen to ensure that (6.4.28) 

is satisfied. The numerical method used to solve equations 

(6.4.12) and (6.4.13) for the constants ëj , bj and Cj (j = l,2) is 

described in this section.

Since the solutions for /j (j=l,2) are complex we write /jin 

the form

f j  f j r  + ^ - / j i  ( j - l / 2 ) (6.5.1)
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where /j r and /ji are real functions of x. Substitution of

(6.5.1) into (6.4.12) and collecting real and imaginary terms 

yields the following equations:

flr~ -^7 fir = M ’P'/ii - V"hi), (6.5.2)

fli ~ fli = -MVfir' ~ V'flr), (6.5.3)

fir ~ -|r fir = 1+ MV'f2i ~ V"f2i), (6.5.4)

fli - -|r fli = -MV'f2r ~ V"f2r), (6.5.5)

which, from (6.4.12) and (6.4.13), must be solved subject to 

the initial conditions

(fir'fir'fir ) = (0/0/1) / (x=-l/2), (6.5.6)

(fli'fl'i'Ai) = (0,0,0) , (x=-l/2), (6.5.7)

(fir' fir' fir ) = (°/0,0) , (x=-l/2), (6.5.8)

(fli'fli'fi) = (0,0,0) , (x=-l/2). (6.5.9)

The system (6.5.2)-(6.5.9) is equivalent to twelve first order 

differential equations which were solved by use of a fourth
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order Runge-Kutta scheme with 400 steps across the interval 

[-1/2,0]. A series expansion was used to start off the 

computation near x=-l/2. The Taylor expansions for the base flow 

functions are equivalent to (4.3.1) and (4.3.2) viewed as 

expansions for general values of y:

0 ' = 2 o [Tk Xk , X^O , (6.5.10)

0' = 2 Q Ô5* Xk f X — 0 , (6.5.11)

where X=x+l/2. Corresponding expansions for the functions /j 

( j=l,2) are given by

fi = X2/2 + 2 ̂ AkXk , (6.5.12)

f  2

00

2
k=3

BkXk , (6.5.13)

where the coefficients Ak, Bk can be found by substitution of 

(6.5.10)-(6.5.12) into (6.4.12) and equating like terms in x. 

This gives

a3 = 0/ A4 = HoM S co-l , A 5 = -(iw-L + (x0 co2 / to2 ) /120

A6 = Hq/57600)2 + (fi0co22 -n0o)1a)3 + ^co2 ) /co2 , (6.5.14)

and

§3 = 1/6, B4 = 0 , B5 = 1X0/3600)3 ,

§6 = -pt0aT2 /720CÒ32 - ik 0)3 /360 . (6.5.15)

The real and imaginary parts of f1 and / 2 in (6.5.1) can now be 

used to initiate the Runga-Kutta computation just beyond x = 

-1/2. Values of the convective parameter y and the scaled
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wavenumber X are fixed and the computation proceeds to the 

neighbourhood of x = 0 where the complex constant àj, bj and Cj 

must be determined. This is done by use of the expansions for /j 

(j=l,2) derived in Section 6.4:

/j=àj+ bjX + Cj0 x2ln|x| + CjX2 + dj x3 + e j0 x4ln|x| + èj x4 + 

gj0 x5ln|x| + gjX5 +..., x-^0-, (6.5.16)

The Runge-Kutta values of Jj, £, ]{' and f2 , f2', j£' at x=xs, where 

xs is small and negative, are equated to the corresponding 

formulae given by the series expansions (6.5.16). This leads to 

the following pair of complex non-homogeneous systems of 

equations for aj, bj and Cj (j=l,2). These systems are given by

a j  r j  + b  j  A j  + cjXj / j(xs) + K\j (6.5.17)

àjfj + bjÀj + CjXj /j(xs) + iTj (6.5.18)

àjf"j + bjÀ"j + CjX'j = f"j(xg) + K” j (6.5.19)

The complex functions Ij, Aj and X j  / K j  and their first and 

second derivatives are defined explicitly in Appendix III. The 

solution of the systems of equations (6.5.17)-(6.5.19) were 

tested for accuracy and consistency by solving them at several

points xs=-kh (k = 0,1,2,--) where h = 0.00125 is the step

length in the Runge-Kutta solution. Results are shown in Table 

6.4.

The neutral stability curve was obtained by fixing the 

convective parameter y and adjusting the value of X until 

equation (6.4.28) was satisfied. This led to solutions in the 

region Osy<6.30, as shown in Table 6.4 and Figure 6.1. These
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results are consistent with the numerical solution for finite, 

large values of o found in Section 6.3, as shown in Figure 6.2. 

As o -* oo the lower branch of the neutral stability curve adopts 

two distinct forms in the regions y < y0 and y>y0. For y < y0 the 

wavenumber is proportional to the Prandtl number 5 - X o with X 

finite, whereas for y>y0 the wavenumber « is finite as a-»*.

6.6 Discussion

This thesis has considered instability in the form of 

neutrally stable stationary convection in the flow between two 

vertical planes. Results have been obtained which determine the 

form of the neutral stability curve in the limit as A-»°o for 

general values of the convective parameter y and for large (and 

infinite) Prandtl numbers.

The results of the present chapter demonstrate that the 

lower branch of the neutral stability curve experiences a 

dramatic transition as the Prandtl number becomes large. For 

finite Prandtl number the lower branch extends all the way to 

y=0,  so that long wavelength stationary convection can occur 

with a = 0 ( A -1 ) for any value of the convective parameter. As the 

Prandtl number increases the wavenumber of the section of the 

lower branch in the range 0sy<6.3 increases in proportion to 

the size of the Prandtl number, so that when a  -  A 2/3 the 

wavenumber a  will be of order A “1/3, comparable with the 

critical wavenumber for infinite Prandtl number determined in 

Chapter 4. When the Prandtl number reaches values of order A ,  

the theory outlined in this chapter is no longer formally valid
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(6.6.3)Yi 2 «  °o «  Yi

For fixed o 0, equation (6.6.2) expresses a linear relation 

between the wavenumber and the convective parameter precisely 

equivalent to the finite slope in the limit curve of X versus y 

near y0 in Figure 6.1. This slope has been accurately evaluated 

from the numerical results shown in Figure 6.4 as

-m = -50653 (6.6.4)

so that

m(Y0-Y)f Y —  Yo- • (6.6.5)

Recalling that

a= A'1/3 a0 « a/A = Xo/A (6.6.6)

and cr=A4/3a0/ Y “ Yo + A"2/3 ylf the result (6.6.5) can be 

expressed in the form

a0  m Yi a0 (6.6.7)

so that m is identified with the ratio Cj/Cq in (6.6.2). From 

the results of Chapter 5, the value of this ratio is 49194, in 

good agreement with the value of m quoted in (6.6.4).

Thus the lower branch evolution with increasing Prandtl 

number ties in with the analysis of Chapter 5 describing the 

form of the neutral stability curve in the neighbourhood of the 

critical point y0; at this stage the lower and upper branches 

have assumed the infinite-Prandtl number limit forms in y>6.30 

previously found by Daniels (1987,1989) and disturbances of
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finite wavenumber are confined to the range y >Yo *

Various extensions to the present results are needed in 

order to investigate further features of the convective 

instability. First, an investigation of the precise form of the 

upper branch of the neutral stability curve for large (but 

finite) Prandtl number is needed in order to complete the 

analysis of order one wavenumber disturbances. This will 

require computations of the upper branch solution for an 

appropriately scaled Prandtl number of order A. Second, the 

incorporation of weakly non-linear effects in the stability 

analysis would allow the amplitude, e, of the disturbance (that 

leads to the form of the cells shown in Figure 4.11) to be 

determined. However, this analysis may well involve very 

complex calculations as suggested by the results obtained here 

for the linear system. Finally, it would be instructive to 

consider ways in which the basic state assumed here for 

infinite vertical planes could be improved to provide a better 

approximation to the actual basic flow in a vertical slot, 

perhaps making use of a boundary-layer approximation to the 

latter flow of the type developed by Daniels (1987). This might 

lead to a more realistic comparison with experimental results.
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Y

a -1000

a2

0.1 15000000 15500000

1 16000000 17000000

2 18500000 19500000

3 20500000 21000000

4 26000000 26500000

5 29500000 30000000

5.5 27500000 28500000

6 21500000 22000000

7 500000 550000

8 200000 300000

9 800000 1000000

10 1200000 1500000

TABLE 6.1. Bounds [ a l f a 2 ] on the eigenvalue a  and the 

corresponding values of the convective parameter y 

for a=1000.
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Y

a  =100

«i a 2

0 .1 1600000 1700000

1 1750000 1800000

2 2000000 2100000

3 2450000 2550000

4 3950000 4000000

5 6620000 6670000

5 . 5 6900000 6950000

6 5050000 5100000

7 65000 70000

8 55000 60000

9 922500 924000

10 1450000 1500000

TABLE 6.2. Bounds [ ct-,̂, ot2 ] on the eigenvalue d and the 

corresponding values of the convective parameter y 

for o=100.
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Y

Q II Ui o

a2

0.1 1200000 1250000

1 1300000 1350000

2 1450000 1500000

3 1700000 1750000

4 4150000 4200000

5 6100000 6050000

5.5 6250000 6300000

6 4550000 4600000

7 605000 610000

8 640000 650000

9 960000 965000

10 1540000 1560000

TABLE 6.3. Bounds [a^aj] on the eigenvalue a and the 

corresponding values of the convective parameter y 

for o=50.
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Y 2̂

0 .1 13800 14400

1 14600 14900

2 15200 15600

3 16400 16900

4 19300 20100

5 22600 23400

6 7390 7380

TABLE 6 . 4 . Bounds on the eigenvalue X and

corresponding values of the convective parameter y.

the
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FIGURE 6.1. The lower branch limit for infinite Prandtl number 

in the range 0 < y < y0.

(177)



50000

40000

30000

20000 -
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6.2. The lower branch for various values of the Prana

number o in the range 0<y< 9.
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FIGURE 6.3. Schematic diagram of the variation of the neutral 

stability curve in the limit A -* oo for large and 

infinite Prandtl numbers.
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k

FIGURE 6.4. The slope of the large Prandtl number limit curve 

near y0.
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APPENDIX ONE

In equation (3.5.11) the coefficients Aj1 are given by

A 13 =

A 14 = ÎÏ0/ 4 8 “ l/

Ai5 = — ( fô2fl0 - W 1)I1)/120(0̂ ,

A16 = (24o)22|x0 - 2 4071c03jl0 + (ü1ïl02 - 24ô5’1 ôj2fl1 +24üT2fI2 )/5760œ2. 

In equation (3.5.12) the coefficients Aj2 are given by 

A 23 = 1/6,

A24 = 0 >

A 25 = Î V 360® i,

A 26 = (-“ 2 ^ 0 + œ 1]I1)/720œ13 .

In equations (3.5.16) the coefficients Bj1 are given by 

B i3 — 0,

B i4 = 1/24,

B is = 0,

Bi6 = (96A14CÜ1 + jlû)/2880 (ô1 .

In equation (3.5.17) the coefficients Bj2 are given by
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0

B 24 = Of

B25 = A23/20,

b 26 = o

In equation (3.5.18) the coefficients C^ are given by

*-13 = Of

ci4 = ~( i + œ 1il0)/48m12/

C15 = -(-(̂ co2 + m<Pi“2 + û>2“ iÎïo ~ 2® i®2^o + ®i® )/120Ô72,

ci6 = -(Po-Mo“ i + “ iiio)/5760®i -(-2A14̂ ÔT2 - (l2w 2 + ^co2«^ 

+ M-o® i“3 + 2Ai4 + ¿o'3ôĴpTo - 2œ2œ 1tD2jI0

+ S ^ cd2fl0 - 2io1œ 1œ3(I0 + w2cô'2fl1 - 2câ1cô'1(ji)2iri 

+ ôT1cô12p:2)/240â)14 .

In equation (3.5.19) the coefficients Cj2 are given by

B23 =

C25 — A23(|j0(o1 - (üĵ jXq )/60 cüĵ ,

C 26 =  A 23(!^l“ l ~ Mo“ l«2 “ ® 2  « i P o  + 2CD1Ü)2p 0 “ “ l ^ l M u  ) /12 OüT2 

In equation (3.5.20) the coefficients Djx, Dj10 are given by

B120 = ^-]/2f
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1̂3 — n0/6/

1̂40 7 _i/4 8,

Dl4 =  n x /24 - 1 3 6 .3 ^ „3 / 5 7 6 ,

D 150 = 6 0fi_1/ 1 2 0 ,

Dl5 = S22 /60 - 6 _xil0/36O - 4 7 6 0n_1/7200,

Die = [^0 ^ 1 3  - 8 _iD14 + fi3 ]/ 1 2 0 ,

where the constants 6_:, 60 and 63 are given by

8-i == M̂ o/48coi,

8o = - p0To2ml,

8i = (p0«22 - Fo® 1®3 + p2“ l)/“ lf

and Q _17 fi0, i2lf 0.2 and n3 are defined by

^ _1 == 80/(o x ,

SO o II (4Yo®1 + 6 A 14®l8_! - (028o + SOÔ ) / » 2 ,

Q ̂ — (-4vX “ 2 + 12Ai5fijfa_1 - 6A14oo 1o7 26_x + 12A14(o 3b0 + co 260

- (o iCt̂ So - 3^ 3(0263)/io x3 ,

= (16a 14Yo“ i + 4Yo“ i®2 - 4Y40̂ w 3 + 20A16co136_1 - 12A15co12w26_1 

+ 6A14co1co225_1 - 6A14(02co36_1 + 20A15co1360 - 12A14co2co260 - 

co2360 + 2(03(02(0360 - 001(0460 + 20A14aj361 + 3o71(o!61 -

3(03(0363) /(x)3 ,

( 1 8 3 )



Q 3 ( 2 0Ai5Yoa)i — 16A^4Yo^ i^ 2 ”* 4y0a)iO) 2 ®Yo^ i^ 2̂ 3 ” ^Yo^ i^4 

- 20A16a)1a)26_1 + 12A15(o1o)26_1 - 6A14w 1a)26_1 - 12A15(i)1a)36_1 

+ 12Ax4 0)̂ 002(036̂  - 6A14(i)3 0)46_1 + 30A16(o1480 - 2 0A15o)"3(o 2&o

12 A3 4 (1) 3O) 2 6g "t" 0) 2 8q 12 A 3 4 CO 3 (0 38 q ~ 3 CO 3 CO 2 CO 38 q "C CO 3 CO 3 60 

"t 2 CO3C02Ci)48q 0) 3^380 t  3 OA33CO3 83 20A34CO 3CO283 — 3CO3O283

+  6 0 )3 0 )2 (0 3 8 3  -  3 0 ) 3 ( 0 4 8 3 ) / CO 35 .

S im i l a r l y  in  e q u a t io n  ( 3 . 5 . 2 1 )  th e  c o e f f i c i e n t s  D^2 , Dj20 

a re  g iv en  by

^22 = /2 /

D32 = £2 q / 6,

^420 =  ^ - 1 ^ - 1  8 ,

D42 = D 3/24 - 13S_3£2_3/576,

^520 = 80£7_3/120,

D52 = £22/60 “ S_3E20/360 - 47S0£7_3/7200,

6̂2 = [̂ 0̂ 32 ~ -̂1̂ 42 + ^ 3]/1^0/

where £2_3 , £20, O3 , £I2 and £73 a re  d e f in e d  as  fo llo w s :

£I_3 = ( 2A23 8_3 ) /CO3 ,

2̂"o ( 2A23O) 2̂ -1 6A23CO 380 ) /0) 1 f

£2i = (12A23Yo“ ’i  + 12A25C0326.3 + 2A23(02^-i  ~ 2A23co 3ar36_3

6A23CO3CO28Q +  12A 23 CO3 83 ) / CO 3 t
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( - 1 2 A 23Yo(ßitt>2 + 2 OA26co 3ô _1 -  12A 25co3o)2ô _1 -2 A 23o) 2ö _1 + 

4A23(i)1(ö2öJ3ö_1 -  2A23ö)3(ö4ö_1 + 2 0A25(O3ö 0 + 6A23ci71(ö200 -  

6A23(ö3ä )3ö0 -1 2 A 23cö3ö) 201 ) /(ö* ,

( 2 0 A 25YqÖ)'14 + 12A23YqW"3öT2 -  12A23Yo(~i (ü 3 -  20A 26ü) 3(ü 20_1 

12 A 23co 3 (o 2ö_^ *c- 2A23 co 2  ô_  ̂ “ 1 2A 25ü) 3ü) 3ö_ 2  6A23co ĉo2 co3ò

2A23cöiäJ32ö .1 + 4A23cô2cô2cô4ô _1 -  2A23cô3cïï5ô _1 + 30A26cô'14ô0 

20A 25co 3cô2ô0 -  6A23co"1cô2ô0 + 12A23cö2cö'2cö'300 -  6A23 co3cö4ö0 

30A25CO 2 Ô3 + 12 A23CO2 CO 20 2— 12A 23 CO2 C03Ô2 ) / CO2 •
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APPENDIX TWO

The functions rif A i; Xi anci Ki in equation (4.4.14) are 

defined as follows:

r± = 1 - 13s02x4/576 + s 1x4/24 - 17s03x6/57600 - s0s1x6/450 + 

s2x 6/120 + (s0x2/2 + s2x4/48)ln|x| +

SoX6ln|x|/5760 + s0s1x6ln|x|/240 ,

A± = x + s0x3/6 + sqX5/360 + s1x5/60 ,

Xi = x2 + s0x 4/24 + SqX6/2880 + s1x6/120 ,

K l  = (i-1)(x3/6 + s0x 5)/360 ,

The functions Tij, Aij, Xij and Kij in equations (4.3.17) are 

defined as follows:

Fii = 1 - 13s02x4/576 + s 1x4/24 + s0x2ln|x|/2 + SQX4ln|x|/48 , 

ALl = x + s0x3/6 ,

Xii = x2 + s0x 4/24 + ais0x4ln | x | /24 ,

Kii = t>±x3/6 + c ±x4/12 - 7ais0x4/288 ,

ri2 = (576 - 13s 2x4 + 24sx x4 + 288SoX2ln|x| + 12s 20 x4ln | x | )/576 

Ai2 = x + s0x3/6 ,

Xi2 = x2 + SoX4/24 ,
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APPENDIX THREE

The coefficients E1;j in equation (5.3.21) are given by

E 13 =  0/

E 14 =  0 ,

E15 = -cî /120,

E 16 =  ~ 1̂3 (Dj/ 60,

The coefficients E2j in equation (5.3.21) are given by

E26 - -A23 m-̂ /60.

The functions ri4, Ai4, Xi4 and Ki4 in equation (5.3.22) are given 

by

r i4 = 1 - 13s02x4/576 + slX4/24 + ln|x|(s0x2/2 + s0V/48) ,

Ai4 = (x + s 0x 3/6),

Xi4 = (x2 + s0x4/24 ) ,
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Ki4 = -aia)xx3/6 .

In Chapter 6 the functions rif , Xi an<̂  Ki4 in (6.5.17) 

are given by

I"i = 1 + iXxo1x 3/6 -  1 3 s 02x 4/576 + s 1x4/24 + 7iA.s0(D1x 5/7200 + 

i>oo3x5/20 -  1 7 S qX6/57600 -  s 0s 1x6/450 + s 2x6/120 + 

X2to12x6/360 + ( S qX2/2 + s 02x 4/48 + -iXsoO^x5/12 0 + 

s 03x 6/5760  + s 0s 1x6/240 ) In | x | ,

KL = x + s0x3/6 + sqX5/360 + sxx5/60 - iX.s0co1x6/360 +

iXa>3x6/60 ,

Xi = x2 + s0x4/24 - iAxo1x5/60 + s02x6/2880 + s1x6/120 ,

Ki4 = x3/6 + sqX5/360 - i?ui)1x6/360 .

(189)
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