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Deciding When, How and for Whom to Simplify

Carolina Scarton1, Pranava Madhyastha2, Lucia Specia3

Abstract.

Current Automatic Text Simplification (TS) work relies on
sequence-to-sequence neural models that learn simplification opera-
tions from parallel complex-simple corpora. In this paper we address
three open challenges in these approaches: (i) avoiding unnecessary
transformations, (ii) determining which operations to perform, and
(iii) generating simplifications that are suitable for a given target au-
dience. For (i), we propose joint and two-stage approaches where
instances are marked or classified as simple or complex. For (ii) and
(iii), we propose fusion-based approaches to incorporate information
on the target grade level as well as the types of operation to perform
in the models. While grade-level information is provided as meta-
data, we devise predictors for the type of operation. We study dif-
ferent representations for this information as well as different ways
in which it is used in the models. Our approach outperforms previ-
ous work on neural TS, with our best model following the two-stage
approach and using the information about grade level and type of
operation to initialise the encoder and the decoder, respectively.

1 Introduction

Text Simplification (TS) is a text-to-text transformation task where
the goal is to generate a simpler version of an original text by apply-
ing several operations to it. Such operations include word changes
(e.g. a complex word being replaced by a simpler synonym) and/or
syntactic transformations (e.g. a long sentence is split into two).
Strategies for TS differ depending on either a given target audience
or an application. Previous work has explored lexical simplification
for specific target audiences, such as non-native speakers [14], and
for improving other Natural Language Processing applications, such
as machine translation (MT) [10].

Modern TS systems rely on parallel data with original-simplified
pairs in order to learn simplification operations. The operations learnt
can perform both lexical and syntactic operations together, in a sin-
gle pass. Inspired by work on MT, state-of-the-art approaches use
sequence-to-sequence (s2s) neural models with attention [13, 31, 7,
28, 21, 25, 32].

Two large-scale corpora exist for TS in English: Wikipedia-Simple
Wikipedia (W-SW) [33] and the Newsela Corpus.4 W-SW has pairs
of original and simplified Wikipedia articles, with simplified ver-
sions generated by volunteers, without targeting a specific audience.
Newsela contains original articles from the news domain and their
professionally simplified versions. Each simplified version targets
a specific US grade level. Previous work has shown that Newsela
is a more reliable corpus than W-SW [29, 20]. Both W-SW and
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Newsela are aligned at article level, while data-driven approaches
rely on sentence-level alignments.5 Different approaches have been
proposed to automatically align instances from this dataset [15, 27].

Given instance-level automatic alignments, four general types of
operations can be defined:
• Identical: The simplified instance is an exact copy of the original

instance.
• Elaboration: The simplified instance has the same number of sen-

tences as the original, but with different content.
• One-to-many (split): The simplified instance has more sentences

than the original.
• Many-to-one (merge): The simplified instance has fewer sentences

than the original.
Data-driven models built using the Newsela dataset disregard use-

ful information provided with the simplifications. The only exception
is presented by Scarton and Specia [21], which uses the grade-level
information as well as the type of simplification operation as artificial
tokens to build s2s neural models (see Section 2). They show that the
use of artificial tokens improves over a baseline system.

In this paper we further explore both given (meta) and inferred
information from the corpus, while focusing on how to accurately
predict such information, how to represent it and how to integrate it
in the s2s models. In addition, we attempt to identify instances that
do not require simplification in order to avoid unnecessary (spurious)
transformations and further improve the performance. More specifi-
cally, our approaches address the following challenges in TS:

Learning when to simplify: We devise classifiers to filter out
cases that should not be simplified and propose a fully automated
two-stage approach.

Learning how to simplify: We propose methods to predict, rep-
resent and integrate information on operations into s2s architectures
using fusion techniques.

Learning for whom to simplify: We propose different ways to
fuse grade-level meta-information into the models.

We describe previous work that uses neural s2s approaches to TS
in Section 2. Section 3 details the Newsela data, its automatic align-
ments and the neural models used in our experiments. In Section 4
we introduce our approach to determine when to simplify. Section 5
presents our operation classifiers and TS models that use inferred op-
eration types and grade level information. In Section 6 we describe a
two-stage approach guided by binary decisions on when to simplify.

5 Contrary to MT, where sentence alignments are generally only one-to-one,
other types of alignments naturally exist in TS, namely one-to-many (split)
and many-to-one (merge). Therefore, we refer to the unit of simplification
as instances.
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2 Related work

Nisioi et al. [13] build an attention-based s2s model for TS using the
W-SW dataset. BLEU [16] or SARI [30] (see Section 3) are used
to find the best beam size to perform beam search. Their best system
outperforms previous approaches according to BLEU. Zhang and La-
pata [31] also propose an s2s model with reinforcement learning and
evaluate their system in both W-SW and Newsela. SARI, BLEU and
cosine similarity were used as reward policies. For the Newsela cor-
pus they outperform previous work, while they are behind Narayan
and Gardent [12] for W-SW.

Vu et al. [28] experiment with neural semantic encoders [11] for
TS. This approach creates a memory matrix for each encoding time
step. This gives the model unrestricted access to the entire source in-
stance, which allows the encoder to attend to other relevant words
when encoding a given word. Their models do not outperform previ-
ous work according to SARI, but they show better results on human
judgements of fluency, adequacy and simplicity. Guo et al. [7] pro-
pose a model that uses both attention and pointer-copy mechanisms
[22]. They also experiment with multi-task learning, with entailment
and paraphrasing generation as auxiliary tasks. Their models show
considerable gains in SARI when compared to previous work on
Newsela and W-SW datasets.

Sulem et al. [25] use semantic information from UCCA (Universal
Cognitive Conceptual Annotation) [1] to build a system to perform
instance splitting. These instances are then fed into an s2s model
for further simplification. Although they show improvements for per-
ceived simplicity over the NTS system, surprisingly, they do not ex-
periment with corpora in which splitting appears in the gold simpli-
fications.

Zhao et al. [32] integrate the Transformer s2s architecture [26]
with the Simple PPDB [17] paraphrase dataset in two ways: (i) by
adding a loss function that applies the rules present in the PPDB,
(ii) by using an augmented dynamic memory that stores key-value
pairs for each PPDB rule, where keys are a weighted average of en-
coder hidden states and current decoder hidden states and values are
the ouptut vectors. Their approaches marginally outperform previous
work on W-SW and Newsela datasets.

These previous research neither targets simplifications to a spe-
cific audience, nor uses explicit information about the type of sim-
plification operations. The only exception is the work of Scarton and
Specia [21], where they experiment with attention-based s2s mod-
els with information about the grade level and simplification oper-
ations added as artificial tokens to the source (complex) instances
(following Johnson et al. [8]). Models using artificial tokens perform
better, only when using oracle simplification operations. However,
their approach to integrate metadata and inferred information is very
different from ours. Tokens representing grade levels and tokens rep-
resenting type of operations are simply put together as a single token
and used as the first token in the source instances. This makes the
data sparse and does not allow the exploitation of information in dif-
ferent parts of the s2s architecture. In addition, the performance of
their operation classifiers is considerably low, which means that they
harm the performance of the TS models when used.

In this paper: (i) we explore different ways of adding metadata
(grade level) and/or inferred (simplification operations) information
in the s2s architecture, (ii) we propose more robust classifiers for
the task of inferring simplification operations, and (iii) we analyse
models trained only with instance pairs where original and simplified
versions are different from each other. This allows us to simulate a
scenario where the user has control of deciding the instances (s)he

wants to simplify. We also experiment with predicting whether or not
an instance should be simplified before sending it to the TS model.

3 Data and neural models

Data The Newsela dataset (version 2016-01-09) contains 1, 911
original articles with up to five simplified versions each. These sim-
plified versions are produced by professionals and target a specific
grade level that can vary from 2 to 12 (lower values mean simpler
articles). These articles need to be segmented into smaller units, and
instance-level alignments need to be created, in order to use them
into s2s models.

For our experiments, instance alignments are generated using the
vicinity-driven search approach by Paetzold and Specia [15]. This is
an unsupervised approach which allows for long-distance alignment
(e.g. skipping sentences) and captures 1-to-n and n-to-1 alignments.

Alignments are generated from the original for each simplified ar-
ticle version and among all simplified versions. Therefore, if an orig-
inal article 0 is aligned with up to four simplified versions (1, 2, 3 and
4), the alignments are extracted between 0-{1,2,3,4}, 1-{2,3,4}, 2-
{3,4} and 3-4. This method generates 550, 644 instance pairs (11M
original tokens and 10M target tokens). Using these alignments, four
types of simplification operation can be identified (as presented in
Section 1). Table 1 shows the number of instances per type of oper-
ation in the Newsela dataset. From these instance pairs we randomly
select training (440, 516 instances), development (2, 000 instances)
and test (55, 064 instances) sets (FULL dataset). For the development
set, instances are selected to keep the four operation classes balanced.
Therefore, this set has 500 instances pairs of each type.

Operation Count Proportion

Identical 146,151 26.54%
Elaboration 266,870 48.47%
Split 119,241 21.65%
Merge 18,382 3.34%

Table 1. Number and proportion of instances per type of operation in the
Newsela corpus

Architecture Our models are based on s2s neural models with at-
tention [4] and conditional gated recurrent units (CGRUs) [6] as de-
coder. As encoder we use a bi-directional recurrent GRU, followed
by the decoder: a CGRU which is initialised with a non-linear trans-
formation of the mean of encoder states. As attention mechanism, we
use a simple feedforward network. Our implementation is based on
the NMTpy toolkit [5].6 We use the Adam optimiser with a learning
rate of 0.0004 and batch size of 32. Encoder and decoder embedding
dimensionality is 500, the maximum target instance length is 250,
dropout = 0.5, with a fixed seed for all models. Model selection is
performed according to SARI on the validation set.

Fusion techniques and representations Our work is related to
work on multimodal MT [23], which shows that an encoder or de-
coder initialised with external information (image-related, in their
case) helps the s2s model provide better informed translations. We
test the following configurations to inform s2s models on the type of
simplification operations or grade level:

6 https://github.com/lium-lst/nmtpytorch

C. Scarton et al. / Deciding When, How and for Whom to Simplify 2173



[ 0 0 0 0 ... 1 ] h0 Some of ... <eos> Frogs and

Attention layer

Frogs and ...
�ht
~

...

<eos> [ 0 0 0 0 ... 1 ]

Some of ... <eos> Frogs and

Attention layer

Frogs and ...
�ht
~

...

<eos>

Encoder 
Initialisation 

Decoder
Initialisation 

[ 0 0 0 0 ... 1 ] h0 Some of ... <eos> Frogs and

Attention layer

Frogs and ...
�ht
~

...

<eos>

Encoder and Decoder 
Initialisation 

[ 0 0 0 0 ... 1 ]

Figure 1. Neural model architecture illustrating encoder and decoder initialisation

• informing the encoder,
• informing the decoder,
• informing both encoder and decoder.

We investigate two ways of incorporating the metadata and/or in-
ferred information into our models: (i) adding an artificial token to
the beginning of the original instances, and (ii) using one-hot vectors
with the metadata or inferred information to initialise the encoder
and/or decoder. In (i), the NMT architecture is not modified, i.e. only
the data needs manipulation, while in (ii), the architecture is modified
to allow for the initialisation of the components by external vectors
(see Figure 1).

Evaluation We assess the ability of the s2s approach to exploit the
simplification operations by evaluating the output of the models us-
ing SARI. SARI is an n-gram-based metric that compares a system
output with references and the original text. As it correlates highly
with human scores for simplicity, we use it as a proxy for this as-
pect of simplification quality [30]. Although it is common to report
BLEU scores, we believe this metric is misleading: BLEU score can
increase if target instances repeat various words from the original
instance, but not necessarily on the expected order of the reference
simplification [20]. Similar observations are made in [24]. Therefore,
identical instances output by simplification systems can show higher
BLEU scores, even though the reference simplification is identical to
the original(a discussion about using BLEU for TS is presented in
the Supplementary Material)..

4 Deciding when to simplify

As shown in Table 1, not all instances need simplification. In fact,
over one quarter of the Newsela instances are not simplified between
two given levels. While in principle the s2s models can learn how
to make this decision, we observed that the models trained with the
entire dataset are more prone to keep instances intact than to trans-
form them. In addition, having such instances at test time may lead
to unnecessary (potentially spurious) transformations. In this section
we study the performance of models with and without cases of iden-
tical instances. At this stage we assume a practical scenario where
deciding when to simplify is performed by a user (e.g. the user se-
lects complex instances). In Section 6 we also show our experiments
with binary classifiers built to automate this decision.

Our experiments compare two baseline models built using either
the entire dataset (FULL) or only instances that should be simplified
according to our oracle (SIMP-ONLY). SIMP-ONLY has 323, 790
instance pairs for training, 1, 500 pairs for development and 40, 309
pairs for test. The baseline models are a re-implementation of two
models from [21]:
• nmt: baseline model trained without artificial tokens,
• nmt+<gl>: baseline model trained with an artificial token for

grade level, their best model.

FULL SIMP-ONLY

nmt 35.71 42.91
nmt+<gl> 39.94 46.48

Table 2. SARI of simplification models when using either FULL or
SIMP-ONLY – best results in bold

Models trained using the SIMP-ONLY subset show substantially
higher SARI, confirming our hypothesis.

We observe the same trend as in [21]: the model using grade levels
as artificial tokens outperforms the baseline model (nmt) by a large
margin.7

Table 3 shows examples of instances that were either over or
under-simplified by nmt+<gl> models using the FULL dataset, but
were correctly simplified by the same model built with SIMP-ONLY.
The first example was marked to be kept as is (identical), however,
the system built with FULL over-simplified it (the highlighted in red
in the column FULL). The second example was marked to be split
and, while the system built with SIMP-ONLY performs the correct
operation (highlighted in blue in the column SIMP-ONLY), the sys-
tem built with FULL copies the original instance.

Table 4 shows an analysis on the FULL models assessed in the
FULL test set in order to identify the number of instances affected
by having identical instances in the training data. Around 30% of the
instances were oversimplified (instances that should be kept without
simplification, but were instead simplified by the models) and around
60% of the instances were under-simplified (instances that should

7 We tried our best to use a configuration of NMTpy as close as possible to the
OpenNMT-based configuration in [21]. Data split, as well as architectural
and implementation differences may be the reason behind the deviations in
performance – e.g. [21] use LSTMs while we use GRU.
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Operation Original FULL SIMP-ONLY

identical Patty Murray said she was ready for ques-

tions about the cost of her summer hunger
program.

Patty Murray said she was ready for the

cost of her summer hunger program.

Patty Murray said she was ready for ques-

tions about the cost of her summer hunger
program.

split He also sits on an aerospace workforce
training committee and said that most other
Washington state suppliers in his industry
have been seeing the same problem.

He also sits on an aerospace workforce
training committee and said that most other
Washington state suppliers in his industry
have been seeing the same problem.

He also is on an aerospace training com-
mittee. He said that most other Washington
state suppliers in his industry have been see-
ing the same problem.

Table 3. Examples of instances simplified by different models trained either on FULL or on SIMP-ONLY data. The fist example (identical) the original
instance should be kept as is, however, the FULL model attempted to simplify and removed important information. On the second example, a split operation

should be applied, however, the FULL model outputted the original instance. On the other hand, SIMP-ONLY performs the correct simplification

be simplified but were kept the same as the original). In summary,
out of 55, 064 instances in the FULL test set, models performed the
incorrect operation due to the identical instances in 49.42% of the
cases for nmt and 55.76% of the cases for nmt+<gl>.

Oversimplified Under-simplified

nmt 4,031 (27.32%) 23,184 (57.52%)
nmt+<gl> 3,839 (26.00%) 26,873 (66.67%)

Table 4. Analysis of oversimplification and under-simplification for the
models evaluated on the FULL test set

In the following sections we explore other ways of deciding
whether or not an instance should be simplified without pre-filtering.
Since one of the simplification operations is identical, we propose
models that include this information as one of the possible opera-
tions.

5 Learning how to simplify

As mentioned previously, grade level is given at both training and
test time, while the types of operation would have to be predicted at
test time. Here we experiment with different classifiers for predicting
such operations (Section 5.1) and different ways of adding metadata
and inferred information in the neural models (Section 5.2).

5.1 Classification of operations

Classifiers are trained using our Newsela training set evaluated in the
test set with both the FULL dataset and SIMP-ONLY. We experi-
ment with two different approaches for building type of operation
classifiers:

Instance embeddings Following Arora et al. [3], instance embed-
dings are extracted as follows and used as features:
1. importance weights for words are computed by first obtaining

word frequency over our corpus as:

weightwi =
0.001

0.001 + ( freq(wi)∑n

0
freq(wn)

)
,

where n is the total number of words,
2. for each word, the corresponding pre-trained word embeddings is

multiplied by its importance weight,
3. for each instance, an embedding is computed as the weighted av-

erage of word embeddings for all words in the instance, and

4. the first principle component is removed from the space.
From these representation, we build classifiers with the random

forest (RF) algorithm, using the scikit-learn toolkit [18].8

BCN+ELMo Following the work of Peters et al. [19], we build a
classifier using the ELMo vectors. We adapted the biattentive classi-
fication network (BCN) model [9] using the AllenNLP toolkit9 and
trained a classification model with a learning rate of 0.0001.

5.1.1 Classifiers trained on FULL

Table 5 (top part) shows the performance of our operation type clas-
sifiers for the four-class scenario in our development set. Results for
a baseline (random classifier – RAND) are also shown. The best per-
forming classifier is BCN+ELMo with instance embeddings as fea-
tures, which is considerably higher than the RAND baseline. Figure
2(a) shows the normalised confusion matrix for our four-class clas-
sifiers. RF is better at predicting elaboration (E) and identical (I)
operations than the other two classifiers, while BNC+ELMo is better
at predicting split and merge.

Accuracy F1 Precision Recall

Four-class classifiers

RF 0.482 0.513 0.648 0.482
BCN+ELMo 0.706 0.703 0.710 0.706

RAND 0.258 0.258 0.258 0.258

Three-class classifiers

RF 0.511 0.576 0.775 0.511
BCN+ELMo 0.809 0.812 0.832 0.809

RAND 0.336 0.336 0.336 0.336

Binary classifiers

RF 0.822 0.886 0.922 0.852
BCN+ELMo 0.833 0.893 0.927 0.861

RAND 0.495 0.528 0.623 0.495

Table 5. Performance of our four-class, three-class and binary classifiers
evaluated on the development set

8 We also experimented with other algorithms and vector representations, but
RF with the instance embeddings described above was the best performing
classifier.

9 https://allennlp.org/elmo
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Figure 2. Normalised confusion matrix of (a) the four-class classifiers and (b) the three-class classifiers (evaluated on the test set)

5.1.2 Classifiers trained on SIMP-ONLY

Table 5 (middle part) shows the performance of our operation type
classifiers for the three-class scenario (all operations but identical.
In this case, the best classifier is BCN+ELMo. Figure 2(b) shows
the normalised confusion matrix for the three-class scenario. The
BCN+ELMo model performs better in this case, mainly because the
identical operation, i.e. the operation that this classifier could not
predict well, is not present. RF is not reliable at classifying split and
merge (M) instances, even though it is still the best at classifying
elaboration instances. However, as show in Figure 2(a), RF’s good
performance on the four-class classifier is mainly due to its perfor-
mance on the identical class, which is not present here.

5.2 Guiding TS models

In this section we show different ways of adding metadata and in-
ferred information in our TS models.

Baselines Baseline models are [21]:
• nmt and nmt+<gl> (see Section 4),
• nmt+<gl+op>: model trained with artificial tokens for grade

level and operations and tested with either oracle or predicted
operations (RF or BCN+ELMo).

Fusion systems One-hot vectors are generated from the output of
each classifier to represent the predicted operations. Each position
in these vectors corresponds to one specific class. For instance, to
represent the elaboration class, the vector would be [1, 0, 0, 0], while
to represent the identical class the vector would be [0, 1, 0, 0]. The
following models are proposed:10

• nmt+<gl>+Dec(op): model with grade-level artificial tokens
and decoder initialisation using type of operation vectors (oracle
or predicted),

• nmt+Enc(gl)Dec(op): model with encoder and decoder ini-
tialisation. The encoder is initialised using the grade level vectors,
while the decoder is initialised using simplification operation vec-
tors (oracle or predicted).

10 Due to space constraints we do not show results for models built using
grade-level artificial tokens and encoder initialisation with types of oper-
ation vectors. Such models did not outperform nmt+Enc(gl)Dec(op)
models.

In all operation-informed models, the oracle operations are used
for training and development.

Table 6 shows the results according to SARI for three subsets of
the data: (i) FULL evaluated on the entire test set, (ii) FULL evalu-
ated on the SIMP-ONLY test set and (iii) SIMP-ONLY (training and
test). Models built with encoder initialisation for grade level and de-
coder initialisation for type of operations perform the best for all data
splits. As expected, in all cases the oracle information about types of
operation leads to the best results. For the SIMP-ONLY scenario,
models with encoder and decoder initialisation outperform the base-
line even when tested on predicted operations. Initialising both the
encoder and the decoder with one-hot vectors leads to better results
than using a hybrid approach (nmt+gl+Dec(op)).11

The best model overall is the nmt+Enc(gl)+Dec(op) built us-
ing SIMP-ONLY data. In this case according to SARI, the difference
between using the oracle operations and the BCN+ELMo predicted
operations is marginal (48.04 vs. 48.69 in SARI), which indicates
that BCN+ELMo would be the best classifier to be used in practice.

6 A two-stage approach

In Section 4 we show the advantages of training TS models without
identical alignments. In this section, we propose a fully auto-
mated two-stage approach: instances to be simplified are selected and
then sent to a TS model built with SIMP-ONLY data. For instance
selection we devise binary classifiers (simplify vs. do not simplify),
using the same features and methods presented in Section 5.1. Table
5 (bottom part) shows the accuracy, F1 score, precision and recall for
these classifiers. Binary prediction appears to be a simpler problem,
since the performance of our classifiers increases consistently.

We experiment with both BCN+ELMo and RF binary classi-
fiers to perform instance selection for our two-stage approach.
The RF model predicts 43, 389 instances to be simplified, whilst
BCN+ELMo predicts 42, 379 instances to be simplified (out of
55, 064 of the test set). We then gave the selected instances to our
best three-class classifier (also BCN+ELMo) to get a prediction on
the type of simplification to be performed in each instance. Fi-
nally, the test instances with information on grade level and type
of operation are fed into the best model built with SIMP-ONLY
data (nmt+Enc(gl)+Dec(BCN+ELMo) – Table 6). The results,
shown in Table 7, are not as good as those with oracle filtering

11 Examples of the outputs of our TS systems can be found in the Supple-
mentary Material.
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FULL FULL SIMP-ONLY
FULL test SIMP-ONLY test

Baselines
nmt 34.59 37.51 42.91
nmt+gl 37.76 39.94 46.48

Artificial tokens
nmt+gl+oracle 41.66 45.16 45.42
nmt+gl+RF 39.71 42.80 43.96
nmt+gl+BCN+ELMo 40.10 43.41 45.87

Artificial tokens and decoder
initialisation

nmt+gl+Dec(oracle) 40.70 43.85 44.52
nmt+gl+Dec(RF) 35.27 36.82 40.67
nmt+gl+Dec(BCN+ELMo) 35.76 37.43 46.00

Encoder and Decoder
initialisation

nmt+Enc(gl)+Dec(oracle) 42.17 45.85 48.69

nmt+Enc(gl)+Dec(RF) 35.47 37.22 47.17
nmt+Enc(gl)+Dec(BCN+ELMo) 36.00 37.80 48.04

Table 6. SARI of TS models: best models are in bold (the best model with predicted operation types is underlined)

(nmt+Enc(gl)+Dec(oracle) SARI = 48.69 in Table 6). Nev-
ertheless, this is still a very competitive approach, especially given it
is fully automated, mainly when compared to the baselines nmt and
nmt+gl. In BCN+ELMo setting, when comparing to nmt+gl, the
best model with predicted operations improves over 3 SARI points,
whilst the improvements seem with RF setting is over 6 SARI points.

This can be explained because the BCN+ELMo only showed mi-
nor improvements over the RF classifier in the binary setting (bot-
tom of Table 5). In addition, when looking for results in the test set,
the RF classifier (Accuracy = 0.829 and F1 = 0.887) outperforms
BCN+ELMo (Accuracy = 0.805 and F1 = 0.871), which can explain
the performance in Table 7.

BCN+ELMo

nmt 35.65
nmt+gl 39.40
nmt+Enc(gl)+Dec(BCN+ELMo) 42.65

RF

nmt 35.44
nmt+gl 39.16
nmt+Enc(gl)+Dec(BCN+ELMo) 45.50

Table 7. SARI of the two-stage TS approach

7 For whom to simplify

Section 5.2 shows results for models built using grade-level informa-
tion to guide the encoder by either adding an artificial token to the
original instance or by initialising the encoder with vector represen-
tations. In this section we further examine the best way of using the
grade-level information.

Our hypothesis is that grade-level information is most useful to
guide the encoder, whilst the type of operation is best in guiding
the decoder. We test this hypothesis by analysing three new models
together with some previously presented models:
• nmt+Enc(gl): only initialises the encoder with grade-level vec-

tors,

• nmt+Dec(gl): only initiliases the decoder with grade-level vec-
tors,

• nmt+Enc(oracle)+Dec(gl): initialises the encoder using
oracle type of operation vectors and the decoder using grade level
vectors.
Table 8 shows SARI results for the above systems and some of

the previously presented models. Grade-level vectors for initialising
either the encoder or the decoder perform better than using artificial
tokens for both test sets. There seems to be no significant difference
between initialising the encoder or the decoder with grade level vec-
tors, given the performance of nmt+Enc(gl) and nmt+Dec(gl)
are virtually the same. However, when also considering the type of
operation vectors, adding grade-level vectors into the encoder and
type of operation vectors into the decoder results in the best models.

FULL test SIMP-ONLY test

nmt+<gl> 37.76 39.94
nmt+Enc(gl) 38.17 40.52
nmt+Dec(gl) 38.31 40.69
nmt+Enc(gl)+Dec(oracle) 42.17 45.85

nmt+Enc(oracle)+Dec(gl) 41.43 44.85

Table 8. SARI of FULL models adding grade-level information in
different ways (best models are in bold)

8 Examples of TS systems output

Table 9 shows output examples for our best models:
nmt+gl+oracle and nmt+Enc(gl)+Dec(oracle), com-
paring them to the baseline (nmt+gl) and the references on the
SIMP-ONLY dataset.

9 Conclusions

In this paper we present an empirical study on ways to guide s2s
TS approaches. Our experiments and results for each of the three
challenges we identified led us to the following main findings:
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Split

Original So I’ve had ample opportunity to interact with many teachers and know from first-hand experience they’re not the
problem.

Reference So I’ve interacted with many teachers. I know from first-hand experience they’re not the problem.
nmt+gl So I’ve had plenty to interact with many teachers and know from local experience they’re not the problem.

nmt+gl+oracle So I’ve had plenty opportunity to interact with many teachers. I know from first-hand experience they’re not the problem.
nmt+Enc(gl)+Dec(oracle) So I’ve had plenty to talk with many teachers. I know that they’re not the problem.
nmt+Enc(gl)+Dec(BCN+ELMo) So I’ve had plenty to talk with many teachers. I know that they’re not the problem.

Elaboration

Original Since then, Islamic State has demonstrated the capacity to adapt and innovate, combining the most effective terrorist
practices honed over the last three decades.

Reference It is combining the terror practices developed by extremist groups over the last 30 years.
nmt+gl Since then, Islamic State has demonstrated the capacity to adapt and innovate. It is combining the most effective terrorist

practices in the last 30 years.
nmt+gl+oracle Since then Islamic State has demonstrated the capacity to adapt.
nmt+Enc(gl)+Dec(oracle) Since then, Islamic State has demonstrated the capacity to adapt.
nmt+Enc(gl)+Dec(BCN+ELMo) Since then, Islamic State has demonstrated the capacity to adapt.

Merge

Original All year, scientists have been forecasting an El Niño during which warm ocean water at the equator near South America
can affect the weather dramatically. Now the water is only slightly warmer than normal at the equator and scientists say
a mild El Niño is on the way, with less dramatic weather effects.

Reference Now the water is only slightly warmer than normal at the equator, and scientists say a mild El Niño is on the way.
nmt+gl All year, scientists have been forecasting an El Niño.

nmt+gl+oracle The water is only slightly warmer than normal at the equator and scientists say a mild El Niño is on the way.
nmt+Enc(gl)+Dec(oracle) The water is in the equator near South America can affect the weather dramatically, and scientists say a mild El Niño is

on the way
nmt+Enc(gl)+Dec(BCN+ELMo) The water is in the equator near South America can affect the weather dramatically, and scientists say a mild El Niño is

on the way

Table 9. Examples of instances simplified by different models using the SIMP-ONLY dataset. Outputs that do not present the type of operation that appears
in the reference or contain errors are marked in bold and red.

When to simplify We observed that filtering complex instances
that need simplification and then passing these instances on to an s2s
model trained without identical instances always results in better per-
formance than models trained on the dataset as a whole. This is the
case for non-guided models as well as models guided by operations
types. Filtering can be done as part of the model or in a two-stage
approach, where instances are automatically marked for simplifica-
tion then sent to a model trained only on non-identical instance pairs.
Our two-stage approach shows competitive results to those obtained
by oracle filtering followed by the same TS model. Although it can
be argued that a two-stage approach would introduce noise to the
model, it is worth noting that such an approach performs better than
not having any filtering.

How to simplify Informing models with simplification operations
outperforms the baseline models even when using predicted types of
operation, as long as predictions are sufficiently accurate. The best
models are built with our proposed fusion approach, which is sub-
stantially better than simply adding artificial tokens to the source in-
stance.

For whom to simplify We confirm the findings in [21] about the
importance of grade-level information and propose a new method
that adds this information via one-hot vectors. Our new fusion ap-
proach outperforms the use of artificial tokens.

Future work include exploring more fine-grained classification of
operations, such as in [2], and adding types of information, such as
the splitting information learnt by from rules extracted by a robust
semantic parser as shown in [25].
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