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In this paper we present a new method for simulating integrals of stochastic processes. We focus on the

nontrivial case of time integrals, conditional on the state variable levels at the endpoints of a time interval,

through a moment-based probability distribution construction. We present different classes of models with

important uses in finance, medicine, epidemiology, climatology, bioeconomics and physics. The method is

generally applicable in well-posed moment problem settings. We study its convergence, point out its advan-

tages through a series of numerical experiments and compare its performance against existing schemes.

Key words : Stochastic volatility; linear and nonlinear reducible models; Pearson curves; moments;

simulation

1. Introduction

Time integrals of stochastic processes and their simulation feature in numerous research problems

in finance, medicine, epidemiology, technology, engineering, bioeconomics and physics; the cases

mentioned next are certainly non-exhaustive. In financial engineering, time integrals appear in

stochastic volatility models, average options, volatility options and interest rate derivatives. In

turbulent diffusion modelling and related phenomena, the position of a fluid particle at a certain

time is given by the integrated velocity (e.g., see Obukhov 1959). Sums of random variables arise in

wireless communications and related areas (see Nadarajah 2008), portfolio credit risk applications

such as portfolio loss process modelling (see Giesecke et al. 2011 and Dassios and Zhao 2017), but

also specialized areas of biomedical engineering involving signal averaging. Within the family of

sigmoidal growth models, a stochastic Verhulst population model involves a stochastic integral in

its explicit solution that requires accurate simulation for generating probabilistic forecasts in fields
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including geoscience, oncology to describe tumor growth (e.g., see Laird 1964, and later research)

or epidemic dynamics (e.g., see Shen 2020, Wu et al. 2020). A similar simulation challenge appears

in a randomized Schaefer model used to describe the growth of populations living in a randomly

varying environment and being harvested, but also in a Ginzburg–Landau model with uses in

describing phase transition for superconductivity and other broadened applications over the years.

A long-lasting concern in the cases described earlier remains the efficient simulation of stochas-

tic time integrals or the even more involved, as will become clearer later, conditional stochastic

integrals. Our analysis encompasses stochastic volatility models, such as the Heston and double

Heston, stochastic alpha-beta-rho (SABR), Ornstein–Uhlenbeck stochastic volatility (OU-SV), 3/2

and 4/2, but also linear models with multiplicative noise and nonlinear reducible models, such

as the stochastic Verhulst, Gordon–Schaefer and Ginzburg–Landau. We extend our application to

certain model variants with jumps, such as Bates, Duffie–Pan–Singleton (DPS), time-changed Lévy

and self-exciting point processes. Our goal is to unify modelling and, eventually, simulation in a

practicable manner that is fast and accurate.

For years, discretization of stochastic differential equations (SDEs) has featured in the literature

(see, for example, Chen et al. 2012 for a review) as a possible way to go round the simulation of

integrated processes, inevitably yielding a bias, which can be hard to quantify accurately, besides

rendering the procedure particularly tedious. To circumvent this, attempts have been made to

simulate exactly or, perhaps more precisely phrased, recover the O(s−1/2) convergence rate of an

unbiased Monte Carlo estimation with a total computational budget s, such as Broadie and Kaya

(2006), Cai et al. (2017), Kang et al. (2017) and Li and Wu (2019), for different models. These

approaches have proved to be able to produce accurate results. At their core, they rely on simulating

an integrated process over a time interval conditional on its level at the interval endpoints. Although

accurate, they manifest themselves into a serious demerit, as pointed out in the seminal work of

Broadie and Kaya (2006), that is, the implicit need to recover the unknown distribution function of

the conditional integrated process using numerical inversion of the associated Laplace transform.

This can become a heavy load and almost impracticable when generating entire sample trajectories,

aside from potentially introducing error, and thereby bias, and computational burden increases

during numerical integration. Luckily, recent contributions, for example, by Cai et al. (2014a) have

endowed us with computable error bounds of the Laplace transform inversions guaranteeing their

accuracy; nevertheless, computational speed remains an issue in view also of its trade-off with

accuracy, especially when integrating into a Monte Carlo simulation application. This still hinders

the way between the method and the user, leaving space for further research.

Our contribution is summarized as follows. We present a unified methodological framework for

modelling (conditional) integrated processes. This comprises an accurate probability curve fitting
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approach based on the moments of the associated true probability distributions and a mechanism

for measuring the resulting error in end quantities of interest, such as expected value functionals,

in a multi-period context and different true underlying models. The true distributions are unique

by their moments, i.e., they are moment-determinate, resulting in bona fide approximations whose

moments are steered to the corresponding true ones. In fact, this unravels the versatility of our

method, which extends to other distributions that are unique by their moments, beyond integrated

processes. A deterministic recursive procedure allows us to calculate the exact error but also derive

from it a computable upper bound. Although we are exactly fitting a certain number of moments,

we show that the differences between the higher moments of the two distributions are insignificant,

ensuring, by moment determinacy, a very accurate outcome.

We adopt a system of Pearson curves being tractable, versatile and fast in selection for vary-

ing levels of skewness and kurtosis, in parameter estimation and simulation. This choice is driven

by these merits but is not restrictive as our proposed framework is built independently. The

resulting simulation methodology is convergent and very accurate; we employ fast computation of

higher moments based on Choudhury and Lucantoni (1996) and bypass at any stage computation-

ally intensive Laplace transform inversion or differentiation for the computation of the moments.

Another notable merit of it is that the size ∆t of the time interval does not affect accuracy, as there

is not any time-discretization involved. Therefore, it serves as an ideal substitute of approximations

that require a large number of time steps (small ∆t) to potentially secure enough accuracy, when

actually a single time step of arbitrary size suffices and entire sample trajectories, with resulting

undesired time increases, are unnecessary; it can still be used when access to sample trajectories

is intended.

Our framework makes it possible to investigate important applications in different areas. More

specifically, due to increased problem dimensionality, Monte Carlo simulation remains the method

of choice for computing expected values of nonlinear functions of driving processes on several occa-

sions, including cases of path-dependence, advanced stochastic volatility models and self-exciting

point processes, where other solutions are inexistent or slow to compute. Therefore, we consider,

first, the evaluation of path-dependent contracts, encompassing path-independence as a special

case. Second, we explore applications in, typically, non-finance models. We cast a spotlight on

the stochastic logistic model and present an illustrative simulation case study. We also revisit

the Ginzburg–Landau model and its simulation and demonstrate our method’s capability under

stressed volatility conditions.

The remainder of the paper is structured as follows. In Section 2, we introduce moment problem

determinacy that represents the cornerstone of our probability fitting approach to different models;

we give also a complete classification of the Pearson distributions. In Section 3, we present relevant
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financial models. In Section 4, we present our main theoretical result focused on the study of error in

ultimate quantities of interest. In Section 5, we portray our random number generation mechanism

using our moment-based probability distribution build-up. Section 6 presents our numerical study

focused on financial applications, whereas in Section 7 we extend to other models and unfold the

applicability of our simulation method through practical examples in areas such as oncology and

bioeconomics. Section 8 concludes the paper. Supplementary results, materials and some additional

applications are deferred to the e-companion.

2. The moment problem and moment-based approximations: the case of
Pearson curves

Consider a set Ω equipped with a σ-algebra F and some random variable Ψ on Ω that has an

unknown cumulative distribution function G but known moments µn := µn (G). The moment prob-

lem is about deciding whether or not a given distribution is uniquely determined by the sequence

of its moments.

Definition 1 (Stoyanov 2013). Let {µ0 = 1, µ1, µ2, . . .} be a sequence of real numbers and I a

fixed interval, I ⊂R1. Suppose there is at least one distribution function G(x), x∈ I, such that

µn =

∫
I
xndG(x), n= 0,1,2, . . . .

If G is uniquely specified by {µn}, we say that the moment problem is determinate, i.e., the distri-

bution is uniquely determined by its moments; otherwise the moment problem is indeterminate.

There are several sufficient conditions for the moment problem to be determinate or not. We

consider the most relevant criterion to us.

Criterion 1 (Stoyanov 2013). Let G(x), x ∈ R1, be a distribution function whose character-

istic function is τ -analytic, i.e., it can be represented by a convergent power series in the interval

(−τ, τ) for some τ > 0. This happens iff limn→∞ (µ2n)
1/(2n)

/ (2n)<∞.

Then, G is uniquely determined by its moment sequence {µn} and the moment generating

function exists for |a|< c, c > 0.

In this paper, we consider probability distributions that are unique by their moments, in particular,

moment-determinate in the Stieltjes sense (I = [0,∞)), and satisfy Criterion 1. We propose a

general distribution approximation whose accuracy, given moment determinacy, increases with n,

but we postpone further related discussion until later in the paper.

Having explored several possibilities as part of our preliminary study, we singled out Pearson’s

system of distributions due to its simplicity, accuracy and fast member selection and parameter

estimation for given moments, as opposed to the Johnson family of distributions (see Devroye 1986).
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Other algorithms related to scale mixtures and series expansion techniques (e.g., see Hörmann

et al. 2004, p. 325; Abramowitz and Stegun 1968, p. 935; Lindsay et al. 2000) were found quite

inaccurate or even divergent with increasing number of moments (see Fusai and Tagliani 2002).

Hence, we adhere to Pearson distributions, which we will generally denote by G̃, as our choice for

implementing moment matching and eventually drawing random numbers from. This choice does

not constrain the applicability of our proposed framework, which is built independently, as will

become apparent along the way.

Let g̃ be the density function associated with G̃ and first four finite raw moments {µ1, µ2, µ3, µ4}.

Let g̃(x) = ḡ(x−µ1), where ḡ (x) satisfies the differential equation

dḡ (x)

dx
=− c0 +x

c1 + c2x+ c3x2
ḡ (x) . (1)

Solving equation (1) yields well-defined density functions of general form

ḡ (x) = C
(
c1 + c2x+ c3x

2
)− 1

2c3 exp


(c2− 2c0c3) arctan

(
c2+2c3x√
4c1c3−c22

)
c3

√
4c1c3− c2

2

 ,

where C is the normalizing constant and {c0, c1, c2, c3} are the parameters that control the shape

of the distribution. These are calculated during the distribution fitting and are given by

c0 = c2 :=

√
βγ (ε+ 3)

10ε− 12γ− 18
, c1 :=

(4ε− 3γ)β

10ε− 12γ− 18
, c3 :=

2ε− 3γ− 6

10ε− 12γ− 18
,

where

β := µ2−µ2
1, γ :=

(µ3− 3µ1µ2 + 2µ3
1)

2

(µ2−µ2
1)

3 , ε :=
µ4− 4µ1µ3 + 6µ2

1µ2− 3µ4
1

(µ2−µ2
1)

2 (2)

are, respectively, the variance, squared skewness and kurtosis of the Pearson random variable. It

may be worth noting that, although numerical methods exist making possible the Pearson system

to fit more than four moments, they inevitably impact the computational effort (see Rose and

Smith 2002, Chapter 5) therefore we do not consider them here. Later in Section 6, we study the

closeness of the higher-order moments of a four-moment Pearson curve fit to the true ones and

favourably show that, in practice, the differences remain very small also under challenging model

parameterizations.

Given knowledge of the first four integer moments, we select a Pearson distribution family type

based on the η-criterion by Elderton and Johnson (1969):

η :=
γ (ε+ 3)

2

4 (4ε− 3γ) (2ε− 3γ− 6)
.
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In particular, we get from it the main types I (η < 0), IV (0 < η < 1) and VI (η > 1); and the

transition types, i.e., normal (η = 0, ε = 3), II (η = 0, ε < 3), III (η = ±∞), V (η = 1) and VII

(η= 0, ε > 3).

As said in the introduction, in this paper we focus primarily on the random variable Ψ repre-

senting (conditional) stochastic time integrals. This does not impose a limitation as, based on what

said earlier, we can generally apply to moment-determinate problems; in fact, in Section EC.8.1 of

the e-companion we present an additional application to the Carr–Geman–Madan–Yor (CGMY)

model. In the next section, we focus the spotlight on our major application on stochastic volatility

models, whereas in later sections we turn our attention to other prevalent classes of models.

3. Stochastic volatility models

Let (Ω,F ,Q,{Ft}) be a filtered probability space where the filtration satisfies the usual conditions

with F0 trivial. This filtered probability space supports all the processes we encounter in the sequel

and Q denotes the risk neutral probability measure.

We consider a stochastic model (S (t) , V (t))t≥0 where S and V denote, respectively, the asset

price and variance (or volatility) processes. The model is generally given by{
dS(t) = rS(t)dt+β (V (t))S(t)

(
ρdW2(t) +

√
1− ρ2dW1(t)

)
dV (t) = α (V (t))dt+ γ (V (t))dW2(t)

, (3)

where W1 and W2 are independent standard Brownian motions, r is the continuously compounded

risk-free interest rate and ρ ∈ [−1,1] the instantaneous correlation between the two processes.

The functions β (·) and γ (·) are continuously differentiable and the quotient β (·)/γ (·) is locally

integrable in the state space of V and Q
(∫ t

u
β2 (V (s))ds <∞

)
= 1, 0≤ u < t <∞ (see Mijatović

and Urusov 2012, Cui et al. 2017). Following Cui et al. (2021), we consider the auxiliary functions

w (x) :=

∫
β (z)

γ (z)
dz, h (x) := α (x)w′ (x) +

1

2
γ2 (x)w′′ (x) ,

where the first resembles the Lamperti transform and the second follows from applying the infinites-

imal generator of V (t) to w. The following useful representation then holds:∫ t

u

β (V (s))dW2(s) =w (V (t))−w (V (u))−
∫ t

u

h (V (s))ds,

based on which the solution of (3) can be written as

S(t) = exp

(
m (u, t) +

√
1− ρ2

∫ t

u

β (V (s))dW1(s)

)
,

where

m (u, t) := lnS(u) + r (t−u)− 1

2

∫ t

u

β2 (V (s))ds+ ρ

[
w (V (t))−w (V (u))−

∫ t

u

h (V (s))ds

]
. (4)
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Thus, the following conditional normal distribution N (m,s2), for mean m and variance s2, applies:(
lnS(t)

∣∣∣∣lnS(u), V (u), V (t),

∫ t

u

β2 (V (s))ds

)
∼N

(
m (u, t) , s2 (u, t)

)
, (5)

where

s2 (u, t) :=
(
1− ρ2

)∫ t

u

β2 (V (s))ds. (6)

We summarize typical examples of the form (3) in Table 1, where Ψ(u, t) corresponds to the

integrated process(es) of interest following from
∫ t
u
β2 (V (s))ds for each model and represents a

key quantity in our study later and Φ(t) to the relevant conditioning arguments based on V .

Extended model constructions with independent jumps in the asset price process (Bates 1996),

contemporaneous asset price and variance jumps of correlated magnitudes (Duffie et al. 2000) and

time-changed Lévy models (Carr et al. 2003) are well known, hence, in the interest of space, we

omit their details here and defer to Section 5.3 some more notes on their simulation.

We consider three typical cases of stochastic variance processes. The first is described by a

Cox et al. (1985) (CIR) square-root diffusion with constant parameters θ, k, v corresponding to

dV (t) = k(θ − V (t))dt+ v
√
V (t)dW2(t) in (3), implying α (x) = k(θ − x) and γ (x) = v

√
x. If the

Feller condition, 2kθ≥ v2, is satisfied, the zero boundary is unattainable. Otherwise, it is attracting

and attainable; at the zero boundary though, the process is immediately reflected into the positive

domain. The variance transition is given by

V (t)
(law)
=

v2(1− e−k(t−u))

4k
χ′2d

(
4ke−k(t−u)V (u)

v2(1− e−k(t−u))

)
,

where χ′2d (λ) is a noncentral chi-squared random variable with d := 4θk/v2 degrees of freedom

and noncentrality parameter λ. This process is used in models such as Heston (Heston 1993)

(and its multifactor extension), 3/2 (Heston 1997, Platen 1997) and 4/2 (Grasselli 2017). In the

second case, the volatility, instead, evolves according to a driftless geometric Brownian motion,

i.e., dV (t) = vV (t)dW2(t), hence α (x) = 0 and γ (x) = vx. In this case, we have that

lnV (t)∼N
(

lnV (u)− 1

2
v2(t−u), v2(t−u)

)
. (7)

This volatility specification appears in the SABR model. In the last case we consider, the volatility

is represented by a Gaussian OU model (Scott 1987, Stein and Stein 1991, Schöbel and Zhu 1999),

dV (t) = k(θ − V (t))dt+ vdW2(t), based on which α (x) = k(θ − x) and γ (x) = v. Here, we have

(e.g., see Li and Wu 2019) that(
V (t),

∫ t

u

V (s)ds

)
∼N2

(
µ (u, t) ,Σ(u, t)

)
,
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Table 1 Key quantities in simulation of different models

Heston model

β (x) =
√
x, w (x) = x

v
, h (x) = kθ

v
− k

v
x

Φ(t) = V (t), Ψ(u, t) =
∫ t
u
V (s)ds

m (u, t) = lnS(u) + r(t−u)− Ψ(u,t)
2

+ ρ
v

(Φ (t)−Φ (u)− kθ(t−u) + kΨ (u, t))
s2 (u, t) = (1− ρ2)Ψ (u, t)

Double Heston model

β (x) =
√
x, w (x) = x

vj
, h (x) =

kjθj
vj
− kj

vj
x

Φ(t) = (Vj(t))j , Ψ(u, t) =
(∫ t

u
Vj(s)ds

)
j

m (u, t) = lnS(u) + r(t−u) +
∑2
j=1

(
ρj
vj

(Φj (t)−Φj (u)− kjθj(t−u) + kjΨj (u, t))− Ψj(u,t)

2

)
s2 (u, t) =

∑2
j=1(1− ρ2

j )Ψj (u, t)

4/2 model

β (x) = a
√
x+ b√

x
, w (x) = a

v
x+ b

v
lnx, h (x) = k(aθ−b)

v
− ka

v
x+

(
kθ
v
− v

2

)
b
x

Φ(t) = V (t), Ψ(u, t) =
(∫ t

u
V (s)ds,

∫ t
u

ds
V (s)

)
m (u, t) = lnS(u) +

(
r− ab− aρkθ

v
+ bρk

v

)
(t−u) + aρ

v
(Φ (t)−Φ (u)) + bρ

v
ln Φ(t)

Φ(u)

+
(
aρk
v
− a2

2

)
Ψ1 (u, t) +

[
bρ
v

(
v2

2
− kθ

)
− b2

2

]
Ψ2 (u, t)

s2 (u, t) = (1− ρ2)
(
a2Ψ1 (u, t) + b2Ψ2 (u, t) + 2ab(t−u)

)
SABR model

β (x) = x, w (x) = x
v

, h (x) = 0
Φ(t) = V (t), Ψ(u, t) = 1∫ t

u V
2(s)ds

m (u, t) = lnS(u)− 1
2Ψ(u,t)

+ ρ
v

(Φ (t)−Φ(u))

s2 (u, t) = 1−ρ2
Ψ(u,t)

OU-SV model

β (x) = x, w (x) = x2

2v
, h (x) = v

2
+ kθ

v
x− k

v
x2

Φ(t) =
(
V (t),

∫ t
u
V (s)ds

)
, Ψ(u, t) =

∫ t
u
V 2(s)ds

m (u, t) = lnS(u) +
(
r− ρv

2

)
(t−u) + ρ

2v
(Φ2

1 (t)−Φ2
1 (u))− ρkθ

v
Φ2 (u, t) +

(
ρk
v
− 1

2

)
Ψ (u, t)

s2 (u, t) = (1− ρ2)Ψ (u, t)

Linear & Reducible SDEs

Φ (t) = Y (t;a, b, γ)
Ψ (u, t) = 1∫ t

u Y (s;a,b,γ)ds

Notes. For more details regarding the functions β (x), w (x), h (x) for the Heston, Double Heston, 4/2, SABR

and OU-SV models, refer to Section 3. For more information regarding the linear and reducible models,

refer to Section 7. Ψ(u, t) is the key random variable in each model whose conditional distribution given

Φ(t) we are approximating. Where applicable, m(u, t) and s2(u, t) correspond to the mean and variance of(
lnS(t)

∣∣∣lnS(u), V (u), V (t),
∫ t
u
β2 (V (s))ds

)
.

where N2 is a bivariate normal distribution with mean vector and covariance matrix

µ (u, t) :=

(
(V (u)− θ)(1− ζ (u, t)) + θ

θ(t−u) + (V (u)−θ)ζ(u,t)
k

)
and Σ(u, t) :=

 v2ζ(u,t)(2−ζ(u,t))
2k

v2ζ2(u,t)

2k2

v2ζ2(u,t)

2k2

−v2ζ2(u,t)+2kv2
(
t−u− ζ(u,t)k

)2

2k3

 ,

respectively, for ζ (u, t) := 1 − exp (−k (u− t)). This requires augmenting the conditioning argu-

ments in (5) to encompass
∫ t
u
V (s)ds.

An extension of the model specification (3) to two stochastic variance factors is due to Christof-

fersen et al. (2009) (a multifactor generalization is also possible), with (4) and (6) becoming{
m (u, t) = lnS(u) + r (t−u) +

∑2

j=1

{
− 1

2

∫ t
u
β2 (Vj(s))ds+ ρj

[
w (Vj(t))−w (Vj(u))−

∫ t
u
h (Vj(s))ds

]}
s2 (u, t) =

∑2

j=1(1− ρ2
j)
∫ t
u
β2 (Vj(s))ds

.
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Another generalization of (3) is the SABR model (Hagan et al. 2002) with the forward asset price

dynamics governed by a constant elasticity of variance (CEV) diffusion process with elasticity

parameter b∈ [0,1] and volatility evolving according to (7):{
dS(t) = V (t)Sb(t)

(
ρdW2(t) +

√
1− ρ2dW1(t)

)
dV (t) = vV (t)dW2(t)

. (8)

The boundary case of b = 1 is straightforward and conforms to formulation (3). This opposes,

though, to the more challenging case of b ∈ [0,1) as an exact closed-form solution to (8) is not

generally available. More specifically, for ρ= 0 and (S(t), t≥ 0) with an absorbing boundary at 0

(Islah 2009, Cai et al. 2017), the exact distribution

Q

(
S(t) = 0

∣∣∣∣S(u), V (u), V (t),

∫ t

u

β2 (V (s))ds

)
= 1−Qχ2

(
A0;

1

1− b

)
, (9)

Q

(
S(t)≤ y

∣∣∣∣S(u), V (u), V (t),

∫ t

u

β2 (V (s))ds

)
= 1−Qχ′2

(
A0;

1

1− b
,C0(y)

)
(10)

for any y > 0 holds, where

A0 :=

(
S(u)1−b

1−b

)2

∫ t
u
β2 (V (s))ds

, C0(y) :=

(
y1−b

1−b

)2

∫ t
u
β2 (V (s))ds

,

and Qχ2(·;d) and Qχ′2(·;d,λ) denote, respectively, the chi-squared and noncentral chi-squared

cumulative distribution functions. When ρ 6= 0 and (S(t), t≥ 0) has an absorbing boundary at 0,

we typically resort to the approximate distribution

Q

(
S(t) = 0

∣∣∣∣S(u), V (u), V (t),

∫ t

u

β2 (V (s))ds

)
≈ 1−Qχ2

(
A; 1 +

b

(1− b)(1− ρ2)

)
, (11)

Q

(
S(t)≤ y

∣∣∣∣S(u), V (u), V (t),

∫ t

u

β2 (V (s))ds

)
≈ 1−Qχ′2

(
A; 1 +

b

(1− b)(1− ρ2)
,C(y)

)
(12)

for y > 0, where

A :=

(
S(u)1−b

1−b + ρ [w (V (t))−w (V (u))]
)2

(1− ρ2)
∫ t
u
β2 (V (s))ds

, C(y) :=

(
y1−b

1−b

)2

(1− ρ2)
∫ t
u
β2 (V (s))ds

.

The previous exact and semi-exact results can be extended to the SABR model with a reflecting

boundary; for brevity, we omit those here and refer to Islah (2009) (also Cai et al. 2017).

We conclude this section with an important remark, linked to the moment problem defined in

the previous section. More specifically, for the models presented here the moment problem is indeed

determinate, i.e., the distribution of (Ψ(u, t)|Φ(t)) (see Table 1) is uniquely determined by the

sequence of its moments, consistently with Criterion 1. Based on the results given in Section EC.2

of the e-companion for the different models, the corresponding moment generating functions exist

for all a ∈ (−c, c), where c > 0. For example, from (EC.3) for Heston, we have that a≥−k2/2v2;

from (EC.4) for SABR, a≥−(V (t)− V (u))2/2v2; from (EC.5) for OU-SV, a≥−k2/2v2; and for

4/2 from (EC.6), a≥−k2/2v2 and b≥−(2θk−v2)2/8v2. Thus, for all these cases it is implied that

all the moments are finite and the moment problem is determinate.
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4. General framework for gauging error

The use of an approximation to the true probability distribution is likely to induce some error.

In this section, we focus on how any error from the distributional approximation translates to the

ultimate quantities of interest, such as expected value functionals. To this end, we, first, derive

in Section 4.1 a deterministic procedure for calculating the exact error and, by exploiting this,

we further derive in Section 4.2 a deterministic upper bound to it that is easily accessible and

computable, assisted by useful results of proximity of two distributions presented in Section 4.3. We

focus the spotlight on a general multi-period problem, which can be simplified to a single period

upon path-independence, or be amended according to different path-dependent functions.

4.1. Value function backward recursion

In what follows, we consider a time horizon T > 0 and partition the whole time interval into N

equal points: 0 = t0 < t1 < · · ·< tN = T . Where necessary, we use relevant subscripts with reference

to time on the various quantities that we define on the time grid. Different functions can be defined

on this grid. For example,

ΠN = (K −SN)
+
,

where y+ := max(y,0), corresponds to the payoff of a plain vanilla put option with maturity time

T and fixed strike price K;

Πj,N = (K −SN)
+
∏N

i=j
1{Si≤$},

where 1{·} denotes the indicator of the event {·}, corresponds to a type of barrier option (for

example, here, an up-and-out put) with fixed barrier level $>S0;

Πj,N =
(
K − M̄j,N

)+
,

where M̄j,N := minj≤i≤N Si, corresponds to the payoff of a lookback put option; and,

Πj,N =

(
K − 1

N − j+ 1

∑N

i=j
Si

)+

(13)

equals the payoff of an Asian put option. Other functions can be accommodated based on the previ-

ous ones via standard parity relationships (we can make these available upon request; alternatively,

readers may refer, for example, to Rubinstein 1991).

In the next theorem, we derive a backward iterative scheme for expected path-dependent func-

tion values. It is general in terms of driving model assumptions, therefore it can be used to compute

expected values under a true or approximating distribution law; their difference gives the approx-

imation error. We aim to be as general as possible in our main exposition, concentrating on the

barrier case, which encompasses the plain vanilla and other exotic variants, and explaining subse-

quently how to adapt to those.
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Theorem 1. Let s := lnS and gs|Φ be the conditional density function of sk given sk−1 and Φk =

(φk|φk−1). In addition, gΦ(φk;φk−1) denotes the transition density of the process Φ supported on

some interval IΦ := (`φ, rφ), −∞≤ `φ < rφ ≤∞. Define the functions

pN (sN , φN) = (K − esN )
+

1{sN≤ln$}, for all φN ∈ IΦ,

pk−1 (sk−1, φk−1) =

∫
IΦ

∫ ln$

−∞
pk (s,φ)gs|Φ(s|φ;sk−1, φk−1)gΦ(φ;φk−1)dsdφ, 0<k≤N. (14)

Then, at time 0,

E0 [Π0,N ] = p0 (s0, φ0) .

Proof. We prove by induction on k that, conditional on the information at time tk,

Ek [Πk,N ] = pk (sk, φk)

for k= 0, . . . ,N . The result holds trivially for k=N corresponding to ΠN,N . Suppose that

Ek+1 [Πk+1,N ] = pk+1 (sk+1, φk+1)

also holds for arbitrary k <N − 1. Then, by iterated expectations,

Ek [Πk,N ] = Ek [Ek+1 [Πk+1,N ]] =Ek [pk+1 (sk+1, φk+1)]

=

∫
IΦ

∫ ln$

−∞
pk+1 (s,φ)gs|Φ (s|φ;sk, φk)gΦ(φ;φk)dsdφ= pk (sk, φk)

based on (14). Therefore the statement is true and, by induction,

E0 [Π0,N ] = p0 (s0, φ0) .

Remark 1. First, in the case of the lookback option, we focus directly on the distribution of the

extremum M̄k,N , hence we replace Πk,N by J̄k,N =
∏N

i=k 1{Si>$} in Theorem 1 and we have now

pN (sN , ·) = 1{sN>ln$}. The ultimate outcome at time 0 is E0

[
J̄0,N

]
= 1−GM̄0,N

($), where GM̄0,N

is the distribution function of M̄0,N , based on which E0 [Π0,N ] =−KGM̄0,N
(0) +

∫ K
0
GM̄0,N

($)d$.

Second, the plain vanilla option being path-independent with pN (sN , ·) = (K − esN )1{sN≤lnK}

results in a reduced one-period problem. Third, for the Asian option, it is necessary to employ a

state-space reduction based on the new process

S̄k =
1

N + 1

(
K(N + 1)−

∑k

i=0Si
Sk

)
, 0≤ k≤N,

from which

S̄k =
1

N + 1

(
K(N + 1)−

∑k−1

i=0 Si
Sk−1

)
esk−1−sk − 1

N + 1
= S̄k−1e

sk−1−sk − 1

N + 1
(15)
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and, for the payoff (13),

Π0,N =

(
K − 1

N + 1

∑N

i=0
Si

)+

= SN S̄
+
N .

Following a standard equivalent probability measure change, E0 [Π0,N ] can then be computed via

backward recursion.

It is worth noting that the previous computations are simplified when gsk|·(sk| ·;sk−1, ·) =

gsk−sk−1|·(sk− sk−1| ·; ·). Under a more general process s specification, where gsk|· does not depend

on sk and sk−1 only via their difference (e.g., SABR model), we must keep track of both s and the

path-based variable (such as the running average, see expression 15) and (14) in Theorem 1 has

to be slightly adjusted to reflect that; we omit the relevant details here, but readers may refer to

Sesana et al. (2014).

The approach presented in Theorem 1 can be implemented very accurately via numerical inte-

gration/transform techniques (e.g., an adapted two-dimensional version of Lord et al. 2008). It

represents a universal computational engine in terms of underlying model assumptions. For exam-

ple, it can be used in conjunction with the true gs|Φ, but also an approximating density g̃s̃|Φ (see

also Section 4.3). The difference of the outcome from both implementations,

p0− p̃0, (16)

amounts to the compounded error from the approximation.

4.2. Value function error bound

The dimensionality of the computations involved in Theorem 1 can be considerably reduced by

means of an error bound that is faster to evaluate. We develop here our main theoretical result that

is of practical relevance, having the advantage of facilitating the error computation and reflecting

the error propagation in time related to the backward recursion of the previous section. Following

Theorem 1, we build our result based on the barrier option case, which however can be adjusted

to other cases according to Remark 1.

Theorem 2. Let Gs|Φ and G̃s̃|Φ be the conditional distribution functions of sk and s̃k given sk−1

and s̃k−1, respectively, and Φk = (φk|φk−1). In addition, Ek [·] denotes the conditional expectation

given Ωk := (sk, s̃k, φk). Consider

R1 (ΩN−1) := |K −$|Υ1 (ln$;ΩN−1) +

∫ ln$

−∞
Υ1 (s;ΩN−1)esds,

R2 (φk,Ωk−1) :=

∫ 1

0

∣∣∣G−1
s|Φ (u|φk;sk−1, φk−1)− G̃−1

s̃|Φ (u|φk; s̃k−1, φk−1)
∣∣∣du, (17)
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where

Υ1 (s;ΩN−1) :=

∫
IΦ

Υ(s;φ,ΩN−1)gΦ(φ;φN−1)dφ,

Υ(s;φ,ΩN−1) :=
∣∣∣Gs|Φ (s|φ;sN−1, φN−1)− G̃s̃|Φ (s|φ; s̃N−1, φN−1)

∣∣∣ (18)

for all s and φ. Suppose that R1 := supEN−2

[
R1

(
Ω̃N−1

)]
< ∞, where Ω̃k := (s̃k, s̃k, φk), and

R2 := supEk−1 [R2 (φk,Ωk−1)]<∞. Then,

|pk−1 (sk−1, φk−1)− p̃k−1 (s̃k−1, φk−1)| ≤R1 +K (N − k)R2, 0<k≤N. (19)

Remark 2. In the one-period problem, we have that k = N = 1, $ is replaced by K and the

simplifications R1 =R1 (Ω0) and R2 =E0 [R2 (φ1,Ω0)] hold naturally from the proof that follows.

Proof. From (14) for k=N , we have that

pN−1 (sN−1, φN−1) =

∫ ln$

−∞
(K − es)g1,s (s;sN−1, φN−1)ds

= (K −$)G1,s (ln$;sN−1, φN−1) +

∫ ln$

−∞
esG1,s (s;sN−1, φN−1)ds,

where

G1,s (s;sN−1, φN−1) =

∫
IΦ
Gs|Φ (s|φ;sN−1, φN−1)gΦ(φ;φN−1)dφ

and g1,s denotes the associated density. Similar result holds based, instead, on s̃. Therefore,

|pN−1 (sN−1, φN−1)− p̃N−1 (s̃N−1, φN−1)|

≤ |K −$|
∣∣∣G1,s (ln$;sN−1, φN−1)− G̃1,s̃(ln$; s̃N−1, φN−1)

∣∣∣
+

∫ ln$

−∞

∣∣∣G1,s(s;sN−1, φN−1)− G̃1,s̃(s; s̃N−1, φN−1)
∣∣∣esds

= |K −$|Υ1 (ln$;sN−1, s̃N−1, φN−1) +

∫ ln$

−∞
Υ1 (s;sN−1, s̃N−1, φN−1)esds=R1 (ΩN−1) .

Proceeding to the next iteration, we get based on (14) that

|pN−2(sN−2, φN−2)− p̃N−2(s̃N−2, φN−2)|

≤
∫
IΦ

∫
R

∣∣pN−1 (s,φ)gs|Φ (s|φ;sN−2, φN−2)− p̃N−1 (s,φ) g̃s̃|Φ (s|φ;sN−2, φN−2)
∣∣dsgΦ(φ;φN−2)dφ

= EN−2 [|pN−1 (sN−1, φN−1)− p̃N−1 (s̃N−1, φN−1)|] .

This is further bounded by

EN−2 [|pN−1 (s̃N−1, φN−1)− p̃N−1 (s̃N−1, φN−1)|] +EN−2 [|pN−1 (sN−1, φN−1)− pN−1 (s̃N−1, φN−1)|] .
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With regard to the first term, we have that

EN−2 [|pN−1 (s̃N−1, φN−1)− p̃N−1 (s̃N−1, φN−1)|]≤EN−2

[
R1

(
Ω̃N−1

)]
.

In relation to the second term, Taylor’s theorem implies

|pN−1 (sN−1, φN−1)− pN−1 (s̃N−1, φN−1)| ' |sN−1− s̃N−1| |∂1pN−1 (s,φ)| ,

where ∂1p refers to the first-order derivative of p with respect to its first argument. We also have

that

∂1pk−1 (sk−1, φk−1) =

∫
IΦ

∫ ln$

−∞
∂1pk (s,φ)gs|Φ(s|φ;φk−1)gΦ(φ;φk−1)dsdφ,

so that sup |∂1pk−1| ≤ sup |∂1pk|. Now pN (s) = (K − es)+
1{s≤ln$} implying that ∂1pN (s) =

−es1{s≤ln$,s≤lnK} and |∂1pN (s)| = es1{s≤ln$,s≤lnK} ≤ K, hence K is a universal bound for the

derivative. Therefore,

EN−2 [|pN−1 (sN−1, φN−1)− pN−1 (s̃N−1, φN−1)|]<KEN−2 [|sN−1− s̃N−1|] ,

where, by the inverse transform method, sN−1 = G−1
s|Φ (UN−1|φN−1;sN−2, φN−2) and s̃N−1 =

G̃−1
s̃|Φ (UN−1|φN−1; s̃N−2, φN−2) for UN−1 ∼Unif(0,1), so that sN−1 and s̃N−1 are made as similar as

possible. Then, from (17)

EN−2 [|sN−1− s̃N−1|] =EN−2 [R2 (φN−1,ΩN−2)] .

Finally, we get that

|pN−2(sN−2, φN−2)− p̃N−2(s̃N−2, φN−2)| ≤EN−2

[
R1

(
Ω̃N−1

)]
+KEN−2 [R2 (φN−1,ΩN−2)] .

Therefore, the statement (19) is true for k = N − 1. Now assume that it holds for arbitrary

k <N − 1. Then,

|pk−1(sk−1, φk−1)− p̃k−1(s̃k−1, φk−1)|

≤ Ek−1 [|pk (s̃k, φk)− p̃k (s̃k, φk)|] +Ek−1 [|pk (sk, φk)− pk (s̃k, φk)|]

≤ R1 +K (N − k− 1)R2 +KEk−1 [R2 (φk,Ωk−1)]≤R1 +K (N − k)R2,

which concludes the proof.
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4.3. Proximity of distributions with shared moments

The distance (18) is key for the practical implementation of Theorem 2. A possible way of computing

this is (see Feller 1971)

Gs|Φ (s|φ; ·)− G̃s̃|Φ (s|φ; ·) =
2

π

∫ ∞
0

sin (us)

u

[
<(ϕGs|Φ (u|φ; ·))−<(ϕG̃s̃|Φ (u|φ; ·))

]
, (20)

where <(·) denotes the real part function. (An adjusted version can be used for the quantile

functions in integral 17.) ϕGs|Φ (u|φ; ·) =E[eius|φ; ·] and ϕG̃s̃|Φ (u|φ; ·) =E[eius̃|φ; ·] are the relevant

characteristic functions, see equation (23).

Computing (20) can be facilitated by suitable conditioning arguments for the various models

presented in Section 3 (see also Table 1). Consider, for example, the Heston model. Conditional on

(Ψ,Φ), its distribution law is given by

sk = α (sk−1, φk−1) +βΦk + γΨk−1,k +
√
δΨk−1,kYk, Yk ∼N (0,1) , (21)

where Y is independent of Φ and Ψ, α (sk−1, φk−1) = sk−1 + (r − βkθ)(tk − tk−1) − βφk−1, γ =

βk− 1/2, β = ρ/v, δ= 1− ρ2. Based on this,

Gs|Φ(s|φ;sk−1, φk−1) =

∫ ∞
0

Gs|Ψ,Φ(s|x,φ;sk−1, φk−1)gΨ|Φ(x|φ;φk−1)dx, (22)

where

Gs|Ψ,Φ( ·|x,φ;sk−1, φk−1) =
1√

2πδx

∫ ·
−∞

e−
(s−α(sk−1,φk−1)−βφ−γx)2

2δx ds.

The associated characteristic function is given by

ϕGs|Φ(u|φ;sk−1, φk−1) =

∫ ∞
0

eiu(α(sk−1,φk−1)+βφ+γx)− δxu
2

2 gΨ|Φ(x|φ;φk−1)dx (23)

= eiu(α(sk−1,φk−1)+βφ)ϕGΨ|Φ

(
u

(
γ+

iδu

2

)∣∣∣∣φ;φk−1

)
, (24)

where ϕGΨ|Φ is given by (EC.3) in the e-companion Section EC.2. Introducing the approximating

law for (Ψ̃|Φ), we define by analogy

s̃k = α (s̃k−1, φk−1) +βΦk + γΨ̃k−1,k +

√
δΨ̃k−1,kYk,

where Y is also independent of Ψ̃, and replace by g̃Ψ̃|Φ in (22)–(23) and ϕG̃
Ψ̃|Φ

in (24) which we

derive for the Pearson distribution in Proposition EC.1 in Section EC.1 of the e-companion. Finally,

relevant representations hold for other models, see e-companion Section EC.3.

If the conditional moments of Ψ̃ given Φ are equal to those of Ψ given Φ, then the same holds

between s̃ given Φ and s given Φ. This becomes obvious from the linking relationship of their

moments. A straightforward application of the binomial theorem to (21) yields for general moments

Ek−1 [snk |Φk] =
n∑
j=0

(
n

j

)
δ(n−j)/2E

[
Y n−j
k

] j∑
k=0

(
j

k

)
(α (sk−1, φk−1) +βΦk)

k
γj−kE

[
Ψ

(n+j)/2−k
k−1,k

∣∣∣Φk

]
,
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where E [Y n
k ] is equal to the double factorial (n−1)!! if n is even, otherwise it is equal to 0. We note

that the required integer moments of (Ψ|Φ) from 1 to n can be computed, for example, the way

we explain in Section 5.2, whereas the non-integer moments are, in practice, not needed because

they are multiplied by the odd moments of Y that are equal to zero. The previous moments can

also be obtained from ϕGs|Φ and ϕG̃
Ψ̃|Φ

.

An alternative to (20) way of computing (18) is through a bound. In the space of distribu-

tion functions of random variables, the topology given by the uniform metric (Kolmogorov 1933,

Zolotarev 1983) between any pair of elements G and G̃ is defined, adapted to our random variable

notation, as

ρ
(
Gs|Φ, G̃s̃|Φ

)
= sup

x

∣∣∣Gs|Φ (x)− G̃s̃|Φ (x)
∣∣∣ , (25)

which represents a natural bound to (18). In addition, the Lévy distance (Lévy 1925) is defined as

L
(
Gs|Φ, G̃s̃|Φ

)
= inf

{
ε : Gs|Φ (x− ε)− ε≤ G̃s̃|Φ (x)≤Gs|Φ (x+ ε) + ε for all x

}
.

The two metrics are linked as follows.

Lemma 1 (Linnik and Ostrovskĭı 1977). For all distribution functions G and G̃,

L
(
G,G̃

)
≤ ρ

(
G,G̃

)
≤ (1 + %)L

(
G,G̃

)
, (26)

where %= supx G̃
′ (x) if G̃ is absolutely continuous.

Klebanov and Mkrtchyan (1986) have studied closeness in the L-metric in terms of the truncated

Carleman’s series whose divergence suffices for the moment problem to be determinate (Akhiezer

1965). Rachev et al. (2013, Theorem 10.3.4) allow us to restate one of the original Klebanov and

Mkrtchyan’s (1986) results when the higher moments of the two distributions are not coinciding

but are only fairly close. Therefore, for G and G̃ with finite moments up to order 2m and∣∣∣µn(Gs|Φ)−µn(G̃s̃|Φ)
∣∣∣≤ δG,G̃, n= 1, . . . ,2m,

where 0< δG,G̃ ≤ 1, we have that

L
(
Gs|Φ, G̃s̃|Φ

)
≤ 2

ln
(

1 + δ
−1/2

G,G̃

) +

(
2µ2m

(2m)!

) 1
2m+1

. (27)

This is an important result as it is not only based on moments, which is structural element of

our approach, but it also implies that the error remains bounded even when the moments do

not match perfectly. Whilst we are exactly fitting a certain number of moments in a well-posed

moment problem setting, in practice, as we will show in Section 6.1, the higher moments of the two

distributions are very close, which by moment determinacy ensures an accurate approximation.

Some alternatives related to the uniform metric are presented in Sections EC.4.1–EC.4.2 of the

e-companion.
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5. Moment-based random number generator

We now turn our attention to the simulation problem which represents the main thrust of this

research. Focusing on the models of Section 3, key quantities in them (but also of those later in

Section 7) are conditional integrated processes defining moment-determinate problems, which we

have generally denoted by Ψ(u, t), and the relevant conditioning arguments Φ(t); see Table 1.

The relevant simulation procedure is summarized as follows:

1. Simulate (Φ(t)|V (u))

2. Simulate (Ψ(u, t)|V (u),Φ(t))

3. Simulate (s(t)|s(u), V (u),Φ(t),Ψ(u, t)).

Steps 1 and 3 are trivial as we have seen that the conditional distributions are known; what remains

a challenge is the generation of conditional samples from Ψ(u, t) in step 2. Hitherto in the literature,

exact simulation of the conditional Ψ(u, t) has relied on numerical inversion of its Laplace transform

L(a) :=E [exp (−aΨ(u, t)) |Φ(t)] (refer to e-companion Section EC.2 for the various models), which

is nevertheless the hardest and most time-consuming step of the whole simulation scheme. For this

reason, typical exact simulation schemes are very slow when used to simulate entire trajectories

due to multiple numerical inversion of the previous Laplace transform at each time u. For ease

of notation when referring to the conditional distribution of Ψ(u, t), we focus hereafter on the

condition on Φ(t), which is key in our problem, with the rest of the information up to time u

implied.

5.1. Random number generation based on fitted Pearson curves

We aim to circumvent the previous stumbling block by proposing a new approach to simulating

(Ψ(u, t)|Φ(t)) relying on a Pearson curve fit to the corresponding theoretical distribution introduced

in Section 2.

Once the Pearson curve type is determined, we can draw random numbers from it. First, we

generate random numbers Ȳ from the selected standardized family with zero mean and variance

equal to unity, based on the procedure summarized in Section EC.5 of the e-companion (see Johnson

et al. 1994 for more details). Then, we rescale and shift using the true mean µ1 and standard

deviation (µ2−µ2
1)1/2 to obtain

Ỹ := µ1 +
√
µ2−µ2

1Ȳ (28)

corresponding to a random sample from (Ψ(u, t)|Φ(t)).
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5.2. Computation of moments

Associated with our moment-based technique is our additional contribution of efficient computation

of the integer moments. The n-th conditional moment of Ψ(u, t) is traditionally given by

µn = (−1)n
∂n

∂an
L(a)

∣∣∣∣
a=0

. (29)

However, computing the moments from (29) may not be practicable, especially for high orders, as

the Laplace transform may involve special functions. For example, consider the relevant Laplace

transform (EC.3) for the Heston model. Evaluating the first four moments of Ψ(u, t) from (29),

using, e.g., the symbolic toolbox of Mathematica, requires 307 Bessel function evaluations, which

is highly computationally intensive but also endangers numerical errors.

In this paper, we bypass such kind of problem by numerical inversion of an adaptively modified

moment generating function introduced by Choudhury and Lucantoni (1996). According to this,

µn =
n!

2nlrnnα
n
n

{
L(αnrn) + (−1)nL(−αnrn) + 2

nl−1∑
j=1

<(L(αnrne
πij/nl)e−πij/l)

}
− ên, (30)

ên :=
∞∑
j=1

α2ljn
n

n!

(n+ 2ljn)!
µn+2ljn10−γj,

where the latter is the error term. The choice rn := 10−γ/(2nl) is made in order to bound the error

and achieve accuracy of the order 10−γ . Algorithm 1 summarizes the procedure for computing any

m integer moments as well as the parameter l and the adaptive αn.

Algorithm 1 Numerical inversion of adaptively modified moment generating function
Input: m, γ, L(·)

Output: {µn}mn=1

1: Set l= α1 = 1 and compute µ1 from (30)

2: Compute α2 = 1/µ1 and µ2

3: Set l= 1∨ 2 and α1 = α2 = 2µ1/µ2 and compute new values for µ1 and µ2 (from 30)

4: Set n= 3

5: while n≤m do

6: l= 1∨ 2, compute αn = (n− 1)µn−2/µn−1

7: Compute µn from (30)

8: n= n+ 1

9: end
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The proposed method has several merits. First, it is fast: for the first four moments, the Laplace

transform is evaluated 14 times = 2 (for µ1) + 3 (for µ2) + 4 (for µ3) + 5 (for µ4) (for l= 1 used in

equation 30). Hence, for the Heston model, the Bessel function in (EC.3) is evaluated just 28 times,

which is a drastic reduction from 307 times if we used (29) instead. Second, it is very accurate:

using γ = 11 as per the recommendation of Choudhury and Lucantoni (1996), the error appears,

consistently with them, only in the eleventh to thirteenth significant place. This is generally easy

to verify by calculating just the first few terms in ê based on the true moments, as the infinite

series is heavily damped and the error cannot be significant. Finally, the Laplace transform can

be evaluated for the whole sample of Φ(t) draws altogether (as opposed to one by one), which we

favour in our application requiring multiple moment computations for different random realizations

of Φ(t) due to dependence of the moments of Ψ(u, t) on Φ(t).

5.3. Summary of the simulation method and extensions

Our method still hinges on the Laplace transform, but circumvents its numerical inversion in virtue

of the speedy computation of the moments and simulation of the Pearson proxy. In Section 6, it is

shown that the computing time is drastically reduced, benefiting the simulation of the asset price

process on a set of multiple observation dates. We summarize the methodology in Algorithm 2

based on sampling from (28). If we care to simulate the terminal asset price only, we use N = 1.

Algorithm 2 Moment-matched conditional sampling scheme: asset price process under stochastic

volatility
Input: Model parameters, terminal time T , number of monitoring dates N

Output: Asset price path {S(t)} for t= {0,∆,2∆,3∆, ..., T}

1: Set ∆ = T
N

2: for t= 0 : ∆ : T −∆ do

3: Given V (t), generate Φ(t+ ∆)

4: Compute the moments of Ψ(t, t+ ∆) conditional on V (t) and Φ(t+ ∆) using Algorithm 1

5: Sample from the conditional Ψ(t, t+ ∆) based on (28) given the moments

6: Sample S(t+ ∆) given S(t), V (t),Φ(t+ ∆) and Ψ(t, t+ ∆)

7: end for

8: return {S(t)} for t= {0,∆,2∆,3∆, ..., T}

The 4/2 model (see Table 1) requires some extra care as it requires sampling from (Ψ(u, t)|Φ(t)) =(∫ t
u
V (s)ds,

∫ t
u

ds
V (s)

∣∣∣V (t)
)

. In Section EC.6 of the e-companion, we present an extension of our

approximating framework to the multivariate case, in particular the bivariate case of relevance

here. Alternatively, the sampling problem can be simplified by entirely bypassing the time integrals
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using directly the conditional Laplace transform E [ exp (−as(t))|V (t)] (see e-companion Section

EC.2).

A few more cases of models with jumps ensue. Extending to the Bates and DPS models is

straightforward, following Broadie and Kaya (2006, Sections 6.1–6.2), by replacing the time integral

with our Pearson fit. Similar logic applies to the simulation of the 4/2 model extension with

independent jumps of Lin et al. (2017). In addition, we have a couple of cases that deserve some

more attention.

5.3.1. Time-changed Lévy models A Lévy model with integrated CIR time-change is given

by

s(t) = s(u) + r(t−u)− lnE(eL(1))

∫ t

u

V (s)ds+L

(∫ t

u

V (s)ds

)
,

where V is a square-root diffusion process and L a Lévy process. Having first simulated
∫ t
u
V (s)ds

according to the fitted Pearson distribution, we then simulate the Lévy process L on the new

(stochastic) time scale. The simulation of standard Lévy processes including the variance gamma

or normal inverse Gaussian is trivial (e.g., see Cont and Tankov 2004); the case of the CGMY

process is much harder (e.g., see Ballotta and Kyriakou 2014) and one can use the new technique

we develop in Section EC.8.1 of the e-companion.

5.3.2. Jump-diffusion model with state-dependent jump intensity Next, we draw

attention to the class of self-exciting point processes, in particular, a jump-diffusion process with

state-dependent drift, diffusion coefficient and jump intensity:

dλ(t) = kλ(θλ−λ(t))dt+σλ
√
λ(t)dW (t) + dJ(t), (31)

where kλ, θλ, σλ are constant, J(t) := βN(t) is a jump process given by a compound self-exciting

point process with CIR intensity, N(t) :=
∑

i≥1 1{T̄i<t} is the total number of jumps and T̄i the

i-th jump time (see Dassios and Zhao 2017 for more details). Model (31) accounts for jumps, for

example, in the asset price process, that are not uniformly distributed over time, but tend to appear

in clusters (e.g., see Fulop and Li 2019 and Du and Luo 2019). For the sake of exemplification, we

will assume that

s(t) = s(u) +

(
r− σ

2

2

)
(t−u)−ω

∫ t

u

λ(s)ds+σW (t) +

N(t)∑
i=1

Ji (32)

for jump sizes J ∼N (µJ , σ
2
J) and ω := exp(µJ +σ2

J/2)−1. This model can be seen as a self-exciting

extension of the one proposed in Wachter (2013) with β = 0. It is also a special case with constant

variance σ2 of the affine model in Fulop and Li (2019, Model III). (Our method is adaptable to
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the full model specification; upon assuming stochastic variance with jumps, the simulation task

becomes similar to that of the DPS model.)

Giesecke et al. (2011) and Dassios and Zhao (2017) show us how to simulate exactly the pairs{(
T̄i, λ(T̄i)

)}N(t)

i=1
for u < T̄i < t ∀i > 0; nevertheless, on several occasions, such as (32), we need to

be able to simulate also (∫ T̄i+1

T̄i

λ(s)ds

∣∣∣∣∣λ(T̄i), λ(T̄i+1)

)
. (33)

Between two consecutive jump times T̄i and T̄i+1, the process λ evolves as a CIR diffusion and our

method lends itself to the efficient simulation of (33). Then, we have that∫ t

u

λ(s)ds=

N(t)∑
i=0

∫ T̄i+1

T̄i

λ(s)ds+

∫ t

T̄N(t)

λ(s)ds

and (
s(t)

∣∣∣∣∣s(u),

∫ t

u

λ(s)ds,

N(t)∑
i=1

Ji

)
∼N (m (u, t) , s2 (u, t))

with

m (u, t) := s(u) +

(
r− 1

2
σ2

)
(t−u)−ω

∫ t

u

λ(s)ds+

N(t)∑
i=1

Ji and s2 (u, t) := σ2(t−u).

6. Numerical study

The following section is dedicated to a numerical analysis of the proposed approximation and simu-

lation method applied to the Heston (one and two-factor), SABR, OU-SV, 3/2 and 4/2, Bates, DPS,

NIGCIR (NIG with integrated CIR time-change) and SECIRJD (self-exciting point process with

CIR intensity) models. We use parameter sets from the relevant literature that are practically rel-

evant and representative of different markets and market conditions and are not benign (including

high correlations, high volatility of variance, and long maturities). All parameter values and their

sources are reported in Table 2. All numerical experiments are run in Matlab R2019b in Microsoft

Windows 10 on a machine with an Intel(R) Core(TM) i7-9750HQ CPU @2.60GHz and 16 GB of

RAM. A code is made available from https://openaccess.city.ac.uk/id/eprint/26427/ and

Section EC.9 of the e-companion.

6.1. Analysis of error and computing time

Before moving to the actual application, we study the core of our method, that is, the ability of

Algorithm 1 to compute fast and accurately the moments of the conditional time integral as well

as the quality of the subsequent Pearson distribution fit. In the interest of space, we present results

relating only to the Heston model (parameter sets H1 and H5, being common in the literature),
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Table 2 Model parameter sets

Heston model
S(0) k θ v V (0) ρ r T

H1 100 6.21 0.019 0.61 0.010201 -0.7 3.19% 1
H2 100 2 0.09 1 0.09 -0.3 5% 5
H3 100 0.5 0.04 1 0.04 -0.9 3% 1
H4 100 0.3 0.04 0.9 0.04 -0.5 3% 1
H5 100 1 0.09 1 0.09 -0.3 3% 1
H6 100 6.2 0.02 0.6 0.02 -0.7 3% 1

SABR model
S(0) b v V (0) ρ r T

SABR1 0.05 0.3 0.6 0.4 0 0 1
SABR2 0.05 0.3 0.6 0.4 0 0 3
SABR3 0.05 0.3 0.6 0.4 0 0 5
SABR4 0.5 0.5 0.4 0.5 0 0 4
SABR5 0.04 1 0.3 0.2 -0.5 0 5
SABR6 1 0.6 0.3 0.25 -0.5 0 20

OU-SV model
S(0) k θ v V 2(0) ρ r T

OU-SV1 100 4 0.02 0.1 0.04 -0.7 9.53% 1
OU-SV2 100 4 0.02 0.1 0.04 -0.7 9.53% 5
OU-SV3 100 4 0.02 0.1 0.04 -0.7 9.53% 10

Double Heston model
S(0) k1,2 θ1,2 v1,2 V1,2(0) ρ1,2 r T

DH1 100
0.9
1.2

0.1
0.15

0.36
0.2

0.36
0.2

-0.5
-0.5

3.00% 1

DH2 100
1.0738
0.0326

0.1026
0.7078

0.826
1.5355

0.0028
0.0059

-0.2819
-0.687

3.00% 1

3/2 model
S(0) k θ v V (0) ρ b a r T

3/2-1 100 1.8 0.04 0.2 0.04 -0.7 0.025 0 2% 1
3/2-2 100 1.1705 0.6853 0.398 0.8992 -0.8637 0.0192 0 2% 1

4/2 model
S(0) k θ v V (0) ρ b a r T

4/2-1 100 1.8 0.04 0.2 0.04 -0.7 0.025 0.3 2% 1
4/2-2 100 1.1705 0.6853 0.398 0.8992 -0.8637 0.0192 0.0218 2% 1

Bates model
S(0) k θ v V (0) ρ λ ω σJ r T

B1 100 3.99 0.014 0.2700 0.008836 -0.79 0.11 -0.12 0.15 3.19% 5

DPS model
S(0) k θ v V (0) ρ λ ω σJ µv ρJ r T

DPS1 100 3.46 0.008 0.1400 0.007569 -0.82 0.47 -0.1 0.0001 0.05 -0.38 3.19% 1

NIGCIR model
S(0) k θ v V (0) θ k σ r T

NIGCIR1 100 3.99 0.014 0.27 0.008836 -11.00604 0.00294 0.84059 4% 1

SECIRJD model
S(0) λ(0) kλ θλ σλ β σ2 µJ σJ r T

SECIRJD1 100 2.935 2.266 2.935 0.585 1.782 0.041 -0.018 0.002 3.19% 1

Notes. Parameter sets H1–2, B1 (with jump model parameters λ,µJ = ln(1 +ω) − σ2
J/2, σJ), DPS1 (with jump

model parameters λ,µJ = ln [(1 +ω) (1− ρJµv)]−σ2
J/2, σJ , µv, ρJ) are from Broadie and Kaya (2006) and H3–6 from

Glasserman and Kim (2011), DH1–2 from Gauthier and Possamäı (2010) and Zhang and Feng (2019), SABR1–3

and SABR4–6 from Cai et al. (2017) and Leitao et al. (2017), OU-SV1–3 from Li and Wu (2019), 3/2-1 and 4/2-1

from Grasselli (2017) and Callegaro et al. (2019), 3/2-2 and 4/2-2 from Gnoatto et al. (2016), NIGCIR1 (with NIG

parameters θ, k,σ) from Corsaro et al. (2019, Table 2) and SECIRJD1 from Fulop and Li (2019, Table 8).

which is the most computationally complicated with associated Laplace transform (EC.3) that

involves Bessel functions whose calculation generally slows down the simulation. We break down

the procedure in Algorithm 2 for simulating over the one-period [0, T ] into the following four pieces:

Step 1 Generate a sample of (V (T )|V (0))
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Step 2 Compute the first four integer moments of
(∫ T

0
V (s)ds

∣∣∣V (T )
)

using Algorithm 1

Step 3 Generate a sample of
(∫ T

0
V (s)ds

∣∣∣V (T )
)

from the Pearson curve fitted by moments

Step 4 Generate a sample of
(
S(T )

∣∣∣∫ T0 V (s)ds,V (T )
)

.

Having repeated the previous steps several times, we report the mean execution times corre-

sponding to each step in Section EC.7.1 of the e-companion. Increasing the number of simulations

results in linear increases of the computing time of each step, but with constant percentages of each

with respect to the total time. Steps 1, 3 and 4 account for 4%, 11% and 8% of the total time and

can be easily implemented using standard routines in numerical computing environments such as

Matlab (ncx2rnd for step 1; pearsrnd for step 3; randn for step 4). The moments’ evaluation, that

is, step 2, is the dominant element occupying 77% of the total execution time. In addition to this,

we compare evaluation done using Algorithm 1 and via analytical moments from equation (29).

Results reported in Section EC.7.1 of the e-companion for the first four integer moments indicate

a considerable speed-up using Algorithm 1, which in the case of the Heston model translates to 28

Bessel function evaluations versus 307 via equation (29).

Next, we study the potential sources of error from our moment-based approximation. First,

we compare moments evaluated using Algorithm 1 and analytically from equation (29) for three

different random realizations of the terminal variance Φ(T ) = V (T ) corresponding to the 25, 50

and 75th percentiles of that distribution, for convenience. (Similar performances were observed for

different terminal variances and parameter sets.) The absolute discrepancies are extremely small,

as expected based on the discussion in Section 5.2 (see also e-companion Section EC.7.1).

Second, we investigate the ability of the Pearson fit G̃Ψ̃|Φ to represent the true distribution

GΨ|Φ of the conditional integrated variance (Ψ(0, T )|Φ(T )) =
(∫ T

0
V (s)ds

∣∣∣V (T )
)

. To this end, we

perform two tests. In the first one, we aim to assess the closeness of the Pearson moments from

the true ones, i.e., having matched the first four integer moments, how far are the higher-order

moments from the true ones? Adhering to the same 25, 50 and 75th percentiles of the terminal

variance distribution as before for convenience, we present on a log-scale in Figure 1 the first

eight integer moments. Indeed, the moments are very close and, for example, for parameters H1

and conditional on the 50th percentile of the terminal variance, we experience absolute differences

|µn(GΨ|Φ)−µn(G̃Ψ̃|Φ)| of the fifth (n= 5) to eighth (n= 8) moments of 0.0003, 0.0014, 0.0034 and

0.0064. Other parameter sets yield similar results insinuating that we are implicitly able to almost

fit more than four moments, hence corroborating the high accuracy of our method.

Having replaced the original steps 2 and 3 of Broadie and Kaya (2006) with our approach, it

also comes natural to evaluate the potential impact on accuracy. For this, we compute the true

and fitted Pearson cumulative distribution functions, GΨ|Φ and G̃Ψ̃|Φ, and present both in Figure
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Figure 1 True moments of the integrated variance in the Heston model (parameter set H1) conditional on the

25, 50, 75th percentiles of the terminal variance and corresponding moments based on fitted Pearson

distribution
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2 for terminal variance Φ(T ) = V (T ) corresponding to the 50th percentile only in the interest of

space. The two plots are practically almost identical. Putting under the microscope the left side

of the distribution (see bottom plots in Figure 2) reveals maximum absolute differences between

the two of 0.001 and 0.007 for parameters H1 and H5 respectively, whereas for larger values of

the integrated variance we observe even smaller differences. An implementation of a two-sample

Kolmogorov–Smirnov test also leads to non-rejection of the null hypothesis that the samples are

drawn from the same distribution with very significantly high p-values for the different parameter

sets (smallest p-value being 0.6 for H1). We repeat this exercise in the multi-period problem applied

to path-dependent quantities such as the average and the maximum of a trajectory; the relevant

results are very close to the path-independent ones and are deferred to Section EC.7.1 of the

e-companion.

In problems where the key question is the choice of an approximating distribution, the use of

the maximum entropy principle is also popular. For this, along with our original approximating

Pearson distribution function G̃Ψ̃|Φ with associated density function g̃Ψ̃|Φ, we consider the entropy-

maximizing distribution ĜΨ̂|Φ with density function ĝΨ̂|Φ(x) := exp(−
∑m

n=0 λnx
n), where {λn} are

the Lagrange multipliers (Kapur and Kesavan 1992). For a generic continuous distribution function

H and associated density function h, we define the differential entropy H [h] =−
∫
h (x) lnh (x)dx.

The density ĝΨ̂|Φ is then obtained by maximizing the entropy constrained by moments. The result-

ing distribution Ĝ shares the same first m moments with the target true distribution G.

In Figure 3, we compare the entropy-maximizing distribution Ĝ based on m moments and our

(formally four-moment) fitted Pearson distribution G̃ against the true distribution G. We report in

the top plots
∣∣H −GΨ|Φ

∣∣, in the form of a bound whose details can be found in Section EC.4.3 of the
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Figure 2 True and fitted Pearson cumulative distribution functions, G and G̃, of the integrated variance in the

Heston model (parameter sets H1 and H5) conditional on the 50th percentile of the terminal variance

(top plots: full scale; bottom plots: emphasized areas of largest error)
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e-companion, where H ∈ {ĜΨ̂|Φ, G̃Ψ̃|Φ} and GΨ|Φ is the true distribution; the individual entropies

can be found in the bottom plots. It is obvious that the distances are small and are reducing with

increasing m. The fitted Pearson is very close in terms of entropy to the true distribution, while

the entropy-maximizing distribution converges to the true with increasing m, remaining, though,

even with twelve moments matched, behind the Pearson fit.

Unreported results, in the interest of space, in relation to Figures 1–3 based, instead, on the

cumulative distribution functions, G and G̃, of (s(T )|V (T )) (see equation 22) remain qualitatively

unchanged.

We conclude this part with a short note of some additional attempts of fitting of Pearson curves

based, instead, on exponential, negative (see Cressie et al. 1981) or even fractional (see Cressie and

Borkent 1986) moments, i.e., E(e−mαΨ(0,T )|Φ(T )) for m= 1, . . .4 and given α, E(Ψ(0, T )−m|Φ(T ))

and E(Ψ(0, T )γ |Φ(T )) for γ ∈Q. More specifically, the computation of the latter proved particularly

slow; the application of negative moments produced some accurate simulation estimates but was not

sufficiently fast. On the contrary, the use of exponential moments did speed up the computations.
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Figure 3 Entropy bound
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Notes. Top plots: absolute difference
∣∣H (x)−GΨ|Φ (x)

∣∣ bound (EC.15) (see Section EC.4.3 of the e-companion)

for true distribution G and approximation H ∈ {ĜΨ̂|Φ, G̃Ψ̃|Φ}, where (Ψ(0, T )|Φ(T )) =
(∫ T

0
V (s)ds

∣∣∣V (T )
)

in the

Heston model (based on parameter set H1 and condition on the 25, 50, 75th percentiles of the terminal variance),

Ĝ corresponds to the entropy-maximizing distribution with shared m first moments (blue bars) and G̃ to the four-

moment fitted Pearson distribution (orange bar). Bottom plots: corresponding entropiesH[ĝΨ̂|Φ],H[g̃Ψ̃|Φ] andH[gΨ|Φ].

However, the resulting errors were found to be substantially bigger, hence we did not consider this

any further. More detailed results can be provided upon request.

6.2. Path-independent derivatives

In this section, we aim to assess the accuracy and speed of our proposed Algorithm 2 in the context

of pricing path-independent options, in particular, European plain vanilla call options. We compare

different simulation schemes starring in the literature, including those of Broadie and Kaya (2006),
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Glasserman and Kim (2011), Giles (2008), Giles and Szpruch (2014), Cai et al. (2017) and Li

and Wu (2019), and consider the one-factor and two-factor Heston, SABR, OU-SV, 3/2 and 4/2

models as well as models with jumps including Bates, DPS, NIGCIR and SECIRJD. Following

the literature, we compute root mean square errors, RMSE =
√

bias2 + standard error2, where the

bias = p0 − p̃0 is given exactly by (16) based on the difference between the true value and the

Pearson proxy following from Theorem 1 and using appropriate parities for certain types of options

where necessary. We report in the top panel of Table 3 the true values of at-the-money plain vanilla

options, the absolute percentage biases |p0− p̃0|/p0, but also their upper bound (19) in Theorem 2

with (18) given from (20). We have also verified our reports having computed (16) using very fine

Monte Carlo simulation estimates based on M= 109 trials (we do not report these here to avoid

presenting too many similar results, but we can make them available upon request). Obviously

these values are consistently very small across all different parameter sets in Table 2 and translate

to accuracies of 3–4 decimal places, if we rely on the exact bias, and are understated up to 1 decimal

place if we rely instead on the faster upper error bound, corroborating its tightness. (Results for

in-the-money and out-of-the-money options are alike and can be made available upon request.)

Table 3 True option values and biases when using the Pearson approximation

Plain vanilla option
H1 H2 H3 H4 H5 H6

True value 6.8061 34.9998 6.7304 7.0972 11.3743 7.0737
Abs. bias (exact) 0.019% 0.019% 0.024% 0.080% 0.020% 0.012%
Abs. bias (upper bound) 0.029% 0.025% 0.104% 0.157% 0.036% 0.015%

SABR1 SABR2 SABR3 OU-SV1 OU-SV2 OU-SV3

True value 0.0394 0.0436 0.0447 13.2149 40.7977 62.7631
Abs. bias (exact) 0.004% 0.005% 0.000% 0.000% 0.000% 0.000%
Abs. bias (upper bound) 0.020% 0.030% 0.030% 0.019% 0.026% 0.058%

DH1 DH2 3/2-1 3/2-2 4/2-1 4/2-2

True value 26.9504 9.3663 6.3991 2.1537 8.6592 9.8629
Abs. bias (exact) 0.001% 0.008% 0.002% 0.058% 0.077% 0.009%
Abs. bias (upper bound) 0.025% 0.080% 0.016% 0.086% 0.086% 0.080%

B1 DPS1 NIGCIR1 SECIRJD1

True value 20.1645 6.8619 6.6425 9.7639
Abs. bias (exact) 0.0005% 0.0393% 0.0006% 0.0041%

Barrier option
H1 H2 H3 H4 H5 H6

True value 4.9142 0.1803 6.3748 4.5714 2.6489 4.2925
Abs. bias (exact) 0.008% 0.007% 0.006% 0.009% 0.003% 0.016%
Abs. bias (upper bound) 0.031% 0.028% 0.103% 0.145% 0.039% 0.019%

Asian option
H1 H2 H3 H4 H5 H6

True value 3.5665 18.1576 4.1061 4.3222 6.6513 3.8590
Abs. bias (exact) 0.003% 0.015% 0.007% 0.007% 0.008% 0.015%
Abs. bias (upper bound) 0.010% 0.056% 0.114% 0.110% 0.105% 0.018%

Notes. Absolute percentage bias |p0− p̃0|/p0 is computed both exactly based on Theorem 1 and based on upper bound

(19) in Theorem 2 with (18) given from (20). Parities for different option types have been used where necessary.

Results are presented for each model (Heston, SABR, OU-SV, Double Heston, 3/2, 4/2, Bates, DPS, NIGCIR and

SECIRJD) and set of parameters (see Table 2), for at-the-money European plain vanilla, barrier and Asian call

options.
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We compute RMSEs for varying standard error depending on the number of simulations M

for the different models and build the speed-accuracy portrayals of the most competing methods.

Numerical results are displayed in Table 4, whereas Figures 4–6 present a few relevant illustrations

on a log-log scale. As M increases, the standard error reduces and the RMSE depends eventually

on any residual error. In the case of our Algorithm 2 this is usually of the order 10−4, for example,

for Heston, double Heston, 3/2, Bates, DPS, NIGCIR and SECIRJD, or even 10−6 for the SABR

model and, thus, from Figures 4 and 6 we can see how close the RMSEs are to those from methods

with optimal convergence like Broadie and Kaya (2006), Giles (2008), Giles and Szpruch (2014),

Cai et al. (2017) and Li and Wu (2019). Our scheme exhibits the same convergence rate but more

importantly reduces the computing time, hence the shifted parallel plots to the left.

In particular, from Table 4, the computing times compared to Broadie and Kaya (2006), Li and

Wu (2019) and Cai et al. (2017) decrease, respectively, by approximately a factor of 800, 190 and

8. In the case of the SABR and OU-SV models, the Laplace transforms (EC.4) and (EC.5) do not

involve special functions like Heston’s (EC.3), therefore the resulting speed-up gain in the Li and

Wu (2019) and Cai et al. (2017) approaches is magnified in our method which gathers momentum

becoming impressively faster when computing the required moments using Algorithm 1. Similarly,

in relation to the expansion approach of Glasserman and Kim (2011) involving infinite summations

that require truncation (here we have used 10 terms), we achieve power saving by a factor of 3–4.

In the case of models with jumps, Bates and NIGCIR exhibit close computing times to Heston. The

simulation of DPS and SECIRJD is slower as the conditional time integral must be simulated more

times according to the (random) number of jumps (which, for the particular choice of parameter

values, are expected to be more for the latter).

6.3. Path-dependent derivatives

We also study the efficiency of Algorithm 2 in generating sample paths by turning our attention

to the evaluation of path-dependent contracts. As illustrative examples, we consider a barrier (up-

and-out) option with a barrier level $ = 120 and an arithmetic Asian call option, both based on

monthly monitoring, in the Heston model. We repeat the error computation exercise as described

in the previous section and present our reports in the lower panel of Table 3. Similarly to the

path-independent cases, the biases are still very small and in close agreement with their upper

bounds, which is not surprising as the size of the time interval does not affect the error.

Furthermore, we compare our simulation results based on Algorithm 2 with the time-

discretization scheme of Andersen (2008). For a fair comparison, we have tried different number of

time steps for the latter and chosen the minimum of 250 time steps per year to have an as similar

as possible RMSE (for M= 104) based on pre-computed biases for the two methods. Results are
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Figure 4 Speed-accuracy comparisons of Algorithm 2 and competent benchmarks for different models and param-

eter sets: the case of European plain vanilla option
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Notes. Algorithm 2: plots with diamond markers; benchmarks: plots with circle markers. Benchmarks: Glasserman

and Kim (2011) (H3–4); Cai et al. (2017) (SABR1–2); Li and Wu (2019) (OU-SV1–2). For convenience, out of scale

Monte Carlo benchmarks for the DH, 3/2, 4/2 models are not reported. All computing times are in seconds.
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Figure 5 Speed-accuracy profiles of Algorithm 2 in the Bates, DPS, NIGCIR and SECIRJD models: the case of

European plain vanilla option
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Figure 6 Speed-accuracy comparisons of Algorithm 2 and multi-level Monte Carlo (MLMC) methods for different

parameter sets in the Heston model: the case of European plain vanilla option
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Notes. Algorithm 2: plots with red diamond markers; benchmarks: plots with blue circle (green square) markers

correspond to MLMC (antithetic MLMC). MLMC: geometric sequence of time step sizes hl =M−lT , l= 0,1, . . . ,L, for

M = 4 and L= 6, optimal initial number of simulationsM0 = 104 (see Giles 2008), target RMSE = {0.05,0.02,0.005}

and simulation performed based on Euler scheme. Antithetic MLMC: based on a Milstein numerical approximation

of the Heston SDE with use of antithetic variables (see Giles and Szpruch 2014). All computing times are in seconds.
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Table 4 Speed-accuracy profiles of Algorithm 2 and some competent benchmarks (Broadie and Kaya 2006,

Glasserman and Kim 2011, Cai et al. 2017, Li and Wu 2019) for different models and parameter sets: the case of

European plain vanilla option

Broadie–Kaya Algorithm 2 Broadie–Kaya Algorithm 2 Glasserman–Kim Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0373 273.45 0.0372 0.21 0.2904 160.85 0.3000 0.23 0.0246 0.49 0.0244 0.25
16 0.0186 1076.72 0.0186 0.82 0.1464 643.97 0.1440 0.84 0.0123 1.95 0.0122 0.81
64 0.0093 4028.62 0.0093 3.29 0.0726 2458.06 0.0734 3.15 0.0061 7.74 0.0061 3.33
256 0.0046 16884.00 0.0046 13.21 0.0362 10467.25 0.0367 14.28 0.0031 31.96 0.0031 12.95

Glasserman–Kim Algorithm 2 Glasserman–Kim Algorithm 2 Glasserman–Kim Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0507 0.56 0.0513 0.25 0.0973 0.86 0.1018 0.28 0.0394 0.82 0.0411 0.31
16 0.0257 2.30 0.0262 0.94 0.0489 3.44 0.0489 0.92 0.0198 3.28 0.0205 0.80
64 0.0132 9.38 0.0132 3.14 0.0248 13.86 0.0249 3.39 0.0099 13.11 0.0103 3.14
256 0.0068 35.94 0.0066 13.11 0.0124 55.43 0.0123 13.09 0.0050 52.94 0.0053 12.28

Cai–Song–Chen Algorithm 2 Cai–Song–Chen Algorithm 2 Cai–Song–Chen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

SABR1 SABR2 SABR3
4 2.04e-05 1.65 2.07e-05 0.23 1.98e-05 1.55 2.00e-05 0.2 1.93e-05 1.53 1.97e-05 0.19
16 1.03e-05 6.34 1.05e-05 0.87 9.96e-06 6.28 1.02e-05 0.79 9.76e-06 6.3 9.83e-06 0.78
64 5.14e-06 25.39 5.42e-06 3.35 4.99e-06 25.12 5.50e-06 3.04 4.89e-06 25.07 4.90e-06 2.95
256 2.57e-06 100.7 3.09e-06 13.7 2.50e-06 99.64 3.39e-06 12.41 2.45e-06 99.41 2.45e-06 12.29

Li–Wu Algorithm 2 Li–Wu Algorithm 2 Li–Wu Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

OU-SV1 OU-SV2 OU-SV3
4 0.0764 15.60 0.0757 0.11 0.2345 21.66 0.2002 0.11 0.3774 21.64 0.3382 0.10
16 0.0382 63.20 0.0377 0.38 0.1176 82.87 0.1024 0.39 0.1891 85.25 0.1687 0.40
64 0.0192 253.55 0.0188 1.49 0.0591 332.22 0.0550 1.51 0.0951 341.73 0.0839 1.49
256 0.0096 1013.31 0.0095 6.47 0.0295 1328.01 0.0339 6.22 0.0475 1366.03 0.0421 6.14

Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

DH1 DH2 3/2-1 3/2-2 4/2-1 4/2-2
4 0.0989 0.83 0.0107 0.74 0.0392 0.70 0.0989 0.75 0.0740 2.12 0.0872 2.18
16 0.0497 3.01 0.0053 2.96 0.0197 2.93 0.0497 3.11 0.0375 9.17 0.0432 9.75
64 0.0248 12.29 0.0027 12.11 0.0098 12.09 0.0248 12.39 0.0195 36.85 0.0216 37.29
256 0.0124 48.15 0.0014 47.89 0.0049 50.75 0.0124 51.42 0.0110 147.47 0.0108 149.12

Algorithm 2 Algorithm 2 Algorithm 2 Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time

B1 DPS1 NIGCIR1 SECIRJD1
4 0.1117 0.18 0.0368 7.96 0.0372 0.26 0.0731 12.22
16 0.0559 0.58 0.0186 32.23 0.0186 0.81 0.0366 51.30
64 0.0281 2.26 0.0096 138.43 0.0093 2.84 0.0183 203.79
256 0.0141 8.82 0.0054 527.43 0.0046 11.38 0.0092 849.69

Notes. All computing times are in seconds. For convenience, out of scale Monte Carlo benchmarks for the DH, 3/2,

4/2, Bates, DPS, NIGCIR and SECIRJD models are not reported.

exhibited in Table 5 and Figure 7. We find that Andersen’s scheme is faster for a small number of

replications. However, as it is obvious from the graphs in Figure 7, for increasing number of simu-

lations, the (large) bias becomes dominant and the RMSE decay slackens severely. This contrasts

our method which results in moderate to high levels of precision as M increases. This is welcome

news, as our method constitutes a valid new methodology for applications where the entire sample

paths are needed.

We devote the final part of this section to the SABR model given its rising popularity in the

literature. First, we apply Algorithm 2 to pricing barrier options and compare with the mSABR

method of Leitao et al. (2017), which, even if non-exact, represents a satisfactory benchmark, and
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Table 5 Speed-accuracy profiles of Algorithm 2 and Andersen’s (2008) method in the Heston model and

different parameter sets: the case of path-dependent derivatives

Asian option

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0261 0.98 0.0192 3.42 0.9372 5.03 0.9213 15.78 0.0239 0.86 0.0158 3.01
16 0.0201 5.06 0.0096 12.48 0.5350 27.89 0.5066 59.80 0.0195 3.91 0.0078 12.08
64 0.0183 34.74 0.0048 50.45 0.2908 331.26 0.2343 238.44 0.0183 17.69 0.0039 56.55
256 0.0179 213.71 0.0024 201.43 0.2083 3312.59 0.1172 953.92 0.0180 192.28 0.0020 272.12

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0334 0.86 0.0282 3.27 0.0595 1.07 0.0523 3.51 0.0284 0.95 0.0220 3.94
16 0.0231 3.93 0.0145 12.50 0.0386 4.90 0.0260 14.62 0.0211 5.12 0.0111 15.50
64 0.0194 18.22 0.0072 53.84 0.0314 21.62 0.0132 66.83 0.0188 20.08 0.0056 59.86
256 0.0184 198.61 0.0036 279.79 0.0292 186.54 0.0066 355.53 0.0182 196.87 0.0029 235.37

Barrier option

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H1 H2 H3
4 0.0338 0.98 0.0289 3.42 0.0054 5.03 0.0023 15.78 0.0220 0.86 0.0222 3.01
16 0.0233 5.07 0.0145 12.48 0.0031 27.90 0.0012 59.80 0.0111 3.92 0.0110 12.08
64 0.0199 34.76 0.0072 50.46 0.0022 331.17 0.0006 238.46 0.0058 17.71 0.0055 56.56
256 0.0189 213.74 0.0036 201.46 0.0019 3311.68 0.0003 954.00 0.0033 192.29 0.0028 272.15

Andersen Algorithm 2 Andersen Algorithm 2 Andersen Algorithm 2
M× 104 RMSE time RMSE time RMSE time RMSE time RMSE time RMSE time

H4 H5 H6
4 0.0242 0.87 0.0243 3.27 0.0274 1.07 0.0243 3.51 0.0336 0.95 0.0284 3.95
16 0.0128 3.94 0.0121 12.51 0.0194 4.90 0.0122 14.62 0.0241 5.13 0.0142 15.50
64 0.0076 18.23 0.0060 53.85 0.0169 21.64 0.0061 66.83 0.0210 20.11 0.0071 59.87
256 0.0056 198.62 0.0030 279.82 0.0161 186.63 0.0030 355.57 0.0202 197.01 0.0036 235.40

Notes. All computing times are in seconds.

the low-bias simulation scheme of Chen et al. (2012) using the formers’ choice of parameters. Based

on the reports in Table 6, our Algorithm 2 and the mSABR method agree at 2–3 decimal places,

whereas the discrepancies with Chen et al. (2012) are higher. This can be attributed to the larger

bias induced by the small-disturbance expansion approximation of moments of the integrated vari-

ance and the potentially restrictive lognormal fit they employ. The observed increases in computing

time are due to the varying maturity times (see Table 2) subject to quarterly monitoring per

annum.

Table 6 Barrier option prices (with standard errors, s.e.) in the SABR model

Method price s.e. time price s.e. time price s.e. time

SABR4 SABR5 SABR6
mSABR 0.0384 – – 0.00523 – – 0.1078 – –

Chen et al. 0.0380 1.12e-02 3.77 0.00520 8.43e-04 4.47 0.1022 2.12e-02 21.81
Algorithm 2 0.0385 1.13e-02 21.91 0.00523 8.41e-04 25.72 0.1079 2.12e-02 102.24

Notes. All computing times are in seconds and correspond to M= 106 simulations and quarterly monitoring (as in

Leitao et al. 2017, Section 4). Benchmarks: mSABR (Leitao et al. 2017); Chen et al. (2012). Barrier levels: $ = 1.2

(SABR4); $= 0.08 (SABR5); $= 2 (SABR6).
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Figure 7 Speed-accuracy profiles of Algorithm 2 and Andersen’s (2008) method in the Heston model and different

parameter sets: the case of path-dependent derivatives
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(H1–2). All computing times are in seconds.

In what follows, we consider further applications entailing accurate simulation solutions. This

is especially important in super-linear growth settings where it is well known that, for standard

SDEs, the explicit Euler scheme runs into difficulties, performs poorly, or even fails to converge

(see Hutzenthaler et al. 2010).

7. Extension to other models

7.1. Linear SDEs: multiplicative noise

We consider the constant-coefficients inhomogeneous model of general form

dX(t) = (aX(t) + c)dt+ (bX(t) + q)dW (t). (34)

From Kloeden and Platen (1992), (34) has solution

X(t) = Y (t;a, b,1)

(
X(0) + (c− bq)

∫ t

0

Y (s;a, b,−1)ds+ q

∫ t

0

Y (s;a, b,−1)dW (s)

)
,
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where

Y (t;a, b, γ) := exp

(
γ

(
a− 1

2
b2

)
t+ γbW (t)

)
. (35)

The previous solution can be extended to the case of variable coefficients.

A well-known special case of (34) in finance is the Brennan and Schwartz (1980) process

dX(t) = κ (θ−X(t))dt+σX(t)dW (t) (36)

with κ := −a > 0, θ := −c/a ∈ R, σ := b > 0 and q := 0, in consistency with a more standard

parameterization of the model (e.g., see Cai et al. 2014b). This, for example, has been used to

model interest rate uncertainty, but has also appeared in the energy marketplace with the spot

price reverting towards an equilibrium price level (which may be stochastic, that is, the so-called

Pilipovic model). In Li et al. (2018), (36) is referred to as a GARCH linear SDE and is used to

model stochastic default intensity, with additional references given therein for uses in modelling

the volatility or variance of asset returns. Model (36) can be simulated using our Algorithm 3 (see

next section) for n= 0, a=−κ, b= σ and c= κθ.

7.2. Reducible SDEs

7.2.1. Stochastic generalized logistic (Richards) growth model This is an autonomous,

nonlinear reducible SDE model with polynomial drift of degree n of general form

dX(t) = (cX(t)n + aX(t))dt+ bX(t)dW (t). (37)

The substitution x1−n reduces (37) to a linear SDE with multiplicative noise, from which its explicit

solution is

X(t) = Y (t;a, b,1)

(
X(0)1−n + c (1−n)

∫ t

0

Y (s;a, b,n− 1)ds

) 1
1−n

, (38)

where Y (t;a, b, ·) is given from (35).

We summarize the simulation methodology for model (38) in Algorithm 3. If we are interested

in simulating X at a terminal time T > 0 only, we use N = 1. Simulation steps 3 and 6 of Algo-

rithm 3 are trivial; for step 5, the conditional distribution of
∫ t

0
Y (s;a, b, γ)ds plays key role in

the implementation of our methodology. For this, let W (µ)(t) = µt+W (t) be a Brownian motion

with constant drift µ ∈R. We also recall from Matsumoto and Yor (2005) the additive functional

A(µ)(t) =
∫ t

0
exp

(
2W (µ)(s)

)
ds. Then, it is shown (see also Cai et al. 2017) that

E

[
exp

(
− u

A(µ)(t)

)∣∣∣∣W (µ)(t) =w

]
= exp

{
−g(w,u)2−w2

2t

}
(39)

for any t > 0 and g(w,u) := arcosh(ue−w + coshw).
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Algorithm 3 Moment-matched conditional sampling scheme: linear & reducible SDEs
Input: Model parameters, terminal time T , number of monitoring dates N

Output: Sample path {X(t)} for t= {0,∆,2∆,3∆, ..., T}

1: Set ∆ = T
N

2: for t= 0 : ∆ : T −∆ do

3: Given Y (t;a, b,1), simulate Y (t+ ∆;a, b,1)

4: Compute the moments of
∫ t+∆

t
Y (s;a, b,n− 1)ds conditional on Y (t+ ∆;a, b,1) using Algorithm 1

5: Simulate the conditional
∫ t+∆

t
Y (s;a, b,n− 1)ds based on (28) given the moments

6: Simulate X(t+ ∆) in (38) given X(t)

7: end for

8: return {X(t)} for t= {0,∆,2∆,3∆, ..., T}

Proposition 1. The Laplace transform of
(∫ t

0
Y (s;a, b, γ)ds

)−1

conditional on Y (t;a, b, γ) is

given by

E

[
exp

(
− u∫ t

0
Y (s;a, b, γ)ds

)∣∣∣∣∣Y (t;a, b, γ)

]
= exp

−
g
(

lnY (t;a,b,γ)

2
, γ

2b2u
4

)2

−
(

lnY (t;a,b,γ)

2

)2

1
2
γ2b2t

 .

(40)

Proof. See e-companion Section EC.1.

The range of admissible values u≥− 2
γ2b2

(√
Y (t;a, b, γ)− 1

)2

ensures that the moment problem

is determinate (see Criterion 1). Special cases of practical importance are the stochastic Verhulst

and Gordon–Schaefer models for n = 2 and the stochastic Ginzburg–Landau equation for n = 3,

which we explore further in the following sections.

7.2.2. Stochastic logistic (Verhulst) growth model The Verhulst (1838) model, also

known as logistic or S-shaped, belongs to the Richards family of sigmoidal growth models. The

deterministic model is described by

dX̃(t)

dt
= λ

(
K − X̃(t)

)
X̃(t), (41)

where λ is the Malthusian growth coefficient and K > 0 a finite supportable carrying capacity in an

environment of finite resources. To account for seasonal variations, (41) is augmented by a random

component which results in the autonomous stochastic linear-quadratic Verhulst equation

dX̃(t) = λ̃

(
1− X̃(t)

K

)
X̃(t)dt+σX̃(t)dW (t),
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where W is a standard Brownian motion, X(0) ∈ (0,∞), λ̃ := λK and λ,σ > 0 are constant. The

extinction boundary 0 is non-attractive if λ̃ > σ2/2 and is attractive if λ̃ < σ2/2. Also, there is no

explosion as the boundary +∞ is non-attractive. Equivalently, we can write

dX(t) =
(
λ̃X(t)−X2(t)

)
dt+σX(t)dW (t), (42)

where X := λX̃. In this model, an approximately exponential growth is succeeded by a slowed

down linear growth, as saturation begins, and ceases at maturity. The solution exists and is unique

for all t≥ 0, and from (37)–(38) for n= 2

X(t) = Y (t; λ̃, σ,1)

(
X(0)−1 +

∫ t

0

Y (s; λ̃, σ,1)ds

)−1

=
X(0)Y (t; λ̃, σ,1)

1 +X(0)
∫ t

0
Y (s; λ̃, σ,1)ds

.

This is an environmental stochasticity model meaning that random fluctuations in the environ-

ment, such as weather, epidemics, natural disasters, crop failures, can affect the entire population.

Originally, model (41) aimed at portraying the self-limiting growth of a biological population.

According to this, the rate of reproduction is proportional to the existing population and the

amount of available resources. A multi-dimensional version allows for affection of co-existing species

by coupling together separate single species models. The logistic model appears also in branches

of medicine such as oncology. In Section EC.7.2 of the e-companion, we focus the spotlight on the

logistic model for tumor growth and use it to exemplify the application of our simulation method.

7.2.3. Stochastic Gordon–Schaefer model Model (37) is popular also in bioeconomics

where it can be used to represent the growth of a population living in a randomly varying environ-

ment and being harvested, such as a fish population under fishing, or a wildlife population under

hunting, or even a tree population in forestry.

Early important contributions on specific stochastic models for fisheries are due to Beddington

and May (1977), Braumann (1985) and Hanson and Ryan (1998). The stochastic Gordon–Schaefer

population growth SDE model

dX(t) = rX(t)

(
1− X(t)

K

)
dt−H(t)dt+σX(t)dW (t) (43)

includes the term H(t) := qEX(t) which represents the (e.g., fishing) harvesting rate, where E ≥ 0

is the (fishing) effort (e.g., hours trawled or number of hooks sets per day) and q > 0 is the fraction

of the population harvested per unit of effort, so that the difference

r

(
1− X(t)

K

)
− qE

is the natural growth rate adjusted for mortality due to harvesting. Under a basic profit structure,

the profit per unit time is

Π(t) = pH(t)− cE, (44)
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where the revenues (first term) depend on the harvesting rate and p is the price per unit sold,

and the costs (second term) appreciate subject to c cost per unit effort per unit time. p and c

can, respectively, be functions of the harvesting rate (higher rate implying lower selling price) and

the effort E (increasing effort leading, for example, to overtime and therefore higher cost). Finally,

from (37)–(38)

X(t) = Y (t; r− qE,σ,1)

(
X(0)−1 +

r

K

∫ t

0

Y (s; r− qE,σ,1)ds

)−1

.

Figure 8 Impact of varying fishing effort E on population size of Pacific halibut and fishing profit
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Notes. Population size (top plots) and profit (central plots): 95% and 5% confidence bands (upper and lower lines)

and mean value estimate (medium line) based on 105 simulated trajectories. Probability density estimates of terminal

profit (bottom plots). Parameter estimates are from Hanson and Ryan (1998): r = 0.71, K = 8.05 × 107 kg, q =

3.30× 10−6, p = 1.59, c = 96× 10−6 + 0.10× 10−6E. In addition, X(0) = 1.5× 107 kg, σ = 0.2 and E∗ = 104,540

(optimal sustainable effort).

In Figure 8, we revisit the bioeconomic resource model framework of Hanson and Ryan (1998) for

the Pacific halibut. One can determine the optimal sustainable constant effort E∗ that maximizes
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the expected value of the asymptotic profit. By adopting their parameter estimates, we use our

method to generate population size (in kilograms) sample paths. The top panel shows the impact of

increasing fishing effort starting from E = 0 (top-left), which reduces model (43) to (42), implying

a significantly overestimated population size under a misspecified model with harvesting mortality

ignored, for example, by 25%, 50% and 75% when E = 50%E∗, E∗ and 150%E∗ (not explicitly

reported in the plot), respectively. In particular, the central and bottom panels focus on the impact

of the fishing effort on the profit process (44). Along these panels, the middle plot corresponds to

the optimal sustainable effort E∗, while as we diverge from it the profit drops. This mirrors the

position of the mode of the estimated density of the terminal profit in the bottom panels, from

which we observe that as E reduces below or increases above the optimal level the mode shifts to

the left; the standard deviation, skewness and kurtosis also increase with E.

7.2.4. Ginzburg–Landau equation Our last application is devoted to the Ginzburg–

Landau equation. In its deterministic version, this was introduced by Ginzburg and Landau (1950)

to describe phase transition for superconductivity. Over the years, this model has been used in

bistable systems, chemical turbulence, phase transitions in non-equilibrium systems, optics with

dissipation, thermodynamics and hydrodynamics, etc. It has also played an important role as a

modulation equation and served as a simple model for the transition from regular to turbulent

behaviour (see Mielke 2002).

Because random noise is often unavoidable, taking into consideration stochastic disturbances is

needed. A stochastic version of it is provided by Kloeden and Platen (1992) and is given by

dX(t) =

((
α+

1

2
σ2

)
X(t)−βX3(t)

)
dt+σX(t)dW (t), (45)

where X(0)∈ (0,∞) and α≥ 0 and β,σ > 0 are constant. From (38), its solution is given explicitly

by

X(t) =
X(0)Y (t;α+ 1

2
σ2, σ,1)√

1 + 2X2(0)β
∫ t

0
Y (s;α+ 1

2
σ2, σ,2)ds

.

Several variants of (45) with a colored noise or regime switching exist.

Here, we focus on (45) and run a simulation experiment borrowed from Hutzenthaler et al. (2010)

in order to demonstrate the efficiency of our proposed scheme. Table 7 shows, for different values of

the parameter σ, Monte Carlo estimates of E (X2(3)) using our method as well as estimates based

on different implementations of the Euler approximation. As σ increases, the bias of the Euler

scheme increases and the resulting estimates become perceptibly inaccurate. For very large σ = 6

or 7, in most of the runs the Euler scheme explodes returning ‘NaN’ (‘not-a-number’), whilst our

method remains robust, even under such extremely volatile conditions, and is remarkably faster

by a factor of 20.
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Table 7 Simulation of E
(
X2(3)

)
(with standard errors, s.e.) in the stochastic Ginzburg–Landau model

σ= 2 σ= 4 σ= 5 σ= 6 σ= 7
E
(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e. E

(
X2(3)

)
s.e.

Algorithm 3 0.4689 4.12e-04 0.9138 1.18e-03 1.1455 1.66e-03 1.3693 2.18e-03 1.5989 2.75e-03

Euler approximation
Batch 1 0.4556 4.10e-03 0.7553 1.10e-02 0.7106 1.33e-02 NaN NaN NaN NaN
Batch 2 0.4514 4.09e-03 0.7551 1.12e-02 0.6964 1.32e-02 NaN NaN NaN NaN
Batch 3 0.4576 4.16e-03 0.7582 1.10e-02 0.7065 1.33e-02 0.5191 1.43e-02 NaN NaN
Batch 4 0.4572 4.08e-03 0.7417 1.08e-02 0.7126 1.39e-02 0.5353 1.43e-02 NaN NaN
Batch 5 0.4608 4.09e-03 0.7274 1.05e-02 0.7043 1.36e-02 NaN NaN NaN NaN
Batch 6 0.4491 4.07e-03 0.7308 1.05e-02 0.7224 1.36e-02 0.5415 1.47e-02 NaN NaN
Batch 7 0.4595 4.08e-03 0.7393 1.08e-02 0.7310 1.42e-02 NaN NaN NaN NaN
Batch 8 0.4592 4.03e-03 0.7333 1.07e-02 0.7344 1.43e-02 NaN NaN NaN NaN
Batch 9 0.4589 4.10e-03 0.7539 1.11e-02 0.7108 1.34e-02 NaN NaN NaN NaN
Batch 10 0.4626 4.12e-03 0.7555 1.08e-02 0.7096 1.34e-02 0.5366 1.41e-02 NaN NaN

Notes. The number of Monte Carlo simulations used for each estimate is 105 for the Euler approximation (based on

1,000 time steps) and 107 for Algorithm 3. Parameters are from Hutzenthaler et al. (2010): X(0) = 1, α= 0, β = 1,

σ= {2,4,5,6,7}.

8. Conclusion

In this paper, we propose a novel method for simulating integrals of general stochastic processes.

We focus our analysis on particularly hard cases of dependence on the terminal value of the process.

We manage to relax the most time-consuming parts of other methods: i) the repeatedly recovered

conditional distribution by numerical transform inversion; ii) the large number of time steps that

mediate the actual monitoring dates with the purpose of reducing the bias of time-discretization

techniques; iii) the number of terms in expansion approaches; iv) the achievement of the required

moments by directly differentiating a Laplace transform.

Our method is built in a well-posed moment problem setting which encloses other distributions

that are unique by their moments, beyond integrated processes. The resulting moment-based ran-

dom number generation is accurate, with very small and bounded error, and fast, improving on

the complexity and speed of pre-existing techniques. Bypassing the most laborious parts of others,

we are able to generate entire paths of stochastic processes of interest in a reasonable time. We

explore the flexibility and robustness of our method in different practical problem structures and

show that it can effectively contribute to the interface of simulation with various areas in finan-

cial engineering, medicine, bioeconomics and physics and, thereby, lead to useful impact in the

application domain.
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Linnik JV, Ostrovskĭı IV (1977) Decomposition of Random Variables and Vectors, volume 48 of Translations

of Mathematical Monographs (Providence, R. I.: American Mathematical Society).

Lord R, Fang F, Bervoets F, Oosterlee CW (2008) A fast and accurate FFT-based method for pricing
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E-companion to “Unified moment-based modelling of
integrated stochastic processes”

EC.1. Auxiliary results

Proof of Proposition 1 We have that∫ t

0

Y (s;a, b, γ)ds =

∫ t

0

exp

(
γ

(
a− 1

2
b2

)
s+ γbW (s)

)
ds

(law)
=

4

γ2b2

∫ γ2b2t/4

0

exp

(
4

γ

(
a

b2
− 1

2

)
s+ 2W (s)

)
ds

=
4

γ2b2

∫ γ2b2t/4

0

exp
(
2W (µ)(s)

)
ds,

where the second equality follows from the scaling property of the Brownian motion for γ, b > 0

and µ := 2a/(γb2)− 1/γ. In addition, by considering the condition in (39), we get

w=W (µ)

(
γ2b2t

4

)
(law)
= µ

γ2b2t

4
+
γb

2
W (t) =

lnY (t;a, b, γ)

2
.

Expression (40) then follows and the proposition is proved.

Proposition EC.1. The Pearson characteristic function is given by ϕG̃ (u) = eiuµ1ϕḠ (u), where

i=
√
−1 and ϕḠ (u) =

∫
R e

iuxḡ (x)dx, with ḡ solving (1), satisfies the system of ordinary differential

equations {
ϕ′
Ḡ

(u) = ϑḠ (u)

ϑ′
Ḡ

(u) = uc2+i(1−2c3)

iuc3
ϑḠ (u) + c1

c3
ϕḠ (u)

(EC.1)

with set of initial conditions (ϕḠ (0) , ϑḠ (0)) = (1,0).

Proof. From (1),∫
R
eiuxḡ (x)dx =

[
eiux

(
c1 + c2x+ c3x

2
)
ḡ (x)

]∞
−∞

−
∫
R
eiux

{
iu
(
c1 + c2x+ c3x

2
)

+ (c2 + 2c3x)
}
ḡ (x)dx

= − (iuc1 + c2)

∫
R
eiuxḡ (x)dx− (iuc2 + 2c3)

∫
R
eiuxxḡ (x)dx (EC.2)

−iuc3

∫
R
eiuxx2ḡ (x)dx,

where in the first equality [eiux (c1 + c2x+ c3x
2) ḡ (x)]

∞
−∞ = 0 by µ2 <∞. Differentiation of ϕḠ (u)

under the integral sign is allowed because eiuxḡ (x) is twice continuously differentiable in u and

once in x. Hence, we obtain ϕ′
Ḡ

(u) = i
∫
R e

iuxxḡ (x)dx and ϕ′′
Ḡ

(u) = −
∫
R e

iuxx2ḡ (x)dx, based on

which (EC.2) can be written as

iuc3ϕ
′′
Ḡ (u) + (−uc2 + 2ic3− i)ϕ′Ḡ (u) + (c0− iuc1− c2)ϕḠ (u) = 0.
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From this, (EC.1) follows for c0 − c2 = 0 by construction. Given g̃(x) = ḡ(x− µ1), we finally get

ϕG̃(u) =
∫
R e

iu(x+µ1)ḡ(x)dx= eiuµ1ϕḠ(u).

An analytic solution of (EC.1) can be obtained with the aid of a software system that allows

symbolic computations, such as Mathematica, which we omit here but can make available upon

request.

EC.2. Laplace transforms

The conditional Laplace transforms for the Heston, SABR, OU-SV and 4/2 models follow, respec-

tively, from Broadie and Kaya (2006), Cai et al. (2017), Li and Wu (2019) and Grasselli (2017).

EC.2.1. Heston model

The Laplace transform of the conditional integrated variance is

L(a) = E

[
exp

(
−a
∫ t

u

V (s)ds

)∣∣∣∣V (u), V (t)

]
=
γ(a)e−(γ(a)−k)(t−u)/2(1− e−k(t−u))

k(1− e−γ(a)(t−u))
×

exp

{
V (u) +V (t)

v2

(
k(1 + e−k(t−u))

1− e−k(t−u)
− γ(a)(1 + e−γ(a)(t−u))

1− e−γ(a)(t−u)

)}
×

Id/2−1

(√
V (u)V (t) 4γ(a)e−γ(a)(t−u)/2

v2(1−e−γ(a)(t−u))

)
Id/2−1

(√
V (u)V (t) 4ke−k(t−u)/2

v2(1−e−k(t−u))

) , (EC.3)

where γ(a) :=
√
k2 + 2v2a and Iν(·) denotes the modified Bessel function of the first kind.

EC.2.2. SABR model

The Laplace transform of the conditional reciprocal of the integrated variance is

L(a) = E

[
exp

{
−a
(∫ t

u

V 2(s)ds

)−1
}∣∣∣∣∣V (u), V (t)

]

= exp

−
g
(

ln V (t)

V (u)
, av2

V 2(u)

)2

− ln
(
V (t)

V (u)

)2

2v2(t−u)

 , (EC.4)

where g(x,λ) := arcosh(λe−x + coshx).

EC.2.3. OU-SV model

The Laplace transform of the conditional integrated variance is

L(a) =E

[
exp

(
−a
∫ t

u

V 2(s)ds

)∣∣∣∣V (u), V (t),

∫ t

u

V (s)ds

]
=
f(γ(a))

f(k)
, (EC.5)
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where

f(x) :=
x2

2π
√
η(x)

exp

{
− 1

2η(x)v2

[
2x2

(
(V (t) +V (u))

∫ t

u

V (s)ds−V (u)V (t)(t−u)

)
+

x2

(
(V 2(t) +V 2(u))(t−u)− 2(V (t) +V (u))

∫ t

u

V (s)ds

)
cosh(x(t−u))+

x

(
x2

(∫ t

u

V (s)ds

)2

− (V (t)−V (u))2

)
sinh(x(t−u))

]}
and

η(x) := 2− 2cosh(x(t−u)) +x(t−u) sinh(x(t−u)).

EC.2.4. 4/2 and 3/2 models

The joint Laplace transform of
(∫ t

u
V (s)ds,

∫ t
u

ds
V (s)

∣∣∣V (u), V (t)
)

is

E

[
exp

(
−a1

∫ t

u

V (s)ds− a2

∫ t

u

ds

V (s)

)∣∣∣∣V (u), V (t)

]
=

√
γ(a1) sinh k(t−u)

2

k sinh

√
γ(a1)(t−u)

2

exp

{
V (u) +V (t)

v2

(
k coth

k(t−u)

2
−
√
γ(a1) coth

√
γ(a1)(t−u)

2

)}

×
I√

(2θk−v2)2+8v2a2

v2

(
2
√
γ(a1)V (u)V (u)

v2 sinh

√
γ(a1)(t−u)

2

)
I 2θk
v2 −1

(
2k
√
V (u)V (t)

v2 sinh
k(t−u)

2

) . (EC.6)

The Laplace transform of
(∫ t

u
ds
V (s)

∣∣∣V (u), V (t)
)

in the 3/2 model follows as special case by setting

a1 = 0 in (EC.6).

In addition, we have for s(t) = lnS(t) conditional on V (t) that

E
[
eus(t)

∣∣V (t)
]

= exp

{
us(0) +u

(
r− ab− aρkθ

v
+
bρk

v

)
t+u2

(
1− ρ2

)
abt

}
× exp

{
uaρ

v
(V (t)−V (0)) +

ubρ

v
ln
V (t)

V (0)

}
×
√
Au sinh kt

2

k sinh
√
Aut
2

exp

{
V (0) +V (t)

v2

(
k coth

kt

2
−
√
Au coth

√
Aut

2

)}

×
I

2
v2

√(
kθ− v2

2

)2
+2v2Bu

(
2
√
AuV (0)V (t)

v2 sinh
√
Aut
2

)
I 2kθ
v2 −1

(
2k
√
V (0)V (t)

v2 sinh kt
2

) , (EC.7)

with

Au = k2− 2v2

[
u

(
aρk

v
− 1

2
a2

)
+

1

2
u2
(
1− ρ2

)
a2

]
,

Bu = u

[
bρ

v

(
v2

2
− kθ

)
− b

2

2

]
+

1

2
u2
(
1− ρ2

)
b2.
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The previous result reduces to the one for the 3/2 model by setting a= 0.

EC.3. Model conditional representations and results

In addition to the one-factor Heston model presented in Section 4.3, we provide, next, examples of

other models which admit relevant representations.

EC.3.1. Double Heston model

Conditional on (Ψk−1,k,Φk) =
((∫ tk

tk−1
V1(s)ds,

∫ tk
tk−1

V2(s)ds
)
, (V1(tk), V2(tk))

)
,

sk = α(sk−1, φ1,k−1, φ2,k−1) +
2∑
j=1

(
βjΦj,k + γjΨj,k−1,k +

√
δjΨj,k−1,kYj,k

)
, Yj,k ∼N (0,1) ,

where Yj,k is independent of Φj,k and Ψj,k−1,k, and Y1,k is independent of Y2,k. From Table 1 in the

paper, we have that α(sk−1, φ1,k−1, φ2,k−1) = sk−1 + r (tk− tk−1)−
∑2

j=1 βj (φj,k−1 + kjθj(tk− tk−1)),

βj = ρj/vj, γj = ρjkj/vj − 1/2, δj = 1− ρ2
j . Then,

Gs|Φ(s|φ1, φ2;sk−1, φ1,k−1, φ2,k−1)

=

∫ ∫
Gs|Ψ,Φ(s|x1, x2, φ1, φ2;sk−1, φ1,k−1, φ2,k−1)gΨ|Φ(x1, x2|φ1, φ2;φ1,k−1, φ2,k−1)dx1dx2

is computed over the first quadrant, where

Gs|Ψ,Φ( ·|x1, x2, φ;sk−1, φ1,k−1, φ2,k−1) =

∫ ·
−∞ exp

(
− (s−α(sk−1,φ1,k−1,φ2,k−1)−

∑2
j=1(βjφj+γjxj))

2

2
∑2
j=1 δjxj

)
ds√

2π
∑2

j=1 δjxj

and, by independence,

gΨ|Φ(x1, x2|φ1, φ2;φ1,k−1, φ2,k−1) = gΨ1|Φ1
(x1|φ1;φ1,k−1)gΨ2|Φ2

(x2|φ2;φ2,k−1).

The associated characteristic function is given by

ϕGs|Φ(u|φ;sk−1, φk−1) = eiu(α(sk−1,φ1,k−1,φ2,k−1)+β1φ1+β2φ2)
2∏
j=1

ϕGΨj |Φj

(
u

(
γj +

iδju

2

)∣∣∣∣φj;φj,k−1

)
,

where ϕGΨj |Φj
is given by (EC.3).

It is possible to introduce an approximating law for Ψ, such as a Pearson distribution, and

denote the approximate random variable by Ψ̃. The previous results imply that two univariate

approximating Pearson densities are required, one for each of (Ψ1|Φ1) and (Ψ2|Φ2). Also, in (14)

of Theorem 1, an integration over IΦ, which is equal to the first quadrant, is now required.
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EC.3.2. 4/2 model

In this model, conditional on (Ψk−1,k,Φk) =
((∫ tk

tk−1
V (s)ds,

∫ tk
tk−1

V −1(s)ds
)
, V (tk)

)
,

sk = α(sk−1, φk−1) +β1Φk +β2 lnΦk + γ1Ψ1,k−1,k + γ2Ψ2,k−1,k

+
√
δ0 + δ1Ψ1,k−1,k + δ2Ψ2,k−1,kYk, Yk ∼N (0,1) ,

where Y is independent of Φ and Ψ, α(sk−1, φk−1) = sk−1 + (r − ab − β1kθ + β2k)(tk − tk−1) −
β1φk−1− β2 lnφk−1, γ1 = β1k− a2/2, γ2 = β2 (v2/2− kθ)− b2/2, β1 = aρ/v, β2 = bρ/v, δ0 = 2ab(1−
ρ2)(tk− tk−1), δ1 = a2(1− ρ2), δ2 = b2(1− ρ2), and

Gs|Φ(s|φ;sk−1, φk−1) =

∫ ∫
Gs|Ψ,Φ(s|x1, x2, φ;sk−1, φk−1)gΨ|Φ(x1, x2|φ;φk−1)dx1dx2 (EC.8)

is computed over the first quadrant, with

Gs|Ψ,Φ( ·|x1, x2, φ;sk−1, φk−1) =

∫ ·
−∞ exp

(
− (s−α(sk−1,φk−1)−β1φ−β2 lnφ−γ1x1−γ2x2)2

2(δ0+δ1x1+δ2x2)

)
ds√

2π (δ0 + δ1x1 + δ2x2)
.

The associated characteristic function is given by

ϕGs|Φ(u|φ;sk−1, φk−1) = e
iu
(
α(sk−1,φk−1)+β1φ+β2 lnφ+

iuδ0
2

)
×

ϕGΨ|Φ

(
u

(
γ1 +

iδ1u

2

)
, u

(
γ2 +

iδ2u

2

)∣∣∣∣φ;φk−1

)
,

where ϕGΨ|Φ is given by (EC.6).

In this case, the bivariate density function gΨ|Φ(x1, x2|φ;φk−1) in (EC.8) can be approximated

by fitting a bivariate Pearson distribution (see e-companion Section EC.6). Alternatively, given

(EC.7), it is possible to approximate directly Gs|Φ(s|φ;sk−1, φk−1) by fitting a univariate Pearson

distribution. The 3/2 model subcase follows by dropping the first component of Ψ.

EC.3.3. SABR model

By dint of how the distributional properties of this model are usually presented (see Section 3),

we study this on the original scale, that is, in terms of S rather than s= lnS, implying also minor

adjustment of Theorem 1, in addition to consideration of the probability mass at S = 0.

Conditional on (Ψk−1,k,Φk) =

((∫ tk
tk−1

V 2(s)ds
)−1

, V (tk)

)
, we have from (9)–(12) and the inverse

transform method that{
Sk = 0, if Uk ≤ 1−Qχ2

Sk =G−1
S|Ψ,Φ (Uk|Ψk−1,k,Φk;Sk−1,Φk−1) , if Uk ≥ 1−Qχ2

, (EC.9)

where Uk ∼Unif (0,1) and G−1
S|Ψ,Φ is the inverse of GS|Ψ,Φ given exactly by (10) or approximately

by (12) when ρ= 0 or ρ 6= 0, respectively. For y > 0,

GS|Φ(y|φ;Sk−1, φk−1) =

∫
Q(Sk ≤ y|Sk−1, φk−1, φ,x)gΨ|Φ(x|φ;φk−1)dx
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is computed over the positive half-line, and from (EC.9) we get that

Q(Sk ≤ y|Sk−1, φk−1, φ,x) = Q(Uk ≤GS|Ψ,Φ(y)|Sk−1, φk−1, φ,x)

= GS|Ψ,Φ(y|x,φ;Sk−1, φk−1).

The associated characteristic function is given by

ϕGS|Φ(u|φ;Sk−1, φk−1) =

∫ ∫
eiuygS|Ψ,Φ(y|x,φ;Sk−1, φk−1)gΨ|Φ(x|φ;φk−1)dydx,

where gS|Ψ,Φ follows from differentiating (10) or (12). We can approximate gΨ|Φ(x|φ;φk−1) by fitting

a univariate Pearson distribution.

EC.3.4. OU-SV model

According to this model, conditional on (Ψk−1,k,Φk) =
(∫ tk

tk−1
V 2(s)ds,

(
V (tk),

∫ tk
tk−1

V (s)ds
))

,

sk = α(sk−1, φ1,k−1) +β1Φ2
1,k +β2Φ2,k−1,k + γΨk−1,k +

√
δΨk−1,kYk, Yk ∼N (0,1) ,

where Y is independent of Φ and Ψ, α(sk−1, φ1,k−1) = sk−1 + (r− ρv/2)(tk− tk−1)− β1φ
2
1,k−1, β1 =

ρ/(2v), β2 =−ρkθ/v, γ = ρk/v− 1/2, δ= 1− ρ2, and

Gs|Φ(s|φ1, φ2;sk−1, φ1,k−1) =

∫
Gs|Ψ,Φ(s|x,φ1, φ2;sk−1, φ1,k−1)gΨ|Φ(x|φ1, φ2;φ1,k−1)dx

is computed over R+, where

Gs|Ψ,Φ( ·|x,φ1, φ2;sk−1, φ1,k−1) =

∫ ·
−∞ exp

(
− (s−α(sk−1,φ1,k−1)−β1φ

2
1−β2φ2−γx)2

2δx

)
ds

√
2πδx

.

The associated characteristic function is given by

ϕGs|Φ(u|φ1, φ2;sk−1, φ1,k−1) = eiu(α(sk−1,φ1,k−1)+β1φ
2
1+β2φ2)ϕGΨ|Φ

(
u

(
γ+

iδu

2

)∣∣∣∣φ1, φ2;φ1,k−1

)
,

where ϕGΨ|Φ is given by (EC.5). In this case, Φ has a bivariate normal distribution, therefore in

(14) of Theorem 1 an integration over IΦ = R2 is required. For gΨ|Φ(x|φ1, φ2;φ1,k−1), we can use

an approximating univariate Pearson density.

EC.3.5. Bates model

The main difference with Heston is the inclusion of a random jump component that is independent

of the volatility process. The jump size J distribution is normal with mean µJ = ln(1 +ω)−σ2
J/2

and variance σ2
J . Conditional on (Ψ,Φ) and the number of Poisson jumps N arriving subject to

constant intensity λ,

sk = α (sk−1, φk−1) +βΦk + γΨk−1,k +
√
δΨk−1,kYk +

Nk∑
i=0

Ji, Yk ∼N (0,1) ,
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where Y , (Ψ,Φ), N and {Ji}i are mutually independent, α (sk−1, φk−1) = sk−1 +(r−βkθ−λω)(tk−

tk−1)−βφk−1, γ = βk− 1/2, β = ρ/v, δ= 1− ρ2, and

Gs|Φ(s|φ;sk−1, φk−1) =

∫
Gs|Ψ,Φ(s|x,φ;sk−1, φk−1)gΨ|Φ(x|φ;φk−1)dx,

where

Gs|Ψ,Φ( ·|x,φ;sk−1, φk−1) =
∞∑
i=0

∫ ·
−∞ exp

(
− (s−α(sk−1,φk−1)−βφ−γx−iµJ )2

2(δx+iσ2
J

)

)
ds√

2π(δx+ iσ2
J)

λi(tk− tk−1)ie−λ(tk−tk−1)

i!
.

The associated characteristic function is given by

ϕGs|Φ(u|φ;sk−1, φk−1) = eiu(α(sk−1,φk−1)+βφ)+λ(tk−tk−1) exp(iµJu−σ2
Ju

2/2)ϕGΨ|Φ

(
u

(
γ+

iδu

2

)∣∣∣∣φ;φk−1

)
,

where ϕGΨ|Φ is given by (EC.3).

For the case of jump sizes with an asymmetric double exponential distribution, interested readers

may refer to Kou (2002, Theorem B.1). Finally, for gΨ|Φ(x|φ;φk−1) we can use an approximating

univariate Pearson density the same way as in the Heston model.

EC.4. Closeness of distributions

EC.4.1. Characteristic function-based approach

Related to the distance between distribution functions is Esseen’s inequality recorded next. Con-

sider some non-negative function H (x) and h (u) :=
∫
R e

iuxH (x)dx satisfying{∫
RH (x)dx= 1; b=

∫
R |x|H (x)dx<∞

h (0) = 1; h (u) = 0 for |u| ≥ 1; 0≤ |h (u)| ≤ 1 for |u| ≤ 1
. (EC.10)

A possible choice for H, as suggested by Esseen (1945), is H (x) = (3/ (8π)) (4 sin (x/4)/x)
4
. Then,

for the Pearson distribution function G̃ (x) which is differentiable almost everywhere, has bounded

variation and finite % (see Lemma 1 in the paper), Theorem 2a from Esseen (1945) applies. More

specifically, to every arbitrary k > 1, there corresponds 0< m̄ (k)< 1 and α (k) so that

(2− m̄ (k))

∫ (1−m̄(k))α(k)

−m̄(k)α(k)

H (x)dx=
k+ 1

k
, (EC.11)

and ∣∣∣G (x)− G̃ (x)
∣∣∣≤max

{
kε

2π
+
kb%

T
,
α (k)%

T

}
≤ kε

2π
+

(kb+α (k))%

T
with (T , ε) satisfying ∫ T

−T

∣∣∣∣ϕG (u)−ϕG̃ (u)

u

∣∣∣∣du= ε

and ϕG and ϕG̃ denoting the indicated characteristic functions. We can always choose m̄ (k) suffi-

ciently small and α (k) sufficiently large so that (EC.11) is fulfilled.
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EC.4.2. Moment-based distance

Another possibility is the moment-based distance of Akhiezer (1965, Corollary 2.5.4), revisited

later by Lindsay and Basak (2000, Theorems 1, 2).

Theorem EC.1 (Lindsay and Basak 2000). Let any two arbitrary distributions G (x) and

G̃ (x) share their first 2m moments. Then, for all x,∣∣∣G (x)− G̃ (x)
∣∣∣≤ {P ′m (x)W−1

m Pm (x)
}−1

, (EC.12)

where Pm (x) := (1, x, x2, . . . , xm)
′

and Wm := ‖µi+j‖mi,j=0
is a Hankel symmetric matrix defined by

the first 2m moments.

The right-hand side of (EC.12) goes to 0 at the rate x−2m as x→∞ giving relatively sharp tail

information. An improvement to (EC.12) is due to Khamis (1954) who introduces a constant

non-negative multiplier, where it exists, that is smaller than the unity.

EC.4.3. Entropy bound

For a generic continuous distribution function H with associated density function h, we define

the differential entropy H [h] =−
∫
h (x) lnh (x)dx. Along with our original approximating Pearson

distribution function G̃ with associated density g̃, we consider the entropy-maximizing distribution

Ĝ with density function

ĝ(x) := exp

(
−

m∑
n=0

λnx
n

)
, (EC.13)

where {λn} are the Lagrange multipliers (Kapur and Kesavan 1992). This is obtained by maximizing

the entropy constrained by moments. The resulting distribution Ĝ shares the same first m moments

with the target true distribution G with density g.

Our aim is to derive an entropy bound to the absolute difference of each of H ∈
{
Ĝ, G̃

}
with

respect to the true G. To this end, we consider two measures of difference between density functions,

namely, the divergence and variation measures

I [g,h] :=

∫
g (x) ln

g (x)

h (x)
dx and V [g,h] :=

∫
|h (x)− g (x)|dx,

respectively. Next, we present a lower bound for the divergence measure (although more compli-

cated ones exist in the literature).

Lemma EC.1 (Kullback 1967). We have that

I ≥ V
2

2
+
V4

36
. (EC.14)

Based on the foregoing, we can state the following result.
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Theorem EC.2. For the distributions G and H ∈
{
Ĝ, G̃

}
,

|H (x)−G (x)| ≤ 3

√
−1 +

√
1 +

4I [g,h]

9
. (EC.15)

In addition, I [g, ĝ] =
∑m

n=0 λnµn (G)−H [g].

Proof. We have that

|H (x)−G (x)| ≤
∫
|h (x)− g (x)|dx= V [g,h] .

Then, inequality (EC.14) solves as

0≤V2 [g,h]≤ 3
√

9 + 4I [g,h]− 9 = 9

(√
1 +

4

9
I [g,h]− 1

)
⇒V [g,h]≤ 3

√
−1 +

√
1 +

4I [g,h]

9
,

from which (EC.15) follows. In addition, for H ≡ Ĝ, we have

I [g, ĝ] =

∫
g (x) ln

g (x)

ĝ (x)
dx=−H [g]−

∫
g (x) ln ĝ (x)dx=−H [g] +

m∑
n=0

λn

∫
xnĝ (x)dx,

where the last equality is due to (EC.13) and from which the result follows.

EC.5. Sampling from the Pearson family of distributions

In what follows, we present the different Pearson distribution types and corresponding generators

of random numbers Ȳ with zero mean, variance β = 1, skewness
√
γ and kurtosis ε. To this end,

we consider first a few quantities that will be used next:

z :=−
√
γ(ε+ 3) + sgn(

√
γ(ε+ 3))

√
γ1/2(ε+ 3)2− 4(4ε− 3γ)(2ε− 3γ− 6)

2
, a1 :=

z

2ε− 3γ− 6
,

a2 :=
4ε− 3γ

z
, c0 :=

4ε− 3γ

10ε− 12γ− 18
, c1 :=

√
γ(ε+ 3)

10ε− 12γ− 18
, c2 :=

2ε− 3γ− 6

10ε− 12γ− 18
,

where sgn(x) := x/ |x| for x 6= 0 and sgn(0) := 0. Then:

Type I (four-parameter beta)

Ȳ ≡ a1 + (a2− a1)B
(

c1 + a1

c2(a2− a1)
+ 1,− c1 + a2

c2(a2− a1)
+ 1

)
,

where B(a, b) denotes a random number generator from a beta distribution with parameters a and

b (see Devroye 1986);

Type II (symmetric four-parameter beta)

Ȳ ≡ a1 + 2|a1|B
(
c1 + a1

2c2|a1|
+ 1,

c1 + a1

2c2|a1|
+ 1

)
;
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Type III (three-parameter gamma)

Ȳ ≡ c1Γ

( c0
c1
− c1

c1

+ 1,1

)
+ a1,

where Γ(a, b) denotes a random number generator from a gamma distribution with shape parameter

a and scale parameter b (see Marsaglia and Tsang 2000);

Type IV (density proportional to exp
(
−ν arctan(x−λ

a
)
)
/
(
1 + (x−λ

a
)2
)m

)

Ȳ ≡ PIV (m,ν,a,λ),

where PIV (m,ν,a,λ) is a random number generator from a Pearson Type IV based on the expo-

nential rejection method for log-concave densities of Devroye (1986, Section 7.2) and adapted to

this case by Heinrich (2004), with

m :=
1

2c2

, ν :=
2c1(1−m)√

4c0c2− c2
1

, b := 2(m− 1), a :=

√
b2(b− 1)

b2 + ν2
, λ :=

aν

b
;

Type V (inverse gamma location-scale)

Ȳ ≡−
c1− c1

2c2

c2Γ( 1
c2
− 1,1)

− c1

2c2

;

Type VI (F location-scale)

Ȳ ≡
(
a2 +

2(m2 + 1)(a2− a1)

−2(m1 +m2 + 1)
F(2(m2 + 1),−2(m1 +m2 + 1))

)
1{a2<0}

+

(
a2 +

2(m1 + 1)(a2− a1)

−2(m1 +m2 + 1)
F(2(m1 + 1),−2(m1 +m2 + 1))

)
1{a2≥0},

where 1{·} denotes the indicator of the event {·},

m1 :=
a1 + c1

c2(a2− a1)
, m2 :=− a2 + c1

c2(a2− a1)

and F(a, b) is a random number generator from a Snedecor F distribution with numerator and

denominator degrees of freedom a and b respectively (see Devroye 1986); and

Type VII (t location-scale)

Ȳ ≡
√

c0

1− c2

T
(

1

c2

− 1

)
,

where T (a) is a random number generator from a Student’s t distribution with a degrees of freedom

(see Devroye 1986).
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EC.6. Sampling from
(∫ t

u
V (s)ds,

∫ t
u

ds
V (s)

)
in the 4/2 model using a bivariate

Pearson distribution approach

In this section, we focus on the special case of sampling from the pair
(∫ t

u
V (s)ds,

∫ t
u

ds
V (s)

∣∣∣V (t)
)

=

(Ψ(u, t)|Φ(t)) in the 4/2 model (see also Table 1 of the paper).

Parrish (1987, 1990) propose a conditional nested factorization approach to simulating from a

multivariate Pearson distribution; for our purposes, we consider here the bivariate case and the

pair
(∫ t

u
V (s)ds,

∫ t
u

ds
V (s)

)
in the 4/2 model. To this end, define the cross-moments

µr1,r2 =E

[(∫ t

u

V (s)ds

)r1 (∫ t

u

ds

V (s)

)r2∣∣∣∣V (t)

]
=
∂r1+r2L (−a,−b)

∂ar1∂br2

∣∣∣∣
a=b=0

,

where r1, r2 = {0,1,2,3,4}, r1 + r2 ≤ 4 and

L (a, b) =E
[
e
−a
∫ t
u V (s)ds−b

∫ t
u

ds
V (s)

∣∣∣V (t)
]

is given by (EC.6). The simulation is then summarized in the following steps:

1. Simulate (V (t)|V (u)) based on V (t)
(law)
= χ′2d (λ)v2(1− e−k(t−u))/4k, where χ′2d (λ) is the non-

central chi-squared random variable with d= 4θk/v2 degrees of freedom and noncentrality param-

eter λ= 4kv−2e−k(t−u)V (u)/(1− e−k(t−u))

2. Simulate
(∫ t

u
ds
V (s)

∣∣∣V (t)
)

having first fitted a Pearson curve by moments µ0,1, µ0,2, µ0,3, µ0,4

3. Compute µr1 :=E
[(∫ t

u
V (s)ds

)r1∣∣∣ ∫ tu ds
V (s)

, V (t)
]

via equations (EC.16)–(EC.17)

4. Simulate
(∫ t

u
V (s)ds

∣∣∣ ∫ tu ds
V (s)

, V (t)
)

which follows a Pearson distribution law, if(∫ t
u
V (s)ds,

∫ t
u

ds
V (s)

∣∣∣V (t)
)

has a bivariate Pearson distribution (see Parrish 1987 for a proof of

this).

Focusing on step 2, we have from Parrish (1990, equations 4–5) that

µ1 :=
b?1− a?0
1− 2b?11

, µ2 :=
(2b?1− a?0)µ1 + b?0

1− 3b?11

, (EC.16)

µ3 :=
(3b?1− a?0)µ2 + 2b?0µ1

1− 4b?11

, µ4 :=
(4b?1− a?0)µ3 + 3b?0µ2

1− 5b?11

(EC.17)

for

a?0 := a0 + a1x1, b?0 :=−
(
b0 + b1x1 + b11x

2
1

)
,

b?1 :=− (b2 + b12x1) , b?11 :=−b22
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with x1 a random sample from
(∫ t

u
ds
V (s)

∣∣∣V (t)
)

and a0, a1, b0, b1, b2, b11, b12, b22 satisfying the system

of linear equations (see Parrish 1987, Figure 3)

µ0,0 µ1,0 0 0 µ0,0 0 µ1,0 2µ0,1

µ1,0 µ2,0 0 0 µ1,0 0 µ2,0 2µ1,1

µ0,1 µ1,1 µ0,0 µ1,0 2µ0,1 µ2,0 2µ1,1 3µ0,2

µ2,0 µ3,0 0 0 µ2,0 0 µ3,0 2µ2,1

µ1,1 µ2,1 µ1,0 µ2,0 2µ1,1 µ3,0 2µ2,1 3µ1,2

µ0,2 µ1,2 2µ0,1 2µ1,1 3µ0,2 2µ2,1 3µ1,2 4µ0,3

µ3,0 µ4,0 0 0 µ3,0 0 µ4,0 2µ3,1

µ2,1 µ3,1 µ2,0 µ3,0 2µ2,1 µ4,0 2µ3,1 3µ2,2

µ1,2 µ2,2 2µ1,1 2µ2,1 3µ1,2 2µ3,1 3µ2,2 4µ1,3

µ0,3 µ1,3 3µ0,2 3µ1,2 4µ0,3 3µ2,2 4µ1,3 5µ0,4





a0

a1

b0

b1

b2

b11

b12

b22


=−



µ0,1

µ1,1

µ0,2

µ2,1

µ1,2

µ0,3

µ3,1

µ2,2

µ1,3

µ0,4


.

EC.7. More experimental results

EC.7.1. Supplementary results on analysis of error and computing time

Figure EC.1 Computing times (in seconds) corresponding to each implementation step of Algorithm 2 as

described in Section 6.1 of the paper
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Table EC.1 Examples of differences between n-th analytical moments and moments of
(∫ T

0
V (s)ds

∣∣∣V (T )
)

computed using Algorithm 1 conditional on the 25, 50, 75th percentiles of the terminal variance

H1 H5
n V (T ) = 0.003 V (T ) = 0.010 V (T ) = 0.026 V (T ) = 0.001 V (T ) = 0.008 V (T ) = 0.081

1 3.20e-11 -5.10e-11 2.27e-11 2.16e-11 3.68e-11 3.41e-12
2 2.41e-15 -2.00e-14 -1.30e-14 1.32e-13 -1.40e-13 -2.60e-13
3 6.18e-16 -5.20e-17 -7.30e-16 -2.80e-14 8.77e-14 -1.10e-14
4 -1.10e-17 -2.10e-17 1.54e-17 1.21e-14 3.15e-14 5.41e-15



e-companion to Kyriakou, Brignone, and Fusai: Unified moment-based modelling of integrated stochastic processes ec13

Figure EC.2 Computing total times (in seconds) for the first four moments of the conditional integrated variance

in the Heston model
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Figure EC.3 Cumulative distribution functions of AN =
∑N
i=0 Si/(N + 1) (top plots) and M0,N = max0≤i≤N Si

(bottom plots) in the Heston model (parameter sets H1 and H5) based on true distribution and

Pearson approximation of the integrated variance conditional on the 50th percentile of the terminal

variance

Notes. Top plots: largest absolute errors are 0.0015 (parameter set H1), 0.0044 (parameter set H5). Bottom plots:

largest absolute errors are 0.0015 (parameter set H1), 0.0068 (parameter set H5).

EC.7.2. The logistic model for tumor growth: a simulation case study

Cancer cells have an inflated rate of proliferation leading to a rapid tumor growth. A survey of the

relevant literature reveals that, generally, small tumors grow exponentially, however the growth
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slows down when they get larger. This decelerated growth typically results in a diameter (if a

solid tumor) that remains constant in time. Therefore, a model that is able to accommodate these

features can be a sensible choice (e.g., see Laird 1964, and later research in the field). Note that,

while growth curves are relevant for modelling the untreated tumor, they cannot be applied to

the treated tumor as it may decrease and regrow after a treatment such as radiation (e.g., see

Demidenko 2013, Chapter 10); studying post-treatment tumor is beyond the scope of this exercise.

Here, we adopt the stochastic logistic model (42) for the growth of tumors, where we denote by

X(t) the tumor volume at time t. For the purposes of our illustration, we calibrate the model to

growth data of multicellular tumor spheroids that include three-dimensional aggregates of cancer

cells, which have been grown under controlled experimental conditions, as described in Chignola

et al. (1999)and made available by Demidenko (2013). The nonlinear least-squares parameter esti-

mates of the model are λ̂= 0.00109, K̂ = 203.10135 and X̂(0) = 9.63691; in addition, the estimated

daily volatility is σ̂= 10.6539%.

Figure EC.4 Stochastic logistic model for tumor volume
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data
fitted logistic
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mean

Notes. Historical daily tumor growth; fitted deterministic Verhulst equation; probabilistic forecasts for tumor growth

generated by model (42) in the paper: 95% and 5% confidence bands (upper and lower lines) based on 105 simulated

trajectories; mean value estimate (medium line).

Figure EC.4 exhibits the historical daily tumor growth and the fitted deterministic Verhulst

equation (red solid line). In addition, our simulation method serves as a useful tool for the analysis

of the tumor growth based on model (42). First, it can be used to generate probabilistic forecasts:

the medium (green) line shows the expected value forecasts and the upper and lower (orange

dotted) lines are confidence bands such that there is a 90% chance that the tumor volume will not
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exceed these bands. Second, it allow us to study the state of growth at certain points in time. In

particular, we document three critical time points (see vertical lines in Figure EC.4) corresponding

to different phases of the tumor growth in vivo, therefore signifying the timing of relevant guideline

for treatment: T1, when tumor slow growth (tumor vasculature) is completed since commencement

of cell division; T2, when aggressive tumor growth occurs and the maximum rate of growth is

reached; T3, when growth is slowed again (due to limited supply of oxygen, nutrients, and space).

For the given model, these critical points are given by

T̂1,3 =
1

λ̂
ln

[(
±
√

3− 2
)(

1− K̂

X̂(0)

)]
and

T̂2 =
1

λ̂
ln

(
K̂

X̂(0)
− 1

)
(inflection point). Finally, Figure EC.5 shows the tumor volume (for the 95th percentile simulated

radius) at the three different phases and the corresponding simulated distributions of the tumor

radii and volumes as percentages of the estimated maximum limit, 100X(T̂i)/K̂%. At time T̂1,

there is a large concentration of probability mass at lower volume levels but there is also a nonzero

probability of volume expansion as implied by the left tail. The distribution of the relative volume

becomes more symmetric and the kurtosis reduces as we approach the terminal phase at T̂3.

EC.8. Other applications

EC.8.1. The CGMY model

As explained, for example, in Ballotta and Kyriakou (2014), similarly to other popular Lévy mod-

els, like the variance gamma or normal inverse Gaussian, the Carr–Geman–Madan–Yor (CGMY)

model can be represented as a subordinated arithmetic Brownian motion; unlike those though,

the subordinator is only known via its Laplace transform. More specifically, the CGMY process is

given by

X(t) = θZ(t) +W (Z(t)), (EC.18)

where W is a standard Brownian motion, θ := (G−M)/2, G≥ 0, M ≥ 0 and Z is a subordinator

independent of W with Laplace transform

E
[
e−aZ(t)

]
= exp

(
(t−u)CΓ(−Y )

(
2 (2a+GM)

Y/2
cos (ξ (a;G,M)Y )−MY −GY

))
, u < t,

(EC.19)

where ξ(a;G,M) := arctan
(
θ̃−1
√

2a− θ2

)
and θ̃ := (G+M)/2.

In view of the previous results, our moment-based random number generator can be adapted to

the efficient simulation of the CGMY model trajectories as follows:
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Figure EC.5 Tumor growth

Notes. Tumor size (3D & 2D) (left & central plots) and probability density estimates of % tumor volume with respect

to estimated maximum limit (right plots) at the three different phases (top to bottom): T1 (completion of initial

growth), T2 (aggressive tumor growth) and T3 (terminal growth).

1. Compute the moments of Z (t) (via, for example, Choudhury and Lucantoni 1996) based on

(EC.19)

2. Simulate Z (t) using a fitted a Pearson curve to the corresponding theoretical distribution

3. Simulate W subject to time-change Z (t) and, consequently, X (t) according to (EC.18).
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In addition, in financial modelling, the related asset price process under the risk neutral measure

is

S (t) = S (u) exp ((r+ω) (t−u) +X (t)) ,

where ω :=−CΓ(−Y )
(

(G+ 1)
Y −GY + (M − 1)

Y −MY
)

. Conditional on Z (t), we also have that

( lnS(t)| lnS(u),Z(t))∼N (m,s2),

where m := lnS(u) + (r + ω)(t− u) + ((G−M)/2)Z(t) and s2 := Z(t), and the following Black–

Scholes-type representation holds:

E
[
e−r(t−u) (S(t)−K)

+
∣∣∣Z(t)

]
= e−r(t−u)

[
em+ 1

2 s
2

N

(
m+ s2− lnK

s

)
−KN

(
m− lnK

s

)]
,

where N (·) = 1√
2π

∫ ·
−∞ exp (−z2/2)dz.

Some numerical results are reported in Table EC.2. The simulation of the CGMY process is

remarkably fast as its increments are independent and we no longer face a conditional Laplace

transform of Z, which also does not involve special functions that can severely slow down the

overall execution, simplifying considerably the simulation task. Similarly to the other models in

the paper, our scheme clearly converges also in this case as shown in Figure EC.6.

Table EC.2 European plain vanilla call option in the CGMY model

True option price 20.1965 Bias (s.e.) 0.0005 (0.001)

M× 104 4 16 64 256
RMSE 0.1726 0.0866 0.0432 0.0216
Time 0.01 0.02 0.08 0.32

Notes. True (reference) price via the method of Fang and Oosterlee (2008) based on parameters S(0) = K = 100,

C = 0.9795, G = 3.512 , M = 10.96, Y = 0.8, r = 4%, T = 1 (Černý and Kyriakou 2011, Table 2). Bias computed

using 109 simulation trials as the difference between the expected value of the simulation estimator (based on fitted

Pearson to Z(T )) and the true price. RMSE =
√

bias2 + s.e.2 computed based on standard error (s.e.) for each M

number of simulations as shown in the second row. All computing times are in seconds.

EC.8.2. Greeks

Unbiased estimation of option Greeks using Monte Carlo simulation is not as straightforward as the

computation of option prices due to potential discontinuities in the option payoff function, such as,

for example, in the case of barrier and digital options. In general, the standard two methods for the

sensitivities are the pathwise and likelihood ratio method introduced by Broadie and Glasserman

(1996). Both rely on an interchange of integration and differentiation under certain regularity

conditions which are easier to justify for the likelihood ratio method, as density functions are usually
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Figure EC.6 Convergence of our Monte Carlo method in the CGMY model: the case of European plain vanilla

call option
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smooth functions of their parameters whereas payoff functions are not. Conditioning arguments

simplify the problem as they offer us direct access to standard densities. For more details, refer to

Broadie and Kaya (2004, 2006).

EC.9. The code

This part contains the Matlab code for simulating the Heston model using the approach proposed

in this paper, tailored to the case of a European plain vanilla option.

1 % This script contains the code to price European call options in the ...
Heston model following the procedure proposed in the paper "Unified ...
moment−based modelling of integrated stochastic processes" by Kyriakou, ...
I. and Brignone, R. and Fusai, G.

2

3 S0 = 100; % initial asset price
4 K = 100; % strike price
5

6 % name of the parameter set
7 paramSet = 'H1';
8

9 % set parameters
10 switch paramSet
11 case 'H1'
12 Vstart = 0.010201; k = 6.21; theta = 0.019; v = 0.61; rho = −0.7; r = ...

3.19/100; T = 1; true price = 6.8061;
13 case 'H2'
14 Vstart = 0.09; k = 2; theta = 0.09; v = 1; rho = −0.3; r = ...

5/100; T = 5; true price = 34.9998;
15 end
16

17 nsimul = 10ˆ5; % number simulations
18

19 %martCorr = 'false'; % do not apply martingale correction
20 martCorr = 'true'; % apply martingale correction
21

22 tic % start stopwatch timer
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23 % implement Algorithm 2 in the paper in the Heston model
24 [Send, Vend] = simHeston(S0, r, T, Vstart, k, theta, v, rho, nsimul, martCorr);
25 % compute European call option price estimate by Monte Carlo simulation
26 C = normfit(exp(−r*T)*max(0, Send − K));
27 TT = toc; % stop timer
28

29 % compare Monte Carlo price estimate with true option price
30 disp(['True price: ' num2str(true price), ', Monte Carlo price estimate: ' ...

num2str(C) ', Comput. time (s): ' num2str(TT)])

EC.9.1. Functions

Heston model simulation.

1 function [Send, Vend] = simHeston(S0, r, T, Vstart, k, theta, v, rho, ...
nsimul, martCorr)

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function simulates transitions in the Heston model using Algorithm 2 ...

in the paper.
4 %
5 % Inputs: − S0 (scalar or 1 x nsimul vector): initial asset price
6 % − r (scalar): risk−less rate
7 % − T (scalar): maturity in years
8 % − Vstart (scalar or 1 x nsimul vector): initial variance
9 % − k (scalar): speed of mean reversion

10 % − theta (scalar): long−run mean
11 % − v (scalar): volatility of variance
12 % − rho (scalar): correlation
13 % − nsimul (scalar): number of simulations
14 % − martCorr ('true' or 'false'): choose whether or not apply ...

martingale correction
15 % Outputs: − Send (1 x nsimul vector): asset price at maturity
16 % − Vend (1 x nsimul vector): variance at maturity
17

18 %% Step 1: Simulate terminal variance $\sigmaˆ2(t) | \sigmaˆ2(u)$
19

20 % degrees of freedom of noncentral chi−squared distribution
21 ∆ = 4*theta*k/(vˆ2);
22 % noncentrality parameter
23 lambda = 4*k*exp(−k*T)/(vˆ2 * (1−exp(−k*T))) .* Vstart;
24 % generate \sigmaˆ2(t)
25 if length(Vstart)==1
26 Vend = vˆ2*(1−exp(−k*T))/4/k * ncx2rnd(∆, lambda, 1, nsimul);
27 else
28 Vend = vˆ2*(1−exp(−k*T))/4/k * ncx2rnd(repmat(∆, size(lambda)), lambda);
29 end
30

31 %% Step 2: Compute moments of $\int {u}ˆ{t} \sigmaˆ2(s) ds | ...
\sigmaˆ2(t),\sigmaˆ2(u)$

32

33 % define Laplace transform of $\int {u}ˆ{t} \sigmaˆ2(s) ds | ...
\sigmaˆ2(t),\sigmaˆ2(u)$

34 lt = @(u) getCondmgfBK(−u, k, theta, v, Vend, Vstart, T, 0);
35 % compute first four integer moments
36 [mu] = Algorithm1(lt,4,nsimul);



ec20 e-companion to Kyriakou, Brignone, and Fusai: Unified moment-based modelling of integrated stochastic processes

37

38 %% Step 3: Draw random numbers from Pearson given moments (generate ...
$\int {u}ˆ{t} \sigmaˆ2(s) ds | \sigmaˆ2(t),\sigmaˆ2(u)$) generate draws ...
from $\int {u}ˆ{t} \sigmaˆ2(s) ds | \sigmaˆ2(t),\sigmaˆ2(u)$ given moments

39

40 [IVds] = pearsrndVect(mu);
41

42 %% Step 4: Simulate terminal price $S(t) | \int {u}ˆ{t} \sigmaˆ2(s) ds , ...
\sigmaˆ2(t),\sigmaˆ2(u)$ generate random draws from normal distribution

43

44 Z = randn(1, nsimul);
45 % compute variance
46 sigma square = (1 − rhoˆ2) * IVds;
47 switch martCorr
48 case 'true'
49 % apply martingale correction
50 tmp = (k*rho/v − 0.5)*IVds + rho/v*(Vend−Vstart)+ sqrt(sigma square).*Z;
51 Mart = mean(exp(tmp));
52 Kstar = −log(Mart);
53 mu = log(S0) + r * T − 0.5 * IVds + rho * (1 / v) * (Vend − Vstart + k * ...

IVds) + Kstar;
54 case 'false'
55 % simulate integral of \sqrt{V t}dW(s)
56 IrtVdW = (1 / v) * (Vend − Vstart − k*theta*T + k*IVds);
57 % compute mean
58 mu = log(S0) + r * T − 0.5 * IVds + rho * IrtVdW;
59 end
60 % asset price simulation
61 Send = exp(mu + Z .* sqrt(sigma square));
62 end

Conditional Laplace transform.

1 function laptrans = getCondmgfBK(ltpar, k, theta, sigma, Vend, Vstart, t, u)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function evaluates the Laplace transform of the conditional ...

integrated variance in the Heston model.
4

5 % Inputs: − ltpar (vector): parameter of the Laplace transform
6 % − k (scalar): speed of mean reversion
7 % − theta (scalar): long run mean variance
8 % − sigma (scalar): volatility of variance process
9 % − Vend (vector): terminal variance

10 % − Vstart (vector): initial variance
11 % − t (scalar): final date
12 % − u (scalar): initial date
13 % Outputs: − laptrans (vector): numerical value of the Laplace transform
14

15 ks = k.ˆ2;
16 gamm a = (ks+2.*ltpar.*sigma.ˆ2).ˆ.5;
17

18 %1st term
19 term1num=gamm a.*exp(−0.5*(gamm a−k).*(t−u)).*(1−exp(−k*(t−u)));
20 term1den=k.*(1−exp(−gamm a*(t−u)));
21 term1=term1num./term1den;
22



e-companion to Kyriakou, Brignone, and Fusai: Unified moment-based modelling of integrated stochastic processes ec21

23 %2nd term
24 term2 = k.*(1+exp(−k*(t−u)))./(1−exp(−k*(t−u)))−...
25 gamm a.*(1+exp(−gamm a*(t−u)))./(1−exp(−gamm a*(t−u)));
26 term2 = exp((Vend+Vstart).*term2/sigmaˆ2);
27

28 %%%Bessel function
29 nu = (−1)+2.*k*theta/sigmaˆ2;%index Bessel function
30 num1 = 4.*exp((−0.5).*gamm a.*(t−u)).*gamm a;
31 den1 = (1−exp(−gamm a.*(t−u))).*sigma.ˆ2;
32 bessel1 = besseli(nu, (Vend.*Vstart).ˆ.5.*num1./den1);
33

34 num2 = 4.*exp((−0.5).*k.*(t−u)).*k;
35 den2 = (1−exp(−k.*(t−u))).*sigma.ˆ2;
36 bessel2 = besseli(nu, (Vend.*Vstart).ˆ.5.*num2./den2);
37

38 laptrans = term1.*term2.*bessel1./bessel2;

Efficient computation of moments from Laplace transform.

1 function [mu] = Algorithm1(laptrans,N,lVend)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This function computes the moments from a Laplace transform implementing ...

Algorithm 1 in the paper.
4

5 % Inputs: − laptrans (function handles): Laplace transform of conditional ...
integrated process

6 % − N (scalar): Number of moments
7 % − LVend (Number of of different terminal variances)
8 % Outputs: − mu (NrMoments x LVend matrix): matrix of moments
9

10 % prepare matrix of moments
11 mu = ones(N,lVend);
12 % set algorithm parameters
13 gamma = 11; L = 1;
14 % set r() as function of n
15 r = 10.ˆ(−gamma./(2*(1:N)*L));
16 % n = 1
17 % set parameters
18 n = 1; alpha(n) = 1;
19 % multiplicative factor
20 disc = factorial(n)/2./n/L./(r(n)ˆn)/alpha(n)ˆn;
21 % compute mu1
22 mu(1,:) = disc*(laptrans(alpha(n)*r(n)) + (−1)ˆn * laptrans(−alpha(n)*r(n)));
23 % n = 2
24 n = 2;
25 % compute alpha
26 alpha = 1./mu(1,:);
27 % multiplicative factor
28 disc = factorial(n)/2/n/L/(r(n)ˆn)./(alpha.ˆn);
29 % compute mu2
30 mu(2,:) = real(disc .* (laptrans(alpha*r(n)) + (−1)ˆn * ...

laptrans(−alpha*r(n)) +2 * ...
real(laptrans(alpha*r(n)*exp(pi*1i/n/L)).*exp(−pi*1i/L))));

31 % compute other moments
32 for n = 3:N
33 % compute alpha
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34 alpha = (n−1).*mu(n−2,:)./mu(n−1,:);
35 % set indexes for the summation
36 j = (1 : n−1)';
37 % multiplicative factor
38 disc = factorial(n)/2/n/L/(r(n)ˆn)./(alpha.ˆn);
39 % calculate mun
40 mu(n,:) = real(disc.*(laptrans(alpha*r(n)) + (−1)ˆn * laptrans(−alpha*r(n)) ...

+ ...
41 2 * sum(real(laptrans(exp(pi*1i*j/n/L) * alpha*r(n)).*exp(−pi*1i*j/L) ))));
42 end
43 end

Vectorized Pearson random number generator.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % This function generates random numbers from a 4−integer−moment fitted ...

Pearson distribution; it is a vectorized version of the built−in ...
function "pearsrnd".

3

4 % Inputs: − mu (4 x nsimul vector): matrix of moments
5 % Outputs: − X (1 x nsimul vector): Random draws from the fitted ...

Pearson distribution
6

7 nsimul = size(mu,2);
8

9 % compute variance, skewness and kurtosis from moments
10 Var = mu(2,:)−mu(1,:).ˆ2;
11 skew = (mu(3,:) − 3*mu(1,:).*Var− mu(1,:).ˆ3)./(Var.ˆ1.5);
12 kurt = (mu(4,:) − 4*mu(1,:).*mu(3,:) +6*mu(1,:).ˆ2.*mu(2,:) ...

−3*mu(1,:).ˆ4)./(Var.ˆ2);
13

14 beta1 = skew.ˆ2;
15 beta2 = kurt;
16 sigma = sqrt(Var);
17

18 % classify the distribution and find the roots of c0 + c1*x + c2*xˆ2
19 c0 = (4*beta2 − 3*beta1); % ./ (10*beta2 − 12*beta1 − 18);
20 c1 = skew .* (beta2 + 3); % ./ (10*beta2 − 12*beta1 − 18);
21 c2 = (2*beta2 − 3*beta1 − 6); % ./ (10*beta2 − 12*beta1 − 18);
22

23 cond1 = (c1==0);
24 if sum(cond1)>0
25 type(cond1) = (0.*double(beta2(cond1)==3) + 2.*double(beta2(cond1)<3) + ...

7.*double(beta2(cond1) > 3));
26 end
27 cond2 = (c1 6=0 & c2==0);
28 if sum(cond2)>0
29 type(cond2) = 3.*double(c2(cond2) == 0);
30 end
31 cond3 = (c1 6=0 & c26=0);
32 if sum(cond3)>0
33 kappa = c1 (cond3).ˆ2 ./ (4*c0 (cond3).*c2(cond3));
34 type(cond3) = double (kappa < 0).*1 + double (kappa≥0 & kappa≤1−eps).*4 + ...

double (kappa≤1+eps & kappa>1−eps).*5 + ...
35 double(kappa ≥ 1+eps).*6;
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36 tmp = −(c1(cond3) + sign (c1(cond3)).*sqrt(c1(cond3).ˆ2 − ...
4*c0(cond3).*c2(cond3))) ./ 2;

37 a1(cond3) = tmp ./ c2(cond3);
38 a2(cond3) = c0 (cond3) ./ tmp;
39 %term = a1(cond3);
40 for i=1:sum(cond3)
41 if (real(a1(i)) > real(a2(i))), tmp = a1(i); a1(i) = a2(i); a2(i) = tmp; end
42 end
43 end
44

45 denom = (10*beta2 − 12*beta1 − 18);
46 % c0 = c0 ./ denom;
47 c1 = c1 ./ denom;
48 c2 = c2 ./ denom;
49 % coefs = [c0 ; c1 ; c2];
50 rtype = unique(type);
51 % rtype
52 %m1 = zeros(1,Nsimul); m2 = zeros(1,Nsimul);
53 r = zeros(1,nsimul);
54 for i=1:length(rtype)
55 switch rtype(i)
56 case 0
57 pos0 = (type == rtype(i));
58 r(pos0) = normrnd(0,1,[sum(pos0) 1]);
59 case 1
60 pos1 = (type == rtype(i));
61 m1 = (c1(pos1) + a1(pos1)) ./ (c2 (pos1) .* (a2(pos1) − a1(pos1)));
62 m2 = −(c1(pos1) + a2(pos1)) ./ (c2 (pos1) .* (a2(pos1) − a1(pos1)));
63 r(pos1) = a1(pos1) + (a2(pos1) − a1(pos1)) .* betarnd(m1+1,m2+1);
64 case 4
65 pos4 = (type == rtype(i));
66 m = 1 ./ (2*c2(pos4));
67 nu = 2.*c1(pos4).*(1 − m) ./ sqrt((4.*c0(pos4).*c2(pos4) − c1(pos4).ˆ2));
68 b = 2*(m−1);
69 a = sqrt(b.ˆ2 .* (b−1) ./ (b.ˆ2 + nu.ˆ2)); % gives unit variance
70 lambda = a.*nu ./ b; % gives zero mean
71 RND = zeros(1,sum(pos4));
72 for k=1:sum(pos4)
73 RND(k) = pearson4rnd(m(k),nu(k),a(k),lambda(k),1);
74 end
75 r(pos4) = RND;
76 case 6
77 pos6 = (type == rtype(i));
78 % F location−scale: standard support (a2,Inf) or (−Inf,a1)
79 m1= (a1(pos6) + c1(pos6)) ./ (c2 (pos6).*(a2(pos6) − a1(pos6)));
80 m2 = −(a2(pos6) + c1(pos6)) ./ (c2 (pos6).*(a2(pos6) − a1(pos6)));
81 % a1 and a2 have the same sign, and they've been sorted so a1 < a2
82 nu1 = double(a2(pos6)<0).*2.*(m2 +1) + double (a2(pos6)≥0).*2.*(m1 +1);
83 nu2 = −2*(m1 + m2 + 1);
84 ranF = frnd(nu1,nu2);
85 r(pos6) = double (a2(pos6)<0).* (a2(pos6) + (a2(pos6) − a1(pos6)) .* ...

(nu1./nu2) .*ranF) + ...
86 double (a2(pos6)≥0).* (a1(pos6) + (a1(pos6) − a2(pos6)) .* (nu1./nu2) .*ranF);
87

88 end
89 end
90

91 % scale and shift
92 X = abs(r.*sigma + mu(1,:));
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93

94 end
95

96 function r = pearson4rnd(m,nu,a,lambda,sizeOut)
97 % PEARSON4RND Generate Pearson type 4 random variates.
98 %
99 % Exponential rejection method for log−concave densities from

100 % Devroye, Section VII.2. Valid only when m > 1, if called by PEARSRND.
101 %
102 % References:
103 % [1] Devroye, L. (1986) Non−Uniform Random Variate Generation,
104 % Springer−Verlag. Also available in PDF format on−line at
105 % http://cgm.cs.mcgill.ca/¬luc/rnbookindex.html.
106 % [2] Heinrich, J. (2004) "A Guide to the Pearson Type IV Distribution",
107 % CDF/MEMO/STATISTICS/PUBLIC/6820, available on−line at
108 % http://www−cdf.fnal.gov/publications/cdf6820 pearson4.pdf.
109

110 logK = −logHypGeo(m,nu/2) + (gammaln(m) − gammaln(m−.5)) − log(sqrt(pi)*a);
111

112 % generate y = arctan(x) with density g(y) = K*cos(y)ˆ(2m−1)*exp(−nu*y)
113 b = 2*(m−1);
114 M = atan(−nu./b); % mode of y = arctan(x)
115 cosM = a ./ sqrt(b−1);
116 loggM = b.*log(cosM) − nu.*M; % log(g(mode)) + log(K)
117 invgM = exp(−loggM − logK); % 1/g(mode)
118

119 outClass = superiorfloat(m,nu,a,lambda);
120 r = zeros(sizeOut,outClass);
121 j = 1:numel(r);
122 while length(j) > 0
123 U = 4*rand(size(j)); % dist'd Unif([0,4])
124 S = (U>2); % use this to get a random +1/−1
125 U(S) = U(S) − 2; % now dist'd Unif([0,2])
126 negEstar = log(max(U,1)−(U>1)); % zero for U≤1, dist'd Exp(1) for U>1
127 X = min(U,1) − negEstar; % U or 1+Estar
128 Z = log(rand(size(j))) + negEstar; % −E or −E−Estar
129 X = M + (2*S−1).*X.*invgM;
130 k = (abs(X) < pi/2) & (Z ≤ b.*log(abs(cos(X))) − nu.*X − loggM);
131 r(j(k)) = X(k);
132 j(k) = [];
133 end
134

135 % transform, scale, and shift to standard Pearson type IV
136 r = a.*tan(r) + lambda;
137

138 end
139

140 function logF = logHypGeo(x,y)
141 % LOGHYPGEO A special case of the hypergeometric function.
142 %
143 % Returns log F(−iy,iy,x,1) = log abs(gamma(x)/gamma(x+iy))ˆ2, where F is ...

the complex hypergeometric function. This is based on methods described ...
in Heinrich, J. (2004) "A Guide to the Pearson Type IV Distribution", ...
CDF/MEMO/STATISTICS/PUBLIC/6820.

144

145 % for small x, compute (1+(y/x)ˆ2)*...*(1+(y/(x+n))ˆ2) which scales ...
F(−iy,iy,x,1) to F(−iy,iy,x+n,1), which we can compute quickly if x+n is ...
large

146 if x < 100
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147 xstep = x:1:100;
148 % r = prod(1 + (y./xstep).ˆ2);
149 logr = sum(log1p((y./xstep).ˆ2));
150 x = xstep(end) + 1;
151 else
152 logr = 0;
153 end
154

155 % compute F(−iy,iy,x+n,1), then multiply by r to get F(−iy,iy,x,1)
156 logs = zeros(class(y)); logp = zeros(class(y)); f = zeros(class(y));
157 while logp−logs > log(eps)
158 % p = p .* (y.ˆ2 + f.ˆ2) ./ (x.*(f+1));
159 logp = logp + log(y.ˆ2 + f.ˆ2) − log(x.*(f+1));
160 x = x + 1;
161 f = f + 1;
162 % s = s + p;
163 logs = logs + log1p(exp(logp − logs));
164 end
165 % F = r.*s;
166 logF = logr + logs;
167 end


