
              

City, University of London Institutional Repository

Citation: Kubrick, A. H. (1993). Image coding employing vector quantisation. (Unpublished

Doctoral thesis, City, University of London) 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/29476/

Link to published version: 

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


IMAGE CODING EMPLOYING 
VECTOR QUANTISATION

by

Aharon H. Kubrick

A Thesis submitted for the degree of 
Doctor of Philosophy

City University 
School of Engineering 

Information Engineering Centre 

London 
March 1993



Contents

1 Introduction 1
1.1 B ackground.........................................................................................  1
1.2 P u rp o se ................................................................................................ 5
1.3 Outline of T h e s is ................................................................................  7

2 Basic Vector Quantisers 9
2.1 Full Search V Q ...................................................................................  9

2.1.1 Codebook D esign ...................................................................  14
2.1.2 Drawbacks of Full Search V Q .............................................  18

2.2 Gain-Shape V Q ...................................................................................  22
2.3 Classified V Q ......................................................................................  25

2.3.1 The CNNC A lgorith m .......................................................... 28
2.3.2 Experimental Results............................................................. 30

2.4 C onclusions.........................................................................................  38

3 The Human Visual System - A Review 41
3.1 The Nervous S y s te m .......................................................................... 42
3.2 The E y e ................................................................................................ 45
3.3 The Visual Path from the Eye to the C o rte x ...................................  58
3.4 Psychophysics of Vision ..................................................................  64

4 Directional Classified Gain-Shape Vector Quantisation 71
4.1 Introduction.........................................................................................  71
4.2 DCGSVQ - System D escription ......................................................  76

4.2.1 Cosine Transformation.......................................................... 76
4.2.2 Content Classification .......................................................... 77
4.2.3 Incorporating HVS Properties.............................................  79
4.2.4 Vector Configuration............................................................. 83

i



4.2.5 The Control U n it ................................................................... 85
4.2.6 Encoding the AC Vectors ...................................................  86
4.2.7 Encoding the DC Coefficient................................................ 87
4.2.8 The Decoder .........................................................................  88

4.3 Codebooks Design ............................................................................ 88

4.3.1 The AC C odebooks...............................................................  89
4.3.2 The DC Codebooks...............................................................  91

4.4 Simulation R e s u lts ............................................................................  92
4.4.1 A Comparison with Other Coding Techniques................  93
4.4.2 Vector Configuration Strategies.........................................  98
4.4.3 Encoding the DC Coefficients............................................  99
4.4.4 Perceptually-based Codebook D esign ................................  100
4.4.5 Feature Enhancement............................................................  101
4.4.6 HVS Filtering.........................................................................  102
4.4.7 Nonlinear HVS Transform ...................................................  104

4.5 C onclusions.........................................................................................  105

5 Postprocessing of Block Coded Images 107
5.1 Introduction.........................................................................................  107
5.2 Noise Suppression Techniques.........................................................  I l l
5.3 Description of the Algorithm............................................................  119
5.4 Experimental Results.........................................................................  127
5.5 S u m m a ry ............................................................................................  147

6 Image Quality Prediction 151
6.1 Introduction.........................................................................................  151
6.2 Subjective Distortion Measures .................................................... 152
6.3 Quality Prediction Procedures - Type A and Type B ..................  157

6.4 Quality Prediction Procedure - Type C ........................................... 160
6.5 Quality Prediction Procedure - Type D ..........................................  169
6.6 Subjective Tests and Simulation Results ........................................ 169

6.6.1 Choice of Test Images .........................................................  171
6.6.2 Subjective Tests......................................................................  171
6.6.3 Regression and Functional Relationship............................. 174
6.6.4 Simulation R e su lts ................................................................ 175
6.6.5 Summary of Results and Conclusions................................ 185

n



7 Summary 191
7.1 C onclusions.........................................................................................  191
7.2 Future W ork ..........................................................................................  197

7.2.1 Perceptually-based Codebook D es ig n .................................. 197
7.2.2 HVS M odels............................................................................. 198
7.2.3 Entropy C od in g ......................................................................  198
7.2.4 Lapped Orthogonal Transform..............................................  199

7.2.5 Interframe Coding ........................................................  200
7.2.6 Image Compression Standards..............................................  201

Appendices
A A Fast Search Algorithm .........................
B The Merging E r r o r ...................................

C A New Fast Search A lgorithm ................
D Complexity Study......................................
E A New Merging Criterion ......................
F The Pixel Classifier...................................
G Filter Design Based on Properties of HVS 
H The Block Classifier...................................

205
205
207

209
212
217
222
224
236

Bibliography 239



List of Figures

2.1 A full search VQ...................................................................................  13

2.2 'Lena’ coded by a VQ at 0.5 bpp ...................................................  21

2.3 A G S V Q ...............................................................................................  24

2.4 A CVQ s y s t e m ................................................................................... 26

2.5 CNNC algorithm - diagrammatic representation .........................  29

2.6 Original images of ‘Lena ’ and ‘Baboon’ .........................................  31

2.7 ‘Lena’ coded by CVQ systems at 0.562 b p p ...................................  32

2.8 ‘Baboon’ coded by CVQ systems at 0.562 b p p ................................ 33

2.9 ‘Tree’ coded by CVQ systems at 0.562 b p p ...................................  37

2.10 ‘House’ coded by CVQ systems at 0.562 b p p ................................ 37

3.1 Typical neurons ................................................................................... 42
3.2 The relationship between the intensity of the input stimulus to a

neuron and the resulting frequency of its pulses............................. 44

3.3 Diagram of a cross section of the human e y e ................................  45

3.4 Schematic diagram of the retin a ......................................................  47

3.5 Operating characteristics of rods and co n es ...................................  47

3.6 The distribution of cones and rods across the r e tin a .....................  49

3.7 Absorption spectra for three classes of c o n e s ................................ 50

3.8 Receptors responses to 2 Sec test flashes of increasing intensity . 50

3.9 Spatial impulse response of the excitatory facet - experimental results 52

3.10 Qualitative prediction of the facets activity in the Limulus eye for

a given intensity distribution............................................................  53
3.11 Firing rate as a function of stimulus intensity for several back-

ground intensity levels ......................................................................  56

3.12 The effects of different light intensities upon a neuron in the eye

of the Limulus...................................................................................... 57

iv



3.13 Pathways in the human visual system ............................................. 58
3.14 Receptive field of a simple c e l l .........................................................  60
3.15 Grouping of cortical cells according to ocular dominance...............  61
3.16 Grouping of cortical cells according to orientation preference . . 62

3.17 Columnar model of the c o r t e x .........................................................  62

3.18 Block diagram of the H V S ................................................................ 63
3.19 A simple nonlinear model of the H V S .............................................  65
3.20 Spatial frequency response of the H V S ............................................. 66
3.21 The paradigm for brightness con sta n cy .......................................... 67
3.22 Spatial masking function (for a=0 .15 )............................................. 69

4.1 DCGSVQ - Block Diagram ................................................................ 78

4.2 MTF in Fourier and cosine d om a in s ............................................. 81
4.3 Vector configuration m a p s ................................................................ 84
4.4 ‘Lena’ coded by CVQ and DCGSVQ at 0.562 b p p ........................  94

4.5 ‘House’ coded by CVQ and DCGSVQ at 0.5 b p p ...........................  96
4.6 ‘Tree’ coded by TC-CVQ and D CGSVQ .......................................... 97
4.7 ‘Splash’ coded by DCGSVQ at 0.^8 b p p .......................................... 100
4.8 Feature enhancement - ‘Baboon’ at 0.5 b p p ....................................  102

5.1 ‘Lena’ coded by CVQ at 0.5 b p p ........................................................ 108
5.2 Two-dimensional spectrum for a 16x16  monotone subimage de-

rived from the original image of ‘Lena’ .......................................... 109
5.3 Two-dimensional spectrum for a 16 x l6  monotone subimage de-

rived from the coded image of ‘Lena’ at 0.5 bpp .......................... 109
5.4 Two-dimensional spectrum for a 1 6 x 1 6  edge subimage derived

from the original image of ‘Lena’ ...................................................  110
5.5 Two-dimensional spectrum for a 16 x 16 edge subimage derived

from the coded image of ‘Lena’ at 0.5 bpp ......................................  110
5.6 A block coded image after postfiltering............................................. 114
5.7 A filtered block coded image using a SNN f i l t e r .............................  115

5.8 A filtered block coded image using the algorithm of Ramamurthi 117
5.9 First step - grid noise filtering .........................................................  120
5.10 Second step - staircase noise filte r in g ............................................. 123
5.11 Third step - edge enhancement.........................................................  125
5.12 Contrast enhancement ......................................................................  126

v



5.13 ‘Housel’ coded by CVQ at 0.56 b p p ................................................

5.14 ‘Lena2’ coded by a full search VQ at 0.625 bpp .............................

5.15 Average one-dimensional spectrum for monotone 8 x 8  blocks . .

5.16 Frequency response of the filter h(x) of order 3 based on the MTF

proposed by Mannos and Sakrison ...................................................

5.17 Frequency response of the filter hst(x) of order 5 based on the
MTF proposed by Mannos and Sakrison.........................................

5.18 Frequency response of the filter h(x) of order 3 based on the MTF

proposed by N ill ...................................................................................

5.19 Frequency response of the filter hst(x) of order 5 based on the

MTF proposed by Nill.........................................................................

5.20 Original image after filtering it by a set of filters based on Nill’s

weighting function ...............................................................................

5.21 Frequency response of the filter hen(x ) of order 5 based on the

MTF proposed by Nill.........................................................................

5.22 Various filtered images obtained while carrying out the filtering of

‘Lenal ’ in a step-by-step m a n n e r ...................................................

5.23 Various filtered images obtained while carrying out the filtering of

‘Housel’ in a step-by-step manner...................................................

5.24 Magnification of the filtered image (Fig. 5.10d).............................

5.25 Magnification o f the filtered image (Fig. 5.l i d ) .............................

5.26 Magnification of the filtered coded image ‘Lena2’ .........................

5.27 Two-dimensional spectrum for a 16 x 16 monotone subimage from

the coded image ‘Lenal ’ ...................................................................

5.28 Two-dimensional spectrum for a 16 x 16 monotone subimage from

‘Lenal ’ after filtering .........................................................................

5.29 Two-dimensional spectrum for a 16 x 16 edge subimage from the

coded image ‘Lenal’ ............................................................................

5.30 Two-dimensional spectrum for a 16x16 edge subimage from ‘Lenal

after filtering ......................................................................................

5.31 Two-dimensional spectrum for  a 16x16 edge subimage from ‘Lenal

after filtering ......................................................................................

5.32 ‘House’ coded by DCGSVQ at 0.5 bpp .............................................

5.33 ‘ Tree’ coded by DCGSVQ at 0.5 bpp ................................................

128

129

130

132

133

134

134

135 

137 

140

140

141

141

142

143

143

144

144

145

146

147

vi



6.1 Transfer function H(u) and nonlinear function T[I(x,y)]  . . . 154
6.2 Block diagram of Type A quality prediction p roced u re ................  159

6.3 Activity weighting factors ...................................................................  163
6.4 Limb’s model of threshold v ision ......................................................  166
6.5 Lukas and Budrikis’ model of threshold v i s i o n ............................. 167
6.6 Block diagram of Type C quality prediction p roced u re ................  168
6.7 ‘Lena’, the source im a g e ...................................................................  172

6.8 The best and worst reconstructed test im ages ................................  172
6.9 Quality scale.........................................................................................  173
6.10 Quality Rating Versus RMS Errors - Quadratic Regression . . . 176
6.11 Best quadratic fit for Type A procedure .......................................... 178
6.12 Worst quadratic fit. for Type A procedure ......................................  178
6.13 Best exponential and gaussian fits for Type A procedure............. 179
6.14 Best fit for Type B procedure - quadratic regression ...................  181
6.15 Best exponential and gaussian fits for Type B procedure............. 181
6.16 Best fit for Type C procedure - quadratic reg ression .....................  184
6.17 Best fit for Type D procedure - quadratic regression .....................  186
6.18 Best exponential and gaussian fits for Type D procedure.............  186

G.l Modulation transfer functions of the H V S ...................................... 226
G.2 Block diagram of an image processing system ............................  227
G.3 The desired overall low-pass system response Hip( f ) ...................  234

Vll



List of Tables

2.1 CVQ system - SNR results for ‘Lena’ and ‘Baboon’ ...................  31

2.2 CVQ system - SNR results for ‘Tree’ and ‘House’ ......................  34
2.3 Coding evaluation for different images coded at 0.625 bpp . . .  35

4.1 SNR results for the training im ages................................................ 93
4.2 SNR results for the test im a g e s ......................................................  95

4.3 SNR results for TC-CVQ and DCGSVQ systems.........................  97

4.4 SNR results for two vector configuration strategies......................  98

4.5 SNR results - Two DC-encoding methods......................................... 99
4.6 SNR results for various types of codebooks at 0.593 bpp . . . .  101
4.7 SNR results for LPF and BPF at 0.625 bpp ................................. 103
4.8 SNR results with and without inverse HVS filtering at 0.56 bpp 103
4.9 SNR results for varios HVS transforms at 0.625 b p p ....................  104
5.1 SNR results for original ‘Lena’ processed by the proposed algo-

rithm (steps 1 and 2 ) .................................................................... 135
5.2 SNR results for coded ‘Lenal’ filtered by three steps of the pro-

posed algorithm .............................................................................  136
5.3 SNR results for coded ‘Housel’ filtered by three steps of the pro-

posed algorithm .............................................................................  136
5.4 SNR results for the filtered test images......................................  138
5.5 SNR results for DCGSVQ-coded unfiltered and filtered images at

0.5 b p p .............................................................................................  146
6.1 MSD values for Type A procedure - quadratic regression..............  177
6.2 MSD values for Type B Procedure - quadratic regression..............  180

6.3 MSD values for Type C Procedure - quadratic regression..............  183

6.4 MSD values for Type D Procedure - quadratic regression..............  185

6.5 A summary of best prediction resu lts .......................................  187
6.6 A comparison of three regression functions - best predictors. . . 189

viii



ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Dr. Tim Ellis for the 
continual guidance and encouragement that he provided throughout the course 

of this research, and most of all for his friendship. During my two years stay 
in London, Janet and Tim Ellis have been most kind and generous to me and I 

owe them an unrepayable debt.

In addition, I am indebted to Professor A. C. Davies of King’s College London 
who encouraged me to start this research, and who took interest in my work 
throughout the course of this research. Rochelle and Tony Davies have been 

most kind friends.

I wish to thank Professor L. Finkelstein, the Dean of the School of Electri-
cal Engineering and Applied Physics, for his friendly hospitality and his kind 

attention.

Many thanks to the staff at the Information Engineering Centre, especially 
Professor M. Cripps, Dr. P. Samwell, Dr. R. Comlley, Dr. S. Khan, and Mrs. 

S. Gilling for their friendly hospitality.

Many thanks to my colleagues, especially J. Ngwa-Ndifor, S. Omarouayache, 
R. Hung, L. Tun, S. Brock-Gunn, S. Mylonas, and A. Purbenyamin for the nice 
atmosphere that existed during my stay with them. Many thanks also to all in 
the Computer unit, especially D. Tongue, and A. Lack for their help.

Last but not least, I thank my wife Katy and my daughter Liat for having 

always encouraged me and for trying to understand my strange way of thinking.



DEDICATION

TO

M y  MOTHER

Who sacrificed so much.

ICATy

Who surely knows why.

C 1 A T

Who hopefully will find the answers.



DECLARATION

I grant powers of discretion to the University Librarian to allow this thesis to 
be copied in whole or in part without further reference to me. This permission 
covers only single copies made for study purposes, subject to normal conditions 

of acknowledgement.



ABSTRACT

The work described in this thesis is concerned with the coding of digitised 
images employing vector quantisation (VQ). A new VQ-based coding system, 
named Directional Classified Gain-Shape Vector Quantisation (DCGSVQ), has 
been developed. It combines vector quantisation with transform coding tech-
niques and exploits various properties of the human visual system (HVS) like 
frequency sensitivity, the masking effect, and orientation sensitivity, to produce 
reconstructed images with good subjective quality at low bit rates (0.48 bit per 
pixel).

A content classifier, operating in the spatial domain, is employed to classify 
each image block of 8x8 pixels into one of several classes which represent various 
image patterns (edges in various directions, monotone areas, complex texture, 
etc.). Then a classified gain-shape vector quantiser is employed in the cosine 
domain to encode vectors of AC transform coefficients, while using either a 
scalar quantiser or a gain-shape vector quantiser to encode the DC coefficients. 
A new vector configuration strategy for defining AC vectors in the cosine domain 
has been proposed to better adapt the system to the local statistics of the image 
blocks. Accordingly, the AC coefficients are first weighted by an equivalent 
modulation transfer function (MTF) that represents the filtering characteristics 
of the HVS, and then they are grouped into directional vectors according to 
their direction in the cosine domain. An optional simple method for feature 
enhancement, based on inherent properties of the proposed strategy, has also 
been proposed enabling further image processing at the receiver.

A new algorithm for designing the various DCGSVQ codebooks has been 
developed in two steps. First, a general-purpose new algorithm for classified 
VQ (CVQ) codebook design has been developed as an alternative to empirical 
methods proposed in the literature. The new algorithm provides a simple and 
systematic method for codebook design and reduces considerably the total num-
ber of mathematical operations during codebook design. We have named this 
new algorithm Classified Nearest Neighbour Clustering (CNNC). A fast search 
algorithm has also been developed to reduce further computational efforts during 
codebook design.

Secondly, a new optimisation criterion which is more suitable for shape code-
book design has been developed and employed within the CNNC algorithm to 
design classified shape codebooks for the DCGSVQ. We have named this algo-
rithm modified CNNC. The new algorithm designs the various shape codebooks 
simultaneously giving the designer full freedom to assign more importance to 
certain classes of vectors or to certain training vectors. The DCGSVQ system 
has been shown to outperform the full search VQ, the CVQ, and the transform 
coding CVQ (TC-CVQ) producing nicer coded images with better signal to noise 
ratio (SNR) figures at various bit rates.



To improve further the perceived quality of coded images, a new postpro-
cessing algorithm that can be applied at the decoder without increasing the bit 
rate has been developed. The proposed algorithm is based on various charac-
teristics of the signal spectrum and the noise spectrum, and exploits various 
properties of the HVS. The proposed algorithm is a general-purpose algorithm 
that can be applied to block-coded images produced by various systems like VQ, 
transform coding (TC), and Block Truncation Coding (BTC). The algorithm is 
modular and can be applied in an adaptive way depending on the quality of the 
block-coded image.

The last theme of this work has been the identification of useful fidelity 
criteria for image quality assessment. Quality predictors in the form of some 
subjectively weighted error measures were sought such that a smooth functional 
relationship exists between them and quality ratings made by human viewers. 
Quality predictors that incorporate simplified models of the HVS have been 
proposed and tested on a large set of VQ-coded images. Two such predictors 
have been shown to be better suited for image quality assessment than the 
commonly used mean square error (MSE) measure.
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Chapter 1

Introduction
Teaching beyond teaching;1 

No leaning on words and letters.

1.1 Background

Digital image processing has a broad spectrum of applications, such as remote 
sensing via satellites, image transmission and storage for business and military 
applications, medical processing, radar, sonar and acoustic image processing, 
robotics and automated inspection of industrial parts. Images acquired by satel-
lites are useful in tracking of earth resources, geographical mapping, prediction 
of agricultural crops, urban growth, weather prediction, and other environmental 

applications.

Image transmission and storage applications include broadcast television, 
teleconferencing, videophone, transmission of facsimile images for office automa-
tion, communication over computer networks, closed-circuit television based se-
curity monitoring systems and military communications. Current forecasts for 
world-wide communications in the ’90s and beyond, point to a proliferation of 
digital transmission as a dominant means of communication for voice and im-
agery data. Digital transmission is expected to provide flexibility, reliability, 
and cost effectiveness with the added potential for communication privacy and 
security through encryption.

1Each chapter starts with a quotation from the Zenrin Kushu - a Zen saying anthology
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A new development which is attracting much interest is the provision of color 
television pictures of significantly better quality, allowing the use of appreciably 
bigger screens. The availability of new transmission channels, such as via direct 

broadcast satellite (DBS) and wide-band fiber optic cable systems, has led to 
an upsurge of interest in new TV transmission methods such as high definition 
TV (HDTV). Unfortunately, the enormous data generated by such systems can 
defeat any transmission media, including fiber optic cables.

Medical applications of digital image processing include the processing of X- 
rays, ultrasonic, computer tomography (CT), and nuclear magnetic resonance 
(NMR) images. New archival systems are needed to store these digital images 
with as little as possible loss of fine details. Similar demands exist for radar and 
sonar images which are used for detection and recognition of various types of 
targets, or in guidance and maneuvering of aircraft or missile systems.

Many new applications in video technology will be digital. In the computing 
arena, interest is already growing in the integration of video with graphics and 
audio. Often referred to as multimedia applications, these will be used in inter-
active education, next-generation graphics systems, network videoconferencing, 

and other user-friendly systems.

Unfortunately, all these applications share in common the increasing demand 
for digital storage and transmission media. Unlike the digital audio technology 
of the ’80s, sampled video source signals require very high bit rates ranging 
from about 97 megabits per second (Mb/Sec) for broadcast-quality video to 216 
Mb/Sec for studio digital signal processing. Even when still pictures (images) 
are involved, as in image archival systems, a mountain of data is needed to 
represent them. For example, a color image with resolution of 1000 by 1000 
picture elements (pixels) at 24 bits each will occupy 3 megabytes of storage.

The costs of digital storage and transmission media are generally proportional 
to the amount of digital data that can be stored or transmitted. While the cost 
of such media decreases every year, the demand for their use increases at an even 
higher rate. Therefore, there is a continuing need to minimise the number of bits 
necessary to transmit or store signals while maintaining acceptable signal fidelity 
or quality. The branch of electrical engineering that deals with this problem is

2



termed data compression or coding.

The theoretical foundations of data compression lie in a branch of infor-

mation theory known as rate-distortion theory, originally set forth by Shan-
non [Shannon 1948, Berger 1971]. An important aspect of data compression 
is the quantisation process defined as the process of approximating continuous- 
amplitude signals by digital (discrete-amplitude) signals. The independent quan-

tisation of each signal value or parameter is named scalar quantisation, while 
the joint quantisation of a block of parameters is named block quantisation. A 
fundamental result in information theory indicates that for any source of data 
more efficient coding can be achieved by processing carried out in block (vector), 
rather than scalar, form. This fundamental result and the increasing availabil-
ity of high speed integrated circuitry for implementation have stimulated the 
growing interest over the past ten years in a new method for speech and image 

coding - Vector Quantisation (VQ).

In VQ 2, a vector always refers to a ¿-dimensional ordered set of real num-
bers. The vector components may represent signal samples or numerical values 
of certain parameters or features that have been extracted from a signal. In 
the most direct application of VQ to waveform or image compression, a group of 
contiguous signal samples is grouped into a vector so that each vector simply de-
scribes a small segment of the original signal. This leads to efficient exploitation 
of the correlation between samples within an individual vector.

VQ is actually a pattern matching technique. In essence, the vector of input 
samples is a pattern that must be approximated by one of a finite set of prototype 
patterns that is stored in a codebook. To describe this pattern, we simply identify 
the index (address) of that pattern in the codebook that “best” approximates 
the input pattern. Efficient coding is achieved by replacing the original vector 
with the address of the selected pattern.

Image coding employing VQ consists of the following basic steps. First, image 
vectors are usually formed by dividing a digitised image into contiguous, non-
overlapping, square blocks of pixels which are arranged as ¿-dimensional vectors.

2This abbreviation is used to denote either vector quantisation or vector quantiser 
as determined by context.

3



Then, for each input image vector, the encoder finds a “nearest” codevector from 
a predefined codebook according to some meaningful fidelity criterion, or distor-
tion measure, which assigns a “cost” to any such mapping. A binary codeword 

is then used to identify the index of the chosen codevector and this codeword 
is transmitted to the decoder. The decoder simply looks up the appropriate 
codevector from a copy of the codebook and outputs it as the reproduction 
vector. Finally, the entire reconstructed image is built-up by rearranging the 
reconstructed image blocks in appropriate order. The system described above is 
a memoryless full search VQ since each vector is encoded individually, and all 
the codevectors are tested for each input vector.

VQ falls in the generic group of block coding techniques, such as transform 
coding (TC) and block truncation coding (BTC), all of which code a block of 
source samples as one entity. In theory, VQ approaches the optimal compres-
sion limit (the rate-distortion limit) as the dimension of the vector increases. 
Furthermore, for any coding method based on vectors of the same dimension-
ality, a VQ that performs as well or better at the same rate can be designed 
[Ramamurthi 1985]. Thus, VQ is the optimal coding method for a given dimen-
sionality.

One unique feature of VQ is that high compression ratios are possible with 
relatively small block sizes, unlike other compression methods such as transform 
coding. Use of smaller block sizes (4x4 or 5x5 pixels) in block coding has been 
known to lead to better subjective quality [Limb 1979]. A second feature of 
VQ is that, unlike TC or BTC, the decoding process is simply a table look-up, 
making VQ ideally suited for single-encoder, multiple-decoder applications such 
as videotext and archiving where the decoder should be as simple and cheap as 

possible.

Coders based on memoryless VQ have achieved reasonable quality at rates 
above 0.6 bits per pixel (bpp). To encode images below 0.6 bpp without any 
significant degradation in quality, it is necessary to increase the block size so 
that a single block can exploit spatial correlation over a larger region. It 
has been shown, however, that the block size is typically limited to 5x5 pix-
els or even smaller by the encoding and storage complexity of VQ. It has 
also been noted that edge quality is harder to maintain with larger block sizes
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[Ramamurthi 1986]. One technique that has achieved lower bit rates is the com-

bination of VQ with transform coding, as in [Saito 1988] and in [Kim 1989]. A 
linear transformation is performed on a relatively large block size (8x8 or 16x16 

pixels), and VQ is then employed on groups of transform coefficients. Good 
visual quality of coded images has been obtained at bit rates in the range of
0.45 to 0.65 bpp. Further compression requires that a coder exploits the two- 
dimensional spatial correlation between neighbouring blocks in the image. Such 
coders are, in general, more complex, and their design is somewhat heuristic.

1.2 Purpose

Various VQ systems have been developed during the last ten years. While the 
effectiveness and importance of VQ in data compression and in speech recogni-
tion is undisputed, a major obstacle to its use is the computational complexity 

of real-time implementation. In a VQ system, the rate is defined as the number 

of bits needed to identify each codevector. The rate r in bits per vector compo-
nent is given by r =  (1/k) log2 N  where k is the vector’s dimension and N  is the 
number of codevectors. Thus, for a fixed k value and an increasing rate or for a 
fixed rate and an increasing k value, the codebook size, and therefore encoding 
complexity, grows exponentially. This growth requires a corresponding increase 
in storage requirements and computational effort.

Studies of image coding with vector quantisation have revealed that VQ 
systems, working at rates of 0.5 bpp or less, produce coded images with reduced 
resolution as well as reduced edge integrity. Reduced edge integrity refers to the 
inaccurate reproduction of an edge in terms of orientation and location. We have 
noted that, in general, the non-edge areas of the coded images are coded without 
visually annoying degradation; however, edges are coded very poorly. The cause 
of this problem is the small number of codevectors, within the codebook, that 
contain parts of edges in them thus being unable to represent the variety of 
edges that must be coded. Even if the codebook contains edge codevectors, the 

distortion measure usually used for encoding does not ensure that an edge block 
will be coded with an edge codevector.
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The very end of many image processing system is the human eye. The sensi-
tivity of the human visual system (HVS) to stimuli of varying levels of contrast, 
luminance and different spatial and temporal frequencies varies greatly. These 
inconsistencies can be exploited to determine the subjective redundancies within 
the image, i.e., that information which can be discarded without subjectively 
degrading the perceived quality of the final image [McLaren 1991]. That is why 
many researchers have studied the HVS in order to evaluate the effects of dif-
ferent types of distortion in coded images on the human observer.

In the light of this discussion, the main purpose of this research is to develop 
a new VQ-based coding system that integrates valuable knowledge about the 
human visual system with emerging VQ techniques. It is postulated that if the 
coding scheme is matched to the HVS and attempts to imitate its functions, at 
least for the known part of it. high compression ratios along with good quality 
of reconstructed images can be expected. The new system should be compu-
tationally less demanding, compared to a full search VQ, and should perform 
better than, or as well as, a full search VQ. In addition, the new system should 
be capable of preserving edge integrity while operating at low bit rates.

In order to limit the scope of this study, we will consider only monochrome, 
still images. We exclude the possibility of exploiting temporal correlation present 
in a sequence of image frames. We also do not exploit the correlation present 
between the color components in color images. These correlations are significant, 
and must certainly be included in a future coding system once the basic coding 
technique is fully understood. Nevertheless, it should be noted that the coder 
developed herein for still images can easily be enhanced to code a sequence of 
color images. Therefore, the results of this study will be highly relevant to such 

future work.

A memoryless VQ encodes each image block independently of its neighbours. 
Such block coders may preserve continuity of tone within each block, but they 
can not ensure continuity from block to block. As a result, there is a tendency 
for the decoded intensity to change rather abruptly from one block to another 
making the block boundaries visible. This problem, which is a common prob-
lem of memoryless block coding schemes, and the reduction in edge integrity, as 
described above, can be dealt with by postprocessing of reconstructed images.
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Typically, with postprocessing we attempt to remove the out-of-band noise in-
troduced by the quantisation process. The processing algorithm does not require 
side information to be transmitted from the encoder and hence the bit rate is 
not affected. Thus, another goal of this research is to develop an efficient post-
filtering algorithm intended to reduce noise in reconstructed block-coded images 
without significantly modifying the image signal.

Identification of useful fidelity criteria for image compression system design 
and for image quality assessment has been a persistent difficulty for researchers. 
Ideally, the distortion measure that is used for codebook design and quantisa-
tion should be tractable so that it can be analyzed, computable so that it can 
be evaluated in real time and used in minimum distortion systems, and subjec-

tively relevant so that large or small distortion values correlate with bad and 
good subjective quality, respectively. Most distortion measures in use today are 
certainly tractable and, to some extent, subjectively relevant (as, for example, 
the Itakura-Saito distortion used in voice coding [Itakura 1968]). However, as 
bit rate decreases and distortion increases, simple distortion measures have not 
always correlated well with subjective judgements. Since VQ is expected to be 
especially useful at low bit rates, we intend to test a number of perceptually- 
based distortion measures and find one that is in good accord with subjective 
assessments of block-coded images.

1.3 Outline of Thesis

The thesis is organised as follows. In chapter 2, we introduce the basic concepts 
of vector quantisation. Basic vector quantisers that are relevant to our work,
i.e., those systems that have been used as basic building blocks in our work 
toward the development of a new perceptually-based VQ system, are described. 
In particular we focus on the full-search VQ along with gain-shape VQ (GSVQ), 
and classified VQ (CVQ). A new algorithm for designing CVQ codebooks is also 
described and shown to provide a simple and systematic method for codebook 
design. We have named this algorithm Classified Nearest Neighbour Clustering 
(CNNC).

7



A review of the human visual system (HVS) is presented in chapter 3. Var-
ious properties of the HVS which can be used in image processing and coding 
are described. Armed with this knowledge about the HVS and the basic VQ 
systems, we propose a new image coding system in chapter 4. We have named 
this system Directional Classified Gain-Shape Vector Quantisation (DCGSVQ). 
Various properties of the HVS are incorporated into the proposed system to im-
prove further the subjective quality of reconstructed images. A new algorithm 
for designing the various codebooks, needed for the DCGSVQ, is also proposed 
based on the mentioned CNNC algorithm. We have named this new algorithm 
the modified CNNC algorithm.

A new postprocessing algorithm aimed at reducing noise introduced in block- 
coded images while retaining edge integrity and edge sharpness is proposed in 
chapter 5. The proposed algorithm is based on various characteristics of the 
signal spectrum and the noise spectrum. In addition, various properties of the 
HVS have been incorporated in the filtering algorithm in order to improve the 
perceived quality of the processed block-coded images.

Chapter 6 is concerned with the evaluation of several subjectively relevant 
distortion measures. Quality predictors, in the form of some subjectively weighted 
error measure, are sought such that a smooth functional relationship exists be-
tween them and quality ratings made by a number of human viewers. Based on 
simplified models of the HVS, such quality predictors are proposed and tested 

on a large set of VQ-coded images.

Finally, in chapter 7, we review the thesis and draw conclusions from our 
findings. In addition, a short discussion of directions for future research is pre-
sented. We have tried to keep the thesis as readable as possible, therefore most 
of the mathematical developments and the detailed description of the various 
algorithms have been gathered in the eight appendices that conclude this thesis.



Chapter 2

Basic Vector Quantisers

The jewel remains clean in the mud; 
The pine keeps its color after the snow.

Over the last ten years various VQ-based coding systems have been designed 
and applied to digital image coding at low bit rates (in the range of 0.3 to 1.5 
bits per pixel (bpp)). Excellent reviews of VQ systems, their applications, and 
codebook design algorithms can be found in [Gray 1984] and [Nasrabadi 1988]. 
In addition, a new book devoted to VQ and signal compression [Gersho 1992] 
has been published recently. Therefore, a full review of the various available VQ 
systems is omitted in this thesis. Instead, we will discuss those basic systems 
that are relevant to our work, i.e., those systems that have been used as basic 
building blocks in our work toward the development of a new perceptually-based 
VQ system. In particular, the basic full-search VQ along with gain-shape VQ 
(GSVQ) and classified VQ (CVQ) are described in this chapter. A new algorithm 
for designing CVQ codebooks is also described and shown to provide a simple 
and systematic method for codebook design.

2.1 Full Search VQ

Consider a k-dimensional vector x =  (xi, X2 , ■.., Xk) whose components 
{xi, 1 <  l < k} are real-valued, continuous-amplitude random variables. In 
vector quantisation, the vector x is mapped onto another real-valued, discrete-
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amplitude ¿-dimensional vector y. We say that x is quantised as y, and y is the 
quantised value of x. The following notation is used

y =  q{x)

where q(-) is the quantisation operator. The vector y is called the reproduction 
vector or the output vector corresponding to x. Typically, y takes on one of a 

finite set of values C — {yi, 1 <  i <  N }  where yi — (yn, t/,2, ■ ■ ■, yik)• The set C 
is referred to as the reconstruction codebook, or simply the codebook. N  is the size 
of the codebook, and {yi} is the set of codevectors. The size N  of the codebook 
is also called the number of levels, a term borrowed from scalar quantisation 
terminology. Thus, a quantiser that employs N  codevectors is referred to as an 
N -level quantiser.

To design a VQ codebook, the ¿-dimensional space, Rk, of the random vector 
x is partitioned into N  regions or cells {fq, 1 <  i <  N } and each cell Si is 
associated with a vector yl. The quantiser then assigns the codevector yi if x is 
in Si, i.e.,

q(x) =  if x e S i . (2.1)

This process of codebook design is known as training ox populating the codebook.

When x is quantised as y , a quantisation error results and a distortion 
measure d{x,y)  can be defined between x and y. As the vectors yt at differ-
ent times t are transmitted, one can define an overall average distortion

D =  lim - J 2 d { x t,yt) ■ (2.2)
n—xoo 77

U t =  1

If the vector process x t is stationary and ergodic then the sample average in 
equation (2.2) tends in the limit to the mathematical expectation

D =  E[d(xt,y t)\ =
N .

=  d(xu yi)p(xt)dxt =

=  ^ P r (x i  G Si)E[d(xt,yi) \ xt € Si] (2.3)

where Pr(xi G Si) is the discrete probability that x t is in Si, p(xt) is the multi-

dimensional probability density function (pdf) of xt, and the integral is taken 
over all the components of the vector x t.
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The quantiser is said to be an optimal (minimum-distortion) quantiser if 
the distortion in equation (2.3) is minimised over all iV-level quantisers. Two 
necessary conditions for optimality have been defined in [Gray 1980] :

1. Given a codebook C =  {j/i, j/2, • • -,yrv}, the optimal quantiser is realized 
by using a minimum-distortion or nearest neighbour selection rule

q(x) =  yi , iff d(x,yi) <  d(x,yi), l ±  i ; / =  1 ,2 , . . . ,  N  . (2.4)

That is, the quantiser chooses the codevector that results in the mini-
mum distortion with respect to x. Equivalently, for a given codebook the 
decision regions (cells) must be such that

Si =  {x  : d(x,yi) <  d(x,yi) for all / ^  i ; / =  1 ,2 , . . . ,  N }  .

These regions are called Voronoi cells or Dirichlet regions [Gersho 1982a], 
The regions Si partition the A:-dimensional Euclidean space, i.e.,

U ?=1Si =  Rk and Si G Si =  0 for i ^ l

for an arbitrary tie-breaking rule.

2. Given a partition of the ^-dimensional space, {¿q jA j, each codevector yi 
is chosen to minimise the average distortion in cell S{. That is, yi is that 

vector u G Si which minimises

A  =  E[d(x,u) | x G Si] . (2.5)

We call such a vector the centroid of the cell Si, and we write

y% =  cent (S',) .

In practice, we are given a set of training vectors {x t ; t =  1 ,2 , . . . }  that define 
an empirical (discrete) probability density function instead of the actual density 
function of the data source which is usually unknown. A subset of those vectors 
will be in cell S thus, the average distortion in that cell can be computed by

A  =  —  YI d(x,yt) , (2.6)
xeSi

and the centroid can be computed by

Vi min'
ues. J2 d(x , u)

x£S
(2.7)
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where mt- is the number of vectors x in 5,-, and the inverse minimum means that 
ÿi is that vector ü £ Si that minimises the average distortion in the cell Si.

The centroid depends on the distortion measure and is computable only for a 
few distortion measures one of which is the weighted mean square error (WMSE) 
defined as

WMSE =  - J 2 ( ^ - y t ) TW (x t - y t) (2.8)
n t=l

where (-)r denotes transpose, W  is a (k x k) positive-definite weighting matrix, 
and n is the number of vectors xt. The mean square error (MSE) is a special 
case of the WMSE and is defined by

MSE = -  yt) (x t -  yt)n t=l n E
i=i

xt-yt  I I 2 (2.9)

Both distortion measures have been widely used in image coding although they 
have been shown to correlate poorly with subjective judgements, particularly for 
low bit rates (see, for example, [Mannos 1974]). One can easily show that for 
either the WMSE or the MSE the average distortion Di in cell S, is minimised 
by the centroid

yi =  —  E  * • (2-10)
its ,

That is, yi is simply the sample mean of all the training vectors contained in St.

A basic vector quantiser is depicted in Fig. 2.1. The input x to the encoder 
is a /¿-dimensional vector. In our application, the image is partitioned into 
contiguous, non-overlapping, square blocks (for example, blocks of 4x4 pixels) 
and these blocks, rearranged as 16-dimensional vectors, form the input data 
vectors. The encoder computes the distortion d(x,yi) between the input vector 
x and each codevector, yi ; * =  1 ,2 , . . . ,  iV from a codebook C. The optimum 
encoding rule is the nearest neighbour rule, described earlier, in which the index i 
is transmitted to the decoder if codevector yi is closest to the input vector x. The 
decoder simply looks up the ¿-th codevector, yt, from a copy of the codebook C, 
and outputs it as the reproduction vector x. This type of quantisation is known 
as full search vector quantisation since all codevectors are tested for each input 

vector.
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Figure 2.1: A full search VQ.

For purposes of transmission, each codevector y, is encoded into a codeword 
of Bi binary digits (bits). In general, the different codewords may have different 
lengths ( variable-length coding) and the transmission rate T  is then given by

T — Rave Bc bits/Sec (2-11)

where
1 n

Rave =  lim — bits/codeword (2.12)
n—► oo To L—J 

11 t= 1

is the average codeword length, Bt is the number of bits used to code the vector 
yt at time t , and Fc is the number of codewords transmitted per second. For a 
codebook of size N  and using equal-length codewords, the number of bits needed 
to encode each vector is

R — log2 N  . (2.13)

For such a code, the average number of bits per dimension (per vector compo-

nent) is given by

r =  — R =  — log2 iV bits/dimension . (2-14)
k k

In designing a data compression system, one attempts to design the quantiser 
so that the distortion in the output is minimised for a given transmission rate.
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2.1.1 Codebook Design

Given an adequate statistical specification of the source and a desired code-
book size, the most challenging task in VQ design is to design a codebook that 
contains the best, or nearly the best, collection of codevectors which efficiently 
represent the variety of source vectors to be coded. As explained earlier, an 
optimal ArQ is one which employs a codebook C * that yields the least average 
distortion among all possible codebooks. The design algorithm for an optimal 
codebook is not known in general; however, a clustering algorithm, the LBG 
algorithm also known as the generalised Lloyd’s algorithm (GLA) [Linde 1980], 
has been widely used to design optimal codebooks in a local sense. That is, 
the codebook designed with the LBG algorithm is optimal for small perturba-
tions of the codevectors, but is not necessarily globally optimal over all possible 
codebooks [Sabin 1986].

The LBG algorithm uses a long training set of vectors (in our case image 
vectors) generated by a particular source, and allocates them into a predefined 
number of clusters (cells). The training image vectors are generated from differ-

ent training images by dividing each image into small image blocks and arranging 
each block as a ¿-dimensional vector. The algorithm starts from a given initial 
partition, or an initial codebook, and improves this in a stepwise manner. In 
this process the training vectors are first assigned to the clusters S', (i-epresented 
by the initial codevectors) according to the nearest neighbour rule. Then the 
codebook is updated by computing the centroid of the training vectors in each 
cluster. Computing the centroids and reassigning vectors is repeated until the 
decrease in the overall distortion (between successive iterations) is below a cer-
tain threshold. At the conclusion of the algorithm, the centroids are grouped 
into a codebook, which is best at representing the training set of vectors and 

hence the particular source.

The main parameters in such iterative codebook design are : the composition 
of the training set, the size of the training set, nt, the size of the desired code-
book, N, the training ratio p — nt/N, and the choice of the initial codebook. 
The composition of the training set is important in that we desire to form a 
universal codebook that will be able to perform well on all of the data that the 
coder will ever see. A poorly designed codebook will work satisfactory when the
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encoding data has the same properties as the training set, but will give poor 

results when presented with other data.

The size of the training set is important as this roughly determines the 
number of vectors that will lie in each cluster (cell). For a codebook design to 
be healthy it is required to have a minimum training ratio p of about sixteen 
[Vaisey 1988]. If the ratio drops below this level then it is likely that the source 
will not be well represented and that a significant number of clusters will have 
centroids related to some anomalous characteristic of the training set. This 
means that these codevectors will be underutilized when coding general images 
(out of the training set).

The final design parameter is the choice of the initial codebook. Various ap-
proaches for initial codebook selection have been developed and several of them 
are described in [Gray 1984] and [Yuan 1988]. Generally this choice is made 

based on a random or uniform sampling of the training set. Other methods 
impose different constraints on the initial codebook, for example, the require-
ment that the initial codevectors be greater than a minimum distance from each 
other or that the initial codebook have a minimum number of codevectors with 

some desired property (such as high detail). One commonly used technique, the 
splitting technique [Linde 1980], has been used in this work and will be briefly 
described next.

According to the splitting technique, one first finds the optimum 0-rate code-
book (one codevector) which is the centroid of the entire training sequence. This 
single codevector is then slightly perturbed and split to form two codevectors. 
The LBG Algorithm is then run to get a 1-rate locally optimal codebook that 

consists of two codevectors. The design continues in this way in stages so that 
the final codebook of one stage is split to form an initial codebook for the next 
stage. In that way, new codebooks are designed and improved until the desired 
number of codevectors is reached. The final codevectors constitute the codebook 
that is then used for image coding.

The various approaches for initial codebook selection exist because of the 
high dependence of the final codebook quality on this initial choice. It should 
be noted that there may be a significant perceptual difference between codebooks
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designed from different initial conditions even if they appear to perform almost 
the same in terms of the MSE. In other words, the LBG algorithm easily gets 
trapped in local minima of the distortion, resulting in a suboptimal codebook 
[Gray 1982]. Thus, improving the design algorithm by allowing it to “jump 
out” of local minima will reduce this dependence of the design on the choice 
of the initial codebook and will enable it to find a solution closer to the global 
optimum. Simulated Annealing (SA), for example, gives a promising tool in a 
search for a method to obtain this goal [Vaisey 1988].

The essential idea behind SA is to add randomness to the search for the global 
minimum of the distortion function, allowing the algorithm to “pull” itself out of 
local minima. In applying SA to the codebook design problem, a way is sought 
to perturb a given partition in a simple manner. This task is accomplished 
by picking a training vector from one cluster and then moving it into another 
cluster, changing appropriately the centroids of the two clusters involved. Each 

pick and switch is made with all possible choices being equally likely. If the total 
distortion decreases then the switch is accepted; however, if the total distortion 
increases, a probabilistic decision is made whether or not to accept this switch. 
To reduce the amount of computation needed, the choice of possible cluster 
assignments for each training vector can be reduced to one of a small group. In 
addition, the number of switches needed before system equilibrium is declared 
may be reduced too. Thus, by altering the LBG algorithm with techniques 
motivated by SA a better codebook may be designed resulting in improved 
reconstructed images (see [Zeger 1992] for a detailed explanation).

Employing a training set of vectors and the LBG algorithm for codebook 
design may also result in the following problem. If one examines the partitions 
associated with the codevectors, obtained at the conclusion of the LBG algo-
rithm, one can notice that a considerable number of codevectors are not fully 
utilized, that is, they are associated with partitions of negligible size. A more 
uniform distribution of the training set in the codebook space would result in 
an improvement in the quality of the coded images. That is, the set of available 
codevectors would suit better the vectors derived from natural images, rather 
than to suit the peculiarities of the vectors derived from the training images. In 
order to obtain this uniform distribution, a merge-and-split algorithm for the 
codevectors has been developed [Giusto 1990]. It can be called at each LBG step
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for the twofold purpose of eliminating the codevectors associated with partitions 
of negligible size (merge), and of replacing them by codevectors associated with 
new smaller partitions found by subdividing (split) those ones of large size.

There are other techniques for designing VQ codebooks. One such technique 
is the Kohonen self-organisation feature map [Lippmann 1987], [Ryan 1988]. 
Kohonen self-organisation feature map is a neural network paradigm which 
learns a “point estimate” of the distribution of the input data samples. This 
means that the point density function of the resulting codevectors tends to ap-
proximate the probability density function of the input vectors. Kohonen’s al-
gorithm creates a VQ codebook by adjusting variable weight vectors, also known 
as connection weights, which connect each input node to each of the N  output 

nodes arranged in a two-dimensional grid.

Weights between input and output nodes are initially set to small random 
values and an input vector is presented. The distance (distortion measure) 
between the input and each output node is computed and the output node with 
minimum distance is selected. Once this node is selected, connection weights to 
it and to other nodes in its neighbourhood are modified to make these nodes 

more responsive to the current input. This process is repeated for each input 
vector until eventually the weight vectors converge and become fixed after a 
learning gain (see [Lippmann 1987]), that decreases in time, is reduced to zero. 
These weight vectors constitute the desired codebook and may be used for image 

coding.

The adjustment of all weight vectors in a given neighbourhood reduces the 
problem of unutilized codevectors that often occurs with the LBG algorithm and 
also forces the weight vectors to conform to the input data distribution so that 
neighbouring weight vectors (codevectors) are, in general, closer to each other 
than non-neighbouring codevectors. “Self-organisation” refers to the process of 
ordering the weight vectors in this way. Kohonen has noted that organisation 
is expedited by starting with large neighbourhoods then decreasing the size 
of the neighbourhoods as the process proceeds. The network-based algorithm 
described above adjusts codevectors with each input training vector, thereby 
making it possible to train the coding system on-line, continually adjusting it 
to the incoming data stream.
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2.1.2 Drawbacks of Full Search VQ

The critical encoding task of VQ is to find the best matching codevector from 
the codebook for a given input vector. The search process requires the com-
putation of a distortion measure between the input vector and each of the N  
codevectors in order to select the most similar codevector for each input vector. 
Typically this search must be performed for each of a sequence of input vectors 
presented to the VQ processor at a very high rate. For an iV-level quantiser 
and the MSE, k2kr multiplications, k2kr subtractions, (k — l)2kr additions, and 
2kr — 1 comparisons need to be performed for each input vector. The complex-
ity of this computation which grows exponentially with the rate, r, and the 
vector’s dimension, k, and the very demanding throughput requirement are the 
key obstacles to real-time implementation of VQ for many applications of prac-
tical interest.

The search problem described above is also encountered during codebook 
design with the LBG algorithm. Each time, a new set of centroids are calcu-
lated, the training vectors are reassigned to the new N  clusters defined by these 
centroids. The assignment process is basically the quantisation process defined 
in equation (2.4) which is a nearest neighbour search problem. Similar nearest 
neighbour search problems have also been encountered in pattern-recognition 
algorithms. Therefore, a number of fast-search algorithms have been proposed 
in the pattern-recognition literature [Friedman 1975], [Sethi 1981] and more re-
cently in the VQ literature [Cheng 1984], [Chen 1991], which are designed to 
reduce the computations in a full search system. Most of these algorithms are 
based on geometrical notions in Euclidean spaces and tend to trade off multi-
plications with comparisons and with increased storage requirements.

One such simple, but efficient, nearest neighbour search algorithm has been 
proposed in [Soleymani 1987]. According to this algorithm, the reduction in 
computational efforts and complexity is achieved by performing a test prior to 
calculating the distortion for a given codevector, thereby avoiding the distortion 
calculation for those codevectors which fail this test. The mentioned algorithm 
is described in Appendix A and will be used later on as a basis for the design 
of a new fast search algorithm developed by us to tackle the search problem 
encountered during codebook design for the new VQ system, proposed in this
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research.

The search problem have been tackled from a different angle too. It has 

been recognised that dedicated hardware processor architectures for VQ have 
the potential of vastly improving the computational power achievable with cur-
rent and emerging technologies. Rapid growth in very large scale integrated 
circuit (VLSI) technology is beginning to close the gap between simulated and 
real-time algorithms. We can now implement very sophisticated algorithms in 
a seemingly ever-diminishing area on VLSI chips. Furthermore, the design and 
VLSI implementation of dedicated, high performance processor architectures is 
becoming more attractive as chip layout and fabrication procedures are mod-
ernized. Therefore, since 1984 significant strides have been taken in the de-
sign of real-time VQ-based speech and image coders implemented with VLSI 
[Davidson 1986]. Systolic architecture concepts have also been applied to hard-
ware VQ realisations, enabling even higher vector throughput rates [Ni 1985].

Another way of reducing computational costs in a very significant manner is 
by introducing variations on the basic VQ scheme which result in some reduction 
in performance. Such VQ schemes are, for example, Tree-searched, VQ, Multistep 
VQ, and Product VQ collectively called constrained VQ [Gersho 1992], Since 
Product VQs are of special interest to us we pause to define them for later use.

Let { C i}fi1 denote a collection of codebooks each consisting of Ni codevectors 
of dimension k{. Then the product codebook C is defined as the collection of all 
N  =  IIiN  possible concatenations of M  codevectors drawn successively from 
the M  codebooks Ci. The dimension of the product codebook is k =  E^ k i ,  the 
sum of the dimensions of the component codebooks. The product codebook is 
denoted mathematically as a Cartesian product :

C =  x ^ C i  =  { ( x x, x 2 , - - - , x M) ; Xi € Ci ; i =  1,2,

The search problem encountered during codebook design and encoding, is re-
duced since the various codebooks are smaller in size and consist of codevectors 
with reduced dimensionality compared with full search VQ. A product VQ is 
particularly useful when there are different aspects of the input vector that one 
might wish to encode separately.

The second problem and most notable is edge degradation. Image blocks
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that contain parts of edges in them constitute a small fraction of the image. 
Hence, the training set of image vectors, used for codebook design, is populated 
with a small fraction of edge vectors. Since in addition, no preferential treat-
ment is given to edges by the distortion measure employed for codebook design 
(usually the MSE), the edge vectors are poorly represented in the final code-
book. As a result, edges are in general poorly coded, appearing jagged in the 
reconstructed image, a phenomenon referred to in the literature as the staircase 
effect [Gersho 1982]. Since edges are a very important portion of the perceptual 
information content in an image, the perceived quality of the entire image suffers 
dramatically. This type of degradation is called staircase noise and is known to 

be highly correlated with the coded signal.

A magnified reconstructed image of ‘Lena’ , coded at 0.5 bpp using a full 
search VQ, is shown in Fig. 2.2. The staircase noise is visible along diagonal 
edges such as the boundary line of the girl’s shoulder and the black arch in the 
background. It can be noticed that the intensity change that occurred across an 
edge in the original image occurs instead at the block boundaries in the coded 
image, making the block boundaries visible. These block boundaries form the 
“steps” of the staircase causing the jagged appearance of edges in the coded 
image. Furthermore, since each block is coded independently of its neighbours 
(a memoryless VQ), continuity of edges across the block boundaries can not be 

ensured.

The third problem, which is a common problem of block coding schemes, 
is the noticeable degradation caused near the block boundaries in the coded 
image. This effect is called the blocking effect in the Transform Coding (TC) 
literature [Reeve 1983] and is particularly objectionable in areas where the in-
tensity changed gradually in the original image. In such areas there is a tendency 
for the decoded intensity to change rather abruptly from one block to another. 
In other words, memory less block coders may preserve continuity of tone within 
each block, but they can not ensure continuity from block to block.

This type of degradation is called grid noise [Ramamurthi 1986a]. It occurs 
in a correlated fashion along the boundaries of image blocks, and is particularly 
noticeable with VQ and Block Truncation Coding (BTC) [Delp 1979] since the 
block size is typically small (4x4 pixels). In TC, the block size is larger than the
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Figure 2.2: ‘Lena’ coded by a VQ at 0.5 bpp

typical size in VQ or BTC (typically 8x8 pixels), thus resulting in fewer block 
boundaries in the coded image making the blocking effect less apparent. The 
grid noise is visible in Fig. 2.2 especially in monotone areas such as the girl’s 
shoulder, her face, and several areas in the background.

We have described the basic drawbacks of a full search VQ which can roughly 
be categorised into: (i) computational complexity and (n) reduced quality of 
the reconstructed images. Several techniques have been developed which apply 
various constraints to the structure of the VQ codebook in order to reduce com-
putational complexity. These methods generally compromise the performance 
achievable with unconstrained VQ, but often provide very useful and favorable 
trade-offs between performance and complexity. Constrained VQs can often 

be designed for larger dimensions and rates, hence quality that is simply not 
possible for unconstrained VQ becomes practicable. One such system, termed 
gain-shape VQ (GSVQ), is described next as an example of a product VQ.
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2.2 Gain-Shape VQ

Gain-shape vector quantisation is a technique where separate, but interdepen-
dent, codebooks are used to code the shape and gain of a given waveform. The 
shape is defined as the original input vector normalised by removal of a gain 
term that is defined appropriately. For example, the gain term may be defined 

as the energy in a waveform coder or as residual energy in linear predictive voice 
coding (LPC) [Gray 1984]. The basic notion in GSVQ is that the same pattern 
of variation in a vector may return with a wide variety of gain values. Thus, 
it makes sense to handle the dynamic range of the vector separately from the 
shape of the vector. GSVQ was introduced in [Buzo 1980] where it was termed 
“gain separation” and used for the case of LPC vocoders. The GSVQ notion 
was subsequently extended and optimised in [Sabin 1984] where it was applied 
to waveform coding.

Consider a VQ whose codebook is formed as the Cartesian product of a finite 
set of vectors and a finite set of scalars. That is,

C =  Cs x Cg -  {(«„cry), * =  1 ,2 , . . . ,^ !  ; j  =  1 ,2 ,...,JV 2}

where Cs =  {<L, i =  1 ,2 , . . . ,  N i} is a set of vectors drawn from Rk, and 
Cg =  {cry, j  =  1 ,2 , . . . ,  V 2} is a set of scalars drawn from the non-negative real 
numbers. The codebook Cs is called the shape codebook and Cg is called the gain 
codebook.

Like the VQ, the GSVQ can be decomposed into two component operations, 
the vector encoder and the vector decoder. The encoder views the input vector 
x and generates the index pair ( i , j )  of the product codevector specified by q(x). 
The decoder uses the index pair to look up the product codevector (d,-,cTj). If 
we define a distortion measure d(x;d,<r) which measures the “cost” associated 
with reproducing x by the pair (a, a), then the best mapping q(x) is one which 
selects the pair (di,aj) that minimises d(x;a,i,crj).

In applying GSVQ for waveform coding, we associate a reproduction vector 
Xij with each product codevector (dqOj), with Xij =  crjdi. The distortion be-
tween an input vector x and (cq, aj) is then defined as the distortion between x
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and iij. Thus, for a distortion measure of the form

d(x,xij) =  (x -  Xij)T(x -  £ij) (2.15)

we get
d(x,a.i<Tj) - x Tx -  2crjXTdi +  a'jdjdi . (2.16)

If each shape vector is normalised in the sense that ajal — 1 for 1 =  1 ,2 , . . . ,  Ad, 

then
d(x,d,cTj) =  xr x +  aj  — 2crjXTa,i . (2.17)

The normalisation of the shape codevectors is the key to the shape-gain encoding 
procedure, since it makes the choice of the optimum shape vector independent 

of the choice of the gain value. Consequently, the pair (a,-, a3) that minimises 

Eq. (2.17) can be found in two steps.

1) Select the shape vector a,- to maximise xr d,'.

2) Given a =  max,-[xr dt], select aj to minimise [aj — 2a: a}.

The first step chooses the shape vector that has the highest correlation to the 

input vector. The second step scalar quantises the value of this correlation in 
the least squares sense, since minimising [aj — 2aj a] is equivalent to minimising 
(aj — a )2. It should be noted that the input vector need not be itself gain 
normalised in order to choose the best shape vector during the first encoding 
step. Such normalisation would significantly increase the encoder complexity. 
In addition, the second step can be accomplished by comparing a to a set of 
ordered thresholds which represent the decision boundaries of a scalar quantiser.

A GSVQ is depicted in Fig. 2.3. The shape encoder stores the vectors 
{di, i =  1 ,2 ,... , Ni }  and finds the index i of the most highly correlated vec-
tor. The correlation value a is passed to the gain encoder, which stores the 
decision thresholds between the gain values and outputs the index j  of the near-
est gain value. The shape decoder and the gain decoder, respectively, look up 
the indexed shape vector and gain value, and the two outputs are multiplied to 
produce the reproduction vector x.

Several algorithms were developed for the design of GSVQ codebooks based 
on a training sequence of data (see [Sabin 1984] for a detailed description). It



Figure 2.3: A GSVQ

should be noted that the encoder of a GSVQ is optimal for a given product code-
book, but the codebook itself is in general suboptimal because of the constrained 
product form [Gray 1984]. Nevertheless, GSVQ has widely been employed for 
voice, waveform, and image coding. Because of its reduced complexity, both 
computational and storage. GSVQ is capable of being used at higher dimen-
sions than full search VQ (having fewer codevectors to be stored and searched) 

providing an efficient method for data compression.

Several ways to tackle the computational problem encountered in VQ have 
been mentioned thus far without paying much attention to the degradation in 
perceived quality of coded images. Full search VQ. for example, is based on clas-
sical information theory without considering valuable properties of the intended
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receiver, i.e., the human observer. No attempt has been made to incorporate 
well-known properties of the HYS into the above coding scheme. Thus, one could 
intuitively expect that if such properties could be successfully combined with the 
compression process, an improvement in compression performance would result.

A new VQ-based coding method, classified vector quantisation (CVQ), which 

takes into account basic properties of the HVS and reduces both edge degrada-

tion and coding complexity, has been proposed in [Ramamurthi 1986]. The basic 
concepts of this new system along with a novel CVQ codebook design algorithm, 
developed in this research, are described in detail in the following section. They 
will be used as a basis for the development of a new coding scheme described in 

a later chapter.

2.3 Classified VQ

Classified vector quantisation (CVQ) is a VQ-based coding method for preserv-
ing perceptual features while retaining simple VQ distortion measures during 
the codebook design and encoding processes. CVQ is based on a composite 
source model so that small image blocks ( 4 x 4  pixels) with distinct perceptual 
features, such as edges, are generated from different subsources, i.e. belong to 
different classes. A finite set of idealized edge classes and a few nonedge classes 

are defined and tested.

In CVQ (Fig. 2.4), a classifier is employed to analyze each block (vector) x , 
prior to encoding it, to determine which class the block belongs to. A distortion 
measure dfix, y) is then used, to pick the best codevector from the sub-codebook 
Ci which was specifically designed for that class. In other words, a separate VQ 
is employed for each class. M  different classes are defined by the classifier and 
for each class a special codebook of size Ni is designed. The total number of 
codevectors is N  =  YlfLi Ni > with indexing from 1 to N. The index of the 
codevector, closest to the input vector, is sent to the decoder. The decoder 
simply retrieves the corresponding codevector from the codebook C =  Ul=i Ci , 
and outputs it as the reproduction vector x.
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Figure 2.4: A CVQ system

For a CVQ system the overall average distortion D is given by

D =  Y ,P iD i (2.18)
¿=1

where Pl is the probability of a vector being in the ¿th class, Dt is the average 
distortion in the ¿th class and M  is the number of classes. The average distortion 
Di in each class is a function of the corresponding class codebook and its size 
iVj. The relation between the optimal distortion D* and N{ is not known in 
general for finite N{. Thus, it is not possible to find analytically the optimal 
set {N*}  that yields the optimal D“ . In [Ramamurthi 1986], the authors solved 
the problem for asymptotically large N{ values for the case when each distortion 
measure d,-(-, •) is the WMSE with a constant weighting matrix W{. They have 
shown that, for optimality, the average partial distortion per codevector At in 

each class should be the same for every class, i.e.,

Ai — l̂ J  =  constant for i — 1 ,2 , . . . ,  M  . (2-19)
1 v i

Based on this relation, an empirical method for CVQ codebook design was 

proposed in [Ramamurthi 1986].

In [Ramamurthi 1986], the training set of image vectors, used for codebook 

design, is first classified into subsets, each subset containing vectors which be-
long to one class. A brute-force approach for obtaining the optimal codebook
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C* would be to design individual sub-codebooks using the LBG algorithm with 
every permissible allocation for the set {Ni}  such that TV,- 0 for all i, and 

Ni =  N.  The number of permissible allocations, although very large, is 
finite, so that eventually an optimal allocation could be found along with a cor-
responding codebook that yields the least average distortion D*. This approach, 
where all possible allocations for the set {Ni}  are tried, is computationally de-
manding and time consuming. Thus, the authors in [Ramamurthi 1986] have 
suggested that equation (2.19) should be used as a guide in experimentally de-
termining a satisfactory set {Ni}.

Starting with an initial allocation { N f }  of codevectors, M  different sub-
codebooks are designed using the LBG algorithm (M  times). For each class 
the partial distortion Di could then be calculated and relation (2.19) could be 
checked. If this relation is not satisfied, a different allocation { N f }  is tested 
and the same procedure is carried out. By trial and error, an allocation {Ni}  is 
eventually found with corresponding distortions Di such that relation (2.19) is 

approximately satisfied.

No systematic way has been proposed in [Ramamurthi 1986] for choosing 
the initial allocation of codevectors and no guidelines have been set for changing 
allocations during codebook design. Moreover, since in practice the sizes of 
the codebooks (7, will not be large enough to make relation (2.19) valid, this 
algorithm will yield suboptimal results in the sense of minimum squared error.

As an alternative to this empirical method, we propose a new algorithm 
which we name Classified Nearest Neighbour Clustering (CNNC). This new al-
gorithm offers a systematic method for CVQ codebook design. Moreover, it 
designs the M  sub-codebooks simultaneously in an optimal way, within the 
limit that CVQ is by definition a suboptimal system. Our new algorithm is 
based on two algorithms: the Nearest Neighbour Clustering algorithm proposed 
in [Helmuth 1980], and the Pairwise Nearest Neighbour algorithm proposed in 
[Equitz 1987] and [Equitz 1989] for VQ codebook design.

27



2.3.1 The CNNC Algorithm

The training image vectors {x t € Rk ; t =  1 ,2 , . . . ,  n} are first grouped in several 
classes employing a classifier. The description of the classifier employed for the 
classification process could be found, for example, in [Ramamurthi 1986] and 
[Aravind 1986]. Then, within each class, clusters are defined each containing 
one training vector (see Fig. 2.5, at s=0). At this stage each training vector is 
also the centroid of the cluster. A search, within each class, is then conducted 
to find a pair of clusters which incur minimum merging error when merged. The 
merging error is defined as the additional distortion introduced by representing 
the two clusters worth of data with a single centroid. It is defined in Appendix B

by
M R =  x  Xi ||2 (2.20)

m j + m i

where mj and mi denote the number of vectors in clusters Sj and Si respectively, 

and X j and Xi are the centroids of these clusters.

The pairs of clusters, found in the different classes, are kept on a merging 
list and the pair of clusters which incurs the minimum merging error among all 
the pairs on the merging list, is selected in each stage and merged (see Fig. 2.5, 
at 5=1 and s=2). After merging a pair of clusters in one class, their centroids 
are replaced with a weighted average centroid X p [Helmuth 1980] defined by

m jXj +  m/Aj 
mj + mi ( 2 .21)

A search is then conducted in that class to find a new pair of clusters as candi-
dates for merging in the next stage. The process is halted when the number of 
clusters left in the different classes accumulates to the desired number of code-
vectors N. The centroids of these clusters are the codevectors that constitute 
the desired CVQ codebook (see Fig. 2.5, at s =  T). To conduct the geometric 
search for a closest pair of clusters within each class more efficiently, we have 
developed a fast search algorithm which is described in Appendix C.

An alternative criterion, for selecting the pair of clusters to be merged in 
each stage of the clustering process, is proposed. This criterion is based on the 
statement, mentioned earlier with respect to equation (2.19), that for optimality 
the average partial distortion per codevector in each class should be the same
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for every class. Thus, instead of merging the pair of clusters which incur the 

minimum merging error among all the pairs on the merging list, the pair of clus-
ters belonging to the class in which the average partial distortion per codevector 

.4;- is minimal, could be merged. For a long training set of vectors, employ-
ing this criterion within the CNNC algorithm could yield the approximation of 
the relation of equation (2.19) without the trial and error process, proposed in 
[Ramamurthi 1986]. It should be noted though, that for asymptotically large Nt 
values both criteria yield the same optimal results. Nevertheless, both criteria 
have been tested and experimental results are summarised in the next section.

2.3.2 Experimental Results

We present coding results with CVQ at different rates employing codebooks 
designed with the CNNC algorithm. The training set of vectors used for CVQ 
codebook design was obtained from two 256 x 256 images, ‘Lena and 'Baboon 
(Fig. 2.6). The image block size was 4 x 4  pixels and thus the dimension of the 

vector was k = 16. A classifier was implemented, based on basic ideas described in 
[Ramamurthi 1986], with several changes that enabled image blocks containing 
complex edges to be classified. Fifteen different classes were defined by the 
classifier, consisting of twelve edge classes and three nonedge classes. Only 
vertical, horizontal and two diagonal edge orientations were recognised. Each 
orientation was further subdivided in two classes, depending on whether the 
intensity change across the edge was from high to low level or vice versa.

CVQ codebooks at different rates, 0.5 - 0.625 bpp, were designed employing 
the CNNC algorithm. Two different criteria for selecting the class within which 
a pair of clusters should be merged during each stage of the CNNC algorithm 
were tested: the minimum merging error, min(MEji),  and the minimum average 

partial distortion per codevector, min(A,).

The signal to noise ratio (SNR) was used as a rough indicator of the quality 
of the coded images. The SNR is defined by

r V?
SNR =  10 log 10

ptp
MSE

in dB >.22)

wjhere Vptp is the maximum intensity (255 for 8 bpp), and MSE is the mean
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Figure 2.6: Original images of ‘Lena ’ and ‘Baboon’

square error between the original image and the coded image. In addition, as it 
is well known that signal to noise ratio does not correlate well with subjective 
(human) quality assessments [Lukas 1982], numerous subjective tests have been 

carried out. SNR results for coding ‘Lena’ and ‘Baboon’ with these codebooks 

applying both merging criteria are presented in Table 2.1.

Rate bpp
Lena Baboon

min (MEji) min(A,) m in(M £j;) min(At)

0.625 29.70 29.36 25.28 24.65

0.562 27.77 27.67 23.41 23.24

0.500 26.34 26.10 22.25 22.17

Table 2.1: CVQ system - SNR results for ‘Lena’ and ‘Baboon’

It could be noted from Table 2.1 that CVQ codebooks, designed with the 
CNNC algorithm and the min(MEji) criterion, yield better SNR results than 
codebooks that were designed with the min(A,) criterion. The reason for this 

observation is that the relation of equation (2.19), on which the min(Ai) criterion 
is based, is true for asymptotic assumptions (TV,- large for any i =  1 ,2 , . . . ,  M).

31



However, for finite values of TV,-, this criterion yields suboptimal results in the 
sense of minimum squared error. On the other hand, the min(MEji)  criterion 
yields optimal results within the suboptimal framework, which characterises 

CVQ systems.

In Fig. 2.7 two reconstructed images of ‘Lena’ at 0.562 bpp are shown. The 
image of Fig. 2.7a was produced by a CVQ system employing a codebook de-
signed with the CNNC algorithm and the min(Aj) criterion. The image of 
Fig. 2.7b was produced by a CVQ system employing a codebook designed with 
the CNNC algorithm and the min(MEji)  criterion. Both images are magnified 
by a factor of two in order to show the differences between them.

a b

Figure 2.7: ‘Lena’ coded by CVQ systems at 0.562 bpp

a. min(A,) criterion b. min (MEji)  criterion

In general, the image of Fig. 2.7a looks better than the image of Fig. 2.7b - 
the edges are well defined and homogeneous areas are less “blocky” . However, 
it should be emphasised that this observation is not always true. Subjective 
tests of reconstructed images at different rates provided no consistent results

32



and thus, no clear conclusion can yet be drawn as to which merging criterion 
yields codebooks that produce images of better subjective quality.

In Fig. 2.8, two reconstructed images of ‘Baboon’ at rate 0.562 bpp are 

shown. These images were produced by the same CVQ systems as the images 
in Fig. 2.7 and are also magnified by a factor of two. Owing to the noisy nature 
of these images, it is difficult to decide which is better reproduced and thus we 
present them merely to show the good performance of CVQ systems.

b

Figure 2.8: ‘Baboon’ coded by CVQ systems at 0.562 bpp 
a. min(Ai) criterion b. min(MEji) criterion

Because the CVQ coder must ultimately operate on other input vectors that 

are not part of the training set, it is important to test the performance of the 
CVQ system outside the training set, i.e., with images which were not used for 
codebook design. Two images from the USC1 database were used as test images: 
‘House’ (USC15.IMG) and ‘Tree’ (USC416.IMG). These images were coded by 
CVQ systems employing the same codebooks that were used above for coding

1 University of Southern California

33



‘Lena’ and ‘Baboon’ .

Coding results (SNR) for the test images are presented in Table 2.2. It 
could be noted from Table 2.2 that, for the ‘Tree’ image, better coding results 
were obtained when codebooks, designed with the CNNC algorithm and the 
min(MEji) criterion have been employed. These results are in accordance with 
the coding results presented in Table 2.1. On the other hand, for the ‘House’ 
image, better coding results were obtained when codebooks designed with the 
CNNC algorithm and the min(A,) criterion have been employed.

Rate bpp
Tree House

min {MEji) min(Ai) min(MEji) min(Ai)

0.625 23.82 23.54 27.71 27.84
0.562 22.97 22.92 26.76 26.84
0.500 22.33 22.16 26.22 26.26

Table 2.2: CVQ system - SNR results for ‘Tree’ and ‘House’

Although the min(At) holds an imperceptible edge in SNR over the 
min (MEji) criterion for the ‘House’ image, a thorough investigation was car-
ried out in order to explain this observation. The codebooks, designed above 
with ‘Lena’ and ‘Baboon’ as training images, have been studied carefully as well 
as the coding results obtained for the training and the test images. Our findings 
are presented next.

The sum of errors, produced by the CVQ coder during the encoding process 
of image vectors which belong to class z, is defined as the partial error in that 
class, and is denoted by D{. The partial error found in a certain class and the 
ratio between it and the total encoding error D (between the original image 
and the coded one) are of great importance for the evaluation of the employed 
codebooks. Such data indicate how well vectors which belong to a certain class 
are being represented by the employed CVQ codebook. If for a certain image 
the partial error in class i represents a large percentage in the total encoding 
error found for that image, it means that class i is poorly represented by that 

CVQ codebook. Moreover, a comparison of partial errors in different classes, 
obtained by encoding different images, can indicate how “close” are images to
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each other, i.e., whether they belong to the same ensemble of images, having 
common features or similar structure. Coded images which differ substantially 
in partial errors, obtained in several classes, are said to be of different nature, i.e., 

belong to different ensembles of images. A comparison of partial errors, caused 
during the encoding of the training images and the test images, is presented in 

Table 2.3. The CVQ codebook (at 0.625 bpp) was designed with the CNNC 
algorithm employing the min(MEji) criterion.

Class Ni Ni/N (%)

Lena Baboon Tree House

Di/D (%) Di/D (%) Di/D (%) Di/D (%)

9 231 22.6 36.6 56.5 23.8 5.9

14 158 15.4 5.7 5.7 2.5 0.6

15 146 14.4 3.2 5.6 1.6 0.0

4 27 2.6 1.7 2.8 6.2 24.9

Table 2.3: Coding evaluation for different images coded at 0.625 bpp
employing a codebook designed with the min (MEji)  criterion

In Table 2.3, N{ is the number of codevectors representing class i, N  is the 
total number of codevectors which constitute the CVQ codebook (1024 for 0.625 
bpp), D{ is the partial error in class i, and D  is the total encoding error for a 
certain image. The N{ figures for the first three classes in Table 2.3 are the 
largest for that codebook. Class 9 is the “mixed” class which consists of all 
the vectors that have very complex structure. Class 14 is the “two45” class 
which consists of all the vectors that have two significant edges in the 45 deg 

direction. Class 15 is the “twol35” class which consists of all the vectors that 
have two significant edges in the 135 deg direction. Class 4 is named “neghoriz” 
and it consists of all the vectors that have one significant edge in the horizontal 
direction with intensity that changes from low levels to high levels when the 
image block (vector) is being scanned from top to bottom.

The results, presented in Table 2.3 are representative of coding results ob-
tained for the different codebooks employed throughout our study. Based on 

these results, we argue that the ‘Tree’ image belongs to the same ensemble of 
images as ‘Lena’ and ‘Baboon’ . Therefore, coding results for the ‘Tree’ image
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are in accordance with coding results obtained for the training images. On the 
other hand, the ‘House’ image does not belong to that ensemble (see particularly 
the differences in Di/D figures for classes 9 and 4). This observation explains 
the results presented in Table 2.2. Nevertheless, the differences in SNR values 
shown in Table 2.2 are insignificant thus, it is believed that each of the merging 
criteria may be used for codebook design employing the CNNC algorithm.

Subjective tests of reconstructed test images have revealed that conclusions 
drawn earlier for the training images hold for the test images as well. No percep-
tual meaning has been found to either one of the merging criteria and no clear 
conclusion can be made as to which criterion yields codebooks that produce 

images of better subjective quality.

In Fig. 2.9 two reconstructed images of ‘Tree’ at rate 0.562 bpp are shown. 
Both images look very similar with a slight advantage to the image of Fig. 2.9b 

(mm(MEji) criterion) which looks less “blocky” in several homogeneous areas. 
In Fig 2.10 two reconstructed images of ‘House’ at rate 0.562 bpp are shown. 
Both images look very similar with a slight advantage to the image of Fig 2.10a 
(m in(A) criterion) which looks less “blocky” in several homogeneous areas.

A direct comparison between codebooks generated by the CNNC algorithm 
and those generated by the empirical algorithm proposed in [Ramamurthi 1986] 
seems impractical. As mentioned before, no clear guidelines have been set in 
[Ramamurthi 1986] for choosing the initial allocation of codevectors in the differ-
ent classes or for changing allocations during codebook design. Thus, no attempt 
has been made to design codebooks employing the empirical method. Instead, 
a theoretical study of the complexity of the CNNC algorithm in comparison 
to the brute-force method described in section 2.3 and [Ramamurthi 1986] has 
been carried out in Appendix D.

Accordingly, it could be shown that, for the CNNC algorithm, the upper 
bound on the number of required multiplications during the design process is 
0([n — N  +  M]3[k +  2]/6M2) where O(-) denotes proportional to. On the other 
hand, for the brute-force algorithm, it could be shown that the lower bound is 
{(2nk/M)N(N  — 1 ) !} /{ (A i  — 1)!(7V — M )\} where ! denotes factorial. Conse-
quently, for n=8196, M —15, and N = 512, approximately 6.1 x 109 multiplica-
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Figure 2.9: ‘Tree’ coded by CVQ systems at 0.562 bpp 
a. min(Aj) criterion b. min(MEp)  criterion

Figure 2.10: ‘House’ coded by CVQ systems at 0.562 bpp 
a. min(A,-) criterion b. min(MEji) criterion
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tions are required for the CNNC algorithm while requiring 7.1 x 1033 multipli-
cations for the brute-force algorithm. The advantage of our new algorithm is 
apparent.

Finally, it should be noted that the weighted average centroid, produced 
when two clusters in a class are merged, does not necessarily belong to the 
same class. Thus, at the conclusion of the CNNC algorithm the codevectors 
that are the centroids of the remaining clusters do not necessarily belong to the 
classes within which they were developed. The authors in [Ramamurthi 1986] 
encountered this problem while designing different codebooks for the different 
classes employing the LBG algorithm. They proposed a replacement procedure, 
arguing that it makes little perceptual difference whether the codevector or 
the training vector nearest to it, which does belong to the appropriate class, is 
employed to code a particular block. We have adopted their approach and at the 
conclusion of the CNNC algorithm each codevector was tested by the classifier. 
If it did not belong to the particular class within which it was developed, it was 
replaced in the way proposed in [Ramamurthi 1986].

2.4 Conclusions

The basic notion of vector quantisation along with codebook design methods 
have been described. Various drawbacks of a full search VQ have been discussed, 
particularly the computational complexity caused by the search problem and the 
degradation in the perceived quality of coded images. Classified VQ has been 

proposed to overcome several of the mentioned drawbacks and its basic principles 
were described based on a composite source model.

A new algorithm for CVQ codebook design, the classified nearest neighbour 
clustering (CNNC) algorithm, was presented in this chapter as an alternative 
to the empirical method proposed in [Ramamurthi 1986]. The new algorithm 
reduces considerably the total number of required operations (multiplications, 
additions etc.) during codebook design, in comparison with the brute-force 

method described in section 2.3 and in [Ramamurthi 1986]. Two different crite-
ria for selecting the class within which a pair of clusters should be merged during
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each stage of the CNNC algorithm were presented: The minimum merging er-
ror, min(MEji),  and the minimum average partial distortion per codevector, 

min(Aj). In addition, a fast search algorithm was proposed (see Appendix C) 
to reduce computational efforts during codebook design.

Codebooks for CVQ systems at different rates were designed, and coding re-
sults (SNR values) were compared to decide which criterion is most appropriate 
for codebook design. In general, the min (MEji)  criterion yielded better SNR re-
sults than the min(Ai) criterion provided that the encoded images belong to the 
same ensemble of images as the training images that were used during codebook 
design. Subjective tests of reconstructed images at different rates, on the other 
hand, provided no consistent results, and thus no clear conclusion can be drawn 
as to which merging criterion yields codebooks that produce images of better 
subjective quality. Nevertheless, we have shown that the CNNC algorithm in 
conjunction with the fast search algorithm, described in Appendix C, provides a 
systematic and effective method for CVQ codebook design making CVQ systems 

more feasible and easy to implement.

Close inspection of CVQ-coded images at rates lower than 0.562 bpp has 

revealed the fact that the staircase effect and the blocking effect are still notice-
able. Some improvement may be achieved if the perceptual importance of the 
various classes could be taken into consideration. For example, by assigning dif-
ferent weights Wi to the different classes, as proposed in [Ramamurthi 1986], the 
number of codevectors found eventually for each class can be influenced without 
changing the clustering process or the encoding process. The larger the weight 
assigned to a class, the more the importance attached to that class, and the 
larger the number of codevectors found for that class.

Employing a weight wi for the zth class, when the min(A,-) criterion is used 
within the CNNC algorithm, is equivalent to increasing the probability of that 
class by the factor Wi with appropriate normalisation so that the probabilities 
add up to 1. Employing a weight Wi for the zth class, when the min {MEji)  
criterion is used, is equivalent to increasing the merging error incurred when 
two clusters are merged within the ¿th class. This approach has an intuitive 
appeal when applied to the problem of edge degradation, which was the major 
reason for the developing of CVQ systems, since it permits us to control the
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relative sub-codebook sizes and thus ensures edge integrity at the expense of 
SNR results.

The various concepts described above along with the CNNC algorithm and 
the fast search algorithm, proposed by us, will be used in the development of 
a new coding system. Various properties of the HVS should be exploited to 
improve the perceived quality of coded images and therefore are summarised in 
the following chapter.
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Chapter 3

The Human Visual System - 
A  Review

Easy to see the tiger’s stripes; 
Hard to see the mind’s shadows.

The very end of almost every image processing system is the human eye. There-
fore, it is useful to know how and what the eye sees. The answers to these 
questions lie far outside from our usual engineering context and that is why, 
a summary of the mechanism of vision is given here based on [Hubei 1979], 
[Cornsweet 1970], and on other sources. Particularly, properties of the human 
visual system (HVS) which can be used in image processing and coding are 
described. It is postulated that if the coding scheme is matched to the HVS 
and attempts to imitate its functions, at least for the known part of it, high 
compression ratios along with good quality of the reconstructed images can be 

expected.

The major source of information about the human visual system is through 
physiological studies. The visual systems of all vertebrates are similar and mea-
surements of the visual systems of the cat and monkey in particular provide 
useful information concerning the behavior of the HVS. A second source of in-
formation is psychophysical experiments. In psychophysics the visual system is 
treated as a "black box” with visual stimuli as the input and perceived sensa-
tions as the output. Functional relationships are sought between some physical 
properties of the stimulus and the corresponding psychological, or perceptual, 
response. Based on these sources of information, the visual path in a primate
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from the eye to the cortex is described preceded by an introduction to the ner-
vous system.

3.1 The Nervous System

The human visual system is part of the nervous system which can be compared 
to a complicated communication network supervised by the most powerful com-
puter: the brain. The communication in this network is carried out through 
nerve cells called neurons. A neuron has a body of size varying between 5 and 
100 pm. A main fiber called the axon and a number of fiber branches called 
dendrites are attached to this body as can be noticed in Fig. 3.1. The infor-
mation transfer from one neuron to another is made electrochemically. The 
places in which neurons come into contact, i.e., where chemical mediator sub-
stances are released by one neuron and act upon the receiving neuron, are called 
synapses. The transmitting and the receiving neurons are called presynaptic and 
postsynaptic neurons, respectively. A neuron can receive signals from thousands 
of presynaptic neurons and can transmit to thousands of postsynaptic neurons.

Figure 3.1: Typical neurons (after [Kuffler 1976]).
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The membrane that forms the walls of any neuron is semipermeable. This 
means that it has holes through it that permit the passages of some molecules 
and ions into and out of the cell, but prevent the passage of others. The mem-
brane also manifests a phenomenon called the sodium pump, i.e., it actively 
pumps sodium ions from the inside to the outside. As a result of the sodium 
pump and the differences in permeability of the membrane to different ions, the 
concentration of positive ions is greater on the outside of the cell than on the 
inside. This concentration difference appears as a voltage across the membrane, 
called the resting potential. The resting potential is between about 0.06 and 0.09 
volts for any living resting neuron [Cornsweet 1970] with the outside being more 
positive than the inside. The difference in ion concentration across the mem-

brane is also called a polarization since it is manifested in positive and negative 

poles across the membrane.

Most of the mammalian neurons are normally stimulated into action in the 
same way. If the endings of one neuron are in close proximity to a second 
neuron and those endings are stimulated, they release a chemical, called a neural 
transmitter, that changes the permeability of the receiving cell membrane. Since 
there is an excess of positive ions on the outside of the membrane, the rate of flow 
of positive ions into the cell will become greater if the permeability increases. 
The action of the excitatory chemical transmitter substance thus results in the 
depolarization of the membrane i.e., the voltage across the membrane is reduced. 
If a region of a neuron undergoes enough depolarization, a further series of events 
are triggered in the membrane that result in a wave of strong depolarization 
that self-propagates, sweeping over the entire neural membrane. There is a 
minimum number of molecules of the chemical transmitter that should act on 
the membrane in order to produce enough depolarization to trigger the processes 

of propagation. Once a given region of the axon has become depolarized, it 
quickly restores itself to its initial, polarized state. Thus, only a short region 
of the neuron is depolarized at any given instant, and this region will sweep 
progressively over the surface. The wave of depolarization is called a spike or 
nerve impulse.

It should be noted that the signals in the nervous system are almost identical 
in all neurons regardless of the information they carry: visual, audible, etc. 
Moreover, their shape does not vary from species to species, i.e., a signal recorded
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from a cat is similar to that recorded from a human being. The signal recorded 

at a given neuron is a pulse train. Each pulse has a magnitude of about 100 mV 
and a duration of about 1 mSec. The repetition rate (frequency) of these pulses 

is proportional to the intensity of the stimulus imposed on the neuron under 
test as shown in Fig. 3.2. Note, in this figure, that as the strength of the 
input stimulus increases from zero, it must exceed a threshold before any pulses 
are generated. Above that threshold, the frequency of firing of the neuron first 
increases almost linearly with input strength, and finally, at high input strength, 

the frequency asymptotically approaches its maximum level.

Figure 3.2: The relationship between the intensity of the input 
stimulus to a neuron and, the resulting frequency of its pulses 

(after [Cornsweet 1970]).

Accordingly, it can be summarised that the nervous system communicates 

through frequency modulation. The signals received and processed by the brain 
are symbols representing external or internal events and what allows the brain 
to distinguish between two identical signals is the pathway used by each of the 
signals. There is a specific ensemble of neurons corresponding to each type of 
excitation forming a one-to-one mapping between different parts of the body 

and the brain.
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In the following sections we will describe the visual path in a human being 

from the eye to the brain emphasising various details which can be useful to us 

in our efforts to devise better image coding systems.

3.2 The Eye

Fig. 3.3 illustrates the principal components of the human eye.

optic
nerve

Figure 3.3: (a) Diagram of a cross section of the human eye.
(b) Retinal image formation (after [Cornsweet 1970]).

Light from an external object is focussed by the cornea and the lens to form 
an image of the object on the retina at the back of the eyeball. Although most 
of the refraction takes place at the cornea additional focussing is achieved by 
varying the thickness, and hence the refractive power, of the lens. This enables
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the eye to accommodate to varying object distances. The light passes through 
the cornea and enters the inner eye through the pupil. The amount of light 
allowed to enter is regulated by the pupil which acts like the diaphragm in a 
photo camera. The pupil’s diameter varies between 2 and 9 mm. This aperture 
can be modeled as a low-pass filter having a cutoff frequency which depends on 
the pupil’s diameter. The highest cutoff frequency corresponds to 2 mm while 
continuous enlargement of the pupil’s diameter decreases the cutoff frequency. 

The lens of the eye is not perfect even for persons with no weakness of vision. 
This imperfection is the source of the spherical aberration which appears as a 
blur in the focal plane. Such a blur can also be modeled as a two-dimensional 

low-pass filter.

The retina is the neurosensorial layer of the eye occupying an area of about 
12.5 cm2. It transforms the incoming light into electrical signals that are trans-
mitted to the visual cortex through the optic nerve. The retina consists of a 
layer of photoreceptors and connecting nerve cells. The photoreceptors are at 
the part of the layer furthest from the centre of the eyeball so that light must 
pass through the layer of nerve cells to reach the photoreceptors (see Fig. 3.4).

The photoreceptors contain photosensitive pigments which absorb light and 
initiate the neural response. There are two types of photoreceptors: rods and 
cones. The rods and the cones have different operating characteristics as illus-
trated in Fig. 3.5. The rods are the more sensitive, coming into operation at 

lower levels of background luminance than the cones. However, the rod curves 
are compressed with increasing luminance and saturate completely after about 
4 log units. By contrast, the cones do not saturate: their operating curves shift 
along the intensity axis so as to span a constant 3 log unit range of intensities 

about each luminance level.

The visual system can operate at levels of illumination varying over 10 orders 
of magnitude, i.e., 10 log units or a range of 1010. The rods are responsible for 
the low-resolution, night vision that exists below 0.1 mL. This is termed the 
scotopic region. The cones, on the other hand, are responsible for the high- 
resolution, daylight vision that exists above 1 mL. This is termed the photopic 
region. Since the range of luminances encountered in television falls within this 

region we are primarily concerned with cone vision.
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Figure 3.4: Schematic diagram of the retina (after [Dowling 1966]).

Figure 3.5: Operating characteristics o f rods (dashed lines) and cones (solid 
lines) at six background luminances (a-f) after [Werblin 1973].
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Fig. 3.6 is a plot of the distribution of rods and cones over the whole of the 
retina, along with a drawing of the eye for reference. The cones are densely 
packed in the centre of the retina, a region called the fovea, being spaced about 

0.5 minutes of arc apart in the human retina. This density starts dropping off 
outside a circle of roughly 0.5 deg radius but is still appreciable within a circle 
of 1 deg radius. The rods begin to appear about 1 deg from the centre, and 
their density increases to a maximum at about 20 deg, thereafter falling to a 
low level. There are about 120 cones per degree at the fovea thus fixing the 
visual resolution to 1 minute of arc (i.e., 60 cycles per degree of arc subtended 
in the field of vision).

There are three different classes of cones in the normal human retina, each 
with a different absorption spectrum and each spectrum being shifted with re-
spect to the others along the wavelength dimension (see Fig. 3.7). Each of these 
curves is also different from the spectral sensitivity curve of rhodopsin, the rod 
pigment. Therefore, the normal retina contains four classes of receptors with 
different absorption spectra. However, based on various experiments, it is quite 
evident that the rods do not contribute to wavelength discrimination, i.e., the 
cones alone are responsible for colour vision. Cones and rods respond differently 
to test flashes of increasing intensity especially at switch-off. Fig. 3.8 shows typ-
ical receptor responses to test flashes in the retina of the mudpuppy. It can be 
noticed that at this level of the visual system, the receptors respond by means 
of slow graded (analog) electrical potentials.

The anatomy of the retina shows five types of cells organised in layers (see 
Fig. 3.4). The photoreceptors make synaptic contacts with bipolar cells which 
extend forward through the nerve layer of the retina (toward the lens and source 

of light) and connect again via synaptic contacts to ganglion cells. The axons of 
these ganglion cells then continue the communication path to the central nervous 
system by joining to form the optic nerve which leaves the eye just to the inside 
of the centre of the retina. The region where the axons from all the ganglion 
cells converge and exit from the eyeball, and through which the retinal arteries 
and veins pass is called the optic disk. It contains no receptors and therefore it 
is also called the blind spot. Except for this region, the distribution of receptors 

is radially symmetric about the fovea.
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Figure 3.6: The distribution of cones and rods across the retina 
(after [Cornsweet 1970]).
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Figure 3.7: Absorption spectra for three classes of cones (after [Wald 1965]).

OARK ADAPTED LIGHT AOAPTED OARK A D A P TE D LIGHT ADA P TE D

Rod response Cone response

Figure 3.8: Receptors responses to 2 Sec test flashes of increasing 

intensity (in log units), (after [Norman 1974]).
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Laterally connecting the photoreceptors are horizontal cells which receive in-
puts from some photoreceptors and may act via synaptic connections on other 
photoreceptors and bipolar cells. Amacrine cells make similar lateral connec-
tions between the bipolar cells and may act on ganglion cells. Some of these 
actions indicate feedback loops in lateral connections. These lateral and feed- 
back connections are responsible for the so-called lateral inhibition phenomenon 
[Cornsweet 1970, pp. 284-310], and give rise to the concept of the receptive field 
of a cell. Lateral inhibition has a great effect on the ability of the eye to perform 
edge detection, thus we will describe it in some detail based on physiological 
data which have been collected through experiments on various animals (espe-
cially the horseshoe crab, Limulus). In addition, the concept of receptive fields 
will be introduced due to its importance to the study of ganglion cells and other 

cells in the visual cortex.

Various preliminary studies of the lateral eye of the Limulus have indicated 
that many of the properties of this eye are similar to those of higher animals, 
including humans. Therefore, it has been studied very extensively by different 
researchers. Most of this work has been carried out by Hartline and his colleagues 
[Hartline 1932], [Hartline 1947] and [Hartline 1956], whose studies have had an 
enormous influence upon current theories of the processes of human brightness 

perception.

The eye of the Limulus is faceted (as the eye of the fly). In the faceted eye 
of the Limulus, there is a separate optical system (a lens and cornea) for each 
facet, and the lens in each facet forms an image in the plane of the receptors 
contained in the facet. The characteristics of the Limulus eye are such that light 
from a roughly circular area in the visual field falls on the visual pigment in each 
facet, and adjacent facets receive light from overlapping but somewhat displaced 
fields.

In the human eye, there is a single optical system that forms an image on a 
mosaic of receptors. Each receptor receives an amount of light proportional to 
the amount radiated or reflected from some particular region of the visual field. 
The fields of different human receptors overlap because of diffraction, aberration 
and scattered light. Thus, comparing the optics of the Limulus eye to the optics 
of the human eye, we can consider each facet in the Limulus to be the rough



analog of each receptor in the human eye [Cornsweet 1970].

Various experiments have revealed that each fiber in the optic nerve of the 

Limulus appears to be connected to a single facet and it would only fire when a 
spot of light falls on that facet, named the excitatory facet. If the facets neigh-
bouring that particular one are illuminated, the nerve fiber will not respond. 
However, inhibitory interactions among facets have been found to be a notewor-
thy feature of the action of the Limulus eye. Suppose that a dim light always 
falls on the excitatory facet and a brighter spot of light is then moved across 
the Limulus eye. The results (the firing rate of the excitatory facet) would be 
as plotted in Fig. 3.9.

Figure 3.9: Spatial impulse response of the excitatory facet - 
experimental results (after [Cornsweet 1970]).

When the spot of light falls on facets that are far away from the excitatory 
facet it would be firing constantly, since it is constantly illuminated. However, as 
the moving spot approaches the excitatory facet it falls on facets that are closer 
and closer to the excitatory one and inhibitory effects would take place, i.e., 
neighbouring facets would inhibit the excitatory one more and more strongly, 
reducing its firing rate. When the moving spot falls directly on the excitatory 
facet, however, the firing rate would increase to its maximum. This phenomenon
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is called la te ra l  in h ib it io n .

Some of the results of the interactions between facets in the Limulus have 
obvious implications for the understanding of human perception. For example, 
suppose that the intensity distribution depicted as a dashed line in Fig. 3.10 is 
presented to the Limulus eye. Then the activity levels of the facets would be 
as indicated by the solid line in that figure due to lateral inhibition (the open 

circles represent the facets activity if there were no inhibition).

Figure 3.10: Qualitative prediction o f the facets activity in the Limulus eye 
for a given intensity distribution (after [Cornsweet 1970]).

When the intensity distribution in Fig. 3.10 is presented to a human subject and 
he is asked to plot the brightness distribution, he will draw something that looks 
just like the solid line in Fig. 3.10. Similar electrophysiological experiments on 
the retina of mammals, mostly cats and monkeys, also show clear evidence of 

lateral inhibitory interactions.

Fig. 3.96 is a description of a two-dimensional “top view” of the Limulus 
eye region over which light affects the activity of the excitatory fiber. This 
region is called the receptive field of the fiber under test. The small region, 
centered on the excitatory facet, is labeled “+ ” because light falling on it causes 
an increase in the fiber firing rate. On the other hand, when the spot of light 
falls anywhere in a surrounding x'egion of the excitatory facet, its net effect on 
the facet being recorded from is inhibitory, as indicated by the ring labeled 
There is summation within the receptive field. Since inhibitory influences add
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to each other, two spots of light simultaneously falling within the inhibitory 
area will generally produce stronger inhibition than a single spot. Similarly, two 
spots of light falling within the excitatory area will produce stronger excitation 
than a single spot. Finally, it should be noted that the size of the receptive field 

depends upon the intensity of the stimulating light spot and must also depend 
upon the size of the light spot being used to measure it.

In an analogous way, similar receptive fields exist in the human eye due to 
lateral connections between adjacent receptors and nerve cells in the retina. A 
receptive field of a cell in the human eye is defined as the retinal region over which 
light affects the activity of that cell. Two types of receptive fields have been 
found : an “on-centre” field in which light falling in the centre has an excitatory 
effect while having an inhibitory effect when falling on the surrounding ring, and 
an “off-centre” field that is just the opposite. A systematic analysis shows that 
even a very small spot of light (0.1 mm in diameter) can cover several overlapping 
receptive fields causing excitation of some ganglion cells and inhibition of others. 
It has also been found that these cells are spatially grouped, i.e., cells processing 

information coming from a given area of the retina are grouped.

The receptive fields of retinal cells are always very nearly isotropic (circularly 
symmetric). Thus, at this level in the visual system, the information is processed 
independently from spatial orientation. Another important observation is that 
the receptive fields are very small in the vicinity of the fovea and progressively 

increase in diameter as we go away from the fovea.

The receptive fields of bipolar cells display a concentric organization with 
an excitatory centre and an inhibitory surround similar to the one depicted 
in Fig. 3.96. The excitatory centre is mediated by the direct receptor-bipolar 
connections while the inhibitory surround is derived from the lateral interactions 
of the horizontal cells. Bipolar cells respond by means of graded potentials 

(similar to the receptors but with steeper responses).

Two types of bipolar cells have been identified. One responds to central 
stimulation with a hyperpolarizing potential and the other with a depolarizing 
potential. With either cell type annular illumination antagonizes the sustained 
potential produced by central illumination. The bipolar cells drive ganglion cells
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which respond in the form of nerve impulses. The firing rate of the ganglion 

cells carries the information to higher centres.

Referring back to Fig. 3.9a, the spatial impulse response clearly corresponds 
to a high-pass behavior that is at the origin of the effect of contrast enhance-

ment. Since illumination of the surround is fed forward to inhibit the signal 
elicited by illumination at the centre of the receptive field, the overall response 
is lowered when the field is uniformly illuminated and raised in the vicinity of 
a luminance edge. Consequently, the neural image (the perceived image) of an 
edge is enhanced by means of undershoots and overshoots that correspond to 
the Mach band phenomenon in psychophysics [Ratliff 1965] (see also Fig. 3.10). 
Edge detection is mainly due to ganglion cells, and their effect can be modeled as 
a two-dimensional high-pass filter. However, it should be noticed that this filter 
is shift-variant because of the nonconstant spatial resolution of their receptive 

fields which change as a function of the distance from the fovea.

The response of ganglion cells to a centre spot of light afiapts to widely 
changing levels of background illumination. This behavior is shown in Fig. 3.11. 
The firing rate of the cell goes from threshold level (resting firing rate, zero 

or tens pulses per second) to saturation (200-300 pulses per second) with a 
change of intensity of centre excitation of just under one log unit (a factor of 
10). Adaptation mechanisms shift this active graded response region to span the 
ambient background level. In this active region this relation is nearly linear in 
firing rate versus the logarithm of intensity, and the slope in this linear region is 
virtually independent of the background illumination. Thus, the absolute light 
intensity is ignored by ganglion cells which measure only differences in their 
receptive fields.

There is sufficient direct physiological evidence to support the hypothesis 
that the relationship between the light intensity input to the visual receptors 
and the neural output level is approximately logarithmic. In 1932, Hartline 
and Graham reported the recording of neurological signals from single receptors 
in the eye of the Limulus [Hartline 1932]. Subsequently, Fuortes measured the 
electrical properties of the nerve cells of the eye of the Limulus [Fuotes 1958], 
[Fuotes 1959]. His findings were consistent with the hypothesis that light stim-
ulating the receptor causes it to release a chemical mediator that decreases the
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Intensity of center st imulus

Figure 3.11: Firing rate as a function o f stimulus intensity for several 
background intensity levels (after [Sakrison 1977]).

resistance (increases the permeability) of the membrane of a cell lying next to 
the receptor. This decrease in resistance in turn causes a change in the voltage 
between the inside and the outside of the cell. This change in the voltage is 
related to the frequency with which the cell fires nerve impulses.

Rushtone [Rushtone 1961] has pointed out that the resistance of the cell 
membrane is proportional to the logarithm of the total light incident on the re-
ceptor. Furthermore, he concluded that the relationship between the membrane 
potential and the frequency of nerve impulses is a linear one thus, the frequency 
is a logarithmic function of light intensity. These findings are summarised in 
Fig. 3.12 which is a plot of the change in the resistance of the cell membrane or 
the impulse frequency against the logarithm of the light intensity. In Fig. 3.12, 
Ro is the resistance of the cell membrane in the dark, R\ is the resistance under 
illumination, and log /  is the logarithm of the light intensity.

Stevens [Stevens 1970] has replotted Hartline’s data on a log-log scale and 
pointed out that the functional relationship follows a power law with an exponent 
of 0.29. Stevens has also reported that the exponent for perceptual brightness of 
5 deg targets in the dark is 0.33 [Stevens 1975]. This number represents all of 
the nonlinearities in the system since the experimental paradigm now includes
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Figure 3.12: The effects of different light intensities upon a neuron 
in the eye of the Limulus (after [Rushtone 1961]).

the perception of the stimulus and the response is not just the monitoring of a 
neurological signal. In other words, the 0.29 exponent is based on physiological 

data while the 0.33 exponent is based on psychophysical data. Utah, in dis-
cussing the coding of sensory magnitude, has concluded that the main site of 
response compression occurs at the receptors [Utah 1973], and the above data 
indicate this is true. Hence, it seems that the nonlinearity in the HVS can be 
approximated by a logarithmic function or a power law function.

From the discussion in this section, it is quite evident that significant process-
ing takes place in the retina. This may be thought of as a preprocessing of the 
visual information prior to encoding and transmission to higher centres which 
will be described in the following section. It is also evident that the information 
that we have about the visual world, and our perception of objects and visual 
events in the world, depend only indirectly upon the state of that world. They 
depend directly upon the nature of the images formed on our retina. Since the 
eye is not a perfect sensor of visual signals, the retinal images are different in 
many important ways from the real objects. Finally, it should be noticed that if 
information about some aspect of an object is not contained in the retinal image 
of it, the information can not be recovered by later parts of the visual system 
[Cornsweet 1970].
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3.3 The Visual Path from the Eye to the Cortex

The output from each eye is conveyed to the brain by about a million nerve 
fibers bundled together in the optic nerve. These fibers are the axons of the 
ganglion cells of the retina. Fig. 3.13 is a schematic representation of the visual 
pathways beyond the retina.

Figure 3.13: Pathways in the human visual system.

Shown are the retina (R), optic nerve (ON), the optic chiasm (OC), the lateral 
geniculate nucleus (LGN) and the visual cortex (VC). The black and white paths 
indicate mapping of the right and left visual fields, respectively. It should be 
noticed that the fibers of each optic nerve split up at the optic chiasm according 
to the half-retina from which they originate. Fibers from the right half-retinas 
go off to the lateral geniculate nucleus on the right side of the brain, and fibers 
from the left half-retinas go to the lateral geniculate nucleus on the left side of 
the brain. Consequently, the information content of the left half of the visual 
field is processed by the right side of the brain and the information content of 

the right half of the visual field is processed by the left side of the brain.

At the LGN the optic nerve fibers map out the appropriate half retina from 
the two eyes in a regular manner. They terminate on geniculate neurons which 

in turn send axons to the primary visual cortex (also known as the striate cortex 
or area 17). From there, after several synapses, the visual messages are sent to



a number of further destinations: neighbouring cortical areas (areas 18 and 19) 
and also several targets deep in the brain. Feedback paths from the visual cortex 
to the lateral geniculate nuclei have also been observed [Hubei 1979]. Thus, it 

should be understood that the primary visual cortex is in no sense the end of 

the visual path. It is just one stage, probably an early one in terms of the degree 

of abstraction of the information it handles.

The cellular analysis of the LGN shows a layered organisation of cells. Each 
geniculate body is divided into six layers, three left-eye layers interdigitated 
with three right-eye ones. Cells on each layer receive information only from 
one eye, a characteristic called ocular dominance. Moreover, neurons receiving 

information from a given area of the retina are grouped, independently from the 
specific layer. In other words, the receptive fields of all the cells encountered 
along a radial pathway traversing the six layers have virtually identical position 

in the visual field.

The cells in the LGN function in a way very similar to that of ganglion 
cells maintaining independence of orientation, i.e., the information is processed 
independently from spatial orientation. In addition, the receptive fields of single 

geniculate cells are similar to those of retinal ganglion cells but with a stronger 
inhibitory surround, which improve further contrast enhancement [Hubei 1961].

Located at the back of the brain, the visual cortex is a folded layer of neu-
rons of about 2 mm in thickness. Cellular analysis of a cortical tissue under 
a microscope shows that the cortex as a whole contains some lO10 (10 billion) 
neurons. The neurons are hierachically organised in half a dozen layers that are 
alternatively cell-sparse and cell-rich. In contrast to these marked changes in cell 
density in successive layers at different depths in the cortex, there is marked uni-
formity from place to place in the plane of any given layer and in any direction 
within that plane.

The neurons are classified as simple cells, complex cells, and hypercomplex 
cells. The receptive field of a simple cell is essentially identical to the field of 
a ganglion cell, except that it is elongated (see Fig. 3.14). Any given simple 
cortical cell will respond to spots of light anywhere within an elongated area 

whose long axis may have any particular angular orientation, and it may be of
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the “on-centre” or the “off-centre"’ type. It is at this level of the visual system 
that specific processing for a given spatial orientation is introduced.

Figure 3.14: Receptive field of a simple cell (after [Kuffler 1976]).

Complex cells are also sensitive to the orientation of the excitation and so are 
hypercomplex cells. However, hypercomplex cells respond most effectively when 
corners or discontinuities are present in the visual field.

A systematic, cell-by-cell, analysis of the visual cortex indicates a columnar 
organisation in both ocular dominance and orientation dominance. In one typi-
cal vertical penetration of the cortex (labeled “ 1” in Fig. 3.15) a microelectrode 
encounters only cells that respond preferentially to the left eye (Lr) and. in layer 
IV, cells that respond only to the left eye (L). In another vertical penetration (la-
beled “2” ) the cells all have right-eye dominance (R/) or, in layer IV, are driven 
exclusively by the right eye (R). In an oblique penetration (labeled “3” ) there is 
a regular alternation of dominance by one eye or the other eye. Repeated pene-
trations suggest that the cortex is subdivided into regions with a cross-sectional 
width of about 0.4 mm and with walls perpendicular to the cortical surface and 
layers. These regions have been called the ocular dominance columns.

It is interesting to note that if the same experiment is repeated by looking, 
not for the ocular dominance, but the response to a given orientation, the same
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Figure 3.15: Grouping of cortical cells according to 
ocular dominance (after [Hubei 1979]).

columnar organisation can be observed (see Fig. 3.16). A microelectrode pen-
etrating the cortex perpendicularly encounters only cells that prefer the same 
orientation (apart from the circularly symmetrical cells in layer IV, which have 
no preferred orientation). In two perpendicular penetrations a millimeter apart, 
however, the two orientations observed are usually different. Huble and Wiesel 
have found that each time the microelectrode moved forward as little as 25 to 
50 micrometers in parallel direction to the surface of the cortex the optimal ori-
entation changed by a small step, about 10 degrees on the average. The steps 
continued in the same direction, clockwise or counterclockwise, through a total 

angle of anywhere from 90 to 270 degrees. Occasionally such a sequence would 
reverse direction suddenly (as can be noticed in Fig. 3.16), from a clockwise 
progression to a counterclockwise one or vice versa.

The visual cortex must therefore be subdivided into roughly parallel slabs 
of tissue, with each slab, called an orientation column, containing neurons with 
like orientation preference. Combining the results of these two experiments, a 
columnar model of the cortex is obtained, as shown in Fig. 3.17, where the bars 
in the columns indicate the preferred orientation.

Given what has been learned about the primary visual cortex, it is clear 
that a block of cortex about a millimeter square and two millimeters deep can 
be considered an elementary unit of the primary visual cortex. It contains 
one set of orientation slabs subserving all orientations and one set of ocular-
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SURFACE OF CORTEX

Figure 3.16: Grouping of cortical cells according to

orientation preference (after [Huble 1979]).

Figure 3.17: Columnar model of the cortex (after [Huble 1979]).
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slabs subserving both eyes. Hubei and Wiesel have summarised the subject 
properly stating that “To know the organisation of this chunk of tissue is to 
know the organisation for all of area 17; the whole must be mainly an iterated 

version of this elementary unit” [Hubei 1979].

All the properties described thus far can be summarised in a block diagram 
(see Fig. 3.18) where parts related to the lens, the retina, and the cortex are 

indicated.
Cortex

Figure 3.18: Block diagram of the HVS (after [Kunt 1985]).

The first block is a spatial, isotropic, low-pass filter. It represents the spherical 
aberration of the lens, the effect of the pupil, and the frequency limitation by the 
finite number of photoreceptors. It is followed by the nonlinear characteristic 
of the photoreceptors. Here, a logarithmic curve for simplicity or a law of the 
type LT for more accuracy, can be used. At the retina, this nonlinear and very 
likely memoryless transformation is followed by an isotropic high-pass filter cor-
responding to the lateral inhibition phenomenon of the ganglion cells and LGN 
cells. Finally, there is a directional filter bank that represents the processing 
performed by the cortical cells followed by another filter bank for detecting the 
intensity of the stimulus.
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3.4 Psychophysics of Vision

In this section we consider the second principal source of information about the 
visual system - psychophysics. Various perceptual effects, which have been ver-
ified through psychophysical experiments, will be described emphasising those 
which are relevant to our efforts to devise better image coding systems.

In psychophysics an observer is shown a stimulus and then asked to make 
some response indicating his sensation of some attribute of the stimulus. The 
visual system is thus treated as a ‘‘black box’’ with visual stimuli as the input 
and perceived sensations as the output. Functional relationships are sought 
between physical properties of the stimulus and the subjective response of the 
observer. Since we are concerned with black and white images our interest is 
restricted to brightness, the perceived attribute of luminance. Other sensations 
aroused by visual stimuli like hue and saturation, which are attributes of color, 

will not be dealt with herein.

Most of the studies in perception have been carried out only for threshold 
perception, which refers to the perception of "just-noticeable levels of noise 
(perturbation). The reason is that responses to suprathreshold perturbations 
are difficult to standardise and therefore general conclusions cannot be drawn. 
The earliest experiments were carried out in uniform background fields with 
circular test spots of varying area and duration. Based on these studies, a 
number of laws of threshold vision have been empirically derived.

The first law, known as Ricco’s law, states that for small test spots, less 
than 2 minutes of arc in diameter, the luminance difference threshold is inversely 
proportional to the stimulus area. As the size of the test stimulus is increased 
beyond 2 minutes of arc, the degree of spatial summation falls off gradually and 
eventually reaches a point where the threshold is virtually independent of the 
stimulus area. Analogous to Ricco’s law for spatial summation is Bloch’s low for 
temporal summation. It states that for stimulus duration up to about 40 ms the 
luminance difference threshold is inversely proportional to the stimulus duration. 
For longer durations the temporal summation falls off in the same way as the 

spatial summation.
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The variations of threshold with background luminance depends on the size of 
the stimulus and its duration. Over a wide range of luminance, and in particular 
over the range normally encountered in television, there are two limiting modes 
of behavior. For small stimuli of short duration (size less than 5 minutes of 
arc and duration less than 10 mSec) the thresholds are proportional to the 
square root of the background luminance (DeVries-Rose’s law). For large stimuli 
and long duration the thresholds are directly proportional to the background 
luminance (Weber’s law). The point of transition between the two modes of 
behavior gets progressively lower with increasing background luminance. In this 
way Weber’s law covers an increasing range of stimulus size and duration as the 
background luminance is increased. The ratio between the threshold level and 
the background intensity level is very nearly a constant except for very low and 
very high levels of background intensities. It is called the Weber fraction and 

its value is about 0.02 [Pratt 1978].

The visibility of a perturbation as a function of its spatial frequency has been 
an important issue in the study of perceptual effects. In particular, researchers 
have tried to find a simple model that would describe the response of the HVS 
to stimuli of various spectral content. Linear systems, or nonlinear systems that 
are operating in a linear range, can be described by a curve (function) that is 
called the modulation transfer function (MTF) of the system. Once the MTF is 
specified, the response of the system to any stimulus can be computed by ap-
plying Fourier techniques. Unfortunately, physiological studies have confirmed 

that the human visual system contains nonlinearities (see previous discussion 
about the retina). Thus, simple ways in which these nonlinearities can be added 
to a model of the HVS have been sought. One simple way is shown in Fig. 3.19. 
It is assumed that after a logarithmic transformation which takes place at an 

earlier stage of the HVS, the rest of the system is linear, at least for constant 

background luminance.

Many researchers have thus measured the human threshold contrast sensi-
tivity to periodic patterns (sine- waves, square-waves, etc.) viewed at a range of 
spatial frequencies (good reviews of this work can be found in [DePalma 1962], 
[Levy 1970] and [Kelly 1977]). By taking the reciprocal of such a contrast sensi-
tivity curve, one arrives at a curve akin to the spatial frequency response function 
of the visual system. This curve has been called the MTF of the visual system.
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Figure 3.19: A simple nonlinear model of the HVS.

It has been shown that for threshold stimuli the visual system can be modeled 
by a band-pass filter with maximum response in the range of 2-8 cycles per degree 

(cpd) falling off at lower and higher frequencies (see Fig. 3.20). The lower cutoff 
is due to the lateral inhibition phenomenon described earlier, and the upper 
cutoff is due to the finite aperture of the pupil, the size and density of the 
receptors, and the scattering of light within the eye. The band-pass filter effect 
obtained with threshold stimuli becomes less pronounced as the stimuli become 
more visible (suprathreshold stimuli) [Hammerlv 1977].

Figure 3.20: Spatial frequency response of the HVS (after [Cornsweet 1970]).

Two points should be taken into consideration when trying to employ the 
model described above. First, it should be remembered that the HVS is not 
isotropic, i.e., the response of the HVS to a rotated contrast grating is a func-
tion of the grating’s frequency as well as its angle of orientation. It has been
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shown that the sensitivity of the HVS is greatest and nearly equal for vertical or 
horizontal gratings and decreases to a minimum at 45 deg where the sensitivity 
is about 3 decibles (dB) less (at a frequency of 30 cpd) [Hall 1977]. However, the 
effects of this anisotropy are relatively small over much of the frequency range 
to which the eye is sensitive (for spatial frequencies equal to or less than 10 cpd) 
thus, for many applications, a single MTF is sufficient [Cornsweet 1970, p. 330].

Secondly, the HVS is not spatially homogeneous, neither in optics nor recep-
tors. For example, it has been mentioned earlier that the densities of cones and 
rods vary strongly with retinal position. Nevertheless, optical spatial invariance 
is a good assumption near the optic axis, and thus, the MTF of the HVS may 
be used to find the properties of retinal images [Cornsweet 1970, p. 329].

The structure .shown in Fig. 3.19 can also be used to explain the psychophysi-
cal phenomenon of brightness constancy [Cornsweet 1970, pp.353-355] which will 

be explained next. Fig. 3.21a depicts the intensity profiles of two hypotetical 
images. The difference between the two profiles is that the intensity of the 
right-hand profile is six times greater everywhere. A human observer would not 
detect this difference, and in fact, the two images would be perceived as having 
the same brightness. This phenomenon is called brightness constancy.

Figure 3.21: The paradigm for brightness constancy (after [Cornsweet 1970]).
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When a logarithmic transformation is assumed to take place at an earlier 
stage of the HVS, the inputs to the rest of the system (see Fig. 3.21 b) differ 
only by the average intensity. It should be noticed that the step in intensity 
is equal in amplitude for both intensity profiles. After high-pass filtering, this 
constant amplitude step is the only thing that passes through the system and 
thus the two outputs should be very similar. In other words, a combination of 
a logarithmic transformation and the measured MTF of the visual system lead 

to the prediction that brightness constancy should occur. Stockham has suc-
cessfully applied a version of this model to image processing [Stockham 1972]. 
In addition, Mannos and Sakrison have found the same basic model to be ap-
propriate for image coding [Mannos 1974]. They have also found that images 
which were coded using a cube root function were judged subjectively as being 
“better” than those coded via a logarithmic function.

The last perceptual effect to be discussed hereby is localized in the spatial 

domain. It is well known that while television pictures typically may contain ar-
eas that are uniform or quasi-uniform, they also contain detail and large changes 
of luminance (edges) which affect drastically the visibility of any impairments. 
These changes inhibit the ability of the eye to detect impairments spatially ad-
jacent to the changes. This phenomenon is referred-to as spatial visual masking.

Spatial masking has been studied by means of a number of paradigms. The 
foremost of these has been to measure increment thresholds for small test stimuli 

(a thin line parallel to the edge) as a function of distance from a luminance 
edge. Using this paradigm it has been found that for edges of high contrast, 
thresholds rise sharply on both sides of the edge and reach a peak at the edge 
itself [Fiorentini 1966]. The magnitude of the effect increases with the contrast 
ratio; with a contrast ratio of 20:1 and a line test stimulus 1 minutes of arc in 
width, the thresholds measured at the edge were up by a factor of between 3 and 
4 relative to the steady-state values on the bright side of the edge [Lukas 1980]. 
The spread of the effect is very narrow, though, most of it occurring within 6 
minutes of arc of the edge on either side.

The visibility of the noise is defined to be inversely proportional to the level 
of just-visible noise. The visibility as a function of the distance from the edge 
has been modeled on the basis of psychovisual experiments [Hentea 1984] as an
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exponential function. The visibility function vi(x), where x is the distance from 

the edge, is given by

vi(x) =  1 - a N ■ (3.1)

The constant a lies between 0.0 and 1.0. and its value depends on the ratio of 
the bright and dark intensities of the edge [Hentea 1984]. The higher the ratio, 
the larger the value of a. This visibility function, also called spatial masking 

function, is depicted in Fig. 3.22.

SPATIAL MASKING FUNCTION FOR HUMAN VISION

One further approach to the study of masking has been in terms of the spatial 
frequency domain. This has been done by experiments with gratings where 
narrow-band noise centred at various spatial frequencies has been presented 
against a narrow-band background [Sakrison 1975], [Stromeyer 1972]. It has 
been found that the visibility of the noise is lowest around the centre frequency 
of the background and it increases for other background frequencies. Thus, the 
visibility of noise is masked most effectively in those areas of the picture where it 
has similar spatial frequency content to the picture itself. High-frequency noise 
is least visible in the high-detail areas of the picture and low-frequency noise 
is least visible in the homogeneous low-detail areas. This important conclusion
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will be used in devising ways for post-processing of block coded images.

With that we complete our short review of the human visual system. The 
perceptual features listed above are the most important ones from the coding 
point of view. All of them ought to be exploited by any coder in order to 
distribute the noise (coding distortion) in a manner that is least visible. All of 
them will indeed be used to devise a new coding system which is the purpose of 

this research.
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Chapter 4

Directional Classified 
Gain-Shape Vector Quantisation

See the sun in the midst of the rain; 

Scoop clear water from the heart of the fire.

4.1 Introduction

A new VQ-based system for image coding, named Directional Classified Gain- 
Shape Vector Quantisation (DCGSVQ), is introduced in this chapter. It com-
bines vector quantisation with transform coding (TC) techniques and exploits 
various properties of the human visual system (HVS) to produce reconstructed 
images with good subjective quality at low bit-rates.

Transform coding has been widely used, and shown to be an effective ap-
proach for image data compression. In TC, blocks of statistically dependent 
picture elements (pixels) are converted into blocks of relatively less correlated 
elements so that statistical redundancy can be removed more efficiently. Among 
the many transforms commonly used, the discrete cosine transform (DCT) has 
become widely recognised as an almost optimum transform method when com-
pared with other transforms on the basis of energy compaction and decorrelation 

between pixels [Ahmed 1974, Perkins 1988]. In particular, it has been shown 
that the DCT is a limiting case of the Karhunen-Loeve (KL) transform, which
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is an optimum transform for image compression in the mean square error sense 
[Shanmugan 1975, Ahmed 1982], Unlike the KL transform, which requires a pri-
ori knowledge of the source correlation for implementation (information which 
is seldom available), the DCT is a deterministic transform not requiring such 
knowledge. In addition, the all-real cosine transform can be rapidly computed 
by applying fast DCT algorithms [Chen 1977], [Makhoul 1980], [Haque 1985].

The cosine transform can be applied to the entire image or to sub-images of 
various sizes (typically blocks of 8 x 8 or 16 x 16 pixels). Applying transforms 
to sub-images rather than to the entire image as a whole has the advantage of 
reducing computational complexity, and of allowing adaptivity to different scene 
parts. Therefore, the general method of DCT coding involves dividing the im-
age into small non-overlapping sub-images, i.e., blocks of pixels, and then trans-
forming the blocks to obtain equal-sized blocks of transform coefficients. Since 
transformation has the effect of compacting most of the energy within the block 
into some of the low-frequency coefficients, data compression can be achieved 
by quantising and transmitting (or storing) only a subset of these coefficients. 
Usually, some high-frequency coefficients may be discarded, employing either 
zonal sampling or threshold sampling techniques [Wintz 1972] without causing 
significant distortion in the reconstructed image. The remaining coefficients are 
then independently quantised using a fixed nonuniform scalar quantiser, and 
transmitted. This system is a nonadaptive coder where the quantisation levels 
are defined by a bit assignment matrix, which is either available at the receiver 
or transmitted for each image as side information [Chen 1977a].

In adaptive transform coders, several bit assignment matrices are employed. 
Each block (sub-image) is classified into one of several classes according to the 
activity content of the block and then coded by the corresponding bit assignment 
matrix. Various activity indices have been defined either in the spatial domain 
or in the transform domain (the one most commonly used has been the total AC 
energy, calculated in the transform domain [Chen 1977a]). As a rule, normalisa-
tion of the coefficients has to be carried out to reduce their dynamic range, and 
then each coefficient is nonuniformly quantised and coded. The scalar quantis-
ers are designed using the Max algorithm [Max 1960] assuming a well-defined 
probability density function for the transform coefficients.
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Various probability density functions have been suggested. A Gaussian dis-
tribution has been assumed in reference [Chen 1977a] for all the transform co-
efficients, where in reference [Reininger 1983] a Laplacian distribution has been 

proposed for the AC coefficients while proposing a Gaussian distribution for 
the DC coefficient. In [Eggerton 1986], however, it has been stated that the 
one overall density function is much closer to being Cauchy than Gaussian or 

Laplacian.

Despite the fact that this method performs well on most natural scenes, 
and a coding rate of about 1 bits per pixel (bpp) is achievable with no ap-
parent visual degradation, this method suffers from three major drawbacks. 

First, a specific probability density function, for describing the distribution of 
the AC coefficients, has to be defined in order to design the Max-quantisers. 
Since natural scenes vary enormously it has been quite difficult to agree upon a 
standard density function, thus leaving this matter open to dispute. Secondly, 
the quantisation process, which is necessary and can also contribute signifi-
cantly to data reduction, is performed in a scalar manner. In a Shannon sense 
[Shannon 1948, Berger 1971], such a procedure is inherently sub-optimal. Im-
proved performance in terms of rate-distortion function can be achieved if a 
sequence of selected transform coefficients are quantised simultaneously, i.e., as 
a vector.

The third drawback is that this method is based on classical information 
theory without considering valuable properties of the intended receiver, i.e., 
the human observer. For example, the sensitivity of the human visual system 
(HVS) to errors in the reconstructed image depends on the frequency spectrum 
of the error, the mean grey level, and the amount of detail in the picture in 
the vicinity of the error. Hence, it is possible to increase the efficiency of the 
coder by allowing distortions that do not degrade the subjective quality of the 
reconstructed image. In other words, “image coding must become a discipline 
not only of exploiting redundancy and mathematical information measures, but 
of visual science - understanding exactly what image information is made use of 
in perception” [Chen 1990].

The first step in the right direction has been the design of vector quantis-
ers, firstly in the spatial domain and recently in the transform domain. Various
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schemes have been proposed that combine the good features of TC with the 
advantages of VQ to increase the coding performance [Sun 1985], [Ang 1986], 
[Marescq 1986], [Breeuwer 1988], and [Ho 1989]. In these schemes, activity mea-
sures (indices) have been used, defined either in the spatial domain or in the 
transform domain, for adaptive selection and quantisation of the transform co-
efficients in order to take into account the local statistics. The transform blocks 
are classified into several activity classes, each having its own bit assignment 
matrix. Each block is adaptively partitioned into a number of vectors which are 
then quantised employing VQ. However, since the HVS is highly sensitive to 
errors in the mean luminance, these schemes have separately quantised the DC 
coefficients employing a scalar quantiser.

Pointing out the major difficulties that arise in attempting to design a univer-
sal VQ in the spatial domain, i.e., one that would be good for encoding various 

images, the authors in [Saito 1987] have proposed the following notion. They 
argued that if the image signal can be transformed into a signal sequence with a 
standard probability distribution, then a universal VQ can be designed to match 
that distribution. Moreover, if a spherically symmetric probability model can 
be used, then a GSVQ can perform as well as an optimum VQ. Thus, they 
designed a GSVQ in the cosine domain based on the basic design principles laid 
forth in [Sabin 1984].

The GSVQ was designed for a Pearson-type VII distribution which is a spher-
ically symmetric density function. They argued that the Pearson-type VII dis-
tribution is a more suitable model for the normalised AC coefficients than the 
Gaussian or the Laplacian distributions provided that a certain parameter, in 
that probability density function, is properly selected. Several vectors with vari-

ous dimensions were defined by grouping AC coefficients of approximately equal 
variance values into one vector. These vectors were normalised and coded by 
several shape codebooks that were designed with a training sequence of shape 
vectors, derived from a random source with the assumed distribution function. 
The gain values were coded by a nonuniform Max-type scalar quantiser, op-
timised for the assumed distribution function. The DC coefficient was coded 
by an 8-bit uniform scalar quantiser. The coding results were better than the 
conventional DCT coding scheme [Chen 1977a] however, they were slightly in-
ferior compared to a 16-dimensional VQ operating in the spatial domain. So, to
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improve the coding performance, an adaptive version of the above scheme has 

been proposed in [Saito 1988].

The systems mentioned above have achieved good coding results but they 
share several basic drawbacks. First, no systematic method of designing the 
various codebooks has been proposed, i.e., the size of each of the codebooks was 
determined empirically. In [Marescq 1986] for example, the AC coefficients were 

all grouped into one vector and employing the LBG algorithm and the splitting 
method [Linde 1980], codebooks were designed for each of the various classes. 
The size of each of the codebooks was determined empirically by increasing 
the number of the codevectors until the training image blocks in each class were 
coded with no visible distortion. The same design problem has been encountered 

in [Breeuwer 1988].

Secondly, a specific distribution function has to be used in order to describe 

the distribution of the transform coefficients. As mentioned earlier, various dis-
tribution functions have been proposed, including the absurdity of fine-tuning 
a parameter of such a function to the image under test [Saito 1987], and it 
seems that this matter will still be open to further dispute. Thirdly, no attempt 

has been made to incorporate well-known properties of the HVS into the above 
coding schemes. One could intuitively expect that if a suitable model of the 
HVS could be successfully combined with the compression process, an improve-
ment in compression performance would result. More specifically, the removal 

of subjective redundancies [McLaren 1991] from DCT-coded images, through 
psychovisual thresholding and quantisation, can result in better reconstructed 
images.

Image coders that take the characteristics of the HVS into account have been 
called psychovisual coders [Huang 1966] or psychophysical coders [Schreiber 1967]. 
Several such coding schemes have been proposed, employing certain psychovisual 
properties of the HVS like frequency sensitivity [Sakrison 1977, Eggerton 1986, 
Ngan 1989], luminance dependence [McLaren 1991], and masking effects 
[Netravali 1977, Ngan 1989]. In addition, a new class of coding schemes, termed 
second generation has been proposed recently [Hunt 1985]. These schemes have 
included hierarchical algorithms imitating the multiple channel characteristic of 

visual receptive fields and methods for contour-texture detection and
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description.

To tackle the various drawbacks, mentioned above, a new image coding sys-

tem, termed directional classified gain-shape vector quantisation (DCGSVQ), is 
introduced in this chapter. A new algorithm for designing the various codebooks, 
needed for the DCGSVQ, is proposed based on the classified nearest neighbour 

clustering (CNNC) algorithm described in chapter 2 and in [Kubrick 1990]. In 
addition, an optional simple method for feature enhancement, based on inherent 
properties of the proposed system, is proposed enabling further image processing 
at the decoder.

4.2 DCGSVQ - System Description

Fig. 4.1 depicts the basic block diagram of the proposed DCGSVQ system. The 
various stages are described in detail in the following subsections.

4.2.1 Cosine Transformation

The input image is divided into non-overlapping blocks of N xN  pixels (TV =  8) 
and each is transformed employing the DCT. The transformation is defined by

F(u, v) =
4 Q{u)Q(v

N 2

TV—1 TV-1
Y Y / ( b i ) cos
i ——0 j =0

(2 Ì +  l)u7T 
2N

cos
(2 j  +  1)U7T

2N
(4.1)

for u, v =  0,1, • • • , N  — 1 where f ( i , j )  denotes the image signal in the spatial 

domain, and

{ V  -- = »
| 1, r =  1 ,2 , - - - ,JV -  1 .

The inverse transform is given by

Q(r)

= Y Y Q(u)Q(v)F(u,v)cos
u= 0 v=0

(2 i + 1)UTT 
2 N

cos
(2 J + 1)VTT 

2 N
(4.2)

for i , j  =  0,1, • • •, TV — 1.
The cosine transform is used for its superior properties, as described in the 

introduction of this chapter.
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4.2.2 Content Classification

Prior to carrying out the DCT, each block is analyzed by a content classifier. 
The classifier allocates each image block into one of seven classes which represent 
various image patterns (edges in various directions, monotone areas, complex 
texture, etc.). Accordingly, the classifier controls two switches that define which 
vector configuration map, and which shape codebooks should be used in the 
cosine domain for encoding the block under test.

The content classifier is similar to the one described in [Ramamurthi 1986] 
and [Aravind 1986] with several changes which result in more accurate decisions 
about the blocks’ content. The classification algorithm is implemented in two 
steps: an edge enhancement step, followed by a decision tree which extracts the 
edge description from the enhanced version. The seven classes are defined as 
follows :

a) A shade class, consisting of monotone image blocks which contain no sig-

nificant gradients.

b) A midrange class, consisting of image blocks which contain moderate gra-

dients but no definite edges.

c) Four edge classes consisting of image blocks having a distinct edge running 

through them, and

d) A mixed class consisting of all the complex structured image blocks. These 
blocks contain fine details or complex edges which can not be treated as 
simple edges.

The distinction between shade and midrange blocks is based on the well-known 
fact that intensity changes against a uniform background are visible only if they 

are greater than the Weber fraction.

Four edge orientations have been defined: horizontal, vertical, and two di-
agonals. This definition is in accord with findings presented in [Keskes 1979]. 
There, an edge orientation histogram accumulated on 11 real images has shown 
quite clearly that horizontal and vertical edges are more probable than edges in 
other orientations. In addition, distinct peaks of the histogram have been found 
in 45 and 135 degrees for particular images. These observations support the
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classification of image blocks into the mentioned seven classes, and are also in 
accord with findings about the early visual mechanism described in chapter 3. 
There, it has been shown that there are special cells in the brain that are sen-
sitive to edges. These cells are divided into groups, each group being sensitive 
only to edges whose orientations are within a certain range of angles. The pres-
ence of these special cells implies that edges are very important perceptually, 
and justifies the notion of edge-oriented classification, used herein.

Any other content classifier may be used for the classification process as 
long as it can divide the image blocks into classes which are perceptually dis-
tinct. For example, a simple classifier, operating in the cosine domain, has been 

proposed in [Kim 1989] and [Kim 1991]. It uses information about several DCT 
coefficients (like their polarities and magnitudes) in order to perform the desired 
classification. However, this classifier was used to classify image blocks of 4x4 
pixels and the development of a classifier for 8x8 blocks, which is the size of the 
blocks in our work, seems not to be straightforward. In addition, since we will 
compare coding results of the DCGSVQ system with CVQ systems, operating 
in the spatial domain, it seems reasonable to employ the same classifier in both 
systems. Nevertheless, as will be shown later on, we have adopted an idea from 

the mentioned references in order to subdivide further the mixed class due to 
the large number of image blocks that were classified as mixed blocks.
Finally, it should be noticed that certain thresholds have to be set for the deci-
sion tree in the classification algorithm. Those were found through visual tests 
employing various image blocks which were tested by the classifier and then 
judged by several viewers.

4.2.3 Incorporating HVS Properties

A number of models have been proposed to describe the HVS based on threshold 
measurements. In general, they are based on a linear filtering of the stimulus 
over the dimensions involved followed by a detection mechanism. Mannos and 
Sakrison [Mannos 1974] have argued that after an initial nonlinear transfor-

mation, the remainder of the visual system may be considered linear over a 
moderate range of intensities. Thus, they have proposed the following circularly
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symmetric MTF for the HVS

H(uj) =  2.6 [0.0192 + 0.114a;] exp[—(0.114a;)1'1] (4.3)

having a peak of value 1.0 at the radial frequency uj =  8 cycles per degree (cpd). 
A simpler modulation transfer function has been proposed by Nill [Mill 1985], 
based on the work of DePalma and Lowry [DePalma 1962] and on his own work. 
The new function is defined as follows :

H(u>) =  [0.2 +  0A5l j] exp(—0.18u;) (4-4)

having a peak at u> =  5.2 cpd.

Actually, it should be noted that the human visual system is not isotropic as 
assumed above (see chapter 3). Nevertheless, the linear operation, described by 
the above MTF, was taken to be isotropic in order to make things simpler, i.e.,

=  H( w) ,  for u  +  f t  (4.5)

where f x and f y are the spatial frequency coordinates which span the two- 
dimensional Fourier domain.

Incorporating a MTF in a coding system means to weight each transform 
coefficient by an appropriate value of this function. Thus, more importance can 
be given during the coding process to those coefficients that are more important 
to the human observer. Unfortunately, the functions described above are defined 
in the Fourier domain whereas it is sought to employ such functions in the cosine 
domain. In order to find the equivalent functions in the cosine domain, Nill 
has pointed out that an even extension of the original scene has to be created 
[Nill 1985]. This necessary alteration takes the form of forcing a symmetry 
onto a normally asymmetrical original scene. Forcing a scene to be symmetrical 
allows application of the cosine transform in place of the Fourier transform with 
no loss of information. That is, the scene can be exactly reconstructed from 
just the cosine transform. However, such scene alternation causes the loss of 
physical meaning since the human observer is not viewing this altered scene. 
To overcome this problem, Nill proposed the introduction of a function | A( fx) | 

which takes the form of

Mf*) (4.6)
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with a =  11.636 deg- 1  for the HVS model used herein.
He used the two-dimensional version of this function and proved that the fol-

lowing function

H (u) H  A (u) I H{u>) =
0.05 exp[cu0-554] , for u  < 7
exp[—9( I log10-; -  log109 |)2’3] , for u; >  7

(4.7)

can be used in image cosine transform applications in the same manner as H (uj ) 
would be treated in image Fourier transform applications. In other words, H (u) 
may be used to weight the DCT coefficients to give

F (fu J v) =  H (fu, fv )F (fu, fv) , (4.8)

where
H (fuJ v) =  H (u) for a; =  y/ft +  f t  , (4.9)

and F ( fu, f v) denotes the weighted DCT coefficients. The variables f u and f v 
are the spatial frequency coordinates which span the two-dimensional cosine 
domain. This process of weighting the DCT coefficients is denoted as HVS 
Filtering in Fig. 4.1. The functions H(u>) and H(u>) are depicted in Fig. 4.2.

Figure 4.2: MTF in Fourier and cosine domains

It could be noticed in Fig. 4.2 that the effect of | A(u>) \ is to translate H(ui) 
into the more positive frequency direction, resulting in a higher frequency peak 
(at u  =  9 cpd). This implies that the higher spatial frequencies in the cosine 
domain play a more important role in the corresponding human-observed image
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quality than they do in the Fourier domain. However, this does not imply that 
the low-frequency coefficients are less important. It has been known that harsh 
quantisation of the low-frequency coefficients causes the blocking effect (block 
boundaries becoming visible). That is why the DC coefficient is not weighted 
by the MTF and special attention is given to the coefficients F (0,1) and F (l, 0) 
[Carrioli 1988, Ngan 1989]. In fact in [McLaren 1991], all the low-frequency 
coefficients (below 5 cpd in Fourier domain) were treated with special attention.

In [Limb 1979], Limb sought to determine the specifications of the spatial 
filtering, masking, and error summing operations that take part in the HVS 
when a human observer is asked to assess the quality of an impaired image. 
Various types of distortions were added to a set of test images and a comparison 
was made between various distortion measures and ratings given by human 
subjects. The results have proved that a small amount of low-pass rather than 
band-pass filtering can improve the fit between the ratings and the distortion 

measures which were used. Limb argued that the noise added to the test images 
was generally above threshold and that, consequently, suprathreshold rather 
than threshold sensitivity functions might be operating. In other words, since 
the frequency response of the HVS is flatter for more visible stimuli, low-pass 
filtering (LPF) is more appropriate. Consequently, since image coding can be 
regarded as a process which introduces various types of noise (similar to those 
tested by Limb) into the processed image, the MTF used herein will be a LPF 
rather than a BPF. The LPF, referred to as Hl p f (uj ) in Fig. 4.2, is defined as 

follows
1.0, for lu < 9
H (u), for oj >  9 .

(4.10)

Another HVS property, which can be exploited to further improve the subjec-
tive quality of coded images, is the spatial visual masking phenomenon described 
in chapter 3. It is well-known that noise content in the direction of the lumi-
nance change, i.e., across the edge, are masked by the HVS provided that the 
noise has similar spatial frequency content to the picture signal itself. Thus, 
regions of high activity can be quantised more harshly than regions of low ac-
tivity, provided that it is done only in the direction across the edge and not in 
the direction parallel to the edge direction. This notion will be further clarified 

in the next section.
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4.2.4 Vector Configuration

After weighting each DCT coefficient by an appropriate value of the MTF, the 
AC coefficients are further processed by the next stage, the vector configura-

tion stage. The AC coefficients are zonal sampled in order to discard some 
low-energy coefficients, and then grouped into two 16-dimensional directional 
vectors according to special vector configuration maps. It has been noticed that 
the distribution of energy over the transform coefficients is related to the content 
of the pixel block [Breeuwer 1988]. For example, for horizontal edges other coef-
ficients should be quantised and transmitted than for vertical edges. Thus, the 
division of the AC coefficients into two vectors should be performed adaptively 
to the direction of the spatial activity in the pixel blocks.

Fig. 4.3 depicts the six vector configuration maps employed herein. They 
are based upon statistical data gathered from the distribution of energy over 
AC coefficients, derived from eight test images used in this research.
The DC coefficient, in Fig. 4.3, is referred to as ‘d’ , where the nonzero table- 
values indicate to which vector a coefficient is assigned. The zeros in the table 
indicate which coefficients are discarded. Since the distributions of energy over 
the coefficients in the 45 degree and the 135 degree blocks are similar, their 
configuration maps are the same. The same argument holds for the shade and 
midrange classes.

It should be noted that unlike other researchers (see for example 
[Breeuwer 1988], [Ho 1989]), who have proposed grouping AC coefficients which 
have nearly equal variances into the same vector, we propose grouping the coef-
ficients according to their direction in the cosine domain. Denoting the vertical 
and horizontal coordinates in the cosine domain as u and v respectively, the 
following notion of directional vectors is introduced. Coefficients in the u direc-
tion (generally those below the line u =  v) are grouped into one vector while 
those in the v direction (generally those above the line u =  v) are grouped into 
another vector. This definition results in a more meaningful vector configura-
tion because it enables, for example, the coefficients, which represent the signal 
spectrum across an edge, to be in one vector (referred to as Iq-type vector) while 
the coefficients, which represent the signal spectrum in the parallel direction to 
the edge, can be in another vector (referred to as ü2-type vector).
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d 1 1 1 1 1 1 0 
2 1 1 1 1 1 0 0  

2 2 1 1 1 1 0 0  

2 2 2 2 1 0 0 0  

2 2 2 2 0 0 0 0  
2 2 2 0 0 0 0 0  
2 2 0 0 0 0 0 0  
0 0 0 0 0 0 0 0  

Shade Class

d 1 1 1 1 1 0 0 
2 1 1 1 1 1 0 0  

2 2 1 1 1 0 0 0  
2 2 2 1 1 0 0 0  

2 2 2 2 1 0 0 0  
2 2 2 0 0 0 0 0  
2 2 2 0 0 0 0 0  
0 0 0 0 0 0 0 0  
Mixed Class

d 1 1 1 1 1 1 0 

2 1 1 1 1 1 0 0  

2 2 1 1 1 1 0 0  

2 2 2 2 1 0 0 0  

2 2 2 2 0 0 0 0  

2 2 2 0 0 0 0 0  

2 2 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

Midrange Class

d 1 1 1 1 1 0 0 

2 1 1 1 1 1 0 0  

2 2 2 1 1 1 0 0  

2 2 2 1 1 1 0 0  

2 2 2 2 2 0 0 0  

2 2 2 0 0 0 0 0  

2 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

45 degrees Class

d 1 1 1 1 1 1 1 
2 2 1 1 1 1 1 0  

2 2 2 1 1 1 0 0  

2 2 2 2 1 0 0 0  
2 2 2 2 0 0 0 0  

2 2 2 0 0 0 0 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0  

Vertical Edge 
Class

d 2 2 2 2 2 0 0  

1 2 2 2 2 2 0 0  

1 1 2 2 2 2 0 0  

1 1 1 2 2 0 0 0  

1 1 1 1 0 0 0 0  

1 1 1 0 0 0 0 0  

1 1 0 0 0 0 0 0  

1 0 0 0 0 0 0 0  

Horizontal Edge 
Class

Figure 4.3: Vector configuration maps

As can be expected, the coefficients across the edge contain most of the 
signal energy (having large magnitudes even at high spatial frequencies) while 
those in the parallel direction contain less energy (having small magnitudes 
even at low spatial frequencies). So, the two directional vectors v\ and v2, so 
configured, are different despite being derived from the same image block. The 
magnitude (norm) of v\ is larger than the magnitude of v2, and the shape of v\ 
is more “noisy” than that of v2. Consequently, these vectors actually belong to 
different classes and therefore should be encoded by different shape codebooks. 
It should be noted, though, that the above observation is true only for vertical 
and horizontal edge-blocks. Diagonal edges manifest as meaningful coefficients 

in both directions, u and v , and along the line u — v. Therefore, the two 
directional vectors, derived from a diagonal edge-block, are similar and thus
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belong to the same class. The same is true for the mixed blocks where the two 
vectors belong to the same class which is, of course, different from the diagonal 

vectors’ class.

The notion of directional vectors paves the way for incorporating various 
image processing techniques during the reconstruction of the image blocks. For 
example, feature enhancement can be carried out at the receiver by simply 
multiplying the decoded gain value by an enhancement factor. This process 
maintains the vector’s shape while “stretching” its gain value, i.e., stretching 
the dynamic range of the coefficients which are included within that vector. 
Feature enhancement may be carried out only in the direction across a vertical 
or an horizontal edge (i.e., only for ffi-type vectors). However, for the mixed 
vectors and the diagonal-edge vectors it may be done for both vectors, hi and 
v2. Finally, the notion of directional vectors also ensures that the two largest 
coefficients, F {0,1) and F(1,0), are always assigned to different vectors, thus 
reducing the diversity of the shape vectors and reducing the dynamic range of 
the gain values, making the encoding procedure more efficient and resulting in 
better reconstructed images.

4.2.5 The Control Unit

The control unit controls a switch that defines which shape codebook should 
be used for encoding the directional vector undergoing quantisation. The unit 
performs its decision based on the following data:

a) The content classifier’s decision about the class which the block under test 
belongs to, and

b) The polarity of the first vector element iq (l) or ^ (1 ) if the block is a 
mixed block.

Employing the polarity of the first vector element for vector classification is in 
accord with the notion of block classification in the cosine domain as described 
in reference [Kim 1991]. There it has been shown that the polarity of the coef-
ficients F(1,0) and F (0,1) play a major role in the classification process. Since 
the first element in a directional vector is either .F(1,0) or F ( 0 , 1), it is checked 
by the control unit and used to sub-divide the mixed vector class due to the
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large number of those vectors.
The following vector classes are defined by the control unit:

1) A shade class consisting of all directional vectors derived from shade blocks.

2) A midrange class consisting of directional vectors derived from the midrange 
blocks, and of the U2~type vectors derived from blocks having an horizontal 
or a vertical edge running through them.

3) A 0-degree class consisting of the rfi-type vectors derived from blocks hav-
ing an horizontal edge running through them.

4) A 90-degree class consisting of the rfi-type vectors derived from blocks 
having a vertical edge running through them.

5) A diagonal edge class consisting of directional vectors, derived from blocks 
having a diagonal edge running through them.

6) A positive mixed class consisting of directional vectors, derived from mixed 
blocks and having a positive first element.

7) A negative mixed class consisting of directional vectors, derived from mixed 
blocks and having a negative first element.

Classes 0-degree and 90-degree are actually very similar because they consist 
of directional vectors that contain coefficients in the direction across an edge. 
However, they are kept separated in order to enable the decoder to trace the 
content classification of the image blocks. In other words, the receiver uses the 
index of the vector rfi to identify the content class thus identifying which vector 
configuration maps should be used in order to reconstruct the block under test. 
A different shape codebook has to be designed for each of the above classes to 
accommodate the variety of shape vectors. The design algorithm of the shape 
codebooks will be described in the next section.

4.2.6 Encoding the AC Vectors

After constructing the directional vectors, they are normalised by their magni-
tudes (norm) in order to convert them into shape vectors. These shape vectors 
are then encoded by the AC GSVQ stage (see Fig. 4.1) employing appropriate



shape codebooks that were specifically designed for each class of directional vec-
tors. In this way it is ensured that proper shape encoding takes place. The gain 
value is defined as the correlation factor between the directional vector which 
is being encoded, and the best shape codevector, selected by the encoder from 
the appropriate shape codebook (see chapter 2). A scalar quantiser, which can 
be either a uniform or a Max-type quantiser, is used to encode the gain values. 
A special gain codebook may be designed for each class of vectors but this was 
found to be unnecessary in practice. Instead, one gain codebook was employed 
to encode all the gain values, thus making the process simpler. The indices of 
the shape codevector and the selected gain value are sent to the receiver where 
they can be decoded employing the same set of codebooks.

4.2.7 Encoding the DC Coefficient

Due to its importance for the reconstruction quality, the DC coefficient (repre-
senting the mean luminance of the block) has always been carefully quantised 
using a scalar quantiser. However, neighbouring DC coefficients are well corre-
lated. In other words, the average luminance of one block is in general similar 
to those of its neighbours. Therefore a more efficient way of encoding the DC 

coefficient seems to be as follows. Four neighbouring DC coefficients can be 
grouped into one vector and encoded employing a VQ system. A similar idea 
has been proposed in [Tu 1987] which reports good results for a bit-rate of 4 bits 
per DC element. In [Ho 1989], the authors have proposed an equivalent notion 
employing interpolative VQ (IVQ) in order to exploit inter-block correlation and 
efficiently remove local mean luminance values using a small number of bits.

Based on these results we explored various methods for the encoding of the 
DC coefficients. Due to the vast diversity of DC vectors, a GSVQ is proposed 
instead of a VQ. By dealing separately with DC shape vectors and DC gain 
values, better coding results can be achieved. Therefore, as can be noticed in 
Fig. 4.1, the DC coefficient can be encoded employing either a scalar quantiser 
or a GSVQ. Both methods have been tested and results will be presented in a 
later section.
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4.2.8 The Decoder

The various stages of the decoder perform basically the reverse operations of 
the encoder’s stages. The DC Decoder in Fig. 4.1 uses the indices of the 
DC shape and the DC gain to retrieve the DC vector and DC gain value from 
the appropriate codebooks. If a scalar quantiser is employed for coding the DC 
coefficient, then only one index is transmitted to the receiver where a scalar 
decoder is used to decode the DC value.

The AC Decoder uses the indices of the AC vectors and the AC gain values to 
retrieve the AC vectors and the AC gain values from the appropriate codebooks. 
The index of the vector hi is used to identify the block’s class and accordingly the 
shape codebooks and the vector configuration maps that should be used in order 
to reconstruct the image block. The Block Reconstruction Unit recreates the 

cosine transform domain by arranging the decoded DCT coefficients in a proper 
way based on the vector configuration maps. Finally, inverse HVS filtering is 
carried out in order to compensate for the LPF, which took place at the encoder, 
and the inverse DCT is calculated to produce the decoded pixel block.

4.3 Codebooks Design

The proposed DCGSVQ system is actually a CVQ system with a special struc-
ture imposed on its codebooks, i.e., it is a classified GSVQ. Instead of using a 
different VQ for each of its classes, as generally is the case with CVQ, it employs 
a different GSVQ for each of them. A different shape codebook is employed for 
each class while employing either a different gain codebook for each class or using 
one common gain codebook. In this section, a. new algorithm for designing the 
classified GSVQ codebooks is introduced. It will be used for designing the code-
books for the directional vectors as well as for designing the shape codebook, 
needed to encode the DC coefficients when they are encoded as a vector.

Designing codebooks for CVQ systems has been a difficult task because it 
has been mainly based on trial and error methods [Ramamurthi 1986]. Recently, 
however, a new algorithm aimed at solving this problem has been proposed in



[Kubrick 1990]. The classified nearest neighbour clustering (CNNC) algorithm 
is described in chapter 2 where it was used to design simultaneously the M  
codebooks, needed for the M  different classes defined for a CVQ system.

In principle, the CNNC algorithm can be used to design the various shape 
codebooks needed for the proposed DCGSVQ system; however, it should be 
changed to deal with shape vectors instead of regular vectors. More specifically, 
the merging criterion, used for deciding which pair of clusters should be merged 
during each step of the algorithm, should be replaced by a new criterion which 
is more meaningful with respect to the shape vectors. When two shape vectors, 
each representing one cluster, are merged they are replaced by a unified shape 
vector which represents the unified cluster. This new representative shape vector 
should preserve, as closely as possible, the shape patterns defined by the original 
two shape vectors. Therefore, the new merging criterion should ensure shape 
preservation, i.e., the cross-correlation between the unified shape vector and each 

of the original shape vectors should be maximised.

A new merging criterion is developed in Appendix E and proved to ensure 
shape preservation when employed within the CNNC algorithm. Consequently, a 
modified version of the CNNC algorithm (employing the new merging criterion) 
can be used to design the shape codebooks, needed for the DCGSVQ. Naturally, 
this new algorithm can also be used for designing one shape codebook for a 
classical GSVQ, which is a special case of the classified GSVQ. In what follows, 
a detailed explanation is given in order to clarify the design algorithms for the 
various codebooks used herein.

4.3.1 The AC Codebooks

Three different algorithms for designing the product codebook of a GSVQ were 
tested in [Sabin 1984]. The Individually Optimised Algorithm was found to be 
the logical choice despite the fact that all three algorithms produced similar 
results. Basically, according to this algorithm, the shape codebook is designed 
first and then the gain codebook is designed using it. A similar approach is 
proposed herein using instead the modified CNNC algorithm for the design of 
the shape codebooks.

89



A training set of directional vectors, derived from a number of training im-
ages, is used to design the various AC shape codebooks. The vectors are grouped 
into various classes employing the same content classifier and control unit used 
by the encoder (see Fig. 4.1). The appropriate vector configuration maps are 
used too. The vectors are normalised by their magnitudes to obtain shape vec-
tors and then used by the modified CNNC algorithm to produce the required 
AC shape codebooks.

As explained in chapter 2 , a weighted merging criterion may be used in order 
to assign more importance to any particular class. By artificially increasing the 
merging error, calculated for a pair of clusters that belong to a preferred class 

and are on the merging list, the chance of merging these clusters may be reduced 
while increasing the chance of merging another pair of clusters, that belong to a 
less important class. Thus, the modified CNNC algorithm adaptively assigns the 
available bits so that a class of complex vectors (like for example, the positive 
mixed class) could be assigned more bits than a class of less complex vectors 
(like for example, the shade class).

In addition, the modified CNNC algorithm can also ensure that directional 
vectors, derived from a certain training image, can have more effect on the final 
classified GSVQ codebook than other training vectors. As explained above, the 
training vectors are first assigned to various classes where each one of them 
represents one cluster consisting of only one vector (itself). When two clusters 
Si and Sj are being merged a unified centroid is calculated using the equation

Ah
mjXj +  mjX} 

mi +  rrij
(4.11)

where m,- and rrij denote the number of vectors in clusters Si and Sj respectively, 
and Aj and Xj are the centroids of these clusters (see Appendix B).
As can be noticed, one way of influencing the outcome of this process is by 
changing artificially the value of either t o ; or rrij in that equation. Thus, by 
claiming that certain training vectors actually represent several vectors instead 
of just themselves, these vectors can become more influential than other training 
vectors. In other words, during the initial phase of assigning the vectors to the 
different classes instead of setting the variable mi to a value of 1 it could be set 
to any other value provided that the vector was derived from a preferred image. 
This notion along with the idea of a weighted merging criterion were tested in
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The design algorithm for the AC gain codebook is explained next. Each 
training vector is encoded employing the classified shape codebooks, designed 
earlier. The encoding procedure ensures that for each vector x a proper shape 
vector a,i is found so that a =  xTai is maximised. The gain value, in our con-
text, is exactly that a (see chapter 2). So, a training set of a values can be 
created in this way and used for the design of a codebook employing the LBG 
algorithm [Linde 1980]. The problem with this method is that the gain code-
book may be quite good for images that are part of the training set, but not 
necessarily appropriate for images out of the training set. Therefore, a more uni-
versal method is proposed herein. Many natural images can be encoded using 
the classified shape codebooks, previously designed, and statistics about their 
appropriate gain values can be gathered and used to design either a uniform or 
a nonuniform scalar quantiser. By knowing the dynamic range of the possible 

gain values and designing accordingly the scalar quantiser, better coding results 
can be achieved, as will be shown in the next section.

this research, and results will be presented in the next section.

4.3.2 The DC Codebooks

Two methods for encoding the DC coefficients are proposed. The first method 
is the traditional one where each coefficient is encoded using a scalar quan-
tiser. The scalar quantiser can be a uniform quantiser, properly designed to 
accommodate the whole dynamic range of the DC coefficients, or a nonuniform 
quantiser, designed with a set of training DC coefficients. The second method 
is more complicated, employing a GSVQ to encode a DC vector, consisting of 
four neighbouring DC coefficients. A 4-dimensional shape codebook can be de-
signed by the modified CNNC algorithm (where only one class is defined) and 
then a gain codebook may be designed in a similar way as it is done for the AC 
gain codebook. Both methods of encoding the DC coefficients were tested and 
appropriate results will be presented in the next section.
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4.4 Simulation Results

We applied the DCGSVQ system to encode monochrome images of size 256 x 256 
pixels with 256 grey levels. Coding results with DCGSVQ at various bit-rates 
employing codebooks designed with the modified CNNC algorithm are presented 
and compared with coding results obtained by other coding techniques like the 
VQ and the CVQ. The training set of directional vectors, used for the codebook 

design, was obtained from two 256 x 256 images, ‘Lena’ and ‘Baboon’ (Fig. 2.6), 
which represent images of different characteristics and statistics. The signal 

to noise ratio (SNR) in dB was used as a rough indicator of the quality of 
reconstructed images. In addition, since it is well known that the SNR does not 
correlate well with subjective (human) quality assessments, many subjective 

tests have been carried out too.

The viewing conditions, especially the distance between the screen and the 
viewer, are very important in the assessment procedure. For example, in 
[Watanabe 1968] it has been shown that the MTF shifts to the higher frequency 
region and that the cut-off spatial frequency rises monotonically with increase of 
the observation distance. Since a certain MTF is being used within the DCGSVQ 
system to weight the DCT coefficients, the observation distance should be care-
fully defined. The observation distance also affects the conversion factor between 
the coordinates of a DCT coefficient (u, v ) and the equivalent spatial frequencies 
( / „ , / „ )  in cycles per degree (see [Carrioli 1988] and [McLaren 1991]). Therefore, 
various subjective tests were carried out employing images that were encoded 
by a DCGSVQ, employing different values of the mentioned conversion factor. 
An observation distance of five times the image height (when displayed on a 
monitor of a Sun Sparcstation) was found satisfactory and was used throughout 

the subjective tests in this research.

Initial coding results with DCGSVQ codebooks at different rates, 0.48-0.625 
bpp, have shown that the directional vectors, derived from the ‘Baboon' image, 
have had more influence on the resulting codebooks than those derived from 
‘Lena’ . The reason for this phenomenon lies in the characteristics of most of 
the ‘Baboon’ vectors. The vectors, derived from ‘Baboon’ , are more diverse 
( “noisy” ) than those derived from ‘Lena’ . Therefore, it is more likely that the
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latter vectors will get merged during the codebook design procedure rather than 
the former vectors. In order to overcome this problem and balance the influence 
of the training images on the resulting codebooks, the initial value of the variable 

mi was arbitrarily set to 5 instead of 1 (see discussion in the previous section) 
for each training vector that was derived from ‘Lena’ .

The gain values of the directional vectors were encoded by a common gain 
codebook. Due to the masking effect that takes place in the HVS, high ac-
tivity regions in the image may be quantised more harshly than low activity 
regions. Therefore, a nonuniform scalar quantiser has been designed for encod-

ing the gain values. It performs fine quantisation for small gain values (repre-
senting low-activity vectors) while performing coarse quantisation of large gain 
values (representing high-activity vectors). A 4-bit nonuniform scalar quantiser 

has proved satisfactory and was used throughout this research (unless other-
wise stated) for encoding the AC gain values. The DC coefficient was encoded 
by a uniform 6-bit scalar quantiser, designed to accommodate the appropriate 

dynamic range.

4.4.1 A Comparison with Other Coding Techniques

SNR results for coding ‘Lena’ and ‘Baboon’ at various bit-rates are presented 
in Table 4.1 where they are compared with coding results, produced by a full 
search VQ and a CVQ. The VQ and the CVQ operate in the spatial domain 
employing codebooks designed by the LBG algorithm (with the splitting method) 
and the CNNC algorithm respectively. The training images for designing these 
codebooks were the same as those used for designing the DCGSVQ codebooks.

Encoder
R=0.625 bpp R=0.562 bpp R=0.5 bpp

Lena Baboon Lena Baboon Lena Baboon

DCGSVQ 33.61 27.34 31.99 24.92 28.48 23.28

VQ 31.15 25.67 29.68 24.59 28.42 23.80

CVQ 29.70 25.28 27.77 23.41 26.34 22.25

Table 4.1: SNR results for the training images
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Two reconstructed images of ’Lena’ at 0.562 bpp are shown in Fig. 4.4. 
The image in Fig. 4.4a was produced by a CVQ system whereas the image in 
Fig. 4.4Ò was produced by the DCGSVQ. As can be noticed in Fig. 4.4, the 
image produced by the DCGSVQ is less blocky with a quite natural appearance 
whereas the image produced by the CVQ looks blocky; the edges are jagged and 
the background (which should be smooth) also appears quite blocky.

Figure 4.4: ‘Lena’ coded by CVQ and DCGSVQ at 0.562 bpp 
a. CVQ b. DCGSVQ

Because the DCGSVQ encoder must ultimately operate on other input vec-
tors that are not part of the training set, it is important to test its performance 
outside the training set, i.e., with images which were not used for codebook 
design. Three images from the USC database were used as test images: ‘House’ 
(USC15.IMG), ‘Tree’ (USC416.IMG), and ‘Splash’ (USC21.IMG). These images 
were coded by the DCGSVQ system employing the same codebooks that were 
used for coding ‘Lena’ and ‘Baboon’. SNR results for these images at various 
bit-rates are presented in Table 4.2.

Two reconstructed images of ‘House’ at 0.5 bpp are shown in Fig. 4.5. The
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Encoder

R=0.625 bpp R=0.562 bpp

House Tree Splash House Tree Splash

DCGSVQ 31.65 26.27 32.08 30.72 25.41 30.48

VQ 29.74 25.28 29.17 29.29 24.89 28.65

CVQ 28.50 23.82 25.19 27.71 22.97 24.57

Encoder
R=0.500 bpp

House Tree Splash

DCGSVQ 30.00 24.69 29.76

VQ 28.73 24.38 28.17

CVQ 27.05 22.33 24.12

Table 4.2: SNR results for the test images

image in Fig. 4.5a was produced by a CVQ system whereas the image in Fig. 4.56 
was produced by the DCGSVQ system. Despite the fact that the SNR figures 
for a VQ system are higher than the appropriate results for a CVQ system (see 
Table 4.2), the subjective quality of the images, coded by the CVQ system, is 
better. That is why these images are compared with images produced by the 
DCGSVQ system. As can be noticed in Fig. 4.5, the image that was produced by 
the DCGSVQ system again looks less blocky and has a more natural appearance 

than the image that was produced by the CVQ system.

The coding performance of the DCGSVQ system was also compared with
the performance of a transform coding classified VQ (TC-CVQ) system. The
TC-CVQ operates in the cosine domain employing a CVQ to encode AC vectors
which belong to various classes of activity. A content classifier is employed in
the spatial domain to divide image blocks of 8 x 8 pixels into two classes: a
shade class and a general class. The shade class consists of monotone image

»
blocks, which contain no significant gradients, while the general class consists 
of all the other image blocks. A second division is performed by assigning the 
image blocks to one of four activity classes in a similar way as in [Chen 1977a],

Three 14-dimensional AC vectors are derived from each transformed image 

block consisting of AC coefficients which have nearly equal variances. Thus,
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a b

Figure 4.5: ‘House’ coded by CVQ and DCGSVQ at 0.5 bpp 
a. CVQ b. DCGSVQ

taking into account that the lowest activity class consists of only shade image 
blocks while the highest activity class consists of only general image blocks, a 
total of eighteen different classes are defined for the TC-CVQ. A second system, 

referred to as TC-VQ, was defined by employing a full search VQ instead of 
a CVQ for encoding the AC vectors. In other words, the eighteen codebooks 
were merged to produce one codebook, which was then used to encode the AC 
vectors.

The CNNC algorithm was employed for designing the various codebooks, 
needed for the TC-CVQ, using the images ‘Lena’ and ‘Baboon’ as the training 
images. The DC coefficients were encoded by an 8-bit uniform scalar quantiser so 
that the equivalent bit-rate of the TC-CVQ system was 0.6875 bpp. SNR results 
for three test images, encoded by these systems, are presented in Table 4.3 and 
compared with coding results produced by the proposed DCGSVQ operating at 

a bit-rate of 0.625 bpp.

As can be noted from Table 4.3, the DCGSVQ system significantly outperforms
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Encoder Rate bpp House Tree Splash

TC-CVQ 0.6875 27.37 22.60 28.27

TC-VQ 0.6875 28.12 23.13 28.79

DCGSVQ 0.6250 31.65 26.27 32.08

Table 4.3: SNR results for TC-CVQ and DCGSVQ systems

the other systems. Subjective tests of reconstructed images, produced by these 
systems, have confirmed the above findings. Two reconstructed images of ‘Tree’ 
are shown in Fig. 4.6 as an example of the systems’ performances. The image 
in Fig. 4.6a was produced by the TC-CVQ system at 0.6875 bpp whereas the 
image in Fig. 4.66 was produced by the DCGSVQ system at 0.625 bpp. The 

images speak for themselves.

a b

Figure 4.6: ‘Tree’ coded by TC-CVQ and DCGSVQ 
a. TC-CVQ b. DCGSVQ
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4.4.2 Vector Configuration Strategies

To test the proposed vector configuration strategy, the test images were coded 
by two systems. The first system was the proposed DCGSVQ operating with 
directional vectors that were configured according to the configuration maps, 
presented in Fig. 4.3. The second system was the proposed DCGSVQ oper-
ating with variance vectors, i.e., AC vectors that were configured by grouping 
DCT coefficients of similar variances into the same vector. Two 16-dimensional 
AC vectors were derived from each block in both systems. The DC coefficient 
was encoded by a 6-bit uniform scalar quantiser while encoding the AC gain 
values by a 5-bit uniform scalar quantiser. SNR results for coding the three test 
images by those systems at a bit-rate of 0.625 bpp are presented in Table 4.4.

Encoder House Tree Splash

DCGSVQ - Directional Vectors 31.33 25.83 30.96

DCGSVQ - Variance Vectors 30.12 24.92 29.67

Table 4.4: SNR results for two vector configuration strategies

It could be noted from Table 4.4 that an improvement of more than 0.9 dB 
has been achieved by just grouping the DCT coefficients according to the new 
proposed vector configuration strategy, i.e., using directional vectors. The rea-
son for this is mainly due to the fact that the two largest coefficients, -F(0, 1 ) 
and F’( 1 , 0), are assigned to different vectors according to the proposed direc-
tional vector notion. By having them apart, the shape vectors become less 
“noisy” and the effective dynamic range of the expected gain values is reduced. 
Consequently, the coding procedure becomes more effective and better SNR re-
sults are achievable. Subjective tests of reconstructed images, produced by both 
systems, were also carried out. The images, produced by the proposed system, 
look less blocky and more natural than those produced by the DCGSVQ system 
with the variance configuration maps.
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4.4.3 Encoding the DC Coefficients

A 4-dimensional GSVQ is proposed as an alternative method for encoding the 
DC coefficients. Four neighbouring DC coefficients were grouped into one DC 
vector and then encoded. The training set of DC vectors was derived from 
four training images (including ‘Lena’ and ‘Baboon’). However, in order to 

increase the diversity of the training vectors, the way in which the DC coefficients 
were grouped into a vector has been changed. Instead of just ordering the four 
coefficients by scanning them from left to right and from top to bottom, they 
were ordered in four different ways. In that way, four different DC vectors 
were created from a given neighbourhood of four DC coefficients ensuring a 
more diversed training set of vectors. The DC shape codebook was designed 
by the modified CNNC algorithm (for one class only), and consisted of 2048 
shape vectors. The DC gain values were encoded by an 8-bit uniform scalar 
quantiser, designed to accommodate the effective dynamic range of prospective 

DC gain values. Consequently, the equivalent bit-rate for the encoding of the 
DC coefficients was Rd c  =  4.75 bits per DC coefficient instead of the 6 bits in 
the scalar coding scheme.

SNR results are presented in Table 4.5. There it can be noticed that sim-
ilar results have been achieved despite the fact that the overall bit-rate of the 
DCGSVQ for vector quantising the DC coefficients was 0.48 bpp whereas its bit- 
rate for scalar quantising the DC coefficients was 0.5 bpp. Subjective tests of 
the encoded images, produced by both systems, have indicated that they were of 
equal quality. As an example of the coding performance, a reconstructed image 
of ‘Splash’ is shown in Fig. 4.7. ft has been coded by the DCGSVQ at a bit-rate 
of 0.48 bpp employing a GSVQ for encoding the DC coefficients.

Encoder Lena Baboon House Tree Splash

DC-Vector Quantiser 28.53 23.25 29.87 24.71 29.83
DC-Scalar Quantiser 28.48 23.28 30.00 24.69 29.76

Table 4.5: SNR results - Two DC-encoding methods.
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Figure 4.7: ‘Splash ’ coded by DCGSVQ at 0.^8 bpp

4.4.4 Perceptually-based Codebook Design

The modified CNNC algorithm proposed herein gives the system designer full 
freedom to decide which training vectors and which class of vectors are more 
important so that they can be treated more wisely during the process of code- 
book design. As an example of this flexibility in design, we present in Table 4.6 
coding results obtained by DCGSVQ systems that employed various codebooks 
at 0.593 bpp. The DCGSVQ employed a 6-bit uniform scalar quantiser for en-
coding the DC coefficients and a 5-bit uniform scalar quantiser for encoding the 
AC gain values.

The first codebook, referred to as Original, was designed without giving 
special importance to any training vector or any class of vectors. The second 
codebook, referred to as Weighted /, was designed with a training set of pre-
ferred vectors. Vectors derived from ‘Lena’ were given more importance than 
those derived from ‘Baboon’ (the initial value of the variable m8- was set to 5 
for the preferred vectors). The third codebook, referred to as Weighted II, was 
designed with the same policy of preferred training vectors as the second code- 
book however, certain classes were given more importance. Instead of using the
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merging error as the criterion for merging clusters of vectors, a weighted merging 

error was employed.

Type Lena Baboon House Tree Splash

Original 29.99 26.15 30.65 25.28 30.26

Weighted I 32.15 24.95 30.77 25.45 30.53

Weighted II 32.32 25.18 30.86 25.50 30.55

Table 4.6: SNR results for various types of codebooks at 0.593 bpp

The following policy of class weighting has been adopted. The two mixed 
classes, positive mixed and negative mixed, were assigned a weighting factor of 
1 . The vertical and horizontal edge classes were assigned a weighting factor of
0.75 while assigning a weighting factor of 0.5 to the diagonal edge class keeping 

in mind that the HVS is less sensitive to diagonal edges than to vertical or 
horizontal edges. The shade and the midrange classes were each assigned a 
weighting factor of 0.25. It should be emphasized that no attempt has been made 
to optimise these weighting factors and that the results presented herein are 
merely given as an example of the flexibility of the design algorithm. Subjective 
tests of the reconstructed images have confirmed that better coding performance 
could be achieved by using the proposed notion of codebook design.

4.4.5 Feature Enhancement

The inherent attribute of feature enhancement in DCGSVQ systems was ex-
plored. As explained earlier, the decoded gain value at the receiver can be 
multiplied by an enhancement factor in order to “stretch” the dynamic range of 
the decoded vector. When done correctly, i.e., applied only to mixed vectors or 

to Ui-type vectors in the case of image blocks that contain vertical or horizontal 
edges (see the previous section), “crisper” reconstructed images can be obtained. 
In Fig. 4.8, two reconstructed images of ‘Baboon’ at 0.5 bpp are shown. Both 
of them were produced by the same DCGSVQ with a 6-bit uniform scalar quan-
tiser for encoding the DC coefficients and a 4-bit nonuniform scalar quantiser 

for encoding the AC gain values. However, the image in Fig. 4,8b was produced
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by multiplying the appropriate decoded gain values by an enhancement factor 
of 1.2. The effect of this process can easily be noticed; the edges are sharper 
and the face shows more detail. Nevertheless, it should be stated that the pro-
posed process enhances not only the desired features in the reconstructed image 
but also the quantisation noise. Therefore, the enhancement process should be 
applied with appropriate care.

b

Figure 4.8: Feature enhancement - ‘Baboon’ at 0.5 bpp 
a. DCGSVQ b. DCGSVQ +  Enhancement

4.4.6 HVS Filtering

As explained earlier in section 4.2, HVS filtering is being carried out in the 
cosine domain by weighting the DCT coefficients according to the MTF defined 
in equation (4.10). A LPF, rather than a BPF, was used in this work to describe 
the MTF of the HVS. To test this decision, we have compared coding results for 
a LPF with coding results for a BPF (Table 4.7). Three test images were coded 

by a DCGSVQ at 0.625 bpp employing a uniform 6-bit scalar quantiser for the 
DC coefficients, and a uniform 5-bit scalar quantiser for the AC gain values.
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HVS Filtering House Tree Splash

LPF 31.33 25.83 30.96

BPF 31.28 25.77 30.73

Table 4.7: SNR results for LPF and BPF at 0.625 bpp

As can be noticed from Table 4.7, marginally better coding results were achieved 
when a LPF was employed for weighting the AC coefficients. Subjective tests of 
reconstructed images have confirmed this finding. The reason for these findings 
is that the low-frequency coefficients are better preserved when a LPF, rather 
than a BPF, is being employed (see discussion in section 4.2).

In the proposed DCGSVQ system, inverse HVS filtering is carried out at the 
decoder to compensate for the HVS filtering which took place at the encoder. In 
general, HVS filtering reduces the influence of high-frequency “noisy” coefficients 
on the selection of a proper shape vector by the encoder. In other words, the low- 
frequency coefficients dominate the encoding process allowing harsh quantisation 
of the high-frequency coefficients. However, when inverse HVS filtering is carried 
out at the decoder, the quantisation errors which are present at high-frequency 
coefficients are amplified causing unnecessary degradation of the reconstructed 

images.

SNR results for reconstructed training and test images at 0.562 bpp are 
presented in Table 4.8. An improvement of more than 0.3 dB can be noted 
when inverse HVS filtering is being omitted during the decoding of the test 
images. On the other hand, a small degradation is caused when inverse HVS 
filtering is being omitted during the decoding of the training images.

Inverse HVS Filtering Lena Baboon House Tree Splash

With 31.99 24.92 30.72 25.41 30.48
Without 31.81 24.82 31.02 25.73 30.86

Table 4.8: SNR results with and without inverse HVS filtering at 0.56 bpp

Subjective tests of reconstructed images, produced without inverse HVS filter-
ing, have shown some loss of fine details; however, some of the high-frequency
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quantisation noise has been reduced too so that, in general, the perceived qual-
ity of the test images has been actually improved. Therefore, it is recommended 
that HVS filtering should be carried out at the encoder, to ensure better shape- 
preservation during encoding, but inverse HVS filtering could be omitted at the 
decoder when test images are concerned.

4.4.7 Nonlinear HVS Transform

There is sufficient direct physiological evidence to support the hypothesis that 
the relationship between the light intensity input to the visual receptors and 
the neural output level is approximately logarithmic (see chapter 3). Therefore, 
various researchers have suggested a point nonlinear transformation as the first 
stage in any digital image processing system. For example, Mannos and Sakrison 
have proposed the exponential function, T[I(x,  y)\ — I033(x , y), as being best for 
image coding and transmission [Mannos 1974]. Stockham, on the other hand, 
has proposed a logarithmic transformation prior to carrying out any further 
image processing [Stockham 1972]. We have tested this notion by applying such 
a nonlinear transformation, referred to as HVS transform, to the intensity values 
prior to encoding the images with the DCGSVQ encoder.

SNR results are presented in Table 4.9 for DCGSVQ-coded images at 0.625 
bpp. A uniform 8-bit scalar quantiser was employed for coding the DC coeffi-
cients, while using a nonuniform 4-bit scalar quantiser to encode the AC gain 
values.

HVS Transform Lena Baboon House Tree Splash

Logarithmic 32.80 26.76 30.74 25.05 30.77

Exponential 33.98 27.03 31.15 25.57 31.12

Linear 34.41 27.19 31.47 26.13 31.12

Table 4.9: SNR results for various HVS transforms at 0.625 bpp

Based on these results and on subjective tests of the coded images, it is quite 
evident that better coding results are obtained without applying the HVS trans-
form. These results are in accord with results presented in [Ramamurthi 1985],
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and could be explained in the following way.

A television display using a cathode-ray tube (CRT) transforms the electrical 
signal v to a light display in a nonlinear way. This nonlinear characteristics of 
the CRT is described by its gamma factor, 7 , and is defined by

L =  cu1 +  Lq

where L is the displayed luminance, c and Lq are positive constants, and 
2 < 7  <  3 for most CRT’s. Therefore, in practical image transmission systems, 
the signal of TV cameras output is 7  precorrected to correct the 7  characteristics 
of the CRT display. That is, the electrical voltage z>, produced by the image 
sensor, is nonlinearly transformed according to a 7  precorrection curve defined

by

V  =  u l h  .

Thus, if one wishes to apply the mentioned HVS transform prior to encoding 
an image, the 7  precorrection effect should be cancelled first (by inverse 7  pre-
correction transformation). The results in Table 4.9 reflect the fact that such 
inverse transformation has not been applied. It should be noted, though, that 
if 7  equals 3.0, the 7  precorrection curve is identical to the exponential HVS 
transform proposed in [Mannos 1974] ( 7 =  2.8 in PAL systems). Thus it could 
be claimed that the electrical signal applied to the encoder is already in the 
perceptual domain, i.e., the domain where signal processing is carried out by 

the human eye and brain, and therefore should not undergo the proposed HVS 
transform.

4.5 Conclusions

A new cosine transform based scheme for image coding, directional classified 
gain-shape vector quantisation (DCGSVQ), has been introduced in this chapter. 
It combines vector quantisation with transform coding techniques and exploits 
various properties of the HVS like frequency sensitivity, the masking effect, and 
orientation sensitivity to produce reconstructed images with good subjective 
quality at low bit-rates. A new algorithm for designing the various codebooks,

105



needed for the DCGSVQ, has been proposed. It is based on the CNNC algo-
rithm but employs a new merging criterion which is more suitable for shape 
codebook design. The modified CNNC algorithm designs the various codebooks 
simultaneously giving the designer full freedom to assign more importance to 
certain classes of vectors or to certain training vectors. Coding performances 
of the DCGSVQ were compared with coding performances of full search VQ, 
CVQ, and TC-CVQ. The DCGSVQ outperformed the other systems producing 
nicer coded images at low bit rates.

The new design algorithm was also used to design a classical GSVQ, em-
ployed for encoding the DC vectors, and proved to be an effective alternative to 
traditional design algorithms. The new notion of directional vectors combined 
with the basic approach of using a classified GSVQ to encode them has paved 
the way for an effective coding procedure and for a simple technique of feature 
enhancement, which can be applied during the decoding process to improve the 
reconstructed images.

Close inspections of DCGSVQ-coded images at rates lower than 0.5 bpp 
have revealed that the blocking effect and the staircase effect are still noticeable 
(although less visible in comparison with VQ or CVQ-coded images). It seems 
that further processing of the coded images at the decoder is needed to improve 
their quality. A post-processing method that takes care of such processing at 
the decoder is proposed in the next chapter and shown to improve dramatically 
the perceived quality of reconstructed images.
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Chapter 5

Postprocessing of Block Coded 
Images

Clouds gone, 
The mountain shows.

5.1 Introduction

Vector quantisation provides many attractive features for image coding with high 
compression ratios. However, studies of image coding with vector quantisation 
have revealed several key drawbacks. Three basic drawbacks have been described 
in chapter 2 : (*) the computational complexity, (ii) the staircase effect (staircase 

noise), and (Hi) the blocking effect (grid noise). The latter two drawbacks can 
be appreciated by examining Fig. 5.1 where a magnified reconstructed image of 
‘Lena’ , coded at 0.5 bpp using a classified vector quantiser (CVQ), is shown. 
The staircase noise is visible along diagonal edges such as the boundary line 
of the girl’s shoulder and the black arch in the background. The grid noise is 
visible especially in monotone areas such as the girl’s shoulder, her face and 
several areas in the background.

The two-dimensional Fourier amplitude spectra of monotone subimages de-
rived from a monotone area in the original image of ‘Lena’ and the CVQ-coded 
image (Fig. 5.1) are shown in Fig. 5.2 and Fig. 5.3, respectively. Each of these 

two subimages is composed of four blocks of 4 x 4 pixels, so that the effects at

107



Figure 5.1: ‘Lena’ coded by CVQ at 0.5 bpp.

the block boundaries are included. It should be noted that the means of the 
subimages have been subtracted in order to reduce the dynamic range of the 
spectrum.

In Fig. 5.2, it can be noticed that a large fraction of the signal’s energy is 
packed in relatively few low frequency Fourier transform coefficients. In other 
words, the signal spectrum in monotone areas has a low bandwidth and will be 
assumed to be nearly isotropic. In Fig. 5.3, it can be noticed that most of the grid 
noise is out-of-band i.e., it is spread among high frequency Fourier coefficients. 
This observation is of great importance paving the way toward simple ideas for 
grid noise suppression.

In a similar way, Fig. 5.4 and Fig. 5.5 show the two-dimensional Fourier 
spectra of an edge subimage (a subimage containing an edge in it) derived from 
the original image of ‘Lena’ and the CVQ-coded image, respectively. The four 
lowest frequency coefficients in the spectrum have been set to zero in order 
to reduce the dynamic range, thus emphasizing the distribution of the signal’s 
energy among high-frequency coefficients. The edge runs from the top right 

corner of the subimage to the bottom left. It can be noticed that the signal 
spectrum has high bandwidth in the direction which is perpendicular to the
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2 —D SPECTRUM FOR 16>:16 HOMOGENEOUS BLOCK

Figure 5.2: Two-dimensional spectrum for a 16x16  monotone subimage 
derived from the original image of ‘Lena’.

| F ( f XJy) 2 - 0  SPECTRUM FOR 1 6 x 1 6  CODED HOMOGENEOUS BLOCK

Figure 5.3: Two-dimensional spectrum for a 16 x l6  monotone subimage 
derived from the coded image of ‘Lena’ at 0.5 bpp.
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F(fXJy) 2 -D  SPECTRUM FOR 16x16 EDGE BLOCK

Figure 5.4: Two-dimensional spectrum for a 16x16  edge subimage 
derived from the original image of ‘Lena’.

F(fx; fy) I 2 - D  SPECTRUM FOR 1 8 x 1 6  CODED EDGE BLOCK

Figure 5.5: Two-dimensional spectrum for a 16x16  edge subimage 
derived from the coded image of ‘Lena' at 0.5 bpp.
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edge direction. The staircase noise, on the other hand, has significant energy 
out-of-band in the direction parallel to the edge. In addition, it has a large 
fraction of energy well within the signal’s bandwidth (perpendicular to the edge 
direction). This knowledge about the spectrum of the signal and the staircase 
noise can be utilized in developing effective noise suppression techniques.

A variety of methods for noise suppression in block coded images have been 
suggested in the literature. Several methods for noise suppression (filtering), 
and several coding systems that produce less visible noise in coded images are 
described in this chapter. In addition, a new algorithm for postprocessing of 
block coded images is developed and tested employing various coded images.

5.2 Noise Suppression Techniques

The variety of methods proposed in the literature for reducing noise in coded 
images or contaminated images (images degraded by noise) fall into two 
categories: (*) source coding techniques which produce less visible noise or which 
are intrinsically free of blocking effects, and (ii) postprocessing of contaminated 
images. Several coding methods and coding considerations which fall into the 
first category are described next.

The required characteristics of an orthogonal transform function in order to 
obtain the best image quality, mainly in suppressing the blocking effect, have 
been clarified in [Miyahara 1985]. It has been demonstrated theoretically and ex-
perimentally that among most popular unitary transform functions (Hadamard, 
Slant, cosine and Legendre), the discrete Legendre transform is the best. New 
measures of degradation in block coded image quality have been suggested and 

used in assessing the performance of the mentioned transform functions. It 
should be noted though that the blocking effect is reduced by choosing the best 
transform function, but it still exists due to the segmentation process which is 
inherent in block coding.

A new measure of block distortion in coded images (employing the DCT) has 
been developed in [Carrioli 1988]. This new measure stresses the importance of
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properly coding the low frequencies, which are shown to be dominant in reducing 
blocking effects. It has been shown that for an 8x8 block the three lowest spatial 
frequencies should be coded with at least 6 bits per coefficient in order to reduce 
the blocking effect.

An overlapping method has been proposed in [Reeve 1983]. According to the 
overlapping method, instead of forcing the image blocks to be exclusive of each 
other, the image blocks overlap slightly around the block boundaries. Boundary 
pixels are then coded in two or more adjacent blocks so that redundant infor-
mation is transmitted for these pixels. In reconstructing the image, the decoder 
averages the reconstructed pixels from neighbouring blocks, in the overlapping 
areas. Thus, abrupt boundary discontinuities caused by coding are reduced and 
the blocking effect becomes less visible. The disadvantage of this approach is 
the increase in the total number of pixels to be processed, and thus an increase 

in the bit rate.

A new and computationally simple approach, which abandons the idea of 
rectangular image blocks, has been suggested in [Pearson 1984]. Nonrectangu- 
lar, overlapping blocks are used as receptive fields in the source image. These 

blocks, termed interleaved blocks, are converted into conventional rectangular, 
nonoverlapping blocks which are then coded using TC. It should be noted that 
when an image is divided into interleaved blocks, each pixel in the image is 
uniquely associated with one block only. However, the receptive field of any 

particular block intermingles with those of its neighbours thus ensuring tone 
continuity. At the decoder the inverse process takes place. Since the recon-
structed blocks overlap, they automatically interpolate between themselves thus 
concealing the blocking effect.

A new class of transforms for block coding, introduced in [Cassereau 1985] 
and [Malvar 1989], has the same benefits of the overlapping method cited above, 
but without an increase in the bit rate. These new transforms, collectively 
referred to as the Lapped Orthogonal Transform (LOT), are characterized by 
the fact that the basis functions overlap adjacent blocks. However, the number 
of transform coefficients is kept equal to the original block size, so that no 
data overhead is incurred. A fast LOT procedure, introduced in [Malvar 1989], 
allows the implementation of block coding systems at low bit rates with much
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less noticeable blocking effects than traditional DCT-based systems.

In [Hinman 1984], the Short-Space Fourier Transform (SSFT) has been used 

instead of the discrete cosine transform (DCT). The SSFT of a block depends on 
the whole image thus, it is intrinsically free from blocking effects. Unfortunately, 
the SSFT introduces ringing around edges which is very objectionable.

Although different ways for reducing block distortion (grid noise) have been 
suggested, edge integrity [Aravind 1986] across adjacent blocks has not been en-
sured. Edge integrity is a notion that refers to the accurate reproduction of 

edges in orientation and location in coded images. In [Aravind 1986], a new 
Finite-State Vector Quantiser (FSVQ) has been introduced for image coding, 
addressing the problem of preserving edge integrity and tone continuity across 
adjacent blocks. A FSVQ is a vector quantiser with memory which exploits the 
two dimensional spatial correlation between adjacent image blocks. It uses a 
finite collection of memoryless vector quantisers, each with its own codebook. 
Each successive input block (vector) is quantised with a codebook determined 
by the current state. The current state is determined by the image blocks ad-
jacent to the current block and by the previous channel index (binary word 
transmitted to the decoder). Employing a new distortion measure during code-
book design and a perceptually based classifier for block classification and state 
definition, good perceptual quality of coded images at 0.375 bpp has been ob-
tained. In addition, two new FSVQ schemes called Side-Match Vector Quan-

tisation (SMVQ) and Overlap-Match Vector Quantisation (OMVQ) have been 
introduced in [Kim 1986]. By exploiting the two-dimensional correlation be-
tween adjacent image blocks, these schemes reduce substantially the blocking 
effect.

Although a proper coding technique can be chosen in order to ensure good 
quality of coded images, one has to know how properly to process coded images, 
already degraded by grid and staircase noise. Thus, postprocessing techniques 
which fall into the second category of methods, aimed at reducing noise in coded 
images, are described next.

A filtering method has been proposed in [Reeve 1983]. According to the fil-

tering method, the coding procedure is not changed, i.e., image blocks remain
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mutually exclusive. Instead, an image filtering procedure is applied at the de-

coder. Since the boundaries of the image blocks are predetermined and known 
to the decoder, low-pass filtering of image pixels at or near these boundaries can 
smooth the unwanted discontinuities. Although this method does not increase 
the bit rate, it blurs the signal across block boundaries as can be seen in Fig. 5.6.

Figure 5.6: A block coded image after postfiltering.

A 3x3 Gaussian spatial domain filter, proposed in [Reeve 1983], was used to 
obtain the image in Fig. 5.6. The filtering procedure was carried out on the coded 
image, shown in Fig. 5.1. A different filtering method which avoids blurring 
by incorporating a prefilter prior to coding the image has been suggested in 
[Malvar 1987].

A number of edge preserving noise-cleaning nonlinear filters have been pro-
posed in the literature [Chin 1983]. The median filter [Rosenfeld 1976], the 
K-nearest neighbour mean filter [Davis 1987], the gradient inverse weighted fil-
ter [Wang 1981], the sigma filter [Lee 1983] and the symmetric nearest neighbour 

filters [Harwood 1987] are some examples. These methods involve some type of 
local operation such as selective averaging, weighted averaging, etc. The focus
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of these approaches is on the reduction of noise while retaining edges and other 
details in the processed image. These nonlinear methods are not based on de-
tailed knowledge of the image to be processed or the noise pattern and are 

therefore simple to implement.

Although being quite effective for some applications, such as suppressing 
additive white Gaussian noise or reducing speckle noise (caused by transmis-
sion errors), these methods are unsuitable for reducing grid or staircase noise. 
If applied to block coded images, these methods would interpret the staircase 
noise or the grid noise as being part of the signal and would leave them un-
smoothed. Thus, speckle noise near a jagged edge would be smoothed, but not 
the jagged edge itself. As an example, a filtered block coded image is presented 
in Fig. 5.7. The filtering method used was a modified version of the symmetric 
nearest neighbour filter (SNN) applied to the coded image shown in Fig. 5.1. 
It can be noticed that the jagged edges have been left unchanged as postulated 
above.

Figure 5.7: A filtered block coded image using a SNN filter.
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Space-variant nonlinear filtering techniques have also been used for noise 
suppression (see for example [Newman 1973], [Ingle 1979], [Sauer 1988], and 
[Ramamurthi 1986a]). In space-variant filtering, the filter response is varied 
to suit the local signal and noise characteristics. In [Newman 1973], an aver-
age gradient is calculated for each pixel and compared with a predetermined 
threshold constant. If the magnitude of the average gradient is greater than 
the threshold constant the pixel is defined as an edge pixel (i.e., it lies on an 
edge). The direction of the gradient is perpendicular to the edge direction thus, 
a narrow rectangle (mask) oriented perpendicularly to the gradient will in fact 
be aligned parallel to the edge on which the pixel lies. A new pixel value is then 
computed by averaging the pixel values inside the mask. Basically, this filtering 
procedure implements an edge-oriented one-dimensional filter aligned parallel 
to the edge. Unfortunately, if applied to block coded images, the filter would 
align itself parallel to the block boundaries leaving the grid and staircase noise 
unsmoothed.

In [Ingle 1979], a composite source model for image generation has been 
introduced. In this model, image blocks are classified into several classes each 
generated by a separate subsource. Five subsources have been defined: four 
correspond to edges with four orientations (0 deg, 45 deg, 90 deg, 135 deg), and 
one to monotone image blocks. The mean and covariance of each subsource is 
assumed to be known. A switch is employed to select at each time instant the 
output of one of the subsources as the overall image source output. Thus, at 
one instant, a monotone block may be selected while at the next, an edge block 
may be selected. Each pixel in the image is assumed to be produced by one 
of these five subsources. Based on noisy observations in a window surrounding 
the pixel under test (in the coded image) and a decision rule, the window is 
classified and the pixel is smoothed by a Kalman filter. The filter is specifically 
designed to suit the assumed statistics of the subsource which, according to the 
decision rule, has generated the pixel under test. Unfortunately, this algorithm 
is not suitable for reducing grid or staircase noise in block coded images. It is 

quite effective in suppressing random speckle noise, which is uncorrelated with 
the signal, but fails to reduce noise which is correlated to the signal. In order to 
effectively suppress grid and staircase noise, the correlation between these types 
of noise and the signal should be exploited as proposed in [Ramamurthi 1986a].
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In [Ramamurthi 1986a], the notion of a composite source model for images 
has been adopted as in [Ingle 1979]. No assumptions have been made about the 
statistics of these subsources, hence it is not possible to apply Kalman filters. 

Instead, two spatial domain filters have been used: (?) a two-dimensional low 
pass filter has been applied to monotone image blocks, and (n) a one dimen-
sional low-pass filter has been applied parallel to the edge in edge blocks. A 
perceptually based classifier has been used for block classification. The classifier 
performs an analysis of a neighbourhood that is larger than the coded block and 
estimates the “true” orientation of the edge in the original image block from 
the noisy image. It is postulated that the monotone/edge and edge orientation 
decisions remain the same for all the pixels in one coded image block. Thus, 
these decisions are made once for a block of pixels and not for each pixel. Good 
results have been obtained by applying this algorithm to the coded image of 
Fig. 5.1, as can be seen in Fig. 5.8. However, it should be noticed that although 
the reproduced edges are less jagged they are still slightly blurred.

Figure 5.8: A filtered block coded image using the algorithm of 

[Ramamurthi 1986a].
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To conclude this section, we refer to a recently proposed filtering algorithm 
aimed at reducing grid and staircase noise [Sauer 1988]. The first step in the 
algorithm is the location and identification of those edges in the coded image 
which are perceptually important. These edges will be those whose length is 
great enough, and curvature low enough so that patterns of distortion are easily 
observable. The edge location problem has been divided into (¿) the local de-
tection of an edge and (ii) tracing of the edge from points of detection. Local 
detection is performed along a set of equidistant vertical and horizontal lines 
(grid lines). Edge detection is based on the behaviour of the signal gradient on 
the grid lines (via one-dimensional differential filtering) followed by a thresh-
olding process. Edge line tracing is performed assuming that the actual edge 
location is implicitly shifted by no more than one pixel per row of trace. The 
output of the edge tracing algorithm is a list of parameters describing detected 
and accepted edges. A one-dimensional low-pass filter is applied along the ap-
proximated edge, followed by a nonlinear contrast enhancement procedure in 

a direction perpendicular to the edge direction. The one-dimensional filter has 
been designed under the assumption that only DC along the edge need be passed. 
Therefore, a simple windowing (averaging) process has been used.

The proposed algorithm was applied to images coded by a FSVQ system or by 
the Block List Transform (BLT) [Haskell 1985]. It should be emphasized though, 
that the perceived quality of images, coded by these methods, is quite good (even 
without postprocessing) since spatial correlation between adjacent image blocks 

is being exploited. Therefore, the good results presented in [Haskell 1985] are 
not surprising. Moreover, in order to evaluate properly the performance of the 
proposed algorithm, images coded by memoryless vector quantisers or transform 
coders should be used. In addition, it should be noted that this algorithm 
performs individual operations on the entire decoded image sequentially, thus 
requiring storage capabilities for the entire image frame .

None of the postprocessing techniques described above have solved satisfac-
torily the complicated problem of grid and staircase noise removal along with 
edge preserving. We believe that by incorporating properties of the human visual 
system in the filtering algorithm, further improvement in the perceived quality 
of filtered coded images can be achieved. Such a new algorithm for grid and 
staircase noise suppression is introduced in the following section.
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5.3 Description of the Algorithm

A new postprocessing algorithm aimed at reducing grid and staircase noise while 
retaining edge integrity and edge sharpness is described in this section. The 
proposed algorithm is based on observations made in section 5.1, concerning 
characteristics of the signal spectrum and the noise spectrum. In addition, 
various properties of the human visual system have been incorporated in the 
filtering algorithm in order to improve the perceived quality of filtered block 

coded images. In section 5.1, we have shown that most of the grid noise is out- 
of-band, while the staircase noise is out-of-band only in the direction parallel 
to the edge. The out-of-band portion of the grid and staircase noise can be 
reduced by filtering [Ramamurthi 1986a], However, space-invariant filtering is 
inadequate for this purpose since it blurs edges, thus modifying the signal while 

smoothing the noise. Accordingly, we propose a space-variant filtering algorithm 
followed by an edge enhancement procedure.

In space-variant filtering, the filter response is varied to suit the local signal 
and noise characteristics. To perform space-variant filtering, some features of the 
local signal spectrum should be estimated from local observations of the signal 
plus noise. The local signal features, so estimated, are then used to select an 
appropriate filter for noise suppression. Nonlinear processing methods are very 

effective in estimating these features and are thus employed within the proposed 
algorithm. Consequently, the overall filtering algorithm is both space-variant 

and nonlinear.

The filtering algorithm consists of three steps: (¿) grid noise removal, (ii) 
staircase noise removal, and (in)  edge enhancement. We describe next each of 
these steps and explain the rationale behind it. The first step in the proposed 
algorithm is based on the following two observations. First, we have shown in 
section 5.1 that for a monotone subimage a large fraction of the signal’s en-
ergy is packed in relatively few low frequency coefficients. In other words, the 
signal spectrum in monotone areas has low bandwidth and is assumed to be 
nearly isotropic. Second, the locations of the image block boundaries are pre-
determined during the segmentation process, which takes place at the encoder. 
These locations are known to the decoder too and thus, it is reasonable to expect
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that by low-pass filtering the coded image at or near the subimage boundaries, 
unwanted grid noise would be smoothed. However, the filter, due to its low-pass 
nature, can degrade edge content in the image. Therefore, the filter should be 

applied only at pixels directly adjacent to subimage boundaries, and only if they 
are not edge pixels, i.e., pixels that lie on or near an edge. Following this ratio-
nale, we describe next the first step in the proposed filtering algorithm, aimed 
at reducing grid noise.

Each pixel in the coded image, i (x,y) .  is first tested in order to determine 
whether it is a boundary pixel, i.e., a pixel directly adjacent to subimage bound-
aries, or not. If it is a boundary pixel, it is passed to a pixel classifier (see 
Fig. 5.9) in order to determine whether it is an edge pixel or not. If the pixel 
under test is found to be an edge pixel, no filtering is carried out. Other-
wise, a two-dimensional low-pass filter is applied in order to reduce grid noise. 
Consequently, non-boundary pixels as well as boundary-edge pixels are left un-

smoothed at this stage.

Figure 5.9: First step - grid noise filtering.

The pixel classifier is described in detail in appendix F. It is based on the 
analysis of a small neighbourhood, surrounding the pixel under test, and on 
known properties of the human visual system. The pixel classifier, in Fig. 5.9, 
controls a switch which is used to select one of two filters: (f) a two-dimensional
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low-pass filter, or (ii) a two-dimensional all-pass filter which does not affect 
the signal. The selected filter is then used to linearly process the pixel under 
consideration. At the conclusion of this step a new image, U(x,y) ,  is obtained. 
This image will be passed to the second stage of the proposed filtering algorithm. 
The filter’s specifications should be chosen so that as much of the out-of-band 
noise as possible should be reduced without degrading the signal content. A 
new filter design method, which incorporates perceptual properties of the human 
visual system, is presented in appendix G. It has been employed for designing 
the various filters, used for postprocessing the coded images throughout our 
research. Practical filter parameters are described in section 5.4 along with the 

rationale behind their selection.

The second step in the proposed filtering algorithm is aimed at reducing 
staircase noise. It is based on the following observations. We have shown in 
section 5.1 that the signal spectrum has high bandwidth in the direction which 
is perpendicular to the edge direction. The staircase noise, on the other hand, 
has significant energy out-of-band in the direction parallel to the edge. Thus, 
by applying a one-dimensional low-pass filter aligned parallel to the edge the 
staircase noise can be reduced. Since there is no smoothing in the direction 
perpendicular to the edge direction, the edges are not blurred. The effect of 
the in-band portion of the staircase noise (in the direction perpendicular to the 
edge direction) on the perceived quality of the coded image is reduced by a 
phenomenon called spatial visual masking, described in chapter 3. That is, noise 
content in the direction of the luminance change are masked by the human visual 
system despite the fact that they are left unsmoothed by the applied filtering 

process.

In order to perform edge-oriented filtering, certain features of the signal 
should be estimated from noisy observations of the signal plus noise. Particu-
larly, the direction of the edge should be estimated in order to select a proper 
filter. The correlation between the signal and the noise in the coded image is 

critical to the accurate estimation of edge orientation. The fact that the incli-
nation of the staircase noise follows very closely the true orientation of the edge 
in the original image can be utilized in determining the edge direction in the 
coded image. Thus, by analysing a large enough neighbourhood in the coded 
image, it is possible to detect the existence of an edge along with its direction.
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Following this rationale, we describe next the second step in the proposed filter-
ing algorithm, aimed at reducing staircase noise.

Each pixel in the coded image, U(x,y),  is first passed to a pixel classifier 
in order to determine whether it is an edge pixel or not. If the pixel under 
test is found to be a non-edge pixel, it is smoothed by a two-dimensional low- 
pass filter. Otherwise, the pixel under test along with a predetermined number 
of surrounding pixels are formed into a subimage block and passed to a block 
classifier (see Fig. 5.10). The block classifier controls a switch which is used to 
select one of five filters, specifically designed to suit the signal content of the 
block under consideration. The selected filter is then used to linearly process 
the pixel under test. At the conclusion of this step a new image, V(x,y) ,  is 
obtained. This image will be passed to the third stage of the proposed filtering 
algorithm.

The block classifier is described in detail in appendix H. It is based on the 
analysis of coded image blocks and on known properties of the human visual 
system. Five classes of image blocks have been defined: (i) a monotone class 
consisting of monotone image blocks containing no significant gradient, and 
(ii) four edge classes consisting of image blocks having a distinct edge running 
through them. Four edge orientations have been defined: horizontal, vertical, 
and two diagonals. This definition is in accord with findings about the statistics 
of edges found in real images and about the early visual mechanism, as described 

in chapter 4.

It should be noted that the block classifier in Fig. 5.10 controls a switch 
which is used to select one of five filters. Four filters are one-dimensional low- 
pass filters applied parallel to the detected edge. The fifth filter, on the other 
hand, is a two-dimensional low-pass filter selected only when the block classifier 
detects either a monotone image block or a complex structured image block. 
A complex structured block contains fine details or complex edges which can 
not be treated as simple edges. Since the coding quality is not high enough 
to preserve fine details in images, it is difficult to estimate the features of the 
signal spectrum correctly. As a result, smoothing the signal and the noise is 
perceptually preferable in such cases, since the noise is more objectionable than 

the smoothed signal [Ramamurthi 1986a],
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Figure 5.10: Second step - staircase noise filtering.

As explained earlier, an edge pixel along with a predetermined number of 
surrounding pixels are formed into a subimage block and passed to the block 
classifier for further processing. The size of the formed subimage block is a very 
important parameter in the proposed algorithm. If it is too small, the edge 
orientation decision will be highly localized and the applied filter will tend to 
follow the “steps” of the staircase noise. If it is too large, the simple estimate 
of edge orientation, made by the classifier, will be a poor one for curved edges. 
Thus, we have adopted the concept proposed in [Ramamurthi 1986a] and have 
defined a variable block size depending on the quality of the coded image.

Generally, edges are reproduced well in high quality coded images and do not 
need much smoothing. In that case, the size of subimage blocks can be small
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(about 5x5 pixels), thus ensuring close tracing of the edge orientation. For 
poorly coded images, edges are usually degraded by staircase noise appearing 
very jagged in the reconstructed image. In that case, a slightly larger block size 
(about 7x7 pixels) is appropriate for detecting the true orientation of the edge 
by exploiting the inclination of the staircase in the coded image block. Examples 
of coded images of different quality will be presented in section 5.4 along with 
filtering results for various image block sizes.

To conclude the description of the proposed filtering algorithm, we describe 
next its third step - the edge enhancement procedure. We have shown earlier 
that the out-of-band portion of the staircase noise, in the direction parallel to 

the edge, can be reduced by applying a one-dimensional low-pass filter aligned 
parallel to the detected edge. The in-band portion of the staircase noise, in the 
direction perpendicular to the edge direction, can be left unsmoothed due to the 
masking effect which takes place near edges. Despite the fact that there is no 
smoothing in the direction perpendicular to the edge direction, reproduced edges 
are still blurred. A close comparison between the spectrum in Fig. 5.4 and the 
spectrum in Fig. 5.5 reveals that high frequency elements in the coded subim-
age (in the direction perpendicular to the edge direction) have been attenuated 
during the coding process. In order to restore the edge gradient to its approxi-
mately original value, the mentioned high frequency elements must be restored. 
Such restoration can be obtained either by nonlinear contrast enhancement or 
by applying an high-pass filter perpendicularly to the detected edge.

The proposed restoration procedure should be carried out only for edge pix-
els. Therefore, each pixel, V(x,y) ,  is first passed to a pixel classifier in order 
to determine whether it is an edge pixel or not (see Fig. 5.11). If it is found to 
be a non-edge pixel, it is left unprocessed. Otherwise, an image block is formed 
consisting of the pixel under test and a predetermined number of surrounding 
pixels. A block classifier is then employed in order to determine the edge ori-
entation. Based on the statistics on edges reported in [Keskes 1979], we apply 
high frequency restoration only to diagonal edges (at 45 and 135 deg) assuming 
that vertical and horizontal edges are usually well reproduced.

The high-pass filter employed for edge enhancement will be described in 
detail in section 5.4. In addition, an alternative edge enhancement procedure has



Figure 5.11: Third step - edge enhancement.

been suggested in [Sauer 1988] and tested by us. It is a nonlinear transformation 

defined as follows for a set of grey levels between um,n and vmax :

H(v)
V m a x  — ' S a ( l } )  for V  ^ (V m a x  T V m i n )/2
V-min T T<f0!(v) for V <C (Vmax T ^mi«)/“ )

(5.1)

where
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?

and a is a constant. The proposed enhancement procedure is adaptive to the 
local signal content. A predetermined number of pixels, in the direction per-
pendicular to the edge direction, define a decision window centered on the pixel



under consideration. The grey levels of the pixels within the decision window 
are tested and the values of vmax and umtn are defined. The exponent a controls 
the degree of contrast enhancement as can be noticed in Fig. 5.12.

CONTRAST ENHANCEMENT

Figure 5.12: Contrast enhancement.

Both parameters, a and the size of the decision window, affect the performance 
of the proposed enhancement procedure and thus should be properly defined (as 

will be explained in section 5.4).

The basic concept behind our algorithm is its modularity and the adaptive 
way in which it can be applied. Each step stands alone and can be applied only 
if necessary. For example, all three steps should be applied for postprocessing of 
poorly coded images, degraded by grid and staircase noise, while applying just 
one step for high quality coded images. This concept differs substantially from 
other concepts reported in the literature ([Reeve 1983], [Ramamurthi 1986a], 
and [Sauer 1988]). Moreover, our algorithm treats each pixel in the coded image 
in a fully adaptive way. In [Reeve 1983] for example, all boundary pixels are 
smoothed by a two-dimensional low-pass filter without checking whether they are 
edge pixels or not. Such filtering strategy causes edge blurring as shown earlier 
in Fig. 5.6. Our algorithm, on the other hand, employs a pixel classifier which
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ensures that edge pixels are not smoothed, thus ensuring grid noise reduction 
without degrading edge content unnecessarily.

Another unique feature of our algorithm is the way in which decisions are 
made concerning the detection of an edge and its direction within an image 
block. In [Ramamurthi 1986a] for example, a block classifier is employed for 
testing predetermined image blocks of fixed size. The block classifier is applied 
to a large window of pixels (8x8 pixels) containing the image block which is 
under consideration. It is postulated that monotone/edge and edge orientation 
decisions, made once for a block of pixels, remain the same for all the pixels in 
that block. Our strategy differs from this strategy by the fact that each pixel is 
particularly tested without the constraint of assigning it to a certain predefined 
image block. In order to refine the edge detection process, we have applied 
the block classifier to subimage blocks which have been formed adaptively by 
gathering the pixel under test along with a predetermined number of surrounding 

pixels. Thus, for each edge pixel a more accurate decision can be made, based on 
noisy observations of the signal and noise found in a decision window centered 

on the pixel under test.

Finally, special care has been taken of high frequency elements in the coded 
image degraded by the coding process. We propose an edge enhancement pro-
cedure which is applied adaptively only to certain edges, i.e., edges in certain 
directions which are known to be more vulnerable to coding degradations. Par-

ticularly, we propose high-pass filters designed by a new technique which incor-
porates known properties of the human visual system. This new method ensures 
the good quality of filtered coded images, and has also been used for designing 
the low-pass filters, employed throughout steps 1 and 2 of the proposed filtering 
algorithm.

5.4 Experimental Results

In this section we present experimental results obtained by postfiltering block 

coded images which have been coded by various VQ systems. In addition, we 

describe the parameters of the various filters, employed within the proposed
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postfiltering algorithm, and the rationale behind their selection. Three 256x256 
coded images have been used as test images. The various VQ systems, employed 
for coding these images, processed image blocks of 4x4 pixels (16-dimensional 
vectors). The first image, ‘Lenal’ , is depicted in Fig. 5.1. It has been coded 
at 0.5 bpp using a CVQ system. The staircase noise is visible along diagonal 
edges such as the boundary line of the girl’s shoulder and the black arch in the 
background. The grid noise is visible especially in monotone areas such as the 
girl’s shoulder, her face and several areas in the background.

The second image, ‘Housel’ , is depicted in Fig. 5.13 (magnified by two). It 
has been coded at 0.56 bpp using a CVQ system. The perceived quality of this 
image is similar to the first image. Both types of noise, grid and staircase noise, 
are apparent making it look very unpleasant.

Figure 5.13: ‘Housel’ coded by CVQ at 0.56 bpp.

The third image, ‘Lena2’ , is depicted in Fig. 5.14 (magnified by two). It has 
been coded at 0.625 bpp using a full search VQ system. It can be noticed that 
the perceived quality of the image in Fig. 5.14 is quite good. Most of the edges 
have been reproduced satisfactorily except for a few diagonal edges (for example, 
one side of the black triangle at the top right side of Fig. 5.14), and areas which 
contained fine details (i.e., on the woman’s hat). However, monotone areas such 
as the girl’s shoulder and her face have been contaminated by grid noise.
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Figure 5.14: ‘Lena2’ coded by a full search VQ at 0.625 bpp.

The proposed postprocessing algorithm was applied to these test images in 
an adaptive way. Poorly coded images were processed by applying all three steps 

of the proposed algorithm, whereas high quality coded images were processed 
by applying just one step of the proposed algorithm. The signal to noise ratio 
(SNR) was used as a rough indicator of the quality of the filtered images. In 
addition, since it is well known that the signal to noise ratio does not correlate 
well with subjective (human) quality assessments, numerous subjective tests 

have been carried out too.

The viewing conditions during the subjective tests were close to those rec-
ommended by the CCIR [CCIR 1974]. The viewing distance was set at five 
times image height, the screen luminance varied from 0.4 mL at its lowest level 
to 63 mL at its highest, and the ambient illumination was approximately 2 ft- 
candles. A nine inch Ikegami monitor was used with aspect ratio 4:3. The image 

contained 480 lines with 512 pixels per line and was presented with 2:1 interlace 
at a rate of 25 frames per second.

In order to obtain an idea of the typical bandwidth of monotone areas in 
images, an average spectrum for 1302 8x8 monotone blocks, derived from a real 

image, was computed. The following procedure was employed to obtain the 8x8
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blocks. The block classifier, described in section 5.3, was used with a window of 
8x8 pixels to test all the 4x3 blocks in the image under test. All groups of four 
contiguous monotone 4x4 blocks were then selected to give the 8x8 blocks. Then, 
the discrete Fourier transform (DFT) was applied to each monotone block of 8x8 

pixels and an average spectrum was calculated. The energy of the coefficients in 
the first column (vertical direction) of the average DFT is depicted in Fig. 5.15. 
This was the column with the maximum bandwidth among all the rows and 
columns of the average DFT matrix. As in [Ramamurthi 1986a], we will use 
this one-dimensional spectrum to represent the assumed isotropic spectrum of 
blocks of pixels in monotone areas. It is also reasonable to assume the same 
spectrum to be typical for image areas near edges in the direction parallel to the 

edge.

AVERAGE 2 -D  SPECTRUM FOR 8x8 HOMOGENEOUS BLOCKS

Figure 5.15: Average one-dimensional spectrum for monotone 8 x 8 blocks.

Three different FIR filters have been used within the proposed filtering algo-
rithm: (i) a one-dimensional low-pass filter is applied parallel to the edge if the 
pixel under test is found to be an edge pixel, (ii) a two-dimensional low-pass 
filter is used if the pixel under test is found to belong to a monotone area, and 
(Hi) a one-dimensional high-pass filter is applied perpendicularly to the edge 
if the pixel under test is found to be an edge pixel and the edge is a diagonal
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edge. In order to remove as much of the noise as possible without smoothing 
the signal, the passbands of the desired low-pass filters should be wide enough 
to accommodate the high energy portions of the spectrum in Fig. 5.15. It can 
be noticed that most of the signal energy is concentrated below the normalised 
spatial frequency of 0.25. Thus, various low-pass filters were designed having 

passbands below this frequency.

Since grid noise has low energy [Ramamurthi 1986a], very little stopband 
rejection is needed to reduce the noise amplitude below the visibility threshold. 
A two-dimensional 3x3 separable FIR filter with identical responses in the hor-
izontal and vertical directions was found to be adequate for grid noise removal. 
That is, if hgr( x , y ) denotes the two-dimensional filter then

hgT(x, y) =  h(x)h(y)  (5.2)

where h(x) is a one-dimensional filter and h(y) — h(x).
Various h(x) filters were designed by employing the filter design procedure, de-
scribed in appendix G. Then, the filters were tried on a test image and the 
subjective quality of the filtered images along with SNR results were compared. 

Best results were obtained for filters having a 3 dB attenuation at a normalised 

corner frequency of 0.205.

The frequency response of the one-dimensional filter, h(x), of order 3 is de-

picted in Fig. 5.16 along with its coefficients. This filter was designed according 
to the method described in appendix G, employing the frequency weighting 
function proposed by Mannos and Sakrison (described in equation (G. 1)). Also 
depicted in Fig. 5.16, is the perceptual response (designated “overall” ) which 
is the overall frequency response of the system consisting of the designed FIR 
filter and the filter which represents the human visual system (HVS). It should 
be noted that h(x) represents a one-dimensional cross section of the separable 
two-dimensional filter, hgr{x,y) ,  which has identical frequency response in the 
x and y directions.

For the one-dimensional filter hst(x), employed for staircase noise removal, 
a sharper rolloff is desirable due to the higher energy of this type of noise. An 
FIR filter of order 5 was chosen for this purpose in order to reduce computation 
and to prevent the smoothing window from extending out of the analysis image
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PERCEPTUAL FREQUENCY RESPONSE

Figure 5.16: Frequency response of the filter h(x) of order 3 based 
on the MTF proposed by Mannos and Sakrison

block (the 7x7 block tested by the block classifier). A similar procedure to the 
one described above for designing h(x), was applied for designing hst(x). Best 
results were obtained for filters having a 3 dB attenuation at a normalised corner 

frequency of 0.195.

The frequency response of the one-dimensional filter, h3t(x), of order 5 is 
depicted in Fig. 5.17 along with its coefficients. This filter was designed accord-
ing to the method described in appendix G, employing the frequency weight-
ing function proposed by Mannos and Sakrison (equation (G .l)). In a similar 
way, we have designed various low-pass filters, h(x) and hst(x), by employ-
ing the frequency weighting function proposed by Nill (equation (G.2)). Fre-
quency responses of these filters are depicted in Fig. 5.18 and Fig. 5.19, respec-
tively. Also depicted in these figures are the perceptual responses (designated 
‘‘overall” ) which are the overall frequency responses of the systems consisting of 
the designed FIR filters and the filter which represents the HVS.

In order to decide which of the frequency weighting functions is more suit-
able. we carried out the following experiment. Steps 1 and 2 of the proposed



PERCEPTUAL FREQUENCY RESPONSE

Figure 5.17: Frequency response of the filter hst(x) of order 5 based 
on the MTF proposed by Mannos and Sakrison.

filtering algorithm, aimed at reducing grid and staircase noise, were applied to 
the original (uncoded) image of ‘Lena’ . Due to the high quality of that image, 
small subimage blocks (5x5 pixels) were formed and tested by the block classifier 
during step 2 of the filtering algorithm (see section 5.3 for discussion).

In addition, the low-pass filter employed for reducing staircase noise, hst(x), 
was taken to be equal to the filter h(x). The threshold m, used within the block 
classification procedure (see appendix H), was set experimentally to 2. Two sets 
of low-pass filters were designed. One set was designed based on the frequency 
weighting function, proposed by Mannos and Sakrison, while the second set was 
based on the function proposed by Nill. The original image was processed once 
by the former set of filters and once by the second set of filters. SNR results for 
the two filtered images are summarized in Table 5.1.

Based on these SNR results and on subjective tests of the processed images, 
we have selected the weighting function proposed by Nill as being more suitable. 

Therefore, throughout the remainder of this summary, we will present only re- 
sidts obtained by applying filters designed with Nill’s weighting function. The
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PERCEPTUAL FREOUENCY RESPONSE

Figure 5.18: Frequency response o f the filter h[x) of order 3 
based on the MTF proposed by Nill.

PERCEPTUAL FREQUENCY RESPONSE

Figure 5.19: Frequency response of the filter hst(x) of order 5 
based on the MTF proposed by Nill.
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FREQUENCY WEIGHTING FUNCTION SNR dB

Mannos & Sakrison 38.73

Nill 38.89

Table 5.1: SNR results for original ‘Lena’ processed by the proposed 
algorithm (steps 1 and 2 )

original image, ‘Lena’ , processed by the proposed filtering algorithm (steps 1 

and 2) is depicted in Fig. 5.20 (magnified by two). It has been processed by 

the set of filters based on Nill’s weighting function. It can be noticed that edges 
have been left unblurred although some fine details have been smoothed. This 
confirms that the filters have been adequately designed and that the proposed 
adaptive algorithm has been correctly applied.

Figure 5.20: Original image after filtering it by a set of filters 
based on Nill’s weighting function.

The third step of the proposed filtering algorithm, the edge enhancement 
step, has been described in section 5.3. Two alternative edge enhancement pro-
cedures have been suggested: (?) applying a nonlinear transformation (defined 
in equation (5.1), and (ii) applying a high-pass filter perpendicularly to the
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detected diagonal edge. We present next results obtained by applying the non-
linear transformation to the coded images, depicted in Fig. 5.1 and Fig. 5.13, 
which were previously processed by steps 1 and 2 of the proposed algorithm. 
Various values for both parameters, a and the size of the decision window (see 
section 5.3 for discussion), were tested in order to determine appropriate values 
which may produce best SNR results and best perceived quality. SNR results 
obtained by processing the coded image ‘Lenal’ , depicted in Fig. 5.1, are pre-
sented in Table 5.2. In Table 5.3, we present SNR results obtained by processing 
the coded image ‘Housel’ , depicted in Fig. 5.13.

a

decision 
window =  3x1

decision 
window =  5x1

decision 
window — 7x1

SNR dB SNR dB SNR dB

1.4 26.90 26.93 26.94

2 26.88 26.88 26.84

5 26.62 26.38 26.17

Table 5.2: SNR results for coded ‘Lenal’ filtered by three steps 
of the proposed algorithm.

a

decision 
window =  3x1

decision 
window - 5x1

decision 
window =  7x1

SNR dB SNR dB SNR dB

1.4 27.39 27.44 27.45

2 27.39 27.45 27.47

5 27.30 27.33 27.31

Table 5.3: SNR results for coded ‘Housel’ filtered by three steps 

of the proposed algorithm.

Based on these results and on subjective tests of the filtered images, we have 
selected proper values for the parameters, i.e., a —2 and a decision window of 

size 5x1. These values have produced filtered images of best perceived quality 
along with good SNR results.
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We have also tested the alternative edge enhancement procedure, i.e., ap-
plying an high-pass filter perpendicularly to diagonal edges. Various high-pass 
filters were designed employing the design method described in appendix G. 
Those filters were applied during the third step of the proposed algorithm to di-
agonal edges in an adaptive way. Both SNR results and subjective assessments 
were compared in order to determine the proper parameters of the high-pass 
filter. The frequency response of the selected one-dimensional high-pass filter, 

hen(x), of order 5 is depicted in Fig. 5.21 along with its coefficients.

PERCEPTUAL FREQUENCY RESPONSE

NORMALISED FREQUENCY

Figure 5.21: Frequency response of the filter hen( x ) of order 5 
based on the MTF proposed by Nill.

Also depicted in Fig. 5.21 is the perceptual response (designated “overall” ) which 

is the overall frequency response of the system consisting of the designed FIR 
filter and the filter which represents the HVS. It can be noticed that the per-
ceptual response is quite “flat” . In other words, the overall response of the 
system represents almost an all-pass filter. The low-pass nature of the HVS at 
high spatial frequencies compensates for the imposed enhancement of the high 
frequencies, thus producing high frequency restoration without degrading the 
perceived quality of the processed image.

Postprocessing results for the three test images, defined at the beginning of 
this section, are presented next. The proposed filtering algorithm was applied
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step by step to each of these images in an attempt to monitor changes caused by 
each of the algorithm’s steps. SNR results were calculated and subjective tests 
of the processed images were carried out at the conclusion of each step. These 
results are presented in Table 5.4 and in the following figures. Moreover, SNR 
results obtained by applying the method proposed in [Ramamurthi 1986a] to 
the test images are compared in Table 5.4 to SNR results obtained by applying 
our filtering algorithm. In Table 5.4, step 1 means grid noise filtering, step 2 
means staircase noise filtering, and step 3 means edge enhancement. The best 
SNR results are printed in boldface letters.

ALGORITHM’S Lenal Housel Lena2

STEPS SNR dB SNR dB SNR dB

Unfiltered 26.10 26.76 31.15

Step 1 26.23 26.86 31.23

Steps 1 & 2 26.86 27.38 30.81

Steps 1 & 2 & 3 with a =  2 26.88 27.45 30.72

Steps 1 & 2 & 3 with HPF 26.74 27.32 30.16

Filtering method 
according to 

[Ramamurthi 1986a]
26.80 27.35 30.67

Table 5.4: SNR results for the filtered test images.

Three conclusions can be drawn from the results presented in Table 5.4 and 
from the following figures. First, the gradual improvement in image quality, 
achieved in a step-by-step manner by the proposed filtering algorithm, is quite 
apparent. It can be noticed that all three filtering steps should be applied 
to poorly coded images such' as ;Lenal’ and ‘Housel in order to achieve best 
results. On the other hand, step 1 alone should be applied to high quality coded 
images such as the third image, ‘Lena2’ . These results prove the correctness of 
our basic concept, i.e., the modularity of the proposed filtering algorithm and 
the adaptive way in which it can be applied. Each step of the proposed filtering 
algorithm is carried out independently and can be applied only if necessary. This 
feature offers great flexibility which can not be found in other filtering methods 
(mentioned in section 5.2), and ensures good filtering results.
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Second, it is quite apparent that the nonlinear edge enhancement proce-
dure, defined in equation (5.1), offers better results than the high-pass filter-
ing method. Third, it can be noticed that for all three test images better 

results have been obtained by applying our method rather than the one pro-
posed in [Ramamurthi 1986a]. Particularly, a degradation of 0.48 dB, rather 
than an improvement, has been obtained by applying the method proposed in 
[Ramamurthi 1986a] to the third image, ‘Lena2’.

The SNR for the filtered image of ‘Lenal’ is 26.88 dB, representing an im-
provement of 0.78 dB. The SNR for the filtered image of ‘Housel’ is 27.45 dB, 

representing an improvement of 0.69 dB. These gains in SNR do not fully reflect 
the subjective improvement in quality due to the filtering process. This is not 
surprising since the masking of noise near edges, exploited during filtering, is 
not accounted for by the SNR figure. The in-band noise near edges, which is left 
unsmoothed by the proposed algorithm, contributes to the mean squared error 

(thus decreasing the SNR figure), but does not degrade the perceived quality. In 
order to demonstrate the dramatic change in the perceived quality of the filtered 
images, we present next the filtered images. The filtered images are presented 
in a step-by-step manner showing the gradual improvement in their perceived 
quality.

Magnifications of the filtered images, shown in Fig. 5.22d and Fig. 5.23d, 
are shown in Fig. 5.24 and Fig. 5.25, respectively. It can be seen that most 
of the staircase noise has been removed by smoothing. Moreover, most of the 
edges have been satisfactorily reproduced appearing quite sharp except in high 

detail areas such as the woman’s hat which have been degraded by the coding 
process itself. Grid noise has also been almost completely smoothed by the 
filtering procedure. A magnification of the filtered image of ‘Lena2’ , is shown 
in Fig. 5.26. This image has been obtained by applying just step 1 of the 
proposed filtering algorithm (grid noise filtering) to the coded image, ‘Lena2’ . 
The subjective improvement due to filtering is quite apparent when comparing 
Fig. 5.26 to the unfiltered image shown in Fig. 5.14.
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a. Unfiltered image b. After step 1 c. After steps 1+2

e. After steps 1+2+3 
highpass filtering

d. After steps 1+2+3 
nonlinear transformation

Figure 5.22: Various filtered images obtained while carrying out the filtering of

‘Lenal ’ in a step-by-step manner.

a. Unfiltered image b. After step 1 c. After steps 1+2

d. After steps 1+2+3 
nonlinear transformation

e. After steps 1+2+3 
highpass filtering

Figure 5.23: Various filtered images obtained while carrying out the filtering of
‘Housel’ in a step-by-step manner.
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Figure 5.24: Magnification of the filtered image (Fig. 5.22d).

Figure 5.25: Magnification of the filtered image (Fig. 5.23d).
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Figure 5.26: Magnification of the filtered coded image iLena2\

Fig. 5.27 and Fig. 5.28 show the two-dimensional spectrum of a 16x16 mono-
tone subimage taken from the coded image, ‘Lenal’ , before and after filtering, 
respectively. The reduction of the out-of-band grid noise is apparent while most 
of the signal content has been retained. Fig. 5.29 shows the two-dimensional 
spectrum of an edge subimage taken from the coded image, ‘Lenal’ . Fig. 5.30 
shows the two-dimensional spectrum of the same edge subimage after applying 
all three filtering steps to the coded image (employing the nonlinear transfor-

mation for edge enhancement). Fig. 5.31 shows the two-dimensional spectrum 
of the same edge subimage after applying all three filtering steps to the coded 
image (employing high-pass filtering for edge enhancement). The reduction of 
the out-of-band noise in the direction parallel to the edge is apparent, while the 
in-band noise has been mostly retained. Also noticeable, is the restoration of 
high frequency elements in a direction perpendicular to the edge direction.
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2 - 0  SPECTRUM FOR 1 S *1 S  COOED EDGE ELOCK

Figure 5.29: Two-dimensional spectrum for a 16 x 16 edge 
subimage from the coded image ‘Lenal

F(f*Jy)
2 - 0  SPECTRUM FOR 1 6 x 1 6  FILTERED CODED EDGE BLOCK

Figure 5.30: Two-dimensional spectrum for a 16x16 edge subimage from ‘Lenal ’ 
after filtering (employing nonlinear transformation for edge enhancement).

144



F(frJy)  |
2 - 0  SPECTRUM FOR 1 6 x 1 6  FILTERED CODED EDGE BLOCK

Figure 5.31: Two-dimensional spectrum for a 16 x 16 edge subimage from ‘Lenal ’ 
after filtering (employing high-pass filtering for edge enhancement).

The proposed filtering algorithm was also applied to various images, coded 
by the new DCGSVQ described in chapter 4. All three filtering steps were 
applied using the nonlinear transformation with a =  2 as the third step. Edge 
enhancement was carried out for all detected edges, i.e., vertical, horizontal, and 
diagonal edges. The threshold T employed by the pixel and block classifiers was 

set experimentally to 0.07 based on subjective tests. The grid noise in DCGSVQ- 
coded images may appear along the boundaries of 8x8 subimage blocks (not 4x4 
blocks as in VQ-coded images); therefore, step 1 of the filtering algorithm has 
been appropriately modified. SNR results for the coded unfiltered and filtered 
images of ‘House’, ‘Tree’ , and ‘Splash’ are presented in Table 5.5.

An improvement of 0.64 dB was achieved for the ‘Tree’ image (which is 

the “noisiest” image among the tested images) while achieving an improvement 
of 1.15 dB for the ‘Splash’ image. These gains in SNR do not fully reflect 
the subjective improvement in quality due to the filtering process. This is not 
surprising since the masking of noise near edges, exploited during filtering, is 
not accounted for by the SNR figure. The in-band noise near edges, which is left 

unsmoothed by the proposed algorithm, contributes to the mean squared error 
(thus decreasing the SNR figure), but does not degrade the perceived quality.
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Image
Type

R=0.500 bpp
House Tree Splash

Unfiltered 30.00 24.69 29.76

Filtered 30.80 25.33 30.91

Table 5.5: SNR results for DCGSVQ-coded unfiltered and 

filtered images at 0.5 bpp.

To demonstrate the dramatic change in the perceived quality of the filtered 
images, we present next the following images. The DCGSVQ-coded image of 
‘House’ at 0.5 bpp is shown in Fig. 5.32a. The general appearance of the coded 
image is good compared to images produced by full search VQ or CV Q at the 
same rate; however, some grid and staircase noise can be noticed especially along 
diagonal edges. The same image, after filtering, is shown in Fig. 5.326. Although 
some fine details have been smoothed out, the edges have been cleaned of grid 

and staircase noise appearing nice and sharp.

Figure 5.32: ‘House’ coded by DCGSVQ at 0.5 bpp 
a. before filtering 6. after filtering
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The DCGSVQ-coded image of ‘Tree’ at 0.5 bpp is shown in Fig. 5.33a while 
its filtered version is shown in Fig. 5.336. The good performance of the proposed 

filtering algorithm is quite apparent.

Figure 5.33: ‘Tree ’ coded by DCGSVQ at 0.5 bpp 
a. before filtering 6. after filtering

5.5 Summary

A new postprocessing algorithm, aimed at reducing grid and staircase noise 
in block coded images while retaining edge integrity and edge sharpness, has 
been described. The proposed algorithm is based on characteristics of the sig-
nal spectrum and the noise spectrum. In addition, various properties of the 
human visual system have been incorporated in order to improve the perceived 
quality of the filtered block coded images. The proposed filtering algorithm is 

both space-variant and nonlinear consisting of three steps: (z) grid noise re-
moval, (zz) staircase noise removal, and (iii) edge enhancement. The proposed
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algorithm is modular and can be applied in an adaptive way depending on the 
quality of the block coded image. Each step stands alone and can be applied 
only if necessary. For example, we have shown that all three steps should be 
applied for postprocessing of poorly coded images while applying just one step 
for high quality coded images. This feature offers great flexibility, which can 
not be found in other filtering methods proposed in the literature, and ensures 
good filtering results.

Various FIR filters have been used within the proposed filtering algorithm. 
These filters were designed according to a new filter design method which is based 
on a weighted least squares design procedure. This new technique incorporates 
perceptual properties of the human visual system as part of the optimization 
process, and has been shown to be better suited for the design of image process-
ing filters. A comparison between two frequency weighting functions, employed 
within the filter design method, was performed. These functions represent the 
modulation transfer function of the human visual system and have been used 
widely by other researchers. We have shown that better SNR results and better 
perceived quality of filtered coded images were obtained if the function proposed 
by Nill was used rather than the function proposed by Mannos and Sakrison.

We have also shown that better filtering results were obtained if the non-
linear edge enhancement procedure was used rather than applying high-pass 
filtering during step 3 of the proposed algorithm. Finally, we have shown that 
the proposed filtering algorithm outperforms the filtering algorithm proposed 
recently in [Ramamurthi 1986a]. Particularly, we have shown that a degrada-
tion of 0.48 dB rather than an improvement has been obtained by applying the 
algorithm of [Ramamurthi 1986a] to a coded image of moderate quality.

Employing various ways of presentation (SNR results, pictures, and figures 
of signal spectrum), we have demonstrated the striking improvement in image 
quality due to filtering. It should be remembered though that the subjective 
improvement with filtering is not reflected sufficiently by the SNR figures be-
cause the SNR does not account for the masking effect. The proposed filtering 
algorithm can be applied to coded images obtained by various block coders: 
VQ, BTC, or even TC if the coding block size is small. However, the filtering 

parameters, including the parameters of the block classifier, have to be carefully
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selected depending on the quality of the coding process. The proposed algorithm 
offers a simple way of improving the subjective quality of coded images without 
increasing the bit rate, and thus can be used independently at the decoder end. 

Moreover, it can be applied in an on-line mode while receiving the coded image 
(requiring just a small frame memory) or can be applied in an off-line mode 
depending on the user’s decision.
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Chapter 6

Image Quality Prediction

Strolling together along the mountain side, 
Each e y e  s e e s  different wind and mist.

6.1 Introduction

Various image compression systems have been implemented in the course of 
our research, and we have often faced the problem of deciding which is best. 
Identification of useful fidelity criteria for image compression system design and 
analysis has been a persistent difficulty for researchers. The image quality mea-
sure, actually a measure of quality degradation, that has most been used in 
digital image compression research is the mean square error (MSE) between the 
original image and the reconstructed image. However, it has often been empir-
ically determined that the MSE or functions of it, such as the signal to noise 
ratio (SNR), do not correlate well with subjective (human) quality assessments 
[Mannos 1974], [Hall 1978]. The MSE criterion does not adequately track the 
types of degradation caused by digital image compression systems and it does 
not adequately “mimic” what the human visual system (HVS) does in assessing 
image quality. There is a need, therefore, for accurate measures of subjective 
impairment which can be used to predict image quality.

Our aim in this research is to determine such distortion measures and to test 
how well these measures are able to predict image quality for a set of still test 

images containing various coding impairments, introduced by vector quantisers. 
As a basis for subjectively relevant distortion measures, we would wish to test
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elaborate models of the processes that govern the visibility of impairments in 

images. We need to know how visible any arbitrary impairment is, given its 
location in the image, and how the visibility of all the impairments should be 
combined to obtain an overall quality rating.

The subjective impairment resulting from a given distortion is difficult to 
quantify although one reference point is available: that is the amplitude at 
which a degradation reaches threshold (i.e., the point at which an impairment 
becomes just visible). If we could accurately define when a given distortion was 
at threshold, we would be able to estimate the quality of images accurately, at 
least when the image quality is high (i.e., when coding impairments are small). 
Threshold vision and various factors that affect it have been described in chap-
ter 3. This data, both for uniform and nonuniform background fields, should be 
accounted for by the visual model which is to form the basis of a subjectively 
relevant distortion measure.

6.2 Subjective Distortion Measures

Based on previous studies of threshold contrast sensitivity and on rate-distortion 
theory, Mannos and Sakrison investigated various distortion measures in order 
to find one which is in good accord with subjective evaluation [Mannos 1974]. 
Summarising basic properties of the HVS, they argued that after an initial 
nonlinear transformation, the remainder of the visual system may be consid-
ered linear over a moderate range of intensities. Taking into consideration this 
assumption, they described the following mathematical model.

Let I (x ,y)  denote the intensity of a monochrome image as a function of 
position (x,y)  in the spatial domain and let I (x ,y)  denote the intensity of 
the reconstructed image. Based on what is known physiologically and from 
psychophysical measurements, the authors defined the following transformation

L(x,y)  =  T [ I ( x , y )] and L(x,y)  =  T  [l(x,y)\ (6 .1 )

where T[-] is restricted to be monotonically increasing and convex D. Let g{x , y) 
and g ( x , y ) be the results of operating on L(x,y)  and L(x,y)  respectively with 
a linear spatially-invariant filter. The filter is defined by a transfer function
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H ( f x, f y) in the spatial frequency domain or by h(x ,y ), its impulse response in 

the spatial domain, i.e.,

g{x.y)  =  L(x. y) * h(x, y) and g(x.y)  =  L(x.y)  * h(x,y)  (6.2)

where * denotes convolution. Then the following distortion measure has been 

defined
d ( I , I ) =  [  [  [g(x,y) -  g{x,y) ]2 dxdy . (6.3)

J  x  J  y

The linear operation, described by the transfer function H ( f x, f y), was taken to 
be isotropic in order to make things simpler (see discussion in chapter 3), i.e.,

H ( f xJ y) =  H ( u ) ,  for u> =  7 Px +  Py (6.4)

where f x and f y are the spatial frequency coordinates which span the two- 

dimensional Fourier domain.

To fit the data obtained from psychophysical measurements of sine-wave 
gratings. Mannos and Sakrison considered functions for H(u)  of the form

/  u) \kk ' /  u_\k2'
Cl +  v- /Wo /

exp
\ U/Q J

where C\. /q and k2 are parameters, and ¿no is the frequency at which the curve 
reaches its peak value. The authors investigated distortion measures of the form 

(6.3) for T[-] monotonically increasing and convex flwith different choices of the 
parameters <uo, ci, k\, and k2. At the conclusion of their subjective experiments, 
thej  ̂ proposed the following transfer function, H(u:)y and nonlinear function, 
T[-], as being best appropriate for image coding and transmission:

H{u)  =  2.6 [0.0192 -f 0.114a;] exp[—(0.114a;)1'1] (6 .6)

having a peak of value 1.0  at uo =  8.0 cycles per degree (cpd) and,

T [I ( x , y ) }  -  / ° '33(.r, y) . (6.7)

Functions H{uj) and T[I(x,y)\ are shown in Fig. 6.1. The bandpass form of 
with a central peak at 8 cpd and the rapid decrease on either side of this 

peak, is typical of the contrast sensitivity functions obtained from psychophysical 
experiments.



K*.y)

Figure 6.1: Transfer function H(co) and nonlinear function T[I(x,y)]

A new model for the spatial frequency characteristics of the HVS was pre-
sented in [Hall 1977]. The major implication of the new model is that the system 
is analogous to a variable bandwidth filter which is controlled by the contrast 
of the input image. As input contrast increases, the bandwidth of the system 
decreases and vice versa. Based on this new model. Hall and Hall [Hall 1977] 
proposed that the function in equation (6.5) should be modified to

ci + ( 6 .8 )

where they have added m(c),  a function of contrast responsible for modifying 

the high-frequency roll-off.

Based on the work of Mannos and Sakrison [Mannos 1974] and DePalma and
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Lowry [DePalma 1962] and on his own work, Nill [Nill 1985] proposed a third 
transfer function for the HVS which is a simplification of the previous proposed 
functions. The new function was defined by Nill to be

H(u>) =  [0.2 +  0.45u>] exp(—O.lScu) (6.9)

having a peak at u  =  5.2 cpd. However, Nill argued that even after incorpo-
rating a visual response function in a quality measure, a further refinement is 
in order to mimic more closely how a human assesses quality. He added that 
in many cases an observer will base his/her judgement of overall scene qual-
ity on the higher structural (activity) regions contained in the scene. Thus, 
an improvement to an overall scene quality measure should become apparent 

by incorporating a weighting factor that puts more emphasis on high structure 
subimage areas and less emphasis on low structure subimage areas. Subimages 
are defined by dividing the image into contiguous non-overlapping square blocks 
(subimages) of 16x16 pixels. Each subimage is then transformed employing the 
Fourier transform and an activity index, that is a measure of the variability of 
the signal in each transformed subimage, is calculated for it. According to the 
value of this activity index, each transformed subimage is assigned to one of four 
equally populated classes, each having a weighting factor Wi associated with it.

Bringing together the preceding concepts of a visual response function and 
subimage structure weighting, Nill proposed the following quality measure which 
is defined (for now) in the 2-D discrete Fourier spatial frequency domain

B

Dv ■w £  £  £  -h »  [ W » .  /» )  -  £ ■ (/., uf
A  * =  1  f x  f y

(6.10)

where
B =  The number of subimage blocks,
K  =  A normalisation factor such as total energy,
H(u)  =  A rotationally symmetric MTF of the HVS, lu =  +  fy where

f x and f y are the spatial frequency coordinates which span the two- 
dimensional Fourier domain.

Fi, Ft =  Fourier coefficients of the original and the reconstructed subimage i, 
respectively,
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Wi =  A weighting factor that is proportional to the variability of the signal 
in each subimage.

Wi =  1.0  for maximum structure subimage.
W{ —» 0.0 for minimum structure subimage.

Remarks :

1) An initial nonlinearity is sometimes introduced into the HVS model by 
preprocessing the image with a logarithmic or power function as in equa-
tion (6.7) above. However, such nonlinearity has not been introduced by 
Nill in the quality measure in equation (6.10) because he was particularly 
interested in low contrast images whereby he assumed to be working in a 
linear region of an overall nonlinearity.

2) The weights Wi in equation (6.10) could be assigned to the different subim-
ages in a similar way to the one described in [Chen 1977a]. An activity 
index, that is a measure of the variability of the signal in each transformed 

subimage, could be calculated and according to its value each transformed 
subimage could be sorted into one of several equally populated classes. 
Then for each class a weight, could be defined and used within equa-

tion (6.10 ).

Considering the importance of the cosine transform (see discussion in chap-
ter 4), Nill addressed the problem of how to correctly combine the MTF (given 
in the Fourier domain) with the cosine transform of imagery for image quality 
assessment. Nill tried to find a simple function that can be directly applied to 
the HVS model in the Fourier domain and to the image cosine transform, such 
that combining the two becomes both a theoretically correct procedure and a 
practically useful one. Applying various mathematical transforms he obtained 
the following function (mentioned earlier in chapter 4)

H(w)
0.05 exp[oA554] , for w < 7

exp[—9(| log10 to -  log10 9 |)2-3] , for w >  7

This function can be treated in image cosine transform applications in the same 
manner as H(w) would be treated in image Fourier transform applications.
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Thus, for quality assessment, one simply substitutes function (6.11) for H(u)  in 
equation (6.10 ), when dealing with image cosine transforms instead of image 

Fourier transforms.

We have employed the cosine transform [Rosenfeld 1976] and equations (6.10) 
and (6.1 1 ) to obtain the following quality measure in the discrete cosine domain

d , =  ^  A V )  [ « ( / „ / „ ) - â ( / » . / h 2
1 fu fv

where 
B =  
K  =

H H

The number of subimage blocks,
A normalization factor such as total energy,

( 6. 12)

The function defined in equation (6.11), and u> =  y  fu +  fv where 
f u and f v are the spatial frequency coordinates which span the two- 
dimensional cosine domain.

Fi, F,t =  DCT coefficients of transformed original and reconstructed subimage 

i, respectively.

Wi =  A weighting factor that is proportional to the variability of the signal 

in each subimage.

Wi =  1.0  for maximum structure subimages.
Wi —> 0.0 for minimum structure subimages.

The quality measure, defined in equation (6.12), has been used as a basis for the 
development of various quality prediction procedures, which will be described 
next.

6.3 Quality Prediction Procedures - T y p e  A  and 
T y p e  B

The first procedure has been denoted Type A and is based on Nill’s [Nill 1985] 
quality measure with the following three modifications. First, we have employed
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the function in equation (6.7) or a logarithmic function prior to performing the 
DCT on each subimage so that HVS nonlinearities are taken into consideration. 
Second, we have defined eight activity classes (and eight weighting factors, wt) 

instead of the four classes proposed in [Nill 1985]. This decision is based on 
[Ngan 1982] where the author claims that he has found experimentally that 
better coding results are obtained with eight activity classes than with four 
classes as proposed in [Chen 1977a]. Third, we have defined the following two 
activity indices for subimage i :

A l l ,  =  ¿ £ f ? ( u , v )  -  f ? ( 0, 0) (6,13)
u=0 v=0

where u and v are the orthogonal coordinates that span the cosine domain, U 
and V  denote the number of the DCT coefficients in the u and v directions, 
respectively, and

U - 2 V - 2

AI2i 4 ( h - 2 ) ( F - 2 ) ^  Lith t  !)] +
J ? [Li( j , q ) - L i( j , q + l ) ] 2 +

(6.14)

[Li(j,q) -  Li(j -  l,q)}2 +
[Li(j, q)  -  Li(j +  l ,? ) ]2} •

As can be noticed, A lii  is defined in the cosine domain and A /2 t is defined in 
the spatial domain. We have tested both activity indices and compared their 
application within quality assessment measures.

The block diagram of Type A procedure is depicted in Fig. 6.2 where the 
processing carried on the z'-th subimage is being described. In Fig. 6.2, the 
original image I (x ,y)  and the reconstructed image I ( x , y ) are first transformed 
(pixel by pixel) employing a function T[-]. The transform applied is taken to 
be either I 033( x , y ) or In[I(x,y)  + 1] or simply I (x,y) .  Then, each transformed 
image is partitioned into subimages of 16x16 pixels which are then transformed 
employing the DCT. A weighting factor W{ is assigned to subimage i based 
on an activity index calculated for that subimage. The weighting factors u;,-, 
defined for Type A procedure, are taken to be directly proportional to the activity 
indices that are calculated either in the spatial domain or in the spatial frequency 
domain. The application of this quality prediction procedure to our research 
has been investigated by computing Dq for images that are produced by various 
compression systems (vector quantisers) and comparing Dq values with human 

assessments of those images.

158



Figure 6.2: Block diagram of Type .4 quality prediction procedure.

Procedure Type A, described above, is based on a basic argument postulated 
by Nill in [Nill 1985]. Nill argued that better quality prediction results could be 
achieved by incorporating a weighting factor that puts more emphasis on high 
structure subimage areas and less emphasis on low structure subimage areas 
(i.e. Wi =  1 for subimages with high activity indices, and W{ —> 0 for subimages 
with low activity indices). Nill based this argument on a well known principle 
used for bit allocation within adaptive coding techniques such as the one de-
scribed in [Chen 1977a], We, on the other hand, argue that a different approach 
should be considered for quality prediction problems.

High activity subimages (associated with high activity indices) consist of im-
age areas where sharp transitions of luminance occur, i.e., areas where spatial 
masking effects take place thus affecting the visibility of any impairment. As pre-
viously explained, these sharp transitions inhibit the ability of the eye to detect 
impairments that are spatially adjacent to the transitions and thus, reducing the 
effects of these impairments on an overall quality measure. On the other hand,



impairments that occur in low activity subimages, i.e., homogeneous image ar-
eas, are more pronounced and thus should be given more emphasis within an 
overall quality measure. In other words, we argue that the weighting factor u>,- in 

equation (6 .1 2 ) should be inversely proportional to the activity index, calculated 
for subimage i, instead of being directly proportional to it, as proposed by Mill.

In order to test these arguments we have defined a second quality predic-
tion procedure which we named Type B. This procedure is based on Type A 
procedure with the following modification: (?) the weighting factors are taken 
to be inversely proportional to the activity indices, i.e., larger weighting factors 

correspond to smaller activity indices and vice versa, (n) the function H l p f (u ), 
defined in chapter 4, is used within equation (6.12) instead of using the function 
H(u).  Both procedures, Type A and Type B, were implemented and tested by 

us.

6.4 Quality Prediction Procedure - T y p e  C

The modulation transfer functions, described above in equations (6 .6), (6.8) 
and (6 .9 ), were sought to fit data obtained from psychophysical measurements 
of sine-wave gratings. No attempt was made to optimise the visual model for the 
specific task of quality prediction. In [Limb 1979], on the other hand, various 
two-dimensional filter functions are tested within a visual model testing their 
ability to predict quality. In that paper an attempt is made to determine a 
model of the human viewer which could then be used to predict the amount 
of subjective impairment for any arbitrary degradation that may be introduced 
in an image by digital processing methods such as image compression. An 
experiment is described in which different types of distortions are added to a 
set of still images which are then rated by a group of subjects according to 
the visibility of the resulting impairment. In addition, various measures of the 
distortion are calculated for the images. The measure yielding data points that 
lie closest to a smooth monotonic function on a plot of impairment ratings versus 
an objective measure is assumed to most accurately reflect the operation of the 
visual system and the human viewer. A full description of these experiments, 
carried out by Limb, can be found in [Limb 1979]. while a summary of Limb s
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main results will be given in the following paragraphs.

Limb sought to determine the specifications of the spatial filtering, masking, 

and error summing operations that take place in the HVS by calculating vari-
ous distortion measures for a set of test images. The first distortion measure, 

evaluated by Limb, was Ep defined by

Ep =
m EE I e(xiV)

x  y

1/p

(6.15)

where m denotes the total number of pixels in an image, and

e(x,y)  =  I ( x , y ) -  I (x ,y)

with I ( x , y) the value of the pixel in the original image and I(x,  y) the distorted 

pixel value in the reconstructed image. The distortion measure Ev was evalu-
ated for p =  1,2,3,4, 6 . Varying the power, to which the error is raised before 
summing, changes the relative importance attached to small errors versus large 

errors. Limb found out that Ep is a very good estimate of impairment ratings 
where the type of distortion added to the images is additive white noise. Best 
results were found for p =  2 where E2 in equation (6.15) is the well known root 
mean square error (RMS).

A second measure of image impairment was obtained by weighting the pixel 
by pixel distortion, e(x, y) (raised to a power), by a weighting function designed 
to reflect the masking effect on the signal, i.e.,

EMP =
1

E E
e(x,y) 1/p

(6.16)
m ~ ~  w (x <y) .

where W(x,  y) is the value of the weighting function at pixel (x, y) derived from 
an activity function that is a measure of the variability of the signal in the 
neighbourhood of the pixel (x , y ).

Three different forms of activity function were investigated. These func-
tions are ad hoc guesses as to what actually happens since there is very little 
psychophysical literature on which to base a model. The first function Amax 
measures the maximum signal change between any pair of pixels in a neighbour-
hood consisting of the pixel being evaluated, (x,y),  plus the eight surrounding 
pixels, i.e.,

A-max^ 1 y) =  max{| I(x  +  k,y  +  /) -  I(x  +  n ,y  +  t) |} (6-17)
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for k, l ,n,t  =  —1 , 0, + 1  •
The second function Aave sums the deviations of the same neighbourhood of 
pixels from the neighbourhood average / ,  i.e.,

l l
Aave(x ,y ) =  Y , I H x +  kiV +  0  ”  1 I where (6.18)

k= -1 /=-l

I  =  ^ m  H  I {x  +  k,y +  l) . (6.19)
y k= - i /=-i

The third function Ajf is the weighted sum of the magnitude of the surround-
ing pixel differences (slopes) in both the horizontal and vertical directions and is 
very similar to a measure employed by Netravali and Prasada [Netravali 1977]. 
For this function the neighbourhood consists of the pixel being evaluated and 

24 surrounding pixels (on a 5x5 grid).

x + 2  y-\- 2

A df(x ,y)  =  £  £  0.35ll(WM^)ll0.5 {| ifc(Ai,/)| +  |as(fc,/)|} (6.20)
k —x —2 l—y —2

where || (k, l) — (x, y) || is the Euclidean distance between pixels (x, y) and (k, /),

Sh(k,l) =  I(k, l) — I ( k — 1,/) , and 

sv(k,l) =  I ( k , l )  — I ( k , l  — 1)

where I(k, l)  is the luminance intensity of pixel (k,l). As can be noticed, the 
effect of surrounding pixels on the activity function decreases exponentially with 
the distance from the central grid point (x,y).

In all three cases, W(x,  y) was obtained from the activity function A(x, y) so 
as to span a range of from 1.0  to approximately 10.0 as suggested by previous 

experiments, i.e.,

W(x , y )
10An(x,y)  for An( x , y ) > 0 A

1.0 for /4n(x, y) < 0.1
(6 .21)

where
„ / i A{x,y)A n { x , y )  =  ------- -T—------ r y  ,max{A(x, y))

and A(x,y)  is the chosen activity function. The relation described above in 

equation (6.21) is depicted in Fig. 6.3.
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ACTIVITY WEIGHTING FACTORS

Figure 6.3: Activity weighting factors (from [Limb 1979])

An important result, pointed out by Limb based on these tests, is that when 
the spatial masking process is incorporated, the measure of picture impairment 
gets worse rather than better. This observation is particularly true for images 
where noise was added primarily at edges (as in Set 2 of the images used in 
[Limb 1979]). Similar results were obtained by Lukas and Budrikis in their 
study [Lukas 1982], The reason for this seemingly incongruous result is based on 
image statistics and viewer behavior. Masking occurs largely at sharp luminance 
transitions, that is, at edges. Statistically, the number of pixels where masking 
is operative represent a small fraction of the pixels in an image. Yet, because of 
the nature of images, edges are precisely the areas of highest interest and so are 

most critical.

In rating images, subjects do not take an average of the errors over the whole 
image. Rather, they focus their attention on the worst areas and base their qual-
ity rating on these. This general behavior should be taken into account within 
a measure of image impairment, but is not. Instead, Ep and EM P, defined in
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equations (6.15) and (6.16) respectively, consist of a global averaging procedure 
that totally belies the importance of local structures. It would seem that the 
solution should be to average errors over local areas of the image rather than 
globally.

A local measure of image impairment such as this could be calculated by 
summing the error in a local neighbourhood of pixels for each pixel in the image. 
This procedure would be very demanding computationally, thus a somewhat 
simpler procedure was used. The image was partitioned into a rectangular array 
of squares (subimages) and a local measure was calculated for each square. The 
size of each square was selected to be approximately the same size as the human 
fovea, that is 1 degree of subtended arc. The final measure of image impairment 
was taken to be the greatest value over all squares or the average of the two 
greatest values.

For the set of images, distorted by noise that was added primarily at edges, 
Ep and EM P were re-calculated in a. local sense following the proposed ideas. 
The results with and without masking were compared for different values of p 
and the following conclusions were drawn. First, it was shown that incorporat-

ing masking significantly improved the fit between the local measure of image 
impairment and the subjective impairment rating. Second, it was shown that 
the best results were obtained for p =  2. It should be noted that we are par-
ticularly interested in the results obtained for this set of images because the 
impairments, introduced in them, are very similar to those introduced by vector 

quantisers.

A third measure of picture impairment was obtained by raising to a power 
the weighting function W ( x , y )  in equation (6.16), i.e.,

LEM P =
1 ejx.y)  

ITr(.r, y)

1 i/p
( 6 .22)

where mi denotes the number of pixels in a local neighbourhood.
Based on test results, Limb postulated that the errors e (x , y ) are normalized 
more correctly if the form [e(x, y)/W(x , y)]p is used rather than ep( x , y)/W(x.  y), 
thus LEMp was used for the rest of his experiments.

The performances of the activity functions Amax, AaVei and Ad/ were
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re-evaluated using local measures. In addition, special attention was given to 

testing the following activity function

Aavr(x,y) =  XI /L  I H x +  k,y +  l) -  I  \r (6.23)
fc=-l /=-1

where I  is defined as in equation (6.19). A avr was evaluated for different values of 
r and the local measure LEM P was calculated employing W(x,  y) weights derived 
from this activity function. Best results were obtained for r =  2, suggesting 
that visual masking is a function of the local AC power of the signal. The local 
measures, evaluated so far, were determined by the maximum of Ep, E M P or 
LEM P over all 1 degree neighbourhoods. By taking the average of these local 
measures for the worst two neighbourhoods, a small further improvement was 

obtained.

Various two-dimensional separable nonrecursive filters were explored by Limb 
in order to improve the fit between a distortion measure and subjective impair-
ment rating. The final model of threshold vision, defined by Limb at the conclu-

sion of his tests, is depicted in Fig. 6.4. There the error signal e(x.y)  is filtered 
first and then weighted by a weighting factor W(x , y ) .  The weighting factor is 
derived from the original image and calculated for each pixel (x. y ) based on 
the activity index A avr (with r =  2 ) calculated on a 3x3 neighbourhood. Then 
local measures of image impairment are calculated for all 1 neighbourhoods and 
the square root of the average of the worst two local measures is taken as the 

impairment measure IM .

For the set of images, in which the spectral distribution of the error varied 
greatly, a small amount of low-pass rather than band-pass filtering improved 
the fit slightly relative to no filtering. However, for the set of images in which 
noise was added primarily at edges, best fits were obtained with no filtering. 
Thus, Limb postulated that under the viewing conditions of his experiment and 
for the set of distortions employed, visual filtering plays a rather less important 
role in determining overall quality than does masking. He suspected that the 
cause to these findings is the type of noise added to the images under test. He 
argued that the noise was generally above threshold and that, consequently, 
suprathreshold rather than threshold sensitivity functions might be operating. 

In other words, since the frequency response of the visual system is flatter for 
more visible stimuli, filtering is less important compared to masking.



Figure 6.4: Limb's model o f threshold vision (from [Limb 1979]).

Lukas and Budrikis [Lukas 1982] have developed a different model of vision 
which can be used to predict the subjective quality of moving monochrome 
television pictures containing arbitrary impairments. Their model, depicted in 
Fig. 6.5, was developed in two stages. The first stage is a nonlinear spatiotem- 
poral model of the visual filter which describes the threshold characteristics on 
uniform background fields. Their model of the visual filter consists of parallel 
excitation and inhibition paths, each of which is separately linear but which 
combine in a nonlinear way. The inhibition accounts for the low-frequency de-
cline in sensitivity in the threshold characteristics, and the nonlinearity acts as 
gain control, enabling the model to adapt to changes in the level of background 
luminance. The second stage of the visual model extends its application to 
nonuniform background fields by incorporating a masking function. The output 
of the model is the filtered error, weighted according to image content in a sim-
ilar way to Limb’s model. Various error powers, averaged over the image were 

taken as predictors of overall image quality.

In Fig. 6.5. I ( x , y . t ) and I {x . y . t )  are the original and reconstructed images 
respectively. E(x .y . t )  is the error signal based on the outputs of two nonlinear
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A

Figure 6.5: Lukas and Budrikis ’ model of threshold vision (from [Lukas 1982]).

spatiotemporal filters. W ( x . y . t )  is the weighting function which is inversely 
proportional to the masking signal M ( x , y , t )  whereas N( x , y , t )  is the product 
of weighting the error signal by the activity weighting function W{x,  y, t). In 
general, Lukas and Budrikis obtained results similar to Limb’s results and the 

same basic conclusions have been drawn.

Encouraged by the results described so far. we have evaluated the model pro-
posed by Limb (Fig. 6.4) and tested its performance within a quality prediction 

procedure, employing images produced by various vector quantisers. In addition, 
an extended model has been developed following Limb’s suspicion that “ ...while 
the present study strongly indicates a local measure for masking effects, perhaps 
this should be combined with a global measure incorporating spatial filtering for 
additive error effects” [Limb 1979]. The extended model has been incorporated 
in a new quality prediction procedure named Procedure Type C, which is depicted 
in Fig. 6.6.

In Fig. 6.6, both images, the original image I (x , y )  and the reconstructed 
image I ( x , y), are first processed by a nonlinear operation T[-]. We have used two



Figure 6 .6: Block diagram of Type C quality prediction procedure.

functions to represent T[-] : a logarithmic operation, which enables the model 
to adapt to changes in the level of background luminance [Sakrison 1977], or an 
exponential function as defined above in equation (6.7). The difference between 
the two outputs of the nonlinear blocks is taken to be the error signal E { x 1y). 
The error signal is then processed along two parallel paths. In the first path it is 
weighted from point to point according to the amount of spatial activity in the 
original transformed image and then raised to a power of two. Local measures 
are calculated for small neighbourhoods and the square root of the average of 
the worst two local measures is taken as the measure of image impairment for 
masking effects, D\. In the second path, the error signal is filtered by a two- 
dimensional low-pass filter. Then it is weighted from point to point according to 
the amount of spatial activity in the original image and then raised to a power 
of two. A global measure for additive error effects, DgAs calculated and then 
combined with Di to form the desired quality measure. The two measures, Di 

and Dg, could be combined as follows :

Dvl =  i (Dt +  Dg) . or as (6.24)
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(6.25)

A fourth procedure for quality prediction, based on different ideas described 
throughout this report, has been developed and tested . We named it Procedure 

Type D and will describe it next.

D V2 — \JD j +  D 2g .

6.5 Quality Prediction Procedure - T y p e  D

According to procedure Type B, an activity index is calculated for each subimage 
and based on its value the subimage is assigned to one of eight activity classes. 
Then, a weighting factor associated with each activity class is used within equa-
tion (6.12) and Dq is calculated. The weighting factors have been defined so 
as to span a range of from 0.0 to 1.0 with low values (wi= 0.125, 0.250 etc.) 
assigned to high activity classes and high values (wi — 0.875, and 1.0) assigned 
to low activity classes. These weights were defined in an adhoc way whereas 
in procedure Type C they were defined according to previous subjective experi-
ments. Thus, instead of assigning subimages to activity classes, as in procedures 

Type A and Type B, we have used equation (6.21), within procedure Type D , to 
find a weighting factor for each subimage. In addition, a third activity function, 
defined in equation (6.23) with r =  2, has been tested within procedure Type D.

6.6 Subjective Tests and Simulation Results

Among the great variety of known psychometric methods, three main types have 
been used for television. One is the comparison method in which the magnitude 
of one kind of impairment is varied until it is judged to be equal in effect to 
a fixed magnitude of another kind of impairment adopted as a reference. The 
second is the discrimination method which seeks to establish either the threshold 
magnitude at which an impairment just becomes visible, or else the sequence 
of small changes of magnitude which produce just noticeable differences. The 
third is the opinion-rating method in which, in the simplest case, several different 

magnitudes of an impairment are applied in random order to an image and the 
observer rates each by selecting one of a predetermined set of opinions arranged
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to form a rating scale. Each of the methods has its proper field of application 
and each has many possible variations both in experimental technique and in 
analysis and presentation of results.

In the field of visual communications much work has gone into digital im-
age coding aimed at reducing the bit rate requirements for image transmission 
or image storage. Experience has shown that each coding scheme is subject 

to its own unique set of impairments that are often difficult to characterize. 

The complicated way in which these impairments depend upon image content 
and quantisation method makes it difficult to optimise the quantisation char-
acteristics for each of the impairments separately. Therefore, in general, design 
approaches of coding schemes tend to be heuristic, and lengthy, expensive and 
time-consuming subjective (psychometric) tests are often required to optimise 
parameters. Consequently, it is often difficult to compare results obtained in 
different laboratories because of the diversity of the methods employed. This 
state of affairs is correctly described in [Prosser 1964] where it is stated that: 
“ ...it almost seems that there must exists a psychological law to the effect that 
no two psychometrists will ever knowingly use the same method” .

To avoid incomparable results, we have used throughout this research a 
method similar to the methods used by Lukas and Budrikis [Lukas 1982], by 
Limb [Limb 1979] and by Prosser, Allnatt and Lewis [Prosser 1964], The method 
belongs to the opinion-rating class with quality chosen as the subject, because 
the ultimate judgement of a system is given by the viewer’s opinion of the overall 
quality of the image produced by the system under test. The major difference 
between our experiment and theirs lies in the amount of resources available for 
carrying out such elaborate large scale tests that only few organisations could 
afford to undertake. For example, forty subjects took part in the subjective 
tests carried out by Lukas and Budrikis while thirty three subjects took part in 
Limb’s tests. On the other hand, only three subjects took part in our subjective 
tests due to the limited resources available to us. Therefore, results presented 
herein should be considered carefully keeping in mind that more work should be 
carried out in order to derive well established conclusions.
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6.6.1 Choice of Test Images

The source image for this experiment was ‘Lena’ which is shown in Fig. 6.7. 
From the one source image a set of 17 test images were generated. These test 

images were designed to contain a wide range of types and amounts of impair-
ments typical to the distortions introduced by low bit rate vector quantisers. 

Different VQ systems (full search VQ, GSVQ, and CVQ) were employed to gen-
erate reconstructed images at rates from 0.5 to 0.625 bpp. The vectors encoded 
by the VQ systems were 16-dimensional vectors generated from small image 
blocks of 4x4 pixels. The best reconstructed image at rate 0.625 bpp is shown in 
Fig. 6.8a, generated by a full search VQ, whereas the worst reconstructed image 
at rate 0.5 bpp is shown in Fig. 6.86, generated by a CVQ system. Both images 

are magnified by a factor of two in order to show clearly the differences between 

them.

The two most typical impairments caused by VQ systems are: the staircase 
effect and the blocking effect. The first one refers to the poorly coded edges that 
appear jagged in low bit rate reconstructed images. The cause of the staircase 
effect is the fact that there are too few codevectors, in the codebook used by 
the VQ, that contain parts of edges in them to represent the great variety of 
edges that must be coded. Therefore, the intensity change that occurs across an 
edge in the original image occurs instead at the block boundaries in the coded 
image, making the block boundaries visible. These block boundaries form the 
“steps” of the staircase. The second type of impairment, blockiness, is found in 
image areas where the intensity changed gradually in the original image. The 
reason again is the small number of codevectors that contain gradual changes of 
intensities in them, and the fact that each block is encoded independently of its 

neighbours (i.e., memoryless VQ).

6.6.2 Subjective Tests

In order to determine accurately quality ratings, the standard CCIR proce-
dure [CCIR 1974] was modified somewhat in a similar way to the experiment 
described in [Lukas 1982]. The subjective tests consisted of three stages: a 

preview, image evaluation, and a review. During the preview the subject was
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Figure 6.8: The best and worst reconstructed test images.
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shown a sample of test images that included some of the best and some of the 
worst in the complete set. He was asked to define his quality ratings such that 
the best images were given quality ratings close to "10 and the worst quality 

ratings close to “0,r on the scale shown in Fig. 6.9. Following the preview, the 
subject was presented with images in random order and asked to rate them ac-
cording to quality. He was allowed to view each image for as long as he liked. 
This was called the evaluation stage. Upon completion of the evaluation stage, 
the images were sorted and then represented in ascending order of quality rat-
ing. This gave the subject the opportunity of comparing successive images and 
reviewing his ratings. Finally, the ascending presentation was followed by a 

presentation of the images in descending order to complete the test.

10
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]

3
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1
0
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]

VERY GOOD 

GOOD

FAIR

BAD

VERY BAD

Figure 6.9: Quality scale (from [Lukas 1982])

The quality rating scale is not standard in the field. It is, however, the 
familiar 0-to-10 scale that is used whenever something is rated “out-of-tenr . The 
larger number of categories allows for finer precision of quality rating, provided 
that subjects are able to discriminate that many categories. Other grading scales 
could be found in [Limb 1979] and [Prosser 1964] where quality and impairments 
are the two possible subjects. Quality scales are suitable for judging the overall 
quality of an image irrespective of the number of different impairments that 
may be present. Impairment scales, on the other hand, are suitable for judging 
a single impairment, which must be named if others are also present. For the



present purpose, quality is the subject of chief interest therefore the scale in 
Fig. 6.9 has been used in our experiments.

The viewing conditions were close to those recommended by the CCIR. The 
viewing distance was set at five times the image height, the screen luminance 
varied from 0.4 mL at its lowest level to 63 mL at its highest, and the ambient 
illumination was approximately 2 ft-candles. A nine inch Ikegami monitor was 
used with aspect ratio 4:3. The image contained 480 lines with 512 pixels per 
line and was presented with 2:1 interlace at a rate of 25 frames per second.

6.6.3 Regression and Functional Relationship

Having determined quality' ratings for the set of test images, our aim in this 
research was to develop a procedure for predicting these ratings as closely as 
possible. That is, we have sought a quality prediction procedure such that a 
smooth functional relationship would exist between it and the quality rating, 
regardless of the type or amount of distortion in the image. The selection of a 

method for fitting a smooth monotonic curve to the data points relating sub-
jective quality rating to an objective error measure is somewhat arbitrary in 
that the notion of smoothness is not clear enough. Nevertheless, we have fol-
lowed Limb [Limb 1979] and Lukas and Budrikis [Lukas 1982] and considered 

the following four functions as candidate functions :

1 ) the quadratic Q (z) =  az2 +  bz +  c ,

2 ) the exponential Q(z) =  aex-p(bz) ,

3) the logistic function Q(z) =  1+exp[[b_a)/fe] , and

4) the gaussian Q(z ) =  aexp(6c2) .

The logistic function has been strongly advocated to fit image quality data 
in the past [Prosser 1964]. It has the attractive property of being initially flat 
for low values of error, then falling over a midrange, and finally asymptoting to a 
value of 0 at high values of error. However, it leads to nonlinear regression proce-
dures and thus has been dropped. The other three functions, on the other hand,



lead to simple linear regression procedures and thus have been used. Perhaps 
because it has an extra degree of freedom, the quadratic function was found to 
fit the data better than the exponential function and the gaussian function (also 
pointed out in [Lukas 1982]). Therefore, we will describe in detail the results 
for quadratic regressions and will compare the best results obtained for it with 
results obtained for exponential and gaussian fits.

The root mean square (RMS) error between the original image and the re-
constructed image is a benchmark against which other quality measures may be 
compared. As an example, therefore, a plot of quality ratings versus RMS errors 
for all the test images is shown in Fig. 6.10. The full line curve is a minimum 

mean-square fit of a quadratic function to all data points which are marked by *. 
It should be noted that in Fig. 6.10 subjective quality ratings are being plotted 
against normalised quality measures (errors). Normalisation can improve the 
accuracy of the final results and thus will be used throughout our presentation 

of results. It is carried out by dividing any error value (computed quality mea-
sure) by the greatest error value found for the set of data points used for the 
regression procedure. The mean square deviation (MSD) about the regression 
line is used as the performance index for the quality prediction procedures eval-

uated in this research. Results for the four procedures described earlier in this 
chapter will be presented next and the best quality prediction procedure will be 
determined based on MSD values calculated for each procedure.

6.6.4 Simulation Results

More than 540 different computer runs were carried out in order to evaluate the 
procedures under test. Different parameters within each procedure were changed 
and, for each combination of parameters, quality measures were calculated for 
every test image. For a given combination of procedure parameters, the set of 
data points used for regression consisted of quality measures calculated for each 
test image versus subjective quality ratings. Then, a quadratic regression was 
carried out for each set of data points and the MSD about it was calculated and 
used as the performance index.
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Figure 6.10: Quality Rating Versus RMS Errors - Quadratic Regression. 

Type A P rocedure

As shown in Fig. 6.2, the original image I { x , y ) and the reconstructed image 
I (x ,y)  are first transformed (pixel by pixel) employing a transform function 
T[-}. The transform applied is taken to be either exponential. I 0 33{x. y), or 
logarithmic, ln [/(x ,y ) +  1 ], or linear, I { x . y ), which means no transformation. 
In addition, two activity indices are used. A I 1 in the cosine domain, and .4/2 in 
the spatial domain. Simulation results, MSD values about a quadratic regression 
line, for the possible combinations of transform functions and activity indices 

are given in Table 6.1.

Three observations could be made from the results in Table 6.1. First, it is 
noticed that better prediction is obtained when 4 /2  and not 4 /1  is used as the 
activity index within Type 4  quality prediction procedure. This observation is 

true for all the transform functions employed within Type A procedure. Second, 
it is noticed that the best prediction results are obtained when a logarithmic
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Transform Activity Index

Function A ll ATI

Linear 0.1552 0.1386

Exponential 0.0963 0.0848

Logarithmic 0.0801 0.0743

Table 6.1: MSD values for Type A procedure - quadratic regression.

transform function is used prior to performing the DCT. The exponential trans-
form function yields the second best results for the two activity indices employed. 

The third observation is that the worst results are obtained when no transform 
function is employed, prior to performing the DCT, and when A l l  is used as 
the activity index. This combination of parameters is the combination proposed 

by Nill in [Nill 1985], which has been the basis of Type ,4 procedure.

The full line curve in Fig. 6.11 is a minimum mean-square fit of a quadratic 
function to all data points obtained for the best combination of parameters, i.e., 
logarithmic transform with .4/2 as the activity index. In Fig. 6.12, a similar 
curve is plotted for the worst combination of parameters, i.e., linear transform 
function with A ll  as the activity index. The solid line curve in Fig. 6.13 is a 
minimum mean-square fit of an exponential function to all data points obtained 
for the best combination of parameters, i.e., logarithmic transform with AI2  as 
the activity index. The dashed line curve in Fig. 6.13 is a similar plot employing 
a gaussian function to best fit the data points obtained for the best combination 
of parameters. As can be noticed from Fig. 6.11 and Fig. 6.13, the best fit is 
obtained with a quadratic function. Detailed presentation of the comparison 
between the regression functions involved will be given at the conclusion of this 

chapter.

Type B Procedure

As previously explained, this procedure is basically identical to Type A procedure 
with only two modifications. The first modification is based on our argument 
that the weighting factors W{ in equation (6.12) should be inversely proportional
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Figure 6.11: Best quadratic fit for Type A procedure. 
( logarithmic function and AI2 )
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Figure 6.12: Worst quadratic fit for Type A procedure. 
( linear function and A ll )
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Figure 6.13: Best exponential and gaussian fits for Type A procedure. 
( logarithmic function and AI2 )

to the activity indices instead of being directly proportional to them, as pro-
posed in Type A procedure. The second modification is the employment of a 
LPF rather than a BPF to weight the errors in the cosine domain (see equa-
tion (6.12). Simulation results, MSD values, for the possible combinations of 

transform functions and activity indices are given in Table 6.2.

Three observations could be made from the results in Table 6.2. First, it 
is noticed that better prediction is obtained when A l l  is used as the activity 
index within Type B quality prediction procedure. This observation is true for 
all the transform functions employed within Type B procedure. Second, it is 
noticed that the best prediction results are obtained when an exponential trans-
form function is used prior to performing the DCT. The logarithmic transform 
function yields the second best results for the two activity indices employed. 

The third observation is that the worst results are obtained when no transform 
function is employed prior to performing the DCT, and when ATI is used as the
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Transform Activity Index
Function A ll .4/2

Linear 0.0228 0.03S6
Exponential 0.0123 0.0149
Logarithmic 0.0137 0.0143

Table 6.2: MSD values for Type B Procedure - quadratic regression.

activity index. This observation is in accord with a similar observation made 
for Type A procedure (except that the worst results are obtained for A ll  within 

Type A procedure).

A comparison between the results in Table 6.1 and the results in Table 6.2 
shows that better prediction results are obtained if the weighting factors Wi in 
equation (6 .1 2 ) are taken to be inversely proportional to the activity indices, as 
postulated by us. In fact, it was found that results obtained for Type ,4 procedure 
are even worse than those obtained by setting all the weighting factors equal to 1 

within Type B procedure (i.e., ignoring masking effects). For example, setting all 
W{ values to 1 and employing an exponential function as the transform function 
within Type B procedure, yields a MSD value of 0.0353 which is less than any 

MSD value found in Table 6.1.

The full line curve in Fig. 6.14 is a minimum mean-square fit of a cpiadratic 
function to all data points obtained for the best combination of parameters, i.e., 
exponential transform with A ll  as the activity index. To conclude our findings 
for Type B procedure, the following plots are shown in Fig. 6.15. The solid 
line curve there is a minimum mean-square fit of an exponential function to all 
data points obtained for the best combination of parameters, i.e., exponential 
transform with A ll  as the activity index. The dashed line curve in Fig. 6.15 is 
a similar plot employing a gaussian function to best fit the data points obtained 
for the best combination of parameters. As can be noticed from Fig. 6.14 and 
Fig. 6.15, the best fit is obtained with a quadratic function. Detailed presenta-
tion of the comparison between the regression functions involved will be given 

at the conclusion of this chapter.
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Figure 6.14: Best fit for Type B procedure - quadratic regression. 
(  an exponential transform and A ll )
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Figure 6.15: Best exponential and gaussian fits for Type B procedure. 
( an exponential transform and A ll )
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Type C Procedure

As shown in Fig. 6.6, the original image and the reconstructed image are first 
processed by a transform function T{-\ as in previous procedures. The difference 
between the two outputs of the transform blocks is taken to be the error signal 
which is then processed along two parallel paths. In the first path, it is weighted 

from point to point by a weighting factor derived from an activity index that 
is calculated for each point. The activity index which has been used within 
Type C procedure is Aavr defined in equation (6.23) with r=2. It is calculated 
for each pixel in the original transformed image on a 3x3 neighbourhood as 
proposed by Limb [Limb 1979]. It should be noted that the weighting process, 
carried out within Type C procedure, implies an inverse relation between the 
weighting factors and the activity indices. Local measures of image impairment 
are calculated for all 1 degree neighbourhoods (30x20 pixels) employing equation 
(6.22) and the following measures are defined as impairment predictors. The 
first one, denoted M A X  in Table 6.3, is equal to the greatest local impairment 
measure calculated for the image under test. The second one, denoted Di, is the 
square root of the average of the greatest two local impairment measures.

In the second path, the error signal is filtered by a two dimensional low-pass 
filter. The filter used is a two dimensional separable nonrecursive filter proved 
by Limb (Filter no. 4 in Table V in [Limb 1979]) to produce the best results in 

his experiments. The filtered error signal is then weighted from point to point by 
the same weighting factors employed in the first path, and then raised to a power 
of two. A global measure, denoted L P F  — Dg in Table 6.3, is then calculated 
and used as impairment predictor. If no filtering is employed in this path, 
the impairment measure (predictor) is denoted Dg. Simulation results, MSD 
values about a quadratic regression line, for different combinations of procedure 
parameters have been calculated and are presented in Table 6.3.

Three observations could be made from the results in Table 6.3 and the 
results obtained by taking different combinations of Di and Dg as defined in 
equations (6.24) and (6.25). First, it is noticed that the best prediction results 
are obtained when an exponential transform function is being used prior to cal-
culating the error signal. Second, it is noticed that a small amount of low-pass 
filtering improves the fit slightly relative to no filtering for the two nonlinear



Transform IMPAIRMENT PREDICTORS

Function M A X D, Dg L P F  -  Dg

Linear 0.1005 0.1854 0.0324 0.0563

Exponential 0.1271 0.1118 0.0372 0.0236

Logarithmic 0.1225 0.1305 0.0490 0.0335

Table 6.3: MSD values for Type C Procedure - quadratic regression.

transform functions. The third observation seems to be the most important 
one. It is noted that for the three transform functions, evaluated in this re-
search, better prediction results are obtained when global impairment measures 
rather than local measures are being used. These results differ from the results 
reported by Limb [Limb 1979], who strongly advocated local impairment mea-
sures. We suspect that the cause to these findings is the type of noise found in 
our test images which were generated by VQ systems. These low bit rate recon-

structed images contain quantisation noise which is generally above threshold 
level, therefore, suprathreshold rather then threshold vision models should be 
used within quality prediction procedures. It should be noted that, to our best 
knowledge, no other experiment, similar to the one reported herein, has been 

carried out employing test images produced by VQ systems. Therefore, no other 
reference to similar results is available and more research work should be carried 
out in order to clear this point.

Finally, best regression results for Type C procedure are plotted in Fig. 6.16. 
The full line curve there is a minimum mean- square fit of a quadratic function to 
all data points obtained for the best combination of parameters, i.e., exponential 
transform function with a global measure of image impairment, L P F  — Dg.

Type D procedure

Basically, this procedure is similar to Type B procedure with one major modifica-
tion. Instead of assigning subimages to different activity classes, each associated 
with a weighting factor which is then used within an overall quality measure, a 
weighting factor is derived, for each subimage, based on equation (6.2 1 ) and the
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Figure 6.16: Best fit for Type C procedure - quadratic regression.

( an exponential transform and LP F  — Dg predictor )

activity index calculated for that subimage. Simulation results, MSD about a 
quadratic regression line, for different transform functions and activity indices 

are given in Table 6.4.

Three observations could be made from the results in Table 6.4. First, it is 
noticed that in general better prediction results are obtained when A I 1 is used as 
the activity index within Type D quality prediction procedure. This observation 
is in accord with similar observations made for Type B procedure. Second, it 
is noticed that the best prediction results are obtained when an exponential 
transform function is used prior to performing DCT. The logarithmic transform 
function yields the second best results for the two activity indices employed. 
The third observation is that the worst results are obtained when no transform 
function is employed, prior to performing DCT, and when ,4/2 is used as the 
activity index. This observation is too in accord with similar observations made 

for Type B procedure.
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Transform Activity Index
Function A ll .4/2

Linear 0.0242 0.0388

Exponential 0.0115 0.0122

Logarithmic 0.0134 0.0132

Table 6.4: MSD values for Type D Procedure - quadratic regression.

A third activity function Aavr, defined in equation (6.23) with r=2, has been 
tested in addition to the two activity functions used thus far. A av2 is calculated 
for each subimage and a weighting factor is derived based on the relation defined 
in equation (6.21). This activity function is in fact a measure of the local AC 
power of the signal, calculated for subimages of 16x16 pixels. Since the DCT is a 

unitary transform, the AC power of the signal, calculated in the spatial domain, 
equals the AC power calculated in the cosine domain, i.e., A av2 =  A ll .  A 
comparison between the MSD results for both activity functions has proved the 
above statement.

To conclude our findings for Type D procedure, the following plots are pre-
sented. The first one in Fig. 6.17, is a minimum mean-square fit of a quadratic 
function to all data points obtained for the best combination of parameters, i.e., 

exponential transform function with A ll  as the activity function. The second 
plot in Fig. 6.18, consists of two line curves: the solid line curve is the best 
exponential fit found for the best procedure parameters, while the dashed line 
curve is the best gaussian fit found under the same conditions.

6.6.5 Summary of Results and Conclusions

A summary of the best results obtained for the quality prediction procedures, 
evaluated in our study, is given in Table 6.5. This comparison between the best 
prediction results proves that Type A procedure yields the worst results among 
the procedures evaluated in this study. We suspect that the reason to this finding 
is the way in which spatial masking effects have been incorporated within Type 
A procedure. Nill, who has underlined the basic concept of this procedure.
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Figure 6.17: Best fit for Type D procedure - quadratic regression. 
( an exponential transform and A ll )

TYPE D -  e xp , AI1

NORMALISED ERROR

Figure 6.18: Best exponential and gaussian fits for Type D procedure. 
( an exponential transform and A ll )
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argued that high structure subimages should be given more emphasis within an 
overall image quality measure whereas low structure subimages should be given 
less emphasis. We, on the other hand, have argued that a different approach 

should be considered for image quality prediction, i.e., giving less importance 
to high structure subimages due to masking effects which are operative in such 
subimages while giving more importance to low structure subimages. The good 
results, obtained for Type B and Type D procedures, prove our argument and 
in fact support results obtained by Limb [Limb 1979] and Lukas and Budrikis 

[Lukas 1982],

Procedure Transform

Function

Activity

Function

Best

Result

Second Best 

Results

Type A logarithmic A n 0.07432 —

logarithmic A ll — 0.0801

Type B exponential A ll 0.0123 —

logarithmic A ll — 0.0137

Type C exp. L P F  — Dg ■Aav2 0.0236 —

linear Dg Aav2 — 0.0324

Type D exponential A ll 0.0115 —

exponential AI2 — 0 .0 122

SNR 0.0731

Table 6.5: A summary of best prediction results

The results in Table 6.5 strongly advocate the use of an exponential trans-

form function prior to processing the image under test. Best prediction results 
are obtained by quality prediction procedures which employ this transform. 
These findings are in accord with results obtained by Mannos and Sakrison 
[Mannos 1974] who strongly advocated the use of an exponential transform func-
tion. Among the different activity functions, used to detect spatial masking 
effects, A ll  proved to be the best.

The mean square error (MSE) between the original image and the recon-
structed image or functions of it, such as the signal to noise ratio (SNR), 
have most been used as quality measures in digital image compression research.
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Therefore, a comparison between the SNR and other quality prediction mea-
sures, evaluated in this study, is in order. SNR values were calculated for every 
test reconstructed image and a minimum mean-square fit of a quadratic function 
to the set of data points, consisted of these values and subjective quality rat-
ings, was sought. The mean square deviation (MSD) about the regression line 
is used as a performance index, and is given in Table 6.5. It is noted that the 
SNR yields the second worst quality prediction results among the best quality 
predictors mentioned in this table. Only one quality predictor yields results that 
are worse than the SNR. It is the predictor defined as Type A procedure (see 
Table 6.1) which is the original measure proposed by Nill in [Nill 1985].

A Comparison between the SNR to the predictors defined as Type C proce-
dures (see Table 6.3) shows that it outperforms the local measures M A X  and 
Di, but is worse than the global measures Dg and LPF  — Dg. Since the SNR 
measure is a global measure by it self, these results may indicate that global mea-
sures, incorporating local masking effects which are detected in small subimages 
of 16x16 or 30x20 pixels, are more appropriate for the type of images used in 
this study .

The error signal E(x,y)  in Type C procedure (see Fig. 6.6) is weighted from 
point to point, for each location (x,y)  in the image, according to an activity 

index found at this location. The activity index Aaj,2, defined in equation (6.23), 
is calculated on a 3x3 neighbourhood as proposed by Limb [Limb 1979]. On the 
other hand, activity indices within Type B and Type D procedures are calculated 
for subimages of 16x16 pixels. Thus the results in Table 6.5 may indicate that 
masking effects should be evaluated in a wide local sense i.e., for neighbourhoods 
of about 1 degree of subtended arc, also found to be the size of the human fovea 

[Limb 1979].

In addition to the quadratic function used for regression, two other functions 
have been tested i.e., an exponential function and a gaussian function. Mean- 
square deviation (MSD) values about quadratic regression curves found for the 
best prediction procedures, Type B and Type D procedures, are presented in 
Table 6 .6. These results are compared with results obtained for exponential and 
gaussian regression functions. It could be noted that the quadratic regression 
function yields the best fit results and thus, seems to be appropriate for the type
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of test images used in this study.

Procedure Parameters Quadratic Gaussian Exponential

Type B, exponential, A ll 0.0123 0.0654 0.0520

Type D, exponential, A ll 0.0115 0.0680 0.0482

Table 6.6: A comparison of three regression functions - best predictors.

Finally, it should be noted that the results obtained for Type D procedure are 
slightly better than the results obtained for Type B procedure. Basically these 
procedures are very similar differing in one aspect ; the way in which a weighting 
factor is associated with each subimage. Activity classes, each associated with a 
different weighting factor, are being used within Type B procedure whereas, in 
Type D procedure, equation (6.21) is being used to derive weighting factors for 
each subimage, based on an activity index found for that subimage. Due to the 
straightforward algorithm, we strongly recommend using Type D procedure for 
image quality prediction.

Various models of the human visual system have been proposed by vision 
researchers. We have tested a small number of models, some of which have been 
proposed in the literature and some of which have been developed by us. The 

results obtained by this study indicate that good fits could be found between 
quality measures and subjective quality ratings. More work should be carried 
out, employing a larger number of test images and observers, in order to further 
establish the results presented in this report. New models of human visual 
system like the multi-channels model described by Sakrison [Sakrison 1977] or 
the use of two dimensional (2-D) Gabor elementary functions as models for 
simple cell receptive field profiles [Daugman 1985], should be investigated and 
applied within quality prediction procedures. We believe that at the end of the 
day an objective quality measure could be found and made standard in the field 
of vision research.
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Chapter 7

Summary
A good explanation; 

Never explains everything.

7.1 Conclusions

The main purpose of this research has been the development of a new VQ- 
based coding system that integrates valuable knowledge about the human visual 
system (HVS) with emerging VQ techniques. It has been postulated that if the 
coding scheme could be matched to the HVS and could attempt to imitate its 
functions, at least for the known part of it, high compression ratios along with 
good quality of reconstructed images could be achieved. The new coding system 
was developed in a step by step manner employing basic VQ systems as valuable 
“building blocks” .

First, the basic notion of vector quantisation along with codebook design 
methods have been studied in chapter 2. Various drawbacks of full search VQ 
have been discussed, particularly the computational complexity caused by the 
search problem, and the degradation in the perceived quality of coded images. 
Gain-shape VQ (GSVQ) and classified VQ (CVQ) have been proposed in the VQ 
literature to overcome these drawbacks. GSVQ is capable of being used at higher 
dimensions and rates than full search VQ because of its reduced complexity, both 
computational and storage (having fewer codevectors to be stored and searched), 
thus it has widely been employed for voice, waveform, and image coding. CVQ, 
on the other hand, has been proposed as a coding method that is particularly
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suited for preserving perceptual features while retaining simple VQ distortion 
measures.

We have developed a new algorithm for CVQ codebook design as an 
alternative to the empirical method proposed in [Ramamurthi 1986]. The new 
algorithm provides a simple and systematic method for codebook design and 
reduces considerably the total number of required mathematical operations dur-
ing codebook design in comparison with the brute-force method, described in 
[Ramamurthi 1986]. We have named this new algorithm Classified Nearest 
Neighbour Clustering (CNNC). In addition, a fast search algorithm has been 
developed in Appendix C to reduce computational efforts during CVQ code-
book design.

Coding results for CVQ at low bit rates (less than 0.562 bpp) have shown 
that the blocking effect and the staircase effect are still noticeable in the coded 

images. Similar observations have been made when a GSVQ was used at low bit 
rates. Nevertheless, the CVQ concept and the notion of GSVQ have been con- 
sistenly applied in our work toward the development of a new VQ-based coding 
system. It seemed that the separation of gain coding from shape coding, which 
characterizes GSVQ, combined with the notion of perceptually-based coding, as 
realized in CVQ, can pave the way to the development of a better coding system.

A review of the human visual system has been presented in chapter 3. 
Particularly, properties of the HVS like frequency sensitivity, the masking effect, 
and orientation sensitivity, which can be used in image processing and coding, 
have been described. Armed with this knowledge about the HVS and the basic 
VQ systems, we have developed a new image coding system [Chapter 4]. We 
have named this system Directional Classified Gain-Shape Vector Quantisation 
(DCGSVQ). It combines vector quantisation with transform coding techniques 
and exploits various properties of the HVS to produce reconstructed images with 
good subjective quality at low bit rates.

A new algorithm for designing the various DCGSVQ codebooks has been 
proposed in chapter 4. It is based on the CNNC algorithm but employs a 
new optimisation criterion which is more suitable for shape codebook design. 
We have called it the modified CNNC algorithm. The new algorithm designs
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the various shape codebooks simultaneously giving the designer full freedom 
to assign more importance to certain classes of vectors or to certain training 

vectors.

A new vector configuration strategy for defining AC vectors in the cosine 
domain has been proposed in chapter 4. We have named the vectors, so config-
ured, directional vectors. Directional vectors are obtained by grouping the AC 
coefficients into two vectors according to their direction in the cosine domain,
i.e., adaptively to the direction of the spatial activity in the image block. To 
test the proposed strategy, the test images were coded by two systems. The 

first system was the proposed DCGSVQ operating with directional vectors. The 
second system was the proposed DCGSVQ operating with variance vectors, i.e., 
AC vectors that were configured by grouping AC coefficients of similar vari-
ances into the same vector (the traditional way). Coding results have shown 
that an improvement of more than 0.9 dB has been achieved by just grouping 
the AC coefficients according to the new proposed vector configuration strategy. 

Subjective tests of reconstructed images have confirmed this finding.

ft seems that the reason for this improvement is mainly due to the fact that 

the two largest AC coefficients, F {0,1) and F(l ,  0), are assigned to different vec-
tors according to the proposed directional vector notion. By having them apart, 
the shape vectors become less “noisy” and the effective dynamic range of the 
expected gain values is reduced. Consequently, the coding procedure becomes 

more effective and better SNR results and perceived quality are achievable.

The new notion of directional vectors, and the basic approach of using a 
classified GSVQ to encode them, have paved the way to a simple technique of 
feature enhancement which can be applied during the decoding process to further 
improve the reconstructed images. It has been shown that by multiplying the 
decoded gain values by an enhancement factor, the dynamic range of decoded 
vectors can be “stretched” , and “crisper” reconstructed images can be obtained. 
Feature enhancement may be applied to vectors derived from image blocks that 
contain diagonal edges or complex features, and only in the direction across a 
vertical or a horizontal edge. However, it should be stated that the proposed 
method enhances not only the desired features in the reconstructed image but 
also the quantisation noise. Therefore, the enhancement procedure should be
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applied with appropriate care.

Usually, coding systems that operate in the cosine domain have quantised 
separately the DC and AC coefficients. Due to their influence on the perceived 
quality of coded images, the DC coefficients (representing the mean luminance 
of the blocks) have been carefully quantised using a scalar quantiser. However, 
by scalar quantising those coefficients, the spatial correlation which exists be-
tween neighbouring DC coefficients is not being exploited. Therefore, a more 
efficient way of encoding the DC coefficient has been proposed in chapter 4. 
Four neighbouring DC coefficients were grouped into one vector and encoded by 
a GSVQ. A GSVQ, rather than a VQ, was employed because we assumed that 
better coding results could be achieved by dealing separately with DC shape 
vectors and DC gain values. The modified CNNC algorithm was used to design 
the DC shape codebook, and proved to be an effective alternative to traditional 

GSVQ design algorithms.

In general, this notion works satisfactorily when the four neighbouring image 
blocks are monotone blocks; however, if one or more blocks are edge blocks, the 
blocking effect becomes apparent. Therefore, special care has to be taken when 
designing GSVQ codebooks for the DC coefficients. In particular, the training 
set of DC shape vectors, used for codebook design, should contain vectors of 
various types, especially vectors derived from edge blocks.

In the proposed DCGSVQ, the AC coefficients in the cosine domain are 
weighted according to a modulation transfer function (MTF) that represents the 
filtering characteristics of the HVS. We have named this process HVS filtering. 
It has been shown that better coding results are achieved when a low-pass filter 
(LPF), rather than a band-pass filter (BPF) is employed for weighting the AC 
coefficients. Subjective tests of reconstructed images have confirmed this finding. 
We conclude that the low-frequency coefficients are better preserved when a 
LPF, rather than a BPF, is being employed thus reducing substantially the 

blocking effect.

Inverse HVS filtering is carried out at the decoder to compensate for the HVS 
filtering which took place at the encoder. In general, HVS filtering reduces the 
influence of high-frequency “noisy” coefficients on the selection of a proper shape

194



vector by the encoder. In other words, the low-frequency coefficients dominate 
the encoding process allowing harsh quantisation of the high-frequency coeffi-
cients. However, we have found out that when inverse HVS filtering is carried 
out at the decoder, the quantisation errors, which are present at high-frequency 
coefficients, are amplified causing unnecessary degradation of the reconstructed 
images. As anticipated, subjective tests of reconstructed images, produced with-
out inverse HVS filtering, have shown some loss of fine details; however, some of 

the high-frequency quantisation noise has been reduced too so that, in general, 
the perceived quality of the test images has been improved. Therefore, it is 
recommended to carry out HVS filtering at the encoder, to ensure better shape 
preservation during encoding, but to consider omitting inverse HVS filtering at 
the decoder when test images are concerned.

There is sufficient direct physiological evidence to support the hypothesis 
that the relationship between the light intensity input to the visual receptors 

and the neural output level is approximately logarithmic. Therefore, various 
researchers have suggested a point nonlinear transformation as the first stage 
in any digital image processing system. We have tested this notion by applying 
such a nonlinear transformation, referred to as HVS transform, to the intensity 
values prior to encoding the images with the DCGSVQ encoder.

Based on SNR figures and on subjective tests of the coded images, it is 
quite evident that better coding results are obtained without applying the HVS 
transform. It seems that the nonlinear transformation, normally applied to 
the output voltage from the image sensor in TV cameras, is responsible for 
this finding. This transformation (known as gamma precorrection) is applied in 
order to correct the nonlinear characteristics (described by the gamma factor) 
of cathode-ray tubes (CRT) used in TV displays. Therefore, if one wishes to 
apply the mentioned HVS transform prior to encoding an image, inverse gamma 
precorrection transformation should be applied first.

Coding results, obtained by the proposed DCGSVQ, were compared with 
coding results obtained by a full search VQ and a CVQ. The images, produced 
by the DCGSVQ, look less blocky and have a quite natural appearance whereas 
images, produced by a full search VQ or a CVQ, look blocky and the edges 
appear jagged. SNR results for the coded test images at various bit rates have
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proved that the proposed DCGSVQ significantly outperforms the other systems. 
The coding performance of the DCGSVQ system was also compared with the 
coding performance of a transform coding classified VQ (TC-CVQ) system. The 
TC-CVQ operates in the cosine domain employing a CVQ to encode AC vectors 
which belong to various classes of activity. The DCGSVQ system has been 
shown to significantly outperform this system too.

To further improve the perceived quality of coded images, a new postprocess-
ing algorithm that can be applied at the decoder without increasing the bit rate 
has been developed in chapter 5. The proposed algorithm is based on various 
characteristics of the signal spectrum and the noise spectrum, and exploits var-

ious properties of the HVS. The new algorithm is a general-purpose algorithm 
that can be applied to block-coded images produced by various systems like VQ, 
transform coding (TC), and block truncation coding (BTC).

The proposed filtering algorithm is both space-variant and nonlinear con-
sisting of three steps: (?) grid noise removal, (ii) staircase noise removal, and 
(Hi) edge enhancement. The algorithm is modular and can be applied in an 
adaptive way depending on the quality of the block-coded image. Each step 
stands alone and can be applied only if necessary. For example, we have shown 
that all three steps should be applied for postprocessing of poorly coded images 
while applying just one step for high quality coded images. This feature offers 
great flexibility, which can not be found in other filtering methods proposed in 
the literature, and ensures good filtering results. The new filtering algorithm 
has been tested on VQ-coded images and proved to improve dramatically the 

perceived quality of such images.

Various image compression systems have been implemented in the course of 
our research, and we have often faced the problem of deciding which is best. 
Identification of useful fidelity criteria for image compression system design and 
analysis has been a persistent difficulty for researchers. The image quality mea-
sure, actually a measure of quality degradation, that has most been used in 
digital image compression research is the mean square error (MSE) between the 
original image and the reconstructed image. However, it has often been empir-
ically determined that the MSE or functions of it such as the signal to noise 
ratio (SNR), do not correlate well with subjective (human) quality assessments.
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The MSE criterion does not adequately track the types of degradation caused 
by digital image compression systems and it does not adequately “mimic” what 
the HVS does in assessing image quality. There is a need, therefore, for accurate 

measures of subjective impairment which can be used to predict image quality.

In chapter 6, quality predictors that incorporate simplified models of the 
HVS have been proposed and tested on a large set of VQ-coded images. Quality 
predictors in the form of some subjectively weighted error measures were sought 
such that a smooth functional relationship exists between them and quality 
ratings made by human viewers. Two such predictors have been shown to be 
better suited than the commonly used MSE measure. However, due to the 
limited resources available to us (in particular, the small number of viewers who 
took part in the subjective tests), we recommend that more work should be 
carried out, employing a larger number of test images and viewers, in order to 

further establish the results presented in this chapter.

7.2 Future Work

7.2.1 Perceptually-based Codebook Design

Close inspections of CVQ-coded images at rates lower than 0.562 bpp have shown 
that the staircase effect and the blocking effect are still noticeable. It seems 
that some improvement may be achieved if the perceptual importance of the 
various classes, defined for the CVQ system, could be taken into consideration. 
For example, by increasing artificially the importance of vectors that belong 
to certain classes during codebook design, the number of codevectors found for 
each class at the conclusion of the CNNC algorithm can be influenced without 
changing the clustering process or the encoding process.

This approach has an intuitive appeal when applied to the problem of edge 
degradation, which was the major reason for developing CVQ systems, since 
it permits us to control the relative sub-codebook sizes and thus ensures edge 

integrity at the expense of SNR results. This approach is also applicable to 
designing DCGSVQ codebooks, as shown in chapter 4 where we have named it
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perceptually-based codebook design. The perceptual importance of the various 
classes of vectors, defined for CVQ and DCGSVQ systems, should be carefully 
studied and a compromise between SNR results and subjective quality of coded 
images should be sought to further improve the coding performance of these 
systems.

7.2.2 HVS Models

Incorporating HVS models in coding systems has recently become a common 
practice. While being helpful in some cases, applying this notion in a brute- 
force manner could be destructive in other cases. As explained in chapter 2, 
the visual system is most often described and investigated at threshold behav-
ior. Unfortunately, it turns out that the visual system is far from linear, and 
properties of threshold vision cannot generally be applied to the suprathreshold 
(visible impairment) case. The main part of research on the visual system is thus 
primarily applicable to very good quality image coding, where the main prob-
lem concerns coding with imperceptible artifacts. At low rates, however, visible 
degradations will always be present, and care must be taken when employing 
simple HVS models within the coding system. Future work should tackle the 
visual modelling problem further in order to find more appropriate models for 
suprathreshold vision.

7.2.3 Entropy Coding

In general, coding N  vectors with log2 N  bits each is actually the maximum 
rate needed for coding. The minimum average achievable rate to encode the 
codevectors {?/,} is given by the entropy of {?/,} [Gallager 1968]. The entropy 
7i (y)  of the discrete-amplitude variable y =  {jh ; ¿ =  1 ,2 , . . . ,  N }  is defined by

/H(y) =  -  ]T  p r(y,) l°g2 Pr(jh) (7.1)
i—1

where Pr(jh) is the discrete probability of yt. If each vector is coded using 
B{ =  — log2 Pr(yt) bits so that vectors with different probabilities will have dif-
ferent codeword lengths, then the resulting code will be a variable-length code
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with an average rate equal to the entropy H(y).  This type of coding is known 

as entropy coding.

Entropy coding is one form of noiseless coding in that the coding does not 
introduce any additional noise or distortion beyond that introduced by the quan-
tisation process. It merely takes advantage of the probability distribution of the 
codewords to minimise the bit rate. A well-known straightforward method for 
implementing entropy coding is the Huffman code [Huffman 1952]. We believe 

that a 20% reduction in bit rate, without any degradation in image quality, can 
be achieved by designing an appropriate Huffman code for the DCGSVQ code-
vectors. To design such a code, we suggest to use a large set of source images 

in conjunction with the CNNC algorithm. Based on a statistical study of the 
codevectors, employed for encoding the source images, a Huffman code can be 
designed and used to further improve the coding performance of DCGSVQ.

7.2.4 Lapped Orthogonal Transform

A new class of transforms for block coding has been recently introduced in 
[Cassereau 1985] and [Malvar 1989]. These new transforms, collectively referred 
to as the Lapped Orthogonal Transform (LOT), are characterized by the fact that 

the basis functions overlap adjacent blocks; however, the number of transform 
coefficients is kept equal to the original block size so that no data overhead 
is incurred. Consequently, fast LOT procedures, like the one introduced in 
[Malvar 1989], allow the implementation of block coding systems at low bit rates 
with much less noticeable blocking effects than traditional DCT-based systems.

The energy compaction performance of several lapped orthogonal transforms 
in comparison with the DCT has been studied in [Akansu 1992]. It has been 
shown that the performance of the LOT is superior to that of the DCT espe-
cially for high correlation sources. In addition, visual tests of coded images have 
confirmed that the blocking effect is indeed less visible when the LOT is em-
ployed. Therefore, we suggest that the applicability of the LOT to the proposed 
DCGSVQ should be studied. In particular, the notion of directional vectors in 
the LOT domain should be understood before attempting to replace the DCT 
by the LOT. We anticipate that better coding results could be achieved if the
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LOT would be employed within the DCGSVQ.

7.2.5 Interframe Coding

Video compression techniques can be divided into two broad classes : 
intraframe and interframe coding. Intraframe coding is used to remove redun-
dancy in single-frame images exploiting the strong correlation between neigh-
bouring pixels. Interframe coding takes advantage of the strong correlation in 
video frame sequences to reduce the picture redundancy between frames. In 
general, both coding techniques should be used together to achieve the highest 
compression ratio.

Motion in video conferencing scenes is usually low. In such a case, interframe 
coding techniques can reduce the information redundancy in video sequences. 
Combined with intraframe coding, a high compression ratio can be achieved by 
incorporating motion detection techniques and then sending only the motion in-
formation through the communication channel. According to this technique, the 
picture is segmented into two parts : the stationary and the moving areas. Only 
the information about the moving area is transmitted in the form of a difference 
pattern between the current and previous frame images. It was suggested in the 
early ’70s that this scheme can be improved by estimating the displacement of 

objects in the current frame based upon the previous frame image and using the 
estimated displacement for more efficient predictive coding [Rocca 1972]. This 
type of scheme is called motion compensated coding [Netravali 1979].

Several methods of estimating the object’s displacement in a video sequence 
have been proposed. Generally, they can be classified into two types : pixel- 
recursive algorithms (PRA) [Rocca 1972] and block-matching algorithms (BMA) 
[Kappagantula 1983]. PRA depends on the temporal and spatial differential 
signals between the pixel intensity in the previous frame and the pixel inten-
sity in the current frame. BMA matches blocks in the previous frame with 
corresponding blocks in the current frame. Usually, PRA can track complex 
motion more accurately than BMA. This is because individual pixels in a block 
may undergo different translating movement. However, the hardware imple-
mentation for BMA is much simpler than PRA. We believe that the DCGSVQ
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technique, proposed in this thesis, can be successfully combined with interframe 
coding techniques that employ motion detection and compensation techniques 
to provide a good coder for teleconferencing applications.

7.2.6 Image Compression Standards

Lack of open standards for video compression techniques could slow the growth 
of this technology and its applications. Therefore, during the last few years 
progress has been made on digital video standards. The three main ones concern 
still-picture compression, video teleconferencing, and full-motion compression on 
digital storage media. They have been proposed by the Joint Photographic Ex-
pert Group (JPEG), the International Telegraph and Telephone Consulative 
Committee (CCITT), and the Moving Picture Expert Group (MPEG), respec-

tively.

The JPEG standard is an algorithm for coding still images developed under 
the patronage of the International Organisation for Standardisation (ISO). It is 
a general-purpose compression standard designed to meet the needs of continu-
ous tone, still image applications. It is applicable to such uses as photovideotex, 
desktop publishing, the graphic arts, color facsimile, newspaper wirephoto trans-
mission, and medical imaging.

CCITT’s Recommendation H.261 (also called p x 64) specifies a method of 
communication for visual telephony. It is a standard for covering the entire 
channel capacity of the integrated services digital network (ISDN). The p x 64 
designation refers to p x 64 kb/Sec, where p can have any value from 1 to 30. 
The standard is intended for use in videophone and videoconferencing.

MPEG, the third digital video standard, can be applied to such storage me-
dia as compact disc ROM (CD ROM), digital audio tape, Winchester disk, and 
writable optical discs and on such communication channels as ISDN and local 
area networks (LANs). MPEG addresses the compression of video signals at 
about 1.5 Mb/Sec and of digital audio signals at the rates of 64, 128, and 192 

kb/Sec. It also deals with the synchronisation and multiplexing of multiple com-
pressed audio and video bit streams. Another new phase of MPEG committee
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activities is addressing the need for a video compression algorithm (MPEG-2) 
for higher-resolution signals at bit rates up to 10 Mb/Sec.

The standards mentioned above fall under the heading of transform-based 
image coding. Color images, represented in the red-green-blue (RGB) system 
used in the computer industry, or in the luminance-chrominance (YIQ) system 
used in the television industry, can be coded by applying separately the standard 
algorithm to each of the color components. In the JPEG encoder, for example, 
each component of the source image is divided into non-overlapping blocks of 
8x8 pixels and then transformed using the two-dimensional DCT. In the cosine 
domain, the AC coefficients are quantised by a scalar quantiser with a variable 
quantisation step size. The quantisation step size varies with frequency reflecting 
the fact the high-frequency coefficients are subjectively less important than the 
low-frequency ones and may, therefore, be quantised more coarsely (a similar 

idea has been implemented in the DCGSVQ system proposed by us).

Following quantisation, the AC coefficients are ordered into a one-dimensional 
array and after run-length coding they are losslessly encoded using Huffman cod-
ing. The DC coefficients are differentially encoded so that the DC coefficient of 
the previous block is used to predict the DC coefficient of the current block and 
the difference between these two DC terms is encoded. Huffman coding is also 
applied to the coded difference values.

The H.261 and the MPEG coders combine transform coding with predictive 
coding, in which a block in the current frame is predicted from a block in the 
previous frame. These standards have also an optional specification for mo-
tion compensation to increase the predictive coder’s efficiency in tracking the 
interframe motion. These coders employ a scalar quantiser to encode the DCT 
coefficients due to the simplicity of this method. We believe that, in general, 
better encoding performance can be achieved if a VQ would be used for this 
purpose combined with Huffman coding of its codevectors, as proposed in a 
previous subsection. In particular, we believe that the good performance of the 
DCGSVQ system along with the simple codebook design method proposed in 
this thesis, may result in an alternative coding method to the JPEG standard.
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The activities described above certainly demonstrate the widespread recog-
nition of the need for image compression in many diverse applications where just 
few years ago compression was not considered viable. We anticipate a prolifer-
ation of image compression in the near future, and certainly hope to take part 
in developing better coding systems.
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Appendix A

A  Fast Search Algorithm

In this Appendix we address a common problem encountered in VQ systems 
called the search problem, and explain a simple algorithm which helps overcom-
ing this problem. First, the basic search problem is stated.

Given a query vector x € Rk and a set of codevectors C =  {y  1 , 2/2, • • •, Vn }  6 Rk, 
find which codevector is closest to x in the sense of minimum squared error. * •

A simple, but efficient, nearest neighbour search algorithm to reduce computa-
tional efforts and solve the search problem was proposed in [Soleymani 1987]. 
According to this algorithm, the reduction in computational efforts and com-
plexity is achieved by performing a test prior to calculating the distortion for 
a given codevector, thereby avoiding the distortion calculation for those code-
vectors which fail this test. Before describing the mentioned algorithm, the 
following variables are defined:

• ‘R ’ is the square root of the minimum distortion, found thus far.

• ‘I’ stores the index of the closest codevector, found thus far.

• lY' stores the closest codevector to x, the query vector, i.e.,

Y =  min- 1 [d(x, y,-)]y,ec
where the inverse minimum notation means that Y  equals the codevector 
yi which yields the indicated minimum distortion.
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The algorithm itself can be summarised as follows:

1 . Starting with the first codevector y\ calculate the distortion

d(x,Y)  =  || x - Y  ||2 =  ¿ ( * ? - F ? )2
9=1

where Y  =  y\ and 1 =  1.

Defining R =  [d(x,Y)]xl2 , a hypersphere with radius R is drawn around 
x , inscribed by a hypercube. Any codevector yi (i ^  1) that is closer to x 
than yi should lie inside the hypersphere and thus inside the hypercube 
inscribing it. A search for such a codevector is carried out in the next step 
by first checking whether it lies inside the hypercube and if it does, only 
then checking whether it lies inside the hypersphere.

2. For each codevector yt (?' =  2, 3 , . . . ,  N)  the following comparisons are car-
ried out:

a) If R <| xq — yiq | for a dimension q (q =  1,2, . . . ,&)  then yi is outside 
the hypercube, inscribing the hypersphere, thus it is rejected.

b) If R >| xq — yiq | for each dimension q (q =  1,2, . . .  ,k)  then yi is in-
side the hypercube but not necessarily inside the hypersphere itself. 
To find out whether yt is inside the hypersphere, di(x,yi) should be 
calculated by

k
di(x, yi) ^ l/iq) i

9=1

and the following comparisons should be carried out:
If R > Ri then yt is inside the hypersphere (i.e., y,- is closer to x than 
the codevector stored in Y), and the following variables are updated:

R =  Ri ; Y  =  yi ; I =  i.
If R < Rt then yt does not lie inside the hypersphere, thus it is re-

jected.

Step 2 is carried out until all the codevectors are checked. At the conclusion 
of the algorithm, Y  stores the closest codevector, /  defines its index and the 
minimum distortion is given by R2.
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Appendix B

The Merging Error

In this Appendix we derive the equations used to calculate the merging error 
incurred when two clusters of vectors are merged into one cluster, having a 
weighted average vector as its centroid. The equation used to calculate the new 

centroid of the unified cluster is also determined.

Let Sj and Si denote two non-empty and disjoint clusters consisting of rrij 
and mi vectors respectively (Sj fl Si =  0, the empty set). Let Sp =  Sj U Si, i.e., 
Sp is produced by uniting the clusters Sj and Si. For fc-dimensional vectors 
x G Rk and the squared error distortion measure, the centroid is defined by

X q =  —  E ®  for q =  j , l , p  , (B.l)
,e sq

and the sum of the squared distances of the vectors in the cluster from its 
centroid by

Dq =  E  1 1®- ^?  I I 2 for q = L l,P-  (B.2 )
xSSq

By squaring, D q can be written as

D,  =  E [l! *  f  +  II X ,  II2 -  2 xX j ]  =
x£Sq

=  E II t  II2 +  E  II ||2 -  2 E  i x T,
x£Sq xESq x£Sq

=  E  II *  II2 +  II II2 -  2 x ?T E  *
xESq XESq

(B.3)
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Combining Eq. (B .l) and Eq. (B.3) we get

D q = Y  Wx
x£Sq

mq || Xq for q =  j, /, p . (B.4)

The centroid X p and the sum of squared distances Dp can be represented as 
functions of X j, X[, D j and Di as follows

= z r  x =  —m~ mr Y x + Z x
X&Sj XdzSl°p  xesp

Using Eq. (B.l) and the equality mp — rrij +  mi we get

m jX j + m iXi
Xr,

m 1 +  mi

Substituting Eq. (B.6) in Eq. (B.4) with q = p yields

mjXj + miXi
Dn Y  IIx

xESj
+  E

x£Si
x II2 — mr

mr

Using Eq. (B.4) again for q =  j , l  yields

Dp — Dq +  mj || X j ||2 +  Di +  mi || Xi ||2 —-
1

mr
m jX j + miXi

Finally, using the equality

|| m jX j  T  m iXi ||2 =  m2 || X j  ||2 T  m 2 | A / ||2 +  ‘ImjmiXj X ;

(B.5)

(B.6)

(B.7)

(B.8)

it can be shown that

Dp =  Dj +  D i+  mjm‘ || X j -  Xi ||2 . (B.9)
rrij + mi

Thus the merging error incurred when merging the two clusters Sj and Si to 

produce Sp, a new cluster having X p as its centroid, is defined by

M E jt = Dp -  {Dj + Di) = || X j -  X i  ||2 . (B .10)
J +  mi
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Appendix C

A  New Fast Search Algorithm

In this Appendix, the search problem encountered within the CNNC algorithm is 
addressed, and a new algorithm is proposed to reduce the computational efforts. 
The search problem could be stated as follows:

Given a set of clusters {Si, S 2, ■ ■., Sfi}, consisting of vectors x  € R k, and a set 
of centroids {X i G Rk ; i — 1 ,2 , . . . ,  L} representing these clusters. Find two 
clusters that incur minimum merging error when merged to produce one cluster.

Our new algorithm is based on a simpler algorithm proposed for solving the 
search problem in VQ systems (see Appendix A for discussion). The rationale 
behind the new algorithm is described first.

Starting with two clusters Si and S j , the merging error is defined as the 
additional distortion introduced by merging the two clusters and representing 
the two clusters worth of data with a single centroid. It is defined in Appendix B

by

MEij =
m i + rrij

X i  -  X i T i, £ (* ,• , -  X
? = i

( C . l )

T
m%m3

rrii + rrij
(C.2)

where m,- and m j  are the numbers of vectors in clusters Si and S j , respectively, 
and X i  and X j  are the centroids of these clusters. If instead of merging Si 

with S j cluster Sa (a <  L, a ^  i , j )  is merged with cluster S i, the merging error
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incurred is given by
k

M E ia =  TtaJ2( X iq- X aqy  (C.3)
q = l

where 7)a is defined as in Eq. (C.2) replacing m2 by ma. The question now is 
whether M E i j  >  M E i a. Defining

Rl -  X , , ) 2 ,
9=1

(C.4)

and using Eq. (C.3) the question is whether ME¡j > T{aR2ia, 
whether R > Rta, where

„  \MEij 11/2
R -  J

T-1 1C

or equivalently

(C.5)

Thus, summarising the above discussion, cluster Sa is a better candidate than 
Sj for merging with cluster Si if and only if the inequality of R > Ria holds.

It should be noted that Ria is the Euclidean distance between the centroids 
Xi and X a. Calculating this distance for all possible pairs of clusters is time 
consuming and computationally demanding. In the proposed algorithm, the 
reduction in computational efforts and complexity is achieved by performing a 
test prior to calculating the merging error (or equivalently f?80) for a given pair 
of clusters, thereby avoiding error calculation for those clusters which fail this 
test. The new algorithm can be summarised as follows:

1 . Starting with a pair of clusters Si and Sj, M E ij  is first calculated employ-
ing Eq. (C.l). The following variables are initialised:

M E  — M E ij  ; W  =  i ; and V  =  j.

2. Taking any centroid X a (a =  1 ,2 , . . . ,  L ; a ^  Ci) ,  Tia and R are calcu-
lated employing equations (C.2) and (C.5), respectively. A hypersphere 
with radius R is then drawn around X ,, inscribed by a hypercube. If cen-
troid X a is closer to X t than X j, it should lie inside the hypersphere and 
thus inside the hypercube inscribing it. Therefore, testing consists of first 
checking whether X a lies inside the hypercube and if it does, only then 
checking whether X a lies inside the hypersphere. Thus, for centroid X a 
(representing cluster Sa) the following comparisons should be carried out:

a) If R <| Xiq — X aq | for a dimension q (q =  1 ,2 , . . . ,  k) then X a is out-
side the hypercube, inscribing the hypersphere, and thus it is rejected.
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b) If R >| Xiq — X aq | for each dimension q (q =  1,2, ,k)  then X a is 
inside the hypercube but not necessarily inside the hypersphere itself. 

To find out whether X a is inside the hypersphere, Ria should be cal-
culated according to Eq. (C.4) and the following comparisons should 

then be carried out:
If R  > R ia then X a is inside the hypersphere (it is closer to X{  than 

the centroid X j ) and the following variables are updated:

M E  =  TiaR 2ia = M E ia ,

W  =  i ; and V  =  a .

If R < R ia then X a does not lie inside the hypersphere, thus it is 

rejected.

Step 2 is carried out until all combinations of centroid pairs are tested. At the 
conclusion of the algorithm, the indices of the closest clusters are stored in W 
and V,  and the error incurred by merging those clusters is stored in ME.
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Appendix D

Complexity Study

In this Appendix, a theoretical study of the complexity of the CNNC algorithm 
in comparison to the brute-force method, described in [Ramamurthi 1986], is 
presented. The following assumptions have been made during the complexity 
study:

a) M  different classes are defined for the CVQ system.

b) n training vectors are used for codebook design; these vectors are equally 
divided to the M  classes so that n/M training vectors are used in each 
class for designing the partial codebook for that class.

c) One iteration of the LBG algorithm is needed for designing a partial code-
book for a certain class within the brute-force algorithm.

d) The dimension of an image vector is k.

e) Ni is the number of codevectors allocated to class every permissible

allocation for the set {iV,} such that Nt ^  0 for all i and Ylii 1 =  N
should be checked within the brute-force algorithm.

The CNNC Algorithm

During the first step of the algorithm, a search within each class is conducted 
to find a pair of clusters which incur minimum merging error when merged. We
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assume that the merging error should be calculated for each pair of clusters with-
out employing the fast search algorithm described in Appendix C. The merging 
error should be calculated K 0 times for each class, requiring T0 calculations in 

total during the first step, i.e.,

r 0 =  k 0m
I n n  
2 M M

1)M . (D .l)

The pairs of clusters, found during the first step in the different classes, 
are kept on a merging list. During the next stages, pairs of clusters which 
incur minimum merging error among all the pairs on the merging list, are being 
selected in each stage and merged. After merging a pair of clusters in one class, 
a search is conducted in that class to find a new pair of clusters as candidates 

for merging in the next stage. Suppose that i pairs of clusters have already been 
merged in some class then, the number of clusters left in that class is (n/M — i). 
Thus, the merging error should be calculated K{ times to find a new pair of 
clusters in that class as candidates for merging in the next stage where

Ki =  1 ) •2 kM  a M  ;
(D.2)

It should be noted that maximum mathematical operations are required if in 
each stage of the algorithm the search for a new pair of clusters is conducted in 
the largest class, i.e., a merge occurs within the class which contains the largest 
number of left clusters. Since we assume that at the starting point the number 
of training vectors (clusters) in each class is the same, maximum operations are 
required if merging is carried out in a cyclic way. Thus, we assume that after 
merging clusters in each of the M  classes a new cycle of merges is started, and 
the process is carried out in this manner until the number of left clusters in the 
M  classes accumulates to the desired number of codevectors N.

The number of integer cycles needed for the conclusion of the CNNC algo-
rithm is denoted by J, i.e.,

n - N  
. M  . '

(0.3)

It is assumed that the algorithm concludes with a search for a new pair of 
clusters conducted within the last class where merging took place. Thus, for 
J =  0 (incomplete merging cycle) the total number of error calculations is:

To4- =  K qM  +  KiS  for J =  0 (D.4)
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where S =  (n — N)  < M  is the number of classes within which one merge took 
place, K\ is defined in Eq. (D.2) for i =  1, and ‘0+ ’ denotes the first incomplete 
merging cycle. Thus, employing equations (D.2) and (D .l) we get

To+ = ~
77 77 77

—  ( —  -  ! ) (n - N  +  M ) -  2(—  -  l)(n  -  N) [ M M  ’  VM
for J =  0 . (D.5)

Suppose now that J ^  0 complete merging cycles, and another S < M  merges 
took place till the conclusion of the codebook design. Then, the total number 
of error calculations is given by

j
Tj =  K0M  +  KiM  for J ±  0 and 5 =  0 , (D.6)

¿=i

and by

j
TJ+ =  K 0M  +  K iM  +  K J-iS for J i  0 and 0 < 5 < M  (D.7)

i=i

where S — (n — N — M J ), and ‘J + ’ denotes J complete merging cycles plus 
one incomplete cycle during which S merges took place. It should be noted that 
in each of the last S classes the search is carried out among (J — 1 ) left clusters, 
requiring Arj_ i error calculations during each search.

Eq. (D.7) can be written explicitly as

1 ti . ti . ^^ I n .\/^ • i\
J+ = 2 M M  _  ) +  ¿ 2  ( M _ ? ) ( M “ i _  ) +l = l

I 77 77

+  2 { M ~ J ~ l K M ~ J ~ 2 ) { n ~ N ~ M J ) - ( D ' 8 )

It can be shown that after some mathematical manipulations we get

I 77 TI

-  ^ T ( S ^ l ) ( J +  l) + ~ ( J  +  l)  (D.9)

A good approximation can be found by replacing J with (n — N)/M, i.e., taking 

J to be a real number. It can be shown that

M 2l
T j+

{ n - N  +  M )3 +  { n - N  +  M)[3n(7V -  M)
6 M 2
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The merging error is defined in Eq. (C .l) in Appendix C. The following 
mathematical operations are required each time the merging error is being cal-
culated: (k +  2 ) multiplications, k subtractions, k additions, and one division. 

Thus, for example, the total number of multiplications is

Pc oc
(n -  N  +  M f { k  +  2)

6M 2
(D. 11)

where oc denotes ‘proportional to’ . It should be emphasized that Tj+ is the 
upper bound on the required number of error calculations for the mentioned set 

of assumptions.

The Brute-Force Method

Every permissible allocation for the set {N{} of codevectors such that N{ ^  0 
for all i, and Ya L\ Af =  N  should be checked to find an optimal allocation that 
yields the least average distortion (see section 2.3 for details). The question: 
“How many permissible allocations are available ?” is equivalent to the ques-
tion: “How many ways exist for dividing N  balls into M  boxes without leaving 
any box empty ?” . First, assuming that N  > M , one ball is put in each box 
thus ensuring that no box is left empty. The question now becomes: “How many 
ways exist for dividing (N  — M)  balls into M  boxes ?” . It can be shown that 

the answer is:

Z
( ( M  +  N - M -  1)\
l  ( M - l )  )

(N  — 1)!
(M -  l)\(N -  M)\

(D.12)

where ! denotes factorial.

According to the brute-force method, for each allocation { N . t  =  1 , 2 , . . . ,  T, 
M  sub-codebooks are designed employing the LBG algorithm. The distortion 
measure used within the LBG algorithm is the squared error which is defined by

k
d(x, ÿi) =  J2(x <i ~ yiq¥ (D.13)

9=1

where x is a training vector, and ÿi is a codevector. The following mathematical 

operations are required each time the squared error is being calculated: k mul-
tiplications, k subtractions, and {k — 1) additions. Thus, for a given allocation 
of codevectors, {N-^}  =  {N^\ N^\ ■ ■ ■, N ^ } ,  and for the first assignment of
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training vectors (in each class) to the clusters represented by the initial guess of 
codevectors (in each class), the number of required multiplications is

T, = Ni'k + — N^k +
M
n 

M

—  y  N (t) =
M h  ‘

n
+ T i N- k -

% N .M
(D.14)

Since we assume that one iteration of the LB G algorithm is needed for de-

signing a satisfactory sub-codebook in each class for a given allocation of code-
vectors, the number of required multiplications is doubled. To understand our 
argument, one must remember that after the initial assignment of training vec-
tors to clusters represented by a first guess of codevectors, new centroids are 
calculated for each cluster and defined as the new codevectors. Then a second 
pass of assigning training vectors in each class to clusters that are represented 
by those new centroids is carried out. The algorithm concludes after calculating 
new centroids for each cluster based on the assignment which took place during 
the second pass. Thus, the total number of multiplications needed for the design 

of a CVQ codebook is

2nk N 7  =  2 nk (N — 1)!
M 1 M  (M  — 1)!(JV — M)\

(D.15)

Equation (D.15) defines a lower bound on the number of required multiplications 
since, in general, more iterations than one are needed for the design of a sub-
codebook employing the LBG algorithm. It should be noted that mathematical 
operations, involved in calculating centroids within the brute-force algorithm, as 
well as comparisons have been ignored in our study. Mathematical operations, 
involved in calculating the weighted average centroid when two clusters are being 
merged within the CNNC algorithm, have been ignored too. Consequently, 
for n=8196, M=15, and fV=512, approximately 6.1 x 109 multiplications are 
required for the CNNC algorithm while requiring 7.1 x 1033 multiplications for 

the brute-force algorithm.
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Appendix E

A  New Merging Criterion

In this appendix, a new merging criterion, to be used within the CNNC 
algorithm, is developed. The new merging criterion is proved to ensure shape 
preservation when employed in the process of designing the M  shape codebooks, 
needed for the new DCGSVQ system.
We start by introducing the following notation and definitions :

a) Si is a cluster of A:-dimensional normalised vectors,
Si — { x ni e  Rk ; Xnfini =  1 , 1 — 1 , 2 , ...,m t}, where ml is the number of 
normalised vectors in cluster Si and (-)T denotes transpose.

b) Xi is the centroid of cluster Si. When the squared error is being used as 
the distortion measure the centroid is defined as follows [Helmuth 1980]:

Xi =  —  Yh Xn ■ (E .l)
m i xnes,

It should be noted that the centroid of a set of normalised vectors is not 
necessarily normalised.

c) A is the set of all normalised vectors a, i.e., A =  {a (E Rk; aTa =  1}.

d) is the total cross-correlation between all the vectors in cluster Si and a 
normalised vector a, i.e.,

Pi =  Y  xna ■
Xn&Si

(E.2)
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Secondly, we consider the following basic problem:

Given a cluster St of normalised vectors find a representative normalised vector, 
a £ A, such that pi is maximised.
Equivalently, the following notation may be used

a, =  max aeA E  -la (E.3)

where the inverse maximum means that a,- is that vector a £ A which ensures 
maximum pi.

To solve this problem the following lemma is stated and proved.
Lem m a 1: The normalised vector, a £ A, which ensures maximum pi in cluster 

Si is the normalised centroid of that cluster.

P r o o f : Let d(xn,a) denote the distortion measure between x n and a.
Employing the squared error as the distortion measure we have

d(xn,a) =  || xn — a \\2 =  x^xn — 2x^a + aTa. (E-4)

Since xn and a are both normalised vectors, we get

d(xn,a) =  2 [l -  . (E.5)

The total squared error in the cluster Si incurred when all the shape 
vectors x n £ Si are represented (coded) by the vector a is

A  =  E  < * ( * » .  > a )  =  E  2 [i -
Xii£S, Xn£S,

(E.6)

Equivalently equation (E.6) can be written as follows

D i =  2 mi- E  xlà (E.7)

Now let (âi)min € A denote that normalised vector which ensures mini-
mum total squared error in cluster Si , i.e.,

(®i)r min 1 \DiaeA
mmneA m i -  E -T-  x„ a (E.8)
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Since m, is a given entity, the argument within the brackets in equation 

(E.8) can be minimised by maximising Ylxnest 5 i -e-5

(Oj)m in  — max
a e A

£  x la  . (E.9)

However, equations (E.9) and (E.3) are identical. Therefore, we have 
shown that the normalised vector a £ A, that ensures maximum total 
cross-correlation between all the vectors in cluster Si and itself, is also 
that normalised vector that ensures the minimum total squared error in 

that cluster, i.e.,

Ui — (®i)min • (E .10)

Returning to equation (E.3), it can be rewritten as follows

Cli maxaeA aT £  xn
Xn£Si

Then substituting equation (E .l) in equation (E .ll) we get

(E .ll)

a,i maxaeA
- 1

rrii a T X i maxaeA (E.12)

Therefore, the vector a £ A should be in the same direction as the cen-
troid Xi, i.e.,

v .

C1 i — (flj)min — Tj 3̂  77 •> (E .13)
II i II

where j| Xi || is the magnitude (norm) of Xi.
Equation (E.13) states exactly what has been put into words by lemma 1. 
Therefore, lemma 1 is proven.

So far we have shown how to select that shape vector which can best repre-
sent the cluster Si of shape vectors. Next we consider the second basic problem.
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Given two clusters of normalised vectors,
Si =  { x ni e  Rk ; x^Xni =  1 , / =  1 , 2 , and
Sj =  { x ni G Rk ; x ^ xni =  1, l =  1 , 2 ,..., ruj} where mt- and rrij denote the num-
ber of vectors in cluster Si and Sj respectively, and Si fl Sj =  0, the empty set. 
A unified cluster Sij is produced by merging cluster St with cluster Sj ,i.e.,

Sij =  Si U Sj.
Find the merging error incurred when Sij is being represented by a normalised 
vector dij E A.

The merging error MEij is defined in Appendix B by

M E ij  =  Dij — ( D{ +  D j ) , (E.14)

where Dt , Dj and Dij denote the total squared error incurred when all the 
normalised vectors in clusters Si , Sj and Sij are being coded (represented) by the 
representative vectors a2- , dj, and dij, respectively. In other words, the merging 
error is the extra total squared error incurred by merging the clusters and coding 
all the vectors by a new representative vector.
Employing equations (E.l) and (E.7), and replacing a with al we get

Di — (A')m»n mi -  o f  x r 2m; T — aj X , (E.15)

Using equation (E.13) and remembering that a2 is a normalised vector we get

Di =  2 nu |l — a j  ai || X t 2rrii 1 — Il X, (E.16)

Following equation (E.16) we have

Dj =  2mj j l — || Xj  ||] , and (E.17)

D^ =  2(m,- +  mj) [ l— || Xij ||] . (E.18)

Employing equations (E.14) and (E.16) through (E.18) we get 

MEij =  2(rm+mj)  [ l -  || X tJ ||]-2mf [ l -  || X { ||]-2m, [ l -  || Xj  ||] . (E.19)

Xij has been defined in Appendix B as

Xi.
miXi +  rrijXj

mi +  m;
(E.20)

therefore, by substituting equation (E.20) in equation(E.19) and arranging the 

arguments we get :
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MEij =  2rm || Xi || +  2mj  || Xj  || — 2 || mlX l +  m3X,  || . (E.21)

Nice formula as it is, equation (E.21) seems to have no meaning with respect to 
our shape vectors. However, as will be shown next, it does have a great meaning.

Using as the representative shape vector for cluster Si, and employing 
equations (E .l) and (E.13), equation (E.2) can be rewritten as follows :

Pi =  «»■ 2^ Xn =  fUiO-i Xi =  miCLi a,i || Xi || .

Since a,i is normalised we finally get

Pi —- mi || X i  || (E.22)

Similarly,

Pj =  mj II Xj  II , and (E.23)

pij =  (mi +  W j) || X ij  || =  || mlX l +  m jX j  || . (E.24)

Using these results, equation (E.21) becomes

M E ij  =  2 \(pi T Pj) ~ pij] • (E.25)

Thus, MEij is actually a measure of the damage, in terms of total cross-
correlation, caused by merging cluster Si with cluster Sj and having aij as the 
new representative shape vector for the unified cluster Sij. The smaller the 
merging error the smaller will be the damage in terms of shape preservation, 
and vice versa. That is why the merging error, as defined in equation (E.21), 
can be used as a meaningful merging criterion within the CNNC algorithm to 
design the M  shape codebooks, needed for the proposed DCGSVQ system.
To conclude, the following remarks should be remembered :

a) The vectors, used as the training set for designing the shape codebooks, 
should all be normalised before the algorithm is started.

b) At the conclusion of the algorithm, all the unified centroids should be 
normalised in order to get the required shape codebooks.
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Appendix F

The Pixel Classifier

In this appendix, we describe the pixel classifier, employed within the postpro-
cessing algorithm for detecting edge pixels, i.e., pixels which lie on or near an 
edge. It is based on the analysis of a 3x3 neighbourhood, surrounding the pixel 
under test, and on known properties of the human visual system.
Let Iave(x : y , q,p) denote the average intensity of two adjacent pixels, I ( x , y) and 
I(x  +  q,y +  p), i.e.

hve(x ,y ,q ,p )
i { x ,y )  +  l {x  +  g,y +  p)

2
(F .l)

for q,p — —1 , 0 ,1  excluding the case q =  p =  0.
The gradients in different directions are defined as follows:

d(x,y,q,p) =  I I (x ,y )  -  I (x  +  q,y + p) \ . (F.2)

Let dn(x,y,q,p)  denote the gradients in various directions normalised by the 
average intensity of two adjacent pixels. It is defined as follows:

dn(x,y,q,p)
d{x,y,q,p)

Iave(x,y,q,p)
2 1 I (x ,y )  -  I{x  +  q,y +  p) 

I [x ,y )  +  I(x  +  q,y +  p)
(F.3)

This definition is in accord with the well known fact that the sensitivity of the 
human visual system is proportional to the normalised gradient and not to the 

gradient itself [Pratt 1978].
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Two counters m and n are defined and set to zero. These counters are 

incremented according to :

m =  m +  1 if dn(x,y,q,p)  >  T 

n =  n +  1 if dn(x,y, q,p) < T  (F.4)

for q,p =  —1 , 0 ,1  excluding the case q =  p =  0 .
The threshold T is used for detecting most of the edges and avoiding false 
detection. It was determined by experiments and found to be a function of the 
average intensity of the two pixels under consideration when Iave was low (under 
50 on an intensity scale between 0-255). The threshold T is defined by

T =  T(x,y ,q ,p)  =
7--- --------r if Iave(x, V, 0, p) <  50.0Iave(x ,y ,q ,p)  avey  1 V I ' l i t ' )

0.2 otherwise .
(F.5)

A pixel is defined as a non-edge pixel if m <  1 or n =  0, otherwise it is 
defined as an edge pixel. It should be noticed that n — 0 when the normalised 
gradients between the pixel under test and each of the pixels surrounding it are 
greater than the threshold T. In that case we assume that the pixel under test 
is contaminated by some random speckle noise, thus classifying it as a non-edge 
pixel rather than an edge pixel.
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Appendix G

Filter Design Based on 
Properties of HVS

In this appendix, we describe a new filter design method which incorporates per-
ceptual properties of the human visual system. This method has been employed 
for designing the various filters, used for postprocessing the block-coded images 
throughout our research.

G .l Introduction

Typical frequency design specifications of a low-pass filter used for noise removal 
are:

a. <$i - the deviation of the magnitude characteristics from that of an ideal 
filter in the passband;

b. 82 - the amount of attenuation in the stopband;

c. (fh — fi) - the width of the transition band; and,

d. ¿ 3 - the deviation of the group delay from that of the ideal filter’s constant 

group delay in the passband.

While these frequency specifications are quite simple and many design methods 
that incorporate them have been developed, they are not adequate for the design
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of image processing filters where the visual appearance of the resulting image 
is of prime importance (see [Hentea 1984] for discussion). This follows from the 
fact that an "ideal” low-pass filter, approximated by these design specifications, 

has itself impulse and step responses that are visually poor approximations of 
the ideal pulse and step functions. Two undesirable visual effects are observed 
when “ideal” low-pass filters are employed in image processing: (i) the blurring 
of edges and other sharp details, and (n) the occurrence of significant ripples in 

the vicinity of edges.

A new technique which is better suited for the design of image processing 
filters has been proposed by Hentea and Algazi in [Hentea 1984]. This tech-
nique is based on a weighted least squares design procedure which incorporates 
perceptual properties of the human visual system (HVS) as part of the opti-
mization process. This technique has been successfully used for designing FIR 
anisotropic filters for image enhancement [Algazi 1986] and FIR low-pass filters 

for decimation and interpolation [Algazi 1989].

Two perceptual properties of human vision have been incorporated into the 
new filter design procedure: contrast sensitivity and spatial visual masking. 
Both properties have been described in detail in chapter 3. The following two 
functions have been proposed in the literature for describing the contrast sensi-
tivity, or equivalently the modulation transfer function, of the HVS :

Hv{ f )  =  ‘2.6[0.0192 +  0.114/] exp[—(0.114/)1'1] and, (G .l)

Hv(f )  =  [0.2 +  0.45/] exp(—0.18/) . (G.2)

The first function has been proposed by Mannos and Sakrison having a peak 
value at a spatial frequency /  =  8.0 cycles per degree [Mannos 1974]. The 

second function has been proposed by Mill having a peak value at a spatial 
frequency /  =  5.2 cycles per degree [Nill 1985]. These functions have been 
used alternatively by us within the filter design procedure, and are depicted in 
Fig. G.l.

The spatial visual masking effect has been usually modeled by a visibility 
function, also called the spatial masking function. The visibility function, vi(x), 
has been defined in chapter 3 by

v i ( x )  =  1 -  a|x| (G.3)
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MODULATION TRANSFER FUNCTIONS OF HVS

FREQUENCY [cyclea/deg.]

Figure G .l: Modulation transfer functions of the HVS.

where x is the distance from an edge, and the constant a lies between 0.0 and 1.0 

(depending on the ratio of the bright and dark intensities of the edge). Following 
Hentea and Algazi [Hentea 1984], we will use the value a =  0.75 which was found 
to be best suited for our purposes.
We present next a general formulation of the design problem and describe the 
design technique which incorporates the perceptual properties mentioned above.

G.2 Problem Formulation and Filter Design

Consider the following block diagram, depicted in Fig G.2, which models a 
broad class of image processing problems. The image formation system hs(x : y ) 
introduces spatial degradation of the image I (x ,y ) .  We denote by n(x,y)  some 
additive, unwanted noise or distortion introduced, for example, by a block coding 
system. The role of the processing filter, h(x. y). is to produce an approximation 
of the true image, I (x ,y ) ,  and to reduce noise corrupting I'(x,y).  The cascade 
of the two systems hs(x. y) and h(x.y)  will be, in general, a low-pass filter that
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n(x,g)

Figure G.2: Block diagram of an image processing system (from [Hentea 1984]).

achieves a compromise between noise suppression and signal preservation.

We are interested in the design of one-dimensional digital FIR filters thus, 
we will consider the system described in Fig. G.2 to be one-dimensional too. 

One can easily obtain a two-dimensional filter from a one-dimensional filter by 
McClellan’s transformation [McClellan 1973], provided that the two-dimensional 
filter has the following properties:
(i) its frequency response is approximately circularly symmetric, and
(n) its line spread function in the horizontal or vertical directions is identical to

the impulse response of the one-dimensional filter.

The following notation is introduced. Let u(x) denote an ideal unit step 
function to be approximated, u'(x) denote the actual step response of the com-
plete system (Fig. G.2), and rvi(x) denote a spatial domain weighting function. 
In addition, let H{d(f ) denote an “ideal’' frequency response of the filter to be 
approximated, H ( f )  denote the actual frequency response of the designed filter, 
and W2(f )  denote a frequency weighting function.

The following integrals are defined and used for filter design:

h  =
9  9/ nu(a-) | u (x )  — u(x) |" dx ,and

J- - 9 0

(G.4)

I 2 =
r o o

/  » ? ( / )  [ H ( f )  -  H A S ) P  df .J— OC

(G.5)

w((x) in equation (G.4) can be taken to be the masking function for an edge, 
thus assigning the errors (ripples near an edge) a weight proportional to their 
visibility. W.f(f)  in equation (G.5) can be taken to be the frequency response 
of the HVS, thus assigning the errors a weight proportional to their perceptual 
importance in the frequency domain.
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The step response of the complete system. u'(x), assuming n(x) =  0, is given 

by:
u'(x) =  us(x) * h(x) (G .6)

where * denotes convolution and us(x) =  u(x) * ha(x).

The filter design objective is to determine h(x) which minimizes X\ subject to 
J 2 being a fixed given value. Employing a Lagrange multiplier /?, the design 
problem becomes: find h(x), which minimizes X\ +  3Xi for a given value of 0.

We consider the design of FIR digital filters having an impulse response of 

the form N
h(x) =  hiHx -  ¿Ax) (G.7)

¿ = - iV

where A x is the sampling interval in the spatial domain, and S(x) is the unit 

impulse function defined as:

’ 1 for 1  =  0 (G.8)
0 for x 0 .

By substituting u'(x) from equation (G .6) into equation (G.4) we obtain

X\ =  f  wl(x)[us(x) * h(x)]2 dx —
J  —CO
/ oo roo

wl(x)[us(x) * h(x)]u(x)dx +  / w\(x)u {x)dx . (G.9)
-C O  J — CO

Defining convolution between us(x) and h(x) as

6(x) =

N
us(x) * h(x) =  h%us[x — ¿Ax) 

i=-N
(G.10)

and substituting equation (G.10) into equation (G.9) we obtain

X\ = f  w\{x)
J — CO

/ CO

wl(x)u(x)
-C O

/ CO
w\{x)u2{x)d

-co

y :  hiUs(x — iA x) 
i=-N

dx -

N
J2 hiUs(x -  i/\x] 

¡=-N
dx +

(G. l l )

Taking partial derivatives with respect to hk lor k — —A , . . . .  —1 . 0. 1 , . . . .  A we 

obtain

d l x 2 (  x
w ,  =

2 hiU3{x — ¿Ax)
/=—.v

us(x — kAx)dx —

/ CO

w l [ x ) u ( x ) u s( x  — k \ x ) d x  .

-CO

(G.12)



Rearranging equation (G.12) we obtain

dlx _  0 A  , ,
dhk it? N

where

/ OO

w\(x)us(x — iAx)us(x — kAx)dx and,
-C O

/ CO

wl(x)u(x)us(x — kAx)dx
-O O

for i ,k  =  — N , . . . ,  —1 , 0 , 1 , . . . ,  JV .
Equation (G.13) can be written in matrix form as

d l x
dh

= 2Ah — d

where

(G.13)

(0.14)

(G.15)

(G-16)

hT = [h-N,- ....... , h~ 1 , ho, hi , ... ---- , hyv

dT =  [d-N, .......5 d—\5 d\, . . . . . . ,  d^]

A — ik } ? for i, k — —TV,..,.,TV .

It should be noted that A  is a symmetric positive definite matrix and d is a 

constant vector.

Turning back to J2, by Parseval’s theorem equation (G.5) can be written as

I 2 dx= f  {w2(x) * [h(x) -  hid(x)} }2 
J  — OO

where w2(x) is the inverse Fourier transform of W2(f) .  
Equation (G.17) can be written as follows:

too  (  N  ̂  1
X2 — j hiW2(x -  iAx) -  w2(x) * hid(x) >

J~°° (  i = —N  J

(G.17)

dx . (G.18)

Taking partial derivatives with respect to hk for k — —N , . . . ,  — 1,0 ,1 , . . . ,  N  we 
obtain

d l 2
dhk

*  ro
2 51 ht I w2(x — iAx)w2(x — kAx)dx —

i——N
/ oo

-OO
w 2( x  — k A x ) [ w2( x )  * hid( x ) ]  d x  . (G.19)
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E q u a t io n  (G .19) can be w ritten as follows:

N

where

a h  ~  .
r\i  ---- ^  v — k C-k
dhk i ^ N

/ oo
^ 2(0: — iAx)u>2(x — kAx)dx  and,

-OO
/ OO

u>2 (x — k A x ) [w2 (x) * hid(x)] dx
-00

Ck

(G.20 )

(G.21)

(G.22)

for i, k =  — N , . . ., — 1,0 ,1 , . . . ,  N .

Equation (G.20) can be written in matrix form as

d l 2
dh

=  2 B h - c (G.23)

where

h1 =

c  =

\ k —N i .............. 5 h —1 ?  /¿o,  ..............., h j v ]  ,

[c—N1 ......... } c—1 , Co, Ci, .......... , civ] j and

b 0 b i  • b 2N

b\ b o ■ ■ b 2 N - i

b 2 N b i N - i  ■ O
- 

. 
,

O

It should be noted that B is a symmetric positive definite Toeplitz matrix and 
c is a constant vector. According to [Algazi 1975], the evaluation of B and c 
is more conveniently done using the Fourier transform domain. Thus, we show 
next alternative equations that will be used later for calculating these matrices.

Starting with b{_k we first make the following change of variables :

\x =  x — kAx  and thus, x — fi +  kAx .

Substituting x into equation (G.21) results in the following equation
/ OO

W2 (fJ-)w2 (n — iAx  + kAx)dfi . (G.24)
- O O

Defining e =  (?' — k)Ax  and substituting it into equation (G.24) we obtain

/ O O

- O O

w 2( h ) w 2( ij> -  e)dfi . (G .25)
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U s in g  Fou rie r tran sfo rm  w 2( x )  can be defined as

/ OO

W2{f)exp[j2TTfx]df (G.26)
-O O

where j  =  and W2(f )  is the frequency weighting function employed in

equation (G.5).
Equation (G.26) can be written as

/ OO

[W2( f )  c o s ( 2 t t f x )  +  j W 2( f ) sin(27r/a;)] df . (G.27)
-O O

If we define W2(f )  to be a real non-negative even function i.e., W2(f )  >  0 and 

W2( f ) =  W2(—f ) ,  equation (G.27) becomes

/ OO
W2(f )  cos(2irf x)df . (G.28)

-O O

From equation (G.28) we obtain that w2(x) is an even function too and thus 

equation (G.25) can be written as

/ OO

w2(fi)w2(e -  n)dfi =  w2( e ) * w 2{e) (G.29)
-O O

Equivalently, in the Fourier domain we obtain

/ OO

W^(f)exp\j2Trfe]df =
-O O

IF22( / )  cos(27r/c) +  j W l ( f )  sin(27r/e)| df . (G.30)£

OO
OO

Since sin(27r/e) is not a symmetrical function with respect to /  =  0 (it is an 
odd function) we obtain

/ OO

W2{f )  c o s ( 2 t t f  e)df .
-O O

(G.31)

Substituting e =  (i — k)Ax  into (G.31), we finally obtain the following definition 

for bi-k
r oo

6i_fc =  2 /  W2 ( f ) c o s [2-k f ( i  — k)Ax]df  (G .32)
Jo

for i , k =  — N , . . . ,  —1 , 0, 1 , . . . ,  iV .

Turning back to equation (G.22), c* can be defined as

Ck 2 / w2(x — kAx)z(x)dx
J —  OO

(G.33)
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where z(x) =  w2(x) * Kd(x) .

Since we have shown that w2(x ) is an even function, equation (G.33) can be 
written as follows :

/ OO

z(x)w2(kAx  — x)dx =
-O O

= 2z(kAx) * w2(kA x ) =

=  2 [w2(kAx)  * w2(kAx)  * hid(kAx)] . (G.34)

Equivalently, in the Fourier domain we obtain

/ OO

W%(f)Hid{f)exp[j27rfkAx]df =
-O O

/ OO

W }( f )H ld(f)cos(27rfkAx)df +
-O O

/ OO

W2(f )H ld( f )  sm(2*fkAx)df  . (G.35)
-O O

Finally, exploring symmetrical properties of the functions in equation (G.35) we 

find that
POO

Ck = 4 / W % ( f ) H i d ( f )  c o s ( 2 t v f k  Ax) df (G.36)
Jo

for k — — TV,. . . ,  —1,0,1 , . . . ,  iV .

Turning back to the filter design problem, we have to find h which minimizes 
X\ +  fdZ2 for a given value of ¡3. The necessary condition for hk to be an optimal 
solution to this problem is

+  =  0 for k =  —iV,. . . ,  — 1 , 0, 1 , . . . ,  iV (G.37)
ohk ohk

which, based on equations (G.16) and (G.23), leads to the matrix equation

2(A +  /dB)h =  /3c +  d . (G.38)

Since (A  +  /?B) is a symmetric positive definite matrix, we obtain a unique 
solution for a given value of the parameter /3, i.e.,

h =  ^ (A  +  j J B r ^ c  +  d) (G.39)

where (A  +  (3B )- 1  is the inverse matrix of (A  +  ¡3B) .
The equations defining elements of the matrices A, B, c and d have been de-

veloped above and are summarized as follows:
POO

aik — /  wl(x)us(x — iAx)us(x — kAx)dx ,
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(G.40)

r oo
bi-k =  2 /  W22( / ) cos[27t/ ( î -  fc)As]d/ ,

JO
r oo

cfc =  4 /  WZ(f)Hid( f )  cos(2irfkAx)df  and,
JO

/ oo
tt>2(o:)u(x)us(a; — kAx)dx .

-O O

for A: =  —iV,. . . ,  — 1 ,0 ,1 , . . . ,  iV .

Turning back to equation (G.4), if the system step response u'(x) is defined 
to be an edge with ripples introduced by filtering, and we let

w2(x) — vi(x) =  1 — 0.75^ , (G.41)

then l x measures the visibility of those ripples . The luminance contrast sen-
sitivity is introduced into equation (G.5) in a similar fashion. If we let, for 

example,

W 2{ f )  -  Hv(f )  =  2.6[0.0192 +  0.114/] exp[—(0.114/)1'1] (G.42)

then I 2 measures the perceived deviation of the actual filter response from the 
ideal filter response in the frequency domain.

The function actually used for weighting is :

w l ( f )
1 I /  |< 8 cpd
Hv( f )  otherwise

(G.43)

in the case when Hv( f ) is defined according to Mannos and Sakrison as in 

equation (G.l),  or

W 22(f )  =
1 I /  |< 5.2 cpd
Hv( f ) otherwise

(G.44)

in the case when Hv( f ) is defined according to Nill as in equation (G.2).
It should be noted that the low frequency attenuation of Hv( f )  is eliminated by 
extending the peak value of Hv(f )  down to zero cpd as proposed in [Algazi 1989].

To determine the ideal filter response H a{f ) ,  we define the low-pass filter 
frequency characteristic Hip( f )  as the desired overall response of the system 
consisting of the ideal filter and the frequency weighting function representing 
the modulation transfer function of the HVS (see Fig. G.3 and [Algazi 1989]). 

This results in the relation :

=  Hlp( f )/ W 2( f ) . (G.45)
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The frequency response of the equivalent low-pass filter Hip( f ) is depicted in the 
lower part of Fig. G.3, where Fc is the desired normalised cutoff frequency.

In ■> Out

H, - ( f )u r

*  Fn

Figure G.3: The desired overall low-pass system response H[p{ f ) .

Employing, for example, the weighting function defined in equation (G.43) 
and the set of equations developed above and summarized in (G.40) we show 
next how to calculate the matrices A, B, c and d. Substituting equation (G.43) 

into equation (G.40) which defines we obtain

bi-k =  2 [  c o s [ 2 t r/(* — k)Ax]df  +  (G.46)
Jo

roo
-j- 2 /  Hv(f )  cos[2ir f ( i  — k)Ax]df  for i ^ k  , and

J 8
b0 =  2 /  df +  2 f  Hv(f )df  for i =  k .  (G.47)

It should be noted that the upper limit oo in the integrals above stands for the
highest noticeable spatial frequency. This upper limit depends on the dimensions 
of the TV monitor, the number of pixels along one scanned line in the tested 
digital image and on the distance between the observer and the monitor (see 

[Carrioli 1988] for discussion).



In a similar way, taking the definition of Ck in equation (G.40) and substi-

tuting equation (G.45) into it results in :

Cfc =  4 f  c o s(27t fk A x )d f  for k /  0 , and (G.48)
J o

Co =  4f c for k =  0 (G.49)

where f c is the desired cutoff frequency of the overall system given in units of 

cycles per degree.

Matrices A  and d are calculated in the spatial domain employing the defini-
tions in equation (G.40). To simplify the design procedure and without loss of 
generalization, we take the formation system hs(x) to be perfect (see Fig. G.2) so 

that equation (G.6) becomes simpler, i.e., us(x) =  u(x), and u'(x) =  u(x) * h(x). 

Substituting us(x ) into equations (G.40) we obtain :

/ OO

w\(x)u(x — iAx)u(x  — kAx)dx  ,
-CO

/ OO

w\(x)u(x)u(x — kAx)dx  (G.50)
-O O

for i, k =  —N , . . . ,  — 1, 0 ,1 , . . . ,  N .

The function w\(x) in equation (G.50) is defined in equation (G.41) and the 
integrals’ limits are taken to be —SAx  and +SAx,  respectively. S is an integer 
defining the number of pixels in the vicinity of an edge that are affected by the 
masking effect.

Equations (G.46) to (G.50) define the desired matrices leaving two param-
eters: f c and ¡3, at our disposal as design parameters. The parameter ¡3 is the 
weight given to deviations in the frequency domain relative to the weight given 
to errors in the spatial domain. For a desired f c, several design iterations and 
image quality assessments are required in order to determine ¡3.
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Appendix H

The Block Classifier

In this appendix, we describe the block classifier, employed within the proposed 

postprocessing algorithm. Basically, we have adopted the block classifier pro-
posed in [Ramamurthi 1986a] due to its good performance and simplicity. We 
describe its concept here for the sake of completeness and for easy reference.

Five classes of image blocks have been defined: (i) a monotone class, consist-
ing of monotone image blocks containing no significant gradient, and (it) four 
edge classes, consisting of image blocks having a distinct edge running through 
them. Four edge orientations have been defined: horizontal, vertical, and two 
diagonals (at 45 deg and 135 deg). A complex structured image block has also 
been defined. This kind of block contains fine details or complex edges which 
can not be treated as simple edges. Since the coding quality is not high enough 
to preserve fine details in images, it is difficult to estimate the features of the 
signal spectrum correctly. As a result, smoothing the signal and the noise is 
perceptually preferable in such cases. Thus, if the tested block is neither mono-
tone nor edge block it is classified as a complex structured block and assigned 

to the monotone class of blocks.

The block classifier is employed for determining whether the block under 
consideration is a monotone block or an edge block. If the block is found to be 
an edge block, then the edge orientation is determined. The correlation between 
the signal and the noise in the coded image block is critical to the accurate 
estimation of the edge orientation. The fact that the inclination of the staircase

236



noise follows very closely the true orientation of the edge in the original image 

can be utilized in determining the edge direction in the coded image block. Thus, 
by analyzing a large enough neighbourhood in the coded image it is possible to 

detect the existence of an edge along with its direction.

The classification procedure is defined as follows. Let I ( x , y ) denote a pixel 
located at (x ,y)  in a block of size PxP, and let IaVe{x ,y ) denote the average 
intensity of two vertically adjacent pixels, I ( x , y ) and I(x  +  1 , y), defined by:

T ( x I (x ,y )  +  I (x  +  l ,y )
Iave\X,y) ^

The gradients in the vertical direction are defined as follows:

d(x,y) =  I {x ,y )  -  I(x  +  l ,y )  . (H.2)

Let dn(x ,y ) denote the gradients in the vertical direction normalised by the 
average intensity of the two vertically adjacent pixels. It is defined as follows:

d(x,y) 2[I(x,y) -  I (x  +  l,y)\
dn(x, y) = (H.3)

lave (x,y) I (x ,y )  +  I(x  +  l ,y )
This definition is in accord with the well known fact that the sensitivity of the 
human visual system is proportional to the normalised gradient and not to the 
gradient itself [Pratt 1978].

Two counters K  and L are defined and set to zero. Counter K  is updated 
according to the following rule:

K  =  K  + 1  if dn( x , y ) > T

K  =  K -  1 if dn(x,y) < - T  (H.4)

for x =  1 ,2 , . . . ,  P — 1 and y =  1 ,2 , . . . ,  P.

The threshold T has been defined in equation (F.5) in appendix F.

Counter L is computed in a similar way with horizontally adjacent pixels, 
I(x, y) and /(x , y +  1 ), for x =  1 ,2 , . . . ,  P  and y =  1 ,2 , . . . ,  P — 1. The tested 
block is then assigned to one of live classes as follows:

monotone/complex if 1 K |< m and 1 L |< m
edge at 0 deg if 1 K |> m and 1 L |< m
edge at 90 deg if 1 K |< m and 1 L \> m
edge at 45 deg if 1 K |> m A L > m 5 and K L > 0

edge at 135 deg if 1 K |> m ,1 L l> rn , and K L < 0
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where m is a predetermined threshold.

It should be noted that the counters are incremented when there is a positive 

gradient above threshold, and decremented when there is a negative gradient 
above threshold. Thus, gradients due to random speckle noise are neutralized 
and a monotone block, contaminated by speckle noise, will be classified correctly. 
Moreover, an L-shape edge (such as the “steps” of the staircase noise) and a 
diagonal edge are not distinguished by the classifier. Both types of edges have 
the same effect on the counters and thus the “steps” of the staircase noise do 

not affect the correct estimation of the edge orientation.
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