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ABSTRACT

The aim of this thesis is to provide a unifying framework and tools for the study 
of a number of Control Theory problems of the determinantal type. These problems are 
known as Frequency Assignment Problems (FRT) and they include the constant, 
dynamic, pole, zero assignment by centralised as well as decentralised output feedback 
and the zero assignment problems via squaring down. It has been shown [Kar.l],[Gia.2] 
that all such problems may be formulated under the unifying framework of the 
Determinantal Assignment Problem (DAP), and it can be studied using tools from 
exterior algebra and algebraic geometry. The main objective of this thesis is to develop 
further the DAP framework, unify it with other algebrogeometric approaches and 
develop issues related to computation and parametrisation of solutions when such 
solutions exist.

The natural setup for the study of solutions of the DAP framework has been the 
intersection theory of projective varieties. This has been extended by developing the 
topological properties of the pole, zero placement maps and introducing an equivalent 
formulation for real intersection based on cohomology theory. The properties of this 
map, with respect to standard system invariants are also established. This approach 
allows the derivation of new conditions for constant pole, zero assignment with 
centralised and decentralised controllers, using conditions based on the height of an 
appropriate cohomology class. Affine algebraic geometry methods are also used for the 
derivation of partial results for the dynamic case corresponding to PI and OBD 
controllers.

An entirely new approach for the study of solvability of DAP, as well as 
computation of solutions is introduced in terms of the notion of global linearisation of 
the corresponding pole, zero assignment map around a degenerate point. This is based 
on the special “blow up” property of the pole placement map at degenerate feedbacks 
and permits the reduction of the overall DAP to a globally linear problem, the 
solvability of which is defined by the properties of a new local invariant, the “blow up” 
matrix.
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N O T A T IO N S A N D  A B B R E V IA TIO N S

Throughout this thesis, the following notations and abbreviations will be used

F denotes a general field

R, C, R(s), Z2 denotes the field of real, complex numbers, rational functions, 

and integers modulo two respectively.

R[s]

Rn, Cn, Rn(s) 

Gp(Fn)

the ring of polynomials over R.

denotes the n-dimensional vector spaces over R, C, R(s).

denotes the Grassmannian, that is the set of all p-dimensional subspaces

in Fn

h(p,m) 

H*(X;A) 

r , V

the height of the first Whitney class of Gp(Fp_pm)

the cohomology ring of X with coefficients in A

denotes a vector space and its matrix representation, respectively.

A pr denotes the p-th exterior power of the vector space V.

C p(V )

col(V)

colspan(V)

Pn(F)

row(V)

rowspan(V)

vec(V)

#

denotes the p-th compound matrix of the matrix V.

the vector formed by superimposing the columns of the matrix V

the vector space spanned by the columns of matrix V

the n-dimensional projective space for the field F

the dual of col(V) ( =  (col(VT))T )

the vector space spanned by the rows of matrix V

the vector corresponding to the matrix V ( either row(V) or col(V))

number

BIBO Bounded-Input, Bounded-Output

CDAP Constant Determinantal Assignment Problem

CPA Constant Pole Assignment

CPPM Complex Pole Placement Map

DAP Determinantal pole assignment problem

det determinant

dim dimension

GRD, GLD Greatest right and greatest left divisor respectively

FRT Frequency Response Techniques
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Im Image

LKer Left Kernel

LScat Lusternik-Snirelmann category

MFD Matrix Fraction Description

MIMO many inputs-many outputs

mod modulo

OBD Observability index bounded dynamics

PI Proportional plus Integral

PID Principal ideal domain

QPR Quadratic Plucker Relations

RQPR Reduced Quadratic Plucker Relations

SISO Single input, single output

SSD State Space Description

vecat vector bundle category
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Control theory is the backbone to control system design, since it provides the 
conceptual framework ‘concepts and tools’ and the algorithms upon which control 
system design philosophies, strategies and techniques are based. Control theory and 
design techniques are well developed, especially in the context of linear systems, which 
are well defined as far as input-output structure and model parameters are concerned. 
The two main directions of activity have been the areas of synthesis and design. In a 
synthesis problem, the assumptions, criteria and objectives are well formulated, the 
solution satisfies exactly all present objectives and criteria and it is obtained in a closed 
form as the exact solution of the mathematical problem. The main characteristics of a 
design problem is that the solution satisfies a set of primary objectives, criteria and, in 
an approximate sense, a set of secondary objectives and criteria. Furthermore, the 
solution is not always in a closed form and it is usually a byproduct of a methodology 
involving iteration. Design problems are closer to the spirit of engineering design. 
However, synthesis problems are essential for two basic reasons: (i) they are 
instrumental in the development of advanced design techniques and (ii) the solvability 
condition of exact problems reveals the potential of the system to possess a good 
approximate solution to a certain design problem. The present thesis is in the area of 
synthesis problems, although the adopted framework has the potential to evolve into a 
design methodology. In particular, the main thrust of the work is in the characterisation 
of system properties which allow the solvability of certain families of problems referred 
to as ‘frequency assignment problems’ for linear systems. In this family, we consider 
problems of pole assignment by constant or dynamic control schemes and zero 
assignment under squaring down for systems which satisfy the centralised or 
decentralised assumption. The present study lies within the general area of linear 
systems. In the study of properties and problems of linear systems, a variety of 
approaches have been developed. The classification of the different approaches is based 
on the model which the approach uses, as well as the tools which are deployed. Linear 
systems have been under study for a long time and from several different view points.
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The systematic study of the System and Control Theory had started in the early 
1930’s with the development of the classical frequency response techniques (Nyquist, 
Bode, Root locus approaches) for Single Input and Single Output (SISO) systems. 
Multivariable Systems and control problems started to become increasingly important 
in aerospace, process design etc. in the late 1930’s. This fact, plus the importance of the 
time-domain analysis and characteristics in aerospace, led to a resurgence of interest, 
spearheaded by the work of Bellman and Kalman [Kal.l] in the early 1960’s, on the 
state-space description of linear systems. This led, naturally,to more detailed 
examinations of the structure of linear systems and to questions of redundancy, 
minimality, controllability, observability etc. and has eventually evolved into an elegant 
approach for studying both system properties and synthesis problems, the geometric 
approach of Wonham, Willems etc. [Won.l],[Wil.3],[Bas.l], Just as the state space 
approach was maturing Kalman [Kal.2], and Rosenbrock [R.5], had shown how many of 
the scalar transfer function concepts could extend to the multivariable case. Rosenbrock 
[R.5] has placed the foundations of the modern transfer function matrix (algebraic) 
approach, an offspring of which has been the modern Frequency Response Techniques 
(FRT), which for systems with many inputs and many outputs (MIMO) (Rosenbrock 
[R.l], MacFarlane [MacF.5], Doyle and Stein [Doy.2] etc.) have provided generalisations 
of the classical SISO FRT’s. Recent developments in the algebraic theory of MIMO 
systems have led to the formulation of modern algebraic synthesis approaches (Kucera 
[Kuc.2], Vidyasagar [Vid.2]), a successor of which is the more recent frequency response 
approach referred to as Hoo-optimization [Fra.l],[Glo.l],[Doy.l],[Kwak.l], The state 
space and transfer function descriptions are only two extremes of a whole spectrum of 
possible descriptions of finite-dimensional linear systems. Hybrid approaches such as the 
matrix pencil approach [MacF.4],[Jaf.l],[Lois.l] and the algebrogeometric approach 
[Broc.l],[Kar.l], aim at bridging the state space and algebraic cultures. The geometric, 
algebraic and algebrogeometric approaches have revealed one part of the system 
structure; that is the one connected to the system invariants. An alternative aspect of 
the system structure is that characterised by the interconnection graph. The structural, 
or graph approach [Shie.l],[Rein.2], has been developed to study the properties of state 
space models with fixed graph and generic values of the numerical parameter and 
provides an alternative characterisation of system structure. The work here, is in the 
area of hybrid approaches and in particular, the one referred to as algebrogeometric.
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For the study of problems of linear synthesis which are of the determinantal type 
(such as pole zero assignment, stabilization) a specific school of thought has been 
developed which is specially suited to tackle such problems. This framework is referred 
to as algebrogeometric because it relies on tools from algebra and algebraic geometry. 
The essence of the problems faced in this set-up is that they are of a multilinear nature 
and the number of design parameters is not necessarily large. Early attempts to study 
such problems within the classical control theory framework has been based upon the 
linearisation of the multilinear problem by assuming special structure controllers such 
as the dyadic [Kai.l], [Won.l]. This approach has been successful in the case of state 
feedback but not so in the case of output feedback due to the limited number of 
parameters.

Alternative methodologies such as those based on the diophantine equation 
[Kuc.2],[Zag.l], which have been promising for state feedback studies, have not been 
very successful for determinantal output feedback problems. The main difficulty of the 
determinantal problems in the case of frequency assignment lies in that the problem is 
equivalent to finding real solutions to sets of nonlinear and linear equations; in the case 
of stabilization, this is equivalent to determining solutions of nonlinear equations and 
nonlinear inequalities. The first of the two problems naturally belongs to the 
intersection theory of complex algebraic varieties, whereas, the latter belongs to the 
intersection theory of semialgebraic sets [Boc.l]. Additional difficulties arise (and this 
makes the use of the above areas, not a straightforward off the shelf application) due to 
the requirements of determining existence of real solutions for both generic and exact 
formulations of the problem, as well as the need to study specific dynamic structure 
control schemes (centralised or decentralised) which make the varieties involved not 
standard, and the compactification issues quite prominent.

It should be noted that the real intersection theory is not well developed and 
although determining existence of solutions is very important. Also of paramount 
interest is the development of procedures and methodologies for computing such 
solutions whenever they exist. The main emphasis in algebraic geometry has been the 
general study of properties of varieties such as an intersection theory and the emphasis 
has been on generic properties depending on discrete invariants rather than continuous 
parameters. Furthermore, issues such as computation of solutions are hardly addressed 
in either classical [Hod.l] or modern [Har.l] algebraic geometry. The requirements for
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the development of a unifying algebrogeometric framework are: (1) it can handle 
different types of compensation (constant, dynamic, centralised, decentralised); (2) 
provide necessary as well as sufficient conditions for the existence of generic and exact 
problems; (3) determine a unifying computational framework of solutions whenever they 
exist and which is general enough (as far as methodologies and tools are concerned) to 
tackle the tougher issues on stabilization, approximate solutions and robustness.

Within the algebrogeometric framework that has emerged so far we distinguish 
two distinct directions:

(i) The affine algebraic geometry approach.
(ii) The projective algebraic geometry approach.

The first [Her.l],[ Wil.l],[Bro.l], considers the plant and controller as elements of 
algebraic varieties of an affine space and studies the solvability of pole assignment, (by 
output feedback), simultaneous stabilisation etc. by using tools from algebraic 
geometry, like the dominant morphism theorem. Important conditions for generic 
solvability of control problems have been derived within this framework but a big 
disadvantage in this approach is that the nongeneric cases are difficult to handle and 
that no systematic procedure for computing the controllers, whenever they exist, are 
suggested (the approach is not constructive). Later on, it was recognised [Broc.l], 
[Byr.2],[Byr.l],[Gho.l] that the use of compact spaces was more appropriate for the 
consideration of the pole assignment problem. The Grassmann manifold was then 
considered to be the set parametrising all the constant multivariable controllers of fixed 
number of inputs and outputs, and this was achieved by introducing the set of 
controllers at infinity. The Grassmann manifold was found to be convenient for 
intersection considerations due to the fact that first, it was a natural compactification 
for the pole assignment problem and secondly, because there was already an intersection 
theory for this manifold [Sch.l] ie. the Schubert calculus. Although, with this approach, 
the existing results were reestablished, additional results for real intersection were given 
and a better insight to the problem was aquired, the method was still nonconstructive 
and was orientated towards generic solvability results. The Schubert calculus uses 
implicitly the so called Plucker embedding of the Grassmannian into an appropriate and 
suitable projective space. This embedding was first recognised and explicitly used for

4



the pole and zero pole placement problems in [Kar.l],[Gia.l],[Gia.2],[Kar.2] and the 
overall method was called the Determinantal Assignment Problem (DAP) Approach. 
The DAP approach, as well as the Schubert calculus approach (implicitly), may be 
considered as projective approaches since the Grassmann manifold is viewed as a 
subvariety of a projective space via the Plucker embedding (a more refined classification 
of approaches will be presented in chapter 4).

The DAP approach [Kar.l] has been formulated as a unifying approach for all 
problems of frequency assignment (pole zero) and its basis lies on the fact that 
determinantal problems are of a multilinear nature and thus may be naturally split into 
a linear and multilinear problem (decomposability of multivectors). The final solution is 
thus reduced to the solvability of a set of linear equations (characterising the linear 
problem) together with quadratics (characterising the multilinear problem of 
decomposability). The approach heavily relies on exterior algebra and this has 
implications on the computability of solutions (reconstruction of solutions whenever 
they exist) and introduces new sets of invariants (of a projective character) which, in 
turn, characterise the solvability of the problem. The distinct advantages of the DAP 
approach are: it provides the means for computing the solutions; it can handle both 
generic and exact solvability investigations; and it introduces new criteria for the 
characterisation of solvability of different problems. The computation of solutions is 
reduced to an optimisation problem of a function with quadratic equality constraints 
[Gia.l],[Mit.l], The development of such a technique is essential for the method to 
become a design technique for frequency assignment problems.

The main difficulty of the algebrogeometric approach is faced in the area of 
defining conditions for the existence of real solutions. In fact, the general framework of 
algebraic geometry and, in particular, intersection theory has been established for 
algebraically closed fields. The need for computing real controllers as solutions to the 
various problems forces us to consider the case of real intersection theory ie. the 
intersection theory over a field which is not algebraically closed and for which few 
results are known. It should be pointed out that the basic principle of intersection 
theory over algebraically closed fields is the ‘conservation of number of roots’ which , in 
simple terms, means that the degree of the polynomial determines the number of roots 
over that field (irrespective of what the coefficients are). In the real case however, such 
property does not hold true, but what is true is the preservation of the number of roots
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if it is taken modulo 2. The latter observation provides a strong motivation for the use 
of cohomology ring with coefficients in ~Lĉ  as the formal framework for real intersection 
theory and which will be used in this thesis.

The present thesis addresses a number of issues related to pole, zero assignment 
by constant or dynamic, centralised or decentralised controllers. The approach adopted 
here, is within the framework of the projective or DAP approach, but is more general 
with regard to the handling of issues and the use of tools, and in many respects this 
provides a bridge between the dominant tools used in the projective and the affine 
direction. In particular, it develops tools from algebraic topology such as cohomology 
rings, vector bundles, characteristic classes, category, for real intersection theory. It also 
explores the topological properties of the various types of pole, zero maps and links 
them with classical system invariant theory. Compactification issues are examined and 
this provides the passage from the affine to the projective and thus, links the two 
directions. The study of compactification has no unique solution but what really 
matters is the development of so called ‘natural compactifications’ . The study of 
compactification issues is strongly linked to the study of the characterisations of 
‘ infinity’ in the context of our problem and the latter is naturally connected to the 
study of problem degeneracy [Broc.l]. The study of problem degeneracy, together with 
the DAP formulation of the problem, provides the basis for a global asymptotic 
linearisation which enhances the computational suitability of DAP and provides new 
means for derivation of sufficient conditions. It should be pointed out here, that this 
alternative approach (global asymptotic linearization) differs considerably from the 
intersection theory approach dominating most parts of the thesis; in fact, this approach 
is closer in spirit to ‘blow up’ techniques [Gri.l] on varieties. In this sense, the work in 
this thesis, on the one hand, provides a bridge between the affine and the projective 
directions and on the other, further develops the analytic ability to establish solvability 
conditions as well as computational capabilities of the framework.

In this thesis we will examine both pole and zero assignment problems, 
concentrating more upon the former and using constant or dynamic compensators 
having either centralised or decentralised structure. It is also worth noting that although 
the main core of this thesis is the solution of frequency assignment problems, a great 
deal of effort was put into appropriately explaining and reformulating certain 
mathematical tools and methods which, for many, were considered to be abstract or
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written in a cryptic language. This thesis can essentially be separated into two parts. 
The first (Ch,2,3,4,5) concentrates upon the description of mathematical tools, the 
review of methods and results and the formulation of the problems whilst the second 
part (Ch.6,7,8,9,10) deals with the examination of the several problems addressed in 
this thesis. More analytically, the contents of the chapters of this thesis are as follows:

In chapter2 we provide some of the control related mathematical tools and 
notations. Initially, we briefly present several descriptions for linear systems followed by 
some basic algebraic theory of systems ie. properties of rational and polynomial 
matrices. Finally, we discuss some of the aspects of the general feedback configuration.

In chapter3 we present all the mathematical tools to be used in this thesis. The 
purpose of this chapter is to clarify with examples and explain in simple terms, 
whenever this is possible, all the key mathematical tools for the frequency assignment 
problems. We begin with the basic concepts of exterior algebra, which is the starting 
point for the examination of the DAP. We then proceed to the theory of complex and 
real varieties and then to the intersection theory of complex algebraic varieties, which is 
essential for the understanding of all intersection theoretic arguments of our thesis. 
Finally, we present topology and cohomology of manifolds, which is crucial in the 
understanding of all topological intersection arguments in this thesis.

Chapter4 deals with the review of methods and relevant results for our problem. 
Firstly, we examine some parametrisation issues of systems and construct a Plucker 
type embedding for systems. In this way, the set of systems of p-inputs, m-outputs and 
n-states becomes a smooth quasi projective variety of dimension n(m+p). Although this 
structure of system was already known, our result provides an explicit characterisation 
of the variety in terms of dynamic quadratic Plucker relations, and the embedding used 
couples nicely with the output feedback problem. This parametrisation of systems puts 
‘genericity’ into a correct context and allows us to use the word ‘generic system’ in the 
framework of Zarisky topology, which naturally fits with the tools from algebraic 
geometry. Secondly, we present relevant approaches and methodologies for our problems 
and we classify them as: (i) state space and algebraic and (ii) geometric. The 
approaches we will be dealing with are the geometric, which are further classified into 
infinitesimal, enumerative geometry, topological intersection, combinatorial geometric 
and projective techniques. Finally, we present all the background results for zero and 
pole placement problems.
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In chapter 5 we define and formulate all the problems to be examined in this 
thesis. The feedback pole placement problems are mentioned first, in particular using 
constant, PI and OBD (Observabilty bounded dynamics) controllers. Then we proceed 
to the zero placement via squaring down and finally we formulate the decentralised 
versions of the above problems. In this chapter we demonstrate that all our frequency 
assignment problems can be formulated as Constant Determinantal Assignment 
Problems (CDAP). Nevertheless, the application of methods of the constant output 
feedback problem to the dynamic cases is not straightforward since the individual 
problems have a special structure. Eventually, we bring the chapter to a close by 
describing, in very general terms, the way CPA problems can be attempted.

In chapter 6 we establish a number of properties of a very important map related 
to determinantal problems, namely the pole placement map, which is the multivariable 
analogue of the root locus map. In this chapter we investigate the pole placement map 
under complex and real output feedback and especially the properties of the image of 
the pole placement map as well as its asymptotic properties with respect to a high gain 
output feedback. The first problem addressed in chapter 6, is the derivation of a 
reasonable measure for the size of the set of polynomials ,which for a system S(A,B,C) 
of p-inputs, m-outputs and n-states can be assigned. We choose as a measure of the size 
of this set, the dimension of the image of the real, or the complex pole placement map 
(PPM). Although the structure of the image of the complex PPM is different than that 
of the real PPM (and in fact the complex case is nicer than the real), it is shown that 
both dimensions of the real and complex PPM (which are invariants of the system) are 
the same. The above dimensions are also shown to be equal to the rank of the 
differential of the corresponding PPM at a generic feedback K. The rank of this 
differential at I<=0 was shown [Her.l] to be equal to the rank of Fq =[c o 1CB ,colCAB, 
... ,colCAnB ], (the ’col’ operation on a matrix implies the formation of a composite 
vector, obtained by superimposing the columns of the matrix) or at an arbitrary K 
[Rein.l] to be equal to the rank of FK=[colCB ,colCHB, ... ,colCHnB ], where 
H=A+BKC. The latter expression is not very convenient for the calculation of the rank 
at a generic K ; instead we propose an alternative expression of the form (DT)j^Pg 
where T is a function of K only and Pg is the reduced Plucker matrix of the system S 
and which is a complete invariant [Gia.2],[Kar.l].The relationship between the reduced 
Plucker matrix and the Markov parameters is established; in fact, it is shown that the



Markov parameters may be computed by selecting certain rows of the Plucker matrix. 
It is shown that the rank of the Plucker matrix provides us with an upper bound for 
both the dimensions of the image of the complex and real PPM as well as an upper 
bound for the set {rankFj^}. As a result of the above properties , necessary tests for the 
pole assignability of a system S(A,B,C) are derived.

An integral part of the study of the root locus map (pole placement map) under 
general real output feedback K, is the study of the location of the closed loop poles 
when K becomes unbounded, and this is the next topic to be examined in chapter 6. 
Given that in the expression of the pole placement map the compensator enters in a 
composite form [I,K], it is essential to have a representation of this form for the 
compensator when K is unbounded. It has been accepted by many researchers 
[Broc.l],[Gho.l] that unbounded gains correspond to [A,B] representations where 
det(A)=0; this fact is rigorously proven here first and is used for the study of 
asymptotic properties of the pole placement map. Then, we examine the concept of 
degeneracy of a MIMO system (the systems for which the pole placement map cannot 
be extended at infinity), for real gains (R-degeneracy) and we show that the problem: “a 
system to be degenerate” is an intersection problem of algebraic geometry. In the end, 
we find a sufficient condition for a generic system to be R-degenerate by using basic 
theory of vector bundles [Osb.l],[Jam.l]; this condition is vecat(o(7 Î 1)) > n + l where the 
left hand expression denotes the vector category of the orientation bundle of 7^ . This 
condition is not easy to test and a weaker, but testable condition, is derived here - this 
is of the form h(p,m) > n where h(p,m) is the height of the first Whitney class of 
Gp(IRp^ m), for which a computation procedure is also given.

In chapter7 we examine solvability conditions for pole assignment via constant 
output feedback and zero assignment via constant squaring down. The first problem we 
need to resolve is the compactification of the set of constant controllers. This 
compactification has to be done in such a way that certain intersection theoretic 
requirements are met. We prove that for our purposes the correct compactification for 
both pole and zero assignment is a Grassmannian. Secondly, we translate our 
intersection problem into an inequality involving the height of the first Whitney class of 
the Grassmannian Gp(Rp^ m) , denoted by h(p,m). Specifically, we produce a sufficient 
condition for the existence of real constant output feedback shifting any set of 
symmetric poles of a generic system of p-inputs, m-outputs, n-states. This condition is
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given by the inequality li(p,m) > n and its origin can be found in the sufficient 
condition for the same problem given in [Gia.l] which involves a computation of large 
numbers of factorials. For a given triple (p,m,n) , the condition h(p,m) > n where 
h(p,m) is the height of the first Whitney class of a Grassmannian, is equivalent to the 
factorial condition given in [Gia.l]¡however the present test is much more easy to apply 
and may be used for the characterization of the (p,m,n) triples for which the problem is 
solvable generically. A similar nature condition has been given in [Byr.l] for the 
arbitrary pole assignment of real poles only in terms of LScat(p,m) > n, where LScat 
denotes the Ljusternic-Snirelman category of the same Grassmannian. Although 
LScat(p,m) >h(p,m ), our result is stronger than the LScat(p,m) >n  since it is proven 
for arbitrary sets of poles and not just real poles. It is worth pointing out that 
LScat(p,m) cannot be easily calculated and in most cases h(p,m) is used as its 
approximation. It is worth noting that our result includes the condition m+p-1 > n 
given in [Kim.l] and [Dav.l] which is a sufficient condition for the existence of a dyadic 
feedback controller shifting arbitrarily any set of poles.

As far as the zero placement is concerned, the condition we produce in Ch.7 is 
again sufficient and involves the height of the Whitney class of the Grassmannian 
connected with the zero placement problem. It is proven that for a generic system of p- 
inputs, m-outputs which has Forney dynamical order 8, a sufficient condition for the 
existence of a real squaring down compensator arbitrarily shifting the zeros is given by 
the inequality h(p,m-p) > 8. This is equivalent to the result given in [Kar.3] which 
involves a calculation of a large number of factorials. Our new result is compact and can 
be tested much more easily. Other results were given in [Sab.l] using state space 
methodology, but the squaring down compensators they construct are dynamic of a 
rather large degree. It is important to mention that the height h(p,m) has been 
calculated (for almost all p,m) by Hiller in [Hil.l], and a relatively simple formula for 
this can be found in [Sto.l] .This formula is given at the end of this chapter and may be 
used for the testing of the sufficient condition for arbitrary pole zero assignment. 
Finally, we prove that the height approach for both pole and zero placement is the best 
that we can achieve, if we consider odd degree intersections in the Grassmannian.

In chapter8, pole assignment via PI and OBD dynamic controllers is studied. 
First, the problems are transformed into CPAP framework and the corresponding 
controller spaces (PI and OBD) are compactified as Grassmannians. This allows us to
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decompose the problem as a linear and a standard multilinear problem and view the 
solutions as the zeros of certain linear and quadratic equations and, hence, permits us to 
use all the computational machinery of the constant output feedback problem. 
Additionally, we derive necessary conditions for the existence of solutions. These are of 
the form: (i) 2mp > n+p and the Ppj matrix to have full rank (for the PI case) and (ii) 
mp+n^(m+p) > n+n^ and the P ^  matrix to have full rank (for the OBD case) and 
furthermore, we prove that the Plucker matrices Ppi and Polxp have generically full 
rank. The derivation of sufficient conditions is a more difficult task and the 
Grassmannian compactification is not appropriate. Sufficient conditions for the generic 
solvability of solely the complex case are worked out for both PI and OBD cases. In 
fact, for the PI case it is shown that the conditions a) 2mp > n+p and b) where there 
exists one polynomial that can be assigned to a generic system via complex PI 
controller, are sufficient generic solvability. The conditions for the case of complex 
dynamics (for the OBD case) become a) mp+n^(m+p) > n+n-  ̂ and b) there exist one 
polynomial that can be assigned, via a complex n̂  degree OBD controller, to a generic 
system. An alternative formulation for the study of general dynamic compensation 
problems which may be applied to these specific cases considered here, is presented in 
chapterlO.

Although the design of single input single output (SISO) PI controllers has been 
well addressed [Mor.l] (as far as the tuning the parameters using various rules is 
concerned), the potential of the multivariable PI controllers for solving problems such 
as pole asignment and stabilisation, has received little attention. Previous attempts to 
address the pole assignment by PI controllers [Ser.l],[Mun.l],[Youn.l] have been based 
on the reduction of the problem to an equivalent pole assignment by output feedback on 
an augmented system; within this framework, state space output feedback tools (like 
dyadic design) have been used to design the PI controller, whenever some of the 
sufficient conditions are satisfied. In fact, sufficient conditions via state space methods 
are very weak since the effort in transforming the problem into a linear one, reduces the 
number of free parameters of the controller significantly. As an example we mention the 
sufficient condition given in [Mun.2] 2m+p-l > n+p which is considerably weaker than 
the condition given here 2mp > n+p. Regarding the more general dynamic pole 
placement, the use of state space or algebraic techniques [Bra.l], [Mun.2],[Chen.1] led to 
a reduction of the number of parameters of the controller or to a simplification of the
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structure of the problem, and as a result of these methods, it was possible to attain only 
weak necessary conditions for fixed degree solutions or to construct very high degree 
controllers. Our result for OBD controllers mp+n^(m+p) > n+n^ is the best possible 
result one can have for generic dynamic pole placement ( as it was claimed in [Wil.l]). 
Nevertheless, the conditions for PI and OBD pole placement are proved here only for 
complex and not for real controllers and the approach is non constructive.

Finally in chapter 9 we examine the pole and zero assignment under the 
decentralisation assumption. The decentralization assumption implies a partially fixed 
structure of compensators and this results in the emergence of the following two 
phenomena. Initially, we have the appearance of the concept of fixed modes 
[Dav.l],[And.l],[Vid.l]] which may arise in the study of pole assignment by 
decentralised state, or output feedback and may restrict the assignability property. 
Secondly, the decentralised controllers may be viewed as a subvariety of a Grassmann 
variety [Kar.4] and thus its topology and intersection theory is not well established. 
This subvariety is characterised by the set of Quadratic Plucker Relations and a set of 
fixed zeros defined by the decentralization characteristic of the given problem [Kar.4]. 
An alternative compactification was recently introduced in [Wang.2], where the 
decentralised compensator is viewed as an element of product of Grassmannians. In this 
chapter we extend the algebrogeometric framework for decentralized problems 
established in [Wang.2] as well as the framework intoduced in [Kar.4], and derive new 
sufficient conditions for generic pole assignability. Furthermore, the properties of the 
pole placement map established in Chapter 6 are extended to the decentralised case and 
this leads to a new test for avoiding the presence of fixed modes using the notion of 
decentralised Markov parameters.

The results derived within the exterior algebra and algebrogeometric framework 
concern the exact as well as the generic solvability conditions. In particular, the use of 
the decentralised Grassmann representative and associated Plucker matrix [Kar.4] has 
provided criteria for the characterisation of fixed modes, almost fixed modes and 
necessary conditions for exact assignment based on the rank of the Plucker matrix. 
Necessary conditions for generic pole assignability by a decentralised controller was 
shown to be Ermp- >n [Lai. 1]. Using the product of Grassmannians framework, it has 
been recently shown that if the order of the product Grassmannians is odd, then 
Sm-p- > n is sufficient condition for generic pole assignability by decentralised real
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output feedback [Wang.2]. An alternative condition was also derived in [Wang.2], where 
it was shown that Sm-p- > n implies generic pole assignability, when either the number 
of all inputs or the number of all outputs are equal.

The main aim of this chapter is to extend the previous results by considering the 
case where Em-p- > n and assuming that the m-, p̂  are general with no particular 
relationship between them. Our approach is similar to that developed in [Gia.l] for the 
centralised case; in fact, we are looking for odd order subvarieties of the product 
Grassmannian, which intersect the generic linear space. In this setting, this problem can 
be reduced to finding the height of a particular cohomology class w of the above product 
variety. The final result is shown to be that a sufficient condition for generic pole 
assignment by real decentralised output feedback is of the form h(w) > n where h(w) is 
the height of the class w. The computation of h(w) is also considered and this leads to 
parametrization of m-, p- which guarantees solvability of the problem. The present 
result is a generalization of the sufficient condition Ennp- > n and odd order product, 
given in [Wang.2], Our result not only covers the case where the order of the product 
variety is odd, but also when it is even but there exist lower dimension subvarieties of 
odd order. However, in the case where the m-’s or pds are equal, our result is weaker 
than the second of the results in [Wang.2]; however, our approach provides new criteria 
for the cases not covered by the equality of m- or p-. Some recent results on the 
properties of the complex and real pole placement map of chapter6 are extended to the 
case of decentralised feedback. A new expression of the differential of the decentralised 
pole placement map allows the derivation of links between the decentralised Plucker 
matrix and the Markov parameters of the system. A new sufficient condition for 
avoiding fixed modes is established in terms of a special subset defined from Markov 
parameters and the decentralisation scheme which is refered to as the Decentralised 
Markov Parameters. To conclude, the same compactification ie. product of 
Grassmannians is used for the decentralised squaring down zero placement and the 
sufficient condition for the real solutions is given by h(w) > 6 where w is an 
appropriate cohomology class and 6 is the Forney degree of the plant.

In chapter 10, we adopt an alternative approach for the study of static and 
dynamic pole placement controllers, which deviates from the previous intersection based 
philosophy. Extensive use of degenerate solutions to pole placement problem is made to 
define special sequences of compensators which in the limit converge to the degenerate
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compensator. The essence of this approach is that the corresponding pole placement 
map is linearized asymptotically and this reduces the overall solvability to a linear 
problem. Note that the essential part in this framework is the determination of rank of 
certain matrices referred to as ‘blow up matrices’ , related to the Plucker matrix and the 
specific selection of the degenerate point. The approach allows the derivation of 
sufficient conditions for the existence of real solutions, constant or dynamic, and 
introduces a systematic computational methodology for defining families of solutions 
parametrised by the selected degenerate point. The special matrix (blow up matrix) 
characterising the solvability of the reduced linear problem, has rank properties 
characterising the size or dimension of the ‘blow up’ at a particular degenerate point. 
Solvability of the constant or dynamic problem, is achieved for these degenerate points 
for which the dimension of the ‘blow up’ (defined by the rank of the blow up matrix) 
equals the degree of the closed loop polynomial to be assigned. An integral part of this 
philosophy is the characterisation of families of systems for which, for the generic 
degenerate point, we have complete blow up of the pole placement map (in this case, 
the problem is solvable).

This new methodology is clearly sufficient but it is proved to be quite powerful 
for large families of systems and in fact, the results derived on the one hand, cover all 
previous results and introduces new important ones as well as a unifying algorithmic 
computational procedure for workong out families of solutions. In fact, for the case of 
constant output, the condition mp>n is shown to be sufficient for the generic solvability 
of the problem with real controllers and it is extended to the case of dynamic pole 
placement with n-̂  order controllers to that n^(m+p)+m>n+n^ which was 
conjectured in [Wil.l] but has been an open question so far.

The latter result provides also the means for computing the generic least degree 
of arbitrary pole assigning compensators and it is shown to be the least n̂  satisfying the 
above inequality. It is worth noting that the blow up approach does not cover the 
boundary cases where mp=n or n-^(m+p)+m=n+n^ . However, these specific cases 
have been tackled within the intersection theory framework as it has been shown in 
[Broc.l]. The final chapter the ‘conclusions’ contains a summary of what was achieved, 
a brief critique of the results and what can be further accomplished by our methods.

Although in this thesis we have merely dealt with frequency assignment 
problems, we have named it ‘Algebrogeometric and Topological methods in control
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theory’ not only because the frequency assignment problems are very central in control 
theory, but also on account of believing that our methods can be extended to other 
nonlinear problems in control. Finally, we wish that our methods can be a starting point 
for the introduction of algebrogeometric and topological methods in fields of control 
theory where conventional methods are unsatisfactory.
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2.1 Introduction
The aim of this chapter is to set the scene for the control engineering part of the 

theory that will develop in this thesis and to provide some control related mathematical 
tools and notations. This chapter does not inspire to be a review of background control 
theoretic results but rather a brief summary with definitions, fundamental concepts and 
properties. A more detailed exposition of the background topics is given in the listed 
references.

In particular, we briefly present several descriptions for linear systems in section 
2.2. From these, the ones we will be using in this thesis are state space models and 
matrix fraction descriptions (MFD) of transfer function models. It is worth noting that 
since the formulation of our problems (see chapter 5) is in terms of composite 
representations of MFD’s our results may be extended into the more general 
behavioural approach of systems given in [Will. 2], In section 2.3 we will briefly present 
some basic algebraic theory of systems based on the study of properties of rational and 
polynomial matrices and in section 2.4 we demonstrate some of the aspects of the 
general feedback configuration. Finally, in section 2.5, we briefly introduce the general 
problems addressed in this thesis. A proper discussion and formulation of these 
problems, as well as a review of background literature, is given in subsequent chapters.

2.2 Systems Descriptions and invariants

2.2.1 Introduction

Our study assumes linear time invariant systems of the regular state space type ; 
however, the present approach can also be applied to singular systems [Lew.l], but such 
cases are not examined here. We briefly review next, the two main families of models 
the internal and external (input-output) models.
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2.2.2 Internal Models

The basic two families of internal models for linear systems for linear systems are 
the state-space and the polynomial models and these are discussed next.

(i) State Space Models

A state space model for a linear time invariant system is described as:

x=A x +  Bu
S(A,B,C,D): I

y=Cx +  Du

(2.1a)

(2.1b)

where A € Rmx" , B 6 R nxP, C € Rmxn , D e  R "IX'\ and x <E R", y e R p are real-value 
vector functions. ‘A ’ is called the internal dynamics matrix and its properties stem from 
the natural dynamic characteristics of the system. The matrices B, C are called input-, 
output- matrices respectively and they express the coupling of input, output variables u, 
y to the internal variables x, known as states; thus B, C represent the cummulative 
effect of selecting actuators (B matrix) and sensors (C matrix) for the system; because 
of the latter property, we may also refer to B as the actuator matrix and to C as the 
sensor matrix [McF.5]. The internal variables of this model are the states x and its 
derivatives x.

A state space model with D constant is called proper or causal, whereas if D=0, 
it is called strictly proper. If in (2.1b) D is not a constant but a polynomial matrix in 
r=  d (-)/d t , then the system is called nonproper and it admits a state space realization 
of the singular type ie. Ex=Ax+Bu, y=Cx where det(E)=0 [Lew.l], We shall refer to 
the models of the S(A,B,C,D) type as regular state space models.

The number of states n in the S(A,B,C,D) model is defined as its order. It is 
always assumed that the measurements and actuation variables are independent and 
thus p(B)=p, p(C)=m , as well as that m < n, p < n. If r=  d( • )/dt denotes the
derivative operator, the description (2.1) may be expressed as
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where T(r) is known as the Roscnbrock’s System matrix [R.5]. The relationship between 
PMDs and state models is extensively treated in [R.5],[Pug.l],[Hay.l],[Schum.l].

2.2.3. External models

The two basic families of external (input-output) models are the time-domain 
(convolution) and frequency domain (transfer function) models and are briefly 
presented.

(i) Convolution Models

The time domain, input-output description of linear, causal, time invariant 
systems, which are assumed to be initially relaxed, gives a mathematical description 
between the input and output vectors, which is expressed as:

y(t)
rt ft
/  G (t-T )u (T )d T  =  /  G(T)u(t-T)dT

J n J n
(2.5)

where t=0 is the initial time and G(t) is an mxp matrix-valued function defined for 
t > 0. The integral in (2.5) is known as a convolution integral and the matrix G(t) as an 
impulse response matrix. For a proper state space model S(A,B,C,D) the impulse 
response matrix is expressed by

G (t)=  CeAtB +  D5(t) (2.6)

where <$(t) is the Dirac impulse. The above description is called a convolution desription.

(ii) Transfer Function Matrix Models

For systems which are describable by convolution integrals, it is of great 
advantage to use Laplace Transform, because it will change a convolution integral in 
the time domain into an algebraic product in the frequaency domain. Thus, by letting 
y(s), u(s) be the Laplace Transforms of y(t), u(t) vector functions then the convolution
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description (2.5) becomes

y(s)=  G(s) u(s)
where

(2.7)

00
G (s)= J G(t)e'stdt (2.8)

0
The matrix G(s) , defined as the Laplace Transform, of the impulse response matrix is 
called the system transfer function and (2.7) defines a transfer function matrix model. 
Whenever a transfer function is used, the system is always assumed to be relaxed at 
t=0.

A rational matrix G(s) G IRmxp[s] is said to proper if G(oo) is a finite constant 
matrix and strictly proper if G(oo)=0 ; otherwise, if some of the elements in the G(oo) 
matrix are infinity it will be called non proper . The set of proper rational functions is 
denoted by Rpr(s) . For a state space model S(A,B,C,D) the transfer function matrix is 
given by

G(s)=C(sI-A)-1B+D (2.9)

which is a transfer function matrix. For every G(s) g  ^prf(s)mXP there always exists a 
state space model S(A,B,C,D) for which (2.9) holds true; such state space models are 
called realisations of G(s) and are not uniquely defined. A realisation of G(s) with the 
least possible order is called minimal realisation and this order is called the MacMillan 
degree of G(s) [Kai.l],

Certain factorisation, of transfer functions, which provide alternative 
representations of the system are the polynomial and rational fractional representations 
[Vid.2],[Var.3]: such representations are crucial in many of the model control synthesis- 
design approaches, as well as the approach for Control Design,
[Glo.l],[Doy.l],[McF.l], The polynomial fraction representation is briefly presented 
next.

(iii) Polynomial Matrix Fraction Description

If R[s] is the set of polynomials (ring) in s variable and with real coefficients then
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a rational function g(s) e IR(s) may be expressed as g(s)=n(s)/d(s), where n(s) e R[s] 
is the numerator and d(s) e IR[s] is the denominator, ie.

g(s)=n(s) d(s)"1 (2 .10)

Such a representation of g(s) is called a polynomial fractional description (IR[s]-FD). 
Such a description is called coprime IR[s] —FD if n(s), d(s) have no common zeros. If 
G(s) G R(s)mxp , then it may be also represented as

G(s)= Nr (s ) Dr (s)->= Dl (s)'> Nl (s ) (2.11)

where NR(s), NL(s) e IR[s]mxp, DR(s) e IR[s]pxp, DL(s) e R[s]rnxm, with det(DL(s)), 
det(DR(s)) f  0 . NR(s), DR(s), N jj ( s ), D^(s) are known [Kail.,1 ] as [R[s]-fikg/it Matrix 
Fraction Descriptions ([R[s] — R -  MFD) and R[s]-Left-Matrix Fraction Descriptions 
(R[s] -  L -  MFD), respectively. Every transfer function has IR [s]-R -M FD s and 
IR[s]-L-M FD s and such descriptions are not uniquely defined. If G (s)=N R(s) Dj^(s)'1 = 
D l (s )_1Nl (s ), then deg{det(DR(s))}, deg{det(DL(s))} is defined as the order of the R- 
MFD, L-MFD respectively. A R-MFD, or L-MFD is called irreducible if 
deg{det(DR(s))}, deg{det(DL(s))} is minimal amongst all other MFDs. For all 
irreducible MFDs (left or right), of proper transfer functions we have [Kail. 1]:

min {deg{det(DR(s))}} =  min{deg{det(DL(s))}} =  5m(G(s)) (2.12)

Irreducible MFD’s are not uniquely defined, but they all provide equivalent minimal 
representations of G(s). The theory of MFD’s is quite rich and plays a key role on the 
development of the modern algebraic approaches for the analysis and synthesis of 
multivariable control systems.

2.2.4 System Invariants.

System invariants are functions defined on the model, which remain the same 
under certain types of transformations; thus, they characterise not only a single model 
but a whole family (equivalence class). Let be a family of linear models, E an
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equivalence relation defined on Jib, E(M) the equivalence class of M e Jb and let Jib/E 
be quotient set of orbit (set of all equivalence classes). We may define [MacL.l]:

Definition (2.1) Let Jib be a family of models, I a set and E an equivalence relation 
defined on Jib.
(i) A function f:Jlb-> I is called an invariant of E, when implies f(M j)= f(M 2).
Also, f is called a complete invariant for E, when f(M j)= f(M 2) implies MjEM^.

(ii) A set of invariants {fj: , i= l,2 ,...,k } is a complete set for E on Jib, if the
map f defined by

f: M -» J  /•: M -> f(M) =  { f 1(M ),...,fk(M )} (2.13)

is a complete invariant for E on X. The complete set of invariants is called independent 
if there is no subset which is also complete.

□

Note that a complete invariant defines a one-to-one correspondence between 
E(M) equivalence classes and the image of f in I. The notion of independence is essential 
in the minimal parametrisation of E(M) by invariants. An important issue for system 
identification and control analysis is that of the canonical form for E(M).

If f: M -  .x /j is a complete and independent invariant for E on Jb, by specialising 
the invariant f such that its image C is in Jb we define a canonical element or canonical 
form.

□

Definition (2.2) A set of canonical forms, C for E equivalence on Jib, is a subset of Jb 
such that for every M e there exists a unique C e C for which MEC.

□

Canonical forms are uniquely defined elements of Jb, which have the simplest 
possible structure (least number of parameters) and which describe the invariant in 
terms of a simple model. Canonical forms are often used as analysis tools and desribe 
the simplest possible type of model that may be defined under the set of tranformations 
defining the equivalence relation. The set of canonical forms provides a system of
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canonical distinct representatives for JL/E.

In the case of systems, different types of invariants are introduced for 
equivalence classes defined by transformation groups. An account of these different 
types of invariants may be found in [Kai.l],[Kar.7].

2.3 Basic Algebraic theory
In this section, we briefly review some of the basics from the theory of 

polynomial and rational matrices which are essential for our present studies

2.3.1 Polynomial Matrices: General Properties

Some of the basic properties on polynomial matrices related to invariants and canonical 
forms under different types of unimodular equivalence are summarised first below. 
Note that most of these properties, also hold true over any Principal Ideal Domain 
(PID).

Definition (2.3) A non-singular square polynomial matrix U(s) £ [Rq xq[s] whose 
determinant is not a function of s is called unimodular matrix (i.e. det U(s) = c e

M o } ) -  □

Note that unimodular matrices represent products of elementary row, column 
operations on polynomial matrices. In fact, post-multiplication by a unimodular matrix 
corresponds to products of elementary column operations, while pre-multiplication is 
equivalent to products of elementary row operations. By elementary operations we can 
reduce polynomial matrices to several “canonical” forms.

Theorem (2.1) Column Hermite Form [Kai, 1]: Any polynomial matrix M(s) e 
Rpxci[s], p{M(s)} = t with t < min{p,q} can be reduced by elementary row operations 
(i.e. by premultiplication by a unimodular matrix) to a (lower or upper) quasi- 
triangular form in which
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(i) the last p -t  rows are identically zero;

(ii) in column j, 1 < j < t, the diagonal element is monic and of higher degree that 
any (non-zero) element above it;

(iii) in column j, 1 < j < t, if the diagonal element is unity, then all elements 
above it are zero; and

(iv) no particular statements can be made about the elements in the last q -t  columns
and the first t rows □

By interchanging the roles of rows and columns a similar row-Hermite form  can be
obtained.

Remark(2.1 ) [Marc.2]: The column and row Hermite forms are canonical forms under 
right or left IR[s] equivalence and thus all elements are uniquely defined.

Theorem (2.2) Smith Form [Kai.l]: For any polynomial matrix M(s) e IRpxq[s], 
p{M(s)} = t with t < min{p,q}, we can find elementary row and column operations or 
corresponding unimodular matrices U(s) e IRpxp[s], V(s) e IRq xq[s], such that

where

U(s) M(s) V(s) = S(s) (2.14)

S(s)
ff(s)

T
t

0 1

0

0

— q -t  -»

i
p -t

i

(2.15)

defined modulo c 6 R (c /  0) and theyand the set (f(s), i = 1 , •••, t} is uniquely 
satisfy the divisibility conditions

24



f i ( s )  /  f i + l ( s )> 1 =  ! »  •••. t - 1 ( 2 . 1 6 )

If Dj(s) denote the greatest common divisor of all i^-order minors of M(s), then 
the set of fj(s) polynomials is defined by the Smith Algorithm i.e.

fj(s) = Dj(s) /  Dj ^s), D0(s) = 1, i =  1, 2, t (2.17)

The matrix S(s) is called the Smith form of M(s). The {Dj(s), i = 1 , t} are 
called the determinant divisors of M(s) and (fj(s), i = 1, •••, t) the invariant polynomials 
of M(s).

Definition (2.4) [Kai, 1]: A square polynomial matrix Q(s) e IRq xq[s] is said to be a 
right divisor (R.D) of the polynomial matrix M(s) e [Rpxq[s], with p > q, if and only if 
there exists a polynomial matrix Mj(s) e !Rpxq[s], such that

M(s) = Mj(s) Q(s) (2.18)

Let Qq (s) be a R.D. of M(s). Then QG(s) is said to be a greatest right divisor (G.R.D) 
of M(s) if and only if deg {det QG(s)} > deg {Q(s)} for every R.D. Q(s) of M(s). □

Remark (2.2): Greatest right divisors of polynomial matrices are not unique. They 
differ only by unimodular (left) factors. □

Definition (2.5) [Kai, 1]: A polynomial matrix M(s) e R p xq[s], p > q, p {M(s)} = q 
is said to be irreducible or least degree if the following equivalent conditions are 
satisfied:

(i) all the G.R.D. of M(s) are unimodular matrices;

(ii) the Smith Form of M(s) is [Iq, 0]T;

(iii) the greatest common divisor of all q-order minors of M(s) is 1;
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(iv) p{M(s)} = q, for every s e C. □

Definition (2.6) [Kai, 1]: A square polynomial matrix Q(s) e IRq xq[s] is said to be a 
greatest common right divisor (G.C.R.D) of the two polynomial matrices 
M j(s) <E IRP xq[s], M2(s ) e IRm xq[s] if it satisfies the following properties:

(i) Q(s) is a common right divisor of Mj(s) and M2(s);

(ii) if Q'(s) g IRq xq[s] is any other common right divisor of M^(s) and M ^s), then
Q'(s) is a right divisor of Q(s), or in other words deg jdet {Q (s)}j > deg {det 
Q'(s)}. □

Remark (2.3): Greatest common divisors of two polynomial matrices are not unique. 
They differ only by unimodular factors. □

Definition (2.7) [Kai, 1]: Two polynomial matrices M j(s) e  Rp x q[s], M2(s) e pm x qr

with p< Mi(s)
M2( s )

= q are said to be relatively right -prime or right coprime if and only if

one of the following equivalent conditions is satisfied:

(i)

(ii)

(iii) the greatest common divisor of all q-order minors of

fMi(s)

all G.C.R.D of Mj(s) and M2(s) are unimodular matrices; 

the Smith form of ^ \ is  ̂ ;
M2(s) L 0 J ’

M i(s)
M2(s )

(iv)
M2(s )

is 1 ;

= q, for every s e C. □

Left divisors (L.D.), Greatest Left Divisors (G.L.D.) and Greatest Common Left 
Divisors (G.C.L.D) can be defined with the obvious changes. For convenience, we shall 
henceforth only consider the case of right divisors.

Remark (2.4): A right MFD (left MFD) |D^(s), N^(s)} ({D^(s), N^(s)}) of a transfer 
function matrix G(s) is called a right coprime MFD (a left co-prime MFD), iff the 
matrices (DR(s), NR(s)) (DL(s), NL(s)) are right coprime (left coprime). □
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Let M(s) G IRpxq[s], p > q be a polynomial matrix with p{M(s)} = q and let us 
write it in terms of its q column polynomial vectors as M(s) = [mj(s), •••, mq(s)] where 
m.j(s) = [mjj(s), •••, mpj(s)]T, i = 1, —, q. Then we may define [R.5], [Wol.l]:

Definition (2.8) : For a polynomial matrix we define:
(i) The degree of the polynomial vector m-(s) is the highest degree occuring among 

the degrees of its polynomial elements m-j(s), i.e e [Rq[s]

deg m;(s) = max {deg m ^s) j = 1 , •••, q} (2.19)

(ii ) The complexity c of M(s) is the sum of the degrees of its column polynomial
vectors, i.e.

c = £  deg {mj(s)} (2.20)
i=l

(iii) The matrix degree d of M(s) is the highest degree occuring among the degrees of 
all its q-order minors.

□

Since a q-order minor of M(s) is a sum of products of polynomials one from each 
column, the maximum degree occuring among all the q-order minors of M(s), i.e. its 
degree d can not exceed its complexity c, i.e., we have [R.5] [Wol.l] c > d. Let now 

= deg {mj(s)}, i = 1 , —, q, and write

6- 6■
m^s) = mp + mjs + ••• + m-ls 1 = 5]  m|csk, i = 1 , •••, q

1 k=0 1
(2.21)

Then M(s) can be written as

M(s) = [m^s), ..., mq(s)] = [m{l, m ^] + MbZ(s) (2.22)
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where x c
( c

q
E  ¿¡), aild
i=l

v ¿ - 1  
e Rc q[s] where  ̂(s) = [1, s, -• s 1 ] (2.23)

The matrix [m^, •••, mqq] = Ma elRpxq is called the highest (column) degree coefficient 
matrix of M(s).

Definition (2.9) [Kai.l]: A polynomial matrix M(s) e [Rp x q[s] is said to be column 
proper or column reduced if the matrix Ma has full rank q. □

Proposition (2.1) [Kai.l]: A polynomial matrix M(s) g IRp x q[s] is column reduced iff its 
complexity c is equal to its matrix degree d. □

Proposition (2.2) [Kai.l]: Let M(s) e IRP x q[s] be a polynomial matrix which is not 
column reduced. Then there always exists a unimodular matrix U(s) e IRq x q[s], det 
(U(s)} 6 IR -  {0}, such that the polynomial matrix M'(s) = M(s) U(s) is column 
reduced. □

ZOO

e 6,(s)

S-K (s)

2.3.2The algebraic Structure of Rational Vector Spaces [Ear.5]

Let G(s) e lRm xp[s], m > p, p{G(s)} = p be a matrix. Let us also denote by T q  the set 
of all linear combinations of the columns of G(s) with multipliers in IR(s), i.e. if G(s) = 

[g l ( s )> "U gp(s)], then = sPanR(s)lg l(s) ’ Sp(s)b Clearly T q  is a linear vector 
space over IR(s) and dimTq  = p, and it is called the rational vector space generated by 
G(s).

From any rational basis matrix G(s) of T q  we can generate a polynomial basis of 
T g  by means of a right MFD of G(s), i.e. if G(s) = N(s) D- 1(s) with N(s) g Rm x p[s], 
D(s) £ Rp x p[s], det (D(s)} f  0, then clearly the columns of N(s) define a polynomial
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basis of r G. More precisely, if N(s) = [n^(s), •••, np(s)] then span^^n ^(s), np(s)} 
= T q  and spanR ŝj{n j(s), •••, np(s)} = where denotes the set of all linear
combinations of the columns of N(s) with multipliers in R(s). The set is a free 
[R[s]—module [Bir, 1] and is called the polynomial module generated by N(s). Some of 
the important properties of such R[s] modules are summarised below [Bir. 1].

Proposition (2.3): Let be the polynomial modules generated by the
polynomial matrices Nj(s), N2(s) G Rm xp, with p{Nj(s)} = p{N2(s)} = p. If Nj(s) = 
N2(s) Q(s ), where Q(s) g IRP x p[s], det {Q(s)} ^ 0, then C . □

Proposition (2.4): Let Nj(s), N2(s) G Rm Xp[s] be two polynomial bases of the same 
polynomial module Then, there exists a unimodular matrix Q(s) GlRp x p , det
{Q(s)} = c g  R -  {0} such that Np(s) = N2(s) Q(s). □

Thus, unimodular matrices represent co-ordinate transformations of a polynomial 
module.

Proposition (2.5): Let N(s) eR mxp[s] be a basis of the polynomial module „4b Then 
the degree of N(s) is an invariant of _4LN, or in other words if Nj(s) GRmxp[s] is any 
other basis of JbN then deg{N(s)} = deg{Nj(s)}. □

Proposition (2.6): Let Nj(s), N2(s) g  Rm x p[s], m > p, p{N^s)} = p, p{N2(s)} = p and 
let dj -  deg {N^s)}, d2 = {N2(s )}. If Nj(s) = N2(s) Q(s), Q(s) g  Rp x p[s], deg {detQ(s)} 
= q > 1 . then

(i) = d2 + q

(n) c

where ~4bp̂ , are the polynomial modules generated by the polynomial matrices
Nj(s), N2(s), respectively. □

Clearly, the above conditions represent the extraction of a right divisor Q(s) of 
the polynomial matrix N- (̂s). This observation leads us to the following conclusions: 
Let Nj(s) g R p [s ], m > p, p{N(s)} = p be a polynomial matrix which can be written 
in terms of its columns as Nj(s) = [n}(s), •••, np(s)]. Let us assume that Nj(s) is not
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irreducible and let Y = spanR^ { n  }(s), ■ • n J,(s)}, = spanR|sj{n ¡(s), ■■■, n j(s)} be
the rational vector space Y and the polynomial module spanned by its columns.
Then, if Qj(s), i = 1, 2, ••• are right divisors of Nj(s), i.e.

N 1(s) = Ni+1(s )Q i(s), i = l, 2, ••• (2.24)

and the deg {detQj(s)} = qj > 1 are such that qj < q2 < ^3 < then

JhNi c  ^ n 2C ^ n 3 c  (2.25)

and

deg (N^s)} > deg {N2(s)} > deg {N3(s)} > ••• (2.26)

Moreover, if QG(s) is a greatest right divisor of N^s) so that Nj(s) = N(s) Q q ( s ), then

C -dhN and deg {N}(s)} >  deg {N(s)} (2.27)

The polynomial module is the maximal IR (s)-module of the rational vector space Y 
and all its polynomial bases are least degree, or irreducible polynomial matrices. In 
other words, if we consider the set of all polynomial vectors in Y then this set coincides 
with the module defined above.

Definition (2.10) [For.l]: A polynomial matrix N(s) elRm xp[s], m > p and p{N(s)} = 1 
is said to be minimal basis of the rational vector space Y ,Y  = col sp (N(s)}, if:

(i) N(s) is least degree

(ii) N(s) is column reduced. □

Remark (2.5): Let N t(s) e Rm x p[s], m > p, p{Nj(s)} = 1. If N(s), N*(s) e Rm x p[s] are 
two minimal bases of the rational vector space Y  spanned be the columns of N(s), the 
N(s) = N*(s) Q(s), where Q(s) is an IR[s]-unimodular matrix □

Theorem (2.3) [For.l]: Let N(s) = [n^s), •••, np(s)] eiRmXp(s), m > p, p{N(s)} = p be
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a minimal basis of a rational vector space F = col sPr (s){N(s)1 and let <*)j — deg n.j(s), i 
= 1, p. The degrees {¿¡, i = 1 , p} are invariants of F N. □

Forney has defined the indices {5-, i = 1, •••, p} as the invariant dynamical
Pindices of F^j, and their sum 6 = as the invariant dynamical order of F^. The set 

{¿¡, i = 1, p} does not define a complete [Bir.l] set of invariants for Fj .̂ A complete 
invariant is defined by the ‘echelon form’ minimal basis of Fj  ̂ [For, 1].

2.3.3 Further Properties of Rational Matrices

Some further results on the properties and structure of rational matrices related to 
MFDs and minimality of realizations are summarised here.

Proposition (2.7) [Kai.l]: Let G(s) e x p(s), p{G(s)} = min {m, p} be a rational 
matrix and let (D(s), N(s)} be a right MFD of G(s), i.e. G(s) = N(s) D_ 1(s). Then any 
realisation of G(s) with order equal to the degree of the determinant of the denominator 
matrix (i.e. n = deg {det D(s)} ) will be minimal (or equivalently, observable and 
controllable), if and only if the MFD is coprime □

Proposition (2.8) [Kai.l]: Suppose (Nj(s) Dj~^(s), i = 1, 2} are two coprime MFDs of the 
rational matrix G(s)elRm xp, p{G(s)} = min{m, p}. Then there exists a unimodular 
matrix Q(s) eR m xp[s], such that Dj(s) = D2(s) Q(s) and Nj(s) = N2(s) Q(s). □

Proposition (2.9) [Kai.l]: If (D(s), N(s)} is any MFD of G(s) eR mxp(s) with p{G(s)} = 
min{m, p} and {D(s), N(s)) is a coprime MFD of G(s), then there exists a polynomial 
matrix R(s) elRpxp[s], not necessarily unimodular, such that D(s) = D(s) R(s) and N(s) 
= N(s) R(s). □

Proposition (2.10) [Kai.l]: The determinantal degree of the denominator matrix of any 
right CMFD of G(s) G IRm x p(s) with p{G(s)} = min{m, p} is equal to the determinantal 
degree of the denominator matrix of any left CMFD of G(s). □

The most important tool in the study of the properties of rational matrices is the
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Smith-McMillan form which is defined next [Kai.l].

Theorem (2.6) (Smith-MacMillan): Let G(s) e [Rm x p(s), /9{G(s)} = t < min{m, p}.
Then there always exist unimodular matrices Q^s) e IRm x m[s], (^(s) e IRP x p[s] such 
that

Qi(s) G(s) Q2(s ) = M(s)

where M(s) e Rm x p(s) is defined by

~f l00
V’1(s)

M(s)

t (s)
Ms)

Î
t

1

Î
m—t

1
1- t

(2.28)

(2.29)

The pairs of monic polynomials {ej(s), t/>j(s)} are co-prime i = 1 , t, uniquely defined 
and satisfy the division properties: V'i+1(s )/0 i(s), i = 1 , •••, t-1 , ei(s)/ei+1(s), i = 1 , 2, 
t - 1 . If D(s) is the monic least common multiple of the denominators of the elements of 
G(s), then D(s) = ip(s). □

The sum of the deg i/>j(s), i = 1, •••, t is called the MacMillan degree of G(s) and 
it is equal to the determinantal degree of the denominator matrix of any co-prime MFD 
of G(S).

Proposition (2.1 1 ) [Kai.l]:

(i) The (right or left) numerators of coprirne MFDs of G(s) all have the same Smith 
form.

(ii) The denominators of coprirne MFDs of G(s) all have the same non-unity 
invariant polynomials

□
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Proposition (2.12) [Kai.l]: For a rational matrix G(s) G IRm x p(s) we have the following 
properties:

(i) If G(s) is a strictly proper (proper) rational transfer function matrix and G(s) = 
N(s) D_ 1(s), then every column of N(s) has degree strictly less than (less than or 
equal to) that of the corresponding column of D(s).

(ii) If D(s) is column reduced, then G(s) = N(s) D~*(s) is strictly proper (proper) if
and only if each column of N(s) has degree less than (less than or equal to) the 
degree of the corresponding column of D(s) □

2.3.4 Poles and Zeros of Rational Matrices

The Smith-MacMillan form of a rational matrix provides the means for a natural 
extension of the definition of poles and zeros [R.5], [MacF.4] from the scalar to the 
matrix case

Definition (2.11): Let G(s) e (Rm x p(s). Then,

(i) The zeros of G(s) are defined as the roots of the numerator polynomials {ej(s)} of 
the Smith-MacMillan form.

(ii) The poles of G(s) are defined as the roots of the denominator polynomials |t/>-(s)}
of the Smith-MacMillan form. □

The polynomials defined by

z(s) = n ̂ (s), p (s ) = n V>:(s) (2.30)
i—1 i=l 1

are referred to as the zero , pole polynomial respectively of G(s). From the results of 
the previous section we have the following alternative characterisation of poles and 
zeros.
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Proposition (2.13) [Kai.l]: Let G(s) eR mX1>(s) and let G(s) = DL(s) *NL(s) = N^(s) 
D r ( s ) - 1  be left, right coprime MFDs. Then,

(i) The pole polynomial p(s) of G(s) is given by p(s) = det {Dp(s)} = c det {Dj^(s)}, 
c G IR £  0.

(ii) The zero polynomial z(s) of G(s) is given by the product of the invariant
polynomials of Np(s), or equivalently Nj^(s). □

Consider now a G(s) g  IRm x p(s), m > p, p{G(s)} = p and let (D(s), N(s)} be a 
right coprime MFD pair. If Z(s) is greatest right divisor of N(s), we may write

G(s) = N(s) D(s)"1 = N(s) Z(s) D(s)"1 (2.31)

where N(s) is a least degree basis matrix for col - span^ĝ {G(s)}. Using the above 
factorisation of G(s) we have p(s) = det (D(s)}, z(s) = det (Z(s)} and thus

-  -  im)v l
Cp(N(s)) = Cp(N(s) Z(s)) = Cp(N(s)) g IR p [s] (2.32)

where Cp(.) denotes the p-th compound matrix [Mar.3], Clearly, equ. (2.81) implies:

Remark (2.7): If N(s) is a numerator of a coprime MFD of G(s), then the zero 
polynomial z(s), is the greatest common divisor of the polynomial entries of Cp(N(s)). □

Let us suppose now that G(s) is a rational transfer function matrix with 
G(s) g IRm xp(s), p{G(s)} = min{m, p} and that (DL(s), NL(s)}, (Dfl(s), Nfl(s)} are left 
and right MFDs of G(s), respectively, not necessarily coprime; then it can be shown 
[Kai.l] that realisations of G(s) corresponding to those two MFDs are not minimal; 
furthermore it can be proved [Kai.l] that:

(i) the (Smith) zeros of [D^s), N^(s)] correspond to uncontrollable modes of the 

equivalent state space realisation and they are termed input-decoupling (i.d.) 

zeros of the MFD
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(ii) the (Smith) zeros of correspond to unobservable modes of the equivalent
T ms)

state space realisation and they are termed the output-decoupling (o.d.) zeros of 

the MFD.

To distinguish the transfer function zeros from the decoupling zeros, we often 
call the transfer function zeros transmission zeros. If z,- d_(s), z0 d (s) are the i.d. zero,
o.d. zero polynomials respectively, then we have:

Proposition (2.14): Let G(s) 6 lRm x p(s) with p{G(s)} = min{m, p} and let (D^s), 
N/,(s)}, (Dfi(s), Nfi(s)} be left and right MFDs of G(s), respectively, not necessarily 
coprime. Then

Cm([DL(s) N,(s)]) = Cm ( T l ( s ) )  z , , . ( s ), C, C P ( T fi(s ) )  z o . j . ( s )  (2 . 3 3 )

□

2.4 The general feedback configuration.

2.4.1. General aspects of the general feedback configuration.

Consider the following general control system configuration shown below

Fig. (2.1): General Control System Configuration

where P(s) represents the mxp transfer matrix of the plant and C(s) the pxm transfer 
matrix of the controller (in the following, we shall denote P(s), C(s) simply by P, C 
respectively). The vectors Wj, w2 denote the externally applied inputs, el5 e2 denote 
the inputs to the controller, plant and y l5 y2 the vector outputs of the controller, plant
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respectively. The transfer matrices P, C are both assumed to be rational and the set 
RprPxm(s) will denote the set of pxm matrices with elements from (Rpr(s) (the ring of 
proper rational functions with no poles inside a prescribed region of the finite complex 
plane [Var.4]). The configuration of fig(2.1) is quite versatile amd may accommodate 
several control problems. For instance, in a problem of tracking w, would be a 
reference signal to be tracked by the plant output y2. In a problem of disturbance 
rejection, or desensitization to noise, Wj would be the disturbance/noise vector. 
Depending on whether Wj or w2 is the externally applied control signal ( as opposed to 
noise etc.) the configuration can represent either feeedback or cascade control.
The system under study is described by

G 0 P §1 Yi C 0 ?i
e2 w2 -C 0 e2 Y_2 0 P e2

The system equations can be written as
e=w -  F G e ,

where
y=e

?i Wj Yi 0 I c 0e = , w = , y , F= , G—
e2 w2 Y2 -I 0 0 p

(2.34)

(2.35)

(2.36)

It is easy to verify, using the Shur-formula for determinants, that

det(I+FG) =  det(I+PC) =  det(I+CP) =  t(s) e R(s) (2.37)

The system of fig(2.1)l is said to be well-formed [Cal.l] if t(s) is a non zero rational 
function. This condition is necessary and sufficient to ensure that (2.34) has a unique 
rational solution for e^ e2, jq, yj corresponding to vectors vq, w2 of appropriate 
dimensions.

If the system is well formed then

e=(I+FG )‘ 1w =  H(P,C) w (2.38)
y= G(I+FG)_1w =  W (P,C) w (2.39)

36



where

Wl H (P ,C ) ? i

§2

Wl W ( P ,C ) Yi

W 2 y 2

denoted

denoted H ,y|w

(2.40)

(2.41)

A well formed system allows the existence of various closed loop functions. In the design 
of feedback systems the ‘properness’ of these transfer functions is essential, if no signal 
is to be unduly amplified or otherwise if the smoothness of signals throughout the 
system is to be preserved. Systems which exhibit this property are said to be ‘well- 
posed’ , a more formal definition is given below.

Definition (2.12): Let every subsystem of a composite system be described by a rational 
transfer function. Then the composite system is said to be well posed if the transfer 
function of every subsystem is proper and the closed loop transfer function from any 
point chosen as an input terminal to every other point along the directed path is well 
formed and proper.

□

The well posedness property is characterised by the following result:

Theorem (2.4) [Vid.2]: Consider the feedback system of fig 2.1 where P,C are proper 
rational matrices. The closed loop transfer function Hg|w is proper, iff

det (I+C(oo) P(oo)) =  det (I+P(oo) C(oo)) e R (2.42)

□

This result implies that if both P,C are proper then condition (2.42) is necessary and 
sufficient for (I-fPC) \ (I+CP) * to be proper and it follows that all transfer functions 
associated with the feedback configuration of fig(2.1) will be proper. For systems that 
are well posed it is possible to obtain several expressions for H(P,C) and W (P,C). 
Thus for H(P,C) it is readily verified that
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H(P ,C) =
(i+ p c ^ - p o + c p )-1 i p

q i+ p c p 1 (i+ c p ) '1 -C I

and the following hold true [Vid.2]

CO+PC)'1 = (I+CP^C , P(H-CP)'1 = (I+PC)'1?

(i+pc )-1 = i -  p(i+c p)_1c , (i+c p ) '1 = i -  qi+pcr1?

(2.43)

(2.44)

(2.45)

Using the above identities we can obtain the following equivalent expressions for
H(P ,C).

-P(I+CP)_1C -pCi+ c p ) '1 (I+PC)'1 -(I+PC)'1?

(I+CP)_1C (I+CP)'1 Cil+PC)'1 I-CO+PC)'1!
(2.46)

where the first involves only (I+CP)'1 and the second (I+ P C )'1. For the W(P,C) 
transfer function we have similar expressions, that is

C 0 I p c o + p c ) '1 -c p o + c p )'1
W(P,C) =

0 P -C I
PC(I+PC)'1 Pil+CP)'1

(2.47)

or alternatively

C-CPp+CP^C -CPO+CP)'1 Cp+PC)'1 -Cp+PC)'1?

P(I+CP)_1C Pp+CP)'1 PCp+PC)'1 P-PCp+PC)"1?
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(2.48)

An interesting relationship between H(P,C) , W (P,C) denoted in short by H,W is 
defined below

W=F[H — I] (2.49)

In fact, (2.49) readily follows from the following arguments taking into account that 
F-1=  -  F

H= (I+FG)-1 = {I+FG -  FG} (I+ F G )'1-  I -  FG(I+FG )_1= I -  FW (2.50)

Remark (2.8): The transfer function W e tRpr̂ m+p^m+p (̂s) iff H e ¡Rp/ m+p^m+p (̂s)

□

Thus in the investigation of stability (external) of the feedback configuration of fig(2.1), 
the transfer function H(P,C) may be used.

2.4.2 Characteristic Pole Function

The transfer function matrix of the plant and controller may be written as coprirne 
matrix fraction descriptions (MFD’s) over the appropriate ring of interest. Since P,C 
are generally non square we distinguish between left and right MFD’s ie.

P— 1 B ,— B2A2 1 (2.51)

C= D f* N1= N2D2- ‘ (2.52)

By inserting (2.51) and (2.52) into the expression for H(P,L) we have
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H(P,C) A 1 B1

1
> o

---
---

1

_-Nl D1 0 Dj
(2.53)

1------
oCN
Û

i

D2 B2

1
o > to 1__
_ _-N2 A2_

(2.54)

Proposition (2.15) [Kai 1]: If (A^, Bj) , (A 2, B2) , (D j, Nj) , (D2, N2) are coprime pairs 
then (2.53) defines a left coprime MFD and (2.54) a right coprime MFD of H(P,C).

□

Assume now that both plant and controller transfer functions are represented by 
coprime MFD’s then the expressions for H(P,C), ie. the transfer functions of the 
feedback configuration are coprime and the characteristic pole function of H(P,C) is 
given by the determinants of the denominator matrices

f ~ det A1 B1 
-Ni Dl

det D2 B2 

'N2 A2
(2.55)

where ‘ ~ ’ denotes equality modulo a non zero real constant.

Proposition (2.16) [Kuc.2]: The characteristic pole function of H(P,C) is given by

where
f ~ det F j ~ det F2 (2.56)

F1= A 1D2 +  B 1N2 (2.57)

f 2= D j A2 + N j B2 (2.58)
□

Note the importance of the assumption that both systems within the feedback loop be 
free of hidden modes. If these assumption were violated, relation (2.55) would not be 
valid. For systems with hidden modes we have :
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Remark (2.9): For systems with hidden modes, equ. (2.56) becomes:

f * f 0 fp fc (2.59)

where fg is defined by f Proposition (2.16) and fp, fc are the hidden mode pole function 
of the plant and controller, respectively.

Hidden modes play a key role in characterising the internal stability of a 
feedback system, in terms of the exterior description.

2.4.3 Internal-External Stability of the Feedback Configuration

The internal stability of the feedback system of the configuration (2.1) is related 
to its state space description. In the following will denote the state space
representation of the composite system of the configuration (2.1 ) and Sj, i= l ,2 will 
represent the state space models of the controller and plant, respectively. We shall 
assume that the plant and controller are characterised by the following sets of state 
space equations

Sp Xj — A j Xj + ) Yi — CqXj +  D i-i (2.60a)

S2: x2 =  A2x 2 +  B2e2 > Y2 =  ^ 2^2 +  ^ 2?2 (2.60b)

The feedback system is assumed to be well posed, so that we have that 
det(I+D2Dj) ^0, and the matrices A j, A 2 are defined where,

det(I+DjD2) =

A 1= (I+ D 1D2) '1, A ^ I + D j D ,) -1 (2.61)

The transfer function corresponding to the state space description with input vector 
[w^, w2t] and output vector of signals [e^, e2t] is clearly He | Note that

ei=  wj -  y l5 e2=  w2 +  y x, (2.62)
and thus
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or

or

§ 1 =  Wj -  C 2x2 -  D 2(w 2+  C j X j - f  Djeq)

§1= - A - ^ C ^ X j  -  A 2C 2x 2 +  A 2Wj -  A 2D 2w2 

§2=  w2 -  C j Xj +  D1?1=  w2 

(I +  D jD 2)e2=  C j Xj +  D j C 2x 2 +  D j Wj +  w2 

e2= ' A 2C j Xj — A jD iC 2x2 d- A|D^w^ -f- A jw 2

and from the above, we obtain the state-space equations.

~ -
k

l
•X- to i__
__

A Xj-

B i A 2D2C i — B j A 2C 2

B ^ j Cj

4 Af

*1

-2 

A x

+

f

+
Bj A2

B.Aj D,

B j A 2D2

B2A j

4 Bf
^2

A uf

~

h

-2

A yf

- A i - D 2C j

A iC,

A 2C 2

A l D l c 2

4  C f

+

+
AlD,

^ 2^2

A, w2

(2 .6 3 )

(2 .6 4 )

(2 .6 5 )

(2.66)

(2 .6 7 )

(2.68)

(2 .6 9 )
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The matrices (Af, Bf, Cf, Df) characterize the feedback system completely. The notion 
of internal and external stability are defined next.

Definition (2.13) [Che.l]: The feedback configuration of Fig(2.1) will be called internally 
stable if the system

Xf =  A f  Xj- ( 2 .7 0 )

is asymptotically stable. It will be called bounded-input, bounded-output stable (BIBO) if 
the tranfer function H , is BIBO stable.e | w

□

To examine the conditions under which the stability of He | w guarantees internal 
stability we need the following standard notions.

Definition (2.14) [Won.l]: For a system S(A,B,C,D) we have:
(i) The pair (A,B) is stabilizable, if the unstable subspace of x= Ax+ Bu is contained in 
its controllable subspace.
(ii) The pair (A,C) is detectable, if the unreconstructable subspace of x= Ax+ Bu, y — 
Cx is contained in its observable subspace.

□

A  D f

Remark (2.10) Under the stabilizability and detectability assumptions on a linear 
system, S(A,B,C,D), the notions of internal and external stability become equivalent. □

With the above standard state space notions, the following results may be stated 
for the standard feedback configuration.

Proposition (2.17) [Che.l], [Vid.2] : Consider the well-posed feedback system of 
fig(2.1 ) with controller Sj and plant S2 represented by the quadruples (A-, Bj, C-, D-) i 
=  1, 2. Then
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(i) Sf is controllable, observable iff both Sj and S2 are controllable, observable.
(ii) Sf is stabilizable, detectable iff both Sj and S2 are stabilizable, detectable.

□

The above leads to the following main result [Vid.2],

Theorem (2.5): Consider the well posed feedback system Sf with the controller Sj and 
plant S2 both stabilizable and detectable. Under these assumptions, Sf is internally 
stable, iff the transfer function H , is BIBO stable. □

Thus under the assumption of well posedness and stabilizability and detectability of 
plant and controller the closed loop transfer function He|w defines both internal and 
external stability. Clearly, since controllability implies stabilizability and observability 
implies detectability, if Sf is well posed and both plant and controller are free from 
hidden modes (controllable and observable) then He|w defines both internal and external 
stability.

2.5 Conclusions
In this thesis, the emphasis is on the study of pole placement assignment 

problems for the standard feedback configuration (2.1 ) which has been discussed in this 
chapter where the contoller may be constant or dynamic and has centralised or 
decentralised characteristics. As far as the dynamics are concerned, we are interested in 
the family of controllers of certain dynamic complexity such as constant PI, and 
bounded dynamics (bounded controllability observability indices). Our approach, as far 
as system description goes, will be based on the use of MFD’s which have been 
discussed in detail here. An additional problem, also discussed within the algebraic 
framework, is the problem of squaring down, which may be considered as part of the 
effort to form the feedback configuration.
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3.1 Introduction
In this chapter we present the main mathematical tools to be used in this thesis. 

These are : exterior algebra, algebraic geometry and intersection theory, and finally 
manifolds and cohomology theory. These topics are presented in a rather introductory 
manner, focusing to those points related to this thesis. In many circumstances 
(especially in intersection theory) we do not follow the mathematical formalism 
normally used for the above topics, but try to illustrate the mathematics with specific 
“down to earth” examples which in turn may be more easily related to our problems. 
Any additional tools needed subsequently, will be briefly presented in the relative 
chapters.

3.2 Exterior Algebra and representation of exterior powers 
of linear maps.

3.2.1 Introduction

This section introduces the main concepts of exterior algebra and representation 
of exterior maps. These concepts are necessary for the understanding of DAP which has 
a multilinear skew symmetric nature. In section 3.2.2 we give an abstract mathematical 
description of the key points and results from exterior algebra and in section 3.2.3 we 
show how we can represent the exterior powers of maps by certain compound matrices.

3.2.2 Basic notions and results on multilinear algebra [Marc.l, Gre.l]

Let T and Tl be vector spaces over a field F of characteristic 0. A p-linear map 
from T to 31 is a map <j>\ xT—>31 which is linear with respect to each argument, i.e.

^(—1’ i + —p) = -W’U p  •••> Xp •••, i p )  + ^ l i  "•> y i) •••> Ap)
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where A, p e F and Xp £ T. A p-linear map from T to F is called a p-linear function 
in r .

A p-linear map <f: xT—*CLL is called skew-symmetric if for every permutation a, 
cr £ Sp (Sp is the group of permutations of p objects)

¿ 0 ^ ( 1), •••> x<r(p)) =  sign •••, Xp)

where sign cr is the sign of the permutation. Every p-linear map <j> from T to Si 
determines a skew symmetric p-linear map if which is given by:

= £  (sign cr) a ■ <j>
a

Example (3.1): Determinants provide an example of multilinearity. For instance, the 
determinant det(A) of an nxn matrix, with entries in F is a function of the columns of 
A. Let A = [a,j, •••, a n] £ Fnxn, then the determinant det(A) is a function det: xFn—* F 
for which

det (a j , •••, Aaj + /raj, •••, a n) = Adetfa^, •••, ap a n) + /r(a j, •••, a j, •••, a n)

So the determinant is a an n-linear skew symmetric fucntion of Fn.

□

Let T be an arbitrary vector space and p > 2 be an integer. Then a vector space 
A PT together with a skew symmetric p-linear map

A p: xT —* A pr  
i

is called a p-th exterior power of % if the following conditions are satisfied:

(i) The vectors A 15̂ ,  •••, x p) generate A PT.

(ii) If if is any skew symmetric p-linear map of x % into an arbitrary vector space ft,
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then there exists a linear map
f: A p r  — hi such that xp = f o A p.

It is proved that conditions (i) and (ii) are equivalent to the following condition:
(iii) If xp is any skew symmetric p-linear map of x V  into a vector space hi then there 
exists a unique linear map f: A p V —> hi such that xp = f o A p

□

The elements of A P<T are called p-vectors. A p-vector of the form 
A p(Xj, •••, Xp) is called decomposable, and is denoted by X| A ---A x p. Condition (i) 
states that A PT is generated by its decomposable elements.

The skew symmetric property of the p-linear map A p implies that for every 
permutation cr e Sp

^ ( i ) A - A x „ (p) = (sign a) . x j A ••• A x p (3.1)

Now suppose that {Xj, •••, x p} are linearly dependent vectors. Then the skew symmetry 
of A p implies that:

X[ A ••• A x p = 0 (3.2)

Conversely, p-vectors which satisfy (3.2) are linearly dependent.

Let us see now how we can construct the p-th exterior power of a finite 
dimensional vector space. Suppose that T is a vector space of dimension n over the field 
^ ^  fep i = 1, •••, n} is a basis of V, then we consider the following formal products:

e : A e- A- ' -Ae-  , 1 < i, < i2 < • • • < i < n
*1 *2 *p ~ 1 1 p —

where A has the skew symmetry property. There are ^  choices of distinct indices i1? 
"■) from 1 to n, and they can be arranged uniquely in increasing order. The space of 
all linear combinations of the above products is the required exterior power A PT. 
Clearly
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dim A PT = (“ ), p = 0, 1, •••, n

and A PT  = 0 for p > n.

An arbitrary vector space A PT  is a p-vector and an element of the form 
X j A - - A X p  where x y, X2, •• •, Xp G T is decomposable. Every p-vector u of A PT  can 
be uniquely represented in the form:

a = 5 \ i a...iP £ i , A 5 i , A - A £ i, <3-3>

where the symbol < indicates that the indices (ix, •••, i ) are ordered lexicographically (1 
< ii < i2 < ••• < i < n). The coefficients a- • • are called the co-ordinates of the

1112*** p
p-vector u with respect to the basis {e •, i = 1 , •••, n) of V.

If we denote by A T  the direct sum V © A 1T © A 2T ® ... © A m<f  w h ere  m is the 
dimension of T, then ( A f ,+ ,  A ) is an F-graded algebra called the ex tenor algebra of f .  
The exterior algebra of V has the property that it is the smallest F-algebra (A ,+ ,-) 
which contains V and satisfies v -v= 0  for every v e i .  The next theorem states that a 
linear map between two linear spaces, can be uniquely extended to a homomorphism of 
the corresponding exterior algebras.

Theorem (3.1) [Bir. 1]: Let T ,0!! be finite dimensional vector spaces over a field F, and 
let G: f —►TL be a linear map. Then, there is a unique graded algebra homomorphism G: 
A  f —> A  TL of the exterior algebras such that G (x) =  G (x) for any x G T .

□

The map of the above theorem can be constructed as follows: we may define a 
skew symmetric multilinear map ip which maps every (x j, •••, x p), € x V to the 
element G(x ¡) A • • • A G (xp) of A pcll. By the property (ii) of the exterior power of a 
linear space, the map ip may be lifted to a map A PG : A PT-* A  pcLL such that

A pG (x1 A '" A x p) = G (x !) A - A G ( x p) (3.4)

The map A PG is called the p-th exterior power o f the linear map G, and the sum of all 
such powers for p = 0 ,l,...,d im f, is the map G of theorem(3.1). Using this construction
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we can easily prove:

Corollary (3.1) [Marc.l]: Let F: Y —.'LL and G:T1—W  be linear maps of finite dimensional 
vector spaces over F. Then

A P(G o F) = A PG o A pF
□

3.2.2. Representation of Exterior Powers of Linear Maps [Kar.6]

Let Y be an m-dimensional vector space over the field F and let A PT, p < m
be the p-th exterior power of Y. If {v j, i = 1, •••, m} is a basis of Y, then A PT is
spanned by the vectors of the basis {v A , u> = (i1; ip), 1 < ij < i2 < ••• < ip <

m, v A  = Vj A Vj A - A V j  }. Every vector v G A PT may be written as v =
P frn')

J2 A . Let r̂ - be the map of A PY into FVp ; defined by:

ry-(v) = [ •••, aw, ••• ]

Then r!(- is linear and it is called the representation map of A PY  associated with the 
basis {vj, i = 1, •••, m}. It can be seen that there is such map associated to every basis 
of Y. The image of A PT under this map is called the representation of A PY relative to 
the basis {v-, i = 1 , •••, m} of Y. The following result can be easily verified.

Proposition (3.1) The representations of the p-th exterior power of an m-dimensional

(m)vector space Y over F, are linear isomorphisms of A PY  onto Fv p □

Let Y ,TL be two vector spaces over the field F of dimensions m, n, respectively
and let h be a linear map of Y into TL. The linear map h can be represented, with
respect to the bases Br = {v-, i = 1, m} and = {u-, i = 1, •••, n} of Y and TL, by a 

^  . . .   ̂matrix which is defined by the following commutative diagram:
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r h

where r̂ -, are the representation maps of T and Hi onto Fm and Fn respectively.
Because T, Hi are isomorphic to Fm, Fn respectively, Fm, Fn may be used to represent

Let A PT, A pcli be the p-th exterior powers of T, Hi respectively, where p < 
min(m,n). Then h:T—»'Hi implies the existence of a linear map A ph: A PT—*ApHi. If we 
denote by r̂ -, r^  the representation maps of A PT, A pHi with respect to the bases B<̂  
= {v •, i = 1, m} and Bĉ  = {m, i = 1, •••, n} of T, Hi respectively, then applying the 
representation result for linear maps, we have the following commutative diagram:

or
T, Hi and the matrix to represent the linear map h.

Apr A ph
* ~ A  PCU

x = E auhtwA ü = E V i„ A
p

F (p )

and thus the matrix A PH^ is defined by the equation

A pĤ [i- aw -  bp (3 .5 )

The description of A 1 Hĉ  m terms of will be defined below and this will establish
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the links between the present subject and the compound matrix theory.

Let B^= {vj, i = 1, •••, m), Bc  ̂ = {uj, i = 1, •••, n} be bases of T and It 
respectively and let B ^ - =  {v ^ A =  Vj  A - - - A V j  , u>  =  (ij, •••, ip ), 1 <  ij <  - - <i p <  m},

B i ^  =  { u p A — u • A - A U :  , UJ =  (j 1, •••, jp ) ,  1 <  } l  <  ■■■ < j p  <  n }  b e  th e  i n d u c e d
J 1 J p

bases of A PT and A pclL respectively. If

h ( X i )  =  E c p  u p  i =  1, m ,  =  [Cii] (3 . 6 a )
j = l  J

then for all basis vectors v w e A pi  we have

/  n (3.6b)

However, if we expand the right hand side of (3.6b), using the properties of the exterior 
product, we have that

A ph(v • A - A v ; ) = r  H-1’... ’/ p u- h “ V  ^  *1» ’*P “ Ji A - A u -
Jp

(3.7)

here the sum is taken for all u- A- - -Au-  € BR, and the numbers Il(p ’/ P are
Jl Jp ^  *1’ >‘p

polynomial functions of the c’s. A key fact for the representation of exterior powers of
maps is that:

H-1’.'.?/p =  det‘i ’ ?,p \
iJi

1_ V p

‘ „jp J i

'pj p_

(3.8)

Clearly, combining equations (3.7) and (3.8), we can deduce that the representation of 
the linear map A ph: A p<f - »  A pcU with respect to the bases B$-, B^ is given by a 
matrix whose entries are all the pxp minors of H^. These types of matrices are called 
compound matrices and will be examined next.

Lexicographic ordering

( a) Qp,n denotes the set of strictly increasing sequences of p integers (1 < p < 
n) chosen from 1, •••, n e.g. Q2 3 = {(1,2), (1,3), (2,3)j. Thus, the number of the 
sequences belonging to QP)I1, is (g). If a,/3 e Qp>n, we say that a precedes ¡3 (a<b), if
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there exists an integer t (t < t < p) for which oq = /?1, •••, = /?t_i, oct < /3t, where
a,, /?,■ denote the elements of a, (3 respectively; for instance, in the set Qj g, (3,5,8)< 
(4,5,6). This describes the lexicographic ordering of the elements of Qpn. The set of 
sequences Qpn from now on will be assumed with its sequences lexicographically 
ordered and the elements of the ordered set Qp n will be denoted by QPin(t), t = 1, 
fpj or simply by u>.

(b) Qpn denotes the subset of Qpn whose sequences do not contain any of the 
indices of a given a. e QP)n> such as, for example, Q2 5 = {(3,4), (3,5), (4,5)j if «  = (1,2). 
This set has {nppj elements. The elements of Qpn will be denoted by Qpn(t) or simply
CO . a

(c) If C j ,  •••, cn are elements of the field F and u> = (ij, •••, ip) is a sequence in Qp n, 
1 < P < n, then the product c; ••• c; will be denoted by cw.

(d) Suppose A = [a— ] e Mm n(F) where MmjI1(F) denotes the set of m xn matrices with 
elements from the field F; let k,p be positive integers satisfying l < k < m ,  l < p  
< n and let a = (ip •••, ik) G Qk m and ^ = (jp  •••, j p) € QP|I1. Then A[a|/?] € M^p(F) 

denotes the submatrix of A which contains the rows ij, •••, ik and the columns jj, •••, j p. 
We use the notation A[a|/?] to designate the submatrix of A wich excludes rows ij, •••, ik 
and includes columns jp  •••, jp. The submatrices A[a|/?] and A[a|/?| caxi be similarly 
defined.

Compound Matrices

Let A E Fm and 1 < p < min(m,n), then the p-th compound matrix or p-th 
adjugate of A is the (^)x(p) matrix whose entries are det(A[a|/?]), eve Q p,rm ^ e Q pn 
arranged lexicographically in cr and (3. This matrix will be designated by Cp(A). For 
example, if A e F3x3and p = 2, the Q2 3 = {(1,2), (1,3), (2,3)} and

det{A[(l ,2)|(1,2)]} det{A((l,2)|(l,3))} det{ A[(l ,2)|(2,3)]}
C2(A) = det{A[(l ,3)1(1,2)]} det{A[(l,3)|(l,3)]}

det{A[(2,3)|(l,2)]} det{A[2,3)[(l,3)]}
det{A[(l,3)|(2,3)]}

det{A[(2,3)|(2,3)]}

or setting for convenience det{A[a|/?]} = a  ̂ we have
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C2(A)

3 1,2 
a l,2

1,3
a l,3

1,2
a2,3

1,3 
al ,2 a 1'3al,3 a1'32,3

2,3 
al ,2

2,3
al,3 a2'3a2,3

Properties of Compound Matrices[Marc.3]

(a) If A g  F*iFnxn, 1 < p < n and also A is non-singular

W (Cp(A))-1= Cp(A-1) (3.9a)

(ii) Cp(A*) = (Cp(A))* (3.9b)

where A* is the conjugate transpose of A(F = C).

(“ 0 Cp(AT) = (Cp(A ))T (3.9c)

where AT is the transpose of A.

(iv) Cp(Ä) = Cp(A) (3.9d)

where A is the conjugate of A(F=C).

(v) Cp(kA) = kpCp(A) V k g  F (3.ge)

(vi) Cp(In) = I(n) (3.9f)

(vii) Sylvester-Franke Theorem

det{Cp(A )} = (detA)^p_1  ̂ (3-9g)

□
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(b) Binet-Caucky Therorem: If A 6 Fm x 11 and B e Fn x k and 1 < p < min(m,n,k) 
then:

Cp(AB) = Cp(A)Cp(B) (3.10)

□
(c) If A e F pxn and the p rows of A axe denoted by a|, •••, a p in succession (1 < P < 
n), then Cp(A) is an tuple and is called the Grassmann product or skew symmetric 
product of the vectors { a { , -••, a p} for reasons which will become apparent later on. 
The usual notation for this p̂j-tuple of subdeterminants of A is a j  A A ap and denotes 
a row vector. The Grassmann product of the columns of a matrix A e F n x p (l < p < 
n) may be defined in a similar manner; the product in this case, however, will be an 
(p)-column vector. If (a,j, •••, a p} are the columns of A, in this case, then this p̂j-tuple 
of subdeterminants of A will be denoted by a jA - - -A a p. By the properties of 
determinants, if a £ Sp (where Sp denotes the totality of permutations of 1, •••, p), then

£<r(i) A — A a ,(p)= sign cr a j A ••• A a p (3.11)

If B 6 Fn x n, A e Fn x p, then by the Binet-Cauchy theorem it follows that:

Cp(B )a1 A ••• A a p = Baj A ••• A Bap

Grassmann products suitably deployed may greatly reduce the complexity of the 
expressions in compound matrices. Thus, let A e F mxn and 1 < p < min(m,n). The 
matrix A may be written in terms of its rows or columns respectively as

A = °r A = [a j , •••, a n]

Let u -  {ij, •••, ip} e QP)m and (f) = { j j , • • ■, j p} e Qp n and let us denote by a* A the 
Grassmann product A • ■ • A a f and by a^ A the Grassmann product aj A---Aaj .
The p-th compound matrix of A may then be expressed in either of the following forms:
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C ( A )  = aj, A p,rm or Cp(A) = [ •••, A , ••• ]

Having defined the compounds of matrices we will now be able to represent exterior 
powers of linear maps in terms of their representation of the original linear map. Let h 
be a linear map from T to SI as in eq.(3.6a) then

[h(v1),h(v2), •••, h (vm)] = [uv n 2, un]

c ln c2n

cml

cmn

is the matrix representation of h: T—.SI with respect to the bases Bp and Bc  ̂ of V, SI
respectively. Note that H j1’. . . ' ¡p is the p-th order minor of that lies on the {j ^ j p } rows
and {i,, •••, iD} columns. If we define lm A = h ; A ---A h- , where {h- , •••, h ; ) are the 

p u  ’ P >1 ~  >P
columns of H that correspond to the indices (ip ip) e Qpm, then eq.(3.7) may be
written as:

A ph(vw A ) = [ •••, Up A , ] h u A , p e Qpn

Since the above equality holds for all u  6 Qprn, it may be written collectively as:

A ph(Xu,A), •••] = [•••, Up A , - - - h w A, - - - ]  =  B ^ A pH ^ = B ^ C p(H^03.12)

<y~ <y
where A pHc  ̂ = (^(H ^) is the matrix representation of A ph with respect to the bases 
Bp, B!^ and it is defined by the p-th compound matrix of H^. These considerations 
lead to the following result.

Theorem (3.2): Let T, SI be two vector spaces over F, with d im f = m, dimSi = n and 
let h: T —»Si be a linear map of <Y' into SjL. Lot B<̂~ — 1 — Bc  ̂ — {u.ĵ  j —
•••> 11} t>e bases of T, SI respectively and let be the matrix representation of h with 
respect to the bases Bp, Bc .̂ If A ph: A PT —* A PS1 1 < p < min(n,m), is the p-th 
exterior power of h, then A ph may be represented with respect to the induced bases
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= {v wA , u  6 Qp,m}, B^l= {u „A , />eQPin} of A pr ,  A pcli respectively, by the matrix 
A PHcyL= Cp(H^), where Cp(H^) is the p-th compound matrix of H^.

□

3.3 Décomposât)ility of multivectors, and the Grassmann 
Representative of a vector space[Marc.i]

3.3.1 Introduction.

In this section we will be dealing with two important topics related to exterior 
algebra which, in turn, arise from our determinantal problems. The first topic concerns 
decomposability of multivectors which, in simple terms, means that the multivector can 
be written as an exterior product of vectors or equivalently, as a compound of a matrix. 
The conditions for decomposability are important for the study of the multilinear part 
of the determinantal assignment problem as defined in section 5.5. The second topic is 
on an exterior algebra characterisation of subspaces of a vector space and this is in 
terms of the exterior product of the basis which is called the Grassmann representative 
of the subspace. This representative completely characterises the subspace and can be 
used for the parametrisation of vector subspaces of equal dimension as points in a 
certain projective space.

3.3.2 Decomposability of multivectors.

As we have seen in section 3.2 an element x of A mcLL, where TL is an n- 
dimensional vector space, is determined by scalars, the coefficients of the unique 
expansion x with respect to a basis of A mTL. Not all elements of A mTL are 
decomposable ie. they are of the form Vj A ---A v m where v p, •••, v m are vectors of TL. 
The decomposability of an element must be reflected in its coordinates, which

56



completely characterises that element.

Proposition (3.2): Let 'LL be a vector space over F with dim <U = n and let z ^ 0 G 
A mcU, m < n. Then z. is decomposable if and only if there exists a linearly
independent set of vectors Uj, u2, um in TL such that

Uj A = 0 (i = 1, •••, m)
□

If we write the equation of the above proposition in a matrix form then the 
decomposability condition of proposition(3.2) can be given in terms of the rank of the 
coefficient matrix of the equation which ,in turn, is in terms of the multivector z . This 
matrix is called the Grassmann matrix of the multivector 

z and its properties were examined in [Kar.6]. The next proposition gives us an 
equivalent definition of decomposability in terms of compounds.

Proposition (3.3): Let TL be a vector space over F with dim TL = n and let
Bcy={u j ,u2,- • ’> tin) Be a basis of TL. The induced basis of A mcU, m < n is B™ = 
{Hu. A , u e  Qm,n} and thus any z e  A mcLL can be written as:

z =  E  audio, A (3.13a)
u’ e Qm,n

This vector is decomposable iff there exists a matrix A 6 Fn x m such that

aw = det(A[w| 1, 2 ,- ,m ] ) ,  w € Qm,n, or Cm(A) = [•••, aw, ■■•] (3.13b)
□

Proposition (3.4): Let TL be a vector space over F with dim TL = n, then any vector of 
A n-1TL is decomposable. □

The next theorem gives us the strongest conditions for decomposability and says that a 
multivector is decomposable iff its coordinates satisfy certain homogeneous quadratic 
equations.
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Theorem (3.3): Let c=(---, cw, •••), u e Qm,n be an element of PV(F) where v = ^ ) - l .  
Then c is decomposable iff it satisfies the quadratic equations:

m +1
£  ( “ l ) k _ 1 C: . . . .  . C- .

k =  1 1 ’’««-l J r  " J k - l O k  + lC "J m  + 1

where 1 < ij < i2 < < im_ 1 < n and 1 < j j  < j 2 < — < Jm+i < n- □

0 (3.14)

The set of the quadratic equations defined by eq.(3.14) is known as the set of Quadratic 
Plucker Relations (QPR) [Hod. 1]. A useful parametrization of the Quadratic Pliicker 
Relations (QPR) in terms of a minimal set of algebraically independent quadratics have 
been obtained in [Gia.2]. Their results rely heavily upon the following theorem.

Theorem (3.4) [Hod.l]: Let k = [•••, pw, •••]Te F*7, or=̂ qj, be a decomposable vector 
satisfying the set of QPRs and let pa ia be a non-zero co-ordinate of k. If we define 
by:

h;:
ar - ” ai_lv)-ai+1,---,aq’ 1 € q, j G p (3.15)

then Cq(H)= k where H = [h-] □

Corollary (3.2) [Hod.l]: Let k = [-■-, pw, •••]T e F*7, (7=̂ qj, be a decomposable vector 
and let the first co-ordinate of k be non-zero. The H matrix defined by theorem (3.4) 
has the form

H = [pa Iq, X T]T G Fp x q , where pa = p 12)... q ^ 0 (3.16a)

or in a more detailed form, is expressed as in (3.16b), where by H q  we denote the 
matrix that corresponds to the first non-zero Pliicker co-ordinate
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Pl,2,--‘,q

0 —,q

o

0

^'1)q P2,---,q,q+l (- f )q P 1,3, ,q ,q + 1 P l,2,- • -,q-1 ,q + 1

P2,- • -,q,p (‘ ! )q P 1,3, ,q,p •• •  P 1,2,- • -,q- l ,p

(3.16b)
□

Example (3.2): Let [pg^Pi^P2’P3’P4’Ps]T be a decomposable vector of the projective 
space P (F). A basis of the subspace T  whose Pliicker co-ordinates of the given point is:

Po 0
0 Po

-P3 Pi
-P4 P2

under the assumption pQ /  0. If we assume that p2 /  0 then a basis of the same 
subspace is given by:

h 2

p 2 0 

P4 Po 
P5 Pi
0  P 2

It can be seen that H2 = Hq Q, where
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0

, det Q A 0

P2
PO

P4
PO

1

Note that C2(Hq) = [Po,p0Pl> PoP2’ PoP3’ PoP4’ P1P4-P 2P3] which imPlies ¿hat 
P5=(PlP4-P2P3) /  PO’ or equivalently PgP5-P iP 4+p2P3 = 0 □

The above example suggests a method for writing down an independent set of QRPs 
which completely describe all decomposable vectors with having a certain coordinate 
nonzero; such a set will be referred to as the Reduced Quadratic Plucker Relations 
(RQPR). For a given nonzero coordinate, the number of RQPR is ^  -q(p~q)-T

Proposition (3.5) [Gia, 1]: Let k = [•••, pw, -■•]T e F'T, <7=^ be a decomposable vector 
and let the first co-ordinate of k be non-zero. If Hq is the matrix which is defined by 
Corollary (3.5), then the equation

Cq(H0) = [ .. .,p „ ,.. .]T pf-2;...iq (3.17)

defines a set of RQPR with respect to p, 9 co-ordinate. □1 1̂?* ’ ‘iM
A similar procedure can be applied for any non-zero co-ordinates of ] i .

Example (3.3): Let k = [pq , pj, p2, •••, pg] be a point of the Grassmann variety ft(3,5) 
of the projective space P9(F). We can reconstruct HQ according to corollary (3.4) 
assuming p0 A 0 as follows:

Po 0 0

0 Po 0

0 0 Po

Pc -P3 Pi

P7 -P4 P2
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The number of RQPR in this case is ~ 3(5—3)—1 = 3. Equation (3.17) gives the 
following set of equations:

Po = PoP(b PoPi=PiPo> P0P2 = P2P0’ P0P3 = P3P0
(3.18a)

P0P4 = P4P0’ PoPe = PgPo’ P0P7 = P7P0

P0 (P1P4 - P2P3) = P5P0’ Po(PlP7 - P2P6) = P8P0
(3.18b)

P0 (P3P7 - P4Pg) = P9P0

It is clear that the set (3.18a) is trivial, whereas the set (3.18b) obtained after the 
cancelation of pg is a minimal set. □

3.3.3. Grassmann representative of a vector space

The use of exterior algebra is convenient for the parametrisation of a set of linear 
subspaces contained in a linear space. The effect of the exterior product is to compress 
the subspaces into one dimensional linear spaces. In this way, the original subspaces are 
equal iff the two auxiliary one dimensional spaces are equal. In terms of bases, we have 
to check whether two vectors are colinear as stated in the next proposition.

Proposition (3.6): Let TL be an 11-dimensional vector space over F; y A = y j A - - A y m, 

z A  = z j  A - • • A z m be two decomposable non-zero elements of A mcU (m<n). Then the 
two m-dimensional vector spaces f y= span{yj, y m} and T z= span{z.j, z m} are
equal iff there exists q e F— {0} such that

y 1 A- - A y m = q z J A- - A z m (3.19)

□
Definition (3.1): Let T be an m-dimensional vector space in Fu, then any non-zero
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decomposable element x j A - • • A x m, x j G T, i G m is called a Grassmann representative 
for T [Mar., 1], The Grassmann representatives all differ only by non-zero scalar factors 
so that we shall denote any of them by g(T ). □

The characterisation of a vector space T by its Grassmann representative g (T ) provides 
the means for the definition of the classical Plucker embedding [Hod.l], The 
coordinates of the grassmann representative, (... au...) may be regarded as the 
homogeneous co-ordinates of a point in the projective space PV(F) where v = (m) — 1- 
Then this point depends only on the subspace T and not on the choice of basis. What 
we have constructed so far is a well defined projective mapping p: Gm (Fn) —. PV(F) 
with p(T) = g ^ ) ,  where Gm(Fn) is the set of all m-dim linear subspaces of F n called 
the Grassmannian. The co-ordinates of the point {au} in PV(F) are called the Plucker 
co-ordinates of V and the mapping p is the Plucker embedding of the Grassmannian 
Gm(Fn) into the projective space PV(F). The Plucker embedding of the Grassmannian 
is a very important tool for our problems and will be used extensively throughout this 
thesis. As a matter of fact, the Plucker embedding embeds the Grassmannian into 
PV(F) as a projective variety defined by the QPR’s and allows us to examine our 
problems in the framework of algebraic geometry.
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3.4 Compex and real varieties [Mum 1]

3.4.1. Affine and Projective Varieties

An affine variety is defined to be the set of all points of Fn whose cooordinates 
satisfy the (not necessarily homogeneous) polynomial equations:

ft(xi,...,x„) = 0 i= l, 2,..., t.

On the other hand, if Pn(F) is a projective space over the field F, then the set of all the 
points of Pn(F) whose coordinates satisfy the homogenous polynomial equations:

f,(x0, x „...,xn) = 0 i=l,2,...,t

is called a ■projective variety.

The structures of affine and projective varieties are strongly connected. Indeed every 
affine variety 96 in Fn can be compactified to a projective variety 96 in Pn(F) and 
conversely , as follows: Pn(F) can be covered by the sets F" for 0 < i < n such that

F^= { (xO) xj,...,xn) e Pn(F) : x, A 0 }

Every F" is isomorphic to Fn (via division by x,) and thus are called affine open subsets 
of Pn(F). For every projective variety , RJ, of Pn(F) the l-th affine open subset of RJ, 
called RJ,-, is defined to be equal to RJ n F" c  F" «  Fn and is an affine variety of F". 
Conversely, every affine variety 96 in Fn can be considered as the i-th affine open 
subset of a projective variety 96 in Pn(F).

Example (3.4) For example consider the variety RJ: x2+xy-y2=0 in P!(C). Dividing by 
x and setting z= y /x  we get RJ0 to be l+z-z2=0 m C. Dividing by y2 and setting 
z=x/y we get ‘Ui to be z2+z-l= 0  in C. Conversely, the affine variety z2+ z - l= 0  in C
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can be considered as the 1st affine subset of the projective variety x2+xy-y2=0 in P (C) 
and this by setting z= x /y  and multiplying by y2 (this process is called 
homogenisation). D

3.4.2. Basic notions on varieties

A subvariety of a variety f  is a subset of f  satisfying an additional set of 
equations. We may topologize T defining its closed sets to be all its subvarieties; this 
topology is called Zarisky topology. The open sets of this topology are called Zarisky 
open sets.

A variety T is said to be reducible if it can be expressed as a sum of two proper 
algebraic subvarieties. If T is not reducible, it is called irreducible.

Another basic concept is that of the tangent space of the variety T c  F" at the 
point v e f .  Suppose first that T is affine and let f,(x) be the equations defining this 
variety; the tangent space at a is defined to be the linear space

Tan(v)={(x1,x2,...,xn) e F n: (x1-a1,x2-a2,...,xn-an).Jv(f)=()}

where Jv(f)= ^ -i^  is the Jacobian evaluated at a. Clearly the dimension of Tan(v) as an

F vector space is equal to n-rank(Jv(f)).This dimension is constant, say d, for all “v” in 
a nonempty Zarisky open subset of T which is called the set of smooth points of T and 
symbolised by Smooth(T). The complementary set is called the set of singular points of 
f  and symbolised by Sing(T); if v e Sing(T) then dimTan(v) > d. If % is a projective 
variety in Pn(F) and v e T then we consider the affine open subset of T to which V  
belongs and then proceed as in the affine case presented above.

The dimension of a variety T is the minimum number of independend 
parameters defining it. For example the variety of C3 defined by the equation x+y+z=0 
is two dimensional since two of the three variables x,y,z can be considered free. On the 
other hand if we consider the variety defined from the equations: (i) x-fy+z=0 and (ii) 
z — z=x +y — x —y+2xy, is not one dimensional as one could expect but two
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dimensional again, since the second equation is redundant. However, the concepts of 
dimension of a variety and the number of minimal equations defining it are not always 
clearly connected as the following example demonstrates.

Example(3.5) Let T be the affine variety of all (x,y,z) e defined by the following 3 
equations:
(i) y2 -x z = 0 , (ii) x '^-yz=0, (iii) z2- x 2y=0. It can be easily seen that V is the set of all 
triples (t'^,t4,t^) where t e C and therefore it is one dimensional. Furthermore we have 
that z(y2 — xz)+y(x'  ̂— yz)+x(z2 — x2y)=0 and thus we might expect that one of the three 
equations defining T must be redundant. But this is not the case, since if for instance 
we ommit (iii) then the two remaining equations define a variety which contains % as 
well as the set (0,0,t), t e C (similarly we can examine the rest of the cases).

□

An easy way to calculate the dimension, is to locally linearise the set of our equations 
by using their Jacobian.Then the dimension of the variety is given by n-rank(J) where 
the rank of the Jacobian is calculated at a smooth point of the variety and n is the 
dimension of the underlying space; this calculation can be easily carried out and allows 
us to give the following definition of the dimension: the dimension of an irreducible 
variety T can be defined as the vector space dimension of the tangent space of a smooth 
point of T.

Let T j, f 2 be two varieties in Pn(F) given by the equations

a) xlv ..,xn) =  0 i=l,2,...,t!
b) gj(x0, xn) =  0 j =  l,2,...,t2

respectively. Then the points of Pn(F) which satisfy both sets of equations 
simultaneously define the intersection of the varieties T ,, V2 denoted by T ,n T 2. Next 
we give a condition for two projective varieties to intersect(projective intersection 
lemma).
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Lemma(3.1)
a) If for two projective varieties 96,SJ in Pk(C) we have that

dim(9G)+dim(clj) > k

then the variety SGnSJ is nonvoid and dim(96 n 9J) > dim(9G)+dim(cy)-k (generically 
dim(9G n cy)=dim(9G)+dim(cy) - k).
b) If for two projective varieties 9S,SJ in Pk(C) we have that

dim(9G)+dim(cy) < k,

then the variety 96ncU is generically empty. □

For two affine varieties 96,SJ in we can state a lemma similar to the lemma(3.1) 
(affine intersection lemma).

Lemma (3.2) For two irreducible affine varieties 96,SJ in we have that either
a) 96ncy=0 
or
b) dim(96nclj) > dinÆ+dimSJ-k □

In the case where 96 and SJ are Zaxisky open subsets of projective varieties we can use 
the closures % and 9J in Pk(C) and Lemma (3.1) to study their intersections.

The points of Pn(F) satisfying the equations:

f.(x0, Xi,...,xn) g^xo, x,,...,xn) =  0 for i= l , 2,...,t1 and j = l, 2,...,t2 

define the union T, u V2.

Example (3.6) The Grassmann variety

Let F be R or C. As it has been defined in 3.3.3 the Grassmannian Gp(Fl’+r) represents 
the set of all p-dimensional linear subspaces of F*5̂ r. It can be given the structure of a
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projective variety by the classical Plucker embedding as in 3.3.3 by assigning to every p 
dimensional subspace, T £ Gp(Fp^r) its Grassmann representative modulo dilations. 
Thus, the Plucker embedding is a (polynomial) map

T: Gp(Fp+r) -» Pff_1(F)

where cr=(Ppr), such that if V is a px(p-fr) representation matrix of T then 
T(T)=Cp(V)mod-dilations. By proposition (3.6), T is one to one and by calculating the 
differential of this map one can see that 9P is an embedding, of the pr-dimensional 
manifold Gp(Fp+r ) (see 6.5.3) into P^’ ^F ). The image of T in the projective space is 
exactly the set defined by the Quadratic Plucker Relations (QPR) as theorem(3.3) 
states, thus Im(T) is a projective variety , named Grassmann variety. The dimension of 
this variety is pr since it is also a pr-dimensional manifold, but the quadratic Plucker 
relations cannot be reduced to the expected number a-l-pr, on the whole Grassmannian. 
However, this reduction is possible if one of the projective coordinates of the 
Grassmannian is non zero. In this case, we have the RQPRs as proposition(3.5) states 
and can construct a basis matrix for the vector space of the decomposable multivector 
as in theorem(3.4).

□

3.4.3.Morphisms of Complex Algebraic Varieties

Let 96,9J be two affine varieties. Then a morphism, f: 96-+cy is a map that can be 
described as f= (f1,f2,...,f„) where f  are polynomial functions. If 96,^ axe projective then 
a morphism f: 96-» TJ is a map described by polynomial functions, fj, as above with the 
additional requirement that these functions must be homogeneous and of the same 
degree.

Example(3.7) Let (xl5x2) be the homogeneous coordinates of P! (C), and (x1,x2,x3) be 
those of P2(C). Then the map f: P’ (C)-»P2(C) such that f((x1,x2))= (x2,x]x2,x2) is a 
morphism. It is worth noting that the image of f is the variety x2-X!X3=0 in P2(C); this 
reflects a very important property of the projective varieties , as is described in the
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following theorem:

Theorem(3.5) The image of a projective variety through a morphism is always a 
variety. □

Next we give an example of a morphism whose image is not closed.

Example(3.8) Let (xj,x2,x3) be the affine coordinates of C3 and (x,,x2) be those of C2. 
Define SJ: XjX3-x2=0 C C3 an irreducible affine variety. Let n: C3-* C2 be the projection 
map (xj,x2,x3)-» (xj,x2). Then 7r/SJ: SJ-» C2 is a morphism and the image 7r(SJ) is neither 
open nor closed. Indeed it is easy to check that 7r(SJ) is the union of the Zariski open 
subset C2-|x,: x ,= o j and the origin (0,0). □

The above set 7r(SJ) is a finite union of locally closed sets SJj uSJ2...uSJn or else sets that 
can be written as = CL|-SJ-/y where SJ-' is a variety and SJT c  SJ-' is a smaller 
subvariety. Sets that are finite union of locally closed sets are called constructible sets.

Theorem(3.6) Let f: 9S—»cy be a morphism of affine varieties then f maps constructible 
sets to constructible sets. □

Dominant morphisms. According to what was said previously, if f is a morphism from 9E 
to SJ then f(96) is very close to being a variety (since f(96) is always a constructible set) 
or in other words f(9G) is very close to its Zarisky closure f(9G). A very interesting case of 
morphisms is when 9G is irreducible and f(9G)=SJ or else f(9G) is Zarisky dense in SJ, in 
this case we say that f is dominant. A dominant morphism is very close to be onto ,that 
is :

Theorem(3.7) Let f: 9&—►DJ be a dominant morphism of varieties then there is a Zarisky 
open subset of SJ, say SI, such that TL c  f(9G). □

To see whether a morphism f: S&-*SJ is dominant it is sufficient to find a point x € 9G 
where f is locally onto since this fact ensures us that f(96)=SJ. We may test whether f is 
onto locally at a point x e 9G by using the differential (Df)x :Tan(x)-»Tan(f(x)); if this 
map is onto then f is locally onto at x. To summarise:
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Corollary(3.3) Let f:96-*cy be a morphism of varieties such that 3x € 96: the differential 
(Df)x is onto, then f is almost onto (in the sense of Th.(3.1)).

The above corollary can easily be applied, since it only involves the computation of the 
rank of the linear map (Df)x.

Finite morphisms. This is a case of dominant morphism f:9G—»SJ where for every y € Y , 
# f  J(y) is finite and constant. Finite morphisms normally arise from projections, for 
example : Let 96 c  Pn(C) be an n-1 dimensional variety given by one homogeneous 
equation F(x)=0 , such that a=(l,0,...,0) £ 96. Consider now the projection :

pa: Pn(C)-a-+ Pn̂ (C)

Pa((xoix i)-)X n ))= ((x i,x2,...,Xn)). Since a £ 96 we have that F(a) ^ 0 so F(x) can be 
written as:

F(x)=XQ+F1((x1,x2,...,xn))xc*01+F2((x1,x2,...,xn))x^02+ . . . +  Fn((xj,x2,...,xn))

We easily see that for every y = (x 1,X2,...,xn) e pa(96) there exist exactly ‘d’ inverse 
images via pa.

By combining projections of the above form we can define the projection p^with center 
1 as follows:

Definition(3.2) Let L be the Kernel of a linear map F ^ 11"*"1-* C111"*"1 then F naturally 
induces the linear map p£:Pn(C)—1.-+ Pm(C), this map is called a central projection with 
centre (or base locus) JL.

We can state a similar result with the above , that is if 96 is a variety such that 96ni.=0 
then p^/96 is finite. We can also prove the following theorem:

Theorem(3.8) (Noether Normalization Lemma) [Mum.l] Let 96 be an r-dim subvariety 
of Pn(C) then:
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a) there exists a linear subspace L of dimension n-r-1 such that !.n96—0.
b) For all such L the projection p^ restricts to a “finite to one” surjective closed map:

PjL: 9&-fPr(C)
□

Definition (3.3) The constant number #PjdHc) of theorem (3.7),where c e Pr(C) is 
called the degree of the projective variety 9G, symbolised by deg^(9G).

□
It can be proved that it is equal to the number of points of the intersection of 96 by a 
generic n-r dimensional linear subspace of Pn(C)[Mum.l], We can more generally define 
the degree of a finite mapping f: ST+'dJ between two projective varieties , symbolised by 
deg^(f), to be the constant number ^ fi^ y) and it can be proved that [Mum.l]:

degc (9£)=degc (f)degc (<y)

A more generalised definition of degree can be found in sec.3.6 where the degree of a 
compact oriented manifold is defined using homology theory. The degree of a smooth 
complex projective variety can be defined in this context (since it is a compact oriented 
manifold) and it can be proved that this definition is equivalent to the one above.

3.4.4. Morphisms of Real Algebraic Varieties

Let 96,TJ be two real affine varieties. Then a morphism f: 9B—»SJ is a map that can 
be described as f =  (f ̂ ,f21 - - - ,fn) where f  are polynomial functions. If 96,91 are projective, 
then a morphism f: 96—»RJ is a map described by polynomial functions, fj, as above with 
the additional requirement that these functions must be homogeneous and of the same 
degree.

The Image of such a morphism is not an algebraic variety but a semialgebraic 
set. To illustrate this fact, it is sufficient to see the real variety y=x^; the projection 
p:P -»IR on the y-coordinate is a regular function mapping the variety to the set y > 0. A 
semialgebraic set in IR" is the solution set of polynomial inequalities and equalities. A 
map f: 96-9J is called semialgebraic, iff its graph is a semialgebraic set in 96 x SJ.
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Theorem (3.9) A semialgebraic map f: 9G-+RJ between semialgebraic sets, maps 
semialgebraic sets to semialgebraic sets.

□

Dominant morphisms. Let f:9&-»RJ be a morphism of real varieties, where 9E and RJ are 
irreducible, then f is dominant iff f(9G)=RJ. Unlike the complex case the dominance of a 
map does not imply that f(9G) covers almost the whole of RJ. What actually happens is 
that f(9S) is an object defined by inequalities and having dimension equal to the 
dimension of RJ. For example if f:(R—dR is the function f(x)=x2 then image of f is the set 
of positive numbers. The dominance of a morphism can still be tested via the rank of its 
differential at some point x £ 96.

Finite morphisms. Morphisms f: 9G -* RJ arising from projections are ‘ finite to one’ but 
the number # f  (y) is not conserved as y varies in RJ. For example, consider 9G c  P2([R) 
to be the set of all (x,y,z) such that y2=xz and let a=(l,0,0) then pa(9G) contains all 
(y,z) e P'(IR) such that yz > 0 and thus p a*(y) contains either 2 or 0 points. For such 
morphisms what is conserved is $T^(y) mod2. The next theorem is analogous to the 
Noether Normalisation Lemma but refers to projective varieties.

Theorem(3.10) Let 9G be an r-dim subvariety of Pn([R) then:
a) there exists a linear subspace 1 of dimension n-r-1 such that Ln9G=0.
b) For all such f. the projection p^ restricts to a ‘finite to one’ (in the sense defined 
previously) map:

pL: 9&-*Pr([R)

□
The constant number ¿̂p ^(c)mod2 is called the degree of 9G and is symbolised by 
degR(æ)- There is an obvious relation of the above degree of and the degree of its 
complexification 9GC. In fact, we have:

degR(æ)=  degc (9Gc )mod2
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3.5 Intersection Theory of Complex Algebraic Varieties

3.5.1 Compactification

Many problems considered in this thesis are problems involving the solution of 
algebraic equations which in the setting of the previous chapter are problems of 
intersection of varieties. One set of the varieties in this intersection problem is 
parametrised by another variety, the variety of the systems of p-inputs, m-outputs and 
n-states. Such a set of intersections, parametrised by a variety, can be viewed as a 
certain element of an intersection ring of a variety. In this section we present some 
basic intersection theory for complex varieties which will provide the foundation for the 
understanding of the specific intersection theory involved in our problems. The more 
specific intersection theory based on homology of manifolds will be presented later and 
will help us to derive necessary as well as sufficient conditions for the existence of 
solutions of our system of equations; it will also help us to gain a better insight of the 
special nature of the equations and suggest ways of solving them.

The natural field for the intersection theory of varieties is the field of complex 
numbers C. This field is algebraically closed, which means that every polynomial 
equation in one complex variable can always be solved. In fact the number of solutions, 
counted with multiplicities, equals the degree of the polynomial. In the case where we 
have n (algebraically independent) equations in n unknowns we expect that after 
succesive elimination of the n-1 unknowns we end up with one equation having one 
unknown which as we said is always solvable. There are, however, cases where such a 
system of polynomial equations is not solvable, such as the system xy=l and xy= -l. In 
this case we say that the two equations intersect at infinity. Here ‘infinity’ means that 
if we projectivise them into xy=z2 and xy=-z2 then they intersect only if z=0 , the 
infinity space of the projectivisation. What actually happens is that two projective 
varieties 95,^ C  Pn(C) always intersect provided dim96+dimcy > n (lemma3.1) in this 
case we call the intersection proper if every irreducible component of 9G n RJ has 
dimension dim9G+dimRJ-n. The advantage of projective varieties (or compact 
manifolds) as spaces of parametrised intersections, lies on the fact that as the 
parameters vary, the number of points of the intersection (if finite) does not change. 
This conservation of number may not occur in parametrised intersections on affine
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varieties (or more generally non compact manifolds), since as the parameters vary, some 
of the points of the intersection may disappear at infinity. This point is illustrated in 
the following example.

Example(3.9) Consider the variety Ta b of all points (x,y) G Cz such that

x+y=0
ax+by=l

As the pair (a,b) vary, T ab contains only one point with the exception when a=b in 
which case it contains none. On the other hand, if we projectivise Tab we get a 
projective variety f  a b in P2(C) containing all points (x,y,z) G P2(C) such that:

x+y=0
ax+by=z

The variety Ta b always contains one point, since if a=b there is a common solution of 
the above, namely (1, -  1,0) G P2(C)

□

The above discussion leads us to consider projective instead of affine complex 
varieties for intersection purposes. The new projective variety, coming from the affine 
one, is called compactification and it is constructed by sticking together a negligigle set 
of points of the affine variety called points at infinity. The way we compactify Cn into a 
projective variety is not unique, for instance C4 can be compactified into P(C4) , G2(C6) 
and P(C)xP(C)xP(C)xP(C) as shown in the following example:

Example (3.10) Let kj, k2, k3, k4 be the four independent coordinates of C4. We can 
consider the three following embedings of C4 :

ft(k!■> k2, k3, k4) =  (1, kj, k2, k3, k4 ) g P(C4) 

f2(k i, k2, k3, k4) = (1, k()<8> (1, k2) (g> (1, k3) <g> (1, k4) g P(C15)
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where <8> denotes tensor product, or

3̂(^1, k2, k3, k4 ) -  C2
1 0 kj k2

0 1 k3 k4
e P(C5)

Consider now the Zarisky closures of every map in the corresponding projective space 
and call them A^, _X2, A^ , respectively. The variety A^ in P(C4) consists of all 5-tuples 
(A, kj, k2, k3, k4) modulo dilations; the infinity here is represented by the subvariety 
A=0. In the second case, A^ is P(C)xP(C)xP(C)xP(C) which consists of all 16-tuples of 
the form (Aj, k ̂ ) <g> (A2, k2) ® (A3, k3) <g> (A4,k4) modulo dilations; in this case the 
infinity is represented by the subvariety A1.A2.A3.A4=0. In the last case A 3 is the 
Grassmannian G2(C6) which is given by all the 6-tuples of the form

c ,
Aj A2 kj  k2
A3 A, k3 k4

In this case, the infinity is given by the subvariety Aj .A4 -  A2.A3=0. We can see the 
difference in the three previous compactifications of C4 in that in each case we can 
approach infinity from different directions. For example, if we consider the unbounded 
sequence (n, 1 , 2n, 3) e C4 then the limit in the first compactification will be

(1, n, 1, 2n, 3 )= (l/n , 1, 1/n, 2, 3/n) -  (0, 1, 0, 2, 0) e P(C4)

The limit of the same sequence considered in the second compactification can be 
calculated as follows:

(1, n) <g> (1, l ) ® ( l , 2 n ) ® ( l ,  3) = (1/n, 1)®(1,  1) <8> (1/n, 2) <g> (1, 3) — (0,1) ® (1,1)® (0,2) ® (1, 3) 

Similarly, in the case of the Grassmannian, the limit can be calculated as follows:

C2
0 n
1 2n

1/n 0 1 1/n

- 2 1 0 1
C,

0 0 1 0  

- 2 1 0 1

□
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The compactification of the affine space depends upon the individual intersection 
problem we consider and reflects its nature. We normally expect that a good 
compactification should be smooth and that the variety of solutions at infinity have 
smaller dimension than the variety of the finite solutions. In such a case we can deduce 
that whenever the intersection is nonvoid on the compactified space, it must contain a 
finite point. In the case where we have equal number of equations and unknows, and 
therefore expect finite number of solutions, the existence of solutions at infinity does not 
allow us to count correctly the number of finite solutions. These ideas are illustrated in 
the following example.

Example(3.11) Consider the set of algebraic equations on C2:

<q + ajXj+ &2x2 a3xlx2 = ®

c2 +  blxl+  b2x2 +  b3x lx2 =  0

where a^b^ ^ 0. The solution set of these equations is either empty or zero dimensional 
(points) depending upon the coefficients. If we compactify C2 into P2(C), this amounts 
to homogenising the above equations as

2
A cj + AajXj+ Aa2X2 + a3*qx2 = 0 

2
A C2  +  AbjXj+ AID2 X2  +  bgXjX2 =  0

then the new set of equations has always solutions no matter what the coefficients are. 
These solutions are given when A=0 and XjX2=0 - that is they are the two points (0,0,1) 
and (0,1,0) which are both solutions at infinity (since A=0). Therefore, the solution set 
of the equations at infinity is zero dimensional which means that it is not smaller than 
the finite solution set. This fact has the difficulty that if we consider both finite and 
infinite solutions of the equations (which as mentioned is a nonvoid set) we cannot 
conclude by using dimension arguments that this set contains always a finite solution. 
However, since we have calculated that we always have two solutions at infinity we can 
calculate the number of finite solutions by substracting the number of infinite solutions 
from the total number of solutions. The total number of solutions is given by the



product of the degrees of the two equations and is therefore equal to 4, and hence the 
number of finite solutions is 4 — 2=2. Although, when the compactification is the 
projective space the total number of solutions can always be calculated by multiplying 
the degrees, the computation of number of solutions at infinity is problematic especially 
when the infinity solutions contain a variety of excess dimension. The problem becomes 
considerably easier to resolve if we consider a compactification with no solutions at 
infinity. For instance, in our case, by an introduction of two parameters Â , À2 , we get:

A2c1 +  alA2x l +  a2Alx2 +  a3x lx2 =  0 

A1 À2C2 -f- ^2^1x2 t>3x ix2 == ^

and the compactification becomes P(C)xP(C). The solutions at infinity are given when 
Aj A2=0 and we can easily see that for almost all {aj,b-}.^Q there are no such solutions. 
Therefore, in this case, the number of all solutions in P(C)xP(C) is equal to the number 
of finite solutions. The total number of solutions cannot be calculated as easily as in the 
case of P2(C) where we multiplied the degrees of the equations, but it can be calculated 
solely via the intersection ring of P(C)xP(C), as follows: the intersection ring of 
P(C)xP(C) is given by:

.A*(P(C)xP(C)) = Z[a]/<a2=0> ® Z[b]/<b2=0>

where a,b are linear hypersurfaces in P^C). Each one of our equations can be 
represented by the element a-fb e _A*^P(C)xP(C)j and therefore their intersection by 
z= (a+ b )2. By expanding z we get z=a2+b2+2ab and because of the relations a2=0, 
b =0, which define the ring, z must be equal to 2ab which in turn implies that our 
equations contain only two common solutions.

□

Therefore, the calculation of a nice compactification for our equations, reduces 
the problem (as far as counting number of solutions) to the examination of certain 
elements of the intersection ring of the compactification, which is an algebraic problem. 
The intersection rings of the spaces to be used in this thesis have either been already
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calculated or can be calculated using the intersection rings of well known 
compactifications. The construction of an intersection ring comes originally from the 
ideas of Schubert on the conservation of number of parametrised intersections as well as 
his specialisation principle which was a controversial issue in his time [Klei.l]. Later 
these ideas were rigorously formulated and put into correct context in terms of modern 
algebraic geometry [Ful.l] and algebraic topology [Klei.l].

3.5.2 Intersection ring

The construction of the intersection ring of a smooth variety Y e Pn(C) is based 
on the idea of representing every subvariety W c  Y by the equivalence class < “W>  of 
an appropriate equivalence relation defined on the set of all formal sums of
irreducible subvarieties of Y. The (additive) group of all equivalence classes on Y is 
denoted by A#Y. The intersection of varieties now enters as product in A^Y as 
follows: if and < ‘Ur2> are two classes such that the intersection is
proper, then < ‘Wr1 > . < V 2> is a linear combination of the irreducible components of 
“ITi n W2 with coefficients the intersection multiplicities. The dual of A*Y  apart from 
being an additive group, can be endowed the graded ring structure. Every variety 
W C Y of codimension n corresponds to a class < ‘Ur> belonging to A nY , the n-th graded 
component of A *Y , and the dual of the intersection product, the cup product, is the 
multiplication of the ring. The ring A*Y  has also the structure of Z module which is 
naturally induced by the additive structure. An important case of intersection ring is 
when it is finitely generated in which case there is a finite basis cij- = <Tt> for every 
graded component A^Y. In this case to determine the multiplication of the ring it is 
sufficient to determine only how elements of the basis intersect with each other.

In the previous setting, if we want to find the expansion of a k-codimensional 
variety f  c  Y in the finitely generated ring A*Y  with respect to the basis { c - } we 
consider the intersection V n f j ]  such that it is proper, in this case finite, and equal say 
to A (‘W) then the expansion of < W > in A^Y is :

< W > = ^ i i(W )c ik

If we also have a second variety 9G c  Y such that:
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< s > = E i i(5G) Sd
i

then the class of the intersection f  n $  in is equal to:

< V  n «,(V) cik) . ( p i(K) cid)

which is equivalent to:

< ‘̂ n 9 G > = ^ i i(W )ij (9G) cik. cjd (3.20)
ij

Thus, to find the class of the intersection of two subvarieties of T amounts to finding 
their expansion with respect to a Z-basis in the and then to applying the formula
(3.20), provided that we know how the elements of the basis are intersecting each other.

Remark(3.1) It is important to note that the structure of the intersection ring and thus 
the type of the intersection theory we use, depends essentially on how small is the 
equivalence class < W > to which W  belongs. The smaller the equivalence class, the 
more refined the intersection theory is. A complete account of a refined intersection 
theory is given in [Ful] where the equivalence relation is the rational equivalence and 
the (refined) intersection product allows nonproper intersections.

□

The intersection ring of the projective space Pn(C) [Ful]. Let ! k be a k-codimensional 
linear subspace of Pn(C) then every k-codimensional irreducible variety of degree d is 
rationally equivalent to d < l k>. Thus the graded component xtk(Pn(C)) is generated by 
<Xk> which implies that

•Xk(Pn(C) ) w Z k=0,l,...,n

and _Ak(Pn(C)) is isomorphic to 0 for k > n. The intersection product of -A(P"(C)) is 
given by:
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<2>)> . < 2 k> = < Ip+k>

Therefore the ring J.(Pn(C)) is isomorphic to Z[<JL>] with < i .> n+ =̂:0. The above 
description of the intersection ring of the projective space may help us to solve 
enumerative problems like the problem of determining the number of points the 
irreducible homogeneous hypersurfaces T t i=l,2,...,n intersect in Pn(C) . In this case, 
we first look at the class of T, in J.(Pn(C)) which can be written as:

< r I> = d ,< i1>

where d, is the degree of f , . The class of the intersection is equal to the product of the 
classes

< n r , > = d , d 2 ... d„ (< !* > ) ”

which implies that the number of points is equal to the product of the degrees of the 
hypersurfaces (Bezout’s theorem).

□

The intersection theory which will be used for the purposes of this thesis is called 
cohomology theory. This is a topological intersection theory and will be analytically 
presented in section 3.6. In such an intersection theory, each algebraic subset of a 
variety is assigned a cohomology class. Continuously varying the subset, yields another 
subset with the same cohomology class; in other words, the two subsets are 
homologically equivalent. If two algebraic subsets are in general position, then their 
intersection is assigned the (cup) product of their cohomology classes and their union is 
assigned the sum. This way the cohomology ring H *(f;Z ) of the variety V becomes a 
graded ring like A*(T)  with the difference that the cohomology ring is graded relatively 
to the real dimension of the subvarieties of T (this being twice as much as the complex 
one).

The cohomology ring of a space is related to certain topological properties of its 
space. Particularly, the torsion free part of H‘(T;Z), i> 0  measures the number of i- 
dimensional holes and H^(T;Z) the number of connected components of T. Connected
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spaces without holes like Cn have trivial cohomology rings H*(T;Z)=H °(T;Z)=Z and 
thus their use cannot produce results. This is an additional reason why we will be 
examining our intersection problems in the compactified Cn. The new compact space is 
normally much richer topologically than Cn; this implies that the corresponding 
cohomology ring is much more complex and interesting for calculations. This new 
topology is exclusively due to the glueing of the ‘points at infinity’ of Cn. This process 
creates certain holes whose number and dimension depends on what we consider as 
being ‘points at infinity’ and the way we glued them together.

The cohomology ring of a space can be seen as a subring of the intersection ring 
-A*(96), of cocycles under rational equivalence, via the cocycle map [Ful]:

co: H*(96;Z) -  ^*(9G)

In certain cases, such as when 96 is the Projective space or the Grassmannian, the above 
map is an isomorphism and these are the cases considered in this thesis. Although we 
can equally use the ring of cocycles under rational equivalence, we prefer to use 
homology (the cohomology ring), which, as we have mentioned is a topological 
intersection theory. The mam reason for this is that homology theory can be defined for 
real varieties and thus results may be obtained for real solutions to our problems; this is 
also compatible with the theory of vector bundles.

In the next section we will analytically be looking at the way the cohomology 
ring is defined; first, for a general topological space and then for a (oriented) manifold 
where the Poincare duality theorem leads us to seeing it as an intersection ring.
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3.6 TOPOLOGY, MANIFOLDS 
AND

COHOMOLOGY RINGS

3.6.1. Topological spaces.

Let i  be a set. A topological structure, or a topology, on i  is a collection of 
subsets of i  , called open sets, satisfying the axioms
(i) the union of any number of open sets is open
(ii) the intersection of any finite number of open sets is open
(iii) the set If and the empty set 0 are open

A set If with topology is a called a topological space.

A basis for a topology is a collection of open sets, called basic open sets, with the 
following properties
(i) If is the union of basic open sets
(ii) a nonoempty intersection of two basic open sets is a union of basic open sets

A neighbourhood of a point p of a topological space is any open set which 
contains p.

Let i j  and i 2 be topological spaces and F a mapping F: If, -* i 2. The mapping F 
is continuous if the inverse image of every open set of i 2 is an open set of i , .  The 
mapping F is open if the image of an open set of If, is an open set of lf2. The mapping of 
F is a homeomorphism if it is a bijection and both continuous and open.

If F is an homeomorphism, the inverse mapping F_1 is also a homeomorphism.

Two topological spaces If,, i 2 such that there is a homeomorphism F: if,-» i 2 are 
said to be homeomorphic.

Two continuous maps, a ,,a 2: If, -* lf2 are called homotopic iff there exists a 
function F such that

F : If, x [0, 1] -* i 2 , F continuous
and F satisfies

F(x, 0) = a ,(x)
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F(x, 1) =  a 2(x)

A subset Hi of a topological space is said to be closed if its complement CU in If is 
open. It is easy to see that the intersection of any number of closed sets is closed, the 
union of any finite number of closed sets is closed, and both If and 0 are closed.

If If0 is a subset of a topological space If, there is a unique open set, noted int(lf0) 
and called the interior of !f0, which is contained in If0 and contains any other open set 
contained in If0. Likewise, there is a unique closed set, noted cl(lf0) and called the 
closure of !f0, which contains If0. In fact, cl(lf0) is the intersection of all closed sets which 
contain !f0.

A subset of If is said to be dense in If if its closure coincides with If.

If Ifj and If2 are topological spaces, then the cartesian product If; x If2 can be 
given a topology taking as a basis the collection of all subsets of the form TL, x <U2, with 
clLj a basic open set of If, and TL2 a basic open set of If2. This topology on If, x If2 is 
sometimes called the product topology.

If If is a topological space and If, a subset of If, then If, can be given a topology 
taking as open sets the subsets of the form If, n TL with Tl any open set in If. This 
topology on Ifj is sometimes called the subset topology.

Let F: If,-* If2 be a continuous mapping of topological spaces, and let F(lf1) 
denote the image of F. Clearly, F(lfj) with the subset topology is a topological space. 
Since F is continuous, the inverse image of any open set of F(lf1) is an open set of Ifj. 
However, not all open sets of Ifj are taken onto open sets of F(lfj). In other words the 
mapping F': Ifj-* F(lf,) defined by F'(p) =  F(p) is continuous but not necessarily open. 
The set F(lfj) can be given another topology, taking as open sets in F(lfj) the images of 
open sets in If,. It is easily seen that this new topology, sometimes called the induced 
topology, contains the subset topology (ie. any set which is open in the subset topology 
is open also in the induced topology), and that the mapping of F/ is now open. If F is an 
injection, the If, and F(lf,) endowed with the induced topology are homeomorphic.

A topological space If is said to satisfy the Hausdorff separation axiom (or, 
briefly, to be an Hausdorff space) if any two different points p, and p2 have disjoint 
neighbourhoods.
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Examples (3.11):
(i) The n-dimensional Euclidean space IRn- we define the basic open sets to be all balls 
B(a, r) where

B(a, r) =  {x e R": llx-alfe < r}

This topology on IRn is called the natural or Euclidean topology.

(ii) The n-dimensional projective space Pn-1((R)- this is the set of all lines in Rn and 
can be given the induced topology of the projection map:

p : R"- { 0 }  -» P n“ 1(P)

(iii) The Stiefel space V p(IRp+r) - it is the set of all px(p+r) full rank matrices. This is 
an open subset of |Rp(p+r) and can be given the subset topology.

(iv) The Grassmannian Gp(Pp+r) - this is the set of all p-dim linear subspaces Pp+r 
and can be given the induced topology of the projection :

7T : V p(lRp+r) _  Gp(Rp+r)

(v) Zarisky topology of a variety. This is a non euclidean topology defined on a 
algebraic variety T such that all the closed sets are the subvarieties of T(see 3.4.2). This 
topology contains considerably fewer open sets than the Euclidean topology of T and is 
not Hausdorff( hence it cannot be described by a metric). The advantage of this 
topology is that it is the weakest topology such that any polynomial map f:T-»<V is 
continuous, and thus it is convenient for the study of polynomial maps between 
algebraic varieties. The open sets of the Zarisky topology are all T l= f  -  T' where T' is a 
subvariety of T and therefore if an open set is not empty, it is the whole of T apart 
from a set of measure zero. This shows that if a property holds for every “u” in a 
nonempty Zarisky open set, then it holds for almost all u e f  and suggests that the 
Zarisky topology is appropriate for genericity arguments.

□
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3.6.2.Manifolds

The most classical and familiar examples of smooth manifolds are curves and 
surfaces in the coordinate space R3. Generalising the classical description of curves and 
surfaces, we will consider n-dimensional objects in a coordinate space R*\

A set A  is an mdimensional differentiable manifold iff:
i) -A is a topological space, ii) A  is provided with a family of pairs { ( A a, ifQ)}. iii) 
The J(\dq  are a family of open sets which cover A :U a, A a= A .  The f Q are 
homeomorphisms from A a to an open subset 0a of R’1, <f>Q: A a-* 0a. (iv) Given A a, 
Jbp such that J(\dq  n Jbp f  <f), the map fp v fo T 1 from the subset <̂a( A a n A ^ )  of 
Rn to the subset < ^ (A a n A ^ ) of R" is infinitely differentiable, (written C°°). The 
family { ( A a,<̂>a)} satisfying (ii), (iii) and (iv) is called an atlas. The individual 
members (J itt,^a) of the family are called charts.

□

Now consider two manifolds A  and hf and a function f: A -» hf with atlases 
{(-A a,(?!>a)}, {(JfajV’a )}, respectively. Then f is smooth at the point x of A  iff for every 
charts ( A a,^a), (-ff^i/’a) such that x G A a and f(x) £ Jitt we have that the function

C = lPa o fo f - f

is smooth. The function f  is called the representation of f with respect to chaxts 
(-Aa,<̂>a), (Na,ifiQ). It is important to note that the definition of smoothness does not 
depend on the choice of local representation of f at x.

The function f: .A-* Jf is smooth if it is smooth at x for every x e A function
f: A -» Jf is called a diffoemorphism if f is one-to-one-onto, and if both f and the inverse
fuction f  *: N-+A are smooth.

The concept of a tangent vector can be defined as follows. Let x be a fixed point
of A ,  and let (-e,e) denote the set of real numbers t with -e< t<e . A smooth path
through x in A  will mean a smooth function
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p :  ( - e , £ )  -  - A

defined on some interval (-e,e) of real numbers, with p(0)=x. The velocity vector of such 
a path is defined to be the vector

t=o G Rn

whose a-th component is A vector v e IRn is tangent to an n-dim manifold xtb at
x if v can be expressed as the velocity vector of some smooth path through x in xtb. The 
set of all such tangents will be called the tangent space of .vtb are x, and will be denoted 
by TxJl.

Any map f: which is smooth at x determines a linear map Dfx from the
tangent space Txxtb to TXJ\T as follows. Given v g Txxtb express as the velocity vector

v (=0

of some path through x in Jb, and define Dfx(v) to be the velocity vector

(  d(f o P),N\
l dt j i=0

of the image path fop: (-e,e) -» A. It is easily seen that this definition does not depend 
on the choice of p, and that Dfx is a linear mapping. The linear transformation Dfx is 
called the derivative or the Jacobian of f at x and we can easily observe that with 
respect to the local charts Dfx can be given as:

Dfx=  Jx(f')

Examples(3.12)
Hypersurfaces in Rm. Let TL be an open set of !Rm and let be real-valued
smooth functions defined on TL. Let A- denote the (closed) subset of TL on which all 
functions A1,....,A,n_ll vanish, ie. let
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N = { x e Hi : A,(x) =  0, 1 < 1 < m-n}.

Suppose the rank of the Jacobian matrix

<9Aj 9A,
9xj 9xm

d \ r

d x l
dK

d x r

is m-n at all x G if. Then JT is a smooth manifold of dimension n.

The proof of this essentially depends on the Implicit Function Theorem, and uses 
the following arguments. Let x°= (x°,..., x°, xn° 1,..., x °)  be a point of FT and assume, 
without loss of generality, that the matrix

d \  9Aj

dxn+\ ' ' '

d X m _ n

5 x n +  l ' ' ' dXm

is nonsingular at x°. Then, there exist neighbourhoods JL0 of (x°,..., x°) in lRn and of 
(xn°,,..., xf},) in (R”l_n and a smooth mapping G : -X0 —* TB0 such that

A,(xj,..., x,,, g,(x],..., xn),..., gm_n( x j .., xn)) =  0

for all 1 < i < m-n. This makes it possible to describe points of around x° as m-tuples 
(x i v m  Xm) such that x„+I =  g,(xj,..., xn) for 1 <i < m-n. In this way one is able to 
construct a coordinate chart around each point x° of Ji and the coordinate charts thus 
defined form a smooth atlas.

A manifold of this type is sometimes called a smooth hypersurface in !Rm. An
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important example of hypersurface is the sphere §m 1, defined by taking n—m-1 and

Aj =  Xj +  Xj + -■■ + Xm - 1.

The set of points of IRm on which Aj(x)= 0 consists of all the points on a sphere of 
radius 1 centered at the origin. Since

dX^ d\L
1 dxx • ‘ • 8x,n J

never vanishes on this set, the required conditions are satisfied and the set is a smooth 
manifold, of dimension m-1 .

□

3.6.3. Homology and Cohomology theory

To every topological space 96, a ring H*(96;A) can be assigned, called the 
cohomology ring of 96 with coefficients in A (A is a commutative ring). This is a 
positively graded ring up to the dimension of 96; that is for a n-dim topological space 
96,

H*(96;A)= ®H*'(96;A)t=0

where H'(96;A) is an A-module called the i-th cohomology module of 96 with coefficients 
in A and the grading is called cup product. The torsion free part of H'(96;A) when A=Z 
measures the number of i-dimensional holes of 96. The cohomology ring with coefficients 
in Z is an intersection ring for a closed orientable manifold Jb, for non orientable 
manifolds like the real Grassmaman or the real Projective space we use coefficients in 
Z2. The following subsections constitute a brief description of homology and 
cohomology in terms of singular simplexes having the purpose of setting the formalism 
of this theory rather than trying to make this theory understood by an engineer. 
Although m the largest part of this section the use of cohomology for the purpose of our 
thesis is not clear, it is stated, in the concluding part under the title Poincare Duality
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theorem, that the cohomology and the intersection operations are dual. This fact allows 
us to view the cohomology ring as an intersection ring and to use it for our problems 
which are mainly intersection problems.

Homology theory of topological spaces

The standard n-simplex is the convex set An c  Rri+1 consisting of all (n+l)-tuples 
of real numbers with

b, > 0, tQ+ tj-f ... + t„ — 1

Any continuous map from An to a topological space 9G is called a singular n-simplex in 
9G . The i-th face of a singular n-simplex er: A" -* 96 is the singular (n-1 )-simplex

a o <f)i : A"“ 1 -  9G

where the linear embedding <f>i : An-1-* A'1 is defined by

fiifoi-'-i f|—i) t|+ivi fn) b,•—i, 0, t_j_j,..., tn)

For each n > 0 the singular chain group Cn(96;A) with coeficients in a commutative ring 
A is the free A-module having one generator [cr] for each singular n-simplex a in 9G . 
For n<0, the group C„( 9G ; A) is defined to be zero. The boundary homomorphism

is defined by
a : C n( 9 S ;A ) - .C n_ I(9B;A)

8 [a] = [ao^0] - [a o </>,] +  -...+ ( - l )n[cro^n].

The identity d o <9=0 is easily verified. Hence, we can define the n-th singular 
homology group H„(9G;A) to be the quotient module Z„(96;A)/Bn(9G;A), where Zn(96;A) 
is the kernel of <9 : C„(9G;A) -  C„_1(9G;A) and B,1(9G;A) is the image of <9 : Cn+1(9G;A) -  
C„(9G;A). Here and elsewhere the word ‘group’ is used, although a ‘left A-module’ is 
what we really mean.

The cochain group Cn(9G;A) is defined to be the dual module Horn ^(Cn(9G;A), A)
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consisting of all A-linear maps from Cn(9G;A) to A. The value of a cochain c 6 C"(9G;A) 
is defined to be the cochain ¿c e C’l+1(9G;A) whose value on each (n-fl)-chain a is 
defined by the identity

<<5c, a>  +  (-1)" < c, 6a>  =  0 

Thus we obtain corresponding modules

Hn(96;A) =  (kernel S)/6 Cn_1(96;A) 

which are called the singular cohomology groups of 96.

The cup product

Given cochains c e Cm(9G) and a  e Cn(9G), the product cc/= c u o  e Cm+n(96) 
is defined as follows. Let a : Am+n-* 96 where

= (lo i-i Ln) 0 )•••) 0)

Similarly, the back n-face of a is the composition cro/3n where

/̂ Tl( fmi Ln + l v i  m̂ + n) ( 0,..., tm, tfn+,,..., tm + „)

Now define cc'=  c u c' by the identity

<cc', H >  =  ( - l )m"<  C,[<7 o  Q m ] >  <c',[c7o/?n]> e A

This product operation is bilinear and associative, but is not commutative. The 
constant cocycle l e C °  serves as the identity element. The formula

¿(cc7) = {Sc)c' + (-1)’" c(8c')

is easily verified. This implies that there is a corresponding product operation 
H (96) ® H (96) -» Hm+ri(9G) of cohomology classes. On the cohomology level the

89



product operation does commute, up to sign. In fact, for a € H m(96), b € H n(9G), one 
has b a = (-l)mnab. In dealing with graded groups, this property is called commutativity 
and we say that the cohomology ring H*(9G) =  (H°(96), H^SG), H2(96),....) is 
commutative as a graded ring.

Remark(3.2) Now suppose that one is given a pair of spaces 96 j  A. If the cochain c 
belongs to the subset Cm(96,J.) c  C'n(9G) (that is if c[cr]=0 for every a: Am -► A  c  96 ) 
and if c' G Cn(9G), then clearly cc' belongs to Cm+n(96,M). This gives rise to a product 
operation

Hm(96, J.) ® Hn(9G) -* Hm+n(96, J.)

More generally, consider two subsets A, “3$ c  96 which satisfy the following. We can 
similarly define an operation

Hm(9G,M) ® H"(9G,SB)- Hm+"(9G, A  u 9B)

□

The cross product and cohomology of the products of topological spaces.

Suppose one is given cohomology classes

a e  Hm(96,M) , b e H nM

where A  is an open subset of 96 and S& is an open subset of HJ. Using the projection 
maps

Pi : (96 x *y, A x «y) -  (96,A) 
P2 : (96 x U  96 x <$) (aj,^B)

the cross product (or external product) a x b is defined to be the cohomology class

(p*a)u(p*b) G H"‘+,‘ (96 X <y, (A  x  <y) u (96 X SB)
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Now consider two spaces 9G and <y. The cross product operation gives rise to a 
homomorphism

x : © H'(9G) ® HJ(cy) -  H'*($ x <y)i+j=n

Theorem(3.11) Let 9G and ‘tj be topological spaces such that each H'9G is a torsion free 
A-module and such that has only finitely many cells in each dimension. Then the 
direct sum © H'(9G) <g> H^SJ) maps onto Hn(9G x Sj).« +j=Ti

Remark(3.3) The above Kunneth decomposition cannot be performed when 9G and 
are real projective planes (using integer coefficients), but if we use as coefficients 
integers reduced to mod2 then the torsion free requirement holds true and we can apply 
the above theorem.

HOMOLOGY THEORY OF MANIFOLDS

The Fundamental Homology Class of a Manifold

We will now use the infinite cyclic group Z as coeficient domain. For each 
x e Jk>, recall that

H,(^h,Jh-x;Z) =  H,(IR’\Rn- 0;Z)

is infinite cyclic for i ^ n.

Defimtion(3.) A local orientation fix of J l  at x is a choice of one of the two 
possible generators for H „ (J f> -x ;Z ) .

□

Note that such a /ix determines local orientations for all points y in a small 
neighbourhood of x. To be more precise, if is a ball about x (in terms of some local 
coordinate system), then for each y e the isomorphisms
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H *(A , A -x ) H *(A , A-3&) H *(A , A -y )Px Py

determine a local orientation p y.

Definition(3.) An orientation for -A. is a function which assigns to each x e  J )  a local 
orientation px which ‘ varies continuously ’ with x , in the following sense: for each 
x there should exist a compact neighbourhood .N and a class p^ £ Hn(A ,  A -N ) so 
that = py for each y eJf.

□

The pair consisting of manifold and orientation is called an oriented manifold.

Theorem(3.12) For any oriented manifold A  and any compact 96 c  A ,  there is one 
and only one class p^ £ Hn( A ,  A - 96) which satisfies px(pyf) =  px for each x £ 96.

In particular, if A  itself is compact, then there is one and only one p^ £ HnA  
with the required property. This class P—Pj^ is called the fundamental homology class 
of A .

THE CAP PRODUCT OPERATION

For any space 9G and any coefficient domain, there is a bilinear pairing 
operation

n : C'(9G) ® C„(9G) -  Cn i(9G)

which can be characterised as follows. For each cochain b £ C'(9G) and each chain 
£ € Cn(96) the cap product bfl£ is the unique element of C„_i(9S) such that

< a, bn £  > =  < ab, f  > (3.21)

for all a £ C'i_1(9G). More explicitly, for each generator [a] of Cn(96), the cap product 
b n [a] can be defined as the product of the ring element ( l ) ,(n_1) < b, [back i-face

92



of a] >  with the singular simplex [front (n-l)-face of a].

Combining the identity (3.21) with the standard properties of cup products, one 
can derive the following rules:

(be) n £ =  bn  (cn£)

l n (  =  (
d  (bnO = (5b) n (  + (-l)£',m ‘ b n  5^

From (4) it follows that there is a corresponding operation

H'(S) ® Hn(ffi) -  H„_,(96) 

which will also be denoted by n .

In terms of this operation we can now state the duality theorem for compact 
manifolds, using any coefficient domain.

POINCARE DUALITY THEOREM.

The Poincare duality theorem can be described in two equivalent forms: 

i)Duality between homology and cohomology groups

If M is compact, connected and oriented, then H'(Jb) is isomorphic to H -(.A>) 
under the correspondance

a>—* a D fim

ii)Duality between cohomology groups

If -/ft is compact, connected and oriented, then H’ (^ft) is isomorphic to Hn_1(^ft) 
by the bilinear mapping:
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b : H'(_db) <g> Hn_1(.db) -  IL

given by :

b(<* , &)= < a/3 , fim>
□

Remark(3.4) For a non-orientable manifold the duality theorem is still true, but only if 
one uses the coefficient domain Z/2.

□

The importance of Poincare duality theorem is that the cup product on cohomology is 
transformed under this duality isomorphism to the intersection pairing of homology 
classes. This pairing is a bilinear function

t : IL(Jb) ® Hn_j(./b) -  Z

where the number ¿(a, (3) assigned to (a, (3) is called the intersection number of the 
two homology classes a , (3 and is defined as follows:

Let or=[Jf] and be two homology classes that correspond to two compact
orientable submanifolds of Jb, with fixed orientations such that

dim N=i and dim ^f'=n-i

Now take a point p e Jf n K' such that

TJbp =  TJfp©TJf'p

In this case we say that the two submanifolds meet in general position at p. Now, fixing 
an orientation for Jf means that it makes sense when a basis for each tangent space is 
positively” or “negatively” orientated. Let us say that and meet at p in a positive 

way if () is satisfied, and if putting together a positively oriented basis for T^fbp. 
Otherwise (and if they meet in general position) they are said to meet at p in a negative 
way.
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Suppose that if and if ' meet in general position at each point of intersection.
Then

fa ,# )  =  J2 si§n(p) (3-22)
p G J t r u t '

Here, the sign(p) is -f 1 or -1 according to whether the submanifolds meet in a positive 
or negative way.

Determining the orientations of the intersections is often an obstacle to 
determining the intersection number using formula (3.22). Working in the categories of 
complex analytic instead of real manifold removes this obstacle. The manifold J[k has a 
complex manifold structure if a set of coordinate charts is given, setting up coordinates 
in Cm, with the transition maps between the charts given by complex analytic 
functions. A submanifold ¿: if-+.ytk is said to be complex if the map is complex.

Such a complex structure on manifold Jb determines an orientation for the 
manifold Jib. In terms of this orientation, two complex submanifolds always meet with 
positive orientation. Thus, the sum on the right-hand side of (3.22) only involves plus 
signs. In particular, i(a,/2) is equal to the number of intersections of the submanifolds 
if  , if', provided they meet in general position.

Example(3.13)
1. The cohomology ring of the projective space
It is well known [Doldl] that the homology groups of the projective space are equal

H,(Pn(R);Z2)= Z 2.< 2 ¡>

where i.¡ is an i-dimensional linear subspace of Pn(R). Since ¿(<jf_i>,<JLjc> )= < JLn ¡ 
and if a £ H^(Pn(lR);Z2) is the Poincare dual of <i_n_¡>, then the Poincare duality 
implies that

H-(Pn(P);Z2)= Z 2.a-
and that
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Therefore the cohomology ring of Pn(IR) is given by H'(lPn(IR);Z2) = Z 2[or] subject 
to the relation o n+1 =  0.

2. The cohomology ring of the Grassmannian

cv'a■7=  c r '+ -7 a n d  o n +1 =  0

H"(Gp(Rp+m);Z2) =  © Z2<a1,a2,...ap> 

where the sum is taken for all <a1,a2,...ap> satisfying :

0 < ai<& 2 < ---< a p < m  and E ai = n

For example,

H 1(Gp(Rp+m);Z2)= Z 2< 0,0 ,. . . , l>  ( «  Z2)

H 2(Gp([Rp + m ) ; Z 2) = Z 2 < 0 , 0 , . . . , 1 , 1 >  ©  Z 2< 0 , 0 , . . . , 2 >  ( * Z 2 © Z 2)

H pm( G p(R p + m ) ; Z 2) = Z 2 <p,p,...,p> ( «  Z2)

The multiplicative structure of H*(Gp(IRp+m), Z2) is described by the classical formulas 
of Pien and Giambelh. Giambelli’s formula expresses a general Schubert cocycle as a 
polynomial in the special Schubert cocycle Wj and Pieri’s formula explains how a 
Schubert cocycle is multiplied with a Schubert cocycle. More analytically, let 
wj = <0,0,...,0,j> where j=l,2 ,...,m  then the following hold true

Pieri’s formula:

where
< a ! ,*••, a p >  . Wj =  £ < b 1, . . . , b p >

aj ^ bj ^ a.j_pj and 5Sb̂  =j —X3a-

Giambelli’s formula:

<a^,..., ap> =  det  ̂wa.+i
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□
where w0 =1 and Wj =0 when j<0 or j>m .

3.6.4. Vector bundles

The theory of vector bundles arises from the need to examine vector spaces 
which are parametrised by certain sets having nice topological structure, like manifolds,

o
varieties etc. For example the set of 2-dimensional vector subspaces T of IR .

T=rowspan
1 0 al
0 1 a2

where (aj)^-f(a^)^=l, is a vector bundle of rank two over the circle. Now let us see 
some definitions, examples and preliminary results on the theory of vector bundles.

A real quasi-vector bundle ip over a manifold Jib (called the base space is
an attachment of a real vector space Sm(fiber) to every point of Jib in a continuous way 
, we also require the vector space Sm to have the same dimension for every point m 6 Jtb 
which is called the rank of the quasi-vector bundle (r(i/>)); the space created this way is 
called total space of the bundle ip and is symbolized by 8(V>). If there is an open 
covering { cLLj} of Jib such that 6(ip) is locally homeomorphic to SljxR^^then ip is called 
a vector bundle over Jib. The minimum cardinality of such coverings is called the 
category of the vector bundle ip, written vecat(i/>).If &(ip) & JbxRT̂  then the vector 
bundle ip is called trivial. Vector bundles of rank one are called line bundles. A section 
of a vector bundle over Jib is a continuous assignment of a vector vm e Sm for every 
m e Jib. A bundle map , F , between two bundles (Jlb^ip^) and (-4b2,t/>2) of equal rank is 
a continuous map F: 6(t/>j)-* g(t/>2) such that F( c-4t>2 , F(SX) c  and F
restricted on Jlbx is a linear isomorphism. If we call f the restriction of F on Jbj then 
we say that the bundle map F covers the map f: An orientation of a vector
bundle ip over Jb is a continuous assignment of orientation to every vector space gm 
Vm e Jb. A bundle which has orientation is called orientable. An easy consequence of
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the above is that a line bundle is orientable iff it has a nonzero section or equivalently 
iff it is trivial. It is worth noting that to every bundle of rank n we can assign a
line bundle (^!h, A nip) such that to every m G we attach the 1-dim vector space A '*8m 

where Sm is the fiber of i/> at m. This bundle is called the orientation bundle of xp and 
symbolised o(xp). The bundle xp is orientable iff o(xp) is orientable that is o(xp) has a 
nonzero section or equivalently iff o(xp) is trivial.

Examples (3.14) (a) The tangent bundle t ( j tb) of a n-dimensional manifold J[> is a
vector bundle of rank n. A tangent vector field of .vtb is a section of its tangent bundle.
b) The canonical bundle 7  ̂ over Pn(R) is a rank one vector bundle created by attaching 
to every point of the projective space the line which defines it. The total space 6(7^), 
can be regarded as a subset of Pn(R)xRn+1 as follows:

S(7n)={(x,v ) e Pn(R)xRn+1: v G xj

Note that 7 * is not orientable thus it is not trivial .Therefore veca t^ /j > 1 .
c) The canonical bundle 7^ on Gp(Rp+m) is the vector bundle of rank p for which to 
every point x g  Gp(R|)+m) we attach the p-dim vector space 8X that defines x. The total 
space 8(7^), can be regarded as a subset of Gp(Rp+m)xRm+p as follows:

* ( 7£ ) = { ( x ,v ) g  Gp(Rp+m)xRm+p: v  g  x }

The total space of the orientation bundle 0(7^) is given by:

8{0(7m))={(x,v) € Gp(Rp+m)xRiT: v g  A px }

The bundle 7^ is not orientable implying that 0(7^ ) is nontrivial. Thus 
vecat(o(7lP)) > 1 .

d) The tangent bundle r (§1) is given by attaching to every point (x,y) of S1 the line 
perpendicular to the vector (x,y).The correspondence (x,y) -» (y,-x) defines a nonzero 
section of r(S1) proving that this bundle is orientable.

□

Let xp be a vector bundle of rank m (m < n) over an n dimensional manifold
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then we can construct some invariants related to the vector bundle xp, as follows: For 
every k such that 1 < k < m consider k generic vector fields v ,̂ V2,---, of ip. The points 
of Mb where the exterior product V j  A V2 A ... A v  ̂ vanishes, i.e, where the vectors are 
lineaxly dependent, form a n -m + k -1  dimensional submanifold. It can be proved that 
the submanifolds of Mb defined in this way, are topological invariants of the bundle xp. 
In fact, no matter how we select the vector fields V j ,  V 2 , . . . ,  v  ̂ of xp (provided some 
generic transversality conditions hold true), the above vanishing submanifold belongs to 
the same homology class mod2. In this way, from the vector bundle xp, we can get m 
homology classes. These, in turn, give rise to m cohomology classes mod2 (by Poincare 
duality) which are the Stiefel-Whitney classes of xp, and are symbolised by: W j , W 2 , . . . , w m 

where Wj e H'(Mb;Z2). The class w = l-f W j - f w m e H*(Mb;Z2) is called the total Stiefel- 
Whitney class of the bundle xp.

Example(3.15) Consider Mb to be the two dimensional sphere ie. all triples (x,y,z) e 
such that xz-fy^-fz — 1 and xp to be the vector bundle over constructed by attaching 
to every (x,y,z) e Mb the two dimensional vector space of all vectors (a,b,c) € IR̂  such 
that ax-fby+cz=0. One can prove that a generic vector field of xp has exactly two 
vanishing points (take , for instance, the vector field (-y,x,0)) and , therefore, the second 
Stiefel Whitney class of xp is zero. Additionaly, the vanishing submanifold of Vj  A V2 of 
two generic vector fields Vj,V2 of xp is a one dimensional submanifold of the two sphere 
and, therefore, homologous to zero. Thus the second Whitney class of xp is also zero.

□

The Stiefel Whitney classes are homotopy invariant of the vector bundle and can be 
defined and constructed in a purely topological framework independent of the vector 
field description given above. These classes are a measure of how far the bundle is from 
being non-trivial in the sense that if at least one of these classes is nonzero then the 
bundle is non-trivial. More importantly, the theory of characteristic classes relates 
vector bundle theory to cohomology and allows us to transform geometric problems into 
algebraic ones. The Stiefel Whitney classes satisfy the following four axioms. 1

1) To every vector bundle xp of rank 11 we correspond a sequence of cohomology classes 
W;(V0 G H‘ (9G;Z2) =  0,1,...,n called the Stiefel-Whitney classes of xp. The sum of these 
classes is called the total Whitney class and is denoted by w(xp).
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2) Given a continuous function f: 9&-»°U and a bundle ip over 2J then f*(w,-(0)) = w.(f (V0)

3) Whitney product formula : If ( and 77 are real vector bundles over the same 9G, with 
Whitney sum £©77 over 9G, then w(£) u w(7/)=  w(<f © 7 7) £ H*(9G), for the cup product

W( 0 U w(v)-

4 ) Normalization : If 7} is the canonical real line bundle over P([R), then w ( 7 j ) = l - f a :  , 
where a  is the generator of H*(P(IR)).

3.7 Conclusions
In this chapter, we have briefly reviewed the mathematical tools involved in the 

present approach. Effort was made to simplify the standard mathematical formalism as 
well as to illustrate advanced concepts and tools with numerous examples and to 
demonstrate the underlined mathematical ideas in an intuitive manner. Whenever there 
is a need for further mathematical results, they will be treated in the appropriate 
chapter.
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4.1 Introduction

The main purpose of this chapter is to review of all relevant approaches and 
results developed so far, for the problems of this thesis from a geometric point of view 
and to also provide some necessaxy unifying terminology and background definitions. 
The approaches examined in this chapter have been developed for the problem of pole- 
zero assignment by constant, or dynamic compensators of the centralised, or 
decentralised type. For most of the approaches topological or algebrogeometric 
intersection theory (see Ch.3) is used and the results produced are rather qualitative 
and orientated towards a search for generic solvability conditions. When we say that a 
certain property holds for a generic system S of p-inputs, m-outputs and n-states we 
mean that this property holds for all such systems except, possibly, for some belonging 
to a ‘negligible’ set. In our case we define genericity from the algebrogeometric point of 
view; this is where the set of systems is given the structure of a variety and a 
‘negligible’ set is a subvariety of strictly lower dimension. The parametrisation of the 
set of linear time invariant systems of p-inputs, m-outputs and n-states as an algebraic 
manifold is given in Sec. 4.2 and a new projective parametrisation of the same set as a 
quasiaffine algebraic variety is given in Sec. 4.3. This parametrisation is essential not 
only for the review in Sec 4.4 and 4.5, but throughout the whole thesis whenever the 
term ‘generic system’ is used. Although the majority of the results in this thesis deal 
with the generic systems case, results for nongeneric systems which deal with the exact 
problem are also given using some additional system invariants.

In the context of systems described above, the problem of generic pole 
assignment via output feedback has to do with the study of the conditions under which 
we can assign any set of poles via output feedback to a generic system of p-inputs, m- 
outputs, n-states, (generic= the whole variety of systems except a subvariety) . Most of 
the geometric approaches in Sec 4.4 are oriented towards the generic side of 
Determinantal Assignment Problem (DAP) which is the general problem examined in 
this thesis and will be analytically exposed in Ch.5. These are classified as Infinitesimal 
techniques, Schubert calculus techniques, Combinatorial Geometric and Projective 
techniques. The Projective approach is the one followed in this thesis and is directed
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towards the generic as well as exact solvability of the problem, but with a more 
cunstructive flavour, based on the Plucker embedding - a natural embedding for 
determinantal problems. As we shall see in the following chapters, the naturallity of this 
embedding will help us not only to find necessary and sufficient conditions for the DAP 
but also to produce new system invariants and to propose computational methods for 
the solution of the generic as well as exact problems. Finally, Sec. 4.5 contains all 
background results for the DA problems to be examined in this thesis and although this 
is not the purpose of this thesis, we include, for completeness, some of the classical 
standard non-geometric results.

4.2 The Geometric structure of the family of linear systems

The family of problems examined in this thesis are formulated as problems 
involving relationships between geometric objects. These objects are parametrised by 
the set of linear systems and thus it is essential to endow to the above set of systems a 
‘nice’ geometric structure. This structure will first enable us, to give to the 
parametrisation of our objects a richer characterisation (i.e we will be able to speak 
about genericity) and second, to study our objects within a suitable “nice” geometrical 
theory.

The purpose of this section is to parametrise the set of linear time invariant 
systems p-inputs, m-outputs and n-states, which we denote by ErrTp- To do so we start 
by considering a linear time invariant strictly proper system of p-inputs, m-outputs and 
n-states

x=A x+Bu
y=C x t4-1)

The relation between the input u and the output y (transfer function) will not change if 
we transform the states x via:

x' =  T x

where T is a constant nxn nonsingular matrix. Then the equations (4.1) change to:
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x =  T “ 1 A Tx'+ T _1Bu 
y=CTx' (4.2)

Thus instead of parametrising the set of strictly proper systems as the set of all minimal 
(controllable and observable) triples (C,A,B) we parametrise them as a set of 
equivalence classes of an equivalence relation defined on this set of triples. This 
equivalence relation is defined by:

(C,A,B) *(C ',A ',B ')

iff there exists T e GL(IR,n) such that

(C ',A ',B ')=(CT,T_1A T ,T_1B) (4.3)

The question that naturally arises then is what structure we can give to £ )mnp. 
Following [Haz.l] we first embed the set of all controlable pairs (A,B) into the Stiefel 
manifold Vn(lRnp) by the function <f>:

$((A ,B ))=(B , AB,...,An_1B)

The orbits of the action V

T*(A ,B )=(TA  T -1,TB) (4.4)

of GL(lR,n) on Rn +np , can be mapped into Gn(IRnp) via $ given by

$(orb(A,B))= rowspan(B, AB,...,An_1B) (4.5)

and the following important fact has been proven by Hazewinkel and Kalman in 
[Haz.l]:

Theorem(4.1) The map $ is well defined, one to one, and its image is an algebraic
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manifold of dimension np. Therefore the set G of all orb(A,B) ( «  Imi>) becomes an 
algebraic manifold of dimension np.

□

In this context, the triple (lm $,p,0), where p is the natural projection Im$-»Im$ is a
principal fiber bundle over G with fiber GL(lR,n). If we now change the fiber
G=GL([R,n) of the previous principal bundle with Rmn (which is the set of all matrices
C), we get a vector bundle over G with total space the set IRmnxImi» (where G acts on

G
Rmn by right multiplication). The space ^l=[RmnxIm$ is an algebraic manifold of 
dimension np+nm=n(p-fm) and it is isomorphic to the set of all equivalence classes of 
triples (C,A,B), with (A,B) controllable. Subtracting now from every fiber lRmn over 
orb(A,B) all matrices C such that (C,A) is not observable we get an open and dense 
subset “3B of A  which corresponds to the orbits of all minimal triples. Thus SB is the 
object parametrising the set of all linear time invariant, strictly proper systems of p- 
inputs, m-outputs and n-states and it is an n(m-fp) dimensional algebraic manifold.

A second non-constructive parametrisation based on invariant theory of algebraic 
group actions on complex varieties is as follows [Hum.l]: Consider the complex quasi- 
affine variety of all minimal triples (C,A,B) G CmxnxCnxnxCnxp then the state 
coordinate action of GL(C,n) (defined by eq(4.3)) is a closed orbit action [Hum.l]. Since 
GL(C,n) is a linear reductive group the orbit space of this action can be endowed with 
the structure of a complex algebraic varietyfHum.l].

In the next section we will give an alternative parametrisation of £ mnp based on 
the Plucker invariant of the characteristic maximal lR[s] module of the system. The new 
parametrisation is an embedding one and is introduced via the Plucker map. This map 
compresses a p-dimensonal vector space (or module) to a line and can be used to 
parametrise a set of vector spaces as a set of points in an appropriate projective space.
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4.3. Grassmann and Plucker invariants of rational vector 
spaces and a new parametrisation of the set of strictly 
proper systems.

4.3.1 Rational vector spaces, polynomial modules and systems

Rational vector spaces and Polynomial modules arise naturally in control theory 
in the study of the transfer functions of systems in the frequency domain. The transition 
from the time domain to the frequency domain is made, as far as the linear time 
invariant systems are concerned, via the Laplace transform. In this case the derivative 
operator d/dt is transformed into the indeterminate ‘ s’ of the polynomials in IR[s], The 
transfer function G(s)=C(sIn-A )-1B which relates the steady state response of the 
outputs to the inputs, is an mxp rational matrix of McMillan degree n. The notion of 
the polynomial module comes naturally when we consider matrix fraction descriptions 
of the transfer function G(s).

Rational strictly proper matrices of McMillan degree n can be written as 
G(s)=N(s)D(s) 1 where N(s) e IR[s]mxp, D(s) e lR[s]pxp and the column degrees of D(s) 
are strictly larger than the corresponding column degrees of N(s). The object that 
naturally characterises the MFDs of a rational function is the composite polynomial 
matrix:

M (s)=

Using the previous MFD, we can readily obtain an alternative MFD for G(s) as:

D(s)

N(s)
(4.6)

G(s )=(n (s )K(s )} (D(s )K(s ))-1 (4.7)

It is easy to see that the MFD given by eq(4.7) has composite polynomial matrix 
M(s).K(s). All possible MFDs for the same transfer function G(s) do not correspond to 
the same system. What actually happens is described in the following important 
isomorphism theorem[R.5]:

Theorem(4.2) For a given right MFD of a strictly proper rational function, with 
composite matrix M(s), there correspond one and only one controllable system given by
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the triple (A,B,C). For the MFD with composite matrix M(s).U(s) where U(s) is 
unimodular, there corresponds the same controllable system. If additionally M(s) has no 
zeros (MFD is coprime) then the corresponding system is minimal (controllable and 
observable).

□

We can now naturally define the following equivalence relation in the set of composite 
polynomial matrices:

M 1(s )~ M 2(s) iff M 1(s ) = M 2(s )U (s ) (4.8)

for some unimodular polynomial matrix U(s). It is apparent that every equivalence class 
of the above relation corresponds to a unique MFD of G(s) and therefore, to a unique 
system (which may be nonminimal). A complete invariant of the above equivalence 
relation is the IR[s] module produced by the IR[s] linear combinations of the columns of 
M(s). Since all these submodules are included into the rational vector space,

<3bG(s)=  IR(s)-colsp([Ip,G(s)T]T 
we have the 1-1 correspondence:

stems with transfer function G(s)j «-* |[R[s] polynomial submodules of the vector space <3bG(sj|

The submodule that corresponds to the minimal system is the unique maximal 
polynomial submodule of <3bĜs). Therefore we have the following 1-1 correspondences 
(which will help us to give a second parametrisation of linear systems)

minimal systems <-► rational vector spaces <3bG(sj <-* maximal pol. submodule of

This correspondence suggests that we can view the set of minimal systems as a set of 
rational vector spaces or a set of polynomial modules which, as shall be seen in the next 
section, can be parametrised as a variety via a Plucker type embedding.

Remark(4.1) The consideration of the maximal module as a representative for a system, 
also arises naturally from the determinantal equation

(4.9)
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det([Ip,K].M(s))=p(s)

where M(s) is the composite matrix for a coprime MFD for G(s). This equation appears 
in the pole placement problem via constant output feedback (see Ch.5). In such cases 
the equation is invariant under unimodular column transformations of M(s). This fact 
suggests that what really affects the equation is the module spanned by the columns of 
M(s) and not the matrix M(s) itself.

□

Next, we will describe how we can achieve alternative representation and invariants for 
rational vector spaces by using exterior algebra.

4.3.2 Grassmann and Plucker invariants of rational vector spaces.

With the help of the Plucker embedding we can produce a complete basis-free 
invariant for any rational vector space. The characterisation of a rational vector space 
can be naturally given in terms of a basis matrix of its unique maximal polynomial 
module. In this case the discrete invariants for the module are the column degrees of the 
basis. The new invariants, Grassmann and Plucker, contain only one (obvious) discrete 
invariant the complexity of the module which is the sum of the column degrees. The 
column degrees are hidden due to the compression property of the Plucker embedding, 
and can be recovered by examining certain algebraic relations on the continuous 
parameters.

The Plucker embedding (see also 3.3.3) is a classical embedding used to 
parametrise the Grassmannian Gp(Fp+r), the set of all p-dimensional F- linear spaces in 
f P"*"rj as an algebraic variety over F. This embedding corresponds every p-dimensional 
linear space T to the one dimensional linear space AP(T), the p-th exterior power of T. 
This correpondence is readily basis free. If we introduce a basis matrix V e F^p+r x̂p for 
the vector space f ,  then the corresponding basis vector for Ap( f )  will be the compound
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Cp(V) e F^*1 (which is the exterior product of the column vectors of V) where cr=^ p rj. 
Let now a possible change in the basis of T to be:

V '=A.V (4.10)

then, (by taking compounds) this corresponds to the following change of basis of AP(T):

Cp(V')=det(A).Cp(V) (4.11)

which is a multiplication of the original basis vector Cp(V) by the scalar 
det(A) € F -  {0}. Conversely, if Cp(V) and Cp(V') are two basis vectors for AP(T) and 
A P(T') such that they are colinear, then T=T'. All the above are summarised in 
prop.(3.6).

Remark(4.2) Proposition(3.6) states that the map:

r  - A p( r )

The importance of using exterior products (or compounds) is now obvious. Instead of 
checking that the columns of two matrices span the same space, we can test whether 
two vectors (Cp(V') and Cp(V)) are colinear, which is a much easier task. It is also 
apparent that it is more convenient to deal with one dimensional objects than with 
higher dimensional ones. As a consequence, we can represent any vector space Y with 
basis matrix V, by its Grassmann representative g(T) e IR*7

# ) = ( - , v u ,..•)

It is worth baring in mind (see Cli.3) that the vector g(T) is the crxl vector formed by 
the pxp subdeterminants of V, vw, lexicographically ordered.
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The Grassmann representative is not a canonical representative since it depends 
on the particular basis matrix V. However, it can easily become canonical by a suitable 
selection of basis. This will be examined next for the case F=IR(s)(or C(s)) and when 

given by eq(4.9). If we let M(s) be an IR(s) basis matrix for ^ q (s) then we get 
two types of Grassmann representatives of (i) the rational one, when the vector
m(s)=Cp(M(s)) has rational coordinates and (ii) the polynomial one, if the coordinates 
of the above representative are polynomials. It is apparent that polynomial Grassmann 
representatives correspond to polynomial bases M(s) of ^cfs) wh°se degree varies from 
n (the McMillan degree of G(s)) and upwards. Thus, a good (starting) choice for a 
canonical representative Cp(M(s)), will be the one where M(s) has the lowest possible 
degree, ie. n, and this because of two reasons: a)We may expect that it will also contain 
the least number of independent continuous parameters (a common characteristic of 
canonical representatives) and b) Such an M(s) is a basis matrix of the maximal module 
dlmax which is unique for every % G ŝj(see previous subsection). The problem of 
canonically selecting a basis matrix M(s) for J tmax is not an easy task; it is actually the 
well known problem of putting M(s) in a canonical echelon form via column 
transformations. On the other hand, if we look at m (s)=Cp(M(s)), any unimodular 
column transformation of M(s) becomes now a multiplication of m(s) by a real number. 
In this way, a possible change of the basis of the maximal module amounts only to the 
multiplication of the Grassmann representative by a constant number. Thus, the 
difficult task of putting M(s) into a canonical echelon form via column transformations 
is transformed into the easy problem of multiplying (or dividing) Cp(M(s)) by a 
suitable nonzero real number.

Defimtion(4.1)[Kar.l] Let ^ G(s) be an IR(s) a rational vector space arising from a strictly 
proper system with transfer function G(s) and M(s) be one polynomial basis for Mt>max , 
then if m(s)=(..., m(s)w,...Jr is the Grassmann representative (sec. 3.3.3) of % G^  with 
respect to the basis matrix M(s) , the canonical polynomial Grassmann representative of 
1kiG(s) is defined to be :

GR(dbG(s))_  pi- m(s) (4.12)
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where n is the complexity of M(s) (equals to the McMillan degree of G(s)) and pni is the 
first nonzero coefficient of s" in the polynomials appearing in m(s).

□

Remark(4.3) The motivation for the above definition is that we want the first 
polynomial coordinate of Cp(M(s)), which is equal to det(D(s)), to be monic, as it is 
when M(s) is in a canonical echelon form. However, we can divide with alternative 
numbers thus, obtaining slightly different canonical representatives (see [Kar.l]).

□

Remark(4.4) As a justification of why the canonical Grassmann representative was 
produced more easily than the (equally canonical ) Popov form [Kai.l], we can say that 
the Grassmann contains only one discrete invariant for the rational vector space, 
namely its complexity, whereas the Popov form contains the column degrees and the 
pivot indices. However, these descrete invariants do exist in the grassmann 
representative, but are hidden and can be recovered by examining certain algebraic 
relations on the continuous parameters.

□

The canonical polynomial grassmann representatitive of “3hG(s) given above is well 
defined and it is in one to one correspondence with ilhG(s) [Kar.l]. With the help of 
GR(<3bG(sj) we can define a second complete invariant for ĥG(s) which is no more a 
polynomial invariant but is based on the coefficients.

Dcfinition(4.2) The canonical Plucker representative of the rational vector space <3hG(sp 
denoted by PG, is defined by the following equality:

GR(% G(s))= PG [sd,..„ s2, s, 1]T (4.13)

□

Next, we will be giving a second parametrisation for the set of linear systems based on 
the above canonical representatives.

110



4.3.3 A new parametrisation of the set of strictly proper systems.

We now propose an alternative parametrisation of such systems based on the 
matrix fraction description of their transfer function and the invariants defined 
previously. We give to X n fp  ^ie stronger structure of irreducible real smooth quasi- 
affme variety without using (general) theorems of existence of such a structure 
(invariant theory, schemes , etc.). Our way is totally constructive and rather 
elementary; we use only a (generalised) Plucker embedding for polynomial modules and 
some basic theory of MFD’s of systems. Since our approach is embedding, we are also 
able to calculate the closure of the variety of systems XrrTp-

The set of all modules _41max that correspond to strictly proper systems of p- 
inputs,m-outputs denoted by JkPmaX and is obviously in 1-1 correspondance with the 
set X)rrpp (see 4.3.1). For a natural embedding of the set of modules -41iP̂ i "  to an affine 
space [Ra, we will use the Plucker embedding. For a given basis matrix M(s) of a _4bmax, 
this embedding maps :

M(s) -  Cp(M(s))

In this way M(s) is mapped to the <rxl polynomial vector m(s)=(..., m(s)w,...) the 
grassmann representative with respect to the basis M(s). Any unimodular column 
transformation of M(s) becomes now a multiplication of m (s)=Cp(M(s)) by a real 
number. If we denote m^ as being the vector of the coefficients of m(s)w then the 
Plucker type embedding 3>d which maps M(s) to m=(..., m^, ...) is called the dynamic 
Plucker embedding and maps into Pn<7(IR). Polynomial bases M(s) that
correspond to the same R[s] module are mapped via lPd to the same element of the 
projective space Pn<T((R) thus the image of Td in Pncr((R) is into 1-1 correspondence with 
Em"p- Not all vectors m e Pn<7(IR) can be written as <Td(M(s)) for some matrix M(s) 
corresponding to a strictly proper system of p-inputs, m-outputs and n-states. The ones 
that are able to do so, are those satisfying the Dynamic QPRs and since 
deg(det(D(s))=n the first coordinate of m must be non-zero. These facts make X  mnp a 
real quasi-affine variety.
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Exainple(4.1) Let M(s) be the composite matrix of a strictly proper systems of 2-inputs, 
2-outputs and 2-states. Then the compound of M(s) is given by the vector

satisfying only one QPR, namely

Equating the coefficients of s2, s, 1 to 0 we get three equations which are the Dynamic 
QPR’s describing H 22

□

The dimension of this variety can be found by measuring the maximum number
of independent parameters appearing in a canonical form for the colspan(M(s)), and this 
is examined in the following theorem.

Theorem(4.3) The dimension of is equal to n(m+p)

Proof
For the purposes of this proof we will use the well- known Popov form which is a 
canonical echelon form for systems. This form contains two types of system invariants: 
a)discrete invariants (controllability indices and pivot indices), b) continuous invariants 
(those we want to count). Let K={kj, k2,..., kp} be the set of controllability indices and 
7r={Pli P2 1 - 1  Pp} the set of pivot indices then:

appearing in the canonical Popov form, of the composite matrix of a minimal MFD of a 
system in £ )m"p, w>th discrete invariants k ,7t|

vector having as coordinates all the continuous parameters
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The set UK „■ is a Zarisky open subset of IRV since it does not contain the x £ DRV which 
correspond to a a Popov form of a composite matrix that is not coprime. This set can 
be embedded by a Plucker type map into the variety -  Pn<r(IR)-

D , , , - E ; p c n « )

„■ is a polynomial map and an embedding (1-1 and the differential is injective). The 
images of all possible cover the variety ]Pmnp an<̂  partition it into a set of disjoint 
quasi-affine varieties of unequal dimensions. Readily, the dimension of be
the maximum of the dimensions of all UK w that is the maximum number of parameters 
contained in the Popov canonical forms for all /c, i t .

Let n=pk+u u<p, then we can see by inspection that the Popov form with the 
largest number of parameters is the one with /c=(k,k,..k,k+l,k-Pl,...,k+l) and that this 
number equals to n(m+p).

□

We can, conversely, construct from a decomposable m £ Pni7(lR)(m1 ^0 ), a matrix M(s) 
corresponding to a strictly proper system as follows: follow procedure of corollary(3.2) 
for F=IR(s) and get a matrix L(s)T=[Ip,G(s)T]T, G(s) £ IR(s)mxp. This matrix will be such 
that:

Cp(L(s))=  m (s)/m (s)Wi

the matrix G(s) represents the transfer function of strictly proper system of p-inputs , 
m-outputs and at most n-states whose pole polynomial is equal to m(s)w . Now if 
N(s)D(s)‘ 1 is a coprime MFD for G( s) we get:

Cp(M(s)) =  Cp(L(s)D(s)) =  Cp(L(s)) det(D(s)) =  Cp(L(s))m(s)W]=  m(s)

therefore, M(s) is mapped to m via Tc|.
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4.4 Approaches and methodologies of control problems

4.4.1 Introduction

As we shall see in Ch.5, all the control problems to be examined in this thesis 
belong to the same problem family ie. the determinantal assignment problem (DAP). 
This problem is to solve the following equation with respect to polynomial matrix H(s):

det(H(s).N(s))=p(s) (4-14)

where p(s) is a polynomial of an appropriate degree d. The difficulty with this problem 
is mainly due to its multilinear nature induced by the determinant. An additional 
complication is due to the fact that we need the solution H(s) of (4.14) to be a 
polynomial matrix. However, as shall be shown in Ch.5, in all the cases we examine, the 
dynamics of H(s) can be shifted to N(s), which, in turn, transforms the problem to an 
equivalent constant DAP. This constant DAP, may be described as follows: Let M(s) e 
K(p+r)xpjsj sucj1 rank(M(s))=p and let It be a family of full rank px(p+r) matrices 
having a certain structure. Solving with respect to H e It the equation:

det(H.M(s))=p(s) (4-15)

where p(s) is an arbitrary polynomial of an appropriate degree d.

We classify all the approaches for DA-problems into two general classes: (i) 
conventional state- space and algebraic and (ii) geometric techniques, respectively. 
Since our approach is based on algebraic geometry and topology, we will mainly be 
reviewing the second class and only presenting the results of the first, without paying 
much attention to the details.

STATE-SPACE AND ALGEBRAIC TECHNIQUES Here we include all methods, 
within the bounds of the standard linear systems theory, for the solution of DA 
problems. These methods which have been devised mainly for the output feedback pole
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placement problem, are straightforward and algorithmic, and thus very convenient for 
design purposes. However, such methods were not able to resolve some of the 
fundamental non-linear features of DAP and hence, their use is restricted.

These techniques can be further classified into dyadic and full rank. The dyadic 
or rank one design, in the case of pole placement by output feeback, is based on the 
fact that if the matrix K appearing in H=[Ip,K] is a product of two vectors (rankK=l), 
then equation (4.14 or 4.15) aquires a simple form, (linear with respect to the unknown 
K) and can be solved, under certain conditions, with respect to a real K using 
algorithms described in [Chen.l],[Bra.lj. Although these algorithms have considerable 
elegance and simplicity, the resulting closed loop systems have poor disturbance 
rejection properties compared with their full rank counterparts. Furthermore, although 
the dyadic has been successfully used in the state feedback, its use in the output 
feedback further reduces the degrees of freedom and thus weakens the solvability 
conditions. The full rank designs [Mun.2] are more complex, and the main objective is 
to construct a full rank matrix K solving the output feedback pole placement problem. 
A detailed account of the nongeneric techniques and results for pole assignment may be 
found in [Mun.l]; of special interest are those techniques which are based on a canonical 
description of the system such as those developed in [Var.l]. These techniques are 
general and may be used also for looking at the Rosenbrock’s problem [R-4], which is 
the assignment of invariant polynomials rather than the determinant. It is worth 
mentioning that Rosenbrock’s problem has been considered only for the state feedback 
case whereby the output feedback case is still open.

Rosenbrock’s problem may be considered as a special case where we try to solve 
the equation

H(s) M(s) =  P(s) (4.16)

where P(s) is a square matrix with a certain structure, M(s) represents the 
corresponding system representation and H(s) the controller form. The above equation 
is in the form of a model matching problem; the sovability of (4.16), however, is 
affected by the selection of P(s). This formulation is not equivalent to the determinant 
formulation. Every solution of (4.16) implies also a solution of the determinantal
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equation, but the selection of P(s) is rather arbitrary and cannot be systematically 
chosen to yield a solution. If we allow H(s) to have any dynamic complexity (degree of 
H(s)), then Equation(4.16) is linear and can be solved using linear algebra, subject ot 
some coprimeness conditions (see model matching [Var.2],[Scot.l]).

The study of zero assignment by squaring down has been largely considered 
within the framework of state space techniques [ Kar.2], [Sab.l] with the exception of 
the work of [Kar.3] which is within the exterior algebra and algebraic geometry 
techniques considered subsequently. The work in [Kouv.l], [Kar.2], [Kar.3] deal with 
the constant squaring down whereas that in [Sab.l] also considers the dynamic case. 
The first two deal with sufficient conditions for assigning part of the set of assignable 
zeros using techniques for selection of appropriate zero directions [MacF.4]. The work in 
[Sab.l] is based upon special coodinate descriptions which allow zero assignment if the 
dynamics of the squaring down compensator are chosen sufficiently high. Such a 
technique, however, can be applied only in the input squaring down case since in 
general, dynamic output squaring dowm does not make sense from the engineering point 
of view (output squaring down of the variables to be controlled and thus any dynamics 
involved characterize the dynamics of the corresponding sensors). The dynamic squaring 
down may be formulated as a model matching problem if it is used as input squaring 
down as this has been discussed [Kar..3]. The only solvability conditions and general 
approach for computing solutions for the constant squaring down has been given in [ 
Kar.3].

There are certain similarities between the squaring down and the output 
feedback case. In fact, Aplevitch has demonstrated how the one problem may be 
transformed into the other [Apl.l], In general, however, techniques such as dyadic 
compensators which linearise the problem cannot be used in a straight forward manner 
since the post compensators or precompensators must have full rank. Full rank 
linearization may be used for zero assignment but these opportunities have not been 
properly examined yet.

The pole-zero assignment problems, when the centralisation assumption fails, has 
been an active area in the last twenty years. We distinguish four main approaches for 
the study of such problems. The first is based upon the use of standard state space 
methodology and the most definitive results are those in [Dav.l],[Cor.l] where the
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existence of both pole assignment and stabilization have been investigated. The 
particular chracteristics of the decetralised problems is that feedback has a block 
diagonal structure and thus fewer degrees of freedom. Because of the decentralisation, 
fixed modes may appear despite the controllability and observability assumption. The 
work in [Cor.l] deals with the solvability of pole assignment and stabilizability but 
involves a mixture of both static and dynamic feedback. In fact, their basic philosophy 
is to determine conditions under which the system can be made controllable and 
observable from the input and output variables by static feedback applied by the other 
controllers, then dynamic compensation can be employed at these controllers for pole 
placement. Solvability conditions are expressed in terms of topological conditions 
characterising the structure of interconnections (strongly connected assumption). The 
approach of Davison and Wang has a similar philosophy, although there is no explicit 
attempt to make all the strongly connected subsystems controllable and observable 
from a single controller.

An alternative approach based on transfer function MFD tools, has been 
developed [And.l] for tackling dynamic compensation issues but most of the results deal 
once more with the characterisation of fixed modes. An attempt to exploit the graph 
structure of the underline interconnection and define natural system decompositions and 
decentralisation sheme is described within the overall framework of graph methods 
[Rein.l], Some work has recently been done which tries to extend the exterior algebra 
and Algebraic geometry framework to decentralised pole zero assignment problems 
[Kar.4]. This work deals mainly with the definition of a framework for the study of 
these problems as well as the investigation of certain necessary conditions. So far, there 
are general results expressing necessary and sufficient conditions for generic as well as 
exact pole, zero assignability which are independent from the underlying system graph.

GEOMETRIC TECHNIQUES. Although (what we regarded to be) ‘state-space and 
algebraic techniques’ are simple and constructive, they lack motivation since they 
concentrate more in constructing solutions than in understanding the nature of the 
problem. The characteristic of these techniques is that they do not use all possible 
degrees of freedom of H but rely on special forms which simplify the problem. On the 
other hand, in what we consider as geometric approaches, the DA problem is examined
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more thoroughly with the least possible simplifications. We choose the word ‘geometric’ 
because the problem is reduced to the study of relations (maps, intersections etc.) of 
auxiliary geometrical objects like linear spaces, algebraic varieties, manifolds. It is 
apparent that the nature of these approaches is general, qualitative and more oriented 
to producing theorems for the existence of solutions rather than algorithms for the 
computation of solutions. However, it is strongly believed that a better understanding of 
the nature of the problem may lead to a better computation of the solutions.

The most crucial point in all geometrical techniques is that for a generic system 
the auxiliary geometrical objects considered, have to be located in a canonical way in 
the underline space. This is what we call transversality or general position and in most 
of the cases the measure for this transversality property of the objects is expressed as a 
rank of a matrix depending upon the parameters of the system.

Next we will examine the five main approaches developed so far for the DA 
problems.

1) Infinitesimal techniques. One way of looking at the (full) DA problem is to consider 
the polynomial map:

F'W Fd

where F=R or C, fi are the degrees of freedom of H in eq(4.15) and x  maps H to the 
coefficient vector of the polynomial p(s) of eq.(4.15). This map was first defined and 
examined in [Her.l] and [Wil.l] for the output feedback pole placement problem, and 
the solvability of this problem was reduced to test if this map was onto. The onto 
properties of a polynomial map can be easily examined using the “dominant morhism 
theorem” for complex algebraic varieties. According to this theorem, it can be proven 
that a map is onto if the differential of this map at some point is onto (as a linear map). 
In the case examined in [Wil.l] (when F=C), the differential of y at K=0 was 
calculated to be:

(dy)Q= (co/CB, co/CAB,..., colCAnAB)

and the generic (in ]Cmn,p) rank of the mpxn matrix (d^)g was computed to be equal to
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n (when mp > n). Using then the previous result along with the dominant morphism 
theorem (see sec 3.4.3), a necessary and sufficient condition for generic pole assignability 
was derived.

As far as the case F=IR is concerned, there is no dominant morphism theorem as 
in the F=C case. In this case if the differential of y at some point x, is onto, then y is 
onto in a neighbourhood around y(x). In this context, Reinschke calculated the 
differential of y (for the case of pole placement via output feedback) at a point K to be:

(dy)K=(co/CB, co/C(A+BKC)B,..., co/C(A + BKC)n *B)

and produced some results for local pole assignability via real constant output feedback.

2) Enumerative geometry techniques (Schubert calculus) . Alternatively we can view 
the complex DAP as a problem of intersection of hypersurfaces on a Grassmannian as 
follows: First, since the poles of det(H.M(s)) depend only upon the rowspan(H) and not 
on H, what we are interested in is the set 3t=:{rowspan(H):H e 3f} and not the set In 
fact, % is a subset of the manifold Gp(Cp+r) which contains all p-dim subspaces of 
Cp+r. Letting { s , } '-1 be the set of complex conjugate roots of p(s) then by (2.21) we 
require to find H such that: det(H.M(s,))=0 for every i=l,...,d.From this, if we set:

T (si)=LKerM(sl-)
and

a (s«)= { ‘*r is a bnear subspace of Cp+r: dim‘T=p and dim(T n f(s ,) )  > 1 }

then the solution set of gains of the complex DAP can also be given as the intersection:

9Gp(p(s))= n<7(s,)n!Hi 
i = 1

In all cases we examine, It is a variety or a Zarisky open subset of a variety in 
Gp(CP+r)- Each of the <7(s,) is a Schubert variety of the form <m -l,m ,...,m >c  and thus
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9Gc (p (s )) is a subvariety of Dt defined by n linear equations( a more general and 
constructive account of this fact will be given in Ch.5 Sec.5). When % is a variety, a 
necessary and sufficient condition for generic (complex) solvability of the problem can 
easily be derived by counting dimensions. On the other hand, however, when iff is a 
Zaxisky open subset of a variety (like the constant output feedback pole placement case) 
additional work has to be done in order to make sure that the solution set does not 
contain only infinite elements.

As far as the real solutions of the problem are concerned, the above approach 
allows us to use an intersection theory on the Grassmannian known as Schubert 
Calculus which is involved in the enumeration of subspaces located in a larger space and 
pocess certain properties. More analytically:

a) The special case where d is equal to the dimension of was considered in [Bro.l], In 
this case 3G(--(p(s)) contains finite number of points whose number can be calculated 
using Schubert euumerative calculus. If this number is odd then a real solution exist.

b) The more general case where d is arbitrary was examined in [Gia.l]. Here, the 
intersection of 3&£(p(s)) with an appropriate Schubert variety was considered in such a 
way that it contains a finite number of points. This number can be calculated via 
Schubert enumerative calculus and if it is odd we then have a real solution.

3) Topological intersection techniques. These techniques are introduced for the 
examination of the generic solvability of the DAP, especially when we are looking for 
real solutions. Here the set of solutions 9Ĝ  is a submanifold of the compactified 
parameter space and corresponds to a certain element of a topological intersection 
ring of K, namely the cohomology ring of Dt with coefficients in Z2, symbolised by 
H*(36;Z2). Then, a sufficient condition for the existence of real solutions is for the above 
cohomology class to be non-zero. This approach is essentially a mod2-intersection 
theory, which is normally applied when we consider intersections of smooth real 
varieties, where a Z-intersection theory (like the Schubert calculus) is not available. It is 
important to note that the results we derive with this theory can only be sufficient
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conditions.

Other topological approaches to deal with intersections of real varieties is the use 
of various topological invariants of spaces or maps which can be derived from our 
intersection problems. For example we can express the problem of real pole placement 
of a generic system via constant output feedback, in terms of a topological category (LS 
category), as follows: As we have seen in the Schubert Calculus techniques, this problem 
can be written as an intersection of n Schubert hypersurfaces cr^s,) , 1 < i < n in 
Gp(IRp+r). If this intersection is empty then the complementary set 
U ^Gp(IRp+r)-(JS(s1)j must be the whole of Gp(iRp+r). This covering of the Grassmannian 
by the above n contractible sets is not always possible. The obstruction to this is called 
Ljusternick-Snirelmann category of Gp(!Rp+r), LScat(p,r), which is the minimum 
number of contractible sets which can cover the above Grassmannian. Thus in order 
that intersection is nonempty we must have LScat(p,r) > n. We can also use other 
topological category numbers according to which topological theory we use; if, for 
example, vector bundle theory is used, the obstruction here will be the vector category 
of some bundle.

It is important to note that in these topological intersection approaches, we 
normally use a compactified parameter space of solutions and not the solution space 
itself which in many cases is topologically uninteresting. We obtain the new 
compactified space by introducing the so called ‘solutions at infinity’ , some of which 
(namely, the degenerate points) are not desirable. Thus, although the topological 
intersection approach may present nice results we have to be extra carefull in the 
compactification we use. This has to be natural (in the sense of Ch.3) so that a possible 
nonvoid intersection on the compactified space contains always a finite solution.

4) Combinatorial Geometric techniques. This approach was first proposed in [Kim.l] by 
H. Kimura for the output feedback pole placement problem. The main idea is to 
observe that the solvability of the DAP is equivalent to finding a p dimensional linear 
subspace Y of [Rp-pr such that it intersects all the r-dimensional subspaces T(st) i= l,...,n  
as defined in the Schubert calculus techniques. A straightforward solution for this 
problem (without using Grassmannians and enumerative calculus) contains an
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interesting combination of the geometry of linear subspaces and combinatorics involving 
dimension counting of certain subspaces. To illustrate this let us try to find n (as a 
function of r,p) such that we can find a p-dimensional T intersecting all T,-=T(s,): first, 
choose a plane W of dimension r-p-fl intersecting T 1,...,Tr.p+1 nontrivially (this can be 
done by selecting r —p+1 linearly independent vectors each from every subspace). Given 
any two planes T, , T • we can find a vector v such that <Ur1=span{<W,v} intersects 
T lv ..,Tr_p+1, T,', Yj nontrivially (since dim((‘Ur1-fiT_;) n f t)= r+ p + l -  (r+ p )= l)). By 
adding p — 1 vectors one gets an r-dimensional plane ^ p_i which intersects 
r — p-f 1-f 2(p — l)= r+ p  — 1 planes. Thus if we have a number of n=r-fp — 1 (or less) p- 
dimensional planes in Rp+r, we can always find an r-dimensional plane intersecting 
them. Obviously W has not been chosen in the best way. By choosing T ,,...,T k 
inductively, until a linear dependence relation appears, one can improve the algorithm 
considerably. This was done in [Ros.2] where a more refined result of the same problem 
can be found.

5) Projective techniques. In [Kar.l],[Kar.4] it has been realised that the DAP is of a 
multilinear skew-symmetric nature and the natural splitting of the multilinear function 
into a standard multilinear (skew-symmetric) map and a linear map [Gre.l] may be 
applied. This approach reduces the overall solvability to the problem of determining 
common solutions of a set of linear and quadratic equations which are defined in the 
appropriate projective space associated with the standard exterior map of the above 
splitting.

Classical algebraic geometry in a projective rather than affine space, is used to 
determine the existence of solutions. The approach relies on exterior algebra to 
construct the embedding map which is the Plucker embedding. Although the approach 
has been based on the explicit construction and use of the Plucker embedding, this is 
not the only type of embedding that may be used for such problems (it will be seen in 
this thesis that decentralised problems induce other types of embedding such as tensor 
products of Plucker embeddings).

The use of the projective space as the space of the embedding automatically 
handles unbounded gain solutions, although additional conditions have to be used if
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bounded gain controllers are sought. One of the major advantages of this framework is 
that it introduces new sets of invariants (of projective character) which may be used to 
chracterise solvability conditions. Both generic and exact solvability conditions may be 
investigated and a unifying framework for computing solutions wherever they exist. In 
fact, the solvability may be reduced into an optimisation problem [Mit.l]. Finally, this 
approach also allows the use of classical intersection tools such as Schubert calculus.

The extensive presentation of this framework will be considered in Chapter 5. 
One of the aims of this thesis is the extension and enrichment of this framework with 
tools from the techniques mentioned previously, as well as its full growth and extension 
to problems such as dynamic and decentralised control.

4.5 Background results on pole zero assignment

POLE ASSIGNMENT BY OUTPUT FEEFBACK
The problem of pole assignment by dynamic compensation has always a solution under 
the assumptions of controllability and observability and it is given by designing an 
apropriate observer of the same dynamic order as the plant. Determining reduced order 
dynamic schemes which allow arbitrary pole placement with order less than n, has been 
an important research area. Within this area of work we may distinguish the following 
two types of problems:
(a) What can be achieved with a fixed type controller (constant or PI etc)
(b) Sufficient conditions as well as necessary which allow pole placement with dynamic 
order less than the full order 77.

Regarding the dynamic pole placement, the result was given by Brasch and 
Pearson [Bra.l] who have shown that sufficient conditions for dynamic pole placement 
is that the order of dynamics satisfies:-

r=min{/z0-l , /rc-1}

where /¿c and /iQ are the controllability and observability indices, respectively. A
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different but equally nice result is the one obtained by Kimura [Kim.l] and by Davison 
and Wang [Dav.l] where it was shown that generic pole assignability holds, provided 
that

r > n - m-p+1

Obviously, the former result tends to be sharper if n is large compared to m and p. 
Kimura has in fact managed to improve this bound [Kim.2] but the results in [Kim.2] 
required what is known as ‘m-decomposability’ which is not generic [Will. 1]. A 
necessary condition for generic pole assignability by output feedback was derived by 
Willems and Hesselink [Wil.l] who showed that

r(m +p)+m p > n+r

In the case where m +p-l<n, it has been shown by Munroe and Novin-Hirbod [Mun.2] 
that there exists a full rank dynamic compensator assigned arbitrary close to a 
predefined set of closed loop poles if:

r>  n - (m+p 1)
~ max{m,p}

For the case where the controller is of the multivariable proportional plus integral type 
it has been shown in [Nov.l] that a standard condition for pole assignment by constant 
feedback [Kim.l], [Dav.l] can be extended to provide a sufficient condition for arbitrary 
pole placement and this is given as

2m-fp-l > n-fp

Regarding the problem of denominator matrix assignment it has been shown [Che.l] 
that we can assign denominator matrix with column degrees k+dj via output feedback 
dynamic compensation of McMillan degree kp if

k > /¿0-l

where /Zq is the observability index of the open loop plant and i is its controllability
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(column degrees) indices.

Finally, a number of results regarding denominator assignment, were given by 
Djaferis [Dja, 1.] who have shown that for a generic system of p-inputs, m-outputs and 
n-states, there exists a dynamic compensator of order q which places a 
m in(n+q,(q+l)m +q+b(p-l)) closed loop poles for any b.

The study of pole assignment by constant output feedback has been given special 
attention and belongs to the case of pole assignment by fixed structure controllers. 
Some of the first results for the case of output feedback (or constant precompensation) 
pole assignment are those of Kimura, [Kim.l], and Davison and Wang [Dav.l] who have 
shown that k exists, allowing the closed-loop poles to be assigned arbitrarily close to a 
desired set { q j  if

m+p-1 > n

The above result was proved with combinational geometric techniques [Kim.l] and 
standard state space techniques [Dav.l]. Using infinitesimal techniques Herman and 
Martin [Her.l] have shown that a necessary and sufficient condition for generic pole 
assignment of strictly proper system via complex constant output feedack is that

mp > n

As far as real solutions are concerned, the problem is much more complex and 
the main difficulty arises from the fact that the field IR is not algebraically closed. 
Although a special case where mp=n and a number d(m,p) is odd, was proved to be a 
sufficient condition for generic pole assignment by real output feedback [Bro.l] , the 
inequality, mp > n, does not generally imply real solution for the problem, as it has been 
shown in [Will.l], The sufficient condition mp=n and d(m,p)=odd has been extended in 
[Gia.l] to

and
mp > n

A (a1,a2,...ap)£ to be odd
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where A (a1,a2,...ap)c  is the order of Schubert variety <aj,a2,...ap> c  for a^a^,..^ : 
0 < a12 < â  < ... < ap < m and ^ a ;=n. Using Combinatorial Geometric methods 
Rosenthal also extented Kimura’s sufficient condition to

m + £
2 +...+ 1 > n

where k = ^ j and the bracket denotes the integral part function. Finally using Schubert 
calculus techniques and topological intersection theory, Byrnes found the strongest 
sufficient condition for arbitrary pole placement via constant output feedback, namely

LScat(p,m) > n

where LScat(p,m) denotes the Lusternic-Snirelman category of the Grassmannian 
Gp(lRp+m).

ZERO ASSIGNMENT VIA SQUARING DOWN

The study of zero assignment was initiated by the work of Rosenbrock [R.4] 
[R.5], on the possible zero structure Smith forms that may be assigned to a controllable 
pair (A,B) by selection of the matrix C of the resulting square system; however, no 
algorithm for selection of C that assigns the zeros, were given there. The first results on 
the general squaring down were derived by Kouvaritakis and MacFarlane [Kouv.l] who 
have suggested methods for assigning parts of the zero structure and some cases the zero 
structure under squaring down. Nonetheless, they did not give any general solvability 
conditions for the problem. For the case of designing C, such that the resulting square 
(A,B,C) triple has a given zero structure, a simple algorithm based on eigenvector 
assignment techniques were given by Karcamas and Kouvaritakis [Kar.2]. An attempt 
to generalise Rosenbroch’s zero structure assignment for the squaring down case was 
made in [Var.l], where some necessary conditions were derived. The link of the general 
squaring down to the pole assignment by output feedback was noted in [Apl.l], The 
derivation of necessary and sufficient conditions for the zero assignment under constant 
squaring dowm was considered by Karcanias and Giannakopoulos [Gia.2],[Kar.3] using 
the techniques of the projective geometry framework. These are the only existing
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solvability conditions. It lias been shown in [Kar.3] that

p(m-p) > <5+1

where 6 is the Forney degree of the module colspan[N(s)], N(s) being the numerator of a 
coprime MFD of the transfer function of the plant, is a necessary and sufficient 
condition for zero assignment. An additional condition in terms of the rank of the 
Plucker matrix of N(s) is also a necessary condition for exact solvability. A sufficient 
condition for generic real solvability was also produced and this is

a n d

p(m-p) > <Ü+1

A(a1,a2,...ap)(--=lmod2

where A (a1,a^,...a1-))^ is the order of Schubert variety < a j,a2,...ap> ç  for aj,a2,...ap: 
0 < ai < a2 < ... < ap < m-p and aj =¿+1-

The derivation of algorithms for squaring down was considered by [Sab.l] using 
state space methodology. Their approach is based upon the use of a special coordinate 
framework and aims at assigning the zeros by using dynamic squaring down, rather 
than addressing the issues related to solvability of the problem with either constant or 
limited dynamics squaring dowm compensators.

For the case of decentralised control, the zero assignment via decentralised 
squaring down (applied locally at the subsystem level) has been considered in [Kar.4], 
[Lai.l] within the projective geometry and exterior algebra framework; their work, 
however, has been more concerned with the characterisation of fixed and almost fixed 
zeros, rather than the derivation of solvability conditions.

As far as pole placement via decentralised controllers the condition

Eirqp, > n

was proved to necessary and sufficient for complex solutions. A result related to this
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work was given in [Wang.3] for the case Sm,p,=n based on the compactification of the 
decentralised controllers as a product of Grassmannians. In this case the degree of the 
product of Grassmannians was calculated and a sufficient condition for arbitrary pole 
placement was derived using the above degree. In the same paper [Wang.3] it was also 
shown that Enqp, > n implies generic pole assignability, when either the number of 
inputs or the number of outputs are equal for all channels.

4.6 Conclusions
The emphasis in this chapter has been on the reviewing of the different 

approaches of the algebrogeometric framework and briefly summarise the existing 
results related to the problems of pole, zero assignment examined in this thesis. Results 
derived within the same framework, but dealing with problems not examined here, such 
as issues related to simultaneous design [Gho.l], have not been examined but may be 
found in the references. Certain issues related to system parametrisation which are used 
in the subsequent chapters, have also been developed.
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5.1 Introduction.
In this chapter, we will be presenting the mathematical formulation of the 

problems which will be considered in this thesis. These problems belong to a general 
group of problems named as ‘frequency assignment problems’. These are concerned with 
the following issues: a) moving the poles of a system using state or output feedback 
which can be either: (a) constant or dynamic, centralised or decentralised and (b) 
moving the zeroes of a system using squaring down. In section (5.2) we present the pole 
placement problems via constant, PI, and Observability index Bounded Dynamics 
(OBD) controllers (Definition 5.1). In section (5.3) the zero assignment problem via 
squaring down is discussed, and finally, section (5.4) deals with the decentralised 
versions of constant output feedaback pole placement and zero assignment via constant 
squaring down. We will show that all the above problems can be reduced to solving a 
determinantal equation with respect to a constant matrix. This problem is called the 
Constant Determinantal Assignment Problem (CDAP) [Kar.l, Kar.2] and it is naturally 
connected with all the frequency assignment problems via constant or dynamic 
controllers. In the last section we formulate the DAP (constant and dynamic) and a 
general approach to this problem will be given, which lies within the framework of the 
projective methods described in the previous chapter. The present approach is a natural 
extension of the one introduced by Karcanias and Giannacopoulos in [Kar.l], [Kar.4] 
and treats both static and dynamic problems in a unifying manner for both centralised 
and decentralised problems. Throughout the thesis our plant will be a linear time- 
invariant (strictly) proper system of p-inputs, m-outputs and n-states, described by the 
following state-space description (SSD)

x(t) = A x + B u(t) 

y(t) = C x
(5.1)

where x £ IRn, y £ IRm, u £ IR?’ , are the state, the input, and the output vectors 
respectively and A £ IRnxn, B £ IRnxp, C £ [Rmxn are real constant matrices, or the 
equivalent transfer-function matrix description:

y(s) = G(s) u(s) (5.2)
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where s is the variable of the Laplace transform and y(s) and u(s) are the Laplace 
transforms of the output y(t) and input u(t) of the control system.

5.2. Pole assignment by precompensation-feedback.
The problem of pole assignment has been extensively studied by many 

researchers since the 1970s. It is concerned with moving poles of a given time invariant 
multivariable linear system to a specified set of locations in the s-plane by means of 
state, or output feedback. The state feedback approach is well established and it has 
been proven that, provided a system is controllable, all its poles can be arbitrarily 
assigned by state feedback [Won.,1967]. Since the complete state observation does not 
hold in most practical situations, it has been desirable to find the condition under which 
the system is pole assignable with incomplete state observation. In the following section, 
we will be examining the pole placement problem by using output feedback, or 
precompensation according to the dimensionality of the plant (relationship between m 
and p).

5.2.1 The general feedback configuration .(for more details see Ch.2)

Consider the general feedback configuration of plant and controller which are 
assumed to be both controllable and observable (ie. transfer function describe the 
systems completely).

If G(s) 6 IRpr(s)mxP , C(s) 6 R(s)Pxm, and assume coprirne MFD’s as

G(s)=D 1( s ) 1N1(s)=N r(s)Dr(s)-1 (5.3)
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C(s)=A1( s r 1B1(s)=Br(s)Ar(s)-1 (5.4)

It is well known [Kuc.l], [Cal.&Des.l] that the finite characteristic polynomial of the 
closed-loop system is expressed by:

f(s)=det{F1(s)}=det{F 2(s)} (55)

where,

F1(s)=D1(s)Ar(s) +Nj(s)Br(s) (5.6)

F2(s)=A 1(s)Dr(s) + B1(s)Nr(s) (5.7)
Thus we can write:

or
f(s) =  det

Ar(s)
Br(s)

(5.8)

f(s) — det [A1(s),B1(s)] Dr(s)
Nr(s)

(5.9)

i) if p < m, then C(s) may be interpreted as FEEDBACK COMPENSATOR 
and we will use the expression of the closed loop polynomial described by (5.9).

ii) if p >m , then C(s) may be interpreted as PRECOMPENSATOR and we will 
use the expression of the closed loop polynomial described by (5.8).

As far as case i) is concerned , the problem of pole assignment by dynamic 
output feedback (DPAP) for a system of p-inputs m-outputs and n-states (p < m) is 
defined as follows: Given a polynomial, p(s) ,solve the equation (5.9) with respect to 
[Aj(s),Bj(s)] . A similar problem can be defined for case ii) ;this is actually dual to 
DPAP by taking transposes in (5.8) and interchanging the roles of p and m.Thus it is 
sufficient to examine only case i) where p < m.

First, we will consider DPAP for each of the following families of feedback 
compensators C(s): i)

i) constant controllers ii) PI controllers iii) OBD controllers
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where the OBD controllers are defined as follows:

D efinitional) The Observability index Bounded Dynamics (OBD) controllers are those 
defined by the property that their McMillan degree is equal to pk, where p is the 
number of outputs and k is the observability index of the controller.

□

We will also examine the case of decentralised versions of the above problems in a 
separate section (Sec. 5.4). In the next subsections, we formulate each of the three 
above cases separately, and as will be seen, all of these problems are reduced to a 
constant determinantal assignment problem.

5.2.2 Pole assignment via constant controllers

The simplest case of a feedback compensator C(s) is a gain compensator K e IR̂ xin. 
Then, the closed loop system is a well defined strictly proper system with the same 
McMillan degree as the open loop system. The closed loop polynomial of eq.(5.5), now 
becomes:

f(s)=det{D R (s)+KNR(s)} (5.10)
or equivalently eq.(5.9) becomes

f(s)=det{[Ip,K] (5.11)

So the problem of pole assignment by constant output feedback is reduced to the 
following problem:

tor a given strictly proper system S of {»-inputs, m-outputs and n-states and a given rnonic polynomial 
f(s) of degree n, solve the determinanlal equation (5.11) with rcsj>cct to K £ Rf>Xm.

Remark (5.1) The same problem can be defined for proper systems ( D / 0 )  with the 
only difference being that we will have some properness conditions for the resulting 
closed loop system and f(s) may not be monic.

□
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5.2.3 Pole assignment via PI controllers

These controllers contain a constant gain and an integrator and thus they are of the 
form:

C (s)=K 0+ lK 1

where Kq ,K j g RPxm. A left MFD for C(s) is defined by

C(s)=[sIp] 1[sK0+ K 1] (5.12)

Remark(5.2) The MFD given by eq.(5.12) is coprime at any s g  {oo }u C -{0 }; thus we 
have to test coprimeness only at s=0. The MFD (5.12) is coprime, iff rank(Kj)=p.

□
If we now apply output feedback PI control to a (minimal) strictly proper plant of n- 
states, then the resulting closed loop system will be a well defined strictly proper system 
of n+p states. Substituting (5.12) into (5.9) we have that the pole polynomial f(s) of the 
closed loop system is given by:

f Dp(s)
f(s)= det [sip , sKq+ K j ]

l  Nr (s )

which is equivalent to

f(s)= det | [Ip , K0 ,Kj]

s D r (s )

sNR (s)

NR(s )

(5.13a)

(5.13b)

Thus the pole assignment problem by PI controllers is reduced to solving the following 
problem:

For a given strictly proper system S o f p-inputs, m-outputs and n-stales and a given monic polynomial 
f(s) of degree n+p, solve the determinantal equation (5.13b) with respect to [Kq ,K j ] G RPx2m.
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Remark (5.3) If the plant S is proper then the resulting closed loop system may not be 
proper and poles may appear at s=oo. However under the properness assumption of the 
closed loop system, and the above statement of the problem is still valid, with the only 
difference being that f(s) will not necessarily be monic.

□

5.2.4 Pole assignment via OBD controllers

An extension of the families of constant , PI controllers are those for which the 
McMillan degree is fixed. A special class of such family of controllers is the 
Observability index Bounded Dynamics (OBD) family which is, defined by def(5.1) and 
they have the form:

C(s)=A 1(s ) '1B1(s)

where

[ A j (s ),B j (s )] — ...-f T q

Tk’ Tk-1’ - ’ T0 e KpX(p+m ) and

(5.14)

Tk=[Ip,X] (5.15)

Remark(5.4) The above MFD is coprime iff rank[Aj(s),Bj(s)]=p Vs e  C or else iff

Cp([ A1(s),B1(s )])v O  Vs 6 €  (5.16)

In this case [Aj(s),Bj(s)] corresponds to a minimal system and k is the observability 
index of the system. In addition, due to (5.15) the McMillan degree of these controllers 
is equal to pk. If the noncoprimeness assumption does hold, then the Me Millan degree 
of the controller will be less than pk.

□
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If we now use an output feedback OBD controller to a (minimal) strictly proper plant of 
n-states, then the resulting closed loop system will be a well defined strictly proper 
system of n+pk states. Substituting (5.14) to (5.9) we have that the closed loop pole 
polynomial is given by:

f(s)= det
Dr(s)
Nr(s)

4=>

or equivalently

<+ f(s)= det + - + T 0) M(s) (5.17a)

f(s)= det|[Tk, Tk p..., T0]

skM(s)

s ^ h ^ s )

M(s)

(5.17b)

Thus the problem of pole placement via OBD controllers is equivalent to:

For a given strictly proper system S of p-inputs, m-outputs and n-states and a given monic polynomial 
f(s) o f degree n+pk, solve the determinantal equation (5.17b) with respect to [T^, j,..., Tq].

Remark (5.5) Similarly with the two previous cases (constant, PI), if the plant is a 
proper system we can still state the previous problem with the only difference being 
that we have to assume properness of the closed loop system and that f(s) may not be 
monic.

□
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5.2.5 Pole assignment via general dynamic controllers of fixed 
McMillan degree.

The general problem of assigning the poles of a system via dynamic output 
feedback controllers of fixed McMillan degree nj, can be described as:

For a given strictly proper system S of p-inputs, m-outputs and n-states and a given monic polynomial 
f(s) of degree n+rq, solve the determinantal equation (5.9) with respect to [Aj(s),Bj(s)j .

where [Aj (s ),B j (s)] is the composite matrix of a coprime left MFD of the feedback 
controller. Readily, this problem is a generalisation of the case of the OBD controllers of 
previous subsection. Indeed, if n is divisible by p, the number of inputs of our plant, 
then the family of dynamic controllers becomes of the OBD type and as we have seen, 
the pole placement problem can be reduced into a constant determinantal assignment 
problem. The more general, case when n is not divisible by p, cannot in general be 
reduced to a constant DAP since eq(5.14) does not hold true. However if we consider 
the partial problem of finding dynamic output feedback controllers with fixed 
observability indices, we can reduce it into a constant DAP; the structure of this 
general DAP with dynamic general controllers is out of the scope of this thesis.

5.3 Zero assignment by squaring down

5.3.1 Output squaring down

Frequency response techniques for the design of multivariable systems such as 
the characteristic locus method [McF.2, Kouv.2], inverse Nyquist array[R.2,R.3,R.l], 
and generalized Nyquist Root Locus Method [Kouv.3,Maci.l], consider feedback loops 
between a set of selected measurements and an equal number of control inputs. Thus, 
common to all these techniques is the assumption that the plant transfer function G(s) 
is square. For a nonsquare plant whose number of measured output variables is greater 
than the number of control inputs (m > p), the problem of combining all outputs 
together into a new set of outputs, whose number is equal to the number of control 
inputs has been called the “squaring down” problem [R.4, Kouv.l, Kar.3, Apl.l,Var.l]. 
It is evident that the solution of the general squaring down problem has significant
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consequences on the zero structure of the corresponding loop transmission transfer 
function matrix and therefore, it vitally affects the final control design process.

We consider a system S whose input-output behaviour is described by the 
transfer function G(s) e Rpr(s)mXP where m>p. G(s) may be represented by a right 
coprime matrix fraction description as:

G(s)=Nr(s)Dr(s)_1 (5.18)

Under the coprimeness assumption, the zeros of the system S are given by the zeros of 
the numerator Nr(s). If z(s) is the Laplace transform of system outputs, then the 
squaring down problem is defined as the problem of selecting K such that y (s)= K  z(s) 
where y is a p-dimensional vector. Then y is refered to as the effective output vector.

y ( s )

U ( s j

? ( s )

K

Squaring down at the plant outputs makes sense as a postcompensation with dynamics 
representing those of the sensors used [Kar.&Gia.], or constant. In this paper we 
consider the case where K is free and constant. If we use a squaring down 
postcompensator K e IR̂ xm , the squared down pxp transfer function of the
composite system S may now be expressed as:

G(s)=KG(s)=(KNr(s))Dr(s)-1 (5.19)

Then the zeros of S are given by the zeros of KNr(s) and the invariant zero polynomial 
of S is given by:

zt (s)=det(KNR(s)) (5.20)

If now Z(s) is a greatest right divisor of NR(s) then (5.20) can be rewritten as:
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zit(s)=det(KN(s))det(Z(s)) (5.21)

where N(s) is the least degree polynomial matrix of the rational vector space 
colsp{G(s)}. It is clear that det(Z(s)) is a fixed divisor of z^(s) for all K (invariance of 
existing zeros under squaring down [Kar.3], [Kar.2]). The newly introduced zeros, are 
the zeros of the polynomial

f(s)=det(KN(s)) (5.22)

where f(s) is a polynomial with degree equal to the Forney’s dynamical order 8 [Kar.l] 
of the previous rational vector space. The problem of zero assignment by squaring down 
can be defined as follows:

For a given proper system S of p-inputs, m-outputs and n-states and a given polynomial f(s) 
of degree 8,  solve the dctcrminantal equation (5.22) with rcsj>ect to the full rank matrix K

From the previous analysis, we also have:

Remark(5.3).The zeros of G(s) are invariant under constant squaring down and the maximal number of 

new zeros that may be created is equal to the Forney dynamical order <5.

5.3.2 Input squaring down
□

For systems with p>m, the problem of input squaring down may also be defined 
as follows: Given G(s) e [RmxP(s) with p>m and u inuts, y outputs, define a 
precompensator P(s) e Rmxp(s) and a set of new inputs y, such that u(s)=P(s) v(s), as 
decribed below

Y(s) y(s)

such that the squared system S has a transfer fuction matrix G(s) with desirable 
properties. Note that
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G(s)= G(s) P(s)

and in this case P(s) can be any type of dynamic compensator, since any 
precompensator may be used. Designing P(s), such that G(s) has certain properties, is 
equivalent to a Model Matching Problem [Scot.l,Kuc.l,Chengl,Var.2]. Certain aspects 
of this problem related to zero structure assignment may be discussed within the 
present framework of DAP and these are summarised below: Let G(s) and P(s) be 
represented by the following coprime MFD’s.

G(s)= D,(s)-l N,(s)

p (s)=Br(s) A jfs )'1
Then

G(s)= G(s) P(s) = D1(s )"1N,(s ) Br(s) Aj-fs)'1 

The zero structure of the resulting system is defined by the matrix

Z(s)=N1(s) Br(s)

whereas the pole structure is defined by the Dj(s), Ar(s) denominators. Clearly, the 
above MFD for G(s), is not necessarily coprime. The designed compensator introduces 
poles, as those defined by the zeros of Ar(s) , as well as contributing in the formation of 
the zero structure. A zero assignment problem may thus be formed as shown below: 
Define a pair of polynomial matrices (Br(s), Ar(s)) which are of the appropriate 
dimension (pxm, mxm) and coprime such that

z(s)— det (Z(s)) =  det(Nj(s)Br(s))

is a given polynomial and Br(s)Ar(s)  ̂ is a proper controller. This may be referred to as 
Precompensation Zero Assignment Problem (PZAP) and various versions of it may be 
considered according to the nature of Br(s) matrix. Thus we may have a selection of 
Br(s) as a general polynomial matrix ie.

Br(s)= Qq + sQ1 + ... + s^Q^

and such a problem is clearly equivalent to the following constant DAP
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z(s)= det [Q;i, Q u .jv iQ i]
s^^Pis)

s^P(s)

P(s)

Note that if Br(s) is selected as above, then Ar(s) has to be selected appropriately for 
the properness condition to be satisfied .

Remark (5.6) The above version of PZAP aims at producing a system with given zero 
structure and thus it is more general than a model matching problem, where G(s) is 
given and the existence of an appropriate P(s) is sought. The important question here is 
‘What is the minimum order of numerator dynamics which is needed to assign 
arbitrarily the zero structure ? ’ .

□

Remark (5.7): If the plant transfer function G(s) has zeros, then using similar 
arguments as in the case of output squaring down, these zeros are fixed and cannot be 
assigned. In this case the essential problem is the assignment of the newly introduced 
zeros.

□

5.4 Decentralized pole and zero assignment

5.4.1 Introduction

Decentralised control systems are defined to be large dynamic systems with 
several automatic controllers each operating on the system with partial information on 
the states of the controlled system. This decentralisation assumption implies that only 
local measurements may be used for control actions. Thus the output feedback and
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squaring down compensators have a block diagonal structure and can be constant or 
dynamic. For the purposes of this thesis we will consider only constant decentralised 
controllers; however, the cases of PI and OBD controllers of decentralized nature may 
be treated along similar lines if we assume that the number of channels is n. In this
case, these controllers can be written as:

0 ••• 0

«dec =
0 k 2 ... 0

(5.23)

0 0 ...

where e ^  p,-=p and E m.= m. It is evident that the previously
defined problems of pole assignment via constant output feedback and zero assignment 
via constant squaring down can be restated using decentralised compensation.

5.4.2 Pole placement via constant decentralised controllers.

Consider an K-channel linear time-invariant strictly proper system of p-inputs, m- 
outputs and n-states:

* = Ax + E Bt Ui
¿=1

y ,=  c ,-x

here x, u{, y {, are n, nq, p[ vectors, respectively, and u,- and y- are the input and 
output of the ith channel and let a right coprime MFD of the transfer function G(s) of 
the above system be:

(5.24)

G(s)=N(s)D(s)“1 (5.25)
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If local output feedback laws

u, =  K> I . + lit (5.26)

for i= 1, 2,...., /c, are applied to each channel, the closed-loop system becomes

X =  ( A +  £  B ,K ,.C ,)X  + £  B. u,
1 =  1

z  ,■= c « *

and the pole polynomial, f(s), of the closed loop system is:

t=i (5.27)

f(s) =  det ( si - A - B, K, C.)
Z=1

or equivalently

f(s)—det([ Ip , KdJ
D(s)
N(s)

(5.28)

(5.29)

where Kdec is given by eq.(5.23). The problem, now, of pole assignment by decentralised 
constant output feedback can be defined as follows:

For a given strictly proper system S of p-inputs, m-outputs and n-states and a given monic polynomial 
f(s) o f degree n, solve the dcterminantal equation (5.29) with respect to the block-diagonal Kdcc-

Finally, if we assume that our decentralised controllers have dynamics, then we can 
define the dynamic decentralised pole placement problem in a similar way. 
Furthermore, if the controllers are PI or OBD we can transform the problem to a 
constant one as in equations (5.13) and (5.17).

5.4.3 Zero assignment via decentralised squaring down compensators

Let us consider a proper plant S of p-inputs, m-outputs and n-states such that 
p<m whose transfer function G(s) is represented by the coprime MFD (5.18). The 
squaring down of this system amounts to a postcompensation of S by a pxm constant 
controller as it was explained in Sec.(5.3). If we assume decentralisation in ac channels,
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then the zero polynomial of the squared down system is given by:

z .(s)=det(KdecNR(S)) (5.30)

where Kcicc is given by eq.(5.23). Dividing now both sides of eq(5.30), by det(Z(s)), the 
zero polynomial of S, we get

f(s)=det(K<lccN(s)) (5.31)

where N(s) is a least degree polynomial numerator matrix of the rational vector space 
colsp{G(s)} and f(s) is a polynomial with degree equal to the Forney’s dynamical order 
8 of the previous rational vector space [For.l].

The problem of zero assignment by squaring down can be defined as follows:

For a given proper system S o f p-inputs, m-outputs and n-statcs and a given |>olynomial f(s) of 
degree S, solve'thc dctcrminantal equation (5.31) with respect to the full rank matrix

5.5. The general determinantal assignment problem

5.5.1 Description of the problem

All the problems introduced in the previous sections belong to the same problem 
family ie. the determinantal assignment problem (DAP). This problem is to solve the 
following equation with respect to polynomial matrix H(s):

det(H(s).N(s))=f(s) (5.32a)

where f(s) is a polynomial of an appropriate degree d. The difficulty for the solution of 
DAP is mainly due to the multilinear nature of the problem as this is described by its 
determinantal character. An additional complexity lies in the fact that we want the 
solution of (5.32a) to be a polynomial matrix. However, in all cases mentioned 
previously, all dynamics can be shifted from H(s) to N(s), which, in turn, transforms 
the problem to a constant DAP. This problem may be described as follows:
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Let M(s) G  ̂r)XI>[s] such that rauk(M(s))—p and let D£ be a family of full rank 
px(p+r) constant matrices having a certain structure. Solve with respect to II G DC the 
equation:

det(II.M(s))—f(s)

where f(s) is a real polynomial of an appropriate degree d.

(5.32b)

Remark(5.8) The degree of the polynomial f(s) depends firstly upon the degree of M(s) 
and secondly, upon the structure of H. However in most of our problems the degree of 
p(s) is equal to the degree of M(s).

□

The constant DAP being similar to the output feedback pole placement problem allows 
us to apply the same techniques. However the structure of the matrices H and M(s), in 
the different special versions, may be different from those of the output feedback 
problem and for this reason we have to apply carefully these techniques to each of our 
problems and should take into account their individual peculiarities.

The determinantal assignment problem has two main aspects. The first has to do 
with the solvability conditions for the problem and the second, whenever this problem is 
solvable, to provide methods for constructing these solutions. In this thesis we will 
mainly be involved with the first - that is, giving solvability conditions for the DAP. 
We classify the solvability conditions for the constant DAP into two classes: i) exact 
solvability conditions and ii) generic solvability conditions.

By the term ‘exact solvability conditions’ we mean that the matrix M(s) is fixed 
and we are looking for necessary as well as sufficient conditions -depending on both 
continuous and discrete parameters of M(s)- such that the constant DAP is solvable for 
all or almost all polynomials f(s). Since in all the cases we examine, the family of M(s) 
is parametrised by the set of systems, we will be able to construct new system 
invariants that arise naturally from our problems. On the other hand for the “generic 
solvability conditions the polynomial matrix M(s) is not fixed but generic and we are
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looking for necessary as well as sufficient conditions -depending only on the generic 
values of the discrete parameters of M(s)- such that the constant DAP is solvable for all 
or almost all polynomials f(s).

5.5.2 Brief description of our approach for the D A problems of this 
thesis.

The essence of our approach is projective, that is, we use a natural embedding for 
determinantal problems to embed the space of the unknowns ,M, of DAP, into an 
appropriate projective space [Kar.l]. In this way we can see our problem as search for 
common solutions of some set of linear equations and another set of second order 
polynomial equations. This also allows us to compactify % into it and then use algebraic 
geometric, or topological intersection theory methods to determine existence of solutions 
for the above sets of equations. In addition we can utilize this embedding for an 
alternative application of the infinitesimal methods [Her.l], Particularly, we note that

it= {  linespan [Cp(H)] : H g  Dt}

can be viewed as a subset of the projective variety Gp([RP~*~r) in PIR'7' 1 , where 
By the Binnet-Cauchy theorem [Mar.l] (5.32b) can be written as:

Cp(H).Cp(M(s))=p(s) (5.33)

where Cp(H) £ IR̂ xcr and Cp(M(s)) G R°”x [̂s] and DAP can be reduced to two 
problems [Kar.l] :

(i ) LINEAR PROBLEM: For a given p(s) G IR[s] of appropriate degree d and 
h(s) G Ra x l[s] solve the linear equation,

P(s)= k.h(s) (5.34)

with respect to k e IRâ  c  P([R)cr“^

(ii) MULTILINEAR PROBLEM: Assume that the linear problem has a non void 
solution set ,say 2, then determine whether there exists k G 2 which belongs to % that is
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k=liuespan[Cp(H)] for some H e 3t.
□

The importance of this approach is that we look at the problem in the natural 
embedding space of the Grassmannian, the projective space PIR*7 .̂ The corresponding 
equations are easy to be produced and have comparatively small degree (1 or 2) and 
thus this method is convenient for calculations, the only disadvantage being that the 
number of equations and unknowns are rather large. In addition to this, the factoring of 
the initial problem to a linear and a multilinear problem gives us a better insight into 
the problem. The multilinearity of the problem does not depend upon the matrix M(s) 
but only on %. The equations giving % in PIRcr‘ '*' are the Quadratic Plucker Relations 
(QPR) expressing decomposability and some linear equations imposed by the structure 
o fH e M .

In order to use topological or algebrogeometric intersection theory to examine 
solvability conditions for the constant DAP, we may compactify !K> into 3G in 
Gp(lRP~^r) C PIR  ̂ 1 by taking the topological closure with respect to the Zarisky 
topology (that is, is the smallest variety containing 3G) [Mum.lj. In this setting we 
can view the set 9GR(p,M), of all H e % that solve eq(5.32b) as

9GR(p,M)=L!R(p,M) n

where LR(p,M) is the linear subset of PIR0̂  whose elements satisfy the linear equation 
(5.34). To study solvability of DAP in C, we consider the set of complex solutions 
%c(P>M); this set is an intersection of two other complex projective varieties- the linear 
one and - and we can, therefore, use lemma(3.1) for complex projective varieties. The 
examination of the existence of real solutions is a more complicated matter (since there 
is no theorem like lemma(3.1) for real varieties); this problem can be tackled in the 
following two ways:

a) First, consider the set of complex solutions 9GC which is a subvariety of the 
Grassmannian Gp(CP^r). If we consider another subvariety, V, of Gp(C^^r) of 
complementary dimension to 9Gq  and meeting 9G,£ transversely, then the intersection 
\ n V  is finite. In this case, if $  (SG^-nV) is odd, we have a real solution, since the 
points of intersection K ^flV  occur in conjugate pairs. Thus, such a method amounts to 
enumerate certain finite intersections of complex varieties on a Grassmannian and

146



therefore lies in the bounds of complex intersection theory and enumerative calculus on 
a Grassmannian (Schubert Calculus).
b)Compute the cohomology class of 9G^(p,M) for a generic p and M in 
H*(Gp(IRP^ r);Z2) and then examine under which conditions this class is nonzero. These 
conditions will be sufficient for the existence of real solutions. It is worth noting that in 
the cases we examine, methods (a) and (b) are equivalent.

Remark(5.9) We may also use topological category arguments for appropriate spaces 
and maps as it was explained in ch.4. It is worth noting that the Lusternic-Snirelman 
category can be used only if we have intersection of Schubert hypersurfaces on a 
Grassmannian, since the complementary of a Schubert hypersurface is homeomorphic to 
Rrx  ̂ which is contractible. Alternatively we may use vector bundle categories which do 
not require contractibility.

□

We can also use infinitesimal arguments to study the characteristic map of the 
DAP problem which is defined to be:

X : F 'G  F d

where F=IR or C, ¡i are the degrees of freedom of H in eq(5.32b) and x  maps H to the 
coefficient vector of the polynomial p(s) of eq.(5.32b). The decomposition of the 
problem into a linear and a multilinear one leads to the following factorisation of y:

X : ^ f a i  F d

where the left map is the Plucker embedding and the right is a <rxd linear map induced 
in the linear problem and depends only on M(s). In this way the calculation of 
differential of x  amounts only to the calculation of the differential of of the Plucker 
embedding (which is the same for all problems) since L is linear. The rank of the 
differential of x, which is important for our analysis, has as upper bound the rank of the 
Plucker matrix and as we shall see, there exist cases where these two numbers are 
equal. Finally this decomposition of x may allow us to produce results which are global 
(independent from the specific point of F^ we differentiate) and produce new system 
invariants relative to the DAP solvability property.
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5.6 Conclusions
The present chapter has introduced the framework of the determinantal 

assignment problem and has described the particular control theory problems which are 
examined in this thesis. The aim has been to review the existing background results and 
introduce some unifying formalism and notation. In a sense, this chapter is a prelude of 
the developments that follow the subsequent chapters.
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6.1. Introduction

The aim of this chapter is to establish a number of properties of a very 
important map related to determinantal problems, the pole placement map. This map 
is a special case of the y function as defined in section 4.4 and is the one that maps the 
set of the unknowns % of DAP to the set coefficients of the polynomial p(s) under the 
rule described by equ(5.10). In this chapter we will examine the pole placement map 
under complex and real output feedback and especially the properties of the image of 
the pole placement map as well as its asymptotic properties with respect to a high gain 
output feedback.

One of the important questions connected with the pole placement problem 
under constant (or dynamic) output feedback, is the derivation of a reasonable measure 
for the size of the set of polynomials ,which for a system S(A,B,C) of p-inputs, m- 
outputs and n-states can be assigned. We choose as a measure of the size of this set ,the 
dimension of the image of the real, or the complex pole placement map (PPM). The 
geometry of this image, as well as, its dimension (which is a new system invariant) will 
be the main topic of section 2 of this chapter. Infinitesimal analysis will be used for the 
calculation of the dimension as well as for the derivation of its relationship with the old 
system invariants (section 6.3).

The pole placement map is the anologue of the root locus map for the 
multivariable case and thus to obtain a complete picture of such a map, its extension at 
infinity (as in the SISO case) is required. An integral part of the asymptotic analysis of 
the pole placement map is the study of the high gain (multivariable) feedback which is 
examined in section 6.4. Finally, having rigorously defined the concept of high gain 
(infinite) feedback controllers, we end this chapter (section 6.5) with the study of 
systems where the pole placement map does not extend at infinity, the so called family 
of degenerate systems.
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6.2 General properties of the pole placement map.

6.2.1 Introduction

Let S(A,B,C) be the state space description of a linear strictly proper system 
of p inputs, m outputs, n states. Let also G(s)=N(s)D(s)’ 1 be a coprime matrix fraction 
description of the transfer function of the system. The pole placement problem via 
constant output feedback (section 5.2) is to examine the solvability of equation (6.1) 
for a given (p n ,...^ ) G IRn, ie.

det([I,K] D(s)
N(s)

) =  det([I,K] M(s)) = sn+ p nsn-1+ ...+ p 1 (6.1)

where M(s) is a column reduced and least degree composite matrix for S, or 
equivalently, the equation

det(Is-A-BKC)= sn+ p nsn‘ 1 + ...+p1 (6-2)

with respect to K e IRpxm . Of particular interest is to examine the size of this set of n- 
tuples. This is the same as finding how large the image of the function x is. The 
function, x, from IRpm to IRn, maps every K to (pn,...,pj) under the relation (6.1), or the 
equivalent relation (6.2), and is called the pole placement map (PPM) [Herl,Ghol], Its 
extension x, from Cpm to Cn, is called the complex pole placement map (CPPM). It 
is apparent that the image of the real or complex PPM plays an important role in the 
characterisation of the pole assignability properties of system via output feedback. The 
determination of the properties of this image is not an easy task, since this map is 
nonlinear as the following example shows.

Example(6.1) Consider the strictly proper system S whose transfer function G(s) is 
expressed as a right coprime MFD as:
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G(s)=
0 s

-s-3 s-2 0 1
1 s s2 0

If we apply to G(s) constant output feedback

K=
k k K11 k 12

k21 k22

then the closed loop pole polynomial is given by:

P(s)= s4+k21s3+k22s2-k 12s+k22kir  k12k2I

and so, the pole placement map defined previously is given by:

[kii)k12,k21,k22] [̂ 21) k22,-k12, k22kH- k12k21J

Next, we will examine the structure of the pole placement map as well as the structure 
and the size of its image.

6.2.2.The real and complex pole placement maps and their image

The complex (as well as the real) PPM is a regular map, that is its coordinate 
functions are polynomials (of pm variables). However this map has some special 
properties imposed by the determinantal nature of the equation (6.1). Following the 
ideas described in section 5.5 we can decompose x  into two maps: i)

i) the Plucker embedding, T, from Cpm to Ca where T (K )=C p[I,K] and a = (p pm).
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ii) a linear map (PgJfCT -* Cn which is a composition of two linear maps: a) (PgJfiC0-* 
Cn+1 where Pg is the Plucker matrix of S (see Chapter 5), which is a linear map 
defined by:

Cp(M(s))=Ps.(s", s" I]1 (6.3)

and (b) the projection from Cn  ̂ 1 to Cn annihilating the first coordinate (in order to 
get rid of the 1, the first coefficient of the monic polynomial).

Remark(6.1) Since M(s) is the column reduced composite matrix for the strictly proper 
system S , we obviously have Pg^fe^ Pg] where e, is a crxl vector having the (1,1) 
entry 1 and all the rest 0.

0

We can now view y(K) as a multiplication of the vector T(K) and the matrix Pg, that 
is

*(K )=T (K ) Ps (6.4a)

we can similarly obtain a decomposition for the real PPM as

*(K )=T (K ) Ps (6.4b)

Remark(6.2) The importance of the descriptions 6.4a and b for the PPM is that the 
information about the feedback compensator and the system are separated. The map T 
is a function of K only, incorporates the multilinear properties of the PPM and it is the 
same for all systems S. On the other hand, the reduced Plucker matrix Pg is a complete 
invariant of the system [Kar.l] and is the one that changes the PPM when S alters.

□

For a rough investigation of the structure of the image of the complex PPM we 
will use only the fact that it is a regular map between complex algebraic varieties and 
not the decomposition (6.4). The image of such a map is a constructible set [Hum.l]
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(theorem(3.)). This means that although Imx may fail to be a variety, it is very close to 
be one - that is, it contains a Zarisky open subset of its closure. Therefore we may use, 
as a measure of the size of the Imy, the dimension of its Zarisky Closure (the smallest 
variety containing Imy and denoted by ZC(Imx)) which is well defined since
ZC(Imx) is a variety. This dimension is what we define as dimension of Imy as the 
following definition indicates.

Definition (6.1)

dimlmx d—  dim ZC(Imx) □

In our case, we can view the image of CPPM as an affine variety of Cn without 
possibly a subset of a subvariety of strictly lower dimension (note that in the real case 
the image of the PPM does not admit such a nice structure). If we also take into 
account that a variety of dimension n in Cn is the whole of this space, then we can 
easily verify the following:

Theorem (6.1) For a system S(A,B,C) the next two statements are equivalent:

i) dim Im(x)=n

ii) Almost all complex monic polynomials of degree n can be assigned by a 
complex output feedback.

□
Given that IRn is Zarisky dense in Cn we also have:

Corollary (6.1) For a system S the next two statements are equivalent:

i) dim Im(x)=n

ii) Almost all real monic polynomials of degree n can be assigned by a complex 
output feedback.

□

As far as the real PPM x 's concerned, it is once again a regular map in pm 
(real) variables. The image of such a map usually fails to be a variety; however we know
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that it is a semialgebraic set, ie. the solution set of inequalities [Boc.l]. To illustrate this 
fact, it is sufficient to see the real variety y=x , the projection p:IR -»IR on the y- 
coordinate is a regular function, mapping the variety to the set y > 0. The dimension of 
a semialgebraic set is defined [Boc.l) as the dimension of the smallest real variety 
(Zarisky closure) containing the set.Thus

Definition (6.2)
dimlmy = dim ZC(Imx)

□

Unlike the complex case , the image of a real regular map is far from being a 
real variety. Thus if dimlmy=n, this would not mean that Imy is almost the whole of 
IF?11, but that it is rather an n-dimensional object defined by inequalities like the n- 
dimensional unit ball, or the set of all n-tuples having positive coordinates. In the 
CPPM case we have the easier ‘black or white’ situation where we have only to examine 
whether dimlmy is equal to n or not, if we want to determine whether we can assign 
almost any poles. In the real case, the dimension is not the only parameter determining 
the size of Imy; having found the dimension of Imy we have one of the parameters 
defining the size, but this is not the only one.

6.3 Relationships of the pole placement map and known 
system invariants

6.3.1 Introduction

The purpose of this chapter is to establish relationships between the PPM and 
known system invariants. This will be achieved via infinitesimal analysis of the PPM, 
which will give us local as well as global results and will be convenient for calculations. 
The main result of this section is the relation of the image of PPM with the rank of its 
differential. This differential is strongly related to the Plucker matrix of the system , 
which is a complete invariant of S [Kar.l], By calculating the differential of PPM using 
both expressions (6.1) and (6.2) we can relate the Plucker matrix to the Markov
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parameters of the system.

6.3.2 The Sard’s theorem for varieties and the differential of the pole 
placement map.

The rank of the differential of a regular map is closely related to the dimension 
of its image; in fact, the following theorem holds true (this is a version of Sard’s 
theorem for complex algebraic varieties):

Theorem (6.2) [Mum.l] The rank of the differential (Dd>)x of a regular map <3>:X-+Y 
between complex varieties is equal to the dimension of Imd> for every x in a Zarisky 
open subset of X .

□

In order to find the dimension of the image of the CPPM, it is necessary and 
sufficient to calculate the rank of the differential (D y)K. Next, we will be calculating 
the differential of y using the matrix fraction description of CPPM (6.1). In order to 
calculate the differential of y we will calculate the differential of T, the Plucker 
embedding,and we will multiply it with the remaining linear map Pg. The matrix Pg is 
computed by (6.3) and its rows are the coefficients of the pxp polynomial minors of 
M(s) which axe lexicographically ordered.

Remark (6.3) [Kar.l]: The Grassman vector Cp̂ M(s)j, or equivalently the Plucker 
matrix Pg is a complete invariant of the family of all minimal realisations of G(s).

□

To calculate the differential of T we use an alternative expression of the 
compound Cp[I,K], that is the exterior product of the rows of [I,K]; so if the rows of 
[I,K] are k l j 1 < i < p, then T ( K ) = k t1 A k l2 ... A k lp. We also symbolise the entries 
of K by kjj 1 < i < p and 1 < j < m and it is now sufficient to calculate the partial 
derivatives of T for every k-; this can be done easily using a chain rule for the 
exterior product and thus the partial derivative of T with respect to k- is
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| 2 -  =  k \  A k V - A k V ,  A e l p + j A k l i + 1 . . . A  k l p (6. 5)
ij

where e is a (p+m )xl vector such that all its entries are zero apart from the p+j-th 
which is one. Obviously the differential, (DT)^, of the map T at a point K is a 
pmx^3̂ 111) matrix having as rows the crxl vectors described in (6.5); therefore, we 
have:

Proposition (6.1) The differential of the CPPM is given by:

(D i)K= (D T )K.Ps

where the rows of (D T)K are given by the right hand side of (6.5). 

From the above, it is readily seen that:

Corollary (6.2) For every K e Cpxm we have that : rank{Pg} > rank{(D x)K}

( 6.6)

□

□

The rank of the Plucker matrix characterizes the feedback properties of S in the 
following way:

Corollary (6.3) rank{Pg} > dim(Imx)

□
The above result readily follows from corollary (6.2) and theorem (6.2). 
Proposition(6.1) and its following corollaries suggest a method for calculating the 
dimension of the image of the CPPM as shown below:

Remark(6.4). First we calculate the rank of the Plucker matrix Pg, which constitutes an 
upper bound for dim(Imx). Then, because of eq(6.6), whenever nip > n, the set

W=|l< e Cpxm: rank(Dx)^ =  rankP§ }
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is a Zarisky open set in Cpxm. If now, W is nonvoid, that is if there exists K0 e Cpxrn 
such that rank(Dx)K  ̂ =  rankPg , then dim(Imx)=rankPg.

□

Example(6.2) If we consider the same system as in example (6.1) then we have that:

0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

and thus, rank(Pg)=4, and the above necessary conditions are satisfied. Since the rank 
of Pg is always greater than or equal to the dimension of the image of the complex pole 
placement map we have that : dim(Imx) < 4. As it has been mentioned the pole 
placement map x is a map from C4 to C4 given by:

[^111^12,k21,k22] -* [f217 k22,-k12, k22kn - k12k21]

The differential at the point K0=[2,3,3,5] is:

0 0 0 5
0 0 - 1 - 3
1 0  0 - 3
0 1 0  2

and rank((Dx)j^)=4; therefore dim(Imx)=4

□
The above analysis provides an alternative proof to the following known result [Gia.l]:

(Dx )k  =

Theorem (6.3) For a system S with n-states p-inputs and m-outputs, necessary 
condition for the assignment of almost all complex (or real) momc. polynomials of 
degree n by complex output feedback is that mp > n and rank{Pg}=n.
Proof

Note that by Theorem(6.): Imx=n. For a generic K, it follows that rank(Dx)K=n; 
however the differential is an mpxn matrix so mp > n. On the other hand, by Corollary 
(6.2) we get that rank{Pg} > Imx—n, which implies that rank{Pg}=n since Pg is a axn
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matrix.
□

As far as determiag the dimension of liny, the rank of the differential of PPM 
plays important role again. The version of Sard’s theorem for semialgebraic sets may 
be stated as follows:

Theorem (6.4) [Boc.l] Let 4>:X-*Y be a semialgebraic function between semialgebraic 
sets. Then the set of points {$(x): x e X  and rank (D<f))x < dimY} is a semialgebraic 
subset of Y having dimension strictly less than the dimension of Y.

□
In our case the set { x  G IRmp: rank(Dy)x < dim(Imy)} is algebraic. Indeed, the equations 
for the differential are the same as those defining y, the only difference being that 
K g  IRmp ,that is:

(DX)k = (D T )k .Ps  (6.7)

By equating to zero the dimlmy-compound of the right hand side of (5.1) we have the 
required set of equations. The above set is called the set of critical points of y and is 
symbolized by Crit(y); the image of Crit(y), through y, is a semialgebraic set and 
because of the previous theorem, it has dimension strictly smaller than the dimension of 
ZC(Imy). Thus Crit(y) is a proper subvariety of Rmp, which implies that rank(Dy)K is 
equal to dimZC(Imy) for every K in a nonempty Zarisky open set of IRmp. Thus, like 
the complex case, in order to find the dimension of the image of the PPM it is 
necessary and sufficient to calculate the rank of the differential (D y)K at a generic 
K G IRIIip. The dimensions of the images of the two maps y , y are invariants of the 
system S; the rank description of the dimension simplifies the comparison of these two 
invariants.

Theorem(6.5) dim(Imy) =  dim(Imy)

Proof
Since the dimension of the image is given by the rank of the matrix (D T)K.PS at a 
generic K G IRpin for y and at a generic K G Cpm for y, we readily deduce that
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dim(Imx) < dim(Imx). On the other hand, since is Zarisky dense m C1 , the Zarisky 
closed set of K G Cpm such that rank(DT)K.Pg < dim(Imy) cannot contain (Rpm; thus for a 
generic K e IRpm we have that rank(DT)K.Pg > dimlmy , therefore dimlmx > dimlmx and 
the result follows.

□
Although the dimension of the images of CPPM and PPM are equal, the actual images 
are far from having the same structure. As we have said before, Imy is a Zarisky open 
subset of ZC(Imx), whereas Imy is a semialgebraic subset of ZC(Imy).To illustrate this 
we consider the following example (this is actually similar to the one given in [Wil.l]).

Example(6.3) Let S be a generic strictly proper system of 2-inputs , 2-outputs and 4- 
states. According to [Gia.l] the set of all constant 2x2 feedback compensators 
(considered in the form (l,k 1,k2,k3,k4,k5) via the embedding T) assigning to S a 
polynomial s4+p4s3+p3s2+p2s-f pj is given as the solution set of the equations

k5-k1k4-fk2k3=0 (6.8a)

p=k.Ps (6.8b)

where k=(l,k j,k2,k3,k4,k5) , p=(p4,P3,P2,Pi) and Pg is the 6x4 reduced Plucker matrix of 
S. As we shall see later, Pg has generically a full rank 4x4 submatrix which does not 
contain the first row.Thus we can solve the set (6.8b) of linear equations with respect to 
kj,k2,k3,k4 and these solutions will be of the form:

ki= fi(k5,p) i=l,2,3,4 (6.9)

where f  are linear functions. Substituting (6.9) to (6.8a) we get

F2 (?)k52+ Fl(p)k5 + Fo(P)=° (6-10)

where F; are some appropriate polynomial functions of p of degree < 2. The image of x 
will be all p G C4 such that (6.10) is solvable with respect to k5 e C. We can easily see 
that if F2(p) A 0 tFen (6.10) is always solvable, thus Imy D jp G C4:F2(p) ^ oj. Similarly,
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the image of x  w'll be P £ R4 such that (6.10) is solvable with respect to k5 G R. Thus 
Imx=AUBuC where A={p G (R4:F2(p) /  0 and F1(p)2-4 F 0(p)F2(p) >  o} , B={p G R4:F2(p)=0 

and F j(p )^ o |  and C=|p G R4:F2(p)=0 , Fj(p)=0 and Fg(p)=o|. Comparing now the two 
images we can see that on the one hand both are 4-dimensional, but on the other Imy 
covers almost the whole of C4, whereas Imx mainly consists of the half-space p G R4: 

F i (p)2- 4F0(p )F2(p ) >  o.

□

Remark(6.5) The previous example can also be found in [Ros.2j. There, the above 
arguments on the solvability of eq(6.10) are explained geometricaly in terms of 
intersections of graphs in a projective space.

□

6.3.3 Applications.

In the previous sections we had seen that the differential of PPM is (D T)KPg, 
where T is the Plucker embedding (which is a map indepented of S) and Pg is the 
reduced Plucker matrix, which is a complete invariant of the similarity equivalence 
orbit of S. On the other hand there is an alternative expression of the same differential 
but from the state space point of view [Rein.l]; this allows the establishment of the 
links between the Plucker matrix invariant and the state space description.

Lemma (6.1)[Rein.l] For a fixed K and a system S(A,B,C)we have that

( D x ) k =

c ' j b j  c ' j H b j  . . .  c ' j H ' T j

- j - i  S jHbi • • • - tjHnb 1

- p-m  -  pH hm • • • ? pH bm

• Q

where K and p; satisfy (2.2) and H=A+BKC

(6 . 11)
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1 Pn
1

P 2 
P 3

Q =

Thus we may write (6.11) as

0
□

(Dx )k=[ colCB ,colCHB, ... ,colCHnB ] . Q (6.12)

where Q is a full rank nxn matrix and ‘ col’ maps an mxl matrix to the mlxl matrix 
formed by superimposing its columns. Now by compairing (6.7) with (6.12) we have 
the result:

Corollary (6.4) For a given system S , VK G IRpxm and H=A+BKC the following 
holds true:

(DT)k .Ps=[ colCB ,colCHB, ... , colCHnB ] . Q
and

rank [ colCB ,colCHB, ... , colCHnB] < rank Ps ( < n) □

Now we are also in a position to calculate the Marcov parameters of the system S 
using the Plucker matrix. Indeed if we put K=0 in (6.12) we have that (D x)0=[colCB 

,colCAB, ..., colCAnB].Q , where Q can be constructed using the coefficients of the open 
loop polynomial of the system (i.e detD(s)). On the other hand if we put K=0 in (6.7) 
we have that (Dx )q=(D T)q. Pg ; in addition (DT)q can be calculated by (6.5), and it is a 
pmxa matrix whose entries are :

( - 1 )*’  ̂ when <¿>=(1 ,2 , 
0

,i-l,i+ l,...,p ,p+ j)
otherwise 1 <  i <  p and 1 < j < m

All the above lead to the following remark describing how we can calculate the Markov 
parameters using the Plucker matrix.
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Remark(6.6) To calculate [colCB ,colCAB, ... ,colCAnB] we select the (l,2 ,...,i-l,i+ l,...,p ,p + j)  

rows of the Plucker matrix V 1 < i < p, 1 <j < m, multiply them by (-1)1 1 , forming a 
pmxn matrix and we postmultiply it by Q-1.

□

An alternative way to find the above relation between the Plucker matrix and the 
Markov parameters is the following:

Remark (6.7) Consider the matrix fraction description of S, G(s)=N(s)D(s)_1. By the 
transposed form of Cramer’s rule every entry g(J(s) of G(s) is given by

det D'As) 
g' ’ (s)= det D(s)

where D,J(s) is the matrix obtained by replacing the jth row of D(s) by the ith row of 
N(s); that is the coefficient vector of the polynomial det D,J(s) is the (l,2,...,i- 
l,i+l,...,p,p+j) row of Pg multiplied by (-1)1'*. On the other hand

G(s)=CBs-1 + CABs-2+ ...+ C A n-1Bs-n-f... (6.14)

Substituting now (6.13) to (6.14) , multiplying by det D(s) and finally equating the 
coefficients of l,s,...,sn~̂ we can get the required relation.

□

Corollary (6.5) For a generic S in the variety of strictly proper systems of p-inputs,m- 
outputs and n-states for which mp > n ,the reduced Plucker matrix Pg (having n-rows 
and cr-columns) contains an mpxn submatrix which has rank equal to n.

□

(6.13)

Indeed the mpxn submatrix formed by the (l,2,...,i-l,i+l,...,p,p+j) rows of Pg for 1 < i < p 
and 1 < j <m  , has the rank equal to the rank of the matrix [colCB,colCAB,...,colCAnB], 

The last is proved [Wil.l] to have full rank in a Zarisky open subset of the variety of 
strictly proper systems of p-inputs,m-outputs and n-states.This also proves that the 
Plucker matrix has generically rank equal to n and that the image of CPPM (or PPM) 
has generically dimension equal to n when mp > n.
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6.4 Unbounded gain and composite representation.

6.4.1 Introduction.

An integral part of the study of the root locus map (pole placement map) under 
general real output feedback K is the study of the location of the closed loop poles when 
K becomes unbounded. Given that in the expression of the pole placement map the 
compensator enters in a composite form [I,K], it is essential to have a representation of 
this form for the compensator when K is unbounded. It has been accepted by many 
researchers [Broc.l],[Gho.l] that unbounded gains correspond to [A,B] representations 
where det(A)=0; The rigorous explanation and proof of this fact is the main purpose of 
this section.

6.4 .2 .Formulation of the problem and preliminary results

The PPM maps the real gain K to the coefficients of the polynomial of the 
corresponding closed loop system. This map can serve the role of the MIMO root locus 
map for finite K. To have a complete root locus map we have to extent PPM when K is 
unbounded. In the SISO case we know that this extension is always possible and that 
the actual value of the root locus map will be equal to the zeros of the open loop 
system. In the MIMO case where the feedback compensator is of the form AK where A 
varies and K is constant we have similar results with the SISO case, that is the closed 
loop poles approach the open loop zeroes as A tends to infinity. If we allow all the 
paremeters of K (pm) to vary, then the problem becomes more complicated and one 
reason for this is that the way we can approach infinity is not unique. To see this let us 
consider the equation(6.1) which describes the PPM:

sn+Pnsn_1+ - + P i = det) Pp,K]
d r (s)

Nr (s)
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We observe that the roots of the polynomial \'(K) depend only on rowspan[Ip,K] and 
not really on K. So for the purposes of our analysis it is better to parametrise the finite 
gains as rowspan[Ip,K], As we will show in section 3, if we have a sequence of finite 
gains {K n}, which tends to infinity in the usual sense, then the limit corresponds to 
representations of the form rowspan[A,B] such that A is singular. Thus, instead of 
having one point representing infinity for the unbounded compensators, we have a set of 
subspaces having a certain representation, and this explains the complexity of the 
problem of the extension at infinity of PPM in the MIMO case. In this case, it is not 
always possible to extent PPM as it will be explained in the following remark.

Remark(6.8) It is important to mention that the gains rowspan[A,B] for which the PPM 
is not extentable are the ones such that

det([A,B] M r (s )) =  0 (6.15)

and this because if we consider the sequence Sn=[A,B] +  l/n[Ip,K], then although 
Sn-*[A,B] for every K, the poles of det^SnM^(s)j at the limit (n=oo) depend on K (see 
chapter 10) and thus for this [A,B] we cannot correspond a unique set of poles. In our 
case, where the system we examine is strictly proper, eq.(6.15) cannot be satisfied by a 
finite gain (something possible in the case of proper systems).

□

In the following chapter we will deal with the parametrisation of gains (both 
finite and infinite) as rowspan[A,B] where A e Rpxp, B 6 IRpxm. The parameter space is 
the Grassmann manifold and the set of infinite gains is a submanifold of codimension 1. 
We will show how we can examine convergence of sequences on this manifold and 
finally we will justify the above given composite representation of infinite gains, as 
linear spaces rowspan[A,B] with det(A)=0. The composite representation of the 
feedback matrix as an element of an appropriate manifold is considered next.
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6.4.3. The Stiefel and the Grassmann manifolds and the composite 
representation of the family of unbounded feedbacks.

The Stiefel manifold Vp(tRp+m) is called the set of all full rank px(p-fm) 
matrices having the induced topology of [ĵ P(P+m)/p]-ie Stiefel manifold is actually an 
open subset of |Rp(p+m). Now the matrix multiplication defines an action of GL(p,[R) 
on Vp(IRp’pm).The set of all orbits of this action is called the Grassmannian ,Gp([Rp~*~m) , 
and it is the set of all p-dimensional linear subspaces of [Rp”*"m. We can topologize 
Gp(IRp+m) giving it the topology induced by the projection map:

tt: V p(Rp+m) -» Gp([Rp+m) (6.16)

Remark(6.9) The projection map 7r maps every full rank matrix K e (Rpx(p"*"m) to the p- 
dimensional vector subspace of of IRp+m spanned by the rows of K.

□

We can view Gp(!Rp+m) as a pm-dimensional manifold as follows: For every

1 < ¡i < i2 < < iD < p+m , U- • • is the open subset of Gn(IRp+m) such that

7r“ 1( U- • • ) contains all full rank matrices K having the pxp matrix K-
V l l , l 2 . - , l p /  6  F V  l j . l j v . l p

formed by the i1,i2,...,ip columns of K invertible. Let A e U- • ■ then choose an

arbitrary K 6  7t'^(A) , the matrix (k ; • • V^K has its pxp submatrix formed by the

i1,i2v d p  columns equal to Ip and we call the remaining pxm submatrix <f>- ■ ■ (A).)!p

Tiie (Ui1,i2,...,ip, î1,i2,- ,i  ) form an atlas for Gp(lRp",“m) giving it the structure of pm- 

dimensional manifold. The Grassmann manifold Gp(IRp‘,"m) is compact; it is a natural 

compactification of [Rpxm via:
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T: w ([Ip ,L ])  (6-17)

where L € IRpxm.Tliis way sequences in Rpxm that did not converge now have a 
convergent subsequence in Gp(Rp+m).

Supposing we want to see where a sequence 7r(Kn) ,Kn e Vp(lRp+m), converges in 
Gp(Rp+rn). First, if Kn converges to K in Vp(Rp+m) then 7r(Kn) will converge to 7t(K) 
in Gp(Rp+m), since the Grassmannian is a quotient of the Stieffel manifold. In the case 
that Kn does not converge in Vp(lRp+rn), then 7r(Kn) has a convergent subsequence in 
Gp(lRp+rn) and this because the Grassmannian is a compact manifold. The limit of this 
subsequence is located in one of the open patches, U- • • , 1 < i, < i9 < ... < L < p+m, of
the Grassmann manifold, and to find this limit we have to find an appropriate pxp 
matrix A such that A.Kn converges to a point K in V p(IRp+rri) (and this to take 
advantage of the fact that 7r(Kn) stays invariant under the row transformation A.Kn). 
Then 7r(Kn) will tend to 7t(K) as n tends to infinity.

Example (6.4) Let

be a sequence in G2(R3). Since Kn converges to

K=
1 0 0
0 0 2

in V2(IR3), rr(Kn) converges to 7t(K) in G2(1R3).

Example (6.5) Let

»■(Kn)
n 0 n 

0 n3 n

□
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be a sequence in G2(IR3).According to what we said, to find the limit of this sequence we 
have to find the limit of:

(k ; ) - ‘ k „=
n 0

pi
n 0 n i 0 1

0 n3 0 n3 n 0 1 1
n2

This obviously is

K=
1 0 1 
0 1 0

in V2(R3) ; thus our original sequence 7r(Kn) tends to 7t(K) in G2(IR3).
□

Next, we will examine how we can represent unbounded gains as certain points of the 
Grassmannian. Supposing that we have a sequence of gains Ln e [Rpxm such that Ln-K». 
The corresponding sequence in Gp(IRp+m) via the function n (6.16) is 7i/[Ip,Ln]| This 
sequence must have a convergent subsequence (because of the compactness of the 
Grassmannian) having limit say 7r([L1,L2]). The following lemma says that such a limit 
must have the property that detLj=0.

Lemma (6.2) If a sequence of the form 7r̂ [Ip,Ln]̂  , Ln-*oo, converges in Gp(Rp+m),then 
its limit is of the form 7t ([L1,L2]) ,detL!=0.

Proof
Here we will examine the case where the pxm entries of the sequence Ln can be given as 
rational functions of n. Then we set n = l/s  and we write the transformed Ln in a left
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coprime MFD, namely L(s)=D(s)_1N(s); the fact that Ln-»oo becomes det(D(0))—0. 
Taking limits we get:

n^oo 7r0 IP’Ln0  =

Since 7r is invariant under row transformations we get

1î o7r([Ip,D(s) 1n(s)]) = ^ P O O ^ 5)])

and finally

l i m i t s ) , N(s)]) =  tt([D(0),N(0)])

which proves the result.

□

Remark(6.10) In the more general case where Ln is arbitrary, we first find, 
submatrix of [Ip,Ln] having the greatest determinant; then ^ [Ip,Ln]) 
7t([(l )̂ ,(LI) Ln]) and tends to Ll5 detL^O.

L ,̂ the pxp 
is equal to 

□

The following lemma proves the converse, that is if we have an element of the 
Grassmannian of the form 7r([Lj,L2]) ,detLj=0 then we can construct an unbounded 
sequence of gains converging to that element.

Lemma (6.3) Let h=7r([L1,L2]) ,detLx=0 be an element of Gp(IRp"l‘m) then there exists a 
sequence of the form hn=7r̂ [Ip,Ln]j , Ln-»oo, which converges to h in Gp(IRp"̂ rn).

Proof
Consider the pencil

P(s) —[Li+slp, L2]

then since P(s) has not a zero at s=0 and Lj+slp has a zero at s=0, the rational 
function G(s)=(L]+sIp) has poles at s=0. Clearly as s tends to zero 7i^P(s)^ tends to
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7r([Lj,L2]) or equivalently (since 7r is invariant under row transformations).

lim7r( Ip,G(s))=7r([Li,L2])

Setting now Ln= G (l/n ) we get the required sequence.
□

Taking the above into consideration we axe lead to the following definitions

Definition(6.3) We call finite (multivariable) gains (FG) of p-outputs and m-inputs, all 
the elements of Gp(IRp+m) of the form ttQK^K^]) where detKj 0.

Definition(6.4) We call infinite gains (IG) of p-outputs and m-inputs, the elements of 
Gp(Rp+m) of the form h=7r([K1,K2]) where detK^O.

□

Next we will see how we can apply this new representation of the infinite gains 
to examine the asymptotic properties of multivariable systems.

6.5 Real degeneracy of systems and new conditions.

6.5 .1 .Introduction.

The classical technique of the root locus analysis of MIMO systems under scalar 
output feedback is effective in many cases; however the actual problem of location of 
closed loop poles is much more complex, since the degrees of freedom of the constant 
output feedback compensator equals to (#inputs)x(#outputs) and the feedback is not 
always a square matrix. If we try to define the root locus map using not only one, but 
all possible degrees of freedom of the output feedback compensator (in which case we
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call it full), then contrary to the SISO case there are MIMO systems for which this is 
not possible. The property of degeneracy of a system was first introduced in [Broc.l] 
and characterises the asymptotic behaviour of the closed loop poles of a system with 
respect to a high gain complex (full) output feedback, in the following way: an (open 
loop) MIMO system is nondegenerate, iff the root locus map of the corresponding closed 
loop system under complex (full) output feedback, can be defined for all compensators. 
If there exists at least one compensator for which the map is not defined, then it is 
called degenerate. A necessary and sufficient condition for a generic system to be 
(complex) degenerate is mp >n  [Broc.l] where p,m,n are the number of inputs, outputs 
and states of the system. The need to define the root locus map of a closed loop 
multivariable system when the output feedback compensator is real, leads us to the 
study of the concept of real degeneracy (IR-degeneracy) or IR-nondegeneracy ie. finding 
the conditions under which the Root Locus map is not defined or is defined under a real 
output feedback and this is studied here. As we will shall see in this chapter, the 
problem: a ‘system to be degenerate’ is an intersection problem of algebraic geometry 
on the Grassmannian which in the complex case can be examined via Schubert 
Calculus. The real case of the degeneracy problem is much more complicated and basic 
theory of vector bundles is utilised for the derivation of a sufficient condition for a 
generic system to be IR-degenerate.

6.5.2 The concept of degeneracy.

The concept of degeneracy arises in the examination of the asymptotic behaviour 
of a closed loop multivariable system with respect to a high gain static output feedback 
compensation. Obviously, since our system is strictly proper, x  is defined on the set of 
finite gains. Our problem now is to examine whether x  can be extended continuously to 
a function x  defined on both finite and infinite gains which assigns to each gain a non 
zero polynomial, that is:

we aim to extent y to y : Gp(lRp+rn) -+ Pn(IR).
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Defmition(6.5).A system S whose PPM can be extented to x  is called R-nondegenerate.
□

Rjemark(6.11). If we replace R with C ,tlie new extension problem can be solved using 
Schubert calculus [Broc.l], and the necessary and sufficient condition for a generic 
system to be C-nondegenerate is mp < n.

□

The special structure of PPM allows us to transform this extension problem to an 
equivalent intersection problem of algebraic varieties. This structure is induced by the 
skew-symmetric nature of the determinant and had been explained in subsection 6.2.2, 
the pole placement map can be decomposed into the standard Plucker embedding IP and 
a linear map Pg. The linear map Pg defines a map:

pB:P<J"1(R)-B Pn(R)

where Pg(v)= v Pg and B=LKer(Pg). The map pg is called projection with base B. We 
can define this projection on a set D C Pcr-1(IR), iff D nB =0. Since <35(FG )nB=0, the 
projection pB is well defined on T(FG) and the actual images of the elements of this set 
through the projection are the coefficients of the closed loop polynomials, as we 
previously mentioned. The problem now involves examining whether we can define this 
projection on the whole of Gp(Rp+m) or else whether ^ G p(Rp+m))nB=0.Thus

Remark(6.12) The existence of the extension x  of x  
problem fP̂ Gp(Rp+m)jn  B =0 or equivalently for every

is equivalent to the intersection 
v G T(Gp(Rp+m)) we must have

Y Ps / 0

or equivalently,
□

Remark(6.13) A system S is R-degenerate iff there exists v G <3^Gp(Rp+m)j such that:
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V ps=0 □

If instead of IR we have C the above intersection problem, or the equivalent 
extension one can be easily solved by the use of intersection theory [Broc.lj which 
cannot be applied here. The method we suggest to examine this problem is topological 
and will provide us with a necessary condition. Specifically, if we could extend the map 
X to x  then the actual domain and range of the second map becomes topologically much 
richer than the ones of the former and this is possibly one of the facts which obstruct us 
into extending x- Under the condition that x  can he covered by a suitable bundle map, 
this obstruction can be expressed by means of an inequality involving the vector 
category of certain vector bundle over Gp(IRp+m) (see lemma(6.4)). To make the above 
clearer we will briefly present some basic theory on vector bundles.

6.5 .3 .A vector bundle approach to the problem of degeneracy.

The theory of vector bundles arises from the need to examine vector spaces 
which are parametrised by certain sets having nice topological structure, like manifolds, 
varieties etc (see section 3.6.4). For the present purposes, a certain vector bundle 
(homotopy) invariant, the category of the vector bundle (see section 3.6.4) will play a 
key role for the derivation of necessary conditions for real nondegeneracy. The next 
lemma [Jam.l] gives us a necessary and sufficient condition for the vector category of a 
bundle to be less than or equal to a number.

Lemma (6.4) Let i/> be a line bundle over M then vecat(i/>) < n+1 iff there exists a map 
f:M-4Pn([R) covered by a bundle map F from (M,i/>) to (Pn(IR),7^).

□

This theorem can be related to the nondegeneracy as follows: if a system is 
nondegenerate, then the real PPM can be extended to a map y : Gp(IRp+m) -» Pn(IR); 
this map then can be naturally lifted to a bundle map, and by applying lemma (6.4) we 
can derive an inequality involving p,m,n. This inequality will be a necessary condition
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for the existence of nondegenerate systems.

6.5 .4 .Necessary conditions for real nondegeneracy.

Using the above tools we may now describe the main result:

Theorem (6.5) If there exists an 1R-nondegenerate system S of p-inputs,m-outputs and 
n-states then vecat(o(7^)) < n + 1 .

Proof

Let S be an IR-nondegenerate system of p-inputs ,m-outputs and n-states.The 
pole placement map x °f Sec.3 for S can then be extended to a map

X : G p(IRp+rn) -  P n(P )

by definition. Note that we consider Gp(IRp+m) embeded in PCT'\lR) via the Plucker 
embeding. We can extend x  to a bundle map X: E^o(7^ )j -♦ as follows: let
(x,v) 6 E^o(7m)) C Gp(Rp+m)xlR(T then X(x,v)=(x(x),vPg). In this way X is linear map 
between the two fibers attached on x and x(x) since X acts as the matrix Pg. In 
addition to this, X restricted to x is a linear isomorphism for every x since if S is IR- 
nondegenerate we have that V x e  Gp(IRp+in), A px n Ker(Pg)={0} (see remark (6.13)). The 
map x  satisfies the requirements of Lemma 6.4 thus for the bundle 0(7^) we get that 
vecat(o(7^ )) < n + 1 .

□

The negation of the above result leads to sufficient conditions for IR-degeneracy state 
below:

Corollary (6.6). If vecat(o(7^,)) > n+ 1  then all systems of p-inputs, m-outputs and n- 
states are IR-degenerate.

□
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The number vecat(o(7^,)) is a function of p,m and from now on will be symbolised by 

v(p,m). It is not easy to calculate the numbers v(p,m) for all the values of p and m. We 

can instead use as lower bounds the nilpotency index of the Adams closure of [0(7,^)]-1 

in the Grothendieck ring KO(Gp([Rp+rn)) , or the Stiefel Whitney index of 0(7^) or the 

Euler-Pontragin index of 0(7^). In our case the Stiefel Whitney index of 0(7^) is the 

nilpotency index of the subring of H*(Gp(Rp+m);Z2) generated by the Stiefel Whitney 

class W|(o(7^ ))= w 1, the first Stiefel-Whitney class of the canonical bundle 7^ ¡thus 

the Stiefel-Whitney index in this case is equal to h(p,m)-f 1 where h(p,m) is the height 

of the first Stiefel-Whitney class of the canonical bundle of the Grassmannian 

Gp(IRp+m). Thus corollary(6.1 ) implies that:

Corollary (6.7). If h(p,m) > n then all systems of p-inputs, m-outputs and n-states are IR- 
degenerate.

□

The height h(p,m) has been calculated for every p,m in [Hill. 1],[Sto. 1].The formula for 
h(p,m) when 1 < p < m is given as follows:

2S+ -2 if p=2 or if p=3 and m +p -l=2 :

h(p,m) =

2S~^-1 otherwise

where s is an integer such that 2s < m +p -1 < 2S+1.
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Examples (6.6)
a)Let p=4,m=10 then p+m -l = 13 which gives s=3, thus h(4,l0)=24-1 = 15. Therefore if 
n < 15 then all systems of 4-inputs ,10-outputs and n < 15 states are IR-degenerate 
(Cor(6.7)).

6.6 Conclusions
The first objective in the further development of the DAP framework has been 

the detailed study of the topological and high gain properties of the pole placement 
map. This was done by developing results on the dimension of its image and 
establishing links between the fundamental Plucker matrix invariant and the standard 
Markov parameters. The issue of real degeneracy was examined using topological tools a 
framework for examining high gain feedback as finite points in an appropriate 
compactification has been established. The concepts of degeneracy studied here is 
further examined in chapter 10 where it is shown to provide one of the key tools for the 
complete study of the pole placement map.
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7.1 Introduction

As we have seen in chapter 5, pole and zero assignment problems can be viewed 
as intersection problems between sets of polynomial equations defined on the set of 
feedback or squaring down compensators, which may be noncompact sets. To utilise 
intersection theory on compact manifolds (homology theory) or intersection theory on 
projective algebraic varieties, as has been explained in chapters 3 and 5, we need to 
appropriately compactify the above (possibly) noncompact sets of compensators. This 
can be done by introducing some special compensators, namely the compensators at 
infinity, which play the role of sticking together the boundaries of the set of 
compensators C, thus giving a new set C which is compact. In chapter 6, an 
interpretation from the engineering point of view of static infinite feedback 
compensators, associated with a pole placement problem, was made and furthermore, 
the compactified C obtained by introducing these controllers was seen to be a 
Grassmannian. In the case of squaring down compensators we do not need to consider 
compensators at infinity since this set of compensators is already compact.

A compactification of the space of the solutions is not always appropriate for 
intersection theory considerations. As was explained in chapter(3), the intersection on 
the compactified set may contain points which are not desirable- the so called 
degenerate points. A good compactification must have the property that a generic 
intersection on this set, if non void, contains only a negligible set of degenerate points 
(ie. its dimension must be less than the dimension of the intersection set). In section 7.2 
we will consider this problem and prove that the Grassmannian indeed enjoys this 
property for both zero and pole placement problems.

After having resolved the above essential property of a good compactification, we 
then proceed to examining the intersection ring of this set. The set corresponding to the 
intersection of polynomial equations can be regarded as a certain element of this ring, 
and should this be nonzero then the intersection will also be nonzero. The conditions for 
the above to be nonzero depend upon the structure of the intersection ring, or 
equivalently, on the topology of the compactified space. For both cases of compensators 
that are examined in this chapter, the correct compactified space is a Grassmannian. 
Using the properties of its intersection ring we derive new sufficient conditions for the
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existence of real (and complex) solutions of the polynomial equations, for both the pole 
assignment and squaring down problem.

7.2 The Grassmannian as a compactification for the zéro 
and pôle placement problems.

Consider again the equations defining the output feedback pole placement 
problem via constant controllers:

det([I,K]
D(s)
N(s) =P(S) (7.1)

An obvious compactification of the above equations is to introduce one homogeneous 
parameter A and thus we get

det([I,A'1K]

Multiplying equation(7.2) by Ap we obtain

D(s)
N(s) )=P(s)

det([AI,K]
D(s)
N(s)

)=App(s)

(7.2)

(7.3)

This new set of equations is an extension of the original ones on the projective space 
P P(F), iQ which case infinity is represented by the hyperplane corresponding to A=0. 
Hence, the equations defining the solutions at infinity are:

det([0,K]
D(s)
N(s) )=0

From this, we can see that no matter what the system is, the set 5 of all [0,K] such that 
K has not full rank is a subset of the set of solutions at infinity. The set 3 is a 
m p -m -1  dimensional subvariety of Pmp(F) and is given by all the matrices of the 
form
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0 0 . . . . . .  0 0  ”

0
1 X  . . . . . .  X X

X X  . . . . . .  X X
p x p

X X  . . . . . .  X X

Therefore, although mp > n implies that the solution set f  of our equations is nonvoid in 
the projective space(projective intersection theorem,(chapter 3)), this is nothing new 
since the points [0,K] e 3, as we already know, are contained in the solution space, no 
matter what the system is. These points do not have a nice control theoretic 
interpretation and thus have to be excluded from the solution space. However, as we 
have seen, 3, has dimension m p -m -1 ,  is independent from the system and Therefore, 
cannot be easily excluded from the solution set. For a good compactification, we expect 
that the solutions at infinity can all be approached by finite solutions and, hence, the 
dimension of the set of solutions at infinity must be less than that of the set of the finite 
solutions.

We may homogenise equ(7.1) as

where Adiag is given by

det([I,Adiag-1K]
D(s)

N(s)
)=P(s)

Adiag
A,

A2

0

(7.4a)

and, therefore, equ(7.4a) can be written as

det([Adiag,K]
D(s)

N(s)
)—Af A2 ... Ap p(s) (7.4b)

and in this way, we compactify our gain space Fpm as the product Pm(F)x...xPm(F) 
We can then inspect that matrices of the form ' P
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0 0  ..................................... . . .  0 1 X X X

0 0  ..................................... . . .  0 1 X X X

0 0  1 0  . . . . . .  0 X X X X

0 0  0  1 0 . . .  0 X

X

0 ..................................................... 0  1 X X X X

where the first two rows are equal, constitutes solutions of the homogenised set of 
equations (7.4b) and it is again independent from the system. Therefore for reasons 
similar to those of the previous compactification, this one is also inappropriate.

Finally, among all possible homogenisation of our equations the one to be 
considered, which as will be seen does not have the abnormality of a large set of 
degenerate points, is given as follows:

det([I,A-1K] D(s)
N(s) )=P(S) (7.5)

where A is a pxp matrix having as entries p  ̂ homogenisation variables. By multiplying 
both sides of (7.5) by det(A) we get

det([A, K]
D(s)
N(s)

)=det(A)p(s)

This homogenisation corresponds to a compactification of the set of constant feedback 
controllers into a Grassmannian and as it has been shown in section 5.5, the above 
equations may be reduced to two problems: a linear and multilinear. In this way, the 
solution set of compensators is given by the intersection of two varieties- the Grassmann 
variety Gp(FP~^m) and a linear variety of codimension n. The degenerate points of this 
intersection are defined as follows:

Definition (7.1) Given a system of p-inputs, m-outputs and n-states, a point of the 
Grassmannian rowspan[A,K] is called a degenerate point of the system if

det([A,K] D(s)
N(s) ) = 0 (7.6)

□

Remark (7.1) As far as the zero placement problem via squaring down is concerned, the
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set of compensators is already compact and is the Grassmannian Gp(Fin) . In this case, 
the degenerate points are given by all those rowspan(K) such that

det(K N(s))=0 (7.7)

□

Next we will see one of the fundamental properties of the Grassmannian as far 
the two determinantal assignment problems which are considered. This property is, 
that the Grassmannian does not contain a set of degenerate points which is system 
independent, a property that was not possessed by all the other inappropriate 
compactific.ations. To prove that, we will construct a system with no degenerate points, 
but first, we require the following definitions:

Definition (7.2) [Gri.l] A curve f(s)= (fj(s), fg^), ... , fr(s))T of Fr is called degenerate, 
iff there exist a constant lxr vector uT such that uT f(s)=0. This amounts to the fact 
that the curve is contained into an r-1 dimensional linear subspace of Fr .

□

Definition (7.3) [Gri.l] Let f(s) be a curve of Fr then the kth associated curve of f(s) 
symbolised by fk(s) is defined to be

fk(s) = i(s )A f(S)A ...A f ‘ (s)
□

Next, we will present a theorem that describes a condition of degeneracy of a curve in 
terms of the rth associated curve.

Lemma (7.1) A curve f(s) of Fr is degenerate iff fr ; (s)=0.
Proof:

(=>) Since uTf(s)=0 we must also have that u f*(s)=0 for all k > 0. Therefore, u belongs 
to the left Kernel of the rxr matrix F(s)=[f(s), f(s),..., fr_1(s)] . This means that

fr_l(s)=  det(F(s))=0
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(<=) consider the maximum k < r -l  such that fk ^(s) / 0  and fk(s)=0. Then, there exist 
rational functions A- (̂s), A2(s),..., Ak(s) such that:

fk(s)=A1(s) f(s) + A2( s ) f(s ) +  ... +  Ak(s) t \ s )

Consider now the derivative of the k-1 associated curve of f(s)

(fk_l(s)) =  (f(s)  A f ' ( s )  A . . .  A f t- / ( s ) ) = f ( s ) A f ( s ) A . . . A f t’*(s) A f i ( s ) =  Ak (s) ^ ( s )

This means that fk ^(s) is constant (modulo multiplication by polynomials) and 
therefore the k dimensional subspace of Fr, T =  colspan[f(s), f'(s),..., fk'^(s)j is 
independent of s. Hence, we can choose a constant lxr vector u which annihilates T 
from the left. Obviously, for this u we have that u f(s)=0 which proves that f is 
degenerate.

□

Consider now f(s) to be a curve of degree n (n > p) that is:

f(s)=A en(s) (7.8)

where en(s)=[l,s,s^,..., sn]T and A is an pxn constant matrix. From the definition of 
degeneracy, the curve f(s) is nondegenerate iff A has full rank. On the other hand from 
theorem(7.1) f(s) is nondegenerate iff f ^(s) is not identically zero. Therefore

Lemma (7.2) Let f(s) be a curve of degree n, given by equation(7.8), then f ^(s) is 
nonzero iff A has full rank.

□
And now with the help of the above lemma, we can present an example of a strictly 
proper system of p-inputs, m-outputs and mp-states which does not contain any 
degenerate points.

Example (7.1) Consider a system whose composite denominator, numerator matrix is 
the matrix M(s) =  [e„(s), en(s)',..., en(s){p_1)] where n = m + p - l .  This represents a strictly 
proper system of p-inputs, m-outputs and mp-states. If this system contained
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degenerate points, then there would exist a composite (full rank) feedback matrix [A,K] 
such that det([A,K]M(s))=0, which in turn is equivalent to the fact that the n-lth 
associate curve of en(s) is identically zero. By lemma (7.1) [A,K] has not full rank, 
which is a contradiction. Therefore, the above constructed system does not contain any 
degenerate points.

□
As far as zero assignment is concerned we can construct the following example.

Example (7.2) Consider a system whose numerator matrix is given by N(s) =  [en(s), 
en(s)',.--, e n is )^ ]  where n = m - l .  Following similar arguments with the ones of the 
previous example we can conclude that det(KN(s)) ^ 0 for all rowspan(K) in Gp(Fm).

□

If n<mp (or ¿<p(m -p) for the zero assignment problem) then we cannot find a system 
with no degenerate points, since the dimension of the set of degenerate points is at least 
mp-n-1 (p(m -p)-i-l for the zero assignment case). What we will be proving, however, is 
that this dimension is generically mp-n-1. But first, we will look at what is happening 
when we restrict the degeneracy problem to a Schubert subvariety Grassmannian which 
is n dimensional. In this case, we expect that the set of degenerate points on this 
subvariety must be n-n -l= -l dimensional, that is empty.

Proposition (7.1) There exists a Schubert variety of the type < a2,a2 ,...ap>c  such that 
D aj — n < mp , and a system of p-inputs, m-outputs, n-states whose set of degenerate 
points do not intersect this Schubert variety.

Proof

Let n-= a-+ i for i=l,2,..,p  and kj=np ~ np_i for i=i,2,...,p-l. Then consider the 
system whose composite denominator, numerator matrix M(s) is given by

M{s)=(e(s), s W 'V  , e(s)(k’ > ...... , e(s)‘V '>  ) (7.9)

where e(s) =  [s"p \ s2, s, 1, 0, 0,....,0]T e R [s](,n+p)xl. Now, let \A (for
i—l>2,...p) be the n- dimensional subspace of i£Ix(m+p) which contains all vectors whose 
all m + p -m  rightmost coordinates are zero. Then, the flag V 1 c  V2 C ... C Vp defines a
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Scubert variety of the type <a^,a2,...ap>c  which contains all p-dimensional subspaces 
of Cm+P whose right Hermite forms 3 € ( j j p )  have the property that j- < m for 
i=l,2,...,p. It is now easy to see that if rowspan[A,K] has a Hermite form possessing the 
latter property, then det([A,K] M(s)) A 0 which proves our lemma.

□

Proposition (7.2) There exists a Schubert variety of type <a-^,a2,...ap>^ such that £)a. 
=  6 < (m-p)p and a numerator matrix of dynamic degree d, whose degenerate points do 
not intersect this Schubert variety.

Proof
Let n- =  aj+ i for i=l,2,..,p  and kj=Hp -  n^ • for i=i,2,...,p-l. Then consider the 
system whose numerator matrix N(s) is given by

N(s)=(e(s), e(s)(kl) , e(s)(k2) ,....., e(s)(kp-l} ) (7.10)

where e(s)=[s'p l , s"p 2,...., s2, s, 1, 0, 0,....,0]T e R [s]mxl. Now, let V- (for i=l,2,...p) 
be the n- dimensional subspace of Clxm which contains all vectors whose all m -in  
rightmost coordinates are zero. Then, following the same lines with the previous lemma 
we get that d e t(K N (s))/0  for all rowspan(K) in the Schubert variety defined by the 
flag V 1 C V2 C ... C V p .

□
Theorem (7.1) The set of all systems of p-inputs, m-outputs and n-states that do not 
intersect the Schubert variety, T, of type < a1,a2,...ap>c  , £a^ =n < mp, defined by 
the flag V j c  V2 C ... C Vp of proposition(7.1) is a nonvoid Zarisky open subset and this 
is, thereforea a generic system does not have degenerate points on V.

Proof

Consider the set SD of all pairs (x , S) e TxEn“ p , such that x is a degenerate point of 
S. Then SD is a variety defined by equation (7.6). Therefore, the image of the projection 
on the second coordinate, P2(SD), is a subvariety of Emnp . The set P2(‘3D) contains all 
systems S that do have at least one degenerate point on S, and is a proper subset of 
^upp because of lemma(7.2). Hence, the set of systems that do not have any degenerate
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points on §, that is the set S1Tf p -  P2(^)> is a nonvoid Zarisky open subset of -
This proves the fact that a generic system of E ^ p  does not have a degenerate point on 
S.

□
Following the same arguments, we can prove a similar theorem for the zero placement 
case.

Theorem (7.2) The set of all mxp numerator matrices of degree 6, that do not intersect 
the Schubert variety, S, of type <a^,a2 ,...ap>£ , =  6 < (m-p)p, defined by the flag

c  V2 C  . . .  C  Vp of the proposition(7.2) is a nonvoid Zarisky open subset. Therefore a 
generic numerator does not have degenerate points on S.

□
Using the above results, we will show that for the Grassmannian compactification, the 
set of the degenerate points of the pole placement map of a system S of p-inputs, m- 
outputs and n-states has the correct dimension mp-n-1 (the dimension of the Grassmann 
variety minus the number of linear hypersurfaces that define the equations of 
degenerate points)

Corollary(7.1) The variety *3)(S) C Gp(Cp+m) of all degenerate points of a generic 
system S of p-inputs, m-outputs , 11-states has dimension mp-n-1.
Proof
Since SD(S) is defined by 11-f 1 equations, its dimension has to be greater than or equal to 
mp-n-1. If it was strictly greater, then consider the Schubert variety, T of type 
<al ,a2,-” ap->C ProP°sition(7.1). Then by the projective intersection theorem(Ch3), 
we get

dim (SD(S) n r )  > dim SD(S)+dim(r) -  mp= (mp -  n -  l+ k )+ n  -  mp=k -  1 > 0

which means that SD(S) intersects T contradicting theorem (7.2). Therefore, 
dim(SD(S))=mp-n-l.

□
Similarly, for the zero assignmnent problem

Corollary (7.2) The variety ^(N) c  Gp(Cm) of all degenerate points of a numerator
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matrix of a generic system S of p-inputs, m-outputs , n-states has dimension (m-p)p-<5-l.
□

Example(7.3) Consider the following 4x2 numerator matrix of degree 2:

N(s)
s 2
0 s 
2s 1
1 0

From the previous corollary we expect 'iD(N) to have dimension 2x2-2-l = l. Indeed, the 
set of all degenerate points for N(s) is given by the set of all solutions of det(KN(s))=0 
where rowspan(K) belongs to the Grassmannian G2(C4). These equations are:

(i) the only one QPR for G2(C4) in PC^

kl k6 - k2k5+k3k4=0
(ii) the linear equations

k1 -2 k 4=0

3k2 _ k 5^°
-2kg+kg=0

Solving the linear equations ,with respect to k^,k^,kg , and substituting to the quadratic 
we get that TD(N) is the set of all (2k4,k2,k3,k4,3k2,2k3) £ PC5 such that 
5k3k4 -  3k22=0. This is a one dimensional subvariety of P^(C).

□

7.3 The general Philosophy behind the search of real 
solutions.

In sec. 5.5, it has been seen that CPAP may be reduced to two problems; a 
linear and a multilinear. This way, the solution set (of compensators) is given by the 
intersection of two real varieties; A variety which corresponds to the solution set of the 
multilinear problem and L1R ,the linear variety which is the generic solution set of the 
linear problem (both varieties are considered as subvarieties of P ^ R ) .  For complex
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varieties there is intersection theory , however there is no intersection theory for real 
varieties due to the fact that R is not algebraically closed. The method we use to 
examine whether there exist real solutions of a real polynomial equation ,has been 
suggested in [Kar.l] for the above intersection problem.That is,we consider the complex 
solutions of the real polynomial equation and if their number is odd then one of them 
must be real (since the solutions occur in conjugate pairs).

In our case, the complex solutions of the multilinear problem are given by 
the set Gp(Cp+rn) and the solution set of the linear problem is LC; the subvariety of 
Pa_1(C) given by the same set of equations as LIR. The two varieties,Gp(Cp+m) and 
LC have dimensions mp and cr-l-n,respectively. The set of complex solutions of our 
problem is Gp(Cp+m)flL C  (it is nonvoid iff m p> n ). This set is finite, iff the two 
varieties have complementary dimensions.If this is not the case, then we replace 
Gp(Cp+m) with a Schubert subvariety < a 2,a2 ,...ap>£ satisfying the above dimension 
requirement (that is £aj=m ). Finally, if the set <a^,a2 ,...ap>c  fl LC has odd parity 
then we have a real solution. In fact this parity is A(a^,a2 ,...ap)£ ,the order of 
<a^ ,a2 ,...ap>£.All the above arguments lead to the theorem stated below:

Theorem(7.3) [Kar.l] If there exist a-pa^.-.apiO < â  < a  ̂< ... < ap < m, ]Taj=n<m p 
and A(a^,a2 ,...ap)£ is odd then, to a generic system of p-inputs, m-outputs, n-states 
we can assign almost any set of complex conjugate poles by real output feedback.

Proof

For every a^a^.-.apiO < â  < a  ̂< ... < ap < m, Ĵ â  =n <m p consider a Schubert 
variety T of the type <a^,a2 ,...ap>^ that do not intersect the base locus (the set of 
degenerate points) of a generic system of p-inputs, m-outputs and n-states (this can 
always be done as indicated by theorem (7.2)). Then consider the map :

Xr : r  —  PCn
defined by

X r([cW H c,k ] Pg

for every multivector [c,k] ç  T C  Gp(Cp+m) and where Pg is a full rank plucker matrix 
of a generic system. One can easily see that X f  is the restriction of the complex pole
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placement map on the Schubert variety V. By theorem(3.8) Xy is onto, which proves 
the well known result that, for a generic system, any complex pole polynomial can be 
assigned via complex output feedback when mp > n. Additionally, by theorem(3.8), x% 
is a finite to one map which means that the parity #X y ~̂ (p ) is eSual to the degree 
deg(T)=A(a^,a^,...ap)<-- for all p g Pn(C).

Consider now the real element [1, pT]T= [ l , pn,...,PjJT G Pn(P) C Pn(C) where [1, 
pT]T is the coefficient vector of real pole polynomial p(s). Then according to the 
previous analysis

#Xr PT]T)=jMapa2 >---ap)c

The inverse image Xx" (̂[1, PT]T) contains all feedback controllers in T that assign the 
pole polynomial p(s), or equivalently it is the solution of

[l,kT]T Ps =  [l, pT]T g PPn

with respect to [l,kT]Tg T . Since the above equation has real coefficients, the controllers 
in Xr ^l1’ Pi) occur in conjugate pairs. Therefore if A(a1,a2,...ap)c  is odd then we have 
a real element in x% p]j which in turn is a real controller that assigns p(s).

□
Similarly, for the zero assignment case, we have the following theorem

Theorem (7.4)[Kar.l] If there exist a^,a2,...ap:0 < â  < a  ̂< ... < ap < m-p, ]Ta- = 
i< (m -p )p  and A(a^,a2 ,...ap)(- is odd then, to a generic system of p-inputs, m- 
outputs, n-states we can assign almost any set of complex conjugate zeros by real 
squaring down.
Proof

For every a^a^.-apiO < a-̂  < a  ̂< ... < ap < ¿>, =  8 < (m-p)p consider a Schubert
variety T of the type < a;[ia2v ap > c  that do not intersect the base locus (the set of 
degenerate points) of the numerator of a generic system of p-inputs, m-outputs and n- 
states (this can always be done as indicated by theorem (7.2)). Then the proof follows 
along the same lines as that of theorem (7.3).

□
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The requirement that the Schubert variety of type <a^,a2 ,...ap>(~ does not intersect 
the set of degenerate points of the system is essential. If there was a degenerate point on 
the Schubert variety, then the number of compensators on this variety assigning certain 
pole polynomial is not A(a^,a2,...ap)^, the degree of the Scubert variety, but something 
less than this. This is illustrated in the following examples.

Example (7.4) Consider the variety T : xy2= z3 of the projective space P2(C). This is a 
one dimensional irreducible variety which has degree three. Next consider the following 
two cases of linear projections P
(i) P (x ,y ,z )= (x ,y )eP ‘ (C)
The degenerate points of P are given by all (x,y,z) e P2(C) such that P(x,y,z)=(0,0) 
and , therefore, we have only one degenerate point namely, the point (0,0,1) which does 
not belong to T. Consider now the linear subspace of P2(C) , i.=P"^(a,b) where (a,b) is 
fixed. The intersection I n f  contains all the points (a,b,z) e P2(C) such that ab2= z3 
and therefore, we have as many solutions as the cubic roots of ab2, ie. three. In this 
case, the number of points m JL fl T is equal to the degree of T and this is because we 
had no degenerate points on T.
(ii) P (x ,y ,z )= (x ,z )eP 1(C)
Here, we have one degenerate point, the point (0,1,0) which , in fact , belongs to T. The 
linear space i.= P _1(a,b) now intersects T at all points (a,y,b) e P2(C) such that ay2=b 
for fixed a and b, ie. l i l i  contains two points. In this case the intersection of the 
variety f  with the linear subspace of complementary dimension, JL, contains less points 
than the degree of T.

□

Example (7.5) Consider the Schubert subvariety S of G g^^) of type <0,2> which 
contains all elements of the form

rowspan
x
x

0
x

0
x

0
x

Then if we embed S into P5(C) via the Plucker embedding, we can view S as the set of 
all ( x - p X 2 , x3,x4,x5,xg) g P^(C) such that x  ̂=  X g =  X g = 0 .  Therefore, S is a linear two
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dimensional variety with degree one (since it is linear). Now, according to theorem(7.3), 
the set of all gains in § assigning a generic pole polynomial to a system must be equal to 
the degree of S, ie.l, provided the system does not have a degenerate point on S. Indeed, 
consider the system

r i s 1
D(s) 0 s
N(s) 0 1

1 0

which does not have any degenerate points on S. Then, for every monic polynomial 
9p(s)=sz+as+/3, we have only one element of S, namely,

rowspan
1
0

0 0 0
1 a -¡3

which assigns p(s) to the system. On the other hand, if we consider the system

r 1 s 0"
D(s) 0 s
N(s)_ 1 1 

° 1
then, this has a degenerate point in S, namely,

rowspan
1
0

0 0 0
0 1 -1

We can easily see that a generic polynomial cannot be assigned to this system via a 
feedback controller belonging to S. This is one of the nongeneric cases of theorem(7.3) 
where the number of compensators assigning a polynomial is not equal to the degree of 
the Schubert variety and this is because of the existence of a degenerate point on this 
variety.

□

Thus, according to theorems (7.3),(7.4) in order to decide whether there exist a solution
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to our frequency assignment problems, we have to check if one of the numbers 
A(aj,a^,...ap)^ is odd under the conditions:

0 < < ... < ap < m and =   ̂ (7.11)

for the pole placement problem, or the conditions

0 < al < a-2 < ••• < ap < m_P and X>- =n-p (7-12)

for the zero placement problem.

A formula for these numbers can be found in [Hod. 1].This involves a large 
number of factorials and has to be computed for every p-tuple satisfying (7.11).Due to 
this fact for relatively large p,m,n theorem (7.3) is rather difficult to be used.

In the following sections we attempt to simplify theorems (7.3) and (7.4) by 
providing an equivalent testable form. Note that the numbers A(apa2 ,...a.p)c  are odd iff 
the numbers A(a^,a2,...a.p)(--mod2 do not vanish. All these numbers under the 
conditions (7.11) appear in a single formula occuring in the Z2-cohomology ring of 
Gp([RP+m). The structure of this ring is described next.

7.4. The cohomology of complex and real Grassmann 
varieties.

The intersection theory on the complex Grassmann variety Gp(Cp_prn), known 
as Schubert calculus [Klei.l], can be regarded by the means of algebraic topology as the 
cohomology ring of Gp(Cp ”̂m) with coefficients in Z, symbolised by 
H*(Gp(Cp~*~m);Z).This ring is a positively graded ring up to 2pm, the real dimension of 
Gp(Cp+m ).The i-th graded component of H*(Gp(Cp+m );Z) is a Z-module and is 
symbolised by H*(Gp(Cp^ m);Z).Every subvariety ,X ,of Gp(Cp^ m) of codimension n 
appear as an element x e H^n(Gp(Cp^ m);Z) and the intersection between varieties can 
be seen as the multiplication (cup product) of the ring. Particularly the Schubert 
varieties <aj,a2 ,...ap>£ correspond to elements (m-ap,m-ap p . . . ,m -a ^  called 
Schubert cocycles. Every H*(Gp(Cp+m );Z) where i=even is freely generated by its
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Schubert cocycles(whereas for i=odd the i-th cohomology module vanishes) in the 
following way[Klei.l]:

Lemma (7.3) (basis theorem)Let X be a subvariety of Gp(C^^m ) of codimension n and 
x its corresponding cohomology class in H^n(Gp(CP^m);Z) , then x can be written as:

x = X ^ ( x;al>a2v--ap)c {a1,a2,...ap }c  (7.13)

where the sum is taken for all a^a^v-ap satisfying (7.11) and ¿>(x;aj,a2 ,...ap)c  is the 
number of points with multiplicity in the intersection X fl <a|,a2 ,--.ap>£.

□
Lemma (7.3) suggests that we may find a specific element of the cohomology ring whose 
expansion (7.13) into the Schubert basis has as coefficients all the orders of the theorem 
(7.3). Indeed this element is c^ the n-th power of the first Chern class, c  ̂=  {0 ,0 ,...,l}c  , 
of the complex Grassmannian.

Theorem (7.5) The n-th power of the element (0,0,...,1}C can be written as

{ 0 , 0 , - , l } c = E A (a1,a2, - a p)c {a1,a2,...ap } c  (7-14)

where the sum is taken for all a^a^.-ap satisfying (7.11).
Proof
By Lemma (7.3) the coefficient of {apa^v-.ap}^ in the expansion (7.14) of
c^={0,0,...,l}^  is given by the number of points of the intersection X D <a^,a2 ,...ap>c
where X is the variety corresponding to the cohomology class c“ . But the variety 

. . .  n 1
corresponding to Cj is <m -l,m ,...,m >c  and so n <m -l,m ,...,m >c  is the one that
corresponds to c“ . Therefore the required coefficient is the order A(a^,a2 ,...ap)c .

□

To apply theorem (7.3) we would prefer to have a formula similar to (7.14) but with 
coefficients reduced mod2. Such a formula appears in the cohomology ring of the real 
Grassmannian Gp(IR^~^m) with coefficients in Z  ̂ , symbolised by H*(Gp(R^~*”m );Z2), 
[Cher.1,Hill.1],This ring provides us with a mod2-intersection theory on Gp(RP~*~m), it 
is a positively graded ring up to dimension mp and the subvarieties of codimension n
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correspond to elements of the n-th graded component Hn(Gp(iRP^ n which is
actually a Z  ̂ vector space. Particularly the Schubert varieties < a1,a2,...ap > R 
correspond to elements {m-ap,m-ap -p...,m-a-^}R called Schubert cocycles , these 
cocycles form a Z2-basis for the graded component they belong. All of these can be 
summarised in the following equations:

H*(Gp(RP+m);Z2) = 1® ’ H‘ (Gp(IRp+m );Z2) 

Hn(Gp(RP+ m );Z2)= ® Z 2{a1,a2 ,...ap}R

(7.15)

(7.16)

where a^^v-.ap satisfy (7.11).

Remark(7.2) An analytic description of the multiplication (cup product) of the ring
H*(Gt m);Z2) can be found in [Cher.l, Hill.l, Ber.l],

□
It is important to note that the multiplication rule in H*(Gp(Rp+ qjZg) is the same as 
the one of H*(Gp(CP”̂ m);Z) the only difference being that the numbers appearing are 
reduced mod2 (see for example [Ber.l], remark, page 132). This and theorem(7.6) lead 
us to the conclusion that the expansion of where w-̂  =  {0 ,...,0 ,l}R is

w l — A (a i,a2,...ap )R{ ai ,a2,...a.p}R (7.17)

where the sum is taken for all Schubert symbols satisfying (7.11) and

^ (a2,a2," 'ap)R—A(a^,a2,...ap)^mod2 (7.18)

The Schubert cocycle Wj is the generator of H1(Gp(Rp+rn);Z2) and is called the first 
Whitney class of the Grassmann variety Gp(IRp~̂ m).The height of this class will play a 
crucial role in the solution of the problem.

Definition (7.1) The number h(m,p) is defined to be the maximum exponent ” a” such 
that wa is non zero in H*(Gp(!R̂  ”̂m);Z2) and is called the height of the first Whitney 
class of the Grassmannian Gp(IRp ~̂m).

□
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Remark (7.3) .Note that the ring H*(X;R) has zero-divisors and thus the above 
definition makes sense.

7.5 New sufficient conditions for generic pole, zero 
assignment

The above results provide alternative means for testing equation (7.17) 
incorporates all the conditions described in theorem (7.3) and leads to the following 
main result

Theorem (7.6) The following two statements are equivalent:
(a) 3 a1,a2 ,...ap: 0 < â  < < ... < ap < m , ]Taj =n and A(a1,a2 ,...ap)c =odd
(b) h(p,m) > n

Proof:
Considering (7 . 1 7 )  and the fact that all cocycles {a-pa^.-.ap^ such that £ a j = n are 
linearly independent in Hn(Gp(IRi:,~*"m);Z2) we have:

wlj1 is non zero iff 3 ( a j^ - .a p jp  such that £ a j =n and A(a-^,a2 ,...ap)R= l 

The last statement due to (7.18) is equivalent to

w^ is non zero iff 3{a1,a2,...ap }c  such that A(a1,a2,...ap)c =odd and £>■ =n 

On the other hand,w“  is non zero iff h(p,m) > n. Hence,the theorem is proved.

□
Similarly for the zero placement problem:

Remark (7.4) The following two statements are equivalent:
(a) 3 aj,a2 ,...ap: 0 < â  < a2 < ... < ap < m-p , £)a- =  6 and A(apa2,...ap)(~=odd
(b) h(p,m-p) > 6
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□

Corollary (7.3) A sufficient condition for the existence of real solution of the output 
feedback pole placement problem for a generic system with p-inputs,m-outputs and n- 
states is h(p,m) > n .

□

The above can be readily deduced by combining theorems (7.3) and(7.6). For the zero 
assignment, we have the following result.

Corollary (7.4) A sufficient condition for the existence of real solution of the squaring 
down zero placement problem for a generic system of p-inputs, m-outputs and <5 Forney 
dynamical order is h(p,m-p) > 6 .

□
The above corollary follows easily by a combination of theorem (7.4) and remark(7.4). 
Furthermore the height result is the best possible result, as far as odd intersections are 
concerned. This is established by the following result indicating the limits of the present 
approach.

Theorem(7.7) The following two statements are equivalent:
(a) 3 an n dimensional subvariety 96 of Gp(Cp+m ) such that deg(96)=odd
(b) h(p,m) > n

Proof
(b)=#a) Obvious from theorem(7.6)
(a)=>(b) By Lemma(7.3) the cohomology x class of 96 is an element of
jj2(mp-n)(Gp(£-p+m.2) anfj can ke expanded ag-

x=J^S(x- a1,a2,...ap)c {m-ap,m-ap 1,...,m-a1}c  (7.19)

where the sum is taken for all a1,a2,...ap: 0 < a1 < a2 < ... < ap < m , ]Ta- =n, and 

i(x ; a1,a2,...ap)c =  #(96 O <m-ap,m-ap 1,- -,m-a1> c ) 

multiplying now (7.14) with (7.19) we get
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deg(9G)= ]T)d(x; a1,a2 ,.--ap)c A(a1,a2,...,ap)c

Therefore if deg(9G) is odd, then at least one of the numbers A(aj,a2,---iap )c must be 
odd, and hence by theorem(7.7) h(p,m) must be > n.

□

The set up based on the cohomology ring allows the unification of the study of CPAP 
for both complex and real cases. In fact:

Remark(7.5) In both complex and real cases the intersections Gp(CP^ m) fl LC and 
Gp(Rp+m )nL R  may be represented as certain elements of the corresponding 
cohomology rings; the existence of intersection is then reduced to whether these 
elements are nonzero.In particular:

1) The set of all complex gains (infinite and finite) generically solving our 
problem is Gp(Cp^ m)flL C  and is represented in H*(Gp(Cp~̂ m);Z) by {0,...,1 }^.For 
this element to be nonzero n has to be less than or equal to height of the class 
{0,0,—1 } w^Ah is mp [Ber.l], So,we have generically a complex solution iff n < mp. 
This provides an alternative proof of the well known result [Broc.l, Her.l, Gia.l], 
Similarly,the corresponding result [Kar.3] for zero assignment is established.

2) The set of all real gains (both infinite and finite) generically solving the 
problem is Gp(Rp ~̂m) fl LIR.This intersection (considered reduced mod2 since there 
is not a Z-intersection theory as in the complex case) is represented by wlj1 in 
H*(Gp((RP~̂ m);Z2).The height of the class w  ̂ is h(m,p).So we have generically a 
real solution if n <h(p,m).It is worth pointing out that in the real case the conditions 
based on the height are only sufficient and not necessary and this because we use 
mod2-reduced results.

□
It has been shown that the height h(p,m) > n is a useful criterion for pole assignability 
and the computation of h(p,m) is examined in this section. One of the basic results on 
the height is the following:

Lemma (7.4) [Sto.l] If 1 < p < m and ’s’ is such that 2s < m+p-1 < 2S+1 
height of the first Whitney class of Gp(IRp^ m ) is :

then the



2s~^-2 if p=2 or if p=3 and m +p=2s + l
h(p,m)=f

2Ŝ ^-1 otherwise
□

Remark (7.6) We can always find such an ’s’ ; it is actually the integral part of 
log2(m +p-l).For example for p=3 , m=8 we have that m-fp-l =  10 so s=3 , thus 
h(p,m) = 16-l =  15 and the sufficient condition becomes n < 15.

Using lemma (7.4) we can easily see that m-fp-1 < h(p,m) holds true (apart from 
the case where p=2 and m=2s~^-2); combining this with the main result of [Ber.l] we 
derive the following lemma which helps us to establish links between the various 
criteria.

Lemma (7.5) For the h(p,m) we have that:

m+p-1 < h(p,m) < mp

The right equality holds true iff m in(m ,p)=l or min(m,p)=2 and max(m,p)=2r-l .

□

Remark (7.7) Kimuras result [Kim.l] is an immediate cosequence of Lemma (7.5) and 
Corollary (7.3).

□
Remark (7.8) Note that since LScat(p,m) > h(p,m) it may seem that a criterion based 
on LScat [Byr.l] is stronger than the height .However the LScat criterion [Byr.l] has 
been proved only for real poles whereas the one based on the height is for any 
symmetric set of poles.Thus as far as the generic pole assignment of generic sets of poles 
is concerned the height criterion is stronger.

Remark (7.9) So far, we have treated only strictly proper systems (as far as pole 
placement is concerned). The case of proper systems can be dealt with similarly, the
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only difference being that we may get degenerate points which are finite. However, all 
theorems of this chapter can be formulated and stated almost word by word and with 
only minor modifications for the case of proper systems and the conditions will be the 
same.

□
7.6 Conclusion

The study of static output feedback and squaring down problems have been the 
main objects of this chapter. The work here provides an extension of the previous 
results in [Kar.l] [Kar.3] by establishing the alternative topological aspects based on the 
use of cohomology rings for the derivation of the sufficient conditions for existence of 
real solutions. The advantage of this new approach is that it provides a framework for 
testing the solvability conditions by computations of height rather than the ad hoc 
methodology based on the factorial formulas [Kar.l]. The present topological framework 
is based on the existence of an odd intersection on an appropriate compactification and 
as such, it has certain restrictions. An alternative methodology reffered to as global 
linearisation will be presented in chapter 10.
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8.1 Introduction.

As it has been seen in the previous chapter, if the problem of arbitrary pole 
assignment by constant output feedback, or constant precompensation is solvable then 
we must have that mp >n. If this is not the case then to get arbitrary pole assignability 
we need to use a more complex family of controllers. The family of Proportional plus 
Integral (PI) controllers is the next more complex family (as far as dynamic complexity 
is concerned), within the general family of proper controllers, since they are defined in 
terms of two matrices and their poles are fixed. The family of PI controllers is widely 
used, especially in the area of process control, due to its inherent characteristics for 
steady state tracking and disturbance rejection. Although the design of single input 
single output (SISO) PI controllers has been well addressed [Mor.l] as far as tuning the 
parameters using various rules, the potential of the multivariable PI controllers for 
solving problems such as pole asignment and stabilisation, has received little attention 
with the exception of some state space based results which try to transfer known results 
from the constant pole assignment to the PI case [Ser.l],[Nov.l], Here, one of the 
purposes of this chapter is to address the pole assignment by PI controllers within the 
DAP framework as it was presented in Chapter5. Secondly, we will examine the pole 
placement problem for a more general family of controllers the Observability index 
Bounded Dynamics controllers (OBD) once more within the DAP framework.

Although as we saw in chapter 5 both cases (PI and OBD) can be reduced to a 
constant DAP, that is a problem similar to the constant output feedback problem, the 
results of Chapter 7 concerning solvability, cannot be directly applied. This happens 
mainly because the corresponding linear subproblems of the constant DAPs, arising 
from the PI or OBD pole assignment, have a special structure, different from the one of 
the output feedback pole placement problem. The determination of solvability 
conditions is closely related to the calculation of the rank of the Plucker matrices of the 
linear subproblems as well as with the study of intersections on a appropriately 
compactified controller space. The compactification we present here, for both the PI 
and OBD case, is the Grassmann variety. This parametrisation arises from the 
reduction of the problem to a constant DAP, and therefore the infinite PI or OBD 
controllers obtain a similar meaning with those of the constant case. However, as we
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will see, the Grassmannian is not the best compactification for the PI and OBD cases 
and the sufficient conditions for the generic solvability of the problem will be derived 
via affine methods.

8.2 The parametrization of PI and OBD controllers as 
Grassmannians and decomposition of the problem.

8.2.1 Introduction

The parametrisation of PI and OBD feedback controllers is essential for the 
examination of pole assignment problem. A parametrisation provides us with a 
description of the controllers in a form convenient for topological, algebrogeometrical or 
other (depending upon the nature of the parametrisation) considerations. Since the pole 
placement problem is expressed as an intersection problem of varieties (see chapters 
4,5), we may compactify the set of controllers as a projective variety in order to use the 
rich algebraic and topological intersection theory for such varieties. As it was explained 
in section 3.5, a good compactification must naturally arise from the specific problem 
and is done by introducing some elements representing “infinity” (see section 6.4). As 
we will see, both PI and OBD controllers can be naturally parametrised (and 
compactified at the same time) as Grassmann varieties embedded in an appropriate 
projective space via the Plucker embedding. In this way, the set of feedback controllers 
(finite and infinite), which assign a certain closed loop polynomial, can be taken as an 
intersection of the Grassmann variety with a linear one, in the above projective space.

8.2.2 Parametrisation of the family of PI controllers

A first look at the structure of PI controllers gives the impression that a first 
rough parametrisation of them is provided by the affine space (Rpx2m, since the free 
parameters are K0 ,K,. However the special structure of (5.13a) can give us a better
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insight for this parametrisation. In fact, equation (5.13a) may be equivalently expressed
as

f(s)=det|[Ip , K0 ,KJ

sDr (s)

sNr (s )

Nr (s )

(8 . 1)

Note that a row transformation of [Ip,K0,Kj] yields the same closed loop polynomial 
modulo multiplication by constants. Thus, it is the rowspan of [Ip,K0,K1] and not the 
matrix [Ip,K0,K j which defines the closed loop poles. This motivates us to view the PI 
controllers of p-inputs m-outputs, as a subset of the Grassmann manifold Gp(Rp+2m) . 
The elements of this manifold are the p dimensional vector spaces defined by 
rowspan[A,B,C], where A e Rpxp and B,C e lRpxm and correspond to generalised PI 
controllers of the form [sA,sB+C] .We classify the elements of Gp(Fp+2m) where F is 
IR, or C into two complementary classes:

D efin itional) We may define the following two classes of PI controllers:
8.1(a) Regular PI controllers (RPI): These are PI controllers of p-inputs ,m-outputs and 
are defined as elements of Gp(Fp+2m) of the form rowspan[A,B,C] such that 
rank(A)=p. These correspond to controllers C(s)=[sIp]'1[sK0-fKJ, the whole family is 
denoted by CC , and may be classified to:
(i) Full dynamics RPI controllers (FRPI) defined by the additional condition that 
rank(C)=p and corresponding to C(s)=[sIp]"1[sK0+ K 1] with rank(Kj)=p.
(ii) Reduced dynamic RPI controllers (RRPI), when rank(Kj) < p.

8.1(b) Infinite PI controllers (IPI): which is the complement of PI in Gp(Fp+2m) and 
are also the elements of Gp(Fp+2rn) of the form rowspan[A,B,C], such that rank(A) < p. 
These controllers are refered to as infinite gain PI controllers for reasons discussed in 
Ch.6, and may be further classified along similar lines to RPI. This family of controllers 
is denoted by C,n .J pi

□

Remark(8.1) (see Ch.6) In order to justify briefly the definition of infinite PI controllers, 
we consider a sequence .Xu=rowspan[Ip,Kn] in Gp(Fp+2m) such that K n-Kx> in the 
usual sense. Then, since the Grassmannian is compact, >An must converge to some
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^l=rowspan[A,B] in Gp(Fp+2m). To find this limit, it is sufficient to find an An e Fpxp 
such that An[Ip,Kn] =  [An,AnKn] converges to a finite [A,B] e Fpx p̂+2m  ̂ in the usual 
sense; finally, to ensure that AnKn converges to a finite matrix B, An must converge to 
a singular matrix A.

□

The above Grassmannian Gp(Fp+r) which represents the family of PI controllers 
may be embedded in the projective space and this is done by the classical Plucker 
embedding *?, (see Ch.3)

T: Gp(Fp+r) -  P( A pFp+r) =  P t F f 1 where (8.2)

as follows: Let A e Gp(Fp+r), where as it has been explained before, A  is the p- 
dimensional subspace of Fp+r spanned by the set of rows kj , k2 , ... , kpl ,of the matrix 
K. Then,

or
<?(A) d=f k ,fc A k2t A ... A k,,1 (8.3)

n * )  d= c p(K) (8.4)

where Cp() denotes the p-th compound of a matrix (see Ch.3). Specifically, Cp maps K 
to (. . ., detK^ ,. . .) where K̂ , is the cu-th pxp minor of K and the multiindices u> are 
lexicographically ordered. The image of T in the projective space is cut by certain 
homogeneous polynomial equations called quadratic Plucker relations QPR [Hod.l] 
which, in turn, can be reduced to a- 1-pr equations - the so called Reduced QPR 
(RQPR) [Kar.l],[Gia.2] (see also Ch.3).

This way, the set of PI controllers is endowed the structure of an algebraic 
variety through its image via the Plucker embedding:

T : G p([Rp+2m) -  PIR^1 1 (8.5)

where <t ,=  (^ p ™ ) -The previous classification of PI controllers becomes:

Remark (8.2) : In the projective space, the parametrisation of PI controller families
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becomes:
a) Regular PI controllers (RJPI): Is the subset of PIR0"1 
[...pw...], which for cu0=(l,2,3...,p) satisfies the conditions: 
i)The RQPRs ii) /  0

-1 containing all lxoq vectors

b) Irregular PI controllers (IPI): Is the subset of PIR 1̂  ̂ containing all lx<Tj vectors 
[...pw...] which for cj0=(l,2,3...,p) satisfies the conditions: 
i)The QPRs ii) pW()=0

0
Remark(8.3). The equation Pui0= '0 expresses the fact that the PI controller 
rowspan[A,B,C] is such that rankA < p. This way the set of IPI is a subvariety of 
Gp(lRp+2m) of dimension 2mp-l. The complementary set RPI is ’almost’ the whole of 
Gp((RP+2m) in the sense that it does not contain solely a set of zero measure (the set of 
IPI).

□

8.2.3 Parametrisation of the family of OBD controllers

The pole placement equation via OBD controllers, as it was explained in chapter 
5, can be written in the following determinantal form:

skM(s)

f(s)= det Tk> T k .! ,- ,  T0]

,k-lM(s)

(8.6)

M(s)

We can again follow the same arguments for the PI case and parametrise the 
generalised BDO as the Grassmanman Gp(IR^"p^^p_pm̂ ) ,having as elements the p-dim 
subspaces of ^(k+1)(P+m) )roWspan[Tk, Tk l ,..., Tg], We may partition this 
Grassmannian, into two complementary sets as shown below:

Definition(8.2): We may define the following two classes of OBD controllers:
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a) Regular or finite OBD controllers (ROBD). These are the elements defined by 
rowspan[Tk, Tk_j,..., T0] , such that the first pxp submatrix of T k has full rank. These 
correspond either to OBD controllers of McMillan degree pk ( if Cp[Tks T...+Tg] VO 
Vs) which are called full order McMillan degree OBD controllers, or to OBD with 
McMillan degree less than pk which are called reduced order OBD controllers.

b) Irregular or infinite OBD (IOBD) controllers: These are the elements defined by 
rowspan[Tk, Tk j , . . . ,  T q], such that the pxp submatrix formed by the first p columns of 
Tk (from the left) is singular. These corresponds to limits of regular OBD controllers, 
rowspan[Tk, Tk j , . . . ,  Tq], on the Grassmannian, when [Tk, T k l ,..., Tq]] tends to infinity 
in the usual sense.

□

By using the Plucker embedding
T: Gp(R(k+1)(p+m)) —► PR*73"1 (8.7)

where cr2=((k+1^p+m^ ,which maps the rowspan[Tk, Tk lv .., T q] to Cp [Tk, Tk_lv .., 
T q]. The previous classification of the OBD controllers becomes:

Remark (8.4):In the projective space, the parametrisation of OBD controller families 
becomes:

a) Regular OBD controllers(ROBD): Is the subset of PR'72  ̂ containing all lxcx2 vectors 
[■••Pw- ]  which for tn0=(l,2,3...,p) satisfies the conditions:
i)The RQPRs ii) p ^  v 0
b) Irregtilar OBD controllers(IOBD): Is the subset of PR17-2  ̂ containing all lx<r2 vectors 
[•••PwJ which for cn0=(l,2,3...,p) satisfies the conditions:
i)The RQPRs ii) pW(j=0 □

To summarise, we have parametrised the families of regular PI and OBD feedback 
controllers as certain nonvoid Zarisky open subsets of the Grassmann varieties 
Gp(Rp+ ) G PR*7 where ^  That is they are the whole of the Grassmann
variety apart from a subvariety of strictly lower dimension corresponding to the set of
‘infinite’ controllers. Note that the above Zarisky open sets are contained in the affine
open set R Wq G PRa  ̂ cn0=(l,2,3,...,p), which corresponds to the requirement that in
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the parainetrisation considered, the pxp submatrix formed by the first p columns 
(considered from the left) must be Ip in both cases.

Remark (8.5) We can use the same arguments to parametrise the corresponding 
families of complex controllers. In this case, the real Grassmann variety Gp(IR1>+r), will 
become Gp(Cp+r), but everything else will be the same.

□

8.2.4 Decomposition of the problem

The set of PI controllers is viewed as a certain Grassmannian and this provides
the necessary tools to study pole assignment by PI controllers. In this section it is 
shown that this form of the Determinantal Assignment Problem (DAP) is a real 
intersection problem in a projective space. Following what was mentioned in Ch.5, 
given that the closed loop pole polynomial is expressed by (8.1), then using the Binnet- 
Cauchy theorem, f(s) may be expressed as:

The above problem is formulated as a Constant Dcterminantal Assignment Problem 
(CDAP) and in this specific form it will be referred to as PI-DAP', this problem can be 
reduced to the following two problems, one linear and one standard multilinear as 
described below:

(i) LINEAR PROBLEM: For a given p(s) e R[s] of degree n+p and h(s) = 
Cp{M j(s)} e!R<TXl[s] solve the equation,

(8 .8 )
where

sDj^(s)

H=[Ip i K0 ,K,] and M ^s)=  sNR(s)

Nr (s )

(8.9)

P(s)= [1 , kT]T h(s) (8 .10)
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with respect to [l , kT]T e IR0̂ ,1 C P(R)0’"1. Equivalently, if we write

li(s)=Cp(M,(s))= Ppj [s'>+n, sP+"-‘ , ... , l]1 (8.11)

then (8.10) is reduced to the linear system
(1 . pT = [1 , k1!  Ppi (8.12)

which, in turn, defines a linear variety f. in the projective space. The matrix Ppj is a 
crx(n+p+l) matrix, and will be reffered to as the PI Plucker Matrix of the system; its 
properties play a crucial role in the solvability of this specific form of DAP.

(ii)MULTILINEAR PROBLEM: Assume that the linear problem has a non void 
solution set ,say L. Determine whether there exists [1 , k7] e i. which belongs to 
Gp(Rp+2m), that is [1 , kT]=Cp(H) for some H=[Ip,K0,Kj]. The special structure of 
Mj(s) implies that the PI Plucker matrix must be of the form:

1

QT

(8.13)

which in turn implies that the equations for the linear variety defined by (8.12) cam be 
rewritten as:

Q=[l , kT]

a-p

(8.14)

Similarly, for the case of OBD controllers we have a linear and multilinear 
decomposition and the OBD Plucker matrix Pobd is defined by:
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skM(s)

, n,+n n,+n-l  ,t r' /
Pobd Is > s , , 1J =  C J

sk_1M(s)

M(s )

As fax as the equations of the multilinear problem, these are defined as those 
expressing the decomposability of the multi vectors [1 , kT], that is the RQPRs. In other 
words, they are the set of RQPRs [Gia.2] for IR0"̂  1 C PIR'7’ "1 ,cu=(l,2,3,...,p) and they 
have been defined in chapter3. To illustrate the procedure so far we give the following 
example.

Example (8.1) Consider the system S which is decscribed by the transfer function 
matrix:

-1 + S -2 + s

s 2-2 s 2-2

l + 2 s 4 + s

s 2-2 s 2-2

2 1 s 2 + s

1 2 1 s+ 1

We want to find an output feedback (or precompensating) PI controller which assigns to 
the closed loop system, the pole polynomial s4—10s2—11s—3. In accordance with the 
procedure we described previously we have:

M , ( s )

s2 2 s + s 'i

s s + s 2

s 2s

2s s

1 2

2 1

C p { M  j f s )} ;

s4-2s2
s3-2s2
3 .2  -s -4s
s2-2s

-s2-4s
3 , 2 -s +s

0 3 2 -2s -s
-s2+s
-2s2-s

-3s2
0

-3s
3s
0
-3
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Therefore the linear equations (8.12) for our problem are given by:

[1 ,0,-10,-11,-3] =  [ l ,k 2 ,k3 ,...,k 15]

The RQPR for IR*J Ç P1R14 , cn=(l,2) (that is when kj =  1 ) are:

1 0 -2 0 0

0 1 -1 0 0

0 -1 -4 0 0

0 0 1 -2 0

0 0 -2 -4 0
0 -1 1 0 0
0 -2 -1 0 0

0 0 -1 1 0

0 0 -2 -1 0

0 0 -3 0 0

0 0 0 0 0

0 0 0 -3 0

0 0 0 3 0

0 0 0 0 0

0 0 0 0 3

k 1 = =1) a r e

k10~k2k7'k3k6 kl 1 k2k8_k4k6 k12~k2k9"k5k6

k13“ k3k8'k4k7 k14 k3k9_k5k7 k15~k4k9~k5kS

Thus all the possible solutions (PI controllers) to our problem are embedded in 
PR14 via the Plucker embedding and they are the solutions of the sets of linear 

equations and the RQPR described above. A solution for the above set of equations is:

k=[l, 0,1,0,1,-1,0,-1,0,1,0,1,-1,0,1]

This, according to Lemma 3.1, decomposes to:

[I2,K0,K i ]=

which in turn gives the desired solution:

K0+^K1=
□

1 0 
0 1

10  1 0  1 0  
0 10  1 0  1
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The above example demonstrate the nature of the equations we have to solve. The 
solvability of these equations is examined in the following section.

8.3 Plucker matrices and their properties.

8.3.1 Introduction

The Plucker matrices of our problems play a key role in the study of the 
corresponding DA problems since they define the linear subproblem which embodies all 
the information of the open loop plant as well as some of the information of the generic 
dynamic structure of the feedback controller. As it has been previously seen, the set of 
finite and infinite feedback controllers which assign a given closed loop polynomial to a 
plant S, is given by the intersection of a Grassmann variety with a linear set given by 
the null space of the corresponding Plucker matrix. Thus the determination of the rank 
of the Plucker matrices Ppj and P0i)Cj is essential for the examination of the above 
intersection and therefore the derivation of solvability conditions for the PI and OBD 
pole placement problems.

8.3.2 The PI Plucker matrix.

One of the most important properties of the PI-Plucker matrices is that 
describing the generic rank of the Pl-Plucker matrix and this is defined by the following 
result:

Proposition(8.1) If 2mp > n, then the rank of the PI-Plucker matrix for a generic system 
of p-inputs, m-outputs and n-states is equal to n+p+1.

Proof

Lei Emn,|) Le the algebraic variety of strictly proper systems of p-inputs, in- 
outputs and n-states. Then the subset of all systems such that their Pl-Plucker matrix ,
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Ppj ,lias rank less than n+p+1 is determined by the zeros of all (n-t-pd-l)x(n-fp +  1) 
determinants of submatrices of Ppj and thus, it is a subvariety of ]CmV Subsequently, 
the set of all systems with p-inputs, m-outputs and n-states, which have full rank PI- 
Plucker matrix, say ,is a Zarisky open subset of £ mnp • To prove that the property 
of a system to have a full rank Pl-Plucker matrix is generic, is equivalent to proving 
that ‘Jpj is nonvoid. Therefore we have to prove that for every p,m,n such that 2mp > n 
there exists a system of p-inputs, m-outputs and n-states whose Pl-Plucker matrix has 
full rank. This can be looked at by considering the following two cases:

i) Let n+p=kp

Consider a system of p-inputs, m-outputs and n-states whose composite matrix

M(s)=
D(s)
N(s)

is of the form:

M(s)=

ks
k-2 ks s
k-4 k-2

k-4 k-2

0

0

ks
k-2s
k-4

The matrix M(s) can be formed if 2mp > n. The corresponding PI composite matrix 

s D r ( s )

M1(s)= sN^(s) is given by 

Nr (s)
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0
sk+1

k-1s
k-1

sk+1
k-1 k + 1

sk+>
k-1s
k-3

M1(s)= 0

0  :
l

By the definition of the PI-Plucker matrix, to calculate the Ppi we have to calculate all 
the pxp minors of M^s). These determinants are polynomials in ‘s’ whose degree varies 
from 0 to n+p and the PTPlucker matrix is the coefficient matrix of these polynomials. 
Our aim is to select n+p+1 of these polynomials whose coefficient matrix has full 
rank.

Let h: 0 < h < n+p and h = (k + l)j+ u  where 0 < u < k + l  then: 
a) If u is odd, consider the pxp submatrix of Mj(s) formed by its first j rows ie.

sk+ '
X

X X

0

X X

X X

X X

X 

1

then det(A(l)=s*1

b) If u is even then consider the pxp submatrix of Mj(s) formed by its first j columns
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0

X X X  

X X X  
X X X  
1 X X 

X 

1

det(B^)=s . Thus the above selection of determinants will give us the set {1, s, s2,..., 
sn+p) whose coefficient matrix is the identity matrix In+p+1. This imply that the above 
Pl-Plucker matrix has full rank and our proposition is proved, 
ii) n=kp+tj where 0<cn<p

In this case, we can modify the proof given above along the following line. Since 
cn<p we can select the first u  columns of M(s) and can increase the degrees from k 
to k+1; the remaining columns are left with the same degree ie. k. The rest of the 
proof then follows, as indicated in part (i), with the obvious changes. □

The above result establishes the important property that if 2mp > n , then the PI- 
Plucker matrix has full rank for a generic system. This allows the computation of the 
dimension of the generic linear variety that enters in the study of solvability conditions 
of the problem.

Bh=

k + l

0

k+l
u-1

8.3.3 The OBD Plucker matrix.

The generic rank of the OBD Plucker matrix is once more an important property 
and it is defined by the following result:

Proposition(8.2) If n < n jm  + mp where n^=kp then the rank of the OBD Plucker 
matrix for a generic system of p-inputs, m-outputs and n-states, is equal to n+nj +  1.

Proof

Using similar arguments to those used in the proof of Proposition^. 1) , to prove the 
above result we have to find a system whose OBD Plucker matrix has full rank. Let
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n=n1m -f mp =m p(k+l) and consider the system defined by:

gm (k+l)

1 s m (k+ 1) 

1

D(s)
N(s)

M(s) =
0

0

sm(k + l) 

s (m-l)(k+l)

g(m-2)(k + l)

Sk + 1

1

One can easily see that the OBD Plucker matrix of this system has full rank. The case 
n < n^m +  mp can be treated similarly with only minor modifications.

□

8.4 Necessary conditions for Pole assignment.

To derive necessary conditions for our problem we will approach it in a similar 
manner to that deployed in [Wil.l], First, we consider the pole placement map defined 
by:

X:Cp> R n+P (8.15)

where C f is the set of regular PI feedbac

coefficients of sl: 0 < i< n + p -l  in the polynomial f(s) given by (8.1). Then the 
problem of pole placement becomes one of examining whether \ is onto. The map x is a 
differentiable map between two manifolds. If the dimension of RC is less than n+p, 
then Im(x) is a set of measure zero in IRn~̂ P and x cannot be onto. Therefore, a
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necessary condition for the map y to be onto is:

dimC r > n+pPi — 1

or equivalently

2mp > n+p (8.16)

since dimCC is equal to 2mp, the number of free parameters in the matrix [IpjK^KJ. 
We can additionally impose a second necessary condition which is specially useful for 
the nongeneric S. The decomposition of the problem into a linear and a multilinear one 
leads to the following factorisation of y:

y ;C  r■ Z  h  |Rn + P

where the left map is the Plucker embedding and the right is a <xx(n+p) linear map 
whose n+p columns are the right n+p columns of P •. So it is apparent that, if the 
linear map Pp, has not full rank, then it is impossible for y to be onto. These arguments 
lead to the following result:

Theorem (8.1) A necessary condition for the existence of a real (and complex) PI 
controller assigning every real monic polynomial of degree p+n to a strictly proper 
system S of p-inputs, m-outputs and n-states is that 2pm > p+n and 
rank(Pp,)= n + p + l.

□
It is apparent that in the single input-many output case the problem becomes linear and 
the above condition becomes necessary and sufficient.

Corollary (8.1) A necessary and sufficient condition for the existence of a real (and 
complex) PI assigning every real monic polynomial of degree 1+n to a strictly proper 
system S of 1-input, m-outputs and n-states is 2m > 1+n and rank(Pp,)=n+2.

□
Similarly for the OBD feedback controllers case:
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Theorem (8.2) A necessary condition for the existence of a real (and complex) OBD
controller, of dynamic degree n^=kp, assigning every real monic polynomial of degree 
n^+n to a strictly proper system S of p-inputs, m-outputs and n-states is that 
pm +n^m +p) > n j+n and rank(Pobd)= n + n 1+ l.

8.5 Sufficient conditions for PI solutions.

For a given monic polynomial p(s) of degree n+p, the set of all PI controllers 
that assign it as a closed loop pole polynomial, is given as a set of zeros of n+p 
polynomial equations in 2mp unknowns with coefficients parametrised by S rTf p(C), the 
set of strictly proper systems of p-inputs, m-outputs and n-states. A basic theorem on 
complex varieties says that, all sets of n+p equations in 2mp unknowns, except from 
some nongeneric ones, have a solution, provided 2mp > n+p. Unfortunately, this cannot 
be applied directly to our case since our equations have a special structure and 
furthermore the space of coefficients is not free but is parametrised by D mnp(C) and 
therefore they may lie in the nongeneric set of equations of the previous theorem.

One way to get around this difficulty is to consider the above n+p equations 
defined on the set of compactified PI controllers which according to our previous 
construction is the Grassmannian Gp(Cp+2m). The set of the n+p equations, now, has 
always solution provided 2mp > n+p, according to the projective intersection theorem 
(Chapter 3). However, we can easily see that all rowspanjAjK^Kj e Gp(Cp+2m) such 
that:

satisfy the n+p equations on the Grassmannian, no matter what the dimensions or the 
system are. In fact the above points are degenerate points of the intersection, that is 
they satisfy:

□

rank[sA, sKq+K J < p (8.17)

S.;D r (s)

(8.18)

n r (s)
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The system theoretic interpretation of this type of controllers is that, they are 
controllers for which the the feedback loop is not well posed, or such that the closed 
loop system is degenerate. Hence the existence of solutions produced by the projective 
intersection theorem on the Grassmannian does not help us at all, since the controllers 
in the solution may all as well be degenerate. This suggests that the Grassmannian 
compactification of PI controllers is not adequate for our intersection problem and 
probably we may have to construct a better compactification if we are to tackle this 
problem.

Instead of producing a new compactification, the approach we will adopt here 
tackles the problem using techniques that can be applied to non projective, that is 
noncompact, complex algebraic varieties. Let 'll be the set of all PI controllers KoT^K^ 
such that the first pxp submatrix of K,, denoted by Kj has full rank. This is a Zarisky 
open subset of C2mp which contains all [K0, Kj] such that det(K,) ^ 0. For a given 
polynomial p(s), consider now, the subvariety 9G(p(s)) of TLx mnp(C), defined as 
follows:

KJ , S) e T lxH mn)P(C), such that det<j [1̂ K0 ,KJ

sDr (s )

sNr (s )

Nr (s )

(8.19)

where Em”p(^) is the algebraic variety of strictly proper systems of p-inputs, m- 
outputs and n-states defined in Chapter 4. The set 96 contains as fibers all possible PI 
controllers in TL that assign the closed loop polynomial p(s) for all S in E m" P(C); 
consequently it is the most appropriate set for the examination of the pole assignability 
properties of a generic S. Thus we have to calculate the dimension of a fiber of 96 under 
the projection on the second coordinate, for a generic S in £ m" p(F). First we need to 
calculate the dimension of 95, and to do so we will prove the following Lemma.

Lemma(8.1) The map

f: E n
m,p

C n+ P (8.20)
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Such that f(S), S e ^ m"|n is the coefficient vector of the powers sn+p' \  sn+p‘2, ... , s, 1 
of the polynomial det(sD(s)+N(s)), where N(s) is the top pxp submatrix of the 
numerator N(s) of S, is a dominant morphism.

Proof
Indeed, every monic polynomial p(s) of degree n+p can be factorised as

P(s )= P p(s ) Pp-i(s).~ Pi(s)

where Pj(s) are monic polynomials with degree greater than or equal to one. If we let

Pi(s)= sa^sj+b; i=l,2,...,p

Then for every p(s) such that p(0) ^ 0 the system defined by:

ap(s) 0 ... 0

0 a ^ s )  :

D(s)
N(s)

0

0 0 a i( s)

bp 0 0

0 bpu 0 0

0

0 b l

0

0 0

is a well defined strictly proper system with n-states and satisfies the following 
condition:

det[sD(s)+N(s)]= n(sai(s)+bi) = n P i(s)=p(s) 
i i

which proves the fact that the Image of f includes all c e Cn+P such that cQ ± 0. Hence 
f is dominant.

□
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The variety 9G is given by n+p equations on Tlx J2 mnp(C), therefore 9o is either empty 
or has dimension greater than or equal to dim(cU)d-dim^5Z m̂ p(C)j 
— (n+p)=2m p+n(m +p) — n — p. In fact as the next theorem states the dimension of 9G is 
exactly equal to 2mp+n(m+p) -  n -  p.

Theorem(8.3) The dimension of the variety 9£ for a generic closed loop pole polynomial 
p(s) is given by:

dim(9G)=n(m-f p)+2mp -  n -  p (8.21)
Proof
Consider the natural projection of 96 on TL

p,: 96 -» TL
Then the following equality holds true:

detj[Ip , K0 ,K,

s D r (s )

s N r (s )

Nr (s )

| det < [Ip, 0pxm , Ip , 0px m̂ pj]

s d r ( s ) + s K 0N r ( s )

sA(K1)Nr (s )

A(K,)N r (s )

where

A ( K j) =
K,

^ (m -p )xp  I ^m-p

which implies that

Pi ([K0, Kj]) s ip , [Ip, 0pxm , Ip , 0px(m_p)]

since if a system S, having composite M(s), is in p j_ ,([K0, K,]) then the system S' with 
composite B(K0, K,)M(s) is in p ,"1 [Ip, 0pxm , Ip , 0px(m.p)], where

B(K0, K ,)= IP K0
0 A(Kj)

Therefore the above equality of fibers implies that the dimension of all these fibers is 
equal to the dimension of p ,"1 [Ip, 0pxm , Ip , 0px(m_p)] which in turn is equal to
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n(m +p) — (11+p) because of the previous lemma. Therefore, the dimension of 9G is given 
by:

dim(96) = n(m-fp) - (n+p) +  dim(clL)

or equivalently,

dim(96) =  n(m +p)-(n+p)+2m p
□

To calculate the dimension of the generic fiber of the projection of 9£ on the $2m1p(C') 
we need the following lemma.

Lemma(8.2) Let 9q , 962 be two complex varieties such that dim(9£j) > dim(9&2) and

fa: « 1  —  «2

be a family of maps where ‘a’ belongs to a complex variety V. Then the set of all ‘a’ 
such that fa is dominant is a Zarisky open subset of T.

Proof

We know from the dominant morphism theorem (see Chapter 3) that fa is dominant, iff 
there exists x G 9Gj such that the differential (Dfa)x has full rank, or else it has rank 
equal to dim(962). Therefore, consider the set

Z>={ (x,a) g TqxT: rank(Dfa)x=dim(9G2)}

This set is a Zarisky open subset of SGjxT since it is required that at least one of the 
maximal minors of (Dfa)x to be nonzero. The image of the projection

% - ^ r

on the second coordinate contains all a g  T such that fa  is dominant. This set is a 
Zarisky open subset of T since it is the image of the projection of another Zarisky open 
set.

□
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Corollary(8.2) Let

P c : *  -  E m“ p(C ) (8.22)

be the family of projections parametrised by the set Cn+P of coefficients of closed loop 
polynomials. Then, if dim(SG) > n(m+p) and there exists one c0 G Cn+P such that p Cq is 
dominant, pc is dominant for all c in a nonvoid Zaxisky open subset of Cn+P.

Proof
From the previous Lemma the set of ail c G Cn+P such that pc is dominant is Zarisky 
open, and furthermore is nonvoid because of the existence of c0.

□
Theorem(8.4) Let us assume that:
(i) 2mp > n+P
(ii) There exists one polynomial of degree n-fp that can be assigned to a generic system 

S € Ern*p bY a PI controller in TL.
Then, for a generic complex polynomial p(s) of degree n+p and a generic system 
S G Em”p(C) the set of ab PI controllers in 81 assigning p(s) to S is nonempty and has 
dimension 2mp -  (n+p).

Proof

Because of the assumption (i) and theorem(8.3), we get that dim(9G) > n(m +p). 
Combining the latter with the assumption (ii) and corollary(8.2), we can conclude that 
the projection :

P f i -  E m np(C)

is dominant for all c in a nonvoid Zarisky open set of Cn+P. Therefore, for a generic 

S e  E m n,p (Q  tbe Plber bas dimension dim(9G) -  dim( E  mnp(C))=2mp -  (n+p) and this 
proves the theorem.

□

Corrolary(8.3) Assuming (1) and (n) of theorem(8.4), then for a generic real polynomial 
p(s) of degree n+p and a generic system S e  Em"
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Proof
It is an easy consequence of theorem(8.4) and the fact that the sets of real polynomials 
and real systems are Zarisky dense in the sets of complex polynomials and complex 
systems respectively.

□
To apply theorem(8.4) or corrolary(8.3) we need to check conditions (i) and especially 
(ii). Condition ii although seems simple, is in fact as difficult to be checked as the 
original problem of assignability of an arbitrary polynomial. Therefore theorem(8.4) has 
mainly theretical than practical interest. To answer the question of arbitrary pole 
assignability we have again to resort to the calculation of the differential of the PI pole 
placement map as the following example indicates:

Example(8.2)
Consider the system of example(8.1). The the closed loop pole polynomial via a PI 
feedback compensator Kg+^-Kj is given by:

p(s)=s4+ p 3(K)s3 - p 2(K)s2 - p 1(K )s+p0(K)

where K=[K q, K j]=(kjj) and

p3(K )= kn + 2k12+ k21-  k22

P2(^ ) = 11^22 ~ 3k12 -̂21 ^11 — ^12 ~ ̂ 13 — 2k 14+ 2k2j-|- 4k22 ~ k23~f k24+ 2

P l ( K ) =  3kn k24-3 k 12k23+ 3k13k22 - 3 k 14k22 +  k13 + 2k23 -f 4k24 

p0(K )= 3k14k23 -  3k13k24

The PI pole placement map is given by: x (K)=  (p3(K), - p 2(K), -p ^ K ), p0(K)) and 
its differential can be easily calculated to be

1 2 0 0 1 -1 0 0

3k22 -  1 3k21 +  l 1 2 3k,2 — 2 -3k j j — 4 1 -1

-3k24 3k23 -3k22 — 1 3k2i +  l 3k14 -3kj3 k 1 2  _ 2 -3k,,

0 0 -3k24 3k23 0 0 3k14 -3k.
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for K=[I2,I2] the differential becomes equal to:

1 2 0 0 1 -1 0 0

-4 1 1 2 -2 -7 1 -1

-3 0 -4 1 0 -3 -2 -7

0 0 -3 0 0 0 0 -3

which has full rank. Therefore by the dominant morphism theorem (see Chapter3) x  is 
dominant, and thus almost every closed loop pole polynomial may be assigned by an 
appropriate PI feedback compensator.

□
The conditions established so far deal with the existence of complex solutions. The 
search for real solutions centers around certain tests related to the existence of real 
intersections; this, however, is not considered here.

8.6 Sufficient conditions for OBD solutions.

In this section we try to extend the results of the previous section to the case of 
OBD compensators. Let n > n̂  and n^=kp, we may first state the following result:

Lemma(8.3) The map
f:E nm,p c n+ni

such that f(S), S € £ mnp, is the coefficient vector of the powers s'1*"1 s, 1 of the
polynomial det(sn'D (s)+N (s)), is dominant, ie. onto for almost all <Cn+ni.

Proof
Consider all [c11+n]_,, cll+n 2,...,c0] G C + 1 such that Cq /  0 corresponds to all monic 
complex polynomials such that p(s) ^ 0. Then such a p(s) can be written as

P(S) = Pp(S) Pp-i(s) Pi(s)
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where deg(pj(s)) > k . Then we may write
P i(s )= s kaj(s )=  bj(s)

and consider the system such that

D(s)
N(s)

ap(s) 0 ... 0
0 a ^ s )  :
: : 0
0 ... 0 aj(s)

b p (s )  0 ... 0

0 b ^ s )  0 0
: : 0
: ... 0 b j ( s )

: 0
0 ..........  0

This is a well defined strictly proper system of n states which satisfies

det(sniD(s)+N(s))=p(s)

For a given p(s) let us define the set
□

®obd = {(S „S ) e OBD x Sm”p sa tis fy in g  equ. (8.6)j 

Then the dimension of 9Gobd is given by the following theorem:

Theorem (8.5) For a generic polynomial p(s), the dimension of the variety 9E>obd is equal 
to:

n(m+p) + n j(p+m ) + p m -(n + n [)
Proof

Consider the natural projection of 93obd on the OBD set
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P l: ®obd OBD

Then, the fibre 1 (S^) of a generic Sj is equal to the fibre of the map

v  £ mn,p - c n+ni

where fSj is the map assigning every open loop plant S G to the coefficient vector
of the monic pole polynomial after closing the loop with the feedback OBD compensator 
Sj. Because of lemma(8.2) and lemma(8.3), fSj must be onto and therefore, a generic 
fibre of fĝ  has dimension equal to dim(Smnp) -  dim(Cn+Ill)=n(m +p) — (n+nj). Hence, 
the dimension of p 1 (S^) is equal to n(m +p) -  (n+nj) and, therefore, the dimension of 

$obdis given by

dim(9Gobd)=  d im (pf 1(S ,))+  dim(OBD)= n(m+p) -  (n+n1)+ n 1(p+m )+pm
□

Theorem(8.6) Let us assume that:
(i) (n+nj) < n 1(p+m )+pm
(ii) There exists one polynomial of degree n+nj that can be assigned to a generic system 
S G Em" p by an OBD controller.
Then, for a generic complex polynomial p(s) of degree n+n^ and the generic system 
S G ^npp the set of all OBD controllers assigning p(s) to S is nonempty and has 
dimension (nj(p+m )+pm ) -  (n + n j.

Proof
Consider the projections

Pc: *obd “* ^npp(C)

parametrised by ç, the coefficient vector of the closed loop polynomial. Then because of 
the assumption (ii) one of those projections is dominant and hence almost all of them 
must be dominant by lemma(8.2). Therefore, for a generic S G Emnp(C) the fiber has 
dimension dim(96obd) -  dim(Emnp(C))=n(m +p) -  (n +n ^+n ^p+ m j+ pm  -  (n+p) and this 
proves the theorem.

2 2 3



□

Corrolary(8.4) Assuming (i) and (ii) of theorem(8.6), then for a generic real polynomial 
p(s) of degree n+nj and a generic system S e Smnp(IR) the set of all OBD (complex) 
controllers assigning p(s) to S is nonempty and has dimension n^(p+m)+pm — (n-fn^) . 
Proof
It is an easy consequence of tlieorem(8.6) and the fact that the sets of real polynomials 
and real systems are Zarisky dense in the sets of complex polynomials and complex 
systems respectively.

□

8.8 Conclusions.
The study of dynamic DAP in the special case of dynamic controllers such as the 

PI and OBD has been considered here, the main difficulty in extending the DAP 
framework to the dynamic case has been the associated compactification issues. By 
reducing the dynamic problem to a modified constant DAP, a compactification as a 
Grassmannian is obtained for both cases and necessary conditions for the solvability 
have been derived. By using affine methods, we derive sufficient conditions for the 
existence of complex controllers for both PI and OBD cases. Deriving sufficient 
conditions for the existence of real controllers for these two families is still an open 
issue. The main obstacle is presented not only by the compactification issues but also 
by the intersection properties on the associated compactified variety (assuming that this 
can be constructed). In fact, such a variety is non standard and its intersection ring is 
not well studied. The alternative framework based on global linearization discussed in 
chapter 10 seem to be more suitable.
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9.1. Introduction
As we have seen in chapter7, the centralization assumption enables us to view 

the compensator as an element of a certain Grassmann variety and thus use its 
properties and the well established topology in the study of intersections with the linear 
varieties associated with the corresponding problems. The decentralization assumption 
implies a partially fixed structure of compensators and this results in the emergence of 
the following two phenomena. First, we have the appearence of the concept of fixed 
modes [Cor.l],[And.l],[Kar.4] which may arise in the study of pole assignment by 
decentralised state, or output feedback and may restrict the assignability property. 
Secondly, the decentralised controllers may be viewed as a subvariety of a Grassmann 
variety [Kar.4] and thus its topology and intersection theory is not well established. 
This subvariety is chaxacterised by the set of Quadratic Plucker Relations and a set of 
fixed zeroes defined by the decentralization characteristic of the given problem [Kar.4]. 
An alternative compactification was recently introduced in [Wang.2], where the 
decentralised compensator is viewed as an element of product of Grassmannians. In this 
chapter we extend the algebrogeometric framework for decentralized problems 
established in [Kar.4] as well as the framework intoduced in [Wang.2], and derive new 
sufficient conditions for generic pole assignability. Furthermore, the properties of the 
pole placement map established in Chapter6 axe extended to the decentralised case and 
this leads to a new test for avoiding the presence of fixed modes using the notion of 
decentralised Markov parameters.

9.2. Problem formulation

As it was explained in Ch.5 the pole placement problems via decentralised controllers 
can be reduced to the solution of the equation:

p(s) =  det ( s I - A - . E  Eb Kj C-) (9.1a)

or
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p(s)=det(| Ip , Kdcc: (9.1b)

with respect to Kdec, where

]
D(s)
N(s)

K dec=

Kj 0 ... 0
0 K2 0 :
: 0 0 

0 ... 0 K h

(9.2)

Kt- G a-nd Similarly, the zero assignment problem may
be reduced to the solvability of the equation

f(s) =  det ( KdecN(s)) (9.3)

with respect to Kdec given by (9.2).

The polynomial equations (9.lb ) ,(9.3), which we are interested in solving, can be 
reduced to n algebraic equations by equating the corresponding coefficients of the left 
and right hand side polynomials. These equations have to be solved with respect to Kdec 
which, in turn, contains Enapj unknowns. Thus we now have to solve a system of n 
algebraic equations in R^m,p* or else, find the intersection of n algebraic hypersurfaces in 
the same affine space.

To study such intersections we normally need to compactify the parameter space 
of the unknowns and then use the intersection theory available for compact manifolds. 
The new compact parameter space contains the initial parameter space, which covers 
almost the whole of it, and a negligible set of points at “infinity” . In this way, the 
extended solution set of our system of equations may contain points at “infinity” some 
of which are not desirable (see Sec.3.5.1 and Sec.6.5), but provided the compactification 
is natural enough, we can deduce that, generically, if the solution set of the system of 
equation is nonvoid then it must contain a finite point (see Sec.3.5.1, and [Byr.l] ).

The way in which we extend the parameter space of the unknowns into a 
compact set depends mainly upon the nature of the equations and the way we define 
infinity. Here we will present two compactifications for the set of decentralised feedback

Yj TTIcontrollers ( «  IR ' •) and our approach will be projective (here will not need to
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compactify the set of decentralised squaring down compensators) . The method used 
will involve embedding REm,"p* into IRcr"̂  in a way the nature of the problem suggests. 
Subsequently, we will consider Zarisky closure of the image of this embedding and thus 
get a projective variety in PIR0̂ ;  in this way, the extended parameter space obtains the 
stronger structure of the projective variety, rather than the structure of the compact 
manifold (this makes no difference in our subsequent analysis since the intersection 
theory we will be using will be cohomology with coefficients in Z2). The special 
structure of the problem arises from the following two characteristics of the expression 
of the closed loop pole polynomial of eq.(9.1b):

(i) The existence of the determinant. This induces a multilinear skew-symmetric nature 
to the problem and characterises all determinantal assignment problems (pole 
assignmnet via output/state feedbackfGia.l], zero assignment via squaring 
down[Kar.3j).
(ii) The block diagonal structure of the output feedback matrix, which is due to the 
decentralisation assumption.

The two equivalent compactifications which will be presented in the following two 
sections can be described briefly as:
First compactification: As a subvariety of the Grassmannian Gp(RP~̂ m) embedded in 
PR0̂  , via the Plucker embedding. This was first introduced in [Karri] as
decentralised Grassmann variety.
Second compactification: As a product of Grassman varieties embedded in PR^1 1 via a 
combination of the Plucker and Segre embeddings, where <Tj—fl (n,+l) and

/p  —|~m \ *—l
n'V  *P, ' }  This was first introduced in [Wang.3].

9.3. Decentralised Grassmann variety and invariants

The multilinear skew-symmetric nature of the problem, leads us to breaking this
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problem into two : one which is pure multilinear and a second, which is linear and 
suggests the following compactification of <J(jec [Kar.4]. Using the Binet-Cauchy 
theorem, we derive

det(l Ip • Kded
DM
N(s)

DM  1
N(s) >

(9.4)

where Cp(A) is the p-th compound matrix of A which, in other words, is the p-th 
exterior or skew product power ( A P) naturally used for the factorisation of multilinear 
skew-symmetric functions. If we define [1, kT] e IR̂ X<T, cr=^>̂ m ,̂ to be a vector such 
that

[I. tT)=Cp([ Ip , Kdj ) ,  (9.5)

Pg to be a crx(n+l) Plucker matrix coefficient of the polynomial Grassmann 
representative [Kar.l]

g(s)= Cp(
D(s)
N(s)

=  Pc sn, s11' 1,  . 1]' (9.6)

and [1, p7] g ¡^lx(n+ 0  t0 be a vector such that

p(s) =  [l, p7] [ sn, s“ -1,. . ., 1]T 

then the solution of eq.(9.1) can be reduced to:

(i) LINEAR PROBLEM: For a given [1, pT] e solve the linear
equation,

[1, pT]= [l, kT].Pg (9.7)
with respect to [1, kT] e R^Xcr.

(ii) MULTILINEAR PROBLEM: Assume that the linear problem has a non void 
solution set, say 36 ,then determine whether there exists [1, k7] e 36 such that [1, 
k ]= Cp([ Ip , K ^ J) for some [Ip , K ^ J ; the vectors [1, k7], having the above
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properties, have coordinates which satisfy the Quadratic Plucker Relations (see 
Sec.3.3.2). The block diagonal structure of [Ip ,K(jec] implies that the multivector [1, kT] 
has fixed zeroes at certain locations. These locations define the decentralisation 
characteristic which was introduced and calculated in [Kar.4], If D is the 
decentralization characteristic (ie. the sequences co 6 Q p ™ ^  for which the 
corresponding coordinates in (9.5) are identically zero and Bc is the complementary set 
with respect to , then the sub vector defined from g(s) by dropping the B
coordinates is denoted by

gdec(s) = P dec I50’ Sn- 1> - ,1 ] T

and it is refered to as the decentralised Grassmann representative; the matrix coefficient 
Pdec is ^ie decentralized Plucker matrix [Kar.4].

Remark (9.1) [17]: The fixed modes of the problem are defined as the zeros of the 
greatest common devisor of the entries of gc(s). Necessary conditions for arbitrary pole 
assignability is that gc(s) is coprime and rank of Pc is equal to n+1.

□
In the following we shall assume that we have no fixed modes for the generic ¡f(A,B,C) 
system.

The above analysis suggests to embed Tdec=IR m,p' in IRN via (¡>= A p o S as follows:

Krlec \ Ip ■ Kdec] A ' ’ [1, kT]=  Cp([ Ip , KdeJ) (9,8)

Now if we consider the Zarisky closure of ^ ¿ cc) in PR'7"1, we obtain a 
characterisation of the Decentralised Grassmann varieties as shown below:

(^dec ~  ) ^(^dec)~{ k11  ̂P ^  P has zero coordinates at the decentralisation

characteristics and satisfies the QPR (Quadratic Plucker Relations))

Remark (9.2) ‘iĤ 'clec) can considere<f as a subvariety of the Grassmann variety
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Gp(Rp+m ) of p-dimensional subspaces of Rp~̂ m. The dimension of this subvariety is 
equal to Sm,p,- and the equations defining it are given by the QPRs and the zero 
coordinates corresponding to the decentralisation characteristic.

□

If we write the Plucker matrix Pg as:

1
PS

0
(9.9)

The linear equations (9.7) can then be homogenised as:

0=[A , k1

T  Ta -p
(9.10)

These n linear equations in PIR'7  ̂ define a projective variety of dimension greater than 
or equal to cr-l-n symbolised by LIR(S,p(s)). The intersection LIR(S,p(s)) D iFd 
contains all decentralised compensators (finite and infinite) which assign the polynomial 
p(s) to the system S via output feedback. The desired controllers are those with A ^ 0 
(finite controllers) and correspond to composite representations [Ip,K£jec].

Example(9.1) Consider the decentralised scheme with m^= p^=2, ni2= P2=2. The 
composite feedback matrix Fdec=[I4,KdeJ may be expressed as

[ '4 . « d J

1 0 0 0 k „ ^12 0 0

0 1 0 0 k 2j ^22 0 0

0 0 1 0 0 0 ^33 ^34

0 0 0 1 0 0 ^43 P44

and the closed loop pole polynomial may be expressed as

p(s)= det ([Ip, KdJ D(s) x 
N(s) >
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Let Q be the coordinate transformation defined by

h 0 0 0
0 0 h 0
0 h 0 0
0 0 0 h

Clearly, QQ=I and thus we may write

where

P(s)= det ([Ip, KdJ  Q-Q
D(s) v 
N(s) '

=  det (Fdec T(s))

T (s)=  Q
D(s) 
N(s) ’ F d e c  =  [I4 * K deC] Q

We may notice that

1 0 k n k J2 0 0 0 0

0 1 k2i k22 0 0 0 0 F f 0

0 0 0 0 1 0 k33 k34 0
f 2

0 0 0 0 0 1 k43 k44

and thus for C^(Fdec ) we are able to make the following two observations:

(i) The nonidentically zero coordinates in C^(Fdec) correspond to the sequences w =(i1,
ft

h' W h) ^ Q4 where (ilt i2) take values in [1 ,2,3,4] and ( i3, i4) take values in [5,6,7,8]. 
These sequences in are reffered to as non degenerate sequences. All other remaining

ftsequences in have the property that the corresponding minors are identically zero 
and are reffered to as degenerate sequences of Q® .

(ii) The degenerate sequences are those for which either fewer than two, or more than
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two of the integers are taken from the [1,2,3,4] or [5,6,7,8] intervals. For instance 

al,2,3,6= 0 and a3,G,7,8=0-

(iii) The coordinates in C4(Fdec) which correspond to the nondegenerate sequences u>= 
(ij, i2. i3, i4) may be expressed as

al,2,3,4 — L i ;=  c . 1
1A2 1,13M

where c i,i1L2
o ~

. . are the coordinates in C^F,, ) (note that the columns of F,i3i4 z z 1 are
numbered as [1,2,3,4] and those of F^ as [5,6,7,8]). The above property clearly suggests 
that if

then the nonzero coordinates in C4(Fdec ) are given as the tensor product of the exterior 
product of Fx , F2 ie.

( C 4 ( F dec )l + c =  (f,‘, A  f t )  ®  ({¡‘. A

The two alternative compactifications adopted here reflect the above observations, ie.

(a) We may consider C(̂ (F(jec ) as a vector in P(IR 4 ) with certain fixed zeros

coordinates, which also belongs to the corresponding Grassmann variety. The set of all
(8)

such (decomposable) vectors of P((R 4 ), is the decentralised Grassmann variety 

described in this chapter.

(b) We can consider only the nondegenerate subset of coordinates of C4(Fdec ) which as 
a vector, is the tensor product of the exterior products of the rows of Fj and . All 
these vectors which can be written as a tensor product of (two) decomposable vectors 
constitute a product of (two) Grassmannians [Wang.3]. This set will be considered next.

□
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9.4.The Decentralised problem and the product
compactification formulation

The entries of [A,kT] corresponding to the degenerate sequences, do not play a 
role in the decentralised pole placement and can be omitted. The remaining vector [A, 
kTdec] lies in a projective space PR^1 1 of lower dimension and can be taken as 
products of the Plucker coordinates of the individual blocks as was shown in the 
previous example. This suggest a second compactification for Tdec as a product of 
Grassmannians embedded in an appropriate projective space by a combination of the 
Plucker and Segre embedding (tensor product) and was first presented in [Wang.3].

X'm
The set ~  ^ 1 1 of decentralised controllers can be written as the

following product:

5 dec =  %  (9.11)

where Tt- is the set of local controllers and it is isomorphic to IRm,p‘ for every i= l, 
2 , Each Tj- can be embedded into Rn* where nt=  C T A  via the embedding <f>- 
defined below:

K i - L  [ Ip , K,.J A P Cp([ Ip , K;]) (9.12)

The closure of the image is the Grassmann variety Gp .(RP,~̂ m‘ ) in PER” * and
thus, 5dec is considered to be the product:

^  =  Gpi(Rpi+ m ') x Gp2(Rp2+m2) x ... x Gpfc((Rp +̂m )̂ (9.13)

in PR 1 x .... x PR"*. We can further embed the above product into PRffl’ \ where
K.

o-j^n (n ,+ l) via the Segre embedding Seg [Sha.l]:

Seg (xlv .., xK) = xj 0  x2 ® ... ® xK (9.14)

The image of Gp i(RPl+m !) x Gp2(RP2+m2) x ... x Gpk(RPk+m*) in PR171"1 via the 
Segre embedding is a projective variety which is the required structure for the set <3:dec .
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One can easily see that the equations for the pole placing decentralised controllers in 
PR'71“1 are:

(i) The equations defining the above product of Grassmannians in PRC,-l
'dec

(ii) The n linear equations:

(1 • kTdec) G c =  0 (9 15)

where Pqec can be taken if we omit the rows, of the matrix of eq.(9.10), corresponding 
to the decentralisation characteristic [Kar.4] D.

Remark(9.3) It is worth rewriting the n linear equations in a pole placement 
formulation rather than in the polynomial coefficient formulation which was given 
previously in terms of the decentralised Plucker matrices. In fact, let Sp S2,----, sn be 
the set of roots of the polynomial p(s) of equation(9.1). Then equation(9.1) is equivalent 
to

If |j= Cp
can be

D W
N(Si)

de‘ ( [I' Kd e c ) ° g ) = °

G CaX1 and n̂] € C

V i=l,2,..,n  (9.16)

<TXn then the linear equations(9.15)

rewritten as [A, kT] L=0 and if we keep the rows of L that correspond to 
decentralisation characteristics and omit the others we get

[A’ i?Tdec]L=0. (9.17)
□

Remark (9.4) Note that the equations defining Tcjec in PIR^1  ̂ are given by the QPRs 
of PR 1 with the Plucker coordinates corresponding to the decentralisation
characteristic being set to zero.

□

The product compactification defined as above is not different from the one 
defined in the previous chapter. In fact the two compactifications are isomorphic as
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projective varieties as it is shown by the following result:

Theorem(9.1) The product of Grassmannians Gpi (RPl^ m ') x Gp2(R̂  2̂  2) x ... x

Gpfc(R^fĉ mfc) considered as subvariety of PR^1  ̂ is isomorhic to <H<d<jec) 

C Gp(RP+m ) c  m a' 1.

Proof
We first construct a map

f : Gp i(RPl+m i) x Gp2(RP2+m2) x ... x Gpjt(IRPfc+m*) ( C PR*"1' 1) ----- » PRa~l

by considering an x e Gpi(IRPl"̂ m i) x Gp2(RP2~̂ m2) x ... x Gpfc(IRPfĉ m;c) C PR*7'  ̂
which, in turn, can be written as

x =  Xj <g> x2 <8>... G> xK

where x̂  are decomposable vectors of PR"1 for i=l,2,..,/c respectively. A new vector, 
composed of the vector x and some extra zero coordinates, is constructed. These new 
coordinates correspond to the set of degenerate sequences Dc which is the 
complementary set of the set of decentralisation characteristics D. This new vector is 
the vector f(x) and belongs to PR*7"̂  by construction.

The map f is obviously one to one and f(x) is a decomposable vector of PR*7̂ . 
In this way, f injects the above product of Grassmannians into the larger Grassmannian 
Gp(Rp+m ) and consequently this product can be identified by Im(f) contained in the 
Grassmannian Gp(RP^ m). Readily, the image of f contains ec) and thus its closure 
^(^dec)’ and since dim(Im(f))=dim(<?i>(T(jec))=EmipI and Im(f) is irreducible, we can 
imply that Im(f)=^(*Fdec).

□
The previously established equivalence of the two compactifications allows us to use 
either of them for the study of the decentralised compensation. In the next chapter we 
will examine the problem of finding sufficient conditions for the solvability of the 
arbitrary pole placement problem using decentralised output feedback. The approach 
will be topological and the compactification as product of Grassmannians will be used. 
The reason behind this, is that we can easily compute the cohomology ring of the
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product in terms of the cohomology rings of the particular Grassmannians via the 
Kunneth decomposition [Dold.l] , and thus we can relate the various topological 
invariants of the product with some well established invariants of the Grassmannians.

9.5.Sufficient conditions for the existence of solutions

To derive sufficient conditions for the existence of solutions we use the product 
compactification of the decentralised controllers, that is to say

=  Gpi(IRPi+ m i) x Gp2(RP2+m2) x ... x Gpjt(RPfc+m*) (9.18)

As we mentioned previously the linear problem defines the n-linear equations (9.15) on 
^ e c  • Each of these linear equations defines a linear hypersurface on Tdcc which, in 
turn, defines an element c in H2(CTdec;Z) (the first cohomology group of the 
cohomology ring H*(C*Fdec;Z)) and an element w in H1(g:dec;Z2) (the first cohomology 
group of the cohomology ring H*(“3dec;Z2)). All n-equations will define the intersection 
of n-linear hypersurfaces on *3^  ̂ and the corresponding cohomology elements for this 
intersection will be c11 in H2n(0 3 dec;Z) and wn in Hn( 5 ^ ;Z 2). Following [Lev.l] (see 
also Cli.3 and 7) we can express cn as a Z linear combination of the elements of the 
basis of H2n(03dec;Z). These coefficients are the orders of the subvarieties of Q3dec 
represented by the basis and if one of them is odd, then we can find a real solution since 
the solutions occur in conjugate pairs.

Remark (9.5): The set of points corresponding to the intersection of the linear variety 
with the odd order subvariety may contain a subset of degenerate points (as in chapter 
7); these are the points rowspan[A,Kdec] e ^dec su°h that:

det(l A- Kdec) Vs

however, as it has been shown in [Wang.3], when the dimensions of linear and the odd 
order family of subvarieties representing the basis are complementary, then we can
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always select an element of the family to intersect the linear subvariety without 
degenerate points.

□

The coefficients of the expansion of c11 appear reduced mod2 in the expansion of 
wn in Hn(<tFcjec;Z2). Thus, as far as examining whether there exist an odd coefficient of 
the expansion of c11, is equivalent to examining whether wn is non-zero. The condition 
for this will be of the form n < h(w) where h(w) is the maximum integer k such that w^ 
is non-zero in H*(3Fdec;Z2) and is called the height of the cohomology class w. Given 
that li(w) is entirely defined by the partitioning of the inputs and outputs into (m-,p-), 
1 < i < k sets, h(w) will be reffered to in the following as the decentralisation height. 
The inequality n < h(w) gives us a sufficient condition for the existence of a real 
decentralised static output feedback arbitrarily placing the poles of a generic system and 
it is stated below:

Proposition (9.1) For a given set (m,, p,-) i e k , a sufficient condition for decentralised 
pole assignability is that the number of states must be less or equal to the maximum k 
such that w^ is non-zero in H*(<3rdec;Z2), or equivalently h < h(w).

□
To calculate both cn and w11 it is convenient to use the Kunneth decomposition [Dold.l] 
of H * (T ~  Z2) and H * (C ^ ;Z ) .  This tells us that

H*(?dec;22) =  H*( Gpi(RP>+m-); Z j  ® . . . ® H*(Gpt(RP‘ +m ‘ );Z2) (9.19a) 

H* ( « ^ ; Z )  = « * (  Gpl(CP '+m i); Z) ® . . .  ® H*(Gpi(cP ‘ +m ‘ );Z) (9.19b)

which in turn gives

H‘ ( Gp,(R P '+m '); Z2) ® . . . ® H '(G Pi(RP*+m ‘ );Z2) (9.20a)

a H’ ( Gpi(CP>+m l); Z) ® . . . ® H1(Gpit(CPfc+m*);Z) (9.20b)

Each H!( Gp.(IRi:>,~*"m'); Z2) is a Z2 vector space produced by W; the first Whitney class
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of the canonical bundle [Gri.l, Sto.l] of this Grassmannian Gp^R  ̂ ') • This means 
that H’ ( Gp.(RP'^ m'); Z2) is the additive group {0, w j  such that wI+w,=0. Since w 
belongs to H'( Gpi(Rp,"pm'); Z2) (8) . . . ® H1(Gpi;(IRP*:  ̂m/c);Z2), it can be 
decomposed into:

k
w==£  Gw. (9-21)

i=i

where e, axe in Z2 ( are either 0 or 1). Similarly, c can be decomposed in ;Z) as:

k
c = ]T  a.c, (9.22)

where a, are in Z and c, are the first Chern classes [Gri.l] of the Grassmannians 
Gp l̂RP" m') and w- is the corresponding Whitney class. The following theorem 
indicates that the values of all e,-’s and a.-’s are 1.

Theorem (9.2) The cohomology class c 6 H2(Oddec;Z2) (complex case) which 
corresponds to linear hypersurface X of is equal to:

k
c = £  c, (9.23a)

i= l

Similarly, the w cohomology class H ^ g ^ jZ )  may be expressed as:

k
w = ]T  w, (9.23b)

i= l

Proof

To find the cohomology class that corresponds to the continuous family of hypersurfaces 
on which are parametrised by the set of strictly proper systems of p-inputs, m-
outputs and n-states it is sufficient to find the cohomology class corresponding to a 
special representative of this family [Klei.l] . This representative arises from a system of 
the form:
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D(s)'
N(s)'

: : 0 
0 ... 0 Dk(s)

N^s) 0 ... 0
0 N 2(s ) :

: : 0 
0 ... 0 Nk(s)

D ^ s )  0  . . .  0

0 D 2 ( s ) :

we can easily see that the closed loop pole polynomial p(s) is given by:

(9.24)

p(s)= det{[Ip,Kdec] (9.25)

A linear hypersurface on C1Fd corresponds to the assignment of 1 pole say at s0 (see 
Remark(9.1)) and this equation becomes:

(9.26)

Equivalently, this corresponds to a union of the linear hypersurfaces

det {[Ip.-Kj] (9.27)

for i=l,2,...,k on every Gp.(Cp,^ m‘) respectively. It is known [Lev.l] that each of these 
hypersurfaces corresponds to c- in Gp.(Cp,^ m*), the first Chern class of the 
Grassmannian. Finally, the union of these hypersurfaces correspond to the sum of the 
above classes.

□
Remark (9.6): The above result indicates that the original decentralized problem 
concerning the placement of one pole is topologically equivalent to a determinantal 
problem defined on a subsystem. □
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For the subsequent analysis, we need some further definitions.

Definition(9.1) A binary partition t , of the number n of length k is a sequence of non- 
negative integers t (l), t(2),...,t(«;), such that:

n = t(l)+ t(2 )+ ...+ t(k ) (9.28)

and for every j, there is at most one 1 in all jth digits of the binary representations of 
t(l)>t(2),...,t(/c).

□

Example (9.2) Consider the number n=10 and k=2. Then n is represented in a binary 
way as (1010) and its binary partitions are

(1010)=(1000) + (0010), (1010)=(1010) + (0000)
Note that although

(1010)=(0110)+(0100)
the above partition is not binary since the l ’s appear in the same location.

□

With the above definition in mind we may state the following result:

k ____
Theorem(9.3) The height of w = ]P  w, , (denoted by h(w)), in H*(9dec;Z2) is equal to

i= 1
the maximum integer n for which there exists a binary partition t of n of length k such 

that:

t(>) < Mp.^m,-) i= l,2 ,— ac (9.29)

Proof

Let us write the exponent n of w in the binary form:
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n=2hr+ 2hr- 1 + ... +2hH  21'1

where hr > hr j> ... >h2> hj > 0. For every h- we have that

i=l i=l

since the coefficients in the above expansion are taken reduced mod2 . Therefore,

r .  k
w"= l i (  £  w / 3)

j=l 1-1

Thus it can be readily shown that

wn= £  Wl*0)™, t(2)w, ' . wK-l_ t(/£—1)W t(/c) (9.30)

where the sum is taken for all binary partitions of n, t, of length k . N o w  it is apparent 
that w11 is nonzero, iff there exist at least a nonzero summand in the expansion (9.30). 
This happens, iff the exponents of wi in this summand are less than the corresponding 
heights h(p,-,m,) and this proves the result.

□

An alternative proof of the above result is to consider the binomial expansion. It 
should be pointed out that terms in this expansion disappear for two reasons: (i) the 
coefficient is an even number and (ii) at least one of the exponents of w ^  in the 
expansion is more than the corresponding height. If we elaborate on these two cases we 
derive the conditions of the above theorem. The above result reduces the search for 
sufficient conditions into a problem testing whether a certain set of binary partitions 
satisfy the height conditions (9.29). Note that the individual heights h(p-,m-) may be 
computed as in [Lev.l], This provides a methodology for a systematic search for 
sufficient conditions and it is further examined below. Using the above result and 
Proposition (9.1) we may now state:

Theorem (9.4): A sufficient condition for arbitrary pole placement by a real static

241



decentralised output feedback for a strictly proper system with n states and n (mpPj) 
channels, is that there exists a k  lenght binary partition of n, say {t (l),t (2),...+ («)} such 
that

t(i) <h(p-,rm) for every i=l,...,/t (9.31)

Proof: The proof follows by using theorem (9.2) and proposition(9.1).
□

Example(9.3) Let P j = 2 ,  m j=4 , P2= l, ni2=3 and n=9=(1010) then h(pj,m j)=6 and 
h(p2,m2)=3 The two binary partitions of n of length 2 are

n=( 1000)+  (0010)= 8+1 
n=( 1010)+ (0000)=9+0

and since 9 and 8>6 and 3, the test cannot be applied. On the other hand if n = 7 = (ll l )  
we have the partition

n=(101)+(010)=5+2

which satisfies the inequalities 5<h(p1,m1)=6 and 2<h(p2,m2)=3 and therefore in this 
case the generic pole assignability property holds true.

□

Corollary(9.1) The height for the class w takes its maximum value Em,p,, iff the 
following conditions hold true:

i) The particular heights for subsystems take their maximum value ie.
h(p„m ,)= p,m, for all i (9.32)

ii) The binary representations t(i) of p,m, constitute a binary partition for Eirqp, .

Proof:
Again this is an obvious application of theorem(9.2).

□

Corollary(9.2) If an(l the conditions (i) and (ii) of corollary(9.1) hold true
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then, we have arbitrary pole placement via real decentralised static output feedback for 
a generic strictly proper system of p-inputs, m-outputs and n-states. □

Corollary (9.2) is equivalent to the result in [Wang.3] which gives a sufficient condition 
for existence of solution when the degree of the product Grassmannian is odd. The 
oddness of the degree of the product of Grassmannians can occur only under the very 
strong assumptions (i) and (ii) of corollary(9.1) or the equivalent ones of [Wang.3], Thus 
the sufficient condition of Corollary (9.2) has only restricted use. In the very likely case 
that the above degree is even, we may have lower dimensional subvarieties which have 
odd degree. In such a case, theorem(9.3) can be applied and a sufficient condition can 
therefore be derived. The following example demonstrates the above argument.

Example(9.4) Let Pj=2, m j=4 , P2= l ,  m2= 3, then we may compute the heights and 
have h (p j,m j)=6 and h(p2,m2)= 3. In this case, since p 1.m1=2.4=8> h(p1,m 1)= 6, the 
degree of the product of Grassmannians must be even. However, we can apply 
theorem(9.3) and derive that if n=7 then we have generic pole assignability(see 
example(9.3)).

□

Theorem (9.3) provides two different routes to search for sufficient conditions. The first 
is to work through all partitions and use the standard expressions for height for each of 
the subsystems, referred to as the “partitioning approach” , and the second is to work 
out sufficient conditions which are weaker, but are independent from the individual 
partitioning. We demonstrate the partitioning approach in terms of the following 
example:

Example (9.5)

k=2, pj=2, p2=3, m j=2, m2=3

n=7 -* 22- f2 + l= ( l l l )  in binary form 
All possible binary partitions are as follows,

{(22) , (21+20)} {(22+2!) , (2°)} {(22+2°) , (21)} {(22+ 21+2°) , (0)}

and their permutations.
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The heights for the given decetralisation are:

(1) m j=2, Pi=2
21 < 2+2 -  1< 22
h(2,2)=  22 -  2=2

(2) m2=3, p2=3
22 < 3 + 3 -1 = 7  < 23 
h(3,3)= 23 -1 = 7

Note that for the above problem the results in [Wang.l] cannot be applied since:
(i) We do not have equal numbers in inputs or outputs.
(ii) The product Grassmannian has not odd order. This can be readily seen from the 
fact that the heights in this case h(2,2)=2, h(3,3)=7 do not take the maximum values 
which are 4 in the first case and 9 in the second.
According to our result we can have generic pole assignability if one of the above 
partitions is bounded by the heights. Indeed, for the partitioning (2z+ 2 ‘ ), (2U) which 
give 6 and 1 we have

6<7 and 1<2
and thus pole assignability is possible.

□

The second use of the theorem is considered next and we will try to calculate the height 
of w in terms of the heights h(p,,mt). The heights h(p,,mI) were defined in [Sto.l] and 
are given as shown below:

Lemma (9.1) If 1 < p < m and V ’ is such that 21/ < m + p -l < 2 "+1, then the height of 
the first Whitney class of Gp((RP~^m) is give as

91/+I 2 jf p_2  or if p—3 ancf m + p = 2i/+ l

MP,m)= j (9.33)
 ̂ + *-l otherwise

□

Remark(9.7). In the case where p = l then Gp(IRp"*~m ) «  PRm and the height h(l,m) 
equals to m. The maximum possible value for the height h(p,m) is pm and is obtained 
iff either p = l or p=2  and m =2u- l .

□

Given that the solvability conditions are based on the decentralisation heights, its
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computation is considered next.

Lemma (9.2): Let
m^Lx(h(p„m,))= h(pa,ma) (9.34)

and let V ’ be the unique integer such that 2V < h(pa,ma) < . Then the
decentralisation height satisfies the condition

h (w )< 2 I/+1-l (9.35)

Proof
For a given number d the length of its binary representation is given by the number 
i/-f 1 such that 2" < d < 2""*"1. Thus the number v-\-\ in the statement of our theorem is 
the length of the binary representation of the largest of all heights h(pa,ma). For a 
given binary partition t of n such that

t(i) < b(p„m,) i=l,2,..../i

it is evident that as we sum up the t(i)’s, in binary form, there are no numbers carried 
over (by the definition of binary partition). Thus the sum of t(i)’s must have the same 
length as that of max(t(i)). Therefore, the largest possible sum of t(i)’s we can have is 
the largest number having the same binary length as that of h(pa,ma). This number is 
obviously 2i/+^-l.

□

The above result gives an upper bound for the height independent of the partition. In 
the frame of the present sufficient conditions, Lemma (9.2) provides an estimation for 
the number of states for which we may find a solution using Corollary(9.1). In this 
sence, the last result provides an indication for the limitations of our framework. A 
sufficient condition, which is independent of the partition search and thus simpler, is 
described below and its proof readily follows from the previous analysis.

Lemma (9.3): Let k >2  and assume that the maximum height is h(pa maj) such that 
Pa, > 2. If i/ j is the unique integer such that
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then
2 11 < h ( P a 1, m a 1) < 2 I/|4 1

h(w )=2"l+ 1 - l

Proof:
Since n > 2 then we can order the heights as:

h(Pai,mai)>  h(Pa2,ma2) > ------> MPak,mak)

where h(Pa2 m ^) > 1 and (a-) denotes the permutation of original set. Consider now the 
following partition t (of length /c) of 2^1 + * -  1 :

t ( l)= 2 I' 1 + 1- 2  
t (2) = 1

and
t(i)=  0 i=3,__, ac

Furthermore, having that pa> > 2, then either h(pa] imaj)=2 -1 or 2 -2 (see
Lemma(9.1)) and thus we have

fc( l)  < t (p ai,mai)
We additionally have

t(i) < MPpmi) i—2,3,...,k

Therefore the binary partition t of 2  ̂ — 1 satisfies the required height inequalities of
theorem(9.3) and hence we have that h(w) > 2 ^  —1. If we combine it with the 
inverse inequality of Lemma(9.2) we get the required equality h(w)=2i' 1 + l -  1.

□

Corollary (9.3): Under the assumption of the Lemma (9.3) for (p^im) i=l,2,...,k set , a 
sufficient condition for pole assignment by real decentralised static, output feedback is 
that
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n < 2 " 1+1- l

An example illustrating the above result is given below

(9.36)
□

Example (9.6): If (p^=2, nij=4) , (p2= l ,  m2=3) then h(pj,m j)=6 and h(p2,m2)=3. 
The integer v for which

2V < h(p1,m 1)=6<2'/+1

is v=2. From Lemma (9.3) h(w)=22+  ̂ -1 = 7 . Thus the above Corollary indicates that 
n < 7 is the sufficient condition for pole assignability. □

9.6. The pole placement map under the decentralisation 
assumption.

The pole placement map (see Ch.6) is defined to be the function that maps every 
feedback controller K to the closed loop poles or to the coefficients of the closed loop 
polynomial. In our case K is block diagonal and the above map can be defined as :

yd : FEm*p' — » Fu
such that

y d(K 1,K2,...,KiC)= (p n, pn. lv .., p j) (9.37)

where F=C or IR and (pn>Pn-l,- iP ))  is the coefficient vector of p(s) of the equation 
(9.1a) or the equivalent (9.1b). The pole placement map carries all the information as 
far as the pole placement properties of a given system and thus its examination is very 
important. The above defined pole placement map for the decentralised case can be 
considered as a restriction of the general pole placement map of the output feedback 
case. In fact if yc is the centralised pole placement map:

yC ; Fmp — * Fn

then y^ can be factored as
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(9.38)

where

P Em,p, E p m  X  p Fn

E(row(Kj), row(K2), row(KK))=

Kj 0 ... 0
0 K2 0 :
: 0 0
0 ... 0 Kfc

(9.39)

As in Ch.6 the rank of the differential of x^ at a generic point of its domain, is equal to 
the dimension of the image of x^> which in turn constitutes a measure for the size of 
assignable closed loop pole polynomials of a given system. To calculate the differential 
of we will use its decomposition (9.38) as x° ° E. This decomposition implies the 
following equation:

D(xd>K = » D(E)k (9.40)

For now on on we will continue our study by using matrix representation of the
previous three differentials. For these we need to specify the basis for the tangent spaces 

Y j TTIT(Fmp)^ and T(F 'n,P,)K with respect to which the differential will represented. To this 
end we need the following definitions:

Definition(9.2): We may define the following sets of integers: 
i) { (i,j) : 1 < i < p and 1 < j < m}

/C-1 K-1
” ) [TPilxtTmj] U [p1 + l,p 1+ p 2]x[m1 +  l,m 1+m 2] U ... U [ ¿ p .  + l, p]x[ ¿m . + l,m] C n

i =  l  ¡ =  1

The two sets of indices f l and specify the lower indices of the entries k-j of the 
centralised and decentralised feedback matrix respectively. For the present purposes, we 
consider as basis for T(Fmp)K the set of all (-^-), a € Q and for T(F£m,P,)K the set of all 

), P G where all the indices are lexicographically ordered. Using these bases
we^iave a representation of the above differentials. The differential D(E)^ has a very 
simple structure; In fact, since E is a linear map, its differential must also be a linear 
map independent of K and thus this differential can be described as shown below:
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Lemma(9.4) Let K= [row(Kj), row(K2),..., row(KK)] and E(K) is given by eq(9.39),
then a representation of differential D(EW with respect to the previously defined basis ̂*■ ^  ^
of the tangent spaces, is given by a matrix R(E) G F 1 ‘ such that:

V a e fl, /3 e then R(Ew = { ( !  o L w

Proof
Obvious from the definition of E.

□

On the other hand the differential D(x C)k  has been already calculated [Rein.l] and its 
expression is given by the following lemma.

Lemma (9.5) For a fixed centralised feedback gain K and a system S(A,B,C) we have 
that a matrix representation of (Dx C)k  , denoted by R (xC)^ , with respect to the basis 

of T(Fmp)ĵ  (a G 0), is a n x mp matrix given by:¿7Ka

R(x c)k=  Qt [ colCB ,colCHB, ... .colC H ^B  ]T (9.41)

where ‘col’ maps an mxp matrix to the mpxl matrix formed by superimposing its 
columns, H=A-fBKC and Q is given by:

Pn •• • P2
1 P3
0
0 : 1

where the pPs are the coefficients of the closed loop pole polynomial

□

Combining now the two previous results we can now derive a matrix representation for 
the differential of the decentralised pole placement map x^-

Theorem(9.5) For a given decentralised feedback gain K and a system S(A,B,C) we 
have that a matrix representation of the differential of the decentralised pole placement 
map (Dx^)j< , denoted by R(x ^)k  given by
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R ( x <t) K =  R ( x c ) e ( k ) . R ( E ) (9.42)

Proof
Obvious from eq(9.40)

□

Note that R (x ^)k  is obtained from ^-(xC)jr^^ by keeping only those rows of R (x C){?(k ) 
which correspond to the set of indices only.

Using Theorem(9.5) we can define the decentralised Markov Parameters. The Markov 
parameters of a system can be taken by the differential of yc at K=0 as Lemma(9.4) 
indicates. Therefore we can similarly, define as decentralised Maxkov parameters, by 
using the differential of the the decentralised Pole Placement Map at K jec=0. In fact 
for K(jec=0 we have that

R (xd)0 =  QT[ colCB ,colCAB, ... ^ o lC A ^ B  ]T (9.43)

where colC A ^ denotes the reduced column obtained from colC A ^ after eliminating all 
the entries that do not correspond to the set of indices (this is the result of 
multiplication by the R(E) matrix). The matrix

Md=[ colCB ,colCÂB, ... ,colCAn_1B ]=[ nij ; m2; •••; mn]

will be referred to as decentralised Markov matrix and its importance for our study is 
considered next.

Proposition(9.2) The matrix M^Q is a full row submatrix of the decentralised Plucker 
matrix.

Proof
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Since
Xd(Kdcc)= C p(|Ip, Kdec]) Ps

J
by differentiating with respect to K jec at 0 we get that R(y )q is a matrix A such that 
A is a full row submatrix of the decentralised Plucker matrix. Having also that 
R (xd)0= (M jQ )7̂  we easily get the required result.

□
Taking into account that the rank properties of the decentralised Plucker matrix [Kar.4] 
determine the presence or not of fixed modes we have:

Corollary(9.4) If rank(M^)=n the system has no fixed modes.

This provides a simple sufficient condition for avoiding fixed modes based on the 
decentralised Markov matrix. A simple method for calculating is described below.

Remark(9.8) Let H-^CA1!! for i=0,l,2,...,n-l , be the Markov parameters of the 
S(A,B,C) system, and let K be the general form of the decentralised output feedback. 
For each Hj=CAJB we zero all entries which correspond to the fixed zeroes of and
let Hj be the resulting matrix. By taking colHj and eliminating the fixed zeroes (matrix 
supression) we obtain the m- vectors in the Markov matrix. The IT i=l,2,...,n -l are 
referred to as decentralised Markov parameters.

□

9.7 Conclusions
The previously established framework of sufficient conditions based on the odd 

order of the corresponding subvarieties and the height [Lev.l] for the centralised case 
has been extended to the decentralised case. The new sufficient conditions provide tests 
for solvability of the decentralised pole assignment by output feedback problems for 
cases not covered by the equality of input or output channel assumption [Wang], A 
systematic procedure based on partitioning of the states may be based on theorem (9.2) 
and this provides stronger sufficient conditions than that of Corollary (9.2). Some 
further properties of the decentralised pole placement map have been derived and this 
has led to some new sufficient condition for avoiding fixed modes.
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10.1. Introduction.
In this chapter we present a new method for constructing pole placing real 

constant and dynamic output feedback compensators for proper plants. This method is 
based on a linearisation of the pole placement map by considering special sequences of 
feedback compensators which, in the limit, converge to a so called degenerate 
compensator; the advantage of this approach is that it asymptotically reduces the 
overall pole placement map to a linear one and thus reduces the the overall solvability 
of the problem to a linear set of equations. This type of global asymptotic linearization 
defined around singular solutions is different from the standard methodologies for 
linearizing the multilinear nature of the map (dyadic feedback, full rank linearization 
[Gia. 2]). The solutions worked out within this framework are given in a closed form and 
it is of the type of a one parameter family of multivariable compensators. The essence of 
this new methodology is that we may rely on large gains in the case of strictly proper 
systems, but not necessarily large gains in the proper case and assignment is achieved 
not in an exact sense, but in small neighbourhoods (as small as we want) around a given 
set of poles. Although the approach is sufficient, it is proved that the methodology can 
work for a generic proper system of p-inputs, m-outputs , n-states satisfying the 
condition mp>n for the constant feedback case and the condition nj(m +p)+m p > n + n j 
for the case of dynamic feedback compensators of order nj.

The condition mp>n has been known as a necessary condition [Wil.l], [Broc.l] 
for the existence of a real feedback and it has also been shown recently [Wang 2] to be 
a generic sufficient condition for real output feedback. The present approach not only 
provides an alternative simpler proof of this important result but also a simpler 
algorithm for computing families of real feedbacks. As far as construction of constant 
feedback is concerned, the previous known conditions for which output feedback may be 
constructed, has been of the type m+p -  1 > n; clearly, the present approach extends the 
family of systems for which constructive tools are available. Although the original 
methodology is for the constant feedback case the approach is shown to extend to the 
case of dynamic global linearising controllers. It is proved that families of such dynamic 
controllers, based on dynamic degenerate point exist and that the dynamic pole 
assignment using these controllers can be solved for a generic plant if 
ni(m+ p )+ mP > n+n j . Furthermore the least n̂  that satisfies this condition gives us
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the least degree family of controllers for which the arbitrary pole assignment is solved 
on a system.

The overall methodology behind the present global linearisation for both static 
and dynamic cases is that degenerate feedbacks may be approached asymptotically by 
regular controllers for which the restricted pole placement map (in the sense that one 
parameter families of feedback compensators are considered) is linear. The solvability of 
the linearised version of the problems is well known and can be described in terms of 
elementary linear algebra or standard theory of polynomial diofantine equations. The 
essential step though, is to select appropriate degenerate points for which the solvability 
of the above linear problem is satisfied. It should be stressed that the approach is 
sufficient , but quit general, since the conditions mp>n (constant) and 
nj(m +p)+m p > n+iij (dynamic) are shown to guarantee the success of the method for a 
generic system. Another important aspect of the methodology is that pole assignment is 
not considered in an exact sense but rather in an approximate sense; that is, the 
designed controllers assign polynomials with poles in arbitrarily small regions around 
the given set.

The present approach differs from all other approaches which have been 
considered for similar problems so far, since it does not belong to the family of standard 
linearising controllers (dyadic, full rank linearisation) and does not belong to the class of 
intersection theoretic tools which have been considsidered in the previous chapters. Key 
features of the methodology is that on one hand it provides tools for establishing 
existence results and on the other leads to a novel computational framework. Within 
this framework degenerate points for which the problem is solvable parametrise whole 
family of solutions and not just a single one. Such solutions may be worked out in a 
closed parametric form.
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10.2. System degeneracy and feedback.
Consider the standard feedback configuration shown below:

It is well known that the closed loop pole polynomial p(s) of the feedback system 
of fig.10.1 is given by:

p(s)=detj[I, K]
D(s)

N(s) }

where N(s)D(s)_1 is a coprime MFD of the transfer function of the open loop system. A 
degenerate point for the feedback configuration is a gain where the configuration has a 
singularity, in the sense that the feedback system is not well posed. If we consider the 
generalised gain of the form rowspan[A,B] e Gp(IRp+m) then the feedback gain is 
degenerate if:

det{[A,B]
D(s)

N(s) }=° Vs (  10. 1)

Remark(lO.l) Degenerate points do not exist in SISO feedback systems since the 
generalised closed loop polynomial ad(s)+kn(s), (a,k) e P^IR) can be identically zero, iff 
a=k=0. □

The determination of a (particular) degenerate gain is the first step in our method for 
constructing pole placing feedback compensators. A first (sufficient) approach for this 
construction can be found in [Wang 2] where the degenerate gain was constructed via 
the coefficient matrix of the column mp(s) of the composite matrix 
M(s) =  [D(s)T,N(s)T]T, that corresponds to the smallest controllability index cp. 
According to our formulation this amounts to selecting p linearly independent vectors
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from the left kernel of the (m+p) x(c.p+ l )  coefficient matrix of mp(s). Although this can 
be done if mp>n, it is not always adequate for the purposes of our method, since we 
need a degenerate gain with certain properties. A more general result which gives all 
possible degenerate gains for a given system is described next.

Proposition(lO.l) For the standard feedback configuration and for a plant described by 
the right coprime pair (N(s), D(s)), or the composite matrix M(s)=[D(s)T,N(s)T]T, a p- 
dimensional vector space T=rowspan[A,B] corresponds to a degenerate gain, iff either of 
the following equivalent conditions holds true:
(i) There exists an (m+p) x 1 polynomial vector m(s) e lR[s]-colspan(M(s)) such that 
[A,B] m(s)=0 Vs. (ii) There exists an (m +p) x 1 polynomial vector m(s) £ IR[s|- 
colspan(M(s)) with coefficient matrix Cm̂sj such that rankCm(sj < m.
Proof
Since det([A,B]M(s))=0 Vs, the pxp polynomial matrix [A,B]M(s) has nontrivial right 
kernel. Thus there exists a pxl polynomial vector v (s) such that [A,B]M(s) v (s)=0 Vs. 
This is equivalent to the fact that [A,B] is basis matrix for a p-dimensional vector 
subspace of the left kernel of the coefficient matrix of m(s)=M(s) v (s) e R[sj- 
colspan(M(s)). For a given m(s) £ IR[s]-colspan(M(s)), its coefficient matrix is an
(m +p)x(d+ l) constant matrix Cm,sj where d is the degree of m(s). If r is the rank of 
Cm(s), then there exists a p-dimensional subspace of the left kernel of Cm̂s), iff m+p- 
r > p, or equivalently, iff m > r.

□
Proposition(lO.l) provides the means for calculating all degenerate points of a given 
system. First we construct a coprime (right) MFD for the transfer function and then 
consider an R[s] linear combination m(s) of the columns of the composite M(s). For this 
m(s), if the rank of the coeficient matrix is less than or equal to m (number of outputs), 
then we construct a basis for its left kernel; Subsequently, we select all possible p-tuples 
of linearly independent vectors and thus we get all possible degenerate points with 
respect to this m(s). The determination of all degenerate points may be achieved if we 
repeat the above procedure for all m(s) £ R[s]-colspan(M(s)).

Example(lO.l) Consider the proper system of 2-inputs, 3-outputs and 5-states with 
transfer function G(s) given by
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-3 , -s 1 ~ o  s2 "

G(s)= -4 -1-s s = 0 s

-5 -2s s 0 1

0
2s

-,-1

and its composite matrix M(s) is therefore given by,

M(s)=
l

o
2

0 s* 
0 s 
0 1

= [m ! (s), m 2(s)l

Then consider the following two cases:
a) Let m (s)= Omj(s) + l  m2(s) =  m ^ s )  = [ 0 ,s 2 , s 2 , s , 1 ] t , with coefficient matrix ,

C =

0 0 0 
1 0 0 
1 0 0 
0 1 0 
0 0 1

The left kernel of C is a two-dimensional vector space spanned by the rows of the 
following matrix:

[A,B]
1 0 0 0 0 

0 1 - 1 0 0

and thus rowspan[A,B] defines a degenerate point for the above system.
b) If we now let m(s) =  lm 1(s)+0m2(s) = nij(s)=[s3,l,0,0,0]T, the new coefficient
matrix is

1 0  0 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 0 0 0

and its left kernel T consists of all vectors of the form [0,0,x,y,z]. All 2-dimensional 
subspaces of T will therefore give us all degenerate gains produced from m ^s), which in 
fact are all rowspan[02x2 , K] where Iv e IR2x3 and rank(K)=2.

Furthermore we can prove that all the other degenerate gains produced by linear
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combinations m (s)= P[(s) tD i(s)+P‘2(s) tB2(s) belong either to case a) or the case b), 
which proves that the above cases give us all possible degenerate gains. □

10.3 Output feedback compensators converging to degenerate solutions.

The examination of asymptotic properties of the pole placement map can be 
achieved via the compactification of the gain space to a Grassmannian. In that case the 
gains K can be considered in the composite form [I,K] or more generally as 
rowspan[A,K], where [A,K] has full row rank (see also Sec. 6.5.3). If A has full rank 
then r<nospan[A,K] is called a finite gain and the corresponding feedback compensator is 
A_1K. One of the most important advantages of this interpretation is that allows us to 
view unbounded gains as a certain rou>span[A,B]. Indeed, if we consider an one 
parameter family of gains Kf such that ||K€|-kx> as e-*0, then according to the composite 
notation, this corresponds to an one parameter family of generalised gains Kf of the 
form K(=romspan[I,Ke]. If Kf is a rational matrix in e, then it has a coprime MFD of 
the form Kf=A (e)_1B(e) such that A(0) is singular and therefore we have:

lim Ke—lim r<raspan[I,A(e)"1B(e)]=lim roti>span[A(e),B(e)] =  roui.span[A(0),B(0)]
£-♦0 £-*0 £—►O

This shows that in the composite notation, unbounded gains correspond to 
rowspan[A,B] such that A is singular. In this setting we can classify the degenerate 
gains r<mspan[A,B] constructed as shown in the previous section, into finite and infinite 
ones, depending upon whether A is nonsingular or not. Every degenerate gain 
rou;span[A,B] can be approached via:

Kf=  r o w s p a n  ([A,B]+e[A',B'])

as e-»0, where [A',B'] is a px(m+p) scalar matrix, and can be seen as the direction via 
which we approach the degenerate gain ; If A' is chosen such that A+eA' is not 
identically zero then:

K(= r o w s p a n  ([ Ip , (A+eA '^^B+eB')])
and therefore K( is an one parameter family of finite gains corresponding to an one
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parameter feedback compensators of the type:

Example(10.2) Let
K ^ A + e A ^ + B + e B ')

rowspan{A , B] = rowspan
3 7 4 1

0 - 2 1 - 5

be an infinite degenerate point for a strictly proper system of 2-inputs and 3-outputs. 
Then consider the direction

[A', B']1 =
1 0  1 7  0 
0 1 0  0 4

an one-parameter family of generalised gains approaching rowispan[A,B], as e-*0, in the 
direction [A', B']j is given by:

Kf= rowspan  ([A,B]+e[A/,B/]) = rouispan
1+6/f 7 -3 /e llf+15

<(<+!) 

-2 /f 1/f 4+5/e

which gives us an unbounded (as e-*0) one parameter family of feedback compensators:

k £=
1+6/e

■2/f

7-3/t

1A

llf+15
<A+1)
4+5/e

By changing now the direction we can find a different unbounded family of gains 
converging to the same degenerate gain. For example if we let 1

[A',B'] 1 0 2 3 5 

0 1 1 6  1

be a new direction and follow the previous procedure, we can find a new one parameter
family of feedback compensators

2(c2+2e+3)

«(1+0
1-2/f

3e2-14e-3
€(l+€) 
6+1 /  €

5f2-2e-15
e(l+0
1 + 5 /f
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which converge to the same degenerate point (as e-»0).
□

Approaching a degenerate point via different directions is very crucial for our method 
and as we will see in the subsequent sections the pole placement problem becomes linear 
with respect to these directions.

10.4. Asymptotic properties of the pole placement map around 
degenerate points.

The degenerate points are points of the Grassmannian where the pole placement 
map cannot be continuously extended. In fact, degenerate points possess a very 
important singulaxity, they scatter sequences of gains approaching them. As the 
following example shows we may have two sequences of gains converging to a 
degenerate point, as e-»0, and yet the corresponding sequences of closed loop poles to 
converge into two different limits.

Example(l0.3) Consider the system and its degenerate gain of example(10.2). The two 
one dimensional fimilies of gains

1 0 0 0 0
Kf= 0 1 -1+i 0 0

1 0 i 0 0Lf=
0 1 -1+i 0 0

both converge to the degenerate gain [A,B] as e-*0. On the other hand, if we calculate 
the closed loop pole polynomials corresponding to these two families we get that

det(KfM (s))= e s5
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det(LfM(s)) =  t s 5 - e  s2

Therefore as we approach the degenerate point [A,B] by the first family of gains, the 
closed loop poles are all zero. However, as we approach it by the second family of gains, 
two of the closed loop poles approach one and the rest of them zero. This indicates the 
spacial singularity of the pole placement map at a degenerate point.

□

Next we will examine carefully this scattering of sequences in connection with the pole 
placement map as we approach a degenerate point. The remarkable fact is that this 
happens in a linear way and thus it allows linearization of the pole placement problem 
via constant output feedback.

10.5. Global linearisation of the output feedback problem and 
computation of solutions.

Consider the composite gain sequences of the form

Se= [A, B] T efA^ B'] , det(A+eA/) /  0 (10.2)

These sequences converge to [A, B] as e tends to zero. We consider the DAP for the 
finite gain sequences S(, which converges to a degenerate point [A, B] . Thus, we have:

det{ (A, B| +e[A', B'] (10.3)

Since the roots of a polynomial do not change if we multiply (or divide) it by a number, 
it is more appropriate to consider the coefficient vector of the polynomial modulo
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dilations(multiplication by scalar), or alternatively to make the polynomial monic. In 
this way, to examine the convergence of the roots of pf(s) as e-+0, we will regard the 
coefficient vector p ( e Rn+1 of pf(s) modulo dilations(multiplications by scalar), as a 
sequence <p7>eP (R )n (the set of lines in Rn+1 passing through the origin); being a 
sequence in the compact space P(IR)n , < p f> , implies that it should have at least one 
cluster point as e-»0. In fact, the next theorem states that this cluster point is unique, as 
e-+0, and the relation between this point and the direction [A', B'] is linear.

Tlieorem(lO.l) Let romspan[A,B] be a degenerate gain and S€ be a sequence of finite 
gains converging to it. Then the corresponding sequence of closed loop polynomial 
vectors < p (> (modulo dilations) converges as e-D to a vector <p > e P(R)n; 
furthermore the function T which maps the direction [A', B'] to <p > is linear.

Proof

The determinant appearing in (10.3) is a polynomial in e and can be computed (by the 
Binet Cauchy theorem) as:

Pf(s)= Cp ([A,B] + e[A', B ' ] ) . C p

Subsequently, we set

CP
( D(s) 

V N(s)
=  P S ?n(s)

(10.4)

(10.5)

where en(s)=[ sn, sn"',...,s,l]T, and expand Cp ([A,B] + e[A', B'] ) as follows:

Cp ([A,B] +  e[A', B'] )= Cp ^

* ! T"

+  €

> T_

ajT + e bjT A . . . .  A + £ bjT ( 10.6 )

where A denotes the exterior product. Expanding now the right hand side of () using 
the distributive property of the exterior product we get:

261



C p ([A,B] +  e[A', B'] ) = A+ e (  £  A;) +e2( E  A(j) +e3( £  Aijk)+...+ ep A,
i — 1 2-P (10.7)

><j

where
A  = a jT A ... A apT

A j =  a j T A . . . A  a.j_ j T A bjT A a.jT A ... A apT

( 10.8)

and more generally A - k is the exterior product (or compound matrix) taken from a.jT 
A. . .  A apT if we substitute the vectors a.jT, a ^  with bjT, bjT,---i respectively.
Combining now (10.4) and (10.7) we get:

Pf(s)—[A Pg+ f( ÊAj) Pg +f ( E  Ajj) Pg +c (E A ijk) Pg+...+ ep A 12 pPg)] en(s)
1 =  1 i<j

(10.9)

since roti«pan[A,B] is a degenerate gain we have that det|[A,B] 
implies (Binet Cauchy):

Vs which

or equivelently:

Cp ([A,B]) . Cp Vs

A P s=0

Therefore the coefficient vector p f of pf(s) is given by:

P C  <( EA;) Pg +<2( E  A ;j) ps + c (E A ijk) Pg+...+ c  A 12..p ps
i = i i<j

( 1 0 . 1 0 )

If we consider now p f modulo dilations (multiplication by constant), we get the vector 
<p f> G P(IR)n. Then because of the invariance of < p £> with respect to scalar 
multiplication we get:
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<P e > ~ < ?  P e> =  <  ( £ A ;) Pg + f( £  A ij) Ps +f2(£ A i jk )  PS+ - +  iP_1 A i 2..P P S > e¡ = 1 ‘ ''*<J

letting now e-»0 we get that <p (> converges to a unique point namely to:

< P  >  =  < ( . £  A ; )  P g >  ( 1 0 . 1 1 )

Furthermore, since the exterior product of vectors is linear with respect to each of the
p

vectors, the function ( £ A J  Pg is linear with respect to b-T, the rows of the direction 
matrix [A',B'].

□

It is apparent, from the previous theorem, that the closed loop poles for the 
sequence of finite gains Si=rotiispan^[A,B] + e[A',B']j tend to the roots of the 
polynomial:

( 10 . 12 )

as e-*0. The polynomial given by () will be called prime polynomial with respect to the 
degenerate point rou;span[A,B] and the direction [A,,B/]; as the previous theorem states 
the coefficient vector p of this polynomial depends linearly on the parameters of the 
direction [A^B']. As a matter of fact the prime polynomial can be written as a linear 
combination Z)(b;j Py(s)) where b— are all the elements of the matrix [A',B'] and P;j(s) 
are some polynomials depending on the particular system and the selected degenerate 
point.

Theorem(10.2) Let <D=roujspan[A,B] be a degenerate point of a system defined by the 
coprime composite representation M (s)=[D(s)T,N(s)T]T, then the prime polynomial of 
this system with respect to *3) and the direction [A',B']= (b - ) 1 < i < p, l < j < p + m ,
can be written as:

P(s) =  ( L A ; )  Pg en(s)
i = 1

p (s )= E (b ij P y ( s ) )  (10.13)

where pij(s) is the determinant of the pxp polynomial matrix Djj(s ) having the same 
rows with the matrix AD(s) + BN(s) apart from the i-th, which is replaced by the j-tli
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row of M(s).

Proof
From eq.(10.12) we have that:

P(s) =  ( EAj )  Ps  en(s )= E (A , Cp(M (s))) (10.14)
i= l i = l v '

developing the exterior product A ; with respect to the i-th row we get:

m+p
A ; = E  bj- a ^ A .- .A  a- , TA e-T A a-T A ... A a T ( 1 0 . 1 5 )

j =  l J J e

where e jT is a lx(m +p) vector having the j-th entry one and all the others zero. 
Substituting now (10.15) into (10.14) we get:

p(s) =  £ bij ( V a . . . A  a; i T A ej T A a iT A . . . A a pT Cp(M(s))) (10.16)

if we let [A,B]” to be the px(m+p) matrix having the same rows with the matrix [A,B] 
apart from the i-th which is replaced by e jT, then (10.16) can be rewritten as:

PM = S bij (c p «A .B]ij) Cp(M(s)))
1 J

By the Binet Cauchy theorem this is equivalent to:

P(s) =  g b ij det([A,B]ij M(s))

If now set Djj(s)=[A,B]jj M(s) then:

P(s) =  E b;j det( D(s)y ) 
ij

and the theorem is proved.

□

Example(l0.4) Consider the system defined by:
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.3 0

M(s) =
1 2s

S2 +  1 S + 1

s + 3 s

s + 1 1

D(s)

N(s)

A degenerate point for this system is defined by <tD=rou7span[A, B] where:

1 0 0 0 0 

0 0 1-1-1

and this since:

[A,B] =

det(AD(s)+BN(s))= det
s'1 0

s 2-2 s -3  0

Let us now approach the degenerate point *3) via the direction:

0 2 0 0 0 

0 1 0 - 3 0

for this direction we have bj2=2, b22= l ,  b24=-3 and all the rest of the b’s are zero. Due 
to the previous theorem, the prime polynomial for this direction is given by

P(s)=E(bÿ Pÿ(s))=2p12(s)+ P22(s) -  3p24(s)

where

Pj2(s)= det
1

s 2-2 s -3  0
-s4+2s3-|-3s2, P2 2 (s)= det

0
2 s i P 24(s)—det

s3 0

s + 1 s

and therefore

p(s)=2(-s4+2s3+3s2)+s5 -  3 s 4 = s 5 -  5s4+4s3+6s2

□
From all the above, it is now evident that the relation of the directional parameters b- 
and the pole polynomial at the limit (as e-*0) is linear, and the matrix representing this 
linear relationship is the coefficient matrix of the polynomial vector [ pn (s), p 12(s),...,
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P ij(s ) ,-,  Ppm+p(s)]-

Remark(10.2) For a given (feedback) degenerate point “35= rou;span[ A,B] of a system, the 
linear function that maps the direction [A', B,]= (b ” ) to the coefficient vector p of the 
corresponding prime polynomial p(s), has a matrix representation denoted by Lcj, which 
is the p (m +p)x(n+ l) coefficient matrix of the polynomial vector [ Pu(s), p12(s),..., 
Pjj(s),..., pp m+p(s)]. In this setting p can be written as:

p=vec(b ip  Loj (10.17)
□

For a given degenerate point ID, the arbitrary prime polynomial assignability by 
sequences of feedback compensators converging to *3), depends readily on Lcj. In fact,

Corollary(10.1) Let *3) be a degenerate point for a system. Then an arbitrary prime 
polynomial can be assigned via a seqence of feedback compensators converging to <3), iff 
rank(Lcj)=n+l. In that case the appropriate direction can be found by solving eq(10.17) 
with respect to vec(bjj).

□

This suggest the following procedure for the construction of (approximate) pole placing 
compensators:
a) Construct a degenerate point <3)=romspan[A, B], as described in section(10.2).
b) Calculate the matrix
c) If rank(Lcj)=n+l, then solve the linear equation (10.17) with the direction 
(bij) =  [A',B/], else go to step a).
d) The one parameter family Kt= (A +eA /) '1(B+eB') of pxm matrices, is the family of 
real constant feedback compensators placing the poles of the system at the given set, as 
e-»0.

e) Select a small enough e (in Ke), to approach the given closed loop pole polynomial as 
close as you like.

Remark(10.3) Although we have not described how we can select a degenerate gain *3) 
such that Lcp has rank equal to n+1, as we will see in the next section, if mp > n then
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for a generic system, L<̂  satisfies this requirment. This means that for almost all 
systems such that mp>n the above procedure can be carried out without even needing 
to repeat steps a,b,c for a second time. In fact the set of systems for which the above 
cannnot be applied is a “negligible” set.

□
Example(10.5) Consider the same system and degenerate point <J of example(10.4). 
Then the polynomials Pjj(s) are given by:

P ll(s)= 0j Pl2(s)=  — s4+2s3+3s2, P1 3(s)=  — s^+s^+5s+3, pj^(s)= — s^+2s^+3s,

p15(s)=  ~ s2+ 2s+3, P2 1 (s)= 0’ P22(s)=s5’ P23(s)=s4+s3’ P24(s)=s4> P25(s)= s3-

Therefore,

J<3D

0 0 0 0 0 0
0 -1 2 3 0 0
0 0 -1 1 5 3
0 0 -1 2 3 0
0 0 0 -1 2 3
0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

We can easily see that rank(Lcj))=6; a fact that means that every prime polynomial can 
be assigned via a certain sequence of feedback compensators converging to *3). Suppose 
now that we want to assign the stable polynomial p(s)=s5+5s4+10s3+ ^ s 2+|U+l. To do 
so we have to solve the linear equation

vec(bij) Lgj=[h 5, 10, i j p  ^-,1]

with respect to vec(by)=[b11, b12, b13, bH, b15, b21, b22, b23, b24, b25]. One of the 
solutions of this equation is:

vec(bjj)=[0, 10/3, 0, 5 /3, 1/3, 0, 1/3, 0, 25/3, 15/3]

which gives the direction
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(by)=[A',B'] =  1
0 10 0 5 1

0 3 0 25 15

As in section(10.3) the sequence of finite gains that assigns (as e-+0) the polynomial p(s) 
is

[A,B]+e[A',B'] =
l(k/3 0 5c/3 t/3

1 (25f-3)/3 5c-1

therefore the required sequence (or one parameter family) of 2x3 feedback compensators 
is given by:

-10/3 5(6-47e)/9 (10-490/3

1A  (25e-3)/3f (5c-l)/c

Indeed, one can easily verify that

det([I,Kf] M(s))= s5+5s4+(10-19l|)s3-f UJ-9Q2t g2+  51+ 2 35c s+1+33i

which tends to p(s) as e-*0. Selecting, for instance, e=0.01 we get

Kf= (A + fA T 1(B +eB')

-3.333 3.07 3.17

100 -91.667 -95

with closed loop polynomial p0.01(s)=s5+5s4+9.789 s3+  10^ 98 s2+  ^ 5 5  s+ i .33. If we want 

to approach p(s) more accurately we simply select a smaller e.

□
Next we will show that the pole assignment conditions described in Corollary() are not 
vague and rarely satisfied. In fact, if mp>n, for a generic strictly proper system, there 
exists a degenerate point with the property that Lcj has full rank. This will ensure us 
that for an arbitrary system of p-inputs m-outputs and n-states such that mp>n our 
method is almost always succesfull.
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10.6 Conditions for generic pole assignability

In this section, we will establish the existence of a broad family of systems for 
which generically the above described method can be successfully applied for arbitrary 
pole assignment. It should be pointed out that the essence of genericity involved in the 
present framework means that the family of systems for which the methods fail is a 
proper subvariety of the systems variety and thus can be considered negligible. The 
method for establishing a properness of the subvariety of systems for which the property 
fails, is by establishing one example of system for which the method works.

Theorem (10.3) When mp>n, then for a generic system of p-inputs, m-outputs and n- 
states, there exists a degenerate point ,tC=roiospan[A,B] such that Lcj has full rank.
Proof:
For a generic system of p-inputs,m-outputs and n-states it is known that the 
controllability indices are:

d-f l,d + l,...d + l , d,d,...,d
r ' ¡>r

where d,r are defined by the Euclidean division of integers: n=pd+r where r < p. 
Consider the following coprime matrix:

M(S):
D(s)
N(s)

„d+l
1 sd+l

1 sd + l

sd
sd l
sd-2
d-3

This matrix can be formed since m>d (it is an easy implication of mp>n). The above
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system has the following degenerate point (with respect to

[A, B]=
10 0 0 ............. 0 0 0 . .

the rightmost column):

o 1

in fact,

AD(s) +  BN(s)=

1 s 
0 1

d+1
d + 1

0
0

ds
1

0
0

To find Lcj, we need to find all P” (s)=det(Djj(s)) where D-j (s) by p-1 rows of AD(s) +  
BN(s) and one row of M(s) (see theorem(10.2)). Since the rightmost column of AD(s) + 
BN(s) is 0, the determinant of Djj(s) can be written as a product of the minor formed 
by the (l,2,...,i,i+l,...,p) rows and (l,2,...,p-l) columns of AD(s) + BN(s) and the 
polynomial element mpj(s) of M(s). Consequently we need to calculate all the principal 
minors of the px(p-l) matrix formed by the (l,2,...,i,i+l,...,p) rows of AD(s) +  BN(s) and 
multiply them with each of the elements of [s ,s<*~1,...,s2,s,l]T. One can readily see that 
these minors are the polynomials 1, s^+1, s2(d+1)  ̂ sr(d+l)^ g(r-t-l)d+r^

s(r+2)d+r^ ^g(p l)d+r j£ wg multiply them with all the polynomials s^,s^'*,...,s2,s,l we 

get the polynomials 1, s, s2,..., sn. This proves that the coefficient matrix Lcj, of the 
polynomials Pjj(s) has rank equal to n+1, or in other words that it has full rank.

□

Corollary(10.2) If mp>n for a generic strictly proper system of p-inputs, m-outputs and 
n-states every closed loop polynomial can be (approximately) assigned by sequences of 
feedback controlllers converging to a degenerate gain.

□
A consequence of the above is the following generic pole assignment theorem:

Theorem(10.4) If mp>n, then for a generic strictly proper system of p-inputs, m- 
outputs and n-states a generic closed loop polynomial can be (exactly) assigned by a 
real constant output feedback controller.
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It is sufficient to prove that the image of the (real) pole placement map contains a 
nonvoid Zarisky open set. Indeed, since the map is regular, this image is a semialgebraic 
subset of (Rn(a set defined by inequalities). Then we have the following two possibilities:

a) Either this image contains a non void Zarisky open set, or
b) There is an n-dimesional semialgebaric subset of IRn which is not contained in this 
image.

Because of corollary(10.2), for a generic system, all points of [Rn can be approximated by 
points of the image of the pole placement map of this system; therefore the case b) is 
impossible for a generic system, and this proves the result. □

Proof

10.7. Globally linearising dynamic feedback controllers: The case of the 
dynamic pole placement map

Next we will examine the case of using dynamic feedback compensators (on a 
plant of p-inputs, m-outputs and n-states) for pole placement purposes when the use of 
constant controllers is not effective (for example when mp<n). In this case we will be 
interested to find a family of controllers with the smallest possible McMillan degree n̂  
such that arbitrary pole assignability is possible. In this setting it is natural to 
parametrise the controllers according to their number of inputs, outputs and states. The 
family of all proper controllers of m-inputs, p-outputs and nj-states is denoted by 
PEp,^ and consists of all IR[s]-row;span[D1(s),N1(s)] where D 1(s),NJ(s) is a left coprime 
MFD pair of a transfer function of a proper system of m-inputs, p-outputs and nr states. 
In this case we want to solve:

P(s)=det{[D,(s),N1(s)]

with respect to [Dj(s),Nj(s)], given that p(s) is an arbitrary polynomial of degree n+n^, 
and that the transfer function of the plant has a coprime right MFD N(s)D(s)~^. As in 
the constant, PI and OBD cases the dynamic pole placement problem induces a pole

(10.18)
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placement map
F : P S p "1,  -------♦ lRn + n i  (1 0 .1 9 )

where F( [Dj (s ),N j (s )] ) is the coefficient of the closed loop polynomial given by (). The 
arbitrary pole placement question is translated to examining whether F is onto. Since 
the dimension of PEp^ is ii|(m+p)+mp (by counting the free parameters of a generic 
Popov form as in 4.3.3), a neccessary condition for arbitrary pole assignability will be

nj(m +p)+m p > n+nj (10.20)

(see also [Wil.l]). In [Wil.l], it was conjectured that this also is a sufficient condition. If 
this is the case by selecting the minimum iij that (10.20) is satisfied, we will have the 
minimum order family of controllers that arbitrarily assign the poles of a system of p- 
inputs, m-outputs anf n-states. Using the global linearisation methods applied in the 
constant case, we will prove that n^(m +p)+m p>n+nj is a sufficient condition for F to 
be onto. Furthermore, for every pole polynomial we will construct a one parameter 
family of compensators in PEPm that assign this polynomial to a given plant via 
feedback.

To apply the global linearisation method ( as applied to the constant controllers 
case) we need to appropriately define the concept of degenerate controllers for the given 
feedback configuration. These controllers are not necessarily proper systems but they

must belong to the closure of PEp^,. Like the case of constant controllers the set PEPim

is not compact and can be compactified into PEPin, by introducing a set of generalised

controllers. In fact the compact set PEp^ contains all p-dimensional [R[s]-

romspan[D j (s ),N j (s )] whose polynomial degree is < n .̂ In this setting we have the

following definition:

Defmition(lO.l) A generalised dynamic controller roitispanfD}(s),Nj(s)] e PE^,1« is a 
degenerate controller iff: r -,

Vs ( 10.21)

□
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Like the constant case we have the following proposition for the calculation of 
degenerate controllers:

Proposition(10.2) For the standard feedback configuration and for a plant described by 
the right coprime pair N(s), D(s) or the composite matrix M(s) = [D(s)T,N(s)T]T, a p-

dimensional R[s] module T=row;span[D1(s),N1(s)] e PEp,™ corresponds to a dynamic

degenerate compensator iff either of the following equivalent conditions hold true:

(i) there exists an (m +p) x 1 polynomial vector m(s) e IR[s]-colspan(M(s)) such that 
[Di(s),Ni(s)]m(s)=0 Vs.
(ii) there exists an (m +p) x 1 polynomial vector m(s) e lR[s]-colspan(M(s)), whose left 
kernel contains p lR[s]-linearly independent polynomial vectors Wj(s)T,...,Wp(s)T such 
that the the px(m+p) polynomial matrix [D1(s),N1(s)] =  [w1(s), ... ,wp(s)]T has 
polynomial degree <n j.

Proof
The proof is similar with the one of the proposition(lO.l).

□
From the above proposition it is evident that to finding a degenerate point we need to 
solve diofantine equations of the type:

w (s)T m(s) =  0

with respect to the polynomial vector w (s)T. This equation is linear with respect to the 
coefficient vector of w (s)T and can be written in a scalar matrix equation form in terms 
of an appropriate Toeplitz matrix.

Proposition (10.3) Consider the equation

x (s )T a(s) =  0 (10.22)

where x (s)T <E [Rlx [̂s] and a (s) e IR£xl[s]. If we write x (s )T= sdlx d T+ ... +x 0T , a(s)= sd 
a d +...+a.g then eq.() can be rewritten as:

vec( x ) dqi ( a ) =  0 (10.23)



where
l x £ ( d 1 - h i )

vec( x ) = [ x diT, x q T ] G HR

a n d

âd âd-i -■ 3-0 0

0 â d  â d - l  •• 3:0

: 0 a d a 0

0 a d a d_j ..

0

0
€  (fjg( d 1 +  l ) x ( d H - d 1+ l )

□

It is apparent that every polynomial vector x(s) of degree d  ̂ or less, that satisfies 
eq(10.22) also satisfies the Toeplitz equation (10.23), and conversely. Although the two 
equations are equivalent, the Toeplitz equation has the advantage that allows us to find 
all the solutions of the equation x(s)Ta(s)=0 of degree dj or less, and this by considering 
the (scalar) Left Kernel of the Toeplitz matrix ( a ). Therefore

Remark (10.4) By selecting a basis for the left Kernel of ( a ) of generic polynomial 
vector a(s), we automatically select a basis for the solution set of x(s)T a(s)=0 of 
polynomial vectors x(s)T of degree dj or less. □

Corollary (10.3) For a generic polynomial vector m(s) g lR[s]̂ m+p x̂l and whose degree 
is d, to have p independent polynomial vectors of degree dj or less in its left Kernel, we 
must have

dj(m +p) -f m > d+dj
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degree hj of the matrix M'(s) formed by these p polynomial vectors is obviously less 
than or equal to pdj which, in turn, is less than or equal to nj, as we previously proved.

Therefore, the polynomial matrix M'(s) constructed this way, satisfies 
det(N(s)M(s))=0 and its degree nj is less than or equal to n̂  QED.

□

Having seen the way we construct dynamic degenerate points we have to proceed to the 
crucial part of examining the asymptotic properties of the pole placement map close to 
a degenerate point. Let romspaj^M^s)) be a degenerate point for a system with 
composite M(s). We will approach this degenerate point with sequences of the form 
M'(s)+eB(s) as e tends to zero. The matrix B(s) is the direction as in the constant case 
and we require that B(s) is such that the sequence M'(s)+eB(s) corresponds to 
composite representation of proper systems of degree nj for almost all e in a 
neighbourhood of zero. By examining the determinant det^(M'(s)+eB(s)) M(s)j and 
letting e tend to zero we can prove along similar lines to the constant case the following 
linearisation theorem:

Theorem(lO.G) Let romspan[M'(s)] be a degenerate gain and Se= M'(s)+eB(s) be a 
sequence of finite gains converging to it. Then the corresponding sequence of closed loop 
polynomial vectors <p f > (modulo dilations) converges as e-»0 to a vector 
<p > eP(IR)n+ni. Furthermore the function T which maps the direction B(s) to <p >  is 
linear.

Proof

The proof is exactly the same as that of Theorem(lO.l) for the constant controllers.
□

Additionally, we have a similar formula for the prime polynomial for the dynamic case

Theorem(10.7) Let <3)=rot<i.spa7i[M,(s)] e PFp,m be a degenerate point of a system given 
by the coprime composite M(s)=[D(s)T,N(s)T]T, then the prime polynomial of this 
system with respect to 'll) and the direction B(s) =  (bjj(s)) 1 < i < p, 1 < j <p+m , can 
be written as:
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p ( s ) = E ( b ÿ ( s )  P j j(s )) (10.24)

where pj-(s) is the determinant of the pxp polynomial matrix Djj(s) having the same 
rows with the matrix ^M'(s)M(s)j apart from the i-th which is replaced by the j-th row 
of M(s).
Proof
The same as that of Theorem(10.2).

□

Therefore, the assignment of prime polynomial is reduced to the solvability of a linear 
polynomial equation. The requirement that the sequence M'(s)+eB(s) has to belong to 
PEp^ for almost all e imposes certain restrictions on the column degrees of B(s). As a 
matter of fact, is n^= pf+g with g<p then we can consider that the column degrees of 
B(s) all less than f+1. This allows as to write eq(10.24) in a Toeplitz form and then 
apply elementary linear algebra.

Therefore, we have the following procedure for the construction of (approximate) pole 
placing dynamic compensators:
a) Select an n̂  such that n^(m+p)+mp > n+nj.
b) Construct a degenerate point c$=rowspan IvF(s) e PSp^, as described in Propositions 
(10.2), (10.3).
c) Find upper bounds for the row degrees of the dynamic direction B(s)=(bjj(s)) such 
that M'(s)+eB(s) to belong to PEPim.
d) For this B(s) solve the diofantine equation (10.24), or its corresponding Toeplitz 
equation, if the diofantine equation is not solvable, go to step b).
e) If B(s) is a solution of the diofantine equation then, the one parameter family 
M'(s)+eB(s) corresponds to the family of feedback compensators placing the poles of the 
system at the given set, as e->0.
f) Select a small enough e (in M '(s)-f eB(s)), to approach the given closed loop pole 
polynomial as close as you like.

The next example shows how we can utilise all the above to find the smallest order 
family of compensators that arbitrarily places the poles of a system, and construct the
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solution.

Example (10.6)
Consider the system of 2-inputs 2-outputs and 8-states whose composite matrix 
representation of one MFD of its transfer function is given by:

M(s)

s4 0

.3 4s s

s 1

1 0

since 2x2<8 the system does not have the arbitrary pole assignability property via 
consatant output feedback. The least degree family of controllers that makes this 
system having this property is the least number iij such that 4nj+4 > 8+nj that is 
nj=2. So using this family of controllers we want to assign an arbitrary pole polynomial 
of the form

P (s ) ■=s1(l+a. is + ags8-t- ayS ags^+ a5ŝ + ajS + ag (10.25)

To do so we need to consider a degenerate point in P £222 and approach it via an 
appropriate direction B(s):

B(s)= bll(s) bl2(s) bi3(s) bi4(s)
b2 i( s) ^ ( s )  f>23(s) 1*24(3)

which has to be calculated. To do so consider the degenerate point:

M'(s) =
1 -s 0 0

0 0 1 -s

for this we have:

M'(s) M(s)
0 -s°

0 1
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Then, the polynomials P;j(s) of the diofantine equation (10.24) are:

Pll(s) =  S4 Pl2(S)= s3 Pi3(s)=s Pl4(S) =  1

p21(s)=s9 P22(S)=S P23(S) =  S P24( s ) = s 5

To solve the approximate pole assignment problem as theorem(10.7) states we need to 
solve eq(10.24) when p(s) is the monic polynomial of degree 10 given by (10.25), with 
respect to B (s)= (b” (s)) .It is obvious that in order for the M'(s)+eB(s) to be -composite 
denominator, numerator matrix of- a second order system, the rows of B(s) must have 
degree equal to one. We can now see that p(s) can always be written as:

Q O r op(s)— s (s4*ag) + a.gS 4- s (ayS-Ha.̂ ) 4- â s 4-s (â s4-â ) 4" s(a2S 4-aj) 4- aQ 

and thus the required direction B(s) is:

0 a^s4-a^ a2s4~a| aQ

s4-ag ag ays4-ag a^

For instance, if we want to assign the pole polynomial s10+ s9+ s7+ 2s4+ s3+ s2+ s -f 1 

then the required direction is:

0 2s+l s+ 1 1

s+1 0 s 0

the one parameter family of dynamic feedback compensators that assigns the above 
polynomial (as e-+0) is M/(s)+eB(s). In fact the closed pole loop polynomial for this 
family is

B(s) =

det((M'(s)+eB(s)) M(s))= e pf(s)
where pf(s) is given by:

Pf(s)= s10(l - 2 f )+  s9(l -3e) -  es8+ s7( l - 2 c ) -  2es6+ 2 s 4 + s 3 +  s 2 + s ( ( +  1) +  1
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and we can easily see that p((s) tends to s19+ s9+ s7+ 2s4+ s^+ s2+ s + 1 as e-+0.
□

Next we will prove that the above method can be carried out for almost all systems. 
Similarly to the case of constant controllers we need only to construct a system of p- 
inputs, m-outputs and n-states (for every p,m,n) such that our method works.

Theorem(10.8) For every p,m,n there exists a plant of p-inputs, m-outputs and n-states

possesing a degenerate point in the family PEp,m , where n j is such that

n j ( m + p ) + m p  > n + n j .  Furthermore this degenerate point has the property that, we can

approach all monic closed loop pole polynomials of degree n-fn^ via sequences of degree 
nj controllers approaching this degenerate point.

Proof

Like theorem(10.3), the controllability indices of a generic system of p-inputs,m- 
outputs and n-states are:

d + l , d + l , . . . d + l  , d , d , . . . , d

r p i

where d,r are given by the Euclidean division of integers: n=pd+r where 0 < r < p. Let 
dj be the smallest positive integer such that d j ( m - l - p )  + m  > d + d j .  Then we can form the 
following p-1 (m +p)xl polynomial vectors:

M  /  , d + 1  , d - d .  +  1 d - 2 d . + l  d - 3 d ,  +  1 d - ( p - l ) d , + l  \TUj(s)=( L s ^ - i - s  1 , S 1 , s  1 , ... , s U , 0 , 0 , . . . ,  0 )
S ' 'v------------------------------------ ' '

P+1

/  . I d .  d-h 1 , d - d .  +  l d - 2 d ,  +  l d - 3 d ,  +  l d - ( p - 2 ) d ,  +  1 \T
u 2(s)=l ? - 1 , s s 1 ,8 1 , 8  1 , . . .  , s ' 1 , o, 0, . . . ,  0)

V ---------------------------------N»/------------------------ ------------------------------- ' /
P+1

Mr(s)=(s<M)di, .<'•*) di.... , ,  ... iSd-(p-')d, + i , 0> 0> __
-V --------- ' /

P+1
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/  rd, (r-1) d, j  d-d, d-(p-r-l)d, X1
u r + i(s)=( s s 1,—,1 , sd-l  s l, ... , s___________^ , 0, 0, Oj

P+1

/ (p-2)d, 2d, d, a d-d, xT
u p _ l(s )= ( s 1i - ,  s l , s  1,1 , sd- l ,  s 1 , 0, 0, 0J

P+1

Furthermore dj being the smallest positive integer such that dj(m+p) + m >d+dj is 
satisfied, d can be written as

d=dj(m +p-l) +  rj -p < r j< m

and we can select the last polynomial vector depending upon whether rj is positive or 
negative. Specifically, if rj > 0 we have

Up(s)= (sd, sd dl, sd' 2dl, ..., s(rl +  1)dl + r l , srldl + r l , ..., s2dl+2 , sdl +  1 , 1 )T
V/— ■ y  '

otherwise if r j<  0 we can form
rl + !

t\ id  d-d, d-2d, (r, +  l)dr r, r,d,-r, 2d,-2 d , -1 \T
a PW = ( * . >  - s  ‘ , - , s  1 1 1 , s 1 1 1 , ■■■, S 1 , S 1 , l j

rl + !

We consider now a plant of p-inputs, m-outputs and n-states, such that its composite 
(denominator, numerator) matrix is given by:

M(s) =
D(s)

N(s)
=  ( a i ( s )> h 2(s), . . . ,  u p]

Then we can see that a degenerate point for M(s) is given by
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-1 0 0

M'(s) =
0 -1 s

(E IK[S; px(m+p)

-1 s

indeed,
d-l-di-fl d,

5 1 - s 1 0

M'(s) M(s) =

d+d, +1 d,
s 1 - s 1

d+d, d,
1 s 1- s l - 1

d+d, d,
s >- s 1- 1 0

0 1

and additionally M'(s) has degree pd  ̂ (<n j) and therefore belongs to PSPii,. Since the 
p-th column of M'(s)M(s) is zero, the polynomials P ;j( s )  of the expansion (10.24) of the 
prime polynomial p(s) are given (up to sign) by:

Pij(s)= ai(s) 0j(s)
where a-(s) is the determinant of the matrix formed by the 1,2,3,...,p-l columns and 
the l,2,...i — l,i-J-l,—p rows of M'(s)M(s) and /?j(s) is the j-th element of the vector 
Up(s). The polynomials a^(s) can be easily calculated due to the bidiagonal structure of 
M'(s)M(s). Specifically,

« ¡ (s)= (s
d+d. + l d

- s '■ 0
i-1

when 1 < i < r+1

and

«¡(s)= (:
d+d | -f-1 d+d.

S
l V-rl1) when r-f 2 < i < p
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From this, we can see that the degrees of Pjj(s) 3X6 distinct, and vary from n+(p-l)d^ 
(the degree of ppl(s)) to 1 (the degree of pj(p_pm)(s) )- If we reorder the p-j(s) with 
respect to their degrees, we can see that the difference of degrees of two consecutive 
ones is not more than d j-fl. These facts can be used to prove that the diofantine 
equation

p(s )=E(b i j ( s )  Py(s))

has an appropriate solution b -(s ), when p(s) is a generic polynomial of degree n+nj. 
Indeed, consider first the polynomial Euclidean division:

p ( s )= 7 r(s )  P i j (s) +  r ( s )  d e g ( r ( s ) )  <  d e g ( P i j (s))

where Pjj(s) is the largest degree polynomial (namely ppl(s)). Next divide r(s) by the 
Py(s) of the next degree and continue this way until the P^(s) of the least degree, that is 
one. This way for every p—(s) we get a corresponding quotient b— (s), and the 
construction is done in such a way that eq(10.24) is satisfied. Furthermore apart from 
bpl(s) whose degree is nj-(p-l)dj all the others have degree less than or equal to dj. 
This proves that the b” (s) constructed this way, is a solution of the diofantine equation 
(10.24) and that the sequence M,(s)+eB(s) when e ^ 0, corresponds to systems of degree 
nj. By theorem (10.7) the sequence of M'(s)+eB(s) is the sequence of feedback 
compensators of degree n̂  which can assign to the plant closed loop poles arbitrarily 
close to the roots of the generic polynomial p(s). □

With the help of the theorem(10.8) we can prove the following generic pole assignment 
result

Theorem(10.9) If nj(m+p)+mp > n+nj, then for a generic strictly proper system of p- 
inputs, m-outputs and n-states, a generic closed loop polynomial can be (exactly) 
assigned by a dynamic output feedback controller of degree rij.

Proof

The dynamic pole placement map F of (10.19) is a regular map, therefore with similar 
arguments to the ones of theorem(10.4) and with the help of theorem(10.19) we can
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prove that the approximate pole assignability implies exact pole assignability.
□

10.8 Conclusions
Due to a remarkable property of the degenerate points of a feedback 

configuration, we derived a new method of constructing constant and low degree pole 
placing compensators. Although the approach is asymptotic, it has important 
consequences for the exact problem. In fact with this method it was proved that mp>n 
is a sufficient condition for generic pole placement via constant controllers and that 
ni(m+p)+mp > n+nj is sufficient for the generic pole placement problem via dynamic 
controllers of degree iij.
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CONCLUSIONS

The main objective of this thesis was to develop and enhance with new concepts 

and tools, the overall framework of the Determinantal Assignment Problem (DAP). 

Previous work [Gia.2] was focused on the constant DAP and any work as far as 

dynamics is concerned was at a rather preliminary stage of development. Work on the 

decentralised DAP was initiated in [La.l], but the main effort there concentrated upon 

the exterior algebra based implications rather than solvability conditions of the relevant 

problems. The starting points of this thesis were: (i) to enrich the algebrogeometric 

framework in [Gia.2] by formulating and translating many of the intersection results in 

a cohomology theoretic framework, (ii) to develop the approach to decentralised 

problems (like those defined in[La.l]), and (iii) to extend the approach to dynamic 

problems of either a specific controller type (such as PI, Observability index bounded 

dynamics) or fixed McMillan degree type and provide a unifying systematic framework 

for computation and parametrisation of families of solutions, whenever such solutions 

exist. The need to develop the topological dimension of intersection theory of DAP, was 

motivated by the difficulties faced in the testing of sufficient solvability conditions 

based on the calculation of degrees of varieties, as well as the problems emerging within 

the existing framework in extending the odd intersection test to decentralised and 

dynamic problems. Although, the link of system invariants to solvability conditions has 

been established in [Kar.l] and [Gia.2], the topological properties (local and global) of 

the pole, zero placement maps have not been looked up properly (with the exception 

the work in [Her.l] and [Rein.l]). A great deal of effort was spent on the derivation of 

solvability conditions for the various versions of DAP, however, little work has been
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done on the computation of solutions of DAP whenever the solvability conditions are 

satisfied. DAP has been formulated as an optimisation problem [Gia.2], [Mit.l], but this 

approach is still in its early stages of development as a systematic method. 

Furthermore, this optimisation framework allows computation of one solution at a time 

and does not provide parametrisation. The lack of a systematic computation framework 

has been evident from the early beginning of this work. The observation, that for the 

solvability of DAP, the number of controller free parameters must be greater than or 

equal to the number of constraints, suggests that the solvability of DAP has the 

complexity of a variety intersection problem only in the boundary case when the 

number of free parameters is equal to the number of constraints. In the case where the 

degrees of freedom are greater than the constraints, it was noted that there is a need for 

alternative methods which explore efficiently the additional degrees of freedom, rather 

than adopting the sufficient approach that tries to reduce these problems to intersection 

type, by fixing a certain number of free parameters.

The work in the thesis has three natural sections: the development of the 

geometric properties of the DAP map, the derivation of new solvability conditions for 

families of problems stated above using cohomology theory, and the introduction of an 

entirely new framework for studying DAP in the case where the number of free 

parameters are greater than the number of constraints. The mathematical tools needed 

for the above problems come from the areas of algebraic geometry and topology and our 

objective has been to use these advanced tools without confusing the underlying system 

theory issues. Thus, a lot of effort was put into explaining the system significance of the 

tools, and into illustrating their importance by numerous examples and by avoiding 

unnecessary abstraction and mathematical formalism, which does not seem to be 

appropriate for the study of the problems under consideration. Although the majority of
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mathematical tools used here have been standard, to apply them to the special 

problems it was necessary to adjust them to the specific context and to further develop 

certain aspects of them. Some of these new developments, and in particular, issues 

related to compactification of dynamical systems and the work on global linearisation, 

have a mathematical interest of their own, independent of system theory. In fact, the 

compactification of dynamical systems and its topology has relevance to issues in 

Young-Mills theory, whereas the global linearisation may have implications in the study 

of real algebraic regular maps. However, the examination of such issues has been outside 

the scope of the thesis and it is an area of future work.

The work in chapter 3, aimed at reviewing and popularising important 

mathematical tools without the unecessary formalism found in most of the textbooks 

and has been included to help the reader, with a systems and control background, deal 

with these issues. The material covered in Ch.3 may be further developed by exploring 

its significance to further issues in system theory, but due to the emphasis on DAP, this 

was not done. Chapter 4 has served as a review of the algebrogeometric approaches of 

system and control theory and its content was restricted to the areas related to DAP. In 

fact, results of the algebrogeometric framework which do not belong to the DAP range 

of problems were not considered. In the same Chapter, issues related to the 

parametrisation of systems which are essential for the algebraic geometry formulation of 

DAP, were examined. This latter work presents a simple constructive way of 

structuring the families of systems as real varieties embedded in a projective space via a 

Plucker type embedding. The properties of this variety and its closure in the projective 

space, as well as the relations of its topological properties to system invariants, is still 

under investigation. Chapter 5 provides a detailed formulation of the various DAPs and 

presents its basic analysis based on exterior algebra. This chapter serves as a prelude to
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the issues dealt subsequently.

The main part of the work starts with chapter 6, which provides a detailed study 

of the geometry of the DAP map and feedback related issues. In particular, the 

properties of the image of the map, such as dimension and structure, and their relations 

to standard system invariants were examined. This work needs further development in 

the area of specifying the more detailed semialgebraic structure properties of this map 

(especially when arbitrary pole assignment is not possible) -  this has important 

implications in the study of the stabilisation problem (instead of arbitrary pole 

assignment, we require the map to be Hurwitz). The representation of infinite gains as 

finite points on a certain compactification, has been an integral part of the study of the 

pole placement map and the present work provides a rigorous treatment, of otherwise 

intuitive ideas previously used in system theory (treatment of high gain feedback). 

Further work is in the area of extending the framework to dynamic infinite gains, as 

well as linking the present approach to duality theory on dynamical systems (define 

equivalent system problems with finite gains) [Kalo.l]. The notion of system 

degeneracy, has been systematically examined and relations with the theory of vector 

bundles have been established. As far as system degeneracy is concerned, the work in 

chapter 6 has been of a rather general character, and a more detailed study related to 

global linearisation was made in Chapter 10.

The study of of pole placement by output feedback and zero placement by 

squaring down, using the tools of the cohomology theory was made in chapter 7 for the 

case of centralised static compensators. It has been shown rigorously that for such 

problems the grassmannian provides the correct compactification framework. The 

overall philosophy for the odd intersection theory [Gia.l] on specially selected 

subvarieties of the Grassmannian, and in particular Schubert varieties, has been
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formulated and established in a rigorous way and the overall intersection problem has 

been translated into an equivalent formulation using cohomology rings. The advantage 

of the cohomology ring approach is that the odd property of a large number of Schubert 

varieties can be checked using only the height of the first Whitney class, which has been 

already calculated using alternative means [Sto.l]; this new test was shown to be the 

best that can be achieved when the odd intersection philosophy is used. This approach 

allows the characterisation of systems for which the odd order sufficient condition 

generically holds, and this is an advantage in comparison to the previous test [Gia.l] 

based on factorials. The extension of the cohomology ring approach to dynamic DAP 

problems is still an open issue; work in this area invilves the construction of a “nice” 

compactification and the more difficult issue of calculating its cohomology ring in a 

form suitable for the calculation of certain heights. An important issue of this 

framework, which is related to the computation of solutions is the construction of the 

representation of the Schubert varieties for which the odd order based test is satisfied. 

This may allow parametrisation of families of feedbacks for which the DAP is solvable 

and the solutions explicitly computable.

Chapter 8 has been concern with the study of DAP to two specific families of 

dynamic pole assignment, ie PI and OBD families of controllers. An attempt to reduce 

this problem to an equivalent constant DAP was made, but the corresponding 

compactification as a Grassmanman presented problems. As a result tools used in the 

previous Chapter were unable to be applied to these cases. Instead, an alternative 

approach using noncompact varieties, were used for the derivation of necessary as well 

as sufficient conditions for the existence of complex solutions to these problems. The 

study of the existence of real solutions and their computation still remains an open 

question. The search for an appropriate compactification of the variety of PI and OBD
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controllers is the key issue for these problems, if we aim at using the framework and 

tools deployed in ch.7. An alternative method for these problems is that based on the 

results of Chapter 10.

The study of decentralised pole, zero assignment by static controllers has been 

the subject of Chapter 9. The approach to the study of decentralised DAP suggested in 

[Kar.4] and [La.l] and based upon decentralised Grassmann variety, was used together 

with the equivalent (in terms of an isomorphism) formulation of the product of 

Grassmannians [Wang.3]. The cohomology ring framework based on height was 

extended to this case and new sufficient conditions for the generic existence of real 

solutions for the constant output feedback and squaring down decentralised problems 

were derived. These conditions were in terms of a height of an appropriately constructed 

class and this height has been computed in terms of the formuli given for the heights of 

the Grassmannians involved in the product. The results of Chapter6 on the general 

properties of pole placement map, were extended to the decentralised case and this 

provided a better understanding of the system theory content of the problem since 

properties of this map to system invariants, (defined as decentralised Markov 

parameters), were established. The results in this chapter may be used for the study of 

suitability of alternative decentralisation schemes, based on the decentralised height 

criterion and decentralised Markov parameters. The computation of solutions is still an 

open question within this framework, if we want to avoid the optimisation approach 

[La.l]. The representation of the odd order Schubert varieties will provide useful 

computational tools and the alternative framework discussed in Chapter 10 may also 

introduce some alternative way of thinking for this problem. It should be stressed that 

it is still an open question, the relationship between the decentralised invariants of the 

decentralised DAP framework and the special graph based properties of the system that
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permit the solvability of the decentralised pole assignment problems.

The work in chapter 10 introduces a new framework for the solvability as well as 

computation of solutions of the constant and dynamic DAP which is different from the 

intersection dominated philosophy adopted through out the previous chapters. As such, 

this framework avoids all difficult compactification issues (although some 

compactification is assumed for defining degenerate points) and apart from new strong 

solvability conditions provides the means for the parametrisation of families of such 

solutions. Implicit in this methodology is the detailed study of degenerate feedbacks 

(static and dynamic case) which characterise the special points where the pole 

placement map blows up. This property is shown to be behind the global linearisation of 

the pole placement map and introduces new invariants characterising completely the 

solvability of the problem ie. the “blow up” matrix. Searching through the various 

degenerate points and calculating the rank of the blow up matrix allows the assessment 

of solvability or not of the problem. The characterisation of families of systems (mp>n 

for static case, and n^(m+p)+mp>n+n^ for the dynamic case) for which the maximal 

generic dimension of the blow up is equal to the degree of the assignable polynomials 

gives the strongest sufficient condition so far on static and dynamic feedback; this also 

confirms the previous conjecture of Willems [Wil.l] which has been an open problem for 

the past fifteen years and suggests the way for computing the least required dynamic 

order for generic pole assignment. A distinct advantage of the global linearisation 

framework is that it permits the calculation of feedbacks as solutions of a simple linear 

set of equations and also allows the parametrisation of all such solutions based on the 

system Plucker matrix and the blow up term associated with the degenerate point. The 

numerical aspects (ie sensitivity, robustness) of this scheme is to be examined and this 

is one important area for further work. The extension of this approach to decentralised
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problems is not a trivial application since sudi extension heavily relies on the fine 

algebraic structure aspects of rational vector spaces and modules involved in the 

definition of the appropriate degenerate points.

The range of problems examined in this thesis by no means exausts those for 

which the algebrogeometric framework and tools developed in this thesis may be 

applied. Problems such as simultaneous design, as this is defined by problems of 

simultaneous pole, zero assignment may be discussed using the same tools. Applying 

these tools to system parametrisation issues, establishing links between Plucker 

invariants (integral part of the present framework) and standard invariants as the 

recent work in [Kar.8] on relations with Kronecker invariants is essential in extending 

the importance of this approach not only to the study of control problems but also in 

the better understanding of underlying system theory issues. A rather important 

limitation of the present overall approach is that it is based on the assignment of 

coefficients (or roots) of polynomials. Extension of this framework to the stabilisation 

problems is very important, but not a straight forward exercise. Although the basis 

exterior algebra initial analysis is still valid, the theory of semialgebraic sets becomes 

now central rather than algebraic geometry. This area is an open challenge.
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