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A bstract

The work in this thesis is concerned with parallel architectures based on the 
Inmos transputer-type processors and parallelisation of some computer vision tasks 
chosen from low to high level.

The transputer is a microprocessor with a micro-programmed scheduler and 

four serial communication links. It directly supports parallel processing since several 
transputers can be connected through their links to co-operate on solving a problem. 

Also several processes can be run on the same transputer. A major issue in parallel 
processing is the communication overhead introduced by parallelising a given task. 
This overhead is not present in sequential processing and must be curbed if the 
implementation of a task on a parallel machine is to be successful. The interconnection 
network underlying the architecture o f a parallel computer is therefore of the utmost 

importance.
Computer Vision consists o f a hierarchy o f tasks ranging from low-level 

operations dealing with large amounts of relatively simple data to high level operations 
handling increasingly complex structures. In this work a novel edge detector based on 
adaptive filtering and an edge detector operating on colour images are presented and 
implemented on a number of transputers. These parallel implementations together with 
implementations of vector quantisation, Fourier descriptors for shape discrimination, 
the Hough transform and the Maximum clique algorithm, offer a notable performance 
increase when compared with sequential implementations. However, every algorithm 

required the design of a specific network of transputers to take advantage o f the 
parallelism and data dependencies inherent in each.

Consequently, attention is focused on the topology o f interconnection 
networks. In particular, the communication requirements o f computer vision 

algorithms as identified by the various computer vision tasks are analysed. These 
requirements together with graph theoretical considerations are then used to suggest a 
topology for large transputer networks. The latter is based on sub-graphs, with proven 
performance when used to implement interconnection networks, combined to form an 
architecture with improved performance. This architecture consists of a fixed structure 
supplemented with a dynamically reconfigured network. After describing this topology, 
a routing algorithm that conveys messages along shortest paths in the network is given 
and implemented. And finally, some practical issues in the use o f transputers are 
considered and solutions proposed.
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1. Single Instruction stream, Single Data stream (SISD)
2. Single Instruction stream, Multiple Data stream (SIMD)
3. Multiple Instruction stream, Multiple Data stream (MIMD)

Flynn's taxonomy, though restrictive in that it cannot classify some of today's 
computers/algorithms, serves as a guideline in the approach to new problems. Besides, 
to attain the high performance required the best o f different system architectures is 
needed. Therefore, Flynn's taxonomy will probably be used in the future to classify 
sub-systems instead of complete computers.

Amongst the areas of research that require vast processing power is computer vision. 
Other areas include fluid dynamics, meteorology and numerical analysis.

The main focus o f this work is on computer vision. It is believed that computer vision 
with its wide range of needs is a challenging area for parallel systems. In fact computer 
systems manufacturers often demonstrate the power o f their machines on image 
processing applications. On the other hand, some problems in computer vision can only 

be solved -using current knowledge- with very fast computers. New methods and 
techniques that decrease the complexity will probably be discovered, but a large 
amount of processing is very likely to remain necessary.

The object o f the work presented here is to study computer vision in the wake of 
parallel processing. This leads to the realisation that systems which offer good 
performance for one type o f application may fail to do so for others. Commercially 
available hardware can compute image filtering tasks in real-time (25 frames per 
second). But, can this hardware search a large database using sophisticated data- 

structures for a best match? The answer is no. Thus, there seems to be a need for 

architectures and computer vision algorithms from various levels that map efficiently 
on them. At first glance the only solution seems to be a compromise between the 
models that have been used successfully for problems with fundamentally different 
needs. In other words, design factors such as grain of parallelism (size o f atomic 
tasks), the ratio o f inter-processor to processor-memory bandwidths, etc. are to be 
balanced. An important aspect in the design o f such computers will be the unit 
Processing Element (PE). The latter should have an important bearing on the approach 
adopted. For example, intuitively a systolic array type o f processor with very limited 
computing capability drawing its power from the regular beat o f data, is not likely to 

be amenable to the solution o f a combinatorial problem with non-deterministic spatial 
distribution o f processing. For a start the data-structure representing the problem has
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to be transformed into a set of homogenous and similar (and small) regions. This will 
have to be done on a powerful central computer and can be a complex problem.

Computer vision has traditionally been divided into a hierarchy of processing steps. 
The lower steps are named low-level vision and deal with image level operations. A 
range of operations (which is not so well defined) can be termed intermediate-level 
vision and involves grouping the low-level features extracted by the previous steps into 

more meaningful entities. The latter are operated on by processes categorised as high- 

level vision which are concerned the reasoning aspects of computer vision. The 
processing and communications requirements o f parallel implementations o f tasks from 
different levels will differ greatly. This is the main reason for the choice o f the 
algorithms in Chapter 4, Chapter 5 and Chapter 6. Edge detection is clearly a low-level 
vision task. The Fourier descriptors and the Hough transform fall into the intermediate- 

level. Finally, the clique finding algorithm falls into the high-level category. The aim of 

the various implementations is two-fold. First, it will be shown that the communication 
needs are such that different algorithms require different topologies (even for a modest 
number of processing elements). Therefore, a flexible architecture is needed, especially 
for large networks. Second, improvements to the algorithms will be proposed.

The computer vision algorithms studied in this work are edge detection, vector 
quantisation, the Fourier descriptors, the Hough transform and the maximal clique. 

These algorithms are designed and implemented in parallel. First, a new edge detection 
operator is formulated based on the adaptive filtering method. Second, a modified 
Canny edge detector is applied to the three planes (R, G and B) of a colour image with 
corroboration between the different planes. Third, a vector quantisation algorithm is 
defined, where the coder is implemented on a network of processors. Then, a shape 

discrimination scheme based on the Fourier descriptors is formulated. The latter 
together with the Hough transform algorithm present examples o f middle-level vision 

algorithms. Finally, the maximal clique finding algorithm is a representative o f high 
level computer vision.

Graph theoretic methods have been shown to allow the expression o f many search 
problems. Besides, many problems in computing reduce to enumerations or 
combinations; and most problems in combinatorics can be expressed in graph 

theoretical terms. Some of the seemingly intractable (without very involved calculus) 
problems of statistical mechanics have been solved using graph theoretical methods 

[Temperley], More in line with this work, relational structures can be represented as 
graphs [Ballard], Thus, matching objects in a scene to models in a database reduces,
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given the right interpretation of nodes and arcs, to graph searching procedures. One 
such method involves forming an association graph2 from the two relational structures 

representing the object in a scene and the model. Having formed the association graph 
the problem becomes that of finding its cliques i.e. sets o f completely connected 
vertices. A clique that cannot be extended by adding a vertex to form a larger clique is 
a maximal clique. Therefore, good matches between object and model will 
correspond to large cliques. The parallel implementation o f this procedure is the 
subject o f section 6.3.

The Hough transform (section 6.2), and Fourier descriptors (section 6.1) are 

considered next. The former is implemented for both straight lines and generalised 
parametric curves. The complexity o f the algorithm is analysed and a method is 
proposed for further performance increase. The latter is also implemented on a 

network of transputers and the use of the Hartley transform is proposed as a faster 
alternative for the Fourier transform. The notion o f normalisation is also considered.

Problem solving using parallel processing requires, at the outset, a choice o f approach. 
There are two main categories of parallel systems:

1. shared memory parallel computers,

2. and distributed memory parallel computers.

The work presented in this report concentrates on a sub-class o f the distributed 
memory parallel computers that rely on the message passing paradigm.

The aim here is, therefore, to study the current state of affairs in network topologies; 

and to use graph theoretic concepts and practical considerations to present an 
architecture with 'good' characteristics. The latter are based on both formal metrics 
drawn from the theoiy o f graphs and computational concepts. The view is taken in this 
work that graph theory is a powerful tool in the design o f parallel computers and 
parallel algorithms. The connection with the topologies o f networks o f processors is 
intuitive. One can easily picture the PE's as vertices and the communication links as 
edges o f a graph. Examples o f the use o f graph theory in the design o f minimum 
latency reliable networks predate parallel computers.

2Please refer to section 6.3 for the relevant definitions.
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The approach adopted here relies on making use o f graph theoretical concepts and 
results, mainly the diameter (or maximum distance between any two nodes) but also 
the notion of dominators in directed graphs, etc. to reduce the inter-dependence of 
PE's that are not functionally related. Another important aspect o f architectures is the 
ability to map useful partial-graphs that have been shown to implement certain 
algorithms efficiently e g. trees, meshes, etc. Besides, the communication structure of a 
problem can vary within one level o f processing as well as between levels. This 
suggests that reconfiguration should be considered. However, general reconfiguration 
routines require a great deal of synchronisation and thus introduce further sequential 

processing (Figure 1.1). Hence, the use of a fixed topology with 'good' characteristics 
as defined earlier and only a sub-set o f links dedicated to reconfiguration is the method 
adopted.

The advent o f dedicated circuits to effect message routing represents a different 
approach to fast communication. However, these routers introduce delay and, in large 
networks where several are combined to implement full inter-connection between the 
processors in the system, there is no deterministic way to evaluate communication 
latency accurately.

In the next few paragraphs the structure o f this report is introduced. This will include a 
short description o f the content o f each chapter.

Chapter 2 introduces computer vision and pinpoints the main differences in processing 

requirements between the different levels o f its hierarchy o f tasks. It describes selected 
tasks from low level image processing to the high level processes o f knowledge 
representation.

Chapter 3 describes the parallel models, architectures and paradigms. It gives the old 

arguments against the use o f parallelism and their rebuttals. Then, it describes some 
commercially available parallel computers and the rationale behind them.
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Chapter 4 introduces two edge detection algorithms and their parallel implementation 
on transputer networks. First, an adaptive approach to edge detection is presented 

where the edge operator's kernel is determined from the image using a Widrow-Hoff 
filter [Widrow], Then, a modified Canny edge detector [Canny] is adapted to colour 

images. The result o f applying the operator to one of the planes (R, G or B) is 
corroborated by that of applying it to the others. Finally, both algorithms are 

implemented on specific transputer networks.

Chapter 5 presents the implementation of a parallel vector quantisation algorithm 
aimed at image compression. The implementation achieves very good speed up 
characteristics.

Chapter 6 presents the implementation o f three different algorithms from computer 
vision. First, the Fourier descriptors technique is introduced and a fast algorithm based 
on substituting the fast Hartley transform for the fast Fourier transform is proposed. 
Two formulations of the Fourier descriptors are considered. One formulation has fallen 

into disuse because of the high frequency content of the resulting descriptors. An 
attempt at providing a solution is given. Second, the Hough transform technique is 

presented and a parallel implementation is described. The latter includes both the 
Hough transform for lines and its generalisation to arbitrary parametric curves 

[Ballard 2], Last, the high level goal o f matching models in a database to objects in 
images is considered. The associative graph technique based on finding the cliques is 
analysed in order to identify potential parallelisms. The problem of finding cliques in a 
graph is known to be NP-complete3 i.e. there exists no deterministic algorithm to solve 
the problem in polynomial time (to the size to the input). However, there are in the 

literature many examples o f simple heuristics used to improve the situation 
considerably [Bolles], An algorithm based on block cluster analysis is presented, the 

main idea is to represent the association graph by its adjacency matrix and then use 
row and column permutations to bring the T  entries close to the main diagonal. Also a 
parallel iterative version o f the algorithm given in [Bolles] is presented. Finally, the 
transitive orientation o f an undirected graph is shown to ease the problem of finding 
cliques [Liu], However, not all graphs are transitively orientable; thus the use of 
transitive orientation is investigated as a simplifying procedure.

Chapter 7 deals with the design of a transputer architecture suitable for computer 
vision. The design criteria used to this effect build on graph theoretical results to find a

3Please refer to appendix B for the definitions of complexity theory.
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topology that exhibits a reasonably small diameter, vertex and edge symmetry, etc. 

Then it turns to the possible schemes for reconfiguring the proposed architecture 
dynamically.

Chapter 8 presents a routing strategy for the architecture of Chapter 4 and presents 
tools for performance evaluation and other aspects o f the implementation o f algorithms 
on transputers. The programming language used throughout is Occam which is pared 
down and offers explicit support for parallelism and the message passing paradigm. 
Occam is the implementation o f a subset o f Communicating Sequential Processes 

(CSP) [Hoare], CSP is a mathematical theory which views systems as a set o f co-
operating processes that can be defined formally; and manipulated to prove 
correctness, etc. Appendix A is dedicated to the transputer and Occam.

Chapter 9 is the conclusion; it summarises the main results of this work and considers 
extensions and future work.
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CHAPTER II

2. Computer Vision

Computer Vision is the area of computing involved in automating the processes of 
visual perception. It includes image processing which deals with transforming, 
encoding and transmitting images. It also includes pattern classification which deals 
with separating or classifying features. Finally, computer vision includes higher level 

goals and techniques suitable for geometric and cognitive processing.

This chapter is intended as an introduction to the domain problems tackled, with 
special emphasis on the processing requirements of the different classes o f algorithms. 
Computer Vision is introduced by groups of algorithms acting on different image 
representations. Figure 2.1 [Ballard] shows the relationship between the various 
representations that are of interest in computer vision.

Computer vision presents a hierarchy of tasks ranging from low-level perceptive 
processes to high-level cognitive processes. With regard to the processing 
requirements of the different levels o f this hierarchy, it can be noted that low-level 
vision usually relies on relatively simple tasks handling large numbers o f primitive data 
items (e g. pixels), whereas high-level vision consists of complex tasks handling more 
evolved representations (e g. relational structures).

An important factor in parallelising an application is load balancing, because one must 
ensure that no processor (or processors) remains idle while others are overworked. In 
chapters 4, 5 and 6 a number o f computer vision tasks are considered and parallel 
algorithms are presented and implemented.
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Ballard and Brown categorise the representations of computer vision into four main 
groups as follows:

1. Iconic images,
2. Segmented images,

3. Geometric structures and
4. Relational structures.

Moreover, they identify a loose ordering between the different representations. Also, 
each category can be made up of several layers o f representation. Such a view of 

computer vision is very helpful from a parallel processing view point, since 

representations within the same category will have similar storage and communication 
structures.

The input to a computer vision system is invariably a digitised image (or set of 
digitised images) produced by some piece o f equipment that converts radiation e g. X- 
rays, ultrasound, visible light etc. into an electronic signal which is then sampled. The 

most common radiation used is visible light; a camera e g. CCD1 produces a two- 
dimensional array o f pixels which can be displayed or passed on to the computer vision 
system for processing. This array is an iconic representation o f the scene o f interest. 
Most processing at this level will produce another iconic image e.g. edge pixels. 
However, intrinsic properties of the scene can also be produced which give

1 An array of Charge Coupled Devices have their capacitances modulated by the incoming light.
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information about surface reflectance, orientation, depth o f field etc. The major 

common property of these low-level processes is that data dependency is local i.e. to 
compute the output o f the process at a particular location only a close neighbourhood 
around that location is needed. Therefore, these processes exhibit a high degree of low 
grain parallelism and are adequate for SIMD implementation (especially processor 
arrays).

Segmented images are formed from iconic images associating sets o f pixels with 
objects. Processes at this stage can benefit from knowledge about the context o f the 
scene in order to reduce computation time. Data dependency is no longer local, since 
regions (segments) o f the image might span a large area. However, data can still be 
partitioned and processed on a parallel computer and then recombined. An important 
issue will in this case be the amount o f effort required to reconstruct the full image; 
does it warrant the decomposition ?

Geometric representations are concerned with quantifying the notion o f shape. These 
representations are used both for storing prior knowledge about the world and current 

visual input. Thus, the geometric structures can be used to measure the difference 
between two scenes concentrating on shape. The representation is a lot more compact 
than an iconic image; hence a notable reduction in the amount o f data handled by 
algorithms is achieved.

Relational structures are an amalgam of representations used to effect high level goals. 
Inferences have to be made based on these structures which accommodate the notion 
o f shape, relative position, and other concepts e.g. inside, outside, etc. Processes at 

this level are not considered to be good candidates for parallel processing. This is due 

to the fact that reasoning about a structure requires global knowledge, and subdividing 
either data or function might involve complications with regard to communication. 
The latter will either be prohibitive i.e. processors will spend most o f their time 

communicating instead of performing computations, or non-deterministic in which 
case there is no means o f evaluating the complexity of the parallel implementation. 
However, insight into the workings o f the algorithms involved can sometimes show 
hidden parallelisms which allow for small but non-negligible speed-ups .

It is apparent from the ongoing analysis that the hierarchy inherent to computer vision 
introduces major differences in the algorithms that tackle the different levels. 
Therefore, parallel implementations will require different approaches based on the data 
dependencies and computation to communication ratios. Whether the approach relies
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on data parallelism or functional parallelism the problem of load balancing must be 
addressed. For example, a low level computer vision task running on a processor array 
must ensure that some processors are not starved while others are working to or 
beyond their capacity2. Also, a task that has been sub-divided into functional sub-tasks 
implemented on a pipeline architecture must ensure that no task is significantly more 
time consuming than the others, since the upper bound o f the throughput o f a pipeline 
is (once all processors are computing) limited by the slowest sub-task.

In each section, established algorithms are described. Furthermore, an attempt is made 
at recognising the computing requirements and presenting previous attempts at 

solving the work load problem and implementing the algorithms efficiently.

2.1. Early processing

The algorithms described in this section act upon the generalised images introduced 
above. Early processing includes filtering, edge detection, range transforms, surface 
orientation, optical flow, etc. The operations o f interest in this work are filtering and 
edge detection. Therefore, they are the subject o f the remainder o f this section.

2.1.1. Filtering

Filtering in image processing relates to the transformation o f the grey levels in an 
image so as to enhance or de-enhance some features of interest. This is mainly an 
extension of filtering in (time) signal processing to two-dimensional signals (images); 

that is, the image is convolved with a kernel representing the impulse response o f the 
operation desired.

The process o f 2-dimensional convolution of an image is the action of comparing a 

reference kernel with a small neighbourhood at every pixel in the image3. The general 
formulation o f such an operation is as follows:

n m

F(U )= I  £ l(i + k,j + l).h(k,I)
k = -n  l= -m

2This situation can arise ( in applications that use buffers) when some processors are able to service 

their local buffer several times before other processors service theirs once.

3 A number of pixels around the boundary will be undefined in the output image.
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where h( ) is an mxn kernel, I() is the MxN input image and the output image F() has 

dimensions (M -m+l)x(N-n+l). Note that m and n are assumed odd as is often the 
case. This due to the fact that many kernels are odd or even functions of two 
parameters; and the result is stored in the location corresponding to the central pixel. A 
filter is completely defined by the values o f the kernel.

2.1.2. Low pass filtering

Low pass filtering is generally used to reduce speckle noise and isolated noise pixels. 

However, since edges o f objects are high frequency transitions they are adversely 
affected. Therefore, the filter coefficients have to be chosen carefully and in an 

application dependent manner. A few filters have proved useful in many applications 
[Gonzalez][Ballard][Duda] e.g. neighbourhood averaging and the gaussian filter. The 
neighbourhood averaging operation defines its coefficients so as to replace the pixel at 
the centre by the average over the overlapped neighbourhood in the image. The

gaussian filter kernel is defined as follows: h ( k , l )  = e 2°2 assuming the same 

standard deviation is used in all directions. Note that because o f the separability of the 
variables the gaussian operator can be applied through two 1-dimensional kernels4, 
thus saving on computations while achieving similar results.

The major advantages o f the gaussian operator besides this computational efficiency 
are:
• Its impulse response is gaussian, hence small span,
• it is simple to parameter!se.

2.1.3. High pass filtering

High pass filtering is used to enhance the large local transitions in pixel values. This 
has the effect o f sharpening the edges. The Laplacian filter is an approximation to the 
Laplacian of a function df-ldx2 + df-ldy2. The kernel is given by:

1

8

1 -1  - 1

1 8 -1
1 - 1  - 1

horizontally and vertically.
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The Laplacian filter suffers from the lack of directional information and the fact that it 
relates to the second derivatives further enhances noise. Therefore, it is not very well 
suited for edge detection as a one stage process5. However, it is still quite useful as an 
edge enhancement technique. Also, it is often needed in conjunction with smoothing 
operators to reduce noise.

2.1.4. Edge detection

Edge detectors are an important part o f many computer vision systems. They serve as 
a data reduction tools by simplifying data before further processing. For example, 
([Binford]) constructing a geometric model to match against a database in industrial 
inspection involves locating edges before linking them to produce line and curve 
segments that are then combined to form the geometric model. Almost all vision 

systems use an edge detector as a front end ( e.g. Acronym [Binford]). Line finders, 
whether they are based on edge following or the Hough transform, require data to be 
presented as an edge map.

Edges in an image can be associated with high gradient magnitude. This led Roberts to 
design the first edge detector as an approximation to the derivative of the two- 

dimensional function that is an image. The gradient magnitude d(x,y) and direction 
4>(x,y) are evaluated as follows [Ballard]:

d(x ,y) = Va ? + A 2 

^ (x ,y ) = ta n _1(AX ,)

where

A t =  f ( x  +  n , y ) - f ( x , y )

A 2 = f (x>y+ n ) - f (x>y)

Where n is a small integer defining the span of the operator. The span has to be large 
enough to accommodate small changes in the image but small enough to focus on local 
changes. The Roberts operator assumes by definition a step edge model. Also, it is 
sensitive to noise. To reduce the effect o f noise various operators have been proposed. 

The Sobel edge detector, though based on the same principle achieves better

5The Laplacian opertor has been used as an adjunct to other operations to detect edges [Marr]
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performance by introducing local averaging. The kernels for the horizontal and vertical 
Sobel edge detector are:

'-1 0 f
A - i  Ay 4

'-1 -2  - 1"
-2 0 2 and 0 0 0
-1 0 1 1 2 1 _

The gradient magnitude g(x,y) and orientation 0(x,y) are computed as follows:

g ( x . y )  = -v/Ax + A l

0 ( x , y ) = tan

where Ax2 and Ay2 are the values o f the convolution of the respective kernel (A) with 
the image at location (x,y). Note that the operation is not defined for border pixels.

The Sobel operator compares favourably with the Roberts and other application o f the 
gradient operator on the input image; however, it is still sensitive to noise producing a 

loss in detection accuracy. Kittler [Rosenfeld] proposed an iterated application of the 
operator as a means of improving accuracy. See [Kittler] for details.

Marr and Hildreth [Marr] proposed an operator based on the Laplacian of a gaussian 
filter. Edges are detected as zero-crossings in the output o f the image convolution 
with the Laplacian o f a gaussian.

The gaussian function has very interesting properties. First, as stated above, 
application o f an n-dimensional gaussian can be performed by computing n 1- 
dimensional gaussian; thus, reducing computations. Second, the smooth shape of the 

gaussian means that it has good frequency characteristics and minimises the pass-band 
to stop-band transition problems (Gibbs effect).
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Canny [Canny] proposed a set of criteria for optimal edge detection for a step edge 
model. The criteria are quite intuitive and can be stated as follows (1-dimensional 
case):

1. The edge detector must achieve low probabilities o f false alarms and failures to 
mark real edge points i.e. large signal-to-noise ratio.

2. Good localisation i.e. the edges reported should be as close as possible to the 
real edges.

3. Single response i.e. an edge in the image should be reported only once.

After enunciating the set o f desirable conditions Canny set about formulating them 
mathematically. The signal-to-noise ratio maximisation is given in the case o f a finite 
impulse response [-W/2,W/2] filter (fix)) applied to an edge located at x=0 (G(x)) and 
bathed in white noise (with mean-squared amplitude no)6:

SNR

+ W  / 2

1 °
-  W / 2

| G ( - x ) f ( x ) d x

n o , /  J f  2 ( X ) d x

To achieve accurate localisation, the root-mean-squared distance of the marked edge 
from the centre of the real edge is minimised. This can be achieved by noting that the 

real edge is assumed to be located at x=0 but because o f noise it will be marked at Xq. 
Therefore, localisation can be improved by minimising the standard deviation of Xq. A 

simple analysis o f the equations involved led Canny to propose the following measure:

Localisation
1 G '( -  X ) f  ' ( x  )dx

n o  J  j f  2 ( x  )dx

The above equation is an approximation to the reciprocal o f the standard deviation of 
Xo. Hence, a simultaneous application o f the first two criteria proposed is equivalent to 
the maximisation o f the product of the two equations i.e.

6Edges are marked at the local maxima in the response of the filter f(x).
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J G ( —x ) f ( x )  dx j G ' ( -  x ) f  ’ ( x ) dx

n 0 J  | f 2 ( x ) d x  n . J  J f ' 2( x ) d x
f -  W  12

Using the Schwarz inequality for integrals it can be seen that the function which 
maximises the product is f(x)=G(-x) xe[-W/2,W/2]. This is hardly surprising since f(x) 
becomes the matched filter; and the matched filter's performance represents an upper 

bound to the improvement in signal-to-noise ratio through linear filtering.

The third criterion proposed by Canny is required because o f the frequency 
characteristic of the step edge. Such a filter has a high bandwidth and outputs many 
maxima as a response to a noisy edge. Therefore, a further constraint has to be 
formulated. A result due to Rice [Rice] and reported in [Canny] states that the average 
distance between zero-crossings of the response of a function to gaussian noise is:

x ave =  71.
f R ( 0 ) ^ 
vR ' (0 )>

x

where R(x) and R'(t ) are the auto-correlation functions o f the function and its first 
derivative respectively. The distance between adjacent maxima in the noise response of 
the function is 2*xave. If  this distance is set to a fraction k of the function's width W, 

the expected number of maxima due to noise will be 2Ik.

Having formulated the constraints for edge detection Canny solved the optimisation 

problem numerically. He then proposed the derivative o f a gaussian as an 

approximation to the optimal edge detector. Hysteresis thresholding was then applied 
to the output in order to grow back noisy breaks in contours. This amounts to edge 

linking.

The Canny edge detector is amongst the most computationally intensive algorithms 

considered in this section. However, its data dependency is local and it is well suited 
for fine-grain SIMD implementation. Therefore, custom VLSI hardware is in principle 
the best approach, because the performance of the few instructions used can be 
optimised and the architecture of single nodes can be devised according to the data 

paths in the algorithm. Ruff [Ruff] proposed a pipelined architecture achieving video 

rate throughput. The process outputs 8-bit edge strengths, 8-bit directions and 8-bit
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sub-pixel position (l/50th). The implementation is based on noting that the Canny 
operator can be thought o f as a three stage process Figure 2.2 :

r  n
Video Rate data G au ss ian  sm oothed image

Figure 2.2: Block diagram o f a hardware implementation o f the Canny Edge detector

Ruffs work is a clear example of the approach that can provide real-time performance 
for the algorithms of low level vision. However, reasonable speedups can be achieved 

using a general purpose multi-computer architecture (e.g. transputer network) as 
shown in Chapter 5 which presents an adaptive filter approach to edge detection. Also, 
Chapter 6 describes an implementation of the Canny edge detector for colour images. 

The two appendices present attempts at improving the performance o f edge detection 
both in output and performance.

Other authors have studied the Canny optimality criteria and proposed alternative 
methods based on infinite impulse response (IIR) formulations [Deriche]. Another 

parallel diffusion based implementation was given by Belhaire et al [Belhaire], 

Deriche was concerned with the choice of the derivative o f a gaussian as an 
approximation to the ideal filter Belhaire et al aimed at the hardware implementation of 
a parallel optimal filter.

Various methods and approaches have been proposed for edge detection. Very often 
the goal is to improve the quality o f the output in situations where the models given 
above (step edge, etc.) are inadequate [Gupta], Frei and Chen [Frei] proposed a 

method to detect edges based on template matching. They derived a set of 9 masks 
(3x3) which constitute a set o f orthogonal basis functions. Each basis vector 
corresponds to a local interpretation of the edge situation for a patch (3x3). 
Convolution o f the input image with the 9 masks is equivalent to the projection o f the 

image on each o f the sub-spaces generated by the basis vectors. The projection of 
highest magnitude is the best approximation to the local edge.
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Gupta and Wintz [Gupta] present an algorithm based on hypothesis testing to locate 
boundaries in grey level images. The image is sub-divided into small patches (e g. 2x2 
arrays) then the first and second order statistics o f adjacent subsets are compared. 
Similar patches are combined to form blobs. After the entire image has gone through 

this process, a segmented image is obtained. The boundaries between blobs, then, 
represent the boundaries between objects in the original image. The impetus behind the 
approach proposed by Gupta and Wintz was provided by the fact that finding edges 
in images, based on gradient methods, (pre-1975 [Pingle], [Rosenfeld].) did not offer 
good-enough noise rejection to validate boundary finding. Although edge detectors 

have since improved greatly, the mathematical models adopted for the design o f filters 
are still almost invariably over-simplified (step, ridge, roof and white gaussian noise). 
Therefore, an approach similar to the one proposed should be o f value when the 

assumptions about noise statistics are ostensibly inadequate (e g. boundaries between 
textured regions).

The algorithm described in the previous paragraph does not completely fit in with the 

rest o f this section. This is due to the lack o f knowledge about the way blob 
combination is to proceed. However, the operations o f blob comparison and evaluation 
o f statistics are still local and within the framework of multi-processors with powerful 
PE's like transputers, SIMD seems a reasonable approach at the early stages of 

execution. Combining boundaries accumulated on separate processors would, 
however require communication to link the blobs.

2.2. Segmented images

Segmentation in computer vision originated from work in psychology concerned with 
tendencies in human perception to group shapes and features in the visual field. 
Features like proximity, similarity and continuity seem to be extensively used in human 
visual perception [Kohler], Gibson and Gregory [Gibson] postulate that the grouping 
of features together with object/background discrimination7 organise the scene into 
meaningful parts as a step towards image understanding.

Segmented images differ in many ways from the input (generally digitised) images. 
First, domain dependent aspects start playing an important role in the algorithms for 
segmented images. Second, data structures have to be designed for the representation

7Through edge detection, thresholding, etc.
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of segments8, in other words the 2-dimensional array representing an image is no 
longer appropriate for storing perceptual features. Last, the transformations involved 
in generating a segmented image require more elaborate computations that are likely to 

involve global knowledge about the scene; therefore, global communication will be 
required in a prospective parallel implementation.

In this section segmentation algorithms are introduced and separated into two main 
categories. First, the algorithms that perform segmentation based on boundaries 
between objects are described briefly. Then, region based segmentation is described.

2.2.1. Boundary based segmentation

Boundaries between objects in an image play an important role in the scene 
understanding process. Many different approaches have been proposed for their 

detection. The techniques advocated are based on a wide range of mathematical 
formulations of the problem at hand. Dynamic programming, the Hough transform, 
divide and conquer are but a few of the methods used in the literature. The algorithm 
described in the previous section achieves boundary detection through yet another 
technique based on the statistics of blobs accumulated in the image.

Dynamic programming is a recursive computational procedure used to solve 
optimisation problems [Liu]. It is particularly powerful in solving the decision 
problems o f multistage processes. A multistage process is characterised by a set of 
state variables that fully describe the status of the process at any given stage. A 
decision has to be taken at each stage from a possibly infinite number o f actions. For a 

problem to be amenable to dynamic programming, an objective function has to be 

specified. A decision taken at a particular stage affects the value o f the objective 

function and the state variables of the next stage. Therefore, a policy is required for 
choosing the appropriate actions. Such a policy is optimal if it optimises the objective 
function. Optimality is the basic principle behind dynamic programming. It can be 
stated as follows [Liu]:

An optimal policy is one where, whatever the initial state o f the process and the

initial decision, the remaining decisions must constitute an optimal policy with regard to

8Usually boundaries or regions in a scene.
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the new state o f the process resulting from the first decision.

The above definition results in the recursive nature o f dynamic programming. In other 

words, since only the decisions that affect the subsequent stages are to be considered, 
a policy can start searching for the optimal decision from the last stage and then work 

backwards.

A boundary detection procedure can be so formulated that it encompasses the notion 
o f best boundary (an objective function) [Ballard], The input to such a procedure is an 
edge map as produced by the algorithms mentioned in section [2.1.4],

Ballard [Ballard 3] associates "goodness" o f a boundary with a high cumulative 
gradient amongst connected edge pixels and low cumulative curvature. The following 

equation implements this objective function [Ballard],

n n-1

h(xi>->xn) = Zg(xk)+ aZq(xk>Xk+i)
k = l  k = l

where a  is negative, g(xk) is the gradient magnitude at kth point and q(xk,xk+i)  is the 
difference between the gradient angle at the two successive points. Maximising h(...) 
constitutes following a set of disconnected edge pixels to form the most likely 
connected boundary containing a subset of edge pixels (according to the assumption 
built into the objective function). A recursion equation can thus be defined:

f0(x i) = 0

fk(xk+l) = max [ g(xk)+ a q(xk+xk+l) + fk-l(xk)

One o f the major advantages of dynamic programming used as above for edge 
following is that a parallel implementation is feasible if many starting points are 
considered. A large set edge pixels is partitioned and each subset is processed on a 
separate processor and then the boundary segments are combined.

Heuristic search is a method used to reduce the computational complexity o f graph 
searching. The object is to generate a path in a given weighted graph between node A 
and node B with minimum cumulative weight. Nilsson [Nilsson] formulated the 
optimisation problem by estimating the cost o f travelling from A to an intermediate 
node I and the cost o f traversing the path from node I to node B. The sum of these 

two costs is then the evaluation function which guides the heuristic search. The latter 
can produce reasonable (though sub-optimal) results fast when exhaustive search is
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impractical. If  more constraints are satisfied, the method always produces the minimum 
cost path.

Heuristic search for edge following was first proposed by Martelli [Ballard], The 
method constructs a weighted graph from the output o f an edge detector. The gradient 
angles provided by the edge operator are taken to be the nodes o f a graph and weights 
corresponding to the gradient magnitudes are associated with these nodes. An arc is 
added to the graph if gradient angles are appropriately aligned. Then Nilsson's 
method is used to produce candidate paths that will correspond to boundaries in the 
original image. Valid evaluation functions are essential for the success of this method. 

Authors have proposed a mix of context dependent and general rules as evaluation 
functions [Ashkar][Lester][Ballard], Heuristic search has proved quite powerful and 
compares favourably with dynamic programming [Martelli]. However, it does not 
present the inherent parallelism apparent from the dynamic programming formulation.

When an object o f known shape is to be located in an image, a generalisation o f the 
Hough transform [Ballard 2] is an efficient approach. The latter relies on an 
accumulator array, in which peaks are formed by counting the edge pixels supporting 
the presence o f the shape in the input image. The accumulator array is a set o f possible 
locations for a reference point fixed when the shape was first parameterised. Section 
6.2 presents a transputer implementation o f a parallel Hough transform. Therefore, a 
more complete analysis o f the Hough transform is deferred.

A number o f methods have been proposed for the manipulation of boundaries (not 
always linked to segmentation) to provide representations appropriate for higher level 
processing. Chain encoding [Freeman], Medial axis transform [Persoon] and Fourier 

descriptors [Persoon][Wallace] are all methods that apply satisfactorily to particular 
situations. In particular, the Fourier descriptor approach is presented together with a 
transputer implementation and the use o f the Hartley transform in section 6.1. Wu and 

co-workers [Wu] proposed a parallel implementation o f boundary manipulation 
algorithms based on chain codes and crack codes.

2.2.2. Region based segmentation

Region segmentation can be achieved through thresholding. A simple approach could 
be implemented by forming the histogram of grey levels in the image and then choosing 

thresholds to form regions. Obviously, the choice o f thresholds is critical. Chow and
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Kaneko [Gonzalez] proposed a method for optimal threshold selection for the two 

regions case.

Region based segmentation can be viewed as the problem of finding a partition of the 
input image into non-overlapping regions. One such method is region growing. The 
simplest region growing technique relies on properties of local groups o f pixels. The 
process starts from a set of pixels and grows regions by appending to each point in the 

original set those pixels in its neighbourhood that have similar properties. Besides, the 

difficulty in defining adequate properties, this simple method suffers from its 

dependence on the choice o f the original pixel set and ambiguities due to quantifying 
the properties.

Split and merge is another approach to region growing. The basic algorithm relies on 
the homogeneity o f individual regions and the non-overlap between regions. If  a 
particular region does not satisfy the condition then it is split into two regions. When 

there is an overlap between two regions, they are merged. Horowitz and Pavlidis 
[Horowitz] presented an algorithm to implement the split and merge operations 
towards segmentation using region growing. Other algorithms were proposed for 
boundary melting [Brice] which can be made more descriptive through the use of 
graph-oriented region structures [Ballard],

A class of techniques that can be used to perform region based segmentation are the 
so-called clustering and unsupervised learning algorithms [Duda], These algorithms are 
very prominent in pattern recognition. The methods span a wide range of formulations 
and assumptions about the probability densities that describe the data. One algorithm 

that is typical of this class is the Isodata algorithm used for clustering. It starts with 
initial estimates of the means o f clusters (regions in the case o f image segmentation) 

and evaluates the variability o f the regions formed by associating samples with a 
cluster according to a distance measure9. The so-formed clusters are split and merged 
across the dimension of highest within-cluster variance and lowest inter-cluster 
variance respectively. At each iteration the cluster means (or centres) are updated. This 
can be achieved through the K-means algorithm [Duda]. The K-means algorithm 
converges to a local minimum on the error surface and is usually used as an adjunct 
method to other algorithms. An implementation o f such a scheme forms part o f the 
Khoros system [Khoros] and was used for the segmentation o f CAT scans in order to

9In this context the Mahalanobis distance [Duda] is often used because of its weighting of dimensions 

according to the directional variances.
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detect brain tumors [Omar], Coleman and Andrews [Coleman] use the K-means 
algorithm together with between cluster and within cluster scatter measures to 
implement segmentation through clustering.

2.2.3. Texture

Texture is an important feature in image processing. Often characterising texture in a 
scene is the goal o f the application at hand. Moreover, texture can be used in image 

segmentation. A set o f filters based on "texture energy" were introduced in [Laws], 
Laws defines texture energy as the amount o f variation within a filtered image 
window. Therefore, energy measures depend on the filter used and the method used 
to quantify the variations. A texture identification procedure based on this concept was 
presented in [Laws],

Mitchell et al [Mitchell] propose a max-min measure for texture analysis. Their 
method involves the relative frequency of local extrema in the grey level image as the 
principal measure. The simplicity of the method offers considerable reductions in 
processing time when compared with previous techniques. Davis, Johns and Aggarwal 
[Davis] present a different approach based on co-occurrence matrices and discuss 
features derived from them.

2.3. Geometric structures

Algorithms that operate on geometric structures produce shape descriptions of 
boundaries. Segmentation produces blobs with no explicit characteristics. The latter 

are synthesised, at this stage in a computer vision system, to produce more compact 
data structures amenable to the higher level goal o f image understanding.

Polylines can represent curves by a succession of line segments. To arrive at a desired 
accuracy o f representation an estimate o f a good match has to be devised. One such 
method was proposed by Horowitz and Pavlidis [Ballard] in the case where the 
number o f segments is known . It consists o f locating comer points and splitting and 
merging line segments in a digitised image according to the degree o f fit to a straight 
line . Several approaches and variations can be found in the literature [Duda], They 
rely on splitting line segments, merging line segments or a combination of the two 
operations.
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Chain codes were first introduced by Freeman [Freeman], A chain code representation 
of a curve can be derived from its pixels by storing the direction of the next pixel 
along the curve as it is traversed (generally in counter-clockwise direction). Given that 
the image is digitised there are a limited number o f directions for the next pixel. 

Therefore, the representation afforded by chain codes is quite compact and thus 
computationally efficient. Besides, chain codes offer simple methods for calculations of 
some parameters of closed curves e.g. perimeter and area.

Fourier descriptors represent the boundary of a region as a periodic function. The basic 

idea [Persoon], is to store the curve as the coefficients of the Fourier series expansion 
o f the 1-dimensional array o f samples taken from the boundary. The main advantage of 
this method is that for a 'good' functional representation o f the boundary samples, the 
Fourier representation will have very few coefficients. Section 6.1 will present further 
analysis of this method and a parallel implementation.

Another approximation to curves is offered by interpolative methods. Several 
polynomial interpolants are used in computer graphics and present good analytic 
properties making them easy to manipulate in image processing. Besides, polynomial 
interpolations yield aesthetically good curves and can approximate many natural 
shapes. B-splines are a concatenation o f polynomial curves. The most frequently used 

polynomials are cubic since they are the lowest order polynomials that can represent 
concave shapes (they contain points of inflection).

Alternative methods for boundary representation are y-axis, quad-trees, and the medial 
axis transform [Ballard], These methods together with the ones described above have 
advantages and disadvantages that warrant the choice o f a particular method for a 
given application. In this work the choice of methods for further analysis was based on 
prospective performance improvement that can be achieved by parallel processing.

Three dimensional structures and algorithms can indeed benefit from an increase in 
performance. Many o f the techniques used in the manipulation o f 3-D objects rely on 
features and evidence accumulated from a 2-dimensional image. Then, one enters a 
level in the hierarchy of computer vision systems where the paradigms are those of 
high level vision (described next). One exception is, perhaps, the recovery o f depth 
from an image e g. from a single view point using vanishing points [Tai][Brillault],
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2.4. Relational structures

This section presents the different aspects and tools of image understanding. These 

can be subdivided into major topics as follows [Ballard]:

1. Knowledge representation, and control
2. Matching,
3. Inference,
4. Planning.

2.4.1. Knowledge representation

Computer vision systems need a representation o f the world. The purpose o f this 
representation is to guide the different aspects o f processing and reduce the amount of 
computation needed to infer world descriptions from the incomplete models of edges 
and other perceptual features.

For example, understanding or detecting and locating objects in the 3-dimensional 
world from a single 2-dimensional (or a few) view involves recovering depth of field 

information and approximating 3-d direction o f object boundaries. One useful concept 
for this task is the 'Vanishing point' (VP). The idea stems from the field o f projective 
geometry and can be stated as follows: Under perspective projection parallel lines in 
3-d space form lines in the 2-dimensional projection space (the image) that intersect at 
a point VP. Several examples o f the use o f this technique to build perceptual 
groupings are present in the literature e g. [Lowe], [Brillault],

Another important aspect of knowledge representation is the combination o f perceived 
features (e g. edges, texture, colour, etc.) In other words, there is a need for data 

models that can incorporate various kinds o f information. The implementation o f these 
data models should simplify access to areas of knowledge, e g. through data 
abstraction, and allow for both the top-down and bottom-up processing. In this 
respect parallel processing (especially the MIMD model) can provide a means to 
achieve high performance through data and functional partitioning, and help reduce 
complexity through viewing a vision system as a set of co-operating processes10.

10Processes would encompass knowledge about parts of the problem and connections (or channels) 

would represent dependency and (or) precedence.
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Communicating Sequential Processes [Hoare] offers a framework where correctness 
and conformity to specifications can be proved.

Semantic networks present a very potent method for scene representation. A set of 

objects and their relationships are represented as a graph structure consisting of nodes 
and labelled arcs. Besides, the latter can have a value defining a particular 

characteristic o f the relation.

2.4.2. Matching

Computer vision systems hold several representations o f visual inputs and previous 

knowledge. These representations have to be integrated in order to achieve, for 
example, recognition. Therefore, structures derived from inputs have to be matched 
with internal representations. Hence, matching consists of an interpretation o f input 
data associating different representations.
Graph theoretical algorithms are used in matching relational structures. Attempts at 

parallelising such an algorithm (clique finding) are presented in section 6.3.

2.4.3. Inference

Inference is the process of deducing new facts from a set o f known facts. The most 
widely studied inference system is First order predicate logic. However, it is widely 
accepted that first order predicate logic does not address some important features of 
the reasoning performed by human beings. Therefore, workers have sought extensions 
to inference to improve the performance of computer reasoning. Production systems, 

relaxation labelling and active knowledge are such extended inference systems. Such 
systems tackle the problems o f knowledge representation and implementation issues. 
They invariably involve search procedures operating on large databases. Workers in 
the field have concentrated a great deal of effort on reducing the search space by 
involving heuristics, etc. The emerging techniques of Distributed Artificial Intelligence 
(DAI) are directly amenable to multi-processor implementations.

2.4.4. Planning

Planning has traditionally dealt with robots performing actions in the real world. It 
involves decision making to derive the sequence of processing steps that will lead from 

a starting situation to a goal in an optimal fashion. In a computer vision system a 
planning task can be used to direct both the goal seeking aspects o f the problem and
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the data gathering stages. Parallel implementation could be beneficial if the planning 
task is communications and topology aware; thus, instantiating tasks and directing data 

to the appropriate resources.

2.5. Summary

This chapter presented an overview of the algorithms of computer vision. Although the 

emphasis was not put on parallelisation, it is believed to show that this extensive set of 
techniques and methods present a wide range of computational requirements. The 
latter form the basic justification for seeking a suitable parallel architecture (subject o f 
chapter 7).
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CHAPTER III

3. Parallel processing

From the early 60's many arguments against the use of parallelism were introduced. 
Most o f these arguments were context and time dependent and were only valid within 
their respective hypothesis frameworks. Therefore, they failed to have a global 
perspective and are now easily refuted. In the following few sections these arguments 

and their rebuttals are given, then parallel machines are introduced and classified.

3.1. Arguments against the use of parallel machines

Amongst the researchers who did not believe in the potential merits of high-level 
parallelism were Grosh, Minsky and Amdahl [Quinn],

Grosh argued that the speed of computers is proportional to the square of their cost. 
Therefore, if you are looking for a faster computer, you are better off purchasing one 

large computer than two less performant machines and connecting them.

Minsky for his part believed that the speedup achievable by a parallel computer 
increases as the logarithm of the number of processing elements, therefore making 
large scale parallelism unproductive.

One of the most potent arguments against the future o f parallel computers was 
Amdahl's law. The latter states that a small number o f sequential operations can limit 
the speedup o f a parallel algorithm. Let /  be the fraction o f operations that must be
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performed sequentially (0 < /  < 1). Then the maximum speedup S achievable by a 

parallel computer with n processors is

S < ------- --------f + (l-f)/n

It can be seen from the above that a small portion o f sequential operations can 
significantly limit the speedup achievable by a parallel computer.

Other arguments against large scale parallelism include software inertia1 and the fact 
that most commercially available super-computers (up to the early eighties) were 
vector processors with appropriate vectorising compilers.

3.2. Rebuttal for the arguments against parallelism

Grosh's law suffers essentially from the limited performance of the current fastest 
computer. Therefore, it cannot hold true asymptotically. This leaves buL one potential 
alternative for performance increase: using more than one processor.

Experimental results show that the speedup achievable in a parallel implementation 

depends on many factors:

• The architecture o f the parallel computer (inter-connection network, link 
bandwidth, etc.)

• The particular algorithm (inherent parallelisms, nature o f the communication 

between independent modules, etc.)

Therefore, Minsky's conjecture can be refuted on the grounds o f experimental results. 
Some algorithms presented in this work (especially those o f early vision) exhibit quasi- 
linear speedups, though for a modest number of processors.

As far as Amdahl's law is concerned there are some algorithms with very few 
sequential operations e.g. convolution o f an image with a small kernel. However, the 
law can be used to assess the adequacy o f algorithms as candidates for parallelisation.

1 Billions of dollars have been spent in the development of Fortran software.
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Limiting the means of achieving speedup in computers to vector processors excludes a 
large number of important problems. Besides, current super-computers e.g. Cray-3 

contain several pipelined vector processors designed to work in parallel. It is 
reasonable to assume that parallel processors will allow for new and more challenging 
problems to be tackled; thus, the programmers of the future are likely to be involved in 
solving computationally intensive problems on the new architectures.

3.3. Models and paradigms of parallel computation (taxonomies)

In the Von Neuman model a single, possibly very powerful, central processing unit is 
connected to a single random access memory which stores both programs and data. 
The CPU and RAM communicate in a serial fashion through a narrow conduit termed 
'the Von Neuman bottleneck' [Lipovski],

A paradigm is a set of architectures based on the same principles. The Von Neuman 
paradigm contains virtually all multi-purpose computers. The fundamental features of 
this paradigm are as follows: a controller, data operator, memory and input-output are 
sequentially programmed in a fetch-decode-execute cycle.

3.3.1. Flynn’s taxonomy

Parallel architectures can be subdivided into two main categories based on data stream 

and instruction stream [Flynn], An instruction stream is a sequence o f instructions 
performed by a computer; and a data stream is the sequence o f data on which the 
instruction stream operates. Flynn [Flynn] categorises an architecture by the 
multiplicity o f hardware used to manipulate instruction and data streams. Multiplicity 

is the maximum possible number o f simultaneous operations or operands at the same 
stage o f execution at the most constrained component o f the organisation. Therefore, 
four classes o f systems can be distinguished2.

The single instruction stream, single data stream (SISD) category contains most serial 

computers; although instructions can be pipelined, only one instruction is at any given 
stage o f its execution e.g. fetch, decode, etc. This is primarily due to the fact that only 
one control unit directs the flow of instructions into the computer.

2Although only three are covered here since Multiple Instruction stream Single Data stream (MISD) 

is o f no practical consequence.
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In the single instruction stream, multiple data stream (SIMD) category a single 
instruction stream is executed by a number of processing units each capable o f fetching 
and manipulating its own data Therefore, a number of processors apply the same 
instruction to different data, at any one time.

The multiple instruction stream multiple data stream (MIMD) category contains 
multiprocessor systems that execute multiple instruction streams and manipulate 
multiple data streams. In other words, processors co-operate to solve a problem by 
solving components of the partition of the problem into sub-problems operating on 
members o f the partitioned initial data.

3.3.2. Handler's taxonomy

Another classification method was proposed by Händler [Händler], The method is 
based on a notation for the expression o f parallelism and pipelining occurring at 
different levels o f a computer. First, the Processor Control Unit (PCU) is described by 
two numbers; namely, P the number of individual PCUs and P' the number o f PCUs 
that can be pipelined. Second, the Arithmetic and Logic Unit (ALU) is represented by 
two numbers: A the number of ALUs and A* the number o f ALUs that can be 

pipelined. Third, the Bit Level Circuit (BLC) is defined by a further pair o f numbers B 
and B . B is the word length o f individual ALUs and ß ' the number of pipeline sections 
in the ALUs. Therefore, a computer system is described by a triplet T as follows:

T(computer) =< PxP ,AxA ,BxB >

This representation is more binding than Flynn's taxonomy because it quantifies the 

levels o f parallelism that a given system can handle. However, it fails to describe the 

general MIMD model insofar as the function intended by the system designer can 
affect P, P , A, and A*. For example, the 2-dimensional transputer (T800) array (Figure 
3.1) can be described as: <16x1,16x16, 32xl> or <16x1,16x1,32xl>, etc. depending 
on the functionality o f each transputer
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Figure 3.1: A transputer arrayV J
However, the notation is tight in that it explicitly represents the computable threads 
and the numbers to the left of 'x' give the number o f nodes and the control structure.

3.3.3. Feng's taxonomy

Feng [Feng] suggested the use of the word length of the processing units (n) and the 

bit slice length m (the product o f the number o f pipelines and their depth) to classify 

systems. In his taxonomy Feng introduces 4 categories:

• A system is Word Serial, Bit Serial (WSBS) if n = 1 and m =1.
• A system is Word Parallel, Bit Serial (WPBS) if n = 1 and m > 1.
• A system is Word Serial, Bit Parallel (WSBP) if n > 1 and m = 1
• And finally a system is Word Parallel, Bit Parallel (WPBP) if n > 1 and m > 1.

3.3.4. Skillicorn's taxonomy

Skillicom [Skillicom] introduced the idea o f modelling the inter-connection networks 
that may exist within a system. Such networks include the processor to memory, 
processor to ALU, and processor to processor subsystems. Therefore, the system is 
characterised by the following variables: •

• The number o f instruction processors (I),
• the number m o f instruction memories (M),
• the I to M network,
• the number o f ALUs (D),
• D to data memory network,
• I to D network,
• and D to D network.
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This system is very flexible and, depending on the interprocess notation, is capable of 
representing most current systems. However, it is a little cumbersome, and is probably 
best used in combination with Flynn's system (where only features that Flynn's 

taxonomy cannot differentiate are specified).

3.4. Different approaches to parallel computer design

Exploiting the parallelism inherent in different fields of application is a daunting task. 

As mentioned earlier, the structure o f processing and communication dictates different 

and often incompatible architectures for various classes o f algorithm.

Before considering purpose built parallel computers it is worth mentioning software 
environments (e.g. Alice, Parallel Virtual Machine (PVM), etc.) For example, PVM 
[Beguelin] is a public domain system that enables a collection o f heterogeneous 
computer systems to be used as a coherent and flexible concurrent computation 
resource. The individual machines may be multiprocessors, vector supercomputers, 

specialised machines or scalar workstations, that may be interconnected by a variety of 
networks. Support software executes on each machine and presents a unified 
computational environment for concurrent applications.

This work is concerned with the MIMD model of parallel processing. However, there 
are other models that offer high general purpose performance e.g. processor arrays 

(ICL DAP) and vector supercomputers (CRAY 1). Vector supercomputers in 

particular have been very successful in the past in various application domains. 

However, even Cray Research Inc. ( the Cray computer makers) have moved to 
designing massively parallel machines [Koninger], The aim is to produce a 
heterogeneous environment of vector, scalar and parallel systems.

Before dwelling on the large number of possible approaches to the design o f control 
structures for parallel computers, an initial choice concerning the Processing Elements 
(PE) has to be made. The two alternatives available are:

1. Connect together a relatively small number o f very powerful PEs.
2. Use a large number o f simple PEs.

The first approach shall be termed 'herd of elephants' and the second 'army o f ants' 

[Quinn], If  the sequential fraction of a computation is greater than the ratio of 

processing powers (of the PEs of the two cases above PE2/PE j ), then a single PE from
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the first approach will offer better performance than the whole system of the second. 

This is because the inherently sequential part of the process as run on a single 
processor o f the herd-of-elephants machine will be faster than the overall speedup 
achievable by the whole army-of-ants machine.

The approach adopted defines the hardware and software support required from the 
underlying machine. The aim of this section is to give a brief overview o f the currently 

popular techniques. First, the army-of-ants approach is introduced through a 
commercially available system; then a few examples of the herd-of-elephants approach 
are given.

Many commercially available parallel computer systems implement massive data- 
parallelism as the means to achieve speed-up (ICL's Distributed Array Processor, 
Goodyear's Massively Parallel Processor, etc.) Thinking Machines Corporation's 
Connection Machine (CM) is characteristic of the army-of-ants approach to parallel 
computers design, and is described next.

3.4.1. The army-of-ants approach (the Connection Machine)

The Connection machine3 (CM) [Tucker] is a data-parallel system which integrates 
hardware and software. It is controlled from up to four front-end computers which 

provide the development and execution environments. CM consists o f 65536 
processing elements and millions o f virtual processing elements through its virtual 
processor mechanism. Processors are connected through a general purpose 
reconfigurable communication network. Therefore, CM contains all the software and 

hardware modules for the design and implementation o f data-parallel algorithms.

The front-end computer systems connect through a 4x4 cross-point switch to four 

sequencers. Each sequencer controls up to 16384 processors. Moreover, a high 
performance data-parallel input/output (I/O) system connects processors to peripheral 
mass storage and graphic display devices. One o f the major advantages o f CM, besides 
the high performances achieved, is that system software is based on the operating 
system of the front-end computer (DEC VAX or Symbolics4). Thus, programmers can 
take advantage o f the power of CM without the need to fully understand the 
underlying structure of the machine.

3The description of CM applies to both CM1 and CM2 unless stated otherwise in the text.

4With minimal visible software extensions [Tucker.]
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Each processor in CM contains:

1. an Arithmetic and Logic Unit (ALU), and associated latches,
2. four (sixty four for CM2) Kbits o f bit-addressable memory,

3. eight one-bit flag registers,
4. a router interface, and

5. a two-dimensional-grid interface.

Operations are executed in a bit serial fashion. An ALU consists o f a three-input two- 
output logic element and associated circuitry. During an execution cycle, two bits are 
read from memory and one bit from the flag registers. Then, the ALU computes two 

result bits, one bit is stored back into memory and the other is used to update the flags. 
Despite this simple logic structure CM is able to carry out all the operations of a 
virtual-machine instruction set - complex instructions are decoded by the sequencers 
which control the ALUs.

CM contains a flexible inter-processor communication network which supports several 
mechanisms:

• a broadcast facility allows immediate data to be sent to all the processors from 
either the front-end computer or the sequencer.

• Global logical OR allows the outputs from all processors to be checked 
simultaneously for termination conditions.

• Hypercube communication forms the basis for the router and other primitives. 
The topology is a binary 12-cube connecting 4096 nodes5.

• The router implements general pointer following through a packet switching 

scheme. The router controller (hard-wired into the CM processor chips) uses the 
12-cube for data transmission.

• The North East West South (NEWS) is a two-dimensional mesh which provides 
direct communication between a processor and its four neighbours.

Figure 3.2 shows the CM system organisation. Each CM1 sequencer is a purpose built 
micro-computer used to implement the virtual machine. It is built around Advanced 
Micro Devices bit-sliced micro-processors with 16K 96-bit words o f micro-code 
storage.

5Each node consists o f 16 ALUs and support hardware in a single proprietary chip.
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It is believed that the high performance6 achieved by CM can be attributed mainly to 
the extensive support it affords to the various communication requirements of 
algorithms. Besides, the virtual machine implementation takes the user away from the 
intricacies of synchronisation and scheduling. Finally, the high bandwidth o f the 

communication paths between the front-end computers and the sequencers ensures 
that when computation is needed and processors are available, minimal delay is 
incurred.

The CM has been used in a number o f applications ranging from the regularly 
structured problems of materials science to artificial intelligence and computer graphics 

[Tucker][Waltz], In one instance [Tucker 2] an object recognition system was

6With 64k processors working in parallel CM1 achieves an aggregate rate of 2 billion 32-bit integer 

additions per second.
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developed on the CM. The approach adopted by Tucker et al was the massively 
parallel hypothesis generation method. In order to avoid constraint-based tree searches 
which would have been too taxing in terms of communication overheads, hypotheses 
are generated when features belonging to objects in a database match features in the 
image being analysed. One of the most important aspects o f the CM as far as 
algorithms with time varying communication requirements was reported to be the 

support for both nearest neighbour (NEWS) and general communication schemes 
(Hypercube).

It is worth noting at this point that Thinking Machines Corporation's (TMC) latest 
product (CM5) is a message-passing MIMD system. Each node of CM5 comprises a 
SPARC microprocessor and optionally four vector units between the processor and its 
local memory [Gottlieb], Therefore, CM5 does not fit into the army-of-ants class; and 
TMC's approach in trying to achieve higher performance is akin to that o f the next 
section.

3.4.2. The herd of elephants approach

In contrast with the army-of-ants approach where processors are only capable of 
performing very simple tasks, this approach requires individual processors to be 

'powerful' computers in their own right. Clearly, the adjective 'powerful' is very 
subjective; in the remainder o f this section it will be deemed to describe current state- 

of-the-art micro-processors. Another difficulty consists of the fact that the Tera-Flop 
( 1 0 12 floating point operations per second) machine does not seem too far in the 

future [Langhammer][Astfalk], Such a computer will have to be implemented using a 

massive number o f processors making the 'herd' as large as an 'army'. However, to 
achieve the same performance, a CM-type computer will require two to three degrees 
o f magnitude more nodes; thus, keeping the distinction between the two approaches.

In the following sections, two commercially available parallel computers are presented. 
First, Convex computer Corporation's MPP range is described. Then, Parsytec 
Computer Gmbh's GC range is introduced. The former is based on a Hewlett-Packard 
PA-RISC micro-processor and the latter uses the latest Inmos transputer (T9000).

3,4,2.1, Convex MPP

The Convex range of Massively Parallel Processors is designed to be scalable to 
TeraFlop performance. MPP has a globally shared virtual memory MIMD architecture.
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Each node consists of a Hewlett-Packard PA-RISC microprocessor running at 100 
MHz and providing 200 MFlops of peak performance.

One important aspect of MPP is the emphasis on ease o f use. Convex has been 
developing a compiler that performs inter-procedural Optimisation [Astfalk], The basic 
idea revolves around extending the optimisation phase (i.e. optimisation confined to 
loops and loop nests) with techniques that identify larger granularity parallelism.

3.4,2.2. Parsvtec GC range

The current computer in the GC range is GC5 [Langhammer], The processing nodes 
are the latest transputers (T9000 - appendix A ). The proposed GC5 will contain 
16384 transputers connected as a message-passing MEMO parallel system. It is 

organised in a three dimensional grid of atomic cells. Figure 3.3 shows an atomic cell. 
The latter consists of 16 transputers connected as a 4-dimensional hypercube, a 
redundant transputer to replace any other on failure and 4 routing chips (Inmos C104).

r

Figure 3.3: Atomic cell of GC topology

Amongst the advantages o f using the transputer as a building block for massively 
parallel processors are: •

• Availability o f all components (i.e. there is no need for custom design).
• Because the transputer incorporates a floating point unit, a cache, memory glue 

logic and communication and routing support, node design is simplified.
• A micro-coded scheduler allows the processor to be shared by several processes at 

two levels of priority.
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3.5. Discussion

To summarise, manufacturers and researchers agree that a crucial factor in the 

effective use of parallel computers and in particular massively parallel processors is the 
interconnection scheme adopted. A balance has to be established between the memory 
bandwidth and the communication bandwidth. Hence, the (important) choice o f the 
unit node defines the model of parallelism to be adopted. The MIMD model has in 

recent years been presented as the means to achieve high 'general purpose' 
performance (CM5, Convex MPP, Parsytec GC, Cray MPP, etc.)

Many algorithms that are inherently parallel have a local communication behaviour. 
Therefore, they are well suited for 2D and riD array structures. However, algorithms in 
general and Computer Vision algorithms in particular have varying communication 
requirements and granularity. In chapter 7 a few well known topologies are analysed 
and a configuration suitable for the transputer (T800) is proposed as an attempt to 
provide both the regular structure that benefits data-parallelism and relatively small 
distances (for a given number of nodes). The latter, together with a dynamic 
reconfiguration scheme, benefit data broadcasting and functional-parallelism. A routing 
algorithm is presented in chapter 8.

Before finishing this chapter standards ought to be mentioned. With the large number 
o f research and commercial systems being proposed, standards for parallel computing 
have become necessary. One such standard, is the Message Passing Interface (MPI) 
[Gropp], is o f particular interest to this work, because it is specifically designed for 
applications running on distributed memory concurrent computers.
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CHAPTER IV

4. Transputer implementations of edge detection

This Chapter presents some work on low-level image processing using transputers. It 

consists of slightly modified versions o f two publications [Omar 2][Ellis], and is 
organised as follows. First, an adaptive approach to edge detection is given [Omar 2], 
Then, a method that uses colour information to improve the edge detection process is 
presented [Ellis], The work was carried out in collaboration with colleagues at the 
Centre for Information Engineering at City University.

4.1. Transputer implementation of adaptive noise cancelling

4.1.1. Introduction

The work presented in this section uses an adaptive approach to noise cancelling in 
digital images. This improves the performance of a subsequent edge operator. Noise 
filtering is necessary as a pre-processing stage for edge detection [Canny], By using an 
adaptive filter, assumptions usually made about the nature o f the noise in the image are 
relaxed. This leads to an improved performance over a wide range of input images.

The algorithm implemented consists o f two linear noise cancelling filters cascaded with 

the transpose o f their derivatives. The output thus produced, is passed through a non-
maximum suppression process which ensures a single response. The resulting image is 
thresholded using a smooth non-linear function.
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Inherent parallelisms are identified and exploited through the use of a transputer 
network. Data parallelism leads to partitioning of the image into small segments that 
are processed independently. Further parallelism can be identified in the algorithm, 
since the horizontal and vertical kernel can be applied to the image separately.

4.1.2. Signal processing and digital images

One o f the first stages in image processing is the extraction o f information from an 
image, presented in digital form as a matrix o f intensities in quantized (grey level) 
form. At this level the image may be regarded as a two-dimensional signal containing 
information such as objects on a background. These are often corrupted by other 
signals, such as noise.

Noise affects the reliable extraction o f features, like edges from an image. Most edge 
detectors use gradient information to detect boundaries of objects and are particularly 

susceptible to "high-frequency" (spiky) interference. It is therefore necessary to reduce 
or, if possible, remove the noise before edge detection can take place.

4.1.2.1, Noise cancelling

Noise is often removed by applying a filter to the image. The filter coefficients are 
selected to remove as much of the noise as possible, by smoothing the image whilst 
maintaining the desired image features unchanged. Failure to select the appropriate 
coefficient values may result in either high levels o f noise or excessive smoothing. Both 
effects can be hazardous for subsequent edge detection since they may lead to either 
false detections or missed edges.

If  the characteristics of the noise are known beforehand, the filter can be tailored as 
described. This is often not the case. It is, however, possible to start from an initial 

guess for the coefficients and correct them when the image, and hence the noise 
characteristics, become available.

To determine the optimal noise cancelling filter, the study o f the signal through a 
model is often useful.
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4.1.2.2. A model for the image

Although an image is a two-dimensional signal, its horizontal and vertical components 
can be studied separately. For edge detection purposes the cross-section of an edge is 
almost constant in any direction, for small steps in the perpendicular direction.

Edges usually signify boundaries between regions o f interest, such as objects. In a 
grey-level image, these are distinguished from their different intensities. Objects 

normally appear as transitions in the intensity of the image that last for several pixels. 
Noise, on the other hand, consists of random transitions in the intensity that flood the 
image and have no structure. The noise-free image signal S(i,j) and noise N(i,j) are 
added to form the recorded image I(i,j) (figure 4.1(a)):

I(‘J )  = S( iJ)  + N(i , j )

N(i,j) is normally treated as a stochastic process with fixed statistical properties 
throughout an image. The best noise cancelling filter should reflect these properties.

4.1.2.3, The adaptive solution to optimum filtering

If  a signal d(n) is to be produced from another signal x(n)  by linear weighting,

N

y ( n ) =  ^ w x ( n - i )  = WX(n)
i= -N

a cost function, such as the mean squared error

must be minimised. The best weight (coefficients) values W -  (w- N....,Wo....wN)‘
satisfy the Wiener-Hopf Equation

Where R«  is the auto correlation matrix o f x(n) and R& is the cross correlation vector 

between x(n) and d(n).
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In a noise cancelling situation, x(n) is the linear combination o f the wanted signal s(n) 

with uncorrelated additive noise n(n):

x(n) = s(n) + n(n)

The objective is to find W such that y(n) is the best approximation o f s(n). If  d(n) is 
not available separately, like in our case, x(n) can be used as a noisy estimate o f it.

The Wiener-Hopf Equation can be solved recursively, e g. using gradient search 
techniques[Widrow][Orfanidis]. A simple recursion equation for W was described by 
Widrow and Hoff [Widrow 1], It is known as the Least Mean Squares (LMS) 
algorithm:

W(n + 1) = W(n) + 2Me(n)X(ti) 

where
e(n) = x ( n ) - y ( n )  

y(n) = W( n)X(n)
H -  X/tr{Rxx) (0 < A < 1)

H is the adaptation step and governs the rate o f convergence o f the filter. Small /u 
causes slower adaptation but smaller error in the final W .

4.1.3. Adaptive noise cancelling and edge detection

Most o f the adaptive algorithms were initially developed for time sequences. The LMS 

algorithm is not linked with time-related data and is therefore suitable for applying to 

image data. There is however a fundamental difficulty in the adaptation procedure. 

Whereas in a time sequence there is a natural and compulsory direction for filter 
application and adaptation, (i.e. forward time), such a direction does not exist for a 
single image. A good procedure is to select randomly the next location in the image on 
which the filter is to be applied. This method, however, suffers from two practical 
limitations. First, the adaptation and filtering stages have to be separated, to guarantee 
that all image elements are processed. Second, localisation o f filter coefficients could 
be lost. Last, noise characteristics may differ from one part of the image to another. 
Better results are to be expected from locally optimal filters than a globally optimised 
filter over a large area. For this reason the filter is applied in the horizontal and the 
vertical directions.
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Initially, a two-dimensional (NXN) filter was used for smoothing. This required 2 N 2 
operations and did smoothing in both directions simultaneously and resulted in 
rounded corners. Subsequent edge detection had to be completely separated from the 
filtering operation.

A different approach proved more effective both in terms of number o f computations 
necessary and in terms of edge detection. It was based on a commonly used filter 
structure in image processing, the use of two one-dimensional filters to reduce noise in 

both the horizontal and the vertical directions. Typically, these filters have fixed 
coefficients based on assumptions about the nature o f the noise. Gaussian filters are 
among the commonest. The variance of the Gaussian function, which determines the 
amount of smoothing, is specified at the beginning o f the filter process and is not 
modified afterwards. Each filter produces its own output, which is used for further 
processing.

The proposed method of smoothing is similar, but the fixed-coefficient filters were 
replaced by adaptive ones. The coefficients of the two filters were initialised to either 
zeros or to those o f an initial estimate of a Gaussian filter. Both methods performed 

almost identically. An example of a smoothed image profile is shown in figure 4.1(b).

4.1.3.1. Edge detection

Usually edge detectors are fixed-coefficient differential operators. The differentiator 

presented here uses the derivatives of the adaptive filters after adaptation is completed. 
Each o f the differentiated filters was then applied to the smoothed image produced by 

the other filter, like in the Canny operator. The output of this operation is a set of two 
images, with sharp transitions emphasised and the rest o f the image suppressed. 
Because the other source of large gradient values (i.e. noise) was already suppressed, 
the remaining large gradients are expected to indicate edges.

4.1.3.2. Gradient detection

The two differential images produced in the previous section were then combined to 
detect edges in any direction. The horizontal and vertical differentials at every point 
may be regarded as a vector o f two orthogonal components. The modulus of the 
vector was taken as a measure of "edgeness". The "direction" o f the edge was also
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determined as angular deviation from the horizontal, although this feature was not 
used.

4.1.3.3. Non-maximum suppression

The differentiated image was then treated further to produce a binary image indicating 

whether a point was classified as an edge or not. A good edge detector should not 
only detect the existing edges, but perform good localisation too. Part of the second 
process is a single response to an edge.

A simple non-maximum suppression algorithm produced good results in terms of 

single response. A candidate edge is not suppressed if it is a local maximum in any 
direction. This test involves evaluating its gradient modulus against that o f its eight 

neighbouring locations. A further test is then performed to determine if the gradient 

is high for the area where the point lies, by passing its gradient, g(i,j) through a 
sigmoidal non linearity where the threshold & is the mean and its exponentiating factor 

g  is the standard deviation of the gradient in the neighbourhood:

1.0
\ + e~ •»)

Only if the obtained value is over 1/2, the pixel at (ij) is considered to be an edge 
(figure 4.1(c)).

52



4.1.4. Implementation

In this section the algorithm is described and a transputer implementation is proposed. 

First, the potential parallelisms are identified; then a mapping o f the algorithm on a 
network o f processing elements is presented. The analysis is based on a message 

passing framework, suitable for transputer modelling.

4.1.4.1. Algorithm description

The ideas behind the algorithm can be derived from the definition o f the procedure 
adopted. First, because operations in different areas o f the image are independent, data 
can be shared amongst a population of processors. Next, the unit process is identified 
in order to take advantage of any inherent functional parallelism. The notion of 
identifying independence derives from the necessity to limit the amount of 
communication among processors, and try to achieve induction i.e. linear speedup.

4.1.4.2. Inherent parallelisms

As mentioned above the system consists o f an adaptive noise canceller, cascaded with 
a local gradient operator, obtained by differentiating the filter coefficients. The output 
o f the latter is fed into a non-maximum suppression unit that enforces single response. 
Figure 4.2 shows a graphical representation of the processes that implement the 

system.

4.I.4 .2 .I. Data parallelism

Adaptive noise cancelling relies on the ability o f a variable kernel evaluated from a 
neighbourhood of pixels around the sample to estimate the signal. This completely 

local dependency suggests the partition o f the image into independent blocks that do 
not require external data. Because the noise canceller and the subsequent gradient 
operator are convolution operations, half a mask size overlap has to be packed with 
the data for each block. Although this presents an overhead, it is a major set back only 
for very small blocks. At this point, the important issue in mapping such a partition on 
a network o f processors is to minimise the distances travelled by data packets, bearing 
in mind that the real distance is not only the number o f hops that data packets makes 
but the delay incurred during routing as well.

53



4.1.4.2.2. Functional parallelism

The different stages of the algorithm (figure 4.2) are:

Horizontal smoothing,
Vertical smoothing,
Transposition,
Horizontal gradient,

Vertical gradient,
Non-maximum suppression and thresholding.

Figure 4 .2  Block diagram  of th e  sy s tem

The horizontal and vertical smoothing operations are independent and can be carried 

out in parallel. The transposition operation refers to the fact that the gradient operator 
in one direction is applied to the output o f the smoothing operator in the other. The 

outputs o f the gradient operations are combined to produce the combined gradient 
map. This leaves the non-maximum suppression and thresholding as a final stage. This 
can be implemented as three separate stages.

4.1.4.3. Transputer Confieurations

The networks described here shows two types o f parallelisms mentioned above. First a 
simple linear structure is given, then the functional parallelism is incorporated to yield a 
more efficient architecture.
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4.1.5. Results

Results o f the edge detector are shown for two sample images in figure 4.5 (c,d), 
together with the original images (figure 4.5 a,b). The output shows single response 
to different types of edges and a good localisation.

Filter coefficients after adaptation (figure 4.6) seem to confirm the validity o f using a 

Gaussian model for additive noise in digital images. However, this noise is not 
stationary. The adaptive filter relaxes stationarity and 'zero-mean' conditions. Figure 
4.7 shows the modulus of the weights vector during and after adaptation.

A speed-up of 12.5 was registered with a sixteen transputer network (see section 
4.1.4). Further improvements are anticipated since the main processing load which 

consists o f the two convolution processes is partitioned. The additional communication 
due to passing the same block to the two processors in the pipeline stage is countered 
by the fact that only coefficients are passed between processors, after smoothing.
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4.1.6. Comments and conclusions

The system presented here implements an adaptive noise canceller and edge detector. 
The results show a good localisation o f edge elements and immunity to noise. The 

transputer implementation showed speed ups which suggest that further improvements 
are possible if more processors are added to the system.

An interesting observation was made when analysing the filter coefficients. The kernels 

seem to latch on to textured areas of the image. This, together with the good immunity 
to noise, suggests that adaptive filters can be used as a learning process for texture 
registration. The filter coefficients thus obtained can form cluster centres o f a 

parameter space to search.

4.2. Colour edge detection

This section describes the transputer implementation o f a system for the extraction of 

edges from colour images. The early processing stage o f the algorithm is based on the 
conjecture which states that real edge pixels will generate similar gradient angles on 

the three planes o f a red, green and blue (RGB) image. The first stage o f the edge 

detection process uses an adaptive method for selecting the level o f smoothing applied 

to the image. The computational cost imposed in analysing RGB images is met by a
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parallel implementation of the algorithm, and issues raised in data and process 
partitioning are considered.

4.2.1. Introduction

The majority o f machine vision systems make little or no use o f colour information in 
analysing scenes. This is attributable to a number of reasons:

• colour constancy - perceived colour depends on the spectral content o f the 

illuminating radiation, as well as on the spectral reflectance characteristics of 
the surface, and hence does not provide a robust feature for object detection.

• high-resolution colour cameras are expensive and bulky.

• processing a colour image (e g. 3 images for RGB) imposes additional 
computational burden, and is less likely to be used if only a small benefit can be 
attained from the use of colour.

• edges in colour images have not been found to be significantly 'better' than for 
monochrome images [Nevada],

Nevertheless, colour is used in a number of systems; in particular, where colour 

information must be explicitly represented (e.g. colour coded resistors [Claxton]).

This section describes a method for using correlation o f edges over the RGB planes of 

a colour image to supplement the edge detection process commonly used in 

monochrome images, and the use o f an adaptive smoothing filter to suppress image 
noise, prior to edge detection. These techniques are used as a pre-processing operation 

to a system for the labelling of structural elements (lines, curves, corners) in the 
colour images. The correlation o f edges can offer additional confidence in the 
existence o f an edge element in one plane when it is corroborated by one or more 
pixels from the other colour planes.

The algorithm consists o f four parts. First, a pre-processing stage estimates the local 
information content o f the image (local entropy). This is then used to adjust the 
standard deviation o f a modified Canny edge detector [Canny] which constitutes the 
second stage.
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This edge detector is run in parallel on the three planes o f a colour image, and 
evidence of edges detected in one plane must be corroborated in either (or both) o f the 
other planes to indicate a reliable edge point. The next stage links the edge elements 

into connected structures, based on a simple 8-neighbour connectivity. The fourth and 
final stage identifies straight lines from curves and locates comers in the connected 

edge data by accumulating consistent gradient direction information. Following a brief 
description o f the algorithm, the transputer implementation o f its processes is 
described.

4.2.2. Pre-processing

The aim of this step is to provide an estimate of the local information content in the 
image. The method is summarised as follows: In each 4x4 pixel block evaluate the 
gradient in horizontal, vertical and diagonal direction normalised by the average 
intensity.

The block is classified as an edge block if the gradient exceeds some threshold in one 
o f the directions. This gives a crude estimate o f the edge location across the image 
and is used to guide the selection of the standard deviation used in the edge detection 

algorithm. The standard deviation (sigma) of the Gaussian smoothing is varied 
according to the number o f detected edge blocks in a given region (currently 
rectangular) and ranges from 1.0 to 3.0 in an inverse proportion to this number.

4.2.3. Colour Edge Detection

Researchers have in the past investigated the use o f colour in using simple edge 
detectors (e.g. Roberts, Sobel) applied to the different image planes o f multi-spectral 
images to improve detection [Robinson 1], The major problem is how to combine the 
outputs in order to interpret the edge information. Nevatia [Nevada] found that 
accumulation o f the gradient output of the Roberts operator does not lead to better 
results. It is believed that inconclusive results from previous experiments are due to 
poor edge operators and to output combining functions. The method presented here is 
based on the use of an improved edge operator (as described above), together with 
the following conjectures: •

• A real edge is likely to produce high gradient magnitudes on the three image 
planes.
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• The gradient direction should be within some tolerance (modulo 7i) on the three 
image planes. Therefore, the presence of an edge element at a particular 
location in one plane can be corroborated by a consistent registration at the 
same location on another plane.

4.2.4. Line and Corner Extraction

In this part edge elements are linked into connected structures. The usual step of 
isolated pixel elimination is not necessary because o f the strong emphasis on edge 
detector. Edges are followed and accumulated. Junctions are resolved by following the 
closet gradient angle and starting new structures for the other branches. Lines are 
separated from curves by considering proximity and gradient angle. After separation a 
comer finder is applied to the set o f lines found. This consists o f an intersection (or 
proximity o f end points) test. The overall result is that an "accurate" edge map 
constituting the basis for structural element detection. This process is interleaved with 
the rest o f system. In other words, once an edge element is definitely registered, it is 
linked to a previously created linked lists o f edge pixels if it is connected to them, or a 

new instance o f the data structure is created for it. At this stage, the classification of 
the structural element as a line, an arc or a comer is not considered. However, 
junctions and splits are resolved by accumulating the connected set that has the 
smoother gradient angle changes. The next step is the classification o f structural 

elements. To do this, the curvature of the connected set within some tolerance 
discriminates between linear structures and curves. Comers are considered to be 

points o f discontinuity in the gradient angle. A connected structure is sectioned at 
these comers into three parts: two linear structures and a comer. It is believed that 

classified elements like the ones described above are useful as an input to higher level 
processing. (Refer to [Ellis] for implementation and results).

4.2.5. Conclusions

A scheme for combining information in multi-spectral images is presented and used to 

optimise the output o f an edge detector. The use o f colour does give some clear 
improvements in the edge detection process. We are currently combining this with 

adaptive smoothing in order to investigate the interaction between the two operations.
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The edges thus detected are linked into structures which in turn are partitioned and 
classified. The implementation of the system can be improved in many ways:

• through the implementation of structural element classification across the 
network.

• through a more formal view of the process as a graph and the use o f graph 
theoretical results together with the transputer idiosyncrasies.

61



CHAPTER V

5. Parallel vector quantisation

5.1. Introduction

This chapter presents a parallel algorithm for Vector quantisation (VQ). VQ has been 
shown to be very effective in the compression of both speech and image data.

The implementation of image coding based on VQ can be divided into three stages:

1) Design o f the codebook (s)
2) Encoding o f the image
3) Decoding

Stage 1 is a lengthy computational process, but is only performed infrequently. Stage 3 
is a simple lookup process: the code generated (typically a single integer) is used to 

directly address the stored vector associated with it. However, stage 2 requires a 
search through all the code vectors and matching to the best vector by calculating a 
distortion measure between the candidate image block and the code vector. Hence the 
encoding process dominates the speed at which images can be encoded and decoded.

Vectorisation which is the first step o f the encoding process refers to the partitioning 
of the image into contiguous, non-overlapping blocks. Square blocks are generally 
preferred because they are more convenient to deal with and easily generated.
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Quantiser (codebook) design refers to the generation o f the reconstruction vectors Y;. 
The set or collection of reconstruction vectors is called a codebook. An optimal 
vector quantiser is one which employs a codebook C that yields the least average 
distortion D* for all such codebooks. The design algorithm for such an optimal 

codebook is not known. Quantiser design is a very difficult problem in vector 

quantisation. It is generally a non-linear problem involving a lot o f iterative 
computations. Clustering algorithms such as the LBG algorithm of Linde, Buzo and 
Gray [Ramamurthi] are used to obtain locally optimal codebook designs. The existence 
o f an optimal codebook is assumed; therefore, we concentrate on the encoding 
process.

The encoder and decoder have identical codebooks. The input vector X to the vector 

quantiser is a vector of dimension k. The encoder computes the distortion d(X,Y;) 
between the input vector X and each codevector Yjs i= l,N  from a codebook C 
containing N code vectors. The optimum encoding rule is the nearest neighbour rule 
[Ramamurthi] in which the index I is transmitted to the decoder if codevector Y { yields 
the least distortion.

Decoding involves the decoder looking up the I-th reconstruction codevector Y; from 
its copy of the codebook to reconstruct a replica X = Y;.

5.2. Computational complexity of VQ encoding

The distortion measure considered is the mean squared error (M S E ):

d(X,Yj) = (X - Y ^ X -Y ,) (1)

where X is the input vector, Yj a reconstruction codevector and the superscript t 
denotes transposition.

Consider codebook C with properties as in section 5.1. For full search optimal 

encoding of vector X, the distortion must be computed for each of N  codevectors in 
the codebook. The number o f arithmetic operations involved per codevector is 3k - 1 
(k multiplications, k subtractions and k-1 additions). Thus, for all N  codevectors the 
number o f arithmetic operations is (3k-l)N. For an M by M image the number of 
operations is given by

O = (3k-l)N.M.M/k (2)
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The bit rate of the coder (in bits per pixel) is given by

R = (l/k)log2(N) (3)

Thus N  = 2 ^ . Substituting for N in (2) gives

0  = (3k-l)*2kR*M*M/k (4)

It is thus seen from (4) that the number o f operations grows exponentially with both k 
and R. The computational complexity o f the encoding process (as well as the 
codebook design) tends to restrict vector quantisation to small block sizes (e.g 4 by 4) 
and small bit rates and to still or slowly varying frames. In this simple approach 

although a small bit rate is interesting from the compression point of view it limits the 
size o f the codebook for a given block size and thus affects the quality o f the 
reconstructed image. Various methods have been developed to eliminate or reduce the 
exponential growth of the computational complexity. Reductions in computational 
complexity are achieved by modifying the codebook, by sacrificing performance in 
achieved average distortion, and/or by increasing the storage requirements of the 

codebook (e.g. in the binary search tree codebook). As far as the quality o f the output 

is concerned a great deal of effort has been put into trying to achieve better perceptual 
quality (e.g. Classified Vector Quantisation (CVQ)).

The aim here is not to reduce the computations nor to increase optimality regarding 
coding distortion but to attempt to increase the speed of the full search encoding 

process by means o f parallelism using transputer networks. Some topologies are 
proposed for VQ and CVQ.

The transputer topologies considered are described in the following sections.

5.3. The use of parallel processing (transputer)

Among the major concerns of parallel computers are the speed o f computation o f the 

separate nodes and the speed o f communication (between nodes). At the lowest level, 
given that a choice of hardware is made at the outset (namely the transputer), these 
two variables seem to have been fixed. However, the techniques used in implementing 
the problem, together with the efficient use of the capabilities o f the transputer can 
have considerable consequences on the system.
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The key feature of the vector quantisers presented here is that the vectorisation of the 
image yields non-overlapping blocks. Thus the mean square distance calculation at the 
centre of the coding process is easily identifiable as the unit building block of the 
quantiser. There seems to be no point in further sub-dividing this unit block since the 
time required to perform the operation will approach the time needed to gather the 
sub-results due to link set up and routing. N (the size of the codebook) o f the above 
mentioned building blocks are needed to code one vector o f the input image. Hence 
there is scope for sharing this task among a few transputers. However, these two 
potential parallelisms are interdependent in the case o f VQ. Consequently CVQ, which 
achieves better quality by classifying the codebook (hence partitioning) was 
considered.

Networks consisting of a ring and a two dimensional mesh were implemented to take 
advantage o f the image data partitioning mentioned. Higher dimensional structures 
were not considered because of the cardinality of the data dispensing node (frame 
grabber). The critical notion of distance travelled by data packets can only be reduced 
in real terms by introducing more elaborate input and output mechanisms.

Several experiments were conducted using a farm topology and a distributed monitor 
(based on [Jones 1] ) to measure the busyness of individual transputers in the network. 
Up to 10 can be used in bilinear farms without sizeable impairment to the rate of 

speedup improvement. Higher order farms were not considered because of the need to 
integrate image data partitioning in the implementation of CVQ and the fact that their 
benefit shows only with larger number o f transputers.

For a given codebook and image size and with the distance measure operation 
considered atomic, the improvement anticipated is given by :

—i— + d
n * m  comm

(4)

where n is the size o f the codebook partition and m is the size o f the image data 
partition. dComm is the equivalent number o f operations for the time taken by the 
overall communication overhead. In CVQ however the codebook partitions size is 
not constant. Hence, a different sub-network for each class should yield better results 
(refer to [Omar 1] for details o f implementation and results).
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5.4. Conclusions

A significant improvement in the time taken for the coding process o f VQ and CVQ 
was achieved through the use of relatively simple networks o f transputers. Limiting 
factors to the scalability of the structures presented here seem to be the 
communication bandwidth and the real term distance from the data dispensing node 
and the working nodes.

In the case of CVQ, statistics show that some classes are more populated than others. 
To ameliorate the performance o f the network introduced here, different sub-networks 
should be designed to cater for the unbalanced load.

It is worth noting that these structures can be further investigated in order to find the 
practical limit to scalability, and then implemented on a memoryless transputer network 
(+ffame grabber) as a fast cost effective coder. The size of partitions will, in this case, 
be dictated by the transputer's on board memory.
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CHAPTER VI

6. Transputer implementation of some vision tasks

This chapter presents the transputer implementation o f three tasks common in 
computer vision. These tasks were chosen because o f their differing communication 
requirements and amount o f inherent parallelism. First, the Fourier descriptors method 
is presented and a parallel algorithm proposed. Second, the Hough transform technique 

is introduced in both original and generalised form. Last, matching objects in a scene 
to computer models is considered and the 'maximal clique' technique introduced. 
Several attempts at reducing the sequential part of this algorithm are presented.

6.1. Fourier Descriptors

Classification o f objects in a scene is one of the problems of image processing. Fourier 
descriptors represent the boundary of a region as a periodic function which can be 

expanded in a Fourier series [Persoon], Several different parameterisations will be 
presented, these are due to several workers [Persoon][Waltz][Duda], The aim of this 
section is to study the relative merits o f various boundary representations and to 
present an algorithm well suited for parallel implementation.

Fourier descriptors provide an improved characterisation of shape as more coefficients 
are added to the frequency domain sequence. In the limit o f an infinite sequence they 
are completely unambiguous. Individual coefficients describe the boundary with 
increasing accuracy.
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Fourier descriptors do not offer easy reconstruction o f the space domain shape. This is 
due, for example, to the fact that a finite frequency domain representation will inverse 
transform into an incomplete spatial description of the periodic function that gave rise 
to it.

One of the major advantages of Fourier descriptors is that the general shape o f a 

boundary can be described satisfactorily by a few of the low-order terms in the Fourier 
series expansion of the boundary curve. Besides, a well chosen parameterisation can 

lead to a frequency-domain representation that is independent o f size, translation and 
rotation o f the shape to be described. This can have very interesting consequences on 
the storage o f parameterised shapes, yielding a reduction in the communication 
overhead they introduce in a distributed implementation of shape recognition.

6.1.1. Parameterisations

In this section two parameterisations are considered. First, a closed curve is 
represented by the cumulative angle between a fixed line in the image and the curve 
figure 6.1 (a)). Second, the pixels around the boundary are considered as points in the 
complex plane (figure 6.1 (b)); therefore, scanning the boundary generates an array of 
complex numbers. Both methods rely on the perimeter of the curve to fix the sampling 
rate. It is worth noting that the first parameterisation yields a sequence o f real number 
making it more attractive from the computational point o f view. The next few sections 
will present both methods and a comparison of their merits and drawbacks.
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6.1.1.1. First formulation (vi/-s curve-)

The particular FD's considered are completely defined by the parameterisation 

adopted. Invariably it is assumed that the boundary to be transformed is scanned in an 

anti-clockwise direction and made available in a data structure.

suppose that the simple closed C curve is given the parametric representation:

(x(l), y (l) )=  c(l)
where 0 < 1 < L is the arc length and L is the full length of the curve C.

If  the angular direction of the C at point 1 is given by 0(1), then the cumulative angular 
function defined as: <£(1) = 0(1) - 0(0) is the net amount of angular bend between 
starting point 1=0 and point 1 (figure 6.1 (a)). Note that since C is closed <I> is a 
periodic function o f 1 (with period 2n). Zahn and Roskies [Zahn] further defined the 

function \|/(t) as follows1:

\|/(t) = <X>(Lt/27i) - 1 (6.1)

where t ranges from 0 to 27:.

\|/ has very interesting properties, namely, it is invariant under translation, rotation and 
scaling. Besides, \j/(t) = 0 for a circle. Expanding y(t) into its Fourier series:

V(t) = A0 + X A kcos(kt-ak) (6.2)
k = l

The set {A ^a^ lk^ l,..,^}  are the FD's o f the curve C.

Following are some of the advantages and disadvantages o f these FD's. Amongst the 
advantages :

1. The set (A ^a^}  contains no redundant information.
2. The set {A ^a^} is invariant under translation, rotation and scaling* 2.

'Note that the formulation of O* here is slightly different because it was decided to scan C anti-

clockwise.

2The second assertion is in fact a consequence of the first.
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Amongst the disadvantages:
1. \|/(t) contains discontinuities when C does; therefore, the Ajf have 

high frequency components and the truncation of the sequence introduces 

large errors.
2. Reconstruction of C from the A^ is complicated.

6.1,1,2, Second formulation

As reported in [Persoon] a different parameterisation o f a closed boundary C can be 
represented by (x(l), y(l)) = c(l) where 1 is the arc length along C ( anti-cloclcwise). A 

point moving along the boundary generates the complex function u(l) = x(l)+jy(l), 
which is periodic of period L ( the length o f the boundary). The FD's for such a list are:

a „ = f  fu tlje-^ d l (6.3)
L i

and

u(l) = f > „ e ’"“ ' (6.4)
-C O

The FD's thus defined present many advantages e.g.:
1. u(l) contains no discontinuities, hence, |an| decreases fast as n->oo
2. reconstruction of C can be done easily3 

Among the disadvantages:

1. Because u(l) is a complex function, symmetry is lost i.e. a;jq_n* *  an

2 . The definition of u(l) leads to
du
~d\

= 1, this in turn leads to restrictions on the

an4 for partial sums.

Alternatively, x(l) and y(l) can be considered as two separate real sequences and the 
FDs are defined as follows [Kuhl][Chen]:

3This is not a major advantage since shape recognition is to be done in the frequency domain.

4This can be seen by replacing equation (3) for u(l) in the differentiation.
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(6.5)
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n=l
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n=l
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~ L ~
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~ L ~

N
+ £ b n sin

n=l
N

+ Z d n sin
n=l

2n7tl
~ L ~

2nnl
~ L ~

6,1.1.3. Normalisation

In this section the normalisation of FD's with respect to starting point is considered for 
the first formulation given above. Scaling, translation and rotation have no part to play 
in this normalisation procedure because o f the invariance o f the FD's (equation 6.1) to 
these operations. As stated above this is due to the definition containing no 
redundancy in the definition of a curve C.

Moving the starting point along C is equivalent to a time shift in one dimensional 
signals. Using the time-shifting property of the Fourier transform it can be seen that the 
equivalent operation in the frequency domain would be a multiplication the nth 
component by: e jnTwhere T is the fraction o f a period through which the starting 
point is shifted. It is worth noting that as T goes from 0 to 2n, the starting point moves 
around the whole boundary once.

In [Persoon] the authors propose a sub-optimal method for the normalisation o f FD's. 
Since they use the second formulation (above), the normalisation includes scaling and 

rotation as well as shifting the starting point. The method consists of scaling and 
translating the coefficients in the frequency domain thus making a(0)=0 and |a(l)| = 1; 
and then applying the combined rotation and starting point shift. The desired 

Normalised FD will then have a(l) and a(-l) o f equal phases. Although the method 
works quite well on relatively smooth shapes, there are cases where after scaling a(-l) 

becomes insignificantly small. This leads to problems in the determination of the 
rotation and starting point shift operator.

Wallace and Wintz [Wallace] suggested that instead of a(l) and a(-l), the two 
coefficients in the sequence that have the largest magnitude should be chosen for the 
zero phase condition. It is worth noting that a(l) will always be the largest coefficient 
in magnitude (fundamental frequency). Therefore, the second largest coefficient has to 

be found and used with a(l) in the normalisation criterion. However, since the second 
largest coefficient is not generally a(-l) but a(k) then it can be shown that there are

71



|k-l| possible orientation/starting point combinations that satisfy the zero phase 
condition. In [Wallace] the maximisation of a function of the frequency coefficients is 

proposed for choosing the combination.

The alternative definition o f the second formulation of FDs can be normalised as 
follows:

a n bn COS(V|/) sin(v|/) a„ bn cos(n0) -s in (n 0 )

_Cn dn_ — sin(vt/) cos(vj/) _Cn tin . sin(n0) cos(n0)

where

0  +7t
(6.6)

and

0 = — arctan1 
2

2(a,bi -t-Cjd) ) \
a f+ c f-b f -d ?/

0 < 0 < 7t

cos(0 ) sin(0 ) a i Ci
- s in ( 0 )  cos(0 ) .b i  d i .

and vi/ = arctan(c/o )/a ,

The effect o f the above transformation is to render the two vectors (a\, b \)  and 

(c'j, d\) perpendicular and then rotate them onto the co-ordinates axis so that c'j= 0 
and b j= 0. To complete the normalisation process every coefficient is divided by a'j.

6,1,1,4, Methods adopted

Fourier descriptors have been used extensively for aircraft and character recognition. 
The majority o f applications reported in the literature use variations o f the second 

formulation (above). In this work both vy-curve FDs and complex FDs are considered.

6.I.I.4.I. vy-curve based FDs

\|/-curve based FDs have interesting properties:

1. The spatial coefficients are real, and
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2. They are invariant under rotation, scaling and translation.

Because the spatial domain coefficients are real, the Fast Hartley Transform (section 

6.1.2) can be used to improve performance. Moreover, the invariance under rotation, 
scaling and translation simplifies the normalisation procedure, since only normalisation 

with respect to starting point is needed. The rationale is that before considering a 
performance increase through parallel implementation, it is worth pondering the 

possibility of ameliorating the performance of sequential algorithms.

FDs based on Y|/-curve present, however, one major problem; and that is the 
frequency coefficient a(k) will decrease rather slowly when k -»  oo. One way around 
this problem is to trace the boundary with variable speed, which was first proposed in 
[Persoon], Covering the boundary with variable speed will reduce the discontinuities 

due to corners in the boundary. This can be achieved by taking more samples around 

the regions o f high curvature.

The method proposed here for varying the speed involves scanning the boundary once 

to associate a curvature measure with each sample in the linked list of edge elements. 
The curvature measure is not defined explicitly, instead the frequency distribution o f \\i 
is calculated during the first scan [Ballard], At this stage the perimeter o f the boundary 

is also calculated. This information is then used to determine the intervals between 
samples during the second scan. Peaks in the frequency distribution represent high 

curvature regions. Therefore, more samples are taken from these regions. This is done 
through modulating the intervals between samples with the frequency distribution. In 
other words, the distance between two samples is proportional to the frequency 
distribution.

Were the speed uniform, the interval between two sample points would have been 
constant, I = P/N, where P is the perimeter of the shape i.e. number o f pixels on the 
boundary and N is the fixed number of samples chosen to represent the shape.

6.I.I.4 .2 . Complex FDs

The alternative definition given in section 6.1.3 above was also selected for 

implementation. The main reason for this choice is the simple quasi-unambiguous5 
normalisation procedure. Moreover, because the co-ordinates o f the points around the

5Cases where the normalisation is ambiguous can be handled by the harmonic invariants [Lin.]
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(6 .10)
N - l

x (t) = £ H (f)cas(2 7 ift/N )
f=0

As presented above the discrete Hartley transform (DHT) suffers from the same 

problem as the Fourier transform, namely, arithmetic operations are needed to 
compute the transform of an N-element data set. However, due to the similarity 

between the two transforms, the same mechanism that was introduced by Cooley and 
Tukey in 1965 [Cooley], for the computation of the fast Fourier transform (FFT), can 
be used to compute what will then become the fast Hartley transform (FHT).

Essentially, the FFT algorithm uses a permutation process to bisect data until data 
pairs are reached. The idea behind the permutation process is that it is faster to split 

data into pairs, compute the transforms of the pairs and then recombine these to make 
the entire transform. The latter still needs a power o f two number o f points to compute 

efficiently.

Bracewell [Bracewell] showed that a similar methodology can be employed for the 
Hartley transform. Through the application of the shift and similarity theorem he 

derived the following general decomposition formula:

H (f) = H, ( f ) + H 2 ( f ) cos(27tf/Ns) + H 2 (N s -  f ) sin (27tf/N ,) (6.11)

Figure 6.2 shows the signal flow graph for the FHT which is a consequence of the 
decomposition formula.

Figure 6.2:Siqnal flow graph for the computation of the FHT
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The Fourier transform can be obtained from the Hartley transform as follows:

Fr(i)=H(i) + H(N-i) 
and

Fj(i)=H(i) - H(N-i)

Where Fr is the real part of the Fourier transform andFj is the imaginary part. In fact, it 
is faster7 to compute the Fourier transform via the FHT than via the FFT, because in 
computing the butterfly o f Figure 6.2 floating-point numbers are used instead of 
complex numbers (pairs of floating-point numbers).

The FFT implementation on multi-processors is relatively straightforward due to the 
inherent parallelism in the butterfly operations.

6.1.3. Implementation

In a typical application of Fourier descriptors a number o f curves are stored as FDs, 
an incoming curve is transformed and compared to the database for the best match. In 

this work the effort is concentrated on providing fast conversion from images to 
features (FDs). The problem of searching a large database for the nearest neighbour is 

quite complex. One approach would be to use a technique similar to that o f [Omar 1], 
where a network of transputers was used to implement a vector quantisation 
coder/decoder.

In the remainder of this section a transputer implementation o f the two FDs mentioned 

above is described. The algorithm consists of the following:

1. Read an image from the frame grabber
2. Compute edges and edge direction
3. locate closed boundaries
4. Compute FDs and pass onto search routine

In both implementations o f FDs the timings and results are obtained for the 
computation o f the Hartley transform, normalisation and in the case o f \j/-curves 
determination o f the boundary scanning speed. The curve to be parameterised is

7Bearing in mind the additional step for the FFT reconstruction.

76



assumed to be presented to the system in a standard Freeman chain code (8- 
connectivity).

61.3.1. vi/-curves Fourier descriptors

The main problem of the vy-curve formulation for FDs is that the magnitude of the 

frequency domain coefficients does not reduce fast enough as frequency components 
are added to the sequence. This is due to the inherent discontinuities in the \j/-curve. 
In other words, a corner in the boundary to be described will give a sharp change in the 
magnitude of the y-curve. Figure 6.3 shows a simple square shape and figure 6.4 and 
6.5 illustrate the problem. Figure 6.5 represents the Fourier transform of y-curve 
(figure 6.4) o f the simple shape.

r  \
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Fiaure 6.3: Simple sauare shape
v  J
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Consequently these FDs require a large number o f coefficients to represent boundaries 
with some accuracy.

Appendix D -l shows Occam code fragments which implement the various tasks 
required to perform edge magnitude and direction evaluation, curvature evaluation, 
sampling, FHT and normalisation.

The frequency distribution of direction change is obtain by scanning a boundary and 
representing the instantaneous curvature as the difference between the tangent at the 
current point and the previous point. Figure 6.6 shows this function for the simple 

object of figure 6.3

The curvature modulates the interval between samples. This is done through finding 
the minimum and maximum curvature in a given shape, then computing the curvature 
magnitude sampling rate as follows M s = N/(max-min). Therefore, the distance 
between a sample and the next is curvature*Ms. Thus, at points o f high curvature 

more samples are taken than at points of low curvature. A lthough the frequency 

spectrum of the FDs thus defined is reduced it is still wider than that of the alternative 
FDs. The experimental set-up is identical to that o f the next section.

6.13.2. Alternative FDs

In this implementation the boundary is presented to the system as a list o f co-ordinate 
pairs. The main performance increase stems from the parallel implementation o f the 
FHT as a means to compute FDs. The algorithm can be summarised as follows: 1

1. Parallel FHT on abscissa and ordinate sequences,
2. normalisation through the operations defined in equation 6.6,
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3. nearest neighbour classification.

For this third point it is assumed that a library o f candidate shapes have been 
transformed. Figure 6.7 shows the structure o f a transputer network to implement the 

algorithm.

Figure 6.7: Transputer network for FDs

The transputer labelled R is the root processor and resides on a board in an IBM PC 

compatible computer. It has 4 MBytes of RAM and runs the transputer development 
system as well as a process to control the network, dispense data and gather results. 

All the other transputers are TRAMs consisting of a transputer and 1 MByte o f RAM 
housed on a BO 12 board. The latter together with MMS2 is used to organise the 
transputer into the configuration of figure 6.7.8

The processors labelled H; perform the Hartley transform, Fourier conversion and 

normalisation. Their configuration is a direct result o f the signal flow graph o f the FHT 
(figure 6.2). A sequence of co-ordinates representing a boundary is passed from the 

root transputer to Hq which performs the bit reversal operation. Then, the sequence is 
partitioned into 4 parts which are passed on to H; (l<i<4). Next, these processors 
perform the FHT on their respective quarter-length sequence. After each transputer 

has carried out an FHT of quarter-length (H,,H2) and (H3,H4) communicate to perform 

half length FHTs. Finally, (H,,H3) and (H2,H4) communicate to yield the full length

8Module Motherboard Software is a software tool allowing the configuration of a network through the 

C004 switches residing on the BO 12 board.
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FHT. At this point, data is sent to F^ which derives the Fourier transform. Please refer 

to figure 6.7bis which represents the signal flow graph of the algorithm.

HI

H2

H3

H4

First stage Second stage Third stage

Figure 6,7bis Signal flow graph

Once the two half-sequences have been obtained (at F^ from FFj and FF4) the 
normalisation process begins. FFere the parameters 0 and vj/ (equation 6.6) are 
evaluated on FF0 and dispatched to the FFj's. Note that this process only requires 

communications of the type (FF,,H2) and (FF3,FI4).9 The full benefit of the transputers 
labelled Dj (l<i<10) can only be felt for large libraries o f shapes. Therefore, the 

timings presented here do not include the nearest neighbour computation10. Some 
simple geometric shapes were used to test the operation o f the algorithm. Figure 6.8 
shows the boundaries that underwent the process. The number o f descriptors required 
to discriminate between these shapes is very small (8) and might be insufficient for 
more comprehensive libraries.

9Even these transfers are only required because of the data paths.

10Since only five shapes were used in the experiment, the classification process becomes trivial.
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Table 6.1 shows some timings (all times are given in milliseconds11) for the whole 
process (excluding classification). Single precision floating point arithmetic operations 

are used throughout.

Table 6.1 ____________

/
1 transputer (ms) 6 transputers 

(R and Hj in figure 6.7) 
Network (ms)

1 128 pixel/boundary 34 13

| 256 pixel/boundary 78 31

The inefficiency (i.e. the fact that the speedup achieved is not proportional to the 

number o f processors) seen in table 6.1 is due to the lack o f symmetry in the signal 
flow (figure 6.2). The situation will undoubtedly worsen if more transputers were 
added to the network. In other words, the FD algorithm is not scalable. However, the 

goal here is to provide a system which provides FDs at a high rate. The fastest chain 
encoding implemented here (on one transputer) performed the operation in just over
15 ms. Therefore, the system presented here yields high enough throughputs for real

.1

applications* 12. Also, the building components are available (no custom hardware

1 'Rounded to the nearest millisecond.

12Altough real applications might adopt a method that has a higher throughput with regard to 

boundary accumulation, they will have to deal with partial occlusions, multiple boundaries and large 

shape databases
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design) and the transputers can be configured without external memory thus making 

the application commercially viable.

6.2. Parallel Hough transform

Since its inception in 1962 by P.V.C. Hough [Ballard] the Hough Transform (HT) has 
been used for line, conic and general parameterised curve detection in images. The 
method is particularly well suited when little is known about the location o f a curve but 
its shape is given in a parametric form. Moreover, it copes very well with noise, gaps 
and partial occlusions. The basic idea is that a point (x,y) in image space (x-y) can lie 
on all lines y = cx + m; hence, collinear points contribute consistently to the same value 
o f the pair (c,m). Therefore, if a parameter space (c-m) is constructed from image data, 
maxima will appear at locations corresponding to long segments.

Duda and Hart [Duda 1] considered the problem of locating straight lines in images. 

The parametrisation of a line is particularly simple since two parameters completely 
define a line, namely, slope and intercept (Cartesian co-ordinates)13 or radius and angle 
(polar co-ordinates). Many authors have shown the Hough transform to be formally 

equivalent to template matching and matched filtering [Davies 1], This gives 
theoretical weight to the method, since matched filtering is optimum with regard to 
signal-to-noise ratio under white noise conditions [Lynn],

Kimme et al [Kimme] adapted the method for the detection o f circles and ellipses. In 

1981 Ballard [Ballard 1] proposed a formulation that allows for arbitrarily shaped 
curves. The principle is similar to that of detecting lines and conics, but the 
accumulation consists of computing the possible loci o f reference points.

13See figure 6.6
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The method thus obtained is a Generalised Hough Transform (GHT). The first step in 
the GHT algorithm is the detection of edge pixels around the given shape. Each edge 

pixel then contributes to the parametrisation of the curve as the distance (R(0)) and 
angle (a(9))14 from the edge pixel to a reference point inside the perimeter. Having 
chosen a reference point near the centre of mass of the shape the reference point can 

be adjusted [Shapiro] to minimise errors due to inaccuracies in the estimation o f edge 
orientation. Then, the values R(0) and a(0) are put in tabular form. Each edge pixel 
with orientation 0j constrains the set o f allowable reference points to 
[x+R^Ojcosfa^©!)], x+RiiOjsinfa^©!)]]. Thus, the table entry for contains all pairs 
(R1; o^). Figure 6.7 shows the geometry used to construct the R-table.

r  >

Figure 6.7: Geometry used to construct the R-table

14Where R(0) is the distance from the edge pixel to the reference point, a(0) is the angle from the 

horizontal at the edge pixel and R(0) and 0 is the edge orientation.
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The R-table can be extended by adding dimensions to the accumulator space to deal 

with scaling and orientation.

6.2.1. Hough transform for lines

The Hough transform has been studied extensively and its theoretical aspects have 
been characterised [Davies 1][Brown][Slansky], It was found to have a sound 

theoretical basis related to template matching and matched filtering, and relative 
independence to noise and gaps make the method attractive. However, a major 

drawback is the very high computational complexity making the method unsuitable 
for applications requiring real-time (or just high) performance. The next section 

presents a closer look at the complexity of the HT.
6.2.1,1. Complexity analysis

The parameterisation suggested by Duda and Hart [Duda 1] involves regarding the 

conversion from polar to Cartesian co-ordinates as a constraint on (p,0) given that 
(Xj,yi) (i = 1, ..., N) are edge pixels (equation 6.12).

p  = Xicos(0) + y isin(9) (6.12)

Therefore, collinear points in the image space contribute to the same location in a 
parameter space p-9. The parameter space is then sampled so as to include all possible 
lines (to the resolution of the image and errors in the edge location and orientation). 
The p-0 space is, hence, an N pxNe array (Accumulator array). The algorithm of Duda

and Hart consists of finding the edge pixels, incrementing the loci o f points derived 
from equation 6.12 and finally performing an exhaustive search for maxima in the 

accumulator array. These maxima correspond to the (p,0) parameter pairs o f large 

collinear subsets o f pixels. The p-9 accumulator presents a major advantage (over c-m 
space), in that p-0 is bounded. In other words, no line in the image space has p—>oo or 
0—>oo. Figure 6.8 shows an image and the corresponding accumulator space. Note that 

if the gradient angle is computed from the image (at the edge detection stage), a pixel 
in the image space will contribute to a single location in the parameter space; 
otherwise, a pixel contributes to a sine locus. Although computing the gradient angle 
for edge pixels introduces an additional computational load, it leads to a higher signal 

to noise ratio since noise pixels will have (practically) random orientations.
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Figure 6.8: An image and its parameter space

The complexity of the edge detection step is ignored in the present analysis15. As far 
as the incrementation stage is concerned, it depends on the number o f edge pixels N 
and Ne. This is because N edge pixels generate N sets of accumulator space updates; 
and the cardinality of each is Ne (by Equation 6.12 and text above). Therefore, the 
complexity o f the incrementation stage is 0(N .N e).16 The exhaustive search for

maxima depends on the size (in cells) o f the accumulator array; thus, this stage's 
complexity is O(Np.N0). In general N is quite large (thousands or even tens of 
thousands for a 512x512 image) and typical values for N p and N e are a few hundreds.

Hence, in reducing the complexity of the above algorithm the incrementation stage has 
to be considered carefully. To this effect, Kiryati et al [Kiryati] proposed an algorithm 
in which the voting for parameter pairs (p,9) is limited to a sub-set o f the N  edge 
pixels. They showed that the performance degradation introduced is negligible. The 
method is based on a probabilistic approach and was termed the Probabilistic Hough 
transform (PHT). Such reductions in the complexity of an algorithm are limited by the 
bounds on the number of edge elements in the sub-set and the conformity of the noise 

statistics in the image to the models adopted. Nevertheless, the performance increase 
reported is considerable.

A totally different approach to the HT is the Dynamic Combinatorial Hough 
Transform (DCHT) [Leavers], The formulation for lines presents fundamental 
differences with the HT. Firstly, the accumulator array is a 1-dimensional orientation- 
only space. Secondly, the process iteratively simplifies the input pixels set by 

removing lines (from the image) corresponding to maxima in the accumulator space. 
And lastly, because the latter only gives information about direction one pixel is

15A process like edge detection can with today's technolgy (fast 2-d filtering VLSI components e.g. 

A110 [InmosSP]) be performed in real time (25 frames/second). One commercially available board 

the B429 [InmosIQ] consists on two AllO's, a T800 transputer, frame buffers and video input.

16Appendix B gives the basic definitions of complexity theory (order notations).
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selected each iteration, and only lines emanating from it are considered. The technique 
can be summarised as follows:

0. Initialise the accumulator array: Acc(9j) = 0; 0 < j< (Size of Accumulator).

1. Select an edge pixel pix&
2. For all other edge pixels pixi the orientation 0 of the line from pixi to pix0 increment 

Acc(0).
3. The accumulator space after one iteration will either contain peaks for line 

segments (of length > threshold) in which case the directions are stored and the 
lines are removed ; or contain no significant peak and only the selected edge pixel 
is removed.

4. If  no pixels are left terminate, otherwise repeat (go to step 1).

Yuen [Yuen] used this formulation and proposed a method (the Connective Hough 
Transform (CHT)) based on focusing the search on likely (line) candidates. This is 
achieved through scanning the image row by row (away from pix0) and giving 

no further consideration to orientations (thus pixels) that present gaps 
(again gap > gap threshold). The net effect is that edge elements that are not 

connected do not contribute spurious peaks in the parameter space. Besides the 
complexity is reduced because o f early termination o f some iterations.

A major disadvantage is brought about by both the DCHT and CHT. These 

formulations in trying to solve some inherent problems o f the HT, introduce serial 
operation to the original highly parallel technique. In an SISD model, the above 

methods would genuinely offer besides the intended effect a reduction of 

computational complexity - due to early termination, etc. However, the consequence 
o f these techniques on attempts to parallelise the HT will be disastrous.

In the next section a parallel implementation o f the HT algorithm is described, and the 
improvements due to the PHT shown.

6.2.1.2. Parallel Hough transform for line detection

The Hough transform applied to line detection requires the following steps:

1. Initialise the accumulator space (Acc(p,0)) cells to 0,
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2. Apply an edge detector (Sobel) to the input image, thus, computing the gradient 

magnitude g(x,y) and orientation 0(x,y); then threshold the resulting image. For all 
(x,y) such that g(x,y) > threshold, compute p and increment Acc(p,9),

3. Search for the local maxima in Acc(p,0), and keep a number N  of them (N depends 

on the height o f the peaks in Acc(p,0).

The Sobel operator can be replaced by a more performant edge detector17 e.g. Canny. 
But, the purpose of this section is to parallelise the algorithm and not to improve it. 

Therefore, the Sobel operator will be used exclusively. It is worth noting, however, 
that the added processing due to the canny edge detector will not be very taxing, since 

the complexity of the HT is dominated by the parameter space accumulation.

A close look at the HT algorithm presented above shows that steps 1 and 2 (step 2 
excluding the incrementation of Acc(p,0)), are local operations that only rely on a 

local neighbourhood and are, hence, suitable candidates for the SIMD model. 
Unfortunately, the accumulation of Acc(p,0) and the search for maxima require global 
communication. This is because a pixel at location (x,y) can give rise to a wide range 
of (p,0) pairs; also a local maximum in the parameter space can be insignificant 
compared to a set of global maxima.

Rosenfeld et al [Rosenfeld] report disappointing results on the parallel implementation 

o f the HT on various mesh-connected SIMD architectures:

"The analysis presented in this paper shows that a mesh-connected 

computer composed o f bit-serial PEs is not very efficient at implementing 

an algorithm such as the Hough transform, ..."

This is certainly true for the types of mesh-connected computers used in their analysis 
(MPP, GAPP, etc.) These machines are fundamentally different from a mesh- 
connected computer whose processing element (PE) is a transputer. (The latter does 
not operate in lock step and synchronises through communication). Firstly, they use 
the approach termed (Chapter 3) "the army of ants", in other words, the PEs have very 
limited power and performance is achieved through sheer number, while the transputer

17Some authors think that the Sobel operator, despite its relative poor perfomance, is better suited for 

the HT because it yields multiple response to a single edge; therefore, higher peaks in the parameter 

space.
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(of the right generation) is a state-of-the-art micro-processor capable to perform 
powerful computations. Secondly, these processor arrays are strictly SIMD by 
construction, whereas a transputer array (or any transputer topology for that matter) 

can operate both in SIMD and MIMD modes.

6.2.1,3. Implementation

The approach adopted here is the so-called processor farm model (Chapter 8). 
Because o f the data dependencies exposed above (and the fact that processing depends 
on the number o f edges in an image section) a controller processor dictating the 
operation of the whole network would be unable to balance the load of processing 
amongst the remaining processors.

In the farm model the controller takes a passive role. As a first attempt a linear farm 
was implemented. Every processor in the network is connected to two neighbours 
(apart from the controller and the last worker in the chain). Figure 6.9 shows this 

simple topology where CTL is the controller and Ws are workers.

Firstly, CTL divides the input image into sections (a multiple of the number o f 
transputers in the network seems a good choice), the limiting factor being the size of 
the input image. In other words, when there is not enough work no amount of 
parallelism can achieve better performance.

Secondly, it starts three processes that run in parallel on the controller processor :

1. A Forwarder process (F) that sends the packets formed o f a location stamp and a n , 
image section,

2. a Load Balancer process (LB) that acts as an interface between F and R, and the 
rest o f the network,
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3. and a Receiver (R) process which receives result packets and arranges them into 

the accumulator array Acc(p,9).

Figure 6.10 shows the controller with the processes represented by ellipses and 
channels by arrows. This is the case where the controller communicates with the rest 
o f the network through one link only.

r A

Figure 6,10: The farm controller

The following Occam code segment shows the main actions of the controller:

... Declare constants, variables and functions

... initialise variables and read image from frame store
PAR

Forwarder (in, image)
Load.Balancer (load.in, load.out, to.farm, from.farm)
Receiver (out, hough.space)

Finally, local maxima detection is performed in the accumulator space Acc(p,0). For 
simplicity, and because they are not part o f the farm side o f the application, the image 
division and maxima detection are omitted from Figure 6.10.

The Worker processors (W) receive an image section, perform the Sobel edge 
detection, compute (p,0) pairs i.e. entries in the Hough space, and put the latter into 
packets that are returned to the controller as results. Therefore, workers implement 
two routing processes as well as the main calculator. Figure 6.11 shows a worker 
transputer running the following processes in parallel:
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1. A Through-Putter process (TP) whose task is to deliver data packets to Ws,
2. a Calculator process (C) implementing the edge detection and parameter space 

co-ordinates,
3. and a Back-Feeder process (BF) responsible for sending back the results from 

its local C and other C's further down the chain.

The buffer between TP and the calculator ensures that the calculator is provided with 
data as soon as possible after finishing a sub-task and that the communication blockage 
is minimum.

To summarise the operation o f the algorithm developed in this section let us consider 
the role of each processor. First the input image is available at the controller which 

divides it into 33x3318 patches and farms it out to the workers. (The patch size was 
arrived at through experimentation. The size chosen gives the best performance in 
terms o f time and load-balancing amongst the workers. Due to the link set up time 
smaller patches result in greater communication delay, whereas larger patches result in 
a number o f processors remaining idle for longer periods.) The workers for their part 

get a section perform the Sobel edge detection and pack all the (p,0) pairs into a 
messages that are sent back to controller. Note that the LB process on the controller 
keeps track o f the number o f free processors and only sends packets to the farm if the 
latter is positive. Finally, the controller performs the peak detection task and files the 
results. Very marginal improvements on the speedup were noticed when the peak

1832x 32 sections augmented by a 1-pixel overlap for the 3x3 Sobel edge detection.
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detection task is also farmed out. This is due to the fact the operation is less complex 
and the size of the packets has to be increased in order to overcome the overhead 
introduced by the division of the Hough space. Also, for a given number o f significant 

peaks corresponding to close parallel lines in the image space, a great deal of 
computations are duplicated since many of the local peaks are eliminated at the 
controller.

A concise version o f the Occam code for this application can be found in Appendix 
D-2. The techniques introduced in Chapter 8 for the maximisation o f performance 
were used in the implementation. In short, all routing tasks are run at high priority, 
and the performance monitor is used to determine a reasonable image section size; 
although, for a small number o f transputers a wide range of values give similar speed- 
ups.

One major advantage o f farming is that a different topology can be implemented with 
almost (or even no) modification to the workers and very limited alterations to the 
controller. Figure 6.12 shows a controller which communicates with a farm through 

two links. F and R remain unchanged but the node manager requires in addition a 
multiplexer and de-multiplexer process which will keep track o f the two branches (free 
processors and buffers).

Figure 6.13 shows a transputer farm based on the above described controller and 
workers. The controller resides on a B004 board inside the host computer and the 
workers are TRAMs sitting on a BO 12 board in a rack.
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The network consists of up to 16 worker transputers forming various basic topologies 

and a controller communicating with two workers. Next, some experimental results 
and variations on the structure of the network are presented.

CTL ;

W W

~~K~

w w

Figure 6.13: Transputer farm

The linear farm and the two-linear farm were implemented for both the Hough 
transform and the Probabilistic Hough transform. For the latter, the accumulation stage 
takes place for a subset; namely 20% [Kiryati] of the edge pixels found in the local 
section of the image. Figure 6.14 shows a graph o f the speedup achieved as the 
number of processors is increased from 1 to 16. The test image is shown in figure 6.15.

The speedup achieved can mainly be attributed to the processing to communication 
ratio. The processors spend most o f the time calculating results -as measured by the
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performance monitor presented in Chapter 8.19 In the case o f the linear farm the 

processors halfway through the chain perform slightly better than those at end. This is 
to be expected since when all the processors are ready to proceed the distance from 
the controller introduces a precedence relation between them. It is clear from figure 

6.14 that the graph flattens when the number of processors exceeds 12 (for the linear 
farm); the graph for the bi-linear farm is expected to flatten for a number o f processors 
> 16, this is due to the communications saturation. In other words, a delay is 
introduced between the time a processor finishes work on an image patch and the time 
it receives the next patch.

Table 6.2 shows timings for HT and PHT. The difference in complexity between the 
two algorithms does not affect the speedups achieved, this is due to the similar 
computation to communication ratios. However, the probabilistic Hough transform as 

implemented here yields good detection and runs ~3 times faster than the HT on a 16- 
transputer linear farm. 1

1 b esid es, each worker kept a count of the number of packets it processed. These values offer more 

information than the performance monitor (in this particular case.) The reason being that the 

performance monitor of chapter 5 cannot distinguish between 'useful' computations and 

communication overheads. The number of sections handled around the middle of the chain was found 

to be slightly greater than in the vicinity of the controller.
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Table 6.2

1 T 16 T

PHT 2.9s 0.23s

HT 8.5s 0.65s

The edge map of figure 6.15 together with a randomly selected set o f edges and their 

respective Hough spaces are shown in figure 6.16.
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6.2.2. Generalised Hough transform

A similar set-up was used for the GHT, where an additional step is required in order to 
compute the R-table. The algorithm is implemented on a linear farm with speedups of 
up to -13 on 16 transputers. Since the parameter space incrementation and peak 
detection are similar to the HT only R-table formation is described here. The algorithm 
consists o f the following steps:
1. Selection o f a reference point on the boundary of the shape to parameterise,
2. Compute the distance and rotation o f every point on the boundary with regard 

to the reference point and form the R-table,
3. Form the accumulator space (Hough space) and perform peak detection.

First, an image containing a 'clean' version of the object to be parameterised is read 
from the frame grabber by the controller. Edge detection at the controller selects a 
pixel on the boundary to be the reference point ( the co-ordinates of this point are 
broadcast to every transputer in the network) for building the R-table. The latter is 

computed as follows:

1. The image is divided into sections and farmed out to the processors.
2. In parallel each processor in the network (other than the controller) performs 

the Sobel edge detection on the local section. For each edge pixel found the 
magnitude and orientation 0 are calculated. Also, the distance R from the 
reference point is calculated. Then, the angle cp between the horizontal and a 

line linking the reference point to the edge pixel is computed. The angle (p 
together with R form an entry into the R-table which is indexed by gradient 
angle 0. Finally, these entries are packed into a message and sent back to the 
controller.

3. The controller starts forming the R-table as soon as it receives the first packet 

from the network. Because some gradient directions will undoubtedly feature 
more often than others in the R-table, a 1-dimensional array is used to keep 
track o f the number of entries for each allowed direction ( 0 < 0 < 180°).

At this stage the object to be recognised is parameterised in the R-table and the GHT 
can proceed. A test image is input and its edges are detected and stored in buffers one 

line at a time. These buffers constitute the packets that are farmed out to the network. 
Results are returned from the network in the form of (x,y) co-ordinates for the location 
o f a prospective reference point.

95



Several topologies were tried in order to minimise the distance from the controller to 
the worker processor. These were linear and bi-linear networks and binary and ternary 
trees. Very minor improvements if any on the linear farm were noticed. This is due to 
the relatively small number of processors (16) used in the experiment. Also, partially 
performing the edge detection on a test image at the controller improves the 

algorithm's communication requirements and the computation to communication ratio. 
This idea originates from the fact that the controller does very little between demands 

from the network for more data. Hence shifting some o f the computational load onto 
the controller results in an improvement in the overall balance. This is particularly true 
for a sub-task like edge detection whose output contains considerably less data items 
than its input.

Appendix D-2 gives a shortened version of the Occam code implementing the ideas 

expounded in this section. Listings 6.1 and 6.2 give the top-level code for the 
controller and the worker processors respectively.

Listing 6,1

...Declarations
SEQ

... Initialise arrays 

... form R.table of object 

... get new image 
PAR

Send.data (to.load, image, scale, angle)

load.balance (to.load, from.load, to.farm, from.farm,r.table, performance, buffers) 

Accumulate.Hough.space (from.load, Accumulator)

Listing 6.2

... Declarations

. .  PROC Feed-through (CHAN OF ANY request, to.worker, left.in, down.out, INT pn) 

... PROC Worker (CHAN OF ANY request, to.worker, from-worker, [][]INT results) 

_. PROC Feed-back (from.worker, sofLchanneL, left.out, pn)

PRI PAR 

PAR

Feed.through(request, to.worker, up.in, down.out, processor.id)

Feed.back(from.worker, down.ln, up.out, results, processor.id)
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Worker(request, to.worker, from.worker, results)

Note that the PRI PAR construct above ensures that the communication processes are 
run at high priority to avoid blockages. The request channel allows the worker process 
to ask for more data when it is not busy; therefore, it carries a dummy variable which is 

discarded at the feed-through process. All the remaining channels implement the same 
protocol which contains a header tag defining the type o f operation, the message 

destination id, the length and the message. A quasi-linear speedup was achieved by the 
algorithm running on a network o f transputers compared to the sequential version. By 
no means is this result to indicate that the parallel Hough transform scales linearly. 
Rather it is a consequence of the high computation to communication ratio which 
cannot be maintained when more processors are added to the network. The fact that 
the topology does not seem to affect performance is due to the added complexity of 
the routing processes when multiple links have to be handled. However, the 
minimisation of distances between the controller and the workers will become more 

important for larger farms.

Figure 6.17 shows the image of an object the parameter space (Hough space) 
displayed as an image (the darker the area the larger the number of votes for that 
location). The peak is marked with a cross.
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6.3. Object Recognition using graph matching techniques

In this section the association graph technique is considered. The method departs from 
the rigour o f purely graph theoretical methods such as isomorphism which are too 
restrictive. The two relational structures to be matched i.e. graphs of the model and the 

image object are combined into a graph termed the Association Graph (AG) [Ambler], 
A node is added to the AG if nodes with same property are present in both relational 
structures20. Edges in the AG are added when two nodes represent compatible 

relations in the two graphs to be matched. In other words, an edge exists between 
nodes o f the corresponding features in both structures. Therefore, the AG includes 

information about 'individual features and their mutual compatibility in the two

20Note that the nodes in a graph representation of a scene will correspond to features in the image (or 

model); therefore, qualifiers (i.e properties) can be attached to the nodes.
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structures to be matched. The largest set of mutually compatible nodes in the AG can 
thus be deemed to be the 'best match' [Ballard], This set corresponds to the largest all- 
connected group of nodes and is called the largest Maximal Clique (MC). An MC is a 
set o f all-connected nodes of a graph that cannot be extended without destroying this 
property ('all-connectedness'). Therefore, the 'best match' in this method is equivalent 
to the largest maximal clique.

The remainder o f this section is concerned with parallel clique finding algorithms. First, 
a parallel version o f the algorithm proposed by Bolles [Bolles], Second, the use of 
transitive orientation as a simplifying procedure is investigated. Finally, the method 
known as block cluster analysis is studied and implemented.

6.3.1. Maximal clique algorithm

Bolles [Bolles] defines one of the best all-round algorithms for clique finding. The 
latter is a modified version o f the algorithm proposed in [Johnston], The algorithm 
relies on the adjacency matrix o f the graph under investigation and three sets o f nodes:

• The set C is the clique under consideration,
• the set P containing the nodes not in C but which are prospective candidates for 

inclusion,

• the set L containing nodes that are arbitrarily left out.

The algorithm can be stated as follows:21

Maximal_Cliques (C,P,L):-

If (L=/E) then C is a maximal clique 

Else

x  =  Choose(L)

For ally? e (P rx not(neighbours(x)))

P = P -M
Maximal_Ciiques P rx neighbours^), L rx neighbours^))

A list o f all the maximal cliques in a graph is obtained through the call:

21The procedure Choose selects a member x  of L arbitrarily in order to select the neighbours of x in P 

to extend C. Also, the procedure neighbours(x) returns the elements of V that are adjacent to x and 

the procedure not(S) takes a subset S of V as argument and returns the complement of S in V.
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Maximal_Cliques ({}, V,V) where V is the set of all nodes of the graph under 

consideration.

Occam does not implement recursion, thus, any attempt at writing a program to carry 
out the above procedure must start by turning it into an iterative process. This requires 
the use of a stack data-structure.22 Work due to J. Arsac [Arsac] establishes the 
required modifications to the recursive process. In the present simple case o f monadic 
tail recursion (where the recursive call occurs only once as the last instruction of the 
procedure) the transformation consists o f de-coupling the local variables from the body 

o f the task. This is done here through the use o f a stack to keep track o f the successive 
values o f the variables. The following Occam pseudo-code gives the iterative version 
of the algorithm presented above.

Listing 6.3

BOOL, INT64, INT64, INT64 FUNCTION Mai Cli (C,P,L)

BYTE x,y:

BOOL flag:

VAL

SEQ

If

(L=/E)

flag := TRUE —then C is a maxima] clique 

TRUE 

SEQ

x  := Choosc(I.)

For ally e  (P n  not (neigh bo u ps (a')))

P := (P -If}) n  neighbours^)

L L n  neighbours^)

Ci-CX-U-}

Push(L,P,C) 

flag:=FALSE 

RESULT flag,C,P,L

This procedure can be called to find all the cliques in a graph as follows:

22As  stacks and other data-structures are not available in Occam 2 (with which this work was carried 

out) it had to be implemented (see [Redfem] for details.)
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Listing 6.4

BOOL flag:

INT64 C,P,L:

SEQ

flag, C, P, L max_cii(0,V,V) — Where V is the set of all nodes in the AG 

push(L,P,C)

WHILE NOT stackemptyO 

SEQ

pop(C,P,L)

flag, C, P, L niax_cli(C,P,L)

IF

(flag=TRUE)

— List C as a maximal clique 

TRUE

SEQ

flag, C, P, L := max_cli(C,P,L) 

push(L,P,C)

The above procedure relies on bit-masking and shift operations to select a node from 
the graph. The node sets C, P and L are implemented as 64-bit integers where the bit 
position is used as an index in the adjacency matrix to test the existence o f an edge. 

This limits the size of the AG to 64 nodes and is due to the fact that Occam procedures 
cannot return non-scalar variables (e g. arrays or sets). To remedy this problem 

pointers can be passed to global variables containing the node sets.

The method chosen for parallelising this algorithm consisted o f the following steps:

• Set up a farm as described in section 6.2 with every worker running the full 
algorithm with a local stack and return maximal cliques when they are found.

• The controller runs the initial phase of max_cli to fill the main stack and then 
assumes a passive role whereby it pops values and supplies them to the workers on 
demand.

The system (based on 9 transputers arranged in a linear farm) was tested on a range of 

random undirected graphs on 64 nodes. Speedups from ~3.2 on sparsely connected 
graphs to ~5.4 on densely connected graphs were noted. However, the computation
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time for densely connected graphs is significantly larger than that o f sparse graphs due 
to the combinatorial explosion. The latter is a result of the slow decrease of the size of 
the set L. It is believed that the use of more transputers (and the extension o f the 
algorithm to handle larger graphs) would not lead to significant performance increase 
because the clique finding algorithm as presented is known to be NP-complete (see 

appendix B for details on NP-completeness). Therefore, speedups can theoretically 
only be achieved through the use o f an exponentially increasing number o f processors. 

The reason is that as the size o f the graph increases the complexity o f the problem of 
finding cliques increases exponentially leading to the need to increase the number of 
processors accordingly. Also, if the size of the graph does not increase, a greater 
number of processors will introduce more communications overheads. The following 
two sections deal with improving the sequential algorithm and parallel versions.

6.3.2. Reducing the combinatorial explosion

This section is concerned with the main cause of inefficiency in the algorithm described 
above, namely, the arbitrary choice of the element of L which directs the selection of 

the prospects for clique extension. A pre-processing step is therefore added to the 
process. The latter consists of generating the map o f shortest paths between all pairs 
o f vertices in the graph. This map is then used to select the element o f L which is the 
furthest away from the clique under investigation. The net effect will be a much faster 

reduction of the set L, thus less time wasted on dead ends. The most efficient 
algorithm to form this map is given in [Floyd] (see Swamy for details).

Another way to reduce the complexity o f the maximal clique algorithm is to apply 
transitive orientation to the initial graph. The resulting oriented graph simplifies the 
algorithm [Liu], An efficient algorithm to this effect was introduced by Pnueli et al 
[Pnueli], The algorithm was tested on arbitrary graphs and it was found that very often 
the graph is not transitively orientable. One possible avenue of research into this 
subject could consider weighing the edges of the AG in order to disregard offending 
edges during the transitive orientation phase.

6.3.3. Block cluster analysis

This section presents the use o f the Block Cluster Analysis (BCA) method to simplify 
the maximal clique algorithm. The approach relies on the following assertion:
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• If the adjacency matrix is re-ordered in such a way that the T  entries are lumped 
around the leading diagonal, then it can be partitioned into blocks on which the 

maximal clique algorithm is run.

The method for BCA follows closely the Ford algorithm. However, the original 
algorithm is concerned with multi-graphs. Here the intention is to derive an algorithm 

that will arrange the non-zero entries in the adjacency matrix o f a graph nearest the 

leading diagonal. This can be achieved by minimising the sum of distances o f the T  
entries from the diagonal. Let the distance A o f a matrix entry be measured by A 
(Aij)=(i-j)2. The magnitude of f(A) defined in equation 6.13 decreases when the matrix 

is reordered so that the T  entries are closer to the leading diagonal.

f(A)=EEAs*(i-j)! 613
i=i j=i

Therefore, the difference between the magnitude of f(A) for two arrangements o f the 
rows and columns a matrix gives information about the positions o f the T  entries with 
regard to the leading diagonal.

The search procedure relies on the ordering of the vector representation o f the rows 
and columns o f the adjacency matrix A. Let the initial ordering be O0=(l,2,...n,m,...N) 
where N is the number o f nodes in the graph. Then a different ordering 
0 1=(l,2,...m ,n,...N) can be obtained by swapping the ith row with the jth row and the 
corresponding columns (to keep the matrix symmetric). Finally, f(Aj)23 is calculated 

and compared with f(A0), if f(Aj) < f i ^ )  then the swap represents a step towards the 
optimal ordering. Expanding f(Aj) to separate the entries involving indices m and n 

from the rest an taking the difference leads to equation 6.14.

f ( A , ) - f ( A 0) = 2 ( m - n ) ^ ( A im - A in) . ( 2 i - m - n )  6.14
i= l

i* m

i* n

This equation is far less computationally demanding than equation 6.13 since because 
o f symmetry it only involves the elements o f the two rows (columns) being swapped.

23A, is matrix A under the ith reoreding
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However, to put matrix A into its canonical form, where f(A) is minimal over all 

permutations of indices, is a very complex task which is believed to be NP-complete. 
The main idea in this work is to ensure that the choice of elements to swap is effected 

along the maximum gradient of f(A).

Every processor in the parallel implementation is allocated a set o f nodes for which it 
evaluates the function over all possible swaps. The most negative fl^A^) for each node 

in the set locates the row (column) with which it must be swapped.

The application showed no speedup due to the counter productive effect o f conducting 
swaps in parallel. The definition of 'best swap' for a particular row (column) is 

destroyed by other concurrent swaps.

6.4. Sum m ary

This chapter showed that considerable speedups can be achieved on intermediate level 
computer vision algorithms through the use of parallel processing. However, the better 
serial algorithms are not necessarily well suited for parallel implementation. 
Improvements to the serial algorithms that do not affect parallelisation were presented. 
As far as high level computer vision is concerned as exemplified by the maximal clique 
algorithm, the speedups were more modest due to the complexity and global nature of 

the computations involved.
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CHAPTER VII

7. System architecture

The aim of this chapter is the design of an interconnection network suitable for a 
parallel computer vision system based on the transputer (T800). The desirable 

characteristics of networks are given and translated into requirements on the 
underlying graph.

A transputer network can be viewed as a graph with the transputers as nodes (or 

vertices1) and the links (bi-directional) as undirected edges. In the study of static 
topologies, and because the transputer has four links (fixed), only graphs with at most 
four edges per node need be considered. In order to use all the bandwidth afforded by 

the transputer links, a network can be constructed each o f whose processors is 
connected to exactly four neighbours. In the terminology of graph theory (section 7.1) 
this is called a regular graph as all vertices have the same number o f edges.

The network proposed here consists of a two-level hierarchy with the nodes connected 

into groups o f eight transputers and the groups, in turn, linked to form the overall 

network. Because o f the simple construction o f both levels, routing mechanisms to 
convey messages between pairs of nodes is simplified. Chapter 8 presents an Occam 
program that implements routing along the shortest path between any two processors 
in the network. Also, dynamic configuration is considered, and a scheme is presented 
which is a consequence o f the topology of the groups mentioned above (section 7.3.4).

The remainder of this chapter is organised as follows. First, the terminology of graph 
theory is introduced. Second, some well known topologies are presented and analysed *

'Here the terms node and vertex are used interchangeably.
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with regard to feasibility (implementation based on the transputer). Then a topology is 
proposed and assessed. Finally, some concluding remarks are given.

7.1. Terminology

A graph is defined as a collection of vertices some o f which are connected by edges or 
arcs. It can also be thought of as a binary operation on the set of vertices. The latter 
representation allows for the extension of useful concepts from group theory to 

graphs. Graphs can be directed or undirected, an undirected graph is, in fact, a 
symmetric binary relation. All the graphs considered in this work are simple2. In other 
words, they are linear i.e. only one edge is allowed between two vertices (two in 
opposite directions for the directed case) and they contain no slings (or edges from a 
vertex to itself)3.

The order of a graph G(V,E) where V is the set o f vertices and E is the set o f edges is 
the number o f elements in V. A set of edges in a graph is said to be adjacent in G if 
they have one vertex in common. Two nodes n7 and nj are adjacent if there is an edge 
in E incident on both o f them.

A path in a graph is an alternating sequence o f vertices and edges starting and finishing
w ith  v e r t ic e s  su ch  that: v 0,e j ,V j ,e 2, ...... ,v k.1,e k,v k w h e r e  e ; is in c id e n t o n  b o th  vu  an d  Vj

1 < i < k. A path can also be considered as an ordered list o f vertices in which every 
pair corresponds to an edge. A graph is connected if there is a path between any pair 
o f vertices in V. Otherwise the number of components is >1 and consists o f the number 
of connected sub-graphs.

A path whose initial and final edge are equal is called a circuit. The number o f edges in 
a path is the length o f the path. The shortest path between two vertices is named a 
geodesic. The diameter o f a graph is defined as the shortest geodesic over all pairs o f 
vertices.

The edge connectivity o f a graph is the minimal set o f edges whose removal will render 
the graph disconnected. Likewise, the vertex connectivity is the minimal set o f vertices 
whose removal renders the graph disconnected.

Exceptions will be noted in the text.

3The binary relation is, therefore, not reflexive.
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The girth of a graph is defined as the minimal length over all the circuits o f the graph.

A graph is a convenient way to represent many problems. Applications o f graph 
theory range from the solution of combinatorial problems through the design 
of communication networks to the solution o f sets o f algebraic equations 

[T emperly] [ Swamy] [Ore].

The degree o f a vertex is the number of edges incident on it. A graph is termed regular 

if all its vertices have the same degree. For the purpose o f this chapter the simple 

definitions above are sufficient. Further notions can be found in chapter 6.

7.2. Network Topologies

The topology of a parallel computer refers to the way different processing units are 
connected. Many topologies have been proposed. Researchers have been arguing the 
adequacy of a particular scheme for the implementation o f real systems. The outcome 
is that some inter-connection schemes are superior to others for some applications and 

paradigms; therefore, the particular topology adopted is very much dependent on the 
computation and communication requirement o f the problem at hand. To assess the 

value o f a topology for image processing and computer vision as a whole would be a 
very complex task indeed. This is due to the varying degree o f communication and 
optimal grain exhibited by algorithms pertaining to different levels in the hierarchy of a 
vision system (chapter 2).

Therefore, there is a need for a framework allowing the quantification of the 
properties o f topologies. Such a framework does exist and can be stated as a 

compromise between a few parameters o f the graph representation o f the topology. 
These are the diameter, connectivity and average distance4. Another important aspect 
o f a topology is the presence or absence of symmetry and embedability o f other 
architectures. The latter relates to the ability to emulate other (simpler) structures i.e. 
contain interesting partial graphs e.g. trees etc.

In this section a review o f the different topologies introduced in the literature is given 

together with their parameters. Then, a topology based on a mesh inter-connection 
scheme is proposed and analysed.

4See section 7.1 for the terminology of graph theory
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7.2.1. Mesh

A mesh is a topology where the nodes are arranged in an /«-dimensional lattice. 
Communication is only allowed between neighbouring nodes. Internal nodes 

communicate with 2m nodes. In order to use the connections from boundary nodes, 
some variants o f the mesh include wrap-around connections between processors on the 
edge of the mesh. Figure 7.1 shows a two dimensional mesh (a) and two variants, same 
row and column wrap-around connections (b) and toroidal connection (c).

(a)

(0

Figure 7.1: Two-dimensional meshes

7.2.2. Pyramid

A pyramid is a complete 4-ary tree augmented with inter-processor links so that each 
tree level forms a two-dimensional mesh [Quinn], The Pyramid can prove very useful if 

the application presents a hierarchical structure with low level data parallelism 
transforming data into progressively more centralised functional parallelism. However, 
in the context of transputer networks the maximum degree o f nine for internal nodes 
makes it difficult to implement even through a switching network (crossbar).
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7.2.3. Butterfly

A butterfly network is a topology with (k+l).2k nodes arranged into k+1 columns. 
Each column contains 2^ nodes. Figure 7.2 shows a butterfly network with 12 nodes 

(k=2).

: iaure 7.2: A butterfly network with N = 1

The butterfly network is an obvious choice for algorithms like the Fast Fourier 
Transform (FFT) [Cooley], The latter, has a precedence graph identical to the 
butterfly network. Mazzeo et al [Mazzeo] describe an implementation o f a one-
dimensional and two-dimensional FFT on a butterfly based transputer architecture. 
Batcher [Quinn] showed that a butterfly can perform bitonic sort on n elements very 
efficiently when n is a power o f 2. It is worth noting that the bitonic sort algorithm also 
has a butterfly precedence graph.

One advantage of the butterfly network is that it is regular i.e. the number of links at 

each node is constant (=4). However, for large networks, the problem of gathering the 
results o f a computation becomes apparent. This is due to the exponential increase of 
the volume of data passed between processors when a number o f cells are allocated to 
each processor.

7.2.4. N-cube

This topology, also called a hypercube, has many interesting properties. It can be 
obtained from the butterfly by collapsing the lines into a single vertex. A ¿/-dimensional 

hypercube is built with n = 2d nodes, where each node has degree d. Such a network
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will contain 2d-'*d edges. A systematic construction rule can be established by noting 

that the hypercube belongs to a class o f graphs known as the graphs on alphabets. 
These graphs present global knowledge about the location of a particular node. 
Therefore, routing, which is a very important aspect o f parallel processing, can be 

defined explicitly. Appendix C gives various definitions including that o f graphs on 
alphabets.

In a hypercube each node is connected to a node in each o f the d  dimensions; 
moreover, the network is symmetric and regular. A building rule can be stated as 
follows: each node is associated with a binary number, and the number of bits 

necessary to represent all the nodes is log2(n) -  d. A node aj,...,aj,...,ad , is therefore, 
connected to all nodes whose binary representation is obtained by inverting exactly one 

o f the d  bits e.g. ai ? a2> • • •> a i —1 ? aj j Ui+i j • • • > ad •

One major advantage o f the hypercube is that a particularly simple routing mechanism 
can be established. The latter is optimal in the sense that messages are sent along 
shortest paths. A message is transferred from node nj to node nj through a set of 

nodes that reduce the Hamming distance5 by one at each step. The distance between 
two nodes is their Hamming distance. Therefore, the largest shortest path (or 
geodesic) is equal to d  the diameter of the network. It is worth noting that there are 

m\ (factorial m) paths between two nodes which vary in m positions, m of these 
shortest paths are edge and node disjoint. This has an important bearing on the 

reliability and fault tolerance of the network.

Moreover, the ¿/-dimensional hypercube is a familiar structure6 that can be subdivided 
into two (¿/-/)-dimensional hypercubes by setting one bit o f the binary representation 
of its nodes to '0' to obtain the first sub-graph, then to T  to obtain the second. Note 
that this is a done across the dimension of the chosen bit position. Such properties are 
very useful in the context o f multiprocessing, if only for the simplicity o f allocation of 

resources (i .e. processors) to processes according to their needs. The dimension o f the 
sub-hypercube allocated to a particular 'independent' process can reflect its processing 
requirements.

5The Hamming distance between two binary strings (with same length) is the number of places where 

they differ.

6A 2-dimensional hypercube is a square and a 3-dimensional hypercube is a cube.
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However, two problems arise when the implementation of this topology is considered. 
First, because of the exponential growth in the number of edges (links) required to 
connect the nodes, a standard node (e g. processor in a parallel computer) must have a 
large number of links. This poses serious difficulty, if only on the number of pins. 
Second, a hypercube exists only for numbers that are powers of two. In other words, 
to upgrade a system on n = 2^ nodes gracefully (i.e. without major modifications to 

system software viz. routers, schedulers, etc.) an additional n = 2^ have to be added. 
These are very serious problems that the Cube Connected Cycles topology tries to 
remedy.

7.2.5. Cube connected cycles

A cube connected cycles network (CCC) is a ¿/-dimensional hypercube where the 
nodes are replaced by cycles of d  nodes (figure 7.3). The basic idea behind CCC 
networks is to counter-balance the exponential growth of the number o f edges needed 
by introducing 'super-nodes' that emulate the necessary increase in the degree. A CCC 
retains some o f the properties of the hypercube like symmetry while increasing the 
length of the diameter o f the network. However, it does deal with the problem of 
scaling mentioned above, but it further restricts the natural numbers o f nodes for 

which a CCC exists. A CCC only exists on numbers n = 2^*d nodes.
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7.2.6. Perfect shuffle

The perfect shuffle network is a special case o f a general class called shuffle-exchange 
networks. These also have a restriction on the number of nodes n, n = 2^. Two types 

o f connections are identified: exchange connections and shuffle connections. Exchange 
connections link pair o f nodes whose binary representation differ on their least 

significant bit. The exchange connections define the network. For the perfect shuffle 
network, node i is connected to node 2*/ modulo n-1. The perfect shuffle is so called 
because it introduces a lower bound on the maximum number o f shuffle operations that 
return a datum to the node which issued it, namely d.

7.3. Architecture for large transputer networks

A number o f authors have studied graphs with given properties and associated graph 
theoretical concepts with practical considerations in applications [Wilkov], The 
advance in technology and the advent o f parallel computers revived interest in the 
diameter minimisation problem with constraints on connectivity (vertex and arc) 
[Boesch],

As stated above the connectivity is defined as the minimum number of vertices/arcs 
that have to be removed for the graph to become disconnected. In a parallel computer 

a disconnected set of processors would be useless. Therefore, an architecture with a 
large node and link connectivities would be more reliable, since more nodes or arcs 
have to fail before there is a considerable (or even total) loss o f performance.

The diameter o f a graph together with the number o f edge disjoint paths between any 

two nodes also affect the reliability. Moreover, the diameter affects communication 

delays. Therefore, supposing that a distributed program is implemented on two parallel 
computers (with similar processing nodes) and requires global communication, then 
the computer with the smaller diameter will perform better. The condition o f global 
communication is required for the above assertion because when the structure and 
volume of data transfer is known deterministically, a specific topology ( possibly with 
poor diameter, connectivity, etc. properties) would do a better job. However, in the 
design o f a general purpose machine these parameters together with the embedability 
and regularity criteria are good measures of feasibility, performance and reliability .

Before presenting the class o f regular graphs that will be the basis o f the proposed 
architecture, let us consider a graph proposed by De Bruijn [De Bruijn], De Bruijn
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graphs DB(d,N) are directed graphs defined on a set of dN nodes. The nodes are 
labelled by the words of length N on an alphabet o f d symbols. There is an edge from 
node i to node j  if the first N -l symbols of j  are equal to the last N -l symbols of 

Therefore, an edge links (/(y i,.. VN- i ) t0 n°des of the form where j  is
any of the d  symbols o f the alphabet. Thus, each node is the starting point o f d  edges 
and the end point o f d  edges. The diameter of a DB(d,N) graph is equal to N. Figure 
7.4 shows DB(2,3).

r " \

De Bruijn graphs are not regular and neither are they linear if edge direction is 
discarded. However, they have very impressive diameter properties. Because, like for 
the hypercube, De Bruijn graphs' node degree is proportional to d, only small values 
o f d  can be considered for interconnection networks. For the transputer7, with four 
links only DB(2,N) are realisable without switching due to the construction procedure 
of DB(M,N) (see section 8.2) This restriction is not very taxing since the diameter 

properties are compromised. For example, a 1024 node De Bruijn graph will have a 
diameter o f 10 and a maximum degree o f 4. Routing through DB(d,N) can be achieved 

by a left shifting operation defined on the words o f length N. Although this scheme is 

not optimal it provides very good average distances. The simple building rule of 
DB(2,N) makes these graphs good candidates for the construction o f transputer 
networks.

Another related class o f networks known as Kautz graphs present similar diameters 
and building rules [Baude],

However, the irregular structure o f these graphs does not guarantee the efficient or 
easy mapping of a large class of algorithms that present regular or hierarchical

7Appendix A describes the transputer family of processors and the Occam language.
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communication patterns e.g. 2-d filtering, FFT, bitonic sort, etc. Another disadvantage 
o f DB(2,N) is the fact that it only exists for specific numbers of nodes, N 0=2N.

7.3.1. Metrics and bounds

Different performance metrics have been proposed for the characterisation of 

candidate architectures [Wilkov l][Wilkov][Boesh], Edge and node connectivity have 
been studied extensively together with diameter and average distance minimisation. 
Boesch and Thomas [Boesh] have extended the notion o f connectivity to define the 
cohesion of a regular graph. The cohesion o f a graph 8(/) is defined as the minimum 
number o f edges that must be removed in order to isolate any sub-graph o f i nodes. 

Based on this measure a graph on N nodes is made reliable by maximising 5(/') for all 
i g  [ 1 ,N]. Other measures based on the effect of edge or node removal on the diameter 
o f a graph have been investigated by Wilkov [Wilkov 1],

The desirability of large girth for a given diameter and number o f nodes in a regular 
graph was established by Wilkov [Wilkov 2], Tutte [Tutte] has shown that the 
minimum number of nodes required to design a graph o f given diameter and degree is a 

function o f the degree and girth. This establishes an absolute minimum on the diameter 
of regular graphs with girth equal to 2k or 2k+\ where k is the diameter. These are 
known as Singleton and Moore graphs respectively. It has been established that 

Singleton and Moore graphs have minimum diameter over regular graphs on n 
vertices of a given degree [Wilkov 1], These results are very interesting since they 
define a lower bound on the diameters o f regular graphs. However, these graphs only 
exist for a few combinations of degree and girth, and thus are limited to a few values 
of n (the number of vertices). The problem of finding the minimum diameter over all 
regular graphs of degree d  has not yet been solved.

7.3.2. Circulant graphs

Maximum connectivity graphs are an important model for the design o f reliable 
networks [Boesh],[Lipovski],[Wilkov]. Moreover, as mentioned above, many attempts 
have been made at finding the 'best' graph over all regular graphs. As far as parallel 
processing is concerned the ease o f construction, the relatively low degree dictated by 
hardware concerns, etc. make the search for the ultimate graph less important than that 
required by the rigorous discipline o f graph theory. In practice simplicity of 
construction together with a 'reasonable' diameter can make up for the distance away 
from the theoretical bounds.
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A class o f graphs known as Circulants [Harary] offers maximum connectivity 
properties for regular graphs. [Boesh] studied these graphs in order to design 
maximum connectivity, minimum diameter circulants. The latter have a very simple 

construction rule and are node symmetric.

The circulant graph on p vertices, C (n1,n2,...,nk) or Cp(nj) where 
0 <nt<n2< <nk< (p+l)/2 has i±nj,i±n2, ... .i+r^ (mod p) vertices adjacent to 
vertex i. The sequence (nj) is called the jump sequence and the nj's are called jumps.

Circulants have been studied and an optimality criterion based on the equality o f the 
degree, edge connectivity and vertex connectivity verified for the case Cp(l,....,k). One 

type o f circulant is particularly interesting Cp(nj,n2), because the vertex connectivity is 
four. Therefore, they can directly be used to construct multi-processors whose 
processing elements have four links e g. the transputer. In fact the double ring network 
used in the ILLIAC-IV multiple processor system [Lipovski] is a Ca2(l,a).

Because the diameters of circulants vary a great deal with the n/s, Boesch and Wang 
have considered the problem of defining a lower bound. Since the graphs are node (or 
vertex) symmetric, without loss of generality they started from a vertex labelled 0 and 

constructed a tree in which each edge is labelled either ^  or (there are 2k edges 
emanating from node 0). Moreover, they labelled the nodes reached through these 

edges n; or -n^ Obviously, this construction can lead to different paths reaching the 
same vertex. When that happens all but the first occurrence of a vertex are discarded. 

When all points at the same and different levels in the tree are distinct, the total number 
o f nodes in the tree gives the maximum number o f vertices that can be reached from 
node 0 using m edges (or jumps), where m is the depth of the tree. If  X,„ denotes the 
total number of nodes in the tree, to link the above assertion to the diameter of graph, 

the following condition must be fulfilled: X,,, > N > X ^j where N is the total number 
o f nodes in the circulant. If so the diameter o f a circulant Cp(n1,n2,...,nk) is diag(C) > 
m. Evaluation o f m and X,,, leads to the following theorem (theorem 2 in [Boesh]):

Let G = Cp(n,,n2,...,nk), if X^ > N > X ^ j then diag(G) > m, where
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X . 0 0 - 1  + Z Y ,
i = l

min(k,i)

Yi= I  c ( k . j ) c ( i - u - i ) 2 J-
i-i

and C(x,y) is the number o f combinations o f y elements from an x element set.

The expression for X,,, simplifies for k = 2 and k = 3 to:
Xm(2) = 2rn(rn+1)+1 

and

Xm(3)= 1 + (8m3+12m2+16m)/6.

The case k=2 was studied in [Boesh] and the bound attained for

m  =
(-1 + V2N -1  

2
where [x] is the smallest integer greater than x and N > 6. One o f the major 
advantages o f this formula, besides meeting the bound for this class of graphs, is that it 
provides the diameter explicitly. Moreover, these well behaved graphs exist for every 
integer value of the number of vertices in the graph N > 6.

Bevide et al analysed circulants with these characteristics and used graph isomorphism 

and a constructive method to map similar networks on a mesh topology with wrap-

around links [Bevide]. The topology obtained shows, at least for cases where the 
network is a rectangle, that the wrap-around links connect nodes on opposite sides in a 

cross-diagonal manner Figure 7.5. This is, intuitively, the main cause for the good 
diameter properties over meshes with wrap-around links.
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The proof for the isomorphism between Cn (TVn /2 - llJ~VN/2~|) and the class of 
meshes derived can be found in [Bevide]. It is worth noting that all the optimality 
results obtained by Bevide et al, Boesch and Wang, etc. are only valid for the class of 
circulants. There are in fact, for some values o f N, regular 4-graphs with smaller 

diameters, but the simplicity of construction makes these networks' implementation 
simple. Also generic functions can be simply defined for commercially available 
transputer and switch hardware and software. Viewing CN(fVn /2 - 1 ],1~Vn /2~1) as a 
mesh makes the implementation o f image processing routines simple. Besides, the
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small diameter o f the circulants and the simplicity of optimal routing should be an 

advantage for the higher level vision tasks that require global data.

For the design o f relatively small networks with a given number of nodes, a procedure 
which builds a rectangular mesh and then uses permutations of the links available on 
the boundary to minimise the diameter of the network was defined. It uses an 
algorithm due to Floyd [Floyd] to evaluate the minimum distance between all pairs of 

vertices in a graph. The largest such distance is the diameter of the graph. Floyd's 
algorithm together with the choice o f permutation groups adopted and aspects o f the 
geometry of the mesh are given in appendix D.

7.3.3. Architecture for large multi-processor systems

De Bruijn graphs DB(2,N) have excellent diameter properties, however, they are not 
regular and cannot emulate meshes. In the SIMD model most of the algorithms rely 

on regular structures that are implemented on lattices, and hence are realisable on a 
mesh. Another important aspect in the MIMD model is the fact that even small 
distances in a store and forward communication network can be taxing. Therefore, 
changing the inter-connection network dynamically can be beneficial. However, 
implementing dynamic switching introduces further overheads and eventually a 
bottleneck if the switching resource is centralised. A concept that helps in clarifying 
the situation is that of inductive architectures [Lipovski]. Lipovski and Malek define 
the hardware (processors and switches) in a multi-processor system as input energy 
and the amount of computational power as output energy. Then, an architecture is 
inductive if the output energy is a strictly increasing function o f the input energy, as N 
(the number o f hardware modules) is increased from N  to N +l as N —»00 . Obviously, 

induction is a desirable property. It is defined similarly for algorithms. Therefore, 
algorithms should seek induction on inductive architectures.

For a dynamically switched network, the management o f the switches can be 
considered as non-processing hardware (energy). Therefore, if the complexity o f the 
switching mechanism is proportional to the size o f the network N, the architecture 
cannot be inductive.

To simplify the problem the following method is put forward. First, a basic architecture 

exhibiting good characteristics in terms of the measures introduced above is defined. 
Then a switching network is introduced to operate on a subset of edges when nothing 
but a direct link would do. O f course, defining such an architecture is not enough to
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guarantee optimal performance, but it would be a good testbed for analysing parallel 
algorithms and distributed switching and scheduling procedures.

An architecture fulfilling the conditions stated above is now introduced. It is based on 
the optimal circulant CN(fVn /2 - 1~|J~Vn /2~|) connecting nodes that are De Bruijn 
graphs DB(2,3). The rationale behind this design is that both Cn (TVn /2 - llJVN/21) 
and DB(2,3) have simple building rules and good diameter and average distance 
properties. Moreover, DB(2,3) or an undirected version (Figure 7.6) has six free links. 
Four o f the latter will implement the circulant and the two others can be switched to 
allow rapid access to a particular region o f the multi-processor system. In effect, such 
a network builds on the sound graph theoretical characteristics o f two models to 

produce a two-level structure. From the communication point o f view, data 
transmission is seen as a two-stage process; namely, a message is transferred along the 
circulant links until it reaches the destination group where a second mode is used to 
reach the destination processor.

The composite node DB(2,3) is ideally suited as vertex in an optimal circulant, due to 
its small local diameter and relatively low connectivity. An optimal routing algorithm 
can be designed for CN(fVn /2 - 1 l,fVn /21) by considering the distance between two 

nodes as a function o f two variables on a two-dimensional finite lattice, and using a 
maximum gradient descent criterion to reach the minimum 0 (when a message 
reaches its destination).8

The composite nodes o f this architecture are not node or edge symmetric, therefore, 
the choice o f free links to implement the Cn (TVn /2 -1  l,f Vn /2~1) is critical. The routing 
algorithm mentioned above is instrumental in effecting this choice. The distance

8See chapter 8 for the details, algorithm and Occam implementation
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between two nodes is travelled first through the connections corresponding to TVn /2~| 

and then [Vn /2 - 1~|. Any shortest path between two nodes contains only one switch in 
direction. Therefore, keeping the good diameter and average distance properties of 

Cn (TVn /2 - 1IJVN/2 I) suggests using the two nodes with two free links each 
(Figure 7.6) to implement the circulant connections. The effect of this set-up is a 

bounded increment to the diameter o f the simple circulant (on single processor nodes) 
while increasing the number of nodes in the network eight-fold. Admittedly, the 
network is not optimal in the sense that the node and edge connectivities are no longer 
maximum. However, the two free links o f the central nodes can be switched into a 
global store or provide fast distributed access to the world beyond the computer 
system. The two free links o f the central nodes were chosen as switching connections 

for two reasons:
1. The average distance to the other nodes is smaller than that of the end nodes.
2. The other free connections are ideally suited for the circulant connections
because data is delayed by entering the DB(2,3) only when it is changing circulant

direction or it is destined to a local node.
It is worth noting at this juncture that the network proposed here outperforms 
Cn (TVn /2 - ll,rVN/2l). Table 7.1 presents the comparative diameters properties of 
several topologies.

The topology proposed is a De Bruijn graph based circulant or DBC(N) where N is the 
number of nodes in the graph. N must, therefore, be o f the form N = 8p where p is an 
integer. This is a drawback in graph theoretical terms since it does not exist for every 
value o f N. However, as far as multi-processor computer systems are concerned, the 
ever decreasing cost o f microprocessors warrants the use of large numbers of 
processing elements. Besides, the composite node is standard and can be built for 
transputer systems as a TRAnsputer Module TRAM [Inmos 1],

Nodes 8 64 512 1024 8192

Hypercube 3 6 9 10 13
De Bruijn 3 6 9 10 13

Circulant 2 6 16 23 45

Torus 3 8 24 32 96

2D mesh 4 16 32 64 512

Proposed

architecture

3 10 14 16 31

Table 7,1: Diameters for different number o f nodes
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It is believed that a successful architecture for computer vision should provide facilities 
for both the SIMD and MIMD implementation o f algorithms9, since, often computer 
vision tasks can benefit from both models of parallelism. Such an architecture presents 
a difficult problem because the SIMD and the MIMD models rely on entirely different 
concepts. For example, synchronisation at the instruction (or task) level is a means to 
achieve high performance in the SIMD model, but it is a nightmare in the MIMD 

model.

Besides, the architecture should have a high input/output (10) bandwidth. This not 
only increases the rate at which input data and results are written to or read from the 
system, but also allows easy integration o f application specific sub-systems. For 
computer vision, these are ffamestores and mass storage devices. Another very 
important aspect is the interpretation of the notion o f diameter (above). Very often a 
particular processor is more "important" than the others (e.g. the processor coupled 
with a frame store). In this case, and supposing an SIMD type algorithm, the diameter 
of the network is no longer a valid measure of communication latency, instead the 

maximum and average distances from this processor to the rest o f the network 
becomes more relevant.

7.3.4. Dynamic Reconfiguration

Multi-processors based on the message passing paradigm use either the store and 
forward or the wormhole (or cut through) routing techniques [Garcia],

The store and forward technique relies on buffering facilities provided by intermediate 

nodes in the path of the message. This introduces message latencies that are 

proportional to the distance travelled by the message. Besides, task distribution, and 
theoretical methods ([Robinson]) become impractical as analysis tools for performance 
optimisation.

The cut through routing technique relies on special hardware to start forwarding the 
message as soon as a header containing the identity o f the addressee is read. In this 
mode the effects o f the diameter on latency are reduced, since the delay introduced by 
passing through intermediate nodes is very small. However, the message is no longer a 
unit since it can spread over several processors. Lau and Lau [Lau] demonstrated that,

9A transputer system, in fact, supports the SISD model, in other words, the performance of a single 

transputer is comparable to the best micro-processors of its generation.
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although wormhole routing is not supported by the Transputer (T800), it can be 
implemented (in Occam). However, as noted in [Peel], the implementation does not 
comply with the basic rules of Occam since two processes access a single buffer 
simultaneously.

Many authors have stressed the importance o f reconfiguration o f the interconnection 
network for MIMD computer system [Garcia][Duato][Jones][Nicole], Garcia and 
Duato advocate the use of limited reconfiguration by keeping the 'backbone' o f the 
topology and switching a subset o f links. This approach is well suited to the network 
described above. However, their algorithm relies on a control bus (and so does that of 
[Jones]) that allows individual processors to require reconfiguration from a controller 
node. The controller in turn informs all the nodes in the network that a change is 

imminent (also through the bus), performs the necessary changes, and then broadcasts 
an 'OK to proceed' message. The net effect is that a scheduling point is introduced and 
the excellent results for numerical analysis examples, will only be obtained for cases 
where the cost function [Garcia] is representative o f the communication patterns as 
well as the amount of traffic.

DBC(8/?), where p  is an integer, can be viewed as a two level system: a static structure 
which consists of a circulant on Composite Processing Elements (CPE) and a fully 
reconfigurable 2-connected network on CPEs.

7,3.4.1, Distributed reconfiguration scheme

As the number o f processors in a parallel system increases, attention should be 

directed towards the overall reliability o f the system. After a while a processor (or a 

few processors) might fail. A relevant question is what is the effect on the 
performance? Therefore, a simple mechanism for diagnostics and fault reports should 

be included in the design. In this section, a scheme is proposed for the dynamic 
reconfiguration o f the network proposed in section 7.3. The hardware involves the 
extension of the network with C00410 crossbar switches. Without loss o f generality 
the reconfigurable network described next is assumed to consist o f 512 transputers.

First, let us define the basic switching requirements. DBC(8/?), where p  = 64, consists 
o f a circulant of 64 CPEs. The circulant connections form the static configuration and

10see appendix A for the details of the Inmos C004 crossbar switch.
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will not be further considered in this section. Each CPE has two free links that are used 
in the configuration set-up. These two links are considered functionally as:

• a request and diagnostic link and
• reconfiguration link.

Due to the symmetry of the CPEs and the central position occupied by these two 
links, no further distinction is required.

Second, the desirable features o f the scheme are as follows:

• Ease of implementation,
• adherence to the point to point communications model,

• standard building blocks
• efficient diagnostics capability,
• reduced delay

The first three points are addressed by the design of the Inmos C004. The inputs and 
outputs of the latter implement the same link protocol as the transputer. Therefore, no 
extra logic is required to connect the switches to the network. Besides, each device 

consists of 32 to 1 multiplexors and once a route is established between two links the 
connection is completely independent. Finally, the C004 is commercially available.

The fourth point involves the ease of access to individual processors in the network for 
diagnostic purposes. To this effect, and in order to provide a route for the 
reconfiguration requests, the switching system is divided into two identical subsystems. 
Hence, the two free links are considered functionally as a control link and a data link. 
Figure 7.7 shows a switching subsystem. For the system considered here (512 nodes) 

each subsystem is made up o f 12 C004s connected in a shuffle network .
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This crossbar provides full reconfiguration on 64 links. Therefore, two such crossbars 
are needed for the scheme described here. The first subsystem provides connections 
between a link on the controller processor and the configuration links o f the CPEs, and 
the second implements the reconfiguration. Code on a transputer requiring a 

connection to another part of the network sends its request to the transputer which 
contains the request link and it sends the message to a buffer on the transputer which 

contains the reconfiguration link. Figure 7.8 shows a CPE with identified 
reconfiguration links.

Figure 7.9 is a block diagram of a system where only the two links on the CPEs are 
shown , each switch corresponds to the configuration described in figure 7.7.
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Configuration request 

Data link

Figure 7.9: Block diagram of reconfiguration system

The switch subsystem which handles requests can do so under the control o f a 
transputer which operates on all switches. The controller handles requests in a round 

robin fashion. This introduces delay in granting requests to transputers in the network 
but it must be seen in the context of a parallel system where requests are relatively 
infrequent. In other words, reconfiguration is not needed at the instruction level. 

Besides, the C004 implements a simple link protocol (appendix A) which can be used 
to effect reconfiguration o f a link in a few instructions. Crossbars11 o f arbitrarily large 
sizes have been reported [Inmos 1]. However, the configuration proposed here differs 
in the fact that reconfiguration relies on the synchronisation of requests. In other 

words, there needs to be a mechanism which ensures that requests are not lost (or 

worse, cause deadlock) if the controller does not respond within a specified time. This 

seems to defeat the purpose of the decentralised point to point reconfiguration. The 
problem is akin to that o f communication through an unreliable channel [Inmos 1], 

Therefore, an adaptive method can be devised whereby a switching request is made 
according to information gathered from different sources (token specifying the last 
time the switch controller polled, time for the expected next poll, cost o f using 
circulant connections, etc.) *

n Using C004s
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The basic advantage of such a decentralised switching system is that no global 

synchronisation is necessary. Although, a waiting time is experienced when requests 
are made or connections are relinquished, this only affects the two processors engaging 

in data transfer.

7.4. Summary

This chapter introduced a network topology suitable for a transputer based computer 

vision system. The main features of this architecture are:

• a relatively small diameter and average distance,
• a regular structure,
• a reconfiguration sub-network.

The first point above is a desirable property in all parallel computers since the diameter 

and average distance affect the overall communication delay. The second point benefits 
low-level vision algorithms which involve localised communications. Finally, the third 
point is beneficial to the intermediate to high-level vision algorithms which are likely to 
require global and time-varying communication patterns.

The simple dynamic reconfiguration scheme presented allows for processors in the 
network to request reconfiguration individually without the need for global 
synchronisation. The switching sub-network can be extended to include access to a 

main store containing data which can then be considered distributed12.

The advent o f router chips (e.g. C l 04) introduces a new approach to the design of 
communication networks. The universal message passing parallel computer [May], 
establishes full connectivity between all processors and therefore, does not rely on any 
given topology. The advantages of this approach are numerous [May], However, for a 
large network the number of routing chip between two processors can become large, 
thus introducing more delay in communication paths. It is believed that the topology 
presented in this work, running code developed specifically for it, can outperform the 
general purpose universal machine. Also, the router can be used in lieu o f the crossbar 
switch to improve the dynamic reconfiguration scheme.

12This is only true if  the delay introduced by the switching mechanism is bounded and significantly 

smaller than the data transfer time. This is very likely to be the case for large networks.
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CHAPTER VIII

8. Routing algorithm, performance evaluation and practical issues

This chapter introduces an optimal routing algorithm for the architecture introduced in 
section 7.3. This algorithm relies on the fact that architecture can be seen at two levels 
(inter and 'intra' CPE). The inter-CPE communication is carried out along shortest 
paths due to the monotonicity (a characteristic o f circulant graphs) of the running 
distance between the destination node and the current node. The intra-CPE 

communication takes advantage of the simple building rule o f De Bruijn graphs. The 
basic idea is to use the circulant connections (of CPEs) judiciously in order to traverse 
at most one CPE when forwarding a message between two nodes.

Also a performance monitoring program is described together with some Occam 
implementation issues. This monitor can be run in parallel with application code to 

evaluate the efficiency of processors..

8.1. Routing algorithm for DBC

First, the routing algorithm is deduced from the structure o f the circulant and De 
Bruijn connections of the proposed topology (DBC). Then, the Occam implementation 
is described. The latter consists o f a communication manager which runs in parallel 
with application code on every processor in the network. Figure 8.1 depicts the 
internal structure of a transputer in the network. A routing process handles all 

communication issues and a worker process performs application computations. The 
main purpose o f the buffer process is to avoid blocking in the router while waiting for
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the worker to consume data. In fact, the routing process handles both the circulant 
connections and communication between the processors of the same CPE. Therefore, 
the routing algorithm has to make the following decisions:

• Has the packet reached its destination ?
• I f  not, is the communication to proceed along the same direction of the circulant ?
• Is the communication to change direction ?
• Is the communication amongst the processors of the same CPE ?

Therefore, the routing task consists o f two different sub-tasks: one to deal with the 
circulant connections and the other to handle CPE connections. In the next few 
sections first the circulant connections are dealt with then the CPE connections are 

considered and finally the two are brought together in an algorithm that performs 
routing along the shortest routes in a DBC network.

8.1.1. Routing along the circulant connections

Since the circulant graph is vertex and edge symmetric and given the node numbering 
introduced in chapter 7, a circulant can be seen for distance measurement as an infinite 
2-dimensional lattice. The latter is characterised by the jump lengths m and m+ 1 and 
the infinity analogy is derived from the fact that only distances between pairs of nodes 

(arbitrary) are required. Figure 8.2 shows such a lattice and identifies a shortest route 
between two nodes. Because the lattice is 2-dimensional the function describing the
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distance between two nodes must be monotonie. Therefore, a maximum gradient 
descent approach will yield a shortest route between any given pair o f nodes. This 
distance is given by the number of jumps required to move a datum from a source node 
to a sink node. It must, therefore, take the form: d=a*m+b(m+l) where m is the 
characteristic number o f the circulant and, a and b are the number of jumps o f size m 
and m+ 1 respectively. Also, the distance is the difference between the identifiers o f the 
destination processor and the source (or current) processor. Because jumps o f size 
m+ 1 reduce the distance by a larger amount they are considered to yield the maximum 
gradient. Therefore, the routing process should convey messages first along the 
connections o f the m+ 1 jumps then along the jumps o f size m.

This ensures that routing proceeds along the direction o f maximum gradient. The 
change of direction should happen when the difference between the address o f the 

destination and that of the current node are a multiple o f m apart1. At this point the 
distance between the destination and the current node can be covered exclusively with 
jumps o f size nt.

Therefore, a simple routing algorithm can be defined by performing the following 
operations at each node in the network: *

‘To resolve the case where the distance is a multiple of both m and m+1, the jump of size m+1 takes 

precedence because of the larger gradient.
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• Get message (either from the local worker or from one of the links),
• decode the destination address and find the distance d = dd-dc ( where dd is the 

destination node identifier and dc is the current node identifier),
• If (d > N/2 or 0 > d > -N/2) then set direction dir = -1 else dir = +1
• If  |d| = 0 mod (m) then

• If |d| * 0 mod (w+1) then jump = m else jump = m+\
• else jump = m+\
• If  d = 0 destination reached else forward message along jump in direction dir

Note that the setting of the jump identity follows from the maximum gradient criterion. 
The direction, on the other hand, is derived from the symmetry of the circulant.

Before presenting an Occam implementation of this routing algorithm let us associate 
the two jump sizes with the transputer links. Figure 8.3 shows a transputer with links 
identified with jumps in the circulant configuration.

The following listing presents an Occam implementation o f the routing algorithm 
described. The messages are supposed to have a fixed length2 ( a header specifying the 
addressee's number). An additional channel pair (besides the four links) is declared for 
communication with the buffer (see figure 8.1).

Listing 8.1

VAL INT N IS 512:

VAL INT Nby2 IS (N/2):

2Note that variable length messages can be handled by including the message length in the header.

Figure 8,3: link to jump assignment
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VAL INT m IS 16:

VAL INT mPl m+1 :

VAL INT length IS 1024:

PROC router( VAL INT source, [5] CHAN OF ANY in, (5] CHAN OF ANY out)

[length] INT buffer:

INT dir,dest:

WHILE TRUE 

ALT i=0 FOR 5

in[i] ? dest; buffer 

SEQ

dist := dest - source 

IF

dist <> 0 — The message has no reached its destination 

SEQ 

IF

((dist > Nby2) OR ((dist>-Nby2) AND (dist < 0))) 

dir :=-1 

TRUE 

dir := 1 

IF

(((dist REM m) o  0) OR (((dist REM m = 0)) AND ((dist REM mPl = 0)))) 

IF

(dir <0)

out[0] ! dest; buffer 

TRUE

out[2] ! dest; buffer

TRUE

IF

(dir <0)

out[l] ! dest; buffer 

TRUE

out[3] ! dest; buffer

TRUE

out[4] ! buffer

Were the network a circulant the above listed router would have conveyed messages 

between nodes along shortest routes. The following code fragment shows an example 
o f the code on each transputer o f such a network.
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PRI PAR

router(id, chanin, chanout)

PAR

atore(chanout[4], chanin|4J, from.worker, to.worker) 

worker)to.worker, from.worker)

Listing 8.2

The transputer can execute processes at one o f two priorities (see appendix A for 
details). In Occam the PRI PAR construct takes two component processes and 
executes the first one at high priority and the second at low priority. In the previous 
listing the router is executed at high priority. This is a popular technique amongst 
transputer users, which ensures that communication requests are dealt with as soon as 
possible to avoid long waits for data.

8.1.2. Routing within a CPE

CPEs consist o f 8 transputers connected in a De Bruijn DB(2,3) graph configuration. 
The simple construction of the De Bruijn graphs suggests yet another simple algorithm 
for routing messages. The latter is based on the binary representation of the numbering 
sequence which identifies each processor.

The construction of DB(2,3) proceeds as follows. The nodes are labelled with 3-bit 

binary numbers3. A directed edge is present between node a (a2axa0) and node b 
(b2blbo) if the two most significant bits of b (,b2bj) are equal to the two least 
significant bits o f a Therefore, the nodes of the CPE shown in figure 7.8 can be
labelled as follows (Figure 8.4 where directions, parallel edges and loops are 
discarded).

3In the general case DB(w,D) nodes are labelled with words of length D  on an w-letter alphabet.
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Next, a conjecture4 defines a better routing algorithm for De Bruijn graphs. This 
algorithm sends messages between pairs of nodes along shortest paths. The method 
relies on the direction o f edges in (the directed version of) DB(2,3) (Figure 8.5).

Before stating the conjecture let us consider a simple routing algorithm for DB. The 

latter [Liu] dispatches messages using 'left shift' operation. In other words, a message 

travelling from node a2axaQ to node b2b1b0 follows the path5 (a2tf1tf0, a 1a0Z>2> a (A^i> 
bjbJ)0). This algorithm is suggested by the construction o f De Bruijn graphs which, 
therefore, guarantees the existence of the path. However, there is no guarantee that the 

path thus described is the shortest possible in the undirected version o f the graph. For 
example, consider the path between node 3 (O il) and node 1 (001) defined by the 
above algorithm (O il, 110, 100, 001). By ignoring edge direction (as in CPE) this path 
can be changed to (011, 001).

4The conjecture is given for a general DB(2,D.) As far as DB(2,3) is concerned this can be verified.

5This is the longest path generated by this algorithm since at most three left shift operations are 

required to transform the label of a node into that of any other node in the graph. As an example of a 

shorter path consider the path (000, 001, 010) between node 0 (000) and node 2 (010.)
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Conjecture:

An optimal routing algorithm for D B (2,D ) can be stated as follows:

Define an alternative shift operation as follows: a message travelling from node O2fll c,0 t0 n°d c 

b 2b }b0 follow s the path a 2a xa Q, a xa 0b0, a0b0b l ... Then select the shift operation to apply based 

on the shortest cycle covered by the two operations. For the undirected version o f  the graph 

another decision is made as to whether the cycle is to be covered in one direction or the other. 

N ote that this introduces a pair o f  right shift operations. The existence o f  the alternative cycles 

introduced follow s from the construction o f  D e Bruijn graphs.

As an example o f the way this works consider a message sent from node 4 (100) to 
node 1 (001). With the original algorithm the message will be despatched towards 
node 0 (000) then around the self loop of node 0 and finally to node 1. With the 
second shift operation the message will be sent straight to node 1. However, even if 
the conjecture were true it would not provide an algorithmic solution to the routing 

problem. Nonetheless, for a given De Bruijn graph the cycle calculations can be done 

statically and included explicitly in the routing algorithm to effect choice.

Following is a listing of an Occam program implementing optimal routing in node 0 of 
DB(2,3), identifying the two links connecting node 0 to node 1 and node 4 as up and 
down respectively.

Listing 8.3

CHAN OF ANY local.in, local.out, up.in, up.out, down.in, down.out: 

PROC router (VAL BYTE id)

VAL [JBYTE route IS [V , ’uVu’.'d '.’dVdVd’]:

SEQ

ALT

up.in ? dest; message 

down-in ? dest; message 

local.in ? dest; message 

IF

(dest o  id)

IF

(route[dest] -  'u')

up.out ! dest;message 

TRUE
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down.out ! dest; message

TRUE

locaLout ! message

In the above listing, only the route array is changed from one node to the other.

8.1.3. Combined Router for DBC

Routing messages in the DBC follows directly from the algorithms introduced in the 
previous two sections. First, node 0 (000) and node 7 (111) o f each CPE are the only 
two processors that handle the circulant graph routing task. Figure 8.6 shows a CPE 
with the circulant connections identified.

In the DBC, nodes 0 and 7 o f each CPE implement the routing algorithm of listing 8.2. 
Nodes 1-6 implement the algorithm depicted in listing 8.3. Some additional code is 
required to interface between the two modes o f routing. Since all individual processors 

in the network need to be aware o f the configuration a common protocol needs to be 
established. The address o f a node should comprise two fields one for the CPE address 
and one for the destination processor within the CPE. Listing 8.4 shows an example of 
such a protocol.
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Listing 8.4

PROTOCOL message IS INT16; BYTE; INT; []BYTE:

In this protocol the first entry is a 16-bit integer used to hold the CPE address, the 

second entry specifies the processor address within the CPE, the third entry indicates 
the length of data and the last is an array containing data.

A DBC running the routers developed in this section transfers messages between any 
two transputers along the shortest route. A message issued inside a particular CPE will 
be forwarded to the appropriate port (node 0 or node 7 of the same CPE) according to 
the circulant hops. Then, the circulant routing is initiated and carries the message to 
the destination CPE.6 Once at the destination CPE, the routing switches back to the 

shift operations to convey the message to its final destination.

8.2. Performance monitoring

Jones et al [Jones 1] have proposed an algorithm (supervisor) for the measurement of 
the percentage o f time the transputer is idle during the execution o f an application 

program. The method depends on the way in which the scheduler functions (Appendix 

A). The algorithm defines two processes that are run in parallel. A CPU7 load counter 
process (CLC) and an idle loop counter process (ILC). First, a calibration stage is run 

before the application program is allowed to start. This is to ascertain that no other 
process interferes with the calibration. At this stage, the number o f times the main loop 
o f ILC is run in a given period (P) is evaluated. This number is the totally idle count 
(IC0) i.e. the value of the count for a processor that is completely idle. Second, the 

supervisor is started and the application program is allowed to run. The start command 
is received by CLC which, in turn, notes the time by reading the current value o f the 
timer and sends a start command to ILC. The latter clears its counter and proceeds to 
measure the number o f times the processor is idle during the execution o f the 
application code. This is done by forcing the rescheduling o f ILC thus giving a chance

6In cases where both jumps are used a CPE along the path will have been crossed. This is an 

operation equivalent to sending a message within a single CPE with the source and destination nodes 

being 7 and 0 an vice versa.

7Central Processing Unit.
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to every other process to be scheduled. If ILC is rescheduled no later than the time it 

takes the scheduler to perform task switching (a threshold value dependent on the 
processor speed, etc.), IC is incremented. When the application code terminates the 
values of P, ICq  and IC together with the elapsed time are used to evaluate the 
percentage of time the processor was found to be idle during the execution of the 

application code.

One disadvantage o f the above method is its dependency on a threshold determined by 
the processor type and speed. Consequently, accurate data about the processor, clock 

cycle, etc. must be available.

In order to avoid this problem and to simplify the design of the performance monitor 
the following method is adopted. Consider a process that can only run if no other 
process is ready. If this process is capable o f measuring the amount o f time TR it 
spends running, then, running this process in parallel with some application code and 
comparing the total time elapsed (on completion) to TR will provide a measure o f the 
idleness o f the processor.

The monitor consists of a single low priority process which runs continuously as long 
as the low priority process queue is empty and no high priority process is ready. As 
soon as a low priority process becomes ready the monitor deschedules and puts itself 
at the back of the ready queue. The code fragment in listing 8.5 demonstrates 
the idea. The descheduling operation is implemented through the timer input 
timel ? now PLUS 15. The number 15 of low priority timer ticks ensures that the 
process is rescheduled before the minimum time for a time slice (1 millisecond) has 

elapsed.

Listing 8.5

WHILE needed

INT val, dummy:

TIMER timerO, tim erl:

SEQ

timerO ? start

GUY — GUY construct (to allow machine code) to store the

LDLP val — pointer to the first process in the low priority queue

SAVEL — in the variable val

IF
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(val = NotProcess.p) — If this pointer is NIL goto the timerO ? end instruction

SKIP — to calculate the time

TRUE

SEQ

timer! ? now — Deschedule this process 

timerl ? now AFTER 15 

timerO ? start 

timerO ? end

totaLticks := totaLticks (end MINUS start)

Note that this process must run at low priority since a high priority process will 

interrupt the other tasks.8

Since high priority processes do not conform to the description which forms the basis 
o f the algorithm described, further consideration must be given to the case when the 
situation arises. However, since a process is only interrupted at specified instructions 
the state o f the program between the two timerO inputs is quite stable.

8.3. Summary

This chapter presented a routing algorithm for the architecture introduced in section

7.3. The algorithm is optimal in that it conveys messages along shortest routes in the 
network. Only a simulation on one transputer was tried since a 'real' run requires a 
large number o f processors. Each transputer was implemented as an Occam process 

consisting o f the routing process a packet consumer and a packet producer. A control 

process communicating with every other process was also implemented. The latter is 
the interface between the system and the user who can instruct any process to issue a 
message (to any destination). The message is empty at first and consists o f the source 
and destination processes. As it is forwarded from one process to the next the 
intervening processes append their identification numbers. When the message reaches 
its destination the control process reads it and displays the route which can be checked 

against a drawing o f the network.

8The transputer scheduler operates on low priority processes only. High priority processes always run 

when they are ready and are never time-sliced. Therefore, performance monitoring which should be as 

little disruptive as possible is run at low priority.

138



The purpose o f the simulation described above was to ascertain that messages are 
dispatched along minimum length paths using the proposed routing algorithm. For 

more thorough simulations a simulator such as Transim [Hart] could have been used. 
This was not carried out because the simple simulation is enough to arrive at the result 
pursued. Transim is a parallel design tool which simulates an application program as it 
runs on a network of Inmos transputers, the input being a subset o f Occam with special 
timing commands built-in. Parallel execution, alternation, channel communication, 
timeslicing, priorities, interrupts, concurrent operation o f transputer links, effects of 
external memory and so on are taken into account.

Similarly to the topology developed in this work, routing schemes for specific 
applications can benefit from the latest software developments such as TINY 
(University o f Edinburgh) or the Virtual Channel Router (VCR) [Debbage]. VCR is a 
software package developed at the University of Southampton to provide unrestricted 
channel communication across networks of T4 and T8 series transputers. It allows 
distributed transputer programs to be written, compiled and configured in a topology- 

independent format and then bound to a topology-dependent routing kernel at run-
time.

Besides the routing algorithm, a performance monitor is also presented in this chapter. 

It was used extensively and the results were found to be comparable to those o f the 
algorithm given in [Jones 1], However, the formulation o f the proposed algorithm is 
simpler and does not require calibration or processor dependent parameters.
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CHAPTER IX

7. Conclusions and discussion

The work presented in this thesis was primarily concerned with the design of a 
transputer network topology which is compatible with the wide range of requirements 
in computer vision. First, the inadequacy of the transputer for low-level image 

processing is noted. This inadequacy is linked to the processing power to 
communication bandwidth ratio. The latter was seen, in the literature, to give a rough 
estimate o f the range of 'grain' that a particular processor can handle. The advent of 

very fast 1-D and 2-D multipliers and convolvers1 made some low-level image 
processing tasks at frame rate possible. Therefore, a medium-grain processor like the 
transputer seems ill-suited for the whole spectrum of applications in computer vision. 
These fast multipliers can be considered as very fine-grain multi-processors since they 
derive their high performance from the fact that many similar and simple operations are 
executed simultaneously on separate chunks o f data and synchronisation takes place at 

the instruction level. Thus, they implement data parallelism religiously and achieve 
impressive results. Unfortunately, this kind of model does not fit other levels o f the 
hierarchy o f computer vision tasks. Few algorithms present 'virtually no' sequential 
part* 2. Therefore, a system well suited for computer vision must present features 
facilitating both the data parallelism and functional parallelism approaches.

Having established the advantages and shortcomings o f the transputer, attention was 

turned to designing communication networks that present a good compromise with 
regard to some measures of communication latency and delay. The latter are seen to 
depend on the communication bandwidth o f the processor, the number o f

!For example the Inmos Axxx series
2The convolution of an image with a 3x3 kernel for enhancement or edge detection purposes contains 
very little sequential operation (the multiplication of a pixel with a kernel coefficient); besides, it 
requires only local communication since the output pixel only depends on the input pixel and its 
immediate neighbourhood.
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communication links and the topology of the network. Since the architecture of the 
transputer fixes the bandwidth and the number of links, the design should concentrate 

on the network topology.

Graph theory provides a robust and rigorous framework to reason about 
communication networks. For instance, the delay incurred by a message is proportional 
to the distance between the two processors involved i.e. the number o f processors on 
the path between the two nodes. Early contributions to distributed computer systems 

design using graph theory can be found in [Wilkov] and [Harary]. In particular a class 
o f regular graphs known as circulants was introduced by Harary [Harary]. These 
graphs are node and arc symmetric. Symmetry is a very valuable feature for multi-
processors since it simplifies the routing mechanism required to move data and results. 
Boesh and Wang [Boesch] showed a method for constructing minimum diameter 
circulants o f degree four. The latter are well suited for transputer networks3. However, 
in practice all the nodes in a computer network do not have the same importance. For 
example, there will be a node whose task is mainly to distribute data and/or processes 
to the other processors and collect results. This is particularly relevant to computer 
vision systems where a framestore contains the image or sequence o f images to be 
processed.

A topology was proposed for large transputer networks. It relies on Circulant and De 
Bruijn graphs (De Bruijn Based Circulants- DBC) and offers very good diameter and 

average distance characteristiques.

Also, a routing algorithm was designed and implemented in Occam to allow 
communication between transputers along shortest paths. The routing process is 

distributed and relies on the simple construction of the DCB graphs.

Practical considerations, besides the routing algorithm, are dealt with in Chapter 8. 
These include mainly the Occam implementation o f a performance monitor. The latter 
is based on the workings of the transputer's scheduler. This tool proved useful for the 
optimisation o f the parallel computer vision algorithms presented in Chapters 4 to 6.

The advent o f the T9000 transputer, and its associated router chip (Cl 04), introduced 
a different approach to the design o f interconnection networks. The Universal Message 
Passing Computer [May] aims to implement full connectivity in a network through a 
set o f C104 chips. For that a labelling o f the nodes in a given network must exist, 

before communications can proceed along shortest paths. Although such labellings are

3Since a transputer has four links.
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known to exist for standard topologies (e.g. trees, hypercubes, etc.), this is not the 
case for arbitrary networks. As a general purpose computer a Universal Message 
passing Machine is superior to the topology presented here because o f ease of 
programming, portability and easy implementation o f emerging standards (MPI). 

However, applications specifically developed for DBC can take advantage of the 

simple structure and reconfiguration scheme to implement efficient communications.

The computer vision algorithms considered range from edge detection where two new 
algorithms were proposed to vector quantisation for image compression, the Fourier 
descriptors method for shape discrimination, the Hough transform for lines and 
arbitrary shapes and the maximal clique finding for object recognition.

The Fourier descriptors method, the Hough transform and matching relational 

structure through the maximal clique algorithm were implemented on various 
topologies with up to sixteen transputers. Unfortunately, the architecture proposed in 
Chapter 7 requires a large number of transputers. Therefore, simple 2-D meshes, trees, 
and linear and bi-linear structures were used for these implementations. However, 
these structures can all be embedded into the architecture given in Chapter 7.

A formulation o f the Fourier descriptors method is proposed which relies on the fast 

Hartley transform to achieve a high object throughput. The latter is the result o f a fast 
parameterisation o f incoming shapes due to the efficiency o f the FHT. A parallel 
implementation o f the latter constituted together with the normalisation problem the 
main aspect o f section 6.1. The results show a very fast FD computation which should 
be more than adequate for applications where a large library o f shapes makes the 
classification task very arduous. In this case a sub-system dedicated to FD computation 

will allow the remainder to concentrate on classification.

The Hough transform algorithm is used extensively in computer vision mainly because 

o f its immunity to noise. However, its computational complexity dictates that it can 
only be o f practical use in applications which are not time critical. Therefore, an 
attempt is made at parallelising the algorithm. The results show that large speedups can 
be achieved by combining a probabilistic approach to edge pixel selection and a 
parallel implementation.

The maximum clique finding algorithm is a graph theoretical method which consists of 

detecting the largest all-connected set o f nodes in a given graph. This method is used 
in computer vision in conjunction with the association graph method which builds a
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single graph from the two structures to be matched. The problem is NP-complete i.e. 
no algorithm is known to solve it in time less than an exponential function o f the input 
size (number of nodes in the graph). In this work several attempts were made at 

formulating the problem in a manner suitable for parallel implementation:

1. block cluster analysis
2. Minimum Distance between all pairs of nodes (MD).
3. transitive orientation.

Modest speedups were noted for a parallel iterative version o f a classic algorithm 
[Bolles], The three ideas above were analysed and block cluster analysis was found to 

exhibit inherently serial processing. As far as transitive orientation is concerned it was 
found that many graphs are not orientable; thus, a closer investigation o f the graphs 

and the contexts which generate them is needed. Therefore, more experimentation and 
theoretical appraisal are required for the application of these concepts.

This application together with further evaluation o f the algorithms o f section 6.1 and 

6.2 could be the subject o f further work. This could take shape as the implementation 

o f complete applications incorporating the algorithms developed here as modules. 
Another interesting avenue is the integration of different computer vision tasks' 

implementation into flexible architectures o f the type developed in chapter 7 with 
further consideration to the network optimality and the switching technique.

The transputer offers good characteristics as a building block for a parallel computer 
vision system . Given that careful care is given to the interconnection network, 

applications can benefit from the co-operation o f several processors in solving a 

particular task. As some algorithms exhibit very little inherent parallelism or massive 
global communication needs, it is imperative that a parallel computer vision system 
allows for reconfiguration. This is shown here to be possible with current technology 
and is bound to become more so with hardware improvements in the future.

This thesis has shown that graph theoretic methods can help in the design of parallel 
computers with low diameters and average distances. The network presented in 

chapter 7 compares favourably with the published literature with regard to these 
metrics. Besides, it was shown that practical limitations4 in multi-processor technology 
can be alleviated through the partition of the PEs into super-nodes and optimisation o f 

the communication characteristiques at two levels. Also high speedups were achieved

4e.g. the number of links on a given processing element.
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with parallel versions of a selection of low and intermediate level computer vision 
algorithms. Modest speedups were obtained for the maximal clique algorithm and 

improvements were proposed. Because the aim was not to solve a particular problem 
using these algorithms, the results in chapter 6 are concise and only show speedup 

figures.
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APPENDIX A

Occam and the transputer

This appendix introduces the Occam language and the transputer family o f processors 
and the C004 crossbar switch. First, a brief introduction o f the syntax o f Occam and 
program transformation methods is given. The close adherence to the Communicating 
Sequential Processing theory is noted and the differences mentioned. Second, the 
transputer family o f processors is presented. The basic structure common to all 
transputers is detailed and the more advanced features o f the latest generation are 
described. The characteristics o f the transputer that make it suitable for parallel 
processing are the four bi-directional serial links -operating in Direct Memory Access 

(DMA)- and the micro-programmed scheduler which allows several processes to run 
concurrently on a single processor. The scheduler operation is described in detail as it 
forms the basis for the algorithm presented in Chapter 5 for measuring utilisation i.e. 
the ratio of processor time to real time for a particular program.

A -l Occam

Occam is a very simple programming language. It enables an application to be 
described as a set of concurrent processes. The latter communicate with each other 
and with the environment through uni-directional channels. The basic syntax defines 
three primitive processes:

• v := e evaluate expression e and assign result to variable v

• c ! e evaluate expression e and output to channel c
• c ? v input value from channel c and assign to variable v

Processes are combined using three constructs which differ from equivalent forms in 
CSP only in notation [Hoare], These are:

SEQ whose components are executed one after another
PAR whose components are executed together

ALT where only the first component process to be ready is executed
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These six forms are the basic elements of any Occam program. The constructs can in 
turn be seen as processes and may be used as components to other constructs. Serial 

programs can be expressed with the primitive processes and the SEQ construct. 
Moreover, IF and WHILE constructs are also provided. The support for concurrent 
programming takes the form of channel input, channel output and the PAR and ALT 
constructs. Each Occam channel provides a communication path between two 
concurrent processes. Communication is synchronised and is effected when processes 
at both ends of a channel are ready. This frees the programmer from the task of 
explicitly defining synchronisation operations e g. hand-shake. This section merely 

introduces the features o f Occam that are of interest for the development o f parallel 
applications, for a full definition o f Occam's syntax and semantics see [Occam 2], The 
implementation o f Occam on the transputer provides a formalism for building parallel 
processing systems.

Occam provides support for concurrency while the transputers implement parallelism 

through their links. Therefore, a description of the architecture of the transputer family 
o f processors is given next.

A-2 The transputer

The INMOS transputer family is a range of VLSI1 circuits used as building blocks for 
parallel processing systems. Figure 1 displays the basic architecture common to all 
transputer products.

1 Very Large Scale Integration
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Figure 1: Transputer architecture

The support to concurrency offered by the transputer materialises in the micro-code 

scheduler. The processor can execute processes at one o f two levels o f priority, one 
level (for priority 0) for urgent processes and the other (priority 1) for less urgent 
processes. Priority 0 processes take precedence and they are executed whenever they 
become ready. If  a priority 0 process becomes ready while a priority 1 process is 
running, the latter is interrupted.

The processor contains two clock registers, one for each priority. The high priority 
timer increments every 1 ps and the low priority clock increments every 64 ps. After 

every 1024 ticks o f the high priority clock a timeslice period is said to have ended. 
When two consecutive timeslice period ends have occurred while the same low priority 
process has been running, the scheduler will attempt to deschedule the process. This 
can only happen after a few selected instructions. Then, the process is descheduled and 

the next waiting process is scheduled. Note that high priority processes are not 

timesliced and will run until completion or until they have to wait for communication.

The processor maintains two lists o f processes that are ready to execute, one for each 
priority level. Each ready list contains the workspaces (i.e. pointers to locations in 
memory holding information2 about the processes) o f processes which are ready to be 

run. A process is started by adding its workspace to the back of the appropriate list. 
When the current process is descheduled it is also put at the back o f the appropriate 
scheduling list and a new process is taken from the front o f the list.

2This information varies according to the type of process but always includes the instruction pointer.
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When a high priority process interrupts a low priority process, the latter is not put at 
the back o f the list. Instead, its current parameters are saved in a special location in 
memory. When there are no high priority processes able to run the values o f the 

registers are reloaded and the low priority process proceeds. For this reason there can 
only be one interrupted low priority process at any time.

For more information about Occam and the transputer please refer to the Inmos 
literature listed in the references section.

A-2.1. The IMS T9000 transputer

The IMS T9000 is the latest member in the transputer family o f microprocessors. It 
integrates a high performance central processing unit (CPU), a 16 Kbyte cache, 
communications system and other support functions on a single chip. The main 

functional blocks o f the IMS T9000 are the CPU, the hierarchical memory system, the 
communications system, the multiple internal buses and the system services unit. The 
function o f each o f these is outlined below.

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit 

floating point unit (FPU). The CPU also includes instructions for byte and half word 
operations. The CPU uses 32 bit linear addressing and the IMS T9000 is binary 
compatible with previous transputers. In particular it implements the instruction set of 
the IMS T805 with many additions.

One o f the major improvements over the T800, besides better error correction, is the 
ability o f the T9000 to run code in protected mode. In this mode all memory accesses 
are made through a memory management unit which checks and translates addresses 
before using them to address the memory system. Further, only a subset o f the full 

instruction set may be executed, preventing protected code from executing privileged 
instructions.

Hierarchical memory system

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to 
instructions and data. The cache provides a peak bandwidth o f 200 Mwords/s. The 
CPU also includes another small cache for the most frequently used local variables o f a 
program which provides another 150 Mwords/s of memory bandwidth.
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There are four independent sets of memory control signals simplifying the use of 
different device types in the same system. The memory can interface to 8, 16, 32 or 64 
bit wide devices. The maximum data transfer rate across the memory interface is 50 

Mwords/s.

Communications system

To support interprocessor communications, there is a complete communications 
subsystem on chip. This includes four 100 Mbits/s full-duplex, serial communication 
links each with its own pair of direct memory access (DMA) channels. The links can be 
directly connected between transputers with no external buffering or other glue logic. 

A communications processor, which manages all link communications, operates 
concurrently with the main CPU so that data transfers do not adversely affect CPU 
operation.

Two additional links are provided for system control and monitoring. Initialisation and 
booting o f the processor can optionally be done through these links. The 

communications subsystem also includes four 'Event' channels. As well as acting as 
interrupt inputs, these can be used, as inputs or outputs, for more general 
synchronization and signalling.

Multiple internal buses

To support the high degree of concurrent operation on the IMS T9000, and to 
maintain the high internal data rates required, there are four sets o f 32 bit address and 
data buses internally. These provide multi-port access to the on-chip cache from the 
various functional units of the IMS T9000.

System services

The system services section provides all the general facilities necessary for the 
operation o f the transputer. This includes the power and ground connections, and the 
clock input (5 MHz). Other important connections are a capacitor, which is required 
for the on-chip phase locked loops which generate all the internal high frequency 
clocks, and the processor speed select pins which can be used to select the frequency 
o f the internal clocks (up to the maximum speed for a particular device). There is also 
a reset input - however, as the IMS T9000 includes on-chip power-on reset circuitry, 
external reset logic may not be required in an embedded control application.
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Pipelined, superscalar implementation

To increase the execution rate of the transputer instruction set, the IMS T9000 is able 
to issue several instructions per cycle. A superscalar micro-architecture was designed 

which implements the same high level architecture and instruction set as the IMS T805 
but with much higher performance.
The details o f the IMS T9000 pipeline are transparent to the programmer. The 
processor appears to be the simple transputer architecture described above and 

straightforward code written for that programming model will get nearly the best 
performance out o f the processor. An optimising compiler for the IMS T9000 can, of 

course, generate more efficient code if the details of the internal architecture are taken 
into account.

The pipeline

Instructions are executed in a five stage pipeline, the first can fetch two local 
variables; the second can perform two address calculations, for accessing non-local or 
subscripted variables; the third stage can load two non-local variables; the next can 
perform an ALU or FPU operation; and the final stage can do a conditional jump or 
write.

A conventional pipeline is designed to allow several instructions to be executed 
simultaneously; different parts of each instruction being handled in different stages of 
the pipeline. In order to allow multiple instructions to be issued per cycle (as well as 
multiple instructions being executed in each cycle) the IMS T9000 does not simply 

send a sequence o f instructions through the pipeline but has hardware which assembles 
groups o f instructions from the instruction stream. These groups are chosen to make 

the best use o f the available hardware and one group can be sent through the pipeline 
every cycle. Instructions are put into groups in the order that they arrive at the CPU; 
dependencies within the group are handled automatically by the pipeline.

The grouper can be thought o f as a hardware optimiser; it recognises commonly 
occurring code sequences that the processor can execute effectively. The design o f the 
grouping mechanism and the pipeline is based on analysis o f the code typically 
generated by high level language compilers.
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Grouping of instructions

The grouping of instructions takes advantage of the high degree of concurrency and 
multiple buses in the processor. For example, both caches are multi-ported and can 

each support two reads by the CPU simultaneously.

Since the processor can fetch one word, containing four bytes o f instructions and data, 

in each cycle it is possible to achieve a continuous execution rate o f four instructions 
per cycle (200 MIPS). However, if any of the instructions require more than one cycle 
to execute, then the instruction fetch mechanism can continue to fetch instructions so 
that larger groups can be built up. Up to 8 instructions can be put into one group and 

there may be five groups in the pipeline at any time.

Improvements over IMS T800

In addition to executing several instructions each cycle, the number o f cycles required 
to perform many arithmetic and logical operations has been reduced from previous 
transputers by adding extra hardware. This, combined with the faster clock speed and 
the new micro-architecture, means a ten-fold increase in speed over the IMS T805. In 
addition there is improved support for error handling, and protecting code and data 
from the errant behavior o f a program. The IMS T9000 provides better access to the 

transputers scheduling mechanism, making it easier to implement software kernels for 
a particular processing model.

Hierarchical memory system

The IMS T9000 has a complete, hierarchical memory system providing fast and 

efficient access to data and instructions. There are two separate caches on chip, a 
general purpose unified (code and data) cache and a small cache for local variables. 
These caches can provide fast, multi-ported access to data because they are on chip. 
They also reduce the number and frequency o f accesses to external memory, allowing 
lower cost, slower devices to be used without degrading performance. Finally, because 
the majority of external memory accesses will be cache refills (and therefore multiple 
word reads and writes) fast memory access methods, such as page mode, can be used.
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M ain cache

The main cache consists o f four independent banks, each containing 256 lines. Each 

line holds data from four consecutive words (16 bytes) in memory. An access can be 
made to every bank on every cycle which, with the multiple internal buses, means there 

is a very high bandwidth between the cache and different functional units within the 
IMS T9000.

The main function of the C l04 routing chip is as follows. It uses the protocol of the 
T9000 to locate the message destination, derives the output link and immediately starts 
forwarding the packet (provided that the output link is not in use). Therefore, it 
introduces an efficient queuing system since the packet size is relatively small 
(maximum 32 data bytes).
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APPENDIX B

Complexity theory terminology

In this thesis the order notation used is that introduced by Knuth [Knuth 1976], There 
are three symbols 0(), Q() and 0().

Assume that /  and g  are two functions over the set o f natural numbers. Then O( f  («)) is 
an upper bound on the order of a particular function h (n) and is defined as follows: It 
is the set o f all g (n) such that there exist positive constants c and riQ so that 
g(ri) <c.f (ti) for all n > h q . Therefore, n, 23/?2+7/?+12 and 3«2 are all O(tP-), this 

can be shown by solving the above inequality for c and hq  and noting that the 
predominant term for high values o f n is the highest power of n.

Similarly, Q.(f (//)) defines a lower bound on the order of functions: It is the set of all 
g (n) so that there exist positive constants c and n§ satisfying g  (n) > c.f(n) for all

n > no-

minally, Q(f («)) is defined as the exact order o f a function, it is the set o f all g  («) such 
that g (n) is both O(f (»)) and («)).

Another aspect of the definition and classification of algorithms relies on the nature of 

/  (»). Let P be the class of all problems which can be solved by a polynomial-time 

algorithm. There are a large number o f problems for which this is not the case. Some 
o f these can be solved in polynomial time by a non-deterministic algorithm3. NP 

denotes the class of all such problems. A problem is NP-hard if a deterministic 
polynomial-time algorithm for its solution can be used to find the same for all problems 
in NP. Finally, an NP-hard problem in NP is called NP-complete.

3The Shortest distance amongst all vertices method of section 6.3 is an attempt to find such an 

algorithm.
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APPENDIX C

Shortest path between all pairs of vertices

This appendix introduces the algorithm due to Floyd [Swamy] for computing the 

shortest paths between all pairs of vertices in a graph. The original algorithm was 
designed for directed graphs with length associated with their edges. Besides, it is 
more general in that the succession of nodes in the shortest paths are also provided. 
Here a simple version for undirected graphs is given. The formulation requires that the 
absence o f an edge from the is represented by an infinite entry at the corresponding 
location in the nxn adjacency matrix. Therefore, the null off-diagonal elements o f the 

matrix are replaced by oo. The diagonal elements are set to 0. The matrix W thus 
obtained is the initial condition of Floyd's algorithm, W-W°. The sequence o f matrices 
W 1,W1 2,...Wn is constructed as follows:

wijk=m in {wljk’1,wikk‘1+wkjk’1} where W1=[wijl] 0<l<n.

On completion the entry w-" in Wn will give the length o f the shortest path from node 

i to node j. The following algorithm implements the method.

• Step 1 W is the starting condition i.e. the modified adjacency matrix.
• Step 2 set k=0.
• Step 3 set k=k+l, for all i*k and w ik*oo, and all jAk and w kjAoo:

1. Set m=min{wij,wjk+wkj}

2. If  m < w- set Wjj=m.

• Step 4 If k<n go to step 3 else W=[w;j] gives all the shortest paths.

The above algorithm is efficient and only involves tests and scalar additions. The 
construction o f small meshes of minimum diameter (thus computer networks) based on 
this algorithm can done as follows. For simplicity it will be assumed that the number of 

processors in the network is n=p2 where p=l,2,...For other values o f n the aspect ratio 

o f the polygon should be made as close as possible to 1. This assertion stems from 
simple Euclidean geometry whereby a square has the minimum perimeter over all
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rectangles with the same area. The area of a mesh connected network represents the 

number of processors and the small perimeter ensures that distances between side 
processors are not too large. Having set-up the mesh connections, the wrap around 

edges are added from one side to the other following a set o f permutations after which 
the above algorithm is run.

Note the purpose here is to reduce diameter o f the graph, therefore, only one o f the 

two co-ordinates needs be permuted. The other should implement the identity 
permutation. For example, the top left node is connected to the bottom left node. This 
technique is found in many classic configurations including mesh connected circulants.

156



APPENDIX D

Selected Code Sections 6.1 and 6.2

This appendix presents code fragments which implement the algorithms o f sections 6.1 

and 6.2. E -l shows a procedure which takes a sequence o f numbers and returns its 
Hartley transform. The listing E-2 takes data in the form of a list o f candidate 
boundary points and consults the R-table of a parametrised boundary at different 
scales and rotations to accumulate records of the reference point locations. The latter 
are returned to the farm controller which in turn forms the Hough space.

D-l Hartley transform

PROC (|]REAL32 x, VAL [JREAL32 C, S, VAL INT N, M, n, VAL |]INT seed)

VAL INT Nby2 ISN/2:

VAI, INT Nby4 IS N/4:

SEQ

permute (x, M, 2, n, seed)

— First stage 

INT U, L:

REAL32 temp:

SEQ

U := 0

SEQ i = 0 FOR Nby2 — Two points per FHT 

SEQ

L := U + 1 — Lower p t

temp := x[L]

x[L] := x[U] - temp

x[U] := x[U] + temp

U U + 2 -- Two nodes per FHT

— Second stage 

INT III, U2, L1,L2:

REAL32 temp:

SEQ

U1 := 0

SEQ i = 0 FOR Nby4 — Two points per FHT
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SEQ

U2 := U1 + 1 

LI :=U1 +2 

L2 :-= U1 + 3 

temp := x[Ll] 

x[Ll] x[Ul] - temp 

x[Ul] := x[Ul] + temp 

temp :*= x[L2] 

x [ L 2 ] x [ U2 ]  - temp 

x[U2] :*= x[U2J + temp 

U1 := IJ1 + 4 — Four nodes per FHT 

— Other stages 

VAL INT Nby8 IS N/8:

VAL INT MMin2 ISM-2:

INT lhts, n.p.flit, p.p.flit, p.p.fhtby2:

INT theta: — Angle of rotation step 

SEQ

— Init values for this stage

flits := Nby8 — flits = N/2, N/4, thus flits = N/8 in third stage 

n.p.fht := 1 — In third stage 

p.p.flit := 8 -  In third stage 

p.p.flitby2 := 4 

theta := Nby8 

SEQ stage = 3 FOR MMin2 

INT first.Node.flit:

INT eta:

SEQ

n.p.flit := n.p.flit + n.p.flit 

firsLNodc.flit := 0 

SEQ fht = 0 FOR flits

SEQ

— First node 

INT U, L:

REAL32 temp:

SEQ

U := first.Node.flit 

L := first.Node.flit + p.p.fhtby2 

temp := x[L]
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x[L] := x[U] - temp 

x[U] := i[UJ + temp

— General nodes

eta := theta — Initial value for eta

SEQ

SEQ Ul = (15rst.Node.fht + 1) FOR (n.p.fht -1) 

INT U2, L I, L2, offset:

SEQ

offset := Hrst.Node.fht + (fht TIMES p.p.fht) 

U2 :■* (p.p.fhtby2 - Ul) + offset 

LI := p.p.fhtby2 + Ul 

L2 := U2 + p.p.lhtby2 

— Butterfly

REAL32 tempi, temp2, temp3, temp4:

REAL32 A, B:

SEQ

tempi := x[Ll] * C[eta] 

tcmp2 := x[L2] * S[eta] 

temp3 := x[Ll] * S[cta] 

temp4 := x[L2] * C[eta]

A := tempi + tcmp2 — x[N/2+k]C(T) + x[N-k]S 

B := temp3 - temp4 -  x|N/2+kJS(T) - x[N-k]C 

x[L2] := x[U2] - B 

x[Ll] := x[Ul] - A 

x[U2] := x|U2] + B 

x[Ul] := x[Ul] + A 

eta := eta + theta

— Last node 

INT U, L:

REAL32 temp:

SEQ

U := fust.Node.flit + (p.p.fhtby2 »  1)

L := U + p.p.fhtby2

SEQ

temp := x[L] 

x[L] := x|U] - temp 

x[U] := x[U) + temp 

first.Node.fht := first.Node.fht + p.p.fht
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flits := (flits »  1) — One DFT In last stage 

p.p.fhtby2 := p.p.flit — In prev. stage 

p.p.flit := p.p.flit + p.p.flit 

theta := (theta » 1 )

D-2 Generalised Hough transform

— Data is presented to the following process in the form of: x,y,di,dy the positions and gradient magnitudes respectively. 

IF

(dx <> 0)

angle.in.radians := ATAN ((REAL32 ROUND dy)/(REAL32 ROUND dx)) -  result 

TRUE

angle.ln.radians := PiBy2

theta.edge := INT ROUND (angle.in.radians*57J (REAL32)) 

theta.edge := theta.edge + 90 — get to appropriate place in R-table

— check for overflow 

IF

theta.edge =180 

tlieta.edge := 0 

TRUE 

SKIP

theta-edge := (thetaedge + r.angie) \ 180 

SEQ i = 0 FOR (r.table.position[theta.edge]»l)

INT r, theta, new.dx, ncw.dy, tempi, tempy :

REAL32 r.real, theta.real, sin.h, cos.h :

SEQ

r  := r.table|theta.edge][(i«l) ] 

theta := r. table [theta. edge][(i«l)+ l] -  theta 

— work out orientation to ref point 

theta := theta - r.angie 

IF

(theta < (-90)) 

theta := theta +180 

TRUE 

SKIP

— work out new r

r.real := REAI.32 ROUND r -  r  (real)
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— r.real := r.reaJ * (REAL32 ROUND r.scale) -  new scale

— now work out new dx and dy

theta..real :** REAL32 ROUND theta. -  theta (real) 

sin.h S1N( theta.real/573  (REAL32) )

cos.h :*> COS( theta.real/57 J  (REAL32) )

new.di INT ROUND (cos.h*r.reaI) — new values of dx and dy 

new.dy :« INT ROUND (sln.h*r.real)

— new x and y for Hough space 

IF

new.dx < 0 

new.dx := -new.dx 

TRUE 

SKIP 

IF

new.dy < 0 

new.dy := -new.dy 

TRUE 

SKIP 

IF

theta < 0

tcnipx := x + new.dx 

TRUE

tempx := x - new.dx 

tenipy :■* y - new.dy 

IF

— Within Hough space

(tcmpx>0) AND (tempx<255) AND (tempy>0) AND (tempy<255) 

INT current:

SEQ

current:“  no.points[pos] 

table.of.residts[pos][current] :*= BYTE tempx 

table.of.results[pos]|current+l] :■= BYTE tempy 

no.points[pos] := current-l- 2 

TRUE 

SKIP
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