

City, University of London Institutional Repository

Citation: Omarouayache, S. (1995). A graph theoretic approach to transputer network

design for computer vision. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29537/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Graph Theoretic Approach to Transputer Network Design For
Computer Vision

By

Salim Omarouayache

Thesis submitted for
the degree of Doctor of Philosophy

City University
Department of Electrical and Electronic Engineering

Centre for Information Engineering

April 1995

I grant powers of discretion to the University Librarian to

allow this thesis to be copied in whole or in part without
further reference to me. This permission covers only single

copies made for study purposes, subject to normal
conditions o f acknowledgement.

2

Table o f contents

Acknowledgment.. 6

Abstract...7

1. Introduction..8

2. Computer Vision... 15
2.1. Early processing...18

2.1.1. Filtering.. 18
2.1.2. Low pass filtering...19
2.1.3. High pass filtering..19
2.1.4. Edge detection.. 20

2.2. Segmented im ages... 25
2.2.1. Boundary based segmentation... 26
2.2.2. Region based segmentation..28
2.2.3. Texture... 30

2.3. Geometric structures..30
2.4. Relational structures..32

2.4.1. Knowledge representation.. 32
2.4.2. Matching..33
2.4.3. Inference...33
2.4.4. Planning...33

2.5. Summary..34

3. Parallel processing... 35
3.1. Arguments against the use of parallel machines... 35
3.2. Rebuttal for the arguments against parallelism..36
3.3. Models and paradigms of parallel computation (taxonomies)...37

3.3.1. Flynn's taxonomy..37
3.3.2. Handler's taxonomy...38
3.3.3. Feng's taxonomy...39
3.3.4. Skillicom's taxonomy.. 39

3.4. Different approaches to parallel computer design... 40
3.4.1. The army-of-ants approach (the Connection Machine)......................................41
3.4.2. The herd of elephants approach... 44

3.4.2.1. Convex MPP...44
3.4.2.2. Parsytec GC range.. 45

3.5. D iscussion... 46

4. Transputer implementations of edge detection...47
4.1. Transputer implementation of adaptive noise cancelling... 47

4.1.1. Introduction...47
4.1.2. Signal processing and digital im ages.. 48

4.1.2.1. Noise cancelling..48
4.1.2.2. A model for the im age... 49
4.1.2.3. The adaptive solution to optimum filtering..49

4.1.3. Adaptive noise cancelling and edge detection.. 50
4.1.3.1. Edge detection... 51
4.1.3.2. Gradient detection...51
4.1.3.3. Non-maximum suppression..52

4.1.4. Implementation... 53
4.1.4.1. Algorithm description...53
4.1.4.2. Inherent parallelisms...53

4.1.4.2.1. Data parallelism...53
4.1.4.2.2. Functional parallelism.. 54

3

4.1.4.3. Transputer Configurations.. 54
4.1.4.3.1. Simple linear structure..55
4.1.4.3.2. Multi-level pipelines...55

4.1.5. Results.. 56
4.1.6. Comments and conclusions.. 57

4.2. Colour edge detection..57
4.2.1. Introduction... 58
4.2.2. Pre-processing.. 59
4.2.3. Colour Edge Detection.. 59
4.2.4. Line and Comer Extraction..60
4.2.5. Conclusions...60

5. Parallel vector quantisation...62
5.1. Introduction..62
5.2. Computational complexity of VQ encoding...63
5.3. The use of parallel processing (transputer)..64
5.4. Conclusions..66

6. Transputer implementation of some vision tasks... 67
6.1. Fourier Descriptors...67

6.1.1. Parameterisations..68
6.1.1.1. First formulation (vj/-s curve).. 69
6.1.1.2. Second formulation.. 70
6.1.1.3. Normalisation... 71
6.1.1.4. Methods adopted..72

6.1.1.4.1. y-curve based FDs...72
6.1.1.4.2. Complex FDs.. 73

6.1.2. The Hartley transform... 74
6.1.3. Implementation... 76

6.1 .31. vj/-curves Fourier descriptors..77
6.1.3.2. Alternative F D s.. 78

6.2. Parallel Hough transform... 82
6.2.1. Hough transform for lines.. 84

6.2 .11 . Complexity analysis... 84
6.2.1.2. Parallel Hough transform for line detection..................................... 86
62 .1 .3 . Implementation... 88

6.2.2. Generalised Hough transform... 95
6.3. Object Recognition using graph matching techniques..98

6.3.1. Maximal clique algorithm.. 99
6.3.2. Reducing the combinatorial explosion... 102
6.3.3. Block cluster analysis...102

6.4. Summary.. 104

7. System architecture...105
7.1. Terminology.. 106
7.2. Network Topologies... 107

7.2.1. Mesh.. 108
7.2.2. Pyramid.. 108
7.2.3. Butterfly... 109
7.2.4. N-cube...109
7.2.5. Cube connected cycles..I l l
7.2.6. Perfect shuffle..112

7.3. Architecture for large transputer networks..112
7.3.1. Metrics and bounds.. 114
7.3.2. Circulant graphs... 114
7.3.3. Architecture for large multi-processor systems.. 118
7.3.4. Dynamic Reconfiguration...121

7.3.4.1. Distributed reconfiguration scheme...122

4

7.4. Summary 126

8. Routing algorithm, performance evaluation and practical issues...127
8.1. Routing algorithm for DBC.. 127

8.1.1. Routing along the circulant connections..128
8.1.2. Routing within a CPE..132
8.1.3. Combined Router for DBC... 135

8.2. Performance monitoring...136
8.3. Summary.. 138

9. Conclusions and discussion...140

Appendices...145
Appendix-A Occam and the transputer.. 146
Appendix-B Complexity theory... 154
Appendix-C Shortest path between pairs of nodes.. 155
Appendix-D Occam cod e... 157

References.. 162

5

Acknowledgements

I would like to express my gratitude to my supervisor Dr. T.J. Ellis for
his guidance, support, cordial availability and patience.

Thanks are also extended to the students and staff of the Machine Vision Group
in particular and the Department of Electrical and Electronic Engineering in

general for providing the friendly atmosphere in which this
work was carried out.

Financial support from the Algerian Ministry of Higher Education and the
Kitchen Award are gratefully acknowledged.

6

A bstract

The work in this thesis is concerned with parallel architectures based on the
Inmos transputer-type processors and parallelisation of some computer vision tasks
chosen from low to high level.

The transputer is a microprocessor with a micro-programmed scheduler and

four serial communication links. It directly supports parallel processing since several
transputers can be connected through their links to co-operate on solving a problem.

Also several processes can be run on the same transputer. A major issue in parallel
processing is the communication overhead introduced by parallelising a given task.
This overhead is not present in sequential processing and must be curbed if the
implementation of a task on a parallel machine is to be successful. The interconnection
network underlying the architecture o f a parallel computer is therefore of the utmost

importance.
Computer Vision consists o f a hierarchy o f tasks ranging from low-level

operations dealing with large amounts of relatively simple data to high level operations
handling increasingly complex structures. In this work a novel edge detector based on
adaptive filtering and an edge detector operating on colour images are presented and
implemented on a number of transputers. These parallel implementations together with
implementations of vector quantisation, Fourier descriptors for shape discrimination,
the Hough transform and the Maximum clique algorithm, offer a notable performance
increase when compared with sequential implementations. However, every algorithm

required the design of a specific network of transputers to take advantage o f the
parallelism and data dependencies inherent in each.

Consequently, attention is focused on the topology o f interconnection
networks. In particular, the communication requirements o f computer vision

algorithms as identified by the various computer vision tasks are analysed. These
requirements together with graph theoretical considerations are then used to suggest a
topology for large transputer networks. The latter is based on sub-graphs, with proven
performance when used to implement interconnection networks, combined to form an
architecture with improved performance. This architecture consists of a fixed structure
supplemented with a dynamically reconfigured network. After describing this topology,
a routing algorithm that conveys messages along shortest paths in the network is given
and implemented. And finally, some practical issues in the use o f transputers are
considered and solutions proposed.

7

1. Single Instruction stream, Single Data stream (SISD)
2. Single Instruction stream, Multiple Data stream (SIMD)
3. Multiple Instruction stream, Multiple Data stream (MIMD)

Flynn's taxonomy, though restrictive in that it cannot classify some of today's
computers/algorithms, serves as a guideline in the approach to new problems. Besides,
to attain the high performance required the best o f different system architectures is
needed. Therefore, Flynn's taxonomy will probably be used in the future to classify
sub-systems instead of complete computers.

Amongst the areas of research that require vast processing power is computer vision.
Other areas include fluid dynamics, meteorology and numerical analysis.

The main focus o f this work is on computer vision. It is believed that computer vision
with its wide range of needs is a challenging area for parallel systems. In fact computer
systems manufacturers often demonstrate the power o f their machines on image
processing applications. On the other hand, some problems in computer vision can only

be solved -using current knowledge- with very fast computers. New methods and
techniques that decrease the complexity will probably be discovered, but a large
amount of processing is very likely to remain necessary.

The object o f the work presented here is to study computer vision in the wake of
parallel processing. This leads to the realisation that systems which offer good
performance for one type o f application may fail to do so for others. Commercially
available hardware can compute image filtering tasks in real-time (25 frames per
second). But, can this hardware search a large database using sophisticated data-

structures for a best match? The answer is no. Thus, there seems to be a need for

architectures and computer vision algorithms from various levels that map efficiently
on them. At first glance the only solution seems to be a compromise between the
models that have been used successfully for problems with fundamentally different
needs. In other words, design factors such as grain of parallelism (size o f atomic
tasks), the ratio o f inter-processor to processor-memory bandwidths, etc. are to be
balanced. An important aspect in the design o f such computers will be the unit
Processing Element (PE). The latter should have an important bearing on the approach
adopted. For example, intuitively a systolic array type o f processor with very limited
computing capability drawing its power from the regular beat o f data, is not likely to

be amenable to the solution o f a combinatorial problem with non-deterministic spatial
distribution o f processing. For a start the data-structure representing the problem has

9

to be transformed into a set of homogenous and similar (and small) regions. This will
have to be done on a powerful central computer and can be a complex problem.

Computer vision has traditionally been divided into a hierarchy of processing steps.
The lower steps are named low-level vision and deal with image level operations. A
range of operations (which is not so well defined) can be termed intermediate-level
vision and involves grouping the low-level features extracted by the previous steps into

more meaningful entities. The latter are operated on by processes categorised as high-

level vision which are concerned the reasoning aspects of computer vision. The
processing and communications requirements o f parallel implementations o f tasks from
different levels will differ greatly. This is the main reason for the choice o f the
algorithms in Chapter 4, Chapter 5 and Chapter 6. Edge detection is clearly a low-level
vision task. The Fourier descriptors and the Hough transform fall into the intermediate-

level. Finally, the clique finding algorithm falls into the high-level category. The aim of

the various implementations is two-fold. First, it will be shown that the communication
needs are such that different algorithms require different topologies (even for a modest
number of processing elements). Therefore, a flexible architecture is needed, especially
for large networks. Second, improvements to the algorithms will be proposed.

The computer vision algorithms studied in this work are edge detection, vector
quantisation, the Fourier descriptors, the Hough transform and the maximal clique.

These algorithms are designed and implemented in parallel. First, a new edge detection
operator is formulated based on the adaptive filtering method. Second, a modified
Canny edge detector is applied to the three planes (R, G and B) of a colour image with
corroboration between the different planes. Third, a vector quantisation algorithm is
defined, where the coder is implemented on a network of processors. Then, a shape

discrimination scheme based on the Fourier descriptors is formulated. The latter
together with the Hough transform algorithm present examples o f middle-level vision

algorithms. Finally, the maximal clique finding algorithm is a representative o f high
level computer vision.

Graph theoretic methods have been shown to allow the expression o f many search
problems. Besides, many problems in computing reduce to enumerations or
combinations; and most problems in combinatorics can be expressed in graph

theoretical terms. Some of the seemingly intractable (without very involved calculus)
problems of statistical mechanics have been solved using graph theoretical methods

[Temperley], More in line with this work, relational structures can be represented as
graphs [Ballard], Thus, matching objects in a scene to models in a database reduces,

10

given the right interpretation of nodes and arcs, to graph searching procedures. One
such method involves forming an association graph2 from the two relational structures

representing the object in a scene and the model. Having formed the association graph
the problem becomes that of finding its cliques i.e. sets o f completely connected
vertices. A clique that cannot be extended by adding a vertex to form a larger clique is
a maximal clique. Therefore, good matches between object and model will
correspond to large cliques. The parallel implementation o f this procedure is the
subject o f section 6.3.

The Hough transform (section 6.2), and Fourier descriptors (section 6.1) are

considered next. The former is implemented for both straight lines and generalised
parametric curves. The complexity o f the algorithm is analysed and a method is
proposed for further performance increase. The latter is also implemented on a

network of transputers and the use of the Hartley transform is proposed as a faster
alternative for the Fourier transform. The notion o f normalisation is also considered.

Problem solving using parallel processing requires, at the outset, a choice o f approach.
There are two main categories of parallel systems:

1. shared memory parallel computers,

2. and distributed memory parallel computers.

The work presented in this report concentrates on a sub-class o f the distributed
memory parallel computers that rely on the message passing paradigm.

The aim here is, therefore, to study the current state of affairs in network topologies;

and to use graph theoretic concepts and practical considerations to present an
architecture with 'good' characteristics. The latter are based on both formal metrics
drawn from the theoiy o f graphs and computational concepts. The view is taken in this
work that graph theory is a powerful tool in the design o f parallel computers and
parallel algorithms. The connection with the topologies o f networks o f processors is
intuitive. One can easily picture the PE's as vertices and the communication links as
edges o f a graph. Examples o f the use o f graph theory in the design o f minimum
latency reliable networks predate parallel computers.

2Please refer to section 6.3 for the relevant definitions.

11

The approach adopted here relies on making use o f graph theoretical concepts and
results, mainly the diameter (or maximum distance between any two nodes) but also
the notion of dominators in directed graphs, etc. to reduce the inter-dependence of
PE's that are not functionally related. Another important aspect o f architectures is the
ability to map useful partial-graphs that have been shown to implement certain
algorithms efficiently e g. trees, meshes, etc. Besides, the communication structure of a
problem can vary within one level o f processing as well as between levels. This
suggests that reconfiguration should be considered. However, general reconfiguration
routines require a great deal of synchronisation and thus introduce further sequential

processing (Figure 1.1). Hence, the use of a fixed topology with 'good' characteristics
as defined earlier and only a sub-set o f links dedicated to reconfiguration is the method
adopted.

The advent o f dedicated circuits to effect message routing represents a different
approach to fast communication. However, these routers introduce delay and, in large
networks where several are combined to implement full inter-connection between the
processors in the system, there is no deterministic way to evaluate communication
latency accurately.

In the next few paragraphs the structure o f this report is introduced. This will include a
short description o f the content o f each chapter.

Chapter 2 introduces computer vision and pinpoints the main differences in processing

requirements between the different levels o f its hierarchy o f tasks. It describes selected
tasks from low level image processing to the high level processes o f knowledge
representation.

Chapter 3 describes the parallel models, architectures and paradigms. It gives the old

arguments against the use o f parallelism and their rebuttals. Then, it describes some
commercially available parallel computers and the rationale behind them.

12

Chapter 4 introduces two edge detection algorithms and their parallel implementation
on transputer networks. First, an adaptive approach to edge detection is presented

where the edge operator's kernel is determined from the image using a Widrow-Hoff
filter [Widrow], Then, a modified Canny edge detector [Canny] is adapted to colour

images. The result o f applying the operator to one of the planes (R, G or B) is
corroborated by that of applying it to the others. Finally, both algorithms are

implemented on specific transputer networks.

Chapter 5 presents the implementation of a parallel vector quantisation algorithm
aimed at image compression. The implementation achieves very good speed up
characteristics.

Chapter 6 presents the implementation o f three different algorithms from computer
vision. First, the Fourier descriptors technique is introduced and a fast algorithm based
on substituting the fast Hartley transform for the fast Fourier transform is proposed.
Two formulations of the Fourier descriptors are considered. One formulation has fallen

into disuse because of the high frequency content of the resulting descriptors. An
attempt at providing a solution is given. Second, the Hough transform technique is

presented and a parallel implementation is described. The latter includes both the
Hough transform for lines and its generalisation to arbitrary parametric curves

[Ballard 2], Last, the high level goal o f matching models in a database to objects in
images is considered. The associative graph technique based on finding the cliques is
analysed in order to identify potential parallelisms. The problem of finding cliques in a
graph is known to be NP-complete3 i.e. there exists no deterministic algorithm to solve
the problem in polynomial time (to the size to the input). However, there are in the

literature many examples o f simple heuristics used to improve the situation
considerably [Bolles], An algorithm based on block cluster analysis is presented, the

main idea is to represent the association graph by its adjacency matrix and then use
row and column permutations to bring the T entries close to the main diagonal. Also a
parallel iterative version o f the algorithm given in [Bolles] is presented. Finally, the
transitive orientation o f an undirected graph is shown to ease the problem of finding
cliques [Liu], However, not all graphs are transitively orientable; thus the use of
transitive orientation is investigated as a simplifying procedure.

Chapter 7 deals with the design of a transputer architecture suitable for computer
vision. The design criteria used to this effect build on graph theoretical results to find a

3Please refer to appendix B for the definitions of complexity theory.

13

topology that exhibits a reasonably small diameter, vertex and edge symmetry, etc.

Then it turns to the possible schemes for reconfiguring the proposed architecture
dynamically.

Chapter 8 presents a routing strategy for the architecture of Chapter 4 and presents
tools for performance evaluation and other aspects o f the implementation o f algorithms
on transputers. The programming language used throughout is Occam which is pared
down and offers explicit support for parallelism and the message passing paradigm.
Occam is the implementation o f a subset o f Communicating Sequential Processes

(CSP) [Hoare], CSP is a mathematical theory which views systems as a set o f co-
operating processes that can be defined formally; and manipulated to prove
correctness, etc. Appendix A is dedicated to the transputer and Occam.

Chapter 9 is the conclusion; it summarises the main results of this work and considers
extensions and future work.

14

CHAPTER II

2. Computer Vision

Computer Vision is the area of computing involved in automating the processes of
visual perception. It includes image processing which deals with transforming,
encoding and transmitting images. It also includes pattern classification which deals
with separating or classifying features. Finally, computer vision includes higher level

goals and techniques suitable for geometric and cognitive processing.

This chapter is intended as an introduction to the domain problems tackled, with
special emphasis on the processing requirements of the different classes o f algorithms.
Computer Vision is introduced by groups of algorithms acting on different image
representations. Figure 2.1 [Ballard] shows the relationship between the various
representations that are of interest in computer vision.

Computer vision presents a hierarchy of tasks ranging from low-level perceptive
processes to high-level cognitive processes. With regard to the processing
requirements of the different levels o f this hierarchy, it can be noted that low-level
vision usually relies on relatively simple tasks handling large numbers o f primitive data
items (e g. pixels), whereas high-level vision consists of complex tasks handling more
evolved representations (e g. relational structures).

An important factor in parallelising an application is load balancing, because one must
ensure that no processor (or processors) remains idle while others are overworked. In
chapters 4, 5 and 6 a number o f computer vision tasks are considered and parallel
algorithms are presented and implemented.

15

Ballard and Brown categorise the representations of computer vision into four main
groups as follows:

1. Iconic images,
2. Segmented images,

3. Geometric structures and
4. Relational structures.

Moreover, they identify a loose ordering between the different representations. Also,
each category can be made up of several layers o f representation. Such a view of

computer vision is very helpful from a parallel processing view point, since

representations within the same category will have similar storage and communication
structures.

The input to a computer vision system is invariably a digitised image (or set of
digitised images) produced by some piece o f equipment that converts radiation e g. X-
rays, ultrasound, visible light etc. into an electronic signal which is then sampled. The

most common radiation used is visible light; a camera e g. CCD1 produces a two-
dimensional array o f pixels which can be displayed or passed on to the computer vision
system for processing. This array is an iconic representation o f the scene o f interest.
Most processing at this level will produce another iconic image e.g. edge pixels.
However, intrinsic properties of the scene can also be produced which give

1 An array of Charge Coupled Devices have their capacitances modulated by the incoming light.

16

information about surface reflectance, orientation, depth o f field etc. The major

common property of these low-level processes is that data dependency is local i.e. to
compute the output o f the process at a particular location only a close neighbourhood
around that location is needed. Therefore, these processes exhibit a high degree of low
grain parallelism and are adequate for SIMD implementation (especially processor
arrays).

Segmented images are formed from iconic images associating sets o f pixels with
objects. Processes at this stage can benefit from knowledge about the context o f the
scene in order to reduce computation time. Data dependency is no longer local, since
regions (segments) o f the image might span a large area. However, data can still be
partitioned and processed on a parallel computer and then recombined. An important
issue will in this case be the amount o f effort required to reconstruct the full image;
does it warrant the decomposition ?

Geometric representations are concerned with quantifying the notion o f shape. These
representations are used both for storing prior knowledge about the world and current

visual input. Thus, the geometric structures can be used to measure the difference
between two scenes concentrating on shape. The representation is a lot more compact
than an iconic image; hence a notable reduction in the amount o f data handled by
algorithms is achieved.

Relational structures are an amalgam of representations used to effect high level goals.
Inferences have to be made based on these structures which accommodate the notion
o f shape, relative position, and other concepts e.g. inside, outside, etc. Processes at

this level are not considered to be good candidates for parallel processing. This is due

to the fact that reasoning about a structure requires global knowledge, and subdividing
either data or function might involve complications with regard to communication.
The latter will either be prohibitive i.e. processors will spend most o f their time

communicating instead of performing computations, or non-deterministic in which
case there is no means o f evaluating the complexity of the parallel implementation.
However, insight into the workings o f the algorithms involved can sometimes show
hidden parallelisms which allow for small but non-negligible speed-ups .

It is apparent from the ongoing analysis that the hierarchy inherent to computer vision
introduces major differences in the algorithms that tackle the different levels.
Therefore, parallel implementations will require different approaches based on the data
dependencies and computation to communication ratios. Whether the approach relies

17

on data parallelism or functional parallelism the problem of load balancing must be
addressed. For example, a low level computer vision task running on a processor array
must ensure that some processors are not starved while others are working to or
beyond their capacity2. Also, a task that has been sub-divided into functional sub-tasks
implemented on a pipeline architecture must ensure that no task is significantly more
time consuming than the others, since the upper bound o f the throughput o f a pipeline
is (once all processors are computing) limited by the slowest sub-task.

In each section, established algorithms are described. Furthermore, an attempt is made
at recognising the computing requirements and presenting previous attempts at

solving the work load problem and implementing the algorithms efficiently.

2.1. Early processing

The algorithms described in this section act upon the generalised images introduced
above. Early processing includes filtering, edge detection, range transforms, surface
orientation, optical flow, etc. The operations o f interest in this work are filtering and
edge detection. Therefore, they are the subject o f the remainder o f this section.

2.1.1. Filtering

Filtering in image processing relates to the transformation o f the grey levels in an
image so as to enhance or de-enhance some features of interest. This is mainly an
extension of filtering in (time) signal processing to two-dimensional signals (images);

that is, the image is convolved with a kernel representing the impulse response o f the
operation desired.

The process o f 2-dimensional convolution of an image is the action of comparing a

reference kernel with a small neighbourhood at every pixel in the image3. The general
formulation o f such an operation is as follows:

n m

F(U)= I £ l(i + k,j + l).h(k,I)
k = -n l= -m

2This situation can arise (in applications that use buffers) when some processors are able to service

their local buffer several times before other processors service theirs once.

3 A number of pixels around the boundary will be undefined in the output image.

18

where h() is an mxn kernel, I() is the MxN input image and the output image F() has

dimensions (M -m+l)x(N-n+l). Note that m and n are assumed odd as is often the
case. This due to the fact that many kernels are odd or even functions of two
parameters; and the result is stored in the location corresponding to the central pixel. A
filter is completely defined by the values o f the kernel.

2.1.2. Low pass filtering

Low pass filtering is generally used to reduce speckle noise and isolated noise pixels.

However, since edges o f objects are high frequency transitions they are adversely
affected. Therefore, the filter coefficients have to be chosen carefully and in an

application dependent manner. A few filters have proved useful in many applications
[Gonzalez][Ballard][Duda] e.g. neighbourhood averaging and the gaussian filter. The
neighbourhood averaging operation defines its coefficients so as to replace the pixel at
the centre by the average over the overlapped neighbourhood in the image. The

gaussian filter kernel is defined as follows: h (k , l) = e 2°2 assuming the same

standard deviation is used in all directions. Note that because o f the separability of the
variables the gaussian operator can be applied through two 1-dimensional kernels4,
thus saving on computations while achieving similar results.

The major advantages o f the gaussian operator besides this computational efficiency
are:
• Its impulse response is gaussian, hence small span,
• it is simple to parameter!se.

2.1.3. High pass filtering

High pass filtering is used to enhance the large local transitions in pixel values. This
has the effect o f sharpening the edges. The Laplacian filter is an approximation to the
Laplacian of a function df-ldx2 + df-ldy2. The kernel is given by:

1

8

1 -1 - 1

1 8 -1
1 - 1 - 1

horizontally and vertically.

19

The Laplacian filter suffers from the lack of directional information and the fact that it
relates to the second derivatives further enhances noise. Therefore, it is not very well
suited for edge detection as a one stage process5. However, it is still quite useful as an
edge enhancement technique. Also, it is often needed in conjunction with smoothing
operators to reduce noise.

2.1.4. Edge detection

Edge detectors are an important part o f many computer vision systems. They serve as
a data reduction tools by simplifying data before further processing. For example,
([Binford]) constructing a geometric model to match against a database in industrial
inspection involves locating edges before linking them to produce line and curve
segments that are then combined to form the geometric model. Almost all vision

systems use an edge detector as a front end (e.g. Acronym [Binford]). Line finders,
whether they are based on edge following or the Hough transform, require data to be
presented as an edge map.

Edges in an image can be associated with high gradient magnitude. This led Roberts to
design the first edge detector as an approximation to the derivative of the two-

dimensional function that is an image. The gradient magnitude d(x,y) and direction
4>(x,y) are evaluated as follows [Ballard]:

d(x ,y) = Va ? + A 2

^ (x ,y) = ta n _1(AX ,)

where

A t = f (x + n , y) - f (x , y)

A 2 = f (x>y+ n) - f (x>y)

Where n is a small integer defining the span of the operator. The span has to be large
enough to accommodate small changes in the image but small enough to focus on local
changes. The Roberts operator assumes by definition a step edge model. Also, it is
sensitive to noise. To reduce the effect o f noise various operators have been proposed.

The Sobel edge detector, though based on the same principle achieves better

5The Laplacian opertor has been used as an adjunct to other operations to detect edges [Marr]

20

performance by introducing local averaging. The kernels for the horizontal and vertical
Sobel edge detector are:

'-1 0 f
A - i Ay 4

'-1 -2 - 1"
-2 0 2 and 0 0 0
-1 0 1 1 2 1 _

The gradient magnitude g(x,y) and orientation 0(x,y) are computed as follows:

g (x . y) = -v/Ax + A l

0 (x , y) = tan

where Ax2 and Ay2 are the values o f the convolution of the respective kernel (A) with
the image at location (x,y). Note that the operation is not defined for border pixels.

The Sobel operator compares favourably with the Roberts and other application o f the
gradient operator on the input image; however, it is still sensitive to noise producing a

loss in detection accuracy. Kittler [Rosenfeld] proposed an iterated application of the
operator as a means of improving accuracy. See [Kittler] for details.

Marr and Hildreth [Marr] proposed an operator based on the Laplacian of a gaussian
filter. Edges are detected as zero-crossings in the output o f the image convolution
with the Laplacian o f a gaussian.

The gaussian function has very interesting properties. First, as stated above,
application o f an n-dimensional gaussian can be performed by computing n 1-
dimensional gaussian; thus, reducing computations. Second, the smooth shape of the

gaussian means that it has good frequency characteristics and minimises the pass-band
to stop-band transition problems (Gibbs effect).

21

Canny [Canny] proposed a set of criteria for optimal edge detection for a step edge
model. The criteria are quite intuitive and can be stated as follows (1-dimensional
case):

1. The edge detector must achieve low probabilities o f false alarms and failures to
mark real edge points i.e. large signal-to-noise ratio.

2. Good localisation i.e. the edges reported should be as close as possible to the
real edges.

3. Single response i.e. an edge in the image should be reported only once.

After enunciating the set o f desirable conditions Canny set about formulating them
mathematically. The signal-to-noise ratio maximisation is given in the case o f a finite
impulse response [-W/2,W/2] filter (fix)) applied to an edge located at x=0 (G(x)) and
bathed in white noise (with mean-squared amplitude no)6:

SNR

+ W / 2

1 °
- W / 2

| G (- x) f (x) d x

n o , / J f 2 (X) d x

To achieve accurate localisation, the root-mean-squared distance of the marked edge
from the centre of the real edge is minimised. This can be achieved by noting that the

real edge is assumed to be located at x=0 but because o f noise it will be marked at Xq.
Therefore, localisation can be improved by minimising the standard deviation of Xq. A

simple analysis o f the equations involved led Canny to propose the following measure:

Localisation
1 G '(- X) f ' (x)dx

n o J j f 2 (x)dx

The above equation is an approximation to the reciprocal o f the standard deviation of
Xo. Hence, a simultaneous application o f the first two criteria proposed is equivalent to
the maximisation o f the product of the two equations i.e.

6Edges are marked at the local maxima in the response of the filter f(x).

22

J G (—x) f (x) dx j G ' (- x) f ’ (x) dx

n 0 J | f 2 (x) d x n . J J f ' 2(x) d x
f - W 12

Using the Schwarz inequality for integrals it can be seen that the function which
maximises the product is f(x)=G(-x) xe[-W/2,W/2]. This is hardly surprising since f(x)
becomes the matched filter; and the matched filter's performance represents an upper

bound to the improvement in signal-to-noise ratio through linear filtering.

The third criterion proposed by Canny is required because o f the frequency
characteristic of the step edge. Such a filter has a high bandwidth and outputs many
maxima as a response to a noisy edge. Therefore, a further constraint has to be
formulated. A result due to Rice [Rice] and reported in [Canny] states that the average
distance between zero-crossings of the response of a function to gaussian noise is:

x ave = 71.
f R (0) ^
vR ' (0)>

x

where R(x) and R'(t) are the auto-correlation functions o f the function and its first
derivative respectively. The distance between adjacent maxima in the noise response of
the function is 2*xave. If this distance is set to a fraction k of the function's width W,

the expected number of maxima due to noise will be 2Ik.

Having formulated the constraints for edge detection Canny solved the optimisation

problem numerically. He then proposed the derivative o f a gaussian as an

approximation to the optimal edge detector. Hysteresis thresholding was then applied
to the output in order to grow back noisy breaks in contours. This amounts to edge

linking.

The Canny edge detector is amongst the most computationally intensive algorithms

considered in this section. However, its data dependency is local and it is well suited
for fine-grain SIMD implementation. Therefore, custom VLSI hardware is in principle
the best approach, because the performance of the few instructions used can be
optimised and the architecture of single nodes can be devised according to the data

paths in the algorithm. Ruff [Ruff] proposed a pipelined architecture achieving video

rate throughput. The process outputs 8-bit edge strengths, 8-bit directions and 8-bit

23

sub-pixel position (l/50th). The implementation is based on noting that the Canny
operator can be thought o f as a three stage process Figure 2.2 :

r n
Video Rate data G au ss ian sm oothed image

Figure 2.2: Block diagram o f a hardware implementation o f the Canny Edge detector

Ruffs work is a clear example of the approach that can provide real-time performance
for the algorithms of low level vision. However, reasonable speedups can be achieved

using a general purpose multi-computer architecture (e.g. transputer network) as
shown in Chapter 5 which presents an adaptive filter approach to edge detection. Also,
Chapter 6 describes an implementation of the Canny edge detector for colour images.

The two appendices present attempts at improving the performance o f edge detection
both in output and performance.

Other authors have studied the Canny optimality criteria and proposed alternative
methods based on infinite impulse response (IIR) formulations [Deriche]. Another

parallel diffusion based implementation was given by Belhaire et al [Belhaire],

Deriche was concerned with the choice of the derivative o f a gaussian as an
approximation to the ideal filter Belhaire et al aimed at the hardware implementation of
a parallel optimal filter.

Various methods and approaches have been proposed for edge detection. Very often
the goal is to improve the quality o f the output in situations where the models given
above (step edge, etc.) are inadequate [Gupta], Frei and Chen [Frei] proposed a

method to detect edges based on template matching. They derived a set of 9 masks
(3x3) which constitute a set o f orthogonal basis functions. Each basis vector
corresponds to a local interpretation of the edge situation for a patch (3x3).
Convolution o f the input image with the 9 masks is equivalent to the projection o f the

image on each o f the sub-spaces generated by the basis vectors. The projection of
highest magnitude is the best approximation to the local edge.

24

Gupta and Wintz [Gupta] present an algorithm based on hypothesis testing to locate
boundaries in grey level images. The image is sub-divided into small patches (e g. 2x2
arrays) then the first and second order statistics o f adjacent subsets are compared.
Similar patches are combined to form blobs. After the entire image has gone through

this process, a segmented image is obtained. The boundaries between blobs, then,
represent the boundaries between objects in the original image. The impetus behind the
approach proposed by Gupta and Wintz was provided by the fact that finding edges
in images, based on gradient methods, (pre-1975 [Pingle], [Rosenfeld].) did not offer
good-enough noise rejection to validate boundary finding. Although edge detectors

have since improved greatly, the mathematical models adopted for the design o f filters
are still almost invariably over-simplified (step, ridge, roof and white gaussian noise).
Therefore, an approach similar to the one proposed should be o f value when the

assumptions about noise statistics are ostensibly inadequate (e g. boundaries between
textured regions).

The algorithm described in the previous paragraph does not completely fit in with the

rest o f this section. This is due to the lack o f knowledge about the way blob
combination is to proceed. However, the operations o f blob comparison and evaluation
o f statistics are still local and within the framework of multi-processors with powerful
PE's like transputers, SIMD seems a reasonable approach at the early stages of

execution. Combining boundaries accumulated on separate processors would,
however require communication to link the blobs.

2.2. Segmented images

Segmentation in computer vision originated from work in psychology concerned with
tendencies in human perception to group shapes and features in the visual field.
Features like proximity, similarity and continuity seem to be extensively used in human
visual perception [Kohler], Gibson and Gregory [Gibson] postulate that the grouping
of features together with object/background discrimination7 organise the scene into
meaningful parts as a step towards image understanding.

Segmented images differ in many ways from the input (generally digitised) images.
First, domain dependent aspects start playing an important role in the algorithms for
segmented images. Second, data structures have to be designed for the representation

7Through edge detection, thresholding, etc.

25

of segments8, in other words the 2-dimensional array representing an image is no
longer appropriate for storing perceptual features. Last, the transformations involved
in generating a segmented image require more elaborate computations that are likely to

involve global knowledge about the scene; therefore, global communication will be
required in a prospective parallel implementation.

In this section segmentation algorithms are introduced and separated into two main
categories. First, the algorithms that perform segmentation based on boundaries
between objects are described briefly. Then, region based segmentation is described.

2.2.1. Boundary based segmentation

Boundaries between objects in an image play an important role in the scene
understanding process. Many different approaches have been proposed for their

detection. The techniques advocated are based on a wide range of mathematical
formulations of the problem at hand. Dynamic programming, the Hough transform,
divide and conquer are but a few of the methods used in the literature. The algorithm
described in the previous section achieves boundary detection through yet another
technique based on the statistics of blobs accumulated in the image.

Dynamic programming is a recursive computational procedure used to solve
optimisation problems [Liu]. It is particularly powerful in solving the decision
problems o f multistage processes. A multistage process is characterised by a set of
state variables that fully describe the status of the process at any given stage. A
decision has to be taken at each stage from a possibly infinite number o f actions. For a

problem to be amenable to dynamic programming, an objective function has to be

specified. A decision taken at a particular stage affects the value o f the objective

function and the state variables of the next stage. Therefore, a policy is required for
choosing the appropriate actions. Such a policy is optimal if it optimises the objective
function. Optimality is the basic principle behind dynamic programming. It can be
stated as follows [Liu]:

An optimal policy is one where, whatever the initial state o f the process and the

initial decision, the remaining decisions must constitute an optimal policy with regard to

8Usually boundaries or regions in a scene.

26

the new state o f the process resulting from the first decision.

The above definition results in the recursive nature o f dynamic programming. In other

words, since only the decisions that affect the subsequent stages are to be considered,
a policy can start searching for the optimal decision from the last stage and then work

backwards.

A boundary detection procedure can be so formulated that it encompasses the notion
o f best boundary (an objective function) [Ballard], The input to such a procedure is an
edge map as produced by the algorithms mentioned in section [2.1.4],

Ballard [Ballard 3] associates "goodness" o f a boundary with a high cumulative
gradient amongst connected edge pixels and low cumulative curvature. The following

equation implements this objective function [Ballard],

n n-1

h(xi>->xn) = Zg(xk)+ aZq(xk>Xk+i)
k = l k = l

where a is negative, g(xk) is the gradient magnitude at kth point and q(xk,xk+i) is the
difference between the gradient angle at the two successive points. Maximising h(...)
constitutes following a set of disconnected edge pixels to form the most likely
connected boundary containing a subset of edge pixels (according to the assumption
built into the objective function). A recursion equation can thus be defined:

f0(x i) = 0

fk(xk+l) = max [g(xk)+ a q(xk+xk+l) + fk-l(xk)

One o f the major advantages of dynamic programming used as above for edge
following is that a parallel implementation is feasible if many starting points are
considered. A large set edge pixels is partitioned and each subset is processed on a
separate processor and then the boundary segments are combined.

Heuristic search is a method used to reduce the computational complexity o f graph
searching. The object is to generate a path in a given weighted graph between node A
and node B with minimum cumulative weight. Nilsson [Nilsson] formulated the
optimisation problem by estimating the cost o f travelling from A to an intermediate
node I and the cost o f traversing the path from node I to node B. The sum of these

two costs is then the evaluation function which guides the heuristic search. The latter
can produce reasonable (though sub-optimal) results fast when exhaustive search is

27

impractical. If more constraints are satisfied, the method always produces the minimum
cost path.

Heuristic search for edge following was first proposed by Martelli [Ballard], The
method constructs a weighted graph from the output o f an edge detector. The gradient
angles provided by the edge operator are taken to be the nodes o f a graph and weights
corresponding to the gradient magnitudes are associated with these nodes. An arc is
added to the graph if gradient angles are appropriately aligned. Then Nilsson's
method is used to produce candidate paths that will correspond to boundaries in the
original image. Valid evaluation functions are essential for the success of this method.

Authors have proposed a mix of context dependent and general rules as evaluation
functions [Ashkar][Lester][Ballard], Heuristic search has proved quite powerful and
compares favourably with dynamic programming [Martelli]. However, it does not
present the inherent parallelism apparent from the dynamic programming formulation.

When an object o f known shape is to be located in an image, a generalisation o f the
Hough transform [Ballard 2] is an efficient approach. The latter relies on an
accumulator array, in which peaks are formed by counting the edge pixels supporting
the presence o f the shape in the input image. The accumulator array is a set o f possible
locations for a reference point fixed when the shape was first parameterised. Section
6.2 presents a transputer implementation o f a parallel Hough transform. Therefore, a
more complete analysis o f the Hough transform is deferred.

A number o f methods have been proposed for the manipulation of boundaries (not
always linked to segmentation) to provide representations appropriate for higher level
processing. Chain encoding [Freeman], Medial axis transform [Persoon] and Fourier

descriptors [Persoon][Wallace] are all methods that apply satisfactorily to particular
situations. In particular, the Fourier descriptor approach is presented together with a
transputer implementation and the use o f the Hartley transform in section 6.1. Wu and

co-workers [Wu] proposed a parallel implementation o f boundary manipulation
algorithms based on chain codes and crack codes.

2.2.2. Region based segmentation

Region segmentation can be achieved through thresholding. A simple approach could
be implemented by forming the histogram of grey levels in the image and then choosing

thresholds to form regions. Obviously, the choice o f thresholds is critical. Chow and

28

Kaneko [Gonzalez] proposed a method for optimal threshold selection for the two

regions case.

Region based segmentation can be viewed as the problem of finding a partition of the
input image into non-overlapping regions. One such method is region growing. The
simplest region growing technique relies on properties of local groups o f pixels. The
process starts from a set of pixels and grows regions by appending to each point in the

original set those pixels in its neighbourhood that have similar properties. Besides, the

difficulty in defining adequate properties, this simple method suffers from its

dependence on the choice o f the original pixel set and ambiguities due to quantifying
the properties.

Split and merge is another approach to region growing. The basic algorithm relies on
the homogeneity o f individual regions and the non-overlap between regions. If a
particular region does not satisfy the condition then it is split into two regions. When

there is an overlap between two regions, they are merged. Horowitz and Pavlidis
[Horowitz] presented an algorithm to implement the split and merge operations
towards segmentation using region growing. Other algorithms were proposed for
boundary melting [Brice] which can be made more descriptive through the use of
graph-oriented region structures [Ballard],

A class of techniques that can be used to perform region based segmentation are the
so-called clustering and unsupervised learning algorithms [Duda], These algorithms are
very prominent in pattern recognition. The methods span a wide range of formulations
and assumptions about the probability densities that describe the data. One algorithm

that is typical of this class is the Isodata algorithm used for clustering. It starts with
initial estimates of the means o f clusters (regions in the case o f image segmentation)

and evaluates the variability o f the regions formed by associating samples with a
cluster according to a distance measure9. The so-formed clusters are split and merged
across the dimension of highest within-cluster variance and lowest inter-cluster
variance respectively. At each iteration the cluster means (or centres) are updated. This
can be achieved through the K-means algorithm [Duda]. The K-means algorithm
converges to a local minimum on the error surface and is usually used as an adjunct
method to other algorithms. An implementation o f such a scheme forms part o f the
Khoros system [Khoros] and was used for the segmentation o f CAT scans in order to

9In this context the Mahalanobis distance [Duda] is often used because of its weighting of dimensions

according to the directional variances.

29

detect brain tumors [Omar], Coleman and Andrews [Coleman] use the K-means
algorithm together with between cluster and within cluster scatter measures to
implement segmentation through clustering.

2.2.3. Texture

Texture is an important feature in image processing. Often characterising texture in a
scene is the goal o f the application at hand. Moreover, texture can be used in image

segmentation. A set o f filters based on "texture energy" were introduced in [Laws],
Laws defines texture energy as the amount o f variation within a filtered image
window. Therefore, energy measures depend on the filter used and the method used
to quantify the variations. A texture identification procedure based on this concept was
presented in [Laws],

Mitchell et al [Mitchell] propose a max-min measure for texture analysis. Their
method involves the relative frequency of local extrema in the grey level image as the
principal measure. The simplicity of the method offers considerable reductions in
processing time when compared with previous techniques. Davis, Johns and Aggarwal
[Davis] present a different approach based on co-occurrence matrices and discuss
features derived from them.

2.3. Geometric structures

Algorithms that operate on geometric structures produce shape descriptions of
boundaries. Segmentation produces blobs with no explicit characteristics. The latter

are synthesised, at this stage in a computer vision system, to produce more compact
data structures amenable to the higher level goal o f image understanding.

Polylines can represent curves by a succession of line segments. To arrive at a desired
accuracy o f representation an estimate o f a good match has to be devised. One such
method was proposed by Horowitz and Pavlidis [Ballard] in the case where the
number o f segments is known . It consists o f locating comer points and splitting and
merging line segments in a digitised image according to the degree o f fit to a straight
line . Several approaches and variations can be found in the literature [Duda], They
rely on splitting line segments, merging line segments or a combination of the two
operations.

30

Chain codes were first introduced by Freeman [Freeman], A chain code representation
of a curve can be derived from its pixels by storing the direction of the next pixel
along the curve as it is traversed (generally in counter-clockwise direction). Given that
the image is digitised there are a limited number o f directions for the next pixel.

Therefore, the representation afforded by chain codes is quite compact and thus
computationally efficient. Besides, chain codes offer simple methods for calculations of
some parameters of closed curves e.g. perimeter and area.

Fourier descriptors represent the boundary of a region as a periodic function. The basic

idea [Persoon], is to store the curve as the coefficients of the Fourier series expansion
o f the 1-dimensional array o f samples taken from the boundary. The main advantage of
this method is that for a 'good' functional representation o f the boundary samples, the
Fourier representation will have very few coefficients. Section 6.1 will present further
analysis of this method and a parallel implementation.

Another approximation to curves is offered by interpolative methods. Several
polynomial interpolants are used in computer graphics and present good analytic
properties making them easy to manipulate in image processing. Besides, polynomial
interpolations yield aesthetically good curves and can approximate many natural
shapes. B-splines are a concatenation o f polynomial curves. The most frequently used

polynomials are cubic since they are the lowest order polynomials that can represent
concave shapes (they contain points of inflection).

Alternative methods for boundary representation are y-axis, quad-trees, and the medial
axis transform [Ballard], These methods together with the ones described above have
advantages and disadvantages that warrant the choice o f a particular method for a
given application. In this work the choice of methods for further analysis was based on
prospective performance improvement that can be achieved by parallel processing.

Three dimensional structures and algorithms can indeed benefit from an increase in
performance. Many o f the techniques used in the manipulation o f 3-D objects rely on
features and evidence accumulated from a 2-dimensional image. Then, one enters a
level in the hierarchy of computer vision systems where the paradigms are those of
high level vision (described next). One exception is, perhaps, the recovery o f depth
from an image e g. from a single view point using vanishing points [Tai][Brillault],

31

2.4. Relational structures

This section presents the different aspects and tools of image understanding. These

can be subdivided into major topics as follows [Ballard]:

1. Knowledge representation, and control
2. Matching,
3. Inference,
4. Planning.

2.4.1. Knowledge representation

Computer vision systems need a representation o f the world. The purpose o f this
representation is to guide the different aspects o f processing and reduce the amount of
computation needed to infer world descriptions from the incomplete models of edges
and other perceptual features.

For example, understanding or detecting and locating objects in the 3-dimensional
world from a single 2-dimensional (or a few) view involves recovering depth of field

information and approximating 3-d direction o f object boundaries. One useful concept
for this task is the 'Vanishing point' (VP). The idea stems from the field o f projective
geometry and can be stated as follows: Under perspective projection parallel lines in
3-d space form lines in the 2-dimensional projection space (the image) that intersect at
a point VP. Several examples o f the use o f this technique to build perceptual
groupings are present in the literature e g. [Lowe], [Brillault],

Another important aspect of knowledge representation is the combination o f perceived
features (e g. edges, texture, colour, etc.) In other words, there is a need for data

models that can incorporate various kinds o f information. The implementation o f these
data models should simplify access to areas of knowledge, e g. through data
abstraction, and allow for both the top-down and bottom-up processing. In this
respect parallel processing (especially the MIMD model) can provide a means to
achieve high performance through data and functional partitioning, and help reduce
complexity through viewing a vision system as a set of co-operating processes10.

10Processes would encompass knowledge about parts of the problem and connections (or channels)

would represent dependency and (or) precedence.

32

Communicating Sequential Processes [Hoare] offers a framework where correctness
and conformity to specifications can be proved.

Semantic networks present a very potent method for scene representation. A set of

objects and their relationships are represented as a graph structure consisting of nodes
and labelled arcs. Besides, the latter can have a value defining a particular

characteristic o f the relation.

2.4.2. Matching

Computer vision systems hold several representations o f visual inputs and previous

knowledge. These representations have to be integrated in order to achieve, for
example, recognition. Therefore, structures derived from inputs have to be matched
with internal representations. Hence, matching consists of an interpretation o f input
data associating different representations.
Graph theoretical algorithms are used in matching relational structures. Attempts at

parallelising such an algorithm (clique finding) are presented in section 6.3.

2.4.3. Inference

Inference is the process of deducing new facts from a set o f known facts. The most
widely studied inference system is First order predicate logic. However, it is widely
accepted that first order predicate logic does not address some important features of
the reasoning performed by human beings. Therefore, workers have sought extensions
to inference to improve the performance of computer reasoning. Production systems,

relaxation labelling and active knowledge are such extended inference systems. Such
systems tackle the problems o f knowledge representation and implementation issues.
They invariably involve search procedures operating on large databases. Workers in
the field have concentrated a great deal of effort on reducing the search space by
involving heuristics, etc. The emerging techniques of Distributed Artificial Intelligence
(DAI) are directly amenable to multi-processor implementations.

2.4.4. Planning

Planning has traditionally dealt with robots performing actions in the real world. It
involves decision making to derive the sequence of processing steps that will lead from

a starting situation to a goal in an optimal fashion. In a computer vision system a
planning task can be used to direct both the goal seeking aspects o f the problem and

33

the data gathering stages. Parallel implementation could be beneficial if the planning
task is communications and topology aware; thus, instantiating tasks and directing data

to the appropriate resources.

2.5. Summary

This chapter presented an overview of the algorithms of computer vision. Although the

emphasis was not put on parallelisation, it is believed to show that this extensive set of
techniques and methods present a wide range of computational requirements. The
latter form the basic justification for seeking a suitable parallel architecture (subject o f
chapter 7).

34

CHAPTER III

3. Parallel processing

From the early 60's many arguments against the use of parallelism were introduced.
Most o f these arguments were context and time dependent and were only valid within
their respective hypothesis frameworks. Therefore, they failed to have a global
perspective and are now easily refuted. In the following few sections these arguments

and their rebuttals are given, then parallel machines are introduced and classified.

3.1. Arguments against the use of parallel machines

Amongst the researchers who did not believe in the potential merits of high-level
parallelism were Grosh, Minsky and Amdahl [Quinn],

Grosh argued that the speed of computers is proportional to the square of their cost.
Therefore, if you are looking for a faster computer, you are better off purchasing one

large computer than two less performant machines and connecting them.

Minsky for his part believed that the speedup achievable by a parallel computer
increases as the logarithm of the number of processing elements, therefore making
large scale parallelism unproductive.

One of the most potent arguments against the future o f parallel computers was
Amdahl's law. The latter states that a small number o f sequential operations can limit
the speedup o f a parallel algorithm. Let / be the fraction o f operations that must be

35

performed sequentially (0 < / < 1). Then the maximum speedup S achievable by a

parallel computer with n processors is

S < ------- --------f + (l-f)/n

It can be seen from the above that a small portion o f sequential operations can
significantly limit the speedup achievable by a parallel computer.

Other arguments against large scale parallelism include software inertia1 and the fact
that most commercially available super-computers (up to the early eighties) were
vector processors with appropriate vectorising compilers.

3.2. Rebuttal for the arguments against parallelism

Grosh's law suffers essentially from the limited performance of the current fastest
computer. Therefore, it cannot hold true asymptotically. This leaves buL one potential
alternative for performance increase: using more than one processor.

Experimental results show that the speedup achievable in a parallel implementation

depends on many factors:

• The architecture o f the parallel computer (inter-connection network, link
bandwidth, etc.)

• The particular algorithm (inherent parallelisms, nature o f the communication

between independent modules, etc.)

Therefore, Minsky's conjecture can be refuted on the grounds o f experimental results.
Some algorithms presented in this work (especially those o f early vision) exhibit quasi-
linear speedups, though for a modest number of processors.

As far as Amdahl's law is concerned there are some algorithms with very few
sequential operations e.g. convolution o f an image with a small kernel. However, the
law can be used to assess the adequacy o f algorithms as candidates for parallelisation.

1 Billions of dollars have been spent in the development of Fortran software.

36

Limiting the means of achieving speedup in computers to vector processors excludes a
large number of important problems. Besides, current super-computers e.g. Cray-3

contain several pipelined vector processors designed to work in parallel. It is
reasonable to assume that parallel processors will allow for new and more challenging
problems to be tackled; thus, the programmers of the future are likely to be involved in
solving computationally intensive problems on the new architectures.

3.3. Models and paradigms of parallel computation (taxonomies)

In the Von Neuman model a single, possibly very powerful, central processing unit is
connected to a single random access memory which stores both programs and data.
The CPU and RAM communicate in a serial fashion through a narrow conduit termed
'the Von Neuman bottleneck' [Lipovski],

A paradigm is a set of architectures based on the same principles. The Von Neuman
paradigm contains virtually all multi-purpose computers. The fundamental features of
this paradigm are as follows: a controller, data operator, memory and input-output are
sequentially programmed in a fetch-decode-execute cycle.

3.3.1. Flynn’s taxonomy

Parallel architectures can be subdivided into two main categories based on data stream

and instruction stream [Flynn], An instruction stream is a sequence o f instructions
performed by a computer; and a data stream is the sequence o f data on which the
instruction stream operates. Flynn [Flynn] categorises an architecture by the
multiplicity o f hardware used to manipulate instruction and data streams. Multiplicity

is the maximum possible number o f simultaneous operations or operands at the same
stage o f execution at the most constrained component o f the organisation. Therefore,
four classes o f systems can be distinguished2.

The single instruction stream, single data stream (SISD) category contains most serial

computers; although instructions can be pipelined, only one instruction is at any given
stage o f its execution e.g. fetch, decode, etc. This is primarily due to the fact that only
one control unit directs the flow of instructions into the computer.

2Although only three are covered here since Multiple Instruction stream Single Data stream (MISD)

is o f no practical consequence.

37

In the single instruction stream, multiple data stream (SIMD) category a single
instruction stream is executed by a number of processing units each capable o f fetching
and manipulating its own data Therefore, a number of processors apply the same
instruction to different data, at any one time.

The multiple instruction stream multiple data stream (MIMD) category contains
multiprocessor systems that execute multiple instruction streams and manipulate
multiple data streams. In other words, processors co-operate to solve a problem by
solving components of the partition of the problem into sub-problems operating on
members o f the partitioned initial data.

3.3.2. Handler's taxonomy

Another classification method was proposed by Händler [Händler], The method is
based on a notation for the expression o f parallelism and pipelining occurring at
different levels o f a computer. First, the Processor Control Unit (PCU) is described by
two numbers; namely, P the number of individual PCUs and P' the number o f PCUs
that can be pipelined. Second, the Arithmetic and Logic Unit (ALU) is represented by
two numbers: A the number of ALUs and A* the number o f ALUs that can be

pipelined. Third, the Bit Level Circuit (BLC) is defined by a further pair o f numbers B
and B . B is the word length o f individual ALUs and ß ' the number of pipeline sections
in the ALUs. Therefore, a computer system is described by a triplet T as follows:

T(computer) =< PxP ,AxA ,BxB >

This representation is more binding than Flynn's taxonomy because it quantifies the

levels o f parallelism that a given system can handle. However, it fails to describe the

general MIMD model insofar as the function intended by the system designer can
affect P, P , A, and A*. For example, the 2-dimensional transputer (T800) array (Figure
3.1) can be described as: <16x1,16x16, 32xl> or <16x1,16x1,32xl>, etc. depending
on the functionality o f each transputer

38

/ \

Figure 3.1: A transputer arrayV J
However, the notation is tight in that it explicitly represents the computable threads
and the numbers to the left of 'x' give the number o f nodes and the control structure.

3.3.3. Feng's taxonomy

Feng [Feng] suggested the use of the word length of the processing units (n) and the

bit slice length m (the product o f the number o f pipelines and their depth) to classify

systems. In his taxonomy Feng introduces 4 categories:

• A system is Word Serial, Bit Serial (WSBS) if n = 1 and m =1.
• A system is Word Parallel, Bit Serial (WPBS) if n = 1 and m > 1.
• A system is Word Serial, Bit Parallel (WSBP) if n > 1 and m = 1
• And finally a system is Word Parallel, Bit Parallel (WPBP) if n > 1 and m > 1.

3.3.4. Skillicorn's taxonomy

Skillicom [Skillicom] introduced the idea o f modelling the inter-connection networks
that may exist within a system. Such networks include the processor to memory,
processor to ALU, and processor to processor subsystems. Therefore, the system is
characterised by the following variables: •

• The number o f instruction processors (I),
• the number m o f instruction memories (M),
• the I to M network,
• the number o f ALUs (D),
• D to data memory network,
• I to D network,
• and D to D network.

39

This system is very flexible and, depending on the interprocess notation, is capable of
representing most current systems. However, it is a little cumbersome, and is probably
best used in combination with Flynn's system (where only features that Flynn's

taxonomy cannot differentiate are specified).

3.4. Different approaches to parallel computer design

Exploiting the parallelism inherent in different fields of application is a daunting task.

As mentioned earlier, the structure o f processing and communication dictates different

and often incompatible architectures for various classes o f algorithm.

Before considering purpose built parallel computers it is worth mentioning software
environments (e.g. Alice, Parallel Virtual Machine (PVM), etc.) For example, PVM
[Beguelin] is a public domain system that enables a collection o f heterogeneous
computer systems to be used as a coherent and flexible concurrent computation
resource. The individual machines may be multiprocessors, vector supercomputers,

specialised machines or scalar workstations, that may be interconnected by a variety of
networks. Support software executes on each machine and presents a unified
computational environment for concurrent applications.

This work is concerned with the MIMD model of parallel processing. However, there
are other models that offer high general purpose performance e.g. processor arrays

(ICL DAP) and vector supercomputers (CRAY 1). Vector supercomputers in

particular have been very successful in the past in various application domains.

However, even Cray Research Inc. (the Cray computer makers) have moved to
designing massively parallel machines [Koninger], The aim is to produce a
heterogeneous environment of vector, scalar and parallel systems.

Before dwelling on the large number of possible approaches to the design o f control
structures for parallel computers, an initial choice concerning the Processing Elements
(PE) has to be made. The two alternatives available are:

1. Connect together a relatively small number o f very powerful PEs.
2. Use a large number o f simple PEs.

The first approach shall be termed 'herd of elephants' and the second 'army o f ants'

[Quinn], If the sequential fraction of a computation is greater than the ratio of

processing powers (of the PEs of the two cases above PE2/PE j), then a single PE from

40

the first approach will offer better performance than the whole system of the second.

This is because the inherently sequential part of the process as run on a single
processor o f the herd-of-elephants machine will be faster than the overall speedup
achievable by the whole army-of-ants machine.

The approach adopted defines the hardware and software support required from the
underlying machine. The aim of this section is to give a brief overview o f the currently

popular techniques. First, the army-of-ants approach is introduced through a
commercially available system; then a few examples of the herd-of-elephants approach
are given.

Many commercially available parallel computer systems implement massive data-
parallelism as the means to achieve speed-up (ICL's Distributed Array Processor,
Goodyear's Massively Parallel Processor, etc.) Thinking Machines Corporation's
Connection Machine (CM) is characteristic of the army-of-ants approach to parallel
computers design, and is described next.

3.4.1. The army-of-ants approach (the Connection Machine)

The Connection machine3 (CM) [Tucker] is a data-parallel system which integrates
hardware and software. It is controlled from up to four front-end computers which

provide the development and execution environments. CM consists o f 65536
processing elements and millions o f virtual processing elements through its virtual
processor mechanism. Processors are connected through a general purpose
reconfigurable communication network. Therefore, CM contains all the software and

hardware modules for the design and implementation o f data-parallel algorithms.

The front-end computer systems connect through a 4x4 cross-point switch to four

sequencers. Each sequencer controls up to 16384 processors. Moreover, a high
performance data-parallel input/output (I/O) system connects processors to peripheral
mass storage and graphic display devices. One o f the major advantages o f CM, besides
the high performances achieved, is that system software is based on the operating
system of the front-end computer (DEC VAX or Symbolics4). Thus, programmers can
take advantage o f the power of CM without the need to fully understand the
underlying structure of the machine.

3The description of CM applies to both CM1 and CM2 unless stated otherwise in the text.

4With minimal visible software extensions [Tucker.]

41

Each processor in CM contains:

1. an Arithmetic and Logic Unit (ALU), and associated latches,
2. four (sixty four for CM2) Kbits o f bit-addressable memory,

3. eight one-bit flag registers,
4. a router interface, and

5. a two-dimensional-grid interface.

Operations are executed in a bit serial fashion. An ALU consists o f a three-input two-
output logic element and associated circuitry. During an execution cycle, two bits are
read from memory and one bit from the flag registers. Then, the ALU computes two

result bits, one bit is stored back into memory and the other is used to update the flags.
Despite this simple logic structure CM is able to carry out all the operations of a
virtual-machine instruction set - complex instructions are decoded by the sequencers
which control the ALUs.

CM contains a flexible inter-processor communication network which supports several
mechanisms:

• a broadcast facility allows immediate data to be sent to all the processors from
either the front-end computer or the sequencer.

• Global logical OR allows the outputs from all processors to be checked
simultaneously for termination conditions.

• Hypercube communication forms the basis for the router and other primitives.
The topology is a binary 12-cube connecting 4096 nodes5.

• The router implements general pointer following through a packet switching

scheme. The router controller (hard-wired into the CM processor chips) uses the
12-cube for data transmission.

• The North East West South (NEWS) is a two-dimensional mesh which provides
direct communication between a processor and its four neighbours.

Figure 3.2 shows the CM system organisation. Each CM1 sequencer is a purpose built
micro-computer used to implement the virtual machine. It is built around Advanced
Micro Devices bit-sliced micro-processors with 16K 96-bit words o f micro-code
storage.

5Each node consists o f 16 ALUs and support hardware in a single proprietary chip.

42

It is believed that the high performance6 achieved by CM can be attributed mainly to
the extensive support it affords to the various communication requirements of
algorithms. Besides, the virtual machine implementation takes the user away from the
intricacies of synchronisation and scheduling. Finally, the high bandwidth o f the

communication paths between the front-end computers and the sequencers ensures
that when computation is needed and processors are available, minimal delay is
incurred.

The CM has been used in a number o f applications ranging from the regularly
structured problems of materials science to artificial intelligence and computer graphics

[Tucker][Waltz], In one instance [Tucker 2] an object recognition system was

6With 64k processors working in parallel CM1 achieves an aggregate rate of 2 billion 32-bit integer

additions per second.

43

developed on the CM. The approach adopted by Tucker et al was the massively
parallel hypothesis generation method. In order to avoid constraint-based tree searches
which would have been too taxing in terms of communication overheads, hypotheses
are generated when features belonging to objects in a database match features in the
image being analysed. One of the most important aspects o f the CM as far as
algorithms with time varying communication requirements was reported to be the

support for both nearest neighbour (NEWS) and general communication schemes
(Hypercube).

It is worth noting at this point that Thinking Machines Corporation's (TMC) latest
product (CM5) is a message-passing MIMD system. Each node of CM5 comprises a
SPARC microprocessor and optionally four vector units between the processor and its
local memory [Gottlieb], Therefore, CM5 does not fit into the army-of-ants class; and
TMC's approach in trying to achieve higher performance is akin to that o f the next
section.

3.4.2. The herd of elephants approach

In contrast with the army-of-ants approach where processors are only capable of
performing very simple tasks, this approach requires individual processors to be

'powerful' computers in their own right. Clearly, the adjective 'powerful' is very
subjective; in the remainder o f this section it will be deemed to describe current state-

of-the-art micro-processors. Another difficulty consists of the fact that the Tera-Flop
(1 0 12 floating point operations per second) machine does not seem too far in the

future [Langhammer][Astfalk], Such a computer will have to be implemented using a

massive number o f processors making the 'herd' as large as an 'army'. However, to
achieve the same performance, a CM-type computer will require two to three degrees
o f magnitude more nodes; thus, keeping the distinction between the two approaches.

In the following sections, two commercially available parallel computers are presented.
First, Convex computer Corporation's MPP range is described. Then, Parsytec
Computer Gmbh's GC range is introduced. The former is based on a Hewlett-Packard
PA-RISC micro-processor and the latter uses the latest Inmos transputer (T9000).

3,4,2.1, Convex MPP

The Convex range of Massively Parallel Processors is designed to be scalable to
TeraFlop performance. MPP has a globally shared virtual memory MIMD architecture.

44

Each node consists of a Hewlett-Packard PA-RISC microprocessor running at 100
MHz and providing 200 MFlops of peak performance.

One important aspect of MPP is the emphasis on ease o f use. Convex has been
developing a compiler that performs inter-procedural Optimisation [Astfalk], The basic
idea revolves around extending the optimisation phase (i.e. optimisation confined to
loops and loop nests) with techniques that identify larger granularity parallelism.

3.4,2.2. Parsvtec GC range

The current computer in the GC range is GC5 [Langhammer], The processing nodes
are the latest transputers (T9000 - appendix A). The proposed GC5 will contain
16384 transputers connected as a message-passing MEMO parallel system. It is

organised in a three dimensional grid of atomic cells. Figure 3.3 shows an atomic cell.
The latter consists of 16 transputers connected as a 4-dimensional hypercube, a
redundant transputer to replace any other on failure and 4 routing chips (Inmos C104).

r

Figure 3.3: Atomic cell of GC topology

Amongst the advantages o f using the transputer as a building block for massively
parallel processors are: •

• Availability o f all components (i.e. there is no need for custom design).
• Because the transputer incorporates a floating point unit, a cache, memory glue

logic and communication and routing support, node design is simplified.
• A micro-coded scheduler allows the processor to be shared by several processes at

two levels of priority.

45

3.5. Discussion

To summarise, manufacturers and researchers agree that a crucial factor in the

effective use of parallel computers and in particular massively parallel processors is the
interconnection scheme adopted. A balance has to be established between the memory
bandwidth and the communication bandwidth. Hence, the (important) choice o f the
unit node defines the model of parallelism to be adopted. The MIMD model has in

recent years been presented as the means to achieve high 'general purpose'
performance (CM5, Convex MPP, Parsytec GC, Cray MPP, etc.)

Many algorithms that are inherently parallel have a local communication behaviour.
Therefore, they are well suited for 2D and riD array structures. However, algorithms in
general and Computer Vision algorithms in particular have varying communication
requirements and granularity. In chapter 7 a few well known topologies are analysed
and a configuration suitable for the transputer (T800) is proposed as an attempt to
provide both the regular structure that benefits data-parallelism and relatively small
distances (for a given number of nodes). The latter, together with a dynamic
reconfiguration scheme, benefit data broadcasting and functional-parallelism. A routing
algorithm is presented in chapter 8.

Before finishing this chapter standards ought to be mentioned. With the large number
o f research and commercial systems being proposed, standards for parallel computing
have become necessary. One such standard, is the Message Passing Interface (MPI)
[Gropp], is o f particular interest to this work, because it is specifically designed for
applications running on distributed memory concurrent computers.

46

CHAPTER IV

4. Transputer implementations of edge detection

This Chapter presents some work on low-level image processing using transputers. It

consists of slightly modified versions o f two publications [Omar 2][Ellis], and is
organised as follows. First, an adaptive approach to edge detection is given [Omar 2],
Then, a method that uses colour information to improve the edge detection process is
presented [Ellis], The work was carried out in collaboration with colleagues at the
Centre for Information Engineering at City University.

4.1. Transputer implementation of adaptive noise cancelling

4.1.1. Introduction

The work presented in this section uses an adaptive approach to noise cancelling in
digital images. This improves the performance of a subsequent edge operator. Noise
filtering is necessary as a pre-processing stage for edge detection [Canny], By using an
adaptive filter, assumptions usually made about the nature o f the noise in the image are
relaxed. This leads to an improved performance over a wide range of input images.

The algorithm implemented consists o f two linear noise cancelling filters cascaded with

the transpose o f their derivatives. The output thus produced, is passed through a non-
maximum suppression process which ensures a single response. The resulting image is
thresholded using a smooth non-linear function.

47

Inherent parallelisms are identified and exploited through the use of a transputer
network. Data parallelism leads to partitioning of the image into small segments that
are processed independently. Further parallelism can be identified in the algorithm,
since the horizontal and vertical kernel can be applied to the image separately.

4.1.2. Signal processing and digital images

One o f the first stages in image processing is the extraction o f information from an
image, presented in digital form as a matrix o f intensities in quantized (grey level)
form. At this level the image may be regarded as a two-dimensional signal containing
information such as objects on a background. These are often corrupted by other
signals, such as noise.

Noise affects the reliable extraction o f features, like edges from an image. Most edge
detectors use gradient information to detect boundaries of objects and are particularly

susceptible to "high-frequency" (spiky) interference. It is therefore necessary to reduce
or, if possible, remove the noise before edge detection can take place.

4.1.2.1, Noise cancelling

Noise is often removed by applying a filter to the image. The filter coefficients are
selected to remove as much of the noise as possible, by smoothing the image whilst
maintaining the desired image features unchanged. Failure to select the appropriate
coefficient values may result in either high levels o f noise or excessive smoothing. Both
effects can be hazardous for subsequent edge detection since they may lead to either
false detections or missed edges.

If the characteristics of the noise are known beforehand, the filter can be tailored as
described. This is often not the case. It is, however, possible to start from an initial

guess for the coefficients and correct them when the image, and hence the noise
characteristics, become available.

To determine the optimal noise cancelling filter, the study o f the signal through a
model is often useful.

48

4.1.2.2. A model for the image

Although an image is a two-dimensional signal, its horizontal and vertical components
can be studied separately. For edge detection purposes the cross-section of an edge is
almost constant in any direction, for small steps in the perpendicular direction.

Edges usually signify boundaries between regions o f interest, such as objects. In a
grey-level image, these are distinguished from their different intensities. Objects

normally appear as transitions in the intensity of the image that last for several pixels.
Noise, on the other hand, consists of random transitions in the intensity that flood the
image and have no structure. The noise-free image signal S(i,j) and noise N(i,j) are
added to form the recorded image I(i,j) (figure 4.1(a)):

I(‘J) = S(iJ) + N(i , j)

N(i,j) is normally treated as a stochastic process with fixed statistical properties
throughout an image. The best noise cancelling filter should reflect these properties.

4.1.2.3, The adaptive solution to optimum filtering

If a signal d(n) is to be produced from another signal x(n) by linear weighting,

N

y (n) = ^ w x (n - i) = WX(n)
i= -N

a cost function, such as the mean squared error

must be minimised. The best weight (coefficients) values W - (w- N....,Wo....wN)‘
satisfy the Wiener-Hopf Equation

Where R« is the auto correlation matrix o f x(n) and R& is the cross correlation vector

between x(n) and d(n).

49

In a noise cancelling situation, x(n) is the linear combination o f the wanted signal s(n)

with uncorrelated additive noise n(n):

x(n) = s(n) + n(n)

The objective is to find W such that y(n) is the best approximation o f s(n). If d(n) is
not available separately, like in our case, x(n) can be used as a noisy estimate o f it.

The Wiener-Hopf Equation can be solved recursively, e g. using gradient search
techniques[Widrow][Orfanidis]. A simple recursion equation for W was described by
Widrow and Hoff [Widrow 1], It is known as the Least Mean Squares (LMS)
algorithm:

W(n + 1) = W(n) + 2Me(n)X(ti)

where
e(n) = x (n) - y (n)

y(n) = W(n)X(n)
H - X/tr{Rxx) (0 < A < 1)

H is the adaptation step and governs the rate o f convergence o f the filter. Small /u
causes slower adaptation but smaller error in the final W .

4.1.3. Adaptive noise cancelling and edge detection

Most o f the adaptive algorithms were initially developed for time sequences. The LMS

algorithm is not linked with time-related data and is therefore suitable for applying to

image data. There is however a fundamental difficulty in the adaptation procedure.

Whereas in a time sequence there is a natural and compulsory direction for filter
application and adaptation, (i.e. forward time), such a direction does not exist for a
single image. A good procedure is to select randomly the next location in the image on
which the filter is to be applied. This method, however, suffers from two practical
limitations. First, the adaptation and filtering stages have to be separated, to guarantee
that all image elements are processed. Second, localisation o f filter coefficients could
be lost. Last, noise characteristics may differ from one part of the image to another.
Better results are to be expected from locally optimal filters than a globally optimised
filter over a large area. For this reason the filter is applied in the horizontal and the
vertical directions.

50

Initially, a two-dimensional (NXN) filter was used for smoothing. This required 2 N 2
operations and did smoothing in both directions simultaneously and resulted in
rounded corners. Subsequent edge detection had to be completely separated from the
filtering operation.

A different approach proved more effective both in terms of number o f computations
necessary and in terms of edge detection. It was based on a commonly used filter
structure in image processing, the use of two one-dimensional filters to reduce noise in

both the horizontal and the vertical directions. Typically, these filters have fixed
coefficients based on assumptions about the nature o f the noise. Gaussian filters are
among the commonest. The variance of the Gaussian function, which determines the
amount of smoothing, is specified at the beginning o f the filter process and is not
modified afterwards. Each filter produces its own output, which is used for further
processing.

The proposed method of smoothing is similar, but the fixed-coefficient filters were
replaced by adaptive ones. The coefficients of the two filters were initialised to either
zeros or to those o f an initial estimate of a Gaussian filter. Both methods performed

almost identically. An example of a smoothed image profile is shown in figure 4.1(b).

4.1.3.1. Edge detection

Usually edge detectors are fixed-coefficient differential operators. The differentiator

presented here uses the derivatives of the adaptive filters after adaptation is completed.
Each o f the differentiated filters was then applied to the smoothed image produced by

the other filter, like in the Canny operator. The output of this operation is a set of two
images, with sharp transitions emphasised and the rest o f the image suppressed.
Because the other source of large gradient values (i.e. noise) was already suppressed,
the remaining large gradients are expected to indicate edges.

4.1.3.2. Gradient detection

The two differential images produced in the previous section were then combined to
detect edges in any direction. The horizontal and vertical differentials at every point
may be regarded as a vector o f two orthogonal components. The modulus of the
vector was taken as a measure of "edgeness". The "direction" o f the edge was also

51

determined as angular deviation from the horizontal, although this feature was not
used.

4.1.3.3. Non-maximum suppression

The differentiated image was then treated further to produce a binary image indicating

whether a point was classified as an edge or not. A good edge detector should not
only detect the existing edges, but perform good localisation too. Part of the second
process is a single response to an edge.

A simple non-maximum suppression algorithm produced good results in terms of

single response. A candidate edge is not suppressed if it is a local maximum in any
direction. This test involves evaluating its gradient modulus against that o f its eight

neighbouring locations. A further test is then performed to determine if the gradient

is high for the area where the point lies, by passing its gradient, g(i,j) through a
sigmoidal non linearity where the threshold & is the mean and its exponentiating factor

g is the standard deviation of the gradient in the neighbourhood:

1.0
\ + e~ •»)

Only if the obtained value is over 1/2, the pixel at (ij) is considered to be an edge
(figure 4.1(c)).

52

4.1.4. Implementation

In this section the algorithm is described and a transputer implementation is proposed.

First, the potential parallelisms are identified; then a mapping o f the algorithm on a
network o f processing elements is presented. The analysis is based on a message

passing framework, suitable for transputer modelling.

4.1.4.1. Algorithm description

The ideas behind the algorithm can be derived from the definition o f the procedure
adopted. First, because operations in different areas o f the image are independent, data
can be shared amongst a population of processors. Next, the unit process is identified
in order to take advantage of any inherent functional parallelism. The notion of
identifying independence derives from the necessity to limit the amount of
communication among processors, and try to achieve induction i.e. linear speedup.

4.1.4.2. Inherent parallelisms

As mentioned above the system consists o f an adaptive noise canceller, cascaded with
a local gradient operator, obtained by differentiating the filter coefficients. The output
o f the latter is fed into a non-maximum suppression unit that enforces single response.
Figure 4.2 shows a graphical representation of the processes that implement the

system.

4.I.4 .2 .I. Data parallelism

Adaptive noise cancelling relies on the ability o f a variable kernel evaluated from a
neighbourhood of pixels around the sample to estimate the signal. This completely

local dependency suggests the partition o f the image into independent blocks that do
not require external data. Because the noise canceller and the subsequent gradient
operator are convolution operations, half a mask size overlap has to be packed with
the data for each block. Although this presents an overhead, it is a major set back only
for very small blocks. At this point, the important issue in mapping such a partition on
a network o f processors is to minimise the distances travelled by data packets, bearing
in mind that the real distance is not only the number o f hops that data packets makes
but the delay incurred during routing as well.

53

4.1.4.2.2. Functional parallelism

The different stages of the algorithm (figure 4.2) are:

Horizontal smoothing,
Vertical smoothing,
Transposition,
Horizontal gradient,

Vertical gradient,
Non-maximum suppression and thresholding.

Figure 4 .2 Block diagram of th e sy s tem

The horizontal and vertical smoothing operations are independent and can be carried

out in parallel. The transposition operation refers to the fact that the gradient operator
in one direction is applied to the output o f the smoothing operator in the other. The

outputs o f the gradient operations are combined to produce the combined gradient
map. This leaves the non-maximum suppression and thresholding as a final stage. This
can be implemented as three separate stages.

4.1.4.3. Transputer Confieurations

The networks described here shows two types o f parallelisms mentioned above. First a
simple linear structure is given, then the functional parallelism is incorporated to yield a
more efficient architecture.

54

4.1.5. Results

Results o f the edge detector are shown for two sample images in figure 4.5 (c,d),
together with the original images (figure 4.5 a,b). The output shows single response
to different types of edges and a good localisation.

Filter coefficients after adaptation (figure 4.6) seem to confirm the validity o f using a

Gaussian model for additive noise in digital images. However, this noise is not
stationary. The adaptive filter relaxes stationarity and 'zero-mean' conditions. Figure
4.7 shows the modulus of the weights vector during and after adaptation.

A speed-up of 12.5 was registered with a sixteen transputer network (see section
4.1.4). Further improvements are anticipated since the main processing load which

consists o f the two convolution processes is partitioned. The additional communication
due to passing the same block to the two processors in the pipeline stage is countered
by the fact that only coefficients are passed between processors, after smoothing.

56

4.1.6. Comments and conclusions

The system presented here implements an adaptive noise canceller and edge detector.
The results show a good localisation o f edge elements and immunity to noise. The

transputer implementation showed speed ups which suggest that further improvements
are possible if more processors are added to the system.

An interesting observation was made when analysing the filter coefficients. The kernels

seem to latch on to textured areas of the image. This, together with the good immunity
to noise, suggests that adaptive filters can be used as a learning process for texture
registration. The filter coefficients thus obtained can form cluster centres o f a

parameter space to search.

4.2. Colour edge detection

This section describes the transputer implementation o f a system for the extraction of

edges from colour images. The early processing stage o f the algorithm is based on the
conjecture which states that real edge pixels will generate similar gradient angles on

the three planes o f a red, green and blue (RGB) image. The first stage o f the edge

detection process uses an adaptive method for selecting the level o f smoothing applied

to the image. The computational cost imposed in analysing RGB images is met by a

57

parallel implementation of the algorithm, and issues raised in data and process
partitioning are considered.

4.2.1. Introduction

The majority o f machine vision systems make little or no use o f colour information in
analysing scenes. This is attributable to a number of reasons:

• colour constancy - perceived colour depends on the spectral content o f the

illuminating radiation, as well as on the spectral reflectance characteristics of
the surface, and hence does not provide a robust feature for object detection.

• high-resolution colour cameras are expensive and bulky.

• processing a colour image (e g. 3 images for RGB) imposes additional
computational burden, and is less likely to be used if only a small benefit can be
attained from the use of colour.

• edges in colour images have not been found to be significantly 'better' than for
monochrome images [Nevada],

Nevertheless, colour is used in a number of systems; in particular, where colour

information must be explicitly represented (e.g. colour coded resistors [Claxton]).

This section describes a method for using correlation o f edges over the RGB planes of

a colour image to supplement the edge detection process commonly used in

monochrome images, and the use o f an adaptive smoothing filter to suppress image
noise, prior to edge detection. These techniques are used as a pre-processing operation

to a system for the labelling of structural elements (lines, curves, corners) in the
colour images. The correlation o f edges can offer additional confidence in the
existence o f an edge element in one plane when it is corroborated by one or more
pixels from the other colour planes.

The algorithm consists o f four parts. First, a pre-processing stage estimates the local
information content o f the image (local entropy). This is then used to adjust the
standard deviation o f a modified Canny edge detector [Canny] which constitutes the
second stage.

58

This edge detector is run in parallel on the three planes o f a colour image, and
evidence of edges detected in one plane must be corroborated in either (or both) o f the
other planes to indicate a reliable edge point. The next stage links the edge elements

into connected structures, based on a simple 8-neighbour connectivity. The fourth and
final stage identifies straight lines from curves and locates comers in the connected

edge data by accumulating consistent gradient direction information. Following a brief
description o f the algorithm, the transputer implementation o f its processes is
described.

4.2.2. Pre-processing

The aim of this step is to provide an estimate of the local information content in the
image. The method is summarised as follows: In each 4x4 pixel block evaluate the
gradient in horizontal, vertical and diagonal direction normalised by the average
intensity.

The block is classified as an edge block if the gradient exceeds some threshold in one
o f the directions. This gives a crude estimate o f the edge location across the image
and is used to guide the selection of the standard deviation used in the edge detection

algorithm. The standard deviation (sigma) of the Gaussian smoothing is varied
according to the number o f detected edge blocks in a given region (currently
rectangular) and ranges from 1.0 to 3.0 in an inverse proportion to this number.

4.2.3. Colour Edge Detection

Researchers have in the past investigated the use o f colour in using simple edge
detectors (e.g. Roberts, Sobel) applied to the different image planes o f multi-spectral
images to improve detection [Robinson 1], The major problem is how to combine the
outputs in order to interpret the edge information. Nevatia [Nevada] found that
accumulation o f the gradient output of the Roberts operator does not lead to better
results. It is believed that inconclusive results from previous experiments are due to
poor edge operators and to output combining functions. The method presented here is
based on the use of an improved edge operator (as described above), together with
the following conjectures: •

• A real edge is likely to produce high gradient magnitudes on the three image
planes.

59

• The gradient direction should be within some tolerance (modulo 7i) on the three
image planes. Therefore, the presence of an edge element at a particular
location in one plane can be corroborated by a consistent registration at the
same location on another plane.

4.2.4. Line and Corner Extraction

In this part edge elements are linked into connected structures. The usual step of
isolated pixel elimination is not necessary because o f the strong emphasis on edge
detector. Edges are followed and accumulated. Junctions are resolved by following the
closet gradient angle and starting new structures for the other branches. Lines are
separated from curves by considering proximity and gradient angle. After separation a
comer finder is applied to the set o f lines found. This consists o f an intersection (or
proximity o f end points) test. The overall result is that an "accurate" edge map
constituting the basis for structural element detection. This process is interleaved with
the rest o f system. In other words, once an edge element is definitely registered, it is
linked to a previously created linked lists o f edge pixels if it is connected to them, or a

new instance o f the data structure is created for it. At this stage, the classification of
the structural element as a line, an arc or a comer is not considered. However,
junctions and splits are resolved by accumulating the connected set that has the
smoother gradient angle changes. The next step is the classification o f structural

elements. To do this, the curvature of the connected set within some tolerance
discriminates between linear structures and curves. Comers are considered to be

points o f discontinuity in the gradient angle. A connected structure is sectioned at
these comers into three parts: two linear structures and a comer. It is believed that

classified elements like the ones described above are useful as an input to higher level
processing. (Refer to [Ellis] for implementation and results).

4.2.5. Conclusions

A scheme for combining information in multi-spectral images is presented and used to

optimise the output o f an edge detector. The use o f colour does give some clear
improvements in the edge detection process. We are currently combining this with

adaptive smoothing in order to investigate the interaction between the two operations.

60

The edges thus detected are linked into structures which in turn are partitioned and
classified. The implementation of the system can be improved in many ways:

• through the implementation of structural element classification across the
network.

• through a more formal view of the process as a graph and the use o f graph
theoretical results together with the transputer idiosyncrasies.

61

CHAPTER V

5. Parallel vector quantisation

5.1. Introduction

This chapter presents a parallel algorithm for Vector quantisation (VQ). VQ has been
shown to be very effective in the compression of both speech and image data.

The implementation of image coding based on VQ can be divided into three stages:

1) Design o f the codebook (s)
2) Encoding o f the image
3) Decoding

Stage 1 is a lengthy computational process, but is only performed infrequently. Stage 3
is a simple lookup process: the code generated (typically a single integer) is used to

directly address the stored vector associated with it. However, stage 2 requires a
search through all the code vectors and matching to the best vector by calculating a
distortion measure between the candidate image block and the code vector. Hence the
encoding process dominates the speed at which images can be encoded and decoded.

Vectorisation which is the first step o f the encoding process refers to the partitioning
of the image into contiguous, non-overlapping blocks. Square blocks are generally
preferred because they are more convenient to deal with and easily generated.

62

Quantiser (codebook) design refers to the generation o f the reconstruction vectors Y;.
The set or collection of reconstruction vectors is called a codebook. An optimal
vector quantiser is one which employs a codebook C that yields the least average
distortion D* for all such codebooks. The design algorithm for such an optimal

codebook is not known. Quantiser design is a very difficult problem in vector

quantisation. It is generally a non-linear problem involving a lot o f iterative
computations. Clustering algorithms such as the LBG algorithm of Linde, Buzo and
Gray [Ramamurthi] are used to obtain locally optimal codebook designs. The existence
o f an optimal codebook is assumed; therefore, we concentrate on the encoding
process.

The encoder and decoder have identical codebooks. The input vector X to the vector

quantiser is a vector of dimension k. The encoder computes the distortion d(X,Y;)
between the input vector X and each codevector Yjs i= l,N from a codebook C
containing N code vectors. The optimum encoding rule is the nearest neighbour rule
[Ramamurthi] in which the index I is transmitted to the decoder if codevector Y { yields
the least distortion.

Decoding involves the decoder looking up the I-th reconstruction codevector Y; from
its copy of the codebook to reconstruct a replica X = Y;.

5.2. Computational complexity of VQ encoding

The distortion measure considered is the mean squared error (M S E):

d(X,Yj) = (X - Y ^ X -Y ,) (1)

where X is the input vector, Yj a reconstruction codevector and the superscript t
denotes transposition.

Consider codebook C with properties as in section 5.1. For full search optimal

encoding of vector X, the distortion must be computed for each of N codevectors in
the codebook. The number o f arithmetic operations involved per codevector is 3k - 1
(k multiplications, k subtractions and k-1 additions). Thus, for all N codevectors the
number o f arithmetic operations is (3k-l)N. For an M by M image the number of
operations is given by

O = (3k-l)N.M.M/k (2)

63

The bit rate of the coder (in bits per pixel) is given by

R = (l/k)log2(N) (3)

Thus N = 2 ^ . Substituting for N in (2) gives

0 = (3k-l)*2kR*M*M/k (4)

It is thus seen from (4) that the number o f operations grows exponentially with both k
and R. The computational complexity o f the encoding process (as well as the
codebook design) tends to restrict vector quantisation to small block sizes (e.g 4 by 4)
and small bit rates and to still or slowly varying frames. In this simple approach

although a small bit rate is interesting from the compression point of view it limits the
size o f the codebook for a given block size and thus affects the quality o f the
reconstructed image. Various methods have been developed to eliminate or reduce the
exponential growth of the computational complexity. Reductions in computational
complexity are achieved by modifying the codebook, by sacrificing performance in
achieved average distortion, and/or by increasing the storage requirements of the

codebook (e.g. in the binary search tree codebook). As far as the quality o f the output

is concerned a great deal of effort has been put into trying to achieve better perceptual
quality (e.g. Classified Vector Quantisation (CVQ)).

The aim here is not to reduce the computations nor to increase optimality regarding
coding distortion but to attempt to increase the speed of the full search encoding

process by means o f parallelism using transputer networks. Some topologies are
proposed for VQ and CVQ.

The transputer topologies considered are described in the following sections.

5.3. The use of parallel processing (transputer)

Among the major concerns of parallel computers are the speed o f computation o f the

separate nodes and the speed o f communication (between nodes). At the lowest level,
given that a choice of hardware is made at the outset (namely the transputer), these
two variables seem to have been fixed. However, the techniques used in implementing
the problem, together with the efficient use of the capabilities o f the transputer can
have considerable consequences on the system.

64

The key feature of the vector quantisers presented here is that the vectorisation of the
image yields non-overlapping blocks. Thus the mean square distance calculation at the
centre of the coding process is easily identifiable as the unit building block of the
quantiser. There seems to be no point in further sub-dividing this unit block since the
time required to perform the operation will approach the time needed to gather the
sub-results due to link set up and routing. N (the size of the codebook) o f the above
mentioned building blocks are needed to code one vector o f the input image. Hence
there is scope for sharing this task among a few transputers. However, these two
potential parallelisms are interdependent in the case o f VQ. Consequently CVQ, which
achieves better quality by classifying the codebook (hence partitioning) was
considered.

Networks consisting of a ring and a two dimensional mesh were implemented to take
advantage o f the image data partitioning mentioned. Higher dimensional structures
were not considered because of the cardinality of the data dispensing node (frame
grabber). The critical notion of distance travelled by data packets can only be reduced
in real terms by introducing more elaborate input and output mechanisms.

Several experiments were conducted using a farm topology and a distributed monitor
(based on [Jones 1]) to measure the busyness of individual transputers in the network.
Up to 10 can be used in bilinear farms without sizeable impairment to the rate of

speedup improvement. Higher order farms were not considered because of the need to
integrate image data partitioning in the implementation of CVQ and the fact that their
benefit shows only with larger number o f transputers.

For a given codebook and image size and with the distance measure operation
considered atomic, the improvement anticipated is given by :

—i— + d
n * m comm

(4)

where n is the size o f the codebook partition and m is the size o f the image data
partition. dComm is the equivalent number o f operations for the time taken by the
overall communication overhead. In CVQ however the codebook partitions size is
not constant. Hence, a different sub-network for each class should yield better results
(refer to [Omar 1] for details o f implementation and results).

65

5.4. Conclusions

A significant improvement in the time taken for the coding process o f VQ and CVQ
was achieved through the use of relatively simple networks o f transputers. Limiting
factors to the scalability of the structures presented here seem to be the
communication bandwidth and the real term distance from the data dispensing node
and the working nodes.

In the case of CVQ, statistics show that some classes are more populated than others.
To ameliorate the performance o f the network introduced here, different sub-networks
should be designed to cater for the unbalanced load.

It is worth noting that these structures can be further investigated in order to find the
practical limit to scalability, and then implemented on a memoryless transputer network
(+ffame grabber) as a fast cost effective coder. The size of partitions will, in this case,
be dictated by the transputer's on board memory.

66

CHAPTER VI

6. Transputer implementation of some vision tasks

This chapter presents the transputer implementation o f three tasks common in
computer vision. These tasks were chosen because o f their differing communication
requirements and amount o f inherent parallelism. First, the Fourier descriptors method
is presented and a parallel algorithm proposed. Second, the Hough transform technique

is introduced in both original and generalised form. Last, matching objects in a scene
to computer models is considered and the 'maximal clique' technique introduced.
Several attempts at reducing the sequential part of this algorithm are presented.

6.1. Fourier Descriptors

Classification o f objects in a scene is one of the problems of image processing. Fourier
descriptors represent the boundary of a region as a periodic function which can be

expanded in a Fourier series [Persoon], Several different parameterisations will be
presented, these are due to several workers [Persoon][Waltz][Duda], The aim of this
section is to study the relative merits o f various boundary representations and to
present an algorithm well suited for parallel implementation.

Fourier descriptors provide an improved characterisation of shape as more coefficients
are added to the frequency domain sequence. In the limit o f an infinite sequence they
are completely unambiguous. Individual coefficients describe the boundary with
increasing accuracy.

67

Fourier descriptors do not offer easy reconstruction o f the space domain shape. This is
due, for example, to the fact that a finite frequency domain representation will inverse
transform into an incomplete spatial description of the periodic function that gave rise
to it.

One of the major advantages of Fourier descriptors is that the general shape o f a

boundary can be described satisfactorily by a few of the low-order terms in the Fourier
series expansion of the boundary curve. Besides, a well chosen parameterisation can

lead to a frequency-domain representation that is independent o f size, translation and
rotation o f the shape to be described. This can have very interesting consequences on
the storage o f parameterised shapes, yielding a reduction in the communication
overhead they introduce in a distributed implementation of shape recognition.

6.1.1. Parameterisations

In this section two parameterisations are considered. First, a closed curve is
represented by the cumulative angle between a fixed line in the image and the curve
figure 6.1 (a)). Second, the pixels around the boundary are considered as points in the
complex plane (figure 6.1 (b)); therefore, scanning the boundary generates an array of
complex numbers. Both methods rely on the perimeter of the curve to fix the sampling
rate. It is worth noting that the first parameterisation yields a sequence o f real number
making it more attractive from the computational point o f view. The next few sections
will present both methods and a comparison of their merits and drawbacks.

68

6.1.1.1. First formulation (vi/-s curve-)

The particular FD's considered are completely defined by the parameterisation

adopted. Invariably it is assumed that the boundary to be transformed is scanned in an

anti-clockwise direction and made available in a data structure.

suppose that the simple closed C curve is given the parametric representation:

(x(l), y (l))= c(l)
where 0 < 1 < L is the arc length and L is the full length of the curve C.

If the angular direction of the C at point 1 is given by 0(1), then the cumulative angular
function defined as: <£(1) = 0(1) - 0(0) is the net amount of angular bend between
starting point 1=0 and point 1 (figure 6.1 (a)). Note that since C is closed <I> is a
periodic function o f 1 (with period 2n). Zahn and Roskies [Zahn] further defined the

function \|/(t) as follows1:

\|/(t) = <X>(Lt/27i) - 1 (6.1)

where t ranges from 0 to 27:.

\|/ has very interesting properties, namely, it is invariant under translation, rotation and
scaling. Besides, \j/(t) = 0 for a circle. Expanding y(t) into its Fourier series:

V(t) = A0 + X A kcos(kt-ak) (6.2)
k = l

The set {A ^a^ lk^ l,..,^} are the FD's o f the curve C.

Following are some of the advantages and disadvantages o f these FD's. Amongst the
advantages :

1. The set (A ^a^} contains no redundant information.
2. The set {A ^a^} is invariant under translation, rotation and scaling* 2.

'Note that the formulation of O* here is slightly different because it was decided to scan C anti-

clockwise.

2The second assertion is in fact a consequence of the first.

69

Amongst the disadvantages:
1. \|/(t) contains discontinuities when C does; therefore, the Ajf have

high frequency components and the truncation of the sequence introduces

large errors.
2. Reconstruction of C from the A^ is complicated.

6.1,1,2, Second formulation

As reported in [Persoon] a different parameterisation o f a closed boundary C can be
represented by (x(l), y(l)) = c(l) where 1 is the arc length along C (anti-cloclcwise). A

point moving along the boundary generates the complex function u(l) = x(l)+jy(l),
which is periodic of period L (the length o f the boundary). The FD's for such a list are:

a „ = f fu tlje-^ d l (6.3)
L i

and

u(l) = f > „ e ’"“ ' (6.4)
-C O

The FD's thus defined present many advantages e.g.:
1. u(l) contains no discontinuities, hence, |an| decreases fast as n->oo
2. reconstruction of C can be done easily3

Among the disadvantages:

1. Because u(l) is a complex function, symmetry is lost i.e. a;jq_n* * an

2 . The definition of u(l) leads to
du
~d\

= 1, this in turn leads to restrictions on the

an4 for partial sums.

Alternatively, x(l) and y(l) can be considered as two separate real sequences and the
FDs are defined as follows [Kuhl][Chen]:

3This is not a major advantage since shape recognition is to be done in the frequency domain.

4This can be seen by replacing equation (3) for u(l) in the differentiation.

70

(6.5)

N
x(l) = a0 + £ a n cos

n=l
N

y(0 =C0 + Z Cn C 0 S
n=l

2nnl

~ L ~

2mz\

~ L ~

N
+ £ b n sin

n=l
N

+ Z d n sin
n=l

2n7tl
~ L ~

2nnl
~ L ~

6,1.1.3. Normalisation

In this section the normalisation of FD's with respect to starting point is considered for
the first formulation given above. Scaling, translation and rotation have no part to play
in this normalisation procedure because o f the invariance o f the FD's (equation 6.1) to
these operations. As stated above this is due to the definition containing no
redundancy in the definition of a curve C.

Moving the starting point along C is equivalent to a time shift in one dimensional
signals. Using the time-shifting property of the Fourier transform it can be seen that the
equivalent operation in the frequency domain would be a multiplication the nth
component by: e jnTwhere T is the fraction o f a period through which the starting
point is shifted. It is worth noting that as T goes from 0 to 2n, the starting point moves
around the whole boundary once.

In [Persoon] the authors propose a sub-optimal method for the normalisation o f FD's.
Since they use the second formulation (above), the normalisation includes scaling and

rotation as well as shifting the starting point. The method consists of scaling and
translating the coefficients in the frequency domain thus making a(0)=0 and |a(l)| = 1;
and then applying the combined rotation and starting point shift. The desired

Normalised FD will then have a(l) and a(-l) o f equal phases. Although the method
works quite well on relatively smooth shapes, there are cases where after scaling a(-l)

becomes insignificantly small. This leads to problems in the determination of the
rotation and starting point shift operator.

Wallace and Wintz [Wallace] suggested that instead of a(l) and a(-l), the two
coefficients in the sequence that have the largest magnitude should be chosen for the
zero phase condition. It is worth noting that a(l) will always be the largest coefficient
in magnitude (fundamental frequency). Therefore, the second largest coefficient has to

be found and used with a(l) in the normalisation criterion. However, since the second
largest coefficient is not generally a(-l) but a(k) then it can be shown that there are

71

|k-l| possible orientation/starting point combinations that satisfy the zero phase
condition. In [Wallace] the maximisation of a function of the frequency coefficients is

proposed for choosing the combination.

The alternative definition o f the second formulation of FDs can be normalised as
follows:

a n bn COS(V|/) sin(v|/) a„ bn cos(n0) -s in (n 0)

Cn dn — sin(vt/) cos(vj/) _Cn tin . sin(n0) cos(n0)

where

0 +7t
(6.6)

and

0 = — arctan1
2

2(a,bi -t-Cjd)) \
a f+ c f-b f -d ?/

0 < 0 < 7t

cos(0) sin(0) a i Ci
- s in (0) cos(0) .b i d i .

and vi/ = arctan(c/o)/a ,

The effect o f the above transformation is to render the two vectors (a\, b \) and

(c'j, d\) perpendicular and then rotate them onto the co-ordinates axis so that c'j= 0
and b j= 0. To complete the normalisation process every coefficient is divided by a'j.

6,1,1,4, Methods adopted

Fourier descriptors have been used extensively for aircraft and character recognition.
The majority o f applications reported in the literature use variations o f the second

formulation (above). In this work both vy-curve FDs and complex FDs are considered.

6.I.I.4.I. vy-curve based FDs

\|/-curve based FDs have interesting properties:

1. The spatial coefficients are real, and

72

2. They are invariant under rotation, scaling and translation.

Because the spatial domain coefficients are real, the Fast Hartley Transform (section

6.1.2) can be used to improve performance. Moreover, the invariance under rotation,
scaling and translation simplifies the normalisation procedure, since only normalisation

with respect to starting point is needed. The rationale is that before considering a
performance increase through parallel implementation, it is worth pondering the

possibility of ameliorating the performance of sequential algorithms.

FDs based on Y|/-curve present, however, one major problem; and that is the
frequency coefficient a(k) will decrease rather slowly when k -» oo. One way around
this problem is to trace the boundary with variable speed, which was first proposed in
[Persoon], Covering the boundary with variable speed will reduce the discontinuities

due to corners in the boundary. This can be achieved by taking more samples around

the regions o f high curvature.

The method proposed here for varying the speed involves scanning the boundary once

to associate a curvature measure with each sample in the linked list of edge elements.
The curvature measure is not defined explicitly, instead the frequency distribution o f \\i
is calculated during the first scan [Ballard], At this stage the perimeter o f the boundary

is also calculated. This information is then used to determine the intervals between
samples during the second scan. Peaks in the frequency distribution represent high

curvature regions. Therefore, more samples are taken from these regions. This is done
through modulating the intervals between samples with the frequency distribution. In
other words, the distance between two samples is proportional to the frequency
distribution.

Were the speed uniform, the interval between two sample points would have been
constant, I = P/N, where P is the perimeter of the shape i.e. number o f pixels on the
boundary and N is the fixed number of samples chosen to represent the shape.

6.I.I.4 .2 . Complex FDs

The alternative definition given in section 6.1.3 above was also selected for

implementation. The main reason for this choice is the simple quasi-unambiguous5
normalisation procedure. Moreover, because the co-ordinates o f the points around the

5Cases where the normalisation is ambiguous can be handled by the harmonic invariants [Lin.]

73

(6 .10)
N - l

x (t) = £ H (f)cas(2 7 ift/N)
f=0

As presented above the discrete Hartley transform (DHT) suffers from the same

problem as the Fourier transform, namely, arithmetic operations are needed to
compute the transform of an N-element data set. However, due to the similarity

between the two transforms, the same mechanism that was introduced by Cooley and
Tukey in 1965 [Cooley], for the computation of the fast Fourier transform (FFT), can
be used to compute what will then become the fast Hartley transform (FHT).

Essentially, the FFT algorithm uses a permutation process to bisect data until data
pairs are reached. The idea behind the permutation process is that it is faster to split

data into pairs, compute the transforms of the pairs and then recombine these to make
the entire transform. The latter still needs a power o f two number o f points to compute

efficiently.

Bracewell [Bracewell] showed that a similar methodology can be employed for the
Hartley transform. Through the application of the shift and similarity theorem he

derived the following general decomposition formula:

H (f) = H, (f) + H 2 (f) cos(27tf/Ns) + H 2 (N s - f) sin (27tf/N ,) (6.11)

Figure 6.2 shows the signal flow graph for the FHT which is a consequence of the
decomposition formula.

Figure 6.2:Siqnal flow graph for the computation of the FHT

75

The Fourier transform can be obtained from the Hartley transform as follows:

Fr(i)=H(i) + H(N-i)
and

Fj(i)=H(i) - H(N-i)

Where Fr is the real part of the Fourier transform andFj is the imaginary part. In fact, it
is faster7 to compute the Fourier transform via the FHT than via the FFT, because in
computing the butterfly o f Figure 6.2 floating-point numbers are used instead of
complex numbers (pairs of floating-point numbers).

The FFT implementation on multi-processors is relatively straightforward due to the
inherent parallelism in the butterfly operations.

6.1.3. Implementation

In a typical application of Fourier descriptors a number o f curves are stored as FDs,
an incoming curve is transformed and compared to the database for the best match. In

this work the effort is concentrated on providing fast conversion from images to
features (FDs). The problem of searching a large database for the nearest neighbour is

quite complex. One approach would be to use a technique similar to that o f [Omar 1],
where a network of transputers was used to implement a vector quantisation
coder/decoder.

In the remainder of this section a transputer implementation o f the two FDs mentioned

above is described. The algorithm consists of the following:

1. Read an image from the frame grabber
2. Compute edges and edge direction
3. locate closed boundaries
4. Compute FDs and pass onto search routine

In both implementations o f FDs the timings and results are obtained for the
computation o f the Hartley transform, normalisation and in the case o f \j/-curves
determination o f the boundary scanning speed. The curve to be parameterised is

7Bearing in mind the additional step for the FFT reconstruction.

76

assumed to be presented to the system in a standard Freeman chain code (8-
connectivity).

61.3.1. vi/-curves Fourier descriptors

The main problem of the vy-curve formulation for FDs is that the magnitude of the

frequency domain coefficients does not reduce fast enough as frequency components
are added to the sequence. This is due to the inherent discontinuities in the \j/-curve.
In other words, a corner in the boundary to be described will give a sharp change in the
magnitude of the y-curve. Figure 6.3 shows a simple square shape and figure 6.4 and
6.5 illustrate the problem. Figure 6.5 represents the Fourier transform of y-curve
(figure 6.4) o f the simple shape.

r \

("\

v________ /

Fiaure 6.3: Simple sauare shape
v J

77

Consequently these FDs require a large number o f coefficients to represent boundaries
with some accuracy.

Appendix D -l shows Occam code fragments which implement the various tasks
required to perform edge magnitude and direction evaluation, curvature evaluation,
sampling, FHT and normalisation.

The frequency distribution of direction change is obtain by scanning a boundary and
representing the instantaneous curvature as the difference between the tangent at the
current point and the previous point. Figure 6.6 shows this function for the simple

object of figure 6.3

The curvature modulates the interval between samples. This is done through finding
the minimum and maximum curvature in a given shape, then computing the curvature
magnitude sampling rate as follows M s = N/(max-min). Therefore, the distance
between a sample and the next is curvature*Ms. Thus, at points o f high curvature

more samples are taken than at points of low curvature. A lthough the frequency

spectrum of the FDs thus defined is reduced it is still wider than that of the alternative
FDs. The experimental set-up is identical to that o f the next section.

6.13.2. Alternative FDs

In this implementation the boundary is presented to the system as a list o f co-ordinate
pairs. The main performance increase stems from the parallel implementation o f the
FHT as a means to compute FDs. The algorithm can be summarised as follows: 1

1. Parallel FHT on abscissa and ordinate sequences,
2. normalisation through the operations defined in equation 6.6,

78

3. nearest neighbour classification.

For this third point it is assumed that a library o f candidate shapes have been
transformed. Figure 6.7 shows the structure o f a transputer network to implement the

algorithm.

Figure 6.7: Transputer network for FDs

The transputer labelled R is the root processor and resides on a board in an IBM PC

compatible computer. It has 4 MBytes of RAM and runs the transputer development
system as well as a process to control the network, dispense data and gather results.

All the other transputers are TRAMs consisting of a transputer and 1 MByte o f RAM
housed on a BO 12 board. The latter together with MMS2 is used to organise the
transputer into the configuration of figure 6.7.8

The processors labelled H; perform the Hartley transform, Fourier conversion and

normalisation. Their configuration is a direct result o f the signal flow graph o f the FHT
(figure 6.2). A sequence of co-ordinates representing a boundary is passed from the

root transputer to Hq which performs the bit reversal operation. Then, the sequence is
partitioned into 4 parts which are passed on to H; (l<i<4). Next, these processors
perform the FHT on their respective quarter-length sequence. After each transputer

has carried out an FHT of quarter-length (H,,H2) and (H3,H4) communicate to perform

half length FHTs. Finally, (H,,H3) and (H2,H4) communicate to yield the full length

8Module Motherboard Software is a software tool allowing the configuration of a network through the

C004 switches residing on the BO 12 board.

79

FHT. At this point, data is sent to F^ which derives the Fourier transform. Please refer

to figure 6.7bis which represents the signal flow graph of the algorithm.

HI

H2

H3

H4

First stage Second stage Third stage

Figure 6,7bis Signal flow graph

Once the two half-sequences have been obtained (at F^ from FFj and FF4) the
normalisation process begins. FFere the parameters 0 and vj/ (equation 6.6) are
evaluated on FF0 and dispatched to the FFj's. Note that this process only requires

communications of the type (FF,,H2) and (FF3,FI4).9 The full benefit of the transputers
labelled Dj (l<i<10) can only be felt for large libraries o f shapes. Therefore, the

timings presented here do not include the nearest neighbour computation10. Some
simple geometric shapes were used to test the operation o f the algorithm. Figure 6.8
shows the boundaries that underwent the process. The number o f descriptors required
to discriminate between these shapes is very small (8) and might be insufficient for
more comprehensive libraries.

9Even these transfers are only required because of the data paths.

10Since only five shapes were used in the experiment, the classification process becomes trivial.

80

Table 6.1 shows some timings (all times are given in milliseconds11) for the whole
process (excluding classification). Single precision floating point arithmetic operations

are used throughout.

Table 6.1 ____________

/
1 transputer (ms) 6 transputers

(R and Hj in figure 6.7)
Network (ms)

1 128 pixel/boundary 34 13

| 256 pixel/boundary 78 31

The inefficiency (i.e. the fact that the speedup achieved is not proportional to the

number o f processors) seen in table 6.1 is due to the lack o f symmetry in the signal
flow (figure 6.2). The situation will undoubtedly worsen if more transputers were
added to the network. In other words, the FD algorithm is not scalable. However, the

goal here is to provide a system which provides FDs at a high rate. The fastest chain
encoding implemented here (on one transputer) performed the operation in just over
15 ms. Therefore, the system presented here yields high enough throughputs for real

.1

applications* 12. Also, the building components are available (no custom hardware

1 'Rounded to the nearest millisecond.

12Altough real applications might adopt a method that has a higher throughput with regard to

boundary accumulation, they will have to deal with partial occlusions, multiple boundaries and large

shape databases

81

design) and the transputers can be configured without external memory thus making

the application commercially viable.

6.2. Parallel Hough transform

Since its inception in 1962 by P.V.C. Hough [Ballard] the Hough Transform (HT) has
been used for line, conic and general parameterised curve detection in images. The
method is particularly well suited when little is known about the location o f a curve but
its shape is given in a parametric form. Moreover, it copes very well with noise, gaps
and partial occlusions. The basic idea is that a point (x,y) in image space (x-y) can lie
on all lines y = cx + m; hence, collinear points contribute consistently to the same value
o f the pair (c,m). Therefore, if a parameter space (c-m) is constructed from image data,
maxima will appear at locations corresponding to long segments.

Duda and Hart [Duda 1] considered the problem of locating straight lines in images.

The parametrisation of a line is particularly simple since two parameters completely
define a line, namely, slope and intercept (Cartesian co-ordinates)13 or radius and angle
(polar co-ordinates). Many authors have shown the Hough transform to be formally

equivalent to template matching and matched filtering [Davies 1], This gives
theoretical weight to the method, since matched filtering is optimum with regard to
signal-to-noise ratio under white noise conditions [Lynn],

Kimme et al [Kimme] adapted the method for the detection o f circles and ellipses. In

1981 Ballard [Ballard 1] proposed a formulation that allows for arbitrarily shaped
curves. The principle is similar to that of detecting lines and conics, but the
accumulation consists of computing the possible loci o f reference points.

13See figure 6.6

82

The method thus obtained is a Generalised Hough Transform (GHT). The first step in
the GHT algorithm is the detection of edge pixels around the given shape. Each edge

pixel then contributes to the parametrisation of the curve as the distance (R(0)) and
angle (a(9))14 from the edge pixel to a reference point inside the perimeter. Having
chosen a reference point near the centre of mass of the shape the reference point can

be adjusted [Shapiro] to minimise errors due to inaccuracies in the estimation o f edge
orientation. Then, the values R(0) and a(0) are put in tabular form. Each edge pixel
with orientation 0j constrains the set o f allowable reference points to
[x+R^Ojcosfa^©!)], x+RiiOjsinfa^©!)]]. Thus, the table entry for contains all pairs
(R1; o^). Figure 6.7 shows the geometry used to construct the R-table.

r >

Figure 6.7: Geometry used to construct the R-table

14Where R(0) is the distance from the edge pixel to the reference point, a(0) is the angle from the

horizontal at the edge pixel and R(0) and 0 is the edge orientation.

83

The R-table can be extended by adding dimensions to the accumulator space to deal

with scaling and orientation.

6.2.1. Hough transform for lines

The Hough transform has been studied extensively and its theoretical aspects have
been characterised [Davies 1][Brown][Slansky], It was found to have a sound

theoretical basis related to template matching and matched filtering, and relative
independence to noise and gaps make the method attractive. However, a major

drawback is the very high computational complexity making the method unsuitable
for applications requiring real-time (or just high) performance. The next section

presents a closer look at the complexity of the HT.
6.2.1,1. Complexity analysis

The parameterisation suggested by Duda and Hart [Duda 1] involves regarding the

conversion from polar to Cartesian co-ordinates as a constraint on (p,0) given that
(Xj,yi) (i = 1, ..., N) are edge pixels (equation 6.12).

p = Xicos(0) + y isin(9) (6.12)

Therefore, collinear points in the image space contribute to the same location in a
parameter space p-9. The parameter space is then sampled so as to include all possible
lines (to the resolution of the image and errors in the edge location and orientation).
The p-0 space is, hence, an N pxNe array (Accumulator array). The algorithm of Duda

and Hart consists of finding the edge pixels, incrementing the loci o f points derived
from equation 6.12 and finally performing an exhaustive search for maxima in the

accumulator array. These maxima correspond to the (p,0) parameter pairs o f large

collinear subsets o f pixels. The p-9 accumulator presents a major advantage (over c-m
space), in that p-0 is bounded. In other words, no line in the image space has p—>oo or
0—>oo. Figure 6.8 shows an image and the corresponding accumulator space. Note that

if the gradient angle is computed from the image (at the edge detection stage), a pixel
in the image space will contribute to a single location in the parameter space;
otherwise, a pixel contributes to a sine locus. Although computing the gradient angle
for edge pixels introduces an additional computational load, it leads to a higher signal

to noise ratio since noise pixels will have (practically) random orientations.

84

r ~

0 < n <N

a

Figure 6.8: An image and its parameter space

The complexity of the edge detection step is ignored in the present analysis15. As far
as the incrementation stage is concerned, it depends on the number o f edge pixels N
and Ne. This is because N edge pixels generate N sets of accumulator space updates;
and the cardinality of each is Ne (by Equation 6.12 and text above). Therefore, the
complexity o f the incrementation stage is 0(N .N e).16 The exhaustive search for

maxima depends on the size (in cells) o f the accumulator array; thus, this stage's
complexity is O(Np.N0). In general N is quite large (thousands or even tens of
thousands for a 512x512 image) and typical values for N p and N e are a few hundreds.

Hence, in reducing the complexity of the above algorithm the incrementation stage has
to be considered carefully. To this effect, Kiryati et al [Kiryati] proposed an algorithm
in which the voting for parameter pairs (p,9) is limited to a sub-set o f the N edge
pixels. They showed that the performance degradation introduced is negligible. The
method is based on a probabilistic approach and was termed the Probabilistic Hough
transform (PHT). Such reductions in the complexity of an algorithm are limited by the
bounds on the number of edge elements in the sub-set and the conformity of the noise

statistics in the image to the models adopted. Nevertheless, the performance increase
reported is considerable.

A totally different approach to the HT is the Dynamic Combinatorial Hough
Transform (DCHT) [Leavers], The formulation for lines presents fundamental
differences with the HT. Firstly, the accumulator array is a 1-dimensional orientation-
only space. Secondly, the process iteratively simplifies the input pixels set by

removing lines (from the image) corresponding to maxima in the accumulator space.
And lastly, because the latter only gives information about direction one pixel is

15A process like edge detection can with today's technolgy (fast 2-d filtering VLSI components e.g.

A110 [InmosSP]) be performed in real time (25 frames/second). One commercially available board

the B429 [InmosIQ] consists on two AllO's, a T800 transputer, frame buffers and video input.

16Appendix B gives the basic definitions of complexity theory (order notations).

85

selected each iteration, and only lines emanating from it are considered. The technique
can be summarised as follows:

0. Initialise the accumulator array: Acc(9j) = 0; 0 < j< (Size of Accumulator).

1. Select an edge pixel pix&
2. For all other edge pixels pixi the orientation 0 of the line from pixi to pix0 increment

Acc(0).
3. The accumulator space after one iteration will either contain peaks for line

segments (of length > threshold) in which case the directions are stored and the
lines are removed ; or contain no significant peak and only the selected edge pixel
is removed.

4. If no pixels are left terminate, otherwise repeat (go to step 1).

Yuen [Yuen] used this formulation and proposed a method (the Connective Hough
Transform (CHT)) based on focusing the search on likely (line) candidates. This is
achieved through scanning the image row by row (away from pix0) and giving

no further consideration to orientations (thus pixels) that present gaps
(again gap > gap threshold). The net effect is that edge elements that are not

connected do not contribute spurious peaks in the parameter space. Besides the
complexity is reduced because o f early termination o f some iterations.

A major disadvantage is brought about by both the DCHT and CHT. These

formulations in trying to solve some inherent problems o f the HT, introduce serial
operation to the original highly parallel technique. In an SISD model, the above

methods would genuinely offer besides the intended effect a reduction of

computational complexity - due to early termination, etc. However, the consequence
o f these techniques on attempts to parallelise the HT will be disastrous.

In the next section a parallel implementation o f the HT algorithm is described, and the
improvements due to the PHT shown.

6.2.1.2. Parallel Hough transform for line detection

The Hough transform applied to line detection requires the following steps:

1. Initialise the accumulator space (Acc(p,0)) cells to 0,

86

2. Apply an edge detector (Sobel) to the input image, thus, computing the gradient

magnitude g(x,y) and orientation 0(x,y); then threshold the resulting image. For all
(x,y) such that g(x,y) > threshold, compute p and increment Acc(p,9),

3. Search for the local maxima in Acc(p,0), and keep a number N of them (N depends

on the height o f the peaks in Acc(p,0).

The Sobel operator can be replaced by a more performant edge detector17 e.g. Canny.
But, the purpose of this section is to parallelise the algorithm and not to improve it.

Therefore, the Sobel operator will be used exclusively. It is worth noting, however,
that the added processing due to the canny edge detector will not be very taxing, since

the complexity of the HT is dominated by the parameter space accumulation.

A close look at the HT algorithm presented above shows that steps 1 and 2 (step 2
excluding the incrementation of Acc(p,0)), are local operations that only rely on a

local neighbourhood and are, hence, suitable candidates for the SIMD model.
Unfortunately, the accumulation of Acc(p,0) and the search for maxima require global
communication. This is because a pixel at location (x,y) can give rise to a wide range
of (p,0) pairs; also a local maximum in the parameter space can be insignificant
compared to a set of global maxima.

Rosenfeld et al [Rosenfeld] report disappointing results on the parallel implementation

o f the HT on various mesh-connected SIMD architectures:

"The analysis presented in this paper shows that a mesh-connected

computer composed o f bit-serial PEs is not very efficient at implementing

an algorithm such as the Hough transform, ..."

This is certainly true for the types of mesh-connected computers used in their analysis
(MPP, GAPP, etc.) These machines are fundamentally different from a mesh-
connected computer whose processing element (PE) is a transputer. (The latter does
not operate in lock step and synchronises through communication). Firstly, they use
the approach termed (Chapter 3) "the army of ants", in other words, the PEs have very
limited power and performance is achieved through sheer number, while the transputer

17Some authors think that the Sobel operator, despite its relative poor perfomance, is better suited for

the HT because it yields multiple response to a single edge; therefore, higher peaks in the parameter

space.

87

(of the right generation) is a state-of-the-art micro-processor capable to perform
powerful computations. Secondly, these processor arrays are strictly SIMD by
construction, whereas a transputer array (or any transputer topology for that matter)

can operate both in SIMD and MIMD modes.

6.2.1,3. Implementation

The approach adopted here is the so-called processor farm model (Chapter 8).
Because o f the data dependencies exposed above (and the fact that processing depends
on the number o f edges in an image section) a controller processor dictating the
operation of the whole network would be unable to balance the load of processing
amongst the remaining processors.

In the farm model the controller takes a passive role. As a first attempt a linear farm
was implemented. Every processor in the network is connected to two neighbours
(apart from the controller and the last worker in the chain). Figure 6.9 shows this

simple topology where CTL is the controller and Ws are workers.

Firstly, CTL divides the input image into sections (a multiple of the number o f
transputers in the network seems a good choice), the limiting factor being the size of
the input image. In other words, when there is not enough work no amount of
parallelism can achieve better performance.

Secondly, it starts three processes that run in parallel on the controller processor :

1. A Forwarder process (F) that sends the packets formed o f a location stamp and a n ,
image section,

2. a Load Balancer process (LB) that acts as an interface between F and R, and the
rest o f the network,

88

3. and a Receiver (R) process which receives result packets and arranges them into

the accumulator array Acc(p,9).

Figure 6.10 shows the controller with the processes represented by ellipses and
channels by arrows. This is the case where the controller communicates with the rest
o f the network through one link only.

r A

Figure 6,10: The farm controller

The following Occam code segment shows the main actions of the controller:

... Declare constants, variables and functions

... initialise variables and read image from frame store
PAR

Forwarder (in, image)
Load.Balancer (load.in, load.out, to.farm, from.farm)
Receiver (out, hough.space)

Finally, local maxima detection is performed in the accumulator space Acc(p,0). For
simplicity, and because they are not part o f the farm side o f the application, the image
division and maxima detection are omitted from Figure 6.10.

The Worker processors (W) receive an image section, perform the Sobel edge
detection, compute (p,0) pairs i.e. entries in the Hough space, and put the latter into
packets that are returned to the controller as results. Therefore, workers implement
two routing processes as well as the main calculator. Figure 6.11 shows a worker
transputer running the following processes in parallel:

89

1. A Through-Putter process (TP) whose task is to deliver data packets to Ws,
2. a Calculator process (C) implementing the edge detection and parameter space

co-ordinates,
3. and a Back-Feeder process (BF) responsible for sending back the results from

its local C and other C's further down the chain.

The buffer between TP and the calculator ensures that the calculator is provided with
data as soon as possible after finishing a sub-task and that the communication blockage
is minimum.

To summarise the operation o f the algorithm developed in this section let us consider
the role of each processor. First the input image is available at the controller which

divides it into 33x3318 patches and farms it out to the workers. (The patch size was
arrived at through experimentation. The size chosen gives the best performance in
terms o f time and load-balancing amongst the workers. Due to the link set up time
smaller patches result in greater communication delay, whereas larger patches result in
a number o f processors remaining idle for longer periods.) The workers for their part

get a section perform the Sobel edge detection and pack all the (p,0) pairs into a
messages that are sent back to controller. Note that the LB process on the controller
keeps track o f the number o f free processors and only sends packets to the farm if the
latter is positive. Finally, the controller performs the peak detection task and files the
results. Very marginal improvements on the speedup were noticed when the peak

1832x 32 sections augmented by a 1-pixel overlap for the 3x3 Sobel edge detection.

90

detection task is also farmed out. This is due to the fact the operation is less complex
and the size of the packets has to be increased in order to overcome the overhead
introduced by the division of the Hough space. Also, for a given number o f significant

peaks corresponding to close parallel lines in the image space, a great deal of
computations are duplicated since many of the local peaks are eliminated at the
controller.

A concise version o f the Occam code for this application can be found in Appendix
D-2. The techniques introduced in Chapter 8 for the maximisation o f performance
were used in the implementation. In short, all routing tasks are run at high priority,
and the performance monitor is used to determine a reasonable image section size;
although, for a small number o f transputers a wide range of values give similar speed-
ups.

One major advantage o f farming is that a different topology can be implemented with
almost (or even no) modification to the workers and very limited alterations to the
controller. Figure 6.12 shows a controller which communicates with a farm through

two links. F and R remain unchanged but the node manager requires in addition a
multiplexer and de-multiplexer process which will keep track o f the two branches (free
processors and buffers).

Figure 6.13 shows a transputer farm based on the above described controller and
workers. The controller resides on a B004 board inside the host computer and the
workers are TRAMs sitting on a BO 12 board in a rack.

91

The network consists of up to 16 worker transputers forming various basic topologies

and a controller communicating with two workers. Next, some experimental results
and variations on the structure of the network are presented.

CTL ;

W W

~~K~

w w

Figure 6.13: Transputer farm

The linear farm and the two-linear farm were implemented for both the Hough
transform and the Probabilistic Hough transform. For the latter, the accumulation stage
takes place for a subset; namely 20% [Kiryati] of the edge pixels found in the local
section of the image. Figure 6.14 shows a graph o f the speedup achieved as the
number of processors is increased from 1 to 16. The test image is shown in figure 6.15.

The speedup achieved can mainly be attributed to the processing to communication
ratio. The processors spend most o f the time calculating results -as measured by the

92

performance monitor presented in Chapter 8.19 In the case o f the linear farm the

processors halfway through the chain perform slightly better than those at end. This is
to be expected since when all the processors are ready to proceed the distance from
the controller introduces a precedence relation between them. It is clear from figure

6.14 that the graph flattens when the number of processors exceeds 12 (for the linear
farm); the graph for the bi-linear farm is expected to flatten for a number o f processors
> 16, this is due to the communications saturation. In other words, a delay is
introduced between the time a processor finishes work on an image patch and the time
it receives the next patch.

Table 6.2 shows timings for HT and PHT. The difference in complexity between the
two algorithms does not affect the speedups achieved, this is due to the similar
computation to communication ratios. However, the probabilistic Hough transform as

implemented here yields good detection and runs ~3 times faster than the HT on a 16-
transputer linear farm. 1

1 b esid es, each worker kept a count of the number of packets it processed. These values offer more

information than the performance monitor (in this particular case.) The reason being that the

performance monitor of chapter 5 cannot distinguish between 'useful' computations and

communication overheads. The number of sections handled around the middle of the chain was found

to be slightly greater than in the vicinity of the controller.

93

Table 6.2

1 T 16 T

PHT 2.9s 0.23s

HT 8.5s 0.65s

The edge map of figure 6.15 together with a randomly selected set o f edges and their

respective Hough spaces are shown in figure 6.16.

94

6.2.2. Generalised Hough transform

A similar set-up was used for the GHT, where an additional step is required in order to
compute the R-table. The algorithm is implemented on a linear farm with speedups of
up to -13 on 16 transputers. Since the parameter space incrementation and peak
detection are similar to the HT only R-table formation is described here. The algorithm
consists o f the following steps:
1. Selection o f a reference point on the boundary of the shape to parameterise,
2. Compute the distance and rotation o f every point on the boundary with regard

to the reference point and form the R-table,
3. Form the accumulator space (Hough space) and perform peak detection.

First, an image containing a 'clean' version of the object to be parameterised is read
from the frame grabber by the controller. Edge detection at the controller selects a
pixel on the boundary to be the reference point (the co-ordinates of this point are
broadcast to every transputer in the network) for building the R-table. The latter is

computed as follows:

1. The image is divided into sections and farmed out to the processors.
2. In parallel each processor in the network (other than the controller) performs

the Sobel edge detection on the local section. For each edge pixel found the
magnitude and orientation 0 are calculated. Also, the distance R from the
reference point is calculated. Then, the angle cp between the horizontal and a

line linking the reference point to the edge pixel is computed. The angle (p
together with R form an entry into the R-table which is indexed by gradient
angle 0. Finally, these entries are packed into a message and sent back to the
controller.

3. The controller starts forming the R-table as soon as it receives the first packet

from the network. Because some gradient directions will undoubtedly feature
more often than others in the R-table, a 1-dimensional array is used to keep
track o f the number of entries for each allowed direction (0 < 0 < 180°).

At this stage the object to be recognised is parameterised in the R-table and the GHT
can proceed. A test image is input and its edges are detected and stored in buffers one

line at a time. These buffers constitute the packets that are farmed out to the network.
Results are returned from the network in the form of (x,y) co-ordinates for the location
o f a prospective reference point.

95

Several topologies were tried in order to minimise the distance from the controller to
the worker processor. These were linear and bi-linear networks and binary and ternary
trees. Very minor improvements if any on the linear farm were noticed. This is due to
the relatively small number of processors (16) used in the experiment. Also, partially
performing the edge detection on a test image at the controller improves the

algorithm's communication requirements and the computation to communication ratio.
This idea originates from the fact that the controller does very little between demands

from the network for more data. Hence shifting some o f the computational load onto
the controller results in an improvement in the overall balance. This is particularly true
for a sub-task like edge detection whose output contains considerably less data items
than its input.

Appendix D-2 gives a shortened version of the Occam code implementing the ideas

expounded in this section. Listings 6.1 and 6.2 give the top-level code for the
controller and the worker processors respectively.

Listing 6,1

...Declarations
SEQ

... Initialise arrays

... form R.table of object

... get new image
PAR

Send.data (to.load, image, scale, angle)

load.balance (to.load, from.load, to.farm, from.farm,r.table, performance, buffers)

Accumulate.Hough.space (from.load, Accumulator)

Listing 6.2

... Declarations

. . PROC Feed-through (CHAN OF ANY request, to.worker, left.in, down.out, INT pn)

... PROC Worker (CHAN OF ANY request, to.worker, from-worker, [][]INT results)

_. PROC Feed-back (from.worker, sofLchanneL, left.out, pn)

PRI PAR

PAR

Feed.through(request, to.worker, up.in, down.out, processor.id)

Feed.back(from.worker, down.ln, up.out, results, processor.id)

96

Worker(request, to.worker, from.worker, results)

Note that the PRI PAR construct above ensures that the communication processes are
run at high priority to avoid blockages. The request channel allows the worker process
to ask for more data when it is not busy; therefore, it carries a dummy variable which is

discarded at the feed-through process. All the remaining channels implement the same
protocol which contains a header tag defining the type o f operation, the message

destination id, the length and the message. A quasi-linear speedup was achieved by the
algorithm running on a network o f transputers compared to the sequential version. By
no means is this result to indicate that the parallel Hough transform scales linearly.
Rather it is a consequence of the high computation to communication ratio which
cannot be maintained when more processors are added to the network. The fact that
the topology does not seem to affect performance is due to the added complexity of
the routing processes when multiple links have to be handled. However, the
minimisation of distances between the controller and the workers will become more

important for larger farms.

Figure 6.17 shows the image of an object the parameter space (Hough space)
displayed as an image (the darker the area the larger the number of votes for that
location). The peak is marked with a cross.

97

6.3. Object Recognition using graph matching techniques

In this section the association graph technique is considered. The method departs from
the rigour o f purely graph theoretical methods such as isomorphism which are too
restrictive. The two relational structures to be matched i.e. graphs of the model and the

image object are combined into a graph termed the Association Graph (AG) [Ambler],
A node is added to the AG if nodes with same property are present in both relational
structures20. Edges in the AG are added when two nodes represent compatible

relations in the two graphs to be matched. In other words, an edge exists between
nodes o f the corresponding features in both structures. Therefore, the AG includes

information about 'individual features and their mutual compatibility in the two

20Note that the nodes in a graph representation of a scene will correspond to features in the image (or

model); therefore, qualifiers (i.e properties) can be attached to the nodes.

98

structures to be matched. The largest set of mutually compatible nodes in the AG can
thus be deemed to be the 'best match' [Ballard], This set corresponds to the largest all-
connected group of nodes and is called the largest Maximal Clique (MC). An MC is a
set o f all-connected nodes of a graph that cannot be extended without destroying this
property ('all-connectedness'). Therefore, the 'best match' in this method is equivalent
to the largest maximal clique.

The remainder o f this section is concerned with parallel clique finding algorithms. First,
a parallel version o f the algorithm proposed by Bolles [Bolles], Second, the use of
transitive orientation as a simplifying procedure is investigated. Finally, the method
known as block cluster analysis is studied and implemented.

6.3.1. Maximal clique algorithm

Bolles [Bolles] defines one of the best all-round algorithms for clique finding. The
latter is a modified version o f the algorithm proposed in [Johnston], The algorithm
relies on the adjacency matrix o f the graph under investigation and three sets o f nodes:

• The set C is the clique under consideration,
• the set P containing the nodes not in C but which are prospective candidates for

inclusion,

• the set L containing nodes that are arbitrarily left out.

The algorithm can be stated as follows:21

Maximal_Cliques (C,P,L):-

If (L=/E) then C is a maximal clique

Else

x = Choose(L)

For ally? e (P rx not(neighbours(x)))

P = P -M
Maximal_Ciiques P rx neighbours^), L rx neighbours^))

A list o f all the maximal cliques in a graph is obtained through the call:

21The procedure Choose selects a member x of L arbitrarily in order to select the neighbours of x in P

to extend C. Also, the procedure neighbours(x) returns the elements of V that are adjacent to x and

the procedure not(S) takes a subset S of V as argument and returns the complement of S in V.

99

Maximal_Cliques ({}, V,V) where V is the set of all nodes of the graph under

consideration.

Occam does not implement recursion, thus, any attempt at writing a program to carry
out the above procedure must start by turning it into an iterative process. This requires
the use of a stack data-structure.22 Work due to J. Arsac [Arsac] establishes the
required modifications to the recursive process. In the present simple case o f monadic
tail recursion (where the recursive call occurs only once as the last instruction of the
procedure) the transformation consists o f de-coupling the local variables from the body

o f the task. This is done here through the use o f a stack to keep track o f the successive
values o f the variables. The following Occam pseudo-code gives the iterative version
of the algorithm presented above.

Listing 6.3

BOOL, INT64, INT64, INT64 FUNCTION Mai Cli (C,P,L)

BYTE x,y:

BOOL flag:

VAL

SEQ

If

(L=/E)

flag := TRUE —then C is a maxima] clique

TRUE

SEQ

x := Choosc(I.)

For ally e (P n not (neigh bo u ps (a')))

P := (P -If}) n neighbours^)

L L n neighbours^)

Ci-CX-U-}

Push(L,P,C)

flag:=FALSE

RESULT flag,C,P,L

This procedure can be called to find all the cliques in a graph as follows:

22As stacks and other data-structures are not available in Occam 2 (with which this work was carried

out) it had to be implemented (see [Redfem] for details.)

100

Listing 6.4

BOOL flag:

INT64 C,P,L:

SEQ

flag, C, P, L max_cii(0,V,V) — Where V is the set of all nodes in the AG

push(L,P,C)

WHILE NOT stackemptyO

SEQ

pop(C,P,L)

flag, C, P, L niax_cli(C,P,L)

IF

(flag=TRUE)

— List C as a maximal clique

TRUE

SEQ

flag, C, P, L := max_cli(C,P,L)

push(L,P,C)

The above procedure relies on bit-masking and shift operations to select a node from
the graph. The node sets C, P and L are implemented as 64-bit integers where the bit
position is used as an index in the adjacency matrix to test the existence o f an edge.

This limits the size of the AG to 64 nodes and is due to the fact that Occam procedures
cannot return non-scalar variables (e g. arrays or sets). To remedy this problem

pointers can be passed to global variables containing the node sets.

The method chosen for parallelising this algorithm consisted o f the following steps:

• Set up a farm as described in section 6.2 with every worker running the full
algorithm with a local stack and return maximal cliques when they are found.

• The controller runs the initial phase of max_cli to fill the main stack and then
assumes a passive role whereby it pops values and supplies them to the workers on
demand.

The system (based on 9 transputers arranged in a linear farm) was tested on a range of

random undirected graphs on 64 nodes. Speedups from ~3.2 on sparsely connected
graphs to ~5.4 on densely connected graphs were noted. However, the computation

101

time for densely connected graphs is significantly larger than that o f sparse graphs due
to the combinatorial explosion. The latter is a result of the slow decrease of the size of
the set L. It is believed that the use of more transputers (and the extension o f the
algorithm to handle larger graphs) would not lead to significant performance increase
because the clique finding algorithm as presented is known to be NP-complete (see

appendix B for details on NP-completeness). Therefore, speedups can theoretically
only be achieved through the use o f an exponentially increasing number o f processors.

The reason is that as the size o f the graph increases the complexity o f the problem of
finding cliques increases exponentially leading to the need to increase the number of
processors accordingly. Also, if the size of the graph does not increase, a greater
number of processors will introduce more communications overheads. The following
two sections deal with improving the sequential algorithm and parallel versions.

6.3.2. Reducing the combinatorial explosion

This section is concerned with the main cause of inefficiency in the algorithm described
above, namely, the arbitrary choice of the element of L which directs the selection of

the prospects for clique extension. A pre-processing step is therefore added to the
process. The latter consists of generating the map o f shortest paths between all pairs
o f vertices in the graph. This map is then used to select the element o f L which is the
furthest away from the clique under investigation. The net effect will be a much faster

reduction of the set L, thus less time wasted on dead ends. The most efficient
algorithm to form this map is given in [Floyd] (see Swamy for details).

Another way to reduce the complexity o f the maximal clique algorithm is to apply
transitive orientation to the initial graph. The resulting oriented graph simplifies the
algorithm [Liu], An efficient algorithm to this effect was introduced by Pnueli et al
[Pnueli], The algorithm was tested on arbitrary graphs and it was found that very often
the graph is not transitively orientable. One possible avenue of research into this
subject could consider weighing the edges of the AG in order to disregard offending
edges during the transitive orientation phase.

6.3.3. Block cluster analysis

This section presents the use o f the Block Cluster Analysis (BCA) method to simplify
the maximal clique algorithm. The approach relies on the following assertion:

102

• If the adjacency matrix is re-ordered in such a way that the T entries are lumped
around the leading diagonal, then it can be partitioned into blocks on which the

maximal clique algorithm is run.

The method for BCA follows closely the Ford algorithm. However, the original
algorithm is concerned with multi-graphs. Here the intention is to derive an algorithm

that will arrange the non-zero entries in the adjacency matrix o f a graph nearest the

leading diagonal. This can be achieved by minimising the sum of distances o f the T
entries from the diagonal. Let the distance A o f a matrix entry be measured by A
(Aij)=(i-j)2. The magnitude of f(A) defined in equation 6.13 decreases when the matrix

is reordered so that the T entries are closer to the leading diagonal.

f(A)=EEAs*(i-j)! 613
i=i j=i

Therefore, the difference between the magnitude of f(A) for two arrangements o f the
rows and columns a matrix gives information about the positions o f the T entries with
regard to the leading diagonal.

The search procedure relies on the ordering of the vector representation o f the rows
and columns o f the adjacency matrix A. Let the initial ordering be O0=(l,2,...n,m,...N)
where N is the number o f nodes in the graph. Then a different ordering
0 1=(l,2,...m ,n,...N) can be obtained by swapping the ith row with the jth row and the
corresponding columns (to keep the matrix symmetric). Finally, f(Aj)23 is calculated

and compared with f(A0), if f(Aj) < f i ^) then the swap represents a step towards the
optimal ordering. Expanding f(Aj) to separate the entries involving indices m and n

from the rest an taking the difference leads to equation 6.14.

f (A ,) - f (A 0) = 2 (m - n) ^ (A im - A in) . (2 i - m - n) 6.14
i= l

i* m

i* n

This equation is far less computationally demanding than equation 6.13 since because
o f symmetry it only involves the elements o f the two rows (columns) being swapped.

23A, is matrix A under the ith reoreding

103

However, to put matrix A into its canonical form, where f(A) is minimal over all

permutations of indices, is a very complex task which is believed to be NP-complete.
The main idea in this work is to ensure that the choice of elements to swap is effected

along the maximum gradient of f(A).

Every processor in the parallel implementation is allocated a set o f nodes for which it
evaluates the function over all possible swaps. The most negative fl^A^) for each node

in the set locates the row (column) with which it must be swapped.

The application showed no speedup due to the counter productive effect o f conducting
swaps in parallel. The definition of 'best swap' for a particular row (column) is

destroyed by other concurrent swaps.

6.4. Sum m ary

This chapter showed that considerable speedups can be achieved on intermediate level
computer vision algorithms through the use of parallel processing. However, the better
serial algorithms are not necessarily well suited for parallel implementation.
Improvements to the serial algorithms that do not affect parallelisation were presented.
As far as high level computer vision is concerned as exemplified by the maximal clique
algorithm, the speedups were more modest due to the complexity and global nature of

the computations involved.

104

CHAPTER VII

7. System architecture

The aim of this chapter is the design of an interconnection network suitable for a
parallel computer vision system based on the transputer (T800). The desirable

characteristics of networks are given and translated into requirements on the
underlying graph.

A transputer network can be viewed as a graph with the transputers as nodes (or

vertices1) and the links (bi-directional) as undirected edges. In the study of static
topologies, and because the transputer has four links (fixed), only graphs with at most
four edges per node need be considered. In order to use all the bandwidth afforded by

the transputer links, a network can be constructed each o f whose processors is
connected to exactly four neighbours. In the terminology of graph theory (section 7.1)
this is called a regular graph as all vertices have the same number o f edges.

The network proposed here consists of a two-level hierarchy with the nodes connected

into groups o f eight transputers and the groups, in turn, linked to form the overall

network. Because o f the simple construction o f both levels, routing mechanisms to
convey messages between pairs of nodes is simplified. Chapter 8 presents an Occam
program that implements routing along the shortest path between any two processors
in the network. Also, dynamic configuration is considered, and a scheme is presented
which is a consequence o f the topology of the groups mentioned above (section 7.3.4).

The remainder of this chapter is organised as follows. First, the terminology of graph
theory is introduced. Second, some well known topologies are presented and analysed *

'Here the terms node and vertex are used interchangeably.

105

with regard to feasibility (implementation based on the transputer). Then a topology is
proposed and assessed. Finally, some concluding remarks are given.

7.1. Terminology

A graph is defined as a collection of vertices some o f which are connected by edges or
arcs. It can also be thought of as a binary operation on the set of vertices. The latter
representation allows for the extension of useful concepts from group theory to

graphs. Graphs can be directed or undirected, an undirected graph is, in fact, a
symmetric binary relation. All the graphs considered in this work are simple2. In other
words, they are linear i.e. only one edge is allowed between two vertices (two in
opposite directions for the directed case) and they contain no slings (or edges from a
vertex to itself)3.

The order of a graph G(V,E) where V is the set o f vertices and E is the set o f edges is
the number o f elements in V. A set of edges in a graph is said to be adjacent in G if
they have one vertex in common. Two nodes n7 and nj are adjacent if there is an edge
in E incident on both o f them.

A path in a graph is an alternating sequence o f vertices and edges starting and finishing
w ith v e r t ic e s su ch that: v 0,e j ,V j ,e 2, ,v k.1,e k,v k w h e r e e ; is in c id e n t o n b o th vu an d Vj

1 < i < k. A path can also be considered as an ordered list o f vertices in which every
pair corresponds to an edge. A graph is connected if there is a path between any pair
o f vertices in V. Otherwise the number of components is >1 and consists o f the number
of connected sub-graphs.

A path whose initial and final edge are equal is called a circuit. The number o f edges in
a path is the length o f the path. The shortest path between two vertices is named a
geodesic. The diameter o f a graph is defined as the shortest geodesic over all pairs o f
vertices.

The edge connectivity o f a graph is the minimal set o f edges whose removal will render
the graph disconnected. Likewise, the vertex connectivity is the minimal set o f vertices
whose removal renders the graph disconnected.

Exceptions will be noted in the text.

3The binary relation is, therefore, not reflexive.

106

The girth of a graph is defined as the minimal length over all the circuits o f the graph.

A graph is a convenient way to represent many problems. Applications o f graph
theory range from the solution of combinatorial problems through the design
of communication networks to the solution o f sets o f algebraic equations

[T emperly] [Swamy] [Ore].

The degree o f a vertex is the number of edges incident on it. A graph is termed regular

if all its vertices have the same degree. For the purpose o f this chapter the simple

definitions above are sufficient. Further notions can be found in chapter 6.

7.2. Network Topologies

The topology of a parallel computer refers to the way different processing units are
connected. Many topologies have been proposed. Researchers have been arguing the
adequacy of a particular scheme for the implementation o f real systems. The outcome
is that some inter-connection schemes are superior to others for some applications and

paradigms; therefore, the particular topology adopted is very much dependent on the
computation and communication requirement o f the problem at hand. To assess the

value o f a topology for image processing and computer vision as a whole would be a
very complex task indeed. This is due to the varying degree o f communication and
optimal grain exhibited by algorithms pertaining to different levels in the hierarchy of a
vision system (chapter 2).

Therefore, there is a need for a framework allowing the quantification of the
properties o f topologies. Such a framework does exist and can be stated as a

compromise between a few parameters o f the graph representation o f the topology.
These are the diameter, connectivity and average distance4. Another important aspect
o f a topology is the presence or absence of symmetry and embedability o f other
architectures. The latter relates to the ability to emulate other (simpler) structures i.e.
contain interesting partial graphs e.g. trees etc.

In this section a review o f the different topologies introduced in the literature is given

together with their parameters. Then, a topology based on a mesh inter-connection
scheme is proposed and analysed.

4See section 7.1 for the terminology of graph theory

107

7.2.1. Mesh

A mesh is a topology where the nodes are arranged in an /«-dimensional lattice.
Communication is only allowed between neighbouring nodes. Internal nodes

communicate with 2m nodes. In order to use the connections from boundary nodes,
some variants o f the mesh include wrap-around connections between processors on the
edge of the mesh. Figure 7.1 shows a two dimensional mesh (a) and two variants, same
row and column wrap-around connections (b) and toroidal connection (c).

(a)

(0

Figure 7.1: Two-dimensional meshes

7.2.2. Pyramid

A pyramid is a complete 4-ary tree augmented with inter-processor links so that each
tree level forms a two-dimensional mesh [Quinn], The Pyramid can prove very useful if

the application presents a hierarchical structure with low level data parallelism
transforming data into progressively more centralised functional parallelism. However,
in the context of transputer networks the maximum degree o f nine for internal nodes
makes it difficult to implement even through a switching network (crossbar).

108

7.2.3. Butterfly

A butterfly network is a topology with (k+l).2k nodes arranged into k+1 columns.
Each column contains 2^ nodes. Figure 7.2 shows a butterfly network with 12 nodes

(k=2).

: iaure 7.2: A butterfly network with N = 1

The butterfly network is an obvious choice for algorithms like the Fast Fourier
Transform (FFT) [Cooley], The latter, has a precedence graph identical to the
butterfly network. Mazzeo et al [Mazzeo] describe an implementation o f a one-
dimensional and two-dimensional FFT on a butterfly based transputer architecture.
Batcher [Quinn] showed that a butterfly can perform bitonic sort on n elements very
efficiently when n is a power o f 2. It is worth noting that the bitonic sort algorithm also
has a butterfly precedence graph.

One advantage of the butterfly network is that it is regular i.e. the number of links at

each node is constant (=4). However, for large networks, the problem of gathering the
results o f a computation becomes apparent. This is due to the exponential increase of
the volume of data passed between processors when a number o f cells are allocated to
each processor.

7.2.4. N-cube

This topology, also called a hypercube, has many interesting properties. It can be
obtained from the butterfly by collapsing the lines into a single vertex. A ¿/-dimensional

hypercube is built with n = 2d nodes, where each node has degree d. Such a network

109

will contain 2d-'*d edges. A systematic construction rule can be established by noting

that the hypercube belongs to a class o f graphs known as the graphs on alphabets.
These graphs present global knowledge about the location of a particular node.
Therefore, routing, which is a very important aspect o f parallel processing, can be

defined explicitly. Appendix C gives various definitions including that o f graphs on
alphabets.

In a hypercube each node is connected to a node in each o f the d dimensions;
moreover, the network is symmetric and regular. A building rule can be stated as
follows: each node is associated with a binary number, and the number of bits

necessary to represent all the nodes is log2(n) - d. A node aj,...,aj,...,ad , is therefore,
connected to all nodes whose binary representation is obtained by inverting exactly one

o f the d bits e.g. ai ? a2> • • •> a i —1 ? aj j Ui+i j • • • > ad •

One major advantage o f the hypercube is that a particularly simple routing mechanism
can be established. The latter is optimal in the sense that messages are sent along
shortest paths. A message is transferred from node nj to node nj through a set of

nodes that reduce the Hamming distance5 by one at each step. The distance between
two nodes is their Hamming distance. Therefore, the largest shortest path (or
geodesic) is equal to d the diameter of the network. It is worth noting that there are

m\ (factorial m) paths between two nodes which vary in m positions, m of these
shortest paths are edge and node disjoint. This has an important bearing on the

reliability and fault tolerance of the network.

Moreover, the ¿/-dimensional hypercube is a familiar structure6 that can be subdivided
into two (¿/-/)-dimensional hypercubes by setting one bit o f the binary representation
of its nodes to '0' to obtain the first sub-graph, then to T to obtain the second. Note
that this is a done across the dimension of the chosen bit position. Such properties are
very useful in the context o f multiprocessing, if only for the simplicity o f allocation of

resources (i .e. processors) to processes according to their needs. The dimension o f the
sub-hypercube allocated to a particular 'independent' process can reflect its processing
requirements.

5The Hamming distance between two binary strings (with same length) is the number of places where

they differ.

6A 2-dimensional hypercube is a square and a 3-dimensional hypercube is a cube.

110

However, two problems arise when the implementation of this topology is considered.
First, because of the exponential growth in the number of edges (links) required to
connect the nodes, a standard node (e g. processor in a parallel computer) must have a
large number of links. This poses serious difficulty, if only on the number of pins.
Second, a hypercube exists only for numbers that are powers of two. In other words,
to upgrade a system on n = 2^ nodes gracefully (i.e. without major modifications to

system software viz. routers, schedulers, etc.) an additional n = 2^ have to be added.
These are very serious problems that the Cube Connected Cycles topology tries to
remedy.

7.2.5. Cube connected cycles

A cube connected cycles network (CCC) is a ¿/-dimensional hypercube where the
nodes are replaced by cycles of d nodes (figure 7.3). The basic idea behind CCC
networks is to counter-balance the exponential growth of the number o f edges needed
by introducing 'super-nodes' that emulate the necessary increase in the degree. A CCC
retains some o f the properties of the hypercube like symmetry while increasing the
length of the diameter o f the network. However, it does deal with the problem of
scaling mentioned above, but it further restricts the natural numbers o f nodes for

which a CCC exists. A CCC only exists on numbers n = 2^*d nodes.

Ill

7.2.6. Perfect shuffle

The perfect shuffle network is a special case o f a general class called shuffle-exchange
networks. These also have a restriction on the number of nodes n, n = 2^. Two types

o f connections are identified: exchange connections and shuffle connections. Exchange
connections link pair o f nodes whose binary representation differ on their least

significant bit. The exchange connections define the network. For the perfect shuffle
network, node i is connected to node 2*/ modulo n-1. The perfect shuffle is so called
because it introduces a lower bound on the maximum number o f shuffle operations that
return a datum to the node which issued it, namely d.

7.3. Architecture for large transputer networks

A number o f authors have studied graphs with given properties and associated graph
theoretical concepts with practical considerations in applications [Wilkov], The
advance in technology and the advent o f parallel computers revived interest in the
diameter minimisation problem with constraints on connectivity (vertex and arc)
[Boesch],

As stated above the connectivity is defined as the minimum number of vertices/arcs
that have to be removed for the graph to become disconnected. In a parallel computer

a disconnected set of processors would be useless. Therefore, an architecture with a
large node and link connectivities would be more reliable, since more nodes or arcs
have to fail before there is a considerable (or even total) loss o f performance.

The diameter o f a graph together with the number o f edge disjoint paths between any

two nodes also affect the reliability. Moreover, the diameter affects communication

delays. Therefore, supposing that a distributed program is implemented on two parallel
computers (with similar processing nodes) and requires global communication, then
the computer with the smaller diameter will perform better. The condition o f global
communication is required for the above assertion because when the structure and
volume of data transfer is known deterministically, a specific topology (possibly with
poor diameter, connectivity, etc. properties) would do a better job. However, in the
design o f a general purpose machine these parameters together with the embedability
and regularity criteria are good measures of feasibility, performance and reliability .

Before presenting the class o f regular graphs that will be the basis o f the proposed
architecture, let us consider a graph proposed by De Bruijn [De Bruijn], De Bruijn

112

graphs DB(d,N) are directed graphs defined on a set of dN nodes. The nodes are
labelled by the words of length N on an alphabet o f d symbols. There is an edge from
node i to node j if the first N -l symbols of j are equal to the last N -l symbols of

Therefore, an edge links (/(y i,.. VN- i) t0 n°des of the form where j is
any of the d symbols o f the alphabet. Thus, each node is the starting point o f d edges
and the end point o f d edges. The diameter of a DB(d,N) graph is equal to N. Figure
7.4 shows DB(2,3).

r " \

De Bruijn graphs are not regular and neither are they linear if edge direction is
discarded. However, they have very impressive diameter properties. Because, like for
the hypercube, De Bruijn graphs' node degree is proportional to d, only small values
o f d can be considered for interconnection networks. For the transputer7, with four
links only DB(2,N) are realisable without switching due to the construction procedure
of DB(M,N) (see section 8.2) This restriction is not very taxing since the diameter

properties are compromised. For example, a 1024 node De Bruijn graph will have a
diameter o f 10 and a maximum degree o f 4. Routing through DB(d,N) can be achieved

by a left shifting operation defined on the words o f length N. Although this scheme is

not optimal it provides very good average distances. The simple building rule of
DB(2,N) makes these graphs good candidates for the construction o f transputer
networks.

Another related class o f networks known as Kautz graphs present similar diameters
and building rules [Baude],

However, the irregular structure o f these graphs does not guarantee the efficient or
easy mapping of a large class of algorithms that present regular or hierarchical

7Appendix A describes the transputer family of processors and the Occam language.

113

communication patterns e.g. 2-d filtering, FFT, bitonic sort, etc. Another disadvantage
o f DB(2,N) is the fact that it only exists for specific numbers of nodes, N 0=2N.

7.3.1. Metrics and bounds

Different performance metrics have been proposed for the characterisation of

candidate architectures [Wilkov l][Wilkov][Boesh], Edge and node connectivity have
been studied extensively together with diameter and average distance minimisation.
Boesch and Thomas [Boesh] have extended the notion o f connectivity to define the
cohesion of a regular graph. The cohesion o f a graph 8(/) is defined as the minimum
number o f edges that must be removed in order to isolate any sub-graph o f i nodes.

Based on this measure a graph on N nodes is made reliable by maximising 5(/') for all
i g [1 ,N]. Other measures based on the effect of edge or node removal on the diameter
o f a graph have been investigated by Wilkov [Wilkov 1],

The desirability of large girth for a given diameter and number o f nodes in a regular
graph was established by Wilkov [Wilkov 2], Tutte [Tutte] has shown that the
minimum number of nodes required to design a graph o f given diameter and degree is a

function o f the degree and girth. This establishes an absolute minimum on the diameter
of regular graphs with girth equal to 2k or 2k+\ where k is the diameter. These are
known as Singleton and Moore graphs respectively. It has been established that

Singleton and Moore graphs have minimum diameter over regular graphs on n
vertices of a given degree [Wilkov 1], These results are very interesting since they
define a lower bound on the diameters o f regular graphs. However, these graphs only
exist for a few combinations of degree and girth, and thus are limited to a few values
of n (the number of vertices). The problem of finding the minimum diameter over all
regular graphs of degree d has not yet been solved.

7.3.2. Circulant graphs

Maximum connectivity graphs are an important model for the design o f reliable
networks [Boesh],[Lipovski],[Wilkov]. Moreover, as mentioned above, many attempts
have been made at finding the 'best' graph over all regular graphs. As far as parallel
processing is concerned the ease o f construction, the relatively low degree dictated by
hardware concerns, etc. make the search for the ultimate graph less important than that
required by the rigorous discipline o f graph theory. In practice simplicity of
construction together with a 'reasonable' diameter can make up for the distance away
from the theoretical bounds.

114

A class o f graphs known as Circulants [Harary] offers maximum connectivity
properties for regular graphs. [Boesh] studied these graphs in order to design
maximum connectivity, minimum diameter circulants. The latter have a very simple

construction rule and are node symmetric.

The circulant graph on p vertices, C (n1,n2,...,nk) or Cp(nj) where
0 <nt<n2< <nk< (p+l)/2 has i±nj,i±n2,i+r^ (mod p) vertices adjacent to
vertex i. The sequence (nj) is called the jump sequence and the nj's are called jumps.

Circulants have been studied and an optimality criterion based on the equality o f the
degree, edge connectivity and vertex connectivity verified for the case Cp(l,....,k). One

type o f circulant is particularly interesting Cp(nj,n2), because the vertex connectivity is
four. Therefore, they can directly be used to construct multi-processors whose
processing elements have four links e g. the transputer. In fact the double ring network
used in the ILLIAC-IV multiple processor system [Lipovski] is a Ca2(l,a).

Because the diameters of circulants vary a great deal with the n/s, Boesch and Wang
have considered the problem of defining a lower bound. Since the graphs are node (or
vertex) symmetric, without loss of generality they started from a vertex labelled 0 and

constructed a tree in which each edge is labelled either ^ or (there are 2k edges
emanating from node 0). Moreover, they labelled the nodes reached through these

edges n; or -n^ Obviously, this construction can lead to different paths reaching the
same vertex. When that happens all but the first occurrence of a vertex are discarded.

When all points at the same and different levels in the tree are distinct, the total number
o f nodes in the tree gives the maximum number o f vertices that can be reached from
node 0 using m edges (or jumps), where m is the depth of the tree. If X,„ denotes the
total number of nodes in the tree, to link the above assertion to the diameter of graph,

the following condition must be fulfilled: X,,, > N > X ^j where N is the total number
o f nodes in the circulant. If so the diameter o f a circulant Cp(n1,n2,...,nk) is diag(C) >
m. Evaluation o f m and X,,, leads to the following theorem (theorem 2 in [Boesh]):

Let G = Cp(n,,n2,...,nk), if X^ > N > X ^ j then diag(G) > m, where

115

X . 0 0 - 1 + Z Y ,
i = l

min(k,i)

Yi= I c (k . j) c (i - u - i) 2 J-
i-i

and C(x,y) is the number o f combinations o f y elements from an x element set.

The expression for X,,, simplifies for k = 2 and k = 3 to:
Xm(2) = 2rn(rn+1)+1

and

Xm(3)= 1 + (8m3+12m2+16m)/6.

The case k=2 was studied in [Boesh] and the bound attained for

m =
(-1 + V2N -1

2
where [x] is the smallest integer greater than x and N > 6. One o f the major
advantages o f this formula, besides meeting the bound for this class of graphs, is that it
provides the diameter explicitly. Moreover, these well behaved graphs exist for every
integer value of the number of vertices in the graph N > 6.

Bevide et al analysed circulants with these characteristics and used graph isomorphism

and a constructive method to map similar networks on a mesh topology with wrap-

around links [Bevide]. The topology obtained shows, at least for cases where the
network is a rectangle, that the wrap-around links connect nodes on opposite sides in a

cross-diagonal manner Figure 7.5. This is, intuitively, the main cause for the good
diameter properties over meshes with wrap-around links.

116

The proof for the isomorphism between Cn (TVn /2 - llJ~VN/2~|) and the class of
meshes derived can be found in [Bevide]. It is worth noting that all the optimality
results obtained by Bevide et al, Boesch and Wang, etc. are only valid for the class of
circulants. There are in fact, for some values o f N, regular 4-graphs with smaller

diameters, but the simplicity of construction makes these networks' implementation
simple. Also generic functions can be simply defined for commercially available
transputer and switch hardware and software. Viewing CN(fVn /2 - 1],1~Vn /2~1) as a
mesh makes the implementation o f image processing routines simple. Besides, the

117

small diameter o f the circulants and the simplicity of optimal routing should be an

advantage for the higher level vision tasks that require global data.

For the design o f relatively small networks with a given number of nodes, a procedure
which builds a rectangular mesh and then uses permutations of the links available on
the boundary to minimise the diameter of the network was defined. It uses an
algorithm due to Floyd [Floyd] to evaluate the minimum distance between all pairs of

vertices in a graph. The largest such distance is the diameter of the graph. Floyd's
algorithm together with the choice o f permutation groups adopted and aspects o f the
geometry of the mesh are given in appendix D.

7.3.3. Architecture for large multi-processor systems

De Bruijn graphs DB(2,N) have excellent diameter properties, however, they are not
regular and cannot emulate meshes. In the SIMD model most of the algorithms rely

on regular structures that are implemented on lattices, and hence are realisable on a
mesh. Another important aspect in the MIMD model is the fact that even small
distances in a store and forward communication network can be taxing. Therefore,
changing the inter-connection network dynamically can be beneficial. However,
implementing dynamic switching introduces further overheads and eventually a
bottleneck if the switching resource is centralised. A concept that helps in clarifying
the situation is that of inductive architectures [Lipovski]. Lipovski and Malek define
the hardware (processors and switches) in a multi-processor system as input energy
and the amount of computational power as output energy. Then, an architecture is
inductive if the output energy is a strictly increasing function o f the input energy, as N
(the number o f hardware modules) is increased from N to N +l as N —»00 . Obviously,

induction is a desirable property. It is defined similarly for algorithms. Therefore,
algorithms should seek induction on inductive architectures.

For a dynamically switched network, the management o f the switches can be
considered as non-processing hardware (energy). Therefore, if the complexity o f the
switching mechanism is proportional to the size o f the network N, the architecture
cannot be inductive.

To simplify the problem the following method is put forward. First, a basic architecture

exhibiting good characteristics in terms of the measures introduced above is defined.
Then a switching network is introduced to operate on a subset of edges when nothing
but a direct link would do. O f course, defining such an architecture is not enough to

118

guarantee optimal performance, but it would be a good testbed for analysing parallel
algorithms and distributed switching and scheduling procedures.

An architecture fulfilling the conditions stated above is now introduced. It is based on
the optimal circulant CN(fVn /2 - 1~|J~Vn /2~|) connecting nodes that are De Bruijn
graphs DB(2,3). The rationale behind this design is that both Cn (TVn /2 - llJVN/21)
and DB(2,3) have simple building rules and good diameter and average distance
properties. Moreover, DB(2,3) or an undirected version (Figure 7.6) has six free links.
Four o f the latter will implement the circulant and the two others can be switched to
allow rapid access to a particular region o f the multi-processor system. In effect, such
a network builds on the sound graph theoretical characteristics o f two models to

produce a two-level structure. From the communication point o f view, data
transmission is seen as a two-stage process; namely, a message is transferred along the
circulant links until it reaches the destination group where a second mode is used to
reach the destination processor.

The composite node DB(2,3) is ideally suited as vertex in an optimal circulant, due to
its small local diameter and relatively low connectivity. An optimal routing algorithm
can be designed for CN(fVn /2 - 1 l,fVn /21) by considering the distance between two

nodes as a function o f two variables on a two-dimensional finite lattice, and using a
maximum gradient descent criterion to reach the minimum 0 (when a message
reaches its destination).8

The composite nodes o f this architecture are not node or edge symmetric, therefore,
the choice o f free links to implement the Cn (TVn /2 -1 l,f Vn /2~1) is critical. The routing
algorithm mentioned above is instrumental in effecting this choice. The distance

8See chapter 8 for the details, algorithm and Occam implementation

119

between two nodes is travelled first through the connections corresponding to TVn /2~|

and then [Vn /2 - 1~|. Any shortest path between two nodes contains only one switch in
direction. Therefore, keeping the good diameter and average distance properties of

Cn (TVn /2 - 1IJVN/2 I) suggests using the two nodes with two free links each
(Figure 7.6) to implement the circulant connections. The effect of this set-up is a

bounded increment to the diameter o f the simple circulant (on single processor nodes)
while increasing the number of nodes in the network eight-fold. Admittedly, the
network is not optimal in the sense that the node and edge connectivities are no longer
maximum. However, the two free links o f the central nodes can be switched into a
global store or provide fast distributed access to the world beyond the computer
system. The two free links o f the central nodes were chosen as switching connections

for two reasons:
1. The average distance to the other nodes is smaller than that of the end nodes.
2. The other free connections are ideally suited for the circulant connections
because data is delayed by entering the DB(2,3) only when it is changing circulant

direction or it is destined to a local node.
It is worth noting at this juncture that the network proposed here outperforms
Cn (TVn /2 - ll,rVN/2l). Table 7.1 presents the comparative diameters properties of
several topologies.

The topology proposed is a De Bruijn graph based circulant or DBC(N) where N is the
number of nodes in the graph. N must, therefore, be o f the form N = 8p where p is an
integer. This is a drawback in graph theoretical terms since it does not exist for every
value o f N. However, as far as multi-processor computer systems are concerned, the
ever decreasing cost o f microprocessors warrants the use of large numbers of
processing elements. Besides, the composite node is standard and can be built for
transputer systems as a TRAnsputer Module TRAM [Inmos 1],

Nodes 8 64 512 1024 8192

Hypercube 3 6 9 10 13
De Bruijn 3 6 9 10 13

Circulant 2 6 16 23 45

Torus 3 8 24 32 96

2D mesh 4 16 32 64 512

Proposed

architecture

3 10 14 16 31

Table 7,1: Diameters for different number o f nodes

120

It is believed that a successful architecture for computer vision should provide facilities
for both the SIMD and MIMD implementation o f algorithms9, since, often computer
vision tasks can benefit from both models of parallelism. Such an architecture presents
a difficult problem because the SIMD and the MIMD models rely on entirely different
concepts. For example, synchronisation at the instruction (or task) level is a means to
achieve high performance in the SIMD model, but it is a nightmare in the MIMD

model.

Besides, the architecture should have a high input/output (10) bandwidth. This not
only increases the rate at which input data and results are written to or read from the
system, but also allows easy integration o f application specific sub-systems. For
computer vision, these are ffamestores and mass storage devices. Another very
important aspect is the interpretation of the notion o f diameter (above). Very often a
particular processor is more "important" than the others (e.g. the processor coupled
with a frame store). In this case, and supposing an SIMD type algorithm, the diameter
of the network is no longer a valid measure of communication latency, instead the

maximum and average distances from this processor to the rest o f the network
becomes more relevant.

7.3.4. Dynamic Reconfiguration

Multi-processors based on the message passing paradigm use either the store and
forward or the wormhole (or cut through) routing techniques [Garcia],

The store and forward technique relies on buffering facilities provided by intermediate

nodes in the path of the message. This introduces message latencies that are

proportional to the distance travelled by the message. Besides, task distribution, and
theoretical methods ([Robinson]) become impractical as analysis tools for performance
optimisation.

The cut through routing technique relies on special hardware to start forwarding the
message as soon as a header containing the identity o f the addressee is read. In this
mode the effects o f the diameter on latency are reduced, since the delay introduced by
passing through intermediate nodes is very small. However, the message is no longer a
unit since it can spread over several processors. Lau and Lau [Lau] demonstrated that,

9A transputer system, in fact, supports the SISD model, in other words, the performance of a single

transputer is comparable to the best micro-processors of its generation.

121

although wormhole routing is not supported by the Transputer (T800), it can be
implemented (in Occam). However, as noted in [Peel], the implementation does not
comply with the basic rules of Occam since two processes access a single buffer
simultaneously.

Many authors have stressed the importance o f reconfiguration o f the interconnection
network for MIMD computer system [Garcia][Duato][Jones][Nicole], Garcia and
Duato advocate the use of limited reconfiguration by keeping the 'backbone' o f the
topology and switching a subset o f links. This approach is well suited to the network
described above. However, their algorithm relies on a control bus (and so does that of
[Jones]) that allows individual processors to require reconfiguration from a controller
node. The controller in turn informs all the nodes in the network that a change is

imminent (also through the bus), performs the necessary changes, and then broadcasts
an 'OK to proceed' message. The net effect is that a scheduling point is introduced and
the excellent results for numerical analysis examples, will only be obtained for cases
where the cost function [Garcia] is representative o f the communication patterns as
well as the amount of traffic.

DBC(8/?), where p is an integer, can be viewed as a two level system: a static structure
which consists of a circulant on Composite Processing Elements (CPE) and a fully
reconfigurable 2-connected network on CPEs.

7,3.4.1, Distributed reconfiguration scheme

As the number o f processors in a parallel system increases, attention should be

directed towards the overall reliability o f the system. After a while a processor (or a

few processors) might fail. A relevant question is what is the effect on the
performance? Therefore, a simple mechanism for diagnostics and fault reports should

be included in the design. In this section, a scheme is proposed for the dynamic
reconfiguration o f the network proposed in section 7.3. The hardware involves the
extension of the network with C00410 crossbar switches. Without loss o f generality
the reconfigurable network described next is assumed to consist o f 512 transputers.

First, let us define the basic switching requirements. DBC(8/?), where p = 64, consists
o f a circulant of 64 CPEs. The circulant connections form the static configuration and

10see appendix A for the details of the Inmos C004 crossbar switch.

122

will not be further considered in this section. Each CPE has two free links that are used
in the configuration set-up. These two links are considered functionally as:

• a request and diagnostic link and
• reconfiguration link.

Due to the symmetry of the CPEs and the central position occupied by these two
links, no further distinction is required.

Second, the desirable features o f the scheme are as follows:

• Ease of implementation,
• adherence to the point to point communications model,

• standard building blocks
• efficient diagnostics capability,
• reduced delay

The first three points are addressed by the design of the Inmos C004. The inputs and
outputs of the latter implement the same link protocol as the transputer. Therefore, no
extra logic is required to connect the switches to the network. Besides, each device

consists of 32 to 1 multiplexors and once a route is established between two links the
connection is completely independent. Finally, the C004 is commercially available.

The fourth point involves the ease of access to individual processors in the network for
diagnostic purposes. To this effect, and in order to provide a route for the
reconfiguration requests, the switching system is divided into two identical subsystems.
Hence, the two free links are considered functionally as a control link and a data link.
Figure 7.7 shows a switching subsystem. For the system considered here (512 nodes)

each subsystem is made up o f 12 C004s connected in a shuffle network .

123

This crossbar provides full reconfiguration on 64 links. Therefore, two such crossbars
are needed for the scheme described here. The first subsystem provides connections
between a link on the controller processor and the configuration links o f the CPEs, and
the second implements the reconfiguration. Code on a transputer requiring a

connection to another part of the network sends its request to the transputer which
contains the request link and it sends the message to a buffer on the transputer which

contains the reconfiguration link. Figure 7.8 shows a CPE with identified
reconfiguration links.

Figure 7.9 is a block diagram of a system where only the two links on the CPEs are
shown , each switch corresponds to the configuration described in figure 7.7.

124

Configuration request

Data link

Figure 7.9: Block diagram of reconfiguration system

The switch subsystem which handles requests can do so under the control o f a
transputer which operates on all switches. The controller handles requests in a round

robin fashion. This introduces delay in granting requests to transputers in the network
but it must be seen in the context of a parallel system where requests are relatively
infrequent. In other words, reconfiguration is not needed at the instruction level.

Besides, the C004 implements a simple link protocol (appendix A) which can be used
to effect reconfiguration o f a link in a few instructions. Crossbars11 o f arbitrarily large
sizes have been reported [Inmos 1]. However, the configuration proposed here differs
in the fact that reconfiguration relies on the synchronisation of requests. In other

words, there needs to be a mechanism which ensures that requests are not lost (or

worse, cause deadlock) if the controller does not respond within a specified time. This

seems to defeat the purpose of the decentralised point to point reconfiguration. The
problem is akin to that o f communication through an unreliable channel [Inmos 1],

Therefore, an adaptive method can be devised whereby a switching request is made
according to information gathered from different sources (token specifying the last
time the switch controller polled, time for the expected next poll, cost o f using
circulant connections, etc.) *

n Using C004s

125

The basic advantage of such a decentralised switching system is that no global

synchronisation is necessary. Although, a waiting time is experienced when requests
are made or connections are relinquished, this only affects the two processors engaging

in data transfer.

7.4. Summary

This chapter introduced a network topology suitable for a transputer based computer

vision system. The main features of this architecture are:

• a relatively small diameter and average distance,
• a regular structure,
• a reconfiguration sub-network.

The first point above is a desirable property in all parallel computers since the diameter

and average distance affect the overall communication delay. The second point benefits
low-level vision algorithms which involve localised communications. Finally, the third
point is beneficial to the intermediate to high-level vision algorithms which are likely to
require global and time-varying communication patterns.

The simple dynamic reconfiguration scheme presented allows for processors in the
network to request reconfiguration individually without the need for global
synchronisation. The switching sub-network can be extended to include access to a

main store containing data which can then be considered distributed12.

The advent o f router chips (e.g. C l 04) introduces a new approach to the design of
communication networks. The universal message passing parallel computer [May],
establishes full connectivity between all processors and therefore, does not rely on any
given topology. The advantages of this approach are numerous [May], However, for a
large network the number of routing chip between two processors can become large,
thus introducing more delay in communication paths. It is believed that the topology
presented in this work, running code developed specifically for it, can outperform the
general purpose universal machine. Also, the router can be used in lieu o f the crossbar
switch to improve the dynamic reconfiguration scheme.

12This is only true if the delay introduced by the switching mechanism is bounded and significantly

smaller than the data transfer time. This is very likely to be the case for large networks.

126

CHAPTER VIII

8. Routing algorithm, performance evaluation and practical issues

This chapter introduces an optimal routing algorithm for the architecture introduced in
section 7.3. This algorithm relies on the fact that architecture can be seen at two levels
(inter and 'intra' CPE). The inter-CPE communication is carried out along shortest
paths due to the monotonicity (a characteristic o f circulant graphs) of the running
distance between the destination node and the current node. The intra-CPE

communication takes advantage of the simple building rule o f De Bruijn graphs. The
basic idea is to use the circulant connections (of CPEs) judiciously in order to traverse
at most one CPE when forwarding a message between two nodes.

Also a performance monitoring program is described together with some Occam
implementation issues. This monitor can be run in parallel with application code to

evaluate the efficiency of processors..

8.1. Routing algorithm for DBC

First, the routing algorithm is deduced from the structure o f the circulant and De
Bruijn connections of the proposed topology (DBC). Then, the Occam implementation
is described. The latter consists o f a communication manager which runs in parallel
with application code on every processor in the network. Figure 8.1 depicts the
internal structure of a transputer in the network. A routing process handles all

communication issues and a worker process performs application computations. The
main purpose o f the buffer process is to avoid blocking in the router while waiting for

127

the worker to consume data. In fact, the routing process handles both the circulant
connections and communication between the processors of the same CPE. Therefore,
the routing algorithm has to make the following decisions:

• Has the packet reached its destination ?
• I f not, is the communication to proceed along the same direction of the circulant ?
• Is the communication to change direction ?
• Is the communication amongst the processors of the same CPE ?

Therefore, the routing task consists o f two different sub-tasks: one to deal with the
circulant connections and the other to handle CPE connections. In the next few
sections first the circulant connections are dealt with then the CPE connections are

considered and finally the two are brought together in an algorithm that performs
routing along the shortest routes in a DBC network.

8.1.1. Routing along the circulant connections

Since the circulant graph is vertex and edge symmetric and given the node numbering
introduced in chapter 7, a circulant can be seen for distance measurement as an infinite
2-dimensional lattice. The latter is characterised by the jump lengths m and m+ 1 and
the infinity analogy is derived from the fact that only distances between pairs of nodes

(arbitrary) are required. Figure 8.2 shows such a lattice and identifies a shortest route
between two nodes. Because the lattice is 2-dimensional the function describing the

128

distance between two nodes must be monotonie. Therefore, a maximum gradient
descent approach will yield a shortest route between any given pair o f nodes. This
distance is given by the number of jumps required to move a datum from a source node
to a sink node. It must, therefore, take the form: d=a*m+b(m+l) where m is the
characteristic number o f the circulant and, a and b are the number of jumps o f size m
and m+ 1 respectively. Also, the distance is the difference between the identifiers o f the
destination processor and the source (or current) processor. Because jumps o f size
m+ 1 reduce the distance by a larger amount they are considered to yield the maximum
gradient. Therefore, the routing process should convey messages first along the
connections o f the m+ 1 jumps then along the jumps o f size m.

This ensures that routing proceeds along the direction o f maximum gradient. The
change of direction should happen when the difference between the address o f the

destination and that of the current node are a multiple o f m apart1. At this point the
distance between the destination and the current node can be covered exclusively with
jumps o f size nt.

Therefore, a simple routing algorithm can be defined by performing the following
operations at each node in the network: *

‘To resolve the case where the distance is a multiple of both m and m+1, the jump of size m+1 takes

precedence because of the larger gradient.

129

• Get message (either from the local worker or from one of the links),
• decode the destination address and find the distance d = dd-dc (where dd is the

destination node identifier and dc is the current node identifier),
• If (d > N/2 or 0 > d > -N/2) then set direction dir = -1 else dir = +1
• If |d| = 0 mod (m) then

• If |d| * 0 mod (w+1) then jump = m else jump = m+\
• else jump = m+\
• If d = 0 destination reached else forward message along jump in direction dir

Note that the setting of the jump identity follows from the maximum gradient criterion.
The direction, on the other hand, is derived from the symmetry of the circulant.

Before presenting an Occam implementation of this routing algorithm let us associate
the two jump sizes with the transputer links. Figure 8.3 shows a transputer with links
identified with jumps in the circulant configuration.

The following listing presents an Occam implementation o f the routing algorithm
described. The messages are supposed to have a fixed length2 (a header specifying the
addressee's number). An additional channel pair (besides the four links) is declared for
communication with the buffer (see figure 8.1).

Listing 8.1

VAL INT N IS 512:

VAL INT Nby2 IS (N/2):

2Note that variable length messages can be handled by including the message length in the header.

Figure 8,3: link to jump assignment

130

VAL INT m IS 16:

VAL INT mPl m+1 :

VAL INT length IS 1024:

PROC router(VAL INT source, [5] CHAN OF ANY in, (5] CHAN OF ANY out)

[length] INT buffer:

INT dir,dest:

WHILE TRUE

ALT i=0 FOR 5

in[i] ? dest; buffer

SEQ

dist := dest - source

IF

dist <> 0 — The message has no reached its destination

SEQ

IF

((dist > Nby2) OR ((dist>-Nby2) AND (dist < 0)))

dir :=-1

TRUE

dir := 1

IF

(((dist REM m) o 0) OR (((dist REM m = 0)) AND ((dist REM mPl = 0))))

IF

(dir <0)

out[0] ! dest; buffer

TRUE

out[2] ! dest; buffer

TRUE

IF

(dir <0)

out[l] ! dest; buffer

TRUE

out[3] ! dest; buffer

TRUE

out[4] ! buffer

Were the network a circulant the above listed router would have conveyed messages

between nodes along shortest routes. The following code fragment shows an example
o f the code on each transputer o f such a network.

131

PRI PAR

router(id, chanin, chanout)

PAR

atore(chanout[4], chanin|4J, from.worker, to.worker)

worker)to.worker, from.worker)

Listing 8.2

The transputer can execute processes at one o f two priorities (see appendix A for
details). In Occam the PRI PAR construct takes two component processes and
executes the first one at high priority and the second at low priority. In the previous
listing the router is executed at high priority. This is a popular technique amongst
transputer users, which ensures that communication requests are dealt with as soon as
possible to avoid long waits for data.

8.1.2. Routing within a CPE

CPEs consist o f 8 transputers connected in a De Bruijn DB(2,3) graph configuration.
The simple construction of the De Bruijn graphs suggests yet another simple algorithm
for routing messages. The latter is based on the binary representation of the numbering
sequence which identifies each processor.

The construction of DB(2,3) proceeds as follows. The nodes are labelled with 3-bit

binary numbers3. A directed edge is present between node a (a2axa0) and node b
(b2blbo) if the two most significant bits of b (,b2bj) are equal to the two least
significant bits o f a Therefore, the nodes of the CPE shown in figure 7.8 can be
labelled as follows (Figure 8.4 where directions, parallel edges and loops are
discarded).

3In the general case DB(w,D) nodes are labelled with words of length D on an w-letter alphabet.

132

Next, a conjecture4 defines a better routing algorithm for De Bruijn graphs. This
algorithm sends messages between pairs of nodes along shortest paths. The method
relies on the direction o f edges in (the directed version of) DB(2,3) (Figure 8.5).

Before stating the conjecture let us consider a simple routing algorithm for DB. The

latter [Liu] dispatches messages using 'left shift' operation. In other words, a message

travelling from node a2axaQ to node b2b1b0 follows the path5 (a2tf1tf0, a 1a0Z>2> a (A^i>
bjbJ)0). This algorithm is suggested by the construction o f De Bruijn graphs which,
therefore, guarantees the existence of the path. However, there is no guarantee that the

path thus described is the shortest possible in the undirected version o f the graph. For
example, consider the path between node 3 (O il) and node 1 (001) defined by the
above algorithm (O il, 110, 100, 001). By ignoring edge direction (as in CPE) this path
can be changed to (011, 001).

4The conjecture is given for a general DB(2,D.) As far as DB(2,3) is concerned this can be verified.

5This is the longest path generated by this algorithm since at most three left shift operations are

required to transform the label of a node into that of any other node in the graph. As an example of a

shorter path consider the path (000, 001, 010) between node 0 (000) and node 2 (010.)

133

Conjecture:

An optimal routing algorithm for D B (2,D) can be stated as follows:

Define an alternative shift operation as follows: a message travelling from node O2fll c,0 t0 n°d c

b 2b }b0 follow s the path a 2a xa Q, a xa 0b0, a0b0b l ... Then select the shift operation to apply based

on the shortest cycle covered by the two operations. For the undirected version o f the graph

another decision is made as to whether the cycle is to be covered in one direction or the other.

N ote that this introduces a pair o f right shift operations. The existence o f the alternative cycles

introduced follow s from the construction o f D e Bruijn graphs.

As an example o f the way this works consider a message sent from node 4 (100) to
node 1 (001). With the original algorithm the message will be despatched towards
node 0 (000) then around the self loop of node 0 and finally to node 1. With the
second shift operation the message will be sent straight to node 1. However, even if
the conjecture were true it would not provide an algorithmic solution to the routing

problem. Nonetheless, for a given De Bruijn graph the cycle calculations can be done

statically and included explicitly in the routing algorithm to effect choice.

Following is a listing of an Occam program implementing optimal routing in node 0 of
DB(2,3), identifying the two links connecting node 0 to node 1 and node 4 as up and
down respectively.

Listing 8.3

CHAN OF ANY local.in, local.out, up.in, up.out, down.in, down.out:

PROC router (VAL BYTE id)

VAL [JBYTE route IS [V , ’uVu’.'d '.’dVdVd’]:

SEQ

ALT

up.in ? dest; message

down-in ? dest; message

local.in ? dest; message

IF

(dest o id)

IF

(route[dest] - 'u')

up.out ! dest;message

TRUE

134

down.out ! dest; message

TRUE

locaLout ! message

In the above listing, only the route array is changed from one node to the other.

8.1.3. Combined Router for DBC

Routing messages in the DBC follows directly from the algorithms introduced in the
previous two sections. First, node 0 (000) and node 7 (111) o f each CPE are the only
two processors that handle the circulant graph routing task. Figure 8.6 shows a CPE
with the circulant connections identified.

In the DBC, nodes 0 and 7 o f each CPE implement the routing algorithm of listing 8.2.
Nodes 1-6 implement the algorithm depicted in listing 8.3. Some additional code is
required to interface between the two modes o f routing. Since all individual processors

in the network need to be aware o f the configuration a common protocol needs to be
established. The address o f a node should comprise two fields one for the CPE address
and one for the destination processor within the CPE. Listing 8.4 shows an example of
such a protocol.

135

Listing 8.4

PROTOCOL message IS INT16; BYTE; INT; []BYTE:

In this protocol the first entry is a 16-bit integer used to hold the CPE address, the

second entry specifies the processor address within the CPE, the third entry indicates
the length of data and the last is an array containing data.

A DBC running the routers developed in this section transfers messages between any
two transputers along the shortest route. A message issued inside a particular CPE will
be forwarded to the appropriate port (node 0 or node 7 of the same CPE) according to
the circulant hops. Then, the circulant routing is initiated and carries the message to
the destination CPE.6 Once at the destination CPE, the routing switches back to the

shift operations to convey the message to its final destination.

8.2. Performance monitoring

Jones et al [Jones 1] have proposed an algorithm (supervisor) for the measurement of
the percentage o f time the transputer is idle during the execution o f an application

program. The method depends on the way in which the scheduler functions (Appendix

A). The algorithm defines two processes that are run in parallel. A CPU7 load counter
process (CLC) and an idle loop counter process (ILC). First, a calibration stage is run

before the application program is allowed to start. This is to ascertain that no other
process interferes with the calibration. At this stage, the number o f times the main loop
o f ILC is run in a given period (P) is evaluated. This number is the totally idle count
(IC0) i.e. the value of the count for a processor that is completely idle. Second, the

supervisor is started and the application program is allowed to run. The start command
is received by CLC which, in turn, notes the time by reading the current value o f the
timer and sends a start command to ILC. The latter clears its counter and proceeds to
measure the number o f times the processor is idle during the execution o f the
application code. This is done by forcing the rescheduling o f ILC thus giving a chance

6In cases where both jumps are used a CPE along the path will have been crossed. This is an

operation equivalent to sending a message within a single CPE with the source and destination nodes

being 7 and 0 an vice versa.

7Central Processing Unit.

136

to every other process to be scheduled. If ILC is rescheduled no later than the time it

takes the scheduler to perform task switching (a threshold value dependent on the
processor speed, etc.), IC is incremented. When the application code terminates the
values of P, ICq and IC together with the elapsed time are used to evaluate the
percentage of time the processor was found to be idle during the execution of the

application code.

One disadvantage o f the above method is its dependency on a threshold determined by
the processor type and speed. Consequently, accurate data about the processor, clock

cycle, etc. must be available.

In order to avoid this problem and to simplify the design of the performance monitor
the following method is adopted. Consider a process that can only run if no other
process is ready. If this process is capable o f measuring the amount o f time TR it
spends running, then, running this process in parallel with some application code and
comparing the total time elapsed (on completion) to TR will provide a measure o f the
idleness o f the processor.

The monitor consists of a single low priority process which runs continuously as long
as the low priority process queue is empty and no high priority process is ready. As
soon as a low priority process becomes ready the monitor deschedules and puts itself
at the back of the ready queue. The code fragment in listing 8.5 demonstrates
the idea. The descheduling operation is implemented through the timer input
timel ? now PLUS 15. The number 15 of low priority timer ticks ensures that the
process is rescheduled before the minimum time for a time slice (1 millisecond) has

elapsed.

Listing 8.5

WHILE needed

INT val, dummy:

TIMER timerO, tim erl:

SEQ

timerO ? start

GUY — GUY construct (to allow machine code) to store the

LDLP val — pointer to the first process in the low priority queue

SAVEL — in the variable val

IF

137

(val = NotProcess.p) — If this pointer is NIL goto the timerO ? end instruction

SKIP — to calculate the time

TRUE

SEQ

timer! ? now — Deschedule this process

timerl ? now AFTER 15

timerO ? start

timerO ? end

totaLticks := totaLticks (end MINUS start)

Note that this process must run at low priority since a high priority process will

interrupt the other tasks.8

Since high priority processes do not conform to the description which forms the basis
o f the algorithm described, further consideration must be given to the case when the
situation arises. However, since a process is only interrupted at specified instructions
the state o f the program between the two timerO inputs is quite stable.

8.3. Summary

This chapter presented a routing algorithm for the architecture introduced in section

7.3. The algorithm is optimal in that it conveys messages along shortest routes in the
network. Only a simulation on one transputer was tried since a 'real' run requires a
large number o f processors. Each transputer was implemented as an Occam process

consisting o f the routing process a packet consumer and a packet producer. A control

process communicating with every other process was also implemented. The latter is
the interface between the system and the user who can instruct any process to issue a
message (to any destination). The message is empty at first and consists o f the source
and destination processes. As it is forwarded from one process to the next the
intervening processes append their identification numbers. When the message reaches
its destination the control process reads it and displays the route which can be checked

against a drawing o f the network.

8The transputer scheduler operates on low priority processes only. High priority processes always run

when they are ready and are never time-sliced. Therefore, performance monitoring which should be as

little disruptive as possible is run at low priority.

138

The purpose o f the simulation described above was to ascertain that messages are
dispatched along minimum length paths using the proposed routing algorithm. For

more thorough simulations a simulator such as Transim [Hart] could have been used.
This was not carried out because the simple simulation is enough to arrive at the result
pursued. Transim is a parallel design tool which simulates an application program as it
runs on a network of Inmos transputers, the input being a subset o f Occam with special
timing commands built-in. Parallel execution, alternation, channel communication,
timeslicing, priorities, interrupts, concurrent operation o f transputer links, effects of
external memory and so on are taken into account.

Similarly to the topology developed in this work, routing schemes for specific
applications can benefit from the latest software developments such as TINY
(University o f Edinburgh) or the Virtual Channel Router (VCR) [Debbage]. VCR is a
software package developed at the University of Southampton to provide unrestricted
channel communication across networks of T4 and T8 series transputers. It allows
distributed transputer programs to be written, compiled and configured in a topology-

independent format and then bound to a topology-dependent routing kernel at run-
time.

Besides the routing algorithm, a performance monitor is also presented in this chapter.

It was used extensively and the results were found to be comparable to those o f the
algorithm given in [Jones 1], However, the formulation o f the proposed algorithm is
simpler and does not require calibration or processor dependent parameters.

139

CHAPTER IX

7. Conclusions and discussion

The work presented in this thesis was primarily concerned with the design of a
transputer network topology which is compatible with the wide range of requirements
in computer vision. First, the inadequacy of the transputer for low-level image

processing is noted. This inadequacy is linked to the processing power to
communication bandwidth ratio. The latter was seen, in the literature, to give a rough
estimate o f the range of 'grain' that a particular processor can handle. The advent of

very fast 1-D and 2-D multipliers and convolvers1 made some low-level image
processing tasks at frame rate possible. Therefore, a medium-grain processor like the
transputer seems ill-suited for the whole spectrum of applications in computer vision.
These fast multipliers can be considered as very fine-grain multi-processors since they
derive their high performance from the fact that many similar and simple operations are
executed simultaneously on separate chunks o f data and synchronisation takes place at

the instruction level. Thus, they implement data parallelism religiously and achieve
impressive results. Unfortunately, this kind of model does not fit other levels o f the
hierarchy o f computer vision tasks. Few algorithms present 'virtually no' sequential
part* 2. Therefore, a system well suited for computer vision must present features
facilitating both the data parallelism and functional parallelism approaches.

Having established the advantages and shortcomings o f the transputer, attention was

turned to designing communication networks that present a good compromise with
regard to some measures of communication latency and delay. The latter are seen to
depend on the communication bandwidth o f the processor, the number o f

!For example the Inmos Axxx series
2The convolution of an image with a 3x3 kernel for enhancement or edge detection purposes contains
very little sequential operation (the multiplication of a pixel with a kernel coefficient); besides, it
requires only local communication since the output pixel only depends on the input pixel and its
immediate neighbourhood.

140

communication links and the topology of the network. Since the architecture of the
transputer fixes the bandwidth and the number of links, the design should concentrate

on the network topology.

Graph theory provides a robust and rigorous framework to reason about
communication networks. For instance, the delay incurred by a message is proportional
to the distance between the two processors involved i.e. the number o f processors on
the path between the two nodes. Early contributions to distributed computer systems

design using graph theory can be found in [Wilkov] and [Harary]. In particular a class
o f regular graphs known as circulants was introduced by Harary [Harary]. These
graphs are node and arc symmetric. Symmetry is a very valuable feature for multi-
processors since it simplifies the routing mechanism required to move data and results.
Boesh and Wang [Boesch] showed a method for constructing minimum diameter
circulants o f degree four. The latter are well suited for transputer networks3. However,
in practice all the nodes in a computer network do not have the same importance. For
example, there will be a node whose task is mainly to distribute data and/or processes
to the other processors and collect results. This is particularly relevant to computer
vision systems where a framestore contains the image or sequence o f images to be
processed.

A topology was proposed for large transputer networks. It relies on Circulant and De
Bruijn graphs (De Bruijn Based Circulants- DBC) and offers very good diameter and

average distance characteristiques.

Also, a routing algorithm was designed and implemented in Occam to allow
communication between transputers along shortest paths. The routing process is

distributed and relies on the simple construction of the DCB graphs.

Practical considerations, besides the routing algorithm, are dealt with in Chapter 8.
These include mainly the Occam implementation o f a performance monitor. The latter
is based on the workings of the transputer's scheduler. This tool proved useful for the
optimisation o f the parallel computer vision algorithms presented in Chapters 4 to 6.

The advent o f the T9000 transputer, and its associated router chip (Cl 04), introduced
a different approach to the design o f interconnection networks. The Universal Message
Passing Computer [May] aims to implement full connectivity in a network through a
set o f C104 chips. For that a labelling o f the nodes in a given network must exist,

before communications can proceed along shortest paths. Although such labellings are

3Since a transputer has four links.

141

known to exist for standard topologies (e.g. trees, hypercubes, etc.), this is not the
case for arbitrary networks. As a general purpose computer a Universal Message
passing Machine is superior to the topology presented here because o f ease of
programming, portability and easy implementation o f emerging standards (MPI).

However, applications specifically developed for DBC can take advantage of the

simple structure and reconfiguration scheme to implement efficient communications.

The computer vision algorithms considered range from edge detection where two new
algorithms were proposed to vector quantisation for image compression, the Fourier
descriptors method for shape discrimination, the Hough transform for lines and
arbitrary shapes and the maximal clique finding for object recognition.

The Fourier descriptors method, the Hough transform and matching relational

structure through the maximal clique algorithm were implemented on various
topologies with up to sixteen transputers. Unfortunately, the architecture proposed in
Chapter 7 requires a large number of transputers. Therefore, simple 2-D meshes, trees,
and linear and bi-linear structures were used for these implementations. However,
these structures can all be embedded into the architecture given in Chapter 7.

A formulation o f the Fourier descriptors method is proposed which relies on the fast

Hartley transform to achieve a high object throughput. The latter is the result o f a fast
parameterisation o f incoming shapes due to the efficiency o f the FHT. A parallel
implementation o f the latter constituted together with the normalisation problem the
main aspect o f section 6.1. The results show a very fast FD computation which should
be more than adequate for applications where a large library o f shapes makes the
classification task very arduous. In this case a sub-system dedicated to FD computation

will allow the remainder to concentrate on classification.

The Hough transform algorithm is used extensively in computer vision mainly because

o f its immunity to noise. However, its computational complexity dictates that it can
only be o f practical use in applications which are not time critical. Therefore, an
attempt is made at parallelising the algorithm. The results show that large speedups can
be achieved by combining a probabilistic approach to edge pixel selection and a
parallel implementation.

The maximum clique finding algorithm is a graph theoretical method which consists of

detecting the largest all-connected set o f nodes in a given graph. This method is used
in computer vision in conjunction with the association graph method which builds a

142

single graph from the two structures to be matched. The problem is NP-complete i.e.
no algorithm is known to solve it in time less than an exponential function o f the input
size (number of nodes in the graph). In this work several attempts were made at

formulating the problem in a manner suitable for parallel implementation:

1. block cluster analysis
2. Minimum Distance between all pairs of nodes (MD).
3. transitive orientation.

Modest speedups were noted for a parallel iterative version o f a classic algorithm
[Bolles], The three ideas above were analysed and block cluster analysis was found to

exhibit inherently serial processing. As far as transitive orientation is concerned it was
found that many graphs are not orientable; thus, a closer investigation o f the graphs

and the contexts which generate them is needed. Therefore, more experimentation and
theoretical appraisal are required for the application of these concepts.

This application together with further evaluation o f the algorithms o f section 6.1 and

6.2 could be the subject o f further work. This could take shape as the implementation

o f complete applications incorporating the algorithms developed here as modules.
Another interesting avenue is the integration of different computer vision tasks'

implementation into flexible architectures o f the type developed in chapter 7 with
further consideration to the network optimality and the switching technique.

The transputer offers good characteristics as a building block for a parallel computer
vision system . Given that careful care is given to the interconnection network,

applications can benefit from the co-operation o f several processors in solving a

particular task. As some algorithms exhibit very little inherent parallelism or massive
global communication needs, it is imperative that a parallel computer vision system
allows for reconfiguration. This is shown here to be possible with current technology
and is bound to become more so with hardware improvements in the future.

This thesis has shown that graph theoretic methods can help in the design of parallel
computers with low diameters and average distances. The network presented in

chapter 7 compares favourably with the published literature with regard to these
metrics. Besides, it was shown that practical limitations4 in multi-processor technology
can be alleviated through the partition of the PEs into super-nodes and optimisation o f

the communication characteristiques at two levels. Also high speedups were achieved

4e.g. the number of links on a given processing element.

143

with parallel versions of a selection of low and intermediate level computer vision
algorithms. Modest speedups were obtained for the maximal clique algorithm and

improvements were proposed. Because the aim was not to solve a particular problem
using these algorithms, the results in chapter 6 are concise and only show speedup

figures.

144

APPENDICES

145

APPENDIX A

Occam and the transputer

This appendix introduces the Occam language and the transputer family o f processors
and the C004 crossbar switch. First, a brief introduction o f the syntax o f Occam and
program transformation methods is given. The close adherence to the Communicating
Sequential Processing theory is noted and the differences mentioned. Second, the
transputer family o f processors is presented. The basic structure common to all
transputers is detailed and the more advanced features o f the latest generation are
described. The characteristics o f the transputer that make it suitable for parallel
processing are the four bi-directional serial links -operating in Direct Memory Access

(DMA)- and the micro-programmed scheduler which allows several processes to run
concurrently on a single processor. The scheduler operation is described in detail as it
forms the basis for the algorithm presented in Chapter 5 for measuring utilisation i.e.
the ratio of processor time to real time for a particular program.

A -l Occam

Occam is a very simple programming language. It enables an application to be
described as a set of concurrent processes. The latter communicate with each other
and with the environment through uni-directional channels. The basic syntax defines
three primitive processes:

• v := e evaluate expression e and assign result to variable v

• c ! e evaluate expression e and output to channel c
• c ? v input value from channel c and assign to variable v

Processes are combined using three constructs which differ from equivalent forms in
CSP only in notation [Hoare], These are:

SEQ whose components are executed one after another
PAR whose components are executed together

ALT where only the first component process to be ready is executed

146

These six forms are the basic elements of any Occam program. The constructs can in
turn be seen as processes and may be used as components to other constructs. Serial

programs can be expressed with the primitive processes and the SEQ construct.
Moreover, IF and WHILE constructs are also provided. The support for concurrent
programming takes the form of channel input, channel output and the PAR and ALT
constructs. Each Occam channel provides a communication path between two
concurrent processes. Communication is synchronised and is effected when processes
at both ends of a channel are ready. This frees the programmer from the task of
explicitly defining synchronisation operations e g. hand-shake. This section merely

introduces the features o f Occam that are of interest for the development o f parallel
applications, for a full definition o f Occam's syntax and semantics see [Occam 2], The
implementation o f Occam on the transputer provides a formalism for building parallel
processing systems.

Occam provides support for concurrency while the transputers implement parallelism

through their links. Therefore, a description of the architecture of the transputer family
o f processors is given next.

A-2 The transputer

The INMOS transputer family is a range of VLSI1 circuits used as building blocks for
parallel processing systems. Figure 1 displays the basic architecture common to all
transputer products.

1 Very Large Scale Integration

147

r ^

Figure 1: Transputer architecture

The support to concurrency offered by the transputer materialises in the micro-code

scheduler. The processor can execute processes at one o f two levels o f priority, one
level (for priority 0) for urgent processes and the other (priority 1) for less urgent
processes. Priority 0 processes take precedence and they are executed whenever they
become ready. If a priority 0 process becomes ready while a priority 1 process is
running, the latter is interrupted.

The processor contains two clock registers, one for each priority. The high priority
timer increments every 1 ps and the low priority clock increments every 64 ps. After

every 1024 ticks o f the high priority clock a timeslice period is said to have ended.
When two consecutive timeslice period ends have occurred while the same low priority
process has been running, the scheduler will attempt to deschedule the process. This
can only happen after a few selected instructions. Then, the process is descheduled and

the next waiting process is scheduled. Note that high priority processes are not

timesliced and will run until completion or until they have to wait for communication.

The processor maintains two lists o f processes that are ready to execute, one for each
priority level. Each ready list contains the workspaces (i.e. pointers to locations in
memory holding information2 about the processes) o f processes which are ready to be

run. A process is started by adding its workspace to the back of the appropriate list.
When the current process is descheduled it is also put at the back o f the appropriate
scheduling list and a new process is taken from the front o f the list.

2This information varies according to the type of process but always includes the instruction pointer.

148

When a high priority process interrupts a low priority process, the latter is not put at
the back o f the list. Instead, its current parameters are saved in a special location in
memory. When there are no high priority processes able to run the values o f the

registers are reloaded and the low priority process proceeds. For this reason there can
only be one interrupted low priority process at any time.

For more information about Occam and the transputer please refer to the Inmos
literature listed in the references section.

A-2.1. The IMS T9000 transputer

The IMS T9000 is the latest member in the transputer family o f microprocessors. It
integrates a high performance central processing unit (CPU), a 16 Kbyte cache,
communications system and other support functions on a single chip. The main

functional blocks o f the IMS T9000 are the CPU, the hierarchical memory system, the
communications system, the multiple internal buses and the system services unit. The
function o f each o f these is outlined below.

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit

floating point unit (FPU). The CPU also includes instructions for byte and half word
operations. The CPU uses 32 bit linear addressing and the IMS T9000 is binary
compatible with previous transputers. In particular it implements the instruction set of
the IMS T805 with many additions.

One o f the major improvements over the T800, besides better error correction, is the
ability o f the T9000 to run code in protected mode. In this mode all memory accesses
are made through a memory management unit which checks and translates addresses
before using them to address the memory system. Further, only a subset o f the full

instruction set may be executed, preventing protected code from executing privileged
instructions.

Hierarchical memory system

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to
instructions and data. The cache provides a peak bandwidth o f 200 Mwords/s. The
CPU also includes another small cache for the most frequently used local variables o f a
program which provides another 150 Mwords/s of memory bandwidth.

149

There are four independent sets of memory control signals simplifying the use of
different device types in the same system. The memory can interface to 8, 16, 32 or 64
bit wide devices. The maximum data transfer rate across the memory interface is 50

Mwords/s.

Communications system

To support interprocessor communications, there is a complete communications
subsystem on chip. This includes four 100 Mbits/s full-duplex, serial communication
links each with its own pair of direct memory access (DMA) channels. The links can be
directly connected between transputers with no external buffering or other glue logic.

A communications processor, which manages all link communications, operates
concurrently with the main CPU so that data transfers do not adversely affect CPU
operation.

Two additional links are provided for system control and monitoring. Initialisation and
booting o f the processor can optionally be done through these links. The

communications subsystem also includes four 'Event' channels. As well as acting as
interrupt inputs, these can be used, as inputs or outputs, for more general
synchronization and signalling.

Multiple internal buses

To support the high degree of concurrent operation on the IMS T9000, and to
maintain the high internal data rates required, there are four sets o f 32 bit address and
data buses internally. These provide multi-port access to the on-chip cache from the
various functional units of the IMS T9000.

System services

The system services section provides all the general facilities necessary for the
operation o f the transputer. This includes the power and ground connections, and the
clock input (5 MHz). Other important connections are a capacitor, which is required
for the on-chip phase locked loops which generate all the internal high frequency
clocks, and the processor speed select pins which can be used to select the frequency
o f the internal clocks (up to the maximum speed for a particular device). There is also
a reset input - however, as the IMS T9000 includes on-chip power-on reset circuitry,
external reset logic may not be required in an embedded control application.

150

Pipelined, superscalar implementation

To increase the execution rate of the transputer instruction set, the IMS T9000 is able
to issue several instructions per cycle. A superscalar micro-architecture was designed

which implements the same high level architecture and instruction set as the IMS T805
but with much higher performance.
The details o f the IMS T9000 pipeline are transparent to the programmer. The
processor appears to be the simple transputer architecture described above and

straightforward code written for that programming model will get nearly the best
performance out o f the processor. An optimising compiler for the IMS T9000 can, of

course, generate more efficient code if the details of the internal architecture are taken
into account.

The pipeline

Instructions are executed in a five stage pipeline, the first can fetch two local
variables; the second can perform two address calculations, for accessing non-local or
subscripted variables; the third stage can load two non-local variables; the next can
perform an ALU or FPU operation; and the final stage can do a conditional jump or
write.

A conventional pipeline is designed to allow several instructions to be executed
simultaneously; different parts of each instruction being handled in different stages of
the pipeline. In order to allow multiple instructions to be issued per cycle (as well as
multiple instructions being executed in each cycle) the IMS T9000 does not simply

send a sequence o f instructions through the pipeline but has hardware which assembles
groups o f instructions from the instruction stream. These groups are chosen to make

the best use o f the available hardware and one group can be sent through the pipeline
every cycle. Instructions are put into groups in the order that they arrive at the CPU;
dependencies within the group are handled automatically by the pipeline.

The grouper can be thought o f as a hardware optimiser; it recognises commonly
occurring code sequences that the processor can execute effectively. The design o f the
grouping mechanism and the pipeline is based on analysis o f the code typically
generated by high level language compilers.

151

Grouping of instructions

The grouping of instructions takes advantage of the high degree of concurrency and
multiple buses in the processor. For example, both caches are multi-ported and can

each support two reads by the CPU simultaneously.

Since the processor can fetch one word, containing four bytes o f instructions and data,

in each cycle it is possible to achieve a continuous execution rate o f four instructions
per cycle (200 MIPS). However, if any of the instructions require more than one cycle
to execute, then the instruction fetch mechanism can continue to fetch instructions so
that larger groups can be built up. Up to 8 instructions can be put into one group and

there may be five groups in the pipeline at any time.

Improvements over IMS T800

In addition to executing several instructions each cycle, the number o f cycles required
to perform many arithmetic and logical operations has been reduced from previous
transputers by adding extra hardware. This, combined with the faster clock speed and
the new micro-architecture, means a ten-fold increase in speed over the IMS T805. In
addition there is improved support for error handling, and protecting code and data
from the errant behavior o f a program. The IMS T9000 provides better access to the

transputers scheduling mechanism, making it easier to implement software kernels for
a particular processing model.

Hierarchical memory system

The IMS T9000 has a complete, hierarchical memory system providing fast and

efficient access to data and instructions. There are two separate caches on chip, a
general purpose unified (code and data) cache and a small cache for local variables.
These caches can provide fast, multi-ported access to data because they are on chip.
They also reduce the number and frequency o f accesses to external memory, allowing
lower cost, slower devices to be used without degrading performance. Finally, because
the majority of external memory accesses will be cache refills (and therefore multiple
word reads and writes) fast memory access methods, such as page mode, can be used.

152

M ain cache

The main cache consists o f four independent banks, each containing 256 lines. Each

line holds data from four consecutive words (16 bytes) in memory. An access can be
made to every bank on every cycle which, with the multiple internal buses, means there

is a very high bandwidth between the cache and different functional units within the
IMS T9000.

The main function of the C l04 routing chip is as follows. It uses the protocol of the
T9000 to locate the message destination, derives the output link and immediately starts
forwarding the packet (provided that the output link is not in use). Therefore, it
introduces an efficient queuing system since the packet size is relatively small
(maximum 32 data bytes).

153

APPENDIX B

Complexity theory terminology

In this thesis the order notation used is that introduced by Knuth [Knuth 1976], There
are three symbols 0(), Q() and 0().

Assume that / and g are two functions over the set o f natural numbers. Then O(f («)) is
an upper bound on the order of a particular function h (n) and is defined as follows: It
is the set o f all g (n) such that there exist positive constants c and riQ so that
g(ri) <c.f (ti) for all n > h q . Therefore, n, 23/?2+7/?+12 and 3«2 are all O(tP-), this

can be shown by solving the above inequality for c and hq and noting that the
predominant term for high values o f n is the highest power of n.

Similarly, Q.(f (//)) defines a lower bound on the order of functions: It is the set of all
g (n) so that there exist positive constants c and n§ satisfying g (n) > c.f(n) for all

n > no-

minally, Q(f («)) is defined as the exact order o f a function, it is the set o f all g («) such
that g (n) is both O(f (»)) and («)).

Another aspect of the definition and classification of algorithms relies on the nature of

/ (»). Let P be the class of all problems which can be solved by a polynomial-time

algorithm. There are a large number o f problems for which this is not the case. Some
o f these can be solved in polynomial time by a non-deterministic algorithm3. NP

denotes the class of all such problems. A problem is NP-hard if a deterministic
polynomial-time algorithm for its solution can be used to find the same for all problems
in NP. Finally, an NP-hard problem in NP is called NP-complete.

3The Shortest distance amongst all vertices method of section 6.3 is an attempt to find such an

algorithm.

154

APPENDIX C

Shortest path between all pairs of vertices

This appendix introduces the algorithm due to Floyd [Swamy] for computing the

shortest paths between all pairs of vertices in a graph. The original algorithm was
designed for directed graphs with length associated with their edges. Besides, it is
more general in that the succession of nodes in the shortest paths are also provided.
Here a simple version for undirected graphs is given. The formulation requires that the
absence o f an edge from the is represented by an infinite entry at the corresponding
location in the nxn adjacency matrix. Therefore, the null off-diagonal elements o f the

matrix are replaced by oo. The diagonal elements are set to 0. The matrix W thus
obtained is the initial condition of Floyd's algorithm, W-W°. The sequence o f matrices
W 1,W1 2,...Wn is constructed as follows:

wijk=m in {wljk’1,wikk‘1+wkjk’1} where W1=[wijl] 0<l<n.

On completion the entry w-" in Wn will give the length o f the shortest path from node

i to node j. The following algorithm implements the method.

• Step 1 W is the starting condition i.e. the modified adjacency matrix.
• Step 2 set k=0.
• Step 3 set k=k+l, for all i*k and w ik*oo, and all jAk and w kjAoo:

1. Set m=min{wij,wjk+wkj}

2. If m < w- set Wjj=m.

• Step 4 If k<n go to step 3 else W=[w;j] gives all the shortest paths.

The above algorithm is efficient and only involves tests and scalar additions. The
construction o f small meshes of minimum diameter (thus computer networks) based on
this algorithm can done as follows. For simplicity it will be assumed that the number of

processors in the network is n=p2 where p=l,2,...For other values o f n the aspect ratio

o f the polygon should be made as close as possible to 1. This assertion stems from
simple Euclidean geometry whereby a square has the minimum perimeter over all

155

rectangles with the same area. The area of a mesh connected network represents the

number of processors and the small perimeter ensures that distances between side
processors are not too large. Having set-up the mesh connections, the wrap around

edges are added from one side to the other following a set o f permutations after which
the above algorithm is run.

Note the purpose here is to reduce diameter o f the graph, therefore, only one o f the

two co-ordinates needs be permuted. The other should implement the identity
permutation. For example, the top left node is connected to the bottom left node. This
technique is found in many classic configurations including mesh connected circulants.

156

APPENDIX D

Selected Code Sections 6.1 and 6.2

This appendix presents code fragments which implement the algorithms o f sections 6.1

and 6.2. E -l shows a procedure which takes a sequence o f numbers and returns its
Hartley transform. The listing E-2 takes data in the form of a list o f candidate
boundary points and consults the R-table of a parametrised boundary at different
scales and rotations to accumulate records of the reference point locations. The latter
are returned to the farm controller which in turn forms the Hough space.

D-l Hartley transform

PROC (|]REAL32 x, VAL [JREAL32 C, S, VAL INT N, M, n, VAL |]INT seed)

VAL INT Nby2 ISN/2:

VAI, INT Nby4 IS N/4:

SEQ

permute (x, M, 2, n, seed)

— First stage

INT U, L:

REAL32 temp:

SEQ

U := 0

SEQ i = 0 FOR Nby2 — Two points per FHT

SEQ

L := U + 1 — Lower p t

temp := x[L]

x[L] := x[U] - temp

x[U] := x[U] + temp

U U + 2 -- Two nodes per FHT

— Second stage

INT III, U2, L1,L2:

REAL32 temp:

SEQ

U1 := 0

SEQ i = 0 FOR Nby4 — Two points per FHT

157

SEQ

U2 := U1 + 1

LI :=U1 +2

L2 :-= U1 + 3

temp := x[Ll]

x[Ll] x[Ul] - temp

x[Ul] := x[Ul] + temp

temp :*= x[L2]

x [L 2] x [U2] - temp

x[U2] :*= x[U2J + temp

U1 := IJ1 + 4 — Four nodes per FHT

— Other stages

VAL INT Nby8 IS N/8:

VAL INT MMin2 ISM-2:

INT lhts, n.p.flit, p.p.flit, p.p.fhtby2:

INT theta: — Angle of rotation step

SEQ

— Init values for this stage

flits := Nby8 — flits = N/2, N/4, thus flits = N/8 in third stage

n.p.fht := 1 — In third stage

p.p.flit := 8 - In third stage

p.p.flitby2 := 4

theta := Nby8

SEQ stage = 3 FOR MMin2

INT first.Node.flit:

INT eta:

SEQ

n.p.flit := n.p.flit + n.p.flit

firsLNodc.flit := 0

SEQ fht = 0 FOR flits

SEQ

— First node

INT U, L:

REAL32 temp:

SEQ

U := first.Node.flit

L := first.Node.flit + p.p.fhtby2

temp := x[L]

158

x[L] := x[U] - temp

x[U] := i[UJ + temp

— General nodes

eta := theta — Initial value for eta

SEQ

SEQ Ul = (15rst.Node.fht + 1) FOR (n.p.fht -1)

INT U2, L I, L2, offset:

SEQ

offset := Hrst.Node.fht + (fht TIMES p.p.fht)

U2 :■* (p.p.fhtby2 - Ul) + offset

LI := p.p.fhtby2 + Ul

L2 := U2 + p.p.lhtby2

— Butterfly

REAL32 tempi, temp2, temp3, temp4:

REAL32 A, B:

SEQ

tempi := x[Ll] * C[eta]

tcmp2 := x[L2] * S[eta]

temp3 := x[Ll] * S[cta]

temp4 := x[L2] * C[eta]

A := tempi + tcmp2 — x[N/2+k]C(T) + x[N-k]S

B := temp3 - temp4 - x|N/2+kJS(T) - x[N-k]C

x[L2] := x[U2] - B

x[Ll] := x[Ul] - A

x[U2] := x|U2] + B

x[Ul] := x[Ul] + A

eta := eta + theta

— Last node

INT U, L:

REAL32 temp:

SEQ

U := fust.Node.flit + (p.p.fhtby2 » 1)

L := U + p.p.fhtby2

SEQ

temp := x[L]

x[L] := x|U] - temp

x[U] := x[U) + temp

first.Node.fht := first.Node.fht + p.p.fht

159

flits := (flits » 1) — One DFT In last stage

p.p.fhtby2 := p.p.flit — In prev. stage

p.p.flit := p.p.flit + p.p.flit

theta := (theta » 1)

D-2 Generalised Hough transform

— Data is presented to the following process in the form of: x,y,di,dy the positions and gradient magnitudes respectively.

IF

(dx <> 0)

angle.in.radians := ATAN ((REAL32 ROUND dy)/(REAL32 ROUND dx)) - result

TRUE

angle.ln.radians := PiBy2

theta.edge := INT ROUND (angle.in.radians*57J (REAL32))

theta.edge := theta.edge + 90 — get to appropriate place in R-table

— check for overflow

IF

theta.edge =180

tlieta.edge := 0

TRUE

SKIP

theta-edge := (thetaedge + r.angie) \ 180

SEQ i = 0 FOR (r.table.position[theta.edge]»l)

INT r, theta, new.dx, ncw.dy, tempi, tempy :

REAL32 r.real, theta.real, sin.h, cos.h :

SEQ

r := r.table|theta.edge][(i«l)]

theta := r. table [theta. edge][(i«l)+ l] - theta

— work out orientation to ref point

theta := theta - r.angie

IF

(theta < (-90))

theta := theta +180

TRUE

SKIP

— work out new r

r.real := REAI.32 ROUND r - r (real)

160

— r.real := r.reaJ * (REAL32 ROUND r.scale) - new scale

— now work out new dx and dy

theta..real :** REAL32 ROUND theta. - theta (real)

sin.h S1N(theta.real/573 (REAL32))

cos.h :*> COS(theta.real/57 J (REAL32))

new.di INT ROUND (cos.h*r.reaI) — new values of dx and dy

new.dy :« INT ROUND (sln.h*r.real)

— new x and y for Hough space

IF

new.dx < 0

new.dx := -new.dx

TRUE

SKIP

IF

new.dy < 0

new.dy := -new.dy

TRUE

SKIP

IF

theta < 0

tcnipx := x + new.dx

TRUE

tempx := x - new.dx

tenipy :■* y - new.dy

IF

— Within Hough space

(tcmpx>0) AND (tempx<255) AND (tempy>0) AND (tempy<255)

INT current:

SEQ

current:“ no.points[pos]

table.of.residts[pos][current] :*= BYTE tempx

table.of.results[pos]|current+l] :■= BYTE tempy

no.points[pos] := current-l- 2

TRUE

SKIP

161

References

[Ambler] Ambler, A.P, Barrow, H.G., Brown, C.M., Burstall, R.M. and Popplestone,
R.J. "A versatile Computer controlled assembly system." Proc. 3rd Int. Joint Conf. Art.
Intell., Stanford, CA, pp 298-307, 1973.
[Arsac] Arsac, J. "Foundations of Programming." Academic Press, 1985.
[Ashkar] Ashkar, G.P. and Modestino, J.W. "The Contour extraction problem with
biomedical applications." CGIP, 7, pp 331-355, 1978.
[Astfalk] Astfalk, G. "Convex's view of tflops computing." Parallel Computing and
Transputer Applications, Part I, pp 51-61, Valero et al eds, CIMNE, Barcelona, 1992.
[Ballard] Ballard, D.H. and Brown, C M. "Computer vision." Prentice-Hall, New
Jersey, 1982.
[Ballard 2] Ballard, D.H. Generalizing the Hough Transform to detect arbitrary
shapes." Pattern recognition 13, 2, pp 111-22, 1981.
[Ballard 3] Ballard, D.H. "Hierarchic detection of tumors in chest radigraphs." Verlag,
1976.
[Baude] Baude, F., Carre, P. and Vidal-Naquet, G. " Topologies for Large Transputer
Networks: Theoretical Aspects and Experimental Approach." Proc. OUG-10, A.
Bakkers ed, pp 178-197, 1989.
[Beguelin] Beguelin, A "PVM and HeNCE " Technical Report, University of Tenesse,
1990.
[Belhaire] Belhaire E., Garda P., Bernard T., Devos F. and Zavidovique B. "A
Diffusion Based Edge Detector." 22th Asilomar Conf Sign. Comp., pp 315-19, 1988.
[Bevide] Bevide, R., Herrada, E., Balcazar, L. and Labarta, J. "Optimized Mesh-
Connected Networks for SIMD and MIMD Architecture." J. ACM, pp 163-170, 1987.
[Binford] Binford, T.O. "Survey of Model-Based Image Analysis Systems." The
international Journal of Robotics Research, pp 18-64, 1982.
[Boesch] Boesch, F.T. and Wang, J. "Reliable Circulant Networks with Minimum
Transmission Delay." IEEE trans. Circ.Syst., CAS-32, No 12, pp 1286-91, 1985.
[Bolles] Bolles "Robust feature matching through maximal cliques." SPIE, 182, pp
140-9, 1979.
[Bracewell] Bracewell, R.N. "The fast Hartley transform." Proc. IEEE, 72, pp 1010-8,
1984.
[Brice] Brice, C.R. and Fennema, C.L. "Scene analysis using regions." Artificial
Intelligence, 1, No 3 pp 205-226, 1970.
[Brillault] Brillault-O'Mahony, B. "A probabilistic Approachh to 3d Interpretation of
Monocular Images." PhD thesis, City University, London, 1992.
[Canny] Canny.J.F. "A computational approach to edge detection", IEEE Trans.
PAMI, 8, no.6, pp 679-97, 1986.
[Chen] Chen Z. and Ho, S.Y. "3D aircraft recognition with fast library search." Pattern
Recognition, 24, No 5, pp 375-90, 1991.
[Claxton] Claxton, P R. and Kwok, E.K.W. "The use o f colour to segment and label
images", Proc. 3rd Alvey Vision Conference, AVC87, 15-17 Sept., Cambridge, UK,
p. 295-302, 1987.
[Coleman] Coleman, G.B. and Andrews, H.C. "Image Segmentation by Clustering."
Proc. IEEE, pp 773-785, 1979.
[Cooley] Cooley, J.W. and Tukey, J.W. "An Algorithm for the Machine Calculation of
Complex Fourier Series." Math. Comput., 19, pp 297-301, 1965.

162

[Davies 1] Davies, E R. "A new parametrisation o f the straight line and its apllication
for the optimal detection of objects with straight edges." Pattern Recognition Letters,
6, pp 9-14, 1987.
[Davis] Davis, L.S., Johns, S.A. and Aggarwal, J.K. "Texture Analysis Using
Generalized Co-Occurence Matrices." PAMI, 1, No 3, pp 251-9, 1979.
[Debbage] Debbage, M. and Hill, M. "The Virtual Channel Router " ESPRIT P2701 PU MA,
PUMA /035/VCR2/ADVT, Nov, 1992.
[De Bruijn] De Bruijn, N.G. "Some machines defined by directed graphs." Theoretical
Computer Science, 32, pp 309-19, 1984.
[Deriche] Deriche, R. "Optimal Edge Detection using Recursive Filtering." Proc. Int.
Conf. Comp. Vision, London, 1987.
[Duda 1] Duda, R.O. and Hart, P.E. "Use of the Hough transformation to detect lines
and curves in pictures." Commun. ACM, 15, No 1, pp 11-5, 1972.
[Duda] Duda, R.O. and Hart, P.E. "Pattern Classification and Scene Analysis." John
Wiley and Sons, New York, 1973.
[Duato] Duato, J. and Garcia, J.M., "Evaluating the cost o f the dynamic
reconfiguration of a multicomputer network" Actas de la XVIII Conferencia
Latinoamericana de Informatica PANEL 92, pp 523-30, Las Palmas Gran Canaria,
September, 1992.
[Ellis] Ellis, T.J., Hung, T.W.R. and Omarouayache, S. "Structural Elements in colour
images: A parallel Approach." Proc. o f the third International Conference on the
application of transputers, pp 536-41, Glasgow, 1991.
[Feng] Feng, T.-Y., "Some Characteristics o f Associative/Parallel Processing", Proc.
o f the 1972 Sagamore Computer Conference", pp 5-16, August, 1972.
[Floyd] Floyd, R.W. "Algorithm 97: Shortest Path." Comm. ACM, 5, 345, 1962.
[Flynn] Flynn, M.J. "Very high speed computing systems." Proceedings o f the IEEE
54, 1966, 12, pp. 1901-9.
[Freeman] Freeman, H. "Computer processing o f line drawing images." Computer
Surveys, 6, No 1, pp 57-98, 1974.
[Frei] Frei, W. and Chen, C.C. "Fast Boundary Detection: A Generalization and a New
Algorithm." IEEE trans. Comp., c-26, No 10, 1977.
[Garcia] Garcia, J.M. and Duato, J. " An Algorithm for Dynamic Reconfiguration o f a
Multicomputer Network." Proc. 3rd IEEE Symp. Parallel and Distributed Processing,
pp 848-55, Dallas, 1991.
[Gonzalez] Gonzalez, R.C. and Wintz, P. " Digital Image Processing." Addison-
Wesley, Reading, 1987.
[Gottlieb] Gottlieb, A. Architectures for parallel supercomputing. Parallel Computing
and Transputer Applications, Part I, pp 39-47, Valero et al eds, CIMNE, Barcelona,
1992.
[Gupta] Gupta, J.N. and Wintz, P.A. "A Boundary Finding Algorithm and its
Applications." IEEE trans. Circuits Sys., Cas-22, No 4, pp 351-62, 1975.
[Händler] Händler, W. The impact o f classification schemes on computer architecture.
Proceedings o f the Int. Conf. on Parallel Processing, August 1977, pp 7-15, IEEE,
New York.
[Harary] Harary, F. "Graph Theory." Addison-Wiley, Reading, 1969.
[Hart] Hart, E. "Transim: Prototyping Parallel Algorithms", University o f Westminster
Press, London, 1994.
[Hoare] Hoare, C.A.R. "Communicating Sequential Processes.", Prentice-Hall, 1985.

163

[Horowitz] Horowitz, S.L. and Pavlidis, T.P. "Picture segmentation by a tree traversal
algorithm." J. ACM, 23, No 2, pp 368-88, 1976.
[INMOS 1] The Transputer Applications Notebook, Systems and Performance, Inmos,
1989.
[Inmosl] Inmos. "IMS T800 Architecture." technical note 6.
[Johnston] Johnston, H.C. "Cliques o f a graph - large or small." Queen's University
Belfast, 1975.
[Jones 1] Jones, G. "Measuring the busyness o f a transputer." WoTUG Newsletter, No
12, Jan. 1990.
[Jones] Jones, P. and Murta, A. "Practical experience o f run-time link reconfiguration
in a multi-transputer machine." Concurrency: Practice and Experience, 1(2), pp 171-
189, 1989.
[Khoros] The Khoros manual pages, University of New Mexico, 1991.
[Kimme] Kimme, C., Ballard, D.H. and Sklansky, J. "Finding circles by an array of
accumulators." Commun. ACM, 18, No 2, pp 120-2, 1975.
[Kiryati] Kiryati, N., Eldar, Y. and Bruckstein, A.M. "A probabilistic Hough
transform." Pattern Recognition, 24, No 4, 1991.
[Kittler] Kittler, J. "On the accuracy of the Sobel Edge detetector." Image Vision
Comput., 1, pp 37-42, 1983.
[Köninger] Köninger, R.K., "MPP Directions at Cray Research Inc ", Parallel
Computing and Transputer applications, Part 2, Valero et al eds. pp 80-90, CIMNE &
IOS Barcelona 1992
[Kühl] Kühl, F.P. and Giardina, C.R. "Elliptic Fourier feature o f a closed contour."
Comp. Graphics Image Processing, 18, pp 236-58, 1982.
[Langhammer] Langhammer, F. "Second generation and teraflops parallel computers."
Parallel Computing and Transputer Applications, Part I, pp 62-79, Valero et al eds,
CIMNE, Barcelona, 1992.
[Lau] Lau, S.W. and Lau, F.C.M. "A Simple Cut-Through Router." WoTUG
Newsletter, No 15, July 1991.
[Laws] Laws, K.I. "Rapid texture identification." SPIE, 238, pp 376-380, 1980.
[Leavers] Leavers, V.F., Ben-Tzvi, D. and Sandler, M.B. "A dynamic combinatorial
Hough transform for straight lines and circles." Proc. 5th Alvey vision conference,
Univ. Reading, pp 163-8, 1989.
[Lester] Lester, J.M., Williams, H.A., Weintraub, B.A. and Brenner, J.F. "Two graph
searching techniques for boundary finding in white blood cells." Comp. Bio. Medecine,
8, pp 293-308, 1978.
[Lipovski] Lipovski, G.J. and Miroslaw, M., "Parallel Computing Theory and
Comparisons", John Wiley & Sons, New York, 1987.
[Liu] Liu, C.L. "Introduction to Combinatorial Mathematics", McGraw-Hill, New
York, 1968.
[Lowe] Lowe, D.G. "Three-Dimensional Object Recognition from Single Two-
dimensional Images." Artificial Intelligence, 31, pp 355-395, 1987.
[Marr] Marr, D.C. and Hildreth, E. "Theory of edge detection." Proc. Royal Society
London, Vol B207, pp 187-217, 1980.
[Martelli] Martelli, A. " An application of heuristic search methods to edge and
contour detection." Comm. ACM, 19, No 2, pp 73-83, 1976.
[May] May, M.D., Thompson, P.W. and Welch, P.H., "Networks, Routers and
Transputers: Function, Performance, and Applications", Inmos Limited, Bristol, 1993.

164

[Mazzeo] Mazzeo, A. Mazzocca, N. and Villano, U. "A transputer architecture for
high-speed ID- and 2D-FFT computations." Parallel Computing and Transputer
Applications, Part I, pp 317-26, Valero et al eds, CIMNE, Barcelona, 1992.
[Mitchell] Mitchell, O R., Myers, C.R. and Boyne, W. "A max-min Measure for Image
Texture Analysis." IEEE trans. Comp., pp 408-414, 1977.
[Nevada] Nevatia.R. "A color edge detector and its use in scene segmentation", IEEE
Trans. SMC, 7, No 11, pp 820-26, 1977.
[Nicole] Nicole, D.A., Lloyd, E.K. and Ward, J.S. "Switching Networks for
Transputer Links." Proc. 8th Tech Meeting of OUG, Kerridge. J ed, 1988.
[Nilsson] Nilsson, N.J. "Priciples of Artificial Intelligence." Paolo Alto, CA, 1980.
[Omar 1] Omarouayache, S., Ngwa-Ndifor, J. and Ellis, T.J. "Vector quantisation : a
transputer implementation" Proc. IEE International Conference on Image Processing
and its applications, Maastricht, 1992.
[Omar 2] Omarouayache, S., Mylonas, S.A, ELLIS, T.J, and R.A. Comley
"Transputer implementation of adaptive noise cancelling in digital images", Parallel
Computing and Transputer applications, Part 2, Valero et al eds. pp 964-73, CIMNE
& IOS Barcelona 1992.
[Omar] Omarouayache, S. progress report on detection o f brain tumors, Dept, of
Medical Oncology, Charing Cross Hospital, London, 1992.
[Ore] Ore, O. "Graphs and Their Uses." Random House, New York, 1963.
[Orfanidis] Orfanidis, S. - "Optimum Signal Processing - An Introduction", 2nd Ed.,
McGraw-Hill, pp 405-34.
[Peel] Peel, R.M.A. "Virtual Cut-Through Routing." WoTUG Newsletter, No 16, Jan.
1992.
[Persoon] Persoon, E. and Fu, K.S. "Shape discrimination using Fourier Descripors."
IEEE Trans. Syst. Man Cyber., SMC-7, 170-9, 1977.
[Pingle] Pingle, K.K. "Visual perception by computer." Automatic Interpretation and
Classification o f Images, A Grasselli Ed., New York, Academic Press, pp 277-84.
[Pneuli] Pneuli, A., Lempel, A. and Even, S. "Transitive Orientation og graphs and
identification of permutation graphs." Canad J. Math., 23, pp 160-75, 1971.
[Quinn] Quinn, M.J. "Designing Efficient Algorithms for Parallel Computers",
McGraw-Hill, New York, 1987.
[Ramamurthi] Ramamurthi. & Gersho. "Classified vector quantization o f images"
IEEE Trans. COMM., 34, No 11, pp 1105-15, 1986.
[Redfem] Redfem, S. "Implementing data structures and recursion in Occam." Inmos,
1988.
[Rice] Rice, S.O. "Mathematical Analysis of Random Noise." Bell Syst. Tech. J., 24,
pp 46-156, 1945.
[Robinson 1] Robinson, G. "Color Edge Detection", Proc. SPIE Symp. Advances
[Robinson] Robinson, J.T. "Analysis of asynchronous multi-processor algorithms with
application to sorting." Proc. Int. Conf. Parallel Processing IEEE, pp 128-35, New
York, 1977.
[Rosenfeld 2] Rosenfeld, A. "Picture Processing by Computer." New York Academic
Press, 1969.
[Rosenfeld] Rosenfeld A., Ornelas J. and Hung Y, " Hough Transform Algorithms for
Mesh-Connected SIMD Parallel Processors." Computer Vision, Graphics and Image
Processing, 41, pp 293-305, 1988.
[Ruff] Ruff, B.P.D. "A pipelined Architecture for the Canny Edge Detector." Alvey
Programme IKBS 025.

165

[Skillicorn] Skillicorn, D.B. "A Taxonomy for Computer Architectures", Computer,
Vol. 21, No 11, pp46-57, November, 1988.
[Gropp] Gropp, W., Lusk, E. and Skjellum, A. "Using MPI - Portable Parallel
Programming with the Message-Passing Interface". MIT Press, 1994.
[Swamy] Swamy, M.N.S. and Thulasiraman, K. "Graphs, Networks and Algorithms."
John Wiley and Sons, New York, 1981.
[Tai] Tai, A., Kittler, J., Petrou, M. and Windeatt, T. "Vanishing Point Detection."
BMVC, pp 109-116, 1992.
[Temperley] Temperley, H.N.V. "Graph theory and applications", Ellis Horwood
Limited, Chichester, 1981.
[Tucker 2] Tucker, L.W., Feynman, C.R. and Fritzsche, D.M. "Object Recognition
Using the Connection Machine." Proc. IEEE Conf. Computer Vision and pattern
Recognition, pp 871-7, June 1988
[Tucker] Tucker, L.W. and Robertson, G.G. "Architecture and Applications o f the
Connection Machine." Computer, Vol. 15, No 1, pp 26-38, 1988.
[Tutte] Tutte, W.T. "Connectivity in graphs." London, Oxford Univ. Press, 1966.
[Wallace] Wallace, T.P. and Wintz, P., "An efficient three-dimensional aircraft
recognition algorithm using normalized Fourier descriptors." Comp. Graphics Image
Process., 13, pp 99-126, 1980.
[Waltz] Waltz, D.L. "Applications o f The connection Machine." Computer,Vol. 20,
No 1, pp 85-97, 1987.
[Widrow 1] Widrow, B. et al. - Adaptive noise cancelling: Principles and Applications,
Proc. IEEE, 63, No 12, pp 1692-1716, 1975.
[Widrow 2] Widrow, B. et al. - Stationary and Nonstationary Learning Characteristics
o f the LMS Adaptive Filter, Proc. IEEE, 64, No 8, August 1976, pp 1151-62.
[Wilkov 1] Wilkov, R.S. "Construction of maximally reliable communication networks
with minimum transmission delay." Proc. IEEE Int. Conf. Comm., 6, pp 4210-5,1970.
[Wilkov 2] Wilkov, R.S. "On the design o f high speed communication networks." 5th
annu. Conf. Info. Sei. Syst., Princeton, 1971.
[Wilkov] Wilkov, R.S. "Analysis and Design o f Reliable Computer Networks." IEEE
trans. Comm., COM-20, No 3, pp 660-78, 1972.
[Wu] Wu, S., Abel, J.F. and Greenberg, D.P. "An interactive computer graphics
approach to surface representation." Comm. ACM, 20, No 10, pp 703-11, 1977.
[Yuen] Yuen, S.Y.K. "Connective Hough Transform." Proc. BMVC, Mowforth, P.
ed, pp 127-33, 1991.
[Zahn] Zahn, C.T. and Roskies, R.Z. "Fourier Descriptors for Plane Closed Curves."
IEEE trans. Comp., C-21, pp 269-81, 1972.
in Image Transmission Techniques, no. 87.

166

