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On the long-established classification problems in general relativity we take a novel perspective by 
adopting fruitful techniques from machine learning and modern data-science. In particular, we model 
Petrov’s classification of spacetimes, and show that a feed-forward neural network can achieve high 
degree of success. We also show how data visualization techniques with dimensionality reduction can 
help analyze the underlying patterns in the structure of the different types of spacetimes.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction & summary

What are the possible structures of spacetime? This is surely 
one of the most important questions in theoretical physics. Classifi-
cation problems in general relativity have been an active field since 
the very beginning and have more recently been a focus of com-
puter algebra systems [1,2]. Fully classifying and comparing Rie-
mannian manifolds can be achieved through the Cartan-Karlhede 
algorithm [3]. The first step in this algorithm is to determine the 
Petrov [4] and Segre [5] types of the spacetime [1,6]. These meth-
ods analyze algebraic symmetries of the Weyl and Ricci tensor, 
respectively, and involve detailed study of roots and multiplicities 
of certain quartic equations. In particular, Petrov’s classification of 
the Weyl tensor has been an integral part of the study of exact 
solutions to the Einstein equations. Here, we will illustrate a new 
computational approach that can be used in the Petrov classifica-
tion problem, which can then be extended for a full classification 
of gravitational solutions.

Since the recent introduction of machine-learning and related 
techniques of modern data science, to study the string theory land-
scape [7–11], and more generally the vast landscape of pure math-
ematics [12–16], it is natural to address our present problem of 
spacetime classification under the auspices of this programme. The 
reader is also referred to the pedagogical introduction of machine-
learning in theoretical physics and mathematics by [17,18] as well 
as references therein. Furthermore, detection of symmetries in 
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physical systems relevant to our context, using machine-learning, 
is also discussed in [19–25].

In this letter, we apply some of these machine-learning (ML) 
techniques to Petrov’s classification of spacetimes. Since the orig-
inal formulation of the problem, many algorithms have been pro-
posed to model the classification (see, for example, [6,26–29]). 
These usually reduce the problem to finding the roots and mul-
tiplicites of a quartic equation where the parameters are a set of 
five complex Weyl scalars �i (i = 0, ..., 4) in the Newman-Penrose 
formalism [30]. These Weyl scalars can easily be computed for any 
spacetime and the relations between the nonvanishing �i deter-
mine the Petrov type of the manifold. Here we take this approach 
for building a supervised learning problem fit for ML tools.

In Section 2 we give an overview of the problem and show how 
to represent the spacetime data in an expedient manner. We arti-
ficially generate numerical data to train and validate various ML 
classifiers. Specifically, we start by building different datasets of 
Weyl scalars {�0, �1, �2, �3, �4}, with randomly generated en-
tries, and then manually labelling each data point with its cor-
responding Petrov type. These datasets are later used in Section 3
to train several ML classifiers to see how well they learn and com-
pare. We find that feed-forward neural networks (NN) are the most 
accurate classifiers for this problem, obtaining very high precision 
in only a handful of epochs. Moreover, in Section 4, we use other 
data science techniques, like Principal Component Analysis (PCA), 
to further study latent patterns in the data, that give rise to the 
Petrov classification. We show how data visualization tools can 
illustrate the intrinsic differences between spacetimes of distinct 
Petrov type. Finally, we discuss the results and future applications 
of this programme in Section 5.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Classification of the Petrov type according to the number and multiplicity of 
principal null directions (with the arrows denoting possible degenerations of one 
Petrov type into another). Type O corresponds to the vanishing of the Weyl tensor 
and so does not single out any principal null directions.

2. The Petrov classification

Petrov’s classification of the algebraic symmetries of the Weyl 
tensor can be formulated as an eigenvalue problem for the Weyl 
tensor evaluated at some spacetime event. Alternatively, one can 
see it as a characterization of the Weyl tensor in terms of the 
principal null directions (p.n.d.) at that event [31] (see the Ap-
pendix for details into this approach). Depending on the amount 
and multiplicity of the p.n.d.’s we can classify spacetimes in 6
distinct types: I, I I, I I I, D, N, O . The classification can be seen in 
Fig. 1.

As is shown in the Appendix, one can see that the determina-
tion of principal null directions is equivalent to solving the follow-
ing quartic equation for z:

�0 − 4z�1 + 6z2�2 − 4z3�3 + z4�4 = 0 , (2.1)

where �i (i = 0, 1, 2, 3, 4) are the five complex Weyl scalars in the 
Newman-Penrose formalism, and are defined in (A.9).

a. The n = 32 cases: The vanishing of one or more of these �i
simplifies (2.1), and this has been a staple of most attempts to de-
termine the Petrov type. This has been taken into account in many 
of the aforementioned algorithms where, starting with the work 
of [27], a parameter n was introduced to distinguish the 32 possi-
ble combinations of vanishing/non-vanishing Weyl scalars. Each of 
these 32 classes might have one or more Petrov types assigned to 
it. For a detailed list of the classes and their Petrov types, see Ta-
ble 1 (where we’ve ordered the cases according to the number of 
vanishing Weyl scalars, and not on the value of n from [27]).

As can be seen from Table 1, for the cases with 3 or more 
vanishing Weyl scalars the Petrov type can be immediately deter-
mined; this is not the case for the rest. When working with an 
arbitrary null tetrad, the Weyl vector {�i} might be arbitrarily hard 
and it takes more work to determine the Petrov type. Of course, 
the Petrov classification is coordinate independent and specifically, 
does not depend on the choice of tetrad, as long as that frame is 
not singular [32]. To distinguish between the possible types at the 
bottom half of the table, there have been many analytical results as 
in [6,27] (building polynomials out of the remaining non-vanishing 
Weyl scalars). Since we want our classifier to handle completely 
general data (and work in any basis), we want to train in all pos-
sible cases of Table 1.

b. Data generation: For this purpose we treat {�0, �1, �2, �3, �4}
as a numerical five-vector, randomly generating the entries for ev-
ery possible case and subcase in Table 1.

We created different databases formed from integer, rational, 
real or complex entries. The latter two permit the creation of 
huge datasets uniformly distributed in a specific range (e.g. for 
the reals �i ∈ {−10, 10}). Unfortunately, for the real and complex 
data points, some subcases where not possible to sample through 
2

Table 1
Determination of the Petrov type accord-
ing to the vanishing of the five Weyl scalars 
{�0, �1, �2, �3, �4}. “Form” refers to the van-
ishing of the five quantities �i : N signifies a 
non-vanishing entry and 0, a vanishing one. This 
table was based on the one at [6], where we also 
corrected some typos.

Number of zeros Form Petrov type

5 00000 O

4 N0000 N
0000N
00N00 D
0N000 III
000N0

3 NN000 III
000NN
00N0N II
N0N00
00NN0
0NN00
0N00N I
N00N0
0N0N0
N000N

2 00NNN II or D
NNN00
N0N0N I or D
0N0NN I or II
NN0N0
N00NN
NN00N
0NN0N
N0NN0
0NNN0

1 0NNNN I, II or III
NNNN0
N0NNN
NNN0N
NN0NN I, II, III or D

0 NNNNN I, II, III, D or N

Table 2
Tally of data points per Petrov type for the dataset of real entries. The distribution 
of points per class is not homogeneous and this has to be taken into account when 
judging the efficiency of a classifier.

I II III D N O Total

126,000 90,500 55,500 24,500 23,500 10,000 330,000

purely random generation so the analytical results of [6,27] were 
used to generate this remaining data.

Specifically, for the real (or complex) dataset, 10, 000 points 
were collected from each n except the last case, NNNNN, where 
20, 000 points were sampled. This amounts to a total size of 
330, 000 data points, of different Petrov types. Notice that by do-
ing this we are taking a different number of data points per Petrov 
type but this is consistent with how common it is to find each 
type. For example, for the real dataset the resulting tally of points 
per type can be seen in Table 2. These vectors were then labelled
by their corresponding Petrov type, through the implementation of 
the [26] algorithm in Mathematica [33].

3. Building a classifier

For our supervized ML paradigm, the above dataset was ran-
domly split in three groups: 70% for the training set, 15% for val-
idation and 15% for testing. The first two are used to train the 
classifiers, while the testing set is used to evaluate the perfor-
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Fig. 2. Architecture of the five-layer neural network. The hidden layers are alternating between tanh and sigmoid activated; the last layer corresponds to the softmax activation 
function. The hidden layers contain 500 nodes each, and the softmax has 6, corresponding to the six output classes.
Fig. 3. Loss-function (above) and error rate (below) for the training of the neural 
network, plotted against the number of epochs or rounds.

mance in never before seen data. Many different types of classifiers 
were trained and tested, including: decision trees (boosted), ran-
dom forests, nearest neighbours, and more. While these methods 
achieved reasonable accuracies, the best results were obtained us-
ing feed-forward neural networks (NN), which we detail shortly.

The non-linearity in a NN model is obtained through the choice 
of activation functions. For this problem we found the highest ac-
curacy in the use of hyperbolic tangents and logistic sigmoids. 
While the problem can be modelled using a single hidden layer, 
we found higher accuracy in fewer epochs when using multiple 
hidden layers. In Fig. 2 we show the architecture of our NN that 
combines both activation functions in multiple alternating hidden 
layers. It takes as input the five-dimensional1 vectors of Weyl num-
bers, then goes through four hidden layers of 500 nodes each, with 
alternating activation functions: tanh and sigmoids. The specific 
numbers of nodes and hidden layers were also found to produce 
the highest accuracy results, but by no means do we claim this 
to be the most efficient configuration possible. Different choices of 
these hyperparameters (or other variables such as the optimizer, 
the label encoding or the learning rate) represent possible direc-
tions of improvements on this neural network. Finally, since we 
have here a multi-class classification problem, the last layer is a 
softmax layer, with 6 nodes for the 6 different classes.

As mentioned above, the NN from Fig. 2 was trained and op-
timized using the training and validation sets, and the testing set 
was used to determine its accuracy. The network was trained for 

1 Here and in the following we will use the dataset built from real entries for 
�i . An analog analysis was produced for the complex dataset, where the input vec-
tor is ten-dimensional, after splitting in real and imaginary parts. Similar results in 
accuracy and confidence were found for the complex dataset.
3

30 epochs, using a learning rate of 10−3, and the ADAM optimizer 
[34]. In Fig. 3 one can see the steady decrease of the loss func-
tion and error rate, as the number of training rounds increases. 
We define accuracy as percentage agreement of predicted versus 
actual values. However, when dealing with imbalanced multi-class 
classification problems accuracy is not the most useful evaluation 
metric. To take these differences into account we define confidence 
then through the use of Matthew’s Correlation Coefficient (MCC) ϕ
generalized to the multi-class case.2 In all, we achieved an accu-
racy of 0.979, confidence of 0.973, and a final loss of 6.61 × 10−2.

We can plot the confusion matrix to see the successes and mis-
takes for each class. This is a 6 × 6 integer matrix of the actual 
numbers in the Petrov class of (O , I, I I, I I I, D, N) versus the num-
bers as predicted by the ML classifier (Fig. 5).

4. Data visualization

Having successfully trained a neural network (as well as other 
classifiers) in learning the Weyl data, it is also interesting to see 
how our data looks, and what patterns we directly observe. This is 
very much in the spirit of conjecturing formulation via ML [15], to 
let ML algorithms detect patterns which might ab initio be hidden. 
For this we can follow a standard Principal Component Analy-
sis (PCA) to dimensionally reduce the data to its highest-variance 
components so we can study the resulting two-dimensional plots.

We first obtain the principal components from the full unla-
belled dataset and then reattach the corresponding labels (colour-
coding each distinct class for visualization). In Fig. 4 we can see the 
principal component representation for each Petrov type (not type 
O since it corresponds only to the vector {0, 0, 0, 0, 0} and there-
fore has no variation). Note that within the populated areas of the 
plots, some are more densely populated than others, reflecting the 
specific data generation procedure of Section 2.

One can see how in the most general case, the data is spread 
out everywhere with no pattern in sight. As we increase the de-
generation (that is, we move downward in Fig. 1, the data starts 
settling into definite patterns.

In particular, types D and N have very specific shapes, illustrat-
ing the particularity of these cases. One can for instance superpose 
these figures and see exactly how one Petrov type degenerates into 
another, but for clarity we do not do this since overlaying will ob-
scure many points in the plot.

5. Outlook

In this work we have shown how to apply techniques from 
machine learning and data science in classification problems in 
general relativity. Taking as an example the Petrov classification 
of the Weyl tensor, we have adapted the problem to fit into the 
realm of supervised machine learning.

That is, our input consisted of randomly generated five-dimen-
sional vectors representing the Weyl scalars {�i} (i = 0, ..., 4), la-
belled with their corresponding Petrov type (I, I I, I I I, D, N, O ). We 
generated enough data points to consider all possible cases of non-
vanishing Weyl components, as described by Table 1, to have a 

2 Alternatively, we can also compute the F1-score for each class and then the 
weighted F1-score for the whole dataset. In our calculations, we find the F1-score 
to be 0.979.



Y.-H. He and J.M. Pérez Ipiña Physics Letters B 832 (2022) 137213

Fig. 4. Visual representation of the different Petrov types. The data was dimensionally reduced using Principal Component Analysis (PCA) to observe the directions with the 
highest variance.
Fig. 5. A plot of the Confusion Matrix by our NN classifier; we can see that it is 
heavily diagonal, signifying that the classification into the 6 Petrov types is ex-
tremely accurate.

set of base-independent training data. We designed a feed-forward 
neural network to train on this data and achieved 98% accuracy 
with a confidence (MCC) of 0.973. This shows that with a very 
simple neural network, in only a handful of epochs, one can model 
the Petrov classification with a high degree of success. We also 
showed how data visualization and dimensionality reduction can 
help in analyzing the data itself and the patterns that underlie 
it. Both these directions can help illuminate the intricacies of the 
classification of spacetimes, shedding light on problems of numer-
ical relativity or in the general study of solutions to the Einstein 
equations.

The Petrov classification is only a part of the general pro-
gramme for classifying and comparing spacetimes. The procedure 
elucidated on this paper can easily be extended to model the Segre 
classification of the Ricci tensor, for another part of the puzzle. This 
then constitutes the first step in having a machine ready setup for 
the full classification of spacetimes, a machine learning formula-
tion of the Cartan-Karlhede algorithm. With the development of 
online databases for exact solutions to the Einstein equations, the 
stage is set for a complete exploration of the power of these tech-
niques in this important field.
4
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Appendix A. The Petrov-Penrose classification of spacetimes

In this appendix we provide the conventions and mathematical 
background used to define Petrov’s classification, basing our anal-
ysis on [1]. This also sets the notation for the main text, especially 
Fig. 1.

A complex null tetrad is a choice of two real null vectors l, k
and two complex conjugate null vectors m, m̄:

ea = (m, m̄, l,k) , (A.1)

with the only non-vanishing products

kala = −1 , mam̄a = 1 , (A.2)

and where the metric in this basis reads

gab = 2m(am̄b) − 2k(alb) . (A.3)

From this tetrad we can build a basis of bivectors with components

Uab = −lam̄b + lbm̄a ,

Vab = kamb − kbma ,

Wab = mam̄b − mbm̄a − kalb + kbla , (A.4)

that will be useful in the following.
We remember that the Weyl tensor is the trace-free part of the 

curvature tensor, given by

Cabcd =Rabcd + 1

2
(Rbc gad + Rad gbc − Rbd gac − Rac gbd)

+ 1

6
R(gac gbd − gad gbc) . (A.5)

This tensor has the same symmetries as the Riemann curvature, 
with the added property of tracelessness. In general, it has ten in-
dependent components.

For the classification it is useful to define the complex tensor

C∗
abcd ≡ Cabcd + iC~

abcd (A.6)

where

C~
abcd ≡ 1

2
εcdef Cef

ab . (A.7)

Now we can expand C∗ in the basis (A.4) as
abcd
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1

2
C∗

abcd =�0UabUcd + �1(Uab Wcd + WabUcd)

+ �2(VabUcd + Uab V cd + Wab Wcd) (A.8)

+ �3(Vab Wcd + Wab V cd) + �4 Vab V cd ,

with the five complex coefficients defined by

�0 ≡ Cabcdkambkcmd ,

�1 ≡ Cabcdkalbkcmd ,

�2 ≡ Cabcdkambm̄cld ,

�3 ≡ Cabcdkalbm̄cld ,

�4 ≡ Cabcdm̄albm̄cld . (A.9)

Therefore, determining the ten independent components of the 
Weyl tensor in (A.5) is equivalent to determining the five complex 
scalars defined above. With regards to their physical interpreta-
tion: �0 and �1 represent transverse and longitudinal waves in 
the l direction, �2 a Coulomb-like component and �3 and �4 are 
longitudinal and transverse wave components in the k direction.

Petrov’s classification by Penrose [31] characterizes the Weyl 
tensor according to principal null directions k with the property

k[eCa]bc[dk f ]kbkc = 0 (A.10)

There can be at most four such null vectors (p.n.d.’s). If a space-
time admits four distinct p.n.d.’s it is called algebraically general 
(type I), otherwise it is algebraically special.

If k is a member of the null tetrad then equation (A.10) is 
equivalent to �0 = 0. We can rotate to an arbitrary complex 
null tetrad (m′, m̄′, l′, k′), where the coefficient �0 undergoes the 
transformation:

�0 = �′
0 − 4zψ ′

1 + 6z2�′
2 − 4z3�′

3 + z4�′
4 , (A.11)

with z a complex number. So we see that the determination of 
principal null directions is equivalent to solving the quartic equa-
tion for z:

�′
0 − 4zψ ′

1 + 6z2�′
2 − 4z3�′

3 + z4�′
4 = 0 , (A.12)

showing that there can be indeed four (complex) roots to this 
equation, that do not need to be different. Depending on the 
amount and multiplicity of the p.n.d.’s we get the classification in 
Fig. 1.
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