
              

City, University of London Institutional Repository

Citation: Van de Steen, F., Pinotsis, D. A., Devos, W., Colenbier, N., Bassez, I., Friston, K. 

& Marinazzo, D. (2022). Dynamic causal modelling shows a prominent role of local inhibition
in alpha power modulation in higher visual cortex. PLoS Computational Biology, 18(12), 
e1009988. doi: 10.1371/journal.pcbi.1009988 

This is the accepted version of the paper. 

This version of the publication may differ from the final published version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/29552/

Link to published version: https://doi.org/10.1371/journal.pcbi.1009988

Copyright: City Research Online aims to make research outputs of City, 

University of London available to a wider audience. Copyright and Moral Rights 

remain with the author(s) and/or copyright holders. URLs from City Research 

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 

educational, or not-for-profit purposes without prior permission or charge. 

Provided that the authors, title and full bibliographic details are credited, a 

hyperlink and/or URL is given for the original metadata page and the content is 

not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


RESEARCH ARTICLE

Dynamic causal modelling shows a prominent

role of local inhibition in alpha power

modulation in higher visual cortex

Frederik Van de SteenID
1,2,3*, Dimitris PinotsisID

4,5, Wouter Devos1, Nigel ColenbierID
6,

Iege Bassez1, Karl FristonID
3, Daniele Marinazzo1

1 Department of Data Analysis, Ghent University, Ghent, Belgium, 2 Vrije Universiteit Brussel, AIMS

laboratory, Brussel, Belgium, 3 The Wellcome Trust Centre for Neuroimaging, University College London,

London, United Kingdom, 4 Centre for Mathematical Neuroscience and Psychology and Department of

Psychology, City—University of London, London, United Kingdom, 5 The Picower Institute for Learning &

Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology,

Cambridge, Massachusetts, United States of America, 6 IRCCS San Camillo Hospital, Venice, Italy

* Frederik.van.de.steen@vub.be

Abstract

During resting-state EEG recordings, alpha activity is more prominent over the posterior cor-

tex in eyes-closed (EC) conditions compared to eyes-open (EO). In this study, we character-

ized the difference in spectra between EO and EC conditions using dynamic causal

modelling. Specifically, we investigated the role of intrinsic and extrinsic connectivity—within

the visual cortex—in generating EC-EO alpha power differences over posterior electrodes.

The primary visual cortex (V1) and the bilateral middle temporal visual areas (V5) were

equipped with bidirectional extrinsic connections using a canonical microcircuit. The states

of four intrinsically coupled subpopulations—within each occipital source—were also mod-

elled. Using Bayesian model selection, we tested whether modulations of the intrinsic con-

nections in V1, V5 or extrinsic connections (or a combination thereof) provided the best

evidence for the data. In addition, using parametric empirical Bayes (PEB), we estimated

group averages under the winning model. Bayesian model selection showed that the win-

ning model contained both extrinsic connectivity modulations, as well as intrinsic connectiv-

ity modulations in all sources. The PEB analysis revealed increased extrinsic connectivity

during EC. Overall, we found a reduction in the inhibitory intrinsic connections during EC.

The results suggest that the intrinsic modulations in V5 played the most important role in

producing EC-EO alpha differences, suggesting an intrinsic disinhibition in higher order

visual cortex, during EC resting state.

Author summary

One of the strongest signals that can be measured using EEG are so called alpha rhythms.

These are neural oscillations that fall within the 8-12Hz frequency range. Alpha rhythms

are most prominent when the eyes are closed and are seen at the electrodes placed at the

back of the head. In this study, we studied the mechanism of alpha rhythms changes when
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going from eyes-open to an eyes-closed state. We used a biologically plausible model

including different neural populations. We focused on modelling connections within and

between different neural sources of the visual cortex and how they are modulated when

going from eyes-open to an eyes closed state. We found evidence that inhibitory neurons

play an important role in alpha rhythms.

Introduction

Alpha oscillatory EEG activity (i.e., 8-12Hz) during rest—or task-free recordings—is most pro-

nounced during eyes-closed (EC) conditions, over the posterior cortex. During visual stimula-

tion (i.e. eyes-open state, EO) alpha oscillations are suppressed (but see e.g. [1], who showed

alpha suppression in a darkened room). Alpha-power modulations have also been observed

during working memory [2, 3] and visual attention tasks (e.g. [4]). To date, the neural mecha-

nisms underlying alpha activity and modulation (at the scalp level) remain an open question.

Several studies have pointed to the role of the thalamus as driving source of cortical alpha [5–

7]. More specifically, it is thought that the pulvinar and/or the lateral geniculate nucleus act as

primary alpha-pacemaker(s). However, by using electrocorticographic recordings, a recent

study showed that alpha waves in the cortex lead alpha activity in the thalamus [8]. Moreover,

it has been suggested that cortico-cortical interactions play a prominent role—in addition to

thalamo-cortical dynamics—in the generations of alpha rhythms [9] and that they are associ-

ated with conscious perception [10].

There are several difficulties in providing definitive explanations for alpha power differ-

ences between EO and EC. First, it is unclear whether we can recover signals from deep brain

structures using non-invasive electrophysiological recordings, such as electro-and magnetoen-

cephalography (EEG, MEG; [11, 12]). In order to study dynamics in terms of interacting brain

regions from EEG and MEG signals, the so-called inverse problem needs to be solved (i.e.

source reconstruction, [13, 14]). The accuracy of source localization solutions is to date still a

matter of debate [11, 15, 16]. On the other hand, studies using intracranial recordings have

high spatiotemporal resolution but due to the invasiveness, these studies are rather rare and

usually involve a small number of electrodes and (clinical) sample size. Another disadvantage

is that intracranial recordings do not cover the entire brain and are to some extent also suscep-

tible to volume conduction. Finally, many electrophysiological studies that investigated the

alpha-band—from a network perspective—have used measures such as coherence (i.e. modu-

lus of the cross spectrum) and phase information to quantify (functional) connectivity. How-

ever, previous work has emphasized that the modulus (coherence) or arguments (phase) of the

cross-spectra densities alone do not provide a unique or complete description of the underly-

ing data generating process that produce spectral data features, such as spectral coherence

[17]. These measures only provide a description of the statistical dependencies between

observed signals but not how they are generated by (hidden) neural states.

One way to address some of these challenges is to use a forward (generative) model as in

dynamic causal modelling (DCM; [18–20]). The generative model in DCM combines a bio-

physical and an observation model to describe the dynamics of hidden neural sources and how

these neural states are translated into observed data. Furthermore, DCM provides a Bayesian

framework to infer the unknown parameters of the model and to provide biophysical contra-

ints on the neural dynamics. The biophysical model are sets of differential equations of cou-

pled neural sources. Several experimental studies in human and non-humans and simulation

studies have shown the face validity [18], construct validity [21], predictive validity [22] and
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reliability [23] of DCM. Importantly, DCM for cross spectral densities was validated using an

animal studies where DCM was able to correctly recover changes in synaptic physiology fol-

lowing neurochemical manipulation [24].

Here, we used DCM to model the underlying neural dynamics of observed spectral differ-

ences between EC and EO conditions, with a specific focus on alpha power. We employed

DCM for cross spectral densities features, where both amplitude as well as phase information

of the entire cross-spectra (including the autospectra) are used for inferring the underlying

neural dynamics in terms of directed synaptic connections (i.e. effective connectivity, [17]).

This means that phase information is also used in obtaining posterior estimates. We extended

the current implementation by augmenting DCM with parameters characterizing state-depen-

dent changes in intrinsic coupling [25, 26]. Inspired by a recent study [8], we modelled 3 dis-

tinct sources, assumed to be the main sources of EO-EC alpha power difference observed

using EEG. These sources were the primary visual cortex (V1 collapsed across hemispheres,

due to their proximity) and the bilateral middle temporal visual areas (V5), which were mod-

elled using an established neural mass model based upon canonical microcircuits. Our main

goal was to determine whether EO and EC alpha differences can be explained in terms of

changes in either extrinsic connections (i.e. between sources) or changes in intrinsic connec-

tions (i.e. within a source) or their combination. We used parametric empirical bayes (PEB) to

evaluate which specific connections show modulatory (i.e. condition-specific) effects [27, 28].

Finally, we examined the contribution of these modulatory parameters—to alpha power—in

more detail, using a sensitivity analysis. We envision that the results here serve as a proof of

principle that DCM can provide a mechanistic explanation of EO and EC differences in spec-

tral activity. This is important since several studies have shown that the EO to EC alpha power

difference is a neural marker of cognitive health [29–31].

Materials and methods

Data and pre-processing

In this study, 1-minute EEG recordings were taken from 109 subjects, during eyes open and

eyes closed resting-state from the EEG Motor Movement/Imagery PhysioNet dataset [32, 33].

The data was acquired using the BCI2000 system http://www.bci2000.org). The EEG channels

were placed on the scalp according to the international 10–10 system [34]. The data was pro-

vided in EDF+ format, containing 64 EEG channels, each sampled at 160 Hz. Eyes open rest-

ing-state was followed by the eyes-closed condition.

The data were pre-processed using EEGLAB running on MATLAB [35]. The 60Hz power

line noise was first removed using the Cleanline EEGLAB plugin. Afterwards, the data were

high-pass filtered using default settings, with a lower-cut-off of 1Hz. Then, a low-pass filter

with high-cut-off of 45 Hz and default settings were applied. Periods of data contaminated

with blink artefacts were repaired using independent component analysis. Bad channels were

removed, based on visual inspection. Finally, the data were referenced to their average.

Power spectral analysis

Our first goal was to confirm the well-known effect on posterior alpha power: During wakeful

state, eyes closed are associated with much greater alpha power compared to having the eyes

opened. Here, we estimated the power spectra from the last 10 seconds of the eyes-open period

and the first 10 seconds of the eyes-closed condition. We choose not the use the full 1 minute

resting-state recording because we had showed, in a previous study, that connectivity is non-

stationary over 1 minute [36]. The power spectrum was obtained using Welch’s method (i.e.,

pwelch.m command in MATLAB): The signal was divided into maximum 8 overlapping
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windows with a 50% overlap between segments. Segments are obtained with a Hanning win-

dow and subsequently decomposed with discrete Fourier transform. This was repeated for

every channel, subject and state (i.e., EO and EC). Permutation-based paired t-test was con-

ducted by randomly assigning EO and EC labels to the entire power spectrum x channel data

on a subject specific basis. We obtained 5000 permutations for the entire frequency x channel

data space, during which the permuted t-values were retained. The t-value computed in each

permutation was the same as the t-statistic that is used for a classical parametric paired t-test.

The p-values were obtained by calculating the proportion of t-values obtained via permutation

that exceeds the observed t-value, and the negative of the observed t-value. As such, a two-

sided non-parametric paired t-test using permutation was performed. The major advantage of

the permutation-based t-test is that it does not require any assumption about the distribution

of the test statistic. The multiple comparisons problem was addressed using the Benjamini-

Hochberg procedure for maintaining the false discovery rate (FDR) at 5% [37].

Canonical microcircuit

In this study, brain sources are modelled with a neural mass model called the ‘canonical micro-

circuitry’ [38, 39].This model is equipped with four subpopulations per region: superficial and

deep pyramidal cells (SP and DP), spiny stellate cells (SS) and inhibitory populations (II).

Within each source, the subpopulations are coupled with so-called intrinsic connections, see

Fig 1 for a schematic presentation. The states in each subpopulation are described using the

equations shown in Fig 1. Between source influences are mediated by extrinsic connections:

Forward or backward (or both) connections, where forward connections originate from SP in

one source and target SS and DP in another, while backward connections originate from DP

and target SP and II. Exogenous (from other sources) inputs target SS. We used the

spm_fx_cmc.m function that implements the equations described in Fig 1.

Dynamic causal modelling for cross spectral data features

DCM is a Bayesian framework for inverting and comparing models of neural dynamics and

the way these dynamics are translated into observations (in this case cross spectral data fea-

tures). Therefore, it is useful to make a distinction between the neural model, which describes

the hidden neural dynamics, and the observation model, which describes the mapping from

neural states to observed responses. Usually, inference regarding the parameters of neural

model is of interest (but see [40–44] for recent developments in multimodal fusion and appli-

cations of statistical decision theory in the context of DCM). A generative model is specified

when the neural and forward model are combined and appropriately supplemented with prior

constraints on the parameters. In this work, we used a specific DCM variant designed to deal

with steady-state response called DCM for cross-spectral densities (CSD; [17, 45]). Here, the

generative model specifies how neural dynamics—driven by endogenous fluctuations—map

to observed cross spectral densities. By linearizing the model around its fixed point, the result-

ing transfer functions specify how the endogenous fluctuations are mapped, through neural

dynamics and the forward model, to the observed CSD. The power spectrum of the endoge-

nous fluctuations (innovations) is assumed to have a (parametrized) power law form: g(α, β,

ω) = αω−β with α and β the parameters controlling the amplitude and the slope (or more pre-

cisely the rate of decay) of spectral densities of the innovations noise. These parameters are

estimated for each region separately.

In order to infer condition dependent changes in intrinsic coupling, the current DCM

implementation of the CMC model described above was supplemented with parameters
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encoding these changes as following [25]:

Gi ¼ GA
i G

B
i

GB
i ¼ expðXyB

GiÞ

Here, X encodes the conditions so that X = 0 for EO and X = 1 for EC condition. This

implies that GA
i encodes baseline intrinsic connectivity and here corresponds to the EO-state.

Consequently, GB
i encodes the modulatory gain of the i-th intrinsic connection associated with

the EC-state. Connectivity and other parameters of the neural model are shown in Table 1. In

other words, the baseline intrinsic connections are rescaled by a factor equal to GB
i . Note that

in Table 1, the parametrisation column indicates how the parameters in the right column are

transformed into parameters that enter the neural state equations. This re-parametrization

allows for sign constraints so, that for example, time constants are always positive. The param-

eters in the right column are those that effectively enter the model inversion scheme and here

we used the ‘θ’ notation. For the re-parametrized parameters (left column) that enter the

Fig 1. Illustration of the Canonical Microcircuit Model (CMC) model. Each source (V1, rV5 and lV5) comprises 4 neural subpopulations: spiny stellate cells

(SS), superficial pyramidal cells (SP), deep pyramidal cells (DP) and inhibitory interneurons (II). Neural populations within a source are coupled with intrinsic

connections (full arrows; bottom figure), while coupling between neural populations of different sources are extrinsic connections (dotted arrows). Red and

blue arrows denote inhibitory and excitatory connections, respectively. The dynamics of the hidden (neuronal) states of each population can be described with

the pairs of differential equations shown. There are four extrinsic connections: from SP to SS and DP (forward). Also, from DP to SP and II (backward).

Intrinsic couplings are parametrized by G1,..,10. Three regions comprise the network that is assumed to generate observed cross-spectral densities: V1 and left

and right V5. These are shown on the top right. Forward connections were specified from V1 to V5 while backward connections were specified from V5 to V1.

σ(xi) is a sigmoidal activation function which transforms post-synaptic potential into average spiking output, with r a parameter controlling the steepness.

Finally, the external input to a brain source is denoted with u and enters SS. The free parameters shown in the figure are also listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1009988.g001
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neural state and observation equations (see below), we used the notation that is also used in

the SPM12 implementation. In the supplementary materials (S1 Appendix) we provide more

information regarding the variational Bayesian inversion framework. Most of the parameters

and their priors provided in Table 1 are the default priors of the DCM routine that was modi-

fied for implementing the intrinsic connectivity modulations (see spm_dcm_csd.m and

spm_dcm_neural_prior.m and spm_fx_cmc.m of SPM12 version: 7487). The default priors

were specified originally in [46] and were chosen to incorporate the known relative dissocia-

tion of the frequency content of superficial (high frequency) and deep pyramidal (low fre-

quency) cells. Here only the prior on the intrinsic connectivity modulations were custom

specified and set to a prior mean and variance of 0 and 0.25 respectively. This can be seen as a

relatively uninformative prior which allows for the intrinsic connection to be modulated sub-

stantially during EC. Due to the re-parametrization, these priors are about log-scaling parame-

ters and therefor the actual scaling (GB
i ) follows a Log-normal distribution (see supplementary

materials S2 Appendix). The 5th and 95th percentile of this Log-normal distribution are .44 and

2.29 respectively. These bounds reflect halving and doubling baseline intrinsic connectivity.

All the code for the analysis used in this paper are made publicly available at github (https://

github.com/Frederikvdsteen/EO_OC_DCM).

The first 4 eigenmodes of the prior data covariance are used to project the channel data into

a reduced sensor space:

yred ¼ Uyfull

Here U is the spatial projector that is obtained by taking the first 4 principal components of

the prior data covariance (see [47] for more details). The cross spectral densities (CSD) that

are used as data features are obtained from these 4 modes by fitting a Bayesian multivariate

autoregressive model of order 12.

The forward model used here (the ‘IMG’-option), treats each source as a patch on the corti-

cal surface [48]. More specifically, the form used here is:

yfull ¼ gðx; yobsÞ

gðx; yobsÞ ¼
X

K¼1:3

D
K
X

j¼1:8

Cjx
k
j

D
K
¼
X

n¼1:6

Y
K
nY

K

Here yfull denotes the full EEG data and g(x, θobs) that observation model. ΔK is a Laplacian

operator of region K, that is modelled as a mixture of n = 1,..,6 spatial basis functions. These

Table 1. Parameters of neural model (see Fig 1 for an illustration of the neural model).

Description Parametrization Prior

τi Postsynaptic time constant for subpopulation SS, SP, ii and DP (exp(θk)[2 2 16 28]) P(θk) = N([0 0 0 0],1/32)
GA

1,..10 Baseline intrinsic connectivity expðyA
GÞ

[1, 2, 4, 8]�200

PðyA
G1;::10
Þ = N(0,1/8)

GB
i = 1,. . .10 Intrinsic connectivity modulation expðyA

GÞ PðyB
GÞ = N(0,1/4)

A1,2,3,4 Extrinsic connectivity exp(θA)[1, ½, 1, ½] �200 P(θA) = N(0,1/16)
B1,2,3,4 Extrinsic connectivity modulation exp(θB) P(θB) = N(0,1/8)

α,β Amplitude and slope of the spectral innovations exp(θα,β) P(θα,β) = N(0,1/128)

https://doi.org/10.1371/journal.pcbi.1009988.t001
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are obtained by taking the first 6 eigenvectors of the lead-field matrix of all the sources that fall

within a sphere of 18mm of the cortical patch defined around the MNI coordinates of the 3

regions. These coordinates are: [0–88 4] for V1 and [–44 –68 0] and [42 –72 0] for left and

right V5, respectively. Here the lead-field matrix was created using a default head model imple-

mented in SPM12. Y
K
n are the spatial parameters that are estimated during model inversion.

The term
P

j¼1:8
Cjxk

j quantifies the contribution with weights Cj of the neuronal populations

xk
j to the EEG data. The weights are free contribution parameters that are also estimated during

inversion. Note that here only the depolarizing voltages of SP, DP and SS are allowed to con-

tribute yfull and are the same across the three regions. θobs denotes all the parameters of the

observation model that are estimated during model inversion (i.e. the collection Cj,Y
K
n ). The

DCM for CSD was inverted using a variational Bayesian inversion scheme described in [49]

(see supplementary materials for more details).

DCMs with bad model fit (i.e. explained variance <50%) were removed from further analy-

sis, in total 4 subjects were removed from the group-analysis. In S1 Fig, we provide the power

spectrum of the 4 data modes of the removed subjects and 4 random subjects for comparison.

Group level inference with parametric empirical Bayes

We used parametric empirical Bayes (PEB) to make inferences about extrinsic and intrinsic

connectivity differences at the group level [27]. PEB uses a hierarchical model, which, at the

first level, generates data from subject specific DCM parameters, and at the second level gener-

ates DCM parameters from group means, using a general linear model. The second level

model characterizes between subject variability in terms of random effects. Here, we focused

on group means of connectivity parameters. Using PEB, we obtained the posterior distribution

of the (group mean) connectivity parameters and their condition-specific changes. In order to

score the evidence for models with either extrinsic, V1 or V5 intrinsic connectivity modula-

tions (or a combination thereof) we used Bayesian model reduction (BMR; [27]). We com-

pared models with or without the following three sets of parameters: extrinsic modulations,

V1 intrinsic modulations and V5 intrinsic modulations so that in total, 8 models were created.

This included a null model with no connectivity modulations. We also used a greedy search

algorithm and Bayesian model reduction to prune second-level parameters from the PEB

model with lowest evidence until we obtained 256 ‘best’ models. Bayesian model averaging

(BMA) was subsequently applied to the reduced models to provide parameter estimates that

accommodated for uncertainty over pruned or reduced models [50]. Inference of second level

parameters—encoding group-mean intrinsic connectivity modulations—used the posterior

probability (Pp), that quantifies whether a model including this parameter explains the data

better than a model without. This has the advantage that the full parameter covariance matrix

is used when comparing models, see [27] for details. The posterior means after BMA with Pp

>.95 are treated as ‘significant’ in the sense that there is strong evidence for their contribution

to the data.

Results

Power spectral results

Fig 2 displays the FDR-thresholded map of the frequency-by-channels t-values in image for-

mat. In addition, a 2-D topographical plot of the mean spectral power difference at 10.6Hz is

shown and the mean power spectrum across subjects and 4 posterior electrodes (PO7, O1, O2

and PO6) are shown.
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The key things to note are significant differences around 10.6Hz. This difference was most

pronounced over the posterior electrodes. However, a global effect can be observed in terms of

statistical significance. Furthermore, positive and negative effects in higher frequency ranges

were found. The positive effects were largely posteriorly localized (e.g., PO7, Oz, O2 and PO8;

up to 23Hz), while the negative effects were localized to frontal electrodes (e.g., AF3, AF4,

AF7, AF8; between 20 and 45Hz).

PEB model selection and parameter averaging

As a first step, we created 8 alternative PEB models to test which connectivity modulations are

related to the difference between EO to EC conditions. The 8 PEB models were created by tak-

ing the combinations of the following three parameter sets: with or without extrinsic modula-

tions, with or without V1 intrinsic modulations and/or with or without V5 intrinsic

connectivity modulations. This also includes a Null model with no extrinsic nor intrinsic con-

nectivity modulations. In Fig 3, the log-evidence differences of the 8 models are shown.

These differences are with respect to the full PEB model. We found that the full model had

the largest evidence. The second-best model contained both V1 and V5 intrinsic modulations.

The log-evidence difference between the best and second-best model was 15.23. This is larger

than 3, which can be considered as very strong evidence in favour of the full model. In short,

we found that both extrinsic and intrinsic modulations in V1 and V5 play an important role in

explaining differences between EO and EC conditions. However, an interesting pattern can be

observed. We see that models without V5 intrinsic modulations had much lower evidence rela-

tive to models including V5 intrinsic modulations. This suggest that V5 intrinsic modulations

were relatively important for explaining EO vs EC differences.

Fig 2. Results of the power spectral analysis. Panel A shows the topographic plot of the mean power difference (Δ
Power; power = Db/frequency)) at 10.6 Hz. The FDR-thresholded t-values of all Channels x Frequencies are shown in

image format in panel B. The mean power spectrum and 0.95 standard error intervals about the mean over channels

PO7, Oz, O2 and PO8 for EO and EC are plotted in panel C.

https://doi.org/10.1371/journal.pcbi.1009988.g002
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The Bayesian model average (BMA) estimates and 90% Bayesian confidence intervals of the

four extrinsic modulations can be found in Fig 4. We observe that the forward extrinsic con-

nections from V1.

The group analysis of the intrinsic connectivity modulation can be found in Fig 5. In V1,

we observed a significant reduction of the inhibitory connection G3 (II! SS) and G1 (SS!

SS). The excitatory connection G5 (SS! II) increased during EC. The pattern for left and

right V5 are similar: reduced modulation of the inhibitory connection of G3 (II! SS) and G1

(SS! SS). and increased inhibition of G9 (II!DP).

In order to characterise the contributions of the intrinsic and extrinsic connectivity modu-

lations on the power spectrum, we performed a sensitivity analysis. Briefly, for each modula-

tion parameter, we examined the effect of a small parameter increment on the predicted power

spectrum of the (reduced-) data of the posterior electrodes. More specifically, we added a small

increment (e−6) to the posterior mean of a certain parameter, while keeping the posterior

means of the other parameters fixed. This was repeated for all the parameters of interest sepa-

rately. In total, we performed the sensitivity analysis at the posterior means of 33 parameters.

Technically, we are numerically evaluating the Jacobian of the generative model with respect

to the extrinsic and intrinsic connectivity modulations at their posterior means (@O
@y

, with O the

powerspectrum) over the different frequency bins. This was repeated for every subject sepa-

rately and subsequently averaged over subjects. The results are reported in Fig 6 together with

the posterior mean of the group-BMA.

Simply put, positive (red) values indicate that an increase of a parameter at the posterior

mean would result in increased power at that specific frequency bin. A negative value (in blue)

means an increase of a particular parameter results in a decreased power. Changes in intrinsic

connectivity have a larger effect on the power spectrum compared to extrinsic connectivity

Fig 3. PEB model selection. The bar graph of the free energy (i.e., log evidence) differences from the full model (i.e.

the model with extrinsic, V1 and V5 connectivity modulations) are shown for the 8 PEB models considered. The

models were formed by creating combinations with or without the following three parameters sets: extrinsic

modulations (Ext), V1 intrinsic modulations (V1) and V5 intrinsic modulations (V5). We observe that the full model

has the highest (approximate) model evidence. In addition, models without V5 intrinsic modulation have smaller

evidence compared to models that included V5 intrinsic modulation.

https://doi.org/10.1371/journal.pcbi.1009988.g003
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and this is most pronounced for V5. In addition, we see clearly that the sensitivities are most

pronounced within the alpha band (i.e., around 10Hz). If we consider the significant intrinsic

modulation, we observe largest negative sensitivities for the inhibitory G3 (II! SS) and G1 (SS

! SS) modulations and positive sensitivities for the excitatory G9(II!DP) modulations in

left and right V5. The sensitivities of the significant modulations in V1 are much less pro-

nounced compared to the sources in V5. Interestingly, the inhibitory G4 (II! II) connection

in V5 seems to have the largest sensitivities as well but are not significant parameters in the

PEB analysis. This suggest that a reduction in G4 in V5 could potentially be important for

enhancing alpha power. Nevertheless, the current parameter configuration appears to suffice

(in terms of the accuracy-complexity trade-off; see supplementary materials S1 Appendix) for

fitting the observed responses.

In summary, we found evidence that both extrinsic modulations between V1 and V5—as

well as intrinsic modulations within V1 and V5—play an important role in the genesis of

EO-EC power spectral differences. In addition, we found that the intrinsic modulations in

bilateral V5, in particular the inhibitory connections, seem to play the greatest role. This speaks

to the importance of local [dis]inhibition, within higher order visual cortex.

Discussion

In this work, we investigated the role of intrinsic and extrinsic connections within the occipital

cortex in the generation of EO and EC alpha power differences. Using a publicly available data

set, we first replicated previous findings that alpha-power is most pronounced during EC con-

dition at posterior channels. Then, using DCM followed by PEB, our analysis showed that the

model with the largest evidence contained both extrinsic and intrinsic connectivity

Fig 4. Extrinsic connectivity modulations. This figure shows the group-level results of the extrinsic connectivity

modulations associated with EC states (relative to EO). More specifically, the mean posterior and 90% Bayesian

confidence intervals (pink) after the greedy search algorithm and Bayesian model averaging are shown. Note that the

estimated parameters are log-scale parameters (i.e., the parameters in the right column of Table 1 (θB), but here we

used different x-axis labelling for clarity.). The right panel shows the posterior probabilities of the extrinsic

connections. increase during EC. The backwards connections appear to increase as well, however, the evidence is not

conclusive (Pp<0.95). The posterior probabilities (Pp) are 100%, 100%, 90% and 72% for V1! lV5, V1! rV5, lV5!

V1 and rV5! V1, respectively.

https://doi.org/10.1371/journal.pcbi.1009988.g004
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modulations. Interestingly, our results showed that the intrinsic connections in V5 play a rela-

tively larger role compared to the extrinsic connections and V1 intrinsic connections. Most

inhibitory connections to SS-cells—the target population for endogenous neuronal fluctua-

tions—decreased during EC. Overall, we found that decreased inhibitory connections within

the higher order visual cortex seem to play an important role in underwriting EO-EC alpha

power differences.

Given the role of inhibitory intrinsic connections found here, it is worth noting that cortical

inhibition is largely mediated by GABAergic connections, while excitation is mediated by glu-

tamatergic connections [51]. In a recent review paper by [52], the author discusses studies that

used pharmacological modulation to study physiological mechanism underlying alpha

rhythms. In their review, several findings are discussed in light of the so-called alpha power as

inhibition principle [53]. Briefly, this principle states that alpha oscillations serve a functional

inhibitory role which is implemented through physiological inhibition (generated by GABAer-

gic interneurons). Following this principle, one would expect increased alpha in case of

increased physiological inhibition. However, [52] reviewed several lines of evidence showing

pharmacologically enhanced inhibition results in decreased rather than increased alpha. In

Fig 5. Intrinsic connectivity modulations. The figure reports the group-level results of the intrinsic connectivity

modulations associated with EC states (relative to EO) in the three sources of interest. More specifically, the mean

posterior and 90% Bayesian confidence interval (pink error bars) after the greedy search algorithm and Bayesian model

averaging are shown in the top row. The middle row shows the corresponding posterior probabilities of the intrinsic

modulations, the pink dotted lines correspond to a Pp of .95. Finally, the bottom is a schematic presentation of the

modulation with Pp>.95 and the direction of the effect. Inhibitory connections are shown in red and excitatory in

blue.

https://doi.org/10.1371/journal.pcbi.1009988.g005
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addition, some studies have found that sub-anaesthetic doses of ketamine (i.e. a glutamatergic

excitatory NMDA receptor blocker) resulted in decrease posterior alpha power in resting-state

[54, 55]. According to [56], inhibition plays an important role in rhythmogenesis, either in an

interneural network or via excitatory-inhibitory loops. In sum, these studies are in line with

our findings regarding the importance of local inhibition in the generation of alpha rhythms

during rest.

The clinical relevance of comparing eyes-open vs. eyes-closed data using DCM can be

appreciated knowing that the (normalized) difference between EC and EO (which is some-

times termed alpha-reactivity) is related to specific neurological conditions [31, 57, 58]. How-

ever, reduced alpha reactivity can manifest itself in different ways. The reduction in reactivity

can be due to increased EO alpha power and unaltered EC power, or decreased EC power and

unaltered EO power. For example, [57] showed that in Alzheimer disease patients, EC alpha

was reduced while EO alpha was not compared to healthy controls. The reverse was true for

Lewy body dementia patients. Using DCM, one could identify which parameter of the model

employed here could explain these observed ‘alpha reactivity’ differences. These parameters

could possibly be useful as an aiding tool for differential diagnosis.“

Several studies using biologically inspired models, fitted to EEG data, have been conducted

in the context of EO-EC alpha power differences. In two recent studies by [59] and [60] the

authors used a neural mass model of the same data set used in our study. In the first study, the

authors investigated parameter identifiability of a 22-parameter neural mass model based on

the EC data alone. They found that, using sampling-based inversion scheme a single parameter

controlling inhibitory synaptic activity is directly identifiable. In a follow up paper, the authors

extended the model by incorporating modulatory parameters used for explaining EO-EC

power differences. Their main finding was that a single modulatory parameter seems to

explain best the alpha power difference; namely, a parameter controlling the tonic excitatory

input to inhibitory populations. The authors argue in light of previous findings, that this exter-

nal input is likely to be of thalamic origin. In relation to our modelling approach, several

Fig 6. Sensitivity analysis. The results of the sensitivity analysis—averaged across subjects—are shown in image

format. The group BMA results (i.e. the middle panels of Figs 4 and 5) are provided in the lower part for comparison.

Simply put, positive (red) values indicate that an increase of a parameter at the posterior mean would result in

increased power at that specific frequency bin. A negative value (in blue) means an increase of a particular parameter

results in a decreased power. The arrows indicate the sensitivities for the significant intrinsic connectivity modulations

that are shown in the lower part of the figure. @O
@y

is the Jacobian of the power spectrum of the generative model with

respect to the model parameters of interest (intrinsic and extrinsic) which are shown for all modelled frequency bins.

https://doi.org/10.1371/journal.pcbi.1009988.g006
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differences are important to consider. First, we used a neural mass model of multiple spatially

defined and coupled occipital sources. This is to be contrasted with earlier studies, where no

reference to coupled regions was made. Second, DCM combines a neural model of how differ-

ent subpopulations within and between cortical sources interact, with a forward model of how

post-synaptic potentials are mapped to observed data (here channel cross spectral densities).

In comparison, the earlier studies mentioned above did not include an observation model.

Thus, neural activity was not decoupled from volume conduction and observation noise

(channel noise). Third, our approach used a variational Bayesian inversion scheme, which pro-

vides a lower bound on the log-model evidence, necessary for Bayesian model comparison. In

other words, we identified the most plausible model, where both model fit and complexity

were considered in scoring alternative models. In [59] used particle swarm optimization and

constrained half of the model parameters to be the same between the EO and EC conditions.

They found that only 1 modulatory parameter provided the best explanation for generating

EC-EO alpha differences. On the other hand, here we found that several modulatory parame-

ters were identified for explaining spectral differences between EO and EC. Using BMC, we

showed that both intrinsic and extrinsic connectivity parameters are necessary to explain the

data. Fourth, in [60] and [59], the authors only used data from Cz to estimate the parameters

of the model, while in the current work we used data from all EEG channels (projected to a

reduced space).

In another related study, using empirical EO-EC EEG data for estimating the parameters of

a neurophysiological model, the authors found multiple parameters that explained the differ-

ence between EO and EC [61]. Similarly, to the model by [59] these authors used data from a

single electrode and did not include an observation model. They considered a thalamo-cortical

model including intracortical and thalamocortical pathways and four type of neurons: cortical

pyramidal (excitatory) and inhibitory neurons, thalamic reticular and thalamo-cortical relay

neurons. They found that strong positive (excitatory) cortico-thalamic feedback and longer

time constants underlie EC alpha power. One of the major strengths of this study is the incor-

poration of thalamocortical interactions, which is lacking in the current study. In principle, it

is possible to incorporate the thalamus as a hidden source in DCM (i.e., the states of the hidden

node do not contribute directly to the observed responses) to investigate bidirectional effect of

thalamo-cortical dynamics [62]. In essence, this approach would be the same as extending the

current neural mass model to include additional subpopulations representing the thalamus.

This approach was undertaken in the recent model by [10] by including excitatory and inhibi-

tory neural populations in the thalamus. Their temporal dynamics are given by the well-

known model of [63] that describes thalamic oscillations [64, 65]. The model includes thala-

mocortical relay (TC) and thalamic reticular nucleus (TRN) neurons. TC neurons project to

the cortex, while TRN neurons surround the thalamus and regulate TC neuron activity by

sending inhibitory signals. This model could be used in DCM to explain multimodal data

(EEG and fMRI) from the thalamus and reveal differences in laminar dynamics [40, 41]. Alter-

natively, it would be interesting to apply DCM to intracranial recordings where both thalamic

and cortical areas are recorded simultaneously. Using DCM, we built a parsimonious model

that can accommodate alpha power differences generated via changes in either within or

between higher and lower order visual areas. Following [8], that found alpha traveling waves

from higher to lower visual areas we considered three visual sources V1, left V5 and right V5.

It is possible that other visual areas such as V2 and V4 as well the thalamus contributes to

alpha rhythm generation. In our model, these contributions are modelled as spectral innova-

tions with white and pink components; whose amplitude and slope are estimated for each

brain area separately. Alternatively, one could implement Bayesian model comparison to iden-

tify the functional network, similarly to [66].
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Functionally, two different brain configurations have been associated with EO and EC rest-

ing-state condition: an exteroceptive state associated with attention, vigilance and ocular

motor activity and an interoceptive state associated with mental imagery and multisensory

activity [67–69]. Considering our results, one could suggest that inhibition in higher order

visual areas are the local manifestations of an interoceptive state that is triggered by eye

closure.

Differences in power in a given band could be explained by changes in slope/aperiodic part

apart from modulations in pure oscillations [70]. In DCM, the shape of the observed spectra is

determined by the parametrized 1/f neural fluctuations (a.k.a., innovations) and importantly

the transfer functions that govern ‘spectral bumps’ in the output [17, 45]. In this study, we

assumed that during both EC and EO, the spectral shape of the innovations remains the same

and that differences are due to changes in connectivity. A possible avenue for future research

concerns the shape of the neural innovations driving V1 and V5. The current model could be

augmented by allowing condition specific changes in either the height, slope or both of the 1/f

form of the neural innovations. In addition, condition specific changes in the synaptic time-

constants of the different neural populations could be examined.

Considering the aforementioned evidence, we suggest that dynamic causal modelling of

resting-state EO and EC conditions might provide a mechanistic insight into intrinsic physio-

logical mechanisms. This could be relevant for quantitative insights in clinical studies but also

studies that use pharmacologically altered states of consciousness.
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8. Halgren M, Ulbert I, Bastuji H, Fabó D, Eross L, Rey M, et al. The generation and propagation of the

human alpha rhythm. Proc Natl Acad Sci U S A. 2019; 116: 23772–23782. https://doi.org/10.1073/

pnas.1913092116 PMID: 31685634

9. Lopes da Silva F. Neural mechanisms underlying brain waves: from neural membranes to networks.

Electroencephalogr Clin Neurophysiol. 1991; 79: 81–93. https://doi.org/10.1016/0013-4694(91)90044-

5 PMID: 1713832

10. Min BK, Kim HS, Pinotsis DA, Pantazis D. Thalamocortical inhibitory dynamics support conscious per-

ception. Neuroimage. 2020; 220: 117066. https://doi.org/10.1016/j.neuroimage.2020.117066 PMID:

32565278

11. Cohen MX, Cavanagh JF, Slagter HA. Event-related potential activity in the basal ganglia differentiates

rewards from nonrewards: Temporospatial principal components analysis and source localization of the

feedback negativity: Commentary. Hum Brain Mapp. 2011; 32: 2270–2271. https://doi.org/10.1002/

hbm.21358 PMID: 21826758

12. Seeber M, Cantonas LM, Hoevels M, Sesia T, Visser-Vandewalle V, Michel CM. Subcortical

electrophysiological activity is detectable with high-density EEG source imaging. Nat Commun. 2019;

10: 1–7. https://doi.org/10.1038/s41467-019-08725-w PMID: 30765707

13. Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L, Grave De Peralta R. EEG source imaging.

Clinical Neurophysiology. 2004. pp. 2195–2222. https://doi.org/10.1016/j.clinph.2004.06.001 PMID:

15351361

14. Van de Steen F, Faes L, Karahan E, Songsiri J, Valdes-Sosa PA, Marinazzo D. Critical Comments on

EEG Sensor Space Dynamical Connectivity Analysis. Brain Topogr. 2016; 1–12. https://doi.org/10.

1007/s10548-016-0538-7 PMID: 27905073

15. Attal Y, Schwartz D. Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging

Model with Minimum Norm Operators: A MEG Study. PLoS One. 2013;8. https://doi.org/10.1371/

journal.pone.0059856 PMID: 23527277

16. Michel CM, Brunet D. EEG source imaging: A practical review of the analysis steps. Front Neurol.

2019;10. https://doi.org/10.3389/fneur.2019.00325 PMID: 31019487

17. Friston KJ, Bastos A, Litvak V, Stephan KE, Fries P, Moran RJ. DCM for complex-valued data: Cross-

spectra, coherence and phase-delays. Neuroimage. 2012; 59: 439–455. https://doi.org/10.1016/j.

neuroimage.2011.07.048 PMID: 21820062

18. Friston KJ, Harrison L, Penny W. Dynamic causal modelling. Neuroimage. 2003; 19: 1273–1302.

https://doi.org/10.1016/s1053-8119(03)00202-7 PMID: 12948688

19. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ. Dynamic causal modeling of evoked

responses in EEG and MEG. Neuroimage. 2006; 30: 1255–1272. https://doi.org/10.1016/j.neuroimage.

2005.10.045 PMID: 16473023

PLOS COMPUTATIONAL BIOLOGY Modelling EEG alpha power

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009988 December 27, 2022 15 / 18

https://doi.org/10.1016/j.tics.2012.10.007
http://www.ncbi.nlm.nih.gov/pubmed/23141428
https://doi.org/10.1093/cercor/12.8.877
https://doi.org/10.1093/cercor/12.8.877
http://www.ncbi.nlm.nih.gov/pubmed/12122036
https://doi.org/10.1093/cercor/bhy065
http://www.ncbi.nlm.nih.gov/pubmed/29608671
https://doi.org/10.1523/jneurosci.20-06-j0002.2000
http://www.ncbi.nlm.nih.gov/pubmed/10704517
https://doi.org/10.7554/eLife.60824
https://doi.org/10.7554/eLife.60824
http://www.ncbi.nlm.nih.gov/pubmed/33904411
https://doi.org/10.3389/fpsyg.2011.00193
http://www.ncbi.nlm.nih.gov/pubmed/22007176
https://doi.org/10.1016/j.neuron.2009.08.012
https://doi.org/10.1016/j.neuron.2009.08.012
http://www.ncbi.nlm.nih.gov/pubmed/19755110
https://doi.org/10.1073/pnas.1913092116
https://doi.org/10.1073/pnas.1913092116
http://www.ncbi.nlm.nih.gov/pubmed/31685634
https://doi.org/10.1016/0013-4694%2891%2990044-5
https://doi.org/10.1016/0013-4694%2891%2990044-5
http://www.ncbi.nlm.nih.gov/pubmed/1713832
https://doi.org/10.1016/j.neuroimage.2020.117066
http://www.ncbi.nlm.nih.gov/pubmed/32565278
https://doi.org/10.1002/hbm.21358
https://doi.org/10.1002/hbm.21358
http://www.ncbi.nlm.nih.gov/pubmed/21826758
https://doi.org/10.1038/s41467-019-08725-w
http://www.ncbi.nlm.nih.gov/pubmed/30765707
https://doi.org/10.1016/j.clinph.2004.06.001
http://www.ncbi.nlm.nih.gov/pubmed/15351361
https://doi.org/10.1007/s10548-016-0538-7
https://doi.org/10.1007/s10548-016-0538-7
http://www.ncbi.nlm.nih.gov/pubmed/27905073
https://doi.org/10.1371/journal.pone.0059856
https://doi.org/10.1371/journal.pone.0059856
http://www.ncbi.nlm.nih.gov/pubmed/23527277
https://doi.org/10.3389/fneur.2019.00325
http://www.ncbi.nlm.nih.gov/pubmed/31019487
https://doi.org/10.1016/j.neuroimage.2011.07.048
https://doi.org/10.1016/j.neuroimage.2011.07.048
http://www.ncbi.nlm.nih.gov/pubmed/21820062
https://doi.org/10.1016/s1053-8119%2803%2900202-7
http://www.ncbi.nlm.nih.gov/pubmed/12948688
https://doi.org/10.1016/j.neuroimage.2005.10.045
https://doi.org/10.1016/j.neuroimage.2005.10.045
http://www.ncbi.nlm.nih.gov/pubmed/16473023
https://doi.org/10.1371/journal.pcbi.1009988


20. Moran RJ, Kiebel SJ, Stephan KE, Reilly RB, Daunizeau J, Friston KJ. A neural mass model of spectral

responses in electrophysiology. Neuroimage. 2007; 37: 706–720. https://doi.org/10.1016/j.neuroimage.

2007.05.032 PMID: 17632015

21. Penny WD, Stephan KE, Mechelli A, Friston KJ. Modelling functional integration: A comparison of struc-

tural equation and dynamic causal models. Neuroimage. 2004; 23: 264–274. https://doi.org/10.1016/j.

neuroimage.2004.07.041 PMID: 15501096

22. David O, Woźniak A, Minotti L, Kahane P. Preictal short-term plasticity induced by intracerebral 1 Hz

stimulation. Neuroimage. 2008; 39: 1633–1646. https://doi.org/10.1016/j.neuroimage.2007.11.005

PMID: 18155929

23. Alamia A, VanRullen R. Alpha oscillations and traveling waves: Signatures of predictive coding? Kohn

A, editor. PLOS Biol. 2019; 17: e3000487. https://doi.org/10.1371/journal.pbio.3000487 PMID:

31581198

24. Moran RJ, Stephan KE, Kiebel SJ, Rombach N, O’Connor WT, Murphy KJ, et al. Bayesian estimation

of synaptic physiology from the spectral responses of neural masses. Neuroimage. 2008; 42: 272–284.

https://doi.org/10.1016/j.neuroimage.2008.01.025 PMID: 18515149

25. Pinotsis DA, Brunet N, Bastos A, Bosman CA, Litvak V, Fries P, et al. Contrast gain control and horizon-

tal interactions in V1: A DCM study. Neuroimage. 2014; 92: 143–155. https://doi.org/10.1016/j.

neuroimage.2014.01.047 PMID: 24495812

26. Pinotsis DA, Friston KJ. Extracting novel information from neuroimaging data using neural fields. EPJ

Nonlinear Biomed Phys. 2014; 2: 5. https://doi.org/10.1140/epjnbp18

27. Friston K, Litvak V, Oswal A, Razi A, Stephan KE, Van Wijk BCM, et al. Bayesian model reduction and

empirical Bayes for group (DCM) studies. Neuroimage. 2016; 128: 413–431. https://doi.org/10.1016/j.

neuroimage.2015.11.015 PMID: 26569570

28. Pinotsis DA, Perry G, Litvak V, Singh KD, Friston KJ. Intersubject variability and induced gamma in the

visual cortex: DCM with empirical Bayes and neural fields. Hum Brain Mapp. 2016; 37: 4597–4614.

https://doi.org/10.1002/hbm.23331 PMID: 27593199

29. Wan L, Huang H, Schwab N, Tanner J, Rajan A, Lam NB, et al. From eyes-closed to eyes-open: Role of

cholinergic projections in EC-to-EO alpha reactivity revealed by combining EEG and MRI. Hum Brain

Mapp. 2018; 1–12. https://doi.org/10.1002/hbm.24395 PMID: 30251753

30. Hanslmayr S, Sauseng P, Doppelmayr M, Schabus M, Klimesch W. Increasing individual upper alpha

power by neurofeedback improves cognitive performance in human subjects. Appl Psychophysiol Bio-

feedback. 2005; 30: 1–10. https://doi.org/10.1007/s10484-005-2169-8 PMID: 15889581

31. Babiloni C, Lizio R, Vecchio F, Frisoni GB, Pievani M, Geroldi C, et al. Reactivity of cortical alpha

rhythms to eye opening in mild cognitive impairment and Alzheimer’s disease: An EEG study. J Alzhei-

mer’s Dis. 2010; 22: 1047–1064. https://doi.org/10.3233/JAD-2010-100798 PMID: 20930306

32. Schalk G, McFarland DJ, Hinterberger T, Birbaumer N, Wolpaw JR. BCI2000: A General-Purpose

Brain-Computer Interface (BCI) System. IEEE Trans Biomed Eng. 2004; 51: 1034–1043. https://doi.

org/10.1109/TBME.2004.827072 PMID: 15188875

33. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. PhysioBank, Physio-

Toolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circu-

lation. 2000; 101: E215–20. https://doi.org/10.1161/01.cir.101.23.e215 PMID: 10851218

34. Chatrian GE, Lettich E, Nelson PL. Ten Percent Electrode System for Topographic Studies of Sponta-

neous and Evoked EEG Activities. Am J EEG Technol. 1985; 25: 83–92. https://doi.org/10.1080/

00029238.1985.11080163

35. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics

including independent component analysis. J Neurosci Methods. 2004; 134: 9–21. https://doi.org/10.

1016/j.jneumeth.2003.10.009 PMID: 15102499

36. Van de Steen F, Almgren H, Razi A, Friston K, Marinazzo D. Dynamic causal modelling of fluctuating

connectivity in resting-state EEG. Neuroimage. 2019; 189: 476–484. https://doi.org/10.1016/j.

neuroimage.2019.01.055 PMID: 30690158

37. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to

Multiple Testing. J R Stat Soc Ser B. 1995. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

38. Pinotsis DA, Schwarzkopf DS, Litvak V, Rees G, Barnes G, Friston KJ. Dynamic causal modelling of lat-

eral interactions in the visual cortex. Neuroimage. 2013; 66: 563–576. https://doi.org/10.1016/j.

neuroimage.2012.10.078 PMID: 23128079

39. Bastos AM, Usrey WM, Adams RA, Mangun GR, Fries P, Friston KJ. Canonical Microcircuits for Predic-

tive Coding. Neuron. Cell Press; 2012. pp. 695–711. https://doi.org/10.1016/j.neuron.2012.10.038

PMID: 23177956

PLOS COMPUTATIONAL BIOLOGY Modelling EEG alpha power

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009988 December 27, 2022 16 / 18

https://doi.org/10.1016/j.neuroimage.2007.05.032
https://doi.org/10.1016/j.neuroimage.2007.05.032
http://www.ncbi.nlm.nih.gov/pubmed/17632015
https://doi.org/10.1016/j.neuroimage.2004.07.041
https://doi.org/10.1016/j.neuroimage.2004.07.041
http://www.ncbi.nlm.nih.gov/pubmed/15501096
https://doi.org/10.1016/j.neuroimage.2007.11.005
http://www.ncbi.nlm.nih.gov/pubmed/18155929
https://doi.org/10.1371/journal.pbio.3000487
http://www.ncbi.nlm.nih.gov/pubmed/31581198
https://doi.org/10.1016/j.neuroimage.2008.01.025
http://www.ncbi.nlm.nih.gov/pubmed/18515149
https://doi.org/10.1016/j.neuroimage.2014.01.047
https://doi.org/10.1016/j.neuroimage.2014.01.047
http://www.ncbi.nlm.nih.gov/pubmed/24495812
https://doi.org/10.1140/epjnbp18
https://doi.org/10.1016/j.neuroimage.2015.11.015
https://doi.org/10.1016/j.neuroimage.2015.11.015
http://www.ncbi.nlm.nih.gov/pubmed/26569570
https://doi.org/10.1002/hbm.23331
http://www.ncbi.nlm.nih.gov/pubmed/27593199
https://doi.org/10.1002/hbm.24395
http://www.ncbi.nlm.nih.gov/pubmed/30251753
https://doi.org/10.1007/s10484-005-2169-8
http://www.ncbi.nlm.nih.gov/pubmed/15889581
https://doi.org/10.3233/JAD-2010-100798
http://www.ncbi.nlm.nih.gov/pubmed/20930306
https://doi.org/10.1109/TBME.2004.827072
https://doi.org/10.1109/TBME.2004.827072
http://www.ncbi.nlm.nih.gov/pubmed/15188875
https://doi.org/10.1161/01.cir.101.23.e215
http://www.ncbi.nlm.nih.gov/pubmed/10851218
https://doi.org/10.1080/00029238.1985.11080163
https://doi.org/10.1080/00029238.1985.11080163
https://doi.org/10.1016/j.jneumeth.2003.10.009
https://doi.org/10.1016/j.jneumeth.2003.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15102499
https://doi.org/10.1016/j.neuroimage.2019.01.055
https://doi.org/10.1016/j.neuroimage.2019.01.055
http://www.ncbi.nlm.nih.gov/pubmed/30690158
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/j.neuroimage.2012.10.078
https://doi.org/10.1016/j.neuroimage.2012.10.078
http://www.ncbi.nlm.nih.gov/pubmed/23128079
https://doi.org/10.1016/j.neuron.2012.10.038
http://www.ncbi.nlm.nih.gov/pubmed/23177956
https://doi.org/10.1371/journal.pcbi.1009988


40. Pinotsis DA. Statistical decision theory and multiscale analyses of human brain data. J Neurosci Meth-

ods. 2020; 346: 108912. https://doi.org/10.1016/j.jneumeth.2020.108912 PMID: 32835705

41. Friston KJ, Preller KH, Mathys C, Cagnan H, Heinzle J, Razi A, et al. Dynamic causal modelling revis-

ited. Neuroimage. 2017; 0–1. https://doi.org/10.1016/j.neuroimage.2017.02.045 PMID: 28219774

42. Jafarian A, Litvak V, Cagnan H, Friston KJ, Zeidman P. Comparing dynamic causal models of neuro-

vascular coupling with fMRI and EEG/MEG. Neuroimage. 2020; 116734. https://doi.org/10.1016/j.

neuroimage.2020.116734 PMID: 32179105

43. Pinotsis DA, Geerts JP, Pinto L, FitzGerald THB, Litvak V, Auksztulewicz R, et al. Linking canonical

microcircuits and neuronal activity: Dynamic causal modelling of laminar recordings. Neuroimage.

2017; 146: 355–366. https://doi.org/10.1016/j.neuroimage.2016.11.041 PMID: 27871922

44. Higgins C, Liu Y, Vidaurre D, Kurth-Nelson Z, Dolan R, Behrens T, et al. Replay bursts in humans coin-

cide with activation of the default mode and parietal alpha networks. Neuron. 2021; 109: 882–893.e7.

https://doi.org/10.1016/j.neuron.2020.12.007 PMID: 33357412

45. Moran RJ, Stephan KE, Seidenbecher T, Pape HC, Dolan RJ, Friston KJ. Dynamic causal models of

steady-state responses. Neuroimage. 2009; 44: 796–811. https://doi.org/10.1016/j.neuroimage.2008.

09.048 PMID: 19000769

46. Bastos AM, Litvak V, Moran R, Bosman CA, Fries P, Friston KJ. A DCM study of spectral asymmetries

in feedforward and feedback connections between visual areas V1 and V4 in the monkey. Neuroimage.

2015; 108: 460–475. https://doi.org/10.1016/j.neuroimage.2014.12.081 PMID: 25585017

47. Fastenrath M, Friston KJ, Kiebel SJ. NeuroImage Dynamical causal modelling for M / EEG : Spatial and

temporal symmetry constraints. Neuroimage. 2009; 44: 154–163. https://doi.org/10.1016/j.neuroimage.

2008.07.041 PMID: 18718870

48. Daunizeau J, Kiebel SJ, Friston KJ. Dynamic causal modelling of distributed electromagnetic

responses. Neuroimage. 2009; 47: 590–601. https://doi.org/10.1016/j.neuroimage.2009.04.062 PMID:

19398015

49. Friston K, Mattout J, Trujillo-Barreto N, Ashburner J, Penny W. Variational free energy and the Laplace

approximation. Neuroimage. 2007; 34: 220–234. https://doi.org/10.1016/j.neuroimage.2006.08.035

PMID: 17055746

50. Friston K, Penny W. Post hoc Bayesian model selection. Neuroimage. 2011; 56: 2089–2099. https://

doi.org/10.1016/j.neuroimage.2011.03.062 PMID: 21459150

51. Legon W, Punzell S, Dowlati E, Adams SE, Stiles AB, Moran RJ. Altered Prefrontal Excitation/Inhibition

Balance and Prefrontal Output: Markers of Aging in Human Memory Networks. Cereb Cortex. 2016; 26:

4315–4326. https://doi.org/10.1093/cercor/bhv200 PMID: 26400915

52. Lozano-Soldevilla D. On the physiological modulation and potential mechanisms underlying parieto-

occipital alpha oscillations. Front Comput Neurosci. 2018; 12: 1–19. https://doi.org/10.3389/fncom.

2018.00023 PMID: 29670518

53. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain

Res Rev. 2007; 53: 63–88. https://doi.org/10.1016/j.brainresrev.2006.06.003 PMID: 16887192

54. de la Salle S, Choueiry J, Shah D, Bowers H, McIntosh J, Ilivitsky V, et al. Effects of ketamine on rest-

ing-state EEG activity and their relationship to perceptual/dissociative symptoms in healthy humans.

Front Pharmacol. 2016; 7: 1–14. https://doi.org/10.3389/fphar.2016.00348 PMID: 27729865

55. Rivolta D, Heidegger T, Scheller B, Sauer A, Schaum M, Birkner K, et al. Ketamine dysregulates the

amplitude and connectivity of high-frequency oscillations in cortical-subcortical networks in humans:

Evidence from resting-state magnetoencephalography-recordings. Schizophr Bull. 2015; 41: 1105–

1114. https://doi.org/10.1093/schbul/sbv051 PMID: 25987642

56. Wang X. Neurophysiological and Computational Principles of Cortical Rhythms in Cognition. Physiol

Rev. 2010; 90: 1195–1268. https://doi.org/10.1152/physrev.00035.2008 PMID: 20664082

57. Schumacher J, Thomas AJ, Peraza LR, Firbank M, Cromarty R, Hamilton CA, et al. EEG alpha reactiv-

ity and cholinergic system integrity in Lewy body dementia and Alzheimer’s disease. Alzheimer’s Res

Ther. 2020; 12: 1–12. https://doi.org/10.1186/s13195-020-00613-6 PMID: 32321573

58. Bosboom JLW, Stoffers D, Stam CJ, van Dijk BW, Verbunt J, Berendse HW, et al. Resting state oscil-

latory brain dynamics in Parkinson’s disease: An MEG study. Clin Neurophysiol. 2006; 117: 2521–

2531. https://doi.org/10.1016/j.clinph.2006.06.720 PMID: 16997626

59. Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Inferring a simple mechanism for alpha-blocking by fitting

a neural population model to EEG spectra. PLoS Comput Biol. 2020; 16: 1–19. https://doi.org/10.1371/

journal.pcbi.1007662 PMID: 32352973

60. Hartoyo A, Cadusch PJ, Liley DTJ, Hicks DG. Parameter estimation and identifiability in a neural popu-

lation model for electro-cortical activity. PLoS Comput Biol. 2019; 15: 1–27. https://doi.org/10.1371/

journal.pcbi.1006694 PMID: 31145724

PLOS COMPUTATIONAL BIOLOGY Modelling EEG alpha power

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009988 December 27, 2022 17 / 18

https://doi.org/10.1016/j.jneumeth.2020.108912
http://www.ncbi.nlm.nih.gov/pubmed/32835705
https://doi.org/10.1016/j.neuroimage.2017.02.045
http://www.ncbi.nlm.nih.gov/pubmed/28219774
https://doi.org/10.1016/j.neuroimage.2020.116734
https://doi.org/10.1016/j.neuroimage.2020.116734
http://www.ncbi.nlm.nih.gov/pubmed/32179105
https://doi.org/10.1016/j.neuroimage.2016.11.041
http://www.ncbi.nlm.nih.gov/pubmed/27871922
https://doi.org/10.1016/j.neuron.2020.12.007
http://www.ncbi.nlm.nih.gov/pubmed/33357412
https://doi.org/10.1016/j.neuroimage.2008.09.048
https://doi.org/10.1016/j.neuroimage.2008.09.048
http://www.ncbi.nlm.nih.gov/pubmed/19000769
https://doi.org/10.1016/j.neuroimage.2014.12.081
http://www.ncbi.nlm.nih.gov/pubmed/25585017
https://doi.org/10.1016/j.neuroimage.2008.07.041
https://doi.org/10.1016/j.neuroimage.2008.07.041
http://www.ncbi.nlm.nih.gov/pubmed/18718870
https://doi.org/10.1016/j.neuroimage.2009.04.062
http://www.ncbi.nlm.nih.gov/pubmed/19398015
https://doi.org/10.1016/j.neuroimage.2006.08.035
http://www.ncbi.nlm.nih.gov/pubmed/17055746
https://doi.org/10.1016/j.neuroimage.2011.03.062
https://doi.org/10.1016/j.neuroimage.2011.03.062
http://www.ncbi.nlm.nih.gov/pubmed/21459150
https://doi.org/10.1093/cercor/bhv200
http://www.ncbi.nlm.nih.gov/pubmed/26400915
https://doi.org/10.3389/fncom.2018.00023
https://doi.org/10.3389/fncom.2018.00023
http://www.ncbi.nlm.nih.gov/pubmed/29670518
https://doi.org/10.1016/j.brainresrev.2006.06.003
http://www.ncbi.nlm.nih.gov/pubmed/16887192
https://doi.org/10.3389/fphar.2016.00348
http://www.ncbi.nlm.nih.gov/pubmed/27729865
https://doi.org/10.1093/schbul/sbv051
http://www.ncbi.nlm.nih.gov/pubmed/25987642
https://doi.org/10.1152/physrev.00035.2008
http://www.ncbi.nlm.nih.gov/pubmed/20664082
https://doi.org/10.1186/s13195-020-00613-6
http://www.ncbi.nlm.nih.gov/pubmed/32321573
https://doi.org/10.1016/j.clinph.2006.06.720
http://www.ncbi.nlm.nih.gov/pubmed/16997626
https://doi.org/10.1371/journal.pcbi.1007662
https://doi.org/10.1371/journal.pcbi.1007662
http://www.ncbi.nlm.nih.gov/pubmed/32352973
https://doi.org/10.1371/journal.pcbi.1006694
https://doi.org/10.1371/journal.pcbi.1006694
http://www.ncbi.nlm.nih.gov/pubmed/31145724
https://doi.org/10.1371/journal.pcbi.1009988


61. Rowe DL, Robinson PA, Rennie CJ. Estimation of neurophysiological parameters from the waking EEG

using a biophysical model of brain dynamics. J Theor Biol. 2004; 231: 413–433. https://doi.org/10.1016/

j.jtbi.2004.07.004 PMID: 15501472

62. David O, Maess B, Eckstein K, Friederici AD. Dynamic Causal Modeling of Subcortical Connectivity of

Language. J Neurosci. 2011; 31: 2712–2717. https://doi.org/10.1523/JNEUROSCI.3433-10.2011

PMID: 21325540

63. Lopes da Silva FH, Hoeks A, Smits H, Zetterberg LH. Model of brain rhythmic activity. Kybernetik. 1974;

15: 27–37. https://doi.org/10.1007/BF00270757 PMID: 4853232

64. Costa MS, Weigenand A, Ngo H V. A Thalamocortical Neural Mass Model of the EEG during NREM

Sleep and Its Response to Auditory Stimulation. 2016; 1–20. https://doi.org/10.1371/journal.pcbi.

1005022 PMID: 27584827

65. Haghighi HS, Markazi AHD. OPEN A new description of epileptic seizures based on dynamic analysis

of a thalamocortical model. Sci Rep. 2017; 1–10. https://doi.org/10.1038/s41598-017-13126-4 PMID:

29051507

66. Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, Kilner JM. The functional anatomy of the

MMN: A DCM study of the roving paradigm. Neuroimage. 2008; 42: 936–944. https://doi.org/10.1016/j.

neuroimage.2008.05.018 PMID: 18602841

67. Marx E, Deutschländer A, Stephan T, Dieterich M, Wiesmann M, Brandt T. Eyes open and eyes closed

as rest conditions: Impact on brain activation patterns. Neuroimage. 2004; 21: 1818–1824. https://doi.

org/10.1016/j.neuroimage.2003.12.026 PMID: 15050602

68. Marx E, Stephan T, Nolte A, Deutschländer A, Seelos KC, Dieterich M, et al. Eye closure in darkness

animates sensory systems. Neuroimage. 2003; 19: 924–934. https://doi.org/10.1016/s1053-8119(03)

00150-2 PMID: 12880821

69. Costumero V, Bueichekú E, Adrián-Ventura J, Ávila C. Opening or closing eyes at rest modulates the

functional connectivity of V1 with default and salience networks. Sci Rep. 2020; 10: 1–10. https://doi.

org/10.1038/s41598-020-66100-y PMID: 32499585

70. Donoghue T, Haller M, Peterson EJ, Varma P, Sebastian P, Gao R, et al. Parameterizing neural power

spectra into periodic and aperiodic components. Nat Neurosci. 2020; 23: 1655–1665. https://doi.org/10.

1038/s41593-020-00744-x PMID: 33230329

PLOS COMPUTATIONAL BIOLOGY Modelling EEG alpha power

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009988 December 27, 2022 18 / 18

https://doi.org/10.1016/j.jtbi.2004.07.004
https://doi.org/10.1016/j.jtbi.2004.07.004
http://www.ncbi.nlm.nih.gov/pubmed/15501472
https://doi.org/10.1523/JNEUROSCI.3433-10.2011
http://www.ncbi.nlm.nih.gov/pubmed/21325540
https://doi.org/10.1007/BF00270757
http://www.ncbi.nlm.nih.gov/pubmed/4853232
https://doi.org/10.1371/journal.pcbi.1005022
https://doi.org/10.1371/journal.pcbi.1005022
http://www.ncbi.nlm.nih.gov/pubmed/27584827
https://doi.org/10.1038/s41598-017-13126-4
http://www.ncbi.nlm.nih.gov/pubmed/29051507
https://doi.org/10.1016/j.neuroimage.2008.05.018
https://doi.org/10.1016/j.neuroimage.2008.05.018
http://www.ncbi.nlm.nih.gov/pubmed/18602841
https://doi.org/10.1016/j.neuroimage.2003.12.026
https://doi.org/10.1016/j.neuroimage.2003.12.026
http://www.ncbi.nlm.nih.gov/pubmed/15050602
https://doi.org/10.1016/s1053-8119%2803%2900150-2
https://doi.org/10.1016/s1053-8119%2803%2900150-2
http://www.ncbi.nlm.nih.gov/pubmed/12880821
https://doi.org/10.1038/s41598-020-66100-y
https://doi.org/10.1038/s41598-020-66100-y
http://www.ncbi.nlm.nih.gov/pubmed/32499585
https://doi.org/10.1038/s41593-020-00744-x
https://doi.org/10.1038/s41593-020-00744-x
http://www.ncbi.nlm.nih.gov/pubmed/33230329
https://doi.org/10.1371/journal.pcbi.1009988

