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Abstract
We define an affine partition algebra by generators and relations and prove a variety of basic
results regarding this new algebra analogous to those of other affine diagram algebras. In
particular we show that it extends the Schur-Weyl duality between the symmetric group and
the partition algebra. We also relate it to the affine partition category recently defined by
J. Brundan and M. Vargas. Moreover, we show that this affine partition category is a full
monoidal subcategory of the Heisenberg category.

Keywords Affine partition algebra · Schur-Weyl duality · Heisenberg category
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1 Introduction

Classical Schur-Weyl duality relates the representations of the symmetric group and the
general linear group via their commuting actions on tensor space. The Brauer algebra was
introduced in [1] to play the role of the symmetric group in a corresponding duality for the
symplectic and orthogonal groups. The partition algebra was originally defined by P. Martin
in [15] in the context of Statistical Mechanics. V. Jones showed in [10] that it appears in
another version of Schur-Weyl duality. More precisely, if one replaces the general linear
group by the finite subgroup of all permutation matrices then the centraliser algebra of its
action on tensor space is precisely the partition algebra. The aim of this paper is to define
an affine version of the partition algebra.

There are different ‘affinization’ processes for such algebras. One such process amounts
to making the Jucys-Murphy elements of the ordinary algebra into variables, retaining some
of the relations between these variables and the standard generators of the ordinary algebra.
Starting with the symmetric group algebra, this ‘affinization’ process gives rise to the much-
studied degenerate affine Hecke algebra (see for example [13]). In the case of the Brauer
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algebra, M. Nazarov used this process in [16] to define the affine Wenzl algebra (also called
the Nazarov-Wenzl algebra or the degenerate affine BMW algebra in the literature). This
process was also employed independently in both [19] and [20] to define a degenerate affine
walled Brauer algebra.

R. Orellana and A. Ram introduced a different ‘affinization’ process in [17] focussed on
extending the Schur-Weyl dualities, via the affine braid group. They have applied it to the
symmetric group, Brauer algebra and their quantum analogues. This process naturally leads
to cyclotomic quotients of the affine algebras.

In this paper, we follow the first approach to define an affine partition algebra by turning
the Jucys-Murphy elements for the partition algebra into variables and ask them to retain
certain relations with the generators. But we also show that this affine partition algebra nat-
urally extends the commuting action on tensor space with the symmetric group. We started
this work by trying to use the presentation for the partition algebra given by T. Halverson
and A. Ram in [8] but were unable to define an algebra with the expected properties in this
way. So we instead used the more recent presentation given by J. Enyang in [6] (which uses
a new set of generators) to define the affine partition algebraAaff

2k . We prove that it satisfies
many properties analogous to those for other affine diagram algebras.

While writing this paper, J. Brundan and M. Vargas produced a preprint [2] defining an
affine partition category APar as a monoidal subcategory of the Heisenberg category gen-
erated by some objects and morphisms. Taking an endomorphism algebra in their category
gives an alternative definition of an affine partition algebra, which they denote by APk .
They prove many properties for this category and use it to give a new approach to the rep-
resentation theory of the partition category. However, as they note in [2, Remark 4.12] they
have not attempted to give a basis for the morphism spaces in their category, or to give a
presentation for it. Inspired by their work, we have explored the connection between our
affine partition algebra and the Heisenberg category. We have added a section at the end of
our paper where we construct a surjective homomorphism from Aaff

2k to an endomorphism
algebra in the Heisenberg category. Our argument generalises to show that the affine par-
tition category APar of Brundan and Vargas is in fact the full monoidal subcategory of the
Heisenberg category generated by one object. Using work of Khovanov [12], this gives a
basis for all morphism spaces in APar and hence also for APk . We also obtain as a corol-
lary that APk is a quotient of Aaff

2k . We do not know whether these two algebras are in fact
isomorphic. If they were, then our definition ofAaff

2k would also give a presentation for APk .
The paper is structured as follows. Section 2 deals with the ordinary partition algebra.

In Section 2.1 we recall the diagram basis and the original presentation of the partition
algebra given by T. Halverson and A. Ram. In Section 2.2, we recall the definition of the
Jucys-Murphy elements and the more recent presentation of the algebra given by J. Enyang.
Section 2.3 introduces a new normalisation of the Jucys-Murphy elements and of Enyang’s
generators which has the advantage of simplifying many of the relations in our definition.
We also collect many of the relations which will be needed in defining an affine partition.
Finally, in Section 2.4, we recall explicitly the Schur-Weyl duality between the partition
algebra and the symmetric group.

Section 3 gives the definition of the affine partition algebra Aaff
2k in terms of generators

and relations and proves some properties. In particular, we show in Section 3.1 that the ordi-
nary partition algebra appears both as a subalgebra and as a quotient ofAaff

2k . In Section 3.2,
we describe a family of central elements in Aaff

2k and formulate a conjecture about its cen-
tre. Finally, in Section 3.3 we show that Aaff

2k extends the action of the partition algebra on
tensor space as desired.



Defining an Affine Partition Algebra

Section 4 deals with the connections with the Heisenberg category and the work of J.
Brundan and M. Vargas on their affine partition category. In Section 4.1, we recall the def-
inition of the Heisenberg category including the basis of the morphism spaces given by M.
Khovanov in [12]. In Section 4.2 we define a homomorphism from Aaff

2k to the endomor-
phism space of a particular object in the Heisenberg category and prove that it is surjective.
In Section 4.3, we generalise the arguments from Section 4.2 to show that APar is the full
monoidal subcategory of the Heisenberg category generated by one object and deduce that
APk is a quotient ofAaff

2k .

2 Partition Algebra

2.1 Diagrammatics and Presentation

For this section we give the definition of the partition algebra A2k(z) and its presentation
established in [8] (and independently in [5]). For k ∈ N, we let [k] := {1, 2, . . . , k}, and
[k′] := {1′, 2′, . . . , k′}. We view [k]∪[k′] as a formal set on 2k elements, and let �2k denote
the set of all set partitions of [k] ∪ [k′]. Given any α ∈ �2k , we say a partition diagram of
α is any graph with vertex set [k] ∪ [k′] whose connected components partition the vertices
according to the blocks of α. We do not distinguish between α and any partition diagram
of α, in particular we will only care about the connected components of such graphs, not
the particular edges which form the components. When drawing such a diagram, we will
arrange the vertices in two rows with the top row going from 1 to k, and the bottom row
from 1′ to k′. For example, in �10 we have the identification

{{1, 2, 2′, 3}, {3′}, {1′, 4, 4′}, {5, 5′}} =
1 2 3 4 5

1′ 2′ 3′ 4′ 5′
.

We define a product ◦ on �2k as follows: Given α, β ∈ �2k , we let α ◦ β ∈ �2k be the
set partition obtained by first stacking the diagram of α on top of that of β, identifying the
bottom row of α with the top row of β, removing any connected components lying entirely
within the middle row, and then reading off the connected components formed between the
top row of α and the bottom row of β. For example consider

α =
1 2 3 4 5

1′ 2′ 3′ 4′ 5′
and β =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

in �10. Then we have

α ◦ β =

1 2 3 4 5

1′ 2′ 3′ 4′ 5′

=
1 2 3 4 5

1′ 2′ 3′ 4′ 5′
.
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Clearly this product is associative and independent of the choice of graphs used to rep-
resent the set partitions. The element 1 = {{i, i′} | i ∈ [k]} ∈ �2k is an identity element,
and thus (�2k, ◦) is in fact a monoid. Given α, β ∈ �2k , we let m(α, β) denote the num-
ber of middle components removed in evaluating α ◦ β. In the above example, we have
m(α, β) = 1. Now let z be a formal variable and C[z] the polynomial ring. The partition
algebra A2k(z) is the C[z]-algebra whose basis as a free C[z]-module is given by the set
�2k , and whose product is given by

αβ := zm(α,β)α ◦ β

for all α, β ∈ �2k , extended linearly over C[z].
For 0 ≤ l ≤ k, we identify �2l as a submonoid of �2k given diagrammatically by

α → α

l+1

. . .

(l+1)′

k

k′

∈ �2k

for any α ∈ �2l . Define �2k−1 to be the submonoid of �2k consisting of all set partitions
of [k] ∪ [k′] where k and k′ belong to the same block. We have a chain of monoids ∅ =
�0 ⊂ �1 ⊂ �2 ⊂ . . . . For any 0 ≤ r ≤ 2k, we let Ar (z) denote the subalgebra of A2k(z)

generated by �r . We obtain an analogous chain

C[z] = A0(z) ⊆ A1(z) ⊂ A2(z) ⊂ . . . .

of C[z]-algebras. The rank of Ar (z) over C[z] is |�r | = Br , where Br is the r th Bell
number. We can viewAr (z) as an infinte dimensional algebra over C with basis {znα | n ∈
Z≥0, α ∈ �r }. When we do so, we use the notation Ar instead. For any δ ∈ C, let (z − δ)

denote the ideal of Ar generated by z − δ. Then we let Ar (δ) := Ar/(z − δ), which is a
finite dimensional C-algebra with dim(Ar (δ)) = Br .

For i ∈ [k − 1] and j ∈ [k], we define the following elements of �2k:

si =
1

. . .

1′

i i+1

i′ (i+1)′

. . .

k

k′

, e2j−1 =
1

. . .

1′

j

j ′

. . .

k

k′

,

These elements generate the monoid (�2k, ◦), and in turn the algebra A2k(z). More-
over, a presentation in terms of these generators, which we display below, was given in
[8, Theorem 1.11], see also Theorem 36 and Section 6.3 of [5].

Theorem 2.1.1 The partition algebraA2k(z) has a presentation with generating set

{si , ej | i ∈ [k − 1], j ∈ [2k − 1]}
and relations

(HR1) (Coxeter relations)

(i) s2i = 1, for i ∈ [k − 1].
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(ii) sisj = sj si , for j �= i + 1.
(iii) sisi+1si = si+1sisi+1, for i ∈ [k − 2].

(HR2) (Idempotent relations)

(i) e22i−1 = ze2i−1, for i ∈ [k].
(ii) e22i = e2i , for i ∈ [k − 1].
(iii) sie2i = e2i si = e2i , for i ∈ [k − 1].
(iv) sie2i−1e2i+1 = e2i−1e2i+1si = e2i−1e2i+1, for i ∈ [k − 1].

(HR3) (Commutation relations)

(i) e2i−1e2j−1 = e2j−1e2i−1, for i, j ∈ [k].
(ii) e2ie2j = e2j e2i , for i, j ∈ [k − 1].
(iii) e2i−1e2j = e2j e2i−1, for j �= i − 1, i.
(iv) sie2j−1 = e2j−1si , for j �= i, i + 1.
(v) sie2j = e2j si , for j �= i − 1, i + 1.
(vi) sie2i−1si = e2i+1, for i ∈ [k − 1].
(vii) sie2i−2si = si−1e2i si−1, for i ∈ [k − 1].

(HR4) (Contraction relations)

(i) eiei+1ei = ei for i ∈ [2k − 2].
(ii) ei+1eiei+1 = ei+1, for i ∈ [2k − 2].

�

The presentation above extends to one for the C-algebra A2k by simply adding z as
a central generator. The C-algebra A2k(δ) has a presentation identical to above with the
exception of replacing z with δ in relation (HR2)(i). From the symmetry of the above pre-
sentation, one can deduce that we have an anti-involution ∗ : A2k(z) → A2k(z) given by
flipping a partition diagram up-side-down, and extending linearly over C[z]. We denote the
image of an element a ∈ A2k(z) under this anti-involution by a∗.

2.2 Jucys-Murphy Elements and Enyang’s Presentation

In this section we give the definition of the Jucys-Murphy elements of the partition algebra.
These elements were originally defined diagrammatically by Halverson and Ram in [8].
They were later given a recursive definition by Enyang in [6]. For this recursive definition,
Enyang introduced new elements σi which resemble the Coxeter generators si . We recall
this recursive definition, and a new presentation of the partition algebra given in [6] in terms
of the generators ei and σi . The following definition is the one given in Section 2.3 of [7].

Definition 2.2.1 Let L1 = 0, L2 = e1, σ2 = 1, and σ3 = s1. Then for i = 1, 2, . . . , define

L2i+2 = siL2i si − siL2ie2i − e2iL2i si + e2iL2ie2i+1e2i + σ2i+1,

where, for i = 2, 3, . . . , we have

σ2i+1 = si−1siσ2i−1sisi−1 + sie2i−2L2i−2sie2i−2si + e2i−2L2i−2sie2i−2

−sie2i−2L2i−2si−1e2ie2i−1e2i−2 − e2i−2e2i−1e2i si−1L2i−2e2i−2si .

Also for i = 1, 2, . . . , define

L2i+1 = siL2i−1si − L2ie2i − e2iL2i + (z − L2i−1)e2i + σ2i ,



S. Creedon, M. De Visscher

where, for i = 2, 3, . . . , we have

σ2i = si−1siσ2i−2sisi−1 + e2i−2L2i−2sie2i−2si + sie2i−2L2i−2sie2i−2

−e2i−2L2i−2si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2i si−1L2i−2e2i−2si .

Example 2.2.2 The first few non-trivial examples are

L3 = − − + z + ,

L4 = − − + + ,

σ4 = + + − − ,

σ5 = + + − − .

We will refer to the elements Li as the JM-elements, and the elements σi as Enyang’s
generators. A simple proof by induction tells us the following:

Lemma 2.2.3 For each i ∈ N we have that Li ∈ Ai (z) and σi ∈ Ai+1(z).
�

It was shown in [6] that these elements are invariant under the anti-automorphism ∗.
They also commute with smaller partition algebras with respect to the chain described in
the previous section: For any i ≤ r , let Zi(Ar (z)) := 〈a ∈ Ar (z) | ab = ba, ∀ b ∈ Ai (z)〉,
then it was shown in [6, Theorem 3.8] that

Li, σi+1 ∈ Zi−1(Ai (z)). (1)

In particular this shows that the JM-elements pairwise commute. We now give the new
presentation of A2k(z) established in [6]. This presentation is given in terms of the genera-
tors ei and Enyang’s generator’s σi . Remarkably, although the definition and diagrammatic
description of the σi is rather complicated, the defining relations in the following presenta-
tion are very simple. This is less surprising when one considers how these elements act on
tensor space. This will be discussed in Section 2.4.

Theorem 2.2.4 [6, Theorem 4.1] The partition algebra A2k(z) has a presentation with
generating set

{σi, ej | 3 ≤ i ≤ 2k − 1, j ∈ [2k − 1]}
and relations:

(E1) (Involution)

(i) σ 2
2i+2 = 1 for i ∈ [k − 2].

(ii) σ 2
2i+1 = 1 for i ∈ [k − 1].

(E2) (Braid relations)

(i) σ2i+1σ2j = σ2j σ2i+1 for j �= i + 1.
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(ii) σ2i+1σ2j+1 = σ2j+1σ2i+1 for j �= i ± 1.
(iii) σ2iσ2j = σ2j σ2i for j �= i ± 1.

(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where sj =
{

σ3, j = 1

σ2j σ2j+1, j > 1

(E3) (Idempotent relations)

(i) e22i−1 = ze2i−1 for i ∈ [k].
(ii) e22i = e2i for 2 ≥ i ≤ k − 1.
(iii) σ2i+1e2i = e2iσ2i+1 = e2i for i ∈ [k − 1].
(iv) σ2ie2i = e2iσ2i = e2i for 2 ≤ i ≤ k − 1.
(v) σ2ie2i−1e2i+1 = σ2i+1e2i−1e2i+1 for 2 ≤ i ≤ k − 1.
(vi) e2i+1e2i−1σ2i = e2i+1e2i−1σ2i+1 for 2 ≤ i ≤ k − 1.

(E4) (Commutation relations)

(i) eiej = ej ei , if |i − j | ≥ 2.
(ii) σ2i−1e2j−1 = e2j−1σ2i−1, if j �= i − 1, i.
(iii) σ2i−1e2j = e2j σ2i−1, if j �= i.
(iv) σ2ie2j−1 = e2j−1σ2i , if j �= i, i + 1.
(v) σ2ie2j = e2j σ2i , if j �= i − 1.

(E5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2k − 2].
(ii) σ2ie2i−1σ2i = σ2i+1e2i+1σ2i+1, for 2 ≤ i ≤ k − 1.
(iii) σ2ie2i−2σ2i = σ2i−1e2iσ2i−1, for 2 ≤ i ≤ k − 1.

�

Note we only worked with the elements σi for i ≥ 3, since σ2 = 1. The elements sj in
the above presentation are precisely the Coxeter generators. From the involution relations
we have that siσ2i = σ2i si = σ2i+1. From (1) one can deduce that Li and σj commute
whenever j �= i − 1, i, i + 1. We end this section by giving relations which tell us how the
JM-elements interact with Enyang’s generators when they do not commute. We use results
established in [6], although we have adopted the notation of [7].

Remark 2.2.5 The change of notation between [6] and [7] is given respectively by pi ∼
e2i−1, pi+ 1

2
∼ e2i , σi ∼ σ2i−1, σi+ 1

2
∼ σ2i , Li ∼ L2i , and L

i+ 1
2

∼ L2i+1.

Proposition 2.2.6 The following relations hold:

(i) L2i+1 = σ2iL2i−1σ2i − e2ie2i−1σ2i − σ2ie2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i .
(ii) L2i+2 = σ2i+1L2iσ2i+1 − e2ie2i+1 − e2i+1e2i + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1.
(iii) L2i = σ2iL2iσ2i + e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1 − e2i+1e2i .
(iv) L2i+1 = σ2i+1L2i+1σ2i+1 − e2ie2i+1σ2i+1 − σ2i+1e2i+1e2i + e2ie2i+1 + e2i+1e2i .

Proof (i): By definition,

L2i+1 = siL2i−1si − L2ie2i − e2iL2i + (z − L2i−1)e2i + σ2i . (2)

We examine the right hand side term by term. For the first term we have

siL2i−1si = σ2iσ2i+1L2i−1σ2i+1σ2i = σ2iσ
2
2i+1L2i−1σ2i = σ2iL2i−1σ2i .
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For the second term, multiplying [6, Proposition 3.2 (3)] on the left by si we get
σ2ie2i−1e2i = L2ie2i . Acting by the anti-automorphism ∗ yields e2ie2i−1σ2i = e2iL2i for
the third term. Lastly for the forth term

(z − L2i−1)e2i = (z − L2i−1)e2ie2i+1e2i

= e2i (z − L2i−1)e2i+1e2i

= e2ie2i+1σ2ie2i+1e2i

where the last equality follows by [6, Proposition 4.3 (2)]. Substituting these terms back
into (2) yields (i).

(ii): By definition,

L2i+2 = siL2i si − siL2ie2i − e2iL2i si + e2iL2ie2i+1e2i + σ2i+1. (3)

Multiplying this equation on the left and right by σ2i gives

L2i+2 = σ2i+1L2iσ2i+1 − σ2i+1L2ie2i − e2iL2iσ2i+1 + e2iL2ie2i+1e2i + σ2i+1

= σ2i+1L2iσ2i+1 − σ 2
2i+1e2i+1e2i − e2ie2i+1σ

2
2i+1 + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1

= σ2i+1L2iσ2i+1 − e2i+1e2i − e2ie2i+1 + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1

which gives (ii), where the second equality follows by relation σ2i+1e2i+1e2i = L2ie2i and
its dual e2ie2i+1σ2i+1 = e2iL2i , which follows from [6, Proposition 3.2 (3)].

(iii): It was shown in [6, Proposition 3.10] that the element L1 + L2 + · · · + Lr belongs
to the center of Ar (z). From this, and the fact that Li and σj commute whenever j �=
i − 1, i, i + 1, one may deduce that

σ2i (L2i−1 + L2i + L2i+1)σ2i = L2i−1 + L2i + L2i+1.

Rearranging gives

L2i = σ2iL2iσ2i + (σ2iL2i−1σ2i − L2i+1) + (σ2iL2i+1σ2i − L2i−1). (4)

We examine the bracketed terms in (4). Rearranging (i) gives the first bracketed term as

σ2iL2i−1σ2i − L2i+1 = e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1σ2ie2i+1e2i − σ2i .

Multiplying this on the left and right by σ2i , and then rearranging gives the second bracketed
term

σ2iL2i+1σ2i − L2i−1 = −e2ie2i−1 − e2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i .

Substituting these back into (4) yields (iii).
(iv): Analogously to the previous case, one can deduce that

σ2i+1(L2i + L2i+1 + L2i+2)σ2i+1 = L2i + L2i+1 + L2i+2.

Rearranging gives

L2i+1 = σ2i+1L2i+1σ2i+1 + (σ2i+1L2iσ2i+1 − L2i+2) + (σ2i+1L2i+2σ2i+1 − L2i ). (5)

We examine the bracketed terms in (5). Rearranging (2)(ii) gives the first bracketed term as

σ2i+1L2iσ2i+1 − L2i+2 = e2ie2i+1 + e2i+1e2i − e2ie2i+1σ2i+1e2i+1e2i − σ2i+1.

Multiplying this on the left and right by σ2i+1, and then rearranging gives the second
bracketed term

σ2i+1L2i+2σ2i+1−L2i = −e2ie2i+1σ2i+1−σ2i+1e2i+1e2i +e2ie2i+1σ2i+1e2i+1e2i +σ2i+1.

Substituting these back into (5) yields (iv).
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2.3 Normalisation

As mentioned in the introduction, we seek to ‘affinize’ the partition algebra by replacing
the Jucys-Murphy elements with commuting variables, and asking them to retain various
relations with the generators. In preparation for this construction, this section collects all the
relations we seek to retain in one place. However, instead of working with the JM-elements
and Enyang’s generators, it turns out to be easier to work with the following elements: For
each i ∈ N we set

t2i := σ2i − e2i , t2i+1 := σ2i+1 − e2i .

For each i ∈ N we set

Xi :=
{

z − 1 − Li, if i odd

Li − 1, if i even

We also call the elements Xi the JM-elements and the elements ti Enyang’s generators. By
definitions we have that ti ∈ Ai+1(z), Xi ∈ Ai (z), and that t∗i = ti and X∗

i = Xi . One can
also deduce that si t2i = t2i si = t2i+1. We briefly collect some simple relations to ease the
proof of the proceeding proposition.

Lemma 2.3.1 The following relations hold:

(i) e2i+1t2ie2i+1 = X2i−1e2i+1
(ii) t2ie2i−1e2i = X2ie2i , and e2ie2i−1t2i = e2iX2i
(iii) t2i+1e2i+1e2i = X2ie2i , and e2ie2i+1t2i+1 = e2iX2i

Proof (i): We have that

e2i+1t2ie2i+1 = e2i+1(σ2i − e2i )e2i+1

= e2i+1σ2ie2i+1 − e2i+1 by (E5)

= (z − L2i−1)e2i+1 − e2i+1 by [6 Proposition 4.3 (2)]

= (X2i−1 + 1)e2i+1 − e2i+1

= 7X2i−1e2i+1

(ii): We have that

t2ie2i−1e2i = (σ2i − e2i )e2i−1e2i

= σ2ie2i−1e2i − e2i by (E5)

= L2ie2i − e2i by [6 Proposition 3.2 (3)]

= (X2i + 1)e2i − e2i

= X2ie2i

The relation e2ie2i−1t2i = e2iX2i is obtained by acting by ∗.
(iii): We have t2i+1e2i+1e2i = t2i sie2i+1e2i = t2ie2i−1e2i = X2ie2i . Again the relation

e2ie2i+1t2i+1 = e2iX2i is obtained by acting by ∗.

The following proposition contains all the relations we seek to retain for our construc-
tion of the affine partition algebra, as such some are identical to relations we have already
stated. It provides a presentation of the partition algebra A2k(z) which is simply Enyang’s
presentation 2.2.4 except working with the generators ti instead of σi . For those relations
we have adopted the same naming conventions given in 2.2.4.
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Proposition 2.3.2 The partition algebraA2k(z) has a presentation with generating set

{ti , ej | 3 ≤ i ≤ 2k − 1, j ∈ [2k − 1]}
and relations:

(1) (Involutions)

(i) t22i+2 = 1 − e2i , for i ∈ [k − 2].
(ii) t22i+1 = 1 − e2i , for i ∈ [k − 1].

(2) (Braid relations)

(i) t2i+1t2j = t2j t2i+1 for j �= i + 1.
(ii) t2i+1t2j+1 = t2j+1t2i+1 for j �= i ± 1.
(iii) t2i t2j = t2j t2i for j �= i ± 1.

(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where sj =
{

t3 + e2, j = 1

t2j t2j+1 + e2j , j > 1
.

(3) (Idempotent relations)

(i) e22i−1 = ze2i−1 for i ∈ [k].
(ii) e22i = e2i for i ∈ [k − 1].
(iii) t2i+1e2i = e2i t2i+1 = 0 for i ∈ [k − 1].
(iv) t2ie2i = e2i t2i = 0 for 2 ≤ i ≤ k − 1.
(v) t2ie2i−1e2i+1 = t2i+1e2i−1e2i+1 for 2 ≤ i ≤ k − 1.
(vi) e2i+1e2i−1t2i = e2i+1e2i−1t2i+1 for 2 ≤ i ≤ k − 1.

(4) (Commutation relations)

(i) eiej = ej ei , if |i − j | ≥ 2.
(ii) t2i−1e2j−1 = e2j−1t2i−1, if j �= i − 1, i.
(iii) t2i−1e2j = e2j t2i−1, if j �= i.
(iv) t2ie2j−1 = e2j−1t2i , if j �= i, i + 1.
(v) t2ie2j = e2j t2i , if j �= i − 1.

(5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2k − 2].
(ii) t2ie2i−1t2i = t2i+1e2i+1t2i+1, for i ∈ [k − 1].
(iii) t2ie2i−2t2i = t2i−1e2i t2i−1, for 2 ≤ i ≤ k − 1.

Furthermore, the following relations are satisfied inA2k(z):

(6) (JM Commutation Relations)

(i) XiXj = XjXi for all i, j ∈ [2k]
(ii) tiXj = Xj ti for j �= i − 1, i, i + 1
(iii) eiXj = Xjei for j �= i, i + 1

(7) (Braid-like Relations)

(i) t2i−2t2i t2i−2 = t2i t2i−2t2i (1 − e2i−2)

(ii) t2i+1t2i−1t2i+1 = t2i−1t2i+1t2i−1(1 − e2i )

(iii) t2i−1t2i t2i−1 = t2i − e2i−2t2i − t2ie2i−2
(iv) t2i t2i−1t2i = t2i−1 − e2i t2i−1 − t2i−1e2i
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(8) (Skein-like Relations)

(i) X2i+1 = t2iX2i−1t2i + e2ie2i−1t2i + t2ie2i−1e2i − t2i .
(ii) X2i+2 = t2i+1X2i t2i+1 + e2ie2i+1t2i+1e2i+1e2i + t2i+1.
(iii) X2i = t2iX2i t2i + e2ie2i−1t2i + t2ie2i−1e2i .
(iv) X2i+1 = t2i+1X2i+1t2i+1 + e2ie2i+1t2i+1 + t2i+1e2i+1e2i .

(9) (Anti-symmetry Relations)

(i) ei(Xi − Xi+1) = 0 for i ∈ [2k − 1].
(ii) (Xi − Xi+1)ei = 0 for i ∈ [2k − 1].

(10) (Bubble Relations)

(i) e1X
l
1e1 = z(z − 1)le1, for all l ∈ Z≥0.

Proof Although lengthy, it is simple to check that relations (1) to (5) give an alternative
presentation for A2k(z) since we merely exchanged the elements σi with ti from Enyang’s
presentation given in Theorem 2.2.4.

(6): Follows from (1) and Lemma 2.2.3.
(7): These relations will be proven in the next section in Lemma 2.4.5.
(9): Follows from [6, Proposition 3.9] (1) and (2).
(10): We have that X1 = z − 1 − L1 = z − 1. Thus for any l ∈ N,

e1X
l
1e1 = (z − 1)le21 = z(z − 1)le1.

(8)(i): From Proposition 2.2.6 (i) we have

L2i+1 = σ2iL2i−1σ2i − e2ie2i−1σ2i − σ2ie2i−1e2i + e2ie2i+1σ2ie2i+1e2i + σ2i . (6)

Examining the right hand side term by term: For the first term,

σ2iL2i−1σ2i = (t2i + e2i )(−X2i−1)(t2i + e2i ) + (z − 1)

= −t2iX2i−1t2i − t2iX2i−1e2i − e2iX2i−1t2i − e2iX2i−1e2i + (z − 1)

= −t2iX2i−1t2i − X2i−1e2i + (z − 1)

where the last equality follows since X2i−1 commutes with e2i and t2ie2i = e2i t2i = 0. For
the second and third term of (6), we have

−e2ie2i−1σ2i = −e2i − e2ie2i−1t2i , and − σ2ie2i−1e2i = −t2ie2i−1e2i − e2i .

For the forth term of (6),

e2ie2i+1σ2ie2i+1e2i = e2ie2i+1t2ie2i+1e2i + e2ie2i+1e2ie2i+1e2i

= e2ie2i+1t2ie2i+1e2i + e2i

= e2ie2i−1t2i+1e2i+1e2i + e2i by t2i = si t2i+1

= e2ie2i−1X2i+1e2i + e2i by Lemma 2.3.1 (iii)

= e2ie2i−1e2iX2i−1 + e2i by (9)(i), (ii)

= e2iX2i−1 + e2i .
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Substituting all these back into (6) yields

z − 1 − X2i+1 = −t2iX2i−1t2i − X2i−1e2i + (z − 1)

−e2i − e2ie2i−1t2i − t2ie2i−1e2i − e2i

+e2iX2i−1 + e2i + t2i + e2i

⇐⇒ X2i+1 = t2iX2i−1t2i + e2ie2i−1t2i + t2ie2i−1e2i − t2i

giving (8)(i).
(8)(ii): From Proposition 2.2.6 (ii) we have

L2i+2 = σ2i+1L2iσ2i+1 − e2ie2i+1 − e2i+1e2i + e2ie2i+1σ2i+1e2i+1e2i + σ2i+1. (7)

We examine two terms on the right hand side: The first term gives

σ2i+1L2iσ2i+1 = (t2i+1 + e2i )(X2i + 1)(t2i+1 + e2i )

= t2i+1X2i t2i+1 + t2i+1X2ie2i + e2iX2i t2i+1 + e2iX2ie2i + 1

= t2i+1X2i t2i+1 + t22i+1e2i+1e2i + e2ie2i+1t
2
2i+1 + 1

= t2i+1X2i t2i+1 + e2i+1e2i + e2ie2i+1 − 2e2i + 1

where the second equality follows since (t2i+1 + e2i )
2 = 1, and the third from Lemma 2.3.1

(iii) and since e2iX2ie2i = e2ie2i−1t2ie2i = 0. The forth term in (7) gives

e2ie2i+1σ2i+1e2i+1e2i = e2ie2i+1t2i+1e2i+1e2i + e2ie2i+1e2ie2i+1e2i

= e2ie2i+1t2i+1e2i+1e2i + e2i .

Substituting these back into (7) yields

X2i+2 + 1 = t2i+1X2i t2i+1 + e2i+1e2i + e2ie2i+1 − 2e2i + 1

−e2ie2i+1 − e2i+1e2i + e2ie2i+1t2i+1e2i+1e2i + e2i + t2i+1 + e2i

⇐⇒ X2i+2 = t2i+1X2i t2i+1 + e2ie2i+1t2i+1e2i+1e2i + t2i+1

giving (8)(ii).
(8)(iii): From Proposition 2.2.6 (iii) we have

L2i = σ2iL2iσ2i + e2ie2i−1σ2i + σ2ie2i−1e2i − e2ie2i+1 − e2i+1e2i . (8)

We have that

σ2iL2iσ2i = (t2i + e2i )(X2i + 1)(t2i + e2i )

= t2iX2i t2i + t2iX2ie2i + e2iX2i t2i + e2iX2ie2i + 1

= t2iX2i t2i + t22ie2i−1e2i + e2ie2i−1t
2
2i + 1

= t2iX2i t2i + e2i−1e2i + e2ie2i−1 − 2e2i + 1

where the second equality follows since (t2i + e2i )
2 = 1, and the third equality from

Lemma 2.3.1 (ii) and the since t2ie2i = e2i t2i = 0. Substituting this, and relations

e2ie2i−1σ2i = e2ie2i−1t2i + e2i and σ2ie2i−1e2i = t2ie2i−1e2i + e2i ,

back into (8) yields

X2i + 1 = t2iX2i t2i + e2i−1e2i + e2ie2i−1 − 2e2i + 1 + e2ie2i−1t2i + e2i

+t2ie2i−1e2i + e2i − e2ie2i+1 − e2i+1e2i

⇐⇒ X2i = t2iX2i t2i + e2ie2i−1t2i + t2ie2i−1e2i + 1

giving (8)(iii).
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(8)(iv): From Proposition 2.2.6 (iv) we have

L2i+1 = σ2i+1L2i+1σ2i+1 − e2ie2i+1σ2i+1 − σ2i+1e2i+1e2i + e2ie2i+1 + e2i+1e2i . (9)

We have that

σ2i+1L2i+1σ2i+1 = (t2i+1 + e2i )(−X2i+1)(t2i+1 + e2i ) + (z − 1)

= −t2i+1X2i+1t2i+1 − t2i+1X2i+1e2i

−e2iX2i+1t2i+1 − e2iX2i+1e2i + (z − 1)

= −t2i+1X2i+1t2i+1 − t22i+1e2i+1e2i − e2ie2i+1t
2
2i+1 + (z − 1)

= −t2i+1X2i+1t2i+1 − e2i+1e2i − e2ie2i+1 + 2e2i + (z − 1)

where the third equality follows from Lemma 2.3.1 (iii), and noting that e2iX2i+1e2i =
e2iX2ie2i = e2ie2i−1t2ie2i = 0. Substituting this, and the equations

−e2ie2i+1σ2i+1 = −e2ie2i+1t2i+1 − e2i and σ2ie2i−1e2i = −t2i+1e2i+1e2i − e2i ,

back into (9) yields

(z − 1) − X2i+1 = −t2i+1X2i+1t2i+1 − e2i+1e2i − e2ie2i+1

+2e2i + (z − 1) − e2ie2i+1t2i+1

−e2i − t2i+1e2i+1e2i − e2i + e2ie2i+1 + e2i+1e2i

⇐⇒ X2i+1 = t2i+1X2i+1t2i+1 + t2i+1e2i+1e2i + e2ie2i+1t2i+1

giving (8)(iv).

2.4 Schur-Weyl Duality

In this section we recall the Schur-Weyl duality between the partition algebraA2k(n) and the
group algebra of the symmetric group CS(n) via their actions on tensor space. We will also
highlight howXi and ti act on this tensor space, and complete the proof of Proposition 2.3.2.
Consider the permutation module V = SpanC{v1, . . . , vn} of CS(n) with action given by
πva = vπ(a) for all π ∈ S(n) and a ∈ [n], extended C-linearly to CS(n). For k ≥ 0, the
tensor space

V ⊗k := V ⊗ · · · ⊗ V (k tensor components)

is an CS(n)-module via the diagonal action. For any k-tuple a = (a1, . . . , ak) ∈ [n]k we let
va := va1 ⊗ · · · ⊗ vak

∈ V ⊗k , and for any π ∈ S(n) let π(a) := (π(a1), . . . , π(ak)). Then
V ⊗k = SpanC{va | a ∈ [n]k}, and the diagonal action is given by the C-linear extension of
πva = vπ(a) for all π ∈ S(n) and a ∈ [n]k . We let End(V ⊗k) be the algebra of all vector
space endomorphims V ⊗k → V ⊗k . We identify any g ∈ CS(n) with the corresponding
endomorphism in End(V ⊗k) given by the diagonal action. Then consider the subalgebra

EndS(n)(V
⊗k) := {f ∈ End(V ⊗k) | f π = πf, for all π ∈ S(n)}

of all S(n) commuting endomorphisms. For the following result see [8, Section 3].

Theorem 2.4.1 For any n, k ≥ 0, we have a surjective C-algebra homomorphism

ψn,k : A2k → EndS(n)(V
⊗k)
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defined on the generators z, si , and ej , by letting z �→ n and

ψn,k(si)(va) = va1 ⊗ · · · ⊗ vai−1 ⊗ vai+1 ⊗ vai
⊗ vai+2 ⊗ · · · ⊗ vak

ψn,k(e2j−1)(va) =
n∑

b=1

va1 ⊗ · · · ⊗ vaj−1 ⊗ vb ⊗ vaj+1 ⊗ · · · ⊗ vak

ψn,k(e2j )(va) = δaj ,aj+1va

for all a = (a1, . . . , ak) ∈ [n]k , i ∈ [k − 1], j ∈ [2k − 1], where δa,b is the Kronecker
delta. Moreover, we have that Ker(ψn,k) = (z − n) if and only if n ≥ 2k, in which case
A2k(n) ∼= EndS(n)(V

⊗k).

For any a, b ∈ [n], we let (a, b) ∈ S(n) denote the transposition exchanging a and b,
and let εa,b := 1 − δa,b. We now recall how the elements Xi and ti act under ψn,k , which
was proven in [6].

Proposition 2.4.2 [6, Proposition 5.2] For any a ∈ [n]k , we have
ψn,k(t2i )(va) = εai ,ai+1(ai, ai+1)(va1 ⊗ · · · ⊗ vai−1) ⊗ vai

⊗ · · · ⊗ vak

ψn,k(t2i+1)(va) = εai ,ai+1(ai, ai+1)(va1 ⊗ · · · ⊗ vai+1) ⊗ vai+2 ⊗ · · · ⊗ vak

for all a = (a1, . . . , ak) ∈ [n]k , and i ∈ [k − 1].

Proposition 2.4.3 [6, Proposition 5.3] For any a ∈ [n]k , we have

ψn,k(X2i−1)(va) =
n∑

b=1
b �=ai

(ai , b)(va1 ⊗ · · · ⊗ vai−1) ⊗ vai
⊗ · · · ⊗ vak

ψn,k(X2i )(va) =
n∑

b=1
b �=ai

(ai , b)(va1 ⊗ · · · ⊗ vai
) ⊗ vai+1 ⊗ · · · ⊗ vak

for all a = (a1, . . . , ak) ∈ [n]k , and i ∈ [k].

The following result tells us that a relation holds inA2k if and only if it holds under ψn,k

for all n. We will use this result to complete Proposition 2.3.2.

Lemma 2.4.4 Let R1, R2 ∈ A2k . If ψn,k(R1) = ψn,k(R2) for all n ≥ 1, then R1 = R2.

Proof Follows since

R1 − R2 ∈
∞⋂

n=1

Ker(ψn,k) ⊂
⋂

n≥2k

(z − n) = 0.

Lemma 2.4.5 The relations

(7) (Braid-like relations)

(i) t2i−2t2i t2i−2 = t2i t2i−2t2i (1 − e2i−2)

(ii) t2i+1t2i−1t2i+1 = t2i−1t2i+1t2i−1(1 − e2i )
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(iii) t2i−1t2i t2i−1 = t2i − e2i−2t2i − t2ie2i−2
(iv) t2i t2i−1t2i = t2i−1 − e2i t2i−1 − t2i−1e2i

hold inA2k , thus completing the proof of Proposition 2.3.2.

Proof To ease notation, for any tuple a = (a1, . . . , ak) ∈ [n]k , we represent a simple tensor
in V ⊗k by a word in the entries of a, that is a1 · · · ak := va1 ⊗· · ·⊗vak

. We will prove these
relations by showing that they hold under ψn,k for all n ≥ 1, and then employ Lemma 2.4.4.
For each relation we will have to consider different cases based on the relative values of the
entries ai−1, ai , and ai+1, although most cases are trivial. Also note that ψn,k(1− e2i )(a) =
εai ,ai+1a.

(7)(i): If ai−1 = ai or ai = ai+1, then it is easy to check that both t2i−2t2i t2i−2 and
t2i t2i−2t2i (1 − e2i−2) will act on a by 0. Assume that ai �= ai−1 = ai+1, then

ψn,k(t2i−2t2i t2i−2)(a) = ψn,k(t2i−2t2i )
(
(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak

)
= ψn,k(t2i−2)

(
(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)aiai · · · ak

)
= 0.

Similarly one can show that ψn,k(t2i t2i−2t2i (1 − e2i−2))(a) = 0 when ai �= ai−1 = ai+1.
Lastly assume that ai−1, ai , and ai+1 are pairwise distinct, in particular εa,b = 1 for any
a, b ∈ {ai−1, ai , ai+1}. Then
ψn,k(t2i t2i−2t2i (1 − e2i−2))(a) = ψn,k(t2i t2i−2t2i )(a)

= ψn,k(t2i t2i−2)
(
(ai, ai+1)(a1 · · · ai−1)ai · · · ak

)
= ψn,k(t2i t2i−2)

(
(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak

)
= ψn,k(t2i )

(
(ai−1, ai)(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak

)
=

(
(ai, ai+1)(ai−1, ai)(ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak

)
=

(
(ai−1, ai)(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak

)
= ψn,k(t2i−2)

(
(ai, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak

)
= ψn,k(t2i−2t2i )

(
(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak

)
= ψn,k(t2i−2t2i t2i−2)(a)

(7)(ii): If ai = ai+1 then its clear that both t2i+1t2i−1t2i+1 and t2i−1t2i+1t2i−1(1 − e2i )

act on a by 0. Assume that ai �= ai+1 and ai−1 ∈ {ai, ai+1}, then

ψn,k(t2i+1t2i−1t2i+1)(a) = ψn,k(t2i+1t2i−1)
(
(ai , ai+1)(a1 · · · ai−1)ai+1aiai+2 · · · ak

)
= εb,ai+1ψn,k(t2i+1)

(
(b, ai+1)(ai , ai+1)(a1 · · · ai−1)baiai+2 · · · ak

)
= εb,ai

εb,ai+1

(
(b, ai)(b, ai+1)(ai , ai+1)(a1 · · · ai−1)aibai+2 · · · ak

)
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where b = (ai, ai+1)(ai−1). Since ai−1 ∈ {ai, ai+1}, we have that εb,ai
εb,ai+1 = 0, and so

t2i+1t2i−1t2i+1 acts on a by 0. Similarly one can check that t2i−1t2i+1t2i−1(1−e2i ) also acts
on a by 0. Lastly assume that ai−1, ai , and ai+1 are pairwise distinct. Then

ψn,k(t2i−1t2i+1t2i−1(1 − e2i ))(a) = ψn,k(t2i−1t2i+1t2i−1)(a)

= ψn,k(t2i−1t2i+1)
(
(ai−1, ai )(a1 · · · ai−2)aiai−1ai+1 · · · ak

)
= ψn,k(t2i−1)

(
(ai−1, ai+1)(ai−1, ai )(a1 · · · ai−2)aiai+1ai−1ai+2 · · · ak

)
= (ai , ai+1)(ai−1, ai+1)(ai−1, ai )(a1 · · · ai−2)ai+1aiai−1ai+2 · · · ak

= (ai−1, ai )(ai−1, ai+1)(ai , ai+1)(a1 · · · ai−2)ai+1aiai−1ai+2 · · · ak

= ψn,k(t2i+1)
(
(ai−1, ai+1)(ai , ai+1)(a1 · · · ai−2)ai+1ai−1aiai+2 · · · ak

)
= ψn,k(t2i+1t2i−1)

(
(ai , ai+1)(a1 · · · ai−2)ai−1ai+1aiai+2 · · · ak

)
= ψn,k(t2i+1t2i−1t2i+1)(a)

(7)(iii): Assume ai = ai+1, then it is easy to check that t2i − e2i−2t2i − t2ie2i−2 acts on
a by 0. Similarly

ψn,k(t2i−1t2i t2i−1)(a) = εai−1,ai
ψn,k(t2i−1t2i )

(
(ai−1, ai )(a1 · · · ai−2)aiai−1ai+1 · · · ak

)
= εai−1,ai+1εai−1,ai

ψn,k(t2i−1)
(
(ai−1, ai+1)(ai−1, ai )(a1 · · · ai−2)ai−1ai−1ai+1 · · · ak

)
= 0.

Now assume ai �= ai+1 and ai−1 ∈ {ai, ai+1}. Then
ψn,k(t2i − e2i−2t2i − t2ie2i−2)(a) = (1 − δ(ai ,ai+1)(ai−1),ai

)(ai, ai+1)(a1 · · · ai−1)ai · · · ak .

In either case for ai−1 = ai or ai−1 = ai+1, we have ψn,k(t2i − e2i−2t2i − t2ie2i−2)(a) = 0.
Also, from above we see that ψn,k(t2i−1t2i t2i−1)(a) = 0 since the factor εai−1,ai+1εai−1,ai

comes into play. Lastly, assume that ai−1, ai , and ai+1 are pairwise distinct, then it is easy
to check that ψn,k(e2i−2t2i )(a) = ψn,k(t2ie2i−2)(a) = 0. Also,

ψn,k(t2i−1t2i t2i−1)(a) = ψn,k(t2i−1t2i )
(
(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak

)
= ψn,k(t2i−1)

(
(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)aiai−1ai+1 · · · ak

)
= (ai−1, ai)(ai−1, ai+1)(ai−1, ai)(a1 · · · ai−2)ai−1 · · · ak

= (ai, ai+1)(a1 · · · ai−2)ai−1 · · · ak

= ψn,k(t2i )(a) = ψn,k(t2i − e2i−2t2i − t2ie2i−2)(a).

(7)(iv): This relation can be proved by analogous computations to (7)(iii) above.

3 Affine Partition Algebra

3.1 Definition ofAaff
2k (z) and basic results

In this section we give the definition of the affine partition algebra Aaff
2k by generators and

relations. We prove some basic properties about this algebra including the fact that the
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partition algebra A2k is both a quotient and subalgebra of Aaff
2k . We also show that the

polynomial algebraC[x1, . . . , x2k] is a subalgebra and thatHk⊗Hk is a quotient, whereHk

is the degenerate affine Hecke algebra. We will prove a variety of relations inAaff
2k including

counterparts to the recursive definition of both the Jucys-Murphy elements and Enyang’s
generators.

Definition 3.1.1 We define the affine partition algebra Aaff
2k to be the associative unitial

C-algebra with set of generators

{τi, ej , xr , zl | 2 ≤ i ≤ 2k − 1, 1 ≤ j ≤ 2k − 1, r ∈ [2k], l ∈ Z≥0}

and defining relations

(1) (Involutions)

(i) τ 22i = 1 − e2i , for i ∈ [k − 1].
(ii) τ 22i+1 = 1 − e2i , for i ∈ [k − 1].

(2) (Braid relations)

(i) τ2i+1τ2j = τ2j τ2i+1 for j �= i + 1.
(ii) τ2i+1τ2j+1 = τ2j+1τ2i+1 for j �= i ± 1.
(iii) τ2iτ2j = τ2j τ2i for j �= i ± 1.
(iv) sisi+1si = si+1sisi+1, for i ∈ [k − 2], where sj := τ2j τ2j+1 + e2j .

(3) (Idempotent relations)

(i) e22i−1 = z0e2i−1 for i ∈ [k].
(ii) e22i = e2i for i ∈ [k − 1].
(iii) τ2i+1e2i = e2iτ2i+1 = 0 for i ∈ [k − 1].
(iv) τ2ie2i = e2iτ2i = 0 for i ∈ [k − 1].
(v) τ2ie2i−1e2i+1 = τ2i+1e2i−1e2i+1 for i ∈ [k − 1].
(vi) e2i+1e2i−1τ2i = e2i+1e2i−1τ2i+1 for i ∈ [k − 1].

(4) (Commutation relations)

(i) eiej = ej ei , if |i − j | ≥ 2.
(ii) τ2i−1e2j−1 = e2j−1τ2i−1, if j �= i − 1, i.
(iii) τ2i−1e2j = e2j τ2i−1, if j �= i.
(iv) τ2ie2j−1 = e2j−1τ2i , if j �= i, i + 1.
(v) τ2ie2j = e2j τ2i , if j �= i − 1.

(5) (Contractions)

(i) eiei+1ei = ei and ei+1eiei+1 = ei+1, for i ∈ [2n − 2].
(ii) τ2ie2i−1τ2i = τ2i+1e2i+1τ2i+1, for i ∈ [k − 1].
(iii) τ2ie2i−2τ2i = τ2i−1e2iτ2i−1, for 2 ≤ i ≤ k − 1.

(6) (Affine Commuting Relations)

(i) xixj = xjxi for all i, j ∈ [2k]
(ii) τixj = xj τi for j �= i − 1, i, i + 1
(iii) eixj = xj ei for j �= i, i + 1

(7) (Braid-like relations)
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(i) τ2i−2τ2iτ2i−2 = τ2iτ2i−2τ2i (1 − e2i−2).
(ii) τ2i+1τ2i−1τ2i+1 = τ2i−1τ2i+1τ2i−1(1 − e2i ).
(iii) τ2i−1τ2iτ2i−1 = τ2i − e2i−2τ2i − τ2ie2i−2.
(iv) τ2iτ2i−1τ2i = τ2i−1 − e2iτ2i−1 − τ2i−1e2i .

(8) (Skein-like Relations)

(i) x2i+1 = τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i .
(ii) x2i+2 = τ2i+1x2iτ2i+1 + e2ie2i+1τ2i+1e2i+1e2i + τ2i+1.
(iii) x2i = τ2ix2iτ2i + e2ie2i−1τ2i + τ2ie2i−1e2i .
(iv) x2i+1 = τ2i+1x2i+1τ2i+1 + e2ie2i+1τ2i+1 + τ2i+1e2i+1e2i .

(9) (Anti-symmetry Relations)

(i) ei(xi − xi+1) = 0 for i ∈ [2k − 1].
(ii) (xi − xi+1)ei = 0 for i ∈ [2k − 1].

(10) (Bubble Relations)

(i) e1x
l
1e1 = zle1, for all l ∈ N.

(ii) zl is central for all l ∈ Z≥0.

Note we have overloaded the symbols ei and sj as elements in A2k and Aaff
2k , however

we will show shortly that the mapping A2k → Aaff
2k via z �→ z0, ei �→ ei , and sj �→ sj

realises the subalgebra 〈ei, sj , z0〉 of Aaff
2k as an isomorphic copy of the partition algebra

A2k . The defining relations above are those present in Proposition 2.3.2, except where the
Jucys-Murphy elements Xi have been replaced with the affine generators xi , Enyang’s gen-
erators tj have been replaced by new generators τj , and the polynomials z(z − 1)l have
been replaced by central generators zl . It is worth mentioning that the map A2k → Aaff

2k
given by z �→ z0, ei �→ ei , and tj �→ τj does not realise an algebra homomorphism. This
is since τ2 is a non-trivial generator in Aaff

2k , while t2 is abscent in the presentation of The-
orem 2.2.4 since it equals 1 − e2, hence the braid relation (E2)(iv) is not respected under
such a map. The subalgebra 〈ei, τj , z0〉 of Aaff

2k is not isomorphic to the partition algebra,
and in fact one can show that this subalgebra is infinite dimensional as an C[z0]-module
(see Corollary 3.3.3 below).

Replacing the Jucys-Murphy elements with commuting variables, and introducing new
central generators is very much analogous to the ‘affinization’ process employed on other
diagram algebras. In particular relations (6) to (10) (except (7)) are comparable to the rela-
tions in [16, Section 4] which were chosen as the defining relations for the affine Wenzl
algebra. The Skein-like relations (8) tell us how the affine generators xi interact with the
generators τj when they do not commute. These relations are toAaff

2k what the defining rela-
tion yi+1 = siyisi + si is to the degenerate affine Hecke algebraHk . In the next section we
provide a projection of Aaff

2k onto a diagram algebra living within the Heisenberg category.
Under this projection the Skein-like relations will correspond to moving a decoration over
crossings.

We have also chosen to replace the generators tj with new generators τj , which appears
to be a departure from the ‘affinization’ process. However, we will show that these elements
are not needed to generate the algebra, that is Aaff

2k = 〈ei, si , xi , zl〉. Hence to go from A2k

toAaff
2k we have indeed just adjoined new affine and central genrators. The reason for letting

the elements τj play the role of generators is to allow us to give a cleaner presentation which
is more comparable to its counterparts within the literature. We have chosen to include
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the Braid-like relations (7) as they tell us how none commuting τj generators interact in
a manner which resembles the braid relations of the Coxeter generators si . These relations
will allow us to give counterparts to the recursive definition of Enyang’s generators (see
Lemma 3.1.11 below).

We begin by showing that the partition algebra is a quotient of the affine partition algebra.
This follows naturally from its construction.

Lemma 3.1.2 We have a surjective C-algebra homomorphism pr : Aaff
2k → A2k , given on

the generators by

pr(τi) = ti , pr(ei) = ei, pr(xi) = Xi, pr(zl) = z(z − 1)l .

Proof This follows by comparing the defining relations with those of the same numbering
in Proposition 2.3.2, and surjectivity follows since 〈ti , ej , z〉 = A2k .

Similar to the partition algebra, the affine partition algebra has a corresponding anti-
automorphism which fixes the generators.

Lemma 3.1.3 The mapping ∗ : Aaff
2k → Aaff

2k which fixes the generators, extended C-
linearly, gives an anti-automorphism.

Proof All defining relations of Definition 3.1.1 are symmetric in the generators except rela-
tions (7)(i) and (7)(ii). Thus it is clear that the result holds if we can show that e2i−2 and
τ2iτ2i−2τ2i commute, and that e2i and τ2i−1τ2i+1τ2i−1 commute. For the former we have

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2τ2i−1e2iτ2i−1τ2i

= τ2iτ2i−1e2iτ2i−1τ2i−2τ2i

= e2i−2τ2iτ2i−2τ2i

where the first equaltiy can be deduced from relation (5)(iii) of Definition 3.1.1, the second
relations follows since τ2i−2 commutes with τ2i−1 and e2i , then the last equality again is
deducable from relation (5)(iii) of Definition 3.1.1. Showing that e2i and τ2i−1τ2i+1τ2i−1
commute follows in a similar manner.

We now seek to show thatA2k is the subalgebra 〈si , ej , z0〉 ofAaff
2k . We first prove a few

helpful relations.

Lemma 3.1.4 The following relations hold:

(i) e2ix2i = e2ie2i−1τ2i , and x2ie2i = τ2ie2i−1e2i
(ii) e2ix2i+1 = e2ie2i+1τ2i+1, and x2i+1e2i = τ2i+1e2i+1e2i
(ii) e2ie2i−1τ2i = e2ie2i+1τ2i+1, and τ2ie2i−1e2i = τ2i+1e2i+1e2i

Proof (i): Multiplying (8)(iii) of Definition 3.1.1 on the left by e2i gives

e2ix2i = e2iτ2ix2iτ2i + e2ie2ie2i−1τ2i + e2iτ2ie2i−1e2i = e2ie2i−1τ2i

since e2iτ2i = 0 and e2ie2i = e2i . The relation x2ie2i = τ2ie2i−1e2i follows by ∗.
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(ii): Multiplying (8)(iv) of Definition 3.1.1 on the left by e2i gives

e2ix2i+1 = e2iτ2i+1x2i+1τ2i+1 + e2ie2ie2i+1τ2i+1 + e2iτ2i+1e2i+1e2i = e2ie2i+1τ2i+1

since e2iτ2i+1 = 0 and e2ie2i = e2i . The relation x2i+1e2i = τ2i+1e2i+1e2i follows by ∗.
(iii): By (9)(i), (ii) of Definition 3.1.1, e2ix2i = e2ix2i+1 and x2ie2i = x2i+1e2i . So (i)

and (ii) imply (iii).

Proposition 3.1.5 We have an injective C-algebra homomorphism ι : A2k → Aaff
2k given

on the generators by ι(z) = z0, ι(si) = τ2iτ2i+1 + e2i , and ι(ei) = ei .

Proof We first prove that ι is a homomorphism. To do this we show that each of the defining
relations of A2k given in Theorem 2.1.1 is respected under ι. We only check the relations
involving si since the others are accounted for in the definition ofAaff

2k .
(HR1)(i):

ι(s2i ) = (τ2i τ2i+1 + e2i )(τ2i τ2i+1 + e2i ) = τ 22i τ
2
2i+1 + e2i = (1− e2i )(1− e2i ) + e2i = 1− 2e2i + 2e2i = 1

where we used (1), (2)(i), (3)(ii), (3)(iii), and (3)(iv).
(HR1)(ii): This holds by relations (2)(i), (2)(ii), (2)(iii) and (4).
(HR1)(iii): This is precisely (2)(iv).
(HR2)(iii):

ι(e2i si ) = e2i (τ2iτ2i+1 + e2i ) = e2i = ι(e2i )

where we used (3)(iii) and (3)(ii). Similarly we have ι(sie2i ) = ι(e2i ).
(HR2)(iv):

ι(sie2i−1e2i+1) = (τ2iτ2i+1 + e2i )e2i−1e2i+1

= τ2iτ2i+1e2i−1e2i+1 + e2ie2i−1e2i+1

= τ 22ie2i−1e2i+1 + e2ie2i−1e2i+1

= e2i−1e2i+1 − e2ie2i−1e2i+1 + e2ie2i−1e2i+1

= e2i−1e2i+1 = ι(e2i−1e2i+1)

where the third equality follows from (3)(v) and the forth from (1)(i). Similarly we have
ι(e2i−1e2i+1si) = ι(e2i−1e2i+1).

(HR3)(iv): Follows from commuting relations (4)(i), (4)(ii), and (4)(iv).
(HR3)(v): Follows from commuting relations (4)(i), (4)(iii), and (4)(v).
(HR3)(vi):

ι(sie2i−1si) = (τ2iτ2i+1 + e2i )e2i−1(τ2iτ2i+1 + e2i )

= τ2i+1τ2ie2i−1τ2iτ2i+1 + τ2i+1τ2ie2i−1e2i + e2ie2i−1τ2iτ2+1 + e2i

= τ 22i+1e2i+1τ
2
2i+1 + τ 22i+1e2i+1e2i + e2ie2i+1τ

2
2i+1 + e2i

= (1 − e2i )e2i+1(1 − e2i ) + e2i+1e2i − e2i + e2ie2i+1 − e2i + e2i

= e2i+1 − e2ie2i+1 − e2i+1e2i + e2i + e2i+1e2i − e2i + e2ie2i+1

= e2i+1 = ι(e2i+1)

where the third equality follows by Lemma 3.1.4 (iii) and (5)(ii), and the forth from τ 22i+1 =
1 − e2i .
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(HR3)(vii):

ι(sie2i−2si) = (τ2i+1τ2i + e2i )e2i−2(τ2iτ2i+1 + e2i )

= τ2iτ2i+1e2i−2τ2i+1τ2i + τ2i+1τ2ie2i−2e2i + e2ie2i−2τ2iτ2i+1 + e2ie2i−2e2i

= τ2iτ
2
2i+1e2i−2τ2i + e2ie2i−2

= τ2ie2i−2τ2i + e2ie2i−2

= τ2i−1e2iτ2i−1 + e2ie2i−2

where the third equality follows since τ2i+1 and e2i commute with e2i−2, e22i = e2i , and
e2iτ2i = τ2ie2i = 0. We also have

ι(si−1e2i si−1) = (τ2i−2τ2i−1 + e2i−2)e2i (τ2i−2τ2i−1 + e2i−2)

= τ2i−1τ2i−2e2i τ2i−2τ2i−1 + τ2i−1τ2i−2e2i e2i−2 + e2i−2e2i τ2i−2τ2i−1 + e2i−2e2i e2i−2

= τ2i−1τ
2
2i−2e2i τ2i−1 + e2i e2i−2

= τ2i−1e2i τ2i−1 − τ2i−1e2i−2e2i τ2i−1 + e2i e2i−2

= τ2i−1e2i τ2i−1 + e2i e2i−2

where the third equality follows since τ2i−2 and e2i−2 commute with e2i , e22i−2 = e2i−2, and
e2i−2τ2i−2 = τ2i−2e2i−2 = 0. The forth equality follows since τ2i−1e2i−2 = 0. Comparing
to above, we see that ι(sie2i−2si) = ι(si−1e2i si−1).

Hence we have shown that ι is indeed an algebra homomorphism. For injectivity, note
that pr ◦ ι = id where id : A2k → A2k is the identity morphism. Thus ι has a left inverse,
and so is injective.

Therefore the partition algebra A2k is both a subalgebra and quotient of the affine parti-
tion algebra Aaff

2k . Also note that restricting ∗ down to the partition algebra coincides with
the anti-automorphism of flipping a diagram. We now seek to give affine counterparts to the
recursive definition of the Jucys-Murphy elements given in Definition 2.2.1.

Lemma 3.1.6 The following relations hold inAaff
2k :

(i) x2i+1 = six2i−1si + x2ie2i + e2ix2i − x2i−1e2i − τ2i
(ii) x2i+2 = six2i si − six2ie2i − e2ix2i si + e2ix2ie2i+1e2i + τ2i+1

Proof (i): Multiplying on the left and right of equation (8)(i) in Definition 3.1.1 by τ2i+1
gives

τ2i+1x2i+1τ2i+1 = τ2i+1τ2ix2i−1τ2iτ2i+1 − τ2i+1τ2iτ2i+1

= (si − e2i )x2i−1(si − e2i ) − (si − e2i )τ2i+1

= six2i−1si − e2ix2i−1si − six2i−1e2i + x2i+1 − τ2i

= six2i−1si − x2i−1e2i − τ2i

where, in the first equality we used the fact that τ2i+1e2i = e2iτ2i+1 = 0, the second
equaltiy we used the substitution τ2iτ2i+1 = τ2i+1τ2i = si − e2i , and the last equality we
used the fact that e2i and x2i−1 commute. Now applying (8)(iv) from Definition 3.1.1 to the
left hand side of above, we obtain

x2i+1 − e2ie2i+1τ2i+1 − τ2i+1e2i+1e2i = six2i−1si − x2i−1e2i − τ2i .

By applying Lemma 3.1.4 (ii), and rearranging, we arrive at (i). Item (ii) is proved in
an analogous manner were we instead employ relations (8)(ii) and (8)(iii) from Defini-
tion 3.1.1.
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By rearranging the relations in the above lemma in terms of the generators τ2i and τ2i+1,
we immediately obtain the following:

Corollary 3.1.7 We have thatAaff
2k = 〈ei, sj , xk, zl〉i,j,k,l .

�

Recall that the degenerate affine Hecke algebra Hk is the C-algebra given as a vector
space by the tensor product C[y1, . . . , yk] ⊗ CS(k), where C[y1, . . . , yk] is the polyno-
mial algebra in commuting variables y1, . . . , yk . The defining relations ofHk are such that
C[y1, . . . , yk] and CS(k) are subalgebras, and

siyj = yj si , for all j �= i, i + 1,

yi+1 = siyisi + si , for each i ∈ [k − 1].
It turns out thatHk ⊗ Hk is a quotient ofAaff

2k .

Proposition 3.1.8 Let λ = (λl)
∞
l=0 be any sequence of constants in C. Then we have a

surjective C-algebra homomorphism fλ : Aaff
2k → Hk ⊗ Hk given on the generators by

fλ(τ2i+1) = si ⊗ 1,
fλ(τ2i ) = 1 ⊗ si ,
fλ(ei) = 0,

fλ(x2i−1) = −1 ⊗ yi ,
fλ(x2i ) = yi ⊗ 1,
fλ(zl) = λl .

Proof We show that each of the defining relations of Aaff
2k are upheld under fλ. Since

fλ(ei) = 0, one may observe that most of the defining relations involving generators ei are
trivially upheld.

(1)(i): fλ(τ
2
2i ) = (1 ⊗ si)(1 ⊗ si) = 1 ⊗ s2i = 1 = fλ(1 − e2i ).

(1)(ii): Similar to (1)(i) above.
(2)(i): For any j �= i + 1, fλ(τ2i+1τ2j ) = (si ⊗ 1)(1 ⊗ sj ) = (1 ⊗ sj )(si ⊗ 1) =

fλ(τ2j τ2i+1).
(2)(ii): For any j �= i ± 1,

f (τ2i+1τ2j+1) = (si ⊗1)(sj ⊗1) = sisj ⊗1 = sj si ⊗1 = (sj ⊗1)(si ⊗1) = f (τ2j+1τ2i+1).

(2)(iii): Similar to (2)(ii) above.
(2)(iv): Noting that fλ(si) = fλ(τ2iτ2i+1 + e2i ) = fλ(τ2i )fλ(τ2i+1) = si ⊗ si , then

fλ(sisi+1si) = sisi+1si ⊗ sisi+1si = si+1sisi+1 ⊗ si+1sisi+1 = fλ(si+1sisi+1).

(6)(i): Follows since y1, . . . , yk pariwise commute.
(6)(ii): Follows since siyj = yj si whenever j �= i, i + 1.
(7)(i):

fλ(τ2i−2τ2i τ2i−2) = 1 ⊗ si−1si si−1 = 1 ⊗ si si−1si = fλ(τ2i τ2i−2τ2i ) = fλ(τ2i τ2i−2τ2i (1 − e2i−2))

(7)(ii): Similar to (7)(i).
(7)(iii): fλ(τ2i−1τ2iτ2i−1) = s2i−1⊗si = 1⊗si = fλ(τ2i ) = fλ(τ2i−e2i−2τ2i−τ2ie2i−2).
(7)(iv): Similar to (7)(iii).
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(8)(i):

fλ(τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i ) = fλ(τ2ix2i−1τ2i ) − fλ(τ2i )

= (1 ⊗ si)(−1 ⊗ yi)(1 ⊗ si) − 1 ⊗ si

= −1 ⊗ siyisi − 1 ⊗ si

= −1 ⊗ (yi+1 − si) − 1 ⊗ si

= −1 ⊗ yi+1

= fλ(x2i+1)

where the forth equality follows since siyisi = yi+1 − si inHk .
(8)(ii):

fλ(τ2i+1x2iτ2i+1 + e2ie2i+1τ2i+1e2i+1e2i + τ2i+1) = fλ(τ2i+1x2iτ2i+1) + fλ(τ2i+1)

= (si ⊗ 1)(yi ⊗ 1)(si ⊗ 1) + si ⊗ 1

= (siyisi + si) ⊗ 1

= yi+1 ⊗ 1

= fλ(x2i+2)

where the forth equality follows since yi+1 = siyisi + si inHk .
(8)(iii):

fλ(τ2ix2iτ2i + e2ie2i−1τ2i−1 + τ2i−1e2i−1e2i ) = fλ(τ2ix2iτ2i ),

= (1 ⊗ si)(yi ⊗ 1)(1 ⊗ si),

= yi ⊗ 1,

= fλ(x2i ).

(8)(iv):

fλ(τ2i+1x2i+1τ2i+1 + e2ie2i+1τ2i+1 + τ2i+1e2i+1e2i ) = fλ(τ2i+1x2i+1τ2i+1),

= (si ⊗ 1)(−1 ⊗ yi)(si ⊗ 1),

= −1 ⊗ yi,

= fλ(x2i+1).

(10)(i) and (10)(ii): Immediate.
Thus fλ is a homomorphism. Surjectivity follows as 〈fλ(τi), fλ(xj )〉i,j = Hk ⊗Hk .

Corollary 3.1.9 The polynomial algebra C[x1, . . . , x2k] is a subalgebra ofAaff
2k .

Proof This is the same as asking that all monomials in the generators of the subalgebra
〈x1, . . . , x2k〉 of Aaff

2k are linearly independent, which follows since their images under fλ

are.

To end this section we establish a counterpart to the recursive relations of Enyang’s
generators. To do so, we collect the more technical relations needed into the following
lemma:

Lemma 3.1.10 The following relations hold inAaff
2k :

(i) e2ix2ie2i = 0
(ii) e2iτ2i−1e2i = 0
(iii) e2i−2τ2ie2i−2 = 0
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(iv) e2i−2τ2i = e2i−2x2i−2sie2i−2si
(v) τ2ie2i−2 = sie2i−2six2i−2e2i−2
(vi) τ2iτ2i−2τ2ie2i−2 = e2i−2x2i−2si−1e2ie2i−1e2i−2
(vii) τ2i−1e2i si−1 = sie2i−2e2i−1e2i si−1x2i−2e2i−2si
(viii) τ2iτ2i−2τ2ie2i−2 = e2i−2τ2iτ2i−2τ2i

Proof (i): We have e2ix2ie2i = e2ie2i−1τ2ie2i = 0, by employing Lemma 3.1.4 (i) and
Definition 3.1.1 (3)(iv).

(ii): By rearranging (7)(iv) of Definition 3.1.1 in terms of τ2i−1, we have that

e2iτ2i−1e2i = e2i (τ2iτ2i−1τ2i + e2iτ2i−1 + τ2i−1e2i )e2i = e2iτ2i−1e2i + e2iτ2i−1e2i ,

where we used relation e2iτ2i = 0. Rearranging gives e2iτ2i−1e2i = 0. Item (iii) follows in
a similar manner.

(iv): We have

e2i−2x2i−2sie2i−2si = e2i−2x2i−1sie2i−2si

= e2i−2(six2i+1 − six2ie2i − e2ix2i + x2i−1e2i + τ2i+1)e2i−2si

= e2i−2six2i+1e2i−2si − e2i−2six2ie2ie2i−2si − e2i−2e2ix2ie2i−2si

+e2i−2x2i−1e2ie2i−2si + e2i−2τ2i+1e2i−2si

where the first equality follows from (9)(i) of Definition 3.1.1, and the second from
Lemma 3.1.6 (i). We examine the five terms above:

(1) e2i−2six2i+1e2i−2si = e2i−2sie2i−2x2i+1si = e2i−2e2ix2i+1si ,
(2) −e2i−2six2ie2ie2i−2si = −e2i−2sie2i−2x2ie2i = −e2i−2e2ix2ie2i = 0,
(3) −e2i−2e2ix2ie2i−2si = −e2i−2e2ix2i si = −e2i−2e2ix2i+1si ,
(4) e2i−2x2i−1e2ie2i−2si = e2i−2x2i−1e2i−2e2i si = 0,
(5) e2i−2τ2i+1e2i−2si = e2i−2τ2i+1si = e2i−2τ2i .

Substituting back into the above equation gives e2i−2x2i−2sie2i−2si = e2i−2τ2i as desired.
(v): This follows by applying the anti-automorphism ∗ to (iv).
(vi):

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2(sie2i−2six2i−2e2i−2),

= τ2iτ2i−2si−1e2i si−1x2i−2e2i−2,

= τ2iτ2i−1e2i si−1x2i−2e2i−2,

= τ2i (τ2ie2i−2τ2iτ2i−1)si−1x2i−2e2i−2,

= (1 − e2i )e2i−2τ2iτ2i−2x2i−2e2i−2,

= e2i−2τ2iτ2i−2x2i−2e2i−2,

= e2i−2τ2i (x2i−2τ2i−2 + e2i−3e2i−2 − e2i−2e2i−3)e2i−2,

= e2i−2τ2ie2i−3e2i−2,

= (e2i−2x2i−2sie2i−2si)e2i−3e2i−2,

= e2i−2x2i−2si−1e2ie2i−1e2i−2.

The first equality follows by (v), the forth from (5)(iii) of Lemma 3.1.4, the sixth since
e2iτ2i = 0, the seventh from (8)(iii) of Definition 3.1.1, the ninth from τ2i−2e2i−2 = 0 and
(iii), and the tenth from (iv).



Defining an Affine Partition Algebra

(vii):

sie2i−2e2i−1e2i si−1x2i−2e2i−2si = sie2i−2e2i−1si−1sie2i−2six2i−2e2i−2si

= sie2i−2sie2i−3e2i−2x2i−2sie2i−2si

= si−1e2ie2i−1e2i−2x2i−2si−1e2i si−1

= si−1e2ie2i−1e2i−2e2i−1τ2i−1si−1e2i si−1

= si−1e2ie2i−1τ2i−2e2i si−1

= si−1e2ie2i−1e2iτ2i−1

= si−1e2iτ2i−1

= si−1e2iτ2i−2si−1

= si−1τ2i−2e2i si−1

= τ2i−1e2i si−1

where the forth equality follows from Lemma 3.1.4 (i).
(viii):

τ2iτ2i−2τ2ie2i−2 = τ2iτ2i−2(τ2i−1e2iτ2i−1τ2i )

= τ2i (si−1 − e2i−2)e2iτ2i−1τ2i

= τ2i si−1e2iτ2i−1τ2i

= τ2i sie2i−2sisi−1τ2i−1τ2i

= τ2i+1e2i−2siτ2i−2τ2i

= e2i−2τ2iτ2i−2τ2i

where the first equality follows from (5)(iii) of Definition 3.1.1, the second since si−1 =
τ2i−1τ2i−2 + e2i−2, the third since e2i−2τ2i−1 = 0, and the sixth since τ2i+1 and e2i−2
commute.

Lemma 3.1.11 The following relations hold inAaff
2k :

τ2i = si−1siτ2i−2sisi−1 + e2i−2x2i−2sie2i−2si + sie2i−2x2i−2sie2i−2

−e2i−2x2i−2si−1e2ie2i−1e2i−2 − sie2i−2e2i−1e2i si−1x2i−2e2i−2si .

and

τ2i+1 = si−1siτ2i−1sisi−1 + sie2i−2x2i−2sie2i−2si + e2i−2x2i−2sie2i−2

−sie2i−2x2i−2si−1e2ie2i−1e2i−2 − e2i−2e2i−1e2i si−1x2i−2e2i−2si .

Proof We prove the first relation, the second follows from by multiplying on the left by si .
We have that

siτ2i−2si = (τ2iτ2i+1 + e2i )τ2i−2(τ2i+1τ2i + e2i )

= τ2iτ
2
2i+1τ2i−2τ2i + τ2i−2e2i

= τ2iτ2i−2τ2i + τ2i−2e2i

where the second equality follows since τ2i−2 commutes with τ2i+1 and e2iτ2i = τ2ie2i = 0.
Substituting the above we get

si−1siτ2i−2sisi−1 = si−1τ2iτ2i−2τ2i si−1 + τ2i−1e2i si−1. (10)
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For the first term in equation (10) we have

si−1τ2iτ2i−2τ2i si−1 = si−1(τ2i−2τ2iτ2i−2 + τ2iτ2i−2τ2ie2i−2)si−1

= τ2i−1τ2iτ2i−1 + si−1τ2iτ2i−2τ2ie2i−2

= τ2i−1τ2iτ2i−1 + τ2iτ2i−2τ2ie2i−2

= τ2i − e2i−2τ2i − τ2ie2i−2 + τ2iτ2i−2τ2ie2i−2

where the first equality follows by (7)(i) of Definition 3.1.1, the second from si−1τ2i−2 =
τ2i−2si−1 = τ2i−1, the third from Lemma 3.1.10 (viii), and the forth from (7)(iii) of
Definition 3.1.1. Substituting this back into equation (10), and rearranging yields

τ2i = si−1siτ2i−2sisi−1 + e2i−2τ2i + τ2ie2i−2 − τ2iτ2i−2τ2ie2i−2 − τ2i−1e2i si−1.

The desired relation is obtained by applying relations (iv) to (vii) of Lemma 3.1.10.

3.2 Central Elements inAaff
2k

In this section we describe a central subalgebra ofAaff
2k consisting of certain polynomials in

the affine generators. We end the section with a conjecture describing the center ofAaff
2k .

Lemma 3.2.1 The following relations hold:

(i) τ2ix2i+1 = x2i−1τ2i + e2i−1e2i − 1.
(ii) τ2i+1x2i+2 = x2iτ2i+1 − e2ie2i+1 + 1.
(iii) τ2ix2i = x2iτ2i + e2i−1e2i − e2ie2i−1.
(iv) τ2i+1x2i+1 = x2i+1τ2i+1 − e2ie2i+1 + e2i+1e2i .

Proof (i): Multiplying (8)(i) of Definition 3.1.1 on the left by τ2i gives

τ2ix2i+1 = τ 22ix2i−1τ2i + τ2ie2ie2i−1τ2i + τ 22ie2i−1e2i − τ 22i

= (1 − e2i )x2i−1τ2i + (1 − e2i )e2i−1e2i − (1 − e2i )

= x2i−1τ2i + x2i−1e2iτ2i + e2i−1e2i − e2i − 1 + e2i

= x2i−1τ2i + e2i−1e2i − 1

where the second equality follows as τ 22i = 1− e2i and t2ie2i = 0, and the third since x2i−1
and e2i commute.

(ii): Multiplying (8)(ii) of Definition 3.1.1 on the left by τ2i+1 gives

τ2i+1x2i+2 = τ 22i+1x2iτ2i+1 + τ2i+1e2ie2i+1τ2i+1e2i+1e2i + τ 22i+1

= (1 − e2i )x2iτ2i+1 + 1 − e2i

= x2iτ2i+1 − e2ix2iτ2i+1 + 1 − e2i

= x2iτ2i+1 − e2ix2i+1τ2i+1 + 1 − e2i

= x2iτ2i+1 − e2ie2i−1τ
2
2i+1 + 1 − e2i

= x2iτ2i+1 − e2ie2i−1 + e2i + 1 − e2i

= x2iτ2i+1 − e2ie2i−1 + 1

where the second equality follows since τ2i+1e2i = 0 and τ 22i+1 = 1−e2i , the forth equality
follows since e2ix2i = e2ix2i+1, and the fifth equality follows since e2ix2i = e2ie2i−1τ2i+1
(by Lemma 3.1.4 (ii) and (iii)).
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(iii): Multiplying (8)(iii) of Definition 3.1.1 on the left by τ2i gives

τ2ix2i = τ 22ix2iτ2i + τ2ie2ie2i−1τ2i + τ 22ie2i−1e2i

= (1 − e2i )x2iτ2i + (1 − e2i )e2i−1e2i

= x2iτ2i − e2ix2iτ2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1τ
2
2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1 + e2i + e2i−1e2i − e2i

= x2iτ2i − e2ie2i−1 + e2i−1e2i

where the second equality follows since τ2ie2i = 0 and τ 22i+1 = 1 − e2i , and the forth
equality follows since e2ix2i = e2ie2i−1τ2i (by Lemma 3.1.4 (i)).

(iv): Multiplying (8)(iv) of Definition 3.1.1 on the left by τ2i+1 gives

τ2i+1x2i+1 = τ 22i+1x2i+1τ2i+1 + τ2i+1e2ie2i+1τ2i+1 + τ 22i+1e2i+1e2i

= (1 − e2i )x2i+1τ2i+1 + (1 − e2i )e2i+1e2i

= x2i+1τ2i+1 − e2ix2i+1τ2i+1 + e2i+1e2i − e2i

= x2i+1τ2i+1 − e2ie2i+1τ
2
2i+1 + e2i+1e2i − e2i

= x2iτ2i − e2ie2i+1 + e2i + e2i+1e2i − e2i

= x2iτ2i − e2ie2i+1 + e2i+1e2i

where the second equality follows since τ2i+1e2i = 0 and τ 22i+1 = 1 − e2i , and the forth
equality follows since e2ix2i+1 = e2ie2i+1τ2i+1 (by Lemma 3.1.4 (ii)).

Lemma 3.2.2 For any n ≥ 1, the following relations hold:

(i) τ2ix
n
2i+1 = xn

2i−1τ2i + ∑
a+b=n−1

a,b≥0

xa
2i−1(e2i−1e2i − 1)xb

2i+1.

(ii) τ2ix
n
2i = xn

2iτ2i + ∑
a+b=n−1

a,b≥0

xa
2i (e2i−1e2i − e2ie2i−1)x

b
2i .

(iii) τ2i+1x
n
2i+2 = xn

2iτ2i+1 + ∑
a+b=n−1

a,b≥0

xa
2i (−e2ie2i+1 + 1)xb

2i+2.

(iv) τ2i+1x
n
2i+1 = xn

2i+1τ2i+1 + ∑
a+b=n−1

a,b≥0

xa
2i+1(−e2ie2i+1 + e2i+1e2i )x

b
2i+1.

Proof This follows from Lemma 3.2.1 by induction on n.

Let y1, . . . , y2k be commuting variables. We let SSym[y1, . . . , y2k] denote the subalge-
bra of the polynomial algebra C[y1, . . . , y2k] generated by the supersymmetric power-sum
polynomials

pn(y1, . . . , y2k) := yn
1 + yn

3 + · · · + yn
2k−1 − (yn

2 + yn
4 + · · · + yn

2k)

for all n ≥ 1. We have an injective algebra homomorphism SSym[y1, . . . , y2k] → Aaff
2k via

yi �→ xi . We denote the image by SSym[x1 . . . , x2k], and let pn denote pn(x1, . . . , x2k).
Let Z(Aaff

2k ) denote the center ofAaff
2k .

Proposition 4.2.1 We have that SSym[x1, . . . , x2k] ⊂ Z(Aaff
2k ).
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Proof We simply show that each generator of Aaff
2k commutes with each polynomial pn. It

is immediate that the generators zl and xi commute with pn for any n ≥ 1 by (10)(ii) and
(6)(i) of Definition 3.1.1. Let [−, −] denote the commutator bracket.

For the generators e2i we have

[pn, e2i] = (−xn
2i +xn

2i+1)e2i −e2i (−xn
2i +xn

2i+1) = (−xn
2i +xn

2i )e2i −e2i (−xn
2i +xn

2i ) = 0,

where the first equality follows from the commuting relation (6)(iii) of Definition 3.1.1, and
the second equality follows since x2i+1e2i = x2ie2i and e2ix2i+1 = e2ix2i by (9)(ii) and
(9)(i) of Definition 3.1.1. Similarly we have [pn, e2i−1] = 0.

For the generator τ2i , the commuting relation (6)(ii) of Definition 3.1.1 tells us that

[τ2i , pn] = τ2i (x
n
2i−1 − xn

2i + xn
2i+1) − (xn

2i−1 − xn
2i + xn

2i+1)τ2i .

By acting on relation (i) of Lemma 3.2.2 by the anti-automorphism ∗, and rearranging, we
obtain

τ2ix
n
2i−1 = xn

2i+1τ2i −
∑

a+b=n−1
a,b≥0

xa
2i+1(e2ie2i−1 − 1)xb

2i−1.

Employing this and relations (i) and (ii) of Lemma 3.2.2, we have

τ2i (x
n
2i−1 − xn

2i + xn
2i+1) = (xn

2i−1 − xn
2i + xn

2i+1)τ2i +
∑

a+b=n−1
a,b≥0

xa
2i−1(e2i−1e2i − 1)xb

2i+1

−
∑

a+b=n−1
a,b≥0

xa
2i (e2i−1e2i − e2i e2i−1)x

b
2i −

∑
a+b=n−1

a,b≥0

xa
2i+1(e2i e2i−1 − 1)xb

2i−1

Hence showing that [τ2i , pn] = 0 is equivalent to showing that the three summations above
sum to zero. This follows by changing the second summation accordingly:

−
∑

a+b=n−1
a,b≥0

xa
2i (e2i−1e2i − e2ie2i−1)x

b
2i = −

∑
a+b=n−1

a,b≥0

xa
2ie2i−1e2ix

b
2i − xa

2ie2ie2i−1x
b
2i

= −
∑

a+b=n−1
a,b≥0

xa
2i−1e2i−1e2ix

b
2i+1 − xa

2i+1e2ie2i−1x
b
2i−1

by repeat application of relations (9)(i) and (9)(ii) of Definition 3.1.1. One shows
[τ2i+1, pn] = 0 analogously.

Under the projection pr : Aaff
2k → A2k the subalgebra SSym[x1, . . . , x2k] gets sent to

SSym[X1, . . . , X2k], showing that such a subalgebra is central in A2k . It was shown in
[3, Theorem 4.2.6] that this is in fact the whole centre ofA2k . Note that in [3], the centre is
given as SSym[N1, . . . , N2k] where

Ni :=
{

z
2 − 1 − Xi, if i odd,

Xi − z
2 + 1, if i even.

But one can easily see that SSym[X1, . . . , X2k] = SSym[N1, . . . , N2k]. Based on this and
comparing with the centers of other affine diagram algebras, see [16, Corollary 4.10] and
[4, Theorem 4.2], leads to a natural conjecture for the center ofAaff

2k :

Conjecture 3.2.4 Z(Aaff
2k ) = 〈zl, pn | l, n ∈ Z≥0〉.
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3.3 Extending the Action on Tensor Spaces

We now seek to extend the action of A2k on V ⊗k to one of Aaff
2k on M ⊗ V ⊗k , where M

is any CS(n)-module. The tensor space M ⊗ V ⊗k is also viewed as an CS(n)-module by
the diagonal action. Before extending the action, we briefly define some central elements in
CS(n). For each b ∈ [n] and l ∈ N, we let

Tn,b :=
∑

a∈[n]\{b}
(a, b), and Zn,l :=

∑
b∈[n]

T l
n,b.

So Tn,b is the sum of all transposition containing b, and Zn,l is the l-power sum in Tn,b as b

runs from 1 to n.

Lemma 3.3.1 For each l ∈ N, we have that Zn,l belongs to the center of CS(n).

Proof This follows since πTn,b = Tn,π(b)π for any π ∈ S(n).

Theorem 3.3.2 Given any CS(n)-module M = SpanC{m1, . . . , md}, we have a C-algebra
homomorphism

ψ
(M)
n,k : Aaff

2k → EndS(n)(M ⊗ V ⊗k)

defined on the generators by

ψ
(M)
n,2k(e2i−1)(ma0 ⊗ va) =

n∑
b=1

ma0 ⊗ va1 ⊗ · · · ⊗ vai−1 ⊗ vb ⊗ vai+1 ⊗ · · · ⊗ vak
,

ψ
(M)
n,2k(e2i )(ma0 ⊗ va) = δai ,ai+1ma0 ⊗ va,

ψ
(M)
n,2k(τ2i )(ma0 ⊗ va) = εai ,ai+1(ai , ai+1)(ma0 ⊗ va1 ⊗ · · · ⊗ vai−1) ⊗ vai

⊗ · · · ⊗ vak
,

ψ
(M)
n,2k(τ2i+1)(ma0 ⊗ va) = εai ,ai+1(ai , ai+1)(ma0 ⊗ va1 ⊗ · · · ⊗ vai+1) ⊗ vai+2 ⊗ · · · ⊗ vak

,

ψ
(M)
n,2k(x2i−1)(ma0 ⊗ va) =

n∑
b=1
b �=ai

(b, ai)(ma0 ⊗ va1 ⊗ · · · ⊗ vai−1) ⊗ vai
⊗ · · · ⊗ vak

,

ψ
(M)
n,2k(x2i )(ma0 ⊗ va) =

n∑
b=1
b �=ai

(b, ai)(ma0 ⊗ va1 ⊗ · · · ⊗ vai
) ⊗ vai+1 ⊗ · · · ⊗ vak

,

ψ
(M)
n,2k(zl)(ma0 ⊗ va) = (

Zn,lma0

) ⊗ va,

for all (a0, a) ∈ [d] × [n]k , extended C-linearly across M ⊗ V ⊗k .

Proof This can been shown by direct computations, much of which are fairly simple but
lengthy. To ease notation, for any tuple a = (a0, a1, . . . , ak) ∈ [d] × [n]k , we represent
a simple tensor in M ⊗ V ⊗k by a word in the entries of a, that is a0a1 . . . ak := ma0 ⊗
va1 ⊗ · · · ⊗ vak

. We begin by showing that ψ
(M)
n,k is well-defined, that is to confirm that

these endomorphisms do indeed commute with the diagonal action of S(n). We do this by
showing for any π ∈ S(n), that πψ

(M)
n,k (g)π−1 = ψ

(M)
n,k (g) for each generator g ofAaff

2k .

One can deduce that πψ
(M)
n,k (ei)π

−1 = ψ
(M)
n,k (ei) since the action of the generators ei

ignores the M component, and hence this follows from Theorem 2.4.1.
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For the generators τ2i ,

πψ
(M)
n,k (τ2i )π

−1(a) = πψ
(M)
n,k (τ2i )

(
π−1(a0a1 . . . ak)

)
= εai ,ai+1π

(
(π−1(ai), π

−1(ai+1))π
−1(a0a1 . . . ai−1)π

−1(ai . . . ak)
)

= εai ,ai+1π(π−1(ai), π
−1(ai+1))π

−1(a0a1 . . . ai−1)ai . . . ak

= εai ,ai+1(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

= ψ
(M)
n,k (τ2i )(a)

noting επ−1(ai ),π
−1(ai+1)

= εai ,ai+1 . One can show πψ
(M)
n,k (τ2i+1)π

−1 = ψn,k(τ2i+1) in a
similar manner.

For the generators x2i−1,

πψ
(M)
n,k (x2i−1)π

−1(a) = πψ
(M)
n,k (x2i−1)

(
π−1(a0a1 . . . ak)

)

= π

⎛
⎜⎜⎝ ∑

b∈[n]
b �=π−1(ai )

(b, π−1(ai))π
−1(a0a1 . . . ai−1)π

−1(ai . . . ak)

⎞
⎟⎟⎠

=
∑
b∈[n]

b �=π−1(ai )

π(b, π−1(ai))π
−1(a0a1 . . . ai−1)ai . . . ak

=
∑
b∈[n]

b �=π−1(ai )

(π(b), ai)(a0a1 . . . ai−1)ai . . . ak

=
∑

b′∈[n]
b′ �=ai

(b′, ai)(a0a1 . . . ai−1)ai . . . ak

= ψ
(M)
n,2k(x2i−1)(a)

by the substitution b′ = π(b). One can show πψ
(M)
n,k (x2i )π

−1 = ψn,k(x2i ) in a similar

manner. Lastly πψ
(M)
n,k (zl)π

−1 = ψn,k(zl) can be seen since Zn,l are central in CS(n).

One now needs to confirm that the defining relations of Aaff
2k in Definition 3.1.1 are

upheld under ψ
(M)
n,k . As mentioned, these can be shown by direct, but lengthy computations.

With this in mind, we will only give details of some of the more difficult relations, namely
relations (8) through (10). Note that the Braid-like relations (7) follow in a analogous
manner to the proof of Lemma 2.4.5.

(8)(i): We seek to show that

ψ
(M)
n,k (x2i+1) = ψ

(M)
n,k (τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i ).

To show this we examine how each term on the hand right side acts on the simple tensor a,
and show that the sum recovers the action of x2i+1. It proves easier to do this by tackling
two cases, when ai �= ai+1 and when ai = ai+1.
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(Case 1): Assume ai �= ai+1, then for the first term we have

ψn,k(τ2ix2i−1τ2i )(a) = ψn,k(τ2ix2i−1)
(
(ai , ai+1)(a0a1 . . . ai−1)ai . . . ak

)

= ψn,k(τ2i )

⎛
⎜⎜⎝ ∑

b∈[n]
b �=ai

(b, ai)(ai , ai+1)(a0a1 . . . ai−1)ai . . . ak

⎞
⎟⎟⎠

=
∑
b∈[n]
b �=ai

(ai , ai+1)(b, ai)(ai , ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
b∈[n]
b �=ai

((ai , ai+1)(b), ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
c∈[n]

c �=ai+1

(c, ai+1)(a0a1 . . . ai−1)ai . . . ak

=
∑
c∈[n]

c �=ai+1

(c, ai+1)(a0a1 . . . ai )ai+1 . . . ak + (ai , ai+1)(a0a1 . . . ai−1)ai . . . ak

−(ai , ai+1)(a0a1 . . . ai )ai+1 . . . ak

= ψ
(M)
n,k (x2i+1)(a) + ψ

(M)
n,k (τ2i )(a) − (ai , ai+1)(a0a1 . . . ai )ai+1 . . . ak

where we employed the substitution c = (ai, ai+1)(b). For the second term,

ψ
(M)
n,k (e2ie2i−1τ2i )(a) = ψ

(M)
n,k (e2ie2i−1)

(
(ai, ai+1)(a0a1 . . . ai−1)ai . . . ak

)

= ψ
(M)
n,k (e2i )

(
n∑

b=1

(ai, ai+1)(a0a1 . . . ai−1)bai+1 . . . ak

)

= (ai, ai+1)(a0a1 . . . ai−1)ai+1ai+1 . . . ak

= (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak .

For the third term ψ
(M)
n,k (τ2ie2i−1e2i )(a) = 0 since ai �= ai+1. Thus collectively,

ψ
(M)
n,k (τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i )

a

= ψ
(M)
n,k (τ2ix2i−1τ2i )

a + ψ
(M)
n,k (e2ie2i−1τ2i )

a + ψ
(M)
n,k (τ2ie2i−1e2i )

a − ψ
(M)
n,k (τ2i )

a

= ψ
(M)
n,k (x2i+1)(a) + ψ

(M)
n,k (τ2i )(a) − (ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak

+(ai, ai+1)(a0a1 . . . ai)ai+1 . . . ak − ψ
(M)
n,k (τ2i )

a

= ψ
(M)
n,k (x2i+1)(a).

(Case 2): Assume ai = ai+1. Then ψ
(M)
n,k (τ2i )(a) = 0, and so

ψ
(M)
n,k (τ2ix2i−1τ2i + e2ie2i−1τ2i + τ2ie2i−1e2i − τ2i )

a = ψ
(M)
n,k (τ2ie2i−1e2i )

a .
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Hence we just need to confirm that ψ(M)
n,k (x2i+1)

a = ψ
(M)
n,k (τ2ie2i−1e2i )

a . Well,

ψ
(M)
n,k (τ2i e2i−1e2i )(a) = ψ

(M)
n,k (τ2i )

(
n∑

b=1

a0a1 . . . ai−1bai+1 . . . ak

)
=

n∑
b=1

(b, ai+1)(a0a1 . . . ai−1)bai+1 . . . ak

=
n∑

b=1

(b, ai+1)(a0a1 . . . ai )ai+1 . . . ak = ψ
(M)
n,k (x2i+1)

a .

The remaining Skein-like relations follow by employing similar arguments.
(9)(i): We seek to show ψ

(M)
n,k (eixi) = ψ

(M)
n,k (eixi+1). We show this first when working

with e2i , then with e2i−1. Assume ai �= ai+1, then

ψ
(M)
n,k (e2ix2i )(a) = ψ

(M)
n,k (e2i )

⎛
⎜⎜⎝∑

b=1
b �=ai

(b, ai )(a0a1 . . . ai )ai+1 . . . ak

⎞
⎟⎟⎠ = (ai , ai+1)(a0a1 . . . ai )ai+1 . . . ak,

ψ
(M)
n,k (e2i x2i+1)(a) = ψ

(M)
n,k (e2i )

⎛
⎜⎜⎝ ∑

b=1
b �=ai+1

(b, ai+1)(a0a1 . . . ai )ai+1 . . . ak

⎞
⎟⎟⎠ = (ai , ai+1)(a0a1 . . . ai )ai+1 . . . ak .

When ai = ai+1 one can check that ψ
(M)
n,k (e2ix2i )

a = ψ
(M)
n,k (e2ix2i+1)

a = 0, thus

ψ
(M)
n,k (e2ix2i )

a = ψ
(M)
n,k (e2ix2i+1)

a . For odd indices we have

ψ
(M)
n,k (e2i−1x2i−1)(a) = ψ

(M)
n,k (e2i−1)

⎛
⎜⎜⎝∑

b=1
b �=ai

(b, ai)(a0a1 . . . ai−1)ai . . . ak

⎞
⎟⎟⎠

=
n∑

c=1

∑
b=1
b �=ai

(b, ai)(a0a1 . . . ai−1)cai+1 . . . ak,

ψ
(M)
n,k (e2i−1x2i )(a) = ψ

(M)
n,k (e2i−1)

⎛
⎜⎜⎝∑

b=1
b �=ai

(b, ai)(a0a1 . . . ai)ai+1 . . . ak

⎞
⎟⎟⎠

=
n∑

c=1

∑
b=1
b �=ai

(b, ai)(a0a1 . . . ai−1)cai+1 . . . ak .

Thus ψ
(M)
n,k (eixi)

a = ψ
(M)
n,k (eixi+1)

a . Relation (9)(ii) may be shown in a similar manner.
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(10)(i):

ψ
(M)
n,k (e1x

l
1e1)(a) = ψ

(M)
n,k (e1x

l
1)

(
n∑

b=1

a0ba2 . . . ak

)
= ψ

(M)
n,k (e1)

(
n∑

b=1

(T l
n,ba0)ba2 . . . ak

)

=
n∑

c=1

(
n∑

b=1

T l
n,ba0

)
ca2 . . . ak =

n∑
c=1

(
Zn,la0

)
ca2 . . . ak

= ψ
(M)
n,k (zl)

(
n∑

c=1

a0ca2 . . . ak

)
= ψ

(M)
n,k (zl)

(
ψ

(M)
n,k (e1)(a0a1a2 . . . ak)

)

= ψ
(M)
n,k (zle1)(a).

Lastly relation (10)(ii) is simple to check since Zn,l belongs to the center of CS(n).

Corollary 3.3.3 The subalgebra 〈z0, τi , ej 〉i,j ofAaff
2k is infinite dimensional over C[z0].

Proof Set dm := xm
1 e2e1 for all m ∈ N. We first show that dm ∈ 〈τi, ej 〉 by induction on

m. By Lemma 3.1.4 (i) we see that e2x2 ∈ 〈τi, ej 〉. Then multiplying on the right by e1
yeilds e2x2e1 = e2x1e1 = x1e2e1 = d1, where the first equality follows from (9)(ii) of
Definition 3.1.1, and the second from (6)(iii). Thus we have the base case d1 ∈ 〈τi, ej 〉.
Assume dm′ ∈ 〈τi, ej 〉 for all m′ < m with m ≥ 2, we seek to show that dm ∈ 〈τi, ej 〉. Well

dm−1τ2e1 = xm−1
1 e2e1τ2e1 = xm−1

1 e2x2e1 = xm−1
1 e2x1e1 = xm

1 e2e1 = dn,

where the second equality follows from Lemma 3.1.4 (i), and the remaining equalities fol-
low in the same manner as the base case. Hence dm ∈ 〈τi, ej 〉 completing induction. We
now seek to show that the set {dm | m ∈ N} is C[z0]-linearly independent in Aaff

2k , which
will complete the proof. Let I ⊂ N be finite and assume∑

m∈I

hm(z0)dm = 0,

where hm(z0) are polynomials in C[z0]. We seek to show that hm(z0) = 0 for each m ∈ I .
Let M ∈ I be the maximal element, and let R be the set of roots for each hm(z0). Pick an
n ∈ N such that n > M + 1 and n /∈ R. Let F be any free CS(n)-module. For any f ∈ F

and (a1, . . . , ak) ∈ [n]k , we have
ψ

(F)
n,k (dm)(f ⊗ va1 ⊗ va2 ⊗ · · · ⊗ vak

) = (
T m

n,a2
f

) ⊗ va2 ⊗ va2 ⊗ va3 ⊗ · · · ⊗ vak
.

Since F is free, it will follow that the set {ψ(F)
n,k (dm) | m ∈ I } is linear independent in

EndS(n)(F ⊗ V ⊗k) if the set {T m
n,a2

| m ∈ I } is linearly independent in CS(n). This follows
since n > M +1, and hence T m

n,a2
contains a permutation consisting of a single cycle of size

m + 1, while all permutations in T m′
n,a2

must have smaller support whenever m′ < m. Now
consider the equation

ψ
(F)
n,k

(∑
m∈I

hm(z0)dm

)
=

∑
m∈I

hm(n)ψ
(F)
n,k (dm) = 0.

Since n is not a root of any hm(z0), and the set {ψ(F)
n,k (dm) | m ∈ I } is linear independent,

we must have that hm(z0) = 0 for each m ∈ I .
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4 Connections with the Heisenberg Category

J. Brundan and M. Vargas recently defined in [2] an affine partition category APar as a
monoidal subcategory of the Heisenberg category introduced by Khovanov in [12] gen-
erated by certain objects and morphisms. This was based on the observation made by S.
Likeng and A. Savage in [14] that the partition category can be realised inside the Heisen-
berg category. This affine partition category naturally gives rise to another definition of an
affine partition algebra, which they denote by APk by taking the endomorphism algebra
EndAPar((↑↓)k) for the object (↑↓)k in APar (see Section 4.1. below).

Inspired by the work of Brundan and Vargas, we construct a surjective homomorphism
ϕ from Aaff

2k to EndHeis((↑↓)k). In fact, our argument generalises to show that Brundan and
Vargas’ affine partition category APar is the fullmonoidal subcategory in Heis generated by
the object ↑↓. As a corollary we obtain that APk is a quotient ofAaff

2k .
We start by recalling the definition of the Heisenberg category.

4.1 Heisenberg Category

The Heisenberg Category Heis is a C-linear monoidal category originally defined by M.
Khovanov in [12]. The objects of Heis are generated, as a monoidal category, by the two
objects ↑ and ↓. We use juxtaposition to denote the tensor product of objects, and the
monoidal identity object is the empty word ∅. Hence we view the free monoid 〈↑, ↓〉 as
the set of objects in Heis. Consider two objects a = a1 · · · an and b = b1 · · · bm for
ai, bi ∈ {↑,↓}. The space of morphisms HomHeis(a, b) is the C-vector space generated by
certain diagrams modulo local relations. We call such diagrams (a, b)-diagrams and define
them as follows: Firstly, we work in the stripR×[0, 1]with boundaryB := R×{1}∪R×{0}.
We call an orientated immersion of the interval [0, 1] and circle S1 a string and loop respec-
tively. We denote orientations by drawing an arrow on the curve. Now consider the set of
points E = [n] × {1} ∪ [m] × {0}, and colour (i, 1) ∈ [n] × {1} and (j, 0) ∈ [m] × {0} with
the symbols ai and bj respectively. We say that a set partition of E into pairs is an (a, b)-
matching if pairs of points in the same row are coloured by opposite arrows, while pairs of
points in different rows are coloured by the same arrow. Then an (a, b)-diagram is a finite
collection of strings and loops, modulo rel boundary isotopies, such that:

(D1) The endpoints of the strings induce an (a, b)-matching on E

(D2) There are only finitely many points of intersection, and no triple or tangential
intersections occur

(D3) The boundary B doesn’t intersect any loops, and only intersects strings at the
endpoints E

For example let a =↓↓↑ and b =↑↓↓↓↑, then
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is a (a, b)-diagram. Isotopic deformation of the interior of R × [0, 1] is allowed, and will
preserve the relative structure of the points of intersection. If a loop contains no intersec-
tions we call it a bubble. Bubbles can have clockwise or anticlockwise orientation. If the
endpoints of a string occur in different rows we call it a vertical string, and it has either
a down or up orientation. If the endpoints belong to the same row then we call it an arc.
Non self-intersecting arcs have either a clockwise or anti-clockwise orientation. In the above
example there are two loops, one of which is a bubble, and four strings, three of which are
vertical and one an arc. We call an endpoint of a string a source if the arrow of orienta-
tion points away from it, and a target otherwise. We consider (a, b)-diagrams modulo the
following local relations:

(H1)

(H2)

(H3)

(H4)

Relation (H1) holds regardless of orientations. To apply such a local relation to an (a, b)-
diagram one locates a disk which is isotopic to one of the disks above, then replace such a
disk according to the corresponding equation. Note that any of the local relations may be
rotated in any way to give an equivalent relation. Relation (H1) tells us that any curve may
past over a crossing, and relations (H2) and (H3) tells us how to pull part orientated curves,
where (H3) shows that this can not always be done for free. Relation (H4) tells us that left
curls kill (a, b)-diagrams, and that any anti-clockwise bubble may be removed for free.

The composition of morphisms is given by vertical concatenation of diagrams, and
rescaling (and extending C-linearly). We denote composition by juxtaposition of symbols.
When a = b wewrite a-diagram instead of (a, a)-diagram. The morphism space EndHeis(a)

is a C-algebra with identity given by the diagram of non-intersecting vertical strings. Now
for later use, we collect some relations regarding arbitrary (a, b)-diagrams. The following
local relation follows from (H2) and (H3), see also [14, (3.5)]:

Lemma 4.1.1 Clockwise bubbles satisfy the commuting relation

�
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Although left curls annihilate diagrams, right curls do not, and they play an important
role. We will represent right curls by a decoration, and label such decorations with weights
to denote multiplicity:

The following result is a simple application of the local relations.

Lemma 4.1.2 The following two local relations hold:

= + , = − ,

�

We now recall a basis for the morphism spaces HomHeis(a, b) presented in [12]. We first
introduce a few definitions to help us describe this basis in a manner which will lend itself
better for later results.

Definition 4.1.3 For a, b ∈ 〈↑, ↓〉, we say an (a, b)-diagram is simple if it contains no
loops, no self-intersections, and two strings intersect at most once. Let Sim(a, b) denote the
set of simple (a, b)-diagrams, and write Sim(a) for Sim(a, a).

Given words a = a1 · · · an, b = b1 · · · bm ∈ 〈↑, ↓〉 with ai, bj ∈ {↑, ↓}, let b∗ denote
the word obtained from b by replacing up arrows with down arrows, and down arrows with
up arrows. Let u equal the number of up arrows appearing in a and b∗, and d the number of
a down arrows. Then by (D1), one can deduce that HomHeis(a, b) is non-empty if and only
if u = d . In this situation we have that |Sim(a, b)| = u!, since there is one simple (a, b)-
diagram for every (a, b)-matching. Such a correspondence is given by reading the pairings
of endpoints formed from the strings of a simple diagram.

Example 4.1.4 Consider the words a =↑↓ and b =↓↑↑↓. Then the 6 = 3! simple (a, b)-
diagrams are

These diagrams are in a one-to-one correspondence with the (a, b)-matchings of the set
of endpoints E = {(i, 1), (j, 0) | i ∈ [2], j ∈ [4]}. As an example, for the first diagram
above we have
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The basis for HomHeis(a, b) we describe below is obtained by adding decorations (right
curls) and decorated clockwise loops to all the simple (a, b)-diagrams in a partiuclar man-
ner. We describe this by introducing some basic diagrams and using the composition of
diagrams.

Definition 4.1.5 Let a = a1 · · · an ∈ 〈↑, ↓〉 for ai ∈ {↑, ↓}. For i ∈ [n], w ∈ Z≥0, define
the a-diagrams

The orientation of strings is taken to match a. Although both ri and cw depend on a, we
surpress this fact as it should be clear from context.

Definition 4.1.6 Given any a = a1 · · · an, b = b1 · · · bm ∈ 〈↑, ↓〉 for ai, bj ∈ {↑,↓}, let
B(a, b) be the set of (a, b)-diagrams of the form

ckw
w · · · ck1

1 c
k0
0 r

s1
1 · · · rsn

n αr
t1
1 · · · rtm

m

where α ∈ Sim(a, b), w, kl, si , tj ∈ Z≥0, and si = tj = 0 whenever (i, 1) and (j, 0) are
sources respectively. We write B(a) for B(a, a).

Example 4.1.7 Given a =↑↓ and b =↓↑↑↓, an example of an element of B(a, b) is

where α is the third simple (a, b)-diagram in the list given in 4.1.4.

The following result is Proposition 5 of [12].

Theorem 4.1.8 The set B(a, b) is a basis for HomHeis(a, b).

Remark 4.1.9 The description of this basis is analogous to the basis given by regular mono-
mials presented in [16, Theorem 4.6]. Note that no decorated anti-clockwise bubbles appear.
This is due to the fact that any decorated anti-clockwise bubble may be expressed as a linear
combination of decorated clockwise bubbles, see for example [12, Proposition 2].

4.2 A surjective homomorphism ϕ : Aaff
2k → EndHeis((↑↓)k )

When drawing a (↑↓)k-diagram, instead of labelling the endpoints with arrows, we instead
will label the points (i, 1) with i for each 1 ≤ i ≤ 2k, since the parity of the label recovers
the orientation of the arrow. Also to ease notation we employ the following diagrammatic
shorthand for elements of B((↑↓)k):

. . . βρ . . .

1 u v 2k

� ρ β

u v

,
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where β is loopless, ρ is a collection of (possibly decorated) clockwise bubbles, and u, v ∈
[2k]. Hence we drop the trivial vertical strings but retain the labels u through v, allowing
one to recover the original diagram.

Proposition 4.2.1 We have a C-algebra homomorphism

ϕ : Aaff
2k → EndHeis((↑↓)k)

given on the generators by

Proof This will be shown by directly checking that each of the defining relations in Defini-
tion 3.1.1 is satisfied under the map ϕ. Most of these are simple to check but lengthy, hence
for such relations we do not give full details.

(1)(i):

which equals ϕ(1 − e2i ). One can show that relation (1)(ii) is upheld in a similar manner.
(2): Relation (2)(i) is τ2i+1τ2j = τ2j τ2i+1 for all j �= i + 1. When j �= i, it is clear to

see diagrammatically that this relation is upheld under ϕ. For case j = i, one applies (H1)
and then (H2) to see that

ϕ(τ2i+1τ2i ) =
2i − 1 2i 2i + 12i + 2

= ϕ(τ2iτ2i+1).

Both relations (2)(ii) and (2)(iii) can be seen to hold under ϕ diagrammatically. For relation
(2)(iv), we have that

ϕ(si) = ϕ(τ2i+1τ2i + e2i ) =
2i − 1 2i 2i + 12i + 2

+
2i − 1 2i 2i + 12i + 2

.
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Such elements satisfy the braid relation sisi+1si = si+1sisi+1 by [14, Theorem 4.1].
(3): Relation (3)(i) is upheld under ϕ by applying Lemma 4.1.1, and (3)(ii) is upheld

by (H4). Relations (3)(iii) and (3)(iv) are upheld by the fact that left curls are annihi-
lated. For relation (3)(v), it is clear that applying (H1) allows one to go from the diagram
ϕ(τ2ie2i−1e2i+1) to ϕ(τ2i+1e2i−1e2i+1), and similarly for relation (3)(vi).

(4): All of these relations follow diagrammatically and from (3)(iii) and (3)(iv).
(5): Relation (5)(i) is simple to check since the diagrams contain no points of intersection.

For (5)(ii), applying (H1) and (H2) we see that

thus ϕ(τ2ie2i−1τ2i ) = ϕ(τ2i+1e2i+1τ2i+1). In a similar manner, for relation (5)(iii) one can
show,

(6): These relations are immediately seen to be upheld diagrammatically.
(7)(i): We seek to show ϕ(τ2i−2τ2iτ2i−2) = ϕ(τ2iτ2i−2τ2i (1−e2i−2)). The left hand side

gives
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where the second equality follows by applying (H3), and the third equality follows from
(H2). By applying (H1) and (H2), one can check that the first term above is ϕ(τ2iτ2i−2τ2i )

and the second term above is ϕ(τ2iτ2i−2τ2ie2i−2), hence (7)(i) holds. Relation (7)(ii) can be
shown in an analogous manner.

(7)(iii): We seek to show that ϕ(τ2i−1τ2iτ2i−1) = ϕ(τ2i − e2i−2τ2i − τ2ie2i−2). The left
hand side gives

By applying (H2) twice and (H1), the second term above straightens out to

For the first term we get

where the first equality follows by applying (H3), and the second equality by (H1) and
(H2). Therefore collectively we have show (7)(iii). Relation (7)(iv) follows in an analogous
manner.

(8)(i): We seek to show that

ϕ(x2i+1) = ϕ(τ2ix2i−1τ2i ) + ϕ(e2iei−1τ2i ) + ϕ(τ2ie2i−1e2i ) − ϕ(τ2i ). (11)

One can check that
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By (H1), (H2), (H3), and applying Lemma 4.1.2 (and a 90◦ clockwise rotation of Lemma
4.1.2), we have

Rearranging yields (11). The remaining Skein-like relations (8)(ii), (8)(iii), and (8)(iv),
following in a similar manner where we employ Lemma 4.1.2 to pull the decoration over
various oriented crossings.

(9) and (10): These relations are immediately seen to be upheld diagrammatically.

The remainder of this section seeks to show that the algebra homomorphism ϕ in the
above proposition is surjective. Firstly, from Theorem 4.1.8 we know that EndHeis((↑↓)k)

has a basis given by

ckw
w . . . c

k1
1 c

k0
0 r

s1
1 r

s3
3 . . . r

s2k−1
2k−1αr

t2
2 r

t4
4 . . . r

t2k
2k

where α ∈ Sim((↑↓)k). Since ϕ(zl) = cl and ϕ(xi) = ri , to prove that ϕ is surjec-
tive it is enough to show that Sim((↑↓)k) ⊂ Im(ϕ). We will prove that Sim((↑↓)k) ⊂
〈ϕ(ei), ϕ(τj )〉i,j ⊂ Im(ϕ). We say that a simple diagram is planar if no intersections occur
among its strings, for example the diagrams ϕ(ei) are all planar for each i ∈ [2k − 1]. The
total number of planar diagrams in Sim((↑↓)k) is C2k , the 2k-th Catalan number. These dia-
grams are precisely oriented versions of the Temperley-Lieb diagrams. The Jones normal
form gives a way of writing the Temperley-Lieb diagrams as a product of generators (see
[9], and also [11, Theorem 4.3 and Figure 16]) which does not involve bubbles, and so may
be applied here for the elements ϕ(ei) to show that any planar diagram belongs to 〈ϕ(ei)〉i
and hence to Im(ϕ).

Definition 4.2.2 Let π ∈ S(k). Then we define the following simple (↑↓)k-diagrams:

(i) π↑ by pairings of endpoints {(2i − 1, 0), (2π(i) − 1, 1)} and {(2i, 0), (2i, 1)} for each
1 ≤ i ≤ k.

(ii) π↓ by pairings of endpoints {(2i − 1, 0), (2i − 1, 1)} and {(2π(i), 0), (2i, 1)} for each
1 ≤ i ≤ k.



S. Creedon, M. De Visscher

Example 4.2.3 For k = 3 and π = (1, 2, 3) ∈ S(3), we have

π↑ = , π↓ =

For any π ∈ S(k), it is shown in [21] that we have a reduced expression of the form

π = (sm1sm1+1 · · · sn1)(sm2sm2+1 · · · sn2) · · · (sml
sml+1 · · · snl

),

where k > n1 > n2 > · · · > nl and ni ≥ mi . Noting that s↓
i = ϕ(τ2i+1), consider

α↓(w) := (s↓
m1

s
↓
m1+1 · · · s↓

n1
)(s↓

m2
s
↓
m2+1 · · · s↓

n2
) · · · (s↓

ml
s
↓
ml+1 · · · s↓

nl
) ∈ Im(ϕ).

Strings in α↓(w) may intersect one another more than once, but we can resolve such double
crossings by pulling strings apart via the local relations. The descending condition on the
indices in this reduced expression means we will never need to employ (H3) to pull strings
apart, and thus we must have that α↓(w) = π↓. Hence π↓ ∈ Im(ϕ). Rotating π↓ by 180◦
yields (ρπρ−1)↑ where ρ is the product of transposition (i, k − i +1) for each i ∈ [k]. Thus
we also have that π↑ ∈ Im(ϕ) for all π ∈ S(k).

To aid upcoming proofs we define a collection of diagrams which loosen the conditions
on simple diagrams.

Definition 4.2.4 We call an (a, b)-diagram semisimple if the following hold:

(1) It contains no loops or self intersections.
(2) No top arc intersects a bottom arc.

Let SSim(a, b) denote the set of semisimple (a, b)-diagrams, and write SSim(a) for
SSim(a, a).

From definitions we have that Sim(a, b) ⊂ SSim(a, b). Any diagram α ∈ SSim((↑↓
)k, (↑↓)l) contains precisely k + l strings, and the endpoints of these strings induce an
((↑↓)k, (↑↓)l)-matching of the endpoints E. We let α denote the unique simple diagram
corresponding to such a matching (recalling the discussion after Definition 4.1.3).

Lemma 4.2.5 Given any simple diagram α ∈ Sim((↑↓)k, (↑↓)l), there exists π ∈ S(k),
σ ∈ S(l), and a planar diagram β ∈ Sim((↑↓)k, (↑↓)l) such that π↑βσ↓ is semisimple and

α = π↑βσ↓.

Proof Given any simple diagram γ ∈ Sim((↑↓)k, (↑↓)l) let (2i, 0), (2j, 0) ∈ E (respec-
tively (2i − 1, 1), (2i − j, 1)) be two ↓ (respectively ↑) endpoints in the bottom row
(respectively top row) of γ . Let γ ′ be the simple diagram obtained from γ by permuting
these two endpoints around. It can be seen that γ (i, j)↓ (respectively (i, j)↑γ ) is semisim-
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ple as long as the permutation doesn’t swap the orianetation of an arc around, since that is
the only way a self intersection can occur. In this situation, one can see that

γ ′ = γ (i, j)↓
(
respectively = (i, j)↑γ

)
.

Hence to prove this lemma it is enough to show that we can reach a planar diagram β

from α by repeatably permuting the endpoints in the bottom row coloured by ↓, and top
row coloured by ↑, in such a way that the orientations of arcs are preserved. We focus on
the bottom row, where the top row will follow in the same manner by a 180◦ rotation of
the diagrammatics. Starting with α we remove intersections one at a time by employing a
suitable permutation of endpoints. There are a few cases to consider, and in each such case
the endpoints of the strings in the following diagrams will be arbitrary:

(Case 1): Crossing of two down strings:

�

(Case 2): Crossing of a down string with an clockwise/anti-clockwise arc:

Note in either situation the orientation of the arc is preserved by the permutation.
(Case 3): Crossing of two arcs: There are four cases based on the orientations of the two

arcs given by

noting that in the last case such a down string must exist. Again, the orientations of the
arcs are preserved under the permutation of endpoints in all four of the above situations.

In all three of the cases above, it can be seen that the new simple diagram we obtain after
the permutation of endpoints has strictly less number of intersections. We claim that apply-
ing the moves above on the bottom row, and their 180◦ counterparts on the top row, until all
such intersections are removed will yield a planar diagram. For contradiction, suppose this
is not the case. Thus even after removing all such types of intersections, the diagram still
contains some other type of intersection. The other such intersections are either between an
up string and arc on the bottom row, a down string and arc on the top row, or an up string and
a down string. The former two are 180◦ counterparts to one another, hence we only need to
consider one such type. Firstly, if an up string intersects a clockwise arc on the bottom we
have
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Note that the parity of the number of endpoints on the bottom row strictly between a

and b must be different to the partity of endpoints strictly between b and c. Thus on can
deduce that such an endpoint must be a target to a string which intersects the arc, and such
an intersection would be accounted for by Case 2 or 3, hence a contradiction. The same
argument can be used to show that the case of an up string intersecting an anti-clockwise
arc on the bottom is also impossible. Note all intersections involving arcs have now been
accounted for. Lastly assume an up string intersects a down string. We have two cases, one
of which is

a

b

.

The dashed vertical line is simply an aid for arguments to come, and has been draw so that
the endpoints a and b are the closest endpoints to its left. The other case is given by rotating
the above by 180◦ and will follow analogously. The parity of the number of endpoints to
the right of a is odd, while the parity of the number of endpoints to the right of b is even.
This implies that there exists a string s such that one of its endpoints belongs to the right of
the dashed line, while the other belongs to the left. Moreover, since the right-most endpoint
on the top and bottom row are coloured by ↓, we can say that the endpoint of s which is to
the right of the dashed line is a source while the endpoint to the left is a target. So s must
intersect one of the above strings, and must be a vertical string since all intersections with
arcs are accounted for. Hence, colouring the string s in red we have

a

b

or

a

b

.

Note that s may intersect both of the other strings and not just one, but it is always forced
to intersect the string depicted. As such each situation exhibits an intersection accounted
for in Cases 1 (or its 180◦ counterpart), giving the desired contradiction. Thus removing all
intersections of the types presented in Cases 1 to 3 (and their 180◦ rotated counterparts) will
result in a planar diagram, completing the proof.

Let R be an open subspace of R × [0, 1] and let α be an (a, b)-diagram. Examining α

locally in R will give a configuration of curve segments, and we refer to such as a region
of α. Within a given region we treat distinct curve segments as different curves, even if in
α itself the two segments belong to the same curve. In particular, if in R two distinct curve
segments intersect one another, and in α these two segments belong to the same curve, we
will not call such an intersection a self-intersection in R, but it is a self-intersection in α.

Recall that the local relation (H4) tells us that if a left curl appears in a diagram we may
annihilate such a diagram. This relation asks that the region enclosed in the curl is absent
of any other strings. The following result shows that even if such a region is non-empty, as
long as its contains no loops or self-intersections, we can annihilate the diagram.

Lemma 4.2.6 Let α be an (a, b)-diagram containing a left curl where the region bounded
by the curl contains no loops or self-intersecting curve segments, then α = 0.
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Proof By assumption α contains a configuration of the form

where we let R denote the interior region bounded by the curl, which contains no loops
or self-intersecting curve segments, and g0, . . . , gm account for all the intersections which
occur on the curl. Note we have only drawn the segments of the gi’s which realise the
intersection on the curl. We prove the result by induction on the number of intersections
occurring in R. Assume that no intersections occur in R, hence R gives a planar configura-
tion of strings. One can deduce that there exists neighbours gi mod(m+1) and g(i+1)mod(m+1)
such that either

In the former situation, since we are dealing with a left curl, one can check that regardless
of the orientation of the depicted string in R, it may be pulled outside the curl by (H2). For
the latter situation we may employ (H1) to pull the string out of the curl over the crossing
at the top. Continually pulling out such strings one at a time will result in making R empty,
and then applying (H4) gives α = 0.

Now suppose that the result holds whenever R contains n or less intersections for some
n ≥ 0, and assume that R contains n + 1 intersections. It is clear that there must exist an
empty region R′ in R bounded by the curl and various segments. Diagrammatically we have
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where gi, gi+1, and the (possibly empty) set of curve segments H = {h1, . . . , hl} make up
the remainder of the boundary of R′. Note such curve segments may not be pairwise distinct
in R. In the case when H is empty, we simply have the situation

Since R′ is empty we may pull this crossing out of the curl by (H1), which will decrease
the number of intersection in R and thus by induction α = 0. Hence we may assume that H
is non-empty. The general case H = {h1, . . . , hl} is solved by focusing on h1, and in fact
solving the case H = {h1} is sufficient to understand the general case, hence we only prove
this case. So we are working with the sitaution

There are two cases to consider based on the orientation of h1. For the first case we have

by (H2). Then we may pull the crossing between either gi and h1, or gi+1 and h1 out of the
curl by (H1), which will decrease the number of intersections in R by one and so α = 0 by
induction. With the opposite orientation on h1 we have
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by (H3). Here denote the first diagram on the right of the above equation by α1 and the
second by α2. For α1, as was done in the previous case we may pull one of the crossings
outside of the curl, and thus decrease the number of intersections in R by one, and hence
α1 = 0 by induction. For α2 the curve containing h1 and the original left curl have been
turned into the two new curves h

(1)
1 and h

(2)
1 . Note the original left curl is no longer present,

but regardless of how the original curve containing h1 intersected the curl, at least one of
the new curves h

(1)
1 and h

(2)
1 must form a new, smaller, left curl. The region bounded by

this new curl is a subregion of R containing strictly less number of intersections. Hence by
induction α2 = 0, and so collectively α = α1 + α2 = 0 completing the proof by induction.
Note the general case for H = {h1, . . . , hl} is tackled in the exact same manner by pulling
h1 out of the curl, the diagrammatics are just more cluttered, but the remaining segments
h2, . . . , hl do not interfer with the above argumenets.

Let a = a1 · · · ak and b = b1 · · · bl for ai, bi ∈ {↑,↓}, and consider the map deg :
SSim(a, b) → Z≥0 × Z≥0 given by deg(α) = (A(α), C(α)) where A(α) is the number of
arcs in α, and C(α) is the number of clockwise arcs in α. We order the degrees by using
the lexicographical ordering < on Z≥0 × Z≥0. Note that for any α ∈ SSim(a, b) we have
deg(α) = deg(α).

Proposition 4.2.7 Let α ∈ SSim(a, b). Then

α = α +
∑

β∈Sim(a,b)
deg(β)>deg(α)

cββ

where cβ ∈ Z.

Proof Given two distinct strings s and t in α, let n be the number of intersections occurring
between the two strings. If n is even set μ({s, t}) = n, while if n is odd set μ({s, t}) = n−1.
Note μ({s, t}) is always even. We let

η(α) =
∑
s,t

μ({s, t}),

where the sum runs over all unordered pairs of distinct strings of α. Informally, η(α) is the
number of intersections of α which prevent it from being simple, in particular η(α) = 0 if
and only if α ∈ Sim(a, b). We will prove this proposition by induction on η(α), where the
base case of η(α) = 0 follows immediately since α = α. Assume the result holds for all
α ∈ SSim(a, b) such that η(α) < n for some n > 0. Now let α be such that η(α) = n. Pick
two strings s and t in α such that μ({s, t}) ≥ 2. Order the points of intersections between s

and t according to when they appear as one travels from the source of s to its target. Under
this ordering pick two neighbouring points of intersection p and q. Then diagrammatically
we have a configuration of strings of the form
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where R is the interior region bounded by the curve segments of s and t between the points of
intersection p and q, and the two (possible empty) sets of string segmentsG = {g1, . . . , gm}
and H = {h1, . . . , hx} account for all the intersections of the boundary of R through t and
s respectively. We may assume that we are not in one of the following three situations:

since otherwise we may pick the more nested pair of intersections to work with instead.
Since situations (i) and (iii) are not present, any string segment gi must connect to a hj

(rather than another segment in G). Hence m = x and R realises a pairing of the string
segments G with H . Diagrammatically we have

where B is some permutation connecting segments in G with those in H . Moreover, since
situation (ii) is not present, this means that no string segments in B can intersect more that
once. In other words B is built out of crossings, and so we may pull all of B outside of the
region R one crossing at a time by (H1), and thus obtain

Lastly we may pull these horizontal strings out of R through the top or bottom crossing by
(H1). Hence we have emptied R by employing only local relation (H1), and so the value
η(α) has remained the same. Now there are four different cases depending on the orienta-
tions of the strings s and t . In three of these cases, since R is empty, we may pull the strings s

and t apart by applying (H2), and thus remove the two intersections p and q. This decreases
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η(α) by two, and so the result follows by induction. The last case is given with orientations
as follows

where we have applied (H3). Let the two diagrams on the right hand side of the above
equation be denoted by α1 and α2 respectively, hence α = α1 − α2. It is clear that α1 = α

and deg(α1) = deg(α). Moreover we have that η(α1) = η(α) − 2, and so by induction

α1 = α +
∑

β∈Sim(a,b)
deg(β)>deg(α)

dββ (12)

where dβ ∈ Z. As for α2, the original strings s and t have been replaced by u and v.
Although the points of intersection p and q have been removed, in general we cannot apply
the inductive step for α2 as it may not be semisimple, since the new strings u and v may
contain self-intersections. This occurs precisely when there are more intersections between
the strings s and t than just p and q. So we break this situation into two cases:

(Case 1) Assume that p and q are the only intersections between the strings s and t in α,
and so α2 is semisimple. Thus by induction we have

α2 = α2 +
∑

β∈Sim(a,b)
deg(β)>deg(α2)

fββ (13)

where fβ ∈ Z. We seek to show that deg(α2) > deg(α), and then subtracking (13) away
from (12) will prove this case. One can show this by comparing the string types of the sets
{s, t} and {u, v}. We have the following to consider:

(1) The set {s, t} contains a down and up string.
(2) The set {s, t} contains a vertical string and clockwise arc.
(3) The set {s, t} contains two arcs on the same row, but not both anti-clockwise.

Note {s, t} cannot contain a top and bottom arc since α is semisimple. The remaining cases
which have been left out are due to the fact they can never realise the orientated double
crossing of the strings s and t which we are considering. For (1) it is easy to see that {u, v}
consists of two arcs. For (2) one can deduce that {u, v} contains a vertical string and anti-
clockwise arc. For (3), when {s, t} consists of two clockwise arcs one can check that {u, v}
consists of a clockwsie arc and an anti-clockwise arc. When {s, t} contains a clockwise and
anti-clockwise arc, one can check that {u, v} consists of two anti-clockwise arcs. For all
these case we have deg(α2) > deg(α), completing Case 1.

(Case 2) Assume now that there is at least one more point of intersection between the
strings s and t beside p or q. In the ordering of intersections discussed previously, pick a
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neighbouring point which either preceeds p or proceeds q, say y. Without loss of generality
assume y preceeds p. Then diagrammatically the equation α = α1 − α2 is given by

by (H3). In α2 the interior region bounded by the left curl cannot contain loops or string
segments with self-intersections since α is semisimple. Hence by Lemma 4.2.6 α2 = 0, and
so α = α1 and thus the result follows by (12).

Theorem 4.2.8 The algebra homomorphism ϕ : Aaff
2k → EndHeis((↑↓)k) given in

Proposition 4.2.1 is surjective.

Proof As discussed previously, this will follow by showing that α ∈ 〈ϕ(ei), ϕ(τj )〉i,j for
all α ∈ Sim((↑↓)k). We prove this by downwards induction on deg(α). It’s easy to see that
the maximum degree is deg(α) = (2k, 2k). By considering what endpoints can be targets
and sources of clockwise arcs, one can deduce the only element α ∈ Sim((↑↓)k) satisfying
deg(α) = (2k, 2k) is given by

This completes the base case. Now, pick α such that deg(α) = (x, y) < (2k, 2k) and
assume that γ ∈ 〈ϕ(ei), ϕ(τj )〉i,j for all γ ∈ Sim((↑↓)k) such that deg(γ ) > (x, y). By
Lemma 4.2.5 there exists π, σ ∈ S(k) and a planar diagram β ∈ Sim((↑↓)k) such that
π↑βσ↓ is semisimple and α = π↑βσ↓, in particular deg(α) = deg(π↑βσ↓). Hence by
Proposition 4.2.7 we have that

π↑βσ↓ = α +
∑

γ∈Sim((↑↓)k)
deg(γ )>deg(α)

cγ γ, (14)

where cγ ∈ Z. By induction all the simple terms in the above summation belong to Im(ϕ).
Also from previous discussions we know that π↑βσ↓ ∈ Im(ϕ), thus rearranging the above
equation shows that α ∈ Im(ϕ), completing the proof by induction.

Remark 4.2.9 (14) is the key to Theorem 4.2.8, and follows from Proposition 4.2.7. This
proposition applies to all semisimple diagrams which are much more general than those
appearing here. Ideally, one would like to prove that (14) holds for π↑βσ↓ by some induc-
tive argument without needing to show it for all semisimple diagrams. However it is a very
delicate task to check which properties are preserved by an inductive process. So we ended
up using this more general approach instead, even though many of the cases considered in
proving Proposition 4.2.7 probably won’t occur in this case.
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4.3 The Affine Partition Category of Brundan and Vargas

In this last section we relate our affine partition algebra to the work of J. Brundan and M.
Vargas in [2] and prove a new result on their category. We start by recalling the definition of
their affine partition category APar as a subcategory of Heis generated by certain objects and
morphisms, and of their affine partition algebra APk , which is an endomorphism algebra
within APar.

Definition 4.3.1 [2, Definition 4.6 and Equation 4.47] The affine partition category APar is
the monoidal subcategory of Heis generated by the object ↑↓ and the following morphisms:

+ (15)

, (16)

(17)

+ , + (18)

(19)

The affine partition algebra is defined to be APk := EndAPar((↑↓)k).

We can generalise the arguments in the proof of Theorem 4.2.8 to show the following
result.

Theorem 4.3.2 The affine partition category APar is the full monoidal subcategory of Heis
generated by the object ↑↓.
Proof We need to show that

HomAPar((↑↓)k, (↑↓)l) = HomHeis((↑↓)k, (↑↓)l).

Using Theorem 4.1.8, we need to show that any element of the form

ckw
w . . . c

k1
1 c

k0
0 r

s1
1 r

s3
3 . . . r

s2k−1
2k−1αr

t2
2 r

t4
4 . . . r

t2l
2l

where α ∈ Sim((↑↓)k, (↑↓)l) can be written in terms of the generating morphisms in APar.
The morphisms ri can be obtained by tensoring the generators (18) with the appropriate
identity morphisms on the left and right (and subtracting the identity). Moreover, the mor-
phisms ci can be obtained by concatenating ri

1 with the generators (17) on top and bottom.
Thus, it remains to show that any diagram α ∈ Sim((↑↓)k, (↑↓)l) can be written in terms
of the generating morphism in APar. A generalisation of Jones’ normal form shows that
any planar α ∈ Sim((↑↓)k, (↑↓)l) can be written in terms of the generators (16) and (17)
(see for example [18, Proof of Lemma 2.1] for an explicit construction). Now Lemma 4.2.5
allows us the write any α ∈ Sim((↑↓)k, (↑↓)l) as α = π↑βσ↓ where π ∈ S(k), σ ∈ S(l)

and β is planar. Note that s
↑
i and s

↓
i can be written using the generators (19) and the com-

position of the generators (16) (and tensoring with the appropriate identity morphism on
the left and right). So using the discussion following Example 4.2.3 we know that π↑ and
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σ↓ belong to HomAPar((↑↓)k, (↑↓)l). Now we can follow exactly the same proof as for
Theorem 4.2.8 noting that in this case the maximum degree is (k + l, k + l) and the only
simple diagram with that degree is the one containing k consecutive arcs at the top and l con-
secutive arcs at the bottom, which is planar. The rest of the proof can be followed verbatum
simply replacing Imϕ by HomAPar((↑↓)k, (↑↓)l).

We immediately obtain the following consequences.

Corollary 4.3.3 The map ϕ gives a surjective homomorphism forAaff
2k to APk .

Corollary 4.3.4 The set B((↑↓)k) gives a basis for APk .

We do not know whether the map ϕ is an isomorphism. If it were, then we would also
have a presentation for APk .
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