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ABSTRACT

A B S T R A C T

This thesis explores the potential of 64-bit processors for providing a different style of 
distributed operating system. Rather than providing another reworking of the UNIX 
model, the use of the large address space for unifying volatile memory (virtual memory), 
persistent memory (file systems) and distributed network access is examined and a novel 
operating system, Ariu s , is proposed.

The concepts behind the design of ARIUS are briefly reviewed, and then the reliability 
of such a system is examined in detail. The unified nature of the architecture makes 
it possible to use a reliable single address space to provide a completely reliable system 
without the addition of other mechanisms. Protocols are proposed to provide locally 
scalable distributed shared memory and these are then augmented to handle machine 
failures transparently though the use of distributed checkpoints and rollback.

The checkpointing system makes use of the caching mechanism in DSM to provide data 
duplication for failure recovery. By using distributed memory for checkpoints, recovery 
from machine faults may be handled seamlessly. To cope with more “complete” failures, 
persistent storage is also included in the failure mechanism.

These protocols are modelled to show their operability and to determine the cost they incur 
in various types of parallel and serial programs. Results are presented to demonstrate these 
costs.
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C hapter 1

Introduction

Computers have undergone many fundamental changes in their evolution since the emer-

gence of commercial systems in the 1940s. However, at every point in this evolution 

designers have attempted to link two or more similar machines together to boost the per-

formance provided to their users. Ultimately, however, the difficulties in doing so have 

always resulted in parallel machines being produced a generation behind single processor 

machines and, consequently, offering worse not better performance.

Parallel processor technology has matured extensively over the past ten years, as has the 

ability to loosely couple single machines. This has increased interest in multiprocessors and 

multi-computers. However, such machines still exhibit a number of problems compared 

with their single processor counterparts—how to write applications for them, what the 

operating system should provide in a parallel machine, how parallel programs should 

communicate, and how the machine should be made reliable.

In this thesis the last of these problems is studied in some depth and an answer proposed. 

Naturally, this aspect of parallel machines cannot be examined out of context and the 

other problems listed above are also examined. Briefly, this thesis attempts to answer 

the question, “How can fault tolerance be provided efficiently in a distributed, parallel 

operating system?”
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CHAPTER 1. INTRODUCTION

1.1 Current system  organisation

The physical composition of computers and computer systems has evolved extensively over 

the last two decades. Now a typical installation consists of various different machine types; 

such as uni-processor Sparc stations and PCs together with multi-processor Sequents. 

However, these machine are no longer stand-alone systems but are linked by a standard 

networking technology, most often Ethernet. This enables them to share and exchange 

information efficiently without the movement of any physical media (eg. floppy disks or 

cartridge tapes).

The use of networking extends beyond the interconnection of machines within the same 

installation, to interconnecting installations across the world. This allows facilities such 

as electronic mail (e-mail) to be provided where data is passed among many individuals 

on different machines.

1.1.1 Popular o p era tin g  sy stem s and networks

The popular operating systems now in use were designed before networking began to 

proliferate and consequently their handling of it is crude and limiting. Generally, networks 

are used in two ways; either to share a common file system or to provide remote terminal 

access to another machine. Both these facilities are simple modifications of already existing 

systems and do not attempt to fully exploit the potential of networks. Such a limited use 

of networking was reasonable when networks were expensive and bandwidth limited. This 

is no longer the case following the appearance of high-bandwidth, low cost networking, 

based on fibre-optics.

The inclusion of these elements into the current generation of computer systems presents 

a number of interesting problems and has led to an increased interest in parallel and 

distributed computers. For small self contained systems, high-speed networks allow many 

processors to act as a single computer. Over larger distances, networking allows efficient 

and extensive information sharing; so providing facilities such as teleconferencing and 

multi-media mail. Unfortunately, current computer operating systems are not in a position 

to exploit this technology efficiently.
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1.2. THE “SHARING”  SOLUTION

1.1 .2  T h e  problem

Ultimately there are many reasons why current operating systems have problems with 

networks. Basic to most of them is the “stand-alone” concept inherent in their design. 

Although various systems were designed to be used by one, or more than one person at a 

time, there is no understanding of one system “using” another; and so no notion of remote 

machines. Such a concept has been incorporated after the fact (eg. remote login facilities, 

FTP services and remote file systems.); but underneath, the system still does not recognise 

the need to share with another.

1.2 T he “sharing” solution

If high-bandwidth networking is to be embraced and used efficiently, it must be incorpo-

rated into the design of systems rather than added as a “bolt-on” extra. One method 

would be to use networks for message passing—allowing explicit exchange of data be-

tween entities; or alternatively, a network could be used to provide the illusion of a large 

machine when in fact there are really many small machines—a solution encapsulated in 

distributed shared memory. Adopting the latter model has many advantages. Firstly, 

it allows the distinction between uniprocessor, multiprocessor and multi-computer to be 

blurred so allowing an identical environment to be provided on all platforms. Secondly, it 

allows the sharing of data through common memory to become the norm for the exchange 

of information rather than the exception. Thirdly, by providing a single mechanism for 

data exchange, the actual location of the data can be hidden. Fourthly, the system can 

be exploited on any combination of general purpose machines.

The remainder of this chapter examines the various elements required to allow a truly 

unifying networked operating system to be developed.
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1.3 D istrib u ted  shared m em ory

Distributed shared memory (DSM) is a technique whereby a number of machine connected 

by a network may maintain a coherent shared memory space. By doing so, an application 

operating on the network of machines appears to be using a physically shared memory 

system. DSM provides a means for connecting an arbitrary number of machines together 

in an arbitrary network so as to provide a simple, consistent, usable environment; that of 

shared memory.

The use of such a distributed system incurs a latency cost when compared to normal bus 

based shared memory systems. In an attempt to overcome this delay, DSM uses local 

caching of frequently accessed data (this is similar to the operation of a conventional 

processor cache). Caching brings with it the problem of data coherency; when one copy 

of data is changed on one processor, all other copies must be invalidated to maintain 

coherency—this can cause unnecessary performance degradation. This problem has been 

investigated by many groups and various solutions have been proposed.

Despite the coherency problems, DSM provides an efficient and versatile means for shar-

ing information in parallel or distributed computers and the potential to eliminate the 

differences between the two.

1.4 Sim plifying th e environm ent

Whenever someone uses a computer, they are presented with an environment within which 

to work. In some case this environment is rather basic and relies on the person entering 

obscure typed commands; in another the person is expected to use a mouse to point, click, 

drag and generally manipulate images on the screen. In fact, every computer presents a 

variety of environments, one for the applications user, one for the application, and another 

for the application developer; each of which may be tailored and customised as required.

The environment provided by an application to the user is not, for the most part, important 

to the operating system since the application will present its services as its developer 

desired. However, the environment provided by the operating system for the developer or
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the application is important. If this environment is ill suited to the requirements of the 

application, the application writer will be forced to provide the services they require over 

what is given.

Most operating systems provide similar facilities to execute programs and store data for 

later retrieval. However, the facilities for communication vary dramatically between sys-

tems. Furthermore, the facilities to share information between distinctly separate ma-

chines, although essentially similar in all operating systems, do not provide a convenient 

model for programs to use. Such barriers have three repercussions; they make programs 

difficult to port between dissimilar platforms, they force programmers to limit the type of 

communication used, and they make parallel applications rare.

Any new operating system architecture should aim to solve these problems. This may be 

done by combining many traditionally separate services into a single simplified one. The 

use of the network to provide shared memory has already been discussed. This may be 

further enhanced by making this shared memory persistent—so removing any need for an 

explicit file system.

1.5 64-bit architectures

The system so far discussed could be supported on any current processor design. However, 

processors are already taking a new evolutionary step; from 32-bit addresses to 64-bit 

addresses. This dramatic increase in address space may also be utilised to simplify general 

operating system design.

With 32-bit processors the maximum data directly addressable by any process is 4 giga-

bytes. This may appear large but many commercial databases far exceed this limit, and so 

this data is accessed indirectly, usually via a file system. However, with 64-bit addresses 

any process may access 16 million terabytes of data. This can easily accommodate the 

largest databases. Unfortunately, a conventional operating system would still rely on in-

direct access through a file system when a simpler and more flexible solution would be to 

access the database directly as conventional memory.
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Some Unix based operating systems now address this problem, at least in part. However, 

the second attractive property of large address ranges is the potential to provide a single 

large address space rather than many address spaces.

1.6 Single address space architectures

A single address space architecture is a radical departure from the accepted norm of 

multiple address spaces, one per process. However, such a space can: provide a means for 

communicating among a network of machines via DSM; provide persistent data storage 

by absorbing the file system; and remove the abasing problems associated with multiple 

address spaces.

To consider a network of machines as a single address space has many advantages. Firstly, 

all data is fixed for all observers. This property is of great advantage to a parallel pro-

gram which may be running on several different machines yet interacting as if on the 

the same one. Secondly, even when programs are not sharing data in parallel, by being 

able to pass addresses of data from a client to a server and have the server understand 

it without translation or intermediate packaging thereby providing greater transparency 

and flexibility. Thirdly, for hiding a network of machines behind an address space to al-

low applications to be written more regularly without the need to provide purpose built 

protocols for handling networks.

All these advantages enable applications to be written more generally, a problem acute with 

parallel programs which tend to be optimised specifically for one architecture. Further, 

if the single address space is enhanced by the addition of persistence, then this removes 

many of the associated problems of transferring data from file to memory and back again.

The major problem in previous operating system architecture with these features is incom-

patibility — no common computer architecture in use today provides such an environment, 

but then the common operating systems were designed for single processor machines with 

small disks and no networks. Continuing conformance with such a model of computing is 

limiting and costly.
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Of course, discarding twenty years of computer environment is a difficult step to take. 

Fortunately there is no reason, with modern processors and modern compiler technology, 

why multiple address space architecture applications cannot be run, without modification, 

on a single address space architecture.

1.7 Fault tolerance

If it is accepted that a new style of operating system is required (one which provides a 

unified machine interface to parallel and distributed systems) then, for once, the problem 

of fault tolerance should not be neglected. In fact, as parallel system sizes grow, fault 

tolerance can no longer be considered a desirable but expensive extra, it becomes an 

essential. If any large system is to operate for a useful period of time, it must tolerate 

faults since the frequency at which they occur increases dramatically.

Providing resilience to failures in a single persistent address space system can be done very 

simply—there is only one allocatable resource: persistent address space. If this is provided 

in a fault tolerant manner, then everything operating within the system cannot help but 

be fault tolerant also. Even the operating system can use this fault tolerant address space 

to preserve its state in the case of failure.

Naturally, it is never quite so simple and there are many difficulties in providing fault 

tolerance in a parallel or distributed machine in an efficient manner. However, solving 

such a problem for a machine architecture which provides a shared memory interface, 

rather than a message passing one, opens up the possibilities for which large scale parallel 

architectures may be used, since reliability is no longer provided at a design cost to the 

programmer or within a limited number of applications.

1.8 Original Work

This thesis addresses a number of issues regarding the next generation of operating system 

designs. These may be broadly split into three categories:
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• The design of 64-bit single persistent address space operating system so as to unify 

the appearance of single, parallel and distributed machines,

• The design and implementation of a flexible distributed shared memory system for 

operating system and application use, and

• The design and implementation of a reliability system which uses other machines 

and persistent disk storage to guard against machine failures.

In addressing these issues, a number of others are raised and examined. However, the chief 

aim of this thesis is to examine how an efficient reliable system can be designed based on 

a 64-bit operating system where data sharing, in both client/server and peer-structured 

applications, is the common case rather than the exception.

1.9 Structure

The structure of this thesis is as follows. Chapter 2 examines the background behind the 

design of a distributed address space on which this work is based. Chapter 3 describes 

the design of the single address space operating system A rius . Chapter 4 describes a 

mechanism to support multi-policy distributed shared memory on a large network of ma-

chines. Chapter 5 examines the methods for providing fault tolerance. Chapter 6 describes 

volatile reliability, the means by which A r i u s  handles the failure of machines. Chapter 7 

expands on this to provide persistent reliability. Chapter 8 describes the experiments and 

results obtained during the modelling of A rius ’s reliable store A m o s . Chapter 9 presents 

the conclusions and possible future work.
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Design of a distributed address 

space and store

The aim of this thesis is to describe the design of a new operating system, A r iu s , and 

examine how fault-tolerance can be included in it. To do this we must first examine the 

current state of knowledge about three aspects of systems research:

• Distributed operating systems,

• Distributed shared memory, and

• Fault tolerant operating systems.

In the first, emphasis is on the interfaces used to provide both volatile and persistent 

storage to the user. In the second, scalability of distributed shared memory (DSM) is 

emphasised. In the third, the emphasis is on the methods and associated cost of providing 

various degrees of fault-tolerance.

This chapter is split into six sections. The first outlines the properties of the data store 

considered desirable, the second and third describe various operating systems developed 

over recent years and their relationship to their data stores. The fourth examines DSM 

systems. The fifth examines various fault-tolerant systems. The chapter concludes with a 

summary.
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2.1 R equirem ents of a d istributed  store

A distributed store should satisfy a number of general requirements:

1. Access transparency - The store should be accessed in as near a transparent 

fashion as possible. The physical location of the requester should not be a problem 

for the programmer. A good measure of this quality is the ease with which data may 

be accessed from local and remote locations without adverse effect on application 

programs—must the access method be different?

2. Sharing transparency - It is necessary to provide some means of sharing data be-

tween multiple programs. Often, this is only read-sharing where personal copies are 

taken from the store and manipulated independently. Parallel applications require 

read/write-sharing where modifications to the data are seen by all those accessing 

it.

3. Location transparency - The physical location of data should be hidden from 

the programmer. Within restrictions imposed by security, this should not limit the 

actual position of the data (eg. it must be physically stored on one machine only) 

nor its mobility.

4. D istributed management - Is should not be necessary to impose a single man-

agement structure upon the store. Although this is not a problem in small systems, 

sharing data between different organisations could prove problematic if there are 

management conflicts. The management of data by each organisation must be sep-

arated and not complicated by the distributed nature of the store.

5. Security - Networks are insecure. Although it may be possible to guarantee their 

integrity in small systems, large systems using publicly accessible networks are open 

to attack. Consequently, it is necessary to protect secure data against snooping, and 

protect against the impersonation of users and machines.

6. Resilience and reliability - A store should be resilient to failure of machines 

in the network. As networks become larger, the chances of their entirety being 

active reduces dramatically. Failures must be tolerated without shared data being
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corrupted. Reliability is also desirable so that machine failures may be handled 

dynamically.

The following two sections examine various operating system and storage architectures 

from the viewpoint of these requirements.

2.2 Conventional d istributed operating system  stores

Distributed stores, most usually in the form of file systems, have become increasingly im-

portant with the success of the workstation+network architecture. In this model, instead 

of computing resources being provided by a central machine accessed by many remote 

terminals, many workstations replace the terminals and machine to provide a comput-

ing service. A workstation cooperates with others by communicating over some form of 

network1.

If each workstation requires only its local store, then data exchange is minimal. However, 

this is not the case in a distributed system. Firstly, each machine will hold copies of 

utilities such as text processors, compilers and windowing software. If new versions of 

these programs are released, each machine must be updated; this is not inconvenient for 

two machines perhaps but is unacceptable for a hundred. Secondly, if each user uses only 

one particular machine and has minimal interaction with others there are no problems. 

Once users are allowed to login at any machine and exchange files with each other freely, 

and expect their environment to remain unaltered, then a simple explicit network model 

breaks down. The solution to both these problems has been the distributed file system.

2.2 .1  N F S  N etw ork  F ile  S ystem

NFS [Sun89] was designed by Sun Microsystems USA, to provide a distributed file system 

for their workstations. NFS allows programs to access remote Uni x  file systems as if they 

were present locally. This would seem to provide good access transparency, all file systems *

'Ethernet [MBC+8 0 ] for example.
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being combined into a single large file system tree, but in practice it is complicated by 

the need to provide specific data at fixed locations in Uni x  systems (each system needs 

different data but from the same place). Management of data in NFS is simplified for 

small homogeneous systems, although the use of a number of different types of machine in 

the network complicates this (but not impossibly). The movement of data from machine 

to machine may also be done in a location transparent manner by those administering the 

system. For example, a particular sub-tree of the file system may be moved from one 

machine to another without applications being aware of the change as long as the tree was 

initially named in a machine transparent manner [PW91].

Unfortunately, NFS does not offer a complete solution. One weakness is in security. Until 

recently, the exchange of information between machines took place in plain text. Conse-

quently, data could be read by anyone. Encryption could have provided data protection 

as well as authorisation checking. This would make it impossible for a rogue machine 

to impersonate another legitimate machine on the network since it would not have the 

necessary encryption/decryption keys to enable successful communication.

NFS also provides poor sharing transparency. In order to improve efficiency and reduce the 

utilisation of the network, client machines (those accessing remote machines’ file systems) 

cache sections of the files they read from servers (those providing data from their local 

file systems). This avoids repeated use of the network and the server when the data is 

requested again and allows large blocks to be transferred per request, in the hope that 

this will eliminate the need for subsequent transfers. This causes no problems if the data 

exchange is between a single client and server. When another client is introduced however, 

it is possible for one client to modify the data on the server which has already been read 

and cached by another (figure 2.1). The caching in the client therefore prevents any 

changes being seen until the local copy expires, which is after a fixed period of time.

During this period, the two machines’ views of the distributed file system are dissimilar and 

there is no mechanism to force agreement other than by waiting! When a client writes to a 

remote file system, the write is immediately propagated to the server. This write-through 

strategy guarantees that once a client’s cached data has expired, any newly requested 

copies will be up to date, but at the cost of forcing all writes to be made synchronously
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NFS Server

Figure 2.1: Cache inconsistency problem in NFS.

across the network.

NFS does not handle reliability and machine failure well. UNIX defines that once a write() 

is made to a file, and an error is not reported, the data has been correctly written. NFS 

already operates a write-through policy but the need to report errors correctly necessitates 

that each write blocks and waits for the remote machine to reply with a result. If a server 

becomes unavailable, then the data has been sent but never received and, consequently, 

there is no reply. NFS assumes the failure to be temporary and continually retries the 

write until successful, regardless of how long this takes (it could be forever!). A similar 

situation arises when a read of uncached data is made and the server is unavailable; the 

client retries the read until it succeeds. NFS servers are stateless [Tan88]. After the 

crashed machine has been returned to an operational state, the pending reads and writes 

initiated by clients will proceed correctly. A mode is provided to allow a blocked write to 

timeout after a given period but it does this by simply abandoning the write and continuing 

as if nothing had gone wrong; a poor solution to the problem.

Few of the problems of distributed management are addressed. For example, protection is 

provided by the standard U n i x  owner, group and other attributes attached to each file. 

This is adequate when the network of machines is centrally administered, and each user
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in the network can be given a unique network-wide user identifier. When this is not the 

case however, user ids may be overloaded. An access to a remote file system must not 

breach another user’s security. NFS’s solution is simple but inflexible. Machines outside 

the central administration’s control are considered “untrusted” and any requests for file 

system data from them are considered to be from a special user “other” . This user will 

normally be able to access files only available to others. A scheme for mapping user A 

machine 1 to user B machine 2 would be more powerful but its implementation would be 

costly in both time and space.

2.2 .2  S p rite  N etw ork  F ile sy stem

The Spr i t e  network file system [NW088] was implemented at Berkeley USA, to fulfil 

similar goals to NFS, providing similar solutions to the problems of access transparency 

and location transparency. Its designers also identified some of the problems inherent in 

NFS and attempted to correct them without sacrificing performance or flexibility. The 

three major problems they addressed were:

• Avoiding temporary files being written back to the server unnecessarily,

• Stopping writes from being delayed due to the speed of the network, and

• Guaranteeing that the most recently written data is seen by all clients.

To achieve these goals, SPRITE uses stateful servers which maintain information about 

who is accessing what and how.

When a file is opened by a client, the server is informed about the operation together with 

the type of open (eg. read only, write only, etc.). When a file is opened by a single client, 

regardless of the mode, it caches data locally. There cannot be any sharing problems since 

there is no one to share with. This case accounts for 95% of all file accesses. When a 

file is opened by more than one client, and all clients are reading the file, each one caches 

the data locally. However when a file is opened by more than one client, and one of the 

clients is writing, no one caches the file. In so doing, there can be no sharing consistency 

problems. This provides good sharing transparency.
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Sprite Server

Figure 2.2: Callback mechanism in Sp r i t e .

Spr i t e  also uses a delayed write policy. Instead of writes to remote file systems being sent 

across the network immediately, they are written to local cache and only written back to 

the server when the file is finished with. If the file is deleted, then the data need never 

be written back to the server. This prevents the network bandwidth from limiting the 

throughput of remote file system writes.

There are occasions when Spr i t e  requires data to be written back from the client cache 

before it has finished with the file. The simplest is when the client cache becomes full and 

the data is flushed so the space may be reused. A more interesting situation is when a file 

is opened by a second client and it, or the first client, is able to write to it. The first client 

to open the file will already be caching the file locally. When the second client opens the 

file, this caching must be disabled and any modified data flushed back to the server. This 

cache flush is achieved by a callback mechanism (see figure 2.2). The server instructs the 

client to write back all modifications to the named file and then purge it from the local 

cache. Subsequent accesses to the file by the first and second client take place directly 

with the server. For a full description of these callback protocols see [NW088].

Spr i t e  handles resilience and reliability far better than NFS. Crashes and subsequent 

recovery are handled by using a combination of a log structured file system [RO90, R091] 

and distributed state held by file system clients [WBD+89, BO90]. In NFS a server may
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crash and be rebooted without the knowledge of the client programs (apart from a long 

delay). This is simple because of the stateless operation of the servers. Spr i t e  uses 

stateful servers, which hold information pertaining to each client accessing them, and it is 

necessary to recover this state, after a crash, before operation can continue.

Server state may be reconstructed, following a crash, from the state held in the clients 

making use of it. When a client detects a reboot by a server, it helps the server to recover 

by informing it of any pertinent file system state information. Once all interested clients 

have accomplished this, the server and clients are again data consistent and may proceed. 

A considerable effort has been made in SPRITE to allow this procedure to happen quickly. 

It takes only 80 milliseconds per client to re-synchronise a server.

Another common problem with the re-synchronising of a Unix  file system with clients after 

a server crash, is the time to check file system consistency. On a Sun 4 with 2 Gigabytes 

of disk space this procedure can take 15 minutes or longer, depending on the file system 

usage. Spr i t e  attempts to remedy this problem by using a log-structured file system 

rather than the conventional update-based file system.

File system data is written to disk as a linear sequence of changes rather than a number 

of small wTites to various places on the disk. This log, together with periodic checkpoints, 

forms a file system with similar or better performance for U ni x  but with a significantly 

reduced crash recovery time. As clients modify a file on a server, rather than maintaining a 

traditional block cache, these changes are arranged into a change log which is periodically 

flushed to disk. These log records are marked with additional information to enable the 

consistency and age to be determined. Periodically, a checkpoint is also written to a fixed 

position on the disk (in fact, two checkpoint areas are maintained and written alternately 

in case of failure whilst a checkpoint is being written). This contains sufficient information 

to allow the log to be indexed in a read efficient manner and also provides fixed points 

where the file system is guaranteed consistent. Without this information, reading a file 

from disk would necessitate the examination of the entire log, as would recovery of the file 

system after a crash.

When a server is rebooted after a crash, the checkpoints are examined and the most recent 

is used as a base consistency point for the file system. This indicates the head of the log
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when the checkpoint was committed. Any further log information can then be processed 

to modify this image and bring the file system completely up to date. It would be possible 

to ignore this log information but the file system would then only guarantee to retain data 

up to the last checkpoint. Of course, this is what U ni x  does. The use of checkpoints in 

conjunction with a change log allows the checkpoints to be made infrequently (they are 

relatively expensive) without losing all changes since the previous one.

The problems of security and distributed management are not addressed. Spr i t e  provides 

a standard U nix  model of protection. It relies on a single naming authority to issue user 

and group ids, of which there are only thirty-two thousand of each. This is adequate for 

a single site installation. There is also no attempt to authenticate machines or users nor 

to restrict off site, unauthorised, access.

The Spr i t e  file system does solve many of the problems inherent with NFS. It does not 

address the problems of authentication [Ous92], nor even mapping of untrusted machine 

accesses to a bogus local user, or namespace management which is necessary for a global 

system. The use of a log-structured file system does solve some of the problems with 

server failures, but a catastrophic failure, where rebooting is impossible, will have much 

the same implications as with NFS.

2 .2 .3  D E corum  File S ystem

The D E c o r u m  file system [KLA+90] was developed by Hewlett-Packard, IBM, Locus 

Computing and Transarc, based on the Andrew distributed file system designed at Carnegie 

Mellon University, USA. D E co r u m  uses similar principles to Spr i t e  to enable it to pro-

vide single U n i x  file semantics on a distributed machine. The interface provided is richer, 

and has provision for much finer grain file sharing, and locking.

A virtual file system (VFS) [Kle86] interface is provided to the operating system. This 

is similar to that used in NFS but provides extensions to allow better management of 

large numbers of clients and servers. The interface also allows many different physical file 

systems to be shared by each client which may view them in a different manner. A major 

advantage of this is the immediate availability of NFS file systems which may be used by
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DECORUM clients without modification.

Access transparency and location transparency are similar to Spr i t e . However, file system 

consistency (data sharing) is provided by the use of “tokens”. These tokens are requested 

by clients from servers and, when held, indicate what operations the client is permitted 

to perform on the associated data. Several types of tokens are provided:

• D ata token - allows the client to read or write (depending on the token subtype) a 

range of bytes in the file,

• Status token - allows the client to read or write (depending on the token subtype) 

the status information associated with a file,

• Lock token - allows the client to set read or write (depending on the token subtype) 

locks on a range of bytes in the file, and

• Open token - grants the client the right to open a file in a particular mode (de-

pending on the token subtype).

Tokens of these different types do not conflict with one another since each grants access to 

different elements of a file. There could be conflicts between similar tokens held by different 

clients. These conflicts are not allowed to exist in the system and it the responsibility of 

a server’s token manager to prevent them from happening. It does this by revoking client 

tokens before issuing new tokens which would otherwise conflict.

The granting and revoking of tokens is similar to the callback mechanism used in Spr i t e . 

However, Spr i t e  only supports a single type of token indicating whether a file may or 

may not be cached. D E c o r u m  allows a much finer control over the caching used. For 

example, many clients may be reading and writing the same file but in different areas. 

With Sp r i t e , no client caching is possible and all reads and writes must be made to the 

server. D E c o r u m  allows each section of the file to be cached on the client using it since 

there are no conflicts.

Simple file protection is provided by standard U nix  permissions. In addition, access 

control lists (ACLs) are provided. These lists are associated with files and describe a 

number of users or groups which may access the file together with the operations they
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may perform (read only, execute only, etc.). Security and user authentication are provided 

by a Kerberos [SNS88] service which is performed on all RPC calls between clients and 

servers. This prevents impersonation to gain access to their files by either compromising 

a machine’s integrity or tapping the network. The ownership of files in a D E c o r u m  file 

system is implicitly limited by the implementation of the remotely accessed file system. For 

a UNIX file system this is limiting. However, the use of Kerberos prevents unauthenticated 

users from accessing remote clients, thereby providing security without the need for a 

central naming service. This greatly aids distributed management.

Data resilience and reliability is maintained though the use of replication servers. These 

are responsible for keeping a permanent replica of a file system volume by using a lazy 

replication policy, which will guarantee to replicate data within a maximum period of time. 

If this time is very small, replication is necessary on every file system modification. For-

tunately, this is not usually necessary. In a further effort to reduce the cost of replication, 

only modifications are replicated.

D E c o r u m  addresses most of the requirements for a distributed storage system. The 

ability to replicate file systems “at will” is particularly powerful in preventing a server 

failure from halting a network of machines (if it were serving X-windows for example). Its 

protection of servers prevents unauthorised access and requires only specific authentication 

servers to be trusted by the server. This is usually adequate but means a user may still 

have to use several identities when working in a system, one obtained from each relevant 

Kerberos server.

2 .2 .4  P lan  9 N etw ork  F ile  S ystem

P l a n  9 [PPTT89, PPTT91] is a distributed operating system developed at Bell Labs., 

USA by the designers of U n i x . Although not U n i x  compatible, it is designed to be 

“culturally” compatible.

Three major types of networked machines are supported:

• Diskless C PU  servers - provide processing power for users,
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• File servers - provide persistent data storage, and

• Dedicated bitmap terminals - provide a windowing environment for users.

The separation of functionality is intended to provide both a cost efficient means of pro-

viding resources for many users and simplify the resource management problems. For the 

purposes of this chapter, only the file services will be considered in any detail.

P l an  9 does not provide coherent data transparency and has no complicated data co-

herency protocol. In many instances, communication between file server and CPU server 

is assumed to be fast enough not to warrant caching the data on the CPU server. Without 

a cache, there are no coherency problems. However, P l a n  9 is designed to operate over 

a variety of interconnection systems including slow serial lines. Consequently, failure to 

provide some form of caching on a CPU server or bitmap terminal would result in a very 

poor performance. Caching is therefore provided when the network, between file server 

and client, has insufficient bandwidth and latency to support uncached operations. The 

policy operated is very simple.

When a file on a server is opened by a client, either as a data file or as an executable, 

a 64 bit key is returned to the client. Part of this key identifies the file and the rest 

identifies a file version. This key is compared with the keys held by any cached sections 

of the file held by the client. If the keys are similar, the cached data may be reused. If 

the keys are different, the cached data is purged and any data must be re-read from the 

server. To further reduce utilisation of a low bandwidth network, especially when it may 

be necessary to load binaries across it, data may not only be cached in memory but may 

also be cached on local disk. This disk does not provide a file system but merely acts as 

a persistent cache of previously requested data. Data held on it is invalidated in a similar 

way to that held in memory.

Cache coherency is maintained only when a file is opened; once this has happened, co-

herency is never checked again. This makes it difficult to use files for communicating 

between different clients. To force coherency, it is necessary to re-open files at the re-

quired times. This will flush the entire file from local caches if it has changed, even if the 

changes are small. The whole file must then be re-read from the server. An additional
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Plan9 Fileserver

Figure 2.3: File caching in Plan 9

problem is associated with writes. The client cache is write through, in much the same 

way as in NFS. Even if writes are operated asynchronously, a large amount of network 

bandwidth is consumed, even for temporary files which will be deleted eventually.

P l a n  9 ’s solution to location and access transparency is to provide every process group 

with its own namespace which it is allowed to construct and modify as it wishes. It is 

therefore possible for any user or application to construct a similar environment no matter 

where they access the system from or where that data resides. The ability to construct 

individual namespaces aids distributed management since each application can construct 

the file system it requires regardless of what is provided by the servers.

Protection and authentication is provided using DES encrypted character strings [Win92] 

in a challenge response system. User ids are passed as strings when a file server is first 

contacted. This string is examined by the file server to determine if a user is allowed to 

mount the requested file system. A special user id “none” is also provided which allows any 

file system to be mounted. Any access to such a system by a user only confers permissions 

on files available to everyone (world permissions). This scheme is not unlike that in NFS,
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where an untrusted machine’s request is mapped to a user “other” . However, the use of 

textual names and a specified user naming policy allows simple distributed management 

of users without problems.

P l an  9 addresses the problems of large distributed systems by relaxing many of the 

traditional UNIX semantics whilst providing a similar programming model. The solutions 

to authentication are adequate but not as flexible as might be desirable. The major 

problem lies in the lack of data coherency in the file systems. Whilst this may not be a 

problem in a traditional U n i x  environment, it makes it difficult for P l a n  9 to be used 

as a parallel programming environment. The literature is not clear on some aspects of 

the system. For example, reliability is not mentioned and the treatment of faults is not 

discussed, although the use of optical disk for backups is examined.

2.2 .5  C onclusions

The four architectures described attempt to provide data sharing in distributed machines 

through their file systems. Each succeeds in some respects (Spr i t e  provides a good 

data coherency policy for example) but fail in others (it does not address the problems 

of distributed management). Any complete distributed file system could be designed by 

combining these various ideas.

But the treatment of all data as a file is not the most efficient way of handling sharing, 

since every access requires an explicit re a d /w rite  system call. A better solution, if finer 

grain sharing is required, is to present files as memory mapped objects, so allowing sharing 

to be handled at the instruction level. This approach is taken in the following systems.

2.3 N ovel d istributed  stores

Implementing a distributed store in the shape of a file system is, although the most 

obvious, not the only solution. Alternatively, data may be stored without files by simply 

defining that the structure in which it is held will persist beyond the lifetime of the process 

manipulating it. This blurring of the boundary between volatile, memory resident data
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and persistent, file system data has been implemented in a number of systems and has 

important advantages.

Firstly, it removes the artificial difference between data “inside” a program and data 

“outside” a program. This problem is historic and results from the structuring of the 

hardware storage as “persistent” disk and “volatile” memory. Secondly, once a persistent 

address space is realised, it is no longer difficult to store and manipulate complex data 

structures, since the problems of transferring to and from files are removed. Thirdly, the 

sharing of data within parallel programs is greatly simplified.

Three such systems are Mo n a d s , C lo u d s  and P s y c h e . These are briefly examined 

below, with attention centred on the the object store, the principles used to maintain i t ’s 

integrity and its protection mechanisms.

2.3.1 M O N A D S

The Mo n a d s  system [RHB+90] was developed at the University of St. Andrews. It makes 

use of a large persistent virtual memory in which data persists until deleted rather than 

when the creating process terminates. This removes any need for a file system in the 

conventional sense.

The Mo n a d s  system provides a single 60 bit persistent namespace. This is divided into 

28 bit address spaces, each of which may contain code and data segments. Access to these 

address spaces is in an object-oriented fashion; the methods in the code segments within 

the address space being the only means to access the data within that space. These 

address spaces, or modules, are protected by capabilities which define who may invoke 

which methods within the module.

Capabilities are manufactured and protected by the kernel and it is not possible for an 

arbitrary program to circumvent this protection. Additionally, Mo n a d s  guarantees that 

an old capability can never be used to obtain access to new data. This is done by never 

reusing deleted address space. Although this places a maximum limit on the amount of 

data which may ever exist within the system, a million terabytes is accepted as a reasonable 

limit.
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This system also implements a data integrity policy. This guarantees that, if the system 

should crash, the persistent store will be returned to a “correct” state. This means that 

the store will be causally correct after recovery; something which is very important since 

such a store is implicitly cross referenced and has no predefined structure (unlike a U nix  

file system which is treelike) so any error could result in usurping of protection rights or 

the unintended loss of information.

2.3 .2  C louds

The C l o u d s  operating system [DLAR91, DCM+91, BAHK+88] was developed at the 

Georgia Institute of Technology, USA. It implements a single level persistent object store 

similar to that found in Mo n a d s , and is currently implemented on a network of Sun 3 

workstations. Three types of machines exist in the network:

• Compute servers,

• Data servers, and

• User workstations2.

C l o u d s  uses a passive object and active thread model. Passive objects are memory 

structures containing code and data which have no computing element associated with 

them. Active threads form the computing resource. These move from object to object, 

executing code and manipulating data.

Objects are uniquely named and consist of a group of memory segments. Each segment 

resides at a different address within the object and contains a different type of data. 

Typically, an object contains four segments:

• Persistent code,

• Persistent data,

2These workstations run UNIX with a windowing environment providing remote access to the CLOUDS 
environment.
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Objects

Figure 2.4: Passive objects and active threads in Clouds

• Volatile heap, and

• Persistent heap.

The code segment provides a procedural interface to the object. Data may only be accessed 

using these procedures by a thread moving into the object and executing them. Data is 

moved between objects, as arguments and return values, using a thread’s associated stack 

segment. All segments within an object are shared by all invoking threads and this stack 

provides the only independent storage medium.

Each object contains two persistent data areas. Any data stored here will persist from one 

invocation of the object to the next. Volatile data is not preserved. This persistent data 

forms the only available storage system in C l o u d s  and consequently, there is no need to 

support any kind of file system. Object flexibility is enhanced by the use of distributed 

shared memory techniques. This enables the same object to be invoked on physically 

separate machines but still maintains the illusion of physical data sharing. This has many 

advantages for the construction of large parallel shared memory applications. Of course,
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it might be more efficient for all threads to invoke a given object in the same physical 

location. This is possible too.

A CLOUDS object provides sharing transparency through distributed shared memory, ac-

cess transparency by use of unique names, and location transparency by divorcing any 

association between names and locations, an approach made simpler by the enforcement 

of a procedural object interface. In addition to this, objects provide both volatile and 

persistent storage at the instruction level.

Currently, no security or protection is enforced by the C l o u d s  operating system [Ram92]. 

The ability to invoke a C lo u d s  object is issued by a nameserver and any protection is 

implemented by the programming language.

C l o u d s  supplies a flexible parallel programming environment. It provides a good shared 

data model capable of using distributed machines transparently. Reliability, data in-

tegrity and fault-tolerance are all handled by the use of data commit protocols, segment 

locking and replicated objects and threads. Xo attempt has been made to handle either 

authentication or protection within CLOUDS except at the language level. Additionally, 

the environment cannot be used directly and must be accessed through a U n i x  system. 

Distributed management issues are not addressed.

2 .3 .3  P sych e

PsYCHEwas developed at the University of Rochester, USA [SLM+88, SLM89a, SLM89b, 

SLM89c]. Although it does not provide a persistent distributed store, it does have many 

attributes worth consideration for use in a general distributed store.

P s y c h e  implements a single consistent namespace. For shared data, this appears identical 

to all observers so providing good access transparency and location transparency. Unlike 

C l o u d s , this namespace maps directly onto the virtual memory system allowing it to be 

accessed directly rather than via object procedures, so providing simple data sharing. The 

current implementation, which is on a BBN Butterfly machine, has only a 32 bit address 

space which causes problems because it is insufficient to provide a complete single level 

store. Consequently, several modifications have been adopted to allow bigger structures
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Figure 2.5: Psyche kernel/user interface

to be supported without severely compromising the simple architecture. Ultimately, this 

32 bit addressing barrier will be removed by new processor architectures with larger virtual 

address spaces.

The virtual address space is divided into four sections; one for the kernel, one for sharable 

data, one for private data and one for paranoid data. Data and code are contained in 

realms. A realm in P s y c h e  is synonymous with a segment in C l o u d s . Each realm may 

be protected from others within the system; it may be inaccessible, read only, read and 

written, or executed via invocation of internal protocols. An invocation-only realm is 

similar to a C l o u d s  object.

The emphasis in P s y c h e  is on providing a flexible environment where many different 

parallel computation models can co-exist. Rather than implementing a set of these in the 

kernel, a powerful set of primitives is provided over which parallel processing models may 

be implemented. This environment passes much of the scheduling control to the parallel 

applications which are run by “virtual processors” . These virtual processors communicate 

with the kernel using a shared memory kernel/user interface. This mechanism provides
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much greater control for the user without circumventing the protection imposed by the 

kernel (figure 2.5). Each virtual processor may run a number of processes, all sharing 

the same protection domain (a protection domain is a set of realms, each with varying 

permissions). This situation can be compared with a Uni x  process running many threads 

but it is more flexible. Under P s y c h e , each of these threads is able to migrate to other 

protection domains, and call and block in the kernel without affecting other threads.

Protection of realms is provided by a simple capability security system. Each realm is asso-

ciated with an access list consisting of <key,right> pairs. The possession of a <key,right> 

by a thread gives it the access rights designated by the “right” field. The “key” field range 

is large and capabilities are selected at random from within it. This provides probabilistic 

protection by making it unlikely that a correct <key,right> could be guessed. The larger 

the key field’s range, the more time consuming it becomes to guess a capability. Access 

rights are only determined when a realm is first used by a thread and incur no additional 

costs thereafter. The flexible nature of the kernel design allows these accesses to be re-

solved in a lazy manner (as they are needed) rather than explicitly at the beginning of 

program execution. This avoids the need to resolve potential accesses which may never be 

used.

P s y c h e  was not designed to support reliable operation. Data resident in the system is al-

ways volatile and must be loaded from external file servers when the machine is initialised. 

Consequently, there is no need to guarantee data integrity in the store; since there is none. 

P s y c h e  was designed to provide an experimental parallel programming environment and 

not as a general operating system. The inclusion of a distributed persistent store is out-

side the aims of the project. Similarly, it operates on only a single N u m a  (Non Uniform 

Memory Access) machine and not on a network of distributed machines. This removes 

the necessity to address the problems of network and machine failure as well as distributed 

management.

P s y c h e  differs from other systems in three major ways. Firstly it tries to provide a 

flexible parallel programming environment and does not implicitly force the use of any one 

paradigm. Secondly, by providing a single memory space the sharing of data is greatly 

simplified. Thirdly, much of the control of processes is passed from the kernel to the user
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so enabling the users to manage the processes as best suits the application.

P s y c h e  is not a general purpose distributed operating system environment. It ignores 

the need and problems associated with the support of a persistent store in a distributed 

system. It also assumes the use of a reliable, secure network. If P s y c h e  were used as a 

general system it would offer no authentication of protection from bogus machines on the 

network. It is also assumed to be a single integrated system and cannot be distributively 

managed.

2.3 .4  C onclusions

Mo n a d s , C lo u d s  and P s y c h e  are all operating system projects, the storage system is 

merely a part of each. In no case have all the requirements of the store been addressed; for 

example, distributed management issues are not addressed well in any of them. However, 

the systems do propose a simpler form of storage management, by combining volatile 

memory with persistent store to provide a single unified resource. The systems differ in the 

way this storage system is managed. C lo u d s  and Mo n a d s  maintain a single namespace 

with pieces encapsulated in object where inter-object data sharing is impossible. PSYCHE 

provides a single flat storage system (though compromises this because of address space 

restrictions) in which it is possible for any data to be shared directly. P s y c h e  may provide 

the rigid encapsulation of the other two systems but they cannot provide its simple data 

sharing environment. P s y c h e ’s store model is therefore more flexible (even if it does not, 

in fact, provide persistence).

CLOUDSintroduces distributed shared memory as a means of providing data sharing be-

tween physically distinct machines. Such a mechanism is essential if a unified resource 

approach is adopted in an operating system designed to operate on a network of ma-

chines. By absorbing access to remote data into a common store, a process need not be 

aware of the origin of the data it is manipulating nor the location of another process it 

may be sharing it with—it just treats the data as random access memory. As with the 

persistent and volatile data unification, the location of the data is no longer the problem of 

the application and so further simplifies data sharing. Methods to implement distributed 

shared memory are examined in the following section.
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2.4 D istrib u ted  Shared M em ory

In the past few years there has been a great amount of interest in the subject of Distributed 

Shared Memory or DSM. Unlike parallel machine architectures such as physically shared 

memory which is not scalable, or message passing, which is difficult to program with, DSM 

offers the possibility of scalability without loss of programmability.

The following examines various schemes to provide DSM. These schemes only address the 

problem of data sharing and leave other issues to the supporting operating system.

2.4 .1  W h a t is d istr ib u ted  shared m em ory?

DSM is a technique for giving the illusion of physically shared memory on machines which 

have distributed memory and an interconnection network. Much of the work on DSM 

has arisen from bus based cache coherency policies [AB86] where cheap broadcasting is 

available—in DSM this is not the case. Various mechanisms have therefore been developed 

to provide the same semantics (a read always returns the last written value) as the tightly 

coupled broadcast facility.

The following examines various implementations of DSM. Many of them share common 

features in their methods for maintaining data coherency and locating data in a dis-

tributed machine. After these systems have been analysed, we conclude by discussing 

their appropriateness for a distributed operating system. Each DSM system is analysed 

with a number of requirements in mind:

1. Coherency m odel - A DSM system should provide at least one well defined co-

herency model. This usually includes strict causal coherency (every reader always 

see the last value written) although weaker methods may be available (where a read 

may return a recently written value but not necessarily the most recent).

2. Locking - A DSM system may include explicit locking of data. This may allow data 

to be obtained for reading and not allow any changes to be made until released.

3. Scalability - Not all DSM systems scale. This may be due to the method used to
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manage the data distribution or due to the number of message exchanges necessary 

to maintain the coherency model.

4. Software/Hardware im plementation - Some DSM system are implemented in 

software, some in hardware. Hardware systems are invariably quicker but the soft-

ware systems support more coherency models. What compromise should be made 

for an efficient system?

2.4 .2  Ivy

Ivy  [TSF90] was implemented on the Apollo Domain. The virtual memory system on 

Apollos is divided into two sections. The first section is private, contains process specific 

information, and cannot be accessed by other processes. The second section is public and 

is shared by all processes in the system.

Data coherency

Data is shared at the page level. This enables the virtual memory system to be augmented 

to provide the necessary page faults to handle data coherency; read protection on pages 

allows them to be shared coherently, attempted writes allows a page fault to be taken 

to force invalidation of copies before the write may proceed. This protocol, called write- 

invalidate, is commonly used in DSM systems since being proposed in [Li86]. In order to 

operate this protocol without broadcast, it is necessary for every page to have a designated 

owner and a copyset. The owner of a page is the holder of the copyset, indicating which 

other machines hold a copy of the page. When a new machine requires a copy, it requests 

it from the owner and is added to the copyset. When the owner wishes to write to the 

page, invalidations are sent to each machine in the copyset. If another machine wishes to 

write to the page, it first requests ownership and the copyset, and then proceeds with the 

invalidations and writes.
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Data locating

Iv y  has investigated various schemes to locate pages in a system. These are:

• Central server

• Distributed servers

• Probable owner chains

A central server uses a single machine as an ownership coordinator. This machine holds 

an entry for each active page which details the current owner. When a page must be 

located, the request is sent to this server and forwarded to the owner. The scheme has 

two major disadvantages; firstly a single server providing this service creates a bottleneck; 

and secondly, the server must be informed whenever an owner moves.

Distributed servers solves the first of these problems by hashing the page number onto a 

set of servers; each server provides the location information for a fixed set of pages. With 

probabilistic hashing, the request should be spread equally amongst them. The problem 

of informing the server of ownership movement is not addressed.

Probable owner chains discards location servers, instead using a probable owner linked 

list [Fow86]. These chains initially point at a location hashed from the page number, 

and are subsequently modified by additional ownership information delivered when copies 

of pages are requested, invalidates received, or ownership transferred. When a copy is 

required, the request is sent to the probable owner. If this machine owns the page then 

the request can be serviced, else the request is forwarded to that page’s probable owner. 

This scheme means that for N machines, a request can take N-l hops to reach the owner. 

In practice it is rarely this bad.

2.4 .3  C louds

C l o u d s  [DLAR91] is a novel object based operating system, the general structure of 

which has already been examined in §2.3.2. It operates four different DSM policies using 

software drivers operating at the page level.
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D ata coherency

The smallest unit of memory allocation in C lo u d s  is the segment. DSM policies may be 

applied on a segment basis, though sharing and locking is made on a page basis. These 

policies are briefly described below.

1. None

No DSM policy is employed to keep pages coherent. Instead, the pages are moved 

between machines as they are requested so only a single copy is ever present in the 

system.

2. Weak Read

Weak read coherency has two forms. In one form it is similar to Iv y ’s write-invalidate 

policy except that, instead of invalidating page copies on writes, updates are sent to 

other page copies. These updates may occur at any time without prior notification. 

In the other form, a copy is supplied to a machine when explicitly requested and 

without any coherency being maintained. The copy must be explicitly discarded 

after use.

3. Read

Read coherency obtains a copy of the page and locks it for read access, so preventing 

any writes or Policy 1 reads taking place. Many Policy 3 read copies may be taken 

and locked concurrently but all locks must be released before other operations are 

permitted.

4. R ead/W rite

Read/write coherency obtains an exclusive copy of the page and locks it. No other 

copies of the page are available until the lock is released.

Note that the last two coherency policies include implicit locking. These locks allow page 

data and ownership to be guaranteed for the duration of the locked operation; something 

which can dramatically increase the performance of a DSM system by preventing page 

thrashing. The policies also defines that when a page lock is released, the page copy is
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written back and discarded, based on the assumption that it is no longer required. This 

reduces the need for invalidation between machines in order to maintain data coherency.

Data locating

In C l o u d s  unlike Iv y , the creator of a segment is always its owner and the owner of its 

pages. All DSM requests are forwarded to the owner whose responsibility it is to maintain 

the correct coherency. This scheme greatly simplifies the problem of locating a page since 

the owner is fixed. However, it has the disadvantage of forcing all requests for a page of 

an object through the same machine and takes no account of data or machine locality.

2.4 .4  M em N et

Me m N e t  [Del88] is one of the few hardware distributed shared memory (HDSM) imple-

mentations and was developed at the University of Delaware. It was originally conceived 

as a method of treating a network as a random access device rather than an I/O  device. In 

doing so however, a device was constructed which operates according to DSM principles, 

but on physical memory rather than, as in software systems, on virtual memory.

Data coherency

Me m N e t  operates a single coherency policy, that of write-invalidate. The way in which 

this is done is very different from the two systems described so far. The use of hardware 

allows much smaller data items to be handled since it is not restricted by the virtual 

memory’s page size or the associated overheads of manipulating coherency in software.

These data items, each 32 bytes in size, are exchanged by Me m N e t  nodes using a token 

ring network. For example, when a node requires a particular data item, it inserts a 

request into the ring which is passed from node to node. When a node receives such a 

request, it determines whether it holds a copy of the desired data and, if so, places it on 

the ring, marks the request as satisfied and passes it on. If a node cannot fulfil a request, it 

is passed on unaltered. A request eventually returns to its originator with the data within
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it. The originator then places the data in the node’s memory for use. Similar schemes 

are used to pass invalidates between machines in order to maintain data coherency when 

writes occur.

To avoid the situation where every node reserving space for every data item in the system, 

every data item has a home location. This is a guaranteed place to which an item can 

return if it is overflowed from another node’s cache.

D ata locating

Locating any data item in M e m N et  is trivial; a request is placed on the ring, it circulates 

around the ring, is fulfilled by a node along the way, and finally returns to its initiator. If 

a returned request has not been fulfilled, the data does not already exist in the system and 

so may be created. The use of a ring structure makes this operation simple, but inefficient, 

since all nodes must share the same linear network and a request passes though all nodes 

for any operation. Such a system has scalability problems.

2.4 .5  Scalable C oherent Interface

Scalable Coherent Interface (SCI) [KABJ89, SCI91] is an IEEE standard interface de-

signed to couple up to 64,000 machines together in a cache coherent fashion. Unlike all 

the other systems reviewed in this section, this is the only scheme designed to scale to 

massively distributed systems and do so in hardware. Also, unlike the other hardware 

systems, the network which supports SCI need not have any regular structure.

SCI is intended to be used with many networks but fibres are particularly relevant to 

it. Additionally, the latencies of large scale distribution mean that the protocols, used for 

request and acknowledge messages in the network, must be capable of reliable communica-

tion in the presence of errors and also tolerating long delays for replies. SCI therefore uses 

a simple sequence number based transmission scheme to guarantee requests are received 

and handled in order, even when the maximum of 256 is outstanding.
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Data coherency

Data coherency is maintained using a strict write-invalidate policy on pages of 64 bytes in 

size. In implementation it is unlike other write-invalidate systems. To allow for massive 

networks of machines, the copyset is kept as a doubly linked list distributed across the 

relevant machines, each machine which holds a copy holds a link in the list. To obtain 

a copy of a page, the requester adds itself to the head of the relevant list and obtains 

a copy of the page from the previous list head. If a machine wishes to modify a page 

copy, it removes itself from its position in the list, adds itself to the head of the list, and 

then invalidates all the copies in the list except itself. Once this is done it may make the 

modification.

The major advantage of this system is its scalability. The only scaling problem is the 

size of the addresses stored in the SCI requests and replies. However, for systems where 

large numbers of machines share the same data, the copyset list can become very large, so 

increasing the time to invalidate it when a write is made (the list means that invalidates 

are made sequentially from machine to machine).

Besides a write-invalidate DSM policy, SCI supports the notion of remote device access. 

This allows a device to be interrogated correctly, without caching, even from a remote 

machine.

Data locating

Each page entry in an SCI chain maintains a pointer to the current head of the chain. This 

is necessary for efficient removal and insertion of a list entry when a page is to be modified. 

This also allows new copies of a page to be located quickly and efficiently. However, no 

details are published on how a page is initially found when it is available in the system 

but unknown to the requester.

SCI is the only DSM system examined which is designed to operate in a large scale 

environment. However, it is unclear how well it handles the faults which will inevitably 

occur in such systems. Although the use of sequence numbers and retransmissions helps 

this problem in the case of partial network failure, the unexpected failure of a machine
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would appear to result in the failure of all the copyset of which is was part. This propagates 

failures to other machines. In many cases there is no loss of information and such failures 

should not be fatal.

2.4 .6  C hoices

Ch o i c e s  [MR91] is an operating system developed at the University of Illinois at Urbana- 

Champaign. Unlike many modern operating systems, Ch o i c e s  was written in C + +  as an 

experiment in the use of an object oriented language for operating systems work.

In many ways, the structure of Choi ces  is much like Mac h  except that distributed shared 

memory page faults are handled by the choices class DistributedMemoryObjectCache. This 

class is responsible for maintaining the necessary data coherency between the sharing 

machines.

D ata coherency

Data coherency is maintained using Iv y ’s distributed manager and write-invalidate pro-

tocol at a page level. Besides this scheme, Ch o ic es  also provides two additional features. 

Firstly, page locking is provided to allow atomic updates to data structures. Acquiring the 

lock on a page guarantees the ownership and uniqueness of the page until it is released. 

Secondly, delta times are provided. A delta time is a fixed time period for which a page 

copy is retained before any pending requests pertinent to it are processed. For example, 

it allows read copies of pages to be held for a set time without having them invalidated 

by another node’s write access. The write access is stalled until the delta expires and the 

invalidate message acknowledged. Delta timers have been shown to increase the potential 

efficiency of a DSM machine quite dramatically [CF89, FP89].

D ata locating

Data locating is done using a distributed ownership manager. Every page in the DSM 

system is controlled from a preset machine, determined by a function on the page’s address.
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This machine is always in possession of any information regarding the number of copies 

in a system and the place of the current owner.

Ch o i c e s ’ DSM scheme provides only a re-implementation of other work and offers no 

novel features other than a study of implementing such a system in C++.

2 .4 .7  M ach and A gora

Ma ch  [ABG+86] is a UNIX compliant micro-kernel operating system designed at Carnegie- 

Mellon. Although it was not designed with DSM in mind, it provides support for such 

a software mechanism through the use of external pagers. An external pager may be as-

signed to each region in Ma ch  to handle page faults. Rather than force the kernel to 

handle such faults, they are forwarded as messages to the relevant pager. This provides 

for a more flexible memory management strategy determined on a region by region basis.

Data coherency

Ag o r a  [MR91] was written to use Ma c h ’s external pagers to provide DSM for networks 

of machines. The system is highly integrated with the applications using it so as to provide 

more flexible handling of data coherency. Instead of exchanging pages, like most software 

DSM schemes, data structures are exchanged. This allows only the required amount of 

data to be transferred by the DSM (unlike many systems where a page may be transferred 

when only a few bytes are of interest) but means that data structures must be carefully 

allocated so that the correct page faults are generated when the data is not present. For 

this reason two small data structures could not share the same page, since only the accessed 

one would be copied to the machine when a fault occurred and no fault could then occur 

for the other which was not present.

The coherency model is also relaxed. Instead of forcing any particular coherency policy on 

the application, coherency is handled lazily. When a read is made, it is always made from 

a locally cached copy. If this is not present, it is first obtained from a master copy. When 

writes are made, they are written directly to the master. No invalidates are performed so 

cached data can become incoherent. However, the update is propagated from the master
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lazily so that at some time in the future, all copies will again be up-to-date.

The problem of stale data is handled explicitly with synchronisation primitives. The 

designers of Ag o r a  considered that such synchronisation is usually present in parallel 

programs and this requires little additional overhead and is easily compensated for by the 

improved performance of a weakly coherent data model.

Data locating

This is trivial under Ag o r a  since a master copy is always maintained and never moves. 

To obtain a copy, a request is always made to the same place for the same data structure. 

As long as the master copies of data are spread evenly throughout a system, it is unlikely 

to cause a bottleneck. Of course, if a bottleneck does arise due to the way in which the 

data was accessed, there is nothing the system can do to alleviate the problem and such 

a task is left the the applications writer or “clever” compiler.

Unlike other DSM systems, Ag o r a  does not offer a strict causal coherency mechanism so 

cannot provide a “true” shared memory environment by default. This makes it more diffi-

cult when initially writing parallel program since no well defined data sharing is available. 

However, the weak coherency policy does allow the latency associated with strict policies 

to be hidden once the application’s performance becomes important.

2.4 .8  M eth er

Me t h e r  [MR91] is not an operating system but a set of mechanisms for sharing memory 

across a network of SunOS 4.0 machines. Unlike most other DSM systems, Me t h e r  does 

not provide any explicit data coherency but expects the application to make the necessary 

request to fulfil its requirements.

D ata coherency

No explicit coherency is provided. Instead, a number of system calls provide the coherency 

scheme. When a write is made to a page, the page must be owned. However, these writes
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are not propagated to other copies of the data nor are these copies invalidated. If a 

machine holding a copy requires a new instance of the data, it can be obtained in three 

ways. Firstly the owner can explicitly propagate the changes, secondly a copy holder can 

explicitly invalidate the copy so a new one is requested when the data is next accessed, 

and thirdly a copy holder can explicitly request a new copy.

Besides these coherency protocols, METHER also supports data driver page-faults. When 

such a fault occurs, a request for the data is not made, instead the process is halted 

until the data is explicitly provided by another process. Such page faults are completely 

passively (ie. there is no intervention from the faulting process).

Data coherency is supported by providing two different data sizes, a full page (8192 bytes) 

and a short page (32 bytes). A short page is the first 32 bytes of a full page and allows 

small data items to be exchanged more efficiently.

By not providing any explicit coherency scheme, the application can use the available 

primitives as it desires. However, as with Ag o r a , this makes the development of program 

difficult even though the flexibility to change them for better performance is greater. This 

scheme could also allow an application to tolerate failures although any kind of recovery 

would be left up to the implementation.

2 .4 .9  S tanford D A S H

The Stanford DASH machine [LLG+92] is one of the most recent efforts to implement 

DSM in hardware. The current implementation is based around a mesh-interconnect, 

the Mips R3000/R3010 and some specialised hardware developed at Stanford to support 

the DSM strategy. At present a 16 cluster machine (a cluster is a number of processors 

organised as a physically shared machine) is the largest supportable by the current DSM 

hardware.
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Data coherency

By default, DASH supports a write-invalidate coherency policy. This operates in the same 

fashion as Iv y  with a distributed manager. Besides this, various extensions have been 

provided. DASH supports out-of-order memory accesses; a situation where sequential 

memory accesses may take place in a different order from that in which they were issued. 

In most cases, there are no problems with this although there are algorithms for which 

it is necessary and so DASH provides fences to enforce ordered accesses. A write-update 

policy is also supported. When a write is made to a data copy, the modification is sent to 

all other copies also. In some circumstances such accesses are more efficient. Another form 

of write-update, called deliver, is also supported. This policy explicitly delivers a copy 

of a uniquely held datum to a specific destination node. This closely resembles explicit 

message passing.

DASH also supports two forms of locks. Firstly, uncached atomic fetch-and-increment 

and fetch-and-decrement operations are supported. Here a request is made to a statically 

located lock and a single data item fetched in response. Secondly, a hardware assisted 

test-and-set operation is provided which is termed queue-based locking. When a lock is 

acquired by a cluster, all other clusters attempting to acquire the lock obtain cached copies 

on which they spin. When the lock is released, rather than invalidating all cached copies 

and allowing every node to compete for the lock again, only one copy is invalidated, so 

only one node attempts to acquire the lock. Timeouts are included in this mechanism so 

that when a lock is released and a copy invalidated, if a new copy is not quickly requested, 

then the process attempting to acquire the lock is considered swapped out, and so another 

cluster is invalidated.

DASH does not appear to support delta timers. It relies instead upon its other mecha-

nisms, such as lock queues and explicit delivery of data, for performance enhancement.

D ata locating

As mentioned above, DASH uses a distributed manager to hold the locations and copysets 

of pages. This makes every page easy to find but limits the size of the machine by
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restricting the copyset size (currently to 16 processors per cluster) and limiting the number 

of pages in the system. Potentially, any given cluster could be saturated with requests for 

data to its manager. In practice this is unlikely because the pages are hashed across the 

managers in a manner likely to destroy manager locality for adjacent pages.

In general, DASH is the most comprehensive HDSM scheme so far implemented. However, 

it lacks the scalability of SCI. The current implementation only includes mechanisms for 

strict coherency policies. It will be interesting to see it the speed advantages of hardware 

make weak policies unnecessary.

2 .4 .10  C onclusions

How do these systems relate to the design of the DSM for an operating system? Nearly all 

the systems, except SCI, limit the size of the machine by the representation of the copyset 

as a table or bit vector. Additionally, only SCI supports a retry protocol necessary for 

highly distributed DSM systems. However, even SCI does not appear to handle failures 

within the copyset lists.

It is also obvious that as DSM research has progressed, the use of a single coherency 

policy has been shown to be insufficient. Hardware solutions are also being favoured for 

their ability to handle smaller shared data sizes. The DASH machine provides a good 

demonstration of current DSM hardware, supporting a single major policy but making a 

few additions to allow others to be explicitly used when desired. It is also apparent that 

strict coherency, whilst being provided, is not always necessary and so the ability to relax 

it and gain performance benefits is useful.

The inclusion of locking in DSM, rather than on top of it, allows various optimisations on 

data usage. The selective invalidation for locks is particularly interesting in this respect as 

is the explicit locking of acquired data for set periods of time using delta timers. All the 

examined locking mechanism aim to reduce DSM coherency traffic when a lock is being 

obtained and so improve both performance and network utilisation.

None of these systems addresses the consequences of unreliability in the machines taking 

part in a DSM exchange; only SCI does any retrying and this is only to handle intrinsic
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network errors. As DSM system grow to be utilised by large number of processor in 

distributed environment, some form of reliability becomes essential.

2.5 Fault-tolerant active data stores

Too often fault-tolerance is disregarded when designing a new operating system and then 

added later as an afterthought. As the size of distributed systems increase, so does their 

unreliability and the need to provide fault tolerance becomes more important. Attempts to 

add reliability after the fact [CDG92, BG91] have spawned numerous different approaches, 

none of which handles all problems or copes with all situations.

In the following section we will examine the provision of fault-tolerance in active stores 

(such as volatile virtual memory). The issues are different from those in entities such 

as databases, where reliability is concerned with the persistent storage and transaction 

processing.

A fault tolerance system for general applications should be able to:

1. Provide fault tolerance without modification to applications, so allowing 

any application to make use of the service rather than ones specifically designed to 

do so;

2. Provide a complete solution rather than support only some services, since 

a solution which, for example, supports fault tolerant memory but not files is useless 

for many applications;

3. Support both uni- and multi-processor applications, so allowing parallel ap-

plications on distributed machines to be handled correctly, and

4. Provide fault tolerance efficiently for the general, fault free, case, since 

faults are rare and protection against them should not have a prohibitive cost.

The systems described below all solve these problems to some degree but no solution 

adequately address all these issues.
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2.5 .1  M O N A D S

The general organisation of Mo n a d s  has been discussed in §2.3.1, where it was mentioned 

that Mo n a d s  provides a data integrity policy; this is implemented using a checkpoint and 

rollback policy.

In MONADS a module can be checkpointed at any point in its execution. When this is 

done a copy-on-write version of the module is taken (this can be done quickly) and the 

module allowed to continue. The checkpointed image is then lazily written to disk using 

a two-phase commit protocol3.

By closely linking this reliability scheme to the virtual memory system, M o n a d s  provides 

a single reliability system which solves all data integrity problems. However, the solution 

does not address the problems encountered in a parallel machines. This is because of 

the self-contained module structure imposed on data and code organisation only allows 

well defined data exchanges between modules (via method invocation and returns) and 

not more general parallel programming. This makes it easy to track intermodule data 

dependencies but difficult to write parallel programs. The situation is further simplified 

since there is no means to invoke a method in the same module on different machines in 

parallel, hence no means to support distributed shared variable parallelism.

2.5 .2  C louds

As already described, C louds  and Mo n a d s  provide a similar representation of data to 

applications. This results in the necessity to prevent data corruption, in their persistent 

object stores, due to machine failure. In a distributed environment, resilience and reliabil-

ity are a critical problem. C l o ud s  address this problem in two ways; firstly by providing 

a checkpoint mechanism similar to Mo n a d s  and secondly by providing replicated threads.

CLOUDS assumes that maintaining the integrity of an object is not always necessary. 

Temporary data, for example, need not survive a machine crash. Several levels of data 

integrity management are therefore provided. The desired policy decision is assigned to

3More detail of this protocol is given in chapter 6.
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the thread performing the operation; an s-thread provides no integrity guarantees and is 

the standard default, a cp-thread maintains data consistency for all objects modified.

When a cp-thread accesses a segment within an object, the segment is locked for reading 

or writing depending upon the operation performed. Other cp-threads are then prevented 

from accessing these segments. When the thread finishes with the locked segments, mod-

ifications are committed to disk using a standard two-phase atomic commit scheme. The 

segments are then unlocked and made available to any other cp-threads which may be 

waiting to use them. For a more complete explanation see [CD89].

Data integrity in such a system is only half the problem. Complete fault tolerance is also 

necessary to guarantee that a machine failure during computation does not jeopardise 

program completion. C louds  achieves this by using replicated objects, replicated threads 

and an atomic commit mechanism to ensure only one, correct, result is produced. To allow 

for faults, a number of versions of the computation are performed in fault independent 

domains. Each computation makes use of replicated objects and replicated threads. All 

computations are performed in parallel. When one completes successfully, it is chosen to 

commit its changes. If this commit is also successful, all replicated versions of the objects 

are removed and all replicated threads destroyed. If the commit is unsuccessful, then the 

objects and thread are discarded and the completion of another replica waited for. The 

process is then repeated. With sufficient initial replication and few faults, the computation 

will eventually complete. This mechanism is described in full in [ADL90].

2 .5 .3  R ecoverab le  d istr ib u ted  shared m em ory

Providing recoverable distributed shared memory is an attractive proposition for two major 

reasons. Firstly, standard uni-process programs may use the system to provide recoverable 

virtual memory. Secondly, multi-process programs may use the system to provide not only 

recovery for their virtual memory but also recovery for any interactions among themselves 

(with message passing recovery must also be provided in the message system).

In [TH90b] and [TH90a], a scheme is proposed to support recoverable DSM. The scheme 

relies on three major properties. Firstly, when a cooperating machine fails, the failure is
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not terminal and the machine can be restarted. Secondly, each machine supports its own 

checkpointing disk. Thirdly, each machine is assumed to comprise two cpu’s and enough 

memory to hold the entire shared address space.

Two basic recovery principles are proposed, one to recover page data and the other to 

recover DSM state information. The first principle is simply implemented; whenever a 

request is made to a DSM server for a page copy, if the page has been modified by the 

holding machine then all modified pages are first checkpointed before a response is made. 

This guarantees that data which cannot be recovered is never shared and so avoids any 

interdependence problems when a machine fails.

Recovery of DSM state is more complex and relies on the use of a distributed database 

to hold the DSM state information. However, instead of operating a standard two-phase 

commit policy to maintain coherency in the presence of failures, a unilateral commit 

protocol is proposed which involves far fewer message exchanges. This aside, the state 

recovery operates by periodically committing checkpoints of local state. Also, any state 

changes are first logged to disk locally before being exported to other machines. After a 

failure, the most recent checkpoint is recovered and the log rolled forwards to replay any 

potentially lost messages (duplicates are handled by using sequence numbers).

This system works well but relies heavily on the saving to disk of small and frequent state 

changes. This must be done whenever an attempt is made to export modified data or 

when a DSM request is made. Both these events are common in parallel algorithms and 

the effect of this logging on performance can be dramatic.

2.5 .4  C onclusions

Two method are generally used to provide fault tolerance; one is checkpointing where 

“snapshots” of the current application’s state are taken, the other has replicas of the 

application running in parallel. Each of these strategies has advantages and disadvantages; 

checkpointing does not require multiple instances of the application but does involve time 

consuming disk logging, whilst replicas provide fast recovery and operation but require 

redundant applications running all the time. Neither solutions as described above are
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particularly well adapted to a shared memory distributed machine architecture.

Recoverable distributed shared memory offers a simple way of supporting the necessary 

model. However, because of need to checkpoint all modified data before any commu-

nication, something a parallel application could reasonably be expected to do a lot of, 

recoverable distributed shared memory introduces a large performance overhead.

2.6 Sum m ary

Some degree of unification of volatile memory storage, persistent storage and network 

communication systems taking some account of reliability has been attempted in Mo n a d s , 

C louds  and P s y c h e . But each of these designs addresses only some of the problems 

associated with a truly unifying, reliable storage resource. Standard file system solutions 

(such as NFS and Sp r i t e ) provide some degree of access transparency but do not combine 

with volatile memory in a coherent manner. C lo ud s  and Mo n a d s  both provide a more 

unified storage model including some forms of fault tolerance, but do this at a large cost 

to the application.

The ideal solution should provide a single, unified data and name space which may be 

accessed efficiently by any process, regardless of its physical location, and tolerate faults 

without loss of service. The A r i u s  operating system, detailed in the next chapter, is de-

signed to provide such a system. It does this by providing a simple but powerful computing 

environment. This is viewed as a single machine when, in fact, the “machine” consists of 

many machines linked via busses and networks.
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C hapter 3

The design of a 64-bit operating 

system

This chapter examines the design of the A ri u s  [SW92] operating system, inspired by 

work on the A n g e l  [WSO+92a, WSO+92b] operating system being developed jointly by 

City University and Imperial College London. A r i u s  forms the base on which this work 

rests. Consequently, much of the background presented in the chapter is necessary for 

understanding this thesis’ main research goals. Many of the ideas presented here are 

either original or applied in an original fashion. They will be highlighted as they are 

examined.

3.1 Introduction

This chapter presents the design of an operating system which aims to make better use 

of 64-bit addressing processors than is possible in the UNIX model. In doing this A rius  

attempts to unify various mechanisms:

• Many namespaces into one, global namespace.

• Threads with processes,
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• Volatile memory with persistent file store,

• Shared with distributed memory,

• Local machine access with remote machine access.

This approach results in a cleaner kernel structure and, together with a few other design 

decisions, makes the provision of fault tolerance relatively simple.

A r i u s  is designed as a C a ch e  O n ly  K e r n e l. This means the kernel contains only state which 

may be regenerated from the applications and the address space it supports. The design 

of a kernel in this way is original and the design of fault-tolerance is greatly simplified 

since there is no need to save any kernel state when checkpointing an application. For 

example, if a page fault from a process were lost, then simply restarting the process would 

regenerate the fault. Similarly if a number of unlock upcalls cannot be delivered due to a 

resource shortfall, see §3.7.2, then simply releasing the processes involved allows all locking 

requests to be regenerated.

To further simplify kernel design, A riu s  attempts to unify and simplify many operating 

system mechanisms which, for one reason or another, are conventionally separate. Often, 

such mechanisms are almost, but not quite, identical. A riu s  identifies these redundancies 

and attempts to provide a set of orthogonal primitives. Consequently A ri us  provides few 

resources:

• Single Nam espace to provide uniform references to data and services,

• Objects in which to store data and instructions either temporarily or permanently,

• Capabilities to protect and validate object accesses,

• Domains to allow processes to access sets of objects,

• Processes to operate upon the objects, and

• Synchronisation to coordinate cooperation between processes.
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With these few resources it is possible to provide a complete operating system environment 

without constraining users or processes to set organisational policies which are not the 

operating system designers’ to make.

The next six sections of this chapter will examine each of these resources in turn. The 

final sections will deal with other aspects of the A rius  system. These include; the need 

for dynamic linking in A r iu s , the structure of an A r i u s  “machine”, the I/O  system, the 

services a typical system needs to provide, and UNIX compatibility.

3.2 A  Single N am espace

The single namespace, or the single address space since one maps directly to the other, 

is the central feature of A r i u s ’s design. The small addressing ranges of microprocessors 

in the 1970’s and 1980’s forced operating systems to provide the multiple, independent, 

address spaces which are such a major feature of virtual memory operating systems to-

day [Bac86, LMKQ89, ABG+86]. The emergence of 32 bit processors, offering large virtual 

memories matched by much smaller physical ones, was a step back toward the single ad-

dress space, yet it is now commonplace for physical memory, including disk storage, to 

expand beyond the 32 bit limit. The 1990’s has seen the advent of 64 bit processors, the 

first examples being the MIPS R4000 [MIP91] and the DEC 21064 [Dob92], both pushing 

the address boundaries up four billion fold.

A r i u s  supposes the existence of such a massive address space. Instead of using the address 

space for just another Un i x  like system, it takes a more radical approach; using the space 

to provide a single, persistent, uniform, address space shared amongst many tightly and 

loosely coupled machines. This use of a single address space makes the sharing of data in 

parallel applications almost transparent; firstly by allowing instruction level data sharing 

through the use of a shared memory model, and secondly by providing a single, coherent 

naming scheme.
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3.2 .1  C oheren t nam ing

By providing a single persistent address space which maps directly to a single namespace, 

many multiprocessing problems are removed. The most important gain is the identity 

established between a datum and an address. In a multiple address scheme, an address is 

context sensitive, meaning something only to the process it is used within. Such schemes 

have proved unsatisfactory for parallel applications where independent contexts attempt 

to work on a common data set. To solve this problem, a variety of methods have been 

developed to transport data between contexts (marshalling [HL82]), to store them in files, 

or to pass context independent pointers (swizzling [Wil90]). Such methods involve both 

error prone complexity as well as loss in application performance. In a single persistent 

namespace none of these techniques are needed.

However, providing a single, amorphous space for sharing data is only part of the problem. 

As this stands it is completely unmanageable. Therefore A rius  uses the notion of O b je c ts  

to contain data. These objects are divided and managed by S pace  a n d  O b je c t m a n a g e rs . 

The management of object is considered below together with a complete description of 

what constitutes an object.

3.3 O bjects and their m anagem ent

If A riu s  were designed to manage a single CPU or a tightly coupled multi-processor 

machine, a single manager would be capable of handling all the space available in the 

machine. However for a truly distributed system an extra level of management is necessary 

to avoid the need for a central space manager (which would be both a bottleneck and a 

reliability problem).

The purpose of sp a ce  m a n a g e rs  therefore, is to share the namespace among locally re-

questing object managers. Instead of having object managers requesting small sections of 

the namespace many times from remote managers, the space managers allocate larger sec-

tions and provide it to local object managers as required. This circumvents two problems 

that would otherwise have affected the system. Firstly, scalability is increased by han-
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Object Manager

Figure 3.1: Namespace divided between a hierarchy of space and object managers

dling numerous small requests for space on the local machine. Secondly, failure of remote 

servers need not affect a local Ar iu s  machine, as long as the resident space managers had 

previously acquired sufficient namespace resources to fulfil expected local needs.

3.3 .1  O b ject M anagers

While the namespace is managed by Space Managers, objects are managed by Object Man-

agers. A system is not restricted to a single object manager, in fact there are advantages 

in providing various different object managers. Firstly, different object managers can be 

designed for different purposes; one may provide general variable sized objects, another 

fixed sized objects designed for holding process state (which exists only for the lifetime of 

the process), and yet another to provide objects which can only be accessed by specific 

processors or machines1. Secondly, A r i u s  is designed as a distributed system. Although 

many machines may cooperate in the provision of an A r i u s  environment, they should not 

need to trust each other. The provision for multiple object managers allows a client to 

select a manager whom it trusts.

An Object Manager is responsible for providing storage space to requesting clients and 

granting access to them when presented with the correct capabilities. It is also the object 

managers’ responsibility to remove objects which are no longer in use. Although explicit

1 Memory mapped I/O devices for example can only be accessed from specific machine nodes.
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object deletion is provided, clients cannot always be relied upon; either because of inten-

tional misuse or error. It is impossible to provide simple reference counting, such as is 

used for UNIX file systems, to determine when objects can no longer be used; instead 

garbage collection must be employed. The actual implementation is left to the design of 

the manager. A manager holds information about all references to the objects it provides 

and so it is not an impossible task to implement efficient garbage collection. Of course, an 

object manager which provides objects which only live as long as the requesting process, 

greatly simplifies garbage collection.

3 .3 .2  A n O bject

Objects are provided by object managers to requesting clients. An object is a persistent, 

untyped, contiguous section of the namespace, in which data may be stored and later 

retrieved. All objects are created with a fixed base address and cannot be moved. This 

address is the only name for an object A r iu s  understands; any other names are merely 

provided for the convenience of a user and will ultimately be presented to the system as 

64 bit addresses.

Objects are created with a fixed size which cannot be changed. This is not as restrictive 

and problematic as it may first appear [vRTW89]. An object will usually only occupy 

physical space as that space is accessed, until then it places no demands on either volatile 

or persistent storage. Consequently, because of the large address space, generously sized 

objects can always be created “just in case”.

Objects are accessed via capabilities which define both the object and the privileges in-

ferred when it is resolved.

3.4 O bject protection  through capabilities

Object must support some kind of protection to prevent unauthorised access and modifi-

cation. Generally it is only necessary to provide three forms of object protection: 1

1. No access - the object cannot be read or written,
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2. Read only access - the object can only be read, and

3. Read and write access - the object can be read and written.

Other combinations, write only for example, make little sense. Although this provides 

general protection, extensions to this are possible to allow greater flexibility. For example, 

execute only might allow an object to be executed as a program although neither read 

or written. Other more specific additions are also possible. For example, UNIX provides 

a setuid bit in its file protection which effectively changes the user’s identity when the 

file is executed. ARIUS provides a similar mechanism but does so in a more flexible way 

by using capabilities.

Capabilities [DVH66] are a well known and much used protection mechanism, particularly 

in earlier uni-processor operating systems [Lev90]. A capability is usually some form of 

typed data, the possession of which allows the process to access an object or service in a set 

of defined ways. In Amoeba [MvRT+90, TMR86] for example, a capability is a cryptically 

protected datum which may be passed freely between processes and, when used with the 

relevant server, gives access to a resource. These types of capability systems have various 

problems. Firstly, a capability can be used by anyone; possession is all that is needed for 

it to be valid. Secondly, once a capability has been given away, it cannot be revoked to 

prevent its use. Thirdly, encryption does not provide complete security and forces the cost 

of cryptically checking capabilities, in case of forgery, every time one is used.

The advantage of a capability based system is that is does not base protection on some 

system imposed principle, such as the notion of user and group identifiers in UNIX. A ri us  

capabilities aim to provide flexibility and protection, but without the problems.

3.4 .1  A  C apab ility

A r i u s ’s capabilities allow access to objects in specific ways. Various types of access 

privilege are provided:

Read -  Read access allows the contents of an object to be read by the resolving process. 

W rite -  Write access allows the contents of an object to modified by the resolving process.
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Execute -  Execute indicates this object contains executable code.

D elete -  Delete allows the object to be explicitly deleted.

Create -  Create allows new capabilities to be created. These new capabilities must have 

a subset of the privileges of the parental capability.

Gate -  Gate access allows an object to be present but neither readable nor writable. 

Access to it must be via subroutine call, upon which the object is entered at a 

controlled entry point in a readable state. Exact operation is detailed in §3.5.2.

The first two of these privileges are provided by the memory management of the hosting 

system, the others provide specific A r i u s  services2.

A r iu s  does not use encrypted capabilities but, like Mach [SJR86], keeps them stored in 

typed and generally inaccessible storage; the object manager providing the object. When 

a capability is issued, the only information returned is a reference which identifies the 

capability to the manager when it is later re-presented. This information consists of the 

base address of the object and the address of the capability control information in the 

manager (128 bits in all).

But this is hardly secure, even if the search space is 128 bits in size. Simply presenting 

random numbers might yield access to an object at some point, especially if a rogue process 

can identify a pattern in the capability information returned. However, as we shall see, 

access to an object does not only require presentation of a valid capability.

3 .4 .2  D ep en d en t capab ilities

In a multi-user system, it is often necessary to temporarily change the effective user identity 

of the process being executed. Under UNIX this is achieved through the setuid file 

protection bit. However, such a system is very coarse, the process becoming the designated

2It should be noted that the absence of execute privilege does not necessarily prevent execution of 
code. Although desirable, many memory management systems do not support such a concept. Its presence 
modifies process behaviour when these objects are first used (see §3.6)
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user, with access to all that users resources rather than access to the few actually required. 

A r i u s  implements a finer scale mechanism using dependent capabilities.

The implementation of A r i u s ’ capabilities is original in that possession of a capability 

is only part of the requirement for obtaining the relevant object. To request an object 

from a manager, besides presenting a capability, a client must fulfil a set of requirements 

associated with that capability. These consist of a list of object and access privileges 

which must be possessed by the client for the capability to be valid. Therefore, although 

a process may know the capability to access the password database, unless it happens 

to be running the correct password program in the correct manner (via a gate perhaps) 

it cannot make use of it. Although a capability may be passed to another process, once 

received it could be completely useless.

This system is not only secure but extremely powerful. It provides object protection 

without the use of additional namespace, such as user-ids, and does not force specific 

protection policies on processes.

3 .4 .3  O peration s on capabilities

By design, the operations which need to be performed on a capability are few. These are:

• Create Object (capability, size, privilege, dependent 1, dependent 2, ...)

• R esolve Object (capability, privilege)

• D issolve Object (capability)

• D elete Object (capability)

• N ew  Capability (capability, privilege, dependent 1, dependent 2, ...)

Create Object requests that the manager specified by the capability, creates a new 

object of the given size with the given privileges. The list of dependencies provides 

the condition under which the returned capability is valid.
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Figure 3.2: Two processes sharing an object using dependent capabilities

Resolve Object takes a capability and attempts to resolve it with the requested privi-

leges. If resolution is successful, the object is made available to the process in the 

current protection domain.

Dissolve Object removes the object from the current protection domain. It does not 

delete the object from the object manager.

D elete Object instructs the manager to delete the object. Once this has happened it 

will no longer be available for resolution by any previously issued capabilities. If it 

is already resolved, the object will be removed from the relevant domains.

New Capability creates a new capability for the object referenced by the old one. This 

capability may have any subset of the privileges associated with the old and may 

have any dependents.

3 .4 .4  R evok in g  cap ab ilities

Revoking capabilities is a traditional problem with capability systems; once a privilege is 

given away it is given for all time. The only way to revoke a privilege is to remove the 

service it refers to and recreate it. This not only invalidates the capabilities you want to 

invalidate but also invalidates all the others too.
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By using dependent capabilities these problems are removed. Consider figure 3.2; suppose 

a source process (#1) wishes to share data with a destination process (#2) but must be 

able to remove this sharing at any time. It creates two objects, the first a dependent object 

of zero length3, the second the one it wishes to share. It then gives away both objects 

by creating capabilities the destination process can use. The dependent object is given 

a simple capability whilst the data object is given a capability dependent on the other 

object. The destination, once it has resolved the dependent and then the data object, 

may access the shared information. The source may now withdraw access to the shared 

information by simply deleting the dependent object, so making it unresolvable by any 

capabilities, and removing it from any domains it is currently resolved in. Doing this 

makes it impossible for the destination process to resolve the data object. If both the 

dependent object and the shared object are active in a domain, removal of the dependent 

object will not prevent access to the shared object since dependents are only checked on 

capability resolution.

This situation can be extended to many sharing processes by the use of many dependent 

objects; the removal of each preventing one process from resolving the data object, or the 

removal of a single dependent object may prevent access by many processes.

3 .4 .5  C ap ab ility  secu rity

A high degree of security is important in an operating system which might be used to 

span tens, hundreds or even thousands of workstations, each of which may have several 

hundred MIPS or more of processing power. Complex capability encryption schemes are 

not practical as their overhead will severely punish legitimate users of the capabilities, 

while weak encryption schemes leave the system open to a malevolent hacker.

While capabilities can be weakly protected (as in Amoeba [TMR86] by redundant check 

fields) or strongly (as in Mach by passing them via the kernel [SJR86]), a rogue process 

registering itself as a service thread on a publicly known service port remains a problem.

3Although this object is of zero length, no two objects may reside at the same address, therefore a zero 
length object must have the size of 1 page or 1 address space increment (eg. a byte) depending upon the 
implementation.
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The Amoeba group have presented a complex scheme to prevent this [TMR.86, MvRT+90], 

which requires holding another set of codes, in addition to capabilities, in order to provide 

protection and verification.

This is unnecessary in A r i u s ; the single address space enables the unique verification of 

the precise server required. The client makes a subroutine call to the entry address of the 

correct server binary. Thus two different binaries cannot be registered to provide the same 

service. Of course, such security ultimately depends on network security, in the form of 

encrypted data and signatures [KJ91, Kar91]. These techniques guarantee identity at the 

machine level leaving A ri us  to guarantee identity of services and processes through its 

capabilities.

3.5 P rotection  Dom ains

A protection domain comprises of a set of objects which may be accessed through normal 

load and store instructions by any process which references the domain. For example, in 

figure 3.3, Domain A contains three objects which may be accessed equally by any process 

referencing it, while Domain B contains two objects which may be accessed equally by 

any process referencing it. Notice that one object is common to both domains; this would 

typically be used to pass or share information between processes in the two protection 

domains.

The concept of protection domains is not new. However, in many previous operating 

systems they have not been separate entities. In UNIX for example, a protection domain 

is firmly attached to a process. In more novel systems such as Clouds [DLM88], domains 

are attached to objects. In A riu s  they are entities in their own right.

3.5 .1  D om ain  con stru ction

A mechanism is required to add and remove objects from a domain. Without this it would 

be impossible to execute new program, create new processes, or access stored data. A 

domain may have objects added or removed from it by any referencing process (there may
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be more than one). These objects may be accessed freely, privilege permitting, and can 

be thought of as “friends”4. Resolving an object places a reference to that object into the 

current domain’s table object. This domain table is interpreted by the appropriate A r iu s  

memory server when page faults occur. It is important to note that Ar iu s  maintains 

domain information within the namespace; something it does with all “system” data. 

This greatly simplifies many mechanisms and also makes fault-tolerance much easier to 

implement.

3 .5 .2  G atew ay ob jects

Resolving and dissolving objects enables domains to be altered but it is often useful to 

change a domain completely for short periods of time (to access a protected service for 

example). This facility is provided by designating an object as a Gate. A gate object, once 

resolved, can only be accessed as a subroutine. When this is done, the object is entered 

in a controlled manner to allow the request made to it to be validated. In doing this, the 

old domain is saved and a new one entered (figure 3.4).

A process may pass though a gate, change its domain, perform its task, then return to its 

previous domain. This operation can be considered a subroutine call with domain change.

4 In the parlance of C++.
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A processor kernel trap is a more crude form of this operation; a routine is called with the 

domain changed from user to supervisor.

3 .5 .3  D om ain  creation

The use of gate objects allows a domain to be changed but, how are they created? The 

first time a gate object is called, a new domain is created containing the gate object with 

new privileges and a stack for the entering process. Before validating the access requested 

by the entering process, the gate object is called upon to initialise itself. This initialisation 

is object specific but could consist of mapping in other objects, initialisation of a hard-

ware device, or registering an inter-domain communication object. Once initialisation is 

complete, the domain is then re-entered with the original request presented.

A domain exists as long as its parental domain exists with the gate object in it. When 

this ceases to be the case, the gate domain is instructed to close down cleanly and is then 

terminated.
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3 .5 .4  D om ain  op tim isa tion s

A typical domain operates as an open system; it does not trust its parent and expects its 

parent not to trust it. However, relaxation of these rules allows for speedier transfer of 

data and control between domains at the expense of reduced protection. If, for example, a 

caller trusts the callee, the callee may inherit all, or at least the relevant, objects from the 

parent. This is similar to the user/kernel domain change found in UNIX. Alternatively, if 

both callee and caller trust each other, then the inter-domain call reduces to a standard 

subroutine call.

3.6 Process M anagem ent

Ar iu s  attempts to provide a minimal process structure and flexible scheduling facilities. 

It does this by implementing a set of upcalls to inform processes of important events; such 

as scheduling requests, faults or interrupts.

3.6 .1  S tru ctu re  o f a process

The Ar iu s  process structure is designed to hold minimal state. It consists of a process 

control block holding only the register set, a pointer to the upcall table, and a pointer to 

the current domain table. In this respect it is like a conventional “thread”.

3 .6 .2  U p ca lls

The use of upcalls [Cla85, MSLM91] has been demonstrated to be an efficient and clean 

mechanism for providing process exception handling. Previous mechanisms such as UNIX 

signals [ATT85] are too slow and clumsy to provide the fine control required by lightweight 

processes. Ar iu s  provides three types of upcall:

Object upcalls are handled within each object. They consist of mechanisms to allow 

objects to initialise when first used, validate gated subroutine calls, etc.
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Process upcalls are handled by each process. They consist of mechanisms for catching 

segmentation faults, illegal instructions, etc.

Processor upcalls are handled by each processor. They consist of device interrupts, DSM 

faults, etc.

Upcalls need not be used by most processes (illegal instructions are usually of little interest 

to a process) in which case a default action is defined; for objects this will be nothing, for 

processes the process will terminate, and for processors the processor concerned will panic! 

The ability to modify upcalls is capability based; the ability to modify the relevant upcall 

table. Allowing general processes to modify the processors’ upcalls is not recommended.

3 .6 .3  M igration

With the availability of a consistent and persistent continuous single address space comes 

the prospect of easy process migration. Moving a process from one processor to another 

(assuming they are homogeneous) is simply achieved by passing the thread of control from 

one to the other, all data structures, executable code are unchanged. In a distributed 

system, the DSM will invisibly take care of the movement of data from one processor 

system to another.

Such easily available process migration raises questions about load balancing and schedul-

ing policy. Should a process be moved to a processor which has less work to do or, to a 

processor which has more of the process’ working set cached or, to a processor which has 

more of the executable code cached? As the hardware complexity of systems increases, 

these issues are causing more problems, and the solutions are not as clear cut as they 

might first appear.

3 .6 .4  Scheduling

Like the other mechanisms, A rius  leaves the scheduling decisions to the system or appli-

cations designers. Default schedulers will be available, but applications programmers will 

be able to fine tune the performance of their systems to suit their needs.
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One might ask about very large distributed systems (over a University campus for exam-

ple), and how an applications programmer can be given the freedom to write a unique 

scheduler and without disturbing the complete system. The answer is for each kernel’s 

workspace and local scheduler queues to be made available as objects in the global address 

space, and accessible only to an applications programmer with the necessary capabilities.

3.7 Inter-process synchronisation

A r i u s  provides only a shared memory model of computation. However, for processes 

to cooperate efficiently some form of synchronisation is necessary. In a message passing 

system, this synchronisation is implicitly provided with the data forming the message. In 

a shared memory system, synchronisation is explicitly provided by locks.

3.7 .1  Sp inlocks and S leep /W ak eu p

It has been observed [BALL89] that, if the number of physical processors is equal or 

greater than the number of processes in a parallel system, then the most efficient form of 

synchronisation is a spinlock. A spinlock is a two state lock which may only ever be held 

by one process at one time. If the lock is requested and is already held by another, the 

requester spins re-requesting the lock until it is granted to it.

Unfortunately, this mechanism is not efficient if the number of processes in a parallel sys-

tem is larger than the number of physical processors, since processes may spend significant 

amounts of time spinning on locks when other processes could be executing. To avoid this 

situation, another form of locking, sleep/wakeup locks, may be used. Here, if a lock cannot 

be obtained, the process sleeps until released by a wakeup from another process releasing 

the lock.

In A r i u s  locking is based around spinlocks. However, when a lock cannot be obtained 

after a defined number of spins and other processes are ready to run, the requesting 

process reverts to using a sleep/wakeup scheme instead. This composite scheme, as used 

in [BALL89], has been shown to be generally more efficient than either scheme in isolation.
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To avoid the overheads associated with conventional sleep/wakeup schemes, A r i u s  makes 

use of its DSM and upcall systems to assist in the provision of an efficient spinlock mech-

anism.

3 .7 .2  T h e L ocking M echanism

When a lock is requested and provided, the process continues immediately. If the lock 

fails, the process spins on the lock for either a set period of time, until the lock is provided, 

or forever if no other processes are ready to run. If the lock is not provided and the time 

period elapses, the process must give way and let another process execute. However, before 

doing this it notes its interest in the lock by marking the DSM page.

When the lock is later released, it is cleared by writing to the lock’s DSM page. This 

change is propagated to all copies (rather than invalidating all copies). As each node 

applies the change to its copy of the page, if a lock is marked on the page, the relevant 

process is “upcalled” to inform it of the change in state. The process may then re-request 

the lock. Of course it may again fail to acquire it. It is important to note that if the 

upcall cannot be delivered, due to exhaustion of upcall space in the destination process, 

an overflow can simply be set. This indicates to the process that something has been lost. 

Re-running the process regenerates the locking request.

This scheme relies on the upcalls to inform processes of changes in interesting DSM pages 

rather than an explicit sleep/wakeup strategy. By doing this, spinlocks may change to 

sleep/wakeup locks in a transparent fashion.

3.8 D ynam ic or Static Linking

Dynamic linking [H091] has recently re-emerged in UNIX. Before this, every program 

contained a copy of all the library subroutines used, resulting in large program binaries. 

The use of dynamic linking enables programs to share a common, position independent 

version of these libraries. This has a number of advantages. Firstly, the code can be shared 

and so need only be present in memory once, so saving space; and secondly, the replacement
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of an old library with a new one, perhaps with bug fixes and speed improvements, affects 

all programs immediately without the need to relink each by hand. The disadvantage 

is a decrease in speed. The library is loaded at an unknown address and, because this 

may change on different invocations, the linking of programs must be done on the fly as 

accesses are attempted.

In a single namespace system such as that provided by Ar i u s , the sharing of libraries 

is greatly simplified; a library is seen at the same place by all observers. However, the 

policy of dynamic linking may not be sensible. Library code is hardly ever changed so 

the library object moves infrequently. Therefore, a form of static linking might be more 

suitable; the library code is still shared but the links are static and made at program 

compile time. Of course, some libraries do change but these can be handled by providing 

a level of indirection in the subroutine calls.

Ar iu s  does not force a particular dynamic linking policy on processes, instead it provides 

the necessary mechanisms for desired implementations to be constructed. However, a 

default strategy is provided called pseudo-static linking. This supplies a unique method 

of linking which offers the best of both dynamic and static linking systems. When an 

object is compiled, it is not linked but the libraries it requires are noted and the linking 

information concatenated with it (similar to a SunOS dynamic linking). When the object 

is first entered after resolution, it is instructed to initialise itself (as happens with gate 

objects, but now extended to include all executables). This initialisation performs an 

extra task. Any libraries the object may use are resolved and if newer than the object’s 

last link time the object relinks itself using the stored information. The relinked binary 

is persistent so in future, as long as libraries are not changed, further relinking need not 

occur.

This mechanism has the efficiency of static linking without sacrificing the flexibility of 

dynamic linking. The only cost incurred, in the majority of invocations, is the resolution 

of any relevant libraries; a startup cost no greater than that incurred by standard dynamic 

linking schemes.

Other methods of relinking have also been considered. The design of A r iu s  allows and 

encourages a mechanism to be chosen which best suits the application. However, the
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first implementation of A ri us  is restricted to the basic pseudo-static linking mechanism 

described above.

3.9 M ulti-processor and D istributed  M achines

The use of a single namespace in A ri us  is central to it design. Consequently, remote 

machines must be addressed through this namespace rather than by the addition of another 

(such as an Internet address). To facilitate this and to keep the model simple, networks 

of machines are expected to share this single namespace, providing communications and 

data consistency through the use of distributed shared memory (DSM) techniques.

3.9 .1  D istr ib u ted  d ata  sharing

There have been many implementations of DSM and its various properties have been 

extensively researched (see §2.4). The most interesting property is data sharing among 

distributed machines. Common data can be transparently cached and viewed locally 

without the need to resort to more specialised protocols and services. In A ri us  data 

exists at the same place in the namespace for all observers, remote or local. This view 

of a global namespace for all machines does have major consequences. Security cannot 

be ignored, as often happens with prototype systems, since here it is essential. Another 

concern is the limit of 64-bit addresses. For a locally distributed collection of machines 

this may be adequate but for a global system it may not be. To compromise the simple 

namespace to avoid these problems is not the correct solution; better to wait for 128 bit 

processors. Therefore the current design for A riu s  is restricted to locally distributed 

systems only.

3 .9 .2  H etero g en eo u s A rch itectu res

A r i u s , because of its distributed aims, cannot afford to implement only one form of 

distributed memory system nor incorporate only one kind of machine architecture. The 

use of gate objects and intelligent object managers can solve the problems associated with
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cross-architecture, inter-domain, calls by forcing invoked services to be run on specific 

types or even individually named machines.

Object and other service managers are free to implement any policies they see fit and are 

not limited by the standard operating system. For example, the DSM servers could even be 

used to provide object translation between architectures, such as big-endian/little-endian 

reversal.

3.10 T he I/O  system

A ri us  implements a persistent object space and so explicit I/O , in the form of file systems, 

is no longer necessary and should instead be seen as another level in the memory hierarchy. 

The use of I/O in Ariu s  is therefore somewhat different from that of other systems.

3 .10 .1  D isk  storage

Disk storage is the only persistent memory level of storage in A r i u s . Apart from this, it 

operates as any other memory level in the hierarchy. Generally because of its slow access 

time and great size, it forms the final level in this hierarchy; the final resting place for 

data no longer in active use.

3 .10 .2  Serial I /O

Serial I/O does not map into the single address space as disk storage does. Instead a serial 

channel, be it to a terminal or another machine, is treated as a stream of data accessed 

via services provided by objects.

3.11 T he Services

The basic A ri us  microkernel provides few services, and those it does provide are very 

abstract. For example, there are no specified ways to write to a terminal, unlike U nix
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where /d e v / t ty  might be used or DOS where CON: is available. A riu s  omits these and 

other services to avoid imposing them on the user, preferring to let users decide how best 

to tackle the problem.

Of course, users are not expected to write their own device drivers, a preposterous proposal 

for numerous reasons. Instead, ARIUS views these services and others in two halves; the 

lower half supports the raw service, be it a hardware device (such as a terminal, ethernet or 

disk) or software device (such as a nameserver or file system), whilst the upper half provides 

the necessary user interface. Consequently, a file system lower device would support the 

management of the files and storage space, whilst one of many available upper half devices 

would provide the relevant user abstraction (be it DOS, Unix, VMS or some customised 

other).

This division of service interfaces is for two reasons. Firstly, as demonstrated above, it 

allows the actual service function to be separated from the user interface; after all, most 

file systems provide much the same facilities. Secondly, it enables a set of A r i u s  services 

to cooperate through their lower level interfaces without constraining the users to do 

likewise5.

3.12 U N IX  com patib ility

One criticism of A r i u s  is its abandonment of the UNIX process model. In order to 

provide some form of compatibility therefore, the design of a UNIX service has been 

examined. This has directly led to the development of a code generation system which 

supports UNIX without compromising the single address space. This work also indicates 

that the development of other operating system environments (such as MS-DOS, VMS or 

WINDOWS-NT) is possible. In this sense, despite its differences, A riu s  is a micro-kernel 

similar to MACH or Meshix.

5 Although there is nothing stopping them!
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3 .12 .1  T h e absence o f fork()

The one facility absent from A ri us  which could cause problems was fo r k () . The creation 

of new processes using fork does not fit well with a single address space and a spawn() 

style of process creation has been adopted instead. However, many applications used 

fork semantics to duplicate data into each child process and although A ri us  supports the 

duplication of object using copy-on-write, each copy occupies a different virtual address 

range and so pointers in the duplicate are invalid.

Modifications to the C-compiler have already provided a means of placing the data segment 

at an arbitrary address. This was necessary to allow multiple invocations of the same 

application and to prevent corruption of the original image. These modification make 

use of a data object base register to indirect global memory accesses to the relevant data 

object. Although at first this may appear inefficient, experiments suggest the resulting 

code only suffers a 1-2% speed degradation. Based on this base register system, a method 

has been proposed to allow a fork semantic to be supported. By extending the current 

system so all memory access (rather than just global accesses) are indirected via a base 

register, it is possible to provide a fork operation by duplicating the data object for the 

child and changing the value of the base register. The cost of this in an application is a 

speed degradation of only 5-10% [Wil93].

3.13 Sum m ary

This chapter has presented the design of the A ri us  operating system. The aim of A riu s  

is to combine many traditionally separate mechanisms in order to provide a simpler but 

flexible parallel application environment. This is primarily achieved by basing the operat-

ing system around one single namespace, encompassing all data (volatile and persistent), 

and all service names (thread, processes, servers and lock). This namespace is supported 

by a single distributed shared memory system capable of operation on both parallel and 

distributed platforms. This removes the usual need to consider the position of data (local 

or remote) when writing applications.
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These unifications does not limit the operation of the resulting system, since A ri us  is 

capable of supporting operating system extensions through the use of servers as are other 

micro-kernels (allowing a UNIX environment to be provided for example). However, unlike 

message passing micro-kernels which have inherent delays in their communication scheme, 

the shared memory system proposed here allows more rapid and more flexible data sharing.

The central tenet of A ri us  is the single namespace, termed the Arius Massive Object Space 

or A m o s . The unifications present in this single resource allows a single fault tolerance 

scheme to be used to encompass the entire system. The implementation of fault tolerance 

in such a namespace is the subject of the remainder of this thesis.
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C hapter 4

Data coherency

This chapter considers the implementation of Distributed Shared Memory in the context 

of A r i u s ’s object store, A m o s . The first section examines the various constraints and 

properties required in a distributed shared memory system which is used to support an 

operating system. Five characteristics are identified and the relevant three are examined 

in detail. The second section details the DSM model implemented in A m o s . This model 

incorporates four different DSM policies in a single system to provide the required flex-

ibility. The third section presents the DSM algorithms used. The fourth section builds 

upon these to provide some fault-tolerance for the system. This allows any single machine 

failure to be quickly handled and repaired if only duplicate data is lost. The final section 

summaries the chapter.

4.1 A riu s’ reliance on DSM

The A r i u s  operating system is a non-intrusive system; it attempts to provide the required 

facilities for applications without forcing undesired policies upon them. To this end it 

provides a single shared address space implemented as A m o s , a distributed shared store. 

For simplicity, all control and data structures used by both A r i u s  and applications are 

present in this distributed store and all communication takes place by the placement and 

retrieval of data from it.
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This distributed shared store is implemented using distributed shared memory (DSM) 

techniques. Unlike many other systems, where distributed shared memory is implemented 

over a fundamentally different communications system, such as message passing, A r i u s  

relies only on shared memory for all application and system communications. The entire 

system’s performance and reliability therefore depends on it.

This scheme has many strengths, the major ones being the simplification in the communi-

cations amongst machines and the assimilation of kernel and applications data structures 

into a single namespace available to all. The design of the A mo s  DSM system attempts 

to make the most of these.

4.2 T he adopted DSM  m odel

A m o s ’ requirements for its DSM are more specific than those detailed in §2.4. Because its 

distributed memory system forms the core of all communications, storage and processor 

interactions; various constraints are placed on its characteristics. These are, in order of 

importance:

1. Scalability to allow efficient data sharing on a small and large scale,

2. Strict, causal data coherency but allowing a variety of policies to be used to 

provide it,

3. Fault-tolerance to prevent single node failure halting the entire system,

4. H eterogeneity tolerance to accommodate multiple networks of varying speeds, 

delays and topologies,

5. Security so that data cannot be obtained by devious means.

The last two of these constraints apply when Amo s  is distributed over a wide area, making 

use of public, insecure networks for data exchange. For the purposes of this thesis however, 

we will consider only a local, single networked system and hence only constraints 1, 2 and 

3 will be considered.
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4.2.1 Sca lab ility

Use of A m o s ’ for all data interactions means that any implementation must not only be 

efficient, but must also be scalable. Scalability is a very badly defined term; for example, 

it is said that hypercube networks are scalable because the available communications 

bandwidth scales with the number of nodes. Unfortunately, the hypercube node hardware 

is not scalable since at every step, another communications channel must be added to 

every node. Conversely, a mesh network may be considered scalable because the network 

hardware grows constantly with the network size. However, the available bandwidth does 

not scale.

For our purposes, it is more important that the DSM allows the number of processors 

sharing a piece of data to scale with the overall machine size rather than any other scaling 

property. This constraint instantly dismisses various schemes [TSF90, LLG+92, MR91] 

where fixed sized tables are used to hold DSM information. Although these tables could 

be increased until they are capable of holding information for all processors in a DSM 

machine, for large machines their size would be excessive, especially when multiplied by a 

large number of shared pages.

One article in the literature, SCI [KABJ89], also identifies this as the primary scaling 

property. The scheme described is based upon the notion of distributed doubly linked 

lists, where each sharing node holds a fixed DSM entry indicating its own state, together 

with pointers to the next and previous DSM entries, on remote nodes, in the list. This 

scheme allows the number of sharing nodes to expand indefinitely just by increasing the 

length of the list. The scheme in A r i u s  uses similar principles.

4 .2 .2  S tr ic t, causal d ata  coherency

Most DSM systems are based upon single writer/multiple reader schemes, otherwise known 

as causal or coherent DSM. These systems operate by giving the exact semantics of phys-

ically shared memory even though the memory is distributed. This scheme is so popular 

because it emulates a situation which is readily understandable and easy to work with. Of 

course, such rigid coherency is not necessary in many cases. Some applications may only
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require a coherent “snap-shot” to be made of data and are not interested in subsequent 

changes -  graphical imaging of weather simulation for example.

With parallel programs data sharing falls into three categories; competitive, repetitive 

and cooperative. Competitive programs operate a number of processes which compete 

for machine time whilst interacting rarely. Repetitive programs operate a number of pro-

cesses in a pipe line; each process processing data in a producer/consumer relationship 

with others. Cooperative programs operate a number of processes which interact exten-

sively, each taking a small part of the problem’s data set. A review of various parallel 

applications [Tot92] demonstrates that implementing a single coherency policy results in 

an inefficient, inflexible DSM system; any single policy is not suitable for all three parallel 

program categories. The review identifies four different policies for DSM coherency:

1. R em ote access forces data being read or written by any processor to access a single 

static copy,

2. M igrate access moves a single copy of the data from processor to processor as each 

accesses it (read or write).

3. Invalidate  is the most common strategy. A copy of the data is made locally for 

each reader, which is then invalidated when a master copy is modified. The master 

copy itself migrates on write accesses.

4. U pdate is similar to invalidate except that, instead of invalidating copies on write, 

the modification is propagated to all copies.

Different policies are used for different types of data accesses. For example, the Remote 

policy might best be used for handling the occasional update of processor load statistics 

whilst Update is useful for handling inter-process locks.

By nature of the review, the proposed implementation of these coherency policies was 

static. Each data structure was handled by one of these policies for its lifetime, the policy 

being chosen to suit the most common use of the data structure. In fact, is is unusual for 

a data structure to be so specifically used; most are treated in quite different ways during 

the course of a program’s execution. A common example of this is a simple editor where
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a data structure is accessed in three distinct ways; firstly data is loaded (migrate), then 

modified (update), and finally stored (migrate). In this example, it is usual for the size of 

the second set of accesses to far exceed the other two (although an editor is generally a 

uni-process so coherency policies are less important). This need not always be the case.

In Am o s , all four policies for coherency are employed. Additionally, the protocols are 

enhanced to allow all to operate concurrently on the same data structures. By doing this 

we allow dynamic choice of coherency policy, so increasing flexibility and efficiency. It is 

hoped that, at some future date, compilers will be able to take advantage of this flexibility 

by generating code to select how data is to be accessed rather than just where1.

4 .2 .3  Fault to lerance

If DSM is to be used to provide all communications, the fault tolerance cannot be ignored. 

Providing this tolerance is considered in detail in §4.6 and in the following chapters. For the 

moment however, the operation of the DSM system will be established and the inclusion 

of fault tolerance incorporated afterwards.

4.3 Efficient im plem entation  o f A M O S’ DSM

Although DSM mechanisms were first employed using software techniques [Li86], imple-

mentations are already being moved into hardware [HLH91, LLG+92, Del88, KABJ89]. 

This improves performance by increasing bandwidth and decreasing latency for data ac-

cess. Consequently, much finer sharing of data becomes feasible; whilst software imple-

mentation must share virtual memory pages, hardware solutions may share cache lines. 

The performance advantages of finer levels of sharing are examined in [BS91].

1This might be particularly easy in object oriented languages where methods and data may be analysed 
in tandem.
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4.3 .1  H ardw are D SM

Although A r i u s  does not require hardware mechanisms for data sharing, a high perfor-

mance A m o s  implementation needs specialised support hardware. Such hardware sup-

port is no more complex than that employed in current bus based communication con-

trollers [Bor88].

Hardware implementation of DSM imposes some limitations on the design of any protocols. 

Firstly, a device has limited state space. This means that simple table based protocols 

are not ideal since each cache line requires excessive table state which more often that 

not is unused. Secondly, only a limited amount of buffering for DSM requests is available. 

This makes it undesirable for an operation to block the hardware since doing so could 

require large buffers or excessive returning of unhandled messages for later retries. It also 

introduces the problem of deadlock. Thirdly, the implementation of complex protocols in 

silicon is difficult.

The protocols which will be proposed in the following take these limitations into account. 

They also recognise the need to provide fault tolerance, so enabling the system to handle 

the sudden loss of a machine without halting the DSM system for all others.

4.4 DSM  coherence policies and AM OS protocol

By analysing the coherence policies detailed in §4.2.2 it has been determined that five 

DSM protocol elements can be designed to cover all cases. These are:

• Request copy to obtain a coherently managed page copy,

• Request read to read a single data item from any available page copy,

• Request owner to obtain control over a page,

• Request invalidate to remove all copies of a page except the one held with the 

owner, and

• Request update to write a data item through to all copies of a page.
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Using these protocol elements, the policies may be implemented as follows:

• Remote coherency (read)

1. Request remote read of page (request read).

• Remote coherency (write)

1. Modify all page copies (request update).

If only remote coherency is used then there is only be a single copy to modify.

• Migrate coherency (read)

1. Request a copy of the page if one is not present (request copy).

2. Request ownership if now owned by requesting node (request owner).

3. Request invalidate of all other copies (request invalidate).

These last two steps guarantee that only a single copy of the data exists and is 

located locally.

4. Read from page

• Migrate coherency (write)

1. Request a copy of the page if one is not present (request copy).

2. Request ownership if now owned by requesting node (request owner)

3. Request invalidate of all other copies (request invalidate).

4. Write to the page.

• Invalidate coherency (read)

1. Request a copy of the page if one is not present (request copy)

2. Read from page

• Invalidate coherency (write)

1. Request a copy of the page if one is not present (request copy).

2. Request ownership if now owned by requesting node (request owner)
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3. Request invalidate of all other copies (request invalidate)

4. Write to the page.

• Update coherency (read)

1. Request a copy of the page if one is not present (request copy).

2. Read from page

• Update coherency (write)

1. Request a copy of the page if one is not present (request copy).

2. Request update of all other copies (request update).

Because all the DSM protocol elements requests are compatible, these coherence policies 

may be intermixed. For example, reads from a data item might be done using invalidate 

coherency whilst writes to the similar data item could use remote coherency.

One property these coherency policies demonstrate is that separating request owner from 

request copy is not useful. A combined owner and copy request would be quicker since it 

requires fewer messages. Throughout this thesis, such requests are treated individually 

since they are semantically separate.

4.4 .1  Im p lem en ta tio n  of coh eren cy  in AM O S

Rather than provide these policies explicitly, by tagging data structures [BCZ90], A mo s  

decomposes the actions into three types of read and three types of write. These can be 

used together to produce all of the policies already examined plus a mixture if required. 

The read coherencies are:

• Read rem ote reads the specific item of data from any copy found in the system. 

This copy can be local, if a copy has been obtained by another policy, or remote.

• Read copy retrieves a copy of the page in which the data resides, if one is not 

present, and provides the data from it.
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• Read migrate retrieves a copy of the page in which the data resides, obtains 

ownership, and then invalidates all others. The data is provided from the copy.

The write coherencies are:

• W rite rem ote writes to all copies of the data. It does not retrieve a copy of the 

data, although if one exists it too is updated.

• W rite invalidate retrieves a copy of the page in which the data resides, if one is 

not already present, obtains ownership, and then invalidates all other copies before 

performing the modification.

• W rite update retrieves a copy of the page in which the data resides, if one is not 

already present, and then writes the modification to all copies.

The decision on which policy to use can be implemented in several ways. Firstly, the 

data structures can be tagged indicating which policy to use. Secondly, the instruction 

set of the desired processor can be augmented to support the three types of read and 

the three type of write. Thirdly, three images of A mo s  can be made in the processor’s 

virtual address space; writing and reading from different images can perform the different 

policies2. Whatever the interface between processor and DSM system, the DSM system 

itself is not affected.

4.5 T he AM OS DSM  protocol

The Amo s  DSM protocol elements are designed for an arbitrary network of nodes where 

broadcast, at a reasonable cost, is not possible. Such a network can be constructed using 

a scheme similar to that proposed in the Fibre Channel [FC991] standard where a number 

of nodes connect to a Fabric which provides the routing of point to point data transfers 

(figure 4.1). It is assumed that this system guarantees ordered, reliable delivery between 

any two nodes attached to the Fabric.

2 Additionally, some form of hybrid scheme can be adopted using two Amo s images for general policies, 
only using read and write remote when the data is marked u n c a c h a b l e  in the VM state.
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Figure 4.1: Nodes on a routing “fabric”

The DSM system is implemented over this network. Each shared page is held, by those 

using it, as a double linked virtual ring3 (figure 4.2), each node holding a page copy also 

holds a pointer to both the upstream and downstream nodes also holding copies. Each 

page is coordinated by its own virtual ring of nodes. This avoids any non-participatory 

nodes from incurring any costs by forming part of a ring they are not interested in.

Using a ring structure to hold the copyset has a number of advantages. Most importantly, 

it is easy to demonstrate that a doubly-linked ring is capable of tolerating a single node 

failure. Additionally, a ring structure can handle a large copyset efficiently. Other sys-

tems for maintaining the copyset have been proposed. One system, used in the Stanford 

Dash [LLG+92], maintains each copyset centrally. Although it behaves similarly for most 

operations with a ring, invalidation poses the greatest strain on the copyset. For it to 

invalidate a data item a message is first sent to the central copyset site. This then sends 

a message to each processor in the copyset, receives a reply in turn, and then finally ac-

knowledges the requester. The time to perform this operation cannot be simply defined 

since it is possible for some message transmissions to overlap each other (although only

3The original protocols were designed to use a singly linked ring but did not provide fault tolerance.
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v  ^  '  Virtual ring formed between 
3 cooperating nodes.

Figure 4.2: Nodes cooperating in the AMOS DSM system

one may be sent or received at once). However, if the time the message is in the network 

is negligible [Dal90] then the operation time is proportional to the number of messages 

sent; two messages per node in the copyset. However, in a ring based system with similar 

assumptions, the number of messages is only one per node. Therefore, a ring copyset 

is more efficient. Finally, a ring copyset only has a single message in flight during an 

invalidation resulting in less network congestion.

The protocols have been designed to be non-blocking and incur only a linear network load. 

These two properties are more important in a hardware implementation than a software 

one but it is expected that such systems will ultimately be moved to hardware (as examined 

in §4.3.1). The non-blocking protocol means a DSM request is received, processed by the 

system to modify local state, and a reply sent. At no point is it necessary for a protocol to 

block until it receives acknowledgements from other DSM servers. This avoids problems of 

buffering partially completed operations and deadlock detection. The system also incurs 

linear load; any protocol request which is received may produce at most a single request 

or reply in response. This is in the nature of the ring structure and avoids exponential 

traffic building up on the network.
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4.5.1 P ro to co l im p lem en tation

The complete Amo s  DSM protocol is now described. It has been split into its components. 

First, the client/server interface is described. Second the server loop is presented. It 

receives requests and dispatches them to the appropriate protocol elements. The five 

protocol elements which were introduced in §4.4 are presented next. Note that in all 

cases, the requesting node is assumed to have been part of the relevant DSM page chain in 

the past and that no node has “removed” its DSM page chain entry. Consequently, these 

protocols do not deal with the first page request, when a page is unknown to a node, nor 

do they deal with the removal of a node’s participation in a DSM page chain. These less 

frequent operations are examined separately.

DSM  client/server interface

Requests are made of the DSM system by the local processor in order to obtain the 

necessary data in the required form (for reading or for writing). A client will issue a 

request to the DSM system, and then wait until a reply is provided4. This reply will 

indicate either success or error. Success allows the process to continue. An error forces 

the client processor to back the request off and retry at a later time. An exponential 

scheme similar to Ethernet is used to prevent deadlock or starvation.

Algorithm  4.1

Begin client request 
Repeat {

Issue request to DSM server
Wait for reply
I f  reply is marked “error” {

Back requester off for a time

}

}
Until reply is not an error

4 Alternately, the process may be descheduled in favour of another.
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DSM  server

Requests are made of the DSM server by either local processes, through hardware faults on 

the virtual memory or cache systems, or by external messages received across the network. 

In all cases, the requests are treated identically.

Algorithm  4.2

DSM server begin 
Repeat forever {

Receive message
Find page message refers to
I f  message is a “request copy”, call algorithm f.3  
Else if message is a “request read”, call algorithm 4-4 
Else I f message is a “request ownership”, call algorithm 4-5 
Else if  message is a “request invalidate”, call algorithm 4-6 
Else if message is a “request update”, call algorithm 4-1 
Else indicate an error!

}

DSM  request copy

The algorithm described below obtains a copy of a page from a node which already has 

one. The request is made to the local DSM server and is passed from node to node in the 

direction of the page’s last owner until a copy is found. The page’s last owner will nearly 

always have a page copy and so forwarding requests toward it is most likely to succeed. 

In a few cases, it is possible that the page’s owner does not have a page copy; but it will 

know where to find one in this situation. Once a page is located, a copy is sent to the 

requester and the requester informed of the success. For data coherency purposes, it will 

be necessary to locate the copy at a future date. To do this, the requester is linked into a 

double linked chain of copy holders. This forms the distributed copyset, a chain of nodes 

each holding an identical copy of the page. Note that the chain is only used in a singly 

linked fashion for standard DSM operations. The double linking is only provided for fault 

recovery.
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Algorithm  4.3

Begin request copy

I f  message is marked “error” {

Unbusy the page 

Release requester for retry

}

Else if  message is marked “link” {

Set page’s “downchain-nextcopy” to message’s source

}

Else if  message is marked “copy” {

Set page’s “lastouoner” to “lastowner” in message 
Set page’s “upchain-nextcopy” to “nextcopy” in message 

Set page’s “downchain-nextcopy” to the source of the message 

Mark message as a “link”

Forward message to page’s “upchain-nextcopy”

Add copy to page’s DSM state 

Busy the page

I f  page is marked dirty, dirty the page’s VM state 

Request TLB flushes 

Release requester

}
Else if  this node does not hold a copy of the page {

Forward message to page’s “lastowner”

}

Else if  this node is the originator and already has a copy of the page { 

Release requester

}
Else if  page is marked “busy” {

Mark message as “error”

Send it back to originator

}

Else {
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Mark message as a “copy”
Mark message “lasiowner” to be page’s “lastowner”
Mark message “nextcopy” to be page’s “upchain-nextcopy”
I f  page is dirty, mark page as dirty in message
Set page’s “upchain-nextcopy” to be originator
Add copy to page’s DSM state
Request TLB flushes
Send message to originator

}
End request copy

DSM  request read

Rather than obtain a complete page on a read request, it may be desirable to obtain only 

the specific item. This has the advantage of requiring no cache coherency state information 

to be maintained for the request, since the item of data is considered copied from memory 

to register. Such a mechanism is useful for reading remote uncached data, such as device 

registers, or data the destination node will not provide coherent copies of when it does 

not wish to pay the penalty of invalidation at a later time. In operation, this algorithm is 

identical to request copy except that, once a copy is found, the data is returned and the 

node is not linked into the DSM page chain.

Algorithm  4.4

Begin request remote read 
I f  message contains copy {

Set page’s “lastowner” to “lastowner” in message 
Insert data into halted requester 
Release requester

}
Else if this node does not hold a copy of the page {

Forward message to page’s “lastowner”

}
Else if  this node is the originator and already has a copy of the page {

Release requester

}
Else {
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Mark message to contain a copy 
Place requested data in the message 
Send message to originator

End request remote read
}

DSM  request owner

The following algorithm obtains ownership of a requested page. Ownership is only ever 

assigned to one copy of a page and designates the node responsible for controlling accesses 

to it. For example, ownership must be obtained before an invalidation of a page may 

be performed. This prevents two nodes invalidating the same page at the same time, so 

resulting in its loss from the system. The last owner fields are used to locate the current 

owner in the least possible time.

Algorithm  4.5

Begin request owner 
I f  message is marked “error” {

Unbusy the page 
Release requester for retry

}
Else if page is marked “busy” and message is from a remote node {

Mark message as “error”
Send it back to originator

}
Else if  message contains ownership {

Add ownership to page’s DSM state 
Set page’s “lastowner” to be this node 
Request TLB flushes 
Release requester

}
Else if  this node is the originator {

I f  page is already owned { 
Release requester

}
Else if this node does not have a copy of the page {
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Unbusy the page
Release requester to allow page to be obtained

}
Else {

Busy the page to prevent removal of copy 
Forward message to the page’s “lastowner”

}

}
Else if this node does not own the page {

Forward message to the page’s “lastowner”

}
Else {

Mark message to contain ownership 
Invalidate page’s ownership on this node 
Set page’s “lastowner” to be requesting node 
Request TLB flushes 
Send message to originator

}
End request owner

DSM  request invalidate

Once ownership of a page has been obtained, a node may invalidate all other copies so it 

may modify it in a coherent manner. This form of coherency is useful if the owner is to 

make many modifications to the page before copies are requested from other nodes. An 

invalidate request is propagated from node to node around the DSM page chain until it 

returns to the requester. If at any point the invalidate fails (because the page is busy), a 

reply is sent directly to the requester indicating the error. The DSM page chain is then 

adjusted by modification of upchain-nextcopy to point to the failed node. This removes 

the successfully invalidated entries from the chain but leaves in the remaining ones. A 

later request invalidate can then be issued to finish the task.

Algorithm  4.6

Begin request invalidate 
I f  message is marked “error” {
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Set page’s “upchain-nextcopy” to be the source of the message
Unbusy the page
Release requester for retry

Else if  page is marked “busy” and message is from a remote node {

Mark message as “error”
Send it back to originator

}
I f  message contains “owner-one” {

Set page’s “upchain-nextcopy” to be this node
Set page’s “downchain-nextcopy” to be this node
Set page’s DSM state to indicate a single writable copy is present

Busy the page
Request TLB flushes
Release requester

}
Else if this node is the originator {

I f  this node holds a single writable copy {
Release requester

}
Else if this node owns the page {

Busy the page to prevent movement of ownership 
Forward the message to “upchain-nextcopy”

}
Else {

May not invalidate 
Release requester for retry

}

}
Else {

I f node has this page {
Remove copy from DSM state 
Request TLB flushes

}
I f  page’s “upchain-nextcopy” is originator, mark the message “owner.one” 

Forward the message to the page’s “upchain-nextcopy”

}
End request invalidate

}

1 1 4



4.5. TEE AMOS DSM PROTOCOL

DSM  request update

Update coherency operates by updating all copies of a page with any changes rather 

than invalidating them. If only a few changes are made to the page before copies are re-

requested, then this scheme is more efficient than invalidation. Updates are first forwarded 

to the page’s owner. This is necessary to guarantee that modifications will always be made 

in the same order in all copies. If this were not the case and two nodes modified the same 

datum, some copies could take one value whilst others could take the other.

Algorithm  4.7

Begin request update 
I f  message contains “owner” {

Release requester

}
Else if  message contains “owner-one” {

Unbusy the page
I f  this node initiated the update {

Release requester
}
Else {

Mark the message “owner”
Forward message to initiator

}

}
Else if message contains “owner.many” {

Set page’s “lastowner” to be message’s “lastowner”
Apply the update if  a copy is held
I f  page’s “upchain-nextcopy” is originator, mark the message “owner-one” 
Forward the message to the page’s “upchain-nextcopy”

}
I f  this node owns the page {

Busy the page to prevent movement of ownership 
Apply the update
Mark the message “owner.many”
Mark the message’s “lastowner” to be this node 
Forward the message to “upchain-nextcopy”

}
Else {
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Forward the message to the page’s “lastowner”

End request update
}

Use of the busy indicator

When any of these algorithms succeed in changing the local page’s DSM state (such 

as obtaining a read copy of a page or successfully obtaining ownership) the page entry 

is marked busy. Whilst this flag is maintained, the page state cannot be changed; so 

ownership cannot be removed or copies taken of unique data. This marker is maintained 

until the access causing the DSM fault has been fulfilled. Without this facility, a page need 

never persist on any given node long enough for accesses to be completed. Circumstances 

can be imagined where this would produce livelock.

This facility is also useful if delta timers are added. Such a timer would be started 

when the busy flag is set and cleared some time later. Delta timers have been shown 

to improve DSM efficiency [CF89, FP89]. The busy flag can also be used to implement 

page locking [AMMR90], forcing data to remain resident until explicitly released.

4 .5 .2  F irst t im e  page requests

So far the problem of acquiring the first link into the DSM system for a page has not 

been examined. This mechanism has been excluded from the general DSM system for 

three reasons; it increases the complexity of any hardware DSM implementation, it is an 

operation performed only once per page, and it is expensive to provide in limited hardware 

when the number of machines involved may be thousands. First acquisition is therefore 

considered a software task regardless of the DSM implementation. However, there is no 

reason why the DSM system should not assist in the location of pages.

Figure 4.3 shows how the DSM system can be used to provide the necessary page location 

information. When a page first becomes active, it is added to the DSM location table 

which provides an initial location for all pages in an A r i u s  system. This tables operates 

as a multi-level index, a root block pointing to sub-blocks, which in turn point to others,
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Figure 4.3: DSM tree for initially locating pages

which eventually point to the actual location information. By careful organisation of this 

table so every page of the next level is logged in the previous one, it is possible to locate 

any page whilst initially only providing access to the tree’s root.

4 .5 .3  Page entry  rem oval

When a page becomes inactive, the space for its DSM entry might be recovered for reuse 

and so the page entry must be removed. Doing so presents problems since the old entry 

may be the entry listed in the DSM location table or may still be part of a chain leading 

from the location table to the current owner. Therefore, to avoid any problems a page 

entry removal must first reinstall the current owner in the DSM location table.

This event is also handled in software and requires the addition of a raise exception mech-

anism in the proposed DSM scheme. This tag is added to standard DSM request but 

on reaching the action point, request owner reaching the current owner or request copy 

reaching a valid copy, an exception is raised on the node rather than the default action 

being taken. This may be caught and handled in software.

Removal of a page entry does not prevent other nodes from forwarding request for that 

page to it, especially if other nodes consider it to be the last owner. Since it is impossible
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to search a system to find all references to the page entry, references must be invalidated 

as they are used. Therefore, when a DSM server receives a request, it first determines 

whether it holds the corresponding DSM entry. If it does not, then the request is returned 

to the originator marked with a page unknown error. The originator must then re-install 

its DSM entry by performing a first time request for the page.

4.6 Fault to lerance of DSM

Most DSM systems in the literature are incapable of handling even the most minor faults. 

As systems grow in size and distribution, such short sighted schemes are unacceptable. 

In A m o s  this problem is compounded by the total reliance of A r i u s  on its DSM system. 

Relatively little work on reliable DSM has been reported in the literature, although [WF89, 

WF90, TH90b, Fle90, SZ90] do present some ideas (see §2.5).

A mo s  classifies DSM faults into three types:

One o f many page loss

If a node fails whilst holding a DSM page copy, then no information is actually lost, 

but the page entries chain is broken. This must be repaired before operations on the 

page can continue.

One of many page and owner loss

If a node fails whilst holding a DSM page copy and the ownership, no information 

is lost but ownership must be reassigned. The DSM entries chain must therefore be 

repaired and ownership must be recovered and assigned to another page copy. Note 

that unmodified pages also fall into this category, since a copy will exist on a failure 

independent media (eg. disk).

Only page and owner loss

If only a single copy of a DSM page exists, then its loss removes data from the 

system. This data must be recovered before operations can continue.

The first two of these faults constitute minor DSM faults. These are faults which are re-

coverable without affecting any other pages in the DSM system. The final fault constitutes
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Figure 4.4: Rebuilding a DSM page chain in the presence of a single fault

a major DSM fault because its recovery implies alteration to other pages in the system. 

Such faults are more complex and dealt with in chapter 6.

4.6 .1  M inor D SM  fau lts

A node failure is noticed during DSM-to-DSM message exchanges. Once detected, the 

entries chain must be repaired, and then ownership reassigned, if it no longer exists.

Algorithm 4.8 is capable of repairing a DSM page chain in the presence of a single node 

failure (figure 4.4). The detecting node (a) injects a rechaining message into its local server 

which marks it rechain-down. This is forwarded down the DSM chain until it reaches the 

node in the chain which logically adjoins the failed one (b). It then relabels itself rechain- 

up and notes the current node in the message. The message then propagates back up the 

chain, repairing lastowner and downchain-nextcopy entries as it goes, until it reaches the
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other logically adjoining node (c). It then reconnects both ends of the DSM chain (d), 

and if the owner was not encountered during the repair, the old downchain end of the 

repaired chain is designated the new owner. To handle more than one node attempting a 

page repair at the same time, when the downchain end of the list is reached the node is 

marked failed. Any subsequent rechaining requests which encounter the node are returned 

to their originator marked rechain busy.

The complete algorithm is presented below:

Algorithm  4.8

Begin DSM rechaining
I f  message is marked “recham busy” or “rechain done” {

Inform requester

}
Else if  message is marked “rechain-up” {

I f  this node owns the page {
Mark the message “owner”

}
Else if message is marked “owner” {

Set the page’s “lastowner” to be message’s source
}
Else {

Set the page’s “lastowner” to be page’s “upchain-nextcopy”

}
I f  “upchain-nextcopy” either equals the failed node or the message’s “nextcopy” { 

Reached up end of entries chain
Set the page’s “upchain-nextcopy” to be that held in the message 
Mark message “rechain-end”
Note this node’s address in the message’s “nextcopy”
Forward message to “upchain-nextcopy” node

}
Else {

Forward message to “upchain-nextcopy” node
}

}
Else if  message is marked “rechain-down” {

I f  page’s “upchain-nextcopy” does not equal message’s source or “downchain-nextcopy” 
does equal the failed node {

Reached down end of entries chain 
I f  page is marked “failed” {
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Mark the message “rechain busy”
Forward message to it originator

}
Else {

Mark page “failed”
Set the page’s “upchain-nextcopy” to be the source of the message
Mark message “rechain-up” with this node’s address in message “nextcopy”
Forward message to “upchain-nextcopy” node

}
}
Else if message is back at its start node {

Someone else must have fixed the chain!

}
Else {

Forward message to “downchain-nextcopy” node

}

}
Else if  message is marked “rechain-end” {

Set the page’s “downchain-nextcopy” to be that held in the message “nextcopy”

I f  the message does not contains ownership {
Make this node the owner of the page 
Set page’s “lastowner” to be this node

}
Else {

Set the page’s “lastowner” to be message’s source

}
Mark page “active”
Mark message “rechain done”
Forward message to its originator

}
Else {

I f  “downchain-nextcopy” equals the failed node {
Forward message to “upchain-nextcopy” node

}
Else {

Mark message “rechain-down”
Note the start node in the message
Forward message to “downchain-nextcopy” node

}

}
End DSM rechaining
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4.7 Sum m ary

This chapter has presented the A mo s  DSM system on which A r i u s  is based. By first 

examining the requirements for a DSM system which must support various types of par-

allelism, a protocol have been designed capable of supporting multiple coherency policies 

simultaneously. This is necessary since any single solution is insufficient for the purposes of 

all the systems components and all potential applications. However, all policies maintain 

strict data coherency. This allows any policy to be used in place of any other, with the 

only effect being on efficiency.

All DSM policies are supported on a “ring” copy set. This allows an unlimited number of 

node to participate in a DSM exchange5. Rather than forcing the use of physical ring, 

which would restrict the networks on which the policy could operate, a virtual ring is used. 

This removes any topological restrictions and does not effect any nodes not involved with 

the DSM ring. Additionally, a ring can efficiently support all common DSM operations 

(get copy, invalidate, update, etc.) whilst limiting the congestion in the interconnection 

network. Page location is managed by using a chain of “last owners” which tracks a pages 

movement between nodes. If this fails or the page is not known, a hierarchical “DSM 

location table” is used which allows all pages to be traced from a well known root.

Implementation of the DSM protocol is suited to both software and hardware. This is 

made possible by the decomposition of the individual DSM actions into simple operation 

and the use of a non-blocking scheme removing the need for buffering (which would be 

necessary to prevent deadlock).

The DSM system is capable of handling “minor faults” . The copyset ring is capable of 

tolerating a single failure without any DSM copies being lost (except the failure). This 

allows many simple faults to be recovered by simply rebuilding the ring and reassigning 

ownership as necessary. “Major faults” , where the only copy of data is lost, is not handled 

by the DSM system. Instead, a more general fault recovery system must be used. This is 

described in the following chapters.

5Limited only by addressing.
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Providing fault tolerance

This chapter describes what fault tolerance is and what it attempts to achieve in the con-

text of operating systems. How such fault tolerant systems are designed and constructed 

is then explained together with the various trade-offs among them. From this basis, the 

design decisions behind the fault tolerant system described in this thesis are examined.

5.1 T he need for reliability

As systems grow from single, isolated processors to parallel machines with hundreds of pro-

cessing elements and networks with hundreds of machines, the problems of reliability, often 

ignored due to the rarity of faults, must be addressed. The probability of system failures 

increases with machine size due to the interdependencies present in distributed operating 

systems and applications. Examples of these problems were highlighted in Chapter 2.

When an operating system attempts to unify many machines in a physically distributed 

environment, the ability to tolerate the sudden absence of some machines from the system 

is essential. It is also desirable that the “faults” are handled gracefully. Ideally, any failure 

would be handled transparently but in many cases this is not possible. For example, if 

the data being accessed is held only on the machine which has failed, then it cannot be 

accessed. In the majority of cases however, data is either available locally or has already
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been cached elsewhere. Failure in such cases need not affect running applications if there 

is some degree of fault tolerance.

5.1 .1  T y p es o f fau lts

Typically two types of faults may be present in a system:

• Fail-stop failures, and

• Byzantine failures.

Fail-stop failures [Sch84] are the easiest to consider. When a component of a system fails, 

the failure is detected by other components and the system halted. A good example of this 

is parity checked memory; when a parity error is detected, it is reported and the system 

stopped. Such failures can be considered “clean1’, that is they are detected and the system 

stopped before further damage can result.

Byzantine failures [LSP82] are more complex. A failure may be malicious and involve 

collusion with other components to make it invisible to simple detection mechanisms. 

Consequently such failures are more difficult to isolate.

This thesis is concerned with only the first type of failure. It assumes byzantine failures are 

transformed into fail-stop failures through lower level detection mechanisms (eg. memory 

and processor error checking and correction techniques, network packet checksums, etc.).

5.2 M ethods for providing fault tolerance

Any method for providing fault tolerance ultimately involves a cost in the form of some 

extra resource [Nel90]. One reason why fault tolerance has been little used in general 

systems is that this cost has been prohibitive when compared with the cost of the machine. 

Any fault tolerance mechanism has therefore been an expensive optional extra (if available 

at all).
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Application replicas

There are two general mechanisms for providing fault tolerance:

• Replication, and

• Checkpointing.

5.2.1 R ep lica tion

If a single instance of an application is executing and suffers a failure, then the application 

fails. However, if two instances of the application are executed in parallel, either can fail 

leaving the other one to complete the task. Similarly, by executing N instances of the 

application, N-l instances can fail and a result will still be returned.

This rather simplistic method of providing fault tolerance is attractive for many reasons. 

Firstly, if the replication is handled by the operating system, no modifications are required 

to the application. Secondly, by determining how many replicas are executed, the number
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Disk storage

of faults to be tolerated can be adjusted. Thirdly, all applications execute at full speed 

and any failure does not effect the execution speed of the others. This is very important 

in real-time applications.

The cost of replication is obvious; processing resource. If two instances are executed 

concurrently then twice the number of processors must be available. If the application 

were executed on a parallel machine this would effectively reduce its size by a factor of 

two—a large penalty to pay for infrequent faults.

5 .2 .2  C h eck p oin tin g

Instead of executing multiple instances of an application, checkpointing periodically takes 

a “snapshot” of the running program and saves it to disk (or some other failure independent 

media). This snapshot contains a complete copy of all active program data, files, etc. If 

the application then fails, the checkpoint can be recovered and execution restarted using 

it as the starting point.
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Checkpointing1 is attractive for various reasons. Firstly, the checkpointing can be handled 

by the operating system and then entails no modification to the application. Secondly, the 

period between checkpoints can be varied to provide a compromise between checkpoint 

overheads, which are proportional to fault frequencies, and lost time (if the time between 

checkpoints is “T”, then a fault could at worst cause the application to take an extra time 

T to complete). Thirdly, multiple faults can be tolerated by increasing the number of 

snapshot copies made, each additional snapshot allowing the tolerance of another failure.

With checkpointing the cost is not as apparent as in replication. Here the predominating 

costs are extra space for the checkpoint copies plus the processor time to make the copies. 

The total cost of both these probably does not exceed that required for replication (repli-

cation also requires extra space for the individual instances) but because the processor is 

responsible for generating the checkpoint, the application will take longer to execute even 

if there are no failures.

5.3 Fault tolerance in parallel m achines

Neither replication nor checkpointing in its simple form is suitable for distributed machine

architectures. Consider an application consisting of many parallel parts.

Replication — If a parallel application is replicated and a single part fails, then what 

should happen to the remainder? One possibility is to terminate the whole of the 

replica to which the part belonged. This is unnecessarily harsh, since another replica 

of the part could provide the missing answer for the remaining parts thereby enabling 

the replica to continue. This would provide good tolerance of multiple failures. 

However, if this approach were adopted then it is necessary to maintain careful 

synchronisation so that different replicas cannot provide temporarily incorrect data 

to other replicas (due to one part executing faster than another).

Checkpointing — If a single part of a parallel application fails then it cannot simply 

recover the most recent checkpoint for that part since it may be temporally incorrect *

'The recovery process is known as “rollback”.
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with respect to the rest of the application (ie. contain data which depends on data 

which is no longer available). In such a situation it is necessary to “rollback” other 

parts of the application until a consistent point is found. This is essentially the same 

problem as described above for replication, except that here it is checkpoints that 

must be correctly synchronised.

No matter which fault tolerance strategy is adopted, for a parallel or distributed machine, 

the problem of coordinating the parallel tasks is essentially the same when recovery is 

necessary.

5.4 Fault tolerance for Arius

A r i u s  is designed to make best use of parallel or distributed groups of machines. Fault 

tolerance in such situations is considered mandatory rather than optional. It is recognised 

that any solution must be both efficient, so as to limit the effect on the application per-

formance, and involve little or no modification to the applications, so requiring no effort 

by the programmer to make use of it. Additionally, A riu s  is intended as a general pur-

pose operating system and so does not support real-time constraints, nor is it realistic to 

sacrifice half the available machine to handle failures.

For all these reasons, A r i u s  adopts a checkpoint based solution to fault tolerance. These 

checkpoints are supported within the operating system. An alternative solution would 

be to provide primitives to applications to allow checkpoints to be made and trust they 

are used correctly. This was not considered a sufficiently comprehensive solution, espe-

cially when parallel programs increase the complexity of such operations. By adopting 

an operating system bias, system checkpointing can be provided efficiently and can be 

strictly enforced so allowing the operating system to depend upon applications being fault 

tolerant. This greatly simplifies the design of system servers which need no longer worry 

about client failures.
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5.4.1 S tru ctu re  of A rius reliab ility  sy stem

The design of the reliability system is based around a few basic concepts:

1. It must be application transparent,

2. It must be provide efficiently, to have minimal impact on application performance 

when no faults are detected,

3. It is unreasonable to duplicate hardware to provide fault tolerance,

4. It is unreasonable to use any part of the machine to support fault tolerance exclu-

sively,

5. Checkpointing an entire machine in a single “snapshot” is difficult and inefficient, 

and

6. Both checkpointing and rollback algorithms must be scalable.

The goal is to produce a solution which is scalable to large machines (1000 processors), 

does not require specialised hardware, and does not require application intervention. This 

can all be achieved by considering the provision of fault tolerance in two linked systems, 

one providing volatile reliability, and the other persistent reliability.

5 .4 .2  V olatile  reliab ility

Figure 5.3 illustrates the general structure of a parallel machine which would support 

Ar i u s . The machine consists of many nodes, each node being a processor (or a group 

of processors), memory and disk. These nodes are linked by a network operating a DSM 

communication system. Such a system inherently contains redundancy since it consists of 

many identical units, each capable of operating in the place of another2.

Volatile reliability makes use of this duplication to provide fast checkpointing and rollback. 

Each node is essentially independent, and so failure independent. When a node makes a

2Generally, a u n i t  must contain at least one processor, a memory, and at least one disk. A diskless node 
is not independent since it depends on another disk.
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Figure 5.3: General machine structure

volatile checkpoint, rather than storing it on disk (so it may be recovered after failure), 

it is stored to another node. This allows checkpoints to be completed in a much reduced 

time and also provide faster rollback. Most of the work in volatile reliability is performed 

by the DSM. The DSM system is used in three ways. Firstly, it coordinates the grouping 

of interdependent applications (those which have communicated) so allowing fine grain 

checkpoints to be made; secondly, it provides a mechanism to export the checkpointed data 

to other nodes; and thirdly, after a rollback it provides a means for migrating checkpointed 

data on demand.

The volatile reliability mechanism supports the following operations:

Checkpoint — Checkpoints may be initiated by applications or, more usually, will be 

initiated on an application’s behalf by the system. Once a checkpoint is initiated, 

the application is allowed to continue before the checkpoint has completed.

Commit — Applications may explicitly wait for a checkpoint to be committed. Once 

this has happened the previous checkpoint is guaranteed to be recoverable.

Rollback — The system initiates rollback on behalf of applications when faults are de-

tected. Rollback always returns to the previous committed checkpoint.
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Generally, these operations are used by the operating system only, applications being 

unaware of them. However, explicit control is provided to perform checkpoints or wait for 

commitment.

Storing checkpoints in other machines’ memories does not ensure that data persists. There-

fore, a system to support checkpointing to disk is also provided.

5 .4 .3  P ersisten t reliab ility

Volatile reliability provide a means of efficiently making checkpoints, storing them, waiting 

for commitment to take place, and recovering after a fault. Persistent reliability does not 

attempt to duplicate these services. It provides only a mechanism to make a checkpoint 

to disk, and does not provide a mechanism for rollback or commitment.

This is a policy decision rather than the inability of the system to support commitment 

and rollback. Volatile reliability can provide the required level of fault tolerance more 

efficiently that persistent reliability. Consequently, excessive use of persistent checkpoints 

would degrade the performance of the machine. The ability to make persistent checkpoints 

is primarily provided to allow systems to be shutdown without data loss, and to allow 

periodic system initiated checkpoints to prevent large scale data loss in the event of a 

catastrophic failure.

5.5 Sum m ary

This chapter has introduced the need for fault tolerance in distributed operating system 

design and highlighted the relevant points in the two strategies available to provide it. 

The problems associated with implementing either strategy in a parallel machine were 

then outlined. The solution adopted in A r i u s  is checkpointing. The main reasons for 

this decision and the level at which it is implemented have been explained. The next two 

chapters describe in detail how such a fault tolerance framework can be constructed under 

the A r i u s  operating system and how it operates. Volatile reliability will be considered 

in chapter 6. It enables failures in a running network of machines to be handled quickly
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and in an application transparent fashion. Persistent reliability is considered in chapter 7. 

It provides a mechanism to store checkpoints to disk to protect data against catastrophic 

failure.
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Volatile reliability

The algorithms detailed in the following chapter provide reliability through the use of 

data duplication, checkpoints and rollback. This allows failures, resulting in data loss, 

to be tolerated by recovery of the duplicated data. For networks of failure independent 

machines, a single machine failure may be tolerated. After such a failure is detected and 

compensated for, the system may then tolerate another single machine failure.

Any faults resulting in the failure of more than one machine at any one time cannot be 

handled and are considered catastrophic. However, such faults will fail safe, that is they 

will neither corrupt persistent data nor breach security barriers.

This single machine fault tolerance may be expanded to handle multiple simultaneous fail-

ures by use of failure domains, wherein a set of machines are considered failure dependent.

6.1 Introduction

Volatile reliability provides a reliable run-time system by providing a hidden, fault-tolerant 

virtual memory system. This system is constructed by additions to both the virtual 

memory management and the DSM structures of Am o s .

We will consider a mechanism to provide fault tolerance through the use of checkpointing 

and rollback [TKT89] and show how these systems can be implemented using additions
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to first the virtual memory management system and then the distributed memory system. 

Results are presented in chapter 8 indicating the overhead this mechanism imposes.

The remainder of this chapter is divided into two parts. We first develop algorithms for 

fine grain, single node checkpointing and rollback. These are then expanded to handle the 

problems inherent in distributed systems.

6.1 .1  C h eck p oin tin g  and rollback

Checkpointing and rollback is a mechanism for providing fault tolerance. Periodically, the 

entire image of a running process is copied elsewhere (usually to disk). This operation 

is termed a checkpoint. If at a later date the process fails, due to the processor crashing 

for example, the process may be restarted elsewhere by using the previously recorded 

checkpoint. This operation is termed a rollback.

This operation may appear to be quite simple but in this basic form is almost useless. 

Checkpointing in this manner is extremely expensive in processing time. Not only must 

all processes be halted during the checkpointing, but the quantity of data which requires 

copying is excessive. There are also implementation difficulties. The algorithm assumes 

that the checkpoint can be made atomically; that is, once a checkpoint is initiated it 

proceeds correctly to completion. Unfortunately, it is quite possible for an error to occur 

during the checkpoint operation so losing both the checkpoint and the processes them-

selves. Consequently, a better error handling scheme is required.

6 .1 .2  C h a llis’ A lgorith m

Challis algorithm [Cha78] provides a way of producing an apparently atomic checkpoint 

whilst coping with the possibility of faults during the actual checkpointing operation.

Assuming that a checkpoint is to be written to disk, the algorithm allocates two disk 

blocks at known locations. These are known as root blocks and contain the necessary 

information to allow the system to map memory blocks to disk blocks. When the system 

checkpoints, the current memory image is written to newly allocated disk blocks and an
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Figure 6.1: Organisation of data in Challis’ Algorithm
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appropriate root created, indicating where these blocks are, and also written to disk. The 

root blocks are written alternately, each with a version number at the beginning and end1 

(see figure 6.1).

When a system crashes and recovers, both root blocks are examined. The root block with 

the newest version number, which is the same at the beginning and end, is selected and 

used to reload the system.

The algorithm provides the illusion of atomic update by producing a checkpoint which 

happens in two stages. The first stage is the writing of the current image, the second 

is the writing of the root block. Only once this root block is written correctly is the 

checkpoint committed; that is, written consistently so it may be rolled back to in the event 

of system error. Such algorithms are said to use two stage commit protocols.

The Challis Algorithm reduces the problems of atomic checkpoints since it copes with 

errors during commitment without the system failing completely. In this form however, it 

is still necessary to write a complete image to disk at every checkpoint.

6 .1 .3  Im p rovin g  C h a llis’ A lgorith m

The obvious improvement to Challis’ Algorithm is to avoid copying the entire image and 

only copy the changes. One such scheme [RHB+90] does this using shadow paging. This 

scheme, used in the M o n a d s  operating system, uses the page modification information 

present in the virtual memory management subsystem, to determine which pages of an 

image have been modified since the last checkpoint and only incorporates those pages 

into the new checkpoint. This dramatically reduces the quantity of data which must be 

stored at each checkpoint. The cost of this improvement is the increased complexity of 

determining which data requires checkpointing and which disk pages can be reused when 

no longer associated with a checkpoint or current image. *

’By placing similar version numbers at the beginning and end of the block, it becomes possible to 
determine if the block was written completely during the recovery procedure.
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6 .1 .4  D istr ib u ted  m achine checkpointing

Challis’ Algorithm was designed to checkpoint single machines. So too is the improved 

algorithm used in M o n a d s  although some attempt has been made to incorporate the 

notion of distributed memory checkpointing.

There are a number of issues to be addressed in checkpointing a distributed system. 

W here do we checkpoint to?

In a uniprocessor system, there is only the processor’s memory and disk available as 

independent storage entities. Consequently, checkpoints are made from memory to disk. 

In a distributed system, other machines are as good a repository for checkpoints as disks, 

if they are failure independent. Using other machines could also decrease checkpointing 

time and speedup recovery.

Should the whole system  be checkpointed at the same time?

If ChalHs’ Algorithm were to be used, it would be necessary to halt the entire system, 

checkpoint the entire system, and then resume the entire system. This might be an ac-

ceptable solution for small multiprocessor machines. For hundreds of machines distributed 

across many sites, it would be unusable since it could easily halt the entire system for min-

utes.

Can each machine in the system  be checkpointed individually?

If all machines cannot be checkpointed together, then the other extreme would be to 

checkpoint them individually. This is possible as long as there are no interactions among 

them. Unfortunately, when interactions occur they can cause the loss or duplication of 

data after rollback. Consider the following example where data is duplicated:

Exam ple 6.1

Both “machine A ” and “machine B ” checkpoint,
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“Machine A ” copies a piece of data to “machine B ”,
“Machine B ” checkpoints,
Both machines crash,
Both machines rollback to their last completed checkpoints, 
“Machine A ” copies a piece of data to “machine B ” as before, 
“Machine B ” gets the data again and was not expecting it!

Another example where data is lost:

Example 6.2

Both “machine A ” and “machine B ” checkpoint,
“Machine A ” copies a piece of data to “machine B ”,
“Machine A ” checkpoints,
Both machines crash,
Both machines rollback to their last completed checkpoints,
“Machine A ” continues; it does NOT resend the data,
“Machine B ” expects data from “machine A ” but never receives it!

Both these examples highlight why individual checkpointing cannot provide correct roll-

back after machine failure. Somehow, the interactions between machines must also be 

captured.

Can we checkpoint only those entities with data dependencies?

An algorithm is required which allows a system to be checkpointed in small sections but 

maintains the necessary data dependencies so data is neither duplicated nor lost. One such 

solution would be to determine which machines have communicated with which between 

checkpoints and force these to be checkpointed simultaneously. A better solution can be 

found by considering the problem on a finer scale.

Modified data is produced by processes running given programs. A process reads data, 

processes it, and writes results accordingly. Therefore, since a process is the smallest unit 

of data transformation, it seems the sensible unit for checkpointing. In fact, this turns out 

to be true only in a system like U n i x  where one process inhabits one protection domain. 

In A r i u s , many processes may inhabit a single domain, each transforming data, therefore, 

it is domains that must be checkpointed. Every process interacts with others in the system
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through joint data structures maintained via the DSM mechanisms. These interactions 

must be captured if complete checkpoints are to be made and the problems highlighted 

in §6.1.4 avoided. The DSM and virtual memory allow interactions between nodes to be 

captured at the page level, and so this level of data dependency can be used.

6.2 Local data dependent checkpointing

A scheme will now be examined to provide parallel volatile checkpointing by using virtual 

memory and DSM together with failure independent machines for checkpoint deposition. 

The algorithm to provide data dependencies on a single machine will first be examined, 

followed by its enhancement to incorporate remote machines through distributed shared 

memory. Finally, the exporting of checkpointing data to other machines will be explained.

6.2.1 D a ta  d ep en d en ces in a single dom ain

A single domain interacts with memory in a simple way. Data is read from memory pages, 

operated upon by the processes in the domain according to their programs, and the results 

written back to memory pages. Therefore, the dataflow can be considered to be a flow 

from pages, through the domain, and out to other pages (see figure 6.2). A simple rule 

can define this relationship:

Rule 6.1
All modified pages are dependent on all accessed pages.

The pages which have been accessed and the pages which have been modified can be 

determined by examining state information kept in the virtual memory subsystem.

Rule 6.2
A locally referenced page may have one of four states; “unaccessed”, “read only”, “modified 
only” or “read and modified”2.

2Conventional memory management support does not provide facilities to separate the two states “mod-
ified only” and “read and modified”
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1 I Unaccessed page 

i:H  Read page

Modified page

Figure 6.2: The flow of data in a single domain

This state information can be gathered in one of two ways: either by examining state 

information kept by the virtual memory subsystem at the moment of checkpointing or, by 

noting the memory accesses as they occur so that it is immediately available at the moment 

of checkpointing. This last method is the most attractive. When a page is first accessed, 

a page fault will be taken to allow its virtual-to-physical mapping to be determined and 

cached. Likewise, when a modification is first made to a page, a page fault will be taken 

to dirty the page. In both these cases, a note of the access can also be made.

It is therefore possible to determine, for any measuring period, which pages are dependent 

upon which others. Although it would be more exact if the order of modification and 

accesses were maintained, this would place an increased overhead on the virtual memory 

subsystem, requiring many more page faults to note this information. It is debatable 

whether the information gathered would be any more useful. Only a limited amount of 

information is therefore kept.

For a single domain on a single machine, the operation of checkpointing is relatively trivial 

and can be separated into three sections. The first section actually determines which pages 

require checkpointing. The processes are halted, the pages marked, and the processes
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restarted. The use of a copy-on-write3-checkpoint mechanism allows the processes to be 

restarted before the data has been written in the checkpoint. Any subsequent attempts to 

modify these pages will force a copy to be made and modified instead. The second section 

performs the actual checkpointing in a lazy fashion. The remaining section commits the 

modifications by writing the index block. Once all this has been completed correctly, the 

checkpoint is complete. The algorithm is detailed below:

Algorithm  6.1

Begin the checkpointing operation,
Halt the processes in the domain,
Iterate through all the pages the domain has modified since the last checkpoint and mark 

each one “copy-on-write-checkpoint”,
Restart the processes,
Iterate through the “copy-on-write-checkpoint” pages and write each one to a failure inde-

pendent store (eg. a disk),
Write the domain’s “index block” so committing the checkpoint,
End the checkpointing operation.

Parallels may be drawn between this system and the improved Challis’ Algorithm; the use 

of copy-on-write for modified pages before commit here is similar to the use of shadow 

pages. Notice that, in this simple system, only information about modified pages is re-

quired to make the checkpoint. In fact, only modified pages will ever need writing during 

a checkpoint but information regarding which pages have been accessed is important as 

will be shown later.

6 .2 .2  D a ta  d ep en d en ces betw een  tw o dom ains

Now consider a more complex system; that of two domains which interact on a single 

machine (see figure 6.3).

In this system, two domains access pages and modify both unique and shared pages as a 

result. What data must be saved if Domain#2 performs a checkpoint? Domain#2 will

3 Copy-on-write is a technique which allows lazy copying of data. A page of data may be virtually copied 
but only physically copied when either the original or virtual copy is modified.
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Data Writes

Unaccessed page 

Read page 

Modified page

Memory

Data Writes
Data Reads

Figure 6.3: The flow of data for two domains (1)

commit the page it has directly modified (page X). The domain also depends on two other 

pages (see Rule 6.1) one of which has been modified by Dom ainal. Failure to take account 

of this domain interdependency could result in incorrect rollback.

Figure 6.3 can be considered as two scenarios. Page Y is shared between the two domains; 

D om ainal modifies it whilst Domain#2 reads it. Firstly, Dom ainal may write data 

to Page Y which is then read by Domain#2. Secondly, Domain#2 may read data from 

Page Y which is then overwritten by Domain# 1.

In the first scenario, information is transferred from Domain# 1 to Domain#2 via Page Y. 

This establishes a data dependency from Domain#2 to Domain#l; if Domain#2 is check- 

pointed then so must Domain# 1. The converse is not true since no data passes in the 

opposite direction. In the second scenario, no physical information is transferred between 

domains. However, data that Domain#2 depends upon is overwritten by Domain# 1. This 

can be viewed as “invalidation” of the old data by Domain# 1 which then depends upon 

this invalidation. Consequently, a dependency from Dom ain#l to Domain#2 is produced. 

No converse dependency is generated.

Unfortunately, in the fixed periods of time over which dependency information is gener-
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ated, it is impossible to determine ordering of accesses and modifications by the domains. 

Therefore, it must be assumed that either scenarios could have taken place. The only so-

lution therefore is for both domains to depend upon each other. This may be encapsulated 

in the following rule (refined from Rule 6.1):

Rule 6.3
At the time of checkpointing, all modified pages depend on all accessed pages which have 
themselves been modified.

In this example system, with two domains operating on a single machine, the checkpointing 

operation is quite simple and detailed in the following:

Example 6.3

Begin the checkpointing operation,
Halt the processes in domains #1 and #2,
Iterate through all the pages these domains have modified since the last checkpoint and mark 

each one “copy-on-write-checkpoint”,
Restart the processes,
Iterate through the “copy-on-write-checkpoint” pages and write each one to a failure inde-

pendent store (eg. a disk),
Write the domains’ “index blocks” so committing the checkpoint,
End the checkpointing operation.

There is a problem here. In the penultimate step, the checkpoint is committed by the 

writing of two index blocks. Problems would arise if only one index block were written 

before a rollback became necessary; the checkpoint should not be restored since it was not 

completed. Unfortunately, the written index block would be restored to its domain—this 

is incorrect.

The example shown, and checkpointing steps given, do not constitute a complete solution 

(even disregarding the problem of index blocks for the moment). In order to generalise, 

consider figure 6.4. Here both domains modify private data pages whilst reading other 

shared pages. No data dependencies are generated between them because there is no flow 

of information between them; they only depend on unaltered data. Consequently, each 

domain may be checkpointed independently.
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Figure 6.4: The flow of data for two domains (2)

6.3 G eneral algorithm  for local data dependent checkpoint-

ing

Figure 6.5 shows a matrix of domains and pages. Each domain’s page reference is marked 

showing how it was used in the measured period of time. Three page states are possible 

(see Rule 6.2) and are indicated in the figure. By applying Algorithm 6.2 to this system, 

two independent checkpoints can be found; one containing domains #1, #2, #3 , #5  and 

#8 , the other containing domains #4, #6  and #7.

Inspection of this example and application of Rule 6.3 allows the development of a general 

domain checkpointing algorithm:

Algorithm  6.2

Begin the domain checkpoint operation
I f  the domain is not marked “active” then return immediately, 
Mark the domain as “checkpointing”
Halt all processes within this domain 
For each page accessed by this domain {

I f  this page has not been modified, go onto the next page 
I f  this page is marked “active” {
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Mark this page “checkpointing”
Flood the checkpoint to all local domains which have accessed this page

}

}
Mark the domain as “checkpointed”
Synchronise with other dependent domains

Release any processes halted in this domain
For each page which has been marked “checkpointing” {

Write the page to failure independent media 
Mark the page “checkpointed”

}
Write the index block so committing the checkpoint 

Mark the domain “active”

End the domain checkpointing operation.

Domain
# # # # # # # #
1 2 3 4 5 6 7 8

Page#l 

Page#2 

Page#3 

Page#4 

Page#5 

Page#6 

Page#7 

Page#8

Figure 6.5: Matrix of domains and pages

Ï" Unaccessed 

| Read only 

Read and/or written

The algorithm uses a “flood-fill” technique to find and checkpoint modified pages. Pages 

which have been modified (indicated by a row containing a dark block in figure 6.5), allow 

other accessing domains to be “flooded”, so including them in the initiator’s checkpoint. 

Pages which have no modifications are not “flooded” since there has been no change in 

the accessed data. A typical implementation of this algorithm would construct a list of 

accesses to each page, accumulated by the page fault handler of the VM subsystem, to 

enable the page searching to be done quickly.
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6.3 .1  Im p lem en ta tio n  problem s

Unfortunately, the algorithm has a three implementation problems. Firstly, the step to 

synchronise with other dependent domains presents problems with multiple simultane-

ous checkpoints, a situation where the flood-fills initiated by multiple checkpoints collide 

resulting in a number of partial checkpoints. Together these would provide a correct check-

point but separately they are incomplete. This situation is very likely to arise in a shared 

memory multiprocessor and a solution is non-trivial.

Secondly, it is possible that processes are modifying pages at the same time they are being 

checkpointed. The copy-on-write mechanism allows snapshots to be taken of each page 

but this must be carefully coordinated if a correct checkpoint is to be produced. Consider 

the following example. Two pages, A and B , exist in two separate domains and both are 

modified. When a checkpoint is initiated, these pages must be “copy-on-write” protected. 

First, A is protected. It is then modified, so causing a copy to be taken, by a process 

which then modifies page B. Page B is then “copy-on-write” protected as it is added to 

the checkpoint. This checkpoint is causally incorrect; data in page B exists without the 

causally preceding data in page A. It is not difficult to see how this can happen, especially 

in multiprocessor shared memory machines.

Finally, the checkpoint commits multiple index blocks, one for each included domain. If 

some index blocks were not committed before a machine crashed, it would be possible to 

recover incorrectly after failure. A scheme is required to guarantee that a single action 

commits the whole of the checkpoint, like the single root block in Challis’ Algorithm.

6 .3 .2  S olu tion s: M u ltip le  s im u ltan eou s dep en d en t checkpoints

The simplest solution would be to allow only one checkpoint to occur at any one time. 

This is clearly undesirable because it introduces a bottleneck into the system and is a 

solution which cannot be easily extended for distributed memory machines.

A better scheme therefore is to provide some form of domain synchronisation whereby each 

domain proceeds to a synchronisation point and then waits until all other domains have 

reached this point before continuing. This may resemble simple barrier synchronisation but
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it is more complex since the dependencies among domains are not known until each domain 

has completed its first stage of checkpointing. Therefore, unlike barrier synchronisation, 

neither the dependencies nor the number of them are known in advance.

The scheme is similar to the flood-fill technique used to spread the checkpoint from one 

domain to another and relies on simple domain prioritorisation and domain specific locks.

Algorithm  6.3

Begin synchronisation of dependent domains (assuming priority and checkpointing locks are 
set)

Release domain’s checkpointing lock
I f  domain’s dependent set contains any domains with a higher priority than my own {

Select the highest from the set
Wait for the release of its priority lock

}
Else {

Recursively examine my dependent set {
I f  examined domain has a greater priority than my own {

Abort examination
Wait for the release of its priority lock

}
Else if examined domain has its checkpointing lock set {

Wait for the release of the checkpointing lock
}

}
I  am the highest priority domain, so mark myself “master”

}
Release my priority lock
End synchronisation of dependent domains

Firstly, the domain sets its priority lock and checkpointing lock. Then it performs the first 

stage of checkpointing. When this is done, it releases its checkpointing lock. Next each 

domain examines its set of dependents, the set contains those domains to which a flood 

was sent. If this set contains any domain with a higher priority than its own, the current 

domain waits on the highest domain’s priority lock. If the set contains only lower priorities, 

then the domain begins to recursively examine its dependents, avoiding any cycles in the 

graph by logging those it has already visited. If at any stage a dependent is discovered 

with its checkpointing lock set, then the domain waits until it is released. If a domain is
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encountered with a higher priority than the current domain, then the domain aborts it 

search and waits on the high priority domain’s priority lock. Eventually, all domains will 

be waiting on another except for one, the highest priority domain or master. When this 

one has completed its search it has determined two things; that it is the highest priority 

domain and that all other domains have completed their checkpointing. The domain then 

releases its priority lock and proceeds with the rest of the checkpointing process. When this 

lock is released, other domains will restart. They immediately release their own priority 

locks and continue with the rest of their checkpoints.

An example of this algorithm in operation is shown in figure 6.6. Here six domains are 

linked by various dependencies (a). Of the six, only 1 & 2 need to initiate a recursive 

search of the graph to determine the highest priority, the others simply synchronise on 

their set’s highest (b). 2 soon discovers that domain 1 is of a higher priority (c) whilst 

1 examines the whole graph to discover it is the highest in the dependency group (d). It 

then releases its priority lock (e) so releasing the others (f).

This algorithm may appear complex but it has the advantage of incurring no additional 

cost in the page fault handler (the page accesses were logged for checkpointing purposes 

anyhow) nor does it facilitate false dependencies or bottlenecks. As will be seen later, it 

also extends to distributed checkpoints.

6 .3 .3  Solu tions: C ausally  correct checkpoints

A causally incorrect checkpoint can occur in two ways; if a process modifies a page of 

data which has already been marked copy-on-write checkpoint and then modifies a page 

which has not, or if a process modifies a page of data which has already been marked 

copy-on-write checkpoint and then modifies a clean page which is shared by a processes 

not yet checkpointed.

All problems are caused by a process generating a “copy-on-write” fault and then mod-

ifying further, as yet uncheckpointed, pages. By halting a process, when it generates a 

copy-on-write fault, the further modifications which cause the problem are prevented. The 

halted process may be restarted when all appropriate pages have been marked.
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Figure 6.6: Synchronisation among six domains
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Algorithm  6.4

Begin the “copy-on-write” fault handing
I f  the faulting page is marked “checkpointing” and the current domain is not marked “check- 

pointed” {
Halt the process until the checkpoint instantiation responsible wakes it up

}
Perform the copy-on-write operation, marking the new page as “active” 
End the “copy-on-wnte” fault handing

Here a process is halted when a copy-on-write fault is generated, the faulted page is marked 

“checkpointing” and the current domain marked “checkpointed”. This situation will arise 

when a page forms part of a checkpoint in another domain but, as yet the checkpoint flood 

has not progressed to the current domain to halt any processes it may contain. Once the 

checkpoint flood procedure has completed, the process is woken and allowed to proceed. At 

this point any checkpointed pages will either be marked “checkpointing” and the domain 

marked “checkpointed”, or marked “checkpointed” and the domain marked “active”. Both 

these cases do not halt processes. This simple algorithm guarantees that any further page 

modification and copy-on-write faults will form part of the next checkpoint and not the 

current one.

6 .3 .4  Solu tions: S ingle action  com m itm en t

By providing each domain with its own index block, the granularity of checkpoints is 

decreased. Unfortunately, when a checkpoint is made, the commitment of these index 

blocks must be correctly coordinated if the result is to be consistent. Failure to do so 

could result in rollback recovering only part of a checkpoint.

The algorithm described in §6.3.2 provides a way to organise the index blocks so that 

correct recovery can be guaranteed. This algorithm elects one domain as master, the rest 

being slaves. The identity of the master can be propagated to the slaves as part of the 

priority lock releasing mechanism.
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Algorithm  6.5

Begin index block commitment (assuming commitment lock has been set at the beginning of 
the checkpoint operation)

I f  domain is a “slave” {

Commit the checkpoint marking it “slave to master”

Release the domain’s commitment lock 

Wait for release of master’s commitment lock

}

Else {

Recursively examine the dependency set {
I f the examined domain’s commitment lock is set, wait until it is cleared

}
Commit the checkpoint marking it “master”

Release the domain’s commitment lock

}
End index block commitment

The checkpoint operates as originally described except that an extra committed lock is 

set before it begins. The operation proceeds until the commitment of the index block is 

reached. If the domain is a slave, the commitment is made but the block is marked slave to 

master “n” where “n” is a unique identifier determined during synchronisation. Once this 

is done, the committed lock is released and the domain pauses until the master releases 

its own committed lock. If the domain is the master, its dependency set is recursively 

examined as in the previous synchronisation procedure. Here, if any domain is encountered 

with its committed lock set, the domain pauses until it is cleared. When the examination 

is complete, all slave domains must have committed their index blocks. Therefore it 

only remains for the master to commit its own, marked master “n”, and release its own 

committed lock to complete the checkpoint.

Recovery of any index block marked master “n” will always succeed but recovery of an 

index block marked slave to master “n” will only succeed if the associated master has also 

been recovered.
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6.4 Local Rollback

On a single machine, failure of the machine is equivalent to the failure of the system. 

Checkpointing allows the machine to be restarted from its last consistent position making 

use of data stored on a failure independent store, most probably a disk. The rollback 

procedure must analyse the stored data, determine which are the most up-to-date and 

complete checkpoints, and use this data to restart.

Algorithm  6.6

Begin rollback
Retrieve index blocks from failure independent store 
Collect together a set of master index blocks 
Collect together a set of slave index blocks 
For each block in the slave set {

I f  the slave’s master is not in the master set, discard the index block

}
Re-initiate the virtual memory system from the recovered block indexes 
End rollback and restart the system

This algorithm operates in three phases. Initially, the index blocks are recovered and 

ordered into two sets, one containing all the master index blocks, the other containing all 

the slaves. The slave blocks are then examined in turn and, if no associated master is 

present, they are discarded. Finally, the resulting image is assimilated into a new virtual 

memory stage from which the the machine may restart. It is important to note that, if the 

failure independent media cannot provide the index blocks due to a media error, recovery 

cannot take place. Such an error is best handled by using conventional archival backups.

6.5 R em ote checkpointing

A complete solution to the distributed checkpoint problem must also handle remote do-

mains sharing data through the DSM mechanism of chapter 4. Any dependencies which 

exist between these domains and local j ^ e s should cause the checkpoint operation to 

“flood” between machines. It should also be possible to use these remote machines as
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repositories for checkpointed data (if they are failure independent). This provides the 

system with the required volatile checkpoints. In the following sections, the inclusion 

of remote data dependencies will be analysed and the use of DSM to support volatile 

checkpoints will be discussed.

6.5 .1  R em o te  data d ep en d en cies

A complete checkpoint in a distributed machine must include not only locally dependent 

data but also remotely dependent data. Analysis of the DSM information kept for dis-

tributed shared pages should indicate which data must be saved and which domains are 

dependent.

Figure 6.7 shows a number of interacting domains split between two physical machines 

(the VM state marked in the top matrix is the same as in figure 6.5). The bottom matrix 

indicates the DSM state of each page. A comparison of these two matrices shows there is 

insufficient state held to determine remote dependencies correctly. Page#8 provides a good 

example of this; the page is owned by domain#4 and shared with domain#6. However, 

domain#7 has also made use of the page during the checkpoint period, as indicated in 

the VM state, but the DSM state does not provide enough information to determine this. 

Some additional DSM augmentation is therefore necessary to enable these dependencies 

to be determined.

6 .5 .2  D S M  m od ification s

The DSM system currently holds a chain of DSM entries describing the machine designated 

owner as well as those holding copies for each page. At the time of a checkpoint, this chain 

does not necessarily hold all machines which have accessed and modified a page during the 

checkpoint period. A further list is required to hold this additional information (figure 6.8).

The DSM supports this information in a DSM checkpoint chain (DCPC). This chain is 

similar to that used to hold the “DSM copies” information but, unlike it, it is not truncated 

by page invalidations.
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Figure 6.7: Matrix of processes and pages for two processors
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Machine#! Machine#2 Machine#2

DSM checkpoint chain 

DSM copies chain

Figure 6.8: DSM copies and data dependencies
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Figure 6.9: DSM checkpoint information

Rule 6.4

A machine is added to a DSM checkpoint chain if it accesses a modified page or holds an 
unmodified page which is invalidated.

Rule 6.4 describes the conditions under which a machine is added to the DCPC. Note 

that DCPCs are not constructed for clean data pages since they cannot affect the current 

checkpoint state.

Figure 6.9 shows both the VM state, used for checkpointing local systems, together with 

the DCPCs which show how page copies have migrated to machines during the checkpoint
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period. The circular nature of the chains allows any machine to locate all other machines 

which are dependent.

6 .5 .3  U sin g  D C P C s for d istr ib u ted  checkpoints

DCPCs provide a mechanism to locate all machines which depend on a page. By combining 

this with Algorithm 6.2, a new algorithm may be designed capable of handling distributed 

checkpoints.

Algorithm  6.7

Begin the domain checkpoint operation
I f  the domain is not marked “active” then return immediately,
Set all relevant locks
Mark the domain as “checkpointing”
Halt all processes within this domain 
For each page accessed by this domain {

I f no domain has modified this page, go onto the next page 
I f this page is marked “active” {

Mark this page “checkpointing”
Flood the checkpoint to all local domains which have accessed this page, adding 

any domains to the dependency set
I f  the DCPC points to any machines which are not this one, flood the checkpoint 

to the remote machines’ domains

}

}
Mark the domain as “checkpointed”

Synchronise with other dependent domains
Release any processes halted in this domain
For each page which has been marked “checkpointing” {

Write the page to failure independent media 

Mark the page “checkpointed”

}
Perform index block synchronisation 
Mark the domain “active”
End the domain checkpointing operation.
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6 .5 .4  Im p lem en ta tion  problem s

This algorithm has three problems. Firstly, Algorithm 6.3 relies upon the creation of 

a dependency set to allow correct synchronisation to take place later. No attem pt is 

made to handle the addition of remote domains to the dependency set. Secondly, as with 

Algorithm 6.2, it is possible to obtain causally incorrect checkpoints. Although the local 

case is still handled by Algorithm 6.4, the remote case could still allow data to propagate 

incorrectly. Thirdly, although commitment of index blocks on each machine is correctly 

coordinated by Algorithm 6.5, the commitment between machines is not controlled. This 

problem is associated with the need to add distributed synchronisation. However, this 

problem may be better addressed by removing the need for a root index block altogether 

and providing a more distributed commitment solution.

6.5 .5  Solu tions: M u ltip le  sim ultaneous d ep en d en t checkpoints

The DSM checkpoint chain for any given page is a doubly linked circular list of nodes 

which have modified or referenced the modified page. Consequently, any node following 

the links will eventually return to itself. Also, A r i u s  relies on DSM to provide access to all 

data in the system. Therefore, accessing a remote domain’s structure is no more difficult 

than accessing a local one. By combining this essential property with the properties of 

DCPCs, the production of a distributed dependency set can be described.

In Algorithm 6.7, whenever a flood is made to a remote domain, the domain is added to the 

dependency set. This is sufficient to allow correct synchronisation to take place without 

further modification. It is not necessary to add the flooding domain to the flooded domain’s 

dependency set. The circular nature of the list ensures that the necessary dependency will 

exist.

6 .5 .6  Solu tions: C ausally  correct checkpoints

Remote causally incorrect checkpoints can occur when a process obtains a checkpointing 

page from a remote node and then modifies a local page. This results in the obtained
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page occurring twice in the checkpoint in two different forms. To overcome this problem, 

it is necessary to prevent the DSM providing copies of the page whilst it is checkpointing. 

Therefore, if a page is marked checkpointing, any DSM request made to it should be 

returned as an error. The behaviour is similar to the page being marked busy.

6 .5 .7  Solu tion s: S ingle action  com m itm en t

Chalks’ algorithm uses a root block to commit a checkpoint. This data resides at the 

root of the tree of changes and, once committed atomically, makes all other data in the 

checkpoint available. Similarly, the multiple index blocks of Algorithm 6.2 are organised 

as a master/slaves tree, commitment of the master committing the whole checkpoint. 

Although such a mechanism is easy to implement in a distributed system, such as A r i u s , 

volatile checkpoints provide an opportunity for a more flexible solution (§6.7.3).

6.6 DSM  storage for volatile checkpoints

A DSM system provides an ideal way of implementing volatile checkpoints; that is the 

maintenance of checkpoints in distributed memory rather than on disk or other persistent 

stores. DSM data is often duplicated on many machines due to sharing in parallel pro-

grams, and such data could be checkpointed at almost no cost since the replica needed to 

provide fault-tolerance is already present. By enhancing this inherent property, volatile 

checkpoints are easily implemented.

6.6 .1  D S M  check point copies

When a checkpoint is performed on a machine, the modified data must be written to an 

independent failure storstore. For volatile checkpoints this is another machine’s memory. 

For every DSM state, which is marked copy or owner.many, at least two copies of the 

page must exist so that there is no need to produce duplicates. For states which are 

marked owner.one, a copy must be exported. In nearly all cases, copies of the page are 

being moved between dependent domains since the page in question has been modified and
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Machine#l Machine#2

Figure 6.10: DSM checkpoint copies (1)

Machine#l Machine#2

Figure 6.11: DSM checkpoint copies (2)
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accessed by the two domains involved. The page will therefore be incorporated into both 

domains’ respective index blocks. In one case, the page has been accessed and modified 

by only one domain. In this instance, the page must be exported to a dependent of the 

domain so it will be included in any rollback which may subsequently take place. If this 

cannot be done, then a fake domain is created remotely. This domain’s sole purpose is 

to hold these checkpoint pages and, on failure, perform the required rollback operation to 

recover the domain.

Once copies exist, it is necessary to mark them as checkpoint copies, that is pages which 

are part of a checkpoint and must not be modified or deleted. Modification of DSM copies 

is not permissible anyhow, but disposal of copies is normally legitimate and so must be 

prevented.

Figure 6.10 shows the state of two machines after a single page has been checkpointed. 

When the checkpoint was initiated, copies of this page were present on numerous machines, 

indicated by the dotted dependency links, including machines #1 and #2. The checkpoint 

is initiated from machine# 1 and, since Page#N has been modified in the checkpointing 

period and, is owned and shared by #1, it is declared a checkpoint copy. Machine#l then 

instructs its downstream neighbour to do likewise. This results in the circular checkpoint 

DSM chain (indicated by the narrow lines). The current DSM version of the page may 

share the checkpointed version until a modification is attempted, at which point a copy 

must be made to prevent alteration of the checkpoint.

In figure 6.11 such a modification by machine#2 has forced a copy of the page to be made 

and all others to be invalidated. The checkpointed pages are still maintained on machines 

#1 and # 2  via the checkpoint DSM chain.

6.7 D istrib u ted  rollback

When a failure is detected, because some communication with another machine has er- 

rored, the detecting machine initiates a rollback. Only those domains which have direct 

or indirect DSM links to the failed machine are affected by the failure and these need 

only be returned to their state at the previous checkpoint. The checkpoint dependency

16 0



6.7. DISTRIBUTED ROLLBACK

information constructed at the time of the failure describes how the failure affects other 

domains and, consequently, describes which other domains need be rolled back.

The rollback algorithm is identical to a checkpoint algorithm except that, where a check-

point would mark a page “checkpointing”, rollback discards the page and reinstalls the 

one written into the previous checkpoint.

Algorithm  6.8

Begin rollback operation — DSM error

If the domain is marked “in rollback” then return immediately,

Set all relevant locks
Mark the domain as “in rollback”

Halt all processes within this domain 

For each page accessed by this domain {

I f  page is clean, go onto the next page
Flush this page so returning to the last checkpoint version

Flood the rollback to all local domains which have accessed this page, adding any do-
mains to the dependency set

I f  the DCPC points to any machines which are not this one, flood the rollback to the 
next DCPC entry, adding it to the dependency set

}

Synchronise with other dependent domains 

Release any processes halted in this domain 

Mark the domain “active”

End the domain rollback operation.

6.7 .1  Im p lem en ta tion  problem s

This algorithm fails to take account of three problems. Firstly, a failed machine may lose 

other machines’ checkpoint data. Although copies are recovered during rollback, only one 

copy of checkpointed pages may then exist. Unless these are duplicated, further failure 

could result in loss of these remaining copies and so an unrecoverable failure. Secondly, 

failure during checkpointing is not considered. Thirdly, whilst the rollback is flooding to 

dependents, it is possible for domains which are not rolled back to access those which are.
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6.7 .2  Solu tions: R ollback data d u plication

The problem of rollback data duplication can be divided into two; the first is the problem 

of locating and re-duplicating the necessary pages, the second is informing all relevant 

machines that a fault has taken place.

Page re-duplication

After a machine failure and rollback, it may be necessary to re-duplicate pages which are 

no longer fault tolerant because only a single copy remains in the system; the duplicate 

having being lost on the failed machine. The use of circular DSM chains allows any page 

copy to determine the other machine holding a copy, so it is simple for a page to be checked 

after rollback to establish whether the failed machine held a copy or not. If a copy were 

lost, then the page can be re-checkpointed.

It is more difficult to establish the lost pages if they are not part of the current rollback. 

Although a complex list strategy could be used to maintain a record of which pages have 

duplicates on which nodes, the infrequency of crashes makes the cost of maintaining this 

information prohibitive. A simple linear page search is therefore used when a machine 

failure is noted.

M achine d ep en d en ts ’ notification

Informing all relevant dependents of lost data is unlike checkpointing because it does not 

cause rollback. It is quite conceivable, though perhaps unlikely, for a machine failure not to 

cause rollbacks in Amo s  yet require various nodes to re-duplicate data. In effect, machine 

failures are causing partial re-checkpointing because data which is not immediately relevant 

has been lost.

The problem of re-duplication has already been considered, but the process of inform-

ing the relevant machines has not. Initially, only a single machine will notice the failed 

machine, and this may have no need to re-duplicate pages itself nor know of others that 

might. How is the failure to be reported to those machines to which it matters?
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Figure 6.12: Example of failed rollback

If a broadcast mechanism is considered to be prohibitively expensive, then the simplest 

solution is for each machine to be responsible for determining the failure of any dependent 

machines; when a failure is noted any necessary pages are reduplicated to another failure 

independent machine. Such a scheme has the advantage of being distributed, no one is 

responsible for reporting failures, but has the disadvantage of forcing each machine to 

check the state of its dependents periodically in case they fail. Since this checking is not 

linked directly to the failure, being time oriented instead, the period between failures is 

increased from the period of recovery to the period between these state checks. If these 

checks are made too frequently, then any network will be swamped; if they are made too 

infrequently, the period between failures will be excessively large.

A slightly more elegant solution is to group machines together into state groups. These 

groups operate as already proposed but, when a failure is detected, the detector informs 

others in the group. By staggering the state check times of different machines in the 

group, the inter-failure time becomes the period between machine state checks divided by 

the number of machines in the state group.

6 .7 .3  Solu tions: R ollback  during check pointing

As a checkpoint proceeds, it may discover that an involved domain is on a machine which 

is no longer functioning. This machine failure can only be handled by a rollback oper-

ation to the preceding checkpoint. Doing this is problematic. Machines involved in the
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Machine#l Machine#2

Figure 6.13: New checkpoint dependency structures

checkpointing operation will be at different stages; some having only just started, others 

near completion whilst others have completed. These different states make it impossible 

to rollback successfully in the way examined so far.

In figure 6.12, Machine#2 detects the failure of Machine#3 during a checkpoint operation. 

It therefore rolls back to its last checkpoint -  it has not yet begun the current one before 

detecting the failure. It then floods the rollback to Machine# 1.

Machine# 1 has already completed its section of the new checkpoint when the rollback 

instruction is received. When it unrolls the dependent domains, it returns them to the 

incorrect checkpoint; the one it has just completed instead of the one preceding it. To avoid 

this situation and correctly rollback, a more intelligent checkpoint structure is required.

A new checkpoint dependency structure

Figure 6.13 illustrates a different checkpointing structure. Instead of using a current page 

and a checkpoint page, three page stages are used together with a pointer indicating which 

is the current one. When a page is checkpointed, rather than moving the current page to 

the checkpoint page and allocating a new current page, the current pointer is moved to 

the next page stage in a circular manner.

It is important to note that three stages are used rather than two as in the previous
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Figure 6.14: Successful rollback

system. This is necessary to handle failures during checkpoint operations. If only two 

were used, then at any given time it would only be possible to hold a current state and 

previous checkpoint state. As demonstrated in figure 6.12, it may be necessary to rollback 

two checkpoints at once and two stages is insufficient to handle this.

The inter-machine DSM links are also modified. Rather than just pointing to another 

machine’s DSM entry, a link also points to a particular page stage. By making inter- 

machine DSM links between specific page stages, local checkpointing cannot affect the 

remote interpretation of these pointers. This new structure allows rollback to operate 

correctly, no matter when the fault is detected.

Figure 6.14 demonstrates the correct rollback of the previous example. The rollback 

request made from Machine#2 to Machine# 1 now specifies which version of the checkpoint 

is to be rolled back, in this case Checkpoint#Y. M achine#l therefore discards both this 

and its current page.

Reclaim ing volatile checkpoint space

Further analysis of Algorithm 6.7, in coordination with the new checkpoint structure, al-

lows old checkpoint pages to be discarded quickly. After a checkpoint has been committed, 

three potential page copies exist per real page; the current page, the last checkpoint, and 

the last but one checkpoint. It is now possible to immediately discard the last but one
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checkpoint since it is impossible for it to be used. This allows space to be reclaimed quickly 

and can be carried out on individual machines without any communication.

It may appear that a machine accessing a page, having it checkpointed, and then never 

referring to it again, will never be able to discard the checkpointed version even if other 

machines subsequently modify it. However, Rule 6.4 specifies that a machine will be added 

to the current DCPC if it holds a page copy which is invalidated. This will happen in the 

above example, so making the machine dependent on a subsequent checkpoint operation. 

This operation will find nothing new to checkpoint but will be able to discard the old 

checkpoint page which is no longer relevant.

It is also possible to discard the access list associated with the last checkpoint. Although 

this must be preserved until commitment has been achieved, in case a fault occurs, after 

the checkpoint is stable it is no longer required.

6 .7 .4  So lu tion s: A ccess by unrolled  back dom ains

It is easy to envisage a situation where a number of dependent domains require rolling 

back. The rollback is initiated from any in the dependent set and floods out to the others. 

Whilst the flood is in operation, domains which have yet to be rolled back may access 

others’ unrolled data. This is a similar problem to checkpointing domains that are being 

accessed by uncheckpointed domains (see §6.3.3).

To overcome this problem, an addition to the DSM system is required, so that as well as 

returning an error when a page is marked busy or checkpointing, it also returns an error if 

the page is marked in rollback. This prevents the data from migrating until the rollback 

operation is complete.

6.8 C orrected d istributed  rollback

Algorithm 6.9 details a revised rollback scheme which handles the problems of rollback 

during checkpointing.
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Algorithm  6.9

Begin rollback operation — DSM error
I f  the domain is marked “in rollback” then return immediately,
Set all relevant locks
Mark the domain as “in rollback”
Halt all processes within this domain
For each page currently accessed by this domain (on the current access list) {

I f  page is clean, go onto the next page 
Mark the page “in rollback”
Flush this page so returning to the last checkpoint version
Flood the rollback to all local domains which have accessed this page, adding any do-

mains to the dependency set
I f  the DCPC points to any machines which are not this one, flood the rollback to the 

next DCPC entry at the specified stage, adding it to the dependency set

}
Use to supplied page/stage information to locate the relevant access list 
I f  this access list is different from the current access list {

For each page on this access list {
Mark the page “in rollback”
Flush this page stage so returning to the previous checkpoint version 
Flood the rollback to all local domains which have accessed this page stage, adding 

any domains to the dependency set
I f  the relevant stage DCPC points to any machines which are not this one, flood 

the rollback to the next DCPC entry at the specified stage, adding it to the 
dependency set

}

}
Synchronise with other dependent domains 
Release any processes halted in this domain
For all pages that were marked “in rollback”, mark them “active”
Mark the domain “active”
End the domain rollback operation.

When rollback is initiated from a domain, the domain’s current domain access list is 

traversed as described in Algorithm 6.9 and any modified pages discarded. Where an 

inter-machine dependency is found, the rollback is flooded to the necessary machine along 

the specific DSM link (including the stage information). When another machine receives 

the rollback request, it does likewise. However, it is now possible to receive a rollback
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Figure 6.15: Operation of distributed rollback

from a stage other than the current one—the last checkpoint. In such a case the domain 

is rolled back to this checkpoint and both current state and last checkpoint are discarded, 

with dependents flooded as necessary.

Figure 6.15 illustrates how such a rollback traverses a system, invalidating checkpointed as 

well as current pages in the process. The top of the figure illustrates the page dependencies 

when Machine#3 fails; the bottom shows how the rollback floods the remaining machines. 

It would seem possible that such a system could result in a rollback invalidating all data; 

a rollback flooding backwards from domain to domain until all data is discarded. To avoid 

this a rule is imposed on the algorithm’s use.

Rule 6.5

A domain may noi take pari in a new checkpoint until its participation in an old checkpoint 
is complete.
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A domain becomes part of a checkpoint in one of two ways. Either a process initiates the 

checkpoint within it, or a checkpoint from a remote domain is flooded into it. The domain 

is considered part of this checkpoint until the checkpoint is committed. Therefore, until 

this commitment takes place, the domain is prevented from initiating another checkpoint 

of accepting any participation in another flooded checkpoint (simultaneous checkpoints 

are handled correctly as demonstrated in §6.3.2). This constraint makes it impossible to 

rollback more than two stages since the worst case can only result in the removal of the 

current domain image and the currently checkpointing (but not yet committed) image.

The inclusion of this means an additional synchronisation in Algorithm 6.7 is required to 

inform all domains that the checkpoint has completed. This additional synchronisation, 

together with the three stage checkpoint structure and Rule 6.5, provides distributed 

commitment. By the time the final synchronisation point is reached, all checkpoint data 

is stable. The three stage checkpoint entries and specific DSM links guarantee that failure 

at any point will correctly rollback the machines. Consequently, there is no need to provide 

a specific index block style commitment.

6.9 R ecovery of lost dom ains

Finally, it is necessary to recover and restart the domains lost on the crashed machine. 

This is trivial. Ar i us  is structured so all kernel data is stored in the object store Amo s . 

When this is recovered after failure, it contains complete domain information. The only 

problem to be overcome is the movement of the domain to a different machine. This can 

be done by the first machine to notice the domain is attached to a faulty machine, simply 

attaching it to itself instead. The domain and any contained processes would then become 

runnable on the new machine.

6.10 Sum m ary

Volatile reliability is a method of providing fault-tolerance in a distributed machine by 

checkpointing to other machines’ memories rather than to local or remote disk. This
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enables faster checkpointing, faster recovery after failure, and a more unified checkpointing 

mechanism.

In order to described how this is achieved in a distributed machine supporting DSM, the 

algorithms for parallel checkpointing and rollback have been derived from simpler single 

machine principles, there problems exposed and solutions described. The resulting system 

is based on the ability of the DSM system to track data use and sharing in the machine 

as well as provide a mechanism to distribute the checkpointed data.

Like the DSM system, the checkpointing system attempts to be as parallel as possible 

and avoid sequential algorithms where at all possible. This is particularly true in the 

methods used to generate the checkpoints, and the checkpoint commitment system which 

does not need the restriction of an “index” to commit the checkpoint, instead relying on a 

distributed and inherently parallel index. The rollback algorithm is identical to that used 

to generate the checkpoints. However, rather than checkpointing pages, it discards them 

so restoring those made at the previous checkpoint. Consequently, a rollback operation is 

as efficient and parallel as the checkpoint operation. This is essential if faults are to be 

quickly handled.

Volatile reliability through DSM enables efficient and transparent fault-tolerance to be 

provided to any program. However, any network of machine cannot be expected operate 

indefinitely—at some point they must be powered down. Volatile reliability does not 

provide a means for its checkpointed data to be stored on a persistent media. The next 

chapter examines how this service can be provided.
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Persistent reliability

The previous chapter examined volatile reliability. This is neither adequate nor complete. 

Although single failures may be tolerated and recovered, a catastrophic fault consisting 

of two or more simultaneous faults will still result in system failure. At this point it may 

be necessary to reboot part of the system, so losing volatile checkpointed data. A double 

fault is considerably less likely if the machines are failure independent and so such fault 

tolerance can be provided by a slower, more persistent mechanism; effectively a system 

restart. Providing a solution in such a way also allows its use for restarting a system after 

a controlled shutdown.

Logically the inclusion of persistent reliability should be an extension of the volatile relia-

bility already detailed; so allowing both mechanisms to be easily integrated. The following 

sections consider how persistent reliability should be incorporated with volatile reliability 

and what kind of service it should provide.

7.1 T he need for persistent reliability

If the possibility exists that a machine will be unpowered, then a persistent store is neces-

sary else all data will be lost. This is usually realised as a file system store. Additionally, 

although a system may possess sufficient volatile memory for a few executing processes,
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it is unlikely there will be sufficient memory to hold the entire working set of complex 

parallel applications. The impression of a large store is achieved by using virtual memory 

and a swap space store. In both these cases the store takes the form of magnetic disks, 

providing cheap persistent space at the cost of increased access time.

Ar i u s  does not make a distinction between these twro form of persistent storage. Instead, 

if considers all memory in the address space, Amo s , to be persistent. In this way it 

more closely resembles a swapping system since there is no explicit file system. Unlike a 

swapping system and like a file system however, data persists beyond the lifetime of the 

creating process.

Persistent memory in Amo s  is used in two ways. Firstly, it allows currently unused data 

to be moved from expensive volatile memory to cheaper but slower persistent memory. 

Secondly, it provides a store for checkpointed data to enable the system to recover after a 

catastrophic failure (eg. when a power failure has lost all volatile checkpoints). However, 

to place every checkpoint onto disk would reduce the efficiency of the system and remove 

the advantages of using volatile checkpoints. Instead, movement of data to disk should be 

done lazily and persistent checkpoints only completed rarely or when explicitly forced by 

system shutdown.

7.1 .1  A  reliab le m achine unit

Before persistent reliability can be considered further, we must first define what constitutes 

a persistent reliable unit. If a disk in an Amo s  system were to fail, then all the data on 

it would be lost. Consequently, all machines using that disk would fail. If many machines 

directly use a disk therefore, they become failure dependent.

Therefore, a failure independent machine is one which contains a number of processing 

elements and volatile and persistent storage. The only interactions between it and other 

machines are via the distributed shared memory system.
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7.1 .2  P ersisten t re liab ility— a new  checkpoint sy stem ?

Does persistent reliability require a new set of algorithms to implement it? Such a solution 

does not seems sensible. Instead, the reliability of volatile checkpoints should be used to 

implement persistent checkpoints.

Consider the following. At any point a machine will hold data in three states:

1. A ctive data is part of a current domain and in use by processes within it.

2. Last checkpoint data is part of the last checkpoint of a domain. This data may 

not be stable if a checkpoint is still in operation.

3. Last bu t one checkpoint data is part of a previous checkpoint but not the cur-

rent one. This exists while a new checkpoint is being performed. When the new 

checkpoint is complete, it will be deleted.

The last of these, last but one checkpoint data, is completely stable but represents a state 

to which, if the machine were returned, adverse side-effects would result.

A stable persistent checkpoint can be made at anytime by combining all last checkpoint 

data and all last but one checkpoint data. By committing this to persistent memory, the 

machine’s checkpoint may be recorded. By coordinating many of these checkpoints, a 

system wide persistent checkpoint can be made.

7.2 C onstruction o f a local persistent checkpoint

Determining what data should be contained in a persistent checkpoint at any given time 

is fairly simple. However, this is not a solution in itself. Three other aspects must be 

considered. Firstly, how is the data to be written efficiently; secondly, what data need 

actually be written to disk; and thirdly, when should a checkpoint be made.
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7.2.1 Log based  checkpoint stores

There has been great interest in log based file systems in recent years [RO90] arising out of 

the need to increase the efficiency of disk utilisation. The principles applied to file systems 

are also relevant to log based checkpoint stores. Large memory systems act as massive 

disk caches, so reducing the number of reads made from disks in comparison with writes. 

A disk may therefore be utilised better by optimising the performance for writes rather 

than reads. This is best done by aggregating large numbers of small writes into much 

larger, single writes. By providing such a system, disk throughput can be dramatically 

increased. However, to achieve this, the way in which data on disk is organised must also 

be dramatically altered. This is because large continuous section of the disk must be kept 

available in which to place the large data writes.

A full account of log based disk stores will not be given here but the principles will be 

applied to the design of the persistent reliability mechanisms.

7.2 .2  D eterm in in g  th e  data set

Instead of attempting to provide many independent checkpoints, as was done for volatile 

reliability, persistent checkpoints contain all modified data on the local machine. Ex-

perience of log based techniques has shown that large write operations give better disk 

bandwidth utilisation. The ability to provide large writes would be reduced by producing 

may independent checkpoints. Additionally, the infrequency of persistent checkpointing 

makes the overhead of coordinating many small checkpoints prohibitive.

§7.1.2 explained how the checkpoint data set is determined. However, this set will contain 

both modified and unmodified data pages as well as committed and uncommitted ones. 

To write all this data to disk on every persistent checkpoint would be pointless; a more 

efficient solution is required.

The following algorithm constructs the data set for a new persistent checkpoint.
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Algorithm  7.1

Begin persistent data collation 
Prevent any domain becoming “active”
Build a “persistent checkpoint list” of all modified pages in the machine 
For each page in the “persistent checkpoint list” {

I f  the page is in a domain which is not active {
Delete the page from the “checkpoint domain list”

}
Else if  the page has a newer version in the list {

Delete the older one from the “checkpoint domain list”

}
Else {

Allocate the page a persistent page address (eg. a disk block number) 
Mark the page “unmodified”

}

}
Allow domains to become “active”
End persistent data collation

This algorithm is very simple. It creates a list of all modified pages on a machine (therefore 

eligible to be transferred to disk). It then discards the pages which form part of an unstable 

volatile checkpoint or have newer duplicates. Any remaining pages are allocated disk space 

and marked unmodified. The resulting list forms the persistent checkpoint. It is important 

to note the disabling of domains becoming active whilst the persistent checkpoint list is 

being assembled. This is necessary to prevent half a volatile checkpoint being included 

unintentionally.

The allocation of persistent pages, or disk block numbers, uses the log based principles 

outlined in §7.2.1. At the end of Algorithm 7.1, a number of large blocks of data are ready 

to be written to disk. These may be written lazily by the system and committed using a 

root block scheme similar to that described in §6.1.2.

Algorithm  7.2

Begin persistent checkpoint commitment
Whilst there are unwritten pages in the “persistent checkpoint list” {
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Construct and perform a large disk write operation

}
Commit operations by writing next disk root block 
End persistent checkpoint commitment

7.2 .3  W h en  to  produ ce p ersisten t checkpoints

There are three situations where a persistent checkpoint is necessary; when explicitly 

requested, when volatile space becomes scarce, or after a given period of time. The first 

occurs when an application considers it vital that the information is physically present on 

disk and the guarantee of volatile reliability is not good enough. A typical example of this 

is when a system is powered-down and volatile data will be lost.

The second occurs when the data set within a machine grows larger than the available 

volatile memory. Often, it may be possible to discard some old data pages no longer in 

use. Alternatively, some data pages may be shipped to another machine for temporary 

storage via the DSM mechanism. Ultimately however, it will be necessary to write these 

pages somewhere more permanent, especially if they have not been accessed for some time. 

By performing a persistent checkpoint at this point, the volatile memory occupied by the 

volatile checkpoint is released by the transfer of the data to disk.

The third occurs when it is necessary to make sure data does get copied to disk after a 

period of time, even if space is not required or an explicit request made. If this is not 

done, a situation could be imagined where modified data left on a machine weeks before 

could suddenly be lost by a catastrophic failure.

7.3 C onstruction  of a d istributed  persistent checkpoint

Perhaps the most problematic aspect of implementing a distributed persistent checkpoint 

is whether it is necessary at all. In the three situations discussed in §7.2.3, in two instances 

checkpoints are performed in order to free memory and make sure long unused data is not 

lost. The only situation where a distributed checkpoint is strictly necessary is when it is
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requested by an application. In such circumstances it is likely that a distributed volatile 

checkpoint would be sufficient. For completeness however, a mechanism is included which 

provides a distributed persistent checkpoint service.

We have already considered how to produce a localised persistent checkpoint. To extend 

this mechanism to a distributed system, it is only necessary to add some form of distribu-

tion. Final synchronisation has not been added and so it is impossible to say when exactly 

a distributed persistent checkpoint will have completed, only that it will have within a 

fixed period of time after local commitment. The necessary synchronisation has not been 

provided because of the additional complexity involved and the belief that volatile check-

points make it unnecessary. However, such a system could be provided using the same 

principle described in §6.3.2.

These checkpoints are sufficient to guarantee data is present after a double machine failure 

but, unlike volatile checkpoints, do not provide rollback recovery. Any active processes 

are lost.

7.3.1 D istr ib u tin g  th e  checkpoint

To distribute a checkpoint it is necessary to flood the request to all the dependents. 

This kind of information is readily available for volatile checkpoints. However, whilst a 

volatile checkpoint only floods the checkpoint request to the active dependent domains, a 

persistent checkpoint must be flooded to all machines holding domains which were part of 

any volatile checkpoint since the last distributed persistent checkpoint was issued.

Constructing this information when a persistent checkpoint is requested is impossible. 

If such a checkpoint is initiated, by either a time based of space based event, then the 

checkpoint is not flooded to other machines and so the dependencies are not removed. 

However, the pages which form part of the dependency will be written locally and possibly 

reused. Consequently any dependency information associated with them will be lost. 

Therefore, to provide this information to persistent checkpoints, it is necessary to construct 

a separate dependency table.
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Constructing the distributed persistent checkpoint table

When a volatile checkpoint becomes stable, the pages’ DSM checkpoint chains (DPCPs) 

are examined to determine which machines the volatile checkpoint is dependent upon. 

This information is used to add to a reference count table of dependent machines.

Algorithm  7.3

Begin constructing distributed checkpoint table
For each page which has formed part of the current volatile checkpoint {

Increase the reference count in the “persistent checkpoint table” for the machine indi-
cated by the DPCP

}
End constructing distributed checkpoint table

When a persistent checkpoint is made the persistent checkpoint table is used to flood the 

checkpoint to all dependents. Once this is done, the table is cleared.

The use of a single table gives some problems. If no application ever performs a distributed 

persistent checkpoint, then this table will grow forever. If a checkpoint is eventually 

requested, then it will be flooded to every machine the local machine has ever interacted 

with. This is clearly not sensible, since most of the information that forms part of the 

dependency will have been committed to disk hours before.

This problem may be solved by considering the inclusion of the time related persistent 

commitment. If each machine commits its volatile data to disk every T seconds, then 

any dependency need only persist for that period of time. Rather than attempt to time 

dependencies, two persistent checkpoint tables can be used. After every time T, the oldest 

table is discarded and a new one created. Dependencies are always added to the newest 

table. When a distributed persistent checkpoint is made, the dependencies from both 

tables are used to flood it.

This scheme means a dependency will persist for at least T seconds and at most 2T seconds, 

depending on when it was inserted into the newest persistent checkpoint table. Therefore, 

every dependency will persist for at least the time between checkpoints but eventually be 

discarded when it can no longer be relevant.
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7.3 .2  T h e d istr ib u ted  p ersisten t checkpoint a lgorith m

The algorithm to perform a distributed persistent checkpoint is given below:

A lgorithm  7.4

Begin persistent checkpoint
I f  the node is marked “checkpointing”, return immediately 
Mark the node “checkpointing”
Collate the persistent checkpoint (Algorithm 7.1)
Whilst there are unwritten pages in the “persistent checkpoint list” {

Construct and perform a large disk write operation

}
For each non-zero entry in either of the “persistent checkpoint tables” { 

Flood the persistent checkpoint to the relevant machine

}
Discard the “persistent checkpoint tables” and allocate a new one 
Commit operations by writing next disk root block 
Mark the node “active”
End persistent checkpoint

This algorithm performs the distributed checkpoint by constructing a local one and flood-

ing the operation to all others. It does not bother to wait for replies to its operation, 

so there is no synchronisation between machines as to when the distributed checkpoint is 

stable. However, it should be possible to determine a time limit beyond which all data 

must have been committed.

7 .3 .3  D istr ib u ted  p ersisten t checkpoint - an exam p le

Figure 7.1 illustrates the operation of a persistent checkpoint between four machines. 

Each machine holds its two persistent checkpoint tables indicating which machines it is 

dependent upon (a). The checkpoint is initiated from M achine#l and spreads via its 

dependents (b) to all other machines (c). As each machine completes its persistent check-

point, it deletes both persistent checkpoint tables (d) and is ready to begin accumulating 

a new persistent checkpoint.
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Machine#! M achine#2
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Figure 7.1: Persistent checkpoint between four machines
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7.4 Sum m ary

This chapter has presented a means of implementing persistent reliability by construct-

ing persistent checkpoints from volatile ones. Persistent checkpoints provide a means of 

committing modified data to disk, which is necessary if machines are to be turned off or 

catastrophic failure tolerated without total system data loss.

Persistent checkpoints may be initiated in order to make space in volatile memory, to make 

sure old data is stored to disk, or at an application’s insistence. The coordination of these 

checkpoints uses a time based approach to reduce the necessary machine interaction.

Persistent checkpoints are not intended to be used instead of volatile ones. Therefore, no 

rollback is provided (any active processes will be lost when a fault occurs) and commitment 

of data cannot be waited on. The exclusion of these features is not a restriction in the 

design (which could support them) but a philosophical decision. Volatile checkpoints 

provide the necessary level of robustness and are more efficient than persistent ones.

The next chapter details a software model using the checkpoint algorithms so far described. 

It examines their effect and efficiency, and also attempts to determine the impact on system 

performance they have.
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C hapter 8

Modelling AMOS

A model of Amo s  has been designed and written in C++ in order that the DSM and 

fault-tolerance systems can be studied. The model provides information in two important 

areas; firstly, correct working of the algorithms proposed for DSM and reliability; and 

secondly, what costs the operation of reliability places on the system as a whole. Extensive 

experiments have been carried out using the model and the results are presented here.

8.1 D esign  of th e AM OS m odel

The purpose of the Amo s  model is to allow a number of performance related experiments 

to be made to determine how efficient, in both time and resources, the reliability system 

is. A model, rather than a real implementation, was chosen for three reasons. Firstly, it 

enables various parameters to be altered which would be impossible in a real system (page 

size and cache size for example). Secondly, it provides a more controlled environment. 

Thirdly, since a real implementation does not exist, writing one would be an unreasonably 

large piece of work when a model would be more reliable, easier to debug, and more 

flexible.

The following details various aspects of the model.
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8 .1 .1  P rocess creation

Process creation is handled simply. When a new process is created, it is spawned onto the 

next available processor (they are selected in order) from which it never migrates. This 

process executes its given function and then exits.

8.1 .2  O b ject creation

Objects are created by the system by a single manager. The first object has a base address 

of zero and a length specified by the call. The next object has a base address of the next 

page after the start of the previous object; and so on. Objects may be deleted but the 

space is never reclaimed1.

8.1 .3  D S M  sy stem

The program models the DSM system completely, although it only uses the write-invalidate 

policy for data accesses and the write-update policy for lock accesses. Each message is 

allocated a transit time so requests for data do not happen instantaneously and processes 

are correctly scheduled whilst they are being processed, forwarded and fulfilled.

One simplification made to the DSM system in the model was in fulfilling first time page 

requests. Rather than implement the system described in §4.5.2, a single globally accessible 

table was used to record and obtain page information when the DSM entry was first 

created. This simplification does not affect the system in any relevant way.

8 .1 .4  V olatile  reliab ility

Volatile reliability was modelled exactly as the algorithms describe. In doing this, the 

model had to implement a virtual processor. This allowed page faults to be generated at

’The programs being executed on the model were from the UNIX based parallel applications suite 
Sp l a s h . This meant it was more convenient to allocate one large object to include the complete data 
segment of the UNIX program. The use of a single object does not affect the efficiency of the reliability 
system under test.
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the correct points by forcing memory access events (see §8.3.2) to be checked with the 

model’s virtual-to-physical translation cache. This also allowed the detection of modified 

data to be made, an essential component of the reliability algorithms, as well as providing 

the flexibility to modify cache and page sizes for experimentation.

8.1 .5  P ersisten t reliab ility

Explicit persistent reliability is ignored in the model, since its inclusion provides nothing 

which cannot be determined from experiments with volatile reliability—both persistent 

and volatile reliability systems are based upon the same principles and algorithms so 

demonstration of the functionality of one demonstrates the other. It is likely that persistent 

reliability will add a small execution time to the application in general. However, the 

scheme proposed in chapter 7 uses disk rarely and since disk transfers can take place in 

parallel with program execution, any effects would be negligible. This assumes that the 

resident set size for applications does not exceed the size of physical memory—which is 

true for all simulations performed.

8 .1 .6  R ollback

The model does not simulate the occurrence of rollback. This is because it was not possible 

to extract all the necessary state information from the threads used in the model (see the 

following section). However, this did not prevent internal consistency checks being used 

in order to show that rollback could be successfully achieved.

In order for rollback to be correctly achieved, the rollback algorithm must correctly delete 

all dependent data pages which have been modified since the previous checkpoint. With 

these removed, the active processes are returned to the state saved at the last checkpoint, 

a state known to be a correct point for process resumption.

In order to verify the rollback algorithm, the algorithm was initiated in various programs by 

deliberatly inserting the event in them at various points. The algorithm then proceeded 

to remove all the relevant data using the similar flood fill technique demonstrated for 

checkpoints. Once this was completed, it was possible for the simulation to halt all activity
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and examine all the processors’ memory systems. The simulator then checked that no 

modified data pages still existed within them and hence that the processes had been 

correctly returned to the previous checkpoint. This being the case, rollback was considered 

to have been successful.

In a true Ar i u s  system, the processes could then have been restarted. However, due to the 

noted lack of internal thread state this resumption was impossible. Despite the absence 

of this final step, it was felt that the above consistency checks were sufficient to determine 

that rollback was achieved correctly—the model was primarily designed to determine the 

impact of checkpointing in working systems (the norm).

The latency for completing rollback after a fault is important since a recovery time of 

several hours is unacceptable. However, since the rollback algorithm is essentially the 

same as the checkpointing algorithm (see §6.7), rollback takes a similar amount of time.

8.2 Im plem entation  of th e m odel

The Amo s  model was written in C++ on a SUN Sparcstation using SUN’s lightweight 

process library to provide parallel threads of execution. However, since the thread library 

was written in C, it was first necessary to encapsulate it in a C++ library [Wil92].

The model runs on a uniprocessor system. The threads provide the illusion of a multi-

processor but it was also necessary to provide some kind of scheduling amongst them in 

order to obtain correct multiprocessor execution.

Figure 8.1 illustrates the difference between two processes executing simultaneously on a 

true parallel system and on a uniprocessor system. It was considered necessary to provide 

the behaviour exhibited by the left example even in a uniprocessor model if any correct 

conclusions were to be drawn from the model. To provide this, the threads within the 

model were scheduled using age event scheduling.

Age event scheduling always schedules the youngest thread to run. The age of a thread 

is determined by its age at creation plus the accumulation of time executing and waiting 

for locks; the lower this is, the younger the thread is. A thread is allowed to execute
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Figure 8.1: Parallel execution on a parallel system and on a uniprocessor system
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until it issues an event, such as a memory access to a shared object. At this point its age 

is recomputed and if it is still the youngest, then it is allowed to continue. If not, the 

new youngest thread is scheduled instead. Using this system, correct parallel operation is 

achieved2.

8.3 R unning parallel application on the m odel

There are two general methods available for evaluating the cost of program execution; trace 

based and execution based. The original intention was to use trace based simulation but 

it was soon discovered to be inadequate for the Amo s  simulation (see below). Instead, an 

execution based model was adopted. Whilst this causes massive performance degradation, 

it did enable accurate measurements and adjustments to be made with relative ease.

8.3 .1  A b stract E x ecu tion  (A E )

Abstract Execution [Lar90] (AE) is a technique developed for producing address trace 

data of executing programs with relatively little impact on the performance of the program 

itself. The original intention was to use this method to produce trace data to feed to the 

Amo s  model in order to evaluate the overhead of checkpointing.

However, it was soon discovered that the AE system is not suitable for use in parallel 

programming environments where the program behaviour can be effected by time delays 

in the DSM system. For example, if a process is blocked waiting for a DSM page to arrive, 

then another process may run on the node. In a true shared memory system this is not the 

case since the blocked process halts the node until the page is supplied, the delay being 

many times shorter. This assumption means that parallel trace data produced by AE 

on a shared memory machine, the only one available to generate the trace data, cannot 

accurately reflect the behaviour of the model.

For this reason, AE was abandoned and execution based simulation was used instead.

2In actual fact, the system employed is slightly more complex since two “processes” on the same physical 
processor do not execute in parallel but one after another in round-robin fashion.
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8.3 .2  M odified  G N U  C -com piler 2.1 (G C C )

Execution based simulation may take two forms; instruction level simulation or event level 

simulation. In the first, the model interprets the program, instruction by instruction, in 

order to obtain an accurate simulation of the program’s execution. This approach is very 

time consuming and involves the simulation of the entire processor rather than just the 

operating system functionality.

The second approach, which was adopted, is event simulation where individual entities 

are executed until they perform some event which interacts with another (this is achieved 

using age event scheduling as described in §8.2). However, in order to provide the necessary 

event information, it was necessary to modify a C-compiler, GCC 2.1.

Compiler modifications

The compiler was modified to issue subroutine calls to special event handlers within the 

model under two circumstances, load instructions from memory and store instructions to 

memory. These are the only ways in which different threads within a parallel program 

can interact, more complex operations, such as locks and barriers, are implemented using 

some form of these.

Example SPARC code from modified C-compiler

An example piece of code produced by the compiler is shown below:

_printtree :
! «PROLOGUE# 0 
save ,/,sp,-144,,/,sp 
!«PROLOGUE# 1 
add '/,fp, 68, */,g3 
add y.g4,3, */.g4
call _sim_store,0
nop
st */,i0, [*/,g3] ! st '/,i0, [*/,fp+68]
add '/,fp, 68, '/,g3 
add */.g4,4, '/,g4
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c a l l  __sim_load,0 
nop
Id ['/.g3] ,'/,10 ! Id [y.fp+68] ,'/,10

Before a load is issued in the code (last line), the address from which it is to be made 

is generated and placed in register %g3 and the routine _sim_load is called. After this 

call the actual load instruction is issued. Similarly, before a store is issued (9th line), the 

address to which it is made is placed in register %g3 and the routine _sim_store is called. 

After this call the actual store is issued. It is important to note the use of register %g4. 

This register is used to count instructions executed, excluding the extra ones inserted 

to generate the events. This provides the event’s age to enable correct scheduling to be 

performed3.

Each routine call does not actually perform the operation but, instead, makes the model 

perform the necessary operations to enable the instruction to take place. In fact, all data 

is physically shared in the model and no data movement need take place. However, the 

model imposes the necessary costs on each event so that, for example, when a read is made 

to a DSM page which is not present, the process is blocked and another is scheduled until 

the page is delivered sometime later.

Using the modified C-compiler

To use the modified C-compiler, a C program is compiled to object form using the modified 

compiler. It is necessary to include a special header file, amos-model .h, in each code file. 

This redefines various conventional C functions, mainO for example, and provides the 

necessary prototypes for creating processes as well as locking and barrier primitives.

The resulting object code is then linked with similarly compiled libraries. In addition 

libm odel.a  is appended to the program. This is a dynamically linked library containing 

the Amos  model itself. Then the program may then be executed in the usual way. In 

doing so, the Amos  model is first called to allow it to initialise itself. It then calls back 

into the compiled C program.

3This assumes that each instruction takes only one cycle to execute, something which is not always true. 
However, in a RISC processor such as the SPARC, it is accurate enough for the simulation’s purposes.
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The provision of the Amo s  model as a dynamic library enables it to be changed quickly 

without recompiling any of the test programs. This reduces the time required to experi-

ment with modifications and removes the possibility of errors, by making it impossible to 

execute a test program with an old version of the model.

8.4 E xperim entation  suite

All experiments with the model were made using the suite of applications collectively 

known as Spl a s h  [SWG92]. These programs were developed at Stanford University USA, 

to provide parallel programmers and machine designers with a standard set of applications 

with which to experiment and compare results. They proved well suited to experiments 

with the Amo s  model since they not only demonstrated different patterns of data sharing 

but also provided the ability to vary the number of parallel threads of execution within 

them.

8.4 .1  In co m p atib ilities  betw een  A rius and Splash

The Spl a s h  programs were all designed to support a particular set of parallel opera-

tions [L087]. Fortunately this model closely resembles the one provided within the A r i u s  

environment. Creation of processes using a spawn semantic rather than fork is particularly 

important. Spawn creates a new process, sharing the same code and shared data spaces 

but with a new stack and duplicated private data, which starts executing from a supplied 

function and terminates when it returns from this function. This is the model used in 

Ar i u s . Fork requires the complete duplication of data and stack for the new process and 

is impossible to emulate in Ar i u s .

There was only one incompatibility between A r i u s ’s model and Spl a s h ’s . In Spl a s h  it 

is assumed that the private data space will be duplicated in the new process; in Ar i u s  it 

is assumed to be shared also. Fortunately, the applications make little use of this facility. 

Usually, a loop is used to spawn a number of processes to perform the work. Each process 

uses the value of the loop counter as its ID. Because this is shared in ARIUS it was necessary
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to pass this ID as an argument to the new process. This, once understood, was easy to 

accomplish.

8 .4 .2  P u rp o ses  o f th e  exp erim en ts

The experiments’ first task was to demonstrate that the DSM system and the volatile 

reliability protocols worked correctly. Once this was shown, various modifications were 

made to the model to determine how the efficiency was affected by different page sizes, 

VM address translation cache sizes, frequency of checkpoint operations, etc. The results 

of these experiments are presented in the following sections.

8 .4 .3  E x p erim en ts , configuration and results

The majority of the initial experiments were conducted using the program Mp3d from the 

Splash suite. This program provides flexible control of the amount of parallelism as well 

as the size of the problem. One difficulty with the Splash suite is the length of time the 

applications take to run. On a real system the times would be considered reasonable but 

on a simulator, with a much increased execution time, they made it difficult to experiment.

Final results were obtained using three of the Splash applications; Mp3d, Water and 

Barnes-H ut.

M p3d solves problems in rarified fluid flow simulation. Rarified flow problems are of 

interest to aerospace researchers who study the forces exerted on space vehicles as 

they pass through the upper atmosphere at hypersonic speeds. Such problems also 

arise in integrated circuit manufacturing simulation and other situations involving 

flow at extremely low density.

W ater is an N-body molecular dynamics application to evaluate forces and potentials in 

a system of water molecules in the liquid state.

Barnes-Hut simulates the evolution of a system of bodies under the influence of gravita-

tional forces. It is a classical gravitational N-body simulation, in which every body 

is modelled as a point mass and exerts forces on all other bodies in the system.
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(extracts from “SPLASH: Stanford Parallel Ap-

plications for Shared-Memory” [SWG92])

Configuration

A typical configuration script is shown below:

10 Number o f c lu s te rs
1 Number o f p rocessors  p e r c lu s te r
1024 Page s iz e  (b y te s )
32 PTE d a ta  cache s iz e
80 Access ta b le  s iz e
50 Miss f a u l t  tim e  (c y c le s )
50 W rite  f a u l t  tim e  (c y c le s )
30 C o p y -o n -w rite  f a u l t  tim e  (c y c le s )
100 Dsm message d e l iv e ry  tim e
40 Dsm b u f fe r  s iz e
1 Do ch eckp o in ts  (1 = yes, 0 = no)
0 C heckpo in t p e r io d  (0 = none)

e x c lu d in g  copy tim e

The values shown were chosen to represent reasonable operating conditions for a real 

machine; times are in clock cycles and sizes are in bytes.

Results

Each simulation terminates by producing a table of results, for example:

S im u la to r ru n  s ta r te d  Wed May 27 09 :35 :13  1992

Cycles : 2488839 
Loads : 452026 
S to res : 95990 
T ib  h i t s  : 446613 
Miss f a u l t s  : 6132 
W rite  f a u l t s  : 3553 
C o p y -o n -w rite  f a u l t s  : 465 
Accessed page a d d it io n s  : 1335 
Dsm messages : 40187 
Dsm owner re q u e s t : 3440
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Dsm copy re q u e s t : 3741 
Dsm in v a l re q ue s t : 3200 
Dsm cop ies  sen t : 4554 
Max coremap s iz e  : 1094 
C heckpointed pages : 1177 
C heckpo in ts : 31

S im u la to r ru n  f in is h e d  Wed May 27 09:46:51  1992

These results indicate various measured aspects of the simulation. For example, Cycles is 

the total time for the program to execute, Loads is the sum of loads from memory executed 

by all processes, and Max coremap size is the maximum number of pages active at any 

one time.

Each simulation generates fourteen individual results and each simulation is run with one 

to ten processes in a number of configurations. This produces a multitude of information, 

of varying utility. Full sets of results are given in Appendix B. Here are presented the 

most relevant. These are:

• Cycles

The total execution time of the program in processor clock cycles,

• M ax coremap size

The total core used by all processes and processors,

• Checkpointed pages

The number of pages checkpointed by the application,

• Copy-on-write faults

The total number of copy-on-write faults which occur due to checkpointing,

• Access page additions

Total number of new page accesses noted by the VM subsystem,

• Dsm  messages

Total number of DSM messages sent between nodes.

19 4



8.5. EXPERIMENTS —  OVERVIEW

8.5 E xperim ents —  O verview

Before experiments could proceed, it was first necessary to validate the model. Validations 

was performed in two ways:

1. Liberal use of assertions within the model to make sure DSM and checkpoint integrity 

is always maintained, and

2. Comparison of results from single process and multiprocess simulations.

The first of these was simple to provide and has the advantage of checking the model at 

all stages of operation rather than in just a few engineered examples. The second set of 

validations was done by executing various Splash applications with the same configuration 

but with varying degrees of parallelism. Unfortunately, when this was done the answers in 

some of the applications were almost, but not quite identical. Examination of the relevant 

applications exposed that random numbers were used in various calculations. When the 

random number generator was used by a single process, one answer would result. However, 

when used by two or more processes, the random numbers would be extracted in a different 

order and so give a different answer. No solution to this problem was found. If a random 

number generator were used for each process the answer would still be different from the 

single process case.

8.6 E xperim ents —  Mp3d

Mp3d was the initial test program and so was used for the first experiments. It allowed 

small problems to be analysed in a reasonable time (an average of twenty minutes per 

run, a set of runs consisting of about fifty tests) whilst providing flexible control of its 

parallelism.
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Figure 8.2: Control experiments
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8.6 .1  C ontrol

Initially, two experiments were carried out to provide a control for all future tests. The 

results of these are shown in figure 8.2. One experiment was conducted without any 

checkpointing enabled, so providing a “best” performance measurement. The other was 

performed with checkpointing enabled but only activated when a process exits, the point 

at which only persistent or shared data need be checkpointed. This provides the “best” 

checkpointing enabled performance.

8 .6 .2  S ize o f access tab le

The control experiments examine two non-useful aspects of reliability, one where there is 

none and the other where reliability is only established on termination. A more useful 

reliability system would operate checkpoints at periodic intervals so that rollback will only 

lose either a set amount of data or a set time of computations. From the users point of 

view, the time aspect is more important whilst from a systems point of view the amount 

of modified data lost, and so the amount of space required, is more important. Amos  

supports a time and space related checkpointing system. In mp3d however a time based 

checkpoint system is not useful since sufficient data is modified to prevent the time period 

from elapsing.

The results presented in figures 8.3 and 8.4 show how the size of the access table, that 

is the number of pages accessed by a process in a given checkpoint, affects the resources 

used by the application.

As expected, the smaller the access table, the longer the program takes to execute, due to 

the increased number of checkpoints being made. Note that with ten processes the different 

access table sizes make little difference to performance. This occurs as the working set 

size of each process approaches the access table size.

The behaviour of the coremap size is also interesting. As the parallelism in the program 

increases, the total core used rises, as expected, with the increased number of DSM copies. 

However, after a certain limit, the core size begins to fall and then begins to rise again 

in parallel with the control results (this can also be expected from the checkpoint access

1 9 7



CHAPTER 8. MODELLING AMOS

1 2 3 4 5 i  7 8 9 10
Number of processors

Figure 8.3: Access table experiments -  160 molecules
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table with a size of forty, although it is not shown on the graph). Why is this?

A clue lies with comparing this result with that for checkpoint pages. Here the number 

of pages checkpointed rises then suddenly falls and then begins to rise in parallel with 

control. What is happening is this. With a fixed sized problem, as the number of processes 

increases the amount of the problem associated with each decreases. At different points, 

depending on the size of the access table, this subproblem size approaches the access table 

size so resulting in fewer checkpoints. Fewer checkpoints mean less core used to store 

them and fewer pages processed. This corresponds to the reduction in core used and fewer 

checkpointed pages. This interpretation is further backed up by a similar behaviour in the 

accessed page additions.

The results for copy-on-write faults were unexpected. It had been assumed that these 

would increase steadily in line with the number of pages checkpointed. In fact although 

they do indeed follow the sudden decreases in checkpointed pages, they tend to decrease 

regardless of this influence. This can be explained by examining the behaviour of the 

system, and particularly the size of the access table, more closely.

The problem is configured so there is little false sharing4. In general therefore a page is 

either accessed by only one processor or intentionally shared by all. Once the working 

set of a processor’s data fits within the access table, the “accessed page additions” should 

fall dramatically since it no longer continually overflows the access table (which result in 

checkpoints operations), so reducing the number of copy-on-write faults possible. As the 

parallelism increases, the chance of the requested page being present on the relevant node 

decreases (assuming the page is shared equally). Therefore, although a node may hold 

a checkpoint copy it is less likely to be up-to-date. When a modification to a page is 

requested, it is more usually the case that the page is requested from another machine, 

using the DSM, than a copy-on-write fault being generated to produce a copy of the local 

checkpointed version. These two trends account for the behaviour seen with copy-on-write 

faults.

The graphs of “DSM messages” indicate a general increase in network traffic as the par-

4 Modification to the source were necessary to make this happen.
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allelism increases. However, these increases are similarly affected by the changes in access 

table size as shown in the data for checkpointed pages. By analysing two further graphs 

(figures 8.5 and 8.6), of DSM copies sent and DSM copies requested, we can determine 

that these reductions are due to the checkpoints distributing pages to nodes which will 

later use them. This avoids the necessary DSM traffic to request the copies which would 

otherwise take place.

Conclusions

The access table size in relation to the subproblem size has been demonstrated to be 

very important to the efficiency of the application’s execution. If the access table is too 

small, then excessive numbers of checkpoints are performed. Making the table infinitely 

large and checkpointing only on process termination is by far the most efficient solution 

but could result in the loss of too much data and subsequently affect too many other 

dependent processes. The most appropriate solution would be based on a time related 

system combined with an access table scheme. This would force a checkpoint to occur 

when either the time limit is exceeded or too much modified data is accessed or generated.

8.6 .3  Page size and con stan t A ccess Table capacity

Variations in the page size affect various aspects of the model. The DSM shares data 

using a page size granularity. Increasing this size increases the risk of false sharing, where 

two independent data structures lie in the same page and therefore cannot be written 

to simultaneously by two distinct processors. Larger pages also produce larger grain 

checkpoints. This increase the likelihood of false checkpointing, where data which has 

not been modified lies in the same page as data which has been changed. However, by 

decreasing the page size, the number of page faults to manage the page translation entry 

(PTE) cache is increased. Conversely, the quantity of data rendered inaccessible by the 

invalidation of a PTE entry (by the DSM system) is reduced.

Changing the page size does not obviously improve or degrade the system. Experiments 

were therefore carried out in order to determine the “correct” page size for a checkpointing
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DSM system. These used an access table size of 80 Kbytes and a PTE cache size of 

32 Kbytes. The configuration of the model operates in page size units so the relevant 

parameters were adjusted in different simulations to maintain these data sizes.

The results presented in figures 8.7 and 8.8 show how the page size affects the resources 

used by the application.

With the smallest page size, the application executes in the fewest cycles. This may appear 

counter-intuitive; it would be expected that smaller pages would increase the number of 

page-faults and the number of DSM requests made so increasing the execution time. This 

is not the case. Firstly, by examining the graphs of DSM messages, it can be seen that 

a smaller page size reduces the number of messages. Secondly, by examining two further 

graphs of PTE miss faults and PTE write faults (figures 8.9 and 8.10) it is observed that 

the number of PTE faults is also reduced with small pages.

This behaviour is the result of false sharing. When independent data resides in the same 

sharable unit (in this case a page), it is possible that two processors will attempt to write 

to the page at once. This results in additional faults and DSM transfers, as the page is 

moved back and forth between the two processors, yet at no time does either access of 

modify the others data. This behaviour is a property of the DSM system and not of the 

application algorithm. There are two common ways to avoid this problem; either provide 

a more loose form of DSM coherency or arrange data so this problem does not occur. It is 

still interesting to note that, despite false sharing, the general trend is for execution speed 

to increase as the number of processors increased.

Copy-on-write faults tend to decrease as parallelism increases for reasons already given in 

§8.6.2. However, the effect of page size on the numbers of faults as parallelism increases 

is quite interesting. With a single processor, the number of copy-on-write faults simply 

indicates the distribution of modified data. As the number of processors increases to four, 

the copy-on-write faults fall into two groups, small pages (512 and 1024 bytes) and large 

pages (2048 and 4096 bytes), with small pages producing a third as many faults. As 

the number of processors increases towards ten, the large pages begin to approach the 

small pages in number of faults (4096 byte pages can be expected to converge also), even 

surpassing them in some cases. How can this distinct two phase behaviour be explained?
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Figure 8.7: Page size experiments -  160 molecules
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Figure 8.8: Page size experiments -  320 molecules
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Figure 8.10: PTE faults -  320 molecules
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Examination of “accessed page additions” and “Dsm messages” helps to clarify what is 

happening. As the number of processors increases, the quantity of data each processor 

accesses decreases. For Mp3d the working set of data for each of these processors is small but 

inter-page locality is not good (it may access page N but is unlikely to access page N +l). 

A large access table size is therefore required to accommodate the data set. However, 

since the access table is configured to allow the same amount of data to be referenced in 

all experiments, best results should be obtained by using a large access table and small 

page size.

In §8.6.2, we have seen that an access table able to accommodate the processor’s working 

data set results in fewer checkpoints. With small page sizes there is little false sharing 

and a larger access table. Therefore, the working set is more easily accommodated so 

resulting in fewer checkpoints. With large pages there is more false sharing and a larger 

effective working set size of data. Many more processors are required before the data is 

divided sufficiently for the working set to fit within the access table. However, once this 

does happen, the page additions reduce below those for small pages since the access table 

is smaller and any overflow produces fewer copy-on-writable pages.

The number of copy-on-writes is therefore directly related to the “accessed page additions” 

and number of processors in the experiment. A decrease in accessed pages indicates 

a decrease in the number of checkpoints occurring and so a decrease in the potential 

number of copy-on-write faults. An increase in the number of processors makes it more 

likely data is found on another node rather than locally and so also decreases the number 

of copy-on-write faults.

Small page sizes

Experiments so far seem to indicate that small pages are best. However, results presented 

in figures 8.11 and 8.12 suggest there is a limit. Physical limitations dictate that the PTE 

cache is of finite size. Consequently, a limit of thirty-two entries is used in the experiments. 

Therefore, by reducing the page size beyond a certain size results in many more page 

faults and is not compensated by either improved false sharing, smaller checkpoints or 

fewer copy-on-write faults. Overall performance is degraded.
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Figure 8.11: Small page size experiments 160 molecules
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Figure 8.12: Small page size experiments -  320 molecules
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8 .6 .4  C onclusions

Larger page sizes increase the execution time of the applications by increasing the size of 

checkpoints, increasing the number of copy-on-write faults, increasing the false sharing, 

and increasing the number of DSM messages. Also, large DSM page transfers and large 

copy-on-write faults take longer to execute. All this suggests that small page sizes are 

best.

However, reducing the page size beyond a certain point is not advantageous. Once there 

is good inter-page locality (if page N is accessed then so is page N +l), smaller pages 

merely produce more DSM requests and page faults whilst improving neither the size of 

checkpoints, memory usage or false sharing. The experiments carried out here suggest a 

page size of 512 bytes to be optimal.

8.7 E xperim ents —  W ater

Water was the second test program to be used with the simulator. Like mp3d, it allows both 

the problem size and parallelism to be changed easily. However, unlike mp3d, large prob-

lem sizes proved extremely difficult for experimentation since the work increased 0 (n 2). 

A single simulation with 128 molecules took a minimum of 24 hours to execute; a full 

simulation set of fifty runs would therefore take two months to complete! Much smaller 

simulations were therefore undertaken with 16 and 32 molecules respectively.

8.7 .1  S ize o f access tab le

Experiments were carried out using no checkpoints, terminating checkpoints and an access 

table limited checkpoints. In all cases (as shown in figure 8.13 and 8.14) there was very 

little difference in performance. How can this be so?

Examination of the graphs and Splash documentation indicate that the subproblem size 

is very small and will easily fit within the access table sizes used in the experiments. 

Additionally, unlike mp3d, no work is undertaken once the parallel processes have termi-
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Figure 8.14: Access table experiments -  32 molecules
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nated, so few copy-on-write faults are generated. The combination of these two elements 

results in an application which easily fits within the access table size and so generates 

little checkpointing overhead.

Conclusions

Although these results may seem on first examination to prove very little, they do in fact 

graphically demonstrate that the checkpoint system imposes little overhead as long as the 

access table size is large enough to accommodate the subproblem size. Unfortunately, 

when this is the case a problem could execute for a large period of time without any 

checkpoints ever being made. In order to overcome this problem, it is necessary to impose 

a time based checkpoint trigger as well as an access table based one (as mentioned in 

§8.6.2).

8 .7 .2  T im e based

Experiments were carried out using no checkpoints, terminating checkpoints, and three 

different periods between checkpoints (50000, 100000, and 200000 cycles). The results are 

given in figures 8.15 and 8.16.

As expected, the more frequent the checkpoints the longer the execution of the program. 

In fact, halving the checkpoint period adds an approximately fixed period to the execution 

time regardless of the parallelism employed. This constant factor makes the percentage 

performance loss increase as the parallelism increases. The loss is accounted for by addi-

tional page faults and copy-on-write faults generated by the checkpoints. There is also an 

increase in DSM traffic due to the exporting of checkpoints. This has little effect on either 

ownership or page copy requests, indicating that the exported pages are generally of little 

use to the receiving nodes.
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Figure 8.15: Time based experiments -  16 molecules
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Conclusions

The result of adding a time constraint to checkpoints is unremarkable; more checkpoints 

incur additional costs resulting in a constant slow down of the application. However, such 

a mechanism is necessary if the subproblem size in the application is very small.

It should be noted that the time based experiments are based around very short checkpoint 

time periods, with checkpoints occurring between 100 and 500 times a second. In a real 

system checkpoints would occur less frequently and the constant cost would be much 

smaller than seen here.

8 .7 .3  Page size and constant A ccess Table capacity

Experiments of similar page size to those with the mp3d program were carried out using 

the water program. The results of these are shown in figures 8.17 and 8.18.

The general trend of smaller pages to decrease execution time and DSM message traffic 

is again observed in these results, although the changes are not as dramatic. However, in 

contrast to mp3d, smaller pages result in an increase in the number of pages checkpointed 

and accessed. This does not cause an increase in checkpointed data, since the number 

of checkpointed pages does not quite double when the page size is halved. From this we 

can conclude that, whilst mp3d accesses a very loosely clustered data set, water accesses 

a much tighter set of pages resulting in fewer page faults with large page sizes.

Conclusions

Like mp3d the predominating effect of reducing the page size is to reduce false sharing, so 

decreasing the DSM traffic and therefore speeding the execution of the application. The 

effect this has on checkpointing, and its contribution to execution time, appears to be 

negligible. Although a greater number of pages are checkpointed, the actual quantity of 

data checkpointed does not vary—the negative effect of one is compensated by the positive 

effect of the other.
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8 .7 .4  Large scale sim ulation

One set of simulations using 128 molecules was completed although there has been insuffi-

cient time to complete further large scale experiments. The results are given in figure 8.19.

This set of simulations is configured in a similar way to those in §8.7.1. Despite the dra-

matic increase in problem size, the modifications in access table size make little difference 

to the execution time of the application. However, with a table size of only 40 entries, 

the subproblem only just fits within it. This is demonstrated by a much large number of 

checkpointed pages and access page additions for this case; although still insufficient to 

make an impression on the execution time.

8 .7 .5  C onclusions

Water exhibits similar speedup behaviour to mp3d under the same conditions—this is 

encouraging. It also demonstrates that if the subproblem size fits well within the access 

table, then checkpointing adds no overhead (since the do not happen). To overcome this 

problem, a time related checkpoint element was introduced whereby a checkpoint would 

always occur within a set time from the last one. This appears to add a constant latency to 

execution regardless of the parallelism of the application but proportional to the problem 

size.

8.8 E xperim ents —  Barnes-H ut

Barnes-Hut was the final program used with the simulator. As with the previous two 

examples, both the problem size and the parallelism could be changed easily. Also, in 

common with Water, large scale simulations were impossible to perform due to the ex-

cessive execution times required. Simulations were therefore carried out using 64 and 128 

masses.
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Figure 8.19: Access table experiments -  128 molecules

2 2 0



8.9. OVERALL CONCLUSIONS

8.8 .1  S ize o f access tab le

Experiments were carried out using no checkpoints, terminating checkpoints and access 

table limited checkpoints. The results of these are shown in figures 8.20 and 8.21.

The first thing to be observed is that the graph characteristics closely match those seen 

in Water. In fact, Barnes-Hut exhibits similar treatment of data, producing results which 

are not significantly effected by checkpoints. The reasons why such behaviour is expected 

will not be repeated (see §8.7).

8 .8 .2  C onclusions

Further experiments with Barnes-Hut are not included here due to the observed, and 

expected, similarity of the results with those of Water. Nothing new was discovered; the 

conclusions drawn from observing the Water algorithm are equally applicable here.

8.9 Overall conclusions

Overall conclusions can be drawn from the experiments performed. Firstly, if the access 

table size is too small to accommodate the subproblem size of a parallel application, then 

excessive checkpoints are performed. Secondly, if the subproblem fits easily into the access 

table, checkpoints are never performed unless a time based checkpointing element is also 

present. The mechanism described provide for both these cases.

Ideally, the access table size and timed checkpoint elements should not be fixed statically 

but determined dynamically, so as to provide the best compromise between data in each 

checkpoint, time between checkpoints (and so necessary delay incurred on rollback), and 

execution time of the application. An algorithm to adjust these parameters on a per 

application basis is the subject of further research.
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8.10 Sum m ary

This chapter has described the design of the A r i us and A mo s  model which has been used 

to analyse the performance characteristics of the reliability mechanisms. The model was 

developed as a simulation library which handles events generated by code from a modified 

C-compiler. This was found to be a flexible environment for experiments.

Various applications were used to examine the checkpointing system, and the relevant 

results presented here (complete results can be found in Appendix B). The primary goal 

of these experiments was to minimise the effect on execution time of the checkpointing 

system. The other resource considerations, such as extra memory used, were of secondary 

importance.

The results demonstrate a need for a checkpointing system comprising of a time related 

component (to prevent large period of computation being lost when a fault occurs) and 

a space related component (to prevent large quantities of memory being consumed when 

a checkpoint occurred). By optimising these parameters, it is possible to reduce the 

checkpoint latency to between 2% and 10% of the original execution time. This is much 

better than originally expected, and better than any system reviewed.
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Conclusions

In the introduction to this work, the question was posed “How can fault tolerance be 

provided efficiently in a distributed parallel operating system?” This thesis has answer 

the question by: examining a new style of operating system designed to exploit parallel 

machine architectures and the potential of 64-bit processors, demonstrating a scalable 

DSM system capable of tolerating some failures, and finally demonstrated an efficient fault 

tolerance system which exploits the inherent resource duplication in a parallel machine.

9.1 T he Arius operating system

Large address space processors offering 64-f bits of address make it possible to unify 

networks of machines and disks into one, single namespace. This greatly simplifies the 

development of parallel and distributed applications. Importantly, Ar i u s  can support 

a UNIX service if required. This is essential if it is to gain any general acceptability. 

Unlike other system this can be done without compromising Ar i u s  and still allows UNIX 

applications to access the unified services if they require. Consequently, there is a simple 

migration pathway from one system to the other.
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9.2 D istrib u ted  shared m em ory

Ar i u s  adopts distributed shared memory as its only means of inter-processor communi-

cation and as the kernel’s communication mechanism. The design demonstrated here is 

therefore constrained to provide a service acceptable to both operating system services as 

well as general applications.

This resulted in a design capable of supporting various coherency policies in a unified 

fashion. This proved essential since a single policy cannot support general data sharing 

(using a write-invalidate policy) and barrier synchronisation (using a write-update policy) 

efficiently. The DSM system adopted a scalable approach to maintaining the copyset. 

In small systems a distributed bit-vector copyset may suffice. With 1000 processors this 

becomes impractical. The adoption of a circular linked list provided a scalable solution, 

which on further analysis proved as or more efficient than a bit-vector solution, and with 

doubly-linked entries provided the necessary fault tolerance.

9.3 R eliab ility

Originally, the reliability mechanisms designed for Ar i us  were only intended to provide 

data integrity so preventing large scale data corruption when a machine failed. However, 

this was soon expanded to a fully comprehensive reliability strategy. It was hoped that the 

use of a DSM scheme for the majority of the work would result in a performance loss of 

at best 20%. Experiments which demonstrated a performance loss of only 2%-10% were 

an unexpected pleasure. The decision to divide reliability into volatile and persistent was 

essential to this result by allowing easy incorporation of fault tolerance into the DSM and 

the subsequent scalability that resulted from this combination.

Inefficient, processor hungry mechanisms to provide fault tolerance have never had wide 

acceptance except for critical applications. The mechanism developed here demonstrates 

that such inefficient fault tolerance systems are no longer required. An efficient system 

can now be implemented on any parallel architectures, and hopefully such systems will 

become generally accepted.
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9.4 Future work

As with most pieces of work, as many new questions and problems arise as are solved. 

In this thesis, an attempt has been made to describe a new 64 bit operating system 

architecture based on distributed shared memory and design such a system to provide the 

reliability necessary in any large scale parallel machine. This has resulted in various pieces 

of potential research.

9.4 .1  W ork on m u lti-p o licy  D SM  p rotoco ls

The design of the DSM protocols given here are relatively primitive in the way different 

policies operate together. Remote writes, for example, are not efficiently implemented. 

Much could be done to improve this situation. This includes work to reduce the searching 

of owner chains when obtaining ownership and allowing ownership to pass outside the 

copyset so simplifying remote access operations.

Hierarchy o f chains

A hierarchy of chains may prove a more efficient method of handling invalidations and 

updates. This would allow updates to be carried out in parallel in large copysets so 

reducing the write latency. However, it is necessary to investigate how such a structure can 

be supported in a resilient fashion and what the gain would be for the added complexity.

9 .4 .2  A lgorith m  to  adjust reliab ility  param eters

Experiments in chapter 8 demonstrate how the parameters, checkpoint time and access 

table size vary the composition and frequency of checkpoints. However, no work has been 

done in determining the best values for these parameters for a given application. An 

algorithm is therefore required to monitor an application and adjust these parameters in 

order to obtain the best performance whilst maintaining a required level of reliability.
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9 .4 .3  Im p lem en ta tio n  o f A rius and AM O S

The complete A r iu s  operating system would allow many other claims and aspects of this 

work to be analysed more thoroughly. However, such a task is significant since it requires 

not only the basic system but the necessary support compilers and programs to allow the 

result to useful.

Additionally, Arius leads onto many interesting aspects of work. By not explicitly sup-

porting the UNIX model of processing, a freedom is available to experiment with such 

diverse areas as graphical user interfaces and system call and service interfaces.

9.5 Sum m ary

This chapter has presented general conclusions and thoughts on future work. In doing so, 

it has summarised the answer to the question posed in the introduction, how to provide 

efficient fault tolerance. This thesis demonstrates that in parallel machines, efficient fault 

tolerance is possible.
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APPENDIX A. COMPLETE DSM ALGORITHMS

A .l  D SM  server loop

Algorithm  A .l

DSM server begin 
Repeat forever {

Receive message
Find page message refers to
I f  message is a “request copy”, call algorithm f.3
Else if  message is a “request read”, call algorithm
Else I f  message is a “request ownership”, call algorithm J,.5
Else if message is a “request invalidate”, call algorithm f.6
Else if message is a “request update”, call algorithm f .7
Else indicate an error!

}
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A.2. DSM PAGE COPY REQUEST

A .2 D SM  page copy request

Algorithm  A .2

Begin request copy
I f  message is marked “error” {

Unbusy the page 
Release requester for retry

}
Else if message is marked “link” {

Set page’s “downchain-nextcopy” to message’s source

}
Else if  message is marked “copy” {

Set page’s “lastowner” to “lastowner” in message 
Set page’s “upchain-nextcopy” to “nextcopy” in message 
Set page’s “downchain-nextcopy” to the source of the message 
Mark message as a “link”
Forward message to page’s “upchain-nextcopy”
Add copy to page’s DSM state 
Busy the page
I f  message is marked dirty {

Dirty the page’s VM state
I f  checkpoint chain point to myself, install chain entry from message

}
Request TLB flushes 
Release requester

}
Else if  this node does not hold a copy of the page {

I f  this node is the originator, copy checkpoint chain entry into message 

Forward message to page’s “lastowner”

}
Else if  this node is the originator and already has a copy of the page {

Release requester

}
Else if page is marked “busy” {

Mark message as “error”
Send it back to originator

}
Else {
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Mark message as a “copy”
Mark message “lasiowner” to be page’s “lastowner”
Mark message “nextcopy” to be page’s “upchain-nexicopy”
I f  page is dirty {

Mark page as dirty in message
I f  message’s checkpoint chain entry points to the originator, exchange the mes-

sage’s version with the page’s version

}
Set page’s “upchain-nextcopy” to be originator 
Add copy to page’s DSM state 
Request TLB flushes 
Send message on to its originator

}
End request copy
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A.3. DSM REMOTE READ REQUEST

A .3 D SM  rem ote read request

Algorithm  A .3

Begin request remote read 
I f  message contains copy {

Set page’s “lastowner” to “lastowner” in message 
Insert data into halted requester 
I f  message is marked dirty {

Dirty the page’s VM state
I f  checkpoint chain point to myself, install chain entry from message

}
Release requester

}
Else if  this node does not hold a copy of the page {

I f this node is the originator, copy checkpoint chain entry into message 
Forward message to page’s “lastowner”

}
Else if this node is the originator and already has a copy of the page {

Release requester

}
Else {

Mark message to contain a copy 
Place requested data in the message 
I f  data’s page is dirty {

Mark data as dirty in message
I f  message’s checkpoint chain entry points to the originator, exchange the mes-

sage’s version with the page’s version

}
Send message on to originator

}
End request remote read
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A .4 D SM  request ownership

Algorithm  A .4

Begin request owner 
I f  message is marked “error” {

Unbusy the page 
Release requester for retry

}
Else if  page is marked “busy” and message is from a remote node { 

Mark message as “error”
Send it back to originator

}
Else if  message contains ownership {

Add ownership to page’s DSM state 
Set page’s “lastowner” to be this node 
Request TLB flushes 
Release requester

}
Else if  this node is the originator {

I f page is already owned {
Release requester

}
Else if  this node does not have a copy of the page {

Unbusy the page
Release requester to allow page to be obtained

}
Else {

Busy the page to prevent removal of copy 
Forward message to the page’s “lastowner”

}
}
Else if  this node does not own the page {

Forward message to the page’s “lastowner”

}
Else {

Mark message to contain ownership 
Invalidate page’s ownership on this node 
Set page’s “lastowner” to be requesting node 
Request TLB flushes 
Send message on to originator

}
End request owner
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A.5. DSM INVALIDATE REQUEST

A .5 D SM  invalidate request

Algorithm  A .5

Begin request invalidate 
I f  message is marked “error” {

Set page’s “upchain-nextcopy” to be the source of the message 
Install checkpoint chain entry from message in current page’s 

Unbusy the page 
Release requester for retry

}
Else if  page is marked “busy” and message is from a remote node {

Mark message as “error” 
Send it back to originator

}
I f  message contains “owner.one” {

Set page’s “upchain-nextcopy” to be this node
Set page’s “downchain-nextcopy” to be this node
Set page’s DSM state to indicate a single writable copy is present
Install checkpoint chain entry from message in current page’s
Busy the page
Request TLB flushes
Release requester

}
Else if  this node is the originator {

I f  this node holds a single writable copy {

Release requester

}
Else if this node owns the page {

Busy the page to prevent movement of ownership 
Copy checkpoint chain entry into message 
Forward the message to “upchain-nextcopy”

}
Else {

May not invalidate 
Release requester for retry

}

}
Else {

I f  node has this page {
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I f page’s checkpoint chain entry points to the current node, exchange the message’s 
version with the page’s version 

Remove copy from DSM state 
Request TLB flushes

}
I f  page’s “upchain-nextcopy” is originator, mark the message “owner-one”
Forward the message to the page’s “upchain-nextcopy”

}
End request invalidate
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A.6. DSM UPDATE REQUEST

A .6 D SM  update request

A lgorithm  A .6

Begin request update 
I f  message contains “owner” {

Release requester

}
Else if  message contains “owner-one” {

Install checkpoint chain entry from message in current page’s 
Unbusy the page
I f  this node initiated the update {

Release requester
}
Else {

Mark the message “owner”
Forward message to initiator

}

}
Else if  message contains “owner-many” {

Set page’s “lastowner” to be message’s “lastowner”
I f  page is present {

Apply the update
I f  page’s checkpoint chain entry points to the current node, exchange the message’s 

version with the page’s version
}
I f  page’s “upchain-nextcopy” is originator, mark the message “owner-one”
Forward the message to the page’s “upchain-nextcopy”

}
I f  this node owns the page {

Busy the page to prevent movement of ownership 
Apply the update
Copy checkpoint chain entry into message 
Mark the message “owner-many”
Mark the message’s “lastowner” to be this node 
Forward the message to “upchain-nextcopy”

}
Else {

Forward the message to the page’s “lastowner”

}
End request update
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APPENDIX B. COMPLETE RESULTS
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One to ten clusters,
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IK page size,
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50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).
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B . 2 .4  32 m o le c u le s  -  A c c e ss  ta b le  s ize

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

2 7 7



APPENDIX B. COMPLETE RESULTS

Number o f p ro c e s s o rs

ïo
a

1 2 3 4 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s N um ber o f  p r o c e s s o r s

2 7 8
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WATERB.2.

I
0 u
1

1 2 3 4 5 6 7 8 9 10
Number c£ p r o c e s s o r s

a
4!9

1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s

1 2 3 4 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s

o
4)

1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s

2 7 9



APPENDIX B. COMPLETE RESULTS

B .2 .5  32 m o le c u le s  — T im e  based

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

Number o f  p r o c e s s o r s Number o f  p r o c e s s o r s

1 2 3 < 5 6 7  
Number o f  p r o c e s s o r s

1 2 3 < 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s

2 8 0



WATERB.2.

1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s

t»o
a

ì
o

it0
3y

5Q

1 2 3 4 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s

1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s

3i

0£aQ

0 r -----1----- 1---------- 1----- 1----- 1----- 1----- 1-----
1 2 3 4 5 6 7 8 9 10

N u m b er o f  p r o c e s s o r s

2 8 1
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APPENDIX B. COMPLETE RESULTS

1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s

1 2 3 4 5 6 7 E 9 10
Number of p r o c e s s o r s

or""" ±--- 4---------*■■■ -----—*----
1 2 3 4 5 6 7 6 9 10

Number o f p r o c e s s o r s

1 2 3 4 5 6 7 6 9 10
N um ber o f  p r o c e s s o r s

1 2 3 4 5 6 7  8 9  10
Number o f  p r o c e s s o r s

2 8 2



B.2. WATER

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

B .2 .6  32 m o le c u le s  -  P a g e  size

— — ---------- - - - -1------- - - - - - - - ------------- 1--------------
¡5 1 2 !

(1C 24)

(4C 96Ì •44—

— - - - - - - - - - - - - - -1------------- -------------- 1--------------

t— — '— *  ' —

----------- f — -
1 2 3 4 S 6 7 8 9  10

Nuntoer ol processors

Husòer of processors

2 8 3
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1 2 3 4  5 6 7 8 9 1 0
Nuntier of processors

1 2 3 4 b 6 7 e 9 10
Number o! processors

1 2 3 4 5 6 7 8 9 10
Nunber of processors

1 2 3 4 5 6 7 8 9 10
Number of processors

2 8 4
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Number of processors

Number of processors

Number o f processors
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Number of processors

2 8 5



APPENDIX B. COMPLETE RESULTS

B .2 .7  128  m o le c u le s  -  A ccess  ta b le  size

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

1 2 3 4 5 6 7 8 9 10
N u m b e r o f  p r o c e s s o r s

1 3 4 5
Number of

8 $ 10

2 8 6
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1 2 3 4 5 6 7 8 9 10
Number o f  p r o c e s s o r s Number o f  p r o c e s s o r s

-------------1-------------
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— — — —
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(S in g le !
) - B ......
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—

1 2 3 4 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s

---1---------- ----- ----- ----- ----- ----- 1----
1 2 3 4 5 6 7 8 9 10

N um ber o f  p r o c e s s o r s

2 8 7
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Number o f  p r o c e s s o r s  Number o f p ro c e s s o rs

1 2 3 4 5 6 7 8 9 10
Number of p r o c e s s o r s

1 10
N um ber o f  p r o c e s s o r s

u

1 2 3 4 5 6 7 8 9 10
N um ber o f  p r o c e s s o r s

2 8 8



B.3. BARNES-HUT

B .3 Barnes-H ut

B .3.1 64 m asses -  A ccess tab le size

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

2 8 9
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1 2 3 4  S 6 7 6 9  10
Number of processors

5 6
Number of processors

10

2 9 0



B.3. BARNES-HUT
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B .3 .2  128 m asses  -  A ccess tab le  size

One to ten clusters,
One processor per cluster,
IK page size,
32 entry Pte cache,
50 cycle miss and write fault penalties,
30 cycles copy-on-write fault penalty (excluding copy),
100 cycles Dsm message delivery time (excluding page data).

Nuntoer of processors

2 9 2



BARNES-HUTB.3.

2 9 3
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2 3 4 5 6 7 8 9 10
Number of processors
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Number of processors

2 9 4



B.3. BARNES-HUT



APPENDIX B. COMPLETE RESULTS

2 9 6


