

City, University of London Institutional Repository

Citation: Youssef, M. W. A. F. (1993). Transaction behaviour in large database

environments: A methodological approach. (Unpublished Doctoral thesis, City, University of
London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29631/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

STr<

Transaction Behaviour in Large Database Environments
A Methodological Approach

Mohamed Wagdy Abdel Fattah Youssef

Submitted for part o f examination for
Doctor o f Philosophy

Department of Business Computing,
School of Informatics,

CITY University,
London.

August 1993

}

Dedicated to my parents
if not for their continuous encouragement and support

this work would have never been completed.

)

Table of Contents

Page

CHAPTER 1 INTRODUCTION

1.1 Some Performance Concepts... 1
1.1.1 Some Indices of Performance.. 4
1.1.2 Analytical Models...5

1.1.2.1 Statistical Models.. 6
1.1.2.2 Graphical Models..6
1.1.2.3 Algorithmic Models..6

1.1.3 Simulative Models... 7
1.1.4 Benchmarks..7

1.1.4.1 The Role of Benchmarks..8
1.1.4.2 Selecting a Benchmark M ix..8
1.1.4.3 Weaknesses of Benchmarks.. 9
1.1.4.4 The main Characteristics of a Good

Benchmarks... 9

1.2 Problem Definition... 10

1.3 Research Objectives and Approach... 11
1.3.1 Empirical Approach to Problem Solving....................................... 12
1.3.2 Specification of the Research Domain... 13
1.3.3 Development Basis of the CITY Benchmark.................................13
1.3.4 Test Capabilities of the CITY Benchmark..............................14
1.3.5 Test and Verification of the CITY Benchmark Results..................14

CHAPTER 2 AN ANALYSI S OF D A T A B A S E
PERFORMANCE MEASURES

2.1 Introduction.. 18
/

2.2 Historical Background of Database Benchmarks..........................19

2.3 Database Benchmarks..20
2.3.1 Benchmark Methodology for IMS DBMS...................................22

I

Page

2.3.1.1 System Configuration and Running
Environment...23

2.3.1.2 Database Definition.. 23
2.3.1.3 Measures of Space Utilisation.................................. 23
2.3.1.4 Measures for the IMS operators.....................................24

2.3.2 A Benchmark Methodology for CODASYL DBMS......................25
2.3.3 Cellular Systems Benchmarks...25
2.3.4 An Interactive Benchmark for INGRES DBMS...................... 26
2.3.5 A Benchmark By M. Stonebraker... 26
2.3.6 Benchmark Methodology By Benigni and Yao....................... 27

2.3.6.1 System Configuration..27
2.3.6.2 Test Data.. 28
2.3.6.3 Benchmark Workload..28

2.3.7 Benchmark Methodology By P. Strawser.....................................30
2.3.8 Performance Evaluation of Temporal DBMS.................................30
2.3.9 Benchmark Methodology Using Simple Queries...................... 31
2.3.10 The SCAN Benchmark...33
2.3.11 The Onekay (IBM 1987)..33
2.3.12 The RAMP-C... 34
2.3.13 Performance Evaluation of Main Memory DBMS....................... 34
2.3.14 BYTE Benchmark...35
2.3.15 The Set Query Benchmark... 35
2.3.16 The HyperModel Benchmark... 36
2.3.17 The Engineering Database Benchmark..37

2.4 Activities of Naval Postgraduate School..38
2.4.1 The MBDS Hardware Configuration..39
2.4.2 The Attribute Based Model..40
2.4.3 The Benchmark Strategy.. 40
2.4.4 System Configurations Considerations................................... 41
2.4.5 Database Size Considerations...41

)
2.5 The Most Widely Used Benchmarks.. 41

2.5.1 The Wisconsin Benchmarks... 42
2.5.1.1 Description of the Test Database......................................42
2.5.1.2 Description of the Benchmark Queries............................ 42
2.5.1.3 Performance Metric.. 43

II

Page

2.5.2 Comments on The Wisconsin Benchmark.....................................43
2.5.3 The Debit-Credit (TP1).. 46

2.5.3.1 Description of the Test Database.....................................47
2.5.3.2 Description of the Benchmark................................. 47

2.5.4 The Transaction Processing Performance Council (TPC)
Activities.. 48

2.5.5 The TPC-A...49
2.5.6 TPC-B...50
2.5.7 The TPC-C benchmark... 51

2.5.7.1 The TPC-C Logical Database Design.............................51
2.5.7.2 The TPC-C Transactions Profile..............................52
2.5.7.3 Limitations of The TPC-C Transactions.........................55

2.6 Limitations of The Existing Benchmarks.............................. 55

2.7 C o n c lu s io n .. 57

CHAPTER 3 PROBLEM DEFINITION AND DATA
G A T H E R I N G AND A N A L Y S I S
TECHNIQUES

3.1 Introduction..60

3.2 Problem Definition..62
3.2.1 Inconsistency of TPC Benchmarks Implementation....................... 62
3.2.2 Technical Limitations of The TPC Transactions...................... 65
3.2.3 Inconsistency of the TPC Transaction Comparisons......................67

3.3 Empirical Approach To Solve The Defined Problem....................68
3.3.1 Specification of the Domain of Studies... 70

3.3.1.1 Definition of High-volume Transactions
Environments (OLTP)..70

3.3.2 Criteria for Organisations'Selection.. 71
3.3.2.1 The Local Authorities Computer Centre..........................71
3.3.2.2 The Airlines Computer Centre.. 72
3.3.2.3 The Bank Computer Centre.. 73

III

Page

3.4 Empirical Studies to Test Database Performance
Factors..7 5

3.4.1 Table Size..77
3.4.2 Row Size Effect.. 78
3.4.3 Database Indexed Attributes... 79
3.4.4 Attributes Types and Distribution... 80
3.4.5 Transaction Database Operations...80
3.4.6 Transactions time Utilisation and I/O Operations...................... 81
3.4.7 JOIN Operation.. 81
3.4.8 Transaction Complexity.. 82
3.4.9 Transaction Output.. 83
3.4.10 Background workload.. 85
3.4.11 Discussion of Performance Factors.. 86

3.5 Studying Organisations and Data Gathering Techniques........ 87
3.5.1 Approaches of Studying Organisations......................................88

3.5.1.1 Pure Basic Research...88
3.5.1.2 Basic Objective Research...88
3.5.1.3 Evaluation Research...88
3.5.1.4 Applied Research...89
3.5.1.5 Action Research.. 89

3.5.2 Data Gathering Techniques...90
3.5.2.1 Formal Meetings.. 91
3.5.22 Interviews... 91
3.5.2.3 Studying Systems’ Documents....................................... 92
3.5.2.4 Studying Systems' Outputs.. 92
3.5.2.5 Systems Monitoring...93

3.6 S ta tistica l T echniques.. 93
3.6.1 Some Definitions...93

3.6.1.1 Arithmetic Mean..93
3.6.1.2 Sample Variancé..94
3.6.1.3 Standard Deviation..94
3.6.1.4 Number of Measurements for Reliable Sample...............95
3.6.1.5 The Normal Distribution..96

3.6.2 Design of Experiments... 96

IV

Page

3.6.2.1 Replication of Experiments...97
3.6.2.2 Randomisation of Experiments' Events.................... 97
3.6.2.3 Analysis of Covariance.. 97

3.6.2.3.1 One-Way Analysis of Variance....................... 97
3.6.2.3.2 Two-Way Analysis of Variance......................99

3.6.3 Comparing The Workloads Of Different Transactions..................101
3.6.3.1 Calculating Average Rate of Change (Difference

Quotient)... 102
3.6.3.2 Calculating Relative Change....................................103

3.6.4 Ordinary Least Squares Method (OLS)..................................104

3.7 Summary.. 105

CHAPTER 4 DATABASE CHARACTERISTICS AND
TRANSACTION BEHAVIOUR IN LARGE
DATABASE ENVIRONMENTS

4.1 Introduction...107

4.2 A Study In a Large Local Authority Computer Centre................ 110
4.2.1 Introduction.. 110
4.2.2 The Business of the Local Authority.....................................110
4.2.3 Organisational Structure of the Local Authority.............................112
4.2.4 The Local Authority Processing Environment............................... 113
4.2.5 The Local Authority Main Applications.. 114
4.2.6 The Main Characteristics of The Application Databases................ 115
4.2.7 Transactions Behaviour of the Running Systems...........................116

4.2.7.1 On-line Transactions Database Operations..................116
4.2.7.2 Ratios of Key Utilisation.. 117
4.2.7.3 Average Number of Retrieved Records per

Transaction...117
4.2.8 Background Workload...118

/
4.3 A Study In a Large British Airlines' Computer Centre...............119

4.3.1 Introduction.. 119
4.3.2 Data Gathering.. 119

4.3.2.1 Monitoring the Running Systems.............................119

V

Page

4.3.2.2 Studying Systems Outputs and Systems
Documents..120

4.3.2.3 Interviews..121
4.3.3 Processing Environment... 122
4.3.4 The Main Characteristics of the Application Databases................... 123

4.3.4.1 Application Databases on the S2 Processor................... 124
4.3.4.2 Application Databases on the S3 Processor................... 124
4.3.4.3 The Acceptance Test System (ATS)............................... 125

4.3.5 Transactions Behaviour of the Running Systems........................... 125
4.3.5.1 On-line Transaction Database Operations.........................126
4.3.5.2 Time Utilisation and I/O Operations.................................126
4.3.5.3 Number of Databases Accessed by One

Transaction (JOIN Operation).. 127
4.3.5.4 Transactions Complexity (Nested Selects)...................... 127

4.3.6 Number of Retrieved Records per Transaction................................129
4.3.7 The Background Workload...129

4.4 A Study In a Large UK Bank Computer Centre.......................... 129
4.4.1 Introduction...129
4.4.2 Data Gathering Techniques... 130

4.4.2.1 Interviews..130
4.4.2.2 Monitoring the Running Systems.............................. 131
4.4.2.3 Studying Systems Documentation....................................132

4.4.3 Processing Environment...132
4.4.3.1 Hardware and Software.. 132
4.4.3.2 The Bank Running Applications...................................... 136
4.4.3.3 On-line Transaction Flow... 137
4.4.3.4 The Bank Database Management Systems.................. 137

4.4.4 Characteristics of Application Databases...138
4.4.5 Transaction Behaviour of the Running Systems.............................139

4.4.5.1 On-line Transactions Database Operations.................. 139
4.4.5.2 ATM Transactions Database Operations.......................... 140
4.4.5.3 CPU Time Utilisation and I/O Operations......................142
4.4.5.4 Number of Databases Accessed by One

Transaction (JOIN Operation).. 143
4.4.5.5 Transactions Complexity (Nested Selects)...................... 144

VI

Page

4.4.5.6 Average Number of Retrieved Records per
Transaction..144

4.4.6 The Background Workload...145

4.5 Discussion..145
4.5.1 On-line Transaction Behaviour Represented as Number of

Database Operations... 145
4.5.2 Comparison Between TPC-A, TPC-B and On-line

Transaction At the Three Organisations..147
4.5.3 Comparison Between the Bank ATM Transaction and The

TPC-A Benchmark.. 148
4.5.4 Comparison Between TPC-C and On-line Transaction At

the Three Organisations..149
4.5.5 Common Characteristics Between Databases.................................. 153

4.5.5.1 Database Size.. 153
4.5.5.2 Row Size... 153
4.5.5.3 Indexed Attribute and Attribute Types.............................154

4.5.6 On-line Transactions Behaviour.. 154
4.5.6.1 JOIN Operation..154
4.5.6.2 Transaction Complexity.. 156
4.5.6.3 Number of Retrieved Records per Transaction.............. 156
4.5.6.4 On-line Transaction Ratios of CPU to I/O

Utilisation... 157
4.5.6.5 Background Workload... 157

4.6 C o n c lu s io n ...158

CHAPTER 5 The CITY BENCHMARK

5.1 Introduction.. 160

5.2 The CITY Benchmark Domain Specification................................... 162

5.3 The CITY Benchmark Objectives..163

5.4 The CITY Benchmark M etrics..163
5.4.1 Response Time and Transactions per Second...............................164

vn

Page

5.4.2 How Time is Measured.. 166

5.5 The CITY Benchmark Database...167
5.5.1 Number of Tables.. 168
5.5.2 Row Size..169
5.5.3 Attributes' Types and Accessibility of Rows (Indices)..................169
5.5.4 Distribution of Attributes in the Tables.. 173
5.5.5 The CITY Benchmark Database Schema and Creation

Rules..173
5.5.6 Table Size (Number of rows per table).. 178

5.6 The CITY Benchmark Transaction Script.. 178
5.6.1 The CITY Benchmark Basic Database Operations.......................... 181
5.6.2 JOIN Operation..182
5.6.3 JOIN Transaction Complexity...182
5.6.4 Number of Retrieved Rows per Transaction............................ 182
5.6.5 Background Workload..183
5.6.6 The CITY Transactions Workload.. 183

5.6.6.1 Qualified Retrieval..184
5.6.6.2 Sequential Retrieval.. 185
5.6.6.3 JOIN Two Tables..185
5.6.6.4 Update a Row in DBUPD... 185
5.6.6.5 Insert a Row in DBINS..185
5.6.6.6 Sequence of Operations Execution in The

Benchmark Script...186
5.6.7 Control of Transactions Execution.. 186
5.6.8 Random Number Generators.. 187

5.7 Requirements of Transaction Processing Council......................... 188

5.8 Summary...189

/
CHAPTER 6 PRELIMINARY TEST AND VERIFICATION

of The CITY BENCHMARK

6.1 Introduction...191

VIII

Page

6.2 Test of the Main Characteristics of The CITY
Benchmark... 191

6.2.1 Reproducibility of the Benchmark Measures.................................192
6.2.1.1 Clock Adjustment and Eliminating First

Transaction Effect..193
6.2.1.2 Reproducibility of the Benchmark Measures

Within a Single Loop.. 194
6.2.1.3 Reproducibility of the Benchmark Runs.........................198
6.2.1.4 Duration of Loops Time... 198
6.2.1.5 Test of Transaction Atomicity...199
6.2.1.6 Test of Transaction Consistency.......................................199
6.2.1.7 Test of Transaction Isolation..200
6.2.1.8 Test of Transaction Durability..................................200

6.2.2 Test for Scalability of the CITY Transaction........................... 200
6.2.2.1 Transaction Scalability VS Usage Cost............................201
6.2.2.2 Scalability of The CITY Transaction in

Comparison To Different Mixes in Two
Standalone PC Environments..203

6.2.2.3 Scalability Ratio of The CITY Transaction in
Comparison To Different Mixes in Two
Standalone PC Environments..205

6.2.3 Simplicity of Construction and Clarity Code.................................207
6.2.3.1 Flexibility and Simplicity of Construction........................207
6.2.3.2 Clarity of Code... 207
6.2.3.3 Interpretation of the Results... 208

6.3 Comparison between the CITY Transaction and the TPC
Transactions in a Standalone PC Environment.................... 209

6.3.1 Comparison Between the CITY and the TPC
Transactions' Scalability Levels...209

6.3.2 Comparison Between the CITY and the TPC
Transactions' Scalability Ratios.. 211

6.4 Summary...212

IX

Page

CHAPTER 7 LARGE SCALE TEST AND VERIFICATION
of The CITY BENCHMARK

7.1 Introduction..215

7.2 Reproducibility of the Benchmark Measures............................ 216
7.2.1 Clock Adjustment and Eliminating First Transaction

Effect.. 216
7.2.2 Reproducibility of the Benchmark Measures Within a

Single Loop... 217
7.2.3 Reproducibility of the Benchmark Runs...220
7.2.4 Duration of Loops Time.. 222
7.2.5 Duration of Full Test in Multi-User Environment..........................223
7.2.6 Test of Transaction Atomicity...224
7.2.7 Test of Transaction Consistency...224
7.2.8 Test of Transaction Isolation..224
7.2.9 Test of Transaction Durability...225

7.3 Portability of the CITY Benchmark......................................225
7.3.1 Hardware and Software Independence... 226
7.3.2 Database Management System Independent................................... 227

7.4 Large Scale Test of the Scalability of the CITY
Transaction..227

7.4.1 Large Scale Test for Scalability..228
7.4.2 Transaction Scalability VS Usage Cost in a Range of

Computer Environments.. 229
7.4.3 Scalability of The CITY Transaction in Comparison To

Different Mixes in SUN SPARC Environment............................... 230
7.4.4 Scalability Ratio of The CITY Transaction in Comparison

To Different Mixes in Three Computer Environments.................... 233

7.5 Comparability of The Benchmark Measures...................................234

7.6 Summary.. 236

X

Page

CHAPTER 8 DISCUSSION

8.1 Introduction..239

8.2 Comparison between the Behaviour of the CITY
Transaction and the Behaviour of the TPC Benchmarks
A and B Transactions... 240

8.2.1 Comparison Between the Scalability Levels of the CITY
Transaction and the TPC (A and B) Transactions........................... 241

8.2.2 Comparison Between the CITY and the TPC
Transactions' Scalability Ratios... 243

8.2.3 Comparability of Transactions' Measures Between
DBMS.. 245

8.2.4 Compliance of The TPC Benchmark with Future Trends
of DBMS...247

8.3 Comparison between the CITY Benchmark and the
TPC-C Benchmark.. 249

8.3.1 Comparison between the Cost of the CITY Transaction
and the Cost of the TPC-C Benchmark Transaction...................249

8.3.2 Database Size of the TPC-C Benchmark...252

8.4 Utilisation of The CITY Benchmark.. 252

8.5 Summary.. 253

CHAPTER 9 CONCLUSION AND FUTURE WORK

9.1 C o n c lu s io n .. 256

9.2 Contribution of The Work.. 258

9.3 Limitations of The CITY Benchmark.. 259

9.4 Future Work..261

10. REFERENCES 264

XI

Page

APPENDIX A: Create The CITY Benchmark Tables 273

APPENDIX B: The CITY Benchmark Tables Load 284

APPENDIX C: The CITY Benchmark Transactions 293

APPENDIX D: Random Numbers Generators 315

APPENDIX E: Analysis of Variance 317

APPENDIX F: The City Benchmark Operation Book 322

APPENDIX G: Printing The City Benchmark Results 325

APPENDIX H: Letters From Organisations 328

XII

Table of Figures

The thesis has the following figures:

Page

Chapter 3

Fig. 3.1, Effects of three database operations 69
Fig. 3.2, The Local Authority average daily load 72
Fig. 3.3, The Airlines average daily load 73
Fig. 3.4, The Bank average weekly load 74
Fig. 3.5, The Bank average daily load 75
Fig. 3.6, Effect of table size on transaction response time 77
Fig. 3.7, Effect of row size on transaction response time 78
Fig. 3.8, Effect of unique index on transaction response time 79
Fig. 3.9, Effect of JOIN operation on transaction response time 81
Fig. 3.10, Effect of transaction output on transaction response time 83
Fig. 3.11, Effect of result display on transaction response time 84
Fig. 3.12, Effect of background workload on transaction response time 86

Chapter 4

Fig. 4.1, The business of the Local Authority 111
Fig. 4.2, Organisational structure of the Local Authority Computer Centre 112
Fig. 4.3, Processing Environment of the Local Authority 114
Fig. 4.4, Ratios of the Local Authority On-line Transaction Operations 117
Fig. 4.5, Ratios of Key utilisation 118
Fig. 4.6, Organisational structure of the Airlines computer centre 121
Fig. 4.7, Processing Environment of the Airlines computer centre 122
Fig. 4.8, Ratios of the Airlines On-line Transaction Operations 126
Fig. 4.9, The Airlines On-line transaction I/O time ratios 127
Fig. 4.10, The Airlines On-line transaction JOIN ratios 128
Fig. 4.11, The Airlines On-line transaction nested selects ratios 128
Fig. 4.12, The Bank branches to data centres communication 133
Fig. 4.13, The Bank data centre 134
Fig. 4.14, Customer Account in relation to running applications 135
Fig. 4.15, The Bank On-line transaction flow 136
Fig. 4.16, Ratios of the Bank On-line Transaction Operations 140
Fig. 4.17, Ratios of the Bank ATMs Transaction Operations 141
Fig. 4.18, The Bank On-line transaction ratios of CPU and I/O times 142
Fig. 4.19, The Bank On-line transaction JOIN ratios 143
Fig. 4.20, The Bank On-line transaction nested selects ratios 144
Fig. 4.21, Average of On-line Transaction Operations in all environments 146
Fig. 4.22, Comparison between the TPC-A, TPC-B and On-line transaction 148
Fig. 4.23, The full TPC-C database operations 150
Fig. 4.24, The On-line TPC-C database operations 151
Fig. 4.25, Comparison between complete TPC-C and On-line transaction 152
Fig. 4.26, Comparison between On-line TPC-C and On-line transaction 152
Fig. 4.27, Average number of JOINed tables 155
Fig. 4.28, Average number.of nested selects 156
Fig. 4.29, Average of On-line transaction I/O time ratios 157

XIII

Page

Chapter 5

Fig. 5.1, The relations between the CITY benchmark tables 175

Chapter 6

Fig. 6.1, First transaction response time in PC environment 194
Fig. 6.2, Spread of CITY measures in PC environment 196
Fig. 6.3, Frequency values of CITY measures in PC environment 197
Fig. 6.4, Scalability of The CITY measures in PC environment 201
Fig. 6.5.1, The CITY transaction scalability level against other transactions 204
Fig. 6.5.2, The CITY transaction scalability level against Join transactions 205
Fig. 6.6, The CITY transaction scalability ratio against other transactions 206
Fig. 6.7, Comparison between the CITY and TPC-A, B scalability levels 211
Fig. 6.8, Comparison between the CITY and TPC-A, B scalability ratios 212

Chapter 7

Fig. 7.1, First transaction response time in SUN SPARC environment 217
Fig. 7.2, Spread of CITY measures in SUN SPARC environment 218
Fig. 7.3, Frequency values of The CITY measures in a SUN SPARC environment 219
Fig. 7.4, Sample of The CITY measures from different runs 221
Fig. 7.5, Comparison between The CITY measures based on test loop duration 223
Fig. 7.6, Scalability of The CITY measures in several computer environments 229
Fig. 7.7, The CITY transaction scalability level against other transactions 232
Fig. 7.8, The CITY transaction scalability level against JOIN transaction 232
Fig. 7.9, The CITY transaction scalability ratio against other transactions' mixes 234
Fig. 7.10, Comparison between two DBMS using The CITY benchmark 235

Chapter 8

Fig. 8.1, Comparison between CITY and TPC-A, TPC-B in several computer environments 242
Fig. 8.2, CITY and TPC-A, TPC-B in multiprocessors environments 243
Fig. 8.3, Scalability ratio of CITY and TPC-A, TPC-B in several computer environments 244
Fig. 8.4, Scalability ratio of CITY and TPC-A, TPC-B in multiprocessors environments 245
Fig. 8.5, Comparing DBMS using both The CITY and The TPC-A and TPC-B 246
Fig. 8.6, Effect of row size on transaction response time (future trends) 248
Fig. 8.7, The TPC-C complete transaction workload in SUN SPARC environment 250
Fig. 8.8, The TPC-C on-line transaction workload in SUN SPARC environment 251

XIV

Thesis Tables

Page
Chapter 1

Table 1.1, The different test environments 15

Chapter 3

Table 3.1, Three database operations in PC environment 66
Table 3.2, Three database operations in SUN SPARC environment 67
Table 3.3, The TPC-A against different table sizes 67
Table 3.4, Comparison between an IBM and Tandem 68
Table 3.5, Steps of calculating ANOVA 100
Table 3.6, Example of two transactions' workloads 103

Chapter 4

Table 4.1, Ratios of the Local Authority On-line Transaction Operations 116
Table 4.2, Ratios of the Airlines On-line Transaction Operations 126
Table 4.3, Ratios of the Bank On-line Transaction Operations 140
Table 4.4, Ratios of the Bank ATMs Transaction Operations 141
Table 4.5, Average of On-line Transaction Operations in all environments 146
Table 4.6, Comparison between the TPC-A, TPC-B and typical On-line transaction 147
Table 4.7, Comparison between the TPC-A and ATM transaction 149
Table 4.8, Comparison between the TPC-C and On-line transaction 150
Table 4.9, Average number of JOINed tables 155
Table 4.10, Average number of nested selects 156

Chapter 5

Table 5.1, The CITY benchmark TPs tables' sizes 165
Table 5.2, DB100 176
Table 5.3, DB200 176
Table 5.4, DB300 177
Table 5.5, DBUPD 177

Chapter 6

Table 6.1, Spread of CITY measures in PC environment 196
Table 6.2, Frequency values of CITY measures in PC environment 198
Table 6.3, Effect of loop time on CITY measures in PC environment 199
Table 6.4.1, The CITY transaction scalability level against other transactions 203
Table 6.4.2, The CITY transaction scalability'level against other transactions 204
Table 6.5, The CITY transaction scalability ratio against other transactions 206
Table 6.6, Comparison between The CITY and TPC-A, TPC-B scalability level 210
Table 6.7, Comparison between The CITY and TPC-A, TPC-B scalability level 210
Table 6.8, Comparison between The CITY and TPC-A, TPC-B scalability ratio 211

XV

Page

Chapter 7

Table 7.1, Spread of CITY measures in a SUN SPARC environment 218
Table 7.2, Frequency values of CITY measures in a SUN SPARC environment 219
Table 7.3, Sample of The CITY measures from different runs 220
Table 7.4, Calculation of ANOVA of The CITY measures from different runs 221
Table 7.5, Calculation of ANOVA of the CITY measures from different runs 221
Table 7.6, Comparison between CITY measures based on test loop duration 222
Table 7.7, The CITY transaction scalability level against other transactions' mixes 231
Table 7.8, The CITY transaction scalability level against other transactions' mixes 231
Table 7.9, The CITY transaction scalability ratio against other transactions' mixes 233
Table 7.10, Comparison between two DBMS using The CITY benchmark 235

Chapter 8

Table 8.1, Sizes of rows in row test of row size effect 248
Table 8.2, Comparison between the CITY measures and full TPC-C measures 250
Table 8.3, Comparison between The CITY measures and on-line TPC-C measures 251

XVI

Acknowledgements

I would like to thank my parents for their support and continuous encouragement
and my brother and sister for all the help they have offered.

I would like to thank my supervisor, Norman Revell, for his useful guidance,
tolerance and invaluable advice during this research study.

Also I would like to thank my second supervisor, Simon Grant, for his optimism,
comments and constructive criticism.

I would like to express my deepest gratitude to Prof. Huissin Abdel Aziz and Dr.
Galal Ismail for their continuous encouragement.

I would like to thank Mr. David Notley, Department of Statistics, CITY
University, for his useful advice in statistical matters.

For allowing me to either to study their environments or to run my tests on their
computers I would also like to thank the following people: Vince Padi from LOLA;
Peter Blundell and Roger Penton from British Airways; Andy Pearse from NatWest;
Clare Whitiker and Dave Tomlinson from AT&T (NCR 3600 and Teradata branch);
Galal Hasan from Brunei University; Walaa Mohamed and George Karakitsos from
UNL.

I am grateful to Dr. Allan Cook, Mr. Alwyn Jones, Prof. Owen Hanson, and
Prof. Alistair Sutcliffe for their encouragement, guidance and support.

Additionally, I would like to thank all my friends and colleagues in the CITY
University specially Akmal Chaudhri, Tony Valsanidis, Dr. Julie McCann, Dr. Robin
Swain, and Anwar Hegab for their help throughout this research and Dr. Neil Maiden
and Uma Patel for using their printer to print this work.

Finally, I would like to thank the secretaries in the general office of Department of
Business Computing at CITY University and Beverley Copeland the computer
laboratory manager for their assistance during this research.

xvn

Declaration

I grant powers of discretion to the University Librarian to allow this thesis to be
copied in whole or in part without further reference to me. This permission covers only
single copies made for study purposes, subject to normal conditions of
acknowledgements.

Statement of Contribution

This disclaimer is to state that the research reported in this thesis is primarily the
work of the author and was undertaken as part of his doctoral research. Referenced
papers of which the student is not the sole author represent the role of the supervisor in
the research, to direct the work and enhance the written style of these papers.

xvin

Abstract

This thesis presents the CITY benchmark, a database benchmark that fairly
represents On-Line Transaction Processing (OLTP) environments. It analyses the most
widely used benchmarks in general putting more emphasis on the Wisconsin
benchmark and the Transaction Processing Council (TPC) benchmarks (TPC-A, TPC-
B and TPC-C) in particular. It also presents an empirical approach to examine the
workload of those benchmarks and discovered several technical limitations in their
scripts. The thesis also presents an investigation of on-line transactions in large
database environments. The tested environments were three of the largest organisations
in the UK, those organisations were different in objectives and activities. The
investigation identified on-line transaction behaviour and defined the salient
characteristics of databases in high-volume transaction environments. The findings
from those studies established the basis of a transaction and set of tables that are
representative of them. The CITY benchmark design is directly driven from the
findings from the empirical studies. The benchmark design took into consideration all
the critiques directed towards the TPC benchmarks A, B and C. It is the first
benchmark that is designed as a result of studying the behaviour of on-line transactions
and databases in large database environments. The CITY benchmark is mainly designed
to test and compare database systems performance in high-volume transaction
environments (OLTP).

The work revealed the salient characteristics of large database environments and
identified a typical behaviour of on-line transaction in OLTP environments. This
research has clearly shown that the TPC benchmarks are not representative to the
domain of high-volume transactions environments (OLTP) and it explained why they
could be misleading if used to test database management systems in this domain.
Additionally, this thesis presents a database performance evaluation methodology that is
based on in-depth studies in large database environments.

XIX

CHAPTER 1

INTRODUCTION

1. Introduction.

CHAPTER 1

INTRODUCTION

For several years, there has been an awareness that the existing database
performance benchmarks have some technical limitations, and the most important one is
the simplification of the benchmark transaction mix. These limitations have left database
users with only an intuitive idea of the behaviour of their database management
systems. To achieve realistic metrics, a database system should be tested with a load
pattern as close as possible to real life. It is clearly desirable that any accurate
performance measurement should be representative of the overall picture of the
performance of the database environment under test. Some ideas of the type of
information contributing to this achievement are: classification of the dominant
processing tasks; their transactions; their relative frequencies; the size of the database;
and patterns of behaviour to be expected. To this end, several in-depth studies were
conducted in several large UK organisations. Those studies aimed to define the salient
characteristics of large databases and to identify typical transaction behaviour in high-
volume transaction environments. This thesis presents the CITY benchmark, whose
design is based on the results of those studies.

1.1 Some Performance Concepts

Several database performance evaluation methods have evolved over years, but
benchmarks have been accepted by the database industry as the most accurate
performance evaluation method. Generally, three main types of benchmarks have
evolved: user-designed benchmarks, database manufacturers' benchmarks and
industry-standard benchmarks.

Because different users value different performance aspects, some users might set
their own benchmark test to satisfy their own requirements. A good example is
presented by Gleser [GLES81], where they decided to convert their running software
to a fully supported database management system (DBMS).

Transaction Behaviour in Large Database Environments, A Methodological Approach. 1

1. Introduction.

Database manufacturers run different types of benchmarks. They run large and
comprehensive tests to examine every aspect of their database management systems
before its large scale marketing. Usually those benchmarks are very expensive to run
and testing takes a long time to complete; moreover, results are usually confidential and
seldom get published.

Industry standard benchmarks represent the common basis of comparison
between database management systems that can be used by both manufacturers and
users. The database industry has seen several attempts at standard database
benchmarks. The most famous benchmarks are the Wisconsin benchmark [DeWI85],
and the Debit/Credit (TP/1) benchmark [ANON85], The Wisconsin benchmark has
taken a smaller role over the years and TP/1 has become the most frequently quoted in
the market.

The development of a standard benchmark posed several problems. The main one
was the difficulty of comparing different database systems due to reasons such as: the
absence of database performance theory; the difficulty in measuring qualitative aspects
of databases; and the fact that quantitative measurements are not standard for different
database systems. The research in the database area has offered several trials but the
database industry is still seeking a more comprehensive method of measuring database
performance.

The other problem that faces developers is that the criteria for measuring database
systems performance depend largely on the role that system is to play in the
organisation. For example, if the database mainly serves Decision Support Systems
(DSS) transactions, the performance criteria might be focused on direct transaction cost
with resource utilisation. On the other hand, on-line systems focus on transaction
response time which is usually an essential factor for such systems. Another problem is
that different users value different performance factors. For example, a user with
mainly batch environments will care little for background workload. On the other hand,
in on-line environments, background workload will have a high priority.
Consequently, defining meaningful performance concepts for various environments
requires finding a common basis between those environments.

)
Since the introduction of the relational database model by Codd [CODD70],

several database researchers such as Hawthorn [HAWT82], Benigni [BENI84], Boral
[BORA84], DeWitt [DEWI85], Youssef [YOUS86c], and others whose work is
presented in chapter two tried to develop a standard benchmark for the database
industry. Gradually, use of the Debit/Credit (TP/1) benchmark [ANON85], and later

Transaction Behaviour in Large Database Environments, A Methodological Approach. 2

1. Introduction.

the TPC benchmarks A and B [TPC 89, TPC 90], has become the standard practice in
the database industry. They were all constructed to quantify and compare the
throughput and price/performance ratio of various transactions processing systems. The
Debit-Credit (TP/1) modelled an Automatic Teller Machine (ATM) environment and
simulates random withdrawals being made against bank accounts at a large bank
environment. It includes simulating many terminal users, their "think time" and
network traffic time. TP/1 was mainly designed to measure the performance of
transaction processing in on-line transaction processing (OLTP) environments.

Because TP/1 did not contain specific guidelines for implementation [TPC 92], it
was not standard in its application and different users implemented different versions of
the benchmark. In 1988 eight software and hardware companies set up the Transaction
Processing Council (TPC) to build a standard benchmark. The council modified the
TP/1 benchmark into an industry standard benchmark TPC-A [TPC89, TPC 90,
GRAY91], and later TPC-B [TPC 91]. Both benchmarks have specific guidelines for
the measurement of performance and price. The TPC benchmarks A and B have
become the database industry standard, but both inherited the same limitations as TP/1.
They are based on the same database operations of TP/1 with some added
implementation standard guidelines. As in the case of TP/1, the full implementation of
the TPC benchmarks is still too expensive and users are always constrained by the
resources available in their environments.

The transaction processing council published a draft specification of a new
benchmark called the TPC-C benchmark in December 1991 [TPC 91]. The TPC-C is a
large benchmark that consists of five programs which access nine tables contain around
40,000,000 rows. The benchmark includes two long batch transactions. When the
TPC-C benchmark script was tested, it was too expensive to run in terms of response
time. The results of those tests are presented in chapter seven. An example of expensive
benchmarks was published by Strawser [STRA84], and that benchmark has never been
used due to its high cost. Chapters six and seven show that the high cost of a
transaction does not automatically imply the efficiency of that transaction load. One of
the most important factors in any benchmark success is this subtle combination of its
transaction mix against cost. Additionally the TPC-C benchmark encapsulated some of
the TPC-A and TPC-B benchmarks problems such as including aspects that do not
directly relate to DBMS such as think time and testing network effect. Chapter two and
chapter three discuss in detail the specifications and limitations of the TPC-C that have
hindered users from using it.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 3

1. Introduction.

Hoffman and Caniano [HOFF87, CANI88], had criticised TP/1 for being too
expensive to implement in its full form, and every database user implemented a
different version of it. That variation in the TP/1 implementation methods meant that the
results of different benchmark tests were not comparable to each other. The TPC
benchmark did not have specifications such as: complete specification; verifiable
results; full disclosure of system configuration; benchmark methodology; and no fair
means of comparing one system against another. The TPC benchmarks (A and B) have
been criticised for being difficult to implement in their full form and include aspects like
network protocols and think-time that do not specifically relate to DBMS performance.
Additionally, similar to the TP/1, the methodology of the TPC benchmarks (A and B)
do not also supply a fair means of comparing between systems.

The present research applies an empirical approach to examine the transactions of
the TPC benchmarks. The results of the studies demonstrated the limitations of the TPC
benchmarks . Perhaps the most important observation is that they are not representative
of real database systems transaction operations, even of the ATM transaction they are
supposed to simulate. The TPC benchmarks' limitations were discussed by Revell and
Youssef in previous work [REVE90, REVE92a]. Revell and Youssef [REVE92b]
mainly criticised the TPC benchmarks because they do not provide a realistic
characterisation that can be set as the target for the benchmarking process. As
benchmark results are representative of those types of transactions actually included in
the benchmark set, the results from a benchmark can not be mapped to a domain that
the benchmark does not represent and it is impossible to generalise those results to all
kinds of systems transactions. The empirical studies revealed that the basic database
operations of the TPC benchmarks are widely different from the basic database
operations of the high-volume transaction environments and showed that there is great
doubt that they could realistically represent that environment. In this thesis, the term
"the TPC benchmarks" implies the three TPC benchmarks, TPC-A, TPC-B and TPC-C
unless otherwise stated.

1.1.1 Some Indices of Performance

A number of performance indices are generally accepted in the computer and
database industry. Those indices include things such as: capacity; response time;
throughput rate; overhead percentage; components overlap measure; software time
measure; system utilisation measures; and transaction cost.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 4

1. Introduction.

Over the years most database benchmarks relied on just two performance indices,
transaction response time and transaction throughput. Transaction response time is
measured as the time elapsed between submission of a transaction to DBMS and
receiving the result. Transaction throughput is measured as the average number of
transactions completed per unit of time.

1.1.2 Analytical Models

Analytical models are mathematical representations of database systems and are
mainly used for evaluation and analysis of the performance of database components
[B0R079], Modelling is widely used and many database performance models were
developed varying in degree of accuracy, cost to build and to run. The majority of those
models are concerned with evaluating some particular database parameters that run on a
particular system.

Analytical models are useful tools for capacity planning and usually techniques
such as queuing models are one of the least costly methods of evaluating system
performance. They are also useful tools when used in database design stage, but due to
considerations such as simplification level, they are less useful in database selection
process. The advantage of algorithmic models is they offer a better understanding of the
systems under test, and a good representation of variable interrelations in those
systems.

Because it is impossible to model everything in real life, the main disadvantage of
modelling is it implies some level of simplification and approximation [FERR83]. The
quality of models is measured by the level of simplification involved in building the
model. In addition to the previous point, the other disadvantages are:

• their development requires a great deal of time and effort;

• it is difficult to analyse random influences of systems' variables in analytical
models.

i
Analytical models are generally divided to three main groups according to the

mathematical tools used. These model groups are statistical, graphical and algorithmic.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 5

1. Introduction.

1.1.2.1 Statistical Models

This group includes models mainly based on queuing theory and its interest
focuses on distribution of waiting times for different tasks, queue length, and similar
aspects [BOR079].

The importance of this type of models lies in the possibility of investigating the
exact relationship among the various variables in the system, as well as forecasting the
effect of the software and hardware modifications. The main disadvantage of this
method is the reliance on statistical assumptions which may largely call into question
the validity of the results achieved.

1.1.2.2 Graphical Models

In graphical models, the system dynamics are represented by a graph, where each
node is a transaction dominated by input conditions (entering arrows) and generating
output conditions (represented by the outgoing arrows), which then constitute several
input conditions to further nodes. In such a model it is customary to distinguish
between two kinds of conditions: conjunctive conditions (AND operator), where each
input condition must be satisfied for a transaction to occur; and disjunctive conditions
(OR), where one condition is enough to allow a transaction to come through. Graphical
models serve two main purposes:

• estimating execution times for systems represented by the model.

• as a mean to a new and better structuring of systems test.

The theoretical basis for this kind of analysis is found in graph and automata
theory [B0R079], The main advantage of those models lies in affording a better,
deeper, and more comprehensive view of the systems tested, thus leading to their
improvement. They are limited to software and not hardware evaluation and demand
considerable effort for each program modelled.

1.1.2.3 Algorithmic Models

In this model, we find analytical investigations of computer performance when
working under a given control algorithm and defined workload; for instance, the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 6

1. Introduction.

behaviour of a program under conditions of memory saturation (memory required is
greater than memory available), where memory is allotted by a paging algorithm.

1.1.3 Simulative Models

Simulation can be applied to testing an entire system or subsystems and
components at almost any level or detail, for purposes of selection, planning, or
optimisation. It is only applicable when the system or processes are at least partially
known.

However, even though it is expensive and depends on deep analysis of the
problem and careful definition of the physical and logical processes taking place in the
system, simulation is one of the most flexible methods in evaluating performance. It
may be said that its most valuable condition lies in the discipline it imposes on its user,
besides providing good models.

Among all performance methodologies, it failed the largest number of times
[BOR079]. This is because it has been the most extensively used method without
proper preparation or without proper understanding of its nature and the conditions
required to implement it. It is therefore often tried in trivial cases or without properly
structured models.

1.1.4 Benchmarks

Benchmarking is the first technique that takes into account not just the DBMS
involved but all the systems' parameters included in the tested environments. Those
parameters include the software involved, the hardware platform and the
communication network. Benchmarks have been widely used to evaluate and select
database management systems, they are less useful in diagnosing database problems
and improving database performance. The following sections discuss the nature of
benchmarks, selection of their transaction mix and their main disadvantages.

1
A review of the widely used benchmarks will be discussed in chapter two. For

each benchmark the transaction script, database used and technical limitations will be
discussed.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 7

1. Introduction.

1.1.4.1 The Role of Benchmarks

This technique is most useful for selection evaluation and to a lesser extent
applicable for forecasting behaviour of planned systems or supervision of an existing
system. The only way the benchmark method can be applied to software or hardware
design is by comparing a performance index before and after for a set of benchmark
loads. The main advantage of the benchmark method is its realistic evaluation of the
tested systems as it tests real databases, running under actual operating system and real
peripherals and programs. This way it overcomes modelling problems represented as
the need for approximations, estimations, simplifications, and all of the other
assumptions required to build a model. The proper use of benchmarks is based on
applying the following requirements:

a. Running a set of database transactions that simulates a user's operational
scenario and environment.

b. Requiring the exact system component of the original benchmark test.
c. Requiring the exact manner in which the vendor timed the original

benchmark test.
d. Analysis of the benchmark results to extract the essentials of the systems

performance.

1.1.4.2 Selecting a Benchmark Mix

The number of transactions that may be performed on a database is in principle
infinite. There are several methods for selecting the mix of transactions that will form a
benchmark. The problem is that the performance of two databases varies with the
nature of the benchmark script, and accurately comparing database performance will not
be possible due to the absence of the basis upon which to compare. Accordingly,
different comparisons based on the results from different benchmarks' on number of
databases are impossible due to the variety in transaction mixes.

Generally, the criteria for the performance of database systems depend on the role
that system is to play in the organisation and results from one benchmark can not be
mapped to domains that are not represented in their mix. Usually a benchmark mix will
comprise a limited number of transactions that will be run number of times against one
or more databases to serve the required test. In this way that transaction mix can
produce a performance figure that can be used to calibrate and compare that
environment against other environments.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 8

1. Introduction.

1.1.4.3 Weaknesses of Benchmarks

The main disadvantages of the benchmark method are the following [B0R079,
FERR83, STON85]:

1. Benchmark results are representative of those types of transactions actually
included in the benchmark set. It would be impossible to generalise those
results to all kinds of environments, it is therefore vital to select a set that
reflects the expected work load of real environments.

2. Benchmark results could be misleading if the test applied partial or modified
work load.

3. Building a representative benchmark involves considerable time and effort.

4. The need for a number of benchmark test runs can lead to significant
expense.

5. There might be some practical difficulties in replicating the same benchmark
runs due to differences in configuration or the unavailability of all the
required parameters.

1.1.4.4 The main Characteristics of a Good Benchmarks

The main characteristics of a good benchmark have been discussed by several
researchers in the performance field such as Ferrari and Gray. Ferrari [FERR78,
FERR83] describes a good benchmark as being written in a high level language,
properly debugged, its files being reproducible on all systems, and its documentation
being well written so that users can reproduce the same results. Gray [GRAY91]
characterises a good benchmark by being relevant, portable, scalable and simple.

The present author emphasis on one more characteristic that is representative to
the tested domain. Representativeness could be defined as the accuracy of the
benchmark workload in simulating the tested environment transactions. This
characteristic is added because users can not generalise the results of a specific domain
transaction to all other domains.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 9

1. Introduction.

1.2 Problem Definition

The TPC benchmarks [TPC89, GRAY91], were constructed to quantify and
compare the throughput and price/performance ratio of various transaction processing
systems. The TPC-A and TPC-B benchmarks measure transactions per second from
the time a teller issues a request to the time the customer receives acknowledgement that
the transaction has completed. The TPC-C simulates an inventory control system and
measures transactions per minute. They include simulating many terminal users, their
"think time", and network traffic time.

However, those benchmarks are difficult to implement in their full form, and
include aspects, like network protocols and think-time, that do not specifically relate to
DBMS performance. The TPC benchmarks (A and B) have become a fairly standard
practice. To market any DBMS, their vendors have to advertise it as the number of
TPC-A that DBMS can produce. But due to technical constraints, such as insufficient
space, absence of terminal emulator or the non-existence of X25 network, it is difficult
to run the TPC-A benchmarks in their standard form. Each vendor has had considerable
differences in implementing the TPC-A as it saw fit, and so a comparison based on
TPC-A benchmark results can be misleading. Chapter three discusses in detail the
different ways of implementing the TPC benchmarks.

Additionally, because the scripts of TPC benchmarks (A and B) are relatively
simple, some vendors have tailored their DBMS in a way that shows their product as
the best. Those limitations have been discussed by Revell and Youssef [REVE90]
where they traced those limitations to the lack of background study before the
benchmark design stage. The main criticism of the TPC benchmarks is that they do not
provide a realistic characterisation that can be set as the target for the benchmarking
process, moreover, they do not even provide a model of the ATM systems whose
performance they are supposed to simulate [REVE92b].

Generally, the TPC benchmarks suffer from several technical limitations that will
be discussed in details in chapter three, those limitations are the following.

• Inconsistency in the implementation of TPC benchmarks. Some other has
chosen to omit or modify portions from the TPC benchmarks without
regard for the preservation of the original TPC definition. An example was
given by Fox [FOX 89],

Transaction Behaviour in Large Database Environments, A Methodological Approach. 10

1. Introduction.

• Technical limitations of the transactions of the TPC benchmarks. The
database industry and most researchers in the database performance area
have criticised the TPC transactions for being too simple to apply realistic
workload on the tested systems. This assumption has been confirmed by the
results of this research.

• Inconsistency of the comparisons of the TPC benchmarks. This is due to
the nature of the mix of the TPC benchmarks. The TPC transaction database
operations are too simple to represent all the domain of OLTP and one
system may be excellent at performing one transaction type and behave in a
different manner when performing another transaction type.

• The future of new DBMS carries concepts such as OODB, DSS, and
graphical databases where row length and sizes of databases are large. The
TPC benchmarks as implemented will not be sufficient to represent those
environments.

Due to the previous limitations, the problem can be defined as the lake of a
representative benchmark that can adequately test the performance on DBMS in OLTP
environments.

1.3 Research Objectives and Approach

In the absence of performance metrics, the majority of database users will have an
intuitive idea of the performance of different DBMS, and a performance metric will
support such intuition with performance results. This research results will allow DBMS
users to obtain accurate and representative measure of what they get against what they
pay for. It will also help them choose the most cost-effective system for the required
needs. In addition, this methodology will supply the DBMS companies with a measure
of a real life standard workload based on studying large systems in real life.

The main research objective is to create a comprehensive benchmark methodology
that takes into account the behaviour of typical DBMS applications in high-volume
transaction environments. That methodology should represent the widest variety of
systems variables that exist in real life environments. That methodology should also
take into consideration all the limitations discussed in previous sections. The research
objectives could be summarised in the following:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 11

1. Introduction.

• define the main characteristics of databases in large database environments;

• identify the typical behaviour of on-line transactions in large database
environments;

• build a comprehensive methodology that is driven directly from the previous
definitions and realistically represents real life environments.

1.3.1 Empirical Approach to Problem Solving

Generally, to achieve realistic metrics, a database system should be tested with a
load as close as possible to that which it will be running in real life. The empirical
approach was recommended by Ferrari [FERR83]. He recommended that a test
workload consisting of the load that is actually processed during a measurement session
is the most representative type of workload. Additionally, Turbyfill [TURB88], in her
PhD thesis discussed future directions in database performance, recommended that any
future benchmark should characterise real life workload to develop metrics. The
information required to this achievement are: identify the dominant processing tasks;
what queries will be run; what is the relative frequency of each query; what is the size
of the database; what patterns of behaviour are expected.

To this end, the present author conducted a series of field studies to identify the
previous factors. This thesis presents research work that adopted field studies and case
analysis techniques to identify the main characteristics of on-line databases by
examining real database performance factors such as:

• table size;
• row size;
• common types of attributes;
• distribution of attributes;
• on-line transaction database operations;
• on-line transaction complexity;
• on-line transaction JOIN operations;
• on-line transaction resource utilisation;
• on-line environment background workload;

Those factors have been discussed by many researchers in the performance field
such as Ferrari [FERR78, FERR83], Dongara [DONG87], and Stonebraker

Transaction Behaviour in Large Database Environments, A Methodological Approach. 12

1. Introduction.

[STON85]. The analysis of those performance factors in several different environments
should defined a common basis between those environments. The results from that
analysis can supplement the data from the live environments to evaluate their
performance.

1.3.2 Specification of the Research Domain

This research domain is the set of high-volume transaction environments. Equally
some people call it "On-line Transaction Processing (OLTP)" environments. The
importance of high-volume transaction environments (OLTP) is due to its share of the
database industry; this environment is the dominant environment at the database market
and sets the rules for database standards.

High-volume transaction environments (OLTP) are those environments that
support a large number of on-line terminals that originate heavy transaction load on the
running environments. The number of terminals in those environments is in the
thousands and the number of transactions is in thousands of transactions per hour.
Those environments support large number of databases that are characterised by their
large sizes. Examples of such environments include banks, airlines, government
organisations, and large business organisations.

1.3.3 Development Basis of the CITY Benchmark

The CITY benchmark is designed based on the findings from the empirical
studies that were conducted in several large database environments. The empirical
studies collected in-depth information about the systems under study by monitoring the
systems for a representative period of time, studying systems documents, studying
systems output and interviewing staff. The studies examined over 4800 different
applications and investigated over 40,000,000 on-line transactions accessing around
5000 on-line databases. The studies revealed a common patterns of behaviour among
the studied organisations despite the difference between those organisations in
activities. The CITY benchmark represents ¡'those common patterns of behaviour.
Chapter four discusses those studies in detail and chapter five discusses the design
rules of the CITY benchmark.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 13

1. Introduction.

1.3.4 Test Capabilities of the CITY Benchmark

As mentioned before, benchmarks can be used to fulfil several objectives
depending on the benchmark design rules. Database benchmarks can be used for three
main purposes, those purposes are the following:

• Selection and comparison. This approach deals with the problems of
comparing one DBMS to another; selecting processing environment for a
specific DBMS; improving the running system performance by testing and
modifying the running system to enhance its performance. This type of
benchmark runs in uncontrolled environments to simulate real life
behaviour. This approach produces one figure the represents the overall
performance of the tested system.

• Diagnostic studies of running systems. This approach is implemented by
applying comprehensive benchmarks that run in controlled environments to
detect a specific bottleneck. The main objective of those benchmarks is to
produce a figure for each of the tested system activities. Usually those
benchmarks include long and very expensive testing process.

• Benchmarks that are used in design stage. Those benchmarks are function
oriented benchmarks, they produce micro level results and mainly used to
test specific model hypothesis. Those benchmarks run just in the DBMS
design stage and usually their results are used for further enhancement of
specific data DBMS when developed from one version to the next.

The CITY benchmark main target is to be used for selection and comparisons.
The benchmark will be mainly used to evaluate different DBMS performance on the
same architecture or on different architectures.

The CITY benchmark test domain is high-volume transaction environments, that
are fairly similar to those environments covered by the empirical studies. The
benchmark specifically represent the behaviour of on-line transactions in those
environments.

1.3.5 Test and Verification of the CITY Benchmark Results

Verification of the CITY benchmark results addressed problems such as: what
performance factors to test; how to test those factors; and the approach of implementing

Transaction Behaviour in Large Database Environments, A Methodological Approach. 14

1. Introduction.

the benchmark test. The first choice was running the tests in a controlled environment,
hence the benchmark variables should be the only test factors involved in the
benchmark test That allowed the replication of the benchmark results.

The second question was "What are the factors to be measured?". People such as
Gray [GRAY91] and Ferrari [FERR78, FERR83] discussed several benchmark
factors, those factors are the following:

• the benchmark measures are reproducible;
• the benchmark is hardware independent;
• the benchmark is software independent;
• the benchmark is DBMS independent;
• the benchmark is application independent;
• the benchmark measures are comparable between machines and DBMS;
• the benchmark is clear and simple to construct;
• the benchmark usage cost is low.

The CITY benchmark test was conducted in several computer environments
ranging from standalone PC to large mainframes and multiprocessor environments. The
benchmark test took place in the several environments using different operating systems
and different DBMS. The different test environments are presented in Table 1.1.

Test Environment Operating System DBMS

Standalone 386 PC MS DOS ORACLE version 5
Standalone 486 PC MS DOS ORACLE versions 5 & 6
SUN 386i workstations UNIX ORACLE version 6

SUN SPARC workstations UNIX ORACLE version 6
SUN SPARC in a network environment UNIX ORACLE version 6
VAX 4000 VMS INGRES version 6;
IBM 3090 mainframe MVS DB2 for large mainframes
Teradata System 3 multiprocessing VM & UNIX Teradata DBMS
Teradata System 4 multiprocessing VM & UNIX Teradata DBMS
NCR 3600 multiprocessing VM & UNIX Teradata DBMS

Table 1.1, The different test environments

Transaction Behaviour in Large Database Environments, A Methodological Approach. 15

1. Introduction.

The benchmark verification process was conducted on two phases. The first
phase was the preliminary test in two completely controlled standalone PC
environments. The second phase, was large scale verification in all the other
environments. The first phase did not stop by the start of the second phase but was
continued while the second phase was done. The first phase took on all around 8000
computer hours, where two PC were working 24 hours every day including weekends
for more than six month. The second verification phase took around 2000 computer
hours, where each run was replicated for at least fifteen times and each run took on
average six hours to be completed.

The interpretation and verification of the benchmark results required applying
some statistical and mathematical techniques. The results were verified using the
variance, one way analysis of variance and two way analysis of variance. The different
results were compared used difference quotient and factor of relative change.

In all environments, except for the mainframe environment, the tests were
conducted in a single user mode to eliminate the effects of non-controllable workload
and to isolate the benchmark results.

There is one case in this research where the CITY benchmark was used to detect
bottlenecks, but that required the existence of several other software tools that allows
this function to be performed. But in all other environments implementing diagnostic
tools in association with the benchmark was not performed.

Chapters six and seven discuss in details the verification process of the CITY
benchmark. Chapter six discusses the preliminary test of the benchmark results in two
completely controlled standalone PC environments and chapter seven discusses the
large scale test of the benchmark results in several industrial organisations.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 16

CHAPTER 2

AN A N A L Y S I S OF
PERFORMANCE MEASURES

D A T A B A S E

2. An Analysis of Database Performance Measures.

CHAPTER 2

AN ANALYSIS OF DATABASE PERFORMANCE
MEASURES

2.1 Introduction

The wide spread of database systems has resulted in an increase in the number of
new systems being used. Database systems have been implemented in many different
forms, for mainframes, minicomputers and microcomputers. The performance of
DBMS represents the main factors in the decision to use a certain database. In
comparing database management systems (DBMS) an important factor is their
performance and database selection is usually based on information that compares the
performance of one database management system to another. Performance allows the
user to measure potential system capability and thus helps in choosing the best database
for the required needs.

Benchmarks have proved to be the most reliable method to measure different
database management systems performance. They evolved over time from very simple
trials to complex processes. The most quoted benchmark in the market was the
Debit/Credit TP1 benchmark. The benchmark simulates a bank withdrawal transaction
and measures the performance of database systems as the number of transactions per
second, TPS. The benchmark was too flexible to provide comparable results and
database vendors tailored the benchmark to produce any number of TPs they required.
The need for industry standard benchmarks led to the development of the transaction
processing council (TPC). The council modified the TP1 benchmark into an industry
standard benchmark TPC-A, which has specific guideline for the measurement of
performance and price.

Although TPC-A provides very specific guide-lines, the benchmark inherited all
the problems of the TP1. The benchmark is difficult to implement in its full form and to
complete it might take weeks or months. The benchmark results are tuneable and
database vendors can tune the system configuration to produce any number of TPS they
like.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 18

2. An Analysis of Database Performance Measures.

This chapter discusses computer and database benchmarks. Computer
benchmarks are briefly discussed as they occupy lower priority in this research but they
show the early trials in the area of performance evaluation. Database benchmarks are
discussed in greater detail. The early database benchmarking trials are presented
separately as well as the activities of some research centres working in the database
performance area. The most widely used benchmarks, the Wisconsin, the Debit/Credit
(TP1) and the TPC benchmarks (TPC-A, TPC-B, and TPC-C) will be examined in
greater depth.

In addition, this chapter discusses the difficulties involved with the utilisation of
the presented benchmarks and explains why they were not as successful as expected in
testing different systems performance. The chapter conclusion discusses the required
work to overcome these difficulties and to produce a benchmark that is general enough
to represent the domain of to high volume transactions' environment.

2.2 Historical Background of Database Benchmarks

Benchmarks were bom when a customer asked the IBM to characterise their
system before agreeing to bay it. That resulted in the development of Gibson mix,
eventually known as MIPS [GIBS70]. Several other computer benchmarks were
developed since. But, computer systems benchmarks have never been good enough to
measure database performance. They gave no indication of how systems might behave
under different working load and did not give enough guidance to database
performance pattern in transaction processing environments. This is because database
performance is susceptible to different factors than just sheer hardware speed. These
other factors are things like indexes and retrieval algorithms that can deeply affect
transaction processing applications. Consequently, the database industry decided to
conduct its own research to develop adequate database performance measures and
several studies have been conducted to evaluate performance and test enhancements.
Some general concepts were discussed in [BUTL87, DATE86, FERR78, FERR83,
ULLM82], Additionally, Deen provided a comprehensive understanding to the whole
subject in [DEEN90],

)

Due to the inadequacy of computer benchmark to test DBMS, database
benchmarks followed suit. The earliest trials was undertaken by the bank of America in
1973. They developed a transaction processing benchmark that uses one transaction
type consists of 25 COBOL statements, and indicates the performance obtained when
95% of all transactions are processed in a second. They called that benchmark The

Transaction Behaviour in Large Database Environments, A Methodological Approach. 19

2. An Analysis of Database Performance Measures.

Debit/Credit. Eventually, that benchmark became the basis of the most widely used
benchmark, the famous TP/1. There were two variations of The Debit/Credit
benchmark notably ET/1 and TP/1.

The ET/1 is a cut down version of Debit/Credit which allows testing of
performance independently of the communications infrastructure (terminals, TP
monitors, etc.) and is used widely by database suppliers. The communications
infrastructure identification was replaced with a transaction generator package run on an
external driver system.

The TP/1 [ANON85}, was similar to ET/1 but the main difference was that the
transaction generator was run on the hardware tested, rather than an external system.
The TP/1 became the database industry standard practice and was the most widely used
benchmark for a long time. In recognition of the importance of transaction processing,
a council named Transaction Processing Council (TPC) was formed to produce a
standard transactions processing benchmark. The council adopted the TP/1 and
published it as the database standard practice under the name of TPC-A [TPC 89], and
a modified version called the TPC-B [TPC 90]. Despite the publication of the TPC-C
[TPC 91], the TPC-A is still the market standard and database industry still relay on the
TPC-A figures as the base line for DBMS performance.

2.3 Database Benchmarks

Performance implies two fundamental problems, the first is the logical database
structure (i.e. the data model), and the second is the performance parameters of the
application.

In the first area, a great deal of research work was applied to database design,
access methods, and query optimisation. Wiederhold [WIED83] examined loading,
insertion, deletion, reorganisation of file structures, access time and storage
requirements. Agrawal [AGRA87], studied database concurrency control performance
and implications. The access path optimisers are studied in [ASTR80, MACK86], Bell,
from university of Ulster, conducted several researches in distributed databases and
parallel processors [BELL84, BELL92a, BELL92b, McCA92b, McCA92c], he was
also involved in several researches to examine buffer management algorithms, query
optimisation and resource utilisation [HULL88, McCA92a]. Revell [REVE88], studied
the database logical models that were used later on by case tools' users for access path
analysis in data modelling.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 20

2. An Analysis of Database Performance Measures.

The performance parameters of the applications have suffered less interest from
different research groups, and until now the exact parameters of applications have yet to
be clearly defined. The majority of research in this area, however, is usually based on
one type of database transaction, and may not be representative of the majority of
database applications. That left the majority of DBMS users with an intuitive idea of the
power of each database and facing great difficulty in choosing the database that will be
best for a particular application environment. Accordingly, the selection of a database
system among several varied alternatives requires a rigorous performance measure.

Database benchmarks have become the dominant performance evaluation tool in
the database market. The main advantage of the benchmark method is that it checks a
real database with an actual operating system and real computers, and there is no need
to have recourse to approximations, estimates or simplifications The benchmarks
generally try to establish an objective methodology for the measure of performance that
is independent of applications or machine configurations and demonstrate a particular
hypothesis: this hypothesis may be the superiority of one database over the other.
Several early benchmarking trials took place to develop performance measures of the
different database management systems. These performance measures tested
hierarchical data models (i.e. IMS systems) [YOUS86a, YOUS86b, YOUS86c],
network data models (i.e. CODASYL) [NIED79], and relational data model
[HAWT79],

Previous work [REVE90, REVE92a, REVE92b] discussed several database
benchmarks placing emphasis on the most widely used benchmarks, the Debit/Credit
benchmark (TP1) [ANON85], the Wisconsin benchmark [BITT83, DeWI85] and the
TPC activities (TPC-A, TPC-B, TPC-C). The research discussed three aspects for each
one of the reviewed benchmarks: database used; transaction set of the benchmark test;
and the benchmark performance metrics. In that work the existing benchmarks were
analysed and criticised for lack of proper background study. These benchmarks can be
classified to three categories.

• Trials in database benchmarks.
• Activities of some research groups.
• Widely used benchmarks.

i
The first category “Trials in database benchmarks“, includes the following

benchmarks:

1. A Benchmark Methodology for hierarchical (IBM IMS) Database System
[YOUS86a, YOUS86b and YOUS86c],

Transaction Behaviour in Large Database Environments, A Methodological Approach. 21

2. An Analysis of Database Performance Measures.

2. A Benchmark Methodology for CODASYL Database System [NIED79].
3. Cellular Systems Benchmarks [HAWT82],
4. An Interactive Benchmark of the INGRES Database System [MART83].
5. A Benchmark By M. Stonebraker [STON83b].
6. Benchmark Methodology Presented By Benigni and Yao [BENI84,

BENI85, YAO 84],
7. The Benchmark Methodology Presented By Strawser, P. [STRA84],
8. Performance Evaluation of a Temporal Database System [AHN 86].
9. A Benchmark Methodology for Simple Database Transactions [RUBE87].

10. The SCAN Benchmark [GRAY87a],
11. The Onekay (IBM 1987).
12. RAMP-C (Requirement Approach for Measuring Performance-COBOL).
13. Performance Evaluation of Main Memory Database Systems [BITT87,

TURB88],
14. BYTE Benchmark [GREH88, LANG88, TAZE88 and NADE90],
15. The HyperModel Benchmark [ANDE89],
16. The Set Query Benchmark [GRAY91],
17. The Engineering Database Benchmark [CATT90].

The second category “Activities of some research groups“, includes the following
benchmark:

• Research activities of Naval Postgraduate School [BOGD83, STON83a,
DEMU84, DEMU85a, DEMU85b, VINC85, FENT86, and KELB87].

The third category “Widely used benchmarks“, includes the following
benchmarks:

1. The Wisconsin Benchmarks [BITT83, BORA84, DeWI85],
2. The Debit-Credit Benchmark (TP1) [ANON85].
3. The Transaction processing Council (TPC) Benchmarks, the TPC-A [TPC

89], the TPC-B [TPC 90] and the TPC-C [TPC 91],

2.3.1 Benchmark Methodology for IMS DBMS
/

Youssef [YOUS86a, YOUS86b, YOUS86c], designed a database and created a
software monitor to evaluate the performance of the IBM computers IMS database
management system. The methodology used three performance metrics: query response
time in a single user mode; query response time in multiprogramming mode; and
storage space utilisadon.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 22

2. An Analysis of Database Performance Measures.

2.3.1.1 System Configuration and Running Environment

The hardware configuration was an IBM 4341 II (DOS/VSE). The disk system
was IBM 3330 series model II disk units with 200 MB formatted capacity. The
databases based on two types of DBMS, Hierarchical Direct Access Method (HDAM)
and Hierarchical Indexed Direct Access Method (HIDAM). The database sizes varied
from 1000 to 20000 tree occurrences (records). The measurements were taken on
databases of the sizes 100, 1000, 10000, 20000 tree occurrences.

A job script for each benchmark run generated the benchmark workload. The job
script is a file of query numbers. Query streams were generated and stored on disk files
for later use by the monitor when it runs. These queries represented the workload on
the database. The same query streams subjected both HDAM and HIDAM databases.
The job measured the elapsed time for each query independently. The resulted times are
either on average of query elapsed times computed as the arithmetic means of the
measures taken after repeating the same query N times.

The research addressed subjects such as: database space utilisation; database
loading time; database unloads time; impact of first time call; impact of
multiprogramming level; effect of physical buffer size; effect of the HDAM DB creation
parameters; effect of query complexity; effect of database size; and effect of not found
condition.

2.3.1.2 Database Definition

The methodology used an inventory database. The record (tree) composed of six
segments distributed over four hierarchical levels. The segments and the definitions
were:

1- CSTNMAD 56 BYTES.
2- CUSTLOC 56 BYTES.
3- CSTORDR 49 BYTES.
4- ORDRITEM 38 BYTES.
5 - CSTSTTS 18 BYTES.
6- CSTHIST 122 BYTES.

Level 0.
Level 1.
Level 2.
Level 3.
Level 1.
Level 1.

2.3.1.3 Measures of Space Utilisation

1. Storage space required for a tree.
2. Storage space required for all the database after the first time load.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 23

2. An Analysis of Database Performance Measures.

3. Storage utilisation after several insertions or several deletions.
4. Space overheads wasted due to the indexes and the pointers required for the

database and any control information, or the space overhead in the form of
fragmentation due to the randomising module.

2.3.1.4 Measures for the IMS operators

1. Time required to fetch an arbitrary tree or segment from the database.
2. Time required to get the next tree in the database.
3. Time required to get the segment in the tree.
4. Time required to insert a tree.
5. Time required to update the database by inserting a segment.
6. Time required to delete a tree.
7. Time required to delete a segment from a tree.
8. Time required to update the database by changing an element of a segment.

9. Time required for exhaustive reading of the entire database.
10. Time required for the database loading.
11. Time required for the database unloading.

The study started with 10 query types [YOUS86a] then expanded to 12 query
types [YOUS86b]. The final test used 20 query types [YOUS86c]. The benchmark
queries were the following:

Q1 GN a segment moving from a specific root using segment name only
as a partial key.

Q2 GN a segment moving from a specific root using qualified key.
Q3 Insert a segment occurrence.
Q4 GN retrieve the next segment (unqualified retrieval).
Q5 GN a segment moving from a specific root using qualified keys for

all the path to the required segment.
Q6 Go to the database start.
Q7 Retrieve a root segment using GU then retrieve any segment in the

tree using GNP (qualified with segment key).
Q8 Retrieve a root segment using GU then retrieve any segment in the

tree using GNP (qualified with segment name only).
Q9 Retrieve a root segment using GU with a qualified key.
Q10 Retrieve a root segment using GU then retrieve any segment in the

tree using GN (qualified with segment name only).
Q11 Retrieve a segment using GHN for subsequent update using REPL.
Q12 Retrieve a root segment using GU then retrieve any segment in the

tree using GN (all the path to the segment is qualified by key).
Q13 Retrieve a root segment using GU then retrieve any segment in the

tree using GN (the segment is qualified by key).
Q14 Retrieve a segment using GHU for subsequent update using REPL.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 24

2. An Analysis of Database Performance Measures.

Q15 Retrieve a root segment using GU then retrieve all the dependent
segments in the tree using successive GNP calls.

Q16 Retrieve a root segment using GU then retrieve all the dependent
segments in the tree using successive GN calls.

Q17 Retrieve a specific segment using GN searching from database start.
Q18 Go to the database start using GU then retrieve a specific segment

using GN qualified by segment name only.
Q19 Retrieve all the segments of a specific tree through GU to the

database start then GN to the required segment. (Multiple GU then
G N) .

Q20 Retrieve all the segment occurrences having the same properties in the
database.

2.3.2 A Benchmark Methodology for CODASYL DBMS

Niedereichholz [NIED79], from Institut fur Wirtschaftsinformatik Universität
Frankfurt, presented a test analysis and a performance study of the CODASYL
database. This study showed some results of a test of a personnel database. It used a
UNIVAC 1108 with the CODASYL-TYPE DATABASE SYSTEM DMS 1100
(LEVEL5).

2.3.3 Cellular Systems Benchmarks

Hawthorn and DeWitt [HAWT82], conducted an experiment to predict the
performance of several proposed database management machines. They created
benchmark and used a real database. This benchmark used several INGRES queries.
The systems analysed include associative disks, RAP, CASSM, DBC, DIRECT and
CAFS.

Each of the machines was a cellular system that stored data in cells with a
processor per cell (in some cases dynamically assigned). Operations on the cells took
place in parallel. The purpose of their evaluation was to determine the effect of the
major differences on machine performance. They examined the following differences
between the machines: query processing algorithms implemented in the machines; the
performance of caching database machine; and the effect of the transfer of the entire
records to the host. 1

The three classes of relational queries overhead-intensive, data-intensive, and the
multi-relational queries [HAWT79] were used to compare the performance of each
database machine. Q1 is an Overhead-Intensive query. Q2 is a data-intensive multi-
relational query (i.e., a join between two relations); and Q3 is a data-intensive query on

Transaction Behaviour in Large Database Environments, A Methodological Approach. 25

2. An Analysis of Database Performance Measures.

a single relation which includes an aggregate operation. The total work and response
times were calculated for each query on each machine.

The database for the three queries was the university of California at Berkeley,
department of electrical engineering and computer science course and room scheduling
database. This database contains 24704 pages of data in 102 relations. The data were
information about the university courses.

The relation QTRCOURSE contained 1110 records. Each record had 24 attributes
and was 127 bytes long. The attribute "day" was a character field, seven bytes long;
"hour" is also a character field, and is 14 bytes long.

The relation "COURSE" contained 11436 records in 2858 pages, and used
indexed sequential access method (ISAM) storage structure, keyed on instructor name
and course number. "COURSE" required 130 tracks (seven cylinders) of disk space.
The relation "ROOMS" contained 282 records in 29 pages, and was hashed on room
number. "ROOMS", could be stored on two tracks of one cylinder.

The relation GMASTER contained 194 records, 2 records per page, and resided
on a single cylinder. There were 17 unique values for the (acct, fund) pairs along with
their associated sums.

2.3.4 An Interactive Benchmark for INGRES DBMS

Martinez [MART83], described an interactive benchmark for the INGRES
database system. The benchmark includes single user runs and multi-user runs
composed by synthesising different workloads. Basic estimates were obtained for the
response type of a range of interactive queries and several other measures of the
database management system performance.

The benchmark did not include update operations and did not apply exhaustive
workload characterisation that is essential for real system test.

/

2.3.5 A Benchmark By M. Stonebraker

Stonebraker [STON83b], built a benchmark that examined performance
enhancements to a database management system. The benchmark tested the dynamic
compiler and the special purpose file system. It consisted of two sections: the first to

Transaction Behaviour in Large Database Environments, A Methodological Approach. 26

2. An Analysis of Database Performance Measures.

test commands that would sequentially scan a relation stored as a heap; the second tried
to illustrate performance when a keyed access path could be used.

All measurements were in seconds and obtained from a VAX-11/780 computer
running a UNIX operating system. In all cases they indicated elapsed clock time for the
command and total CPU time spent on command processing, either by INGRES
directly or by UNIX on behalf of INGRES. Moreover, the benchmark obtained the
measurements as the only task executing.

In selecting the benchmark and timing technique, they attempted to choose a
collection of commands that would illustrate the behaviour of dynamic compilation and
a special purpose file system. The benchmark does not contain a large collection of
simple commands typically found in on-line environment. In such applications, there
can be extra overhead due to concurrency control conflicts or competition for buffer
space. No one can draw any conclusions from this benchmark for such environment.
In addition, the benchmark could not be chosen to represent ad hoc query and update
environment.

2.3.6 Benchmark Methodology By Benigni and Yao

Benigni [BENI84], presented a methodology for database performance
evaluation. This methodology was later on enhanced by the same group [BENI85].
Yao [YAO 84, YAO 87] used this methodology to evaluate the performance of different
database architecture of several database machines.

2.3.6.1 System Configuration

The database system for the conventional architecture was ORACLE. They
installed ORACLE on a VAX 11/750 running VM 3.0. The VAX system contained two
M-bytes of main memory. The mass storage available on the VAX 11/750 consists of
Digital Equipment RL02 system disk, and a 9766 Control Data Corporation disk drive
with a not formatted capacity of 300 M-bytes.

)

The IDM-500 database machine represented the database machine architecture in
the benchmark study. The benchmark test installed and used an IDM-500 database
machine with one M-bytes memory. The IDM used release 24 software. Mass storage
for the IDM was 9766 Control Data Corporation disk drive. The IDM operated by a

Transaction Behaviour in Large Database Environments, A Methodological Approach. 27

2. An Analysis of Database Performance Measures.

VAX 11/750 front end computer running Berkeley UNIX 4.1. The data transfer
between the VAX and the IDM-500 was through a 9600 baud RS232 communication
line.

2.3.6.2 Test Data

For benchmark testing they used a File of personnel data from a large application
system. From these data, they extracted a personnel database schema. The schema
modelled an entity-relation diagram. The benchmark studied three different levels of
indexing. Level 0 contained no indexes on any of the database attributes. Level 1
provided primary indexes on the database. Unique clustered indexes were built on all
primary keys. They also tested the database system ability to provide combined
indexes. In level 1 they included three combined indexes. Level 2 included indexes
from level 1 and added additional secondary indexed attributes that were for retrieval in
benchmark query set. Because of storage constraints, they could apply further indexing
tests.

Several databases of different sizes were constructed by eliminating a percentage
of records from the database. The original personnel file data formed a single, un-
normalized relation of size approximately 56 M-bytes and contained 189960 records.

By randomly eliminating records, they were able to form several database sizes
for their benchmark experiments. A program to divide the data in normalised relations
in the conceptual schema was run to build the test database.

2.3.6.3 Benchmark Workload

They designed a number of queries to test the retrieval and update capabilities of
the database systems. The queries were written in the SQL query language for the
conventional database system, and in QUEL for the database machine system. They
divided queries into several categories. For data retrieval they developed ten query sets
and several special query sets to test specific database system features. Each query set
contained from four to seven queries that vary in complexity based on the number and
type of conditions in the query predicate. They used the complexity classification
developed by Cardenas [CARD75] in their benchmark methodology.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 28

2. An Analysis of Database Performance Measures.

Each query set was designed so that the complexities of the query predicates
increased with increased numbers in the set. The number of records retrieved changed
from one query to the next depending on whether an OR condition (increase in records)
or an AND condition (decrease in records) was added.

The query sets were designed as follows: Query set 1-5 tested single relation
retrieval. The query sets ranged from retrieval on small size relation (Query set 1),
medium size relation (Query sets 2 and 3), and large size relations (Query sets 4 and 5).
Query sets 6-10 tested multiple relation retrieval. Query set 6-8 were two relation
queries. Query set 9 was a three relation query and query set 10 was a four relation
query. The basic query sets were numbered for reference as qx-y, where x is the query
set number and y is the query number in the set.

To test the sorting facility they modified Query set 1 through 4 by adding an
"ORDER BY" close on an appropriate attribute. To test aggregates they modified query
sets 4 and 5 by adding the "COUNT" aggregate function in the output list.

They also tested the performance of several update commands. They designed
representative insertions, deletions, and modifications.

Benchmark workloads were generated by defining job script for each benchmark
run. The job script was a file of query numbers. For example, a job script for a
benchmark run could be (ql-l,qx5-3,q9-4,qi-3,q4-5). The job script file was read into
a program called "Runner". This program was located in the host computer for the
database machine and the micro computer for the conventional database system.
"Runner" executed the queries in job script order on the database system. Statistics
were recorded on the queries' performance in the system. Times were recorded to the
sixtieth of the second to three decimal places for the conventional and database machine
benchmarks. The statistics gathered were the following:

First : Time until first record is received at the host.
Last : Time until last record is received at the host.
Records : Number of records returned.

/
They recorded parse time of queries in the host system for the database machine

architecture.

For each benchmark test, they defined a job script and executed the "Runner" on
the different database systems. Statistics for each query in the script were collected. For

Transaction Behaviour in Large Database Environments, A Methodological Approach. 29

2. An Analysis of Database Performance Measures.

multi-user tests and background load tests on the database, they ran multiple copies of
"Runner" simultaneously on separate job scripts and gathered the statistics on each.

2.3.7 Benchmark Methodology By P. Strawser

Strawser proposed a methodology to create a batch benchmark job structure in
here PhD dissertation [STRA84], The objective of the benchmark was to establish
optimum performance characteristics for the machine. There were two batch job
models, one for single-tuple queries and a second for multiple-tuples queries. A job for
single-tuple queries executed a collection of single tuple queries against a single
relation. A job for multiple-tuple queries executed multiple queries against multiple
relations at a single-tuple size. The batch consists of 25 query types. The output is
directed to spool file. The batch output accumulated statistics to a statistic file, and
written queries to a query file for constructing query pools.

Because this benchmark was complex and required long time to run, it has never
been used since it has been published.

2.3.8 Performance Evaluation of Temporal DBMS

A prototype of a temporal management system was built by extending INGRES
[AHN 86]. It supports the temporal query language TQuel, a super-set of QUEL,
handling four types of databases : Static, Rollback, Historical and Temporal. A
benchmark set of queries was run to study the performance of the prototype on the four
types of databases.

They tested the databases of the four types. For each one of the four types, they
created two databases, one with 100% loading factor and the other with 50% loading
factor [WOOD81]. Each database contains two relations, type-h and type-i, where Type
is one of Static, Rollback, Historical and Temporal.

Each tuple has 108 bytes of data in fourj'attributes, Id, Amount, Seq and String.
Id, a four integer, is the key in both relations. Amount and String are randomly
generated as integers and strings respectively, and Seq is initialised to zero. In addition,
rollback and historical relations carry two time attributes, while temporal relations
contain four time attributes. Attributes' transaction Start and Valid From were randomly

Transaction Behaviour in Large Database Environments, A Methodological Approach. 30

2. An Analysis of Database Performance Measures.

initialised to values between, Jan. 1 and Feb. 15 1980, while attributes' transaction
Stop and Valid To were set to "forever" indicating that they were the current versions.

Each relation was initialised to have 1024 tuples using a copy statement. The page
size in the prototype is 1024 bytes. With 100% loading, there are 9 tuples per page in
static relations, and 8 tuples per page in Rollback, Historical or Temporal relations.
Therefore, the database consisted of 114 pages for each Static relation, and 128 pages
for each of the others. The actual size depended on: the database type; the access
method; the loading factor; and the average updates count.

The average number of disk access was used as the benchmark metric. The
benchmark focused solely on the number of disk access per query at a granularity of a
page.

The number of disk access can not be taken as a performance measure as varies
greatly on many factors irrelevant to the tested DBMS. For example the buffer
management algorithms or the number of disk buffers could be crucial factors in
determining the disk speed.

2.3.9 Benchmark Methodology Using Simple Queries

Rubenstein [RUBE87L proposed a benchmark measurement to measure response
time specifically designed for the simple, object-oriented queries that engineering
applications perform. They reported results from running this benchmark against some
database systems they use themselves. They discussed number of factors such as:
caching the entire database in main memory; avoiding query optimisation overhead;
using physical links for pre-Join; and using an alternative to the generally accepted
database "Server" architecture on distributed networks. They were interested in
database response time as the time elapsed from the issue of a database query until the
results were returned. These queries were issued by a program, and the programs must
issue many simple queries to update a window or graphical display.

The benchmark database consists of three; record types:

1. A PERSON record type with three fields: Person ID, Number; Name; and
Birth date. The ID is a 4 byte integer and is the key for the record (e.g. each
ID is unique). The Name may contain up to 40 bytes, and the Birth-date
was a 4 byte integer. There were 20,000 person record in the database, with

Transaction Behaviour in Large Database Environments, A Methodological Approach. 31

2. An Analysis of Database Performance Measures.

randomly distributed names and birth-dates. The program regenerated ID
fields as ascending integers (From 1 to 20,000).

2. A DOCUMENT record type consisted of six fields: a document ID; Title;
Page count; Document type; Publication date; Publisher; and Description.
The document ID is a 4 byte integer; it is the key for this record type. The
Title, publication, and Description fields are strings containing up to 80
bytes each. The Page count, document type, and Publication date are
integers. There are 5000 documents in the database with randomly
generated attributes. The attributes were the following: Titles; Page counts;
Types; Publication dates; Publishers; and Descriptions. The program
generated ID fields as ascending integers (from 1-5000).

3. AUTHOR record type, with two fields: a person ID, which references the
Key of the person table; and document ID, which references the Key of the
document table. This table therefore, connected each person to zero or more
documents, and each document to zero or more persons. There are 15,000
author records in the database. Each document record was associated with
three randomly selected person records. The author records were not
clustered or co-located with either document or the person records that they
reference. The database comprised approximately 3 megabytes of data
(ignoring all overhead introduced by the data manager). There was another
larger database called "Large"; it was identical to the smaller one except that
all of the record counts were scaled up by a factor of 10. This database
required approximately 30 megabytes of storage plus overhead.

The following benchmark script was proposed for response time measurements
for simple operations:

1. Name Lookup: This is the simplest database operation, to look for a record
with a particular key value.

2. Range Lookup: Finding the records with a particular range of values in a
particular set of fields.

3. Group Lookup: To find all of the records in one table that pertain to a
particular logical entity in another table.

4. Reference Lookup: Finding a record that is referenced by a field of a
particular record.

5. Record Insert: Insert a new record.
6. Sequential Scan:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 32

2. An Analysis of Database Performance Measures.

7. Database Open: The time to initialise the database.

As presented in the paper, the authors stated that, the performance measurements
for databases on this benchmark alone do not make a system acceptable and they
recommended the use of any other benchmark for further complicated operations.

2.3.10 The SCAN Benchmark

Gray [GRAYSTa]* described a benchmark that consisted of two batch operations
that perform long search against a small database. The benchmark was as follows:

* SCAN - A mini-batch operation to sequentially copy 1000 records.
* SORT - A batch operation to sort one million records.

Elapsed time for database SCAN and SORT were the performance metrics for this
benchmark. A system could be analysed as follows:

SCAN: Begin Transaction
Perform 1000 Times
Read Sequential
Insert Sequential
Commit Transaction

The atomic weights for BEGIN, READ SEQUENTIAL, INSERT
SEQUENTIAL, and COMMIT were measured for each release. The atomic weight
usually consisted of CPU instructions, message bytes, and disk IOs for a "typical" call
to that operation. These weights could be converted to service times by knowing the
speeds and utilisation of the devices (processors, disk, lines) used for the application.
The molecular weight and service time SCAN can then be computed as the sum of the
atomic weights.

2.3.11 The Onekay (IBM 1987)
)

It is a transaction processing benchmark. It simulates a point of sale credit card
environment. It measures performance using three different transaction types. It differs
in two technical respects from Dept-Credit technique:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 33

2. An Analysis of Database Performance Measures.

• it does not require an X25 presentation services;
• it does contain requirements for auditing and recovery.

2.3.12 The RAMP-C

The word RAMP-C stands for "Requirement Approach for Measuring
Performance-COBOL". It is a transaction processing benchmark. Its specifications
have not yet been published by IBM. There is another RAMP-C (ICL, UNISYS) that
uses a mix of four different transaction types with among 70 and 625 COBOL
statements per transaction, and indicates performance when the system is loaded to
70% of capacity.

2.3.13 Performance Evaluation of Main Memory DBMS

In [BITT87] they presented the results of a benchmark of the relational Main
Memory Database System (MMDBS). They determined relevant performance metrics
and described techniques for benchmarking MMDBS's.

The benchmark database was the synthetic database used in the Wisconsin
benchmark [BITT83].

They used the space-time product metric. The space time product for a query was
defined to be the average working set size during the execution of the query multiplied
by the time required for the query [BUZE76, DENN80].

To measure the performance of the MMDBS functions, they wrote a
benchmarking program that took the names of the query windows from an input file
and obtained measures of interest before and after each query was executed. The
program executed as many queries as were in the input file by invoking the MMDBS
query processor.

They used a simplified method to obtain tfie space requirements that resulted in an
approximation to the space time value. Without sophisticated tracing hardware and
software tools, the space-time product for a query cannot be computed precisely
[ALAN80, ALAN84, HEID84],

Transaction Behaviour in Large Database Environments, A Methodological Approach. 34

2. An Analysis of Database Performance Measures.

They studied several factors such as real and virtual memory requirements,
paging, CPU speed, data structures and algorithms in isolation, but it is known that
there are complex interactions between all these factors.

Finally, the experiments were conducted in single user, standalone mode. Single
user means that there was only one user of the DBMS active when they obtained their
measures. Standalone means that there were no other users on the machine when the
performed their experiment.

2.3.14 BYTE Benchmark

The Byte benchmark was introduced for the first time in [GREH88, LANG88,
TAZE88]. A new version of the benchmark was published in [NADE90], The
benchmark included a set of low level tests and a set of application level tests. The
benchmark based on the Small-C compiler. The Small-C attraction is its ability to
compile itself. The benchmark is divided to several procedures each procedure tests a
different area of system performance. This research is mainly interested in the DBMS
procedure.

The benchmark is limited in use to PC level, and difficult to be applied in higher
computer levels. Cohen [COHE90], argues that the benchmark is not suitable for
computers with embedded microprocessors in automotive applications. Also others
[WILL90], complain that the Byte shell script should yield portability. However, there
are pitfalls in the form of unknown but systematic errors in user time to search the
PATH for the script executables.

2.3.15 The Set Query Benchmark

The Set Query Benchmark is designed to measure the performance of strategic
data access (SDA). The words SDA, DSS, management reporting and direct marketing
systems are synonyms.

)
Database functions that support SDA applications generally use ‘set queries’,

which are queries that take into account data from numerous table rows at once in each
question. The Set Query benchmark has been created to aid decision makers who
require performance data relevant to strategic data applications.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 35

2. An Analysis of Database Performance Measures.

The Benchmark database consists of one table named BENCH. The BENCH
table has 13 indexed columns; these columns are KSEQ that is a clustered primary key.
The other columns are K500K, K250K, K100K, K40K, K10K, K100, K25, K10,
K5, K4, and K2. Each column has an integer value ranging from 1 to its cardinality
and column name indicates column cardinality.

The benchmark is not recognised by the database market up to now and many
database users still to be convinced to use it

2.3.16 The HyperModel Benchmark

Anderson and others at Tektronix [ANDE89], developed the HyperModel
benchmark. The HyperModel benchmark is based on hyper text model consisting of a
graph containing nodes and arcs, or entities and relationships. There are four entities
and four relationships in HyperModel, as opposed to one entity and one relationship in
the sun benchmark. HyperModel has twenty-five operations; the Sun benchmark ended
up with three. HyperModel includes part or subpart relationships commonly found in
ODBMS applications, as well as "Blobs", (binary large objects, which are stored in
databases and managed as un-interpreted objects and called blobs). The operations
measured in the HyperModel Benchmark are divided into;

1. Name lookup operations, which return an object based on an attribute ID or
an object ID.

2. Range lookup operations, which return all objects whose attribute fall under
a specified range of values.

3. Retrieval operations, which retrieve objects by traversing the relationships
between them.

4. Reverse retrieval operations, which traverse relationships in the reverse
order.

5. Sequential Scan operations, which retrieve all objects in the database.
6. Closure traversal operations, which start with a randomly selected object

and perform an operation on that object, requiring the operation to be
performed recursively on all objects reachable from that objects to n level.

7. Editing operations, which update objects already in the database and commit
the updates.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 36

2. An Analysis of Database Performance Measures.

The HyperModel Benchmark measures a larger set of operations, with more
interrelationship among objects than the Sun benchmark. It measures both cold start
and warm start results, as does the Sun benchmark.

The benchmark does not specifically measure local versus remote database access
the way the Sun benchmark does. There are several important aspects of ODBMSs that
the HyperModel does not measure, the authors of this benchmark recognise this and
point out in their work that raw performance is only part of an ODBMS evaluation.

2.3.17 The Engineering Database Benchmark

Cattle, Skeen and others [CATT90], developed the Engineering Database
Benchmark (also called 001 for Object Operations Version 1). They created the
benchmark in an attempt to highlight some performance problems that RDBMS have
when processing engineering information. They wanted the benchmark to be used in
determining whether ODBMSs can provide the necessary performance. The benchmark
set out to prove or disprove two hypotheses: an ODBMS can achieve better raw
performance than RDBMS for engineering operations by a factor of 10 to 100; and
certain characteristics common to ODBMS architecture make difference to systems
performance, in particular, ODBMS ability to cache large working sets in memory and
efficiently access remote data.

The authors emphasise that engineering applications use a programming language
interspersed with operations on persistent data, and they have designed the benchmark
accordingly. They also used characteristics of real engineering applications as their base
for the ratios of reads to write and traversals to look-up. The benchmark measures
performance for several operations:

1. Create a database consisting of 20,000 parts and 60,000 interconnections.
2. Select 1000 part IDs at random, retrieve the parts with those IDs, and

perform an operation on each.
3. Select a part at random, traverse all connections from it to other parts in a

depth-first manner to seven levels, and perform an operation on each.
4. Execute the same traversal in reverse order, starting with a randomly

selected part and retrieving all the objects connected to it, and so forth.
5. Enter 100 new parts and three connections from each to other randomly

selected parts, then commit changes to disk.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 37

2. An Analysis of Database Performance Measures.

6. Perform all operations with the application and database located on the same
machine, and again with them located on two different machines.

7. Record all results for both a "cold start" (the database exists only on disk
and nothing is cached in memory) and a "warm start" (after ten iterations of
each operation, so that many objects are cached).

The main comment on the benchmark is it includes session time as part of the
transaction response time. Session time represents over 99.99% of any transaction
response time as it implies human computer interaction that, in comparison to computer
speed, is very slow. Session time is included as part of transaction response time in
very specific to special cases such as real conversational mode. In real life, most on-line
systems are designed as pseudo-conversational systems to save computer resources.

2.4 Activities of Naval Postgraduate School

Several research groups in Naval Postgraduate School, Monterey, California,
supervised by Steven A. Demurjian, and David K. Hsiao conducted several studies on
the performance of the multiple-backend database systems (MBDS). The following
sections will be briefly review those activities and discuss the performance techniques
implemented in each one of that research.

Bogdanowicz [BOGD83]* presented an experiment in benchmarking a database
machine. The purpose of the work is to present an approach to benchmarking database
machine using a synthetic database. The work describes a database generation tool that
allows the user to build a synthetic database through an interactive interface. The
description of the testing is quit general. The system configuration of the database
machine was not fully described. The testing in this research is limited to the single user
case.

Stone [STON83a], focused on measurements of the response time. A
development of a system to measure components of the response time are discussed.
The system involves generation of synthetic database. The system also measures the
benchmarked machine in using that database. The data is generated through a Relational
Generator (RG). The RG is a parameterised program for generating relations for a
database. First the user is instructed to enter the relation name and size (i.e., number of
tuples). Then, the program requests data about each attribute. All the relations are
characterised by the same general template. Four specific templates are derived from the
general one. These templates correspond to the four tuple lengths used for testing (i.e.,

Transaction Behaviour in Large Database Environments, A Methodological Approach. 38

2. An Analysis of Database Performance Measures.

100 bytes, 200 bytes, 1000 bytes, 2000 bytes). Each template is used to generate the
relations of sizes (500-10000 tuples). The benchmark consisted of calls involving only
one relation (i.e., selection and projection) and experiments involving more than one
database (i.e. joins).

The response time measurement was taken from the backend machine clock. This
clock has a resolution of 1/60 of the second and an accuracy within l/50th of a second.
The query scripts were used to implement the selected designed benchmarks.

Curtis [RYDE83]* described the functions of the DBAs and how they are
supported by the benchmarked relational database machine. The host machine for the
benchmark is Univac 110/42. The hardware interface between the host and database
machine is through a Univac 1100/42 I/O channel. This interface channel has a 200-
thousand bytes/Sc capacity and the transmission unit is either a byte or a word. The
database machine that interfaces with the host is a Burton Lee IDM 500. Several query
streams were formed and submitted against four databases.

Demurjian [DEMU84, DEMU85a, DEMU85b], aimed to devise benchmarking
strategies for and applying methodologies to the measurement of a prototype database
system in multiple backend configurations, and to verify the performance claims as
projected or predicted by the designer and implementor of the multi-backend database
system known as MBDS. By collecting macroscopic data such as the response time of
the request, the external performance measurements of MBDS have been conducted.

Fenton [FENT86], designed a computer aided toll for the generation of test
transactions and test database for the benchmarking of parallel, multiple-backend
systems used in that research.

2.4.1 The MBDS Hardware Configuration

The hardware configuration of MBDS consists of VAX-11/780 (VMS OS)
running as the controller and two PDP-1 l/44s (RSX_11M OS) and their disk systems
running as backends. The disk system on each backend is a DEC RM02 disk drive,
which has a 67 MB formatted capacity, a peak transfer rate of 806 KB/s and an average
access time of 42.5 ms (30 ms average seeks time + 12.5 ms average latency time).
Inter-computer communication is supported by three parallel communication links
(PCL-1 IBs), which is a time division multiplexed bus.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 39

2. An Analysis of Database Performance Measures.

2.4.2 The Attribute Based Model

In the attribute based model, data is modelled with: the construct database; file;
record; attribute value pair; directory key word; record body; key word predicates; and
query. A Database consists of a collection of files. Each File contains a group of
records that are characterised by a unique set of directory key word. A Record is
composed of two parts. The first part is a collection of attribute- value pairs or key-
words. An attribute-value pair is a member of the Cartesian product of the attribute
name and the value domain of the attribute. As an example: <POPULATION,25000> is
an attribute-value pair having 25000 as the value for the population attribute. A record
contains at most one attribute-value pair for each attribute defined in the database.
Certain attribute-value pairs of a record (or a file) are called the directory-keywords of
the record (file). That is because either the attribute-value pairs or their attribute-value
ranges are kept in a directory for addressing the record (file). Those attribute-value
pairs that are not kept in the directory for addressing the record (file) are called non-
directory key word. The rest of the record is textual information that is referred to as the
record body.

2.4.3 The Benchmark Strategy

The benchmark strategy focuses on collecting macroscopic measurements on the
system performance. Macroscopic measurements correspond to the external
performance measurements of the system, which collects the response time of requests
that are processed by the system. The test database was constructed using a record size
of 200 bytes. A total 24 clusters are defined for the test database. The database size was
set to a maximum of 1000 records per backend. At the beginning, they specified three
different system configurations for the MBDS performance measurements, the
databases were eventually extended [DEMU85bL to five system configurations.

They created a set of retrieve requests to benchmark MBDS. The retrievals are a
mix of single and double predicates. There are two directory attributes and 31 non-
directory attributes in each record. The directory attributes INTE1 and INTE2 are
integer valued, and are used for the cluster definition and formation. INTE1 is defined
using 5 attribute- value ranges, while INTE2 is»defined using 24 attribute-value ranges.
The non-directory attributes are used as fillers to the 200-byte record.

Target: INTE1, INTE2, MULTI, STR00 —> STR29. These requests, will cause
several numbers of clusters to be examined and part of the database to be retrieved.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 40

2. An Analysis of Database Performance Measures.

Vincent [VINC85]* presented a methodology for creating test database sets and
test-transaction mixes for the MBDS. He named this methodology CAD. It is driven by
three elements of information solicited from the user. These elements are: number of
backends in the system to be tested; amount of disk storage per backend; and size of the
data transfer from the secondary storage (disk) to the primary storage (memory). The
database design factors are: system configurations; database size considerations; and
test transaction mixes considerations.

2.4.4 System Configurations Considerations

For a given test database, two sets of configurations must be generated, a set for
measurement of the response time reduction, and a set for the measurement of
response-time variance. The number of configurations within each set is determined by
the number of backends of the system to be tested. Depending on the configuration
being used, the database must be evenly distributed to 1, 2, 3 or M backends.

2.4.5 Database Size Considerations

Three different database sizes are preferred, all of which are multiple of the base
(original) size N. One size presents a small database (N/4), another size presents an
intermediate size database (N/2), and the final size is the database size multiple (DBM)
N. The CAD implements the scheme described [STRA84] by having the four record
sizes as fixed multiples of one another. The final criteria for how large the database size
may be is the available disk storage of the type of backend to be used in the system.

2.5 The Most Widely Used Benchmarks

Some benchmarks have established themselves in the database market. These
benchmarks gained acceptance and many database systems have been measured using
them. The benchmarks are the following:

1. The Wisconsin Benchmarks [BITT83, BORA84, DeWI85].
2. The Debit-Credit Benchmark (TP1)/[AN0N85].
3. The Transaction processing Council (TPC) Benchmarks [TPC 89, TPC 90,

TPC 91],

In the following sections examine in depth and discuss these benchmarks, in
addition, they present the comments concerning the inadequacies of these benchmarks.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 41

2. An Analysis of Database Performance Measures.

2.5.1 The Wisconsin Benchmarks

Bitton [BITT83], presented the well-known "Wisconsin Benchmark", which was
subjected to further changes by Boral and DeWitt [BORA84], DeWitt [DeWI85]
concluded the final form of this benchmark and used it as a standard methodology for
evaluating the performance of database management systems. The benchmark was used
to evaluate the performance of NON-VON's computers [HILL86] and database
machines [BORA84] in single and multi-user environments.

2.5.1.1 Description of the Test Database

The database used for the experiments is based on synthetic database described in
[BITT83]. Two basic relations were used to generate the database, "oneKtup", and
"tenKtup" as they contain respectively, one and ten thousand tuples. Each tuple is 182
bytes long and consists of number of integer and string attributes. The first attribute,
"uniquel" assumes unique values throughout the relation (and hence constitute a key).
For the "thoustup" relation, "uniquel" assumes the values 0,1,...,999. For the
"tenthoustup" relation the values of "uniquel" are 0,1,...,9999. The second attribute,
"unique2", has the same range of values as "uniquel" but a random number generator
was used to scramble the values of "uniquel" and "unique2" when the relations were
generated. The remaining integer attributes are names after the range of values each
attribute assumes. That is, the "two", "ten", "twenty", "hundred",...,"tenthous"
attributes assume respectively values uniformly distributed over the range (0,1),
(0,1,...,9), (0,1,...,19), (0,1,...,99), ..., (0,1, ...,9999). Finally, each tuple contains
three 52 bytes string attributes.

Each relation was sorted on its "unique2" attribute (thus leaving the relation
unsorted on its "uniquel" attribute). For each of the tenKtup relations, a clustered index
was constructed on the "unique2" attribute and a non-clustered index was constructed
on the uniquel attribute. No indices were constructed on the oneKtup relations.

2.5.1.2 Description of the Benchmark Queries
/

The Resource Utilisation Approach to Query Mix Selection. The CPU and disk
resources consummations were classified into two classifications: "Low" or "High".

Type I : Low CPU utilisation, Low disk utilisation.
Type II : Low CPU utilisation, High disk utilisation.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 42

2. An Analysis of Database Performance Measures.

Type in : High CPU utilisation, Low disk utilisation.
Type IV : High CPU utilisation, High disk utilisation.

The Benchmark Queries are:
Type I : Select 1 tuple from 10,000 using a clustered index.
Type II : Select 100 tuples from 10,000 using non-clustered index.
Type III : Join 10,000 tuples with 1000 tuples using a clustered index on

Join attribute of 10,000 tuples relation.
Type IV : Aggregate Function on 10,000 tuples relation (100 partitions).

2.5.1.3 Performance Metric

They used the system throughput measured in queries-per-second as their
principal performance metric. Where illustrative, response time has also been used as
performance indicator.

2.5.2 Comments on The Wisconsin Benchmark

Two of the most active members in the area of database benchmarks, P.
Hawthorn and D. DeWitt, conducted two benchmark experiments. P. Hawthorn was
the base for the Wisconsin benchmark and D. DeWitt is one of the three members of the
group that originally designed and implemented the Wisconsin benchmark. In both
cases they either had to change the original benchmark script or used a different
benchmark. The two examples are the following:

1. Variation on the Wisconsin Benchmarks by P. Hawthorn.
As P. Hawthorn, from the Britton Lee Inc., was not happy with the results
obtained by DeWitt and Boral in [BORA84] she presented an augmentation
to the Wisconsin benchmark [HAWT85], She concluded that this
benchmark does not include "amount of data returned" as a factor in the
performance of a DBMS. She changed the benchmark as follows.

/
• Created a new relation substituting character strings for each of the

integer strings.

• Changed Query3 to look as follows:
qry3cp() /* Join Using Clustered index on join */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 43

2. An Analysis of Database Performance Measures.

/* attribute "unique2D" */
/* The query produces 1000 tuples */
/* Further qualification to produce one Tuple */
Char a[20];
range of t is tenKtup
range of w is oneKtup
retrieve (a = w.uniquelA)
where t.unique2D = w.uniquelA
and w.thousandD = "10000"

• As a final test, she changed the database itself by creating a relation
made up of 10,000 tuple, each having 2 uncompressed 20-character
attributes. Then they ran the following query:

range of p is packed
retrieve (cnt = count(p.thousandD

where p.thousandD = "10000"))

2. Gamma Database Machine Benchmarks by D. DeWitt.
DeWitt [DeWI88] presented the results of a single-user performance
evaluation of the Gamma and Teradata database machines. The
interesting point is he did not use the Wisconsin benchmark. He
changed the data size and created a new set of queries.

DeWitt constructed 100,000, and 1,000,000 tuple database based on the
Wisconsin synthetic databases' 1,000 and 10,000 tuple relations.

The benchmarks were divided to three parts, six Selection Queries, three
Join Queries, and Update Queries (append, delete and modify).

Several researchers in the database performance field criticised the Wisconsin
benchmark for one problem or another.

Hawthorn [HAWT85] criticised the data; format and transaction qualification of
Transaction three as she thinks they are not realistic enough to measure any database
performance.

Stonebraker [STON85] criticised the Wisconsin benchmark for not having
floating point operations, copy operation, and schema modification. He criticised the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 44

2. An Analysis of Database Performance Measures.

benchmark transaction mix for being appropriate only for Decision Support System
(DSS) environments that represent very small percentage of the running transactions.

Serlin [SERL86], criticised the Wisconsin benchmark because it does not map its
results into overall user environment.

Bitton [BITT87], one of the Wisconsin benchmark group, criticised the
benchmark as it has a default result size of 1000 rows that is too large for testing
interactive transactions, and made it an inappropriate default. She changed that to a
result of 10 rows and 5 attributes.

Finally, Turbyfill [TURB88] criticised the default result size of the Wisconsin
benchmark for being too large. It had too many attributes and the cost of formatting and
outputting the default result overshadowed other effects.

Generally, the Wisconsin benchmark results provide a number of points of
comparison, what they do not provide is any mapping of these points into the overall
user environment.

These problems can be seen to arise from two main causes:

1. Benchmark Design
The authors of the benchmark simplified their initial experiments ignoring
factors that are important. For instance, they ignored the following factors:

a. They used only two data types, fixed length strings, and two byte
integers.

b. All attributes were uniformly distributed.
c. The initial tests were all performed in single user mode.
d. The benchmark script is appropriate only for decision support systems.

2. The Database
The Wisconsin benchmark compares two systems are using 52 byte string
and 2 byte integers only. While some comparisons are independent of data
type, others clearly are not. For instance, one system had special hardware
that was supposed to speed up certain operations such as comparisons of
character strings. The results concerning the improvements obtained by that
hardware were valid only for the two data types tried, and did not reflect in
any way improvements that may be gained for other types such as variable

Transaction Behaviour in Large Database Environments, A Methodological Approach. 45

2. An Analysis of Database Performance Measures.

length strings and packed decimal numbers. Generally, the databases used
for the benchmark can be criticised for the following:

a. Quite a few database columns, such as Odd 100, have never been used.
b. All values of the attributes were uniformly distributed, all the data in real

world is not uniformly distributed, and at least a few non-uniformly
distributed attributes should have been included.

c. The strings have been criticised for being too long, and for having only
one significant character in the beginning of the string, the next
significant character occurring 25 bytes later. According to expert
opinion [GRAY87b], fixed length strings of 20 or 30 characters are
more realistic. Furthermore, most strings can be differentiated by the
first few characters in the string.

d. Data types more representative of those used in the benchmark should
have been used instead, such as 4 byte integers and 20 byte strings.

e. The row length should be an easier number for calculation, such as a
multiple of ten.

f . Finally, the database is too small for the DBMS that is being tested. The
database needs to be scalable.

The role of the Wisconsin benchmark has declined over the years and lost its
importance after the domination of the Debit-Credit (TP1) benchmark. The benchmark
is rarely used now but it is mentioned in this context because it is the first trial to
produce a standard measure of DBMS performance.

2.5.3 The Debit-Credit (TP1).

The most frequently quoted measure of database performance in the marketplace
has become TPl/sec [ANON85]. Many computer vendors have used this benchmark to
evaluate a new product [TAND88, ORAC91]. This benchmark that measures the
database transaction capability has evolved from a wider benchmark called Debit-
Credit. The names Debit-Credit and TP1 are both used to describe the basic benchmark.

The benchmark modelled a banking environment and simulates the random
withdrawals being made against bank accounts at a large bank. The banking model
defined by Debit-Credit consists of a bank with many branches each with 10 tellers and
10000 accounts.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 46

2. An Analysis of Database Performance Measures.

2.5.3.1 Description of the Test Database

Briefly, the database consists of four SQL tables:

ACCOUNT: a table of bank accounts. Each record is 100 bytes long and
holds the account number and balance.

TELLER : a table describing bank tellers. Each record is 100 bytes long and
holds the teller number and cash position.

BRANCH : a table describing the cash positions of each bank branch. Each
record is 100 bytes long and holds the branch number, and the
cash position of all tellers at that branch.

HISTORY : an entry-sequence table containing records of all transactions.
Each record is 50 bytes long and holds the account, teller,
branch, delta, and time stamp of the transaction.

In database terms the tellers are considered to be the database users. The tellers
use block mode terminals (like IBM 3270 terminals) which are configured to have 10
input and output fields. The input message is 100 bytes and the output message is 200
bytes. Each teller requests an account update every 100 second on average. Thus, 100
terminals, each operating at this rate would average one transaction per second on the
system under test. Systems that run more than one transaction per second have the
database and network scaled linearly. For example, a 100 TPs system has a database
and network 100 times larger.

2.53 .2 Description of the Benchmark

The transaction coded in SQL is as follows:

READ 100 BYTES FROM TERMINAL;
PERFORM TRANSACTION SERVICES GIVING
EXEC SQL BEGIN;
EXEC SQL UPDATE ACCOUNT SET balance = balance + :delta
WHERE account_number = :account;
EXEC SQL UPDATE TELLER
SET balance = balance + :delta \
WHERE teller_number = :teller;
EXEC SQL UPDATE BRANCHT SET balance = balance + ¡delta
WHERE branch_number = ¡branch;
EXEC SQL INSERT INTO HISTORY VALUES
(¡timestamp,¡account,¡teller,¡branch,¡delta);
EXEC SQL COMMIT WORK
PERFORM PRESENTATION SERVICES;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 47

2. An Analysis of Database Performance Measures.

WRITE 200 BYTES TO TERMINAL;

A system that can run one such transaction per second, given less than one-
second response time to 95% of the transactions, is defined to be a one transaction per
second (TPs) system. The database of a 1-TPs system is defined as:

The HISTORY table is sized to accommodate 90 days of history records
assuming the average throughput is one third of the peak throughput.

Messages are transmitted through the X.25 protocol. It is part of the Debit-Credit
specification that X.25 communications are used between the terminals and the
computer. If the database is distributed, then 15% of the transactions arrive at branches
other than the account's home branch. These 15% are uniformly distributed among the
other branches.

The benchmark requires that the transactions be run with UNDO and REDO
transaction protection (abort, auto-restart, and roll forward recovery). In addition, it
specifies that the transaction log must be duplexed. Each withdrawal transaction is
regarded as an atomic action. That means that, however complex the transaction, if the
user has been informed that it has been completed then it will be remembered by the
DBMS even if the system crashes immediately after the completion message. The
withdrawal transaction will force the system to update information regarding the
amount of money the branch teller and account each has. If any of these updates is
incomplete at the point at which the system fails, then it must be possible to recover the
database to a consistent state.

2.5.4 The Transaction Processing Performance Council

This section presents the description of the TPC benchmarks A, B and C. Chapter
three discuss in detail the technical limitations of those benchmarks.

Due to the lack of standards and in recognition of the importance of the database
performance issue, the database industry formed the Transaction Processing

10,000 Accounts.
Tellers.
Branches.
History Records.

100
10

2,590,000

(TPC) Activities

Transaction Behaviour in Large Database Environments, A Methodological Approach. 48

2. An Analysis of Database Performance Measures.

Performance Council (TPC). The TPC consists of major RDBMS vendors and users,
and hardware vendors. It has taken on the task of defining benchmarks, primarily for
RDBMSs with the goal of making the implementations consistent across vendors. TPC
has put specifications for RDBMS benchmarks [TPC 89]. These specifications include
the following points:

1. System properties that must be in effect during the transaction execution.
These are called ACID properties: Atomicity; Consistency; Isolation; and
Durability. The DBMS must ensure atomicity during the benchmark so no
partial transactions are permitted to modify the database. The DBMS must
support consistency during the benchmark by ensuring that each transaction
takes the database from one consistent state to another. The database must
ensure isolation, also known as serialisability, of all transactions during the
benchmark so the results of concurrently executing transactions are the same
as the results that would have been achieved by some serial execution of the
transactions. Finally, the DBMS must ensure durability by preserving the
effects of all committed transactions even in the face of system and media
failure.

2. A detailed description of transactions to be run.
3. Table layouts, number of records for each table, and minimum number of

rows of each table that must be accessed per test.
4. Rules for distributing and partitioning data among tables, for timing

transactions, and for configuring hardware for the benchmark.
5. Requirements and recommendations for reporting benchmark activity and

results so the benchmark can be repeated. This information is used by
independent agencies who audit vendors’ benchmark implementations to be
sure there are no violations or misinterpretations of benchmark
requirements.

2.5.5 The TPC-A

The TPC-A benchmark was launched in November 1989, the benchmark was
based on the famous TP1. It measures performance using update intensive database
transactions.

This benchmark as described in previous section uses a single, simple, update-
intensive transaction to test database systems. The workload does not reflect the entire

Transaction Behaviour in Large Database Environments, A Methodological Approach. 49

2. An Analysis of Database Performance Measures.

range of the On-Line Transaction Processing (OLTP) requirements typically
characterised by multiple transaction types of varying complexities.

Similar to the TP1 benchmark, the TPC-A benchmark measures the number of
transactions per second a system can perform when driven from multiple terminals,
TPC-A does not specify the number of terminals. The TPC-A can be run in a wide area
or local area network configuration, with the performance described by the two metrics
"TPC-A local throughput" and "TPC-A wide throughput", measured in transactions per
second. The two metrics are different and can not be compared.

2.5.6 TPC-B

The TPC benchmark B (TPC-B) was launched in August 1990 [TPC 90], The
TPC-B is not an OLTP benchmark and is mainly based on a batch transaction that does
not require any terminal networking, or think time. This transaction is characterised by:

• Significant disk input/output.
• Moderate systems and application execution time.
• Transaction integrity.

Similar to both TP1 and TPC-A, the TPC-B measures systems performance with
how many transactions per second a system can perform per second (tps), subject to
residence time constraint; and the associated price-per-tps. The metric for this
benchmark is "tpsB". TPC-B results can not be compared to TPC-A. The TPC-B
benchmark database is the same database used for the TPC-A.

TPC-B transaction is a simple, update intensive transaction. Similar to TPC-A,
the workload of this benchmark does not reflect the entire range of OLTP requirements. *

* Transaction Profile.

Begin Transaction
Update Account where Account_ID = Aid:

Read Account_Balance from Account
Set Account_Balance = Account_Balance + Delta
Write Account_Balance to Account

Write to History:
Aid, Tid, Bid, Delta, Time_stamp

Update Teller where Teller_ID = Tid:
Set Teller_Balance = Teller_Balance + Delta

Transaction Behaviour in Large Database Environments, A Methodological Approach. 50

2. An Analysis of Database Performance Measures.

Write Teller_Balance to Teller
Update Branch where BranchJD = Bid:

Set Branch_Balance = Branch_Balance + Delta
Write Branch_Balance to Branch

COMMIT TRANSACTION
Return Account_Balance to driver

Aid (Account_ID), Tid (Teller_ID) and Bid (Branch_ID) are keys to the relevant
records/rows.

2.5.7 The TPC-C benchmark

Due to TPC-A and TPC-B limitations, the Transaction processing Performance
Council (TPC) published a new benchmark, the TPC-C [TPC 91]. As the TPC-A and
TPC-B were so insufficient to measure database performance, the TPC have put every
database transaction type in the new benchmark. The Benchmark C (TPC-C) is
modelled after an Order-Entry workload. The benchmark is a mixture of read-only,
read-write, scan, sort, count and update intensive transactions.

The performance metric reported by TPC-C is a "Business throughput"
measuring the number of orders processed per minute. The performance metric for this
benchmark is expressed in transaction-per-minute-C (TPM-C). All references to TPM-
C results must include both TPM-C rate and the price-per-TPM-C to be compliant with
TPC-C standard.

The benchmark does not reflect the entire range of OLTP requirements. In
addition, the extent to which a customer can achieve the results reported by the vendor
is highly dependent on how closely the TPC-C approximates the customer application.
The relative performance of systems derived from this benchmark does not necessarily
hold for other workloads or environments. The extrapolation to unlike environments is
not recommended. TPC-C results are not comparable to other TPC benchmarks'
results.

2.5.7.1 The TPC-C Logical Database Design

TPC benchmark C simulates the activity Of a wholesale supplier. The workload is
centred around the activity of processing orders.

The company is a wholesale supplier with a number of geographically distributed
sales districts is created. Each regional warehouse covers 10 districts. Each district

Transaction Behaviour in Large Database Environments, A Methodological Approach. 51

2. An Analysis of Database Performance Measures.

serves 3000 customers. All warehouse maintain stocks for 50,000 items sold by the
company.

Orders are composed of an average of 10 order lines (i.e., line item). One per cent
of all order lines are for items not in-stock at the regional warehouse and must be
supplied by another warehouse.

The components of the TPC-C database are defined to consist of nine separate
and individual tables.

2.5 .1.2 The TPC-C Transactions Profile

The Benchmark script consists of five different transactions each one of these
transactions consists of several database operations. The first three transactions are on-
line transactions and the last two are batch transaction executed with relaxed response
dme. The transactions are:

1. The New-Order Transaction.
2. The Payment Transaction.
3. The Order-Status transaction.
4. The Delivery Transaction.
5. The Stock-Level Transaction.

1. The New-Order Transaction

The New-Order transaction consists of entering a complete order through a single
database transaction. Entering a new order is done in a single database transaction that
is shown below.

1. Create an order header, comprised of:
2 row selections with data retrieval,
1 row selections with data retrieval and update,
2 row insertions.)

2. Order a variable number items (average ol_cnt = 10) comprised of:
(l*ol_cnt) row selections with data retrieval,
(l*ol_cnt) row selections with data retrieval and update,
(l*ol_cnt) row insertions.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 52

2. An Analysis of Database Performance Measures.

2. The Payment Transaction

The Payment transaction updates the customer's balance and reflects the payment
on the district and warehouses sales statistics. In addition, this transaction includes
non-primary key access to the CUSTOMER table. The Payment transaction enters a
customers payment with a single database transaction, and is shown below.

Case 1, Customer is selected based on customer number:
3 row selections with data retrieval and update,
1 row insertion.

Case 2, Customer is selected based on customer last name
2 row selections (on average) with data retrieval,
3 row selections with data retrieval and update,
1 row insertion.

3. The Order-Status transaction

This transaction queries the status of a customer last order. It represents a mid-
weight read-only database transaction with a low frequency of execution and response
time requirements. In addition, this table includes non-primary key access to the
CUSTOMER table. Querying for the status of an order is done in a single database
transaction that is presented below.

1. Find the customer and his/her last order comprised of:
Case 1, Customer is selected based on customer number:

2 row selections with data retrieval.
Case 2, Customer is selected based on customer last name:

3 row selections (on average) with data retrieval.
2. Check status (delivery data) of each item on the order (average items-per-

order = 10), comprised of:
(1 * items-per-order) row selections with data retrieval.

4. The Delivery Transaction

The Delivery transaction consists of processing a batch of 10 new (not yet
delivered) orders. Each order is processed (delivered) in full within the scope of read-
write database transaction. The number of orders delivered (batched) within the same
database transaction is implementation specific. The transaction composed of one or
more (up to 10) database transaction, has a low frequency of execution and must
complete within a relaxed response time.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 53

2. An Analysis of Database Performance Measures.

The Delivery transaction is intended to be executed in deferred mode through a
queuing mechanism, rather than interactively with terminal response indicating
transaction completion. The result of the deferred execution is recorded into a result
file.

Deferred execution is characterised by queuing the transaction for deferred
execution, returning control to the originating terminal independently from the
completion of the transaction, and recording execution information into a result file.

The deferred of the Delivery transaction delivers one outstanding order (average
items-per-order = 10) for each one of the 10 districts of the selected warehouse using
one or more (up to 10) database transactions. Delivering each order is done in the
explained below.

1. Process the order, comprised of:
1 row selection with data retrieval.
(1 + items_per_order) row selection with data retrieval and update.

2. Update the customer balance, comprised of:
1 row selection with data update.

3. Remove the order from new order list, comprised of:
1 row deletion.

5. The Stock-Level Transaction

The Stock-Level transaction determines the number of recently sold items that
have a stock level below a specified threshold. It represents a heavy read only database
transaction with a low frequency of execution, a relaxed response time requirement,
and relaxed consistency requirements.

Examining the level of stock for items on the last 20 orders is done in one or more
database transactions with the steps shown below.

1. Examine the next available order number, comprised of:
1 row selection with data retrieval. ;

2. Examine all items on the last 20 orders (average item_per_order = 10) for
the district, comprised of:
(20 * items_per_order) row selection with data retrieval.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 54

2. An Analysis of Database Performance Measures.

3. Examine, for each distinct item selected, if the level of stock available at the
local warehouse is below the threshold, comprised of:
At most (20 * items_per_order) row selections with data retrieval.

2.5.7.3 Limitations of The TPC-C Transactions

The main limitadon of the TPC-C is having an exceptionally expensive transaction
mix in terms of response time. The benchmark script consists of five programs and 39
different database operations.

Additionally, as the research will present in later chapters, the benchmark design
can not be directly mapped to the OLTP environment. When the transaction mix of the
TPC-C benchmark was compared to real life OLTP transactions, the benchmark
workload patterns was widely different from the research results. The benchmark
measurements are difficult to compare as the benchmark includes two long batch
transactions with relaxed response time. Relaxed response time will be difficult to be
compared from one system to another. The TPC-C technical limitations are due to the
over complication of the following points:

• NumberofTables(9 tables);
• Table size (over 40,000,000 rows occupying around 5.2E10 bytes);
• Transaction mix.

Due to those limitations, since the benchmark was first published in December
1991, after extensive enquiry, it appears that at the time of writing this thesis not a
single user has used it and the current author could not find a single paper discussing
the TPC-C results. The technical limitation of the TPC-C benchmark are discussed in
details in chapters three (§3.2), chapter four (§4.5) and chapter seven (§7.3).

2.6 Limitations of The Existing Benchmarks

The presented benchmarks do not rigorously discuss the possible testing variables
and design characteristics necessary for a generalised methodology. They provide an
approximate figure of the database systems performance. What they will not provide is
a realistic characterisation that is set as the target for the benchmarking process. This is
due to several pitfalls most of the research did not take into consideration. This research
managed to overcome some of those limitations and did not manage to overcome some

Transaction Behaviour in Large Database Environments, A Methodological Approach. 55

2. An Analysis of Database Performance Measures.

others, this will be discussed in more details in chapter nine. An ideal benchmark will
overcome the following pitfalls:

1. The benchmarks are data model dependent, (e.g., tree dependent or network
dependent or relational dependent). A benchmark should be general enough
to tolerate all the popular database models, since many large organisations
will be using more than one.

2. The benchmarks assumed uniform demand for requested records. Uniform
demand for requested records is a reasonable assumption for a very limited
set of applications.

3. The benchmarks were applied as a single user benchmark.
Benchmarks that involve multiple jobs will give a more realistic picture of
database performance. Included in any benchmark should be a methodology
for constructing job mixes for multiple-user benchmark. The performance
indices of the multi-user benchmark will be compared to the performance
indices derived from single-user benchmarks.

4. The effect of increasing the number of database users on the database
performance was not studied.

5. The data models in the benchmark experiments did not relay on studying
real life database systems.

6. Benchmark database size is too small to be realistic.
The behaviour of DBMS is not linear concerning size. Accordingly, to scale
the performance by multiplying both size and response time by a certain
factor is a wrong assumption. In this context, size is the actual size in bytes
occupied by the database on the disk, the number of transactions that the
DBMS must handle in a given interval, number of relations, number of
rows per relation, width of rows, and distribution of attributes in the rows.
Each one of these items should be isolated and tested to create a realistic
benchmark. /

7. The benchmarks use only simple transaction types. Real life database
systems use, relatively, more complex transaction mix.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 56

2. An Analysis of Database Performance Measures.

8. Transaction results and how they are treated is not clear. Transaction results
can be directed to one of three things: the main memory, a log file, and
computer terminal, in each case response time or system throughput will be
widely different.

There are several other performance criteria that none of the discussed
benchmarks studied carefully. These factors include: database reorganisation time, the
effect of the single and massive updates operations, the effect of compound keys, and
the database capabilities of report generation facilities.

2.7 Conclusion

Due to design limitations, the benchmarks presented in this chapter might provide
an estimate of the system’s performance but will not provide a realistic characterisation
of database management, that is the main objective for the benchmarking process. A
benchmark methodology for database systems must consider a wide variety of systems
variables to fully evaluate performance. To achieve that, the system must be tested with
a load as close as possible to that which it will be running in real life [MOHR84], Some
idea of the type of information contributing to this achievement is identifying the
following database applications characteristics:

1. The dominant processing tasks.
2. The types of queries will be run.
3. The relative frequency of each query.
4. The size of the database.
5. The patterns of behaviour are expected.
6. The types of references to the database (e.g., random or localised).

The limitations of the previous benchmarks stem from their lack of proper
background study and being built on purely intuitive basis. To that end, series of field
studies have been conducted in large UK organisations. These organisations are
characterised by:

1. Large number of running applications.
2. Large number of on-line users.
3. Large number of on-line transactions.
4. Large number of large databases.
5. Complex database environments.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 57

2. An Analysis of Database Performance Measures.

These studies are based on conducting in depth data collection and analysis to all
the transactions issued in those environments over the period of study. The studies
aimed to identify the main characteristics of on-line database and on-line transactions in
high-volume transactions' environments

Transaction Behaviour in Large Database Environments, A Methodological Approach. 58

CHAPTER 3

PROBLEM DEFINITION AND DATA
GATHERING AND ANALYSIS TECHNIQUES

3. Problem Definition and Data Gathering and Analysis Techniques.

CHAPTER 3

PROBLEM DEFINITION AND DATA GATHERING AND
ANALYSIS TECHNIQUES

Chapter two reviewed several database performance benchmarks. For each one of
the reviewed benchmarks three aspects were examined: database used, transaction set
of the benchmark test and the performance metrics. These benchmarks were criticised
for suffering from one limitation or another. Those problems stem from the lack of
proper background studies. This chapter discusses the technical limitations of the TPC
benchmarks and proposes empirical solutions to over come those limitations.

3.1 Introduction

The Debit/Credit (TP/1) [ANON85] and the Transaction Processing Council
(TPC) benchmarks [TPC 89, GRAY91] have become the database market standard
practice. Those benchmarks have a number of practical limitations [REVE90]. Most of
those limitations stem from the lack of background study before the benchmark design
stage. The main criticism of the TPC benchmarks is that they do not provide a realistic
characterisation that can be set as the target for the benchmarking process, and more
than this, they do not even provide a model of the ATM systems whose performance
they are supposed to simulate [REVE92b].

As benchmark results are representative of those types of transactions actually
included in the benchmark set, it is impossible to generalise those results to all kinds of
systems transactions. This research work aimed to identify the main characteristics of
on-line databases by examining real database performance factors. Those factors have
been discussed by Ferrari [FERR78, FERR83], Dongara [DONG87], and Hawng
[HAWN87], By applying the analysis of those performance factors at several different
environments, the data from that analysis can supplement the data from the live
environments once the basis of this analysis has been defined to evaluate performance
in a transaction processing environment.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 60

3. Problem Definition and Data Gathering and Analysis Techniques.

This chapter presents the technical limitations of the TPC benchmarks. It
discusses those limitations explaining why they might not be representative when
comparing database management systems. It also specifies the nature of high-volume
transactions' environments and discusses processing environments that can represent
those domains. This chapter also specifies the basis of selecting the studied
organisations and presents the processing environments of those organisations.
Additionally this chapter discusses data gathering methodologies that were utilised by
this research. Finally, it presents some statistical techniques to analyse the collected
information.

Section 3.2 defines the problem of the database industry as the complete reliance
on the TPC benchmarks as the standard practice in the database industry. It shows that
the TPC benchmarks' results suffer from inconsistency between systems, in
consistency when applied and several technical limitations.

Section 3.3 proposes an empirical approach to solve the problem. That approach
will examine transaction behaviour and large database characteristics in large database
environments. It defines the characteristics to be studied and presents the criteria of
selecting the studied organisations.

Section 3.4 presents the results from several experiments to test some
performance factors to be investigated in the selected environments. It experimented
database performance factors such as database size, row size effect, database indexed
attributes, attributes types and distribution, transaction database operations, on-line
transactions time utilisation and i/o operations, join operation, transaction complexity,
transaction output, and background workload.

Section 3.5, presents different approaches of studying organisations and
methodologies of gathering data. It discusses approaches such as: pure basic research;
basic objective research; evaluation research; applied research; and action research.
Additionally this section presents data gathering techniques in general and the
techniques used in this research in particular.

Section 3.6, present some statistical techniques used to analyse the collected data.
The section defines basic statistical terms and explain the process of experiments
design. It also presents some comparative techniques that are eventually used by this
research.

Section 3.7, present the chapter summary and conclusion .

Transaction Behaviour in Large Database Environments, A Methodological Approach. 61

3. Problem Definition and Data Gathering and Analysis Techniques.

3.2 Problem Definition

The Debit/Credit (TP/1) [ANON85] and the Transaction Processing Council
(TPC) benchmarks [TPC 89, TPC 90, TPC 91, GRAY91] have become the database
market standard practice. Those benchmarks have a number of practical limitations
[REVE90], Most of those limitations stem from the lack of background study before
the benchmark design stage. The main criticism of the TPC benchmarks is that they do
not provide a realistic characterisation that can be set as the target for the benchmarking
process, moreover, they do not even provide a model of the ATM systems whose
performance they are supposed to simulate [REVE92b]. In the following sections,
those limitations will be discussed.

3.2.1 Inconsistency of TPC Benchmarks Implementation

The TPC benchmarks were constructed to quantify and compare the throughput
and price/performance ratio of various transactions processing systems. The TPC-A
and TPC-B benchmarks measure transactions per second from the time a teller issues a
request to the time the customer receive acknowledgement that the transaction has
completed. They include simulating many terminal users, there "think time" and
network traffic time.

However, both benchmarks are difficult to implement in their full form, and
include aspects like network protocols and think-time that do not specifically relate to
DBMS performance. TPC-A has become a fairly standard practice, i.e., just about
every DBMS benchmarker runs TPC-A. The actual benchmark, though, is not so
standard and once one goes beyond the surface, it becomes clear that no two versions
of TPC-A can be considered equivalent. Without a formal specification, each vendor
has had considerable differences in defining TPC-A as it saw fit, and so a comparison
based on TPC-A benchmark results can be misleading. It seems that each vendor has
included the portions of TPC-A that will show the particular product in the best light
and has chosen to omit or modify other portions without regard for the preservation of
the original TPC-A definition. An example was given by R. Fox [FOX 89], DEC
published Debit/Credit figures for both its own mid-range VAXs and two of IBMs
competing machines, the 9377-90 and 4381-22. These figures showed that the DEC
machines had three times better price/performance than the IBM systems. Accordingly,
IBM countered by running its own version of TPC-A, the results they got were very

Transaction Behaviour in Large Database Environments, A Methodological Approach. 62

3. Problem Definition and Data Gathering and Analysis Techniques.

different: the IBM machines processed over three times as many transactions in IBM
own research centre and that translates into better price/performance than DEC.

Generally, database vendors can implement the TPC benchmarks in different
ways. Any of the three TPC benchmarks can be implemented in the following ways:

1. Both benchmarks simulate users with block-mode terminals sending and
receiving messages through communication lines using X.25 line protocol.
Different types of communications will cause different degrees of overhead
on the system. Obviously, no communications overhead should allow the
benchmark transaction to provide better response ume.

2. The TPC-A benchmark transaction simulates users entering transactions at a
rate of one per 100 seconds. This can be thought of as the users "think
time". That means a 100 TPs system will consist of 10,000 terminals.
Users found that too difficult to implement. Sometimes users define their
own think time or variable think time and in some cases no think time. The
think time ratio will greatly affect the response time.

3. The benchmark transaction imposed the requirement that 95% of all
transactions must be completed within one second. Vendors do not restrict
themselves to 95% ratio and some published results are based on 92%, 90%
or even 85% ratios.

4. The TPC-A database consists of four databases:

Branch : 100 KB, random access.
Teller : 1 MB, random access.
Account : 1 GB, random access.
History : 10 GB, sequential access.

That means a 10 TPs system would consist of:

Branch : 1 MB.
Teller : 10 MB.
Account : 10 GB.
History : 100 GB.

Many users find this size is too much to handle and usually they scale down
the database. The use of a database that is greatly scaled down may indicate
that the system has problems handling large amounts of data and may also
provide better results. If the files are scaled down enough, they may be

Transaction Behaviour in Large Database Environments, A Methodological Approach. 63

3. Problem Definition and Data Gathering and Analysis Techniques.

residing in core memory during the execution of the benchmark, providing
much better results than can be expected in a real system due to the
elimination of much I/O.

5. A transaction can be rejected due to several reasons such as syntax errors or
deadlocks. If rejection of transactions is permitted and the benchmark
counts rejected transactions, the performance results are improperly high
since all transactions have not done the intended work. In fact, with this
scenario, the system with the most deadlocks or input errors would provide
the best results since these transactions would do no work, yet would be
counted as though they had been successfully completed.

6. The benchmark might count all transactions or define a "stable-state", a
period when all users are executing concurrently. Transactions completed
outside a stable- state will provide better results due to a lighter load on the
system.

7. If the input data are not randomised, it could be that much work is being
performed in memory, eliminating the need for I/O, which may not be
realistic.

8. The concept of price/performance should be studied in conjunction with the
application type or application domain. If the database is to be primarily
used in batch operations, the performance criteria will focus on direct
computer costs. For a system to be used mainly in interaction with human
beings, the response time will be an important factor and computer costs
will come second. Any way, usually the published prices differ largely from
the agreed prices at purchase time.

9. The benchmark required all updates be logged and that the log file be
duplexed. Omitting logging would probably increase transaction
performance.

The extent to which a customer can achieve the results reported by a vendor is
highly dependent on how closely TPC-Benchmarks approximates the customer
application. The TPC [TPC 92] agrees that:

"The benchmark results are highly dependent upon workload, specific
application requirements, and systems design and implementation. Relative

Transaction Behaviour in Large Database Environments, A Methodological Approach. 64

3. Problem Definition and Data Gathering and Analysis Techniques.

system performance will vary as a result of these and other factors. There,
TPC-Benchmarks should not be used as a substitute for a specific customer
application benchmarking when critical capacity planning and/or product
evaluations are contemplated"

3.2.2 Technical Limitations of The TPC Transactions

The database industry and most researchers in the database performance area has
criticised the TPC transactions for being too simple to apply realistic workload on the
tested systems. To investigate this assumption the present author has conducted several
empirical studies to examine the scalability of the basic database operations of the TPC-
A and the TPC-B transactions, the basic database operations of the TPC-A and the
TPC-B transactions are:

• Select one row using unique key;
• Update one row using unique key;
• Insert one row.

Insert operation was tested by loading four tables with the required number of
rows, then insert row in a fifth table for fifteen minutes and calculate the average time.
The scalability of those database operations was tested under increasing database size.
Transaction response time was taken as the main index for measuring the effect of
increasing table size. The main assumption was, if the basic database operations can
apply significant workload on database management systems, that will be reflected as
decreasing response time as the test table size increase.

The experiments took place in two computer environments, a standalone PC
environment and a SUN SPARC environment. In the standalone PC environment, table
size started by 5000 rows and was increased by 5000 rows until it reached 30,000
rows. In the SUN SPARC environment table size started by 5000 rows and increased
by 5000 rows until it reached 100,000 rows. In both environments, rows size was 200
bytes.

/
The results of the experiment in the standalone PC environment are presented in

table 3.1, and the results of the experiment in the SUN SPARC environment are
presented in table 3.2. Fig. 3.1, summarises the result from both experiments. The
results shows the following.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 65

3. Problem Definition and Data Gathering and Analysis Techniques.

1. Transactions' cost in both environments are too ineffectual. Even after
increasing table size to 100,000 rows in the SUN SPARC environment, the
most expensive operation was qualified retrieval that required around .2 of a
second to finish. This cost is too small to test real systems in real
environments.

2. In the standalone PC environment, qualified retrieval and update operations
showed positive scalability, but the difference between transactions
response time against the largest table size and the smallest table size is so
trivial. For qualified retrieval operation the difference was 0.329 of a
second. For update operation, the difference was 0.052. Insert operation
was not scalable. Having in mind that PCs resources are limited, those
operations in a larger environments will not apply sufficient workload
scalability.

3. The same pattern was found in the SUN SPARC environment. Insert
operation took negative slope, and the smallest response time was against
the largest table size. Qualified retrieval produced values around 0.2 of a
second and its response time at 100,000 rows was not much different than
that at 10,000 rows (0.01 of a second).

4. Update operation response time did not reflect the difference between the
standalone PC resources and the SUN SPARC resources. Comparing the
two computers resources, the SUN SPARC environment was considerably
larger than the PC environment in all aspects of memory size, processor
power and disk speed. Despite that difference update operation response
time in the PC environment was 0.420 of a second and 0.031 for the SUN
SPARC at table size of 5000 rows. When table size was increased to
30,000 rows (maximum for PC), the difference in response time in the PC
environment and the SUN SPARC still did not reflect the difference in the
resources of the two environments. The PC response time was 0.474 and
the SUN SPARC response time was 0.032.

Size in 1000 Rows 5 10 15 20 25 30
Select 2.764 2.932 2.980 3.024 3.054 3.093
Update 0.420 0.438 0.451 0.460 0.468 0.474
Insert 0.490 0.521 0.480 0.504 0.508 0.510

Table 3.1, Three database operations in PC environment

Transaction Behaviour in Large Database Environments, A Methodological Approach. 66

3. Problem Definition and Data Gathering and Analysis Techniques.

Size in 1000 Rows 10 20 30 40 50 60 70 80 90 100

Select .188 .210 .204 .173 .206 .201 .233 .182 .184 .198

Update .031 .033 .032 .039 .044 .044 .045 .041 .042 .046

Insert .188 .188 .147 .134 .133

Table 3.2, Three database operations in SUN SPARC environment

The experiments showed that the previous database operations suffer several
technical limitations such as insufficient workload, and poor scalability level. Since the
TPC benchmarks' transactions consist of those operations, they will inherit the same
limitations. The benchmark will suffer from the following limitations:

1. Transaction cost will be too small to reflect realistic workload.
2. Transaction scalability will be too small to properly test systems under

increasing loads.
3. Transaction cost between different systems is insignificant to establish a

realistic comparison.

Recently, one of the leading database companies in the world has conducted
similar experiment. They isolated the TPC-A transaction mix and tested it against two
database sizes, the first is relatively small, 0.75 Gb, and the second is much larger,
30.2 Gb. In both cases they fixed all other parameters such as number of active
terminals and computer architecture. The result was similar to our findings. While
database size has increased 40.3 times, the difference in response time between the two
tests was around three seconds. That small difference in response time shows that the
TPC-A mix is not sufficient to apply realistic load in large database environments. The
result is presented in table 3.3.

Run Number Database Size Number of Terminals Response Time
Run 1 0.75 Gb 1300 0.63 secs
Run 2 30.2 Gb 1300 0.66 secs

Table 3.3, The TPC-A against different table sizes

3.2.3 Inconsistency of the TPC Transaction Comparisons

The TPC transaction database operations are too simple to represent all the
domain of OLTP. That is because one system may be excellent at performing one

Transaction Behaviour in Large Database Environments, A Methodological Approach. 67

3. Problem Definition and Data Gathering and Analysis Techniques.

transaction type and behave in a different manner when performing another transaction
type. Table 3.4 presents a good example of changing behaviour according to different
transactions’ scripts. It shows a comparative study between IBM 3090/400S and
Tandem CYCLONE [SIVU90], when a small query and big query were added to the
OLTP test (Update and Insert only, similar to TPC-A), system behaviour responded
differently.

The previous example showed that systems behaviour varies depending on
transaction scripts. That is why benchmarks should be as accurate as possible in
simulating different domains.

Test Type IBM TPs Performance Tandem TPs Performance
OLTP only 30.5 30.4
OLTP + small query 30.0 30.5
OLTP + big query 30.3 30.5
OLTP + RAMP up 48.2 44.3

Table 3.4, Comparison between an IBM and Tandem

OLTP : On-line Transaction processing.
TPS : Transactions per second.
RAMP : Requirement Approach for Measuring Performance.

3.3 Empirical Approach To Solve The Defined Problem

The TPC benchmarks have become the standard practice in the database industry,
however, as we saw in previous sections when it comes to implementation, they are not
so standard. Additionally, the TPC benchmarks' transactions suffer several technical
limitations that affect their ability to realistically compare real database systems. As
benchmark results are representative of those types of transactions actually included in
the benchmark set. It is impossible to generalise those results to all kinds of systems
transactions.

Since this research objective is to create a comprehensive benchmark with
increasing number of users that approximates the behaviour of typical DBMS
applications, that benchmark methodology should represent a wide variety of systems
variables. That benchmark should also take into consideration all the limitation
discussed in previous sections.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 68

3. Problem Definition and Data Gathering and Analysis Techniques.

One Row Qualified Retrieval Transaction
Behaviour in Two Computer Environments

A Standalone PC Environment A SUN SPARC Environment
CA
-acoo
in

o
B
H
0)
5A

O
CI­
CAoX

Update One Row Transaction Behaviour
in Two Computer Environments

A Standalone PC Environment A SUN SPARC Environment
(A

Insert One Row Transaction Behaviour in
Two Computer Environments

A Standalone PC Environment A SUN SPARC Environment
CA

Fig. 3.1, Effects of three database operations

Transaction Behaviour in Large Database Environments, A Methodological Approach. 69

3. Problem Definition and Data Gathering and Analysis Techniques.

Generally, to achieve realistic metrics, a database system should be tested with a
load as close as possible to that which it will be running in real life. Some idea of the
type of information contributing to this achievement are: identify the dominant
processing tasks, what queries will be run, what is the relative frequency of each
query, what is the size of the database, and what patterns of behaviour are expected. To
this end, the present author developed a series of studies to examine these factors.

Those studies aimed to identify the main characteristics of on-line databases by
examining real database performance factors. Those factors have been discussed by
Ferrari [FERR78, FERR83], Dongara [DONG87], and Hawng [HAWN87], By
applying the analysis of those performance factors at several different environments,
the data from that analysis can supplement the data from the live environments once the
basis of this analysis has been defined to evaluate performance in a transaction
processing environment.

The following sections identify the domain of study and discuss the basis of
organisations selection for this research. They also discuss several experiments that
aimed to examine the effect of several database factors on database transactions'
response time.

3.3.1 Specification of the Domain of Studies

This section defines the term “high-volume transaction environments" and
discusses the characteristics of those environments. Equally some people call it "On-
line Transaction Processing (OLTP) environments”. It also discusses the criteria for
selecting the organisations covered by this research and explains why they were good
examples of high-volume transaction environments. Additionally, it presents and
justifies the selection of database performance factors covered by this research.

3.3.1.1 Definition of High-volume Transactions Environments (OLTP)

The importance of high-volume transaction environments (OLTP) is due to its
share of the database industry; this environment is the dominant environment at the
database market and sets the rules for database standards.

High-volume transaction environments (OLTP) are those environments that
support large number of on-line terminals that originate heavy transaction load on the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 70

3. Problem Definition and Data Gathering and Analysis Techniques.

running environments. The number of terminals in those environments is in the
thousands and the number of transactions is in thousands of transactions per hour.
Those environments support large number of databases that are characterised by their
large sizes. Examples of such environments include banks, airlines, government
organisations, and large business organisations. Organisations that fall into the domain
of high-volume transaction environments have to comply with the following criteria:

• have a large number of running applications;
• have a wide variety of those applications;
• have a large database environment;
• have a heavy transactions load;

3.3.2 Criteria for Organisations Selection

The studies examined the running systems at three large UK organisations. The
main objectives of those studies were to identify the salient characteristics of actual
database applications in high-volume transaction environments to build a database
benchmark that represents those environments. The research selected those
organisations because of the large number of applications they have and the wide
variety of those applications. Also they have a large database environment and heavy
on-line transaction load. The following sections will discuss the features in each
organisation that qualified it for this research selection.

3.3.2.1 The Local Authorities Computer Centre

The first study took place at a large local authorities’ computer centre. That centre
offers information technology services and software consultants to four London
boroughs. Each of those has its own income sources and spending activities. This
organisation was selected because of its large number of running applications, (over
300 running applications), their large database environment that comprises 150 on-line
databases occupying 12.5 Gbytes and the large number of on-line terminals, (over
2500 on-line users), connected to the system. /

The local authority on-line system users heavily access the systems. The on-line
system utilisation could peak to reach 20,000 transactions per hour on a normal
working day. On the busiest day of the period, the system load peaked to reach 23,000
transactions per hour. During the period of study, the running systems were under an

Transaction Behaviour in Large Database Environments, A Methodological Approach. 71

3. Problem Definition and Data Gathering and Analysis Techniques.

average load of about 17,000 transactions per hour. Fig. 3.2 illustrates the pattern of
average system load over thirty working days.

The Local Authority On-line Systems
Pattern of Daily Loadoo

^ 2 5 “1
G

§ 2 0 -
JS

ê 15 -U
C9
c
G
b 10 -

o

o 5 -c

ox* A _

/

/

/

/

/

A
' X -ùrx

fr \J %1 t \L_
JL h,

/ o s y y y / s«- 0 ~0)>
< 9 1 1 1 3 1 5 1 7 1 9

T i m e o f D a y

Average Day Load
— • — Busiest Day Load

Fig. 3.2, The Local Authority average daily load

3.3.2.2 The Airlines Computer Centre

The second study took place at a large airline computer centre. The centre
computing power supplied the running environment by 600 MIPS, where 286 MIPS
were dedicated to on-line service. The application databases investigated comprised
over 2000 hierarchical and relational databases, occupying 436 G-Bytes. The running
system terminal population was around 250,000 terminals, out of those, over 27000
concurrently accessed the on-line service.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 72

3. Problem Definition and Data Gathering and Analysis Techniques.

The Airlines Computer Centre On-line Systems Load
(Over 50 Weeks from Jan. to Dec. 1990)

Week Number

Fig. 3.3, The Airlines average daily load

On-line system load was measured over a period of Fifty weeks as the average of
number of transactions per hour. The average number of transactions issued to the
system were measured by snap shots at fifteen minutes' intervals. These snap shots
were accumulated to give the average system load per hour.

Systems load was measured separately for both IMS environment and DB2
environment then the total was calculated. The on-line IMS database environment was
older than the relational DB2 database environment and many applications were still
running under the IMS system, but the airlines’ computer centre was in the process of
converting the running IMS hierarchical systems to relational DB2 systems. The
average load at the IMS systems environment was around 45,000 transactions per
hour. The average system load at the DB2 systems environment was around 25,000
transactions per hour. The average of total load for all the running systems at the
airlines' environment was around 70,000 transactions per hour. Fig. 3.3 illustrates the
average of the airlines on-line systems load.

3.3.2.3 The Bank Computer Centre

The third study took place at a large bank computer centre. The bank computing
power was divided between two production centres and a development centre. Each

Transaction Behaviour in Large Database Environments, A Methodological Approach. 73

3. Problem Definition and Data Gathering and Analysis Techniques.

one of those centres produced 500 MIPS. When one of the production centres goes
down, the development computer centre works as a back-up for that centre, which
allows the bank to maintain 1000 MIPS of computing power to on-line service under
different circumstances. The data centres serve more than 3500 branches with a
terminal population of about 22,000 that supplies on-line service to over 60,000 users.
The number of customers’ accounts was around 17M with average accounting entries
per day of around 6M accounts whereas on peak days it reaches 20M accounts per day
and peak number of transactions per second that reaches 650 transactions. In addition,
the system supported more than 3500 ATMs having on-line access to the system. The
bank supplied its services not only to UK branches but also to several other branches
all over the world, which results in 24-hour access to the computer system.

The bank branches (on-line terminals) load peak to reach 75,000 transactions per
hour and the ATM transactions’ load reaches a peak of 130,000 transactions per hour.
Fig. 3.4, illustrate a one week pattern of transactions’ load. The average day load of the
running systems was around 90,000 transaction per hour, that was rather heavy system
load to choose the bank environment for this research.

The Bank On-line Systems
Average Weekly Load

Day Number

Fig. 3.4, The Bank average weekly load

Fig. 3.5 presents the on-line systems day load at the bank environment. The bank
branches and the ATM dispensing machines accessed the running systems over the 24
hours. The service was available to the bank branches from 7:00 to 22:00 on working
days, and from 7:00 to 19:00 on weekends. The ATM service was available 24 hours a

Transaction Behaviour in Large Database Environments, A Methodological Approach. 74

3. Problem Definition and Data Gathering and Analysis Techniques.

day seven days a week. Fig. 4.4 presents the day load of the bank branches and the day
load of the ATM machines. A third line shows the total day load at the bank
environment.

Oeo

o
JS

0XJ «
L .a><

The Bank On-line Systems
Pattern of Daily Load

Time of Day

• Total Day Load

• Other App. Load

•«---- ATM Daily Load

Fig. 3.5, The Bank average daily load

3.4 Empirical Studies to Test Database Performance Factors

To design a benchmark that compares different DBMS, further detailed
information about database characteristics should be investigated. The main limitation
of other benchmarks is that they do not provide a realistic characterisation that is set as
the target for the benchmarking process, more than this, they can not even provide an
estimate of the systems performance. Benchmarks that involve realistic database
operations will give a more realistic picture of database performance. To achieve that, a

/
system must be tested with a benchmark script as close as possible to real life. In this
research several experiments that involve independent performance components of
database management systems were conducted. Those experiments identified the main
characteristics of on-line databases by examining the main factors affecting database
performance. Those factors were discussed by researchers such as Ferrari [FERR78,

Transaction Behaviour in Large Database Environments, A Methodological Approach. 75

3. Problem Definition and Data Gathering and Analysis Techniques.

FERR83], and Dongara [DONG87]. By applying the analysis of those performance
factors at several different environments, that data from that analysis can supplement
the data from the live environments. Once all the information is analysed, a the tested
applications can be simulated. Those factors are the following:

• database size;
• row size;
• attributes types;
• database indexed attributes;
• Distribution of attributes
• identify on-line transactions script represented as number of database

operations;
• identify on-line transactions time utilisation and I/O operations;
• identify number of databases accessed by one transaction (JOIN Operation);
• identify transactions complexity (number of nested selects);
• identify key utilisation;
• identify the nature of transaction output;
• identify the background workload.

To select the previous factors, the present author conducted several empirical
studies to test the effect of each of them. Factor effect on transaction response time was
the main index to measure the factor effect. The tests took place at two different
environments. The first was an IBM PC running relational DBMS, and the second was
a SUN SPARC Micro System running relational DBMS (we are not allowed to publish
the name of the relational DBMS). The findings from studying the two environments
showed the sever effect of those factors on transaction response time had justified the
selection of those factors for this research. The factors' tests used different
transactions' mixes one mix was the CITY benchmark transaction mix, (next chapter
discusses the CITY benchmark). Some of the tests used pure sequential retrievals and
some others used a mix of different database operations. For each study, the
transactions mix used for the test will be presented.

The tests databases' sizes were scaled up gradually from 5000 rows to 20,000
rows in the PC environment and from 5000-rows to 100,000 records in the SUN/
SPARC environments. The final tables' sizes in the PC environment was smaller than
that of the SUN SPARC because of disk space constraint. Row size in both
environments was 200 bytes.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 76

3. Problem Definition and Data Gathering and Analysis Techniques.

In all experiments, the CITY transaction was used as the main testing workload,
unless otherwise mentioned. The CITY transaction is discussed in details in chapter
five.

The following sections present the results from those empirical studies. The
effects of factors regarding database characteristics are presented first then the factors
regarding on-line transactions' behaviour are presented later.

3.4.1 Table Size

Usually people assume that the behaviour of DBMS is linear concerning table
size. It is important to mention that response time might not increase linearly against the
increase in table size because table size on its own is not the only factor that affect
response time, some other factors such as: the effect of table index type; cardinality;
page size; and operating systems can also have an effect on transaction response time.

Effect of Table Size On Transaction
Response Time

A Standalone PC Environment

Table Size in 1000 Rows

Fig. 3.6, Effect of table size on transaction response time

Also database size could mean several things. It could mean: total table size
including overheads; actual table size in bytes; number of tables in database space; and
it could mean the number of rows in the table.

The only way to answer those questions are by examining large number of
databases and to try to find a common pattern between them. Fig 3.6 shows the effect

Transaction Behaviour in Large Database Environments, A Methodological Approach. 77

3. Problem Definition and Data Gathering and Analysis Techniques.

of database size on transactions' response time in a standalone PC environment and a
SUN SPARC environment. In both environments, transaction response time increased
linearly as database size increased. As the following chapters will show, transaction
behaviour in relation to table size depends largely of two factors, transaction mix and
database environment.

Effect of Row Size on Transaction Behaviour

o H——i——i——i—■——«———I—i———i——i——
0 5 10 15 20 25 30 35 40 45 50

Table Size in 1000 Rows

Average Row Size 200 bytes•
111 • Average Row Size 2000 bytes

Average Row Size 4000 bytes□
• Average Row Size 6000 bytes

Fig. 3.7, Effect of row size on transaction response time

3.4.2 Row Size Effect

Row size is one of the factors that might have a tangible effect on database
transaction response time. To test row size effect the same transaction mix was used
with four row sizes, 200 bytes, 2000 bytes, 4000 bytes and 6000 bytes. The four row
sizes effects were experimented using scaled up tables sizes ranging from 5000 rows
per table to 50,000 rows per table. Fig. 3.7 shows that row size has a dramatic effect
on transaction response time. If the 200 bytes line is taken as a base for comparison,
when table size was increased to 30,000 rows, the 4000 bytes row size transaction took
twice the response time of the 2000 bytes row size transaction and the 6000 bytes row
size transaction took four times the response time of the 2000 bytes row size

Transaction Behaviour in Large Database Environments, A Methodological Approach. 78

3. Problem Definition and Data Gathering and Analysis Techniques.

transaction. Due to space limitation, the 6000 bytes table size could not be increased to
45,000 rows. At 45,000 both the 2000 bytes transaction response time and the 4000
bytes transaction response time showed significant deviation from the 200 bytes
transaction. The difference between 200 bytes transaction response time and the 2000
bytes transaction was around three seconds, and between the 200 bytes transaction
response time and the 4000 bytes transaction response time was around 10 seconds.

3.4.3 Database Indexed Attributes

An important feature is the accessibility of rows and whether it is through:
indices; calculated addresses; or just sequential access. Indices provide a performance
tool in database where performance is the primary requirement. Indices have always
been employed to enhance systems performance, if a database is subject to frequent and
numerous retrieves and joins, then placement of indices over the key attributes will
enhance the overall performance of the database system.

C/J-o
C

600

o
o
a>

C/3

500

C 400
V
s

H
300

t / ico
a

200

X 100

0

Effect of Unique Index On Transaction
Response Time

Standalone PC Environment SUN SPARC Environment

Table Size in 1000 Rows

-o— Indexed Transaction
-•— Un-indexed Transaction

Fig. 3.8, Effect of unique index on transaction response time

The database indices effect on transaction response time was tested at two
different environments. The test showed that utilisation of database indices dramatically

Transaction Behaviour in Large Database Environments, A Methodological Approach. 79

3. Problem Definition and Data Gathering and Analysis Techniques.

affected transaction response time. Fig. 3.8 shows the effect of using database unique
index on transaction response time standalone PC environment. The test showed that as
database size increases the effect of database index gain more importance. A not
indexed transaction response time at the size of 20,000 records was almost ten times
more than the indexed one.

Database indices' effect was more dramatic in the SUN SPARC environment.
Fig. 3.8 shows the effect of using database unique index on transaction response time
at SUN SPARC environment. The graph shows that while database indices' effect is
minimal at smaller database size the indices' effect was quit tangible at larger sizes. At
database size of 100,000 records a not indexed transaction response time was around
800 seconds, in the mean time an indexed transaction took only around 9 seconds.

3.4.4 Attributes Types and Distribution

Systems behave differently when using different attribute types. Turbyfill C.,
[TURB88] given an example of two systems, the first was a business system and the
other was a scientific system. The business system supported packed decimal numbers
and did not support floating point numbers; the scientific system supported floating
point numbers but not packed decimal numbers. On queries using only data types that
were available on both systems, the scientific system had response time that is 10 times
faster than the business system. In addition, by representing the same numbers as
floating point and packed decimal the arithmetic operations on the scientific systems
were 10 times faster than on the business systems. The research tried to identify which
attributes types are more prevalent at the studied environments because despite that
difference some users still prefer to use packed decimal attributes to have more control
on their arithmetic operations results.

3.4.5 Transaction Database Operations

Transaction database operations of the running systems are the most important
point to study because it determines the main criteria when designing a benchmark
script. One system may be excellent at performing one transaction type for on-line
database and behave in a different manner when performing another transaction type. A
example was presented in section (§3.2.3). In that example systems behaviour varied
depending on the database operations in the transaction scripts. Consequently,
benchmarks should be as accurate as possible in simulating different domains.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 80

3. Problem Definition and Data Gathering and Analysis Techniques.

3.4.6 Transactions time Utilisation and I/O Operations

Some researchers classify on-line transactions into three classes of relational
queries: overhead-intensive; data-intensive; and multi-relational Queries [HAWT79].
Others, [BITT83], adopt the resource utilisation approach to select query mix. They
classified CPU and disk resources consumption into two classifications low
consumption or high consumption. The Wisconsin benchmark adopted this idea and
classified its transactions to: low CPU utilisation, low disk utilisation; low CPU
utilisation, high disk utilisation; high CPU utilisation, low disk utilisation; high CPU
utilisation, high disk utilisation. The research aimed to identify the actual nature of on-
line transactions by examining the number of I/O per on-line transaction and calculating
the ratios of CPU time to I/O time.

Effect of a JOIN that Accesses Two Tables and
Returns 100 Rows on Transaction Response Time

■O— Single Table Transaction (Returns 100 Records)

■*— JOIN Operation (Returns 100 Records)

Fig. 3.9, Effect of JOIN operation on transaction response time

3.4.7 JOIN Operation

JOIN operation is a time consuming operation at database environments, hence
DBMS adopt different strategies when executing them. The examination of JOIN
operation took place because it puts extra pressure on the running systems and database
performance varies dramatically when executing this operation. To JOIN operation

Transaction Behaviour in Large Database Environments, A Methodological Approach. 81

3. Problem Definition and Data Gathering and Analysis Techniques.

effect was tested by measuring the response time of a transaction that joins two 10
records from a tables to 100 records from another. The transaction used in comparison
is a sequential retrieval transaction that access one table and return 100 records. Both
the JOIN transaction and the sequential retrieval transaction used indexed key.

Fig. 3.9, shows a comparison between the two transactions' response time. The
JOIN operation response time was about seven times higher than the single table
transaction response time. The JOIN operation was studied to reveal its utilisation
scheme at different database environments in relation to other database operations and
to define the average number of tables accessed per a JOIN transaction.

3.4.8 Transaction Complexity

There are numerous ways to form the same query, but some forms of a
transaction might be executed faster than the other to obtain the same information.
Knowledge about these characteristics can achieve more rapid responses from the
database. Transaction complexity was studied as the number of nested selects per
transaction. An example is JOIN operation, where there are two ways of implementing
JOIN transactions at on-line environment:

Transaction Is

select tickets from customer
where tickets . fl__no = f lights . fl_no
and flights.fl_no = in_flight

Transaction 2:

select customer
from tickets
where fl_no in

(select fl_no from flights
where fl_no = in_flight)

Database management systems performance varies between the two different
forms. Therefore, some systems designers review user commands to provide guidance
to users to exploit the rapid features. The research tried to identify which one of two
forms is most common at the studied environments.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 82

3. Problem Definition and Data Gathering and Analysis Techniques.

3.4.9 Transaction Output

There is a difficulty of finding the typical nature of transactions' output, the
research tried to identify this nature by examining what happens in real life to that
output and tried to investigate the following questions:

• how many rows are retrieved on average by one transaction?
• does a transaction retrieve the results of the query into a table?
• does a transaction retrieve the results of the query to a screen?

Each answer has a consequence on response time and in turn on the benchmark
design. If a transaction retrieves the results of a query into a table, it will be measuring
the time it takes to eliminate duplicates as well and if a transaction retrieves the results
of the query to a screen, depending on the number of rows it retrieves per transaction
and the time it takes to transfer the data to terminal, may swamp the time it took to
execute a query. To demonstrate those effects, the research examined the effect of the
number of retrieved records per transaction and the effect of sending the output to
computer screen on transaction response time.

Effect of Number of Retrieved Records
On Transaction Response Time

3̂ One Record per Transaction
-o— Ten Records per Transaction
■+— 100 Records per Transaction

Fig. 3.10, Effect of transaction output on transaction response time

Transaction Behaviour in Large Database Environments, A Methodological Approach. 83

3. Problem Definition and Data Gathering and Analysis Techniques.

Fig. 3.10 shows the effect of retrieved records per transaction on transaction
response time. It shows that when the transaction retrieved one record the response
time was within three seconds. When the transaction retrieved ten records, the response
time stepped to be around 45 seconds. When the transaction retrieved 100 records, the
response time reached 125 seconds.

Fig. 3.11 shows the effect of sending transaction output to computer screen on
transaction response time. The test used a program that sends 100 bytes of data to
computer screen after each iteration. The program sent 20,000 bytes of data by the end
of each transaction completion. Sending transactions' output to the computer screen
was a constant value added to database operations' time. This added value in some
cases, with smaller database sizes, was larger that response time itself. That might
easily swamp the DBMS operation response time. The test presented below shows that
directing transactions' output to computer screen consumed more time than DBMS
operations and swamped the effect of the database test transaction.

Effect of Displaying Transaction Output
on Transaction Response Time

Output is displayedi
■o— Output is not displayed

Fig. 3.11, Effect of result display on transaction response time

Transaction Behaviour in Large Database Environments, A Methodological Approach. 84

3. Problem Definition and Data Gathering and Analysis Techniques.

3.4.10 Background workload

Because it could be one of the most vague performance factors, database
benchmark designers usually choose background workload on purely intuitive basis.
Some benchmarkers use simple background workload that consists of simple selection
transactions, such as: simple join with clustered index; simple aggregate with clustered
index; and selection with non-clustered index, and run it repeatedly until completion of
the benchmark run. Some other benchmarks concentrated on complex operations and
varied the type of jobs in the background workload and chosen several background
scripts, such as: complexes join; report generation; I/O bound operations (copy and
sort); and CPU bound operations (complex calculations), in their benchmarks.
Generally there are two types of background workloads:

1. The Database Workload
2. Non-Database Workload

This research aimed to identify the nature and the types of background work load
at on-line environments. The non DBMS workload is considered because it creates
botdenecks in the DBMS as it interfere with DBMS processing. At any computer centre
there are two types of background workloads: CPU bound workload, and I/O bound
workload. Each workload uses different resources. The CPU bound workload
performs mainly computations and requires very little or no I/O. The opposite is the I/O
bound workload. This research defines background workload as any computer
activities that are running in parallel with on-line service. Accordingly, transaction types
such as: database batch transactions; DSS; and QMF transactions that run in the
background, fall in this domain. That included some operations such as: •

• copy operations;
• sort operations;
• systems back-up operations;
• systems restore operations;
• report generation;
• batch programs.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 85

3. Problem Definition and Data Gathering and Analysis Techniques.

Effect of Background Workload on
Transaction Response

40
7

)

eow V \ / L<2 30 - \ l
O 7j= 20 'H
0>(ftc

t
/

C L 10tft
X /»---

t o r w
0 “o :tO 4

Table i
0
iize in 1(

50 8
00 Rows

0 101

•— Background load
---- o— No-Background load

Fig. 3.12, Effect of background workload on transaction response time

Fig. 3.12 shows the result of running background load on transaction response
time at SUN SPARC environment. The load consisted of continuous programs
compilations. The tested database size was increasing and the background load was
kept constant through all the duration of the test. As shown, as the database size
increased, the effect of the background load on transactions' response times
dramatically increased. The studies will try to identify the nature of background load at
high-volume transactions' environments. The identification of background workload
will allow a benchmark to simulate the impact of typical background workload on
transaction response time.

3.4.11 Discussion of Performance Factors

Some other factors such as CPU utilisation for the various control modules and
buffer management was described by Ferrari [FERR83]. Those factors were not/
covered by this work because they were either irrelevant or neutral to the tested
benchmarks' measurements. For instance, because buffer size was fixed for all tests,
its effect on different measurements could be assumed constant and discarded.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 86

3. Problem Definition and Data Gathering and Analysis Techniques.

Having discussed the basis of selecting the domain environments and the factors
affecting database performance, the following sections discuss data gathering
techniques and the statistical methods used by this research.

3.5 Studying Organisations and Data Gathering Techniques

Searching for a proper technique to study transaction behaviour in OLTP
environments it was found that many information systems researchers were concerned
with using behavioural science techniques or a mix of behavioural science and other
techniques to examine information systems properties. Examples of such are plentiful.
They were conducted to study information systems behaviour or to gain better
understanding of a certain problem.

Mckaskill [McKA78] examined the relationship between the functional staff, who
use computer based information system, and the data processing staff, who are
responsible for designing and managing these systems, in order to identify
organisational characteristics, information systems characteristics, and management
choice and personal factors. Zelkowitz [ZELK84], conducted a field study to identify
discrepancies between the state of the art and the state of practice in using software
engineering tools and methods. Card [CARD87], measured technology use in a
production environment and evaluated the effects of some specific technologies on
productivity and reliability. Then developed a statistical model for the effectiveness of
those technologies. Curtis, from University of Texas, has relied heavily of field studies
to study software design process for large systems; some of his work are presented in
[CURT80, CURT85, CURT86, CURT88], Ord [ORD 88], studied the cultural aspects
due to the introduction of information technology in an urban health district. And
Santos [SANT89], proposed a mixed methodological approaches to IS design based on
empirical studied in an information centre. All the previous researcher studied
organisations’ behaviour to come to their conclusions. In those studies they conducted
a mix of behavioural science techniques to collect the information required for their
research.

This research has adopted the approach;'of studying systems in action (action
research) to study the selected organisations. Action research techniques are based on
interviews, questionnaires, observations, and document analysis to examine systems
under study.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 87

3. Problem Definition and Data Gathering and Analysis Techniques.

3.5.1 Approaches of Studying Organisations

Within the context of behavioural science techniques, there are wide range of
approaches for understanding and learning about information systems. A good
discussion of those approaches is presented by Silverman [SILV70] and Clark
[CLAR72],

3.5.1.1 Pure Basic Research

This type of research arises out of the perceived requirements for the development
of a basic discipline and is typically oriented towards resolving, illuminating or
exemplifying a theoretical question. Typically, this type of research is at a high level of
generality and the primary channel of diffusion is the learned journal. Hence the
feedback of the results is not typically to the wider public or to potential users in
organisations, but to the stock of knowledge of the scientific community.
Consequently, the findings from such work may take some time before they penetrate
the practice of professionals within enterprises or become part of the general stock of
knowledge.

3.5.1.2 Basic Objective Research

This category of research is concerned with the taking of general problem that
occurs in some field of the application of knowledge, but it does not aim to provide a
prescription for a particular practical problem. The level of generality in this type of
research is high and primary channels of dissemination are professional journals, the
major line of feedback is to the professional community and associated academics.

3.5.1.3 Evaluation Research

Evaluation research tackles an existing and continuing practical problem within an
enterprise, but it does not include a change strategy. It is distinguished by its methods
and strategy which are at a high level of generality. The aim of evaluation research is to
provide an assessment of some aspect of performance of an enterprise. Typically,
evaluation research has included the assessment of the effectiveness of change
programs both within enterprises, and in recent period, for the assessment of
community based change programs designed to tackle several social problems.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 88

3. Problem Definition and Data Gathering and Analysis Techniques.

Evaluation research is frequently and widely used and the results of such researches are
typically of interest to the implicated parties. The channel of diffusion of these highly
particularistic report is to sponsor. Occasionally, they may be published in professional
journals because they illustrate a development in research technology, and additionally,
there may be some discussion of the reports at the local level amongst interested
evaluation researchers in their district branches of professional associations.

Evaluation research is the dominant type of research in the relationship of
exchange between scientists and professional practitioners, and is also one which has
recently been subjected to considerable criticism. Before considering these criticisms, it
is relevant to restate the observation that evaluation research was the first major form of
exchange between the scientific community and sponsors in enterprises.

3.5.1.4 Applied Research

Applied research is directed towards the solution of a practical problem arising
within a specific system by the application of appropriate knowledge. It is undertaken
by practitioners who are qualified in one or more of the problem area. Unlike evaluation
research, there is no special reason why the definition of the problem would be
automatically accepted as specifying the terms of reference. However, in practice it is
quite likely that systems users will only identify the problems for which they believe
there are solutions.

Case studies are published in professional journals. Many people in the academic
world see the value of the applied work specially when they examine systems content
and utilisation. Typically, the applied researchers will continue resolving immediate
problems on the basis of existing knowledge in some cases, it might add to the total
stock of knowledge. Recently, this methodology has been used for in research on
software development projects, researchers like Buchanan, Benbasat and Swansen
[BUCH82, BENB87, SWAN88], applied this approach to study software management
and information systems.

3.5.1.5 Action Research

Action research has three task masters: the system under test, the practitioner, and
the scientific community. The fact that these dissimilar groups are related for the
duration of a project imposes many stains, and it must be observed that one of the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 89

3. Problem Definition and Data Gathering and Analysis Techniques.

major problems facing the action researcher is the devising of appropriate administrative
mechanisms for simultaneously linking and separating these groups.

Action research is one strategy for influencing the stock of knowledge of the
tested enterprise. It uses data feedback in a cyclical process in order to assists in applied
problem study and analysis. It also expands the domain of the existing knowledge in
the area of study by offering visible solutions to the studied problems. It is based on
questionnaires, system observation, interviews, and examine system documents. In
that sense, it is a strategy for distributing knowledge, but the ideal project is one in
which both the scientists and the tested system benefit through having a better
understanding of a particular problem. Typically, the tested system are concerned to
ensure that "get value for money spent", and hence not always especially concerned
with the theoretical activities and interests of practitioners. Action research is also
concerned with adding to the stock of knowledge of scientists and is said to be a very
gaining "privileged access" to data and situations which are normally not easily
accessible to the basic researcher. There it can make important contribution to the
theory.

3.5.2 Data Gathering Techniques

The required information for this research included some low abstracted
information such as on-line transaction basic database operations and ratios of I/O to
CPU utilisation. Consequently, one single type of organisations study was not
adequate on its own to serve this research purposes. That is due to their high level of
generality. However, data gathering in this research was based on applying a mix of
case analysis techniques. The main advantage of that approach is having a broad
spectrum of techniques available to the researchers, ranging from highly generalised
techniques such as, participation, observation and interviews to very low abstracted
techniques such as low level systems monitoring. These techniques will be presented as
separate entities, but in practice they might be combined. Most of these techniques are
discussed at length in [McCA69, LOFL71, BOUC76, HAMM83 and VAN 82], Those
techniques can be summarised in the following:

/
1. Face to Face Co-Operative Interaction.
2. Interviews.
3. Informal Conversations.
4. Formal Meetings.
5. Convivial Meetings.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 90

3. Problem Definition and Data Gathering and Analysis Techniques.

6. Ritual Meeting and Celebrations.
7. Demonstrations.
8. Shadowing.
9. Systems Documents study.

10. Systems Monitoring.

Data gathering for this research did not require the application of all the previous
techniques. Only some of those techniques were sufficient to satisfy the research
objectives. Data gathering techniques in this research were the following:

1. Formal meetings.
2. Conducting several interviews with key persons in the computer centre

representing different organisational levels.
3. Studying the running systems' documents.
4. Studying computer system outputs.
5. Monitoring the systems over a representative period.

3.5.2.1 Formal Meetings

In every organisation at least one formal meeting took place to plan the required
research work in that organisation. But generally, at least two formal meetings were
required, the first was to explain the research objective, the research plan, and how it
might contribute to the organisation by the end of it The second usually took place after
the organisation agreement to start the research study. In that meeting they usually plan
and explain the rules the research has to comply to. Those meeting were usually a
logical introduction the interviews.

3.5.2.2 Interviews

In this research interviews and attending meetings could nor be separated from
each other. Interviews were very carefully planned because they were the means of
making the first contact with people in organisations. Before the first interview, the
organisational structure of each organisation was examined to target key people in the
selected organisations. The first interview was always conducted with the one on the
top of the organisational structure. That granted permission to follow up with people
lower in the organisational hierarchy.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 91

3. Problem Definition and Data Gathering and Analysis Techniques.

The interviews were kept as formal as possible from the beginning. From my
personal experience, tape recorders are found to be rather intrusive instrument, hence
interviews were not tape recorded. But notes were taken through the conversation.
Formal and introductory interviews were usually pre-arranged to take place in the
interviewees office or place of work.

Whenever possible, some informal interviews were conducted with technical staff
responsible for the design and implementation of the studied organisations database
management system. That helped in solving several technical problems and in
interpreting some of the computer output results.

3.5.2.3 Studying Systems' Documents

Some information were difficult to get through interviews or systems monitoring.
Those information included some important performance factors such as transaction
complexity and number of databases accessed by a single transaction. The only was to
get such information was by examining the running systems documents from the
design stage. System documents contained system specification and design rules for
both applications and databases. Those documentation included in details some
important information such as how many databases will be accessed by each
transactions and how many selects in a nested select. Studying systems' documents
was the source of information such as: number of databases accessed by a single
transaction (JOIN operation); database record size; number of indexed attributes;
attributes' values; distribution of attributes in the database; and number of nested selects
in a single transaction (transaction complexity). Such information were impossible to
get using any other technique. The interpretation of those documents required the help
the database administrators in the studied organisations.

3.5.2.4 Studying Systems' Outputs

The other part of information that were difficult to get were obtained by
examining the running systems' output. System outputs included information such as
patterns of on-line system load, available disk space, and ratios of systems utilisation.
Most of systems output or collected in disk spaces then treated by one statistical method
or another to minimise the size of printouts. The only problem with systems' output
was the large size of the printed material. Despite the first statistical analysis phase, the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 92

3. Problem Definition and Data Gathering and Analysis Techniques.

amount of printed material were extremely large and needed another phase of treatment
until a reasonable output size was obtained.

3.5.2.5 Systems Monitoring

The technique that contributed most to this research was monitoring the studied
systems over a representative period. Most of the important findings in this research are
based on systems monitoring. For each one of the studied systems all the running
applications were monitored for a representative period of time. All transactions issued
to different systems have been collected and examined. The operational systems in the
first organisation were monitored over twenty working days. For the second
organisation the operational systems were monitored for fifteen working days 24-hours
a day. Due to the extremely large size of the third organisation and the high costs of
observing such a system for a long time, the running systems in this organisation were
monitored for eight days 24-hours a day.

Monitoring systems is extremely expensive process but was adopted because it is
the most credible way to collect representative data about the observed systems.

3.6 Statistical Techniques

Statistical techniques can be sued to fit a model of performance or test a
hypothesis about the factor that affect performance. The type of analysis depends on the
factors involved. The following sections present some important definitions and
discuss this research data analysis techniques. Those techniques are discussed in details
by Ostle [OSTL88], Hoel [HOEL82] and Wonnacott [WONN85],

3.6.1 Some Definitions

3.6.1.1 Arithmetic Mean
/

If there exist n sample values that have been obtained from population n. These
values can be denoted by X j, X2 ,...,Xn. This implies that X[is the first value and
Xn, is the last value. Those sample values can be written as X/, where i = 1 -> n.. The
arithmetic mean of those values:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 93

3. Problem Definition and Data Gathering and Analysis Techniques.

(I = (Xi+ X2 +...+X/1) / n

This formula can be written in a neater form as:

[i= £ x , / n
¡=1

3.6.1.2 Sample Variance

Sample variance is a quantity that measures the extent to which a set of
measurements varies about their mean. In other words it is a measure of values spread
around the sample mean. The smaller the variance the less the spread from the mean.
An example can be given by two samples:

sample 1 values: 4,5,6
sample 2 values: 1,5,9

The arithmetic mean of both samples is 5. Since the difference between
consecutive pairs of measurements in the second set is four times that is in the second
set, one could say the that the second sample varies four times as much around its mean
as does the first sample.

Sample variance is calculated as follows:

n

s2 = - x)2 / n - 1
¡=1

3.6.1.3 Standard Deviation

Since the variance involves the squares of deviations, it is a number in squared
units. In many cases it is desirable that quantities describing a distribution posses the
same units as the original set of measurements. The mean satisfies this requirement, but
the variance does not; however, by taking the positive square root of the variance the
desired effect can be achieved. The resulting quantity is called the standard deviation.
Standard deviation is calculated as follows:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 94

3. Problem Definition and Data Gathering and Analysis Techniques.

s = J] [(x i - x) 2/ n - l
;=i

3.6.1.4 Number of Measurements for Reliable Sample

The reliability of the benchmark results is related to the number of measurements
taken from that benchmark. Usually, several measurements are required to have a
reliable measurement and a single measurement can never be considered as reliable
index. The questions is the size of adequate sample will always be controversial. One
way to find adequate sample size is using the Central Limit Theorem.

Theorem 1
"if random samples, size n, to be taken from a distribution with mean [i and
standard deviation s, then the sample means would form a distribution
having the same |i but with a smaller standard deviation given by s / Vn "

The quantity s / Vn is often called the standard error of X to distinguish it from
the standard deviation, s, of the original distribution. As n increases, the standard error
decreases.

Theorem 2
"if random samples, size n, are taken from a normal distribution, the
sampling distribution of p will also be normal, with the same mean and
standard error given by s / "

When reasonably large samples are taken (n > 30), the sampling distribution of (J.
will be approximately normal whatever the distribution of the parent population. This
remarkable result known as the central limit theorem. Consequently, if the
measurements from a benchmark transaction are based on random requests, the
benchmark results could be treated as a random sample the central limit theorem could
be applied on the results and the measurements from a benchmark job represent a
sample from an unknown distribution of elapsed times could be treated as normally
distributed samples if the sample size is large enough.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 95

3. Problem Definition and Data Gathering and Analysis Techniques.

3.6.1.5 The Normal Distribution

The normal distribution is the most important distribution of all distributions since
it has a wide range of practical applications. The normal distribution is a mathematical
model which adequately describes most natural phenomena. The height of the normal
probability curve is given by:

/(x) = (1 / V(2jc)o) e-((x-ti)2V2c2 .00 < x < +°°
where p, a are parameters such that -<*> < x < +°° and a > 0.

The total area under the normal curve is equal to one for all values of (i and o.

The importance of the normal distribution can be summarised in the following:

1. Many physical measurements are closely approximated by the normal curve.

2. Most physical phenomena are normally distributed, even when some
physical phenomena are not normally distributed, they can be easily
transformed to normality.

3. Any random variable formed by taking a linear combination of independent
normally distributed random variables will itself be normally distributed.
This property can be applied to any random measurements.

3.6.2 Design of Experiments

The design of experiments is one of the most important areas in an empirical
research. It is important to any experimenter to guarantee that his/her experiments
results are free from uncontrolled errors or residual variations. Also it is important for
any experiment to separate any systematic errors in the experiment results. In this
research are several techniques that can minimise systematic errors and increase the
precision of experiments results were applied. Those techniques were:

)
• replication of experiments;
• randomisation of experiments' events;
• analysis of experiments' results covariance.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 96

3. Problem Definition and Data Gathering and Analysis Techniques.

3.6.2.1 Replication of Experiments

The number of observations belong to the same experiment is called number of
replications. The more the number of observations the more accurate the result from the
experiment. In comparative experiments it is essential to obtain more than one
observation to estimate the experiment results. However, it is difficult to decide the best
number of replications for a specific experiments. Generally, the larger the number of
replications, the smaller will be the standard error of the difference between two
treatments means.

3.6.2.2 Randomisation of Experiments' Events

Randomisation of experiments' events is a simple but powerful way to ensure that
the experiment results are as free as possible from systematic errors. In computer
measurements, there are a substantial amount of uncontrolled variation. That variation
prevents the exact replication of the same experiment. Those variations are due to
factors that change with the experiment conditions and in many cases they cause
deviation in the experiment results apart from the effects tested by the experiment. The
best way to eliminate the effect of those factors is by randomising the experiment
events.

3.6.2.3 Analysis of Covariance

The techniques described in the following sections are useful whenever the effects
being investigated are liable to be masked by experimental variation which outside the
control of the experimenter. For completely controlled experiments, these techniques
might have little value since all variables are controlled within minimum variance.
However, for computer measurements complete control is impossible and there will
always exist considerable variation in the taken measurements. The following statistical
methods will separate the effect of the uncontrolled and residual variance. Additionally,
they will ensure that there is no systematic error.

j
3.6.2.3.1 One-Way Analysis of Variance

One way analysis of variance is a method that tests the hypothesis that there is no
difference between a number of columns. The total variation of the observations is
partitioned into two components:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 97

3. Problem Definition and Data Gathering and Analysis Techniques.

• the variability between the group means;
• the variation within each group.

These two components are compared by means of an F-test. The one-way
analysis of variance divides the experiment observations into mutually exclusive
categories.

If the null hypothesis is true the mean square between columns divided by the
mean square within columns will follow F-distribution with c-1 and c(n-l) degrees of
freedom.

If the null hypothesis is not true, the mean square between columns will be
increased by the columns and F-ratio will be significantly large. In this case the null
hypothesis should be rejected as it indicates a significant difference between the
different columns.

One way analysis of variance is calculated as follows:
SStot = SScols + SSres

c _

Sou rce o f varian ce b etw een co lu m n s S S c o ls = r ^ (X ,- - X)2 (1)
¡=i

with c-1 degrees of freedom.
c __

Mean square b etw een co lu m n s (M S co ls) = “ ^02 / (c ” 1) (2)
/=i

c r

Source of variance within columns SSres = II (X; - X,)2 (3)
¡=1 j =1

with c(n-l) degrees of freedom.
c r

M ean square w ith in co lu m n s (M S res)= II - X,)2 / c (r - 1) (4)
;=i j = i

F - (M S c o ls) / (M S res) (5)

For insignificant difference between observations, the calculated ratio of F test
should be less than or equal to the F value equivalent to number of degrees of freedom
(rc-1) in the F table.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 98

3. Problem Definition and Data Gathering and Analysis Techniques.

3.6.2.3.2 Two-Way Analysis of Variance

In a randomised block experiment, the data is classified according to two
characteristics in a two way table. The main problem is to see if there is a significant
difference between the observed values. The null hypothesis in a two-way analysis of
variance is:

H0 : all Vj = 0, j = 1 to c

The total corrected sum of squares is given by . - X)2. That sum could
>=i ;=i

be split up into three components, one that measures the variance between columns,
one measures the variance between rows, and the third measures the residual variation.
The columns variation is then compared with the residual variation by means of F-test.
Since the data is classified according to two characteristics, this method is called two-
way analysis of variance. The algebraic identity of the two-way analysis of variance is
as follows:

X X - *)2 = rX (* - X)2 + <X - *)2 + x X “ x> + *)2 (6>
¡=1 ;=1 i=l j - l i= l /=1

where:
Source of Variance due to difference between column means:

S S C0l s = r ' Z i X i - X) 2 (7)
t=l

Source of Variance due to difference between row means:

S S r o w s = cX (X ; - X)2 (8)
j-i

Residual:

/
S S r e s = J J J J (x i j - X i - X] + X) 2 (9)

i= l ;=1

Where:
r: number of rows

Transaction Behaviour in Large Database Environments, A Methodological Approach. 99

3. Problem Definition and Data Gathering and Analysis Techniques.

c: number of columns
j: rows index
i: columns index

The first component on the right hand side of this equation measures the rows
variation. The second component measures the columns variation, and the third
component measures the residual variation. In a more simplified way it the previous
formula can be written as:

S S to t = S S row s + S S c o ls + S S re s (1 0)

c __

M ean square b etw een co lu m n s M S Co ls = r ^ (X , - X) 2 / (c - 1) (1 1)
i=i

r _

M ean square b etw een row s M S ro w s = c ^ (X , - X)2 / (r - 1) (1 2)
;=i

c r __

M ean square o f residual M S re s = X X (x <j ~ ~ + ^ ^ c ~ l) (r ” 1) (1 3)
¡=1 ;=1

Where:
F c o ls = M S c o ls / M Sres

F r o w s = M S ro w s / M Sres

The same rule applies for the two way analysis of variance, for insignificant
difference between observations, the calculated ratio of F test should be less than or
equal to the F value equivalent to number of degrees of freedom (rc-1) in the F table.

The two-way analysis of variance can be summarised in table 3.5.

Source o f V ariance Variation

Sum o f Squ ares (S S)

D eg rees o f

Freedom

M ean o f Squares

(M S)

C alculated F

B e tw e e n R o w s S S ro w s = c X (x i - x)2 r-1 S S ro w s / M S ro w s/S S res

B etw een C olu m n s S S c o ls = rX (x j - x)̂ c-1 S S c o ls / c - l M S c o ls /S S r e s

R esidual S S res = X (x i • Xi - x i * X)^ (r - l) * (c - l) S S r e s /(r - l) (c - l)

Total Kxij - x)2 cr-1

Table 3.5, Steps of calculating ANOVA

Transaction Behaviour in Large Database Environments, A Methodological Approach. 100

3. Problem Definition and Data Gathering and Analysis Techniques.

If H0 is true, the results then has an F distribution. In this case the calculated F
ratio should be smaller than the F table values. If the calculated F ratio lies beyond the
F table value, then it indicates a strong evidence against Ho and the null hypothesis
should be rejected.

3.6.3 Comparing The Workloads Of Different Transactions

Comparing the behaviour of the workloads of different transactions posed a
problem for this research because the review of literature could not find a well-accepted
comparison technique that could be relied on for such comparisons. This thesis
proposes the use of the rate of change of DBMS behaviour against a test parameter as a
common basis of comparison between different transaction workloads. The hypothesis
is based on the relationship between the rate of change of a specific workload and the
degree of load it applies on the tested parameters, which implies less test time and cost.

Usually there are three factors controlling the quality of any test, the first is the
fulfilment of the test to its objectives, the second is the time required to achieve that
objective and the third is the ability of the test parameters to examine the tested
variables. Generally, in comparing different testing procedures, the more they affect the
tested parameters and the faster they achieve their objectives the better they are because
that implies less test time and consequently less test cost.

Because the main function of any benchmark is to strain the tested DBMS, this
research proposes the use of the rates of change of a specific benchmark workload as
an indicator to the level of that strain which indicates the goodness of a benchmark
workload. Statistically, the rate of change is measured by the estimate of the parameters
of the function under consideration, which is practically estimating the rate of the
response of the dependent variable for any changes in the corresponding independent
variable. It is well established that a higher value of rate of change is an indicator to an
acceleration in the response of the dependent variable. Based on that, the rate of change
can be used to measure the quality of the workload of a specific transaction in
comparison to any other transaction. The transaction workload with a higher value of
rate of change of its slope indicates that the test workload is applying significant testing
load on the variables under test which in turn indicates faster test speed, and as a
consequence less time and cost to achieve the test objectives.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 101

3. Problem Definition and Data Gathering and Analysis Techniques.

Finally, there is always a subtle compromise between the rate of change and the
cost involved in expanding the test parameters. This compromise is the main difference
between an acceptable transaction workload and an unacceptable one.

Generally, this point of using the rate of change as a quality factor between
different transactions is presented in [REVE94c] to raise a question for future research
in the techniques that are statistically solid and could be used to compare the workloads
of different transactions.

For readability purposes, this thesis refers to difference quotient by
the term "sc a la b ili ty le v e l", and the relative rate of change by the term
"s c a la b ility r a t io ” .

3.6.3.1 Calculating Average Rate of Change (Difference Quotient)

The slope of a straight line can be determined by applying the two point formula.
The two point formula is as follows:

Aym = —
Ax

A> = 3;2 -> ’i
Ax = x2 - Xj

With linear functions the slope is constant over the domain of the function. The
slope provides an exact measure of the rate of change in the value of y with respect to a
change in the value of x. The slope indicates the rate at which total cost increases with
respect to change in the level of output

With non-linear functions, the rate of change in the value of y with respect to a
change in x is not constant. However, one way of partially describing non-linear
functions is by the average rate of change over some interval. In moving from point A
to point B, the change in value of x is Ax. The associated change in the value of y is:

Ay = /(x + Ax) - /(x).

And the ratio of these changes is:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 102

3. Problem Definition and Data Gathering and Analysis Techniques.

3.6.4 Ordinary Least Squares Method (OLS)

The objective of this method is to fit a line to the data in order to predict the mean
value of the dependent variable for a given value of the controlled variable. The linear
equation is of the form:

y = a + bx + e

Where:
y is the dependent variable;
x is the controlled variable;

and e is a random error term.

This method fits a line to n pairs of measurements (xi,yi), (x2,y2)> ••••. (xn>Yn)-
Ordinary square estimate of the slope b is calculated from the following formula:

Where:
x = X - X
y = Y - Y

The correlation coefficient, R^, is an indicator of the goodness of fit of the line.
The correlation coefficient is calculated from the following equation:

S x x S yy

Where:

s~ = £ (* - *) 2

S yy = S (> ' - y) 2

Transaction Behaviour in Large Database Environments, A Methodological Approach. 104

3. Problem Definition and Data Gathering and Analysis Techniques.

s„ = ' Z (x - x) (y - y)

r 2 varies between +1 and -1. The bigger the value of the better the tit of the
line.

3.7 Summary

This chapter defined one of the major problems in the database industry as the
reliance of the database industry on the TPC benchmarks, TPC-A and TPC-B. Almost
every database vendor in the market is using the TPC metric to market their database
management systems and the database industry has centred itself around the TPC
transactions. As presented in this chapter, the TPC benchmarks suffer serious technical
limitations. Those limitations are they way the benchmarks are implemented and the
simplicity of the benchmark script, that affected their ability to realistically compare
database systems.

As benchmark results are representative of those types of transactions actually
included in the benchmark set. It is impossible to generalise those results to all kinds of
systems transactions.

The goal is to create a comprehensive benchmark with increasing number of users
that approximates the behaviour of typical DBMS applications and takes into
consideration all the limitation discussed in the previous sections. A benchmark
methodology for database systems must consider a wide variety of systems variables in
order to fully evaluate performance. To achieve realistic metrics, the database system
must be tested with a load as close as possible to that which it will be running in real
life. Some idea of the type of information contributing to this achievement are: identify
the dominant processing tasks, what queries will be run, what is the relative frequency
of each query, what is the size of the database, and what patterns of behaviour are
expected. To this end, the present author developed a series of studies based on.

;
1. Non synthetic data.
2. Database model independent.
3. Realistic data structure.
4. Typical transaction types.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 105

CHAPTER 4

DATABASE CHARACTERISTICS AND
TRANSACTION BEHAVIOUR IN LARGE
DATABASE ENVIRONMENTS

?

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

CHAPTER 4

DATABASE CHARACTERISTICS AND TRANSACTIO N
BEHAVIOUR IN LARGE DATABASE ENVIRONM ENTS

The TPC benchmarks have become the standard practice in the database industry.
Due to lack of background studies, the TPC benchmarks have sever technical
limitations. Those limitations were discussed in chapter three. This chapter sets the
empirical basis for the CITY benchmark design. It presents the results of in depth
studies at three large UK database environments. These studies aimed to identify the
salient characteristics of large databases at large database environments and to identify a
typical pattern of behaviour of on-line transactions at high-volume transactions’
environments. The data from that identification can supplement the data from the live
environments once the basis of this analysis has been defined to evaluate performance
in a transaction processing environment.

4.1 Introduction

Building an appropriate benchmark for large database environments is a complex
process and depends on accurate information about the required domain environment.
The success or failure of a benchmark depends largely on the clear identification of the
characteristics of the domain to be tested. Some ideas of the type of information
contributing to this achievement are: identifying the dominant processing tasks;
identifying the queries to be run; identifying the relative frequency of each query;
identifying the size of databases; and identifying the patterns of behaviour to be
expected.

Most existing benchmarks suffer from one problem or another because they
provide some estimate of the systems performance but do not provide a realistic
characterisation of the database management system under test. This research conducted
three field studies at three of the largest organisations in the UK. The organisations
were selected because of being good examples of the domain of high-volume
transaction environments. They were characterised by their large number of

Transaction Behaviour in Large Database Environments, A Methodological Approach. 107

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

applications, the wide variety of those applications, and their large database
environments.

The first study investigated the running environment at a large local authority’s
computer centre. It offers information technology services and software consultants to
four London boroughs. The second took place at a large airline computer centre that is
running one of the largest database environments in UK. The third study investigated
the running environment at a large UK bank computer centre. The studies aimed to
achieve the following objectives.

1. Identify the main characteristics of on-line databases in high-volume
transactions environment.

2. Identify a typical transaction behaviour based on a large number of real
database applications.

3. Compare the findings to the TPC benchmarks.

Previous writers in this field [FERR78, FERR83, DONG87] have suggested
some factors that determine the characteristics of on-line database and identify the
behaviour of on-line transaction. The factors that determine the characteristics of on-line
database are the following: •

• database size;
• record size;
• attributes types;
• number of indexed attributes;
• types of attributes;
• distribution of attributes.

And following factors are to identify the behaviour of on-line transaction:

• the average number of basic database operations resulted from one
transaction;

• the average ratio of CPU to I/O time utilisation;
• the average number of I/O operations resulted from one transaction;
• the average number of sort operations resulted from one transaction;
• the average number of databases accessed by one transaction (JOIN

Operation);
• the average number of nested selects in one transaction (transactions

complexity).

Transaction Behaviour in Large Database Environments, A Methodological Approach. 108

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Monitoring the running systems over a representative time was the main data
collection technique; the studies collected all on-line transaction over the period of
study. Transactions’ behaviour analysis included breaking down the collected
transactions to their basic database operations, “qualified retrieval, insert a record,
update a record, delete a record, and sequential retrieval”, and the average number of
each operation was calculated to determine a typical script of on-line transactions. In
addition, the studies included the examination of systems output and documents and
conducted several in depth interviews with key people representing different levels of
management at the studied organisations. Systems documentation covered areas such
as: database size; records size; types of attributes; number of indexed attributes per
database; and attributes’ distribution.

Section 4.2 presents the result of a study at the local authority computer centre.
As the activities of local authorities might be unknown to many people, this section
briefly reviews those activities and discusses the main applications that identify the
nature of this environment. This section describes the following subjects:

• business of the local authority;
• organisational structure;
• data gathering technique;
• processing environment;
• running applications;
• main characteristics of the local authority application databases;
• transactions behaviour of the local authority running systems;
• background workload at the local authority environment.

Section 4.3 presents the result of the second study of this research. It took place
at a large UK airlines’ computer centre. This section discusses:

• data gathering technique;
• the airlines processing environment;
• main characteristics of the application databases;
• transactions behaviour of the airlines on-line systems;
• the airlines on-line system background workload.

Section 4.4 presents the result of a study at a large UK bank computer centre.
This section discusses: •

• data gathering technique;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 109

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

• the bank processing environment;
• the main characteristics of the application databases of the bank;
• transactions behaviour of the bank on-line systems;
• the background workload at the bank on-line environment.

Section 4.5, is chapter four discussion. It compares the findings from the three
studies and demonstrates the common characteristics among the three environments.
The three organisations were similar concerning the database characteristics and the on-
line transaction behaviour despite the difference in activities among the three
organisations. This section also compares the findings from the three studies to the
TPC benchmarks, it shows how those benchmarks are widely different from the
behaviour of the presented environments and explain why those benchmarks can be
misleading if used to test similar environments.

Section 4.6, present the chapter conclusion and briefly discusses the criteria for
building the CITY benchmark.

4.2 A Study In a Large Local Authority Computer Centre

4.2.1 Introduction

This section presents the results of a study at a large local authority computer.
This organisation was selected because of its large number of running applications and
the large sizes of its database environment. The span of this study covered thirty
working days, with each being investigated from 8:00 to 18:00 (the duration of on-line
service). The local authority collected all on-line transactions issued to the running
systems during the period of study.

4.2.2 The Business of the Local Authority

The local authority computer centre is an information technology services
organisation. It was formed to offer information technology services and software
consultants to four London boroughs. The services to those boroughs include:
consultants; development; implementation and management of business and technical
systems; telecommunications and training. The local authority recovers the service cost
from its members with no profit.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 110

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The main factor that affected the local authority environment and applications was
having to respond to changes in local government services as imposed by legislation. In
this respect, the computer centre was a dynamic environment where new systems and
amendments to the running systems were requested every time legislation changed,
Fig. 4.1 presents a diagram of the business of local authority.

Each one of the boroughs has its own income sources. These income sources
could be: community charge; non domestic rates; housing rents; social amenities; and
central government grants. The income was spent on the borough services such as:
precepting authority (police, Fire, ambulance, etc.); Transport; housing; social services;
education; roads; refuse collection & cleaning; planning and technical services; electors;
and social amenities (e.g. Libraries, community centres, swimming pools, public
conveniences, etc.). Each one of the previous income sources as well as spending
activities was represented at the local authority centre to give each borough a daily
image of its financial situation. Also it helps the boroughs to keep track of the services
offered by each borough to its local community.

The Business of Local Authorities

Precepting
Authorities

Transport

Housing

The Local Authority Spending Activities

Social
Services Education Roads Refuse

Collection,
Cleaning

Social
Amenities

Electors

Planning &
Technical
Services

Fig. 4.1, The business of the Local Authority

Transaction Behaviour in Large Database Environments, A Methodological Approach. I l l

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.2.3 Organisational Structure of the Local Authority

Levels of management and job description were examined at the local authority
organisational structure to select the right people for the interviews. The research
interviewed the staff who deals with databases or makes decisions regarding the
running databases’ environment.

Organisational Structure of the Local Authority

BENEFITS COMMUNITY FMA & HOUSING PAYROLL RATES SPECIAL
CHARGE CREDITORS PROJECTS

* Darker boxes indicate that staff from that area were interviewed

Fig. 4.2, Organisational structure of the Local Authority Computer Centre

Fig. 4.2 shows the local authorities organisational structure diagram where the
darker boxes indicate the people who were interviewed. The interviews were conducted
with four key people in the local authority computer centre. In hierarchical order, the
interviews were conducted with the following people:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 112

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

• the director of computer services;
• the systems development manager;
• the assistant systems development manager;
• the manager of the application support group (the one responsible for the

running databases).

One interview was conducted with the director of computer services. Two
interviews were conducted with the systems development manager. Four interviews
were conducted with the assistant systems development manager and four interviews
were conducted with the manager of the application support group (the one responsible
for the running databases).

4.2.4 The Local Authority Processing Environment

The investigation of the local authority processing environment required the
examination of the centre: hardware; operating system; database data communication
(DBDC); and database management systems (DBMS).

The computer centre had three different categories of hardware, PCs,
minicomputers, and mainframes. The centre mainframe operates under the MVS/XA
operating system. The computer centre used the micro systems to take some load off
the mainframe environment. The centre relied on it to perform several data manipulation
tasks such as sorting operations, report generation and for decision support system
(DSS) transactions. Only the mainframe environment was examined by this research.

The database environment was mainly IBM hierarchical database management
system (DBMS) Information Management System (IMS) Data Language/I (DL/I). The
IMS DL/I database management systems support several types of access methods such
as: Hierarchical Sequential Access Method (HSAM); Hierarchical Indexed Sequential
Access Method (HISAM); Hierarchical Direct Access Method (HDAM); and
Hierarchical Indexed Direct Access Method (HIDAM). The on-line database
environments at the local authority computer system were HIDAM databases where all
users' queries used indexed attributes. The centre built a user interface written in
customer information and control facilities (CICS) and PL/I programming language to
access on-line databases. Fig. 4.3, is an illustration of the processing environment at
the local authority computer centre.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 113

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.2.5 The Local Authority Main Applications

The computer centre handled many different applications dealing with different
activities. These activities varied from financial management and payroll systems to
inventory control systems and housing systems. The computer centre supported over
300 different applications. Most of these applications were shared between the
boroughs, except few of them were dedicated to a single borough. In addition the
computer centre kept track of each borough income source and spending activities.
Examples of the running applications are presented below.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 114

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

1. Financial Management Application (FMA).
2. Creditors.
3. Payroll.
4. Rates.
5. Housing.
6. Housing Advances.
7. Housing Benefits Public and Private.
8. Property Information and Processing System (PIPS).
9. Stores.

10. Generalised Persons Application (GPA).
11. Cash Income System.
12. Direct Debit
13. Bankers Automatic Clearing Service (BACS).
14. Community Charge.
15. Electoral Registration.

4.2.6 The Main Characteristics of The Application Databases

The research examined the local authority running systems' documentation to
acquire the application databases' information. The examination included the database
definitions (DBD) and program specification blocks (PSB) with the help of the manager
of the application support group (the one responsible for the running databases) to
obtain information such as: records size; number of attributes per record; number of
indexed attributes per database; and attributes' types. Systems' output was the source
of some information such as database sizes.

The research identified the running database characteristics by examining the
following factors:

• database size;
• record size;
• number of indexed attributes;
• attributes types;
• distribution of attributes in databases.

A typical database size was difficult to identify, but the overall number of
databases was large and over all on-line databases' size was around 12 Gbytes,
whereas the most common record size was around 185 bytes.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 115

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

All on-line databases were HID AM databases that used indices, consequently, all
on-line queries used indexed database attributes and non of the on-line queries used
non-indexed attributes. The number of database indexed attributes were three indices on
average. Attribute types were character, integer, and fixed point

4.2.7 Transactions Behaviour of the Running Systems

The examination of several on-line transactions' performance factors identified the
of on-line transactions' behaviour at the local authority processing environment. The
performance factors are the following:

• on-line transactions database operations;

• Key and No-key Transaction Types;

• Average Number of Retrieved Records per Transaction.

4.2.7.1 On-line Transactions Database Operations

Breaking down on-line transactions into their basic database operations identified
typical transactions' behaviour at the local authority processing environment. As shown
in Table 4.1 and Fig. 4.4, sequential retrieval was the dominant database operations in
this environment followed by qualified retrieval. The difference between retrieval
operations ratios and other operations ratios was large, retrieve operations (both
sequential and qualified) represented 91%, records update operation represented 4%
and insert operation represented 4%. Delete operation was so small and represented a
ratio of about 1%.

Operation Name Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

Averaee of DB Operations 36% 4% 4% 1% 56%

Table 4.1, Ratios of the Local Authority On-line Transaction Operations

Transaction Behaviour in Large Database Environments, A Methodological Approach. 116

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Ratios of the Local Authority
On-line Transaction Database Operations

35%

■ Qualified Ret.
□ Insert

Update
□ Delete
m Sequential Ret.

Fig. 4.4, Ratios of the Local Authority On-line Transaction Operations

4.2.7.2 Ratios o f Key U tilisa tion

Transactions were classified to key retrieval transactions and no-key retrieval
transactions to identify the nature of the on-line transactions at the local authority
environment. Update, Insert and Delete operations were not included because their
ratios were too small to be taken into consideration.

The ratios of the key retrieval transactions and no-key retrieval transactions are
presented in Fig. 4.4. The ratios of the two types of transactions were as follows:

• No-key transactions represent 79% of the retrievals types;
• Key transactions represent 21% of the retrievals types.

/
4.2.7.3 Average Num ber o f Retrieved Records per Transaction

The division of physical buffer size by the physical record size gave the average
number of retrieved records per transactions. The average number of retrieved records
by a single on-line transaction was around seven records.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 117

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Fig. 4.5, Ratios of Key utilisation

4.2.8 Background Workload

All data manipulation operations such as sort operations and copy operations were
performed during night shift when the on-line service was shut down and not available
to the centre users.

Micro computer environment performed all report generation operations. All files
to be printed were transferred to the micro system from the mainframe by off-line
means then all the required reports were generated from that system.

Decision support system (DSS) transactions usually consist of long search in
databases (I/O bound transaction) and require several sort paths before completion. The
local authority separated the DSS transactions on micro computer environment.

The previous decisions freed the mainframe for on-line service and kept the
background workload as low as zero.

J

Transaction Behaviour in Large Database Environments, A Methodological Approach. 118

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.3 A Study In a Large British Airlines' Computer Centre

4.3.1 Introduction

The second study took place at a large UK airlines' computer centre. The
computer centre has a large database environment and large number of database
applications that support different services. The airline computer centre runs around
2000 different applications accessing over 2500 hierarchical and relational databases
occupying over 450 Gbytes.

Three powerful computer processors maintained 24 hours uninterrupted on-line
service to the computer centre users. The processors supplied around 600 MIPS of
computing power in all, where 286 MIPS were dedicated to on-line service. The on-
line systems terminal population was approximately 250,000 terminals whereas around
27,000 on-line users accessed the system concurrently.

4.3.2 Data Gathering

Gathering the required data from the airlines' environment required the application
of several techniques. Those techniques were the following:

1. monitoring the system over a representative period;
2. studying systems output and documents;
3. interviewing four staff at the airlines' computer centre and two staff at the

airlines data centre.

4.3.2.1 M on ito ring the Running Systems

The airlines' computer data centre was a separate body from the airlines’
computer centre and has different responsibilities. While the airlines' computer centre
task was supplying computer services to the users, the main task of the data centre was
monitoring the running environment and recording the running systems' behaviour
with system load, used disk space, and on-line transactions' response time. Then try to
tune the running environment depending on that information. The data centre supplied
this research with the running systems load over a period of fifty weeks.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 119

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The data centre did not record some information such as: transactions' types;
transactions' operations; database buffer management; the average number of I/Os
resulted from on-line transactions; and the average number of sorts resulted from each
transaction. To get that information, the airlines' computer centre database
administrators (DBA) monitored the running databases for fifteen days that were
randomly selected from a period of four months. Systems' monitoring process
collected all the transactions issued to the running systems during the period of study.
A software available in the computer centre performed the following tasks:

• classified the collected transactions to their different types (on-line, DSS,
QMF, and batch);

• sorted the transactions according to system name and transaction name;
• calculated the averages of number of database operations resulted from each

transaction;
• calculated the averages of number of database buffer updates;
• calculated the averages of number of I/Os resulted from each transactions;
• calculated the averages of number of sorts resulted from each transaction;
• calculated the averages of transaction response time;
• calculated the averages of transaction CPU time.

4.3.2.2 Studying Systems Outputs and Systems Documents

System outputs included information such as system load and available disk
space. System documents contained system specification and design rules for both
applications and databases. Studying systems output and documents was the source of
information that the research could not obtain by monitoring the running systems, this
information was such as: number of databases accessed by a single transaction (JOIN
operation); database record size; number of indexed attributes; attributes' values;
distribution of attributes in the database; and number of nested selects in a single
transaction (transaction complexity).

Transaction Behaviour in Large Database Environments, A Methodological Approach. 120

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The Airlines Computer Centre Organisational Structure

* Darker boxes indicate that staff from that area were interviewed

Fig. 4.6, Organisational structure of the Airlines computer centre

4.3.2.3 Interviews

Interviews were conducted with six key people, four from the computer centre
and two from the data centre. The interviews were conducted with: the information and
development technology manager (MVS & TPF); the manager of the MVS
infrastructure design; the manager of database design (DB2, IMS and Teradata); and the
DB2 database administrator from the computer centre; and the manager of the data
centre and one of his assistants from the data centre. The interviews helped in gaining
better understanding of the computer centre environment, but did not play a main role in
collecting a great deal of technical information.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 121

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The organisational structure of the airlines' computer centre is presented in Fig.
4.5. Darker boxes indicate that staff from that area was interviewed. The organisational
structure of the data centre was not required as only the head of the centre and one of
his assistants were interviewed.

4.3.3 Processing Environment

The airlines' computer centre had several levels of hardware; mainframes, mini-
computers, micro-computers, and PCs. This research covered only the mainframes'
environment, and did not cover mini-computers; micro-computers; and PCs.

Fig. 4.7, Processing Environment of the Airlines computer centre

The on-line service computing power consisted of three mainframes (physically,
three different processors). The first mainfraipe ran at 66 MIPS and each one of the
other two processors ran 110 MIPS. All three processors ran under the MVS/XA
operating system. In addition there were several other processors used for systems
monitoring, analysis, and tuning that raises the total amount of MIPS to 600. The
airlines' computer centre processing environment is illustrated in Fig. 4.7.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 122

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The first processor (SI), was dedicated to systems development and testing of
applications. This system was mainly used for applications development and served
relational database DB2 applications. This processor also served to perform most of
batch applications runs.

The second processor (S2) performed the IMS applications at the airlines'
environment. It also served newly developed on-line relational database (DB2 system)
applications. This processor was also used for turning round large volumes of
transactions quickly. In addition, it ran a very limited number of batch applications.

The third processor (S3) supported the on-line services of relational database
systems (DB2). This processor main function was to support the on-line service but
when the S1 processor was not available, a limited number of batch applications could
run on this processor.

The airlines on-line service supplied its services to several countries from all over
the world. Users from UK, USA, Canada, and Australia were able to use the on-line
service and access the running database. Due to the difference in time zones between
these countries, the system was available and accessed by on-line users over the 24
hours. The centre supported more than 250,000 terminals in all, but due to the
difference in time zones between the countries using this system only around 27,000
on-line users concurrently used the system.

The airlines' computer centre covered a wide variety of applications whereas the
airlines' company activities were represented at the computer centre; they supplied more
than two thousands different applications covering all the company activities to their
users. The applications covered different activities such as: flights (fuel consumption,
catering, etc.); Engineering (workshops, spare parts, inventories); management
(personnel, payroll, etc.). In addition, they had a large ticket reservation system.

4.3.4 The Main Characteristics of the Application Databases
/

The identification of the main characteristics of the on-line databases required the
examination of several database performance factors. Those factors were the following: •

• database size;
• number of databases;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 123

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

• typical record size (high occurrences of records with the same length);
• number of on-line databases indexed attributes.
• types of database attributes.
• distribution of database attributes.

The running systems’ databases were resident on three processors. The first was
the S2 processor, which mainly supports the IMS hierarchical databases and newly
created relational databases. The second was the S3 processor, which mainly supports
the main service of the relational databases. The third database environment was the
acceptance test system (ATS environment, resident on SI) which was an intermediate
system between the test applications and running applications. The following sections
will discuss database characteristics at the three environments.

4.3.4.1 A pp lica tion Databases on the S2 Processor

Two different types of database management systems were running in this
environment, an IMS database management system and DB2 database management
system. The majority of the databases on the S2 processor were IMS databases. The
IMS database consisted of around 780 on-line databases taking 31 Gbytes of data over
65 disk packs. Those disk packs were mainly single density. The centre used data
packer to compress the larger IMS databases. A typical record size at this environment
was around 185 bytes.

The DB2 databases occupied about three Gbytes of data. Under S2 there were
around 200 live relational DB2 tables. The total numbers of rows were around
6,000,000 rows; where the largest table contains about 600,000 rows. The maximum
row length was 4036 bytes and the minimum row length was 5 bytes; but typical row
length was around 175 bytes.

4.3.4.2 A pp lica tion Databases on the S3 Processor

All the databases on the S3 system were relational DB2 database management
system. It was originally designed for large data quantities with the ability for end
users, using QMF, to interrogate their data.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 124

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The databases under this system were occupying around 50 Gbytes of data over
46 disk packs. This includes single, double, and triple density disks. Under S3 there
were more than 500 live tables.

The total rows in these databases were around 300,000,000 rows, where the
largest table contains around 98,000,000 rows, and the smallest table contains just one
row. The maximum row length was 4025 bytes with minimum row length of 2 bytes
and most common row length of around 200 bytes.

4.3.4.3 The Acceptance Test System (ATS)

The Acceptance Test System (ATS) was an intermediate system between test
systems and real system. As systems were completed they were moved to the ATS for
a test period where they were tested in conditions similar to those of real world, if they
show satisfactory results they were moved to live systems or else they were returned to
development environment for further tuning. The ATS environment consisted of about
300 IMS databases and 40 DB2 databases.

4.3.5 Transactions Behaviour of the Running Systems

Transaction analysis process investigated all on-line transactions issued to the
running systems over a period of fifteen days. These fifteen days were selected
randomly by the airlines' computer centre from a period of four months. The total
number of collected transactions through this study were around 25 million
transactions. The research examined several performance factors to identify a typical
behaviour of transactions at the airlines' environment. Those factors were the
following: •

• number of on-line transaction basic database operations;
• number of DSS transaction basic database operations;
• number of records retrieved per on-line transaction;
• number of databases accessed per on-line transaction (JOIN operation);
• number of nested selects per on-line transaction (transaction complexity);
• ratio of response time to CPU time;
• number of I/Os resulted from each transaction;
• number of database buffer updates;
• number of sorts per transaction.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 125

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.3.5.1 On-line Transaction Database Operations

Sequential retrieval represented the dominant database operation with 51%,
qualified retrieval represented 39%; the three updates operations (insert a record, update
a record, and delete a record) represented 11% in total. The ratios of on-line systems
transaction operations are presented in Table 4.2 and Fig. 4.8.

O p e r a t io n N a m e Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

A v e r a g e o f D B O p e r a t io n s 39% 5% 4% 1% 51%

Table 4.2, Ratios of the Airlines On-line Transaction Operations

The Ratios of the Airlines Computer Centre
On-line Transaction Database Operations

I Qualified Retr.
E3 Insert
E3 Update
□ Delete
EU Sequential Ret.

Fig. 4.8, Ratios of the Airlines On-line Transaction Operations

/
4.3.5.2 Time U tilisa tion and I/O Operations

The ratios of the CPU utilisation time to I/O time are illustrated in Fig. 4.9. The
average response time of on-line transactions was around three seconds, whereas the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 126

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

CPU used 25% of that time. On-line transactions produced around 900 I/O operations
per transaction and generated about 10 sort paths per transaction.

The Airlines On-line System Transaction
CPU Time To I/O Time Ratios

25%

75%

□ CPU TIME

E3 OTHERS

Fig. 4.9, The Airlines On-line transaction I/O time ratios

4.3.5.3 N um ber o f Databases Accessed by One T ransaction (JO IN
O peration)

The airlines' computer centre avoided JOIN operations since most transactions
accessed one database (93%). When JOIN operation was used, it was mainly used to
access three databases (5%). Fig. 4.10, illustrate the ratios of the number of databases
accessed by one transaction.

4.3.5.4 Transactions Com plexity (Nested Selects)

/
The majority of transactions consisted of one select, around 98% of the running

transactions, even when they accessed more than one database. In the mean time a
small percentage, around 2%, consisted of two selects. Transactions that consisted of
more than two selects represented less than .5%. Fig. 4.11 illustrates the ratios of the
number of nested selects per an on-line transaction.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 127

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Ratio of Number of Tables Accessed
By One Transaction

0.5%

93%

m One Table
u Two Tables
□ Three Tables
□ Four Tables
□ Five Tables

Fig. 4.10, The Airlines On-line transaction JOIN ratios

Ratio of Number of Nested Selects
(Query Complexity)

2%

98%

El One Select.
□ Two Selects.
■ Three Selects
□ Four Selects.

Fig. 4.11, The Airlines On-line transaction nested selects ratios

Transaction Behaviour in Large Database Environments, A Methodological Approach. 128

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.3.6 Number of Retrieved Records per Transaction

Generally, there was a trade-off between transactions' database operations and
number of retrieved transactions, if transactions tend to perform more sequential
retrieval transactions than qualified retrieval, the number of retrieved records per
transactions will be relatively high, and the opposite if transactions tend to perform
qualified retrieval transactions more than sequential retrieval transactions. The average
number of retrieved records per transaction was around seven records.

4.3.7 The Background Workload

The background workload of on-line environment at the airlines' computer centre
was very small. The centre performed most of batch jobs, copy operations, and sort
operations, on processor SI where the on-line service was not available. The other
processors S2 and S3 supplied the on-line service to the system users and the
background workload on those processors were very small. The background workload
of the S2 processor and S3 processor consisted mainly of back-up operations and
restore operations that were usually run during night shifts when on-line service was at
its minimum.

4.4 A Study In a Large UK Bank Computer Centre

4.4.1 Introduction

The previous sections, discussed two studies at two large database environments,
the first took place at a large local authority computer centre and the second examined a
large UK airlines' computer centre. This section, discuss a study at a large UK bank
environment. The results from this study were important to this research because the
bank database environment was the largest in UK and because the TPC-A, which was
the standard benchmark of the database market, simulated random transactions at large
bank environment.

The bank runs a large number of applications (more than 2500 applications) and
has a wide variety of those applications. The bank computer environment was one of
the largest on-line environments not only in UK but also in Europe and now it is the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 129

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

leading international bank trading in over 30 nations. It supplied more than 150
financial services products using more than 65 different account types generating over
9,000,000 daily entries producing 200 reports and 150 interface data streams. The bank
has a large database environment that consisted of more than 2500 application databases
occupying over three Terabytes of data, out of that, the bank on-line users accessed 750
Gbytes of data.

Data gathering used telephone calls, face to face interviews, systems monitoring,
and examined the running systems documents. The bank computer centre management
agreed to monitor the system for fifteen days in the same way as the airlines' computer
centre was monitored. Because the bank computer centre was exceptionally large, it
was too expensive to monitor the system for fifteen days and the bank monitored the
running environment for eight days.

During the eight days of system monitoring the bank collected all on-line
transactions issued to the on-line systems. Then, the bank computer centre sorted and
classified the collected transactions to on-line transactions from terminals in the bank
branches and on-line transactions from the automatic teller machines (ATM); for short
they will be called on-line transactions and ATM transactions. The studied transactions
were then broken down to their basic database operations and the ratios of those
operations were calculated to give typical transaction behaviour.

4.4.2 Data Gathering Techniques

Several data gathering techniques were employed to collect the required
information about the running environment. Those techniques were: interviews;
monitoring the running systems; and studying systems documentation. The following
sections will discuss those techniques.

4.4.2.1 Interviews

Before starting the interview, the author made several informal telephones calls to
the bank information systems manager that explained the nature of the study and
discussed the main objectives of this research. Then the author sent a list of questions
and requirements to the bank information centre manager to study before agreeing to
have one interview. The bank information centre manager promised that if one

Transaction Behaviour in Large Database Environments, A Methodological Approach. 130

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

interview was not enough to cover all the required points he will arrange another
interview.

One long interview that took around six hours was enough. The interview
discussed the following points:

• the bank activities;
• the running applications;
• the application databases;
• the running systems load.

In addition, the bank information centre manager prepared a list of the answers to
the questions and to some other technical points such as JOIN operations and
transactions' complexity that were sent to him before the interview was started.

4.4.2.2 M on ito ring the Running Systems

By the end of the interview the bank agreed to monitor the running environment
for fifteen days, but due to the exceptionally large size of the bank computer
environment, monitoring the bank environment was extremely expensive and the bank
monitored the running environment for eight days, that were more than enough for this
research.

Monitoring the running systems was the only way to study the behaviour of the
running transactions in the bank environment. The bank computer centre collected all
the on-line transactions issued to the running systems and processed those transactions
to produce the following information: •

• classified the collected transactions to their different types (on-line and
ATM);

• calculated the average number of database operations per transaction;
• calculated the average number of database buffer updates;
• calculated the average number of I/Os resulted from each transactions;
• calculated the average number of sorts resulted from each transaction;
• calculated the averages of the transaction response time;
• calculated the averages of the transaction CPU time.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 131

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.4.2.3 Studying Systems Documentation

The examination of systems' documents clarified some information that was
impossible to collect by monitoring the running systems or by the interview. The
information was the following:

• disk space utilisation;
• database size;
• number of indexed attributes;
• types of attributes;
• distribution of attributes;
• transactions complexity (number of nested selects);
• number of databases accessed by one transaction (JOIN operation).

4.4.3 Processing Environment

The examination the bank processing environment covered the running systems'
hardware, software and database management systems (DBMS). Three equally
important factors influenced the bank processing environment, those factors were:
transaction response time; system integrity and recovery; and system security, the bank
environment with both hardware and software were designed to serve those three
factors.

4.4.3.1 H ardw are and Software

The bank divided its computing power between two production centres and a
development centre. Each one of those centres produced 500 MIPS. When one of the
production centres goes down, the development computer centre works as a back-up
for the down centre, that allowed the bank to maintain 1000 MIPS of computing power
to on-line service under different circumstances.

The data centres served more 3500 branches with terminal population of more
than 22,000 terminals supply on-line service to around 60,000 users. In addition, more
than 3500 automatic teller machines (ATM) with on-line access to the system over the
24 hours heavily accessed the system. The bank offered its services not only to UK
branches but also to several other branches all over the world, those results in 24

Transaction Behaviour in Large Database Environments, A Methodological Approach. 132

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

hours' access to the computer system. Fig. 4.12, shows the bank branches to data
centres connections.

The bank branches accessed the running systems through non-programmable
terminals. The user terminals were connected to a local server that was responsible for
session control and screen formatting. Local servers also acted as a branch interface
equipment (BIE) and stored transactions on recoverable media before sending them to
the mainframes at the data centres.

Fig. 4.12, The Bank branches to data centres communication

Given the heavy transaction load, the bank divided on-line transactions between
the two main UK data centres. Within each data centre, transactions were further sub-
divided between the data centre processors. Fig. 4.13, shows the bank branches to data
centres connections.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 133

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

On-line transactions' response time was the major constraint at the bank
environment. On-line transaction response time must be within a certain time limit or an
internal timer in the communication controller will time out the transaction and treat it as
transaction failure. To enhance on-line transactions' performance, each data centre had
two types of processors, on-line processors, and off-line processors. On-line
processors were dedicated to receiving on-line transactions from the bank branches
through communication lines and serve those transactions. Off-line processors were
dedicated to perform all other types of operations in the data centre, they performed
tasks such as: back-up the running databases; report generation; sort operations; copy
operations; and block updates to some application databases.

Transactions
From and To

Branches
The Bank Data Centre

Central Databases

Database
Archives

Report Generation

Fig. 4.13, The Bank data centre

Transaction Behaviour in Large Database Environments, A Methodological Approach. 134

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The bank kept its customers' history in archives that were cumulative storage and
their records were never deleted. Because the bank archives were mass storage devices
and not on-line database, they were not covered by this research.

Data centres kept several log files of transaction operations that contain all before
image and after image transactions. Log files were not databases and were not covered
by this study.

Customer Account In Relation To The Running Applications

Credit
Clearing

Data Changes
& Instructions

Automatic
Payments

Cheque
Clearing

Reports &
Inquiries

MIS Lending
Control

ATM, EFT/
POS Entries

Customer

Counter
Entries

CHAPS/ FRGN
Entries

Automatic
Transfers

Fees &
Interest

Customer Available General
Statements Funds Ledger

Fee Capture
& Int Calc

Other
Systems

Fig. 4.14, Customer Account in relation to running applications

Transaction Behaviour in Large Database Environments, A Methodological Approach. 135

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.4.3.2 The Bank Running Applications

Customer accounting system was the very hub of the bank business division
where most of the bank business was products they developed around that customer
accounting system. The number of customers' accounts was over 17M accounts
whereas the average accounting entries per day was about 6M accounts and on a peak
day it reached 20M accounts per day and in some cases it reached 650 transactions per
second. Fig. 4.14 presents the connections between the different applications and
customers' accounts.

The Bank On-line Transaction Flow

On-line
Service

lines

Data Centre 1

Mainframe

Central Database
Databases Archives

Bank Branch
Sale Point

Local Server

Commui lica tion lines

ATM

Communie ition

Data Centre 2

Mainframe

Database
Archives

Central
Databases

Fig. 4.15, The Bank On-line transaction flow

Transaction Behaviour in Large Database Environments, A Methodological Approach. 136

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.4.3.3 On-line Transaction Flow

On-line applications had a service level agreement covering systems availability
and transaction response time. If just human factor was the only element involved, they
would have a chance to tolerate a flexible response time, but the problem was the time
limit of the internal timers in the network controllers. Any failure to respond within its
time-out period equates to a system failure and the transaction was flushed. To solve
this problem two autonomous partner servers in geographically remote sites were used
and on-line systems transactions were divided between the two servers. In normal
operations, the workload was balanced by half the controllers having primary affinity
with one partner, and the other half to the other partner. A controller directs its request
to its primary partner, and if it does not receive a response within three seconds, retires
the request to the other partner. Each server notifies its partner of the business effects of
authorisation it has performed to maintain data concurrency. This process of
transactions' re-distribution was completely transparent to both the end users and
application programs.

Each data centre has its own full copy of databases to eliminate distributed read.
The problem was some database applications were characterised by relatively high read-
write ratio. To overcome data consistency problem when updating those databases, all
on-line updates and copy were blocked for those applications. Update, were data
collected and applied in batches to the nominated master only before being replicated
through copy utilities. Fig. 4.15, illustrate on-line transaction flow at the bank
environment.

4.4.3.4 The Bank Database Management Systems

The bank mainframe supported three DBMS; hierarchical IMS DBMS, relational
DB2, and the bank self made DBMS. Transaction analysis process investigated the
three types of database management systems.

The first DBMS was an IMS hierarchicabdatabase management systems. Most of
the bank older applications were still running under IMS environment when the study
took place, applications supported by IMS represented around 30% of the running
database environment. This ratio is expected to go down because the bank was
converting all its IMS databases to DB2 relational database management systems.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 137

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The second DBMS was a DB2 relational database management systems. The
bank was developing all its new applications in DB2 DBMS and the percentage of the
applications running under this system was increasing. The bank new information
system, Information Systems Service (ISS) for UK banking division, was the largest
DB 2 application systems in UK and one of the largest in Europe.

The third DBMS was the bank self made database management system that the
bank staff has developed used for so long to support the bank applications. Recently,
the bank management decided that they were not a research centre and they can not
invest in this DBMS to keep track with new products in the market. They were
converting all the bank self made DBMS databases to DB2 relational database
management system, as a result. This DBMS represented a small percentage of the
running database environment.

4.4.4 Characteristics of Application Databases

The identification the main characteristics of the bank application databases
required the examination of the following factors:

• database size;
• record size;
• attributes types;
• number of indexed attributes;
• types of attributes;
• distribution of attributes.

The examination of database sizes could not identify a typical database size at the
bank on-line environments, but the bank had a very large database environment. Those
databases occupied around three Terabytes of data and characterised by their large
number of databases and large number of records per database. The application
databases consisted of over 2500 hierarchical, relational and the bank system databases.

Record sizes of the bank on-line database environment was relatively small
whereas the majority of systems used a record size around two hundred bytes. This
was another way to keep response time down.

All the different types of DBMS at the bank database environment used indices.
The IMS systems used HID AM DBMS that uses index with each created database. The

Transaction Behaviour in Large Database Environments, A Methodological Approach. 138

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

bank relational database management systems databases used indexed attributes for all
on-line transactions. The bank used an average of five indexed attributes per on-line
databases. The bank database attributes were mainly integers, fixed point and character
attributes.

4.4.5 Transaction Behaviour of the Running Systems

The bank collected over 11,000,000 on-line transactions over the period of study.
Then it sorted and classified those transactions to on-line transactions and ATM
transactions. Transaction's analysis broke down transactions to their simplest database
operations and obtained the overall transactions' behaviour by calculating the following
operations:

• the average number of basic database operations resulted from one
transaction;

• the average ratio of CPU to I/O time utilisation;
• the average number of I/O operations resulted from one transaction;
• the average number of sort operations resulted from one transaction;
• the average number of databases accessed by one transaction (JOIN

Operation);
• the average number of nested selects in one transaction (transactions

complexity).

4.4.5.1 On-line Transactions Database Operations

The dominant database operation at the bank environment was the qualified
retrieval (50%). Sequential retrieval came second with 33%. The other observation was
the ratio of database record update operation was relatively higher than the same ratios
for the previous two studies. This can be referred to the policy at the bank environment
that put performance ahead of everything else. At this environment, most of on-line
transactions retrieved a qualified record from one of the databases using customer key,
which was a unique key, and returns one/record. Transactions that performed
sequential operations were less frequently used. Table 4.3 and Fig. 4.16 illustrate the
bank on-line transactions' operations.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 139

4, Database Characteristics and Transaction Behaviour In Large Database Environments.

O p e r a t io n N a m e Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

A v e r a g e o f D B O p e r a t io n s 50% 5% 1 2 % 0% 33%

Table 4.3, Ratios of the Bank On-line Transaction Operations

Ratios of The Bank On-line Transactions
Operations Average

33% 50%

| Qualified Retr.

0 Insert.

E2 Update.

Sequential Ret.

Fig. 4.16, Ratios of the Bank On-line Transaction Operations

4.4.5.2 A T M Transactions Database Operations

The bank offered ATM services through two ATM systems, ATM system one
and ATM system two. The bank physically separated the two systems on two different
processors. Table 4.4 and Fig. 4.17 illustrate the ratios of the ATM systems one and
system two transactions' operations.

At the ATM system one environment,'sequential retrieval represented 42%,
qualified retrieval represented 27%, insert a record represented 6%, update a record
represented 24%, and delete operation represented 0%.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 140

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Operation Name Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

ATM-1 27% 6% 24% 0% 42%

ATM-2 24% 6% 20% 0% 50%

ATM Average 26% 6% 22% 0% 46%

Table 4.4, Ratios of the Bank ATMs Transaction Operations

Ratios of Transactions Operations

ATM System 1 ATM System 2

■ Qualified Retr.

□ Insert

a Update

□ Delete

m Sequential Retr

Fig. 4.17, Ratios of the Bank ATMs Transaction Operations

/

The ATM system two followed a similar trend. Sequential retrieval represented
50%, qualified retrieval represented 24%, insert a record represented 6%, update a
record represented 20%, and delete a record represented 0%. The average of the two
systems was calculated and presented in Table 4.4 and in Fig. 4.17. Sequential retrieval

Transaction Behaviour in Large Database Environments, A Methodological Approach. 141

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

represented 46%, qualified retrieval represented 26%, insert a record represented 6%,
update a record represented 22%, and delete a record represented 0%.

Having in mind that the TPC-A benchmarks supposed to simulate a bank
transaction, similar to the ATM transaction. We find that the ATM transactions'
operations at the bank environment were widely different from the TPC-A benchmarks
script that consists of three updates operations and one insert. This result will be
discussed in greater detail in the chapter discussion.

4.4.5.3 CPU Time Utilisation and I/O Operations

The research investigated on-line transaction time utilisation as transaction
response time and the way it spent that time between the CPU and I/O operations. The
subtraction of transaction CPU utilisation time from transaction response time gave
transaction I/O time.

The Bank On-line System Transaction
CPU Time To I/O Time Ratios

24%

76%

B CPU TIME

□ OTHERS
' f

Fig. 4.18, The Bank On-line transaction ratios of CPU and I/O times

Transaction Behaviour in Large Database Environments, A Methodological Approach. 142

4, Database Characteristics and Transaction Behaviour In Large Database Environments.

In addition, transaction behaviour included the examination of the number of I/Os
generated by each on-line transaction to associate it with transaction I/O time. Fig.
4.18, illustrate the ratios of on-line transactions' CPU time to on-line transactions' I/O
time. The average response time of the on-line systems was around the two seconds.
On-line transactions spent around 24% of that time using the CPU and spent the rest of
the transactions' response time, around 76%, on I/O operations. The bank on-line
transactions produced around 39 I/O operations and generated about seven sort paths
per transaction.

4.4.5.4 Number of Databases Accessed by One Transaction (JOIN
Operation)

Most on-line transactions accessed only one database (94%) and when
transactions performed JOIN operation they mainly accessed two databases (4%).
JOINs that accessed three databases and four databases represented a small ratio,
around 1% each, which shows that the bank computer centre avoided the JOIN
operation because of its negative effect on system response time. The JOIN operation
rations are presented in Fig. 4.19.

Ratio of Number of Databases Accessed
By One Transaction

4% 1% 1%

94%

^ One Database

I Two Databases

E2 Three Databases

E3 Four Databases

Fig. 4.19, The Bank On-line transaction JOIN ratios

Transaction Behaviour in Large Database Environments, A Methodological Approach. 143

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.4.5.5 Transactions Complexity (Nested Selects)

The number of nested selects per on-line transaction represents an index to
transaction complexity. Fig. 4.20 illustrates the ratios of the number of nested selects
per an on-line transaction. The majority of transactions consisted of one select, around
98%, and very small percentage, around 2%, consisted of two selects. The bank
avoided using more than two selects to their negative affects on systems performance.

Ratio of Number of Nested Selects
(Query Complexity)

2%

98%

Eü One Select

Q Two Selects

Fig. 4.20, The Bank On-line transaction nested selects ratios

4.4.5.6 Average Number of Retrieved Records per Transaction

The bank on-line transactions retrieved around four records per transaction on
average. This small number of retrieved records per transaction was due to the high
ratio of qualified retrievals that represented around 50% of the transactions' operations;
qualified retrieval operation retrieved one transaction.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 144

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.4.6 The Background Workload

The bank separated all the background workload on separate processors. At each
data centre they dedicated some processors to on-line applications, and dedicated some
other processors to off-line services. On-line processors performed one function that
was supplying on-line services to on-line users and accessing on-line databases. The
bank policy was to completely free the on-line processors to enhance on-line
transactions' response time and maintained background workload of zero to the on-line
service.

4.5 Discussion

The previous sections discussed the findings from three studies at three large
organisations. This section will concentrate on the similarities between on-line
transaction behaviour at the three organisations represented as the average number of
database operations generated from each transaction. On-line transaction behaviour in
this section is the result of investigating over 4800 different applications and examining
around 40,000,000 on-line transactions that accessed around 5000 interactive
databases.

This section also compares the TPC benchmark scripts, which are the database
market standard, to on-line transactions' behaviour that was matching among the three
studies, it explains why those benchmarks are not representative to high-volume
transactions' environments. It also demonstrates that the TPC benchmarks differ from
the environments they supposed to simulate and as a result they can be misleading
when used to test environments similar to those discussed in this research.

4.5.1 On-line Transaction Behaviour Represented as Number
of Database Operations

A two-way analysis of variance (ANOVA) was used to test the difference among
the three organisations’ patterns of behaviour. The observed value of F test for the
between organisations (rows) was 0.003. Clearly this value is highly insignificant
indicating virtually no difference among the three organisations, (the local authority, the
airlines, and the bank), transaction behaviour. The effect of these results is that overall
average over the three organisations is representative for each of the organisations and

Transaction Behaviour in Large Database Environments, A Methodological Approach. 145

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

this is true across the spectrum of the database operations. However, the analysis did
reveal highly significant difference between the various database operations; qualified
retrieval, insert, update delete, and sequential retrieval. In this case the between
columns F test value was 47619 and the critical value at 99% was 7.01 with 4 and 8
degrees of freedom. Table 4.5 summarises transactions' patterns at the three
organisations and Fig. 4.21 illustrates the calculated mean among the three
organisations.

Average Ratios of On-line Transactions' Database Operations at
The Local Authority, The Airlines and The Bank

O

R e t r i e v a l R e t r i e v a l

Database Operations

■ The Local Authority
□ The Airlines
ËÜ The Bank

Fig. 4.21, Average of On-line Transaction Operations in all environments

Operation Name Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

The Local Authority 35% 4%/ 4% 1% 56%
The Airlines 39% 5% 4% 1% 51%
The Bank 50% 5% 12% 0% 33%

Average 41% 5% 7% 0%

Table 4.5, Average of On-line Transaction Operations in all environments

Transaction Behaviour in Large Database Environments, A Methodological Approach. 146

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.5.2 Comparison Between TPC-A, TPC-B and On-line
Transaction At the Three Organisations

This section compares the average number of database operations per on-line
transaction at the three studied environments to the TPC-A and TPC-B benchmarks.
Those benchmarks were selected because they are the database market standard and
DBMS to be accepted it must be built around one of those benchmarks. Table 4.6, and
Fig. 4.22, present a comparison between the ratios of database operations of the TPC-
A benchmark, the TPC-B benchmark, and the average of the three organisations' on-
line transaction.

The comparison shows that the TPC-A benchmark database operations are
different from typical on-line transaction database operations. While sequential
retrievals represent 88% of on-line transactions' operations at the studied environments,
the TPC-A does not include qualified retrievals. The difference between the TPC-A
database operations and typical on-line transaction database operations are large enough
to ignore applying any statistical comparison between the two.

The TPC-B transaction database operations are not much different from the TPC-
A transaction operations. The TPC-B transaction is a TPC-A transaction in addition one
qualified retrieval. A comparison between the TPC-B benchmark transaction database
operations and typical on-line transaction database operations shows that the TPC-B
transaction operations are still widely different from a typical on-line transaction
operation.

Operation Name Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

The TPC-A Transaction 0% 25% 75% 0% 0%
The TPC-B Transaction 20% 20% 60% 0% 0%

On-line Transaction 41% 5% 7% 0% 47%

Table 4.6, Comparison between the • TPC-A, TPC-B and typical On-line
transaction

Transaction Behaviour in Large Database Environments, A Methodological Approach. 147

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Comparison Between TPC-A, TPC-B and Typical On-line
Transaction Database Operations

so
va
Via«u
H
" c#o
au0»a
O

ViO
«
0Ä

Qualified Insert Update Delete Sequential
Retrieval Retrieval

■ TPC-A Transaction
E3 TPC-B Transaction
□ On-line Transaction

Fig. 4.22, Comparison between the TPC-A, TPC-B and On-line transaction

4.5.3 Comparison Between the Bank ATM Transaction and
The TPC-A Benchmark

The TPC-A, the standard benchmark at the database market, simulates random
withdrawals at a large bank environment. A transaction that is similar to an automatic
teller machine (ATM) transaction. This section compares the TPC-A benchmark
transaction database operations to the bank ATM transaction operations.

The findings from this study raise several points to discuss concerning TPC-A
benchmark. These points can be summarised in the following:

1. TPC-A relies on three update operations and one insert.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 148

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

2. From the analysis of ATM systems transactions the average of transaction
operations have been presented in Table 4.7.

Operation Name Qualified
Retrieval

Insert a
Record

Update a
Record

Delete a
Record

Sequential
Retrieval

ATM System 1 27% 6% 24% 0% 42%

ATM System 2 24% 6% 20% 0% 50%

ATM Average 26% 6% 22% 0% 46%

TPC-A Transaction 0% 25% 75% 0% 0%

Table 4.7, Comparison between the TPC-A and ATM transaction

Table 4.7 shows that TPC-A benchmark database operations differs from
the two ATM systems transaction operations presented in this work. The
TPC-A benchmark hypothesis predicts a typical database transaction
operation to be three update operations and one insert operation. In the mean
time, the studied ATM transaction took a different pattern and consisted of
more equally balanced transaction with more emphasis on sequential
operations and qualified operations. The comparison does not require any
rather statistical analysis techniques to show the difference between the two
database operations. The result shows that the TPC-A benchmark database
operations was different from the presented ATM systems.

3. While TPC-A consists of two database operations (UPDATE and
INSERT), the ATM systems transaction operations took a different pattern
among four database operations. TPC-A according to the previous analysis
represents just 28% (22% Updates and 6% Insert) of the performed
operations and neglects 72% of the performed transaction operations (46%
Sequential retrieval and 26% Qualified retrieval). That means if during the
design stage one relies on TPC-A to predict the expected performance of
this system it will misrepresent the real system performance.

4.5.4 Comparison Between TPC-C and On-line Transaction
At the Three Organisations

Comparing the TPC-C benchmark to a typical on-line transaction was rather
difficult because the formal specification of implementing the benchmark is too
expensive as the full benchmark consists of five programs two of them are batch

Transaction Behaviour in Large Database Environments, A Methodological Approach. 149

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

programs. Consequently, the TPC-C benchmark in this comparison was broken down
to its basic database operations of the TPC-C transaction in two forms, the first was the
full benchmark script and the second was the three on-line programs. Similar approach
was presented in [LEUT93] where they tested a database model using the TPC-C basic
database operations. The database operations of the full script of the TPC-C benchmark
are presented in Fig. 4.23. The database operations of the on-line programs of the
TPC-C benchmark are presented in Fig. 4.24. Table 4.8, presents a comparison
between the ratios of database operations of the full script of the TPC-C benchmark, the
on-line programs of the TPC-C benchmark and database operations of a typical on-line
transaction.

Transaction Name Qualified
Retrieval

Insert a
Row

Update a
Row

Delete a
Row

Sequential
Retrieval

Functions

TPC-C Full Transaction 20% 4% 61% 10% 3% 2%
TPC-C On-line Transaction 33% 17% 39% 0% 11% 0%

On-line Transaction 41 % 5% : i% 0% 47% 0%..

Table 4.8, Comparison between the TPC-C and On-line transaction

The Full TPC-C Benchmark Database Operations Ratios
2%

3% ono/

4%

61%

■ Qualified Retrieval
0 Insert
E3 Update
□ Delete
El Sequential Retrieval
H Functions

Fig. 4.23, The full TPC-C database operations

Transaction Behaviour in Large Database Environments, A Methodological Approach. 150

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

The TPC-C On-line Transactions Database Operations
Ratios

11%

■ Qualified Retrieval
0 Insert
E3 Update
H Sequential Retrieval

Fig. 4.24, The On-line TPC-C database operations

Fig. 4.25 illustrates a comparison between the database operations of the full
script of the TPC-C benchmark and the database operations of a typical on-line
transaction. The comparison shows that the full script of the TPC-C benchmark is
dominated by database update operations where they represent more 65% (row update
is more than 61% and row insert is more than 4%) of the TPC-C benchmark database
operations.

Similarly, the on-line programs of the TPC-C benchmark are still dominated by
database update operations where they represent more than 56% (row update is more
than 39% and row insert is more than 17%). Fig. 4.26 illustrates the comparison
between the database operations of the on-line programs of the TPC-C benchmark and
the database operations of typical on-line transaction.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 151

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

Comparison Between The Complete TPC-C Benchmark
and On-line Transaction Database Operations

Qualified Insert Update Delete Sequential Functions
Retrieval Retrieval

□ Complete TPC-C Benchmark
■ Typical On-line Transaction

Fig. 4.25, Comparison between complete TPC-C and On-line transaction

Comparison Between The TPC-C On-line Programs
and On-line Transaction Database Operations

Qualified Insert Update Delete Sequential Functions
Retrieval Retrieval

1
□ TPC-C On-Line Programs
■ Typical On-line Transaction

Fig. 4.26, Comparison between On-line TPC-C and On-line transaction

Transaction Behaviour in Large Database Environments, A Methodological Approach. 152

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.5.5 Common Characteristics Between Databases

There are certain characteristics that reflect the physical dimensions of the
database. These include: the number of tables in a database; record size; number of
attributes per record; and table size. Other characteristics such as data types and the
distribution of the attribute values reflect the content of a database. In addition there are
characteristics relating to access paths such as index structure. The studies examined
those characteristics at the three environments to find the most common characteristics
between them.

The three organisations shared several similarities in database characteristics. The
similarities were the in following points:

• database size;
• record size;
• attributes types;
• number of indexed attributes;
• types of attributes;
• distribution of attributes.

4.5.5.1 Database Size

On-line database sizes at the three organisations were extremely large with space
utilisation and number of records per database. Analysis of database size at the three
organisations could not identify a typical database size that is common among them.
Accordingly, benchmark design should take into consideration a methodology to test
database environments under scalable loads.

4.5.5.2 Row Size

The three organisations had in common a record size that did not exceed 200
bytes. The local authorities used a record size of 185 bytes on average, the most
common record size at the airlines’ environment was around 170 bytes, and the average
record size at the bank databases’ environment was around 200 bytes. A benchmark
database that uses a record length of around 200 bytes would be representative to the
databases this work has examined.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 153

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.5.5.3 Indexed Attribute and Attribute Types

The three organisations built indices to provide performance enhancement for
retrievals and joins operations. Even if these operations were not the most prevalent,
indices were still employed to enhance the overall system performance they were still
used with insertions and update operations.

The most prevalent types of attributes at the three environments were integers,
characters and fixed point attributes. Some other users may be willing to different
attributes’ types but the studied organisations required strict control over their arithmetic
operations specially things like round off error.

A representative benchmark would use indexed database attributes and if it
restricts itself the just integers, characters and fixed point data types it will be good
enough to represent the studied organisations.

4.5.6 On-line Transactions Behaviour

Transaction behaviour followed a similar trend at the three organisations. The
studies identified the behaviour of on-line transactions by investigating the following
performance factors:

• JOIN Operation
• Transaction Complexity
• Number of Retrieved Records per Transaction
• On-line Transaction Ratios of CPU to I/O Utilisation
• Background Workload

4.5.6.1 JOIN Operation

This research investigated JOIN operation by studying the number of tables
accessed per on-line transaction. The research could not study JOIN operation at the
local authority computer centre because the databases at that environment were IMS
DBMS databases that can not efficiently perform JOIN operations. At the airlines'
computer centre and the bank computer centre they used relational DB2 DBMS that
allows joining two or more tables in one transaction.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 154

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

At both the airlines' environment and the bank environments the JOIN operation
was avoided as much as they can. That was due to the negative effect of that operation
on database performance. The findings from the two organisations were close enough
to ignore statistical tests to check that difference. The 94% of on-line transactions
accessed one table, a small percentage, 3%, accessed two tables and a similar
percentage accessed three tables. Table 4.9 and Fig. 4.27 present the average number
of tables accessed by one transaction at the airlines and the bank environments.

Number of
Tables

One Table Two Tables Three Tables Four Tables Five Tables

The Airlines 93% 1% 5% 0.5% 0.5%
The Bank 94% 4% 1% 1% 0%

Average 94% 3% 3% 1% 0%

Table 4.9, Average number of JOINed tables

Average Number of Tables Accessed by
One Transaction (JOIN Operation)

2 100f

C

U

-2
H

u«
E3
z
o
90
3
X

One Two Three Four Five
Number Of Tables

94%
One Table

H Two Tables
E3 Three Tables
g| Four Tables

□ The Airlines
ESI The Bank

Fig. 4.27, Average number of JOINed tables

Transaction Behaviour in Large Database Environments, A Methodological Approach. 155

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

4.5.6.2 Transaction Complexity

JOIN operations might consist of one select or more than one select, the research
investigated the most common form of JOIN operation. The research considered that
transaction complexity increases by the increase of number of selects per transaction.
The great majority of on-line transactions, around 98%, consisted of one Select and
around 2% of on-line transactions consisted of two selects. Transactions that consisted
of three and four selects represented a very small ratio that can be discarded.
Transactions did not use more than four selects. Table 4.10 and Fig. 4.28 illustrate the
ratios of transactions’ complexity.

Number of Selects One Select Two Selects Three Selects Four Selects

The Airlines 98% around 2% less than 0.5% less than 0.5%
The Bank 98% 2% Too small Too small

Average 98% 2% 0% 0%

Table 4.10, Average number of nested selects

Ratio of Number of Nested Selects
(Query Complexity)

2%

98%

g] One Select

g Two Selects

Fig. 4.28, Average number of nested selects

/
4.5.6.3 Number of Retrieved Records per Transaction

An average number of retrieved rows by on-line transaction was around seven
rows. The Local Authorities on-line system transaction returns on average seven
segments. The Airlines on-line system transaction returns on average 6.6 rows per

Transaction Behaviour in Large Database Environments, A Methodological Approach. 156

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

transaction. For the Bank on-line system transaction returns on average four rows per
transaction.

4.5.6.4 On-line Transaction Ratios of CPU to I/O Utilisation

The research examined CPU to I/O utilisation because several benchmarks used
them as the main hypothesis for their database operations (the most famous one was the
Wisconsin Benchmark). A typical on-line transaction consumes around 25% of
transaction response time using CPU and used about 75% of response time to perform
I/O operations. Fig. 4.29 illustrates on-line transactions’ ratios of CPU to I/O
utilisation.

Average of On-line Transaction Time
Utilisation

25%

75%

H CPU Time

El Other Activities

Fig. 4.29, Average of On-line transaction I/O time ratios

4.5.6.5 Background Workload

The three organisations maintained a very small background workload that is
either zero or very close to zero. The local authority computer centre either separated all
the off-line activities on the micro system or performed off-line jobs during night shifts
when on-line service was not active. The airlines' computer centre had a processor to
perform most of the off-line workload; in some rare cases the on-line processors
performed part of that off-line load. The bank computer centre dedicated some

Transaction Behaviour in Large Database Environments, A Methodological Approach. 157

4. Database Characteristics and Transaction Behaviour In Large Database Environments.

processors to on-line service and dedicated some other to off-line jobs and did not
perform and off-line jobs on on-line processors. As we see, the three organisations'
policies were to run on-line service without background workload to enhance on-line
service performance.

4.6 Conclusion

This chapter presented the results from three studies at large database
environments. The three organisations were different in many aspects including the
kind services they supply and the nature of their applications. The three organisations
were selected because of their large database environments, the wide variety of their
applications and the exceptionally heavy transaction load. Each one of the three
organisations represented a good example of high-volume transactions' environments.
The studies aimed to identify the main characteristics of large databases at large
database environments and identify a typical transaction behaviour at high-volume
transaction environments.

Having discussed the common findings among the three organisations the main
conclusion is the TPC benchmarks' transaction operations are widely different from the
studied systems transactions’ operations. As presented in section (§4.2.4.1) transaction
database operations plays an important role when measuring database performance and
DBMS behaviour varies according to the used database operations. Hence, the TPC
benchmarks' database operations can be misleading if used to test environments similar
to those presented in this chapter.

The second conclusion is performance was the most prevalent factor among the
three organisations. The three organisations' hardware configurations and software
tuning were employed to enhance on-line service performance.

The next chapter presents the CITY benchmark. The CITY benchmark mainly
simulates a typical on-line transaction at large database environments. The benchmark is
designed and built based on the findings presented in this chapter.

j

Transaction Behaviour in Large Database Environments, A Methodological Approach. 158

CHAPTER 5

The CITY BENCHMARK

5. The CITY Benchmark.

CHAPTER 5

The CITY BENCHMARK

As benchmark results are representative of those types of transactions that are
included in the benchmark set, it is impossible to generalise those results to all kinds of
systems transactions. Research work has been conducted to identify the main
characteristics of on-line databases by examining real database performance factors. By
applying the analysis of those performance factors at several different environments,
the data from that analysis can supplement the data from the live environments once the
basis of this analysis has been defined to evaluate performance in a transaction
processing environment.

In chapter four a discussion of the findings from three in-depth studies at large
UK database environments were presented. The studies identified the main database
characteristics at large database environments and identified on-line transactions'
behaviour at high volume transactions' environments. This chapter presents the CITY
benchmark. This benchmark is a methodology for evaluating database management
systems' performance. The benchmark is based on examining over 4800 applications
issuing around 40,000,000 transactions accessing over 5000 databases. The CITY
benchmark is designed to simulate on-line transactions' behaviour at high-volume
transactions' environments. As suggested by Gray [GRAY91], the CITY benchmark is
characterised by being relevant, portable, scalable and simple.

5.1 Introduction

The Debit/Credit (TP/1) [ANON85] and the Transaction Processing Council
(TPC) benchmarks [TPC 89, GRAY91] have become the database market standard
practice. Those benchmarks have a number of practical limitations [REVE90]. Most of

r
those limitations stem from the lack of backgrdund study before the benchmark design
stage. The main criticism of the TPC benchmarks is that they do not provide a realistic
characterisation that can be set as the target for the benchmarking process, and more
than this, they do not even provide a model of the ATM systems whose performance
they are supposed to simulate [REVE92b].

Transaction Behaviour in Large Database Environments, A Methodological Approach. 160

5. The CITY Benchmark.

As benchmark results are representative of those types of transactions actually
included in the benchmark set. It is impossible to generalise those results to all kinds of
systems transactions. Research work has been conducted at City University to identify
the main characteristics of on-line databases by examining real database performance
factors. Those factors have been discussed by Ferrari [FERR78, FERR83], Dongara
[DONG87], and Hawng [HAWN87]. By applying the analysis of those performance
factors at several different environments, the data from that analysis can supplement the
data from the live environments once the basis of this analysis has been defined to
evaluate performance in a transaction processing environment.

This chapter presents the CITY benchmark [REVE93], The benchmark design is
based on empirical studies in large database environments. The studies examined over
4800 different applications and investigated over 40,000,000 on-line transactions
accessing around 5000 on-line databases. The study discovered a common pattern
between the studied systems, despite the difference in activities and nature of the
organisations concerned. The CITY benchmark transactions are derived from the
findings from those studies.

The CITY benchmark is a comprehensive methodology that rigorously tests
DBMS behaviour. The CITY benchmark design is based on in-depth empirical studies
at large database environments and took into consideration the critiques directed
towards the TPC benchmarks. Researchers such as Gray [GRAY91], and Ferrari
[FERR78], have established some guidelines for evaluating systems performance. The
most important guideline is, the benchmark should be independent of the application or
the architecture involved. Ferrari and Gray [FERR78, ALLE89, GRAY91],
recommends that a benchmark should be characterised by the following.

1. Relevant: represents the tested domain.
2. Portable: the benchmark will be easy to implement on many different

systems and architectures.
3. Scalable: the benchmark should apply to small and large computer systems.
4. Simple: the benchmark should be understandable and well documented.

This will allow the exact replication;'of the original benchmark.
5. Its results should be acceptable by all systems.

The CITY benchmark workload simulates the exact behaviour of real database
workloads that were investigated and presented in the previous chapter. The main
advantage of the CITY benchmark is being representative of high volume transaction

Transaction Behaviour in Large Database Environments, A Methodological Approach. 161

5. The CITY Benchmark.

domain. Representative is defined as the accuracy of the benchmark in reflecting the
characteristics of real transactions at real environments. The benchmark script is a direct
mapping of on-line transaction operations at large database environments and models a
typical workload of high volume transaction environments. Due to the benchmark
portability, it is applicable to a wide range of database management systems and
architecture. Because it is based on studying large number of real databases and
applications, the benchmark results are representative of a wide variety of database
management systems and database applications. The benchmark is machine
independent, database management system independent, application independent and
characterised by being: representative; reproducible; system independent; simple to
construct; and low in usage cost

The chapter begins with characterisation of performance factors and metrics that
are relevant to relational database systems, then it describes the methodology used in
the CITY benchmark. Section two presents the CITY benchmark domain specification.
Section three demonstrates the CITY benchmark objectives. Section four discusses the
CITY benchmark metrics. Section five describes the CITY benchmark database.
Section six describes the CITY benchmark transaction script. Section seven presents
the requirements of transaction processing council. Section eight presents the chapter
conclusion.

5.2 The CITY Benchmark Domain Specification

In comparative benchmarking, the first problem to be addressed is domain
specification. The question is always which domain this benchmark can represent. The
CITY benchmark is designed to represent the domain of high volume transactions'
environments. Environments similar to those presented in the previous chapter. The
benchmark will test database management systems that support the data types and
functions specified in the ANSI SQL. Hence, besides the operations specified in
relational calculus, the benchmark includes update and insert operations. The CITY
benchmark is designed to address issues of quantity, not of quality, the system
throughput and response time of a transaction are a question of quantity. Therefore
functions provided by a database management system such as the support of a certain
data type is not tested and because not all systems provide the complete functionality
specified in the standard ANSI SQL, the benchmark has no penalty for this
incompleteness. Furthermore, the CITY benchmark does not provide a test to evaluate
the performance of a system on different data types.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 162

5. The CITY Benchmark.

5.3 The CITY Benchmark Objectives

The CITY benchmark is the first benchmark designed as a result of studying
several large database systems at large UK organisations, regardless of the
organisations' nature and activities. The CITY benchmark mainly tests and compares
database systems performance at high volume transaction environments. Additionally,
the benchmark can serve more than one purpose and achieves more than one objective.
It can achieve the following objectives:

1. evaluate the performance of a database management system;
2. compare different database management systems;
3. evaluate the impact of system modifications such as a new version of a

database management system;
4. evaluate the effect of system parameters, such as buffer size;
5. examine the fit of a performance model to the system modelled.

5.4 The CITY Benchmark Metrics

Ferrari [FERR78], identifies a performance metric as:

"A descriptor that is used to represent a system performance or some of its
aspects"

Different benchmarks addressed different metrics. For example some benchmarks
used virtual memory requirements for using a system. Some other benchmarks used
disk space utilisation and measured space overhead. A third type of benchmarks uses
the time and resources required to set up the database. Ferrari [FERR83], included
some other database performance indices such as: •

• global CPU utilisation by DB/DC system;
• CPU utilisation for the various control modules;
• CPU utilisation for the query language;
• CPU utilisation for individual transactions of on-line users and for those

input by application programs;
• I/O requests to each database divided by transaction type;
• number of accesses to the database during a given time period;
• average time the requests spend in the I/O queues;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 163

5. The CITY Benchmark.

• CPU overhead due to buffer handler;
• memory space demanded by each transaction.

5.4.1 Response Time and Transactions per Second

Generally, in benchmarks, transaction response time and transaction throughput
are the most frequently used performance metrics for database systems. Transaction
response time is the time elapsed between submission of a transaction to DBMS and
receiving the result. Transaction throughput is the average number of transactions
completed per unit of time.

There might be different variations in defining transaction response time in
various benchmarks. It must be specified whether transaction response time includes
transaction compilation time as pre-compiled queries may be submitted. Queries may be
pre-compiled with variables that are given values as arguments when the transaction is
submitted. The advantage of pre-compilation is that transaction parsing and
optimisation is performed once but the transaction can be executed many times with a
response time that excludes parsing and optimisation. However, pre-compilation is of
limited utility with range queries, as they can not be effectively optimised until the
constant(s) in the range predicate are specified. In addition, any selection predicate on a
highly skewed distribution may be improperly optimised in pre-compilation if the
selection predicate is pre-compiled with a variable to be specified at run time.

A distinction must be made between the time it takes for the first result row to be
received to the time it takes for all the result rows to be received. In [YAO 87], these
response times are called time-to-first and time-to-last, respectively. This distinction is
necessary for two reasons. First, some systems sent out the first result row before the
entire result is computed. Hence, the time-to-first can not necessarily be used to
determine the time required for a system to perform a relational operation. Second,
time-to-last includes the time required to format the result and the time required to
transmit the result to its final destination. Hence, this time varies greatly with the size of
the result and can not necessarily be used to determine the efficiency with which a
system performs relational operations.

)
The utilisation of components of a system may also be measured. The utilisation

of resources is the percentage of time it is kept busy. Disk, CPU, and communication
line utilisation figures can be used to identify bottlenecks in systems. Performance
models of database systems frequently concentrate on the amount of CPU time and the
number of disk accesses required to execute a query. With CPU time, a distinction is

Transaction Behaviour in Large Database Environments, A Methodological Approach. 164

5. The CITY Benchmark.

frequently made between CPU time used by the operating system in support of a user,
and CPU time that is charged directly to the user. This distinction is important because
the former is often more sensitive to system load than the latter [BITT86]. Disk
accesses are measured in disk reads, and disk writes. In addition, paging by virtual
memory manager may have an effect [BITT87].

The CITY benchmark metric is the system throughput. The throughput will be
measured as the number of transactions performed per second under specified load.
Number of transactions per second (TPS) are using tables of the sizes that are presented
in Table 5.1.

Table Name Table Size
DB 100 1,000,000 rows
DB 200 1,000,000 rows
DB 300 1,000,000 rows

DBUPD 1,000,000 rows
DBINS should be large enough to accommodate

1,000,000 rows by the end of the run

Table 5.1, The CITY benchmark TPs tables' sizes

A system than runs its transactions in less than or equal to one second, is one
CITY transaction per second (TPS) system.

A system than runs its transactions in less than or equal to one minute, is one
CITY transaction per minute (TPM) system.

The previous sizes were selected based on the empirical studies presented in
chapter four. Through the interviews that were conducted with the top management and
database administrators in those organisations they were not interested in any database
size less than one million rows. Additionally, when their running systems were
investigated, the running systems were accessing on-line tables that contain millions of
rows and therefore any database size less one million rows will not be realistic to
represent those environments.

Response time against a scalable load could also be used as another performance
metric. The database, when required, can calculate systems' response time against

Transaction Behaviour in Large Database Environments, A Methodological Approach. 165

5. The CITY Benchmark.

resp_time_t = resp_time_t + resp_time_l;

} /* end of do loop body. */
while (time(&g_timel) < end);

Transaction_resp_time
Transaction_per_sec

resp_time_t / (double) trans_count;
(float) trans_count/ (float) SECONDS;

5.5 The CITY Benchmark Database

There are certain characteristics that reflect the physical characteristics of the
database. These include the number of tables in a database, record size, number of
attributes per record, and table size. Also there are characteristics that reflect the content
of a database, these are data types of the attribute values and the distribution of the
attribute values. In addition there are characteristics relating to access paths such as
index structure.

The CITY benchmark tables are a reflection to database characteristics that were
found from studying over 5000 databases. The CITY database represent typical real life
characteristics and simulate the structure of the database. The number of relations in the
database is fixed. Record size and indexed attributes are based on the empirical studies.
Number of attributes per record and data types are based on further analysis of
attributes number and types effect. The benchmark database size is scalable. The
structure of the database that includes factors such as the following.

1. Database tables represented as;
• the number of tables;
• the relation between tables (database schema)
• database attributes and their dependencies;
• the degree of normalisation of the database tables.

2. Tables attributes represented as:
• the tables and their attribute types;
• correlation between attributes;
• distribution of individual attribute types;
• joint distributions of attributes.

3. Size of the database tables represented in number of rows per table and table
size in bytes.

4. Accessibility of the database in terms of indices.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 167

5. The CITY Benchmark.

Tables are generated by a database generator program that is part of the
benchmark structure. The database generator allows some flexibility in regard to
database size. The benchmark allows the user to generate variable database sizes
depending on the computer and database management system available. In the mean
time, the database model, attribute types and values, and record sizes can not be
changed by the user.

Data types in the CITY benchmark are integers, characters, decimal, and variable
character. But, as presented later, there is no statistically significant difference between
using different types of attributes, though all the enquiries are issued to integer keys.

One of the puzzling factors was the data distribution in the tables. In our
contention that the important factors in performance are the volume of relevant data and
the volume of participating data. The volume of relevant data is the amount of data
which must be accessed to process a transaction. The volume of participating data is the
volume of data which participates in the answer to a query. The volume of relevant data
determine the I/O workload. The volume of relevant , together with the number of
number of records per block, determine a component of processor workload. The
additional component of processor workload is determined by the volume of
participating data and the number of records per block. Clearly the performance indices
will vary as the ratio of these two factors vary. Rather than provide facilities to generate
values according to different distributions, we provide the facility to generate values
according to discrete distributions in intervals of 10 records. It was sufficient for
benchmarking purpose to use only uniform distributions. The volume of relevant data
is not a factor to control in this work but the volume of participating data is decided
depending on the findings from the empirical studies.

5.5.1 Number of Tables

The CITY benchmark database consists of five tables. Those tables are divided
into three retrieval tables; one table for table updates and one table for row insertions.
Update operations were separated on a different table to protect retrieval tables from the
effect of attributes changes. The CITY benchmark consists of the following five tables; •

• Retrieval tables:
• DB100
• DB200
• DB300

Transaction Behaviour in Large Database Environments, A Methodological Approach. 168

5. The CITY Benchmark.

• Update table:
• DBUPD

• Insert table:
• DB INS

5.5.2 Row Size

The CITY benchmark tables have a row size around the 200 bytes. As presented
in the previous chapters, row width at the three organisations varied from 100 bytes to
300 bytes with most common row size of 200 bytes. The CITY benchmark tables row
width are 100 bytes, 200 bytes and 300 bytes with 200 bytes as the most common row
length which is typical to what has been found in the studied environments. The
benchmark tables' sizes are as follows.

1. DB100, is the first enquiry table. The row length of this table is 100 bytes.
2. DB200, is the second enquiry table. The row length of this table is 200

bytes.
3. DB300, is the third enquiry table. The row length of this table is 300 bytes.
4. DBINS, is a table created for Insert operation. The row length of this table

is 200 bytes.
5. DBUPD, is a table created for Update operation. The row length of this

table is 200 bytes.

5.5.3 Attributes' Types and Accessibility of Rows (Indices)

Different database management systems support wide variety of data types, those
data types could be any of the following:

1. Character.
2. Variable character.
3. Internal numeric (Decimal).
4. 8.bit fixed point. j
5. 16.bit fixed point.
6. 32.bit fixed point.
7. 32.bit floating point.
8. 64.bit floating point.
9. Null terminated strings.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 169

5. The CITY Benchmark.

10. Packed decimal.
11. Long data types.
12. Internal date.
13. Julian date.

The present author conducted an empirical study to test the effect of unique key
attribute type on transaction response time. The effect of three attributes' types,
(integers, decimal, characters, and variable characters) were examined. The integer field
width was four bytes, the decimal field width was eight bytes, character field width
was eight bytes and variable character field width was eight bytes. The study took place
at two environments, a PC environment running relational DBMS and SUN SPARC
environment running relational DBMS. At the PC environment, the difference between
integer and decimal key attributes was small enough to be truncated during its
calculation and the same went for character and variable character key attributes. Integer
and decimal key attributes gave a slightly better response time than character and
variable character key attributes. The difference between integer key response time and
character key response time was around .02 of the second. The same behaviour was
found at the SUN SPARC environment, the response time was in favour of integer key
attribute with a very small value of around 0.003. Those findings were in accord with
other empirical studies conducted by [HAWN87 and McCA92a].

The empirical studies found that the majority of the examined transactions used a
decimal key attribute which was common between then all. In addition, the most
common attributes’ types for other data fields were integers, characters decimal and
float attributes. Based on those findings, the CITY benchmark rows consisted of the
following attributes' types with no for the absence of any one of them.

1. Integer.
2. Char
3. Short
4. Long
5. Real
6. Double
7. VARCHAR

The CITY benchmark rows look as follows:

1. DB100 is an enquiry table. It has a row length of 100 bytes and one decimal
unique key (dblfil). The table fields are as follows:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 170

5. The CITY Benchmark.

d b l f c l c h a r (8), /* N o - k e y field. */

d b l f i l n u m b e r (8) not null, /* U n i q u e K e y u s i n g

d b l f c 2 c h a r (30), /* N o - k e y field. */

d b l f i l n u m b e r (4), /* N o - k e y f i e l d . */

d b l f r l n u m b e r (4,2), /* N o - k e y f i e l d . */

d b l f d l n u m b e r (6,3), /* N o - k e y f i e l d . */
d b l f v l c h a r (40)); /* N o - k e y field. */

unique index. */

2. DB200 is the second enquiry table. It has a row length of 200 bytes. The
table has two key fields a unique key (db2fil) and a secondary key
(db2fi2). The table fields are as follows:

db2fcl char(8), /* No-key field. */
db2 f i1 number(8) not null, /* Unique Key using unique index
db2fc2 char(30), /* No-key field. */
db2 f11 number(4) / /* No-key field. */
db2 frl number(4,2) , /* No-key field. */
db2fdl number(6,3) , /* No-key field. */
db2 f vl char(40) , /* No-key field. */
db2fc3 char(8), /* No-key field. */
db2fi2 number(8) not null, /* Secondary Key 10 times. */
db2fc4 char(30), /* No-key field. */
db2 f12 number(4) / /* No-key field. */
db2fr2 number(4,2) , /* No-key field. */
db2fd2 number(6,3) , /* No-key field. */
db2 fv2 char(40)) / /* No-key field. */

3. DB300 is the third enquiry table. It has a row length of 300 bytes. The table
has three key fields a unique key (db3fil) and two secondary keys (db3fi2
and db3fi3). The DB300 table fields are as follows:

db3 fcl char(8), /* No-key field. */
db3 fil number(8) not null, /* Unique Key using unique
db3fc2 char(30), /* No-key field. */
db3 f11 number(4), /* No-key field. */
db3 fri number(4,2), /* No-key field. */
db3 fdl number(6,3), /* No-key field. */
db3fvl char(40), /* No-key field. */
db3fc3 char(8), /* No-key field. */
db3fi2 number(8) not null, /* Secondary Key 10 times.
db3 f c 4 char(30), /* No-key field. */
db3 f 12 number(4), /* No-key field. */
db3fr2 number(4,2), /* No-key field. */
db3fd2 number(6,3), /* No-key field. */
db3 fv2 char(40), /* No-key field. */
db3fc5 char(8), /* No-key field. */
db3fi3 number(8) not null, /* Secondary■ Key 100 times
db3fc6 char(30), /* No-key field. */
db3 f13 number(4), /* No-key field. */
db3fr3 number(4,2), /* No-key field. */

index. */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 171

5. The CITY Benchmark.

db3fd3 number(6,3), /* No-key field. */
db3fv3 char(40)) ; /* No-key field. */

4. DBINS, is a table created for Insert operation. The table row length is 200
bytes. The table has one secondary key field that allows repeated insertions
in the table using the same key value. The secondary key field is (dbifil)
which is a decimal key. The table fields are as follows:

d b i f c l c h a r (8), /* N o - k e y field. */
d b i f i l n u m b e r (8) not null, /* S e c o n d a r y K e y
d b i f c 2 c h a r (30), / * N o -key field. */
d b i f i l n u m b e r (4), /* N o - k e y field. */
d b i f r l n u m b e r (4,2), /* N o - k e y field. */
d b i f d l n u m b e r (6,3), /* N o - k e y field. */
d b i f v l c h a r (40), /* N o - k e y field. */
db i f c 3 c h a r (8), /* N o - k e y field. */
d b i f i 2 n u m b e r (8) not null, /* N o - k e y field.
d b i f c 4 c h a r (30), /* N o - k e y f i e l d . */
d b i f 12 n u m b e r (4), /* N o - k e y field. */
d b i f r 2 n u m b e r (4,2), /* N o - k e y field. */
d b i f d 2 n u m b e r (6,3), /* N o - k e y f i e l d . */
d b i f v 2 c h a r (40)); /* N o - k e y f i e l d . */

5. DBUPD, is an Update dedicated table. The table row length is 200 bytes.
The tables has one decimal unique key (dbufil) and one decimal secondary
key (dbufi2). The row layout is as follows:

dbufcl
dbufil
dbufc2
dbufil
dbufrl
dbufdl
dbufvl
dbufc3
dbufi2
dbufc4
dbuf12
dbufr2
dbufd2
dbufv2

char(8),
number(8)
char(30),
number(4)
number(4,
number(6,
char(40),
char(8),
number(8)
char(30),
number(4)
number(4,
number(6,
char(40))

/* No-key field. */
not null, /* Unique Key using unique index.

/* No-key field. */
, /* No-key field. */
2) , /* No-key field. */
3) , /* No-key field. */

/* No-key field. */
/* No-key field. */

not null, /* Secondary Key. */
/* No-key field. */

, /* No-key field. */
2) , /* No-key field. */
3) , /* No-key field. */
; /* No-key field. */

/

* /

As presented, all the CITY benchmark tables are indexed, and rows are always
accessed through either unique index or secondary index. The benchmark does not
allow a non indexed operation through its test. This is similar to the findings presented
in the previous chapter where as demonstrated, all on-line databases at the three

Transaction Behaviour in Large Database Environments, A Methodological Approach. 172

5. The CITY Benchmark.

organisations used indexed attributes due to their dramatic effect on transaction
performance.

5.5.4 Distribution of Attributes in the Tables

The attributes are randomly distributed in the CITY benchmark database tables by
applying a random attributes selection process. The attributes are stored in a file. The
file is accessed by the data loading table to select random values for the tables attributes.
The random pattern of attributes selection is decided by a random number generator
program. For testing reasons, a modified version of the C language compiler random
number generator was used to generate random numbers within required limits.

The key values are uniformly distributed from a sequential number generator
before rows insertions in the CITY database. The uniform distribution of the key values
is similar to real life situations where databases are frequently reorganised either over
every night shift or every weekend at most. Databases reorganisation process results in
having uniformly distributed database key attributes after each reorganisation.

5.5.5 The CITY Benchmark Database Schema and Creation
Rules

The creation of the CITY benchmark database tables are based on non normalised
data, but all the attributes in each table depend on and can be retrieved through a unique
key which is the main key in each row. Additionally, DB200 row has a secondary
index and DB300 row has two secondary rows. The CITY benchmark database tables
are connected to each through the following links:

• a unique key value to unique key value that establishes a one to one
relationship;

• a unique key value to secondary key value that establishes a one to many
relationship;

• a secondary key value to secondary key value that establishes a many to
many relationship.

There is an established relation between the four tables, DB100, DB200, DB300,
and DBUPD. All of them have an identical unique key when the database is completely
created. The rows insertions table, DBINS, uses a secondary index because it contains

Transaction Behaviour in Large Database Environments, A Methodological Approach. 173

5. The CITY Benchmark.

duplicates of the same key value. The DBINS is not connected to the other four tables.
The tables creation process takes into account the following steps:

1. Because the table DB100 has just one indexed attribute, unique index, this
table has no duplicates and all the rows in this table are used in just qualified
retrieval operation.

2. For every unique key value inserted in the table DB100 three other unique
key values are inserted in three tables: DB200, DB300, and DBUPD. That
allows qualified retrieval operation that retrieves one row per key to be
performed using any of the retrievals tables and allows qualified update that
updates one row to be applied on DBUPD.

3. For every unique key value inserted in the table DB 100 ten secondary key
values are inserted in three tables: DB200, DB300, and DBUPD. That
allows sequential retrieval operations from the tables DB200 and DB300
using one key value that retrieves ten rows. It also allows sequential update
operation that updates ten rows using one key value to be applied on the
row update table DBUPD.

4. For every unique key value inserted in the table DB 100 hundred secondary
key values are inserted in the table DB300 secondary index. This step
established a relation between the tables DB200 and DB300 for each ten
rows having the same secondary key value in DB200 their exit hundred
rows having the same key value in DB300. This relation between the tables
DB200 and DB300 permits the application of a JOIN operation between the
two tables that retrieves one hundred rows.

5. The rows insertion table DBINS starts by zero value when the database are
first created. Then for each transaction path a row is inserted in the DBINS
table. This process results in increasing load on the tested system as the
benchmarking process goes on.

Fig. 5.1 illustrates the relations between previous tables. The five tables will look
as presented in tables 5.2, 5.3, 5.4 and 5.5 after inserting one hundred and one rows in
DB 100 with data values. DBINS table will be empty.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 174

5. The CITY Benchmark.

The Relation Between The CITY
Benchmark Tables

Fig. 5.1, The relations between the CITY benchmark tables

Transaction Behaviour in Large Database Environments, A Methodological Approach. 175

5. The CITY Benchmark.

Unique Key Row Values

00000001 * - random values---- *

00000002 * - random values---- *

00000003 * - random values---- *

00000004 * - random values---- *

00000005 * - random values---- *

00000006 * - random values---- __*

00000007 * - random values---- *

00000008 * - random values...... . *

00000009 * - random values---- .. *

00000010 * - random values..... *
* *
* *

00000099 * - random values---- *

00000100 * - random values---- *

00000101 * - random values---- *

Table 5.2, DB100

Unique Key Secondary Key Row Values
00000001 00000001 * ---- random values----- *

00000002 00000001 * ---- random values----- *

00000003 00000001 * ---- random values----- *

00000004 00000001 * ---- random values----- *

00000005 00000001 * ---- random values----- *

00000006 00000001 * ---- random values----- __ *

00000007 00000001 * — ---- random values....... *

00000008 00000001 * __ ---- random values----- *

00000009 00000001 * ---- random values----- *

00000010 00000001 * ---- random values----- *
* *

r * *

00000099 00000010 * ---- random values----- *

00000100 00000010 * ---- random values----- *

00000101 00000011 * ---- random values----- *

Table 5.3, DB200

Transaction Behaviour in Large Database Environments, A Methodological Approach. 176

5. The CITY Benchmark.

Unique Key Secondary Key-1 Secondary Key-2 Row Values

00000001 00000001 00000001 * — random values — *

00000002 00000001 00000001 * — random values — *

00000003 00000001 00000001 * — random values — *

00000004 00000001 00000001 * — random values — *

00000005 00000001 00000001 * — random values — *

00000006 00000001 00000001 * — random values — *

00000007 00000001 00000001 * — random values — *

00000008 00000001 00000001 * — random values — *

00000009 00000001 00000001 * — random values — *

00000010 00000001 00000001 * — random values -- *
* *
* *

00000099 00000010 00000001 * — random values — *
00000100 00000010 00000001 * — random values -- *
00000101 00000011 00000002 * -- random values — *

Table 5.4, DB300

Unique Key Row Values
00000001 * — random values..... *

00000002 * — random values---- __*

00000003 * ___ — random values---- *

00000004 * — random values..... *

00000005 * — — random values---- __*

00000006 * — random values---- *

00000007 * — random values---- *

00000008 * — random values---- *

00000009 * — random values..... *

00000010 * — random values---- *
* *
* *

00000099 * _ —.random values---- *

00000100 * _ — random values---- *

00000101 * — random values---- *

Table 5.5, DBUPD

Transaction Behaviour in Large Database Environments, A Methodological Approach. 177

5. The CITY Benchmark.

5.5.6 Table Size (Number of rows per table)

The CITY benchmark tables' sizes are flexible so the tables can fit on any level of
computers.. The benchmark users are allowed to define minimum database size,
maximum database size and increment database size depending on the architecture
available for test. This feature is included in the CITY benchmark to permit the
applicability of the benchmark on all ranges of computers. Hence, for small computer,
for example PCs, a small database size could be defined and for larger computers larger
databases could be defined. When different DBMS are compared, they must be
compared using identical database sizes. Examples of those comparisons are presented
in the next chapter.

When the tables loading stage is completed, the four tables DB100, DB200,
DB300, and DBUPD contain equal numbers of rows. The rows insertions table,
DBINS, starts by zero rows when the benchmark starts. For each benchmark loop a
row is inserted to the table. The space allocated for this table should be large enough to
accommodate all the rows inserted during the benchmark run.

5.6 The CITY Benchmark Transaction Script

This aspect transaction script comprises the classification of the numbers and
types of retrievals and updates expected. Classification of queries is a difficult problem
in the design of a benchmark because there are no fixed limits to the number of types of
transactions that can be performed on a database. What complicates the problem is the
fact that benchmarks in many cases do not just test systems performance but also
systems functionality which depends largely on application type. Within the broad
category of database systems, there is substantial diversity among the performance of
systems on different problem domains. Systems behaviour varies enormously from one
application to another. As presented in the previous chapter, one system may be
excellent at performing simple update operations for on-line database, other may be
dedicated to support queries. For example, an on-line transaction on a database will
generally cause several other sub-transactions to be processed. These sub-transactions
depend mainly on the database application. Unless the benchmark represent the specific
domain it suppose to represent, the results from this benchmark can not be mapped to
that domain. That is why some benchmarks are designed to cover the broadest range of
applications within the tested domain, but by defining a practically manageable set of
basic sub-transactions the task of modelling the database usage can be kept applicable.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 178

5. The CITY Benchmark.

Based on transaction analysis, the main characteristics of on-line transactions can be
identified and an exact replication of the transaction is visible.

Over a period of time, researcher in the database area have proposed different
classification of database transactions.

Gray [GRAY87a], classifies transactions as simple or batch. A simple transaction
is submitted to the database in a single message and produces a result in a single
message. Simple transactions do not consume a lot of time or resources and can be
performed interactively. Batch transactions, on the other hand, are big jobs that are not
done interactively. In fact, batch transactions may be set to run when the system load is
low, because they either monopolise system resources, or take too much time to
complete under normal system loads. Generally, there are several ways in
characterising benchmark transaction scripts.

Turbyfill [TURB88], classified benchmark transactions scripts to the following
types:

1. A utilisation transaction script.
2. A functional transaction script.
3. Branch testing.
4. A real transaction script.
5. A synthetic transaction script.

A utilisation transaction script tests the type and amount of resources consumed
by executing the benchmark transaction script. That type of transactions was first
discussed by Hawthorn and Stonebraker [HAWT79] where they classified queries as
overhead intensive or data intensive. An overhead-intensive transaction references little
data. The response time is dominated by overhead such as communication with the
user, parsing the query, and overhead for operating system calls. A data-intensive
transaction is one where the response time is dominated by manipulation of data in a
relation due to data access time or computation. Eventually, the same approach was
adopted by several other researchers such as Boral [BORA84], DeWitt [DeWI85] and
Bitton [BITT87] where they classified a benchmark transaction script as CPU intensive
or I/O intensive.

A functional benchmark transaction script is characterised by its high level of
performing database functions. Database functions are such as a row retrieval or row
insertion. Functional testing involves testing a DBMS through the level and quality of

Transaction Behaviour in Large Database Environments, A Methodological Approach. 179

5. The CITY Benchmark.

functions it provides. A benchmark transaction script that test database functionality
consist of long series of database operation and apply penalty for poor execution
functions. Functional benchmark transaction scripts consisting of relational queries are
described in [YAO 87].

Branch testing involves testing particular execution paths in a program. This may
require access to the source code, which functional testing does not require. In several
benchmarks program branches such as procedures responsible for relation scanning,
sorting, and duplicate elimination are isolated through functionally specified queries.
An example of this types is the work done by Yao, Havner, and Myers [YAO 87]
where they used transaction complexity classification developed by Cardenas
[CARD75]. Cardenas classified queries according to the complexity of qualification
predicates to four predicate types: atomic condition; item condition; row condition; and
transaction condition. An atomic condition has a form of unique qualifier value. An
item condition is a disjunction of atomic conditions. A row condition is a conjunction of
item conditions. A transaction condition is a disjunction of row conditions.

A real benchmark transaction script consists of actual application queries using
real life database. An example of those types of scripts is presented in [GLES81],
where a decision to selected a new DBMS was based on running real life application
using every day use DBMS. This approach suffers from several problems: it has high
running cost; it is inconsistent; and it leaves the tested systems at the mercy of security
breaches.

A synthetic benchmark transaction script is one that is constructed from
components that have never been part of an actual application. This approach enjoys
several merits: it has consistency of the results; it maintains the tested system security;
and the most important one is having full control on the tested system. As discussed in
previous chapters the main problem with synthetic benchmark transaction is that in
most cases they are not realistic enough and not representative to real life applications.
The other problem is the degree of transaction complexity. Because most existing
benchmarks are not based on background field studies, their transactions are either too
complex to be realistic [HAWT79, YAO 87], or too simple to rigorously test database
management systems [GRAY87a], j

The previous transaction characterisations are not mutually exclusive and can be
mixed. Therefore, there might exist a functional benchmark that is based on real
application transaction and a functional benchmark that is based on synthetic benchmark
transaction. The best option is to use a synthetic benchmark transaction script that

Transaction Behaviour in Large Database Environments, A Methodological Approach. 180

5. The CITY Benchmark.

reflects real life applications and based on in-depth analysis of real life database
transactions, similar to the CITY benchmark.

The CITY benchmark applies functional testing for RDBMS using transactions
written in ANSI SQL standard transaction language [AMER86, AMER87] to enhance
the benchmark portability. The benchmark transactions include several transaction types
such as select, project, insert, Update, and Join. The benchmark takes into
consideration intermediate and final results represented as number of bytes, rows, types
of attributes in result, and final transaction output destination. The benchmark also
reflects a typical relative frequency of queries in its mix. The main advantage of the
CITY benchmark is being constructed based on the findings from three studies at three
large organisations, where the studies identified the main characteristics of on-line
transactions' behaviour at high volume transactions' environments. The CITY
benchmark transaction is built based on the similarities between on-line transactions
behaviour at the three organisations presented in chapter four. The CITY benchmark
transaction is a typical replication of the following operations as found in the empirical
studies.

• Basic database operations.
• JOIN operation.
• Transaction complexity.
• Number of retrieved rows per transaction.
• Background workload.

5.6.1 The CITY Benchmark Basic Database Operations

The CITY benchmark transaction is an on-line transaction. As found from the
studies, typical on-line database transaction consisted of 41% qualified retrieval, 5%
insert, 7% update and 47% sequential retrieval. The CITY benchmark transaction script
can be directly mapped to the studied systems and consists of twenty database
operations distributed as follows: •

• eight qualified retrievals (around 40%);
• nine sequential retrievals (around 45%);
• one insert operation (around 5%);
• two update operation (around 10%).

Transaction Behaviour in Large Database Environments, A Methodological Approach. 181

5. The CITY Benchmark.

5.6.2 JOIN Operation

At both the airlines' environment and the bank environments the JOIN operation
was avoided as much as they can. That was due to the negative effect of that operation
on database performance. The findings from the two organisations were close enough
to ignore statistical tests to check that difference. The 94% of on-line transactions
accessed one database, a small percentage, around 2.5%, accessed two databases and
similar percentage accessed three databases. The CITY benchmark reflect those ratios
by having one JOIN operation out of 17 database retrieval operations in the benchmark
script. This one JOIN represents around 6% (5.9%) of all retrieval operations in the
benchmark script.

5.6.3 JOIN Transaction Complexity

As presented in the previous chapter there are several methods of implementing
JOIN operations. One method could use a single select to access two tables, the other
method might relay on nested sequence of select to perform the same function. As
presented in the previous chapter, The first method of implementing JOIN operation is
more common than the second method. JOIN operation that consisted of one select
represented around 98% and JOIN operations that consisted of more than one select
represented 1.8%. Therefore, JOIN transaction in the CITY benchmark consists of one
select that accesses two tables.

5.6.4 Number of Retrieved Rows per Transaction

An average number of retrieved rows by on-line transaction was around seven.
The bank systems returned just four rows per transaction, that kept the average of
number of returned transactions relatively low. The CITY benchmark script returns ten
rows on average per each transaction execution path. The number of rows retrieved by
one execution path are as follows. •

• Eight qualified retrievals return eight rows.
• Eight sequential retrievals return eighty rows.
• One JOIN operation returns hundred rows.
• One qualified update returns one row.
• Two sequential updates return twenty rows.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 182

5. The CITY Benchmark.

5.6.5 Background Workload

First, we distinguish between the system workload and the test workload. The
test workload is the benchmark. The system workload consists of all other jobs running
on a system while the benchmark is running. The system workload may consist of
other, unrelated database jobs. A portion of a workload may be random, while another
is controlled. For instance, the benchmark may be pre-defined, but run on a loaded
system. In this case, the benchmark is controlled but the background workload is
random.

The three organisations maintained a zero level background workload. The local
authority computer centre, the airlines' computer centre and the bank computer centre
dedicated some of their processors to perform all of the background workload they had
at their environments. In the mean time, they dedicated some other to support the on-
line service. That freed on-line processors to on-line service and reduced the level of
background workload to zero value. Consequently, the CITY benchmark does not
apply any kind of background load on the tested systems.

5.6.6 The CITY Transactions Workload

Benchmarks transactions workloads should take into consideration several factors
that identify and characterise the quality of workloads. Those factor are the type of
workload, the way it is applied and how it is controlled.

There are two main types of transactions workload, Random workload and
Controlled workload. Random workloads depends on generating pure or pseudo
random keys that access the tested system. Controlled workloads are calculated
workloads before application and could be used to test things like databases access
paths or a specific database function under predetermined load.

Workloads could be applied using techniques such as pure transactions scripts,
programs, and computer processors emulating on-line terminals. When pure
transactions scripts are used, workloads are fencapsulated in a workload script that
contain all the test requirements. Scripts are the simplest way of applying workloads
but suffer from lack of control over all the parameters of the tested domain. Programs
are similar to pure scripts but the script is embedded in a program code. The main
advantage of this technique is beside being easy to apply it offers proper control over all

Transaction Behaviour in Large Database Environments, A Methodological Approach. 183

5. The CITY Benchmark.

the parameters of the tested domain. Terminal emulators is the third method of applying
workloads. This method is the best of three methods but characterised by the difficulty
in use and complexity of application as it could be available to large computer company
with unlimited resources but ordinary users usually do not have the means of applying
it.

The most difficult part of workload application is the control of the workload.
Workload load control includes aspects such as the accuracy of the workload, proper
execution of workload script, completion of workload and making sure that the
workload is doing exactly what it is designed to do and its measurements are as
accurate as they should be. Workload control might utilise several tools such as system
monitors and hardware probes. Workload control is mainly used at the early stages of
designing and building the benchmark and must be adjusted to both the architecture of
the system and the purpose of the benchmark.

The CITY benchmark is based on a random workload, similar to what exists in
real life. The benchmark keys are generated by a random number generator that
generates a randomly distributed keys covering all the tested domain. The CITY
benchmark database operations are written in ANSI SQL [AMER86, AMER87], and
embedded in a program. This approach allows simplicity of application and rigorous
control over the benchmark execution process. The program is written in C high level
programming language, a good guide to C language programming can be found in
[LAWR86, BARA89, KANT90, MAST91]. The utilisation of ANSI SQL and C
programming is for portability reasons. ANSI SQL is the standard practice for using
DBMS and most DBMS have a SQL interface. Also, C programming language, is a
high level programming language with a compiler available for almost all computer
systems.

5.6.6.1 Qualified Retrieval

Qualified retrievals consist of eight queries each of which retrieves one row from
one of the three retrievals tables. All retrievals use decimal indexed key. The queries are
as follows: \

1. Retrieve 1 Row from DB100.
2 . Retrieve 1 Row from DB100.
3 . Retrieve 1 Row from DB200.
4. Retrieve 1 Row from DB200.
5. Retrieve 1 Row from DB200.
6. Retrieve 1 Row from DB200.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 184

5. The CITY Benchmark.

7. Retrieve 1 Row from DB300.
8. Retrieve 1 Row from DB300.

5.6.6.2 Sequential Retrieval

Eight sequential retrieval queries are used in the benchmark script. The nine
retrievals use decimal key attributes in the query qualification parameter. The queries
are as follows:

1. Retrieve 10 Rows from DB200.
2. Retrieve 10 Rows from DB200.
3 . Retrieve 10 Rows from DB200.
4. Retrieve 10 Rows from DB200.
5. Retrieve 10 Rows from DB200.
6. Retrieve 10 Rows from DB300.
7 . Retrieve 10 Rows from DB300.
8. Retrieve 10 Rows from DB300.

5.6.6.3 JOIN Two Tables

One JOIN operation is used in the benchmark script. The JOIN query accesses
the tables DB200 and DB300 using decimal key attributes in the query qualification
parameter. The JOIN is as follows:

9. Join DB200 (10 rows) and DB300 (100) Returns 100 rows.

5.6.6.4 Update a Row in DBUPD

The CITY benchmark script contains two update operations, the first updates one
row and the second updates ten rows. The first simulates a single entity update and the
other simulates a full screen update activity. The two update operations are the
following.

1. Update a single Row in DBUPD.
2. Update 10 Rows in DBUPD.

/
5.6.6.5 Insert a Row in DBINS

The last operation in the CITY benchmark script is an insert row operation. The
script contains one insert that looks as follows.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 185

5. The CITY Benchmark.

1. Insert a Row In DBINS.

5.6.6.6 Sequence of Operations Execution in The Benchmark Script

The database operations in the CITY benchmark script are organised and executed
according to a rule that any table is not accessed twice by two consecutive queries. That
is to force database buffer flushing and minimise memory retrievals. Database
operations in the CITY benchmark script are executed in the sequence presented below.

1. Retrieve 1 Row from DB100.
2. Retrieve 10 Rows from DB200.
3. Retrieve 1 Row from DB100.
4. Retrieve 10 Rows from DB200.
5. Update a single Row in DBUPD
6. Retrieve 1 Row from DB200.
7. Retrieve 1 Row from DB300.
8. Retrieve 10 Rows from DB200.
9. Retrieve 10 Rows from DB300.

10. Retrieve 1 Row from DB200.
11. Retrieve 10 Rows from DB300.
12. Retrieve 10 Rows from DB200.
13. Retrieve 1 Row from DB300.
14. Retrieve 1 Row from DB200.
15. Retrieve 10 Rows from DB300.
16. Retrieve 10 Rows from DB200.
17. Update 10 Rows in DBUPD.
18. Retrieve 1 Row from DB200.
19. Join DB200 (10 rows) and DB300 (100) Returns 100 rows.
20. Insert a Row In DBINS.

5.6.7 Control of Transactions Execution

;
All transactions in the benchmark test must run to completion. To guarantee

transaction execution error traps were set before each transaction execution so that in
abnormal condition occurrences, the program prints an error message indicating the
error type then terminate not allowing the benchmark test to continue. Also, the test did
not allow "NOT FOUND" condition to occur as all transactions must run to

Transaction Behaviour in Large Database Environments, A Methodological Approach. 186

5. The CITY Benchmark.

completion, when "NOT FOUND" condition occurs the program generates an error
message and the program is abnormally terminated. The error traps and error handling
routine are presented below.

1. Trap any error that might occur:

Prepare Any Condition Error Message;
EXEC SQL WHENEVER SQLERROR GOTO Error_Trap_Routine;

2. Trap not found condition when it occurs:

Prepare Not Found Condition Error Message;
EXEC SQL WHENEVER NOT FOUND GOTO Error_Trap_Routine;

3. The errors trap routine:

Error_Trap_Routine:
sound error alarm
print error message and all related information
Terminate processing

5.6.8 Random Number Generators

The CITY benchmark test used two random number generators. The first is a
modified version of the C compiler. The second is a random number generator
developed by the national physics laboratory (NPL) [WICH82],

The C language random number generator is based on the magic formula:

rand_value = (randx_value * 25173 + 13849) % 65536

The C language random number generator subroutine was modified to generate
random numbers within a given limit. This random number generator was used for two
purposes. The first is to generate a random value for attributes selection. The second
was to generate three seed values for the NPL random number generator.

The random number generator subroutine receives three global values, such as x,
y and z, to be given initial random integer valups which should be less than 30,000 and
generate a random number from 0 to infinity. The random number generator was
modified to return a random number within specified limit. This random number
generator was used to generate random key values for the database operations.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 187

5. The CITY Benchmark.

5.7 Requirements of Transaction Processing Council

Due to the growing importance of transaction processing at the database
environment several computer and database vendors formed a council to establish
standards for On-line Transaction Processing (OLTP) benchmarks. The name of the
council is Transaction Processing Council (TPC). The council has constituted standard
criteria for any benchmark testing to be accepted by the council. For any benchmark to
be accepted by the council it has to follow the following requirements:

1. Proper specification of table layouts, number of rows for each table, and
minimum number of rows of each table that must be accessed per test.

2. A detailed description of transactions to be run.

3. Clear specification of rules for distributing and partitioning data among
tables, for timing transactions, and for hardware configuration for the
benchmark.

4. Requirements and recommendations for reporting benchmark activity and
results should be available, so the benchmark can be repeated and the
information can be used by independent agencies.

5. The Transaction Processing Council (TPC) has set system properties that
must be in effect during the transaction execution. These properties are
called ACID properties (atomicity, consistency, isolation and durability).
The DBMS must ensure atomicity during the benchmark so no partial
transactions are permitted to modify the database. The DBMS must be
consistent during the benchmark by ensuring that each transaction takes the
database from one consistent state to another. The database must ensure
isolation (serializability) of all transactions during the benchmark test, so the
results of concurrently executing transactions are the same as the results that
would have been achieved by the serial execution of the same transactions.
The DBMS must ensure durability by preserving the effects of all committed
transactions even in the face of system and media failure.

In compliance with the TPC requirements, the CITY benchmark users should
observe the previous points when running the benchmark test. The creation procedure
of the CITY benchmark tables is presented in appendix A. The load procedure of the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 188

5. The CITY Benchmark.

CITY benchmark tables is presented in appendix B. A description of the CITY
benchmark transactions is presented in appendix C. Random number generators are
described in appendix D. The operation manual of the CITY benchmark is presented in
appendix F.

5.8 Summary

This chapter presented the CITY benchmark. The benchmark is the first database
performance evaluation methodology based on in-depth empirical studies. The
benchmark transaction script mainly represents a typical on-line transaction at high-
volume transactions' environments accessing large databases, those environments
similar to what was presented in the previous chapter.

The next chapter discusses the benchmark test verification process. It
demonstrates the main characteristics of the CITY benchmark and presents the results
of the benchmark verification procedure. It also compares the results from the CITY
benchmark to the TPC benchmarks showing the difference in accuracy between the two
benchmarks.

f

Transaction Behaviour in Large Database Environments, A Methodological Approach. 189

CHAPTER 6

PRELIMINARY TEST AND VERIFICATION of
The CITY BENCHMARK

/

6. Preliminary Test And Verification Of The City Benchmark.

CHAPTER 6

PRELIMINARY TEST AND VERIFICATION of The CITY
BENCHMARK

6.1 Introduction

Chapter five presented The CITY benchmark. The benchmark design is based on
empirical studies in large database environments. The research revealed a common
pattern between the studied systems, despite the difference in activities and nature of the
organisations concerned. The CITY benchmark transactions are derived from the
findings from those studies.

This chapter presents the preliminary test and verification of the CITY
benchmark. This test took place in two standalone PC environments. Those
environments were selected to ensure proper control over the benchmark test variables
and to allow thorough examination of the benchmark results. The chapter starts by
explaining the examination process of the benchmark variables then discusses the
verification process of the benchmark results. Two main benchmark characteristics
were examined through the verification process, those characteristics were
reproducibility of the benchmark measures and scalability of the CITY benchmark
transaction.

In compliance with the Transaction Processing Council (TPC) requirements, the
researcher has conducted tests of Atomicity, Consistency, Isolation, and Durability
(ACID) as independent experiments that are not related to the CITY benchmark
transaction.

6.2 Test of the Main Characteristics of The CITY Benchmark

Verification of benchmark results involves addressing several important
problems, the first is the benchmark test approach. As there are two approaches in
dealing with benchmark test (controlled test where all factors that may affect a

Transaction Behaviour in Large Database Environments, A Methodological Approach. 191

6. Preliminary Test And Verification Of The City Benchmark.

performance metric are controlled, and non-controlled test where all factors that may
affect a performance metric are randomised) the first problem is defining the approach
to be conducted. The choice depends mainly on the benchmark objective and whether it
is a special purpose benchmark or a general purpose benchmark. General purpose
benchmarks should be tested in a controlled environment, hence the benchmark
variables should be the only test factors involved in the benchmark test That allows the
replication of the benchmark results.

In this work the benchmark test was conducted as a controlled test, where a single
factor was tested at a time and then systematically varied. That factor was isolated and
kept independent of all other factors that were controlled and observed at fixed number
of levels. To be able to do that, the preliminary test took place in two standalone PC
environments, 386 PC and 486 PC. The verification process aimed to test the following
factors:

• the benchmark measures are reproducible;
• the benchmark is scalable;
• the benchmark usage cost is low.

This stage also checked the benchmark variables by dumping the values in those
variables during the benchmark run; and all other parameters involved in the benchmark
test like the random numbers that were used as row key. Finally this process tested the
effect of changing some benchmark variables such as attribute type, and attribute
distribution.

The test of the benchmark results depended on replication of the benchmark runs,
randomisation of the test keys and analysis of the covariance of the results of the runs.

6.2.1 Reproducibility of the Benchmark Measures

Reproducibility of the benchmark measures is the most important factor when any
benchmark is verified because it represents the benchmark results consistency.
Reproducibility could be defined as: j

"The ability to produce consistent results when repeating the same benchmark
test"

Transaction Behaviour in Large Database Environments, A Methodological Approach. 192

6. Preliminary Test And Verification Of The City Benchmark.

Reproducibility of the benchmark measures can be tested by replicating the
benchmark run then analysing and comparing the results obtained from all runs. It is
recommended that each test must be conducted at least twice to gain an indication of the
reliability of the metric, and in accordance with this in most published work
benchmarkers conducted the test only twice. In this work each test was repeated at least
hundreds of times as it took in all over 8000 computer hours. Reproducibility of the
benchmark measures were tested by examining the following factors.

• Clock adjustment and first transaction effect.
• Reproducibility of the benchmark measures within a single loop.
• Reproducibility of the benchmark runs.
• Duration of loops time.
• Duration of full test of DBMS.
• Transaction atomicity.
• Transaction consistency.
• Transaction isolation.
• Transaction durability.

6.2.1.1 Clock Adjustment and Eliminating First Transaction Effect

During the test process two observations that might affect the test measurements
were noticed. Those observations are the following.

1. The first reading from the clock and consequently time calculation was
abnormally high then the time stabilises after that reading and enjoys a high
level of consistency. That time measurement did not involve database
operations and the deviation of the calculated time could not be justified.
Consequently a dummy loop was implemented to eradicate that deviation in
time. That loop gets the first time calculated and then runs a dummy
transaction for a predetermined time. That method succeeded in overcoming
the first time deviation problem and all the subsequent time measurements
were tested and found within acceptable range of values.

The dummy loop looks as follows:

start time = system clock time; /* Get first system time to s(
clock. */
end time = start + DSECONDS; /* Add number of dummy seconds,
do

________{ /* start of do loop body. */_____________________________
Transaction Behaviour in Large Database Environments, A Methodological Approach. 193

6. Preliminary Test And Verification Of The City Benchmark.

Dummy non-database operation to adjust system time
} /* end of do loop body. */
while (system clock time < end time);

2. Database management systems take from one to several loops until the
collected response time steadies. That is because database management
systems set several database requirements such as database buffers before
being ready for full utilisation by database users. That database environment
preparation puts an over-head on the first database transaction, and in some
cases it takes several database transactions until transactions' response time
stabilises. Fig. 6.1. shows that response time required several transactions
until transaction response time stabilises and concentrated around a fixed
value. This deviation in first transaction response time was included in the
presented measurements and was not discarded because it was considered a
fixed cost over different database management systems transactions that
should be presented.

First Transaction Response Time in a
Standalone PC Computer Environments

Loop Number

Fig. 6.1, First transaction response time in PC environment

6.2.1.2 Reproducibility of the Benchmark Measures Within a Single Loop

As discussed in chapter 5 (§5.4.2), transaction response time and number of
transactions per seconds are calculated through time loops. The benchmark transaction
is repeated several times within a loop that is controlled by time factors, then the
average of all response times and transactions per second are calculated as one figure
from the loop either by dividing total response time by number of transactions to give

Transaction Behaviour in Large Database Environments, A Methodological Approach. 194

6. Preliminary Test And Verification Of The City Benchmark.

transaction response time or by dividing total number of transaction by total test time to
give the number of completed transaction per second.

The second test was to check that time measurements calculated from each loop
did not statistically vary and all the obtained values were spread within acceptable range
and did not deviate from the calculated mean. The variance of the calculated measure
was used as measure of spread of the collected values. The main advantage of using the
sample variance is that it gives a statistical inference about the underlying population.
Sample variance was discussed in detail in chapter three.

To that end, loop time was calculated and recorded for each independent loop. In
each experiment each loop time was calculated for at least 500 times, then the variance
of the collected sample was calculated.

Table 6.1 presents a small sample of loop times that were collected from the PC
environment under scalable database load. The sample presented in Table 6.1 was taken
from the results of 100 runs. Out of those 100 runs, only ten runs' values are presented
for space and presentation considerations. The presented variance in this context was
calculated for the test runs. The runs' values in Table 6.1 show low spread pattern
between the collected runs' times under all database loads. The variances of the values
presented in Table 6.1 are as follows:

Variance of 2500 Rows: 2.0
Variance of 5000 Rows: 0.4
Variance of 75000 Rows: 0.5
Variance of 10000 Rows: 0.1
Variance of 12500 Rows: 0.5
Variance of 15000 Rows: 0.2
Variance of 17500 Rows: 0.5
V ariance of 20000 Rows: 0.7

The highest variance belongs to 2500 rpws' table size. This is due to the time
taken by the DBMS to set the database parameters.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 195

6. Preliminary Test And Verification Of The City Benchmark.

result indicated significandy low spread of the collected values and guaranteed that the
calculated mean will be representative value to all the results collected from all loops.

The sample presented in the previous example were classified in a frequency
table, Table 6.2, that classifies the 50 response times sample collected from the
standalone PC environment test runs. In that table four table sizes are presented 5000
rows, 10,000 rows, 15,000 rows and 20,000 rows. For all measurements, response
times of the collected transactions were spread between just three or four different
response times that were highly centred around the sample mean. Fig. 6.3 is a graphical
representation of response time frequencies that are presented in Table 6.2.

Frequency Values of The CITY Transaction Response Time
in a Standalone PC Environment

Table Size is 5000 Rows Table Size is 10,000 Rows

5 3 5 4 5 5 5 6
Response Time in Seconds

Table Size is 15,000 Rows

60 61 62
Response Time in Seconds

Table Size is 20,000 Rows

I
66 67 68
Response Time in Seconds

7 1 7 2 7 3 7 4
Response Time in Seconds

Fig. 6.3, Frequency values of CITY measures in PC environment

Transaction Behaviour in Large Database Environments, A Methodological Approach. 197

6. Preliminary Test And Verification Of The City Benchmark.

5000 Rows
Response

Freq. 10,000 Rows
Response

Freq. 15,000 Rows
Response

Freq. 20,000 Rows
Response

Freq.

53 3 60 4 66 4 71 4

54 9 61 41 67 40 72 3

55 34 62 4 68 6 73 27

56 4 74 16

5000 Rows Average
Response Time.

10,000 Rows Average
Response Time.

15,000 Rows Average
Response Time.

20,000 Rows Average
Response Time

54.78 61.02 67 .04 73.10

Table 6.2, Frequency values of CITY measures in PC environment

6.2.1.3 Reproducibility of the Benchmark Runs

In the PC environments the benchmark results from one run to the next were
identical. For example if runl response time was 65 seconds, run2 was also 65
seconds. That was found for all runs using different tables' sizes. Because the results
were identical, analysis of variance was not applied.

6.2.1.4 Duration of Loops Time

Loop time duration is an important factor in obtaining consistent measures from
the benchmark test. The longer the loop time the more measures collected regarding the
same database size which means larger sample and more accurate result. Several loop
time duration were tested against a range of database sizes to study the effect of loop
time duration on the calculated transaction response time accuracy. The obtained results
decided the smallest loop duration to obtain enough measurements to produce
consistent results.

In the PC environment two loop times were tested. The first loop time duration
was 900 seconds and the second loop time duration was 3600 seconds. Each run was
repeated fifteen times to collect a reasonable ijfumber of measurements. The results of
testing loop duration in the PC environment are presented in Table 6.3. The test did not
find significant difference in response time measurements when running each loop for
900 seconds and 3600 seconds. Accordingly other time intervals, including 9000
seconds, were not tested and the subsequent measurements in the PC environment were
based on 900 seconds loop. The present author does not recommend running the test
Transaction Behaviour in Large Database Environments, A Methodological Approach. 198

6. Preliminary Test And Verification Of The City Benchmark.

for less than 900 seconds per loop because they might not produce statistically credible
number of measurements.

Loop Time 5000 Rows 10000 Rows 15000 Rows 20000 Rows

900 Seconds 50 56 64 69

3600 Seconds 51 58 64 69

Table 6.3, Effect of loop time on CITY measures in PC environment

6.2.1.5 Test of Transaction Atomicity

The CITY benchmark test process guaranteed that transactions were atomic in the
systems under test. The tested systems performed all individual operations on the data.
Test of transaction atomicity was done as follows:

1. the benchmark was run for randomly selected records and verify that those
records have been changed;

2. the benchmark was run for randomly selected records substituted an
ABORT COMMIT of the transaction. The appropriate records were checked
to ensure that they had not been changed.

6.2.1.6 Test of Transaction Consistency

The experiments guaranteed the execution of transactions to take the database
from one consistent state to another. This property was tested as follows:

a. One random record was updated and its integer value is increased by one.

b. Ten random records are updated and their integer values are increased by
one.

f

c. The insert database had one logical record added for each committed
transaction, none for any aborted transactions.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 199

6. Preliminary Test And Verification Of The City Benchmark.

6.2.1.7 Test of Transaction Isolation

This property is commonly called serializability. Sufficient conditions must be
enabled at either the system or application level to ensure serializability of transactions
under any mix of arbitrary transactions. The system or application must have full
serializability enabled, i.e., repeated reads of the same records within any committed
transaction must have returned identical data when run concurrently with any mix of
arbitrary transactions. This property was not tested during the benchmark verification
process because all runs took place in a single user mode.

6.2.1.8 Test of Transaction Durability

The last property to test was the ability of the tested systems to preserve the
effects of committed transactions and to ensure database consistency after recovery
from any one of the database failures. This property was tested by forcing the tested
systems to fail during the benchmark test by either forcing a quit from the DBMS or
systems shut down. The committed transactions were then checked for transaction
completeness.

6.2.2 Test for Scalability of the CITY Transaction

Scalability in this chapter concentrated on increasing database size and stepping
processing power one step from 386 processor to 486 processor. Scalability was
discussed in chapter three (§3.6.3).

It should be mentioned that factors such as: page size; operating systems; index
type; and several other factors can affect transaction scalability. If those effects are
ignored then an arguable case can be made that transaction response time will be linear
in respect to the increase in workload. This research assumes that the scalability will be
linear against the increase in the workload.

/
In designing for scalability, the experiments tested the CITY transaction under the

following scalability conditions:

1. scaling up tables' sizes from 1000 rows to 25,000 rows;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 200

6. Preliminary Test And Verification Of The City Benchmark.

2. scaling up the tested system processor power from a standalone 386 PC to a
standalone 486 PC.

The CITY transaction took scaling behaviour in the two tested environments
regardless of database size and processor power. Fig. 6.4 demonstrates the CITY
transaction behaviour in the tested environments.

TJeovV

0>
B
H
«a
Co

X

Scalability of The CITY Transaction in
a Standalone PC Environments

386 PC Environment 486 PC Environment
70

65

60

55

50

45

40

Fig. 6.4, Scalability of The CITY measures in PC environment

6.2.2.1 Transaction Scalability VS Usage Cost

Transaction cost can be calculated as the time a transaction takes from its start to
its finish. The longer the time it takes, the more expensive the transaction. An optimum
benchmark transaction would apply sufficient workload on the tested database within
minimum cost. Examples of expensive transactions are presented in a work by
Strawser [STRA84], where she created a comprehensive benchmark that consisted of
twenty-five database operations, but because it was too expensive (required long time
to run as it consisted of fifty five queries varied from simple to very complex joins), it
has never been put into practical use.

/

To test scalability versus usage cost, the present author is proposing a scalability
ratio. It is an unbiased measure of transaction cost that can be used to compare different
transactions. It offers a test of transaction scalability versus its cost no matter how

Transaction Behaviour in Large Database Environments, A Methodological Approach. 201

6. Preliminary Test And Verification Of The City Benchmark.

expensive it is. The advantage of this method is that it takes transaction cost into
consideration and eliminates the effect of expensive transaction.

Previous empirical studies of the behaviour of basic database operations showed
that regardless of transaction cost, not all database operations are scalable.
Consequently a mix of those database operations might not be scalable. To test that
assumption, several transactions' mixes varying in basic database operations and
transaction workload were tested in a standalone PC environment.

The empirical studies tested eight mixes that vary in transaction operations'
workload and transaction cost. Scalability of the eight mixes were tested against
increasing database size in both environments. Each mix consisted of twenty database
operations to equal the number of database operations in the CITY benchmark script.
The mixes were designed based on the resource utilisation approach proposed by
Hawthorn [HAWT79], where she defined the three classes of relational queries
overhead-intensive, data-intensive, and the multi-relational queries. That approach was
also adopted by the Wisconsin benchmark group [DeWI85]. That approach was
discussed in greater detail in chapter two. The mixes are presented below.

1. Mix 1 : One row qualified retrieval + one insert + one row qualified update.
2. Mix 2: 100% one qualified update + one row qualified retrieval + one row

insertion.

3. Mix 3: 100% one row insertion + one row qualified retrieval + one row
qualified update.

4. Mix 4: 75% one row qualified retrieval + 25% Ten rows sequential retrieval
+ one insert + one row qualified update.

5. Mix 5: 55% one row qualified retrieval + 50% Ten rows sequential retrieval
+ one insert + one row qualified update.

6. Mix 6: 25% one row qualified retrieval + 75% Ten rows sequential retrieval
+ one insert + one row qualified update.

/
7. Mix 7: Ten rows sequential retrievals + one insert + one row qualified

update.

8. Mix 8: JOIN mix that accesses two tables and returns 100 rows.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 202

6. Preliminary Test And Verification Of The City Benchmark.

6.2.2.2 Scalability of The CITY Transaction in Comparison To Different
Mixes in Two Standalone PC Environments

Transactions test in two different environments, a 386 standalone PC
environment and a 486 standalone PC environment showed that the CITY transaction
has produced higher scalability levels than all the other tested mixes. The CITY
transaction scalability in comparison to other mixes' scalability in a PC environment are
presented in Table 6.4.1 and Table 6.4.2. Fig. 6.5.1, summarise the results of testing
the CITY transaction scalability pattern in comparison to other mixes.

The experiment also showed that having just CPU based mix or just I/O based
mix do not guarantee transaction scalability, but the overall mix scalability is a function
in all the database operations contained in that mix and scalability can not be referred to
one single operation. A clear example is the JOIN mix (mix 8) that despite being the
most expensive mix it does not produce the highest scalability level. Fig. 6.5.2,
illustrate the CITY transaction scalability in comparison to JOIN mix scalability.

Database Size 5000 Rows
Response Time

10,000 Rows
Response Time

15,000 Rows
Response Time

20,000 Rows
Response Time

CITY 386 Env. 53.000 61.000 68 .000 75.000
CITY 486 Env. 51.000 58.000 64 .000 69.000

Mix 1 10.070 10.256 10.360 10.405
Mix 2 9.756 10.198 10.435 10.496
Mix 3 11.688 11.803 11.723 11.726
Mix 4 18.947 18.848 19.048 19.251
Mix 5 27.273 27.481 27.692 27.907
Mix 6 36.000 36.735 36.735 37.113
Mix 7 45.567 45.950 46.000 46.650
386 Mix 8 394 401 402 403
486 Mix 8 331 333 333 334

Table 6.4.1, The CITY transaction scalability level against other transactions

Transaction Behaviour in Large Database Environments, A Methodological Approach. 203

6. Preliminary Test And Verification Of The City Benchmark.

Scalability Level Ax|

10,000-5000 Rows

Ax 2

15,000-10,000 Rows

Ax 3

20,000-15,000 Rows

CITY 386 Env. 8 .000 7 .000 7 .000 -

CITY 486 Env. 7 .000 6 .000 5.000

Mix 1 0.186 0.103 0.045

Mix 2 0.442 0.236 0.061

Mix 3 0.115 -0.077 0.000
Mix 4 -0.099 0.199 0.204
Mix 5 0.208 0.211 0.215
Mix 6 0.735 0.000 0.379

Mix 7 0.570 0.584 0.000
386 Mix 8 7.000 1.000 1.000
486 Mix 8 2.000 0.000 1.000

Table 6.4.2, The CITY transaction scalability level against other transactions

Scalability of Different Transactions' Mixes
in Comparison to The CITY Transaction

in a Standalone 386 PC Environment
V5

Database Size in 1000 Rows

— • — The CITY Transaction
One Row Qualified Retrieval

— • — Ten Rows Sequential Retrieval
— «— 75% Qualified Retrieval
-----H---- 50% Qualified Retrieval

25% Qualified Retrieval
-----*---- One Row Insertion
-----A---- Twenty Update 1 Rows

Fig. 6.5.1, The CITY transaction scalability level against other transactions

Transaction Behaviour in Large Database Environments, A Methodological Approach. 204

6. Preliminary Test And Verification Of The City Benchmark.

JOIN That Accesses Two Tables and Returns 100
Rows in Comparison to The CITY Transaction

in Two Standalone PC Environments

Database Size in 1000 Rows

O — The CITY Transaction in 386 Environment
• The CITY Transaction in 486 Environment
• JOIN Mix in 386 Environment
' • — JOIN Mix in 486 Environment

Fig. 6.5.2, The CITY transaction scalability level against Join transactions

6.2.2.3 Scalability Ratio of The CITY Transaction in Comparison To
Different Mixes in Two Standalone PC Environments

The previous section showed that the CITY transaction has a better scalability
level than all the other mixes. In this section scalability ratio of the CITY transaction is
compared to scalability ratio of the eight mixes presented in the previous section. This
comparison justifies the CITY transaction scalability versus its cost in comparison to
different mixes representing scalable transaction cost.

The comparison of the CITY transaction scalability ratio against the other eight
mixes took place in a 386 standalone PC and a 486 standalone PC, the results of the
comparison are presented in Table 6.5 and illustrated in Fig. 6.6.

The CITY transaction has produced a better scalability ratio than all the other eight
mixes in both environments. That is because some transactions consist of database
operations that originally produce low scalability ratios such as qualified retrieval of one
row using unique key which in many cases produces a negative scalability ratio due to
its index dependence. On the other hand some other transactions could produce high
levels of scalability, yet they are too expensive to produce equally high scalability ratio.
A clear example is the JOIN mix (mix 8), which is most expensive mix in all

Transaction Behaviour in Large Database Environments, A Methodological Approach. 205

6. Preliminary Test And Verification Of The City Benchmark.

environments but it produces the lowest scalability ratio due to the relatively high cost
of transaction execution.

• Scalability
Ratio

Ayi/yi

5 -> 10

Ay2/y2
10-> 15

Ay3/y3

15 -> 20
Sum of Ratios

CITY 386 .Env. 0.151 0.115 0 .103 0.369

CITY 486 Env. 0 .137 0 .103 0 .078 0.319

Mix 1 0.019 0.010 0.004 0.033

Mix 2 0.045 0.023 0.006 0.074

Mix 3 0.010 -0.007 0.000 0.03
Mix 4 -0.005 0.011 0.011 0.016
Mix 5 0.008 0.008 0.008 0.023
Mix 6 0.020 0.000 0.010 0.031
Mix 7 0.013 0.013 0.000 0.025
386 Mix 8 0.018 0.002 0.002 0.023
486 Mix 8 0.006 0.000 0.003 0.009

Table 6.5, The CITY transaction scalability ratio against other transactions

Fig. 6.6, The CITY transaction scalability ratio against other transactions

Transaction Behaviour in Large Database Environments, A Methodological Approach. 206

6. Preliminary Test And Verification Of The City Benchmark.

6.2.3 Simplicity of Construction and Clarity Code

Simplicity of construction includes aspects such as: the time required to
understand the benchmark script; the resources required to complete a comprehensive
test; and the degree of complexity to gather and interpret the test results. All those
factors are added to produce the benchmark usage costs from the stages of constructing
and implementing the benchmark to the stage of collecting and interpreting the test
results.

6.2.3.1 Flexibility and Simplicity of Construction

The CITY benchmark allows some degree of flexibility regarding two benchmark
parameters, test tables' sizes and non-key attributes. When using response time under
scalable load as the benchmark metric, users are asked to set the test tables' sizes. The
benchmark asks the users about start table size, end table size and step table size. That
allows the benchmark users to tailor the test database size according to the available
space in the tested system.

Because not all attributes' types are available on all computer and DBMS, the
CITY benchmark users are allowed to change non-key attributes to whatever available
in their environment.

The CITY benchmark script is simple to construct and easy to run. The script is
compact, and consists of twenty database transactions that run in sequential order
within time controlled loops. The code itself is compact, all the commonly used
routines are kept as independent modules that are called by the main program when
required. The program requires a C compiler and 450k of main memory to run, which
are available on most computers. The disk requirements are system dependent and
could be tailored according to systems' resources as explained in the previous section.

6.2.3.2 Clarity of Code
r
I

The Benchmark script is well documented and self explanatory. At the different
stages of the benchmark test and verification, the benchmark script was given to some
of the covered organisations and they were able to run it themselves with minimum help
from the present author.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 207

6. Preliminary Test And Verification Of The City Benchmark.

Each variable used in the program code is commented on specifying what it is and
why it is used. An example is the following:

I * i f : sj« sj< sje sje sje j Jc s|< :fc a f: s|< sje j j o j e j |< sj< j

/* Database size variables */
I * i l i * * * * * * * * * * * * * * * * *

unsigned long Rows_Start, /* Database size start value */
Rows_End, /* Database size end value */
Rows_Step; /* Database size step value */

Also each line of code in the program is commented on to explain why and how it
is used. An example is the following:

/* === */
/* Transaction 1. Retrieve 1 Row from DB100 using unique key.*/
/* === */

/* Get a random key */
x = rand2(r_limit); /* get the first random seed */
y = rand2(r_limit); /* get the second random seed */
z = rand2(r_limit); /* get the third random seed */
key_value = randp(x,y,z,ROWS); /* get random unique key */

strcpy(error_message,err_msg); /* set error message */
EXEC SQL WHENEVER SQLERROR GOTO SQL_error_routine; /* error trap */
EXEC SQL SELECT

DB1FC1, DBlFIl, DB1FC2, DBlFLl, DBlFRl, DBlFDl, DBlFVl
INTO :dbfcl, :dbfi, :dbfc2, :dbfl, :dbfr, :dbfd, :dbfv
FROM DB100
W H E R E D B l F I l = :key_value;

6.2.3.3 Interpretation of the Results

The benchmark results are presented in an easy to understand and interpret form.
After the end of each run, the test results are presented in either number of transactions
per second or the average response time against different database sizes. The test results
take the following layout.

• Database type;
• Database size; '
• Transactions per second;
• Transaction response time.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 208

6. Preliminary Test And Verification Of The City Benchmark.

6.3 Comparison between the CITY Transaction and the TPC
Transactions in a Standalone PC Environment

The Debit/Credit (TP/1) [ANON85] and the Transaction Processing Council
(TPC) benchmarks [TPC 89, GRAY91] have become the database market standard
practice. Those benchmarks have a number of practical limitations [REVE90]. Most of
those limitations stem from the lack of background study before the benchmark design
stage. The main criticism of the TPC benchmarks is that they do not provide a realistic
characterisation that can be set as the target for the benchmarking process, and
moreover, they do not even provide a model of the ATM systems whose performance
they are supposed to simulate [REVE92b].

Chapter two discussed the TPC benchmarks. The main limitation of those
benchmarks was their transactions' scripts. The TPC-A consisted of three updates
using unique key and one insert. The TPC-B consists of a TPC-A transaction plus one
select operation that uses a unique key. Due to the over simplification of those
transactions’ scripts the present author conducted several empirical studies to test the
cost of those operations and to examine their testability under increasing database load.
The studies found that the basic database operations of the TPC benchmarks do not
apply significant workloads on the tested systems, and this represents a severe
limitation to the TPC benchmark scripts and leads to inadequacy when comparing
database management. Consequently, the TPC benchmarks are expected to suffer
limitations in four areas. Those areas are the following.

• Transactions' scalability levels.
• Transactions' scalability ratios.
• transactions' measures comparability between DBMS.
• TPC and the future of DBMS.

In the following section the TPC benchmarks (TPC-A and TPC-B) are compared
to the CITY transaction in each one of the previous areas. The comparison showed that
the CITY transaction produced better results in all areas.

6.3.1 Comparison Between t/he CITY and the TPC
Transactions' Scalability Levels

Several empirical studies were conducted to compare the behaviour of the CITY
transaction script against the TPC-A and the TPC-B transactions scripts. The basic

Transaction Behaviour in Large Database Environments, A Methodological Approach. 209

6. Preliminary Test And Verification Of The City Benchmark.

database operations of the TPC-A and the TPC-B were isolated and tested against
increasing database size. Tables' sizes were scaled up gradually from 1000 rows to
15,000 rows. Row size in all experiments was 200 bytes. This section presents the
results from those studies.

The assumption was that, because the TPC benchmarks consisted of operations
that are not scalable, the result from mixing those operations will not be scalable. The
other assumption was that, because the CITY transaction contains scalable database
operations, it will produce better scalability level than the TPC transactions. The
findings that are presented in Tables 6.6 and 6.7 and Fig. 6.7 can be summarised in the
following terms:

1. Both the TPC-A and the TPC-B transactions did not apply enough load on
the tested systems, the TPC benchmarks response time at 1000 rows is not
much different than their response time at 15,000 rows.

2. There was a significant deviation between the CITY transaction response
time and the TPC transactions response time specially as the sizes of the
tables increases.

S ize in 1000

Rows

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

TPC-A 1.23 1.33 1.35 1.32 1.34 1.37 1.39 1.41 1.39 1.38 1.39 1.42 1.40 1.40 1.43

TPC-B 1.38 1.48 1.52 1.52 1.55 1.57 1.56 1.58 1.60 1.63 1.61 1.65 1.65 1.66 1.67

CITY (386) 45 47 49 51 53 55 56 58 60 61 62 6 4 6 5 67 68
CITY (486) 47 so 51 51 52 55 55 56 58 58 60 6 0 62 fÌ62':: 64

Table 6.6, Comparison between The CITY and TPC-A, TPC-B scalability level

Range

R ows

in 1000 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15

TPC-A .1 .02 -.03 .02 .03 .02 .02 -.02 -.01 .01 .03 -.02 0 .03

TPC-B 0.1 .04 0 .03 .02 -.01 .02 .02 .03 -.02 .04 0 .01 .01

C IT Y (3 8 6) 2 2 2 2 2 2 2 1 1 2 1 : 2 1

C IT Y (-186) 3 1 0 2 3 0 l i 2 0 2 0 2 111 2

Table 6.7, Comparison between The CITY and TPC-A, TPC-B scalability level

Transaction Behaviour in Large Database Environments, A Methodological Approach. 210

6. Preliminary Test And Verification Of The City Benchmark.

Comparison Between The CITY, The TPC-A and The TPC-B
Transactions in Two Standalone PC Environments

A Standalone 386 PC Environment A Standalone 486 PC Environment

Database Size in 1000 Record Database Size in 1000 Rows

The CITY Transaction•
The TPC-A Transaction
The TPC-B Transaction

Fig. 6.7, Comparison between the CITY and TPC-A, B scalability levels

6.3.2 Comparison Between the CITY and the TPC
Transactions' Scalability Ratios

This research looked at transaction scalability ratio as an important factor in
comparing transactions' behaviour. The scalability ratio as discussed before eliminates
any bias due to transaction cost. A comparison between the CITY transaction scalability
ratio and the TPC transactions' scalability ratios were conducted in the two tested
environments, the 386 and the 486. Fig. 6.8 and Table 6.8 present the results of the
comparisons.

Range in
1000 Rows

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 lo­
l l

11-
12

12-
13

13-
14

14-
15

TPC-A .08 .01 -.02 .01 .03 .01 .01 -.01 -.01 .01 .02 -.01 .01 .02
TPC-B .07 .03 0 .02 .01 '0 .01 .01 .02 -.01 .02 0 .01 0

CITY (386) .04 1 11 .0 4 .0 4 .04 .02 .04 .0 3 .02 .02 .03 .02 .03 .02
CITY (486) .06 .03 0 .0 3 • o 0 .03 .03 0 .03 0 .03 o .. .04

Table 6.8, Comparison between The CITY and TPC-A, TPC-B scalability ratio

Transaction Behaviour in Large Database Environments, A Methodological Approach. 211

6. Preliminary Test And Verification Of The City Benchmark.

Scalability Ratio of The CITY Transaction
in Comparison to The TPC-A and The TPC-B

in Two Standalone PC Environments

Database Range in 1000 Rows

' • TPC-A Transaction Ratio
• TPC-B Transaction Ratio

-O---- CITY 386 Transaction Ratio
*• CITY 486 Transaction Ratio

Fig. 6.8, Comparison between the CITY and TPC-A, B scalability ratios

6.4 Summary

This chapter discussed the preliminary test and verification of the CITY
benchmark. The test and verification process aimed at examining the consistency and
credibility of the benchmark results in a controlled environment. To maintain an overall
control over the tested system parameters, the preliminary test took place in two
standalone PC environments where all the parameters are controlled and programs can
run in a real single user mode. This test phase took over 8000 computing hours of
benchmark testing. Two PCs were running the benchmark 24 hours every day
including weekends for over six month. The results from each run was printed and
thoroughly examined to guarantee the accuracy of the results.

The CITY benchmark measures were found to be reproducible. The benchmark
test was replicated for over 1000 times, the variations in the benchmark measures were
highly insignificant.

One of the problems that were found was the first time measure. The computer
clock gave an exceptionally high first reading before giving consistent readings for all

Transaction Behaviour in Large Database Environments, A Methodological Approach. 212

6. Preliminary Test And Verification Of The City Benchmark.

the subsequent results. To solve this problem, a dummy loop was created specially to
eliminate those effects.

The verification also examined the CITY transaction atomicity, consistency and
durability. As all verification runs were conducted in a single user mode, isolation was
not tested.

Test of the CITY transaction scalability took the direction of testing transaction
scalability under increasing load and stepping processing power one step. The
benchmark was able to strain systems resources in the tested environments. The
benchmark scalability was tested against eight other mixes selected according to
resource utilisation requirement. The eight mixes ranged from simple low cost
transaction to expensive transaction. Transaction cost was calculated as a function of
response time, the more time it uses the more expensive it is. The CITY transaction
scalability ratio was better than the scalability ratios of all the other mixes.

Finally, this chapter presented a comparison between the CITY benchmark
transaction behaviour and the behaviour of the TPC benchmarks' transaction in two
standalone PC environments. The comparison covered scalability levels and scalability
ratios. The TPC benchmarks suffered limitations in both areas. Comparing scalability
levels, the CITY benchmark transaction showed great diversion from the TPC
benchmarks under all loads and the CITY benchmark produced better scalability ratio in
all the tested environments.

This preliminary verification phase showed that the CITY benchmark has
produced reliable and consistent results. The Transaction mix has proved superiority
over a range of transaction mixes ranging from simple inexpensive transactions to
expensive transactions. Additionally, the CITY transaction has shown superiority over
the TPC benchmarks' transactions in all areas of comparisons. The next chapter
presents the large scale test of the CITY benchmark. The large scale test examined the
same performance parameters in addition to several other parameters that can not be
tested in a PC environment. The large scale test took place in seven different computer
environments ranging from SUN work stations to large mainframes. Those
environments run wide variety of DBMS and run under different operating systems.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 213

CHAPTER 7

LARGE SCALE TEST AND VERIFICATION of
The CITY BENCHMARK

i

7. Large Scale Test And Verification Of The City Benchmark.

CHAPTER 7

LARGE SCALE TEST AND VERIFICATION of The CITY
BENCHMARK

7.1 Introduction

Chapter six presented the preliminary test of the CITY benchmark. That chapter
presented the test of the basic requirements of benchmark verification. This chapter
presents the results of the large scale test of the CITY benchmark in several industrial
organisations. The test was conducted in different environments ranging from
standalone workstations to large mainframes and multiprocessors environments. The
test covered some areas that were covered by the previous chapter and some other areas
that can not be tested in a PC environment.

Large scale verification followed the same line of test that was presented in
chapter six with additional test of portability, consistency between runs, and very large
databases. All the presented results in this work has been calculated in a single user
controlled environment except for the large mainframe environment which was very
difficult to control due to the large number of users connected to the system. In each
experiment, a single factor was tested at a time. That factor was measured
independently of other factors.

The CITY benchmark large scale test was repeated in each of the computer
environments presented above. The large scale verification process of the CITY
benchmark tested the following factors: •

• the benchmark measures are reproducible;
• the benchmark is hardware independent;
• the benchmark is software independent;
• the benchmark is DBMS independent;
• the benchmark is application independent;
• the benchmark measures are comparable between machines and DBMS;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 215

7. Large Scale Test And Verification Of The City Benchmark.

• the benchmark is clear and simple to construct;
• the benchmark usage cost is low.

7.2 Reproducibility of the Benchmark Measures

Similar to what was done in the standalone environment, reproducibility of the
CITY benchmark results was tested by replicating the benchmark run and comparing
the results in every tested environment. For each environment, the CITY benchmark
runs were replicated for at least fifteen times except for the multiprocessors
environment where they were replicated for just seven times. For each environment, the
basic characteristics of benchmark reproducibility were tested by examining the same
factors that were discussed in chapter six (§6.2.1), as a reminder, those factors are the
following.

• Clock adjustment and first transaction effect.
• Reproducibility of the benchmark measures within a single loop.
• Reproducibility of the benchmark runs.
• Duration of loops time.
• Duration of full test of DBMS.
• Transaction atomicity.
• Transaction consistency.
• Transaction isolation.
• Transaction durability.

7.2.1 Clock Adjustment and Eliminating First Transaction
Effect

The clock adjustment problem that was found in the PC environment was found
again in all other environments that were examined by this research. In all cases the first
clock reading was exceptionally high and the first database operation took longer than
all the subsequent operations. An example for that first time behaviour is illustrated in
Fig. 7.1. The figure demonstrates the first time/collected in a workstation environment
and shows that also in this environment transaction response time took several
iterations to settle down

Transaction Behaviour in Large Database Environments, A Methodological Approach. 216

7. Large Scale Test And Verification Of The City Benchmark.

First Transaction Response Time in
a SUN SPARC Environment

c 10
S 9 «n 8
e 7
« 6
S 5
H 4

0 1 2 3 4 5 6 7 8 9 1 0 1 1
Loop Number

Fig. 7.1, F irs t transaction response time in SUN SPARC environment

7.2.2 Reproducibility of the Benchmark Measures Within a
Single Loop

Similar to the PC environment, the verification process examined the time
measurements calculated from each loop. The variance between single loop response
times was used as an index of spread of the collected measurements. The variance is
discussed in details in chapter three (§3.6.1.2).

An example of the collected results is presented in Table 7.1. The table presents a
subset of the collected loop times collected from a workstation environment under
scalable database load. Each loop in that test was repeated over 2000 times before the
variance was calculated. The same process was repeated for each set of loops
representing different database load ranging from 5000 rows to 100,000 rows. The
calculated variances of the loops presented in Table 7.1 are as follows: variance of 5000
rows = 0.5; variance of 10000 rows = 0.6; variance of 15000 rows = 0.3; and variance
of 20000 rows = 0.8.

Transactions in the SUN SPARC environment followed a pattern of behaviour
similar to that in the PC environment presented in chapter six. All calculated response
times were concentrated around the calculated .mean. The variance as presented above/
shows that the spread between the calculated response times is negligible and permits
using loops mean response times as a representative value of response times of all
loops. Fig. 7.2 shows the behaviour of a sample of fifty time measurement
representing different loads.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 217

7. Large Scale Test And Verification Of The City Benchmark.

Table 7.2, classifies the 50 response times sample collected from the SUN
SPARC environment. Four tables' sizes are presented in that table, 5000 rows, 10,000
rows, 15,000 rows, and 20,000 rows. The results in this environment were similar to
the results obtained from the PC environment. The collected response times showed
very little spread between three or four response times and were highly centred around
the sample arithmetic mean. Fig. 7.3, illustrates the distribution of the SUN SPARC
fifty response times sample readings.

Loop number 2500 Rows 5000 Rows 7500 Rows 10000 Rows
Loop 1 6 5 3 3
Loop 2 3 3 3 4
Loop 3 4 3 4 7
Loop 4 3 3 3 5
Loop 5 3 3 3 6
Loop 6 3 3 3 4
Loop 7 2 3 3 5
Loop 8 3 3 3 4
Loop 9 3 2 3 4
Loop 10 3 3 3 3

Table 7.1, Spread of C ITY measures in a SUN SPARC environment

Fig. 7.2, Spread o f C ITY measures in SUN SPARC environment
Transaction Behaviour in Large Database Environments, A Methodological Approach. 218

7. Large Scale Test And Verification Of The City Benchmark.

Response Time in
Seconds

Frequency of
5000 Rows

Frequency of
10,000 Rows

Frequency of
15,000 Rows

Frequency of
20,000 Rows

2 9 4
3 36 29 37 13

4 3 12 9 24

5 1 5 4 4

6 1 7

7 2

s'' 5000 Rows
Average Response

10,000 Rows
Average Response

15,000 Rows
Average Response

20,000 Rows
Average Response

2.98 3.36 3.34 4.22
Table 7.2, Frequency values of C ITY measures in a SUN SPARC environment

Frequency Values of The CITY Transaction Response Time
in a SUN SPARC Environment

Table Size is 5000 Rows Table Size is 10,000 Rows

2 3 4 5 6
Response Time in Seconds

Table Size is 15,000 Rows

2 3 4 5
Response Time in Seconds

Table Size is 20,000 Rows

3 4 5 6 7
Response Time in Seconds

Fig. 7.3, Frequency values of The C ITY measures in a SUN SPARC environment

Transaction Behaviour in Large Database Environments, A Methodological Approach. 219

7. Large Scale Test And Verification Of The City Benchmark.

7.2.3 Reproducibility of the Benchmark Runs

To compare the results obtained from the different runs, one way analysis of
variance (ANOVA) was conducted. The one way ANOVA is a special case of more
general problems in which one may have taken samples from a number of different
classes, or categories and wish to test the hypothesis that the population means of the
classes are equal. If the ANOVA result shows that there is no significant difference
between all values, the mean of those values can be used to represent all the collected
values.

An example of the CITY benchmark results is presented in tables 7.3, 7.4 and
7.5. The values in Table 7.3 are just a subset of the CITY benchmark results from the
SUN SPARC environment or show how the ANOVA was calculated.

Database Size Run 1 Run 2 Run 3 Run 4 Run 5
10,000 Rows 3.346 3.409 4.390 4.369 3.930
20,000 Rows 3.488 4.036 4.615 4.639 3.913
30,000 Rows 4.257 4.036 4.865 4.918 4.286
40,000 Rows 4.615 6.250 5.294 5.325 4.712
50,000 Rows 5.114 6.294 5.806 5.696 4.972
Average(x,) 4.164 4.859 4.994 4.989 4.363
X 4.674 4.674 4.674 4.674 4.674
(Xi - x) -0.510 0.185 0.320 0.316 -0.311
(* - X)2 0.260 0.034 0.103 0.100 0.097

Table 7.3, Sample o f The C ITY measures from different runs

Table 7.3 presents the source of variation between columns due to difference
between columns' means. From Table 7.3, variation between columns = 2.966.

Table 7.4 presents the residual due to: difference between observations and
columns mean. From Table 7.4, Residual between columns = 12.608.

The calculated ratio of F test for the between runs (rows) was 1.176. The critical
value at 99% was 4.43 with 4 and 20 degrees of freedom. The calculated ratio of F test
is highly insignificant indicating virtually no difference among the five runs. That result
Transaction Behaviour in Large Database Environments, A Methodological Approach. 220

7. Large Scale Test And Verification Of The City Benchmark.

indicates that the CITY benchmark runs were reproducible and there was no significant
difference between the different test runs. It also indicated that users can use the overall
average over the five runs as a representative value for each of the runs. Fig. 7.4
presents a graphical representation of the five runs.

Database Size Xi - x¡ X2- Xi X3 - xi X4 - Xi X s - x i

10,000 Rows 0.669 2.103 0.365 0.385 0.187

20,000 Rows 0.457 0.677 0.144 0.123 0.202

30,000 Rows 0.009 0.306 0.017 0.005 0.006

40,000 Rows 0.203 1.935 0.090 0.113 0.122

50,000 Rows 0.902 2.059 0.659 0.499 0.371

Table 7.4, Calculation of ANOVA of The C ITY measures from different runs

Table 7.5 presents the ANOVA table, for observations given in Table 7.3.

Source SS DF MS F ratio—MSrgs / MSj-gs p-Value
Between Columns 2.966 4 0.741 0.741 /0.630 = 1.176 p < .01 = 4.43
Residual 12.608 20 0.630
Total 15.574 24
Table 7.5, Calculation of ANOVA of the C ITY measures from different runs

Example O f The Results from Five Runs in the Same
Environment

Fig. 7.4, Sample o f The C ITY measures from different runs
Transaction Behaviour in Large Database Environments, A Methodological Approach. 221

7. Large Scale Test And Verification Of The City Benchmark.

Bearing in mind that the original test of the previous example was repeated 35 five
times and the database sizes for those runs varied from 5000 rows to 100,000 rows
with 5000 rows' interval, also bearing in mind that the verification process was
conducted in eight different environments, and reproducibility of the results was not
just tested for the CITY runs but for all the test runs that were required for the
verification stage, it was impossible to manually repeat the previous process for all the
runs that were required for the verification test. Accordingly, the present author has
developed a program written in C programming language to calculate the ANOVA of
any given sample. The program obtained its input values from the benchmark result file
and automatically calculated the ratio of F test for those obtained results. The program
code is presented in appendix E and the ANOVA is discussed in detail in chapter three.

7.2.4 Duration of Loops Time

Testing loop time duration in the PC environments found that using 900 seconds
loop was quit sufficient to obtain a good sample of measurements that enjoys highly
insignificant variances. The same test was repeated in a SUN SPARC environment.
That test indicated whether the originally selected loop time were good enough for
larger environments or not.

In the SUN SPARC environment, loop duration was tested using 900 seconds
loop, 1800 seconds loop, 3600 seconds loop and 9000 seconds loop. Each run was
repeated thirst times to collect a reasonable number of measurements. The results of
loop duration test are presented in Table 7.6.

Loop Time 10000 Rows 20000 Rows 30000 Rows 40000 Rows 50000 Rows
900 Seconds 6.122 5.732 6.207 5.806 7.031
3600 Seconds 6.143 5.210 5.180 4.993 5.634
9000 Seconds 4.836 8.721 6.461 5.784 6.589

Table 7.6, Comparison between C ITY measures based on test loop duration
/

Transaction Behaviour in Large Database Environments, A Methodological Approach. 222

7. Large Scale Test And Verification Of The City Benchmark.

Comparison Between Transactions Response
Time Based on Loop Duration

T3
C
o
(Jav:
a
Q
£
H

C/3cOQ-
»

X

Database Size in 1000 Rows

" O — 900 Seconds

• 3600 Seconds

• 9000 Seconds

Fig. 7.5, Comparison between The C ITY measures based on test loop
duration

A one way analysis of variance ANOVA was calculated for the three different
loop duration. The calculated ratio of F test for the between rows was 1.496. The
critical value at 99% was 5.99 with 4 and 10 degrees of freedom. The calculated ratio
of F test shows that the difference between rows is statistically insignificant indicating
that any one of the three loop duration can be used to test database. Fig. 7.5 illustrates
transaction patterns using the three loops' duration.

7.2.5 Duration of Full Test in Multi-User Environment

As presented before, all test runs for the CITY benchmark was conducted in a
single user mode. That is to maintain overall control on the test measurement and
allowing the ability to test one system against another. However, the CITY benchmark
is designed to be used in multi-user mode in OLTP environment. In this case for all test
runs steady state condition must be achieved before the measurement interval begins.
That can be decided by examine data generated by earlier tests and empirically
determine when the first log would happen, and consequently, the ramp-up period can
be decided. The ramp-up period must guarantee that the database has performed at least
Transaction Behaviour in Large Database Environments, A Methodological Approach. 223

7. Large Scale Test And Verification Of The City Benchmark.

one log file switch and the system had reached steady state condition. The database to
ramp down period must also be determined.

7.2.6 Test of Transaction Atomicity

The preliminary test in the PC environments guaranteed the atomicity of the CITY
benchmark in that system. The same process was repeated in all the tested
environments by:

1. running the benchmark for randomly selected records and verify that those
records have been changed;

2. running the benchmark for randomly selected records substituting COMMIT
transaction by ABORT. The records were checked to ensure that they had
not been changed.

7.2.7 Test of Transaction Consistency

The CITY benchmark consistency was tested in large environments by applying
the following steps:

a. One random record was updated and its integer value is increased by one.
b. Ten random records are updated and their integer values are increased by

one.
c. The insert database had one logical record added for each committed

transaction, none for any aborted transactions.

The step showed that the CITY benchmark transaction took the database from one
consistent state to another.

7.2.8 Test of Transaction Isolation
}

Isolation of transactions means that the operations of concurrent transactions must
yield results which are indistinguishable from the results which would be obtained by
forcing each transaction to be serially executed to completion in some order. This
property is also called serializability.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 224

7. Large Scale Test And Verification Of The City Benchmark.

This property was not tested during the benchmark verification process because
all runs took place in a single user mode.

7.2.9 Test of Transaction Durability

The CITY benchmark durability was tested by forcing the tested systems to fail
during the benchmark test by forcing a quit from the DBMS. The committed
transactions were then checked for transaction completeness.

This test ensured the ability of the tested systems to preserve the effects of
committed transactions. It also ensured the consistency of the database after recovery
from database failures.

7.3 Portability of the CITY Benchmark

The problem of adapting benchmarks to different computer architecture is called
benchmark portability. Ferrari [FERR78] defines portability as:

"The ability to transport workload Vfj running on system S [to S n provided
that W[will not change"

In other words portability implies that, for any given benchmark script it should
be hardware independent, software independent and database management system
independent to satisfy portability requirements. Writing a benchmark in high-level
programming language implies hardware independence provided that the compiler is
available. And a benchmark based on logical rather than physical resources could be
used as a common metric in performance comparison studies. Ferrari [FERR78], lists
the following characteristics of the ideal benchmark for use in selection studies.

1. A benchmark should be coded in a standard high level language to minimise
code conversion.

2. Debugged to the extent that result^' are predictable on all machines being
compared.

3. Data files should be readily acceptable by all systems, also consistent with
the architecture of each system so as to avoid unfair comparisons or lack of
validity of results.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 225

7. Large Scale Test And Verification Of The City Benchmark.

4. Benchmark conversion should be monitored to determine the ease of
conversion of the benchmark to run on a particular system.

5. Automatic checks on benchmark results.

For portability reasons, the CITY benchmark is coded in C high-level language.
The C high-level language compiler is widely available on all ranges of computers.
Through the CITY benchmark test the program was performed in a wide range of
environments, the C compiler was available in all those environments and the test did
not require changing the benchmark programming code.

The CITY benchmark database management system data manipulation language is
written in standard SQL interface. The SQL is the standard practice in the computer
market and available for all ranges of database management systems.

The files resulted from the benchmark test are in a standard ASCII code or
EBCDIC code that were the available codes for the computers used for the benchmark
tests. The ASCII code and the EBCDIC code are readily accepted by all ranges of
computer systems.

Some benchmark conversion was required due to the lack of some types of
attributes in some of database management systems. The conversion was easy enough
to be conducted by external users. The benchmark results were checked and examined
after each run to check the correctness of the benchmark results. The benchmark
portability was examined by testing three main portability features:

• the benchmark is hardware independent;
• the benchmark is software independent;
• the benchmark is database management system independent.

7.3.1 Hardware and Software Independence

The benchmark was constructed without bias toward any particular architecture.
To test the benchmark portability between different architecture, it was tested on
different levels of hardware running under different operating systems. The test
computers ranged from standalone PC running under MS/DOS operating system to
large mainframes running under MVS/XA operating system. In between, other tests
took place in other environments running different operating systems such as UNIX
and VMS. The test and verification process took place in the following environments._____
Transaction Behaviour in Large Database Environments, A Methodological Approach. 226

7. Large Scale Test And Verification Of The City Benchmark.

• Standalone PC based on 386 Intel processor running under MS/DOS
operating systems and using commercial RDBMS.

• Standalone PC based on 486 Intel processor running under MS/DOS
operating systems and using commercial RDBMS.

• SUN SPARC running under UNIX operating systems and using
commercial RDBMS in single user mode.

• SUN SPARC running under UNIX operating systems and using
commercial RDBMS in single user mode with network connection (database
management system run on a different computer to the tables).

• VAX 4000 running under VMS operating systems and using commercial
RDBMS in single user mode.

• Teradata system 3 multiprocessing database machine.
• Teradata system 4 multiprocessing database machine.
• NCR 3600 multiprocessing computer running under UNIX operating

systems and using commercial RDBMS in single user mode.
• IBM 3090 mainframe computer running under MVS/XA operating systems

and using commercial RDBMS.

7.3.2 Database Management System Independent

The second objective was to prove that the CITY benchmark is database
management system independent. As presented before, the CITY benchmark database
operadons (transaction script) were written in standard ANSI SQL language. The SQL
is the standard interface of most of the running database management systems in the
market. The CITY benchmark was tested using the leading database management
systems in the market, ORACLE, INGRES, DB2, and Teradata database machine.
Running the benchmark under different database management systems did not require
changing the benchmark script.

7.4 Large Scale Test of the Scalability of the CITY Transaction
/

Scalability implies portability, but includes some factors that are scalable but not
portable. For example, floating point operations that are scalable but not portable due to
the difference in their precision and round-off error. Benchmark scalability could be
defined as:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 227

7. Large Scale Test And Verification Of The City Benchmark.

"the ability of the benchmark test to strain DBMS resources regardless of
the architecture and the amount of resources available for the benchmark
test"

7.4.1 Large Scale Test for Scalability

Database management systems are available on a variety of architectures and
operating systems ranging from standalone PC to large mainframes and parallel
processors. Depending on the hardware and the available resources, a benchmark
workload that might be adequate to strain the resources of one system might be
inadequate to test scalability of another. Workloads of general purpose benchmarks
should be adequate to test different DBMS on all ranges of computers and should be
able to scale up different systems regardless of the capabilities and architecture of the
system under test.

Scalability in this phase took three directions: increasing database size, increasing
processor power, and increasing number of available processors (parallel database
machines). Comparing different database management systems was achieved by scaling
up database size. Scaling up processor power tested CPU intensive operations. Scaling
up number of processors tested I/O intensive operations (JOIN).

Scalability of the CITY transaction was tested in several computer environments
ranging from SUN SPARC workstations to large mainframe computers. The CITY
benchmark was also tested in multi-processors' environments supporting up to four
parallel processors. In designing for scalability, the experiments tested the CITY
transaction under the following scalability loads:

1. scaling up tables' sizes from 1000 rows to one million rows;
2. scaling up the tested system processor power from a standalone 386 PC to a

large mainframe.
3. scaling up the number of serving processors from a single processor system

to four parallel processors.

In all cases the CITY transaction took scaling behaviour. Fig. 7.6 demonstrates
the CITY transaction behaviour in all the tested environments. Regardless of database
size, processor power and number of parallel processors the CITY transaction applied
testable load.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 228

7. Large Scale Test And Verification Of The City Benchmark.

Scalability of The CITY Transaction in
Several Computer Environments

Three Mid Range Environments A Large Mainframe Environment

Database Size in 1000 Rows Database Size in 1000 Rows

« — Scalability in VAX
■«---- Scalability in SUN-1
■«---- Scalability in SUN-2

Fig. 7.6, Scalability of The CITY measures in several computer environments

7.4.2 Transaction Scalability VS Usage Cost in a Range of
Computer Environments

Chapter six (§6.2.2.1), showed that transaction load of the CITY benchmark
produced better scalability ratio than eight different mixes of transactions in two
standalone PC environments. This phase tested the same eight mixes that were
presented in chapter six against the CITY transaction workload in a SUN SPARC
environment. Those transactions varied in basic database operations and transaction
workload.

The empirical studies tested eight mixes that varied in workload and transaction
cost. Scalability of the eight mixes were tested against increasing database size. Each
mix consisted of twenty database operations to equal the number of database operations
in the CITY benchmark script. To remind the reader, the mixes are presented below.

/
1. Mix 1: One row qualified retrieval + one insert + one row qualified update.
2. Mix 2: 100% one qualified update + one row qualified retrieval + one row

insertion.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 229

7. Large Scale Test And Verification Of The City Benchmark.

3. Mix 3: 100% one row insertion + one row qualified retrieval + one row
qualified update.

4. Mix 4: 75% one row qualified retrieval + 25% Ten rows sequential retrieval
+ one insert + one row qualified update.

5. Mix 5: 55% one row qualified retrieval + 50% Ten rows sequential retrieval
+ one insert + one row qualified update.

6. Mix 6: 25% one row qualified retrieval + 75% Ten rows sequential retrieval
+ one insert + one row qualified update.

7. Mix 7: Ten rows sequential retrievals + one insert + one row qualified
update.

8. Mix 8: JOIN mix that accesses two tables and returns 100 rows.

7.4.3 Scalability of The CITY Transaction in Comparison To
Different Mixes in SUN SPARC Environment

The comparison in the SUN SPARC environment produced similar results to
the PC environments. It showed that the CITY transaction has produced scalability
levels higher than that of other tested mixes. The results in SUN SPARC environment
are presented in Table 7.7. Fig. 7.7, summarise the results of testing the CITY
transaction scalability pattern in comparison to the patterns of other mixes.

The CITY transaction scalability has produced better result because as shown in
chapter three, the basic components of some the tested mixes such as the insert mix and
the update mix are not scalable, therefore the mix itself could never be scalable no
matter the database size or the CPU speed. Even after adding some other database
operations, such as qualified retrieval operation, the mix scalability still not high
enough for testability. For some other mixes such as the sequential retrieval mix and the
25% sequential retrieval mix, despite the expensive transaction mix, due to the
relatively high number of I/O operations, the mixes do not translate that cost to higher
value when moving from one database size to a higher database size.

Similar to the PC environments, the test showed that expensive mix does not
guarantee transaction scalability, but the overall mix scalability is a function in all the
database operations contained in that mix. For example, JOIN mix (mix 8) that is
expensive mix does not produce the best scalability level. Fig. 7.8, illustrate the CITY
transaction scalability in comparison to JOIN mix scalability.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 230

7. Large Scale Test And Verification Of The City Benchmark.

Database
Size

20,000 Rows
Response Time

40,000 Rows
Response Time

60,000 Rows
Response Time

80,000 Rows
Response Time

100,000 Rows
Response Time

CITY 5.634 5 .357 6.721 8 .654 9 .678

Mix I 0 .818 0 .812 0 .819 0 .732 0 .733

Mix 2 0.430 0.440 0.440 0.470 0.480
Mix 3 0.188 0.188 0.147 0.134 0.133

Mix 4 1.205 1.059 1.037 1.056 1.103
Mix 5 1.602 1.625 1.233 1.192 1.238
Mix 6 2.083 1.604 1.787 2.560 1.981
Mix 7 1.259 1.365 1.745 1.809 1.996
Mix 8 11.688 9.677 10.843 11.392 13.043

Table 7.7, The CITY transaction scalability level against other transactions' mixes

Scalability Level Axj

40,000-20,000
Ax2

60,000-40,000

Ax 3

80,000-60,000

Ax4

100,000-80,000
CITY -0.277 1.364 1.933 1.024

Mix 1 -0.006 0.007 -0.087 0.001
Mix 2 0.010 0.000 0.030 0.010
Mix 3 0.000 -0.041 -0.013 -0.001
Mix 4 -0.147 -0.022 0.019 0.046
Mix 5 0.023 -0.392 -0.040 0.045
Mix 6 -0.479 0.183 0.773 -0.579
Mix 7 0.106 0.380 0.064 0.187
Mix 8 -2.011 1.166 0.549 1.651

Table 7.8, The CITY transaction scalability level against other transactions' mixes

Transaction Behaviour in Large Database Environments, A Methodological Approach. 231

7. Large Scale Test And Verification Of The City Benchmark.

Scalability of Eight Transactions' Mixes in
Comparison to The CITY Transaction in a

SUN SPARC Computer Environments

Database Size in 1000 Rows
— • — The CITY Transaction

One Row Qualified Retrieval
-----• — Ten Rows Sequential Retrieval
-----0---- 75% Qualified Retrieval
-----■— 50% Qualified Retrieval

25% Qualified Retrieval
— *— One Row Insertion
— ft— Twenty Update 1 Rows

Fig. 7.7, The CITY transaction scalability level against other transactions

Scalability of a JOIN Transaction That
Accesses Two Tables and Returns 100 Rows

in Comparison to The CITY Transaction in a
SUN SPARC Environment

Database Size in 1000 Rows
{

----- • — CITY Transaction
JOIN Mix

Fig. 7.8, The CITY transaction scalability level against JOIN transaction

Transaction Behaviour in Large Database Environments, A Methodological Approach. 232

7. Large Scale Test And Verification Of The City Benchmark.

7.4.4 Scalability Ratio of The CITY Transaction in
Comparison To Different Mixes in Three Computer
Environments

This section compares the scalability ratio of the CITY transaction to the
scalability ratio of the eight mixes presented in the previous section. The results of this
comparison is similar to the result found in the standalone PCs environments. The
result of the comparison in the SUN SPARC environment is presented in Table 7.9.

Fig 7.9 illustrates transactions' scalability ratio in the SUN SPARC environment.
It shows that the CITY transaction scalability ratio was better than all the scalability
ratios of all other eight mixes. That is because some transactions consist of database
operations that originally produce low scalability ratios such as qualified retrieval of one
row using unique key which in many cases produces a negative scalability ratio due to
its index dependence. On the other hand some other transactions could produce high
levels of scalability, yet they are too expensive to produce equally high scalability ratio.
The JOIN mix (mix 8),can be used as an example because it is the most expensive mix
produces the lowest scalability ratio. This can be referred to the relatively high cost of
transaction execution that swamps the benefit from the level of the workload.

Scalability Ratio Ay i/y i
20->40

Ay2/y2
40->60

Ay3/y3

60 -> 80
Ay4/y4

80 -> 100
Sum of Ratios

CITY -0.049 0 .255 0 .288 0.118 0.611

Mix 1 -0.007 0.009 -0.106 0.001 -0.104
Mix 2 0.023 0.000 0.068 0.021 0.113
Mix 3 0.000 -0.218 -0.088 -0.007 -0.314
Mix 4 -0.122 -0.020 0.019 0.044 -0.080
Mix 5 0.014 -0.241 -0.033 0.038 -0.222
Mix 6 -0.230 0.114 0.433 -0.226 0.091
Mix 7 0.084 0.278 0.037 0.103 0.503
Mix 8 -0.172 0.120 0.051 0.145 0.144

Table 7.9, The CITY transaction scalahfility ratio against other transactions' mixes

Transaction Behaviour in Large Database Environments, A Methodological Approach. 233

7. Large Scale Test And Verification Of The City Benchmark.

Scalability Ratio of The CITY Transaction in Comparison
Different Mixes in a SUN SPARC Environment

to

«os

0.6

0.4

0.2

■O
■2 0.0«u«3

-0.2

-0.4

1'k X ------------- 1,8 ^ '

Y /

4-------- -----------------

CITY
-----• ---- Mix 1
-----B---- Mix 2
-----O---- Mix 3
-----■--- Mix 4
-----□--- Mix 5
-----*--- Mix 6
-----A--- Mix 7
-----■--- Mix 8

20 -> 40 40 -> 60 60 -> 80
Tables Range in 1000 Rows

80 -> 100

Fig. 7.9, The CITY transaction scalability ratio against other transactions' mixes

7.5 Comparability of The Benchmark Measures

Comparability of test results is defined by "the ability to produce results that can
be meaningful and comparable from one system to another".

Comparisons between systems could be made based on one of three main indices:

• productivity;
• responsiveness;
• resource utilisation.

Resource utilisation depends on some non-DBMS factors such as platform
specification. Hence, response time and throughput have been used as the database
industry standard practice to compare different systems. In the CITY benchmark
produces both response time and system throughput that is calculated as the reciprocal
of response time for each tested DBMS. Those measures could then be used as basis
for different DBMS comparisons. In comparing DBMS systems, the CITY benchmark
could give the tested system throughput as number of CITY TPS or calculates systems'
performance at specified database size. In this work all examples are based on
comparing response time, but CITY TPS could be equally used. This research did not
consider factoring system cost to system cost comparison because system cost is not a

Transaction Behaviour in Large Database Environments, A Methodological Approach. 234

7. Large Scale Test And Verification Of The City Benchmark.

reliable figure as the cost of different components may depend on a variety of factors
outside the domain of the benchmark test and their cost may vary depending on things
such as price reduction and technology advancement.

This methodology could be used for either to compare one DBMS behaviour
running on different architectures or more than one DBMS running on the same or
different architecture. The main advantage of this methodology is its ability to give
DBMS user a clear understanding about the expected behaviour of the tested database
management system under different conditions and loads.

Table 7.10 and Fig. 7.10 present comparative measurements of two different
DBMS where response time has been used as the comparison performance index. It
was measured at scaled up tables' sizes to compare DBMS behaviour under scalable
load.

Size 1000 Rows 10 20 30 40 50 60 70 80 90
System 1 4.045 4.245 5.341 5.714 5.980 5.882 6.207 6.897 8.036
System 2 3.889 4.138 5.326 5.239 5.576 6.573 6.983 7.615 8.332

Table 7.10, Comparison between two DBMS using The CITY benchmark

Fig. 7.10, Comparison between two DBMS using The CITY benchmark

Transaction Behaviour in Large Database Environments, A Methodological Approach. 235

7. Large Scale Test And Verification Of The City Benchmark.

7.6 Summary

This chapter discussed large scale test and verification of the CITY benchmark,
which is phase two in the benchmark test. As presented in chapter six, the CITY
benchmark results were reproducible, consistent and portable. The large scale test
aimed at investigating whether those characteristics still exist in larger environments.

To that end, several experiments were conducted in a wide range of computer
environments. The experiments took place in several computer environments ranging
from standalone SUN workstation environment to large mainframes and
multiprocessors environments. The CITY benchmark measures reproducibility was
tested by repeating the benchmark test for at least fifteen times, to gather a
representative sample size, in every tested environment, then applying a one way
analysis of variance (ANOVA). In all environments, the variations in the benchmark
measures were highly insignificant. This verification phase took over 2000 computer
hours.

The tests of the CITY benchmark portability examined three main portability
features, hardware independence, software independence and database management
system independence. Portability was tested by running the benchmark in eight
different environments varying in hardware configuration and their operating systems.
Additionally, the benchmark script was run under different database management
systems including the three leading database management systems in the market, DB2,
Oracle and Ingres. Because the benchmark script was written in C high level language
and standard SQL interface commands, no changes were required to run the program
from one environment to the other and the benchmark was portable between all the
tested environments.

Test of the CITY transaction scalability took three directions. The first direction
was testing transaction scalability under increasing load. The second direction was
testing transaction scalability under increasing processing power. The third direction
was the ability to test database management systems running in multi-processors'
computers. The benchmark was able to strain systems resources in the tested machine.
The benchmark scalability was tested againstieight other mixes selected according to
resource utilisation requirement. The eight mixes ranged from simple low cost
transaction to expensive transaction. Transaction cost was calculated as a function of
response time, the more time it uses the more expensive it is. The CITY transaction
scalability ratio was better than all the other mixes' scalability ratio.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 236

7, Large Scale Test And Verification Of The City Benchmark.

This phase has also examined the CITY transaction atomicity, consistency and
durability. As all verification runs were conducted in a single user mode, isolation was
not tested.

This chapter demonstrated how the CITY benchmark could be used to evaluate
the performance of a specific database management system or compare different
database management systems.

By the end of this chapter it can concluded that the CITY benchmark has proved a
reliable tool in evaluating database performance. The Transaction mix has proved
superiority over a range of transaction mixes ranging from simple inexpensive
transactions to expensive transactions.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 237

CHAPTER 8

DISCUSSION

8. Discussion.

CHAPTER 8

D ISC U SSIO N

8.1 Introduction

This chapter presents a comparison between the CITY benchmark transaction
results and the TPC benchmarks (TPC-A, TPC-B and TPC-C) transactions. The
comparison demonstrated the technical limitations of the results of the TPC benchmarks
and explains the advantages of the CITY benchmark transaction over those
benchmarks. The comparison was conducted in different computer environments
ranging from SUN workstations to large mainframes and multiprocessors
environments and using the most widely used DBMS, Those environments were the
following :

• SUN 386i workstations environment;
• SUN SPARC workstations environment;
• SUN SPARC workstations environment using network;
• VAX environment;
• IBM mainframe environment;
• NCR 3600 multiprocessing environment;
• Teradata System 3 multiprocessing environment;
• System 4 multiprocessing environment.

Those environments run different operation systems. Those operating systems are
the following: •

• MS DOS;
• UNIX;
• VMS; /
• IBM MVS;
• IBM VM;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 239

8. Discussion.

The CITY benchmark was also tested using wide the most widely used DBMS.
Those DBMS are the following:

• ORACLE version 5;
• ORACLE version 6;
• INGRES version 6;
• DB2 for large mainframes;
• Teradata.

This chapter also presents the pragmatic application of the CITY benchmark. It
presents several examples of the utilisation of the CITY benchmark in real life and how
it is accepted in the database industry.

8.2 Com parison between the Behaviour of the CITY
Transaction and the Behaviour of the TPC Benchmarks A and B
Transactions

Chapter six presented a comparison between the TPC benchmarks A and B. The
comparison showed that the CITY transaction has produced better results than the TPC
benchmark in two standalone PC environments. This chapter extends this comparison
to seven other environments ranging from SUN workstation to large mainframe
environments. The comparison between the CITY benchmark transaction and the TPC
benchmarks A and B were based on the following criteria.

• Scalability levels of the benchmark transactions.
• Scalability ratios of the benchmark transactions.
• Comparability measures of the benchmark transactions between DBMS.
• Compliance with future trends.

In the following section the TPC benchmarks (TPC-A, TPC-B and TPC-C) are
compared to the CITY transaction in each on^ of the previous areas. The comparison
showed that the CITY transaction produced better results in each of the four areas.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 240

8. Discussion.

8.2.1 Comparison Between the Scalability Levels of the CITY
Transaction and the TPC (A and B) Transactions

The basic database operations of the transactions of the TPC-A and the TPC-B
were used in this test. Those database operations were used against increasing database
size. The studies covered several levels of computer architectures and the three leading
DBMS in the database market. Tables' sizes were scaled up gradually from 1000 rows
to 1,000,000 rows. Record size in all experiments was 200 bytes. The main findings
from the comparison can be summarised in the following points:

1. The TPC transactions' workload was not indicative of computing power in
any of the studied computer architectures, that is despite the wide difference
in the available resources for each environment.

2. Both the TPC-A and the TPC-B transactions transaction did not apply
enough load on the tested systems even at 1000,000 rows and the TPC
benchmarks response time at 5000 rows is not much different than their
response time at 1000,000 rows.

3. There was a significant deviation between the CITY transaction response
time and the TPC transactions response time specially at larger databases'
sizes.

The experiments revealed the same patterns of behaviour between the CITY
transaction and the TPC transactions when those transactions were tested in a range of
computer environments, those environments are listed below.

• Standalone PC based on 386 Intel processor.
• Standalone PC based on 486 Intel processor.
• Two SUN SPARC environments.
• VAX 4000.
• Teradata system 3 multiprocessing database computer.
• Teradata system 4 multiprocessing database computer.
• NCR 3600 multiprocessing database computer.
• IBM 3090 mainframe computer. /

Those findings agreed with the research hypothesis that because the TPC
benchmarks consisted of operations that are not scalable, the result from mixing those
operations will not be scalable, on the other hand, because the CITY transaction

Transaction Behaviour in Large Database Environments, A Methodological Approach. 241

8. Discussion.

contains scalable database operations, it will produce better scalability level than the
TPC transactions. An illustration of the findings are presented in Fig. 8.1 and Fig. 8.2.

Vi

co
u
4>

10

C »

£
8

o

E
6

H
V
V 3

4

co
C l ,
Vi

2

V
X 0

T J
COuo
s

E
H

oQ-

Comparison Between The CITY, The TPC-A and The TPC-B
Transactions in a Range of Computer Environments

SUN SPARC Environment 1 SUN SPARC Environment 2

Database Size in 1000 Records

A VAX Environment
Database Size in 1000 Rows

A Large Mainframe Environment

The CITY Transaction
The TPC-A Transaction
The TPC-B Transaction

Fig. 8.1, Comparison between The CITY and TPC-A, TPC-B in several computer
environments

Transaction Behaviour in Large Database Environments, A Methodological Approach. 242

8. Discussion.

Comparison Between The CITY, The TPC-A and The TPC-B
Transactions in a Range of Multiprocessors Computers Environments

Teradata System 3 Environment Teradata System 4 Environment

Table Size in 1000 Rows Table Size in 1000 Rows

NCR 3600 Environment

Ci t y Transaction
TPCA Transaction
TPCB Transaction

Fig. 8.2, CITY and TPC-A, TPC-B in multiprocessors environments

8.2.2 Comparison Between the CITY and the TPC
Transactions' Scalability Ratios

A comparison between the CITY transaction scalability ratio and the TPC
transactions' scalability ratios were conducted in all the previous environments. Fig.
8.3 and Fig. 8.4, present the results of the comparisons. The result can be summarised
in the following points:

/
1. In general, the CITY transaction has produced a better scalability ratio.
2. When the experiments used small tables' sizes, less than 100,000 rows, the

CITY transaction scalability ratio was 20% on average better than the TPC
transactions scalability ratios. When tables' sizes increased, over 100,000,

Transaction Behaviour in Large Database Environments, A Methodological Approach. 243

8. Discussion.

the CITY transaction started to deviate significantly from the TPC
transactions and produced 40% on average better scalability ratio.

3. The previous pattern was found with increasing processing power. As
processing power increased, the CITY transaction produced better
scalability ratio than that of the TPC transactions.

4. At the mainframe environment, which represents the real index for any test,
as tables' sizes and processing power were increased the maximum of all
experiments, the CITY transaction showed significant diversion from the
TPC transactions.

Scalability Ratio of The CITY Transaction in Comparison to
The TPC-A and The TPC-B in a Range of Computer Environments

SUN SPARC Environment 1

VAX Environment

SUN SPARC Environment 2

A Large Mainframe Environment

' O TPC-A Transaction Ratio
■ • " " TPC-B Transaction Ratio
-O- — CITY Transaction Ratio
“• CITY (486) Transaction Ratio

Fig. 8.3, Scalability ratio of The CITY and TPC-A, TPC-B in several computer
environments

Transaction Behaviour in Large Database Environments, A Methodological Approach. 244

8. Discussion.

Scalability Ratio of The CITY Transaction in Comparison to The TPC-A
and The TPC-B in a Range of Multiprocessors Computers Environments

Teradata System 3 Environment Teradada System 4 Environment

NCR 3600 Environment

"♦— TPC-A Transaction Ratio
— TPC-B Transaction Ratio
— CITY Transaction Ratio

Fig. 8.4, Scalability ratio of The CITY and TPC-A, TPC-B in multiprocessors
environments

8.2.3 Comparability of Transactions' Measures Between
DBMS

One of the main limitations of the TPC benchmarks is having a simple transaction
mix that consists of simple database operations. That mix is three update operations and
one row insertion. The TPC-B benchmark/ transaction consists of three update
operations, one row insert and a qualified retrieval. Those transactions will severely
penalise those systems with poor update or insert operations performance, ignoring that
they might have an overall good level of performance.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 245

8. Discussion.

A Comparison Between RDBMS 1 on SUN SPARC and RDBMS2 on VAX
Using The CITY Transaction and The TPC-A Transaction

T 3
CO0vV)

V
5/3soO.
5/3VX

m CITY Transaction Behaviour in VAX
-o— CITY Transaction Behaviour in SUN
•+----- TPC-A Transaction Behaviour in VAX
* ----- TPC-A Transaction Behaviour in SUN

A Comparison Between RDBMS1 on SUN SPARC and RDBMS2 on VAX
Using The CITY Transaction and The TPC-B Transaction

5/3
-o

CovVto
i tE

o
a .wVSfi

• CITY Transaction Behaviour in VAX
-o— CITY Transaction Behaviour in SUN

----- TPC-B Transaction Behaviour in VAX
* ---------- TPC-B Transaction Behaviour in SUN

Fig. 8.5, Comparing DBMS using both The CITY and The TPC-A and TPC-B

Transaction Behaviour in Large Database Environments, A Methodological Approach. 246

8. Discussion.

To test that assumption, the CITY transaction behaviour was compared to both
the TPC-A and the TPC-B transactions' behaviour in two different environments
running two different database management systems. The result of the comparison is
presented in Fig. 8.5. The database management system running on the SUN SPARC
produced better performance than the database management system running on the
VAX using both the TPC-A and the TPC-B transaction scripts. The DBMS running on
VAX has produced better performance pattern using the CITY transaction specially at
larger tables' sizes.

This result could be because the database management system running on the
SUN SPARC performs update operation better than the database management system
running on the VAX computer. The CITY transaction, which is a balanced transaction
mix of database operations, favoured the database management system running on the
VAX computer. This could be due to the balanced nature of that database management
systems and the way it performs its operation.

8.2.4 Compliance of The TPC Benchmark with Future Trends
of DBMS

Database market industry is moving towards multi-media, object orientation and
decision support systems. Rotzell and Loomis [ROTZ91, LOOM92], have discussed
some of those directions and their application. Those environments, if not characterised
by their large database sizes they definitely characterised by their large row size. An
example can be given by the new Microsoft product, Microsoft Access. That product
gives the database user a pictorial interface where he/she could see the tables' layout,
system design, key connection and foreign keys' connections. That system is able to
store pictures that were either drawn or scanned as a field in the row. Users could
eventually access that field through table index. That stored picture takes at least 100k.

In Fig. 8.6 an illustration of the effect of increasing row size on transaction
response time is presented. In that study the TPC-A and the TPC-B and the CITY
transactions' response times were compared with the CITY benchmark transaction
response time after increasing average row s^ze from 200 bytes to 2000 bytes, 4000
bytes and 6000 bytes consecutively. Row size effect was studied in three independent
experiments, each one of which used one of the tested rows' sizes. After the
completion of each test, the tables were deleted and database management was
terminated. Tables' sizes for the experiments are presented in Table 8.1.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 247

8. Discussion.

Table Name Test 1 Row Size Test 2 Row Size Test 3 Row Size

DB100 1000 Bytes 2000 Bytes 4000 Bytes

DB200 2000 Bytes 4000 Bytes 6000 Bytes

DB300 3000 Bytes 6000 Bytes 8000 Bytes

DBUPD 2000 Bytes 4000 Bytes 6000 Bytes

Table 8.1, Sizes of rows in row test of row size effect

The experiments showed that the TPC benchmarks, due to its low scalability, will
not be able to represent environments that are using any of the three row sizes examined
by those experiments. The CITY transaction was still sufficiently representative when
using 2000 bytes' tables, but when row size was increased to 4000 bytes and 6000
bytes, response time started to take wider diversion from the CITY transaction response
time. Due to the CITY transaction high scalability level, the CITY transaction script
could be used in the future to primarily test object oriented database (OODB)
environments by replacing the 200 bytes row size with larger row size to test those
environments.

Effect of Row Size on Transaction Response Time
Comparison Between The CITY, The TPC-A,

The TPC-B Transactions and 2000 Bytes
Row Size Response Time

Tables Size in 1000 Rows

Comparison Between The CITY, The TPC-A,
The TPC-B Transactions and 2000, 4000 and

6000 Bytes Row Size Response Time

20 q
18 “

....-j16 "
14 . y *12 "
10 "
8 ”
o — <►— «
4 "
2 " ■ io 4

0 10 20 30 40 50
Table Size in 1000 Rows

TPC-A Transaction
TPC-B Transaction
CITY Transaction
2000 Bytes Transaction
4000 Bytes Transaction
6000 Bytes Transaction

Fig. 8.6, Effect of row size on transaction response time (future trends)
Transaction Behaviour in Large Database Environments, A Methodological Approach. 248

8. Discussion.

8.3 Comparison between the CITY Benchmark and the TPC-C
Benchmark

In recognition of the technical limitations of the TPC-A and the TPC-B
benchmarks, the transaction processing council published a third benchmark called the
TPC-C. The draft of that benchmark was published in December 1991. The following
sections present a comparison between the TPC-C benchmark and the CITY
benchmark. The comparison covered the two areas.

• Transaction cost in terms of response time.
• Database size.

8.3.1 Comparison between the Cost of the CITY Transaction
and the Cost of the TPC-C Benchmark Transaction

Since publication of the TPC-C benchmark in December 1991 [TPC 91], it is yet
to be used. This could be referred to the exceptionally high cost of the TPC-C
transaction in terms of response time. This thesis tried to demonstrate this issue by
calculating the cost of the full script of the TPC-C benchmark and the cost of the on-line
programs of the TPC-C benchmark. The studies took place in a SUN SPARC
environment, an environment similar to that used to test the CITY transaction cost.

The first study tested the full script of the TPC-C using tables varying in size
from 1000 rows to 20,000 rows increasing by 1000 rows at a step. Table 8.2 presents
the results of the study and Fig. 8.7 illustrates the behaviour of the full script of the
TPC-C benchmark. The results of the study showed that the cost of the full script of the
TPC-C benchmark was over 11 times more expensive than the CITY benchmark cost
when the test used tables of 20,000 rows.

When a curve fit using ordinary least squares method to the values presented in
Table 8.2, the equation was the following:

/
y = 0.75789 + 2.73x (1)
with Correlation Coefficient (R^) = 0.984

Transaction Behaviour in Large Database Environments, A Methodological Approach. 249

8. Discussion.

The CITY benchmark transaction takes around 9 seconds using tables of 100,000
rows, if the previous equation (1) is used to forecast the response time of the TPC-C
benchmark using tables of 100,000 rows it will be around 76 hours.

Size (1000 rows) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CITY Response 3.7 3.8 4.1 4.8

TPC-C Response 7 8 9 11 13 15 19 23 24 24 31 33 38 36 41 43 51 52 53 55

Table 8.2, Comparison between the CITY measures and full TPC-C measures

The TPC-C Transaction Workload in
a SUN SPARC Environment

Database Size in 1000 Rows

Fig. 8.7, The TPC-C complete transaction workload in SUN SPARC
environment

The second study tested the script of the on-line programs of the TPC-C using
tables varying in size from 1000 rows to 12,000 rows increasing by 1000 rows at a
step. These sizes were constrained by the space available on the tested system. Due to
several software and hardware problems at a time the study could not use more than
12,000 rows' tables. Table 8.3 presents the results and Fig. 8.8 illustrates the
behaviour of the on-line script of the TPC-C benchmark. The studies showed that the
slope of the TPC-C transactions is steep, and while the response time is not high for the
smaller sizes of the test tables it increased sharply with larger sizes of the test tables.
Transaction Behaviour in Large Database Environments, A Methodological Approach. 250

8. Discussion.

The results in Table 8.3 shows that while the CITY response time and the on-line
programs of the TPC-C response time were almost equal at 5000 table size, the
response time of the TPC-C on-line programs at 10,000 rows was more expensive than
that of the CITY benchmark at 20,000 rows. When a curve fit using ordinary least
squares method to the values presented in Table 8.3, the equation was the following:

y = 1.9939 + 0.39484x (2)
with Correlation Coefficient (R^) = 0.89

When the CITY benchmark transaction response time using tables of 100,000
rows is compared to the response time of the on-line programs of the TPC-C calculated
from the previous equation (2), we find that while the CITY transaction response time
was 9 seconds the calculated response time of the TPC-C transaction was around 11
hours.

Size in 1000 rows 1 2 3 4 5 6 7 8 9 10 11 12
CITY Response 3.7 3.8
TPC-C Response 3.1 3.1 3.1 3.1 3.5 3.9 4.3 5.8 5.2 5.7 6.3 7.5

Table 8.3, Comparison between The CITY measures and on-line TPC-C measures

T3
COOV
£

£
H
v
e©
Q -

«
X

Workload of the TPC-C On-line
Programs in a SUN SPARC Environment

Fig. 8.8, The TPC-C on-line transaction workload in SUN SPARC
environment

Transaction Behaviour in Large Database Environments, A Methodological Approach. 251

8. Discussion.

8.3.2 Database Size of the TPC-C Benchmark

The latest TPC-C benchmark publications [TPC 91], specifies the TPC-C
database size to be over 40,000,000 rows where the total sizes of rows is around 1500
bytes. During the large scale verification of the CITY in a large mainframe environment
(the test used an IBM 3090), loading 1,000,000 rows took over four hours. Similarly,
in the Teradata environment loading 1,000,000 rows took also around six hours. The
current author expect that load 40,000,000 rows database will would take more that
160 hours (around seven days) in the mainframe environment and over 250 hours
(around eleven days) in the Teradata environment

8.4 Utilisation of The CITY Benchmark

Since the first publication of the CITY benchmark [REVE92a], it has been well
accepted by several users in the database industry. Several database users found in the
CITY benchmark a reliable tool that gives representative indications regarding their
DBMS performance.

The NCR computer company has consented publishing the performance results of
its new multiprocessor computer, NCR 3600, in this thesis and in any other
publications discussing database performance. The Teradata branch has permitted the
publication of their systems, Teradata System3 and Teradata System4 as performance
indicators of those database machines. The letter of consent is presented in appendix H.

In their process of re-engineering their database environment, a local authorities
computer centre has been using the CITY benchmark to produce a performance index
that can be used as a factor in the database re-engineering process. That was possible
using the CITY benchmark because it can run on any range of computers ranging from
standalone PCs to large mainframes. That process is presented and discussed by
Dobson in [DOBS93],

The CITY benchmark is going to be usqd as the performance index for the new
TOPSY database machine. The TOPSI is a database machine under construction in the
CITY university. A large group of researchers in association with the INGRES
database company are working in that project. The project is approaching its final
stages and the CITY benchmark will be used as the TOPSY database machine
performance index. ___
Transaction Behaviour in Large Database Environments, A Methodological Approach. 252

8. Discussion.

During the large scale verification of the CITY benchmark in a large airlines
company, the benchmark was used to detect a bottleneck in the system. The bottle neck
existed due to the selection of a wrong parameter that caused system delay during insert
operation. The parameter was corrected and the system was tested one more time using
the CITY benchmark to check the disappearance of that system bottleneck. The was
possible due to the existence of a monitor that showed the execution steps of the
benchmark transaction.

Finally, Abbey National, have decided to use the CITY benchmark to undertake a
commercial and technical evaluation for selecting a new product to replace the existing
software and DBMS. They are interested in examining three domains: OLTP; Batch;
and DSS. They are going to use the CITY benchmark as the index for the OLTP
environment performance. The letter of acceptance is presented in appendix H.

The previous users selected the CITY benchmark based on the quality of its
quantitative aspects, this research could be extended by conducting several field studies
to examine the effect qualitative aspects on benchmark selection.

8.5 Summary

This chapter presented a comparison between the CITY benchmark transaction
behaviour and the transaction behaviour of TPC benchmarks (A, B and C). The
comparison covered five areas: scalability levels; scalability ratios, consistency of the
benchmark measures, suitability of the benchmark for future prospects and transaction
cost. The TPC benchmarks suffered limitations in all areas. Comparing scalability
levels, the CITY benchmark transaction showed great diversion from the TPC
benchmarks under all loads and the CITY benchmark produced better scalability ratio in
all the tested environments.

In comparing systems, the TPC benchmarks (A and B) favoured database
management systems that perform better update operations. When two database
management systems, one that favours updatp operations and another that performs
database operations in a balanced way, were tested using both the CITY benchmark and
the TPC benchmark the TPC benchmarks favoured the first over the second and the
CITY benchmark favoured the second over the first.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 253

8. Discussion.

A test of the cost of the TPC-C transaction represented as transaction response
time found that the full script of the TPC-C would take around 75 hours to complete
one loop using table size of 100,000 rows. If the published database size (40,000,000
rows) is used the full script of the TPC-C would take around 1300 days to finish.

The study separated and tested the cost of the on-line programs of the TPC-C.
When a curve fit using ordinary least square method, it was calculated that the on-line
programs of the TPC-C would take 11 hours to complete one loop using table size of
100,000 rows. If the response time is extrapolated to the published database size which
is 40,000,000 rows the on-line programs will take around 180 days to complete one
loop.

By the end of this chapter it can concluded that the CITY benchmark has proved a
reliable tool in evaluating database performance. The Transaction mix has proved
superiority over a range of transaction mixes ranging from simple inexpensive
transactions to expensive transactions.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 254

CHAPTER 9

CONCLUSION AND FUTURE WORK

9. Conclusion And Future Work.

CHAPTER 9

CONCLUSION AND FUTURE WORK

9.1 Conclusion

For many years two benchmarks dominated the database industry, the first was
the Wisconsin benchmark [DeWI85] and the second was the TP/1 [ANON85]. The
Wisconsin benchmark has several technical limitations in the database design, row
length, table size, types of attributes and transaction mix. Gradually, the Wisconsin
benchmark lost ground to the TP/1 that became the database industry standard practice
where every database vendor has to market its product in number of TP/ls to be able to
sell that product. There has been awareness in the database industry that the TP/1 has
several limitations due to the over simplification of its transaction mix and lack of
standard guidelines for its implementation. In reliance to those problems the TPC
council was form to produce a standard benchmark for the database industry. The TPC
produced the TPC-A [TPC 89] that is a standard form of the TP/1 and inherited all of
its problems. To correct this problem they issued the TPC-B [TPC 90] which is based
on the TPC-A transaction mix in addition to one qualified retrieval. Due to the
limitations of both TPC-A and TPC-B the TPC council issued another benchmark, the
TPC-C [TPC 91]. The TPC-C implementation rules are not clear and its transaction mix
is too complex that since it was launched in 1991 it has not yet been used.

This thesis presented the CITY benchmark. Due to the technical limitations of the
existing database benchmarks, the main motivation of this research is to produce a
database benchmark that represent the OLTP environments. As discussed before, the
TPC council tried to produce several benchmarks such as the TPC-A, the TPC-B and
the TPC-C to perform this role. But due to either over simplification of transaction mix
in the cases of the TPC-A and TPC-B benchmarks, or due to over complication of the
transaction mix in the cases the TPC-C benchmark, the TPC benchmarks have failed to
produce performance results that accurately represent transaction behaviour in the high
volume transaction environments.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 256

9. Conclusion And Future Work.

The thesis discussed the most widely used benchmarks in general putting more
emphasis on the TPC benchmarks (A, B and C) in particular. It presented and
discussed in detail the description of the three benchmarks and the critique directed by
several researchers to each one of them explaining why the TPC benchmarks have
failed to play their planned role. It also presented an empirical approach to examine the
workload of the TPC benchmarks that discovered several technical limitations in there
scripts. Revell and Youssef [REVE90, REVE92a, REVE92b, REVE93], traced those
limitations to the lack of background study before the benchmark design stage. Those
limitations confirmed the critiques directed to the TPC benchmarks.

The thesis presented an investigation of on-line transactions in large database
environments. The tested environments were three of the largest organisations in using
computer resources and having the largest database environments in the UK, those
organisations were different in objectives and activities. Those environments were
selected because they represented a good example of high-volume transaction
environments due to their large on-line databases and their exceptionally heavy
transaction load. That investigation aimed to identify on-line transaction behaviour and
define the salient characteristics of databases in high-volume transaction environments.
The findings from those studies can establish the basis of a transaction and set of tables
that are representative to the studied environments.

The results of the studies have identified the typical behaviour of on-line
transactions and defined the main characteristics of large databases in high-volume
transaction environments. Those findings have disagreed with the patterns of
workloads of the TPC benchmarks A and B. The findings showed that the transaction
mix of the TPC benchmarks do not provide a model of the OLTP systems due to the
wide difference between typical transaction behaviour in large database environments
and the transaction mix of the TPC benchmarks transactions. Moreover, they do not
even provide a model of the ATM systems whose performance they are supposed to
simulate [REVE92b].

The CITY benchmark design is directly driven from the findings from the
empirical studies. The benchmark design took into consideration all the critiques
directed towards the TPC benchmarks A, B înd C. It is the first benchmark that is
designed as a result of studying the behaviour of on-line transactions and databases in
large database environments. The CITY benchmark is mainly designed to test and
compare database systems performance in high-volume transaction environments
(OLTP). The benchmark can play a role in diagnosing systems and detecting
bottlenecks provided that the existence of supporting software that can monitor the

Transaction Behaviour in Large Database Environments, A Methodological Approach. 257

9. Conclusion And Future Work.

execution on different database operations. The CITY benchmark can serve the
following objectives.

1. To evaluate the performance of a database management system.
2. To compare performance behaviour of different database management

systems.
3. To evaluate the impact of system modifications.
4. To evaluate the effect of system parameters.
5. It can play a role in diagnosing systems and detecting bottlenecks. This is

restricted to cases where supporting software exists.

The CITY benchmark verification process has demonstrated that the benchmark is
a comprehensive methodology that can evaluate the performance of different DBMS in
different architectures under increasing and realistic work load. The CITY benchmark
verification process of the CITY benchmark is presented by Revell and Youssef in
[REVE94a], The benchmark verification process showed that the CITY benchmark is
characterised by the following.

1. Relevance: the benchmark script is relevant to the OLTP domain because it
is derived from in-depth field studies in large OLTP environments.

2. Portability: it has been easily implemented on different systems and
architecture ranging from standalone PC environments to large mainframes
and multiprocessors computers.

3. Scalability: it is able to strain small and large computer systems.
4. Reproducibility: its are reproducible in large and small environments.
5. Simplicity: it is understandable and well documented.

9.2 Contribution of The Work

This research aimed to achieve several objectives. Those objectives can be
summarised in the following: •

• test the limitations of the TPC benchmarks;
• define the salient characteristics of large databases and identify typical

transactions’ behaviour in large database environments;
• build a database evaluation methodology that represent high-volume

transactions environments.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 258

9. Conclusion And Future Work.

This research has fulfilled all of the previous objectives and accomplished several
achievements in the database area for the first time [REVE94b]. These achievements are
the following:

• This work introduces for the first time the approach of studying systems in
action to study the main characteristics of large databases and understand
typical transaction behaviour in large database environments. Despite being
the most accurate method to get a comprehensive picture of transactions’
behaviour, this approach has never been employed before due to the effort,
time and cost involved in it.

• The work revealed for the first time the salient characteristics of large
database environments and clearly identified a typical behaviour of on-line
transaction in OLTP environments.

• This research has clearly shown that the TPC benchmarks are not
representative to the domain of high-volume transactions environments
(OLTP) and it explained why they could be misleading if used to test
database management systems in this domain.

• This thesis presents the first database performance evaluation methodology
based on in-depth studies in large database environments. The CITY
benchmark was constructed to overcome the limitations of the TPC
benchmarks. The benchmark is based on real on-line database transaction
operations and takes into consideration all the critiques directed towards the
TPC benchmarks. The benchmark design is based on in-depth studies in
large database environments and simulates a typical on-line transaction
operation at high-volume transactions’ environments (OLTP). The CITY
benchmark is characterised by being relevant, portable, scalable and simple.

9.3 Limitations of The CITY Benchmark

In chapter two (§2.6) several limitations of the existing benchmarks were
discussed. This research tried to overcome those limitations, it managed to solve some
and some others were difficult to overcome. May be future work will be able to handle
those limitations. The following sections discuss those limitations showing which
limitations have been treated and why others were so difficult to overcome.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 259

9. Conclusion And Future Work.

1. The benchmarks are data model dependent, (e.g., tree dependent or network
dependent or relational dependent).
The CITY benchmark is relational model dependent. That is because all new
DBMS are based on the relational model.

2. The benchmarks assumed uniform demand for requested records.
The CITY benchmark solved this problem by using a purely random
number generator that generates non-uniform distribution of the requested
transactions.

3. The benchmarks were tested in a single user mode.
However the CITY benchmark is designed to test multi-user environments,
the benchmark test and verification was applied in a single user mode
because it was the only way to gain a complete control on the benchmark
results. Accordingly, studying concurrency and the effect of increasing the
number of database users on the database performance was not studied.

4. The data models in the benchmark experiments did not relay on studying
real life database systems.
The CITY data model reflects real life database data models as it relays on
studying over 5000 on-line databases in large database environments.

5. The benchmarks database size is too small to be realistic.
The CITY databases size could be increased to virtually infinite size when
using response time approach. If the Transactions Per Second (TPS)
approach is used the basic database size consists of 4,000,000 rows that
increases to 5,000,000 rows by the end of the benchmark run. This kind of
load was found to be quit sufficient from this research empirical studies.

6. The benchmarks use only simple transaction types.
The CITY benchmark transaction models the exact behaviour of typical on-
line transaction in large database environments as it is based on examining
over 4800 applications and 40,000,000 transactions.

/
7. Transaction results and how they are treated is not clear. Transaction results

can be directed to one of three things: the main memory, a log file, and
computer terminal, in each case response time or system throughput will be
widely different.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 260

9. Conclusion And Future Work.

The CITY transaction output is directed to a user terminal similar to real life
situations.

9.4 Future Work

Benchmarks have several roles to play, may be the most contradicting roles are
evaluation and diagnostics. Database evaluation requires a standard benchmark that can
run without change from one system to another. Once the user is allowed to modify this
kind of benchmark, they lose their standard nature and their results become
incomparable between systems. This problem has occurred with the TP/1 where users
have implemented the benchmark in different forms and resulted losing its credibility
and eventually its was discarded as the market standard. On the other hand benchmarks
that are used for diagnosing DBMS should be allowed to be re-configured according to
the user requirements. Because the CITY benchmark is mainly designed for evaluating
and comparing DBMS, the benchmark users are not allowed to re-configure it. Future
work could build a second phase of the benchmark that is re-configurable according to
the benchmark user requirements and the benchmark user should have the ability to call
and run whichever version of benchmark based on those requirements.

Although the CITY benchmark is written in C programming language which is a
high level programming language, available in most environments and known to many
users, it is still difficult to understand and to modify by ordinary users. This work can
be extended by building a good user interface for the CITY benchmark. That interface
would allow the benchmark users to run the program and apply their changes without
the need to understand the C language. It will also produce the benchmark results
interactively on the users screen associated with all the required graphs.

Two important other areas of future work are decision support systems (DSS)
environment and object oriented database (OODB) environment. The approach could be
by defining the main characteristics that characterise the real life applications in those
environments. Chapters 3 and 4, discussed several guidelines to perform this stage.
Then the main factors characterising those environments could be mapped to a model
that represents the actual behaviour in those enyironments.

The main problem with DSS systems is a problem of definition. Database users
have a vague idea about the main characteristics DSS transaction and their typical
behaviour. Several benchmark designers such as DeWitt [DeWI85] and O'Neil
[GRAY91], claimed that they have developed the perfect benchmark to test DSS

Transaction Behaviour in Large Database Environments, A Methodological Approach. 261

9. Conclusion And Future Work.

environments, but most of that work has an intuitive basis. A proper definition of the
salient characteristics of DSS environments is required before having a benchmark that
is representative of those environments. A field study, an approach similar to what has
been done in this research, could lead to revealing the exact properties of the DSS
systems. Until that definition is completed, any work will fall short of realistic test of
those systems.

Transaction Behaviour in Large Database Environments, A Methodological Approach. 262

10. REFERENCES

10. References.

10. REFERENCES

[A G R A 87] Agrawal, R., Carey , M . and L ivny. M . "Concurrency Control
Performance Modeling Alternatives and Implications", ACM Transaction on
Database Systems, Voi 12, No. 1,1987, pp. 609-654.

[AH N 86] Ahn, L, et al., "Performance Evaluation of a Temporal Database Management
System", SIGMod ACM, 1986.

[A LA N 80] Alanko, T., et. al., "Methodology and Results of Program Behaviour
Measurements", ACM Sigmetrus, 7th IFIP W.G., 1980.

[A L A N 8 4] Alanko, T., et. al., "Virtual Memory Behaviour of Some Sorting
Algorithms", IEEE Transactions on Software Engineering, Voi. 10 No. 4, July
1984.

[A LLE 89] Allen, A. "Benchmarking for Beginners", EDP Performance Review, January
1989.

[AM ER 86] American National Standard "Database Language SQL", Report No.
ZX3.135, 1986.

[AM ER 87] American National Standard "Database Language SQL 2", Report No.
X3H2, 1987.

[A N D E89] Anderson, et al., "The Tektronix HyperModel Benchmark Specification",
Technical Report No. 89 05, Tektronix, August 3, 1989.

[A N O N 85] Anon et al., "A Measure of Transaction Power", Datamation, April 1, 1985.

[ASTR 80] Astrahan, M., Schkolnick, M. and K im W. "Performance of System R
Access Path Selection Mechanism", Proceedings IFIP Conference, 1980.

[B A R A 89] Barakati, N. "Turbo C Bible", Howard W. Sams & Company, Indianapolis,
Indiana, USA, 1989.

[B E LL84] Bell, D. A. "Database Performance", Program Infotech State of the Art Report,
1984.

[B E LL92a] Bell, D. A. and Grimson J. "Distributed Database Systems", Addison
Wesley, 1992.

[B E LL92b] Bell, D. A., et al., "A fexible Parallel Database System Using Transputers",
IEEE International Conference on Computer Systems and Software Engineering,

[B E N B 87]

The Hague, May 1992.

Benbasat, I., et al., "The Case Research Strategy in Studies of Information
Systems", MIS Q. 11, March 1987, 369-386.

)
[B E N I84] Benigni, R., Yao, B., and Hevner, A. "A Guide to Performance

Evaluation of Database Systems", Report of U.S. Department of Commerce.
National Bureau of Standards. May 1984. NBS Special Publication 500-118.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 264

10. References.

[BENI85]

[BITT83]

[BITT86]

[BITT87]

[BOGD83]

[BORA84]

[B 0R 079]

[BOUC76]

[BUCH82]

[BUTL87]

[BUZE76]

[CANI88]

[CARD75]

[CARD87]

[CATT90]

[CLAR72]

[CODD70]

[COHE90]

Benigni, R., Yao, B., and Hevner, A. "Benchmark Analysis of Database
Architecture: A Case Study", Report of U.S. Department of Commerce. National
Bureau of Standards. Oct 1985. NBS Special Publication 500-132.

Bitton, D., DeWitt D., and Turbyfill, C. "Benchmarking Database
Systems: A Systematic Approach", Proc. VLDB Conf., IEEE Press, 1983.

Bitton D., and Turbyfill, C. "Performance Evaluation of Main Memory
Database Systems", Internal Report, Department of Computer Science, Cornell
University, 1986.

Bitton D., Hanrahan M.and Turbyfill, C. "Performance of Complex
Queries in Main Memory Database Systems", Proc. International Conf. on TTiird
Data Engineering, Feb. 1987.

Bogdanowicz, R. J. "Benchmarking the Selection and Projection Operations
and Ordering Capabilities of Relational Database Machines", Naval Postgraduate
School, Monterey, California, June, 1983.

Boral, H., and DeWitt, D. "A Methodology for Database System
Performance Evaluation", Proc. SIGMOD Conf., Boston, June 1984.

Borovits , I. and Neumann, S. "Computer System Performance
Evaluation", D.C. Heath and Co., Lexington, Mass., 1979.

Bouchard, T. J. "Field Research Methods", In Handb. Ind. Organ. Psychol.,
Rand-McNally, Chicago, 1976.

Buchanan, D.A. and Boddy, D. "Advanced Technology and the Quality of
Working Life: The Effect of Word Processing On Video Typists", Journal of
Occupational Psychology, 1982 (55, 1-11).

Butler, M. "Database Performance", 1987 DEC User Conference, London,
UK, 6-7 Oct. 1987. (London UK: EMAP Conferences 1987), p. 113-16.

Buzen, J. and DeWitt, D. "Fundamental Operational Laws of Computer
System Performance", Acta Informatica 7, 1976.

Caniano, S. "All TPls Are Not Created Equal", Datamation (USA), Aug. 15,
1988, pp. 51-53.

Cardenas, A.F. "Analysis & Performance of Inverted Database Structures",
Commun. ACM 18, 5 (May, 1975), pp. 540-548.

Card, D.N. McGarry, F.E., and Page, G.T., "Evaluating Software
Engineering Technologies", IEEE Trans. Softw. Engineering, Vol.13, 5 July
1987, pp. 845-851.

Cattell, R. et al., "Engineering Database Benchmark", Technical Report, The
Sun Microsystems Inc., April 1^90.

I
Clark,P. A. "Action Research and Organizational Change", Harper & Row,
1972.

Codd, E.F. "A Relational Model of Data for Large Shared Data Banks",
CACM, June 1970.

Cohen, B. "Benchmark Silliness", Byte, August 1990.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 265

10. References.

[CURT80]

[CURT85]

[CURT86]

[CURT88]

[DATE86]

[DEEN90]

[DEMU84]

[DEMU85a]

[DEMU85b]

[DENN80]

[DeWI85]

[DeWI88]

[DOBS93]

[DONG87]

[[FED087]

[FENT86]

[FERR78]

Curtis, B. "Measurements and Experimentation in Software Engineering",
Proc. IEEE, Vol. 68, September 1980, pp. 1144-1157.

Curtis, B. "Human Factors in Software Development", second ed., IEEE
Computer Society, Wash. D.C., 1985.

Curtis, B., et al., "Software Psychology: The need for all Interdisciplinary
Program", Proc. IEEE, Vol. 75, August 1986, pp. 1902-1106.

Curtis, B., et al., "A Field Study of the Software Design Process For large
Systems", Comm. ACM, Vol. 31, No. 11, November 1988.

Date, C. J. "An Introduction to Database System", 3th ed. Addison Wesley,
1986.

Deen, M. "Practical Database Techniques", PITMAN, 1990.

Demurjian, S., et al., "Performance Evaluation in Multiple Backend
Configuration", Naval Postgraduate School, Monterey, California, Oct. 1984.

Demurjian, S., and Hsiao, D. "Benchmarking Database Systems in
Multiple Backend Configuration", Database Eng., IEEE Computer Society Press,
Vol. 4, 1985.

Demurjian, S., and Hsiao, D., et al., "Performance Evaluation in
Multiple Backend Configuration", Database Machines, Fourth International
Workshop, 1985.

Denning, P. J. "Working Sets Past and Present". IEEE Transactions on
Software Engineering, Vol.6, No. 1, January 1980.

DeWitt, D. "Benchmarking Database Systems: Past Efforts and Future
Directions", Database Eng., IEEE Computer Society Press, Vol.4, 1985.

DeWitt, D., Ghandeharizadeh, S., and Schbeider, D. "A Performance
Analysis of the Gamma Database Machine", SIGMOD RECORD, Vol. 17, No.
3, Sep. 1988, pp. 350- 360.

Dobson, R., "Downsizing Applications - A Method of Evaluation", Msc
Thesis, City University, DBC, 1993.

Dongarra, J., et al., "Computer Benchmarking: Paths and Pitfalls", IEEE
Spectrum., 24:7, July 1987.

Fedorowicz, J. "Database Performance Evaluation in Indexed File
Environment", ACM Transaction on Database Systems, Voll2, March, 1987.

Fenton, G. "A Computer Aided Design For the Generation of Test
Transactions and Test Database For the Benchmarking of Parallel, Multiple-
Backend Systems", Naval Postgraduate School, Monterey, California, June,
1986.

Ferreri, D. "Computer System Performance Evaluation", Printice-Hall Inc.,
Englewood, Cliffs, New Jersey, 1978.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 266

10. References.

[FERR83] Ferreri, D., Serazzi, G., and Zeigner, A. "Measurement and Tuning of
Computer Systems", Printice-Hall Inc., Englewood, Cliffs, New Jersey, 1983.

[FOX 89] Fox, R. "Benchmarking or Benchmarketing?", Computer Weekly, April 20,
1989, page 36.

[GIBS70] Gibson, J. C. "The Cibson Mix", IBM report TR-00 2043, June 18, 1970.

[GLES81] Gleser, M., Bayard, J., and Lang, D. "Benchmarking For the Best",
Datamation (USA), pp. 127-136, May 1981.

[GRAY87a] Gray, J. "A View of Database System Performance Measures", Perf. Eva. Rev.
(USA), Vol. 15, Part 1, 1987, pp. 3-4.

[GRAY87b] Gray, J., Putzolu, F. "The 5 Minute Rule", Proc. ACM SIGMOD Conf.,
San Francisco, California, May, 1987.

[GRAY91] Gray, J. "The Benchmark Handbook", Morgan Kaufmann, San Mateo,
California, 1991.

[GREH88] Grehan, R., et ah, "Introducing the New Byte Benchmark", Byte, June
1988.

[HAMM83] Hammersley, M. and Atkinson, P. "Ethnography Principles in Practice",
Tavistock Publications, 1983.

[HAWN87] Hawng, H. and Yu, Y. "An Analytical Method for Estimating and
Interpreting Query Time", Proc. of 131“ VLDB Conference, Brighton, 1987,
347-357.

[HAWT79] Hawthorn, P. and Stonebraker, M. "Performance Analysis in Relational
Database Systems", Proc. SIGMOD, New York, 1979.

[HAWT82] Hawthorn, P. and DeWitt, D. "Performance Analysis of Alternative
Database Machine Architectures", IEEE Trans, on Software Eng., Vol. SE-8,
No. 1, Jan. 1982.

[HAWT85] Hawthorn, P. "Variations on A Benchmark", Database Eng., IEEE Computer
Society Press, Vol. 4, 1985.

[HEID84] Heidelberger, P, and Lavenberg, S. "Computer Performance Evaluation
Methodology", IEEE Transactions on Computers, Vol. 33 No. 12, 1984.

[HILL86] Hillyer, B., Shaw, D., and Nigam, A. "NON- VON's Performance on
Certain Database Benchmarks", IEEE Trans, on Software Eng., Vol. SE-12, No.
4, April 1986.

[HOEL82] Hoel, P."Basic Statistics for Business and Economics", John Wiley & Sons,
Third Edition, 1982.

[HOFF87] Hoffman, L. L. "Benchmarking Blues: The Reincarnation of Diogenes",
Computer Science and Statistics: Proceedings of the 19th Symposium on the
Interface, Philadelphia, PA, USA, 8-11 March 1987.

[HULL88] Hull, M., Cai, F. and Bell, D. A. "Buffer Management Algorithms for
Relational Database Management Systems", Information and Software
Technology, 1988.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 267

10. References.

[KANT90]

[KELB87]

[LANG88]

[LAWR86]

[LEUT93]

[LOFL71]

[LOOM92]

[MACK86]

[MART83]

[MAST91]

[McCA69]

[McCA92a]

[McCA92b]

[McCA92c]

[McKA78]

[MOHR84]

[NADE90]

[NIED79]

[ORAC91]

Kantaris, N. "Learing To Program in C", Bernard Babani, 1990.

Kelbe, F., and Majors, D. "Benchmarking Preparation For AND
AGGREGATE AND SORTING Retrievals in the Multi-backend Database
System", Naval Postgraduate School, Monterey, California, June, 1987.

Langa, F. "Our New Benchmark", Byte, June 1988.

Lawrence, M. H. and Quilici, A. E. "Programming in C", John Wiley &
Sons, 1986.

Leutenegger, S. and Dias, D "A Modeling Study of the TPC-C
Benchmark", Proc. ACM SIGMOD, Vol. 22, No. 2, June 1993, pp 22-29.

Lofland, J. "Analysing Social Settings", Wadworth, 1971.

Loomis, M. "Object Database Technology: Whos's Using It and Why?", Object
Databases, October, 1992, pp. 13-18.

Mackert, L., Lohman, G. "R* Optimizer Validation and Performance
Evaluation For Local Queries", ACM SIGMod, 1986.

Martinez, R., Wiley, R., Bitton, D., and Turbyfill, C. "An
Experiment In Benchmarking Database Systems", (Los Alamos National Lab.,
NM (USA)), 1983.

Mastars, D. "C An Introduction With Advanced Applications", Prentice Hall
International, (UK), 1991.

McCall, G.J. and Simmons, J. L. "Issues in Participant Observation",
Addison-Wesley, 1969.

McCann, J. A. and Bell, D. A. "A CPU Resource Consumption Model for
Database System", A Technical Report, University of Ulster, 1992.

McCann, J. A. and Bell, D. A. "A Flexible Benchmarking Tool for Parallel
Database Systems", Proc. on Conf. on benchmark assessment of Parallel
Processors, March, 1992.

McCann, J. A. "A Fine Grained Database System Performance Model", Phd
Thesis, University of Ulster, 1992.

McKaskill, T. "Effective Computer-Based Information Systems Operations : A
Complex Organisational Study"., London University, Phd thesis, 1978.

Mohr, J. "Projecting Workloads for New Systems: A Management
Introduction", J Cap Mgt. Vol. 2, No. 2, 1984.

Nadeau, M. "BYTE'S New Benchmarks", Byte, August 1990.
I

Niedereichholz, J. "Perform ancetests mit einem CODASYL
Datenbanksystem", Institut fur Wirtschaftsinformatik, Universität Frankfurt,
1979.

ORACLE Report "TPC B Full Disclosure", 1991.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 268

10. References.

[ORD 88]

[OSTL88]

[[REVE88]

[REVE90]

[REVE92a]

[REVE92b]

[REVE93]

[REVE94a]

[REVE94b]

[REVE94c]

[ROTZ91]

[RUBE87]

[RYDE83]

[SANT89]

[SERL86]

[SILV70]

[SIVU90]

[STON83a]

Ord, J. "Introduction of Information technology in an Urban Health District",
LBS Phd thesis, 1988.

Ostle, B. and Malone, L. "Statistics in Research", Iowa State University
Press, Ames, IOwa, Fourth Edition, 1988.

Revell, N. and Ruff, M. "A Meta System for the Design of Database
Systems", Proc. of EMCSR pp. 1169-1176 1988.

Revell, N. and Youssef, M. W. "An Analysis of Database Performance
Measures", Proc. of EMCSR, Apr. 1990.

Revell, N. and Youssef, M. W. "An Analysis of Transaction Behaviour in
Large IMS Environment." Proc. of EMCSR, Apr. 1992. "Best Paper Award
for the Symposium Communication and Computers".

Revell, N. and Youssef, M. W. "TP1: The Fact and The Myth." Proc. of
SEARCC, 1992.

Revell, N. and Youssef, M. W. "Database Performance Evaluation A
Methodological Approach" Proc. of DEXA93, September, 1993.

Revell, N. and Youssef, M. W. "Testing And Verification Of The City
Database Benchmark." Proc. of EMCSR, Apr. 1994.

Revell, N. and Youssef, M. W. "Modelling Transaction Behaviour in
Large Database Environments" 7th International Conference on Systems
Research, Informatics and Cybernetics, Aug., 1994.

Revell, N. and Youssef, M. W. "Benchmarking The Benchmarks" a paper
under publication in Proc. of DEXA94, September, 1994.

Rotzell, K. and Loomis, M. "Benchmarking an ODBMS",JOOP, March-
April 1991.

Rubenstien, W.B. and Kubicar, M. S. "Benchmarking Simple Database
Operations", SIGMOD Rec.(USA) vol 16 part 3 1987, pp 387-97.

Ryder, C. "Benchmarking Relational Database Machines. Capabilities in
Supporting The Database Administrators Functions and Responsibilities", Naval
Postgraduate School, Monterey, California, Sep., 1983.

Santos, A. "The design of information systems: a new methodological
approach". London University, LBS Phd thesis, 1989.

Serlin, O. "MIPS, DHRYSTONES, and Other Tales." Datamation (USA),
Vol.32, pp. 112-118, June 1986.

Silverman, D, "The Theory of Organisations", Heinemann, 1970.

Sivula, C. "The Benchmark War in Transaction Processing", Datanation,
September 1, 1990, pp. 52-55

Stone, V. "Design of Relational Database Benchmark", Naval Postgraduate
School, Monterey, California, June, 1983.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 269

10. References.

[STON83b]

[STON85]

[STRA84]

[SWAN88]

[TAND88]

[TAZE88]

[TPC 89]

[TPC 90]

[TPC 91]

[TPC 92]

[TURB88]

[ULLM82]

[VAN 82]

[VINC85]

[WIED83]

[WILL90]

[WICH82]

[WOOD81]

[WONN85]

Stonebraker M., et al., "Enhancements to a Relational Database System",
ACM Transaction on Database Systems, Vol. 8, No. 2, June 1983, pages 167-
185.

Stonebraker, M. "Tips On Benchmarking Database Systems", Database Eng.,
IEEE Computer Society Press, Vol.4, 1985.

Strawser, P. "A Methodology for Benchmarking Relational Database
Machines", Ph.D Dissertation. Ohio State University, Dec. 1984.

Swansen, E. B. "The Use of Case Study Data in Software Management
Research",, J. Syst. Software, Vol. 8, January 1988, 63-71.

Tandem Performance Group, "A Benchmark of NonStop SQL on the
Debit/Credit Transaction", SIGMOD RECORD, Vol. 17, No. 3, Sep. 1988, pp.
337-341.

Tazelaar, J. M. "Benchmarks", Byte, June 1988.

Transaction Processing Performance Council, "TPC Benchmark A
Standard", November 1989.

Transaction Processing Performance Council, "TPC Benchmark B
Standard", 1990.

Transaction Processing Performance Council, "TPC Benchmark C
Standard", December., 1991.

Transaction Processing Performance Council, TPC Press Background,
March, 1992.

Turbyfill, C. "Comparative Benchmarking of Relational Database Systems",
Ph.D Dissertation. Cornell University, Jan. 1988.

Ullman, J. "Principles of Database Systems", 2nd ed. Computer science press,
1982.

Van maanen, J., et al., "Varieties of Qualitative Research", Sage
Publications, 1982.

Vincent J.R. "A Performance Measurement Methodology for a Multi-backend
Database System", Naval Postgraduate School, Monterey, California, June,
1985.

Wiederhold, G. "Database Design", 2nd ed. McGraw-Hill, New York, 1983.

Williams, J. M. "Thanks for the Unix Benchmarks", Byte, July 1990.

Wichmann, B.A. and Hill, I.D., NPL Report DITC 6/82, 1982.

Woodfill, J., Siegal, P., Rianstrom, J., Meyer, M. and Allman, E.,
INGRES Reference Manual. Version 7 ed. 1981.

Wonnacott, R. and Wonnacott, T. "Introductory Statistics", John Wiley &
Sons, Fourth Edition, 1985.

Transaction Behaviour in Large Database Environments, a Methodological Approach. 270

10. References.

[YAO 84] Yao, B. and Hevner, A. "Performance Evaluation of Database System. A
Benchmark Methodology", Report of U.S. Department of Commerce. National
Bureau of Standards. May 1984.

[YAO 87] Yao, B. and Hevner, A. and Yo, H. "Analysis of Database System
Architectures Using Benchmarks", IEEE Trans, on Software Eng., Vol. SE-13,
No. 6, June 1987.

[YOUS86a] Youssef, M. W. and Riad, M. "A Software Monitor For Database
Performance Evaluation", The Egyptian Computer Journal, Jan 1986.

[YOUS86b] Youssef, M. W. and Riad, M. and Selim, S. "Data Base Performance:
Measures and Empirical Results", The 20th Annual Conference In Statistics,
Computer Science and Operations Research, 1986.

[YOUS86c] Youssef, M. W. "A Software Monitor For Database Performance Evaluation",
Msc. Thesis. Cairo University, May. 1986.

[ZELK84] Zelkowitz, M., et al, "Software Engineering Practices in US and Japan",
IEEE Comput., Voi. 17, June 1984, pp. 57-66.

/

Transaction Behaviour in Large Database Environments, a Methodological Approach. 271

APPENDIX A

APPENDIX A: Create The CITY Benchmark Tables.

CHAR DBFCl [8]:
I NT DBFI:
CHAR DBFC2 [30]:
LONG DBFL:
FLOAT DBFR;
DOUBLE DBFD:
V A R C H A R DBFV [40];

UNSIGNED INT KEY VALUE:

/• ... V
/* THE PROGRAM VARIABLES DECLARATION SECTION. V
/* .. V

LONG R J -0: /’ UNIQUE NO. OF ROWS COUNTER. V
LONG R IO - 0:C NO. OF ROWS COUNTER REPEATED EVERY 10 ROWS. V
LONG R J 00 - 0: /* NO. OF ROWS COUNTER REPEATED EVERY 100 ROWS. V

INT VI - 50; /* INTEGER VALUE 7
LONG VL - 50; C LONG VALUE V
FLOAT VF . 50:/* FLOAT VALUE V
FLOAT VR - 50: /* FLOAT VALUE 7
DOUBLE VD - 50: /’ DOUBLE VALUE 7

/* CHARACTER FIELDS CARl FIELDl, CHAR2FIELDI AN D VARFIELDl 7

STATIC CHAR CHAR I FIELD I [8] - {"0000001"}:
STATIC CHAR CHAR2FIELDI [30] - {"ABABA ABABA ABABA ABABA ABABA"}:
STATIC CHAR VAREIELDI [40] - {"ABABA ABABA ABABA ABABA ABABA ABA AAAAA”}:

EXEC SQL END DECLARE SECTION;

/* ... 7
/’ INCLUDE SQLCA C O M M A N D (SQL C O M M AREA). V
/• ... 7

EXEC SQL INCLUDE SQLCA;

/* V
/• THE MAIN PROGRAM START. V
/* 7

MAINO
{ C PROGRAM START*/

FILE *TPS_FP;
LONG RANDPO;

LONG X. Y. Z;

STATIC CHAR PATH_NAME_I [MAXPATH] -{"C:\CITYCRT.TXT"};

/* RANDO M NUMBER GENERATION VARIABLES ’/ j
LONG SEED. RT_VALUE. N_ROWS. R LIMIT 10:
INT R_LIMIT . 30000: /* RANDP MAXIMUM VALUE V
UNSIGNED LONG ROWS; /’ DATABASE SIZE ’/

UNSIGNED LONG ROWS_START. /* NUMBER OF ROWS START VALUE V
ROW S_END/’ NUMBER OF ROWS END VALUE V
ROWS STEP:/* NUMBER OF ROWS STEP VALUE V

Transaction Behaviour in Large Database Environments, A Methodological Approach. 274

APPENDIX A: Create The CITY Benchmark Tables.

INT SECONDS;

INT I I - 0./- LOOP I INDEX V
12 • 0. / ' LOOPQ IN DEX-/
13 -O :/ - LOOP3 INDEX 7

INT I. / ' M AIN LOOP INDEX-/
J - 7. /- END OF 8 CHAR. FIELD POINTER 7
K - 29. /- END OF 30 CHAR FIELD POINTER 7
L - 0. /- START OF VARJIELDS POINTER 7
M - 38: /- END OF VARJIELDS POINTER V

UNSIGNED LONG l_LOOPS: / ' INDEX OF NUMBER OF RECORDS. 7
UNSIGNED LONG ROWS_LOOP - 0: /’ DATABASE LOAD LOOPS INDEX 7
UNSIGNED LONG START - 0. / ' TPS START TIME. 7
END - 0./- TPS END TIME. 7
GJT1MEI -0 ./ - USED TO GET START VALUE FROM TIME. 7
G_T1ME2 - 0: / ’ USED TO GET END VALUE FROM TIME. 7

UNSIGNED LONG TRANS_COUNT - 0. / ’ LOOPTRANS_COUNTER.7
TOT_TRANS_COUNT - 0,/- TOTAL OF LOOP TRANS_COUNTERS. 7
AVR_TRANS_COUNT . 0: / ' AVERAGE OF LOOPTRANS_COUNTERS. 7

DOUBLE RESPJTIME. / ' AVERAGE TRANSACTIONS RESPONSE TIME. 7
RESP_TIME_T. /* TOTAL TRANSACTIONS RESPONSE TIME. 7
RESP_TIME_ I . / ’ ONE TRANSACTIONS RESPONSE TIME. 7
RESP_PER_STEP. / ' RESPONSE TIME PER STEP. 7
TRANS_PER_SEC: / ' TRANSACTIONS/SEC. 7

TIME_T RESP_TIME_START. / ’ RESPONSE TIME START. 7
RESP_TIME_STOP: / ' RESPONSE TIME END. 7

UNSIGNED LONG RESP_COUNT:

STATIC CHAR DB_TYPE[I5] - {"ORACLE. "}.-

LONG QS-0:
LONG QU I-0:
LONG QU2-0:
LONG QF.0:
LONG IN_REC-0:

DOUBLE TR_PER_SECOND- 0: / ' AVERAGE NUMBER OF TRANSACTIONS/SEC. 7

STATIC CHAR ERROR_MESSAGE[71] -

{"

STATIC CHAR LINEI7I] -
####################### } ;

STATIC CHAk CONN_Ekk[7l] -
{"AN ERROR OCCURRED DURING CONNECTION TO THE DBMS. "}:

STATIC CHAR F_MSGLl47] . {..
STATIC CHAR F_MSG I [32] - {’TO TAL NUMBER OF INSERTED ROWS: ”}:
STATIC CHAR F_MSG2[47] . {"THE PROGRAM HAS BEEN TERMINATED SUCCESSFULLY. "}:

STATIC CHAR TABLIOO_DROP_ERR[7I] -
{"AN ERROR OCCURRED DURING TABLE DBlOO DROP.
STATIC CHAR INDX100_ERR[71] .
{"AN ERROR OCCURRED DURING INDEX DB100JX CREATION. "}:
STATIC CHAR TABL100_CR_ERR[71] -
{"AN ERROR OCCURRED DURING TABLE DB 100 CREATION. "}:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 275

APPENDIX A: Create The CITY Benchmark Tables.

STATIC CHAR. TABL200_DROP_ERR{71] -
{"AN ERROR OCCURRED DURING TABLE DB200 DROP. ”}:
STATIC CHAR INDX200_ERR[7I] -
{"AN ERROR OCCURRED DURING INDEX DB200JX CREATION. "}:
STATIC CHAR TABL200_CR_ERRI7I] -
{"AN ERROR OCCURRED DURING TABLE DB200 CREATION. "}:

STATIC CHAR TABL300_DROP_ERR{7I] -
{"AN ERROR OCCURRED DURING TABLE DB300 DROP. "}:
STATIC CHAR INDX300_ERR[7I] -
{"AN ERROR OCCURRED DURING INDEX DB300JX CREATION.
STATIC CHAR TABL300_CR_ERR{7I] -
{"AN ERROR OCCURRED DURING TABLE DB300 CREATION. "}:

STATIC CHAR TABLINS_DROP_ERR{71] -
{"AN ERROR OCCURRED DURING TABLE DBINS DROP. "}:
STATIC CHAR INDXINS_ERR[71] -
{"AN ERROR OCCURRED DURING INDEX D B IN SJX CREATION. ”};
STATIC CHAR TABLINS_CR_ERR[71] -
{"AN ERROR OCCURRED DURING TABLE DBINS CREATION.

STATIC CHAR TABLUPD_DROP_ERR{71] .
{"AN ERROR OCCURRED DURING TABLE DBU PD DROP. "}:
STATIC CHAR INDXUPD_ERR[7I] -
{"AN ERROR OCCURRED DURING INDEX D B U PD JX CREATION. "}:
STATIC CHAR TABLUPD_CR_ERR(7I] -
{"AN ERROR OCCURRED DURING TABLE DBUPD CREATION. "};

/ • v
/• CLEAR SCREEN C O M M A N D 7
/ • 7

CLEARSCREEN(_GCLEARSCREEN):

/• ... 7
/• LOG INTO THE D BM S USERID A N D PASSWORD. 7
/* ... 7

PRINTFC'PLEASE ENTER USERID: "):
SCANF('%S".UID.ARR):
PRINTFf PLEASE ENTER PASS WORD: "):
SCANF('%S".PWD.ARR);
UID.LEN - STRLEN(UID.ARR):
PWD.LEN - STRLEN(PWD.ARR):

/ ' ... 7
/’ LOG INTO THE D BM S EVERY TIME THE PROGRAM START A NEW LOOP. 7
/• ... 7

STRCPY(ERROR_MESSAGE,CONN_ERR):
EXEC SQL W HENEVER SQLERROR G O T O SQL_ERROR_ROUTINE:
EXEC SQL C O N N E C T :UID IDENTIFIED BY :PWD

PRINTFC’ ... *\N"):
PRINTFf” CONNECTED TO THE SYSTEM USER: %S *\N".UID.ARR):
P R IN T F C "... ,\N\N"):

/’ ... 7

/* D r o p T a b l e s S e c t i o n . T h is s e c t io n e n d s w i t h c o m m i t d r o p t a b l e s . 7
/• ... 7

Transaction Behaviour in Large Database Environments, A Methodological Approach. 276

APPENDIX A: Create The CITY Benchmark Tables.

/ • v
/ ' DROP TABLE DBlOO SECTION. V
/ ' V

STRCPY(ERROR_MESSAGE.TABLIOOJDROPJ:RR);
EXEC SQL WHENEVER. SQLERROR G O T O DROP_200:
EXEC SQL D RO P TABLE DBlOO:
PRINTFC' .. *\N"):
PRINTFC' TABLE DBlOO HAS BEEN DROPPED. '\N "):
PRINTFC' .. ’\N"):

/ ' V
/* DROP TABLE DB200 SECTION. V
/* V

DROP_200:
STRCPY(ERROR_MESSAGE.TABL200_DROP_ERR);
EXEC SQL WHENEVER SQLERROR G O TO DROP_300:
EXEC SQL DROP TABLE DB200:
PRINTFC’ TABLE DB200 HAS BEEN DROPPED. '\N "):
PRINTFC' .. ’\N"):

/ ' V
r DROP TABLE DB300 SECTION. V
/ ' V

DROP_300:
STRC P Y (ERRO R_M ESSAGE.TABL300_D RO P_E RR):
EXEC SQL W HENEVER SQLERROR G O TO DROPJNS:
EXEC SQL D RO P TABLE DB300:
PRINTFC' TABLE DB300 HAS BEEN DROPPED. *\N"):
PRINTFC’ .. '\ N "):

/ ' .. ' /
/ ' DROP TABLE DBINS SECTION. V
/ ' V

DROPJNS:
STRCPY(ERROR_MESSAGE.TABLINS_DROP_ERR):
EXEC SQL WHENEVER SQLERROR G O T O DROP_UPD:
EXEC SQL DRO P TABLE DBINS:
PRINTFC' TABLE DBINS HAS BEEN DROPPED. '\N "):
P R IN T F C '.. *\N ”):

/ ' V
r DROP TABLE D BU PD SECTION. V
/• V

DRO PJJPD :
STRCPY(ERROR_MESSAGE.TABLUPD_DROP_ERR):
EXEC SQL W HENEVER SQLERROR G O T O COMM_DROP:
EXEC SQL D RO P TABLE DBUPD:
PRINTFC' TABLE D B U P D HAS BEEN DROPPED. *\N"):
P R IN T F C '.. '\N\N");

/ ' C O M M IT D R O P SECTION V
rv

COM M_DROP:
EXEC SQL C O M M IT WORK:
PRINTFC ' ... *\N"):
PRINTFC' D R O P TABLES HAVE BEEN COM M ITTED SUCCESSFULLY. '\N"):

Transaction Behaviour in Large Database Environments, A Methodological Approach. 277

APPENDIX A: Create The CITY Benchmark Tables.

PRINTFC'‘ *\N");

r .. •/
/ ' CREATE TABLES SECTION. THIS SECTION ENDS WITH C O M M IT CREATE TABLES. 7
/• .. V

/• .. 7
/• CREATE TABLE DB 100 SECTION. 7
/* .. 7

EXEC SQL W HENEVER SQLERROR G O T O SQL_ERROR_ROUTlNE:

STRCPY(ERROR_MESSAGE.TABLIOO_CR_ERR);
EXEC SQL CREATE TABLE DB 100
(DBIFCI CHAR(8), / ' NO'KEY FIELD. V
DBIFII NUMBER(8) N O T NULL./- UNIQUE KEY. V
DBIFC2 CHAR(30). / ' NO'KEY FIELD. V
DBlFLl NUMBER(4). / ' NO'KEY FIELD. V
DBIFRl NUMBER(4.2). /’ NO 'KEY FIELD. V
DBIFD I NUMBER(6,3). / ’ NO'KEY FIELD. 7
DB IFVI CHAR(40)): / ’ NO'KEY FIELD. 7

_CLEARSCREEN(_GCLEARSCREEN):
PRINTE("’ .. *\N"):
PRINTFC” TABLE DB 100 HAS BEEN CREATED. *\NT):
P R IN T F f .. ’\N\N");

r ...7
/ ' CREATE INDEX DBlFC l_IX. SECTION. 7
/• ... 7

STRCPY(ERROR_MESSAGE.INDX 100_ERR):

EXEC SQL CREATE U N IQ U E INDEX DB I Fl I _IX O N DB 100(DB l Fl I):
P R IN T F f .. WN");
PRINTFC” U N IQ U E INDEX DB I Fl I_IX HAS BEEN CREATED. ,\N"):
PRINTFC" AN INDEX O N DB 100 TABLE FIELD DBIFII. ,\N"):
P R IN T F f .. "\N");

/• .. 7
/’ CREATE TABLE DB200 SECTION. 7
r .. 7

STRCPY(ERROR_MESSAGE.TABL200_CR_ERR):
EXEC SQL CREATE TABLE DB200
(DB2FCI CHAR(8). /• NCHSEY FIELD. 7
DB2FII NUMBER© N O T NULL. / ' UNIQUE KEY. 7
DB2FC2 CHAR(30). / ' NO'KEY FIELD. 7
DB2FLI NUMBER(4), / ' NO'KEY FIELD. 7
DB2FRI NUMBER(4.2). /• NO'KEY FIELD. 7
DB2FDI NUMBER(6.3)./‘ NO'KEY FIELD. 7
DB2FVI CHAR(40). / ' NO'KEY FIELD. 7 j
DB2FC3 CHAR(8). / ' NO'KEY FIELD. 7
DB2FI2 NUMBER© NO T NULL, /* SECONDARY KEY 10 TIMES. 7
DB2FC4 CHAR(30). / ' NO'KEY FIELD. 7
DB2EL2 NUMBER(4). /* NO'KEY FIELD. 7
DB2FR2 NUMBER(4.2). /• NO'KEY FIELD. 7
DB2EIT2 NUMBER(6.3), / ' NO'KEY FIELD. 7
DB2FV2 CHAR(40)); /* NO'KEY FIELD. 7

Transaction Behaviour in Large Database Environments, A Methodological Approach. 278

APPENDIX A: Create The CITY Benchmark Tables.

_CLEARSCREEN(_GCLEARSCREEN):
P R IN T F f '..AN");
PRINTFf” TABLE DB200 HAS BEEN CREATED. ’\N");
P R IN T F f " ..•\N\N"):

/• ... V
/• CREATE INDEXES FOR DB200 SECTION. V
/ ’ .. Y

STRCPY(ERROR_MESSAGE.INDX200_ERR):

EXEC SQL CREATE UNIQUE INDEX DB2FUJX O N DB200(DB2FI I):
PRINTFf” .. AN"):
PRINTFf" UNIQUE INDEX DB2FII _IX HAS BEEN CREATED. ’NN"):
PRINTFf” AN INDEX O N DB200 TABLE FIELD DB2FII. ’\N"):
PRINTFf" .. ’\N"):

/’ SECONDARY KEY I0TIMES V
EXEC SQL CREATE INDEX DB2FI2JX O N DB200(DB2FI2):
PRINTFf" SEC O N D ARY INDEX DB2FI2JX HAS BEEN CREATED. ’W):
PRINTFf" AN INDEX O N DB200 TABLE FIELD DB2FI2. ’\N"):
PRINTFf" .. AN"):

/• .. Y
/• CREATE TABLE DB300 SECTION. Y
/’ .. Y

STRCPY(ERROR_MESSAGE.TABL300_CR_ERR):
EXEC SQL CREATE TABLE DB300
(DB3FCI CHAR(8), /* NO'KEY FIELD.*/
DB3FII NUMBER(8) N O T NULL. / ’ UNIQUE KEY. Y
DB3FC2 CHAR0O). /* NO'KEY FIELD//
DB3FLI NUMBER(4). / ' NO'KEY FIELD. Y
DB3FRI NUMBER(4.2). / ' NO'KEY FIELD.Y
DB3FDI NUMBER(6.3). / ' NO'KEY FIELD. Y
DB3FVI CHAR(40). /* NO'KEY FIELD.Y
DB3FC3 CHAR(8). /’ NO 'KEY FIELD. Y
DB3FI2 NUMBER(8) N O T NULL. / ' SECONDARY KEY 10 TIMES//
DB3FC4 CHAR(30). / ' NO'KEY FIELD. Y
DB3FL2 NUMBER(4), /* NO'KEY FIELD//
DB3FR2 NUMBER(4.2). / ’ NO 'KEY FIELD. Y
DB3FD2 NUMBER(6.3). / ' NO 'KEY FIELD//
DB3FV2 CHAR(40), /* NO'KEY FIELD//
DB3FC5 CHAR(8), / ' NO 'KEY FIELD//
DB3FI3 NUMBER(8) N O T NULL. / ' SECONDARY KEY 100TIMES.Y
DB3FC6 CHAR0O). /* NO 'KEY FIELD//
DB3FL3 NUMBER(4). /* NO'KEY FIELD. Y
DB3FR3 NUMBER(4.2). / ' NO 'KEY FIELD//
DB3FD3 NUMBER(6.3). / ' NO'KEY FIELD//
DB3FV3 CHAR(40)): / ' NO'KEY FIELD. Y

_CLEARSCREEN(_GCLEARSCREEN):
PRINTFf" .. AN"):
PRINTFf" TABLE DB300 HAS BEEN CREATED. AN");
P R IN T F f ".. ’ \N\N"):

/• ... Y
/ ' CREATE INDEXES FOR DB300 SECTION. Y
/• ... Y

Transaction Behaviour in Large Database Environments, A Methodological Approach. 279

APPENDIX A: Create The CITY Benchmark Tables.

STRCPY(ERROR_MESSAGE.INDX300_ERR);

EXEC SQL CREATE U N IQ U E INDEX D B 3 F H JX O N DB300(DB3FI I):
PRINTFC'- .. *\N"):
PRINTFC U N IQ U E INDEX DB3FII_IX HAS BEEN CREATED. -\N");
PRINTFC AN INDEX O N DB300 TABLE FIELD DB3FII. *\N");
PR IN TFC .. 7N");

/• SECONDARY KEY 10 TIMES-/
EXEC SQL CREATE INDEX DB3FI2JX O N DB300(DB3FI2);
PRINTFC SEC O N D A R Y INDEX DB3FI2JX HAS BEEN CREATED
PRINTFC'- AN INDEX O N DB300 TABLE FIELD DB3FI2. -\N"):
PR IN TFC ..

/ ' SECONDARY KEY 100 TIMES 7
EXEC SQL CREATE INDEX DB3FI3JX O N DB300(DB3Fl3);
PRINTFC SEC O N D A R Y INDEX DB3FI3JX HAS BEEN CREATED. -\N"):
PRINTFC AN INDEX O N DB300 TABLE FIELD DB3FI3. -\N"):
PRINTFC'’ .. "\N"):

"\N");

"\N"):

/' .. 7
/• CREATE TABLE DBINS SECTION. 7
/• 7

STRCPY(ERROR_MESSAGE.TABLINS_CR_ERR):
EXEC SQL CREATE TABLE DBINS
(DBIFCI CHAR(8). / ' NO-KEY FIELD. 7
DBIFII NUMBER© N O T NULL. / ' SECONDARY KEY.-/
DBIFC2 CHAR(30). /* NO'KEY FIELD. 7
DBIFLl NUMBER©, / ' NO 'KEY FIELD. 7
DBIFRl NUMBER(4,2). / ' NO-KEY FIELD. 7
DBIFDI NUMBER(6,3). / ' NO-KEY FIELD. 7
DBIFVl CHAR(40). /’ NO'KEY FIELD. 7
DBIFC3 CHAR(8). / ' NO-KEY FIELD. 7
DBIFI2 NUMBER(8) NO T NULL. / ' NO-KEY FIELD. 7
DBIFC4 CHAR0O). / ' NO'KEY FIELD. 7
DBIFL2 NUMBER(4). / ' NO-KEY FIELD. 7
DBIFR2 NUMBER(4.2). /’ NO'KEY FIELD. 7
DBIFD2 NUMBER(6.3). /* NO-KEY FIELD. ' /
DBIFV2 CHAR(40)): / ' NO'KEY FIELD. 7

_CLEARSCREEN(_GCLEARSCREEN):
PRINTFC” .. -\N"):
PRINTFC TABLE DB INS HAS BEEN CREATED. -\N"):
P R IN T F C .. -\N\N");

/- ... 7
/- CREATE INDEXES FOR DBINS SECTION. 7
/- ... "/

STRCPY(ERROR_MESSAGE,INDXINS_ERR):
/ ' SECONDARY KEY N TIMES DEPENDING O N NO. OF TRANSACTIONS. ' /
EXEC SQL CREATE INDEX DBIFI IJ X O N DBINS(DBIFI l):/
nniMnrrfli* ’ •\k,iii\PR IN TFC ... — -\N"):
PRINTFC” SEC O N D A RY INDEX DBIFI I_IX HAS BEEN CREATED. -\N");
PRINTFC'‘ AN INDEX O N DBINS TABLE FIELD DBIFI I . -\N");
PRINTFC'- .. "\N");

/ - ... •/
/’ CREATE TABLE D B U P D SECTION. ' /

Transaction Behaviour in Large Database Environments, A Methodological Approach. 280

APPENDIX A: Create The CITY Benchmark Tables.

/• .. 7

STRCPY(ERROR_MESSAGE.TABLUPD_CR_ERR):
EXEC SQL CREATE TABLE DBUPD
(DBUFCI CHAR(8). /’ NOKEY FIELD. 7
DBUFII NUMBER(8) NO T NULL. / ' UNIQUE KEY. 7
DBUFC2 CHAR(30). /’ NO-KEY FIELD. 7
DBUFLl NUMBER(4). /’ NO 'KEY FIELD. 7
DBUFRI NUMBER(4.2). / ' NO'KEY FIELD. 7
DBUFDl NUMBER(6.3). /* NO'KEY FIELD. 7
DBUFVI CHAR(40). /’ NO'KEY FIELD. 7
DBUFC3 CHAR(8). /’ NO'KEY FIELD. 7
DBUFI2 NUMBER® NO T NULL. /’ SECONDARY KEY.7
DBUFC4 CHAR(30). /’ NO'KEY FIELD. 7
DBUFL2 NUMBER®, /’ NO'KEY FIELD. 7
DBUFR2 NUMBER®2), /’ NO'KEY FIELD. 7
DBUFD2 NUMBER(6.3). /’ NO'KEY FIELD. 7
DBUFV2 CHAR(40)): /* NO'KEY FIELD. 7

_CLEARSCREEN(_GCLEARSCREEN):
PRINTFC” .."\N"):
PRINTFC" TABLE D BU PD HAS BEEN CREATED. •\N"):
P R IN T F C '..*\N\N"):

r ... 7
/’ CREATE INDEXES FOR D BU PD SECTION. 7
/• ... 7

STRCPY(ERROR_MESSAGE.INDXUPD_ERR):

EXEC SQL CREATE UN IQUE INDEX D B U F IIJX O N DBUPD(DBUFI I);
PRINTFC" .. *\N"):
PRINTFC" U N IQ U E INDEX DBUFI IJ X HAS BEEN CREATED. ’\N"):
PRINTFC" AN INDEX O N D BU PD TABLE FIELD DB2FII. ’\N"):
PRINTFC" .. AN"):

/• .. 7
/ ' NORMAL PROGRAM TERMINATION SECTION//
/ ' LOG O U T AND TERMINATE PROCESSING. 7
/•... 7

EXEC SQL W HENEVER SQLERROR C O N T IN U E :/ ’ D O N 'T TRAP ERRORS. 7
EXEC SQL C O M M IT W O R K RELEASE: /’ LOG OFF DATABASE. 7
PR IN TFf\N \N ’ ..."\N"):
PRINTFC" THE PROGRAM HAS TERMINATED NORMALLY. ’\N"):
PRINTFC" ... *\N"):

EXIT(0):

/• •**••*•*•**•*•••••**•••*••••«**•*••*•*•*•••*•*•***••****••*••**«••*•••* * j
r THE ERROR HANDLING TRAPS AND ROUTINES. 7
/ .../

SQL_ERROR_ROUTINE:
PUTCHAR(BEEP):/’ BEEP 7
PRINTFC" %70S ’\N",LINE):
PRINTFC" DATABASE SIZE : %LU\N".ROWS):
PRINTFC" LAST KEY VALUE IS: %D\N",KEY_VALUE):
PRINTFC" %70S ’\N".UNE):
PRINTFC" %70S "\N". ERROR_MESSAGE):
PRINTFC" %70S *\N", SQLCA.SQLERRM.SQLERRMQ:
PRINTFC" %70S ’\N".LINE):

Transaction Behaviour in Large Database Environments, A Methodological Approach. 281

APPENDIX A: Create The CITY Benchmark Tables.

PUTCHAR(BEEP):/- beep V
EXEC SQL WHENEVER SQLERROR CONTINUE:
EXEC SQL ROLLBACK W ORK RELEASE:
EXIT(I):

} /- PROGRAM END V

Transaction Behaviour in Large Database Environments, A Methodological Approach. 282

APPENDIX B

APPENDIX B: The CITY Benchmark Tables Load.

APPENDIX B: The CITY Benchmark Tables Load

/* THE CITY BENCHMARK TEST. */
/* DATA LOAD PROGRAM. */

INCLUDE <STDIO.H>
INCLUDE <CTYPE.H>
#INCLUDE < STRING.H>
INCLUDE <SQLCA.H>
INCLUDE <PROCESS.H>
INCLUDE <STDLIB.H>
INCLUDE <GRAPH.H>
INCLUDE <TIME.H>
#DEFINE BEEP '\A'
#DEFINE MAXPATH 64
#DEFINE MAXLINE 80
#DEFINE DSECONDS 1
#DEFINE NLETTERS 10

/* ================================ */
/* DECLARE TPS RECORD STRUCTURE TAG */
/* ================================ * /

STRUCT TPS_REC_LAYOUT
{ /* STRUCTURE BEGINING */
CHAR DBTYPE [15];/* DATABASE NAME. * /
LONG DBSIZE;/* DATABASE SIZE. */
INT NLOOPS;/* NUMBER OF LOOPS. */
INT LOOPTIME;/* LOOP TIME IN SECONDS. */
INT TOTTIME;/* TOTAL TIME IN SECONDS. */
LONG TOT_TRANS;/* TOT. NUMBER OF TRANSACTIONS. */
LONG AVR_TRANS; /* AVR. TRANSACTIONS PER LOOP. */
DOUBLE TRN_PER_SEC ; / * NUMBER OF TRANSACTIONS/SEC. */
DOUBLE IT_RESP_TIME;/* ITERATION RESPONSE TIME. */
TIME_T TIME_DATE;/* TIME AND DATE OF TEST. */
} ; / * STUCTURE END */

/* ============================ */
/* DECLARE TPS RECORD STRUCTURE */
/* ============================ */

STRUCT TPS_REC_LAYOUT TPS_IO_REC;

/* == */
/* THIS PART CREATES FIVE TABLES FOR THE CITY BENCHMARK */
/* D B 100, DB 2 0 0 , DB300 DBINS AND DBUPD THEN LOAD THEM.*/
/* == */

EXEC SQL BEGIN DECLARE SECTION;

/* ================================ * /
/* THE PASSWORD DECLARATION SECTION */
/* ================================ */

VARCHAR UID[20];
VARCHAR PWD[20];

/* == */
/* THE DATABASES INTERMEDIATE DECLARATION SECTION */
/* == */

Transaction Behaviour in Large Database Environments, A Methodological Approach.284

APPENDIX B: The CITY Benchmark Tables Load.

CHAR DBFCl [8] ;
INT DBF I ;
CHAR d b f c2 [30] ;
LONG DBFL ;
FLOAT DBFR ;
DOUBLE DBFD ;
VARCHAR DBFV [40];

UNSIGNED INT KEY_VALUE ;

/* == */
/* Th e program va ri a b l e s d e cl a r a t io n s e c t i o n. */
/* == */

long r_1 = 0; /* U n i qu e N o . of R ows c o u n t e r . */
long r_ 1 0 = 0; / * N o . of Rows C o u nt e r r epeated e very 10 rows . * /
long r_ 100 = 0; /* No. of Rows C ount e r re pe a t e d e very 100 r o w s . */

int vi = 5 0; / * In t eg e r v a lu e * /
long v l = 50; /* Long v a lu e */
float vf = 50; /* f l o a t v a l u e */
float v r = 50; /* F loat v a l u e */
DOUBLE VD = 50; / * DOUBLE VALUE * /

LONG DB_SIZE; /* DATABASE SIZE */

/* CHARACTER FIELDS CARIFIELDI, CHAR2FIELD1 AND VARFIELDl*/

STATIC CHAR CHARIFIELDI [8]
STATIC CHAR CHAR2FIELD1 [30]
STATIC CHAR VARFIELDl [40]
A A A A A " };

{"0000001“ } ;
{"ABABA ABABA ABABA ABABA ABABA"};
{"ABABA ABABA ABABA ABABA ABABA ABA

EXEC SQL END DECLARE SECTION;

/* ====================================== */
/* INCLUDE SQLCA COMMAND (SQL COMM A r e a) . */
/* ====================================== */

EXEC SQL INCLUDE SQLCA;

/* ======================= */
/* THE MAIN PROGRAM START. */
/* ======================= */

MAIN ()
{ /* PROGRAM START */

FILE *TPS_FP ;
LONG RANDP() ;

LONG X, Y, Z; s

STATIC CHAR PATH_NAME_1 [MAXPATH] = { "C : \CITYLOAD . T X T " } ;

/* Ra n d o m n u mb e r g e ne r a t i on va ri a b l e s */
LONG SEED, RT_VALUE, N_ROWS, R_LIMITl0;
INT R_LIMIT = 30000 ; /* RANDP MAXIMUM VALUE */
UNSIGNED LONG ROWS; /* DATABASE SIZE */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 285

APPENDIX B: The CITY Benchmark Tables Load.

UNSIGNED LONG ROWS_START, /* NUMBER OF ROWS START VALUE */
R o ws_ E nd , / * N u m b e r of rows end v a l u e * /
ROWS_STEP; / * NUMBER OF ROWS STEP VALUE * /

INT SE C O N D S;

INT II = 0, /* LOOPl INDEX */
12 = 0, /* l o o p2 index */
13 = 0; /* LOOP3 INDEX */

INT I, /* M a i n loop i n d e x*/
J = 7, /* E nd of 8 C h ar f ield pointer */
K = 29, /* E nd of 3 0 Ch ar field pointer */
L = 0, /* St a rt of V a r_ fields pointer */
M = 38; /* E nd of V ar_ fields pointer */

UNSIGNED LONG
UNSIGNED LONG
UNSIGNED LONG
END = 0,
G_TIMEl = 0,
G_TIME2 = 0 ;

I_LOOPS; /* INDEX OF NUMBER OF RECORDS. */
rows_ loop = 0 ; /* Da t a b a s e load loops In d e x */
start = 0 , /* TPS Start t i m e . */

/* TPS E nd t i m e . */
/* U sed to g et start v a l u e fr om t i m e . */
/* U sed to get end v a l u e from t i m e . */

UNSIGNED LONG TRANS_COUNT = 0 , /* LOOP TRANS_COUNTER . * /
TOT_TRANS_COUNT = 0 , / * TOTAL OF LOOP TRANS COUNTERS . * /
AVR TRANS COUNT = 0 ; / * AVERAGE OF LOOP TRANS COUNTERS . * /

DOUBLE RESP_TIME,
RESP_TIME_T, /*
RESP TIME 1, / *
RESP_PER_STEP, / *
TRANS_PER_SEC ; / *

/* A v e r a g e tran s a c t io n s re sp o n s e t i m e .
T otal tran s a c t io n s re sp o n s e t i m e . */
O ne tran s a c t io n s r esponse t i m e . */
R esponse time per s t e p . */
T r a n s a c t i o n s/s e c . */

*/

time_ t resp_ t i m e_ s t a r t, /* R espo n s e ti me St a r t . */
RESP_TIME_STOP ; /* RESPONSE TIME END. */

UNSIGNED LONG RESP_COUNT;

STATIC CHAR DB_TYPE[15] = {"ORACLE. ” } ;

LONG QS = 0 ;
LONG QUl = 0 ;
LONG QU2 = 0 ;
LONG QF = 0 ;
LONG IN_REC=0 ;

DOUBLE TR_PER_SECOND= 0; /* AVERAGE NUMBER OF TRANSACTIONS/SEC. */

STATIC CHAR ERROR_MESSAGE [71] =

"} ;

STATIC CHAR LINE[71] =
{"###
" } ; j

STATIC CHAR CONN_ERR[71] =
{“AN ERROR OCCURRED DURING CONNECTION TO THE DBMS. " } ;

STATIC CHAR QL_COUNT_ERR [71] =
{“AN ERROR OCCURRED DURING COUNTING ROWS IN DB100. "};

STATIC CHAR ROW_INSRT_ERRl [71] =

Transaction Behaviour in Large Database Environments, A Methodological Approach. 286

APPENDIX B: The CITY Benchmark Tables Load.

{“An error occurred during Table DB100 loading. " } :

STATIC CHAR R0W_INSRT_ERR2 [7 1] =
{“AN ERROR OCCURRED DURING TABLE DB2 0 0 LOADING. ") >‘

STATIC CHAR ROW_INSRT_ERR3 [71] =
{“AN ERROR OCCURRED DURING TABLE DB3 00 LOADING. “}/'

STATIC CHAR ROW_INSRT_ERRI [71] =
{“AN ERROR OCCURRED DURING TABLE DBINS LOADING.

STATIC CHAR ROW_INSRT_ERRU [71] =
{"AN ERROR OCCURRED DURING TABLE DBUPD LOADING. “) /

STATIC CHAR F_MSGL [47] =
j- M * * * * * * * * * * - * - * * ' * * * * * * * * * * * * - * M } .

STATIC CHAR F_MSGl[32] = {“TOTAL NUMBER OF INSERTED ROWS: "};
STATIC CHAR F_MSG2[47] = {“THE PROGRAM HAS BEEN TERMINATED SUCCESSFULLY. "};

/* ==================== */
/* CLEAR SCREEN COMMAND */
/* ==================== */

_CLEARSCREEN (_GCLEARSCREEN) ;

/* ====================================== */
/* LOG INTO THE DBMS USERID AND PASSWORD. */
/* ====================================== */

PRINTF (" PLEASE ENTER USERID : ") ;
SCANF(” %S " , UID.ARR) ;
PRINTF (“ PLEASE ENTER PASS WORD: ");
SCANF(" %S " , PWD.ARR) ;
UID.LEN = STRLEN(UID.ARR) ;
PWD . LEN = STRLEN (PWD . ARR) ;

*/

*/

STRCPY(ERROR_MESSAGE,CONN_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL CONNECT :UID IDENTIFIED BY :PWD;

PRINTF ("* = = = = = = = = = = = = === *\N") ;
printf(" * connected to The system user: %s *\n " ,uid.arr) ;
PRINTF ("* = = = = = ==== = ==== = = = = = = = = = = = = = ===== ==== *\n \n ");

/* ==:
/* LOG INTO THE DBMS EVERY TIME THE PROGRAM START A NEW LOOP. */
/* ==

/* ================================= */
/* Count Number of Rows in Tables */
/* ================================= */

STRCPY(ERROR_MESSAGE,QL_COUNT_ERR);
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL SELECT COUNT (DISTINCT (DB1FI1))
INTO :DB_SIZE
FROM D B 1 0 0 ;

IF (DB_SIZE < 1)
{ /* IF DB_SlZE < 1 END */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 287

APPENDIX B: The CITY Benchmark Tables Load.

PRINTF ("\N\N* = = = ====== ======= = =
PRINTF(" * The test database is empty

} /* IF DB_SIZE < 1 END */

/* Get number of Rows To be Inserted */
/* ================================= */

PRINTF ("CURRENT DATABASE SIZE IN ROWS IS: %D.\N", DB_SIZE) ;

ROWS_START = DB_SIZE;

GET_SlZE:
printf (" Please enter number of rows to be added to the test database: ") ;
SCANF (" %LU " , &ROWS_END) ;
IF (ROWS_END < 1)
{ /* IF DB_SIZE < 1 END */
PRINTF ("\N* = *\N") ;
PRINTF(" * NUMBER OF ADDED ROWS MUST BE GREATER THAN 1. *\N") ;
PRINTF ("* = *\N") ;
GOTO GET_SlZE ;
} /* IF DB_SIZE < 1 END */

_CLEARSCREEN (_GCLEARSCREEN) ;

/* ===================== */
/* THE MAIN LOOP START. */
/* ===================== */
*/

R_100 = ROWS_START ;
R_10 = Rows_START ;
R_1 = ROWS_S TART ;

FOR (ROWS = (Rows_START+1) ; ROWS < (ROWS_START+ROWS_END+l) ; R O W S++)
{ /* The MAIN LOOP START */

/* Load Tables Section. This section ends with commit insert rows. */

/* ================================ */
/* Lo op for rows re pe a t e d 100 t imes */
/* ================================ */

FOR (13 = 0; 13 < N L E T T E R S; + + I 3)
{ / * FOR 13 START * /

++R_100 ; /* Integer Value Repeated 100 times. */

/* =============================== */
/* LOOP FOR ROWS REPEATED 10 TIMES */ j
/* =============================== */

FOR (l2 = 0 ; 12 < N L E T T E R S ; + + I2)
{ / * FOR l2 START */

++r_1 0; /* Integer Value Repeated 100 times. */

/* ============================== */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 288

APPENDIX B: The CITY Benchmark Tables Load.

/* LOOP FOR ROWS WITH UNIQUE KEY. */
/* ============================== */

FOR (Il = 0; Il < N L E T T E R S; ++ll)
{ /* FOR II START */

++R_1;

/* Insert a Row In DB100 and check error then */
/* Commit Work and Program termination section. *7

EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;

STRCPY (ERROR_MESSAGE , ROW_INSRT_ERRl) ;
EXEC SQL INSERT INTO
DB100 (DBlFCl,DBlFll,DB1FC2,
DBlFLl,DBlFRl,DBlFDl,DBlFVl)
VALUES (:CHARlFIELDl, :R_1, :CHAR2FIELD1,
:VL, : VF, : VD, :VARFIELDl) ;

PRINTF (" * ==== = = === = = = === ===== *\N") ;
PRINTF (" * ROW NUMBER: %7D HAS BEEN INSERTED IN DB100. *\N",R_1) ;

== */

= = */

/* == */
/* In s e r t a R ow In D B 2 0 0 a nd check error t h e n */
/* C o m m i t W ork a n d p r o g r a m T e r mi n a t i on s e c t i o n. */
/* == */

STRCPY (error_ m e s s a g e , row_ insrt_ e r r2) ;
EXEC SQ L IN S E R T IN TO
DB200 (d b2 f c 1 ,d b2 f i 1 ,d b2 f c2 ,
d b2f l ! ,d b2 f r 1 ,d b2 f d 1 ,d b2f v 1 ,
d b2 f c3 ,d b2f i2 ,d b2 f c 4 ,
d b2f l2 ,d b2 f r2 ,d b2f d2 ,d b2f v2)
V AL U E S (:CHARlFIELDl, : R_1, : CHAR2FIELD1,
: VL, : VF, :VD, :VARFIELDl,
:CHARlFIELDl, : R_10 , :CHAR2FIELD1,
: VL, : VF, : VD, :VARFIELDl);

p r i n t f (m* Row n u m b e r : %7d Has B e en Inser t e d in DB200. *\n ",r_1);

/* == */
/* In s e r t a R ow In DB3 00 a n d c h ec k e rror t h e n */
/* C o m mi t W o rk a n d Pr o gr a m T e r mi n a t i on s e c t i o n. */
/* == * /

STRCPY (e rror_ m e s s a g e , row_ insrt_ e r r3) ;
EXEC SQ L IN S E R T IN TO
D B 3 0 0 (d b3f c 1,d b 3f i 1,d b3f c2,
d b3 f l 1 ,d b3f r 1 ,d b3f d 1 ,d b3f v 1 ,
d b3f c3 ,d b 3f i2 ,d b3 f c 4 , j
d b3f l2 ,d b 3f r2 ,d b3 f d2 ,d b3 f v2 ,
d b3f c 5 ,d b3 f i3 ,d b3 f c 6 ,
d b3f l3 ,d b 3f r3 ,d b3f d 3 ,d b3 f v3)
V AL U E S (:CHARlFIELDl, :R_1, :CHAR2FIELD1,
: VL, : VF, : VD, :VARFIELDl,
:CHARlFIELDl, : R_10 , :CHAR2FIELD1,
: VL, : VF, : VD, :VARFIELDl,
:CHARlFIELDl, : R_100 , :CHAR2f IELD1,

Transaction Behaviour in Large Database Environments, A Methodological Approach. 289

APPENDIX B: The CITY Benchmark Tables Load.

} /* PROGRAM END */

f

)

Transaction Behaviour in Large Database Environments, A Methodological Approach. 291

APPENDIX C

APPENDIX C: The CITY Benchmark Transactions.

APPENDIX C: The CITY Benchmark Transactions

/* the CITY Benchmark Transactions.
/* TO RUN AFTER CITYCRT AND CITYLOAD. */
/* EXECUTABLE FORM IS CITY . EXE AND RESULTS ARE CITY. RES. */

#INCLUDE <STDIO.H>
#INCLUDE <CTYPE.H>
#INCLUDE <STRING.H>
#INCLUDE <SQLCA.H>
#INCLUDE <PROCESS.H>
#INCLUDE <STDLIB.H>
#INCLUDE <GRAPH.H>
#INCLUDE <TIME.H>
#DEFINE BEEP ' \A '
#DEFINE MAXPATH 64
#DEFINE MAXLINE 80
#DEFINE DSECONDS 1
#DEFINE NLETTERS 10

/* ================================ */
/* DECLARE TPS RECORD STRUCTURE TAG */
/* ================================ */

STRUCT TPS_REC_LAYOUT
{ /* STRUCTURE BEGINING */
CHAR DBTYPE [15] ; / * DATABASE NAME . * /
LONG DBSIZE;/* DATABASE SIZE. */
INT NLOOPS ; / * NUMBER OF LOOPS . * /
INT LOOPTIME;/* LOOP TIME IN SECONDS. */
INT TOTTIME;/* TOTAL TIME IN SECONDS. */
LONG TOT_TRANS ; / * TOT. NUMBER OF TRANSACTIONS. */
LONG AVR_TRANS ; / * AVR . TRANSACTIONS PER LOOP. */
DOUBLE TRN_PER_SEC ; / * NUMBER OF TRANSACTIONS/SEC . */
DOUBLE IT_RESP_TIME; /* ITERATION RESPONSE TIME. */
TIME_T TIME_DATE ; / * TIME AND DATE OF TEST. */
} ; / * STUCTURE END * /

/* ============================ */
/* Déclaré TPS Record Structure */
/* ============================ */

STRUCT TPS_REC_LAYOUT TPS_IO_REC;

/* ======================= */
/* DECLARE PRINT PROCEDURE */
/* ======================= */

PRN_REC 1 () ;

*/

*/

EXEC SQL BEGIN DECLARE SECTION;

/* ================================ */
/* THE PASSWORD DECLARATION SECTION */
/* ================================ */

/* =
/* This part creates five Tables for The CITY Benchmark */
/* DB100, DB200, DB300 DBINS AND DBUPDr THEN LOAD THEM.*/
/* ==

Transaction Behaviour in Large Database Environments, A Methodological Approach. 293

APPENDIX C: The CITY Benchmark Transactions.

VARCHAR UID[20];
VARCHAR PWD[20] ;

/* THE DATABASES INTERMEDIATE DECLARATION SECTION */

CHAR DBFCl [8]
INT DBF I ;
CHAR DBFC2 [30
LONG DBFL ;
FLOAT DBFR ;
DOUBLE DBFD ;
VARCHAR DBFV [40];

*/

*/

UNSIGNED INT KEY_VALUE;

/* == */
/* The program variables declaration section. */
/* == */

LONG R_1 = 0; /* UNIQUE NO. OF ROWS COUNTER. */
LONG R_10 = 0 ; / * NO. OF ROWS COUNTER REPEATED EVERY 10 ROWS . * /
LONG R_100 = 0; /* No. OF ROWS COUNTER REPEATED EVERY 100 ROWS. */

INT VI = 50; /* INTEGER VALUE */
LONG VL = 50; /* LONG VALUE */
FLOAT VF = 50; /* FLOAT VALUE */
float vr = 50; /* Float value */
double vd = 50; /* Double value */

LONG DB_SIZE; /* DATABASE SIZE */

/* Character fields CarIfieldI, Char2field1 and VarfieldI*/

static char charIfieldI
static char Char2field1
STATIC CHAR VARFIELDl
AAAAA"};

EXEC SQL END DECLARE

[8] = { " 0 0 0 0 0 0 1 " } ;

[30] = {“ABABA ABABA ABABA ABABA ABABA"};
[40] = {“ABABA ABABA ABABA ABABA ABABA ABA

SECTION;

/* ====================================== */
/* Include sqlca command (SQL Comm Area) . */
/* ====================================== */

EXEC SQL INCLUDE SQLCA;

/* === */
/* External variables for the random number generation program */
/* === */
EXTERN INT SRANDl {) , RAND2 () ; /* EXTERN IS OPTIONAL */

/
/* ======================= */
/* The main program start. */
/* ======================= */

MAIN{)
{ /* Program start */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 294

APPENDIX C: The CITY Benchmark Transactions.

FILE *TPS_FP;
LONG RANDP() ;

LONG X, Y, Z;

STATIC CHAR PATH_NAME_1 [MAXPATH] = { "C : \CITY .RES“ } ;

/* Random number generation variables */
LONG SEED, RT_VALUE, N_ROWS, R_LIMITlO;
INT R_LIMIT = 30000 ; /* RANDP MAXIMUM VALUE */

UNSIGNED LONG ROWS_START, /* NUMBER OF ROWS START VALUE */
ROWS_END, / * NUMBER OF ROWS END VALUE * /
Rows_Step ; / * Number of rows step value * /

UNSIGNED LONG ROWS; /* DATABASE SIZE */

INT SECONDS;

INT II = 0, /* LOOPl INDEX */
i2 = 0, /* loop2 index */
i3 = 0,! /* loop3 INDEX */

INT I, /* Main loop index*/
J = 7, /* End of 8 Char field pointer */
K = 29, /* End of 30 Char field pointer */
L = 0, /* Start of var_fields pointer */
M = 38; /* end OF VAR_FIELDS POINTER */

UNSIGNED LONG I_LOOPS; /* INDEX OF NUMBER OF RECORDS. */
UNSIGNED LONG ROWS_LOOP =0; /* DATABASE LOAD LOOPS INDEX */
UNSIGNED LONG START =0, /* TPS START TIME. */
END =0, /* TPS END TIME. */
g timeI = 0, /* Used to get start value from time. */
g_time2 = 0; /* Used to get end value from time. */

unsigned long trans_count =0, /* Loop trans_counter. */
TOT TRANS COUNT = 0 , / * TOTAL OF LOOP TRANS COUNTERS . * /
AVR TRANS COUNT = 0; /* AVERAGE OF LOOP TRANS COUNTERS . */

DOUBLE RESP_TIME, /* AVERAGE TRANSACTIONS RESPONSE TIME. */
RESP_PER_STEP, /* RESPONSE TIME PER STEP. */
TRANS_PER_SEC ; /* TRANSACTIONS/SEC . */

TIME_T RESP_TIME_START, /* RESPONSE TIME START. */
RESP_TIME_STOP ; /* RESPONSE TIME END. */
LONG RESP_TIME_T, /* TOTAL TRANSACTIONS RESPONSE TIME. */
RESP_TIME_1 ; /* ONE TRANSACTIONS RESPONSE TIME. */

UNSIGNED LONG RESP_COUNT;

STATIC CHAR DB_TYPE[15] = {"ORACLE. "};

LONG QS = 0 ; j
LONG QU1=0;
LONG QU2 = 0 ;
LONG QF=0;
LONG IN_REC = 0 ;

DOUBLE TR_PER_SECOND = 0; /* AVERAGE NUMBER OF TRANSACTIONS/SEC . */

STATIC CHAR ERROR_MESSAGE [71] =

Transaction Behaviour in Large Database Environments, A Methodological Approach. 295

APPENDIX C: The CITY Benchmark Transactions.

{"An error has occurred during FETCH1 execution.

STATIC char ft2_cur_opn_err[71] =
{"AN error has occurred DURING FETCH2 CURSOR open. "1;
STATIC CHAR FT2_CUR_DCL_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH2 CURSOR DECLARATION. "}/•
STATIC CHAR FT2_CUR_FTCH_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH2 EXECUTION. “ }/'

STATIC CHAR FT3_CUR_OPN_ERR [7 1] =
{ " AN ERROR HAS OCCURRED DURING FETCH3 CURSOR OPEN. “) i
STATIC CHAR FT3_CUR_DCL_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH3 CURSOR DECLARATION. "};
STATIC CHAR FT3_CUR_FTCH_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH3 EXECUTION. "};

STATIC CHAR FT4_CUR_OPN_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH4 CURSOR OPEN. "};
STATIC CHAR FT4_CUR_DCL_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH4 CURSOR DECLARATION. “} !
STATIC CHAR FT4_CUR_FTCH_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH4 EXECUTION. "};

STATIC CHAR FT5_CUR_OPN_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH5 CURSOR OPEN. “};
STATIC CHAR FT5_CUR_DCL_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH5 CURSOR DECLARATION.
STATIC CHAR FT5_CUR_FTCH_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH5 EXECUTION. "};

STATIC CHAR FT6_CUR_OPN_ERR [7 1] =
{“AN ERROR HAS OCCURRED DURING FETCH6 CURSOR OPEN.
STATIC CHAR FT6_CUR_DCL_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH6 CURSOR DECLARATION. "};
STATIC CHAR FT6_CUR_FTCH_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH6 EXECUTION. “};

STATIC CHAR FT7_CUR_OPN_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH7 CURSOR OPEN. " } ,*
STATIC CHAR FT7_CUR_DCL_ERR [7 1] =
{“AN ERROR HAS OCCURRED DURING FETCH7 CURSOR DECLARATION. “};
STATIC CHAR FT7_CUR_FTCH_ERR [71] =
{ " AN ERROR HAS OCCURRED DURING FETCH 7 EXECUTION. “ } ;

STATIC CHAR FT8_CUR_OPN_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH8 CURSOR OPEN. “};
STATIC CHAR FT8_CUR_DCL_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH8 CURSOR DECLARATION. “};
STATIC CHAR FT8_CUR_FTCH_ERR[71] =
{“AN ERROR HAS OCCURRED DURING FETCH8 EXECUTION. "};

STATIC CHAR FT9_CUR_0PN_ERR [7 1] =
{"AN ERROR HAS OCCURRED DURING FETCH9 CURSOR OPEN. " } ;
STATIC CHAR FT9_CUR_DCL_ERR [71] =
{"AN ERROR HAS OCCURRED DURING FETCH9 CURSOR DECLARATION. " } ;
STATIC CHAR FT9_CUR_FTCH_ERR[71] =
{"AN ERROR HAS OCCURRED DURING FETCH9 EXECUTION. " } ;

/* CLEAR SCREEN COMMAND */

CLEARSCREEN(_GCLEARSCREEN) ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 297

APPENDIX C: The CITY Benchmark Transactions.

/* OPEN FILES FOR TPS AND RESPONSE TIME. */

IF ((TPS_FP=FOPEN (PATH_NAME_1, "AB")) == NULL)
{ /* IF START */
putchar (BEEP) ;/* Beep */
PUTCHAR (BEEP) ; / * BEEP */
PRINTF ("* ## *\N") ;
PRINTF (" * CANNOT OPEN THE FILE, ABNORMAL END OF PROGRAM. *\N“);
PRINTF (“* FILENAME IS: % S \ N " , PATH_NAME_1) ;
PRINTF (" * ## *\N") ;
GETCHAR() ;
) /* IF END. */

/* ====================================== */
/* LOG INTO THE DBMS USERID AND PASSWORD. */
/* ====================================== */

PRINTF (“ PLEASE ENTER USERID : ") ;
SCANF(“%S“ , UID.ARR) ;
PRINTF(" PLEASE ENTER PASS WORD: ") ;
SCANF (“ %S “ , PWD . ARR) ;
UID.LEN = STRLEN(UID.ARR);
PWD . LEN = STRLEN (PWD . ARR) ;

/* LOG INTO THE DBMS EVERY TIME THE PROGRAM START A NEW LOOP. */
/* == */

STRCPY(ERROR_MESSAGE,CONN_ERR);
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL CONNECT :UID IDENTIFIED BY :PWD;

PRINTF {"* ====== = = = = = *\NM);
PRINTF (" * CONNECTED TO THE SYSTEM USER: %S *\N " , UID . ARR) ;
PRINTF(“* ==================================== *\N\N");

/* ================================= */
/* COUNT NUMBER OF ROWS IN TABLES */
/* ================================= */

STRCPY(ERROR_MESSAGE,QL_COUNT_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL SELECT COUNT (DISTINCT (DB1FI1))
INTO :DB_SIZE
FROM DB100;

IF (DB_SIZE < 1)
{ /* IF DB_SIZE < 1 END */
PRINTF ("\N\N* = *\N“) ;
PRINTF ("* THE TEST DATABASE IS EMPTY. j *\N”);
PRINTF(" * The PROGRAM HAS TERMINATED ABNORMALLY. *\N“);
PRINTF (" * == = = = = = = === ==== *\N") ;
EXIT (1) ;
} /* IF DB_SlZE < 1 END */

ROWS = DB_SIZE;

printf("Current database size in rows is: %d .\n “(r o w s);

Transaction Behaviour in Large Database Environments, A Methodological Approach. 298

APPENDIX C: The CITY Benchmark Transactions.

/* Get number of rows To be Inserted */

GET_TIME:
PRINTF ("TIME LOOP LENGTH SHOULD BE 3 00 SECONDS OR MORE. \N") ;
PRINTF(" PLEASE ENTER TIME LOOP LENGTH IN SECONDS: ") !
SCANF("%D" , &SECONDS) ;
IF (SECONDS < 300)
{ /* IF SECONDS START */

printf("* Time Loop length should be 3 00 seconds or more. *\n ");
PRINTF(" * PLEASE ENTER NEW LOOP TIME THEN PRESS ENTER. *\N");
PRINTF (”* = = = = = = = ==== *\N") ;
GOTO GET_TIME;
} /* IF SECONDS END */

_CLEARSCREEN (_GCLEARSCREEN) ;

/* =============================== */
/* THE CITY BENCHMARK TRANSACTIONS.*/
/* =============================== */
*/

/* =========================== */
/* Dummy loops to adjust time. */
/* =========================== */

START= TIME (&G_TIMEl) ; /* GET SYSTEM ELAPSED TIME IN SECONDS. */
END= START + DSECONDS ; /* CALCULATE END TIME IN SECONDS */
DO
{ /* START OF DO LOOP BODY. */
printf(“Dummy loops to adjust time\n “);
) /* end of do loop body. */
WHILE (TIME(&G_TIMEl) < END) ;
_CLEARSCREEN (_G C L E A R SC R E E N) ;

/* === */
/* Program loops to calculate tps and response time. */
/* === */

TRANS_COUNT = 0 ; /* SET NUMBER OF TRANSACTIONS/LOOP TO 0 */
RESP TIME T =0; /* SET TIME OF TRANSACTIONS/LOOP TO 0 */

/* === */
/* GET TIME START AND TIME END TO CALCULATE TPS. */
/* === */

START = TIME (&G_TIMEl) ; /* GET SYSTEM ELAPSED TIME IN SECONDS. */
END = START + SECONDS;/* CALCULATE END TIME IN SECONDS */
R_LIMITl0 = ROWS/10;

DO
{ /* START OF DO LOOP BODY. */

/* == */
/* Get start time to calculate response/iteration */
/* == */

TIME (&RESP_TIME_START) ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 299

APPENDIX C: The CITY Benchmark Transactions.

/* 1. RETRIEVE 1 ROW FROM DB100. */

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SELl_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTlNE;
EXEC SQL SELECT DB1FC1, DB1FI1, DB1FC2, DB1FL1, DB1FR1, DB1FD1,
DB1FV1
INTO :DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV
FROM DB100
WHERE DB1FI1 = :KEY_VALUE;

/* ============================= */
/* 2. RETRIEVE 1 Row FROM DB200. */
/* ============================= */

/* GET A RANDOM KEY */
X = RAND2 (r_limit) ;
Y = rand2 (r_LIMIT) ;
z = rand2(r_limit);
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SEL3_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1,
DB2FV1
INTO : DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV
FROM DB200
WHERE DB2FI1 = : KEY_VALUE;

/* ============================== */
/* 3.. Retrieve 1 Row from DB300. */
/* ============================== */

/* GET A RANDOM KEY */
X = rand2 (r_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2(r_limit);
KEY_VALUE = RANDP (X, Y, Z, ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SEL.7_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1,
DB3FV1
INTO : DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV
FROM DB300
WHERE DB3FI1 = :KEY_VALUE;

/* 4. RETRIEVE 1 ROW FROM DB100 . */
/* ============================= */

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = rand2(r_limit);
Z = RAND2 (r_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z, ROWS) ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 300

APPENDIX C: The CITY Benchmark Transactions.

STRCPY (ERROR_MESSAGE, QL_SEL2_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL SELECT DB1FC1, DB1FI1, DB1FC2, DB1FL1, DB1FR1, DB1FD1,
DB1FV1
INTO :DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV
FROM DB100
WHERE DB1FI1 = : KEY_VALUE;

/* ============================= */
/* 5. RETRIEVE 1 Row FROM DB200. */
/* ============================= */

/* GET a RANDOM KEY */
x = rand2 (r_limit) ;
Y = RAND2 (r_limit) ;
Z = RAND2 (r_limit) ;
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SEL4_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1,
DB2FV1
INTO : DBFCl, :DBFI, : DBFC2 , : DBFL, : DBFR, : DBFD, :DBFV
FROM DB200
WHERE DB2FI1 = : KEY_VALUE ;

/* ============================= */
/* 6. RETRIEVE 1 ROW FROM DB3 00. */
/* ============================= */

/* GET A RANDOM KEY */
X = RAND2 (r_limit) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SEL8_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1,
DB3FV1
INTO :DBFC1, :DBFI, :DBFC2 , :DBFL, :DBFR, :DBFD, :DBFV
FROM DB300
WHERE DB3FI1 = :KEY_VALUE;

/* ============================= */
/* 7. RETRIEVE 1 ROW FROM DB200. */
/* ============================= */

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z, ROWS) ;

STRCPY (ERROR_MESSAGE, QL_SEL5_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1,
DB2FV1
INTO : DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV
FROM DB200
WHERE DB2FI1 = :KEY_VALUE;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 301

APPENDIX C: The CITY Benchmark Transactions.

/* ============================= */
/* 8. RETRIEVE 1 ROW FROM DB3 00. */
/* ============================= */

/* GET A RANDOM KEY * /
x = rand2 (r_limit) ;
Y = RAND2 (r_limit) ;
z = rand2 (r_limit) ;
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE , QL_SEL8_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1,
DB3FV1
INTO :DBFC1, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, : DBFV
FROM DB300
WHERE DB3FI1 = : KEY_VALUE;

/* 9. UPDATE A SINGLE ROW IN DBUPD USING INTEGER KEY. */

/* ====================================== */
/* PRINT BEFORE UPDATE RECORD IMAGE. */
/* ====================================== */

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , ROWS) ;

STRCPY (ERROR_MESSAGE, ROW_UPDATE_ERRl) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL UPDATE DBUPD
SET DBUFL1 = :VL,
DBUFR1 = :VR,
DBUFD1 = :VD
WHERE DBUFI1 = : KEY_VALUE ;

/* ============================ */
/* 10. UPDATE 10 ROWS IN DBUPD. */
/* ============================ */

/* GET A RANDOM KEY */
X = RAND2 (r_limit) ;
Y = RAND2 (r_limit) ;
Z = RAND2 (r_limit) ;
KEY_VALUE = RANDP (X, Y, Z , R_LIMITlO) ;

STRCPY (ERROR_MESSAGE, UPD_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE UPD_CUR CURSOR j
FOR SELECT
DBUFC1, DBUFI1, DBUFC2, DBUFL1, DBUFR1, DBUFD1, DBUFV1
FROM DBUPD
WHERE DBUFI2 = : KEY_VALUE
FOR UPDATE OF
DBUFL1, DBUFR1, DBUFD1;

STRCPY (ERROR_MESSAGE, UPD_CUR_OPN_ERR) ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 302

APPENDIX C: The CITY Benchmark Transactions.

EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL OPEN UPD_CUR;

STRCPY (ERROR_MESSAGE , ROW_UPDATE_ERR2) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL WHENEVER NOT FOUND GOTO UPD_WORK_DONE;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH UPD_CUR INTO
: DBFCl, :DBFI, : DBFC2 , : DBFL, :DBFR, :DBFD, : DBFV;

EXEC SQL UPDATE DBUPD
SET DBUFL1 = :VL,
DBUFR1 = :VR,
DBUFD1 = :VD
WHERE CURRENT OF UPD_CUR;
} /* FOR END */

UPD_WORK_DONE :
EXEC SQL CLOSE UPD_CUR;

/* ================================ */
/* 11. RETRIEVE 10 ROWS FROM DB200. */
/* ================================ */

/* ====================================== */
/* Step 1 Declare the cursor to be used. */
/* ====================================== */

/* Get a random key */
x = rand2(r_limit);
Y = rand2(r_limit);
z = rand2 (r_limit) ;
KEY_VALUE = RANDP(X,Y,Z,R_LIMITlO) ;

STRCPY (ERROR_MESSAGE, FTl_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF1 CURSOR FOR
SELECT D B 2 F C 1 , DB2FI1, DB2FC2, DB2FL1, DB 2 F R 1 , DB 2 F D 1 ,
FROM DB200
WHERE DB2FI2 = :KEY_VALUE;

/* ================================== */
/* Step 2 Open the cursor to be used. */
/* ================================== */

STRCPY (ERROR_MESSAGE, FTl_CUR_OPN_ERR) ;
EXEC SQL OPEN C F 1 ;

/* ===
/* STEP 3 USE FETCH TO RETRIEVE ALL REQUIRED RECORDS. */
/* ===

/
STRCPY (ERROR_MESSAGE, FTl_CUR_FTCH_ERR) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_F1 ;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF1 INTO
: DBFCl, :DBFI, : DBFC2 , :DBFL, :DBFR, :DBFD, : DBFV;
} /* FOR END */

DB2FV1

*/

*/

Transaction Behaviour in Large Database Environments, A Methodological Approach. 303

APPENDIX C: The CITY Benchmark Transactions.

/* Step 4 Close the cursor. */

WORK_DONE_F1 :
EXEC SQL CLOSE CF1;

/* ================================ */
/* 12. RETRIEVE 10 ROWS FROM DB300. */
/* ================================ */

/* ====================================== */
/* Step 1 Declare the cursor to be used. */
/* ====================================== */

/* GET A RANDOM KEY */
x = rand2 (r_limit) ;
Y = RAND2 (R_LIMIT) ;
z = rand2(r_limit);
KEY_VALUE = RANDP (X, Y, Z , R_LIMITl 0) ;

STRCPY (ERROR_MESSAGE, FT6_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF6 CURSOR FOR
SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1,
FROM DB300
WHERE DB3FI2 = :KEY_VALUE;

/* ================================== */
/* Step 2 Open the cursor to be used. */
/* ================================== */

strcpy (error_message, ft6_cur_opn_err) ;
EXEC SQL OPEN CF6;

/* ==
/* Step 3 Use FETCH to retrieve all required records. */
/* ==

strcpy (error_message , ft6_cur_ftch_err) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_F 6;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF6 INTO
:DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR(:DBFD, :DBFV;

} /* FOR END */

/* ======================== */
/* Step 4 Close the cursor. */
/* ======================== */

WORK_DONE_F6:
EXEC SQL CLOSE CF6;

/* ================================ */
/* 13. Retrieve 10 Rows from DB200. */
/* ================================ */

DB3FV1

*/

*/

Transaction Behaviour in Large Database Environments, A Methodological Approach. 304

APPENDIX C: The CITY Benchmark Transactions.

/* step 1 Declare the cursor to be used. */

/* get a random key */
x = rand2(r_limit);
Y = RAND2 (r_limit) ;
Z = RAND2 (r_limit) ;
KEY_VALUE = RANDP(X,Y,Z,R_LIMITlO) ;

STRCPY (ERROR_MESSAGE , FT2_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL DECLARE CF2 CURSOR FOR
SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1, DB2FV1
FROM DB200
WHERE DB2FI2 = :KEY_VALUE;

/* ================================== */
/* STEP 2 OPEN THE CURSOR TO BE USED. */
/* ================================== */

STRCPY (ERROR_MESSAGE , FT2_CUR_OPN_ERR) ;
EXEC SQL OPEN CF2;

/* STEP 3 USE FETCH TO RETRIEVE ALL REQUIRED RECORDS. */
/* == */

STRCPY (ERROR_MESSAGE, FT2_CUR_FTCH_ERR) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_F2 ;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF2 INTO
:DBFC1, :DBFI, :DBFC2 , :DBFL, :DBFR, :DBFD, :DBFV;
} /* FOR END */

/* ======================== */
/* Step 4 Close the cursor. */
/* ======================== */

work_done_f2 :
EXEC SQL CLOSE CF2;

/* ================================ */
/* 14. Retrieve 10 Rows from DB3 00. */
/* ================================ */

/* ====================================== */
/* Step 1 Declare the cursor to be used. */
/* ====================================== */

/* GET a random key */
X = RAND2(r_limit);
Y = RAND2 (r_LIMIT) ; j
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP(X, Y, Z,R_LIMITl0) ;

STRCPY (ERROR_MESSAGE, ft7_cur_dcl_err) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE ;
EXEC SQL DECLARE CF7 CURSOR FOR
SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1, DB3FV1
FROM DB300

Transaction Behaviour in Large Database Environments, A Methodological Approach. 305

APPENDIX C: The CITY Benchmark Transactions.

WHERE DB3FI2 = :KEY_VALUE;

/* ================================== */
/* step 2 Open the cursor to be used. */
/* ================================== */

strcpy(error_message, ft7_cur_opn_err) ;
EXEC SQL OPEN CF7;

/* Step 3 Use FETCH to retrieve all required records. */
/* == */

strcpy (error_message, ft7_cur_ftch_err) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_f7 ;

FOR (; ;)
{ /* FOR START */
EXEC SQL FETCH CF7 INTO
: DBFCl, :DBFI, :DBFC2 , :DBFL, :DBFR, :DBFD, : DBFV;

} /* FOR END */

/* ======================== */
/* Step 4 Close the cursor. */
/* ======================== */

work_done_f7 :
EXEC SQL CLOSE CF7;

/* ================================ */
/* 15. Retrieve 10 Rows from DB200. */
/* ================================ */

/* ====================================
/* Step 1 declare the cursor to be used. */
/* ====================================

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z, R_LIMITlO) ;

STRCPY (ERROR_MESSAGE, FT3_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF3 CURSOR FOR
SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1, DB2FV1
FROM DB200
WHERE DB2FI2 = :KEY_VALUE;

/* ================================== */
/* Step 2 open the cursor to be used. */
/* ================================== */

STRCPY (ERROR_MESSAGE, FT3_CUR_OPN_ERR) ;
EXEC SQL OPEN CF3;

/* == */
/* step 3 Use FETCH to retrieve all required records. */
/* == */

STRCPY (ERROR_MESSAGE (ft3_cur_ftch_err) ;

*/

*/

Transaction Behaviour in Large Database Environments, A Methodological Approach. 306

APPENDIX C: The CITY Benchmark Transactions.

EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_f3 ;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF3 INTO
:DBFCl, :DBFI, :DBFC2, :DBFL, :DBFR, :DBFD, :DBFV;

} /* FOR END */

/* ======================== */
/* Step 4 Close the cursor. */
/* = */

work_done_f3 :
EXEC SQL CLOSE CF3;

/* ================================ */
/* 16. Retrieve 10 Rows from DB3 00. */
/* ================================ */

/* ====================================== */
/* step 1 Declare the cursor to be used. */
/* ====================================== */

/* Get a random key */
x = rand2(r_limit);
Y = RAND2(R_LIMIT);
Z = RAND2 (r_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , R_LIMITlO) ;

STRCPY(ERROR_MESSAGE, ft4_cur_dcl_err) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF4 CURSOR FOR
SELECT DB3FC1, DB3FI1, DB3FC2, DB3FL1, DB3FR1, DB3FD1, DB3FV1
FROM DB300
WHERE DB3FI2 = : KEY_VALUE ;

/* ================================== */
/* STEP 2 OPEN THE CURSOR TO BE USED. */
/* = */

STRCPY (ERROR_MESSAGE , FT4_CUR_OPN_ERR) ;
EXEC SQL OPEN CF4;

/* == */
/* STEP 3 USE FETCH TO RETRIEVE ALL REQUIRED RECORDS. */
/* == */

STRCPY (ERROR_MESSAGE , FT4_CUR_FTCH_ERR) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_F4 ;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF4 INTO
: DBFC1, : DBFI, :DBFC2, : DBFL, : DBFR, : DBF*D , : DBFV ;

} /* FOR END */

/* = */
/* STEP 4 CLOSE THE CURSOR. */
/* ======================== */

WORK_DONE_F4 :

Transaction Behaviour in Large Database Environments, A Methodological Approach. 307

APPENDIX C: The CITY Benchmark Transactions.

EXEC SQL CLOSE CF4;

/* 17. Retrieve 10 Rows from DB200. */

/* Step 1 declare the cursor to be used. */
/* ====================================== */

/* GET A RANDOM KEY */
X = RAND2 (R_LIMIT) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (r_limit) ;
KEY_VALUE = RANDP (X, Y, Z , R_LIMITlO) ;

STRCPY(ERROR_MESSAGE, FT5_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF5 CURSOR FOR
SELECT DB2FC1, DB2FI1, DB2FC2, DB2FL1, DB2FR1, DB2FD1, DB2FV1
FROM DB200
WHERE DB2FI2 = :KEY_VALUE;

/* ================================== */
/* Step 2 Open the cursor to be used. */
/* ================================== */

STRCPY (error_message, ft5_cur_opn_err) ;
EXEC SQL OPEN CF5;

/* == */
/* Step 3 Use FETCH to retrieve all required records. */
/* == */

STRCPY (error_message, ft5_cur_ftch_err) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_F5 ;

FOR (; ;)
{ /* FOR START */
EXEC SQL FETCH CF5 INTO
: DBFCl, :DBFI(:DBFC2 , : DBFL, :DBFR, :DBFD, : DBFV;
} /* FOR END */

/* ======================== */
/* STEP 4 CLOSE THE CURSOR. */
/* ======================== */

WORK_DONE_F5 :
EXEC SQL CLOSE CF5 ;

/* = */
/* 18. RETRIEVE 10 ROWS FROM DB3 00. */
/* ================================ */

/* Step 1 Declare the cursor to be used. */
/* ====================================

/* Get a random key */
X = RAND2 (R_LIMIT) ;
Y = RAND2(R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , R_LIMITI 0) ;

*/

*/

Transaction Behaviour in Large Database Environments, A Methodological Approach. 308

APPENDIX C: The CITY Benchmark Transactions.

STRCPY (ERROR_MESSAGE , FT8_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF8 CURSOR FOR
SELECT D B 3 F C 1 , DB3FI1, DB3FC2, DB 3 F L 1 , D B 3 F R 1 , DB3FD1, DB3FV1
FROM DB300
WHERE DB3FI2 = : KEY_VALUE;

/* ================================== */
/* STEP 2 OPEN THE CURSOR TO BE USED. */
/* ================================== */

STRCPY (ERROR_MESSAGE, FT8_CUR_OPN_ERR) ;
EXEC SQL OPEN C F 8 ;

/* == */
/* Step 3 Use FETCH to retrieve all required records. */
/* == */

STRCPY (ERROR_MESSAGE, FT8_CUR_FTCH_ERR) ;
EXEC SQL WHENEVER NOT FOUND GOTO WORK_DONE_f8 ;

FOR(; ;)
{ /* FOR START */
EXEC SQL FETCH CF8 INTO
: DBFCl, :DBFI, : DBFC2 , :DBFL, : DBFR, :DBFD, : DBFV;
} /* FOR END */

/* ======================== */
/* Step 4 Close the cursor. */
/* ======================== */

WORK_DONE_F8 :
EXEC SQL CLOSE C F 8 ;

/* = */
/* 19. Join DB200 (10 rows) and DB300 (100) Returns 100 rows. */
/* == */

/* ====================================== */
/* Step 1 Declare the cursor to be used. */
/* ====================================== */

/* Get a random key */
x = rand2 (r_limit) ;
Y = RAND2 (R_LIMIT) ;
Z = RAND2 (R_LIMIT) ;
KEY_VALUE = RANDP (X, Y, Z , R_LIMITlO) ;

STRCPY (ERROR_MESSAGE, FT9_CUR_DCL_ERR) ;
EXEC SQL WHENEVER SQLERROR GOTO SQL_ERROR_ROUTINE;
EXEC SQL DECLARE CF9 CURSOR
FOR SELECT
D B 2 F C 1 , DB 2 F I 1 , DB2FC2, DB 3 F L 1 , DB3FR1, DB3 F D 1 , DB3FV1
FROM D B 2 0 0 , DB300
WHERE(DB2FI2 = DB3FI2)
AND (DB2FI2 = : KEY_VALUE) ;

/* ================================== */
/* Step 2 Open the cursor to be used. */
/* ================================== */

STRCPY (ERROR_MESSAGE, FT9_CUR_OPN_ERR) ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 309

A P P E N DI X C: T h e CI T Y B e n c h m ar k Tr a n s a cti o n s.

E X E C S Q L O P E N C F 9 ;

/ * S t e p 3 U s e F E T C H t o r e t r i e v e a l l r e q u i r e d r e c o r d s . * /

s t r c p y (e r r o r _ m e s s a g e , f t 9 _ c u r _ f t c h _ e r r) ;
E X E C S Q L W H E N E V E R N O T F O U N D G O T O W O R K _ D O N E _ F 9 ;

F O R (; ;)
{ / * F O R S T A R T * /
E X E C S Q L F E T C H C F 9 I N T O

: D B F C l , : D B F I , : D B F C 2 , : D B F L , : D B F R , : D B F D , : D B F V ;

} / * F O R E N D * /

/ * = * /
/ * S T E P 4 C L O S E T H E C U R S O R . * /
/ * = */

w o r k _ d o n e _ f 9 :
E X E C S Q L C L O S E C F 9 ;

/ * 2 0 . 4 . 1 I N S E R T A R O W I N D B I N S A N D C H E C K E R R O R T H E N C O M M I T W O R K . * /

S T R C P Y (E R R O R _ M E S S A G E , R O W _ I N S R T _ E R R) ;
E X E C S Q L W H E N E V E R S Q L E R R O R G O T O S Q L _ E R R O R _ R O U T I N E ;
E X E C S Q L I N S E R T I N T O
D B I N S (D B I F C l , D B I F l l , D B I F C 2 , D B I F L l , D B I F R l , D B I F D l , D B I F V l ,
D B I F C 3 , D B I F I 2 , D B I F C 4 , D B I F L 2 , D B I F R 2 , D B I F D 2 , D B I F V 2)
V A L U E S (: D B F C l , : D B F I , : D B F C 2 , : D B F L , : D B F R , : D B F D , : D B F V ,
: D B F C l , : D B F I , : D B F C 2 , : D B F L , : D B F R , : D B F D , : D B F V) ;

I N _ R E C + + ;
_ C L E A R S C R E E N (_ G C L E A R S C R E E N) ;

P R I N T F (" * * \ n ") ;
P R I N T F (“ * R O W N U M B E R : % 7 d H A S B E E N I N S E R T E D I N D B I N S . * \ N " , I N _ R E C) ;
P R I N T F (11 * ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * \ N ") ;

j it ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ J

/ * C O M M I T W O R K T O D A T A B A S E S . * /
I it ★ ★ J

E X E C S Q L W H E N E V E R S Q L E R R O R C O N T I N U E ; / * D O N ' T T R A P E R R O R S . * /
E X E C S Q L C O M M I T W O R K ; / * C O M M I T W O R K T O D A T A S E S & D O N T R E L E A S E . * /
T R A N S _ C O U N T + + ; / * A D D O N E T O N U M B E R O F T R A N S A C T I O N S / I T E R A T I O N * /

! it ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ J

/ * G E T E N D T I M E T O C A L C U L A T E R E S P O N S E T I M E . * /
j ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * ★ ★ j

T I M E (& R E S P _ T I M E _ S T O P) ; j
R E S P T I M E 1 = R E S P T I M E S T O P - R E S P _ T I M E _ S T A R T ;
R E S P T I M E T = R E S P T I M E T + R E S P _ T I M E _ 1 ;

} / * E N D O F D O L O O P B O D Y . * /
W H I L E (T I M E (& G _ T I M E l) < E N D) ;

/ * */

Tr a n s a cti o n B e h a vi o ur i n L ar g e D at a b a s e E n vir o n m e nt s, A M et h o d ol o gi c al A p pr o a c h. 3 1 0

A P P E N DI X C: T h e CI T Y B e n c h m ar k Tr a n s a cti o n s.

/ * F i l e p r e p a r a t i o n a n d w r i t i n g s e c t i o n . * /

R E S P T I M E = (D O U B L E) R E S P _ T I M E _ T / (D O U B L E) T R A N S C O U N T ;
T R A N S _ P E R _ S E C = (F L O A T) T R A N S _ C O U N T / (F L O A T) R E S P _ T I M E T ;

S T R C P Y (T P S _ I O _ R E C . D B T Y P E , D B _ T Y P E) ;
T P S _ 1 0 _ R E C . D B S I Z E = R O W S ;
T P S _ 1 0 _ R E C . N L O O P S = 1 ; / * N U M B E R O F L O O P S . * /
T P S _ I O _ R E C . L O O P T I M E = S E C O N D S ; / * L O O P T I M E I N S E C O N D S . * /
T P S _ I O _ R E C . T O T T I M E = R E S P _ T I M E _ T ; / * T O T A L T I M E I N S E C O N D S . * /
T P S _ I O _ R E C . T O T _ T R A N S = T R A N S _ C O U N T ; / * T O T . T R A N S A C T I O N S . * /
T P S 1 0 R E C . A V R T R A N S = T R A N S C O U N T ; / * A V R . T R A N S A C T I O N S / L O O P . * /
T P S 1 0 R E C . T R N _ P E R S E C = T R A N S P E R S E C ; / * T R A N S A C T I O N S / S E C . * /
T P S _ 1 0 _ R E C . I T _ R E S P _ T I M E = R E S P _ T I M E ;
T I M E (& T P S _ 1 0 _ R E C . T I M E _ D A T E) ; / * T E S T D A T E & T I M E * /

I F (F W R I T E (S c T P S _ 1 0 _ R E C , S I Z E O F (S T R U C T T P S _ R E C _ L A Y O U T) , 1 , T P S _ F P) ! = 1)
{ / * I F S T A R T * /
P U T C H A R (B E E P) ; / * B E E P * /
P U T C H A R (B E E P) ; / * B E E P * /
P U T C H A R (B E E P) ; / * B E E P * /
P R I N T F (" # # # ") ;
p r i n t f C ' # E r r o r o c c u r r e d w h i l e w r i t i n g t o % s # \ n " , p a t h _ n a m e _ 1) ;
P R I N T F C # # # ") ;
G E T C H A R () ;
} / * I F E N D * /

/ * == = = = = * /
/ * N o r m a l p r o g r a m t e r m i n a t i o n s e c t i o n . * /
/ * L o g o u t a n d t e r m i n a t e p r o c e s s i n g . * /
/ * = */

E X E C S Q L W H E N E V E R S Q L E R R O R C O N T I N U E ; / * D O N ' T T R A P E R R O R S . * /
E X E C S Q L C O M M I T W O R K R E L E A S E ; / * L O G O F F D A T A B A S E . * /
F C L O S E (T P S _ F P) ;
P R I N T F (" \ N \ N * = * \ N ") ;
P R I N T F (“ * T H E P R O G R A M H A S T E R M I N A T E D N O R M A L L Y . * \ N ") ;
P R I N T F (" * = * \ N ") ;

E X I T (0) ;

I -k ★ ★ ★ ★ ★ ★ ★ ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ I

/ * T H E E R R O R H A N D L I N G T R A P S A N D R O U T I N E S . * /
j ★ ★ i

S Q L _ E R R O R _ R O U T I N E :
P U T C H A R (B E E P) ; / * B E E P * /
P R I N T F (” * % 7 0 s * \ N " , L I N E) ;
P R I N T F (" * D A T A B A S E S I Z E
P R I N T F (" * L A S T K E Y V A L U E I S
P R I N T F C * % 7 0 S * \ N " , L I N E) ;
P R I N T F (" * % 7 0 S * \ N "
P R I N T F (“ * % 7 0 S * \ N "
p r i n t f C ' * % 7 0 s * \ n "

% L U \ N " , R O W S) ;

% D \ N " , K E Y _ V A L U E)

E R R O R _ M E S S A G E) ;
S Q L C A . S Q L E R R M . S Q L E R R M C)

L I N E) ; ;
p u t c h a r (B E E P) ; / * B e e p * /
E X E C S Q L W H E N E V E R S Q L E R R O R C O N T I N U E ;

E X E C S Q L R O L L B A C K W O R K R E L E A S E ;

E X I T (1) ;

} / * P R O G R A M E N D * /

/ * = * /

Tr a n s a cti o n B e h a vi o ur i n L ar g e D at a b a s e E n vir o n m e nt s, A M et h o d ol o gi c al A p pr o a c h. 3 1 1

APPENDIX C: The CITY Benchmark Transactions.

STATIC INT RANDX = 1; /* EXTERNAL STATIC FUNCTION */
INT RANDl()
{
RANDX = (RANDX * 25173 + 13849) % 65536; /* MAGIC FROMULA /
RETURN ((INT) RANDX);
}

INT SRANDl(X) UNSIGNED X;
{
RANDX = X;
)

Transaction Behaviour in Large Database Environments, A Methodological Approach. 313

APPENDIX D

APPENDIX E

A P P E N DI X E: A n al y si s o f V ari a n c e.

I F ((F P = F O P E N (P A T H _ N A M E _ 1 , " R B “)) = = N U L L)

{ / * I F S T A R T * /
P R I N T F (" * # * \ N ") ;
P R I N T F (" * C A N N O T O P E N T H E F I L E , E N D O F P R O G R A M E N C O U N T E R E D * \ N “) ;
P R I N T F (" * F I L E N A M E I S : % S \ N ” , P A T H _ N A M E _ 1) ;
P R I N T F (“ * # * \ N ") ;
E X I T (1) ;
} / * I F E N D * /

/ * = * /
/ * R E A D N U M B E R O F R O W S A N D C O L U M N S * /
/* = * /

I F ((F S C A N F (F P , " % D / % D " , & R , & C)) ! = 1)
{ / * I F F S C A N F (F P , “ % D / % D “ , & R , & C) S T A R T * /
P R I N T F (11 * * * \ N ") ;
P R I N T F (" * A N E R R O R O C C U R R E D D U R I N G R E A D I N G % S * \ N " , P A T H _ N A M E _ 1) ;
P R I N T F (" * * * \ n ") ;
F C L O S E (F P) ;
E X I T (1) ;
) / * I F F S C A N F (F P , & R , & C) E N D * /
I F ((R > 5 0) || (C > 5 0))
{ / * I F (R > 5 0) II (C > 5 0) S T A R T * /
P R I N T F (11 * ★ ★ ■ * ■ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * \ N ") •

P R I N T F (" * A N E R R O R O C C U R R E D C O R R I S G R E A T E R T H A N 5 0 . * \ N ") ;
P R I N T F (" * ★ * * * * * * * * * * * \ N ") ;

F C L O S E (F P) ;
E X I T (1) ;
} / * I F F S C A N F (F P , & R , & C) E N D * /

/ * = */
/ * T h i s r o u t i n e i s t o c l e a n a r r a y s * /
/ * = * /

F O R (1 = 0 ; I < R ; I + +)
{ / * F O R I S T A R T * /
X I [I] = 0 ;
F O R (J = 0 ; J < C ; J + +)
{ / * F O R J S T A R T * /
X J [J] = 0 ;
X [I] [J] = 0 ;
) / * F O R J E N D * /
} / * F O R I E N D * /

/* = * /
/ * T h i s r o u t i n e r e a d s v a l u e s t o x (i , j) a n d s u m s a l l v a l u e s * /
/ * = */

R C = R * C ;
S U M = 0 ;
F O R (1 = 0 ; I < R ; I + +)
{ / * F O R I S T A R T * /
F O R (J = 0 ; J < C ; J + +)
{ / * F O R J S T A R T * / j
I F ((F S C A N F (F P , " % F " , ScX [I] [J])) ! = 1)
{ / * I F F S C A N F (F P , & R , S c C) S T A R T * /
P R I N T F (11 * * * * * * * * * ★ ★ * ★ * ★ ★ ★ * ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * ★ * ■ * ■ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ * \ N ") •

P R I N T F (“ * A N E R R O R O C C U R R E D D U R I N G R E A D I N G % S * \ N " , P A T H _ N A M E _ 1) ;
P R I N T F (" * * * \ n ") ;
F C L O S E (F P) ;
E X I T (1) ;
) / * I F F S C A N F (F P , £ = R , & C) E N D * /

Tr a n s a cti o n B e h a vi o ur i n L ar g e D at a b a s e E n vir o n m e nt s, A M et h o d ol o gi c al A p pr o a c h. 3 1 8

APPENDIX E: Analysis of Variance.

SUM += X[I] [J] ;i
} /* FOR J END */
} /* FOR I END */
XBAR := SUM / RCt

/* = == = = ===; = = = := = :
/* This routine calculates sum(x (i, j) -xbar) a2 */

ZXIJ = 0 ;
FOR (1 = 0; KR; I + +)
{ /* FOR I START */
FOR (J=0; J<C; J++)
{ /* FOR J START */
ZXIJ += (POW ((X [I] [J] - XBAR) , 2.0)) ;
} /* FOR J END */
} /* FOR I END */
XIJVAR = ZXIJ / (RC-1) ;
ALLVAR = ZXIJ / (RC-1) ;

*/

*/

/* === */
/* THIS ROUTINE CALCULATES C*SUM (XBAR (I) -XBAR) */
/* === */

ZXIJ = 0;
FOR (I= 0; KR; I + +)
{ /* FOR I START */
FOR (J=0; J<C ; J + +)
{ /* FOR J START */
XI [I] + = X[I] [J] ;
} /* FOR J END */
} /* FOR I END */

FOR (I= 0; KR; i++)
{ /* FOR I START */
XI [I] / = c;
} /* FOR I END */

ZXI = 0;
FOR (I= 0; KR; i++)
{ /* FOR I START */
ZXI + =: (POW((XI[I] - XBAR) , 2
} /* FOR I END */
CZXI =: ZXI * C;
MSROWS = CZXI / (R-l) ;

/* === */
/* THIS ROUTINE CALCULATES R*SUM (XBAR (J) -XBAR) */
/* === */

FOR (J=0; J<C ; J++)
{ /* FOR J START */
FOR (]:=0 ; KR; i++)
{ /* FOR I START */
XJ [J] + = X[I] [J] ;
} /* FOR J END */
) /* FOR I END */

for (J=0; KC; J + +)
{ /* FOR J START */
XJr [J] / = C;
} /* FOR J END */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 319

APPENDIX E: Analysis of Variance.

ZXJ = 0 ;
FOR (J=0; J<C; J++)
{ /* FOR I START */
ZXJ += (POW((XJ[J] - XBAR) ,2.0)) ;
} /* FOR I END */
RZXJ = ZXJ * R;
MSCOLMS = RZXJ / (C-l) ;

/* THIS ROUTINE CALCULATES SUM(X(l,j) - XBAR (I) - XBAR (J) +XBAR) /v 2 */

RES = 0 ;
FOR (1=0; I<R; I++)
{ /* FOR I START */
FOR (J = 0 ; J<C; J++)
{ /* FOR J START */
RES += (POW((X[I] [j] - XI[I] - XJ[J] + XBAR),2.0));
} /* FOR J END */
) /* FOR I END */

MS RES = RES / ((C-l) * (R-l)) ;

/* =================== */
/* Calculate f values. */
/* =================== */

FROWS = MSROWS / MSRES;
FCOLMS = MSCOLMS / MSRES;

/* ====================== */
/* Print results section. */
/* ====================== */

_CLEARSCREEN (_GCLEARSCREEN) ;

printf ("Means of rows\n") ;
PRINTF (“ = = = = = = = ======\N\N") ;
FOR (1=0; I<R; I++)
{ /* FOR I START */
printf ("Mean row %d = %8.6f\t " , i,xi [i]) ;
} /* FOR I END */

PRINTF ("MEANS OF COLUMNS\N") ;
PRINTF (" = = = = = = = = = === = = = = \N\N") ;
FOR (J = 0 ; J<C; J++)
{ /* FOR J START */
printf ("Mean column %d = %8.6f\t" , j, xj [j]) ;
} /* FOR J END */

PRINTF ("* == ==== = = = =
printf ("Mean Square of rows : %8.6f\n “,msrows);
PRINTF ("MEAN SQUARE OF COLUMNS : %8.6f\N" , MSCOLMS) ;
printf ("Mean Square of residual: %8.6f\n " , msres) ;
PRINTF ("* --------------------------- j-------
PRINTF ("F ROWS : %8.6F\N“ , FROWS) ;
PRINTF ("F COLUMNS : %8.6f\N" , FCOLMS) ;
PRINTF ("* =

*\N");

*\N") ;

*\n ") ;

} /* Main program END */

Transaction Behaviour in Large Database Environments, A Methodological Approach. 320

APPENDIX F

APPENDIX F: The City Benchmark Operation Book.

A PPENDIX F: The City Benchmark Operation Book

The CITY benchmark is written in C high level language imbedded with SQL
commands. That allows the program to be run on several platforms provided that
platform supports SQL pre-compiler and C compiler. To run the program the
implementor should go through the following steps:

1. Pre-compile the program using the existing pre-compilation tool. In a PC
environment:

Example:
c:> precomp

2. Compile the program using the available C compiler.

3. For some systems, such as SUN SPARC, steps 1 and 2 are done through
one integrated procedure that is called MAKEFILE.

4. Run the CITY benchmark tables creation program: CITYCRT.

Example:
c:>CITYCRT

5. Run the CITY benchmark tables load program: CITYLOAD.

Example:
c:>CITYLOAD

The program will display the current size of existing tables then ask about
the number of rwos to be added to the existing size.

Example:
Pleas enter number of rows to be added to CITY tables: 5000

6. Run the CITY benchmark : CITY.

Example:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 322

APPENDIX F: The City Benchmark Operation Book.

c:>OTY

The program will ask about the time required for each test loop in seconds
and wait for a value, the user should enter the number of seconds. The
recommended number of seconds are 900 seconds per loop.

Example:
Pleas enter test loop time in seconds: 900

7. The program will loop run until completion. When the program finishes
normally a message is printed saying:

"The program has terminated normally"

If the program does not finish normally, a message will be printed saying:

"Abnormal program termination"
In association with another message that explains the error.

8. The CITY benchmark produces its results in a file called "CITY.RES". To
print those results run a program called CITYRES. The program script is
presented in appendix G.

Example:
c:> CITYRES

The program will ask for the results file name:

Example:
Please enter file name: CITY.RES

The program will print the results in the following form:

Database name: /
Database size:
Number of loops:
Loop time in seconds:
Total time in seconds:
Total number of transactions:
Average number transactions per second:
Transaction response time:

Transaction Behaviour in Large Database Environments, A Methodological Approach. 323

APPENDIX G

APPENDIX G: Printing The City Benchmark Results.

APPENDIX G: Printing The City Benchmark Results
! * * /
/* Writing characters to a file, get file name from user */
/* This program writes a record from a structure */
/* *** */

#INCLUDE <STDIO.H>
#INCLUDE <DOS.H>
#INCLUDE <BIOS.H>
#INCLUDE <MATH.H>
#INCLUDE <STRING.H>
#INCLUDE <GRAPH.H>
#INCLUDE <TIME.H>

#DEFINE BEEP 1 \A '
#DEFINE MAXPATH 64
#DEFINE MAXLINE 80

/* ===================== */
/* Declare Structure TAG */
/* ===================== */

struct rec_layout
{ /* STRUCTURE BEGINING */
CHAR DBTYPE [15] ; / * DATABASE NAME . */
LONG DBSIZE; /* DATABASE SIZE. */
INT NLOOPS; /* NUMBER OF LOOPS . * /
INT LOOPTIME; /* Loop time in seconds. */
INT TOTTIME; /* Total time in seconds. */
LONG TOT_TRANS ; /* Tot . NUMBER OF TRANSACTIONS. */
LONG AVR_TRANS; /* AVR. TRANSACTIONS PER LOOP . */
double trn_per_sec ; / * Number of transactions/sec . */
DOUBLE IT_RESP_TIME;/* iteration response time. */
time_t time_date;/* Time and date of test. */
}; / * Stucture end */

/* ======================== */
/* Declare Record Structure */
/* ======================== */

STRUCT rec_layout IO_REC;

/* ===================== */
/* The main program body */
/* ===================== */

INT MAIN(VOID)
{ /* Main program START */

INT 1=0;
INT J=0;
INT K=0;

/
INT N_BEEP=0;
DOUBLE TOT_TPS = 0; /* TOTAL NUMBER OF TRANSACTIONS/SEC . */
DOUBLE AVR_TPS = 0; /* AVERAGE NUMBER OF TRANSACTIONS/SEC. */

FILE *FP;

CHAR PATH_NAME_1 [MAXPATH] ;

Transaction Behaviour in Large Database Environments, A Methodological Approach. 325

APPENDIX H

^ A B B E y
* NATIONAL

Chalkde ll D r iv e
Shen ley W o o d
M ilton Keynes
M K 5 6 L A

Telephone: (0908') 3 4 5 0 0 0
Facsimile: (0908) 3 4 5 0 1 0

M . W . Y o u s s e f

S c h o o l o f I n f o r m a t i c s

D e p a r t m e n t o f B u s i n e s s C o m p u t i n g

T h e C i ty U n iv e r s i ty

L o n d o n

E C 1 U 0 H B

our Rei "

Our Ref •

Oate 2 7 S e p te m b e r . 1 9 9 3

Sjoiect CITY BENCHMARK

Dear Mr Youssef.

As you know. Abbey National makes use of several hardware platforms, from PC networks, to
large mainframe environments, including Unisys and IBM. and database machines, such as Teradata
model 3 and 4. This hardware infrastructure suggests that co-existence and integration of the various
software environments is of upmost importance to us. As part of our Information Technology
Strategy', we have selected Oracle as our strategic database management system, but we also have
various legacy applications.

During the last quarter of this year, we will be starting an evaluation of Massively Parallel
Processing Platforms, using Oracle V7.1. This will serve for the assessment of new platforms as well
as their comparison with our existing systems. One of the aspects of this study will be to test the
selected platforms with high volume transaction processing workloads. We do not believe that any of
the existing benchmarks, such as the TPC suite, can accurately model our environment. We are
confident that the CITY benchmark can address our requirement in this area, including platforms such
as Teradata DBC systems and NCR 3600. which we understand you have already benchmarked.

We will be contacting you in the short term to define a suitable way ahead for the benchmarking
strategy'.

Yours sincerelv.

c c : N e i r a B e n c h a b a n e . S e n i o r C o n s u l t a n t

Abbey National pic Registered Office: Abbey House. Baker Street. London N W I 6XL Registered in England Registered Number 2294747 PIC/RS4

A K T An AT AT Company

NCR Limited
Large Systems Division
Alwyn House, 31 Windsor Street
Chertsey, Surrey KT16 8AT
Tel: 0932 567777
Fax: 0932 564991

DT/JB

6th October 1993

To whom it mav concern

Some time ago Mr Youssef ran some benchmarks at our facility at Chertsey. The
benchmark appeared to test a range of SQL functions producing a range of answer
sets. These were run against a Teradata DBC1012 Model 3, a DBC1012 Model 4 and
a NCR 3600. The performance ratios of the various models produced with Mr
Youssef s benchmark were consistent with benchmarks that have been done at our
plant in the United States.

David Tomlinson
Systems Administrator

Registered in E ngland N o. 45916 Registered O ffice: 206 M arylebone Road, London N W 1 6L Y

