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The emergence of the inerter, both as an idealized mechanical element and as a device, 
contributed a new dimension to the field of structural vibrations control over the past 20 
years, by enabling the provision of readily scalable inertia to structures and to dynamic 
vibration absorbers without adding any significant gravitational mass. Theoretically, this is 
based on the default definition of the ideal inerter to be a zero-weight linear two-terminal 
mechanical element resisting relative acceleration by a force proportional to a constant 
termed inertance and measured in mass units (kg). Technologically, a plethora of inerter 
devices have been prototyped and experimentally verified, achieving inertance several orders 
of magnitude higher from the device physical mass by relying on different technologies 
including flywheels with gearing mechanisms, hydraulic pumps, fluid mechanics principles, 
and electromagnetic emulation.

Historically, the first inerter-like device were developed as early as 1970s in Japan, 
motivated by earthquake engineering applications, with some device embodiments patented 
in late 1990s and underpinned by some early theoretical studies in 2000s. However, it was 
the seminal paper by Prof. Malcolm Smith (Smith 2002) to rigorously define the inerter 
mechanical element and to conceptualize possible mechanisms to materialize devices with 
scalable inertance. In early 2010s, it was theoretically established that efficient seismic 
response mitigation in building structures can be achieved by using inerters, either as 
standalone elements (Takewaki et al. 2012), or in judicial combinations with damping 
and stiffness elements to form inerter-based vibration absorbers (IVAs), such as the tuned 
viscous mass damper (TVMD) in Ikago et al. (2012), the tuned inerter damper (TID) in 
Lazar et al. (2014) and the tuned mass damper inerter (TMDI) in Marian and Giaralis (2014). 
Further, by 2017, a handful of high-rise buildings were completed in Japan featuring TVMD 

1 3

http://orcid.org/0000-0002-2952-1171
http://orcid.org/0000-0002-9784-7480
http://crossmark.crossref.org/dialog/?doi=10.1007/s10518-023-01626-w&domain=pdf&date_stamp=2023-2-6


Bulletin of Earthquake Engineering

devices for earthquake resistance. Building on the above developments, the use of inerters 
and IVAs in earthquake engineering applications attracted immense attention of researchers 
worldwide in the past 5 years.

In this regard, the timeliness, proliferation, and promise of inerter-based vibration control 
solutions for structural seismic response mitigation created the premise for organizing 
this special issue, the first to be focusing explicitly on this niche area. We received more 
than 20 full papers, from which 13 have been included in this special issue following a 
rigorous reviewing process to ensure that the current state-of-art in this rapidly expanding 
field is reflected, and that novel and potentially impactful developments are communicated. 
Contributions are coming from several different groups with long-standing research activity 
in the area and with a wide geographical distribution to include North America, Europe, 
Asia, Africa, and Australia.

More specifically, this special issue includes several contributions addressing the novel 
application of inerter-based seismic vibration control to a wide range of special structures. 
In this context, Labaf et al (2022) propose the use of base isolation in combination with 
the TMDI for mitigating the seismic response of cylindrical liquid storage tanks. The 
design of the resulting passive hybrid vibration control system is underpinned by solving 
a multi-objective optimization problem for a simplified linear model of a typical liquid 
storage tank resting on isolators and fitted with a TMDI, while accounting for liquid-
structure interaction. The potential of the proposed hybrid vibration control system is 
numerically assessed through linear response history analysis for a suite of recorded ground 
accelerations, demonstrating the key role of the TMDI in mitigating both the impulsive and 
the convective response displacements. Additionally, Xu et al (2022) studies the potential 
of TID for response mitigation of offshore steel jacket platforms, widely used by the oil and 
gas as well as by the wind renewable energy sectors, under combined wave and earthquake 
loadings. Linear structural response is assumed for which an analytical design method is put 
forth to determine optimal TID installation location and tuning. The reported numerical data 
evidence that the platform deck is the optimal TID installation location for both wave and 
seismic loads. Further, the tower-top displacement mitigation in seismically excited land-
based wind turbines is addressed in Chen et al (2021) using a wide range of different linear 
optimally tuned IVA configurations attached to turbine nacelle. The performance of IVA 
configurations are numerically assessed by considering comprehensive numerical results 
pertaining to a linear model of a well-studied benchmark wind turbine with 5 MW capacity 
exposed to different recorded ground accelerations. It is shown that IVAs perform better 
than the conventional tuned mass damper absorber currently considered by wind turbine 
developers in practical applications.

Turning the attention to base isolated buildings, Ye and Nyangi (2021) consider the 
incorporation of inerter elements within dual-layered seismic isolation systems to control 
the lateral seismic deformation demands at the isolators, without compromising the 
effectiveness of the dual isolation system in reducing inter-storey drifts and floor acceleration 
in the superstructure (building). Optimal design of the inerter-equipped dual isolation 
system is considered assuming linear response in the isolators and the superstructure, 
while response history analysis for a suite of recorded ground motions is undertaken to 
demonstrate a favorable numerical assessment of the proposed system. Moreover, Wang et 
al (2021) studies numerically the potential of an IVA featuring an electromagnetic damping 
element for enhancing the seismic performance of base isolated structures under earthquake 
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excitations representative to different site soil conditions. To this aim, the authors adopt 
a linear simplified IVA model together with linear structural and isolation layer behavior 
and pursue optimal IVA design and assessment using a phenomenological nonstationary 
stochastic seismic model which account for different site soil properties to define the seismic 
action. Comprehensive numerical data derived from non-stationary random vibration 
analyses as well as from response history analyses using artificial and recorded ground 
motions are provided, demonstrating good efficacy of the IVA with electromagnetic element 
for the task at hand.

From a theoretical viewpoint, the inerter can be seen as a frequency-dependent negative 
stiffness element. In this respect, the inerter element and associated devices complement 
the frequency-independent negative stiffness (NS) device configurations, oftentimes 
materialized technologically through pre-tensioned springs, which have also attracted 
significant recent interest for seismic response mitigation of buildings. In this regard, 
Kalogerakou et al (2022) proposes a novel vibration absorber for mitigating structural 
response due to the vertical ground motion component combining NS elements, tuned mass 
damper and inerter devices. An efficient optimal design approach of the absorber is put forth 
ensuring good acceleration isolation without compromising the gravitational load-bearing 
capacity of structures, while numerical assessment is undertaken using a large suite of 
vertical components of recorded accelerograms. Further, Islam and Jangid (2022) contribute 
a theoretical study on the optimal design and assessment of various novel vibration absorber 
configurations combining NS and inerter elements with damping and stiffness elements for 
the seismic protection of base-isolated structures.

The optimal tuning of IVAs is very important to fully exploit the presence of inerter 
devices and becomes challenging when multiple IVAs are used and/or in the presence of 
nonlinearities. In this regard, Zhang et al (2022) develops a semi-analytical method for 
optimal design of multiple TVMDs in multi-storey buildings to achieve a pre-specified 
(targeted) displacement performance. Further, Rajana et al (2022) develops a practicable 
method for optimal TMDI design with nonlinear viscous dampers in multi-storey buildings 
and numerically assesses the influence of such a nonlinearity vis-à-vis the linear TMDI 
using a benchmark 9-storey steel moment resisting frame. Moreover, Patsialis et al (2021) 
contributes a numerical bi-objective IVA design framework for multi-storey hysteretic 
buildings whereby the peak IVA force assuming linear device behavior and the consequence 
of critical engineering demands parameters (such as storey-drifts and floor accelerations) 
exceeding predefined design thresholds are taken as the objectives of the optimization 
problem. The framework uses spectrum compatible recorded ground motions to model 
the earthquake hazard and is numerically illustrated for TMDI and TID devices using the 
previous 9-storey steel benchmark structure which exhibits nonlinear (yielding) behaviour.

Additionally, Talley et al (2022) and Zhang et al (2022) shed new light to the potential 
of the energy dissipative clutching inerter damper (CID) for seismic response mitigation 
of hysteretic structures and of rocking structures, respectively, both modelled as nonlinear 
single degree of freedom systems. The CID is nonlinear and dissipates kinetic energy by 
combining two flywheels driven by rack and pinion mechanisms with mechanical clutching 
which engages/disengages each flywheel depending on the direction of the structural 
displacement. In this regard, Talley et al (2022) undertake incremental dynamic analysis 
to demonstrate the positive impact of CID for delaying the onset of structural yielding 
and collapse, while Zhang et al (2022) examined thoroughly the effects of different CID 
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parameters using a detailed mechanical model of the absorber to nonlinear seismic rocking 
response.

Finally, Deastra et al (2022) study experimentally the potential of TID/TMDI with 
hysteretic frequency-independent damping, instead of the commonly considered frequency-
dependent viscous damping, for a more accurate representation of real-life devices and their 
implication to the seismic response mitigation of multi-storey buildings. This is achieved by 
fitting different parametric device models to experimental data from a shaking table testing 
campaign for a scaled three-storey frame structure equipped with TID/TMDI with hysteretic 
gel dampers as well as with viscous eddy current dampers.

Overall, this collection of papers represents well the breadth of inerter applications in 
earthquake engineering, while further contributes important theoretical and technological 
developments in this field. We hope that it will serve as a solid starting point for researchers 
who foresee to embark on research in this rapidly growing field, as well as a focal point to 
researchers already working in diverse aspects and applications of inerter-based seismic 
protection of structures. Lastly, we aspire that this special issue will contribute in increasing 
the awareness of practising engineers on the potential of inerters to reduce the seismic 
vulnerability of different existing and new structures.

As a final remark we wholeheartedly thank all the authors who contributed to this special 
issue as well as all the colleagues involved in the review process.
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