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Abstract

This article investigates whether time variation in the returns' co-movement of

oil and Baltic Dirty Tanker Index can be linked to oil market uncertainty. We

measure uncertainty using a battery of different proxies considering both para-

metric and non-parametric methods and study its role from both statistical

and economic perspectives. Using a regression framework combined with

regime switching analysis, we show that oil price uncertainty and the future

correlation of oil and dirty-tanker returns are negatively associated. This nega-

tive association is more pronounced in highly volatile periods. The identified

regimes are directly linked to high-low crude oil volatility periods with impli-

cations on the level of correlation they exhibit to oil returns. Results are robust

across crudes and volatility measures. Additional robustness checks corrobo-

rate that results hold for individual dirty-tanker routes and clean-tanker

cargoes.
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1 | INTRODUCTION

The inherent high volatility of tanker rates and crude
prices reflects the variety of risks that the relevant sectors
face. Oil prices and tanker freight are linked in two
major ways. First, connecting, inter alios, producers,
refiners, power plants and distributors or storage facili-
ties. Second, with respect to the operational cost of ves-
sels, oil supply and demand shocks impact tanker rates
by directly adjusting transportation costs, that is, fuel/
bunker cost. An unanticipated surge in oil prices inevi-
tably leads to higher costs and, ceteris paribus, lowers
shipowners' profit potential (Gavriilidis et al., 2018).1

After the 2008 financial crisis, freight market volatility
spillovers have strengthened (Tsouknidis, 2016). This
marked elevated volatility is often credited to non-stor-
ability, that is, inventories cannot be used to smooth out

positive demand shocks in the freight market. This con-
stitutes a challenge for tanker market players to mitigate
freight volatility and reduce cash flow variability. It is a
well-known fact that demand for sea transport is uncer-
tain and volatile while supply adjusts sluggishly due to
entry costs, time to build, and convex operating costs of
ships (see Kalouptsidi, 2014).2 Demand for tanker ser-
vices is derived from seaborne global oil trade which in
turn is governed by international economic activity and
marine trade (Stopford, 2009), together with oil price
shocks, wars/conflicts nearby oil production sites,
proven/new reserves, environmental conditions, climate
and regulations to restraint carbon footprint of vessels,
political decisions (e.g., OPEC policies) (Lyridis
et al., 2017). All in all, tanker supply and demand
shocks have persistent effects on tanker rates as well as
the volume of oil exports, fuel prices and profits (Kilian
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et al., 2023). Therefore, tanker rates have manifested
exacerbated volatility and increased sensitivity price
fluctuations in the oil market (Hummels, 2007).

In this article, we consider different volatility frame-
works to investigate information linkages, predictability
and the association between oil market uncertainty and
tanker freight rates. Risk awareness with respect to oil
market shocks can result in efficient international logisti-
cal networks and effective supply chain management.
Kleindorfer and Visvikis (2009) state that ‘as global logis-
tics networks have grown and developed, they also have
presented new challenges in managing risk and volatility
across these broad, global networks … the integration of
financial and physical markets is a driving force behind
the emergence of global logistics.’

There is much literature on the subject of price inter-
relationships and causality in the tanker and oil markets.
Alizadeh and Nomikos (2004) examine linkages between
the Brent or Bonny physical markets, futures on WTI
and tanker freight and confirm the existence of a cointe-
grating relationship between oil US prices and freight
rates. Yet, the authors do not find evidence to indicate a
connection between tanker rates and physical crude oil
or futures price differentials. Generally, fluctuations in
commodity prices – especially commodities that are
inputs to industrial production – are expected to encom-
pass information about economic prospects. Chung and
Kim (2011) investigate the effects of oil price fluctua-
tions on dry bulk freight and the interdependencies
among dry bulk rates, to conclude that, oil price changes
do not affect freight shipping indices in a uniform way.

Other studies explore linkages among oil prices,
freight and other oil supply or demand variables. For
instance, Poulakidas and Joutz (2009) underscore an
association of crude oil prices, oil inventories and tanker
freight. When demand for tanker services is high, oil
price upward movements or even expectations about
upward movements drive tanker rates up as well. Con-
versely, spot tanker rates fall with high-inventory levels.
Moreover, Shi et al. (2013) indicate that tanker freight is
more prone to oil supply while tanker market responses
to both supply and non-supply shocks, have a positive
sign. The direct impact of oil price shocks can be per-
ceived as input-cost consequence, resulting in elevated
transportation and energy costs (Chang et al., 2013). In
turn, tanker sentiment reflects a strong predictor because
of the importance and implications of oil on the economy
(Driesprong et al., 2008).

In this article, we implement a distinct approach to
explore tanker freight and oil price fluctuations relation.
Our primary contribution lies in studying the time varia-
tion in the relationship that describes dirty tanker returns
and oil price changes with a particular focus on the effect

of oil price uncertainty on tanker-oil return correlation.
Therefore, our research adds to the literature on freight
and oil shocks through the use of our modelling
approach to measure quantitatively the magnitude of the
distinct effect of oil volatility on the tanker-oil relation
and to assess whether this impact differentiates when
employing different uncertainty proxies. In the process,
we first evaluate freight return predictability power of oil
price uncertainty in a vector auto-regressive (VAR)
framework. Second, we examine co-movements from the
perspective of the conditional return distribution of
tanker freight, to identify whether the latter can provide
forward-looking information about subsequent oil-freight
short-run co-movements. Third, by employing a Markov
regime switching (MRS) approach we further our analy-
sis to consider structural breaks and regime shifts in the
tanker-oil return relation. We extend prior work (among
others, Alizadeh & Nomikos, 2004; Poulakidas &
Joutz, 2009; Chung & Kim, 2011) by investigating
whether oil price uncertainty can explain the dynamics
of the tanker-oil return relation. Note that, although we
use the Baltic Dirty Tanker Index (BDTI) as a case
study,3 we also extend our analysis to clean-tanker
cargoes (Baltic Clean Tanker Index; BCTI), as well the
dry bulk market (Baltic Dry Index; BDI). A battery of
robustness experiments is performed controlling for sea-
sonality and using freight-oil correlation as exogenous
variable.

Our findings reveal that lagged oil price volatility or
‘uncertainty’ can significantly explain tanker shipping
returns. We measure uncertainty in crude oil markets
both parametrically and non-parametrically (free from
the potential look-ahead bias), to model and control for
the time evolution in the co-movement of tanker freight
rates and crude oil returns. Thus, our analysis provides
robust results for different schemes of estimating oil
uncertainty. Empirically, we show a negative association
between oil uncertainty and the future oil-tanker return
correlation. This association is more pronounced when
the sector experiences periods of high volatility. Low vol-
atility in oil (and freight) market leads to no statistical
association, albeit with a tendency to positive values. The
identified regimes can be directly linked to periods of
low-high oil volatility with implications on the level of
correlation they exhibit to oil returns. Regime switching
results draw insights from the MRS model that allows for
time variation in the transition probabilities (TVTP) but
also from a restricted version with constant transition
probabilities (CTP). Findings are robust across crudes
and volatility measures.

Baltic Indices are composite freight indices widely
used by practitioners as general indicators and they con-
stitute ‘barometers’ of the freight markets (Alizadeh &
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Nomikos, 2009; Moutzouris & Nomikos, 2019). As such, it
cannot be concluded that all our findings can be general-
ised to what is termed ‘freight.’ A potential reason is that
the composition and the weights of each route included in
the Baltic Indices are chosen by the Baltic Exchange and
may vary over time, making the indices not consistent
with themselves over time. In addition, BDTI can be
considered the shipping cost of oil, based on the average
costs of different routes; Baltic Exchange calculates the
average rate of each route and BDTI is defined as the
sum of average rates of all routes. Hence, another limi-
tation is that BDTI contains routes that are primarily
served by vessels of different sizes (e.g., VLCC, Suezmax,
Aframax), yet, aggregating different routes and vessel
sizes aggregates the dynamics of each shipping sub-
segment. Therefore, in order to capture the discussed
features, we also extend our analysis to individual dirty-
tanker routes. Our robustness checks show further evi-
dence to support our main findings in the context of
individual dirty-tanker routes.

The rest of the article is structured as follows.
Section 2 reviews the data and their statistical properties.
Section 3 provides an analysis on the conditional volatil-
ity of oil and tanker rates. Section 4 explores predictabil-
ity in oil and tanker shipping returns. In Section 5 the
key results on the relation of oil and BDTI are discussed;
robustness checks are also presented. Section 6 imple-
ments a regime switching approach to model oil and
tanker shipping co-movement. Some additional results
for specific tanker routes and other sectors are also pre-
sented. Section 7 concludes.

2 | DATA DESCRIPTION AND
PRELIMINARY ANALYSIS

We employ data of two marker crudes (WTI and Brent);
and, the most popular benchmark indicator for the
tanker freight market (Baltic Dry Tanker Index, BDTI).
BDTI is composed of daily Worldscale4 assessments of
international dirty tankers (Baltic Exchange, 2020).5 The
sample period spans from 7 June 2000 through 27 May
2020. Daily crude oil spot quotes are collected from Refi-
nitiv database while BDTI is obtained from the Clark-
son's Shipping Intelligence Network. We also use data on
individual tanker routes, the BDI (Baltic Dry Index) and
BCTI (Baltic Clean Tanker Index) to perform additional
robustness checks; also from Clarkson's.

Figure 1 shows that WTI and Brent move in proxim-
ity to one another. The upward 2000–2008 trend can be
attributed to, inter alia, the attacks of 9/11, the US-Iraq
military conflict after 2003, the missile tests/launches of
North Korea, the 2006 Israel-Lebanon war, Iran's nuclear

brinkmanship. After the July 2008 peak, the subsequent
sharp decline due to the 2008 financial crisis is then fol-
lowed by an upward trend until 2012. The price drop
after mid-2014 can be attributed to oversupply, shifts in
OPEC policies, geopolitical volatility and the increase in
US dollar strength. Despite the two crudes share common
dynamics, there are short-run divergences as well. For
instance, post-2010 the observed excess US supply and pro-
duction uncertainty in the Middle East regions lead to
more pronounced WTI-Brent price decoupling relative to
historic patterns. Thus, while any significant disruption in
a regional crude oil market is expected to transmit globally
and vice versa not all disruptions are alike; for example,
an unexpected refinery power outage in the US may not
be spilled over the Brent market because it affects regional
refining capacity and local demand/supply and not global
crude supply (Nomikos & Pouliasis, 2015).

Turning to BDTI, several abrupt short-term changes
are evident. During the sudden price drop – an aftermath
of the 2008 financial crisis – the index lost more than 79%
of its value. After that, there is an upward movement
from the second half of 2018 with the index fluctuating
widely; the period of crude oil oversupply.

Table 1 reports summary statistics for the mean (log)
returns of BDTI, Brent and WTI in Panel A. BTDI has
experienced a decrease of approx. 360 basis points per
annum (p.a.), yet oil prices still note a positive yield in
excess of 0.5% p.a. As expected, BDTI is more volatile
than oil, with annualised volatility of 56% versus 44%
(41%) for Brent (WTI).6 The marked elevated freight vola-
tility is often attributed to the non-storable nature of the
asset which makes it quite prone to short run jumps
(Kyriakou et al., 2017; Nomikos et al., 2013). This has
been recognised in the literature as a major challenge,
that is, the need to mitigate freight rate variations in costs
for shippers or charterers and fluctuations in revenues of
tanker operators and owners is of paramount importance
(Alizadeh et al., 2015).

3 | CRUDE OIL AND TANKER
VOLATILITY DYNAMICS

Quantifying oil price uncertainty is a nontrivial task. Sev-
eral studies discuss the determinants of oil price and oil
price uncertainty; to name a few, Kilian (2008, 2009),
Baumeister and Kilian (2016), Baumeister and Hamilton
(2019), Gao et al. (2022). Kilian (2009) documents that
the underlying cause of a shock has diverse effects on the
real oil price. The author disentangles the sources behind
oil price fluctuations into three main drivers (structural
shocks), namely, supply shocks, aggregate demand
shocks, oil-specific demand shocks. The latter reflects

POULIASIS and BENTSOS 3
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precautionary oil demand (see also Pindyck, 2004);
shifts in uncertainty concerning the shortfall of
expected supply compared to expected demand. For
instance, if precautionary crude oil demand increases,
it is anticipated that the real oil price will move
upwards instantaneously in a persistent way. Instead,
positive shocks of industrial commodities demand on
the whole will cause a rather delayed yet sustained and
substantial increase. Oil supply disruptions also cause
price relatively smaller increases but transitory in
nature. In fact, even in cases of major supply disrup-
tions (e.g., Iranian Revolution in 1978, Gulf War in
1990–1991) the effect on price is mainly due to
increased precautionary oil demand triggered by high
uncertainty about probable oil supply shortages (Kilian,
2009). Along this line of thought, the structural decom-
position of oil shocks into their underlying supply/
demand components has been extensively used
(e.g., Baumeister & Kilian, 2016; Kilian & Murphy, 2014)
as a way to distinguish among supply uncertainty, demand
uncertainty and oil price uncertainty.

In this context, we study the element of economic
uncertainty related to the oil price volatility, following lit-
erature such as Elder and Serletis (2010), Gao et al.
(2022), among others. That is, we do not differentiate
between demand-driven and supply-driven shocks but
rather interpret uncertainty as an average composition
of both demand and supply. Supply shocks alone can-
not fully explain oil price variations while quantifica-
tion of demand shocks is nontrivial and faces data
limitations (Kilian, 2009). On the other hand, the
expectation shifts associated with precautionary
demand shocks are unobservable. The oil uncertainty
proxy used in this article is related to the overall price
uncertainty; while a shock to uncertainty regarding
potential oil scarcity in the framework of Kilian and
Murphy (2014) would only impact one price compo-
nent. Note that, since oil price uncertainty is obtained
from the oil price itself it may be thought as a measure
of the demand for freight; since the latter is merely a
derived demand for the ‘underlying’ transported com-
modity (Stopford, 2009).7
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FIGURE 1 Baltic Dry Tanker index (top, index points), Brent and WTI crude oil (bottom, $/bbl) prices 2000–2020.
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To quantify oil price uncertainty, both parametric and
nonparametric measures of volatility are considered. Tra-
ditionally, autoregressive conditional heteroscedasticity
(ARCH) models (Engle, 1982) have been employed to
describe the conditional volatility of asset prices, because
of their flexibility.8 To this end, we apply the generalised
ARCH (GARCH) model (Bollerslev, 1986) to estimate the
volatilities of WTI, Brent and BDTI. Mathematically, this
can be expressed as:

σ2t ¼ωþα rt�μð Þ2þβσ2t�1, ð1Þ

where rt�μð Þ are the demeaned return series, σ2t the con-
ditional variance at time t.

Results are presented in Table 2. All series' display
ARCH and GARCH effects and high degree of persis-
tence; α + β is close to one.9 Shocks tend to die out
slowly and volatilities in both the tanker sector and oil
show long memory. Average annualised volatility esti-
mates for BDTI, Brent and WTI are respectively 50.8%,
37.5% and 37%.

In Figure 2 GARCH annualised volatilities of Brent
and WTI illustrate similar patterns; both are driven by
the same underlying conditions prevailing in the global
oil markets. Yet, any differentiation is mainly due to

short-run market-specific regional effects, attributed to
differences in market structure leading to relative auton-
omy. For example, European markets are more depen-
dent on middle distillates and more susceptible to
extreme weather conditions compared to the US
(Nomikos & Pouliasis, 2015).

In Figure 2 a strong co-movement between BDTI and
oil volatilities is drawn. This is also supported by the
unconditional correlation of these volatilities - close to
80% for the two crudes (Table 2). As oil is indispensable
to shipping, both as fuel and cargo, tanker freight rates
will be dependent on oil prices and the behaviour of oil
traders. For instance, news of an oil production cutback
might drive oil prices up since traders normally have an
incentive to rush and buy oil and charter vessels to avoid
future shortages. This might cause a surge in demand for
tankers and a sharp increase in freight, leading to exacer-
bated volatility. Still, Figure 2 portrays short run differ-
ences as well, since market fundamentals are not
identical and good/bad news tend to transmit differently
across markets.

GARCH models tend to produce high persistency in
shocks; misleadingly implying high degree of predictability
which is merely the effect of heavy tailed distributions,
asymmetries and structural breaks.10 Acknowledging this,
some provisions for robustness are in order. Therefore, we

TABLE 1 Descriptive statistics and

unit root tests
BDTI Brent WTI

Panel A: Descriptive
statistics

Ann. Mean �3.593 0.723 0.567

Ann. Vol. 56.12 43.89 41.19

Skew �0.108 �0.729 �0.525

Kurt 7.988 20.01 15.94

JB test 1082*** 12,652*** 7314***

Q (1) 85.43*** 1.339 5.240**

Q (5) 87.51*** 27.18*** 19.46***

Q2 (1) 21.35*** 325.0*** 60.05***

Q2 (5) 312.2*** 1176*** 330.1***

Panel B: Unit root tests

ADF (levels) �4.196*** �2.039 �2.095

ADF (returns) �21.48*** �33.41*** 30.08***

PP (levels) �3.856*** �2.114 �2.285

PP (returns) �23.38*** �33.40*** �30.09***

Note: This table reports summary statistics and unit root tests for the BDTI, Brent and WTI. The sample
period spans from 7 June 2000 to 27 May (1043 weekly observations). In Panel A, statistics refer to the log-
return series'. Mean and Volatility figures are annualised and are expressed in percentage terms. Skew(ness)
and Kurt(osis) are the third and fourth moments of the distribution; JB test is the Bera and Jarque (1980)

normality test. In Panel B, ADF is and PP are the Augmented Dickey and Fuller (1981) and Phillips and
Perron (1988) unit root tests. Asterisks *, **, *** indicate significance at 10%, 5% and 1% significance level.
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also estimate volatility nonparametrically by computing
realised measures derived from returns of higher fre-
quency. We consider also the same approach for the
BDTI-oil correlation dynamics.

Let Pτ0 ,Pτ1 ,Pτ2 ,f … ,Pτhg denote a sequence of prices at
days τ0,τ1,τ2,f … ,τhg. Realised volatilities and correla-
tions at week t are proxied by, respectively:

RCoil,BDTI ¼

PM
th¼1

ln
Poil,τh
Poil,τh�1

� �
ln

PBDTI,τh
PBDTI,τh�1

� �
RVoilRVBDTI

,

RV ¼
XM
τh¼1

ln
Pτh

Pτh�1

� �2
" #0:5

, ð2Þ

where the sampling frequency is 1-day and we set M = 1,
3, 6, 12 months worth of daily data. Henceforth, these are
denoted as RV1m, RV3m, RV6m and RV12m, for M = 1, 3, 6
and 12, respectively.

In Figure 3 the two plots at the top portray the volatil-
ities of Brent and WTI. Perturbing M allows these

estimators to be either slow (M = 6) or fast (M = 1) mov-
ing with respect to the speed of response to new informa-
tion. Therefore, high (low) M indicates that market
shocks dissipate relatively slow (fast) and thus, the vola-
tility process appears smooth (erratic). The pattern of vol-
atility is very close to GARCH volatility (see Figure 2 vs
3) with similar volatility levels in terms of average volatil-
ity across time. On the other hand, standard deviation of
the GARCH volatility series for Brent and WTI is lower
than RV1m but higher than RV6m. Regarding correlation
estimates, both BDTI-Brent and BDTI-WTI present a sim-
ilar pattern with the latter having a relatively wider
range. We can observe several abrupt short-term changes
but correlation is primarily negative, yet ranging from
50% to less than �75%.

As a baseline proxy of oil uncertainty, the GARCH
model is applied. Nevertheless due to its parametric
nature, GARCH potentially introduces a look-ahead bias
into our results. However, robustness tests in the ensuing
analysis using realised measures of conditional second
moments suggest this is not a significant concern.

4 | PREDICTABILITY OF WEEKLY
CRUDE OIL AND BDTI RETURNS

If a certain component of returns is expected, its removal,
prior to any analysis, may be prudent so that the focus is
on the co-movement between the unexpected parts of
returns. To this end, we adopt an augmented vector auto-
regression (VARX) to evaluate return predictability.

Denote Yt and Xt vectors which contain endogenous
and exogenous variables, respectively. The econometric
model we employ to shed some light on the short-run
dynamics can be expressed as:

Yt ¼A0þ
Xp
k¼1

AY ,kY t�kþAXXt�1þ εt;εt ¼
εoil,t

εBDTI,t

� �
� iid 0,Σð Þ,

Yt ¼
Roil,t

RBDTI,t

� �
, Xt ¼

ρoil,BDTI,t�1

ln σoil,t�1ð Þ
f tð Þ

0
B@

1
CA, ð3Þ

where oil is either WTI or Brent crude (i.e., we estimate
two separate VARX models). A0 is a 2� 1 vector of con-
stants for each pair of simultaneous oil-BDTI equations
and εt is a white noise disturbance term with covariance
matrix Σ. AY is a 2� 2 coefficient matrix measuring the
response to the endogenous variables. AX summarises the
response to exogenous variables, namely conditional cor-
relation and oil price volatility – which are the main

TABLE 2 GARCH volatility model estimates

GARCH coefficients BDTI Brent WTI

ω 2.700** 0.801** 1.643*

(1.285) (0.360) (0.874)

α 0.137*** 0.153** 0.140**

(0.034) (0.067) (0.064)

β 0.824*** 0.834*** 0.809***

(0.048) (0.060) (0.078)

Average volatility

σ p.a. 50.79 37.48 36.98

Diagnostics

ρ RBDTI ,Roilð Þ – �21.17*** �14.90***

ρ σ2t,BDTI ,σ
2
t,oil

� �
– 81.36*** 78.53***

Q (1) 0.556 4.794** 1.749

Q (5) 3.674 8.400 7.070

Q2 (1) 0.014 1.446 4.187*

Q2 (5) 7.859 5.530 4.515

Note: The table reports the GARCH parameter estimates for the period 7
June 2000 to 27 May 2020 (1042 return observations). Numbers in () are the
corresponding standard errors based on Bollerslev and Wooldridge (1992).
The conditional mean equations (not presented here) include a constant for

the two crudes and a constant and two autoregressive (AR) terms for BDTI
returns (see Table 1 for serial correlation tests on the raw returns). Asterisks
*, **, *** indicate significance at 10%, 5% and 1% significance level. σ p.a is
the per annum long run volatility. ρ RBDTI ,Roilð Þ and ρ σ2t,BDTI ,σ

2
t,oil

� �
refer to

the unconditional correlations between (i) the two returns and (ii) the two

variance processes, that is, BDTI and crude oil; where oil = {Brent, WTI}.
Asterisks *, **, *** indicate significance at 10%, 5% and 1% significance level.
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variables also in the analysis in the ensuing sections –
and potential seasonal fluctuations by means of sine
and cosine functions, that is, f tð Þ¼ sin 2πt

52

� �
cos 2πt

52

� �� �0
.

For comparison, we also consider the restricted case
of Xt ¼ ρoil,BDTI,t�1 ln σoil,t�1ð Þ� �0

.
Table 3 presents key information on VARX models in

Panel A (B) for BDTI-Brent (BDTI-WTI) as endogenous
variables, using alternative specifications, that is, with
and without seasonal controls and oil volatility proxies,
that is, GARCH and realised volatilities with M = {1, 3, 6,
12} (definitions in Section 3).

For brevity, the coefficients of the VAR models are
not presented here. We outline some of the main findings
as follows. First, for both Brent and WTI returns, none of
the considered variables are statistically significant. Sec-
ond, for the BDTI return, the lagged own values of BDTI
returns are highly significant, as are the seasonal terms.
Third, lagged crude oil returns load with significantly
positive signs at 1% level. Forth, the coefficients for
lagged correlation ρoil,BDTI,t�1 and lagged volatility

ln σoil,t�1ð Þ are positive and negative, respectively, yet,
irrespective of the crude. The former coefficient is non-
significant at conventional significance levels; the latter
is marginally significant at the 10% level.

As Table 3 dictates, Equation (3) explains very little
of the weekly crude oil returns; R2s are below 1.7%
while they seem higher when controlling for seasonal-
ity; marginal increment of 30 basis points (bps) on
average. On the other hand, the VARX model does
explain to some extent fluctuations in BDTI returns;
R2s are in excess of 9.2% in all cases. In the case of
Brent (WTI), R2s range between 12% and 12.7% (9.3%–
9.7%) while the figure is only marginally different
across volatility proxies. Again, adding seasonal con-
trols somewhat improves the range to 13.5%–13.9%
(10.4%–10.6%).

For a more thorough examination of variables' inter-
actions we also perform causality tests (Granger, 1969)
in Table 3. The results reveal that, in the short-run
(1-week period), Roil,t has predictive explanatory power

0

40

80

120

160

200

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Baltic Dry Tanker Index

0

40

80

120

160

200

240

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Brent

West Texas Intermediate

FIGURE 2 Baltic Dry

Tanker index (top), Brent and

WTI crude oil (bottom)

annualised % volatility estimates

2000–2020 as implied by a

GARCH (1,1) model (see Table 2

for parameter estimates).
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on RBDTI,t at 1% significance level, but not vice versa at
5% significance level. The fact that the level of tanker
rates, as reflected in the BDTI, does not affect Brent or
WTI is in line with other literature, for example, Alizadeh
and Nomikos (2004). Nevertheless, Brent is weakly
affected by BDTI at the 10% significance level, although
the null of no causality can only be marginally rejected.
This reflects the fact that tanker operations play a key
role in the market of oil, balancing demand and supply
which, in turn, can help stabilise oil prices (Khan et al.,
2021). Yet, it is worth mentioning that Europe, Middle
East and Africa tend to use Brent as the main bench-
mark, with a production accounting for approx. two-
thirds of crude oil global trade. Contrary, WTI is primar-
ily a local benchmark. In addition, of all the routes
included in the BDTI it is only TD1 (Middle East Gulf to
US Gulf) involving the US so any linkages with this par-
ticular crude might be weaker.

To reduce the likelihood that linkages are sample spe-
cific we also carry out rolling causality tests/estimation
which explicitly consider the prospect that some series
may be more connected during some periods but less so
during others. For this reason, we repeatedly estimate the
VARX model in rolling five-year sub-samples. Collec-
tively, causality from Brent (WTI) to BDTI is confirmed
for more than 61.99% (55.10%) over the sub-samples.

Causality in the opposite direction, from BDTI to oil is
rather weak in all cases (less than 20% of the samples, at
maximum).

Finally, Table 3 reports the average rolling R2 across
sub-samples along with their 90% confidence intervals
from the rolling VARX estimation. Predictability of BDTI
ranges from 4.9% to 26% (3.5%–21%) when Brent (WTI) is
used as endogenous variable. On the other hand, predict-
ability of crude oil is limited with a range of 0.24%–7.1%
across sub-samples.

All things considered, results corroborate some degree
of BDTI return predictability robust to the volatility prox-
ies used, and whether or not seasonality is accounted for;
though this varies across periods. Results also confirm oil
return unpredictability.

5 | PERSPECTIVE OF
CONDITIONAL BDTI
DISTRIBUTION

Since we focus on oil market uncertainty, our main inter-
est is specific to how E RBDTI,tjRoil,tð Þ might vary with oil
price uncertainty. We are interested in characterising any
potential statistical association as a function of oil price
volatility to identify whether the latter can provide

0

50

100

150

200

250

300

350

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Realised Volatility (1m); WTI

Realised Volatility (6m); WTI

0

50

100

150

200

250

300

350

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Realised Volatility (1m); Brent 

Realised Volatility (6m); Brent

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Realised Correlation (1m); BDTI - Brent

Realised Correlation (6m); BDTI - Brent

-1.00

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Realised Correlation (1m); BDTI - WTI

Realised Correlation (6m); BDTI - WTI

FIGURE 3 Weekly annualised realised volatility and correlation. Volatility (top) and correlation (bottom) measures are shown for

M = 1 (1 m, dark grey dotted line) and M = 6 (6 m, black solid line), that is, estimates derived from 1 to 6 month worth of daily data,

respectively. [Colour figure can be viewed at wileyonlinelibrary.com]
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forward-looking information about subsequent oil-BDTI
short-run co-movements. To this end, we formulate our
experiment in the following expression:

RBDTI,t ¼ a0þ a1þa2 ln σoil,t�1ð Þþa3ρoil,BDTI,t�1

� �
Roil,tþ εt,

ð4Þ

where oil¼ Brent,WTIf g, σoil,t�1ð Þ the lagged condi-
tional volatility of oil, and ρoil,BDTI,t denotes the condi-
tional correlation between crude oil and BDTI and is

used as a control variable. The innovation term is
assumed to follow the normal distribution, that
is, εt �N 0,σ2ε

� �
.

The above equation focuses on the co-movement
between BDTI and oil returns and examines whether
measures of oil price uncertainty have a connection to
fluctuations in the BDTI-oil relation. Since tanker and oil
markets hold inextricable relations with each other, we
pay specific interest to times with sustained positive or
negative correlation or periods with relative extreme cor-
relations. In other words, the equation suggests that

TABLE 3 Causality tests, predictability and robustness

From–To: GV RV1m RV3m RV6m RV12m

Panel A: Brent – BDTI VAR (lags=2)

I. VARX model w Brent volatility and Brent-BDTI correlation as exogenous variables

RBRENT ! RBDTI 30.27*** 28.76*** 30.91*** 31.23*** 30.02***

R2 12.65 12.23 12.66 12.36 12.01

Roll. p-val. 0.172 (61.99) 0.173 (61.99) 0.168 (61.99) 0.158 (62.11) 0.172 (61.99)

Roll. R2 15.06 (4.92/23.6) 14.74 (4.91/22.4) 15.09 (5.07/24.3) 14.59 (5.19/22.4) 14.63 (5.08/22.3)

RBDTI ! RBRENT 4.705* 4.800* 4.875* 4.782* 4.931*

R2 1.12 0.90 1.11 1.47 1.29

Roll. p-val. 0.448 (8.29) 0.452 (8.03) 0.426 (7.02) 0.419 (4.97) 0.395 (8.03)

Roll. R2 2.43 (0.98/5.20) 2.17 (0.81/4.31) 2.30 (0.89/4.86) 2.85 (0.90/5.40) 2.54 (0.80/5.25)

II. VARX model w Brent volatility, Brent-BDTI correlation and seasonality controls as exogenous variables

RBRENT ! RBDTI 32.63*** 31.50*** 32.26*** 32.92*** 32.82***

R2 13.85 13.64 13.86 13.62 13.46

Roll. p-val. 0.152 (62.24) 0.153 (61.99) 0.152 (62.50) 0.152 (62.50) 0.157 (62.11)

Roll. R2 16.82 (7.44/25.6) 16.62 (7.43/25.2) 16.64 (7.23/26.0) 16.25 (7.33/24.8) 16.57 (7.43/24.6)

RBDTI ! RBRENT 4.590 4.613* 4.732* 4.681* 4.706*

R2 1.39 1.22 1.37 1.63 1.60

Roll. p-val. 0.468 (4.34) 0.479 (3.32) 0.461 (3.06) 0.427 (2.42) 0.416 (2. 81)

Roll. R2 3.94 (1.62/7.05) 3.63 (1.19/6.90) 3.76 (1.33/6.80) 4.02 (1.34/7.00) 3.96 (1.38/6.43)

Panel B: WTI – BDTI VAR (lags=1)

I. VARX model w WTI volatility and WTI-BDTI correlation as exogenous variables

RWTI ! RBDTI 10.34*** 9.347*** 10.06*** 10.06*** 9.80***

R2 9.58 9.35 9.65 9.49 9.28

Roll. p-val. 0.207 (55.36) 0.209 (52.55) 0.206 (56.90) 0.190 (55.10) 0.212 (56.00)

Roll. R2 11.71 (4.20/18.2) 11.63 (4.18/18.4) 11.66 (3.65/19.4) 11.38 (3.86/18.4) 11.58 (3.53/18.2)

RBDTI ! RWTI 0.017 0.003 0.001 0.002 0.002

R2 1.20 0.54 0.68 0.88 0.82

Roll. p-val. 0.352 (14.41) 0.372 (6.38) 0.357 (11.61) 0.365 (19.51) 0.352 (16.07)

Roll. R2 1.55 (0.56/3.11) 1.53 (0.26/3.67) 1.35 (0.24/2.85) 1.48 (0.31/2.79) 1.31 (0.27/2.43)

II. VARX model w WTI volatility, WTI-BDTI correlation and seasonality controls as exogenous variables

RWTI ! RBDTI 11.28*** 10.39*** 10.06*** 10.77*** 10.85***

R2 10.50 10.42 10.57 10.48 10.36

(Continues)
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relatively high or low oil price uncertainty may be linked
to either high or low likelihood of a negative correlation
henceforward. As oil price exhibits considerable volatility –
due to various factors, for example, supply/demand
dynamics, inventory surpluses/shortages as well as global
politics/economics – this volatility directly impacts the
BDTI-oil relation. When modelling uncertainty, this
equation aims at describing the dynamic relationship
between tanker rates and the price of oil and evaluating
whether the BDTI-oil return co-movements are consis-
tently related to our oil price uncertainty (lagged)
proxies.

Table 4, Panel A reports the results of Equation (4)
OLS regression for Brent and WTI as crude oil. The main
coefficient of interest is a2; shows how the oil-BDTI
returns relation changes with (lagged) volatility. We esti-
mate the full model and assess two types of restrictions:
(i) a3 ¼ 0. This is meant to assess whether oil volatility
offers additional information about the oil-BDTI relation,
beyond the information already inherent in the control
variable ρoil,BDTI,t�1. (ii) a2 ¼ a3 ¼ 0. This restricts the
regression slope to a constant (a1), and thus, it is implied
that E RBDTI,tjRoil,tð Þ¼ σBDTI,oil=σ2oil

� �
Roil,t .

Looking at the restricted OLS version (a2 ¼ a3 ¼ 0),
coefficient a1 is significant for both crudes at conven-
tional significance levels. The R2 for Brent is modest at
4.30% and only 2.15% for WTI. Turning to a3 ¼ 0, we see
that the oil-BDTI return relation varies negatively with
the lagged crude oil volatility. Coefficients a2 are signifi-
cant at 1% level for both crudes. What is more, substan-
tial increases are noted in the R2s; for Brent (WTI) the

figure experiences a more than twofold (threefold)
increase to 8.62% (6.48%).

As for the unrestricted OLS we conclude that the neg-
ative relation between lagged crude oil volatility and oil-
BDTI co-movement remains consistent; even after
accounting for recent historical conditional correlations.
The estimated a3 coefficient is negative and significant at
the 5% level, irrespective of the crude oil. Therefore, there
is some information that can be extracted from realised
correlations, reflected also at the modest increases in R2s;
R2 for Brent (WTI) increases to 9.1% (8.1%), that is, an
improvement of 50 (150) basis points relative to the
a3 ¼ 0 case.

To assess R2 consistency, Figure 4 portrays R2 extrapo-
lated from rolling regressions of BDTI returns on crude
oil returns (a2 ¼ a3 ¼ 0) versus the unrestricted OLS for
Brent (left) and WTI (right) as the variable for crude oil.
The incremental R2 appears to be substantial across all
periods. We can also note higher values associated with
the 2008 financial crisis and its aftermath. In general,
rolling R2 for two-year (five-year) subsamples when Brent
is the crude oil variable are within the 90% internal of
1%–14.9% (0–7.9%) for the unrestricted model and 0.6%–
10.2% (0–2.2%) for the restricted one. For WTI the figures
are 0.8%–15.8% (0–3.8%) and 0.1%–9.9% (0–1.4%), respec-
tively. All in all, the achieved improvement in R2 (unrest-
ricted vs. restricted) is on average, above 4.2% (3.1%) for
the 2-year (5-year) subsamples across both crudes.

Next, Figure 5 plots the implied slope estimates
derived from Equation (4) for Brent (top) and WTI (bot-
tom) crude oil variable. There is clear association

TABLE 3 (Continued)

Panel B: WTI – BDTI VAR (lags=1)

Roll. p-val. 0.155 (57.91) 0.155 (59.69) 0.154 (59.82) 0.158 (59.18) 0.162 (58.54)

Roll. R2 13.27 (6.42/20.6) 13.11 (6.48/20.6) 12.93 (5.84/21.0) 12.82 (6.13/20.6) 13.07 (5.99/20.4)

RBDTI ! RWTI 0.113 0.041 0.064 0.058 0.043

R2 1.51 0.93 1.03 1.14 1.19

Roll. p-val. 0.386 (14.67) 0.399 (2.93) 0.393 (10.08) 0.382 (16.96) 0.379 (16.32)

Roll. R2 2.97 (0.85/5.49) 3.07 (0.68/7.09) 3.07 (0.40/6.39) 2.71 (0.56/6.09) 2.71 (0.51/5.53)

Note: The table shows causality tests and provides information on the explanatory power of the estimated VARX models (see Equation 3). Note that,
correlation figures in vector Xt of Equation (3) are paired with the corresponding volatilities only; that is, for M = {1, 3, 6, 12}, if ln σoilð Þ¼RVm then
ρoil,BDTI ¼RCm; GARCH volatilities are paired with the realised correlations that maximise R2. The lag length of the models was selected on the basis of the
Schwarz (1978) Bayesian information criterion. Panel A (B) reports the results for the case of BTDI and Brent (WTI) as endogenous variables; for definition of
the exogenous variables please refer to Section 4. Rows labelled as RX !RY test the null hypothesis that variable X does not Granger cause variable Y; asterisks

*, **, *** indicate significance at 10%, 5% and 1% significance level, that is, rejection of the null against the alternative of causality. The test follows the χ2(df )
distribution with degrees of freedom (df ) equal to the number of restricted coefficients. Rows labelled R2 are derived from the full sample VARX model
estimation; from 7 June 2000 to 27 May 2020. Roll. p-val display the average p-value using rolling statistics. These are conducted by applying causality tests to
rolling weekly 5-year sub-samples. For example, the first statistic is obtained by using observations from the beginning of the sample through to the 260th
observation, the next statistic is obtained by using data from the 2nd through to the 261st observation, and so on, until the sample is exhausted. Numbers in ()

correspond to the % number of times that the null hypothesis of no causality can be rejected at conventional significance levels. Finally, we also obtain the
rolling R2 estimates and report the averages and 90% CI (confidence intervals in []).
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between oil volatility and BDTI (see also Figures 2 and 3).
Slopes are highly negative for high oil volatility
periods and approach zero or turn positive during less
volatile periods.11 The slopes' interquartile ranges for
Brent and WTI are [�0.11 0.0] and [�0.09 0.05], respec-
tively. The corresponding 5% percentile thresholds are
�0.297 and �0.277. Observations that belong to the 5th
percentile correspond to three main periods, that is,
August 2008 to April 2009 (financial crisis) and the first
quarter of 2016 (crude bottomed out to mid-$20 s by mid-
January, then to increase in 7–8 weeks by more than 40%)
and March–May 2020 (COVID19); slopes averaging below
�0.34 in the former two and below �0.69 in the latter

period. Volatilities in crude oil market during the former
two periods exceeded 68% p.a. while during COVID pan-
demic, this figure exceeded the level of 150% p.a.

To gauge potential inconsistencies in parameters and
findings so far, we relax the assumption of constant variance
and estimate the parameters of Equation (4) simultaneously
using the following augmented GARCH (1,1) equation:

σ2ε,t ¼ωþau2t�1þβσ2BDTI,t�1þ γσ2oil,t�1: ð5Þ

Table 4, Panel B presents the results. The reported
a20s, R2s from the GARCH model are consistent in sign

TABLE 4 Crude volatility and the relation between BDTI and oil returns

Crude oil = Brent Crude oil = WTI

(a2 ¼a3 ¼ 0) (a3 ¼ 0) (Unrestr.) (a2 ¼a3 ¼ 0) (a3 ¼ 0) (Unrestr.)

Panel A: Unrestricted OLS model versus restricted versions

a0 �0.0007 �0.0003 �0.0006 �0.0007 �0.0001 �0.0003

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

a1 �0.2694** �1.1660*** �1.2354*** �0.2004* �1.5758*** �1.6963***

(0.105) (0.150) (0.165) (0.113) (0.222) (0.204)

a2 – �0.3608*** �0.3758*** – �0.5090*** �0.5394***

(0.066) (0.069) (0.082) (0.073)

a3 – – �1.1071** – – �1.7693**

(0.562) (0.545)

R2 4.44 8.62 9.17 2.16 6.48 8.06

Robust. (VARX)

a2 – �0.3958*** �0.4162*** – �0.5595*** �0.5864***

R2 5.41 11.04 12.22 2.23 7.67 9.43

Panel B: Unrestricted model versus restricted versions with GARCH error structure

a0 �0.0013 �0.0011 �0.0011 �0.0013 �0.0011 �0.0011

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

a1 �0.1547*** �1.2399*** �1.2556*** �0.0804 �1.4371*** �1.5082***

(0.053) (0.271) (0.269) (0.053) (0.479) (0.463)

a2 – �0.3788*** �0.3694*** – �0.4582*** �0.4686***

(0.091) (0.090) (0.159) (0.153)

a3 – – �1.1282* – – �1.5155*

(0.656) (0.656)

R2 %ð Þ 3.63 8.55 9.09 1.38 6.41 7.94

Robust. (VARX)

a2 – �0.3865*** �0.3853*** �0.4801*** 0.5009***

R2 4.07 11.02 12.13 1.00 7.53 9.28

Note: Table 4 reports results from estimating the regression of Equation (4). The sample period is June 2000 to May 2020. The regression is estimated by OLS
(Panel A) and the autocorrelation and heteroskedastic-consistent Newey and West (1987) standard errors are in (). The regression is also estimated with

GARCH error structure (Equation 5; Panel B) and standard errors in () are based on Bollerslev and Wooldridge (1992). For comparison, we also show the
coefficient estimates a2 and R2 when the residuals from the VARX of Equation (3) are used, rather than the raw data.
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and similar in magnitude to the OLS estimation. The neg-
ative relation between oil volatility and the oil-BDTI co-
movement in both models is further confirmed; as for the
estimated a3 coefficients, these are still negative, yet sig-
nificant only at 10% level.

Table 4 (Panels A and B) shows that estimating the
model using the residuals of the of Equation (3) VARX
model (instead of the raw data) improves the R2s in the
Brent (WTI) OLS case by 1.1%–3.1% (0.1%–1.4%). This
confirms that oil-BDTI relation varies negatively and con-
sistently with the crude oil lagged volatility. Results are
consistent whether or not the variance of εt is constant or
time-varying.

Futher, we provide further robustness tests and re-
estimate Equations (4) and (5) by alternating the proxies
of oil market uncertainty using nonparameteric methods;
RV1m, RV3m, RV6m and RV1m estimates (see Section 3,
Equation 2). A practical aspect of these proxies is that
they are free from the look-ahead bias potentially
imposed by the GARCH volatilities. Table 5, Panel A
(B) reports the results for Brent (WTI). Once again, the
evidence that the oil-BDTI return relation varies nega-
tively and very consistently with the oil market lagged
volatility validates the results in Table 4.12 This holds

irrespective of the proxy used (Brent or WTI volatility),
the method used to extract the proxy (GARCH or rea-
lised volatilities), or the method employed to examine
this relationship (OLS, GARCH, raw returns or VARX
residuals).

6 | REGIME-SHIFTING ANALYSIS

We now test whether a model accounting for regime-
switching is able to describe time variation in the oil -
BDTI return relation. In particular, introducing Markov-
ian regime shifts to Equation (4) (i.e., when a2 ¼ a3 ¼ 0)

RBDTI,t ¼ ast0 þast1Roil,tþ εstt �N 0,σ2,st
� �

, ð6Þ

where εstt is the white noise process with regime depen-
dent standard deviation σs. In this context, switching is
allowed in all parameters of Equation (6). The state vari-
able st follows a two-regime, first order Markov process
with transition probability matrix P whose elements are
given by Pr st¼ j j st�1 ¼ kð Þ¼ pkj that indicates the proba-
bility of switching from state k at time t� 1 into state j at

FIGURE 4 Rolling R2 estimates in percentage terms. This figure presents the R2 estimates derived from rolling regressions of weekly

BDTI returns on weekly crude oil returns (black line). The graph also presents the incremental R2 achieved when including in the regression

lagged crude oil volatility (while controlling for lagged BDTI-oil correlations as well, grey area). The plots to the top consider 5-year

subsamples for Brent (left) and WTI (right) as the variable for crude oil using weekly observations. The plots to the bottom consider 2-year

rolling subsamples.
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t, that is, p11 or p22 give the probability that the state will
not change in the following period, (1 – p11) is the probabil-
ity that state 1 will be followed by state 2 and (1 – p22) is the
probability that state 2 will be followed by state 1. Parame-
ter vector θ¼ ast¼1

0 ,ast¼1
1 ,σst¼1,ast¼2

0 ,ast¼2
1 ,σst¼2,P

� �
can be

estimated using maximum likelihood techniques; see
Hamilton (1989) for more details.

The transition probabilities in matrix P can be either
constant between successive periods or conditioned on
some candidate variables. We employ the following logis-
tic function to parameterise P and investigate if transition
probabilities vary with lagged oil volatility:

P st ¼ k j st�1 ¼ k;Ωt�1ð Þ¼ eδkþζk ln σoil,t�1ð Þ

1þ eδkþζk ln σoil,t�1ð Þ , ð7Þ

where the δk and ζk are coefficients, and subscript k
equals either zero or 1 for regimes one and two, respec-
tively; time-varying transition probability MRS model
(TVTP). A restricted specification where ζk ¼ 0 across
regimes is also estimated; constant transition probability
(CTP) MRS model.

Results in Table 6 present the MRS models for BDTI
returns. Columns 1–3 and 4–6 correspond to the MRS
models for Brent and WTI, respectively. We consider the
three alternative MRS specifications outlined in Equa-
tions (6)–(7). The baseline CTP (MRS) and two TVP
models (MRS-G and RV1m). For the former oil market
uncertainty is proxied by GARCH (MRS-G) whereas the
latter by realised volatility (MRS-RV1m).

Results are similar across crudes. We see strong evi-
dence of asymmetries across different BDTI states and
there are asymmetries in the slopes across regimes. In the
high-variance state (st = 1), the slopes measured by α1
are consistently negative and significant across models
and crudes. In the low-variance state (st = 2), the same
coefficients are of less magnitude in absolute terms, posi-
tive and insignificant. This diverse behaviour indicates
that oil-BDTI relation experiences shifts and does not
respond uniformly to shocks between states.

Coefficients ζ2 are significant 5% level when GARCH
is the proxy for oil market uncertainty; for RV1m evidence
is restricted to Brent at 10% level tough. Yet, ζ1's are insig-
nificant. This suggests a high-variance state (st = 1) with

-1.2

-0.8

-0.4

0.0

0.4

0.8

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Brent volatility and correlation dependent slope

Brent volatility dependent slope

-1.2

-0.8

-0.4

0.0

0.4

0.8

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

WTI volatility and correlation dependent slope

WTI volatility dependent slope

FIGURE 5 Time-varying

slopes. This figure presents the

implied slope estimates derived

from the regressions in

Equation (4): RBDTI,t ¼ a0þ a1þð
a2 ln σoil,t�1ð Þþ
a3ρoil,BDTI,t�1ÞRoil,tþut . Dark grey

dotted lines are calculated as

a1þa2 ln σoil,t�1ð Þþa3ρoil,BDTI,t�1;

black solid lines restrict a3 = 0.

The plots to the top (bottom)

consider Brent (WTI) as the

crude oil variable.
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TABLE 5 Robustness and alternative volatility/correlation specification

RV1m RV3m RV6m RV12m

Panel A: Crude oil = Brent

a0 �0.0004 (0.003) �0.0005 (0.003) �0.0005 (0.003) �0.0001 (0.003)

a1 �1.0893*** (0.107) �1.5433*** (0.169) �1.8914*** (0.215) �2.3511*** (0.283)

a2 �0.3324*** (0.038) �0.4842*** (0.059) �0.5913*** (0.075) �0.7249*** (0.097)

a3 �0.0465 (0.263) �0.6514* (0.371) �1.6551** (0.453) �1.8250*** (0.557)

R2 8.75 9.39 9.31 9.04

Robustness

a2 j a3 ¼ 0 �0.328*** �0.434*** �0.514*** �0.593***

R2
a3¼0

n o
{8.75} {8.81} {8.33} {7.70}

GARCH errors:

a2
a2ja3¼ 0f g

�0.307***
{�0.305***}

�0.433***
{�0.417***}

�0.491***
{�0.463***}

�0.582***
{�0.490***}

R2

R2
a3¼0

n o 8.69
{8.69}

9.27
{8.76}

9.13
{8.27}

8.84
{7.58}

VARX resid.:

a2
a2ja3¼ 0f g

�0.375***
{�0.351***}

�0.523***
{�0.443***}

�0.630***
{�0.531***}

�0.769***
{�0.615***}

R2

R2
a3¼0

n o 11.18
{11.01}

12.20
{10.6}

11.94
{10.1}

11.37
{9.54}

Panel B: Crude oil = WTI

a0 �0.0006 (0.003) �0.0007 (0.003) �0.0008 (0.003) �0.0003 (0.003)

a1 �1.1466*** (0.119) �1.3833*** (0.173) �1.6654*** (0.223) �2.0421*** (0.275)

a2 �0.3822*** (0.040) �0.4567*** (0.061) �0.5438*** (0.077) �0.6575***(0.094)

a3 �0.3990* (0.231) �1.1531*** (0.388) �1.5264*** (0.431) �2.1293***(0.519)

R2 7.42 8.01 7.70 7.55

Robustness

a2 j a3 ¼ 0 �0.358*** �0.405*** �0.477*** �0.552***

R2
a3¼0

n o
{7.03} {6.31} {5.93} {5.35}

GARCH errors:

a2
a2ja3¼ 0f g

�0.270***
{�0.271***}

�0.346***
{�0.342***}

�0.380***
{�0.380***}

�0.471***
{�0.398***}

R2

R2
a3¼0

n o 6.91
{6.74}

7.64
{6.21}

7.10
{5.75}

7.16
{5.05}

VARX resid.:

a2
a2ja3¼ 0f g

�0.413***
{�0.384***}

�0.485***
{�0.429***}

�0.578***
{�0.512***}

�0.702***
{�0.598***}

R2

R2
a3¼0

n o 9.13
{8.48}

9.54
{7.35}

9.02
{7.02}

8.74
{6.32}

Note: This table presents the results of estimating Equation (4) using alternative specifications for the Brent (WTI) crude oil variance process in Panel A (B); see
Equations (1) and (2). We consider four alternatives based on realised measures of variance derived from relatively higher frequency (daily) data. RVj stands for
realised volatility using j months worth of daily data, where j = {1 m, 3 m, 6 m, 12 m}. Apart from the coefficient estimates and standard errors in (), the table
reports also the coefficient of interest, a2, when a3 is restricted to zero, that is, a2 j a3 ¼ 0, along with the relevant R2 (R2

a3¼0). For robustness we also report the

abovementioned information when: (i) instead of OLS the error structure follows a GARCH process and (ii) instead of the raw data, the residuals from the
VARX model are used. See also notes in Table 4.
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TABLE 6 Regime switching estimation results

Crude oil = Brent Crude oil = WTI

MRS MRS-G MRS-RV1m MRS MRS-G MRS-RV1m

Panel A: Baseline estimation results

Constants

a0
st=1 0.0015 0.0025 0.0020 0.0016 0.0023 0.0014

(0.006) (0.005) (0.005) (0.007) (0.006) (0.006)

a0
st=2 �0.0024 �0.0030 �0.0028 �0.0023 �0.0027 �0.0021

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

Slopes

a1
st=1 �0.4294*** �0.4400*** �0.4338*** �0.3978*** �0.3932*** �0.4021***

(0.075) (0.060) (0.059) (0.095) (0.061) (0.063)

a1
st=2 0.0141 0.0233 0.0342 0.0559 0.0556 0.0617

(0.051) (0.042) (0.042) (0.047) (0.043) (0.043)

Volatilities

σst=1 0.1072*** 0.1061*** 0.1056*** 0.1124*** 0.1108*** 0.1125***

(0.003) (0.002) (0.001) (0.003) (0.002) (0.002)

σst=2 0.0425*** 0.0410*** 0.0409*** 0.0439*** 0.0426*** 0.0435***

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Transition probabilities

δ1 1.9922*** 0.0011 2.0314 1.8429*** 0.8434 2.1781

(0.340) (2.036) (2.011) (0.375) (2.920) (1.866)

ζ1 �0.5989 0.0673 �0.3111 0.1613

(0.677) (0.641) (0.968) (0.609)

δ2 �2.4712*** 3.3700 0.9858 �2.4955*** 3.8415 �0.2970

(0.292) (2.222) (1.828) (0.288) (2.914) (1.738)

ζ2 1.846** 1.0243* 2.0520** 0.6671

(0.733) (0.579) (0.969) (0.559)

p11 0.880 (8.33) 0.858 (7.27) 0.861 (7.18) 0.863 (7.31) 0.856 (6.96) 0.843 (6.39)

p22 0.922 (12.8) 0.889 (11.9) 0.894 (11.0) 0.924 (13.1) 0.902 (12.8) 0.909 (11.8)

Panel B: Summary of results for VARX residuals

a1
st=1 �0.4933*** �0.4910*** �0.5071*** �0.5778*** �0.6312*** �0.6408***

a1
st=2 0.0550 0.0813** 0.0740* 0.1038** 0.1156*** 0.1160***

σst=1 0.0995*** 0.0974*** 0.0993*** 0.1212*** 0.1274*** 0.1284***

σst=2 0.0416*** 0.0398*** 0.0408*** 0.0469*** 0.0477*** 0.0478***

ζ1 0.1586 0.2626 1.7463 1.1581

ζ2 1.4420* 1.0984* 0.3503 0.4332

p11 0.844 (6.4) 0.818 (5.5) 0.779 (4.6) 0.717 (3.5) 0.498 (2.2) 0.472 (2.1)

p22 0.912 (11.4) 0.877 (9.6) 0.867 (8.9) 0.921 (12.6) 0.894 (9.5) 0.892 (9.6)

Panel C: Summary of results for alternative volatility specifications

MRS-RV3m MRS-RV6m MRS-RV12m MRS-RV3m MRS-RV6m MRS-RV12m

a1
st=1 �0.4347*** �0.4344*** �0.4335*** �0.3980*** �0.3990*** �0.3941***

a1
st=2 0.0349 0.0384 0.0500 0.0631 0.0634 0.0680

σst=1 0.1055*** 0.1050*** 0.1032*** 0.1115*** 0.1116*** 0.1100***

(Continues)
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CTP, and a low-variance state (st = 2) where probabilities
p22 (and 1-p22) depend on the lagged value of crude oil
volatility. In other words, switching from low-to-high
variance (zero slope to strongly negative) depends on the
level of oil market uncertainty; however, switching from
high-to-low variance (negative slope to zero) does not
vary significantly with crude volatility. For exposition
purposes, we also report (Table 6) the remaining proba-
bilities; these exceed 84%, implying that regimes are per-
sistent while p22 – with minimum value of 88.9% –
indicate that low variance states are more frequent and
persistent.

In the Brent market MRS model the transition proba-
bilities imply that the expected duration13 of regime 1 is
8.3 (=1/[1–0.880]) weeks compared to 12.8 (=1/[1–
0.922]) weeks in regime 2. The corresponding values for
WTI are 7.3 weeks in regime 1 and 13.1 in regime 2. As a
result, high-variance states are less stable and exhibit rel-
atively short durations. For the TVP models, we report
the average values across time. Overall, irrespective of
the crude oil or model, the high-variance regime (nega-
tive slope) is not expected to be longer than approx.
8 weeks while the low-variance state (zero slope) is not
expected to be shorter than 11 weeks (while transition
from one regime to the other ranges between 7.5%
and 16%).

We next proceed with some robustness checks. First,
in Table 6, Panel B models are re-estimated with the
VARX model residuals instead of the raw data. Although
results display a similar pattern, slope coefficients have
somewhat increased in magnitude in both states. Second,
while most of the slopes in the low variance state remain
positive, they now turn significant at 5% level. Another
observation is the slightly reduced expected durations
(reduced p11 and p22); regimes are less persistent (espe-
cially for WTI) compared to Panel A. Finally, in Panel C

models are re-estimated for different oil market uncer-
tainty proxies, that is, RV3m, RV6m and RV12m instead of
GARCH and RV1m. Results are qualitatively similar.

Figure 6 illustrates the regime-switching behaviour
over time. To determine the timing of the states, infer-
ences are made based on the Markov probabilities. The
‘smooth’ regime probabilities for BDTI market, derived
from the estimated MRS-G models with Brent (top) and
WTI (bottom) and TVP are presented. This smoothed
probability indicates the likelihood of being in state
1 (high variance – negative slope state). State 2 is the one
prevailing overall whereas high-variance state is rela-
tively shorter-lasting yet persistent and frequent too. The
time-evolution of transition probabilities is also shown in
the graph.

Table 7 reports return descriptive statistics in each
state and for all models presented in Table 6, that is,
MRS (CTP), MRS-G (TVP) and MRS-RV1m (TVP). In
Panels A (B) the results for Brent (WTI) are reported. To
classify regimes we use the implied smoothed regime
probabilities, that is, a return is categorised as an obser-
vation belonging to a certain state if the smoothed regime
probability being in state 1 (or 2) is greater than a thresh-
old of x%. We use two thresholds, that is, x = 50% and x
= 75%. The former involves all the available observations
in the calculation of the sample statistics. The latter
involves fewer; as regime probabilities within the interval
(0.25, 0.5) are removed and not classified in a particular
regime.

Several observations merit attention. The identified
states of BDTI are associated with crude oil high-low var-
iance states as well. Specifically, an average BDTI annual-
ised volatility of 83%–87% (96%–102%) finds the crude oil
market experiencing a volatility of 53%–57% (58%–62%);
when classification to regimes is based on the 50% (75%)
threshold probability. On the other hand, a relatively low

TABLE 6 (Continued)

Panel C: Summary of results for alternative volatility specifications

MRS-RV3m MRS-RV6m MRS-RV12m MRS-RV3m MRS-RV6m MRS-RV12m

σst=2 0.0408*** 0.0405*** 0.0390*** 0.0429*** 0.0428*** 0.0419***

ζ1 �0.0075 �0.1925 �0.6461 0.0440 �0.0095 �0.2289

ζ2 1.0986* 1.2987* 2.0100*** 0.9720 1.0860* 1.4108*

p11 0.861 (7.2) 0.862 (7.3) 0.859 (7.3) 0.847 (6.6) 0.844 (6.4) 0.845 (6.5)

p22 0.895 (11.0) 0.891 (10.9) 0.872 (10.6) 0.906 (11.9) 0.904 (11.7) 0.895 (11.2)

Note: Panel A of this table shows the calibrated estimates of a two-state Markov Regime switching model with constant transition probabilities (MRS) and with
time-varying transition probabilities; conditioned on the lagged crude oil (log) volatility as estimated either by a GARCH model (MRS-G) or by realised

volatility (MRS-RV1m); see also Table 5 and Equations (6) and (7). Transition probability parameterisation is based on the logistic function of Equation (7).
Rows p11 and p22 summarise transition results and show the expected durations ([], measured in weeks). In Panels B and C, we show some additional results
for robustness using the residuals from a VARX model to estimate the MRS models (Panel B) or alternatives for the realised measure of variance (Panel C); see
also notes in Table 5.
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average BDTI annualised volatility of 25%–29% finds the
crude oil market volatility at approx. 33%. Overall, this
corroborates the linkage of the two variables. This is not
surprising since oil is indispensable for the tanker sector,
both as fuel and cargo (see also Figure 2). In general, syn-
chronisation across markets appears strong. Besides, note
also that high (low) variance BDTI regimes 1 (2) are asso-
ciated with high positive (negative) returns.

Moreover, oil-BDTI correlations across crudes and/or
regime classification method are significant and negative
in state 1, in all cases presented in Table 7. On the other
hand, all oil-BDTI correlations are positive but, overall,
insignificant in state 1 if the threshold probability is set
to 50% and, significant at (at least) 5% level if the thresh-
old is set to 75%. There is no substantial differentiation
between the two crudes and results are consistent irre-
spective of the crude benchmark used.

All things considered, the key message is that high
volatilities in oil (and BDTI) market lead to significantly
negative oil-BDTI correlation. Then again, low volatilities
in oil (and BDTI) market lead to no statistical association,
albeit with a tendency to positive values. Finally, low vol-
atilities in oil combined with ‘very’ low volatilities in

BDTI (regime probability higher than 75%) yield signifi-
cantly positive correlations.

6.1 | Regime shifting analysis - further
results

In this section, we expand our empirical analysis to addi-
tional datasets: (a) individual routes that compose BDTI,
(b) one alternative tanker index, that is, the BCTI and
(c) one freight index from the drybulk sector, namely the
BDI. BCTI reflects voyages for clean tanker cargoes (ker-
osene, gasoline, naphtha and the like) whereas BDI
reflects the cost of shipping raw materials (iron ore, steel,
cement, grain, coal, etc.).

In unreported work, we have estimated all MRS
models presented Section 6 for the expanded dataset.
For brevity, we present the general unrestricted MRS
model with RV1m crude volatility as a proxy of oil mar-
ket uncertainty; results are insensitive to the choice of
volatility measure (see Table 7). Table 8 reports essential
state dependent descriptive statistics. The underlying
model in all cases is the MRS- RV1m (TVP) while

0.0
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0.6

0.8

1.0

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

Smoothed regime prob. of Regime 1

Transition prob p12

Transition prob p21
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FIGURE 6 Regime shifts.

This figure presents the

smoothed regime probabilities of

being in the high volatility (high

slope) states for BDTI (grey

areas). These are derived from

the MRS-G model of

Equations (6) and (7); for

parameter estimates see Table 6.

Transition probabilities are

conditioned on the lagged (log)

crude oil volatility and are also

depicted in the graph, that is,

p12,t (dotted line) and p21,t (solid

line). The plots to the top

(bottom) consider Brent (WTI)

as the crude oil variable.
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observations are classified to regimes if the regime prob-
ability of being in regime 1 (or 2) is greater than 50%. In
Table 8, Panel A the dirty-tanker routes are TD1, TD2,
TD6, TD7, TD8, TD9, TD12, TD14, TD15, TD17 and
TD18.14

The identified states of the individual routes are also
associated with crude oil high-low variance states, as was
the case with BDTI. To a certain extent, there is diversity

in the regime risk–return route-specific profile but this is
not surprising as some routes exhibit higher volatility. In
regime 1, that is, the high-variance state, route annual-
ised volatilities range from 75.5% to 187.8% (average of
135%), which corresponds to crude oil volatilities of 47%–
85% (average of 58%). Regarding the low-variance state,
route annualised volatilities range from 10.5% to 51%,
(average of 28%) which are linked to crude oil volatilities

TABLE 7 Sample moments across regimes as implied by MRS models

Model/state
Weekly

RBDTI Roil
Correl.

Obs. Mean Std Mean Std (RBDTI, Roil)

Panel A: Crude oil = Brent

Regime prob. >50%

MRS(St=1) 386 16.27 83.81 0.05 57.40 �29.51***

MRS(St=2) 656 �15.28 29.49 1.12 33.53 1.01

MRS-G(St=1) 408 11.88 82.66 �0.11 56.65 �29.66***

MRS-G(St=2) 633 �13.96 27.95 0.75 33.20 4.02

MRS-RV(St=1) 406 14.09 82.90 0.00 56.62 �30.12***

MRS-RV(St=2) 636 �14.88 27.81 1.18 33.35 5.54

Regime prob. >75%

MRS(St=1) 277 14.73 95.21 �15.91 62.76 �31.58***

MRS(St=2) 532 �11.42 26.57 3.18 33.25 8.99**

MRS-G(St=1) 273 29.23 96.81 �10.05 61.65 �33.09***

MRS-G(St=2) 488 �22.35 24.96 3.30 33.71 13.26***

MRS-RV(St=1) 276 25.81 96.35 �10.50 62.68 �32.62***

MRS-RV(St=2) 489 �23.28 24.95 2.50 32.95 11.63**

Panel B: Crude oil = WTI

Regime prob. >50%

MRS(St=1) 341 12.87 88.01 �5.78 53.61 �23.75***

MRS(St=2) 701 �11.60 30.29 3.65 33.57 3.94

MRS-G(St=1) 365 13.40 86.16 3.20 52.98 �23.72***

MRS-G(St=2) 676 �13.14 29.10 �1.71 33.06 5.66

MRS-RV(St=1) 342 7.12 88.26 0.32 53.83 �24.60***

MRS-RV(St=2) 700 �8.83 29.81 0.68 33.36 6.40*

Regime prob. >75%

MRS(St=1) 232 29.87 101.8 �16.56 58.72 �28.76***

MRS(St=2) 569 �9.85 27.60 4.13 32.63 8.80**

MRS-G(St=1) 240 27.38 100.9 �8.19 56.58 �28.63***

MRS-G(St=2) 544 �16.94 26.49 �1.58 33.17 10.39**

MRS-RV(St=1) 219 29.67 104.8 �19.13 59.36 �29.35***

MRS-RV(St=2) 558 �9.24 26.82 2.90 32.57 11.56***

Note: The results of this table follow the estimation results of Table 6; Equations (6) and (7). This table reports sample moments for each regime, where an

observation is classified as belonging to a particular regime if the regime probability of being in regime 1 (or 2) is greater than 50% or 75%. The former involves
all the available observations in the calculation of the sample statistics. The latter involves fewer; as regime probabilities within the interval (0.25, 0.5) are not
classified in neither of the identified regimes. Note that MRS-RV corresponds to the MRS-RV1m. Results for MRS-RV3m, MRS-RV6m and MRS-RV12m are similar
and are not presented here for brevity (available from the authors upon request).
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of 30%–41% (average of 34%). Therefore, route-specific
dynamics identify distinct regimes, directly linked to oil
uncertainty.

Oil-BDTI correlations across crudes are significant
and negative in state 1, in all cases, apart from TD12 and
TD18 where they are non-statistically different than zero;

these figures range from �9.3% (TD17) to 45%–47%
(TD15), depending on the oil uncertainty proxy
employed. In the low variance state (regime 2) the ten-
dency is for correlations to be insignificant. Few excep-
tions: positive correlations for TD7 and TD12 (at 1% and
5% significance level) or negative for TD1 and TD14

TABLE 8 Sample moments across regimes for other freight variables

RFr RFr

Mean Std σBrrent Correl Mean Std σWTI Correl

Panel A: BDTI routes

TD1(St=1) 149.1 159.9 59.03 �28.5*** 161.6 163.8 61.15 �28.8***

TD1(St=2) �80.89 38.07 33.98 �6.4* �79.81 39.50 33.27 �3.5

TD2(St=1) 112.1 175.1 55.26 �22.1*** 119.2 177.7 56.34 �21.8***

TD2(St=2) �92.02 43.39 32.33 4.6 �91.84 44.12 31.78 4.0

TD6(St=1) 51.29 145.2 53.20 �16.2*** 45.92 146.2 53.61 �15.7***

TD6(St=2) �64.82 31.47 30.06 2.2 �56.64 33.37 29.92 �3.9

TD7(St=1) 2.93 153.7 47.74 �16.5*** 12.30 154.9 47.57 �17.2***

TD7(St=2) �8.66 30.22 39.56 14.2*** �17.59 32.55 39.97 15.0***

TD8(St=1) 36.11 85.04 56.23 �13.5*** 36.41 85.17 56.06 �13.8***

TD8(St=2) �26.87 17.45 33.54 5.7 �26.95 17.33 33.76 7.0*

TD9(St=1) 10.80 158.9 49.59 �10.9*** 7.94 158.3 47.94 �10.8***

TD9(St=2) �31.86 26.67 32.33 2.0 �27.70 26.10 36.12 �5.8

TD12(St=1) 2.48 76.47 59.14 �5.0 4.81 75.53 58.75 �4.8

TD12(St=2) �10.70 16.85 31.00 11.1** �12.81 16.57 30.66 10.5**

TD14(St=1) 61.75 97.66 59.78 �12.4** 61.51 96.49 61.77 �12.4**

TD14(St=2) �39.88 19.06 35.55 �8.2* �41.29 18.62 33.11 �5.2

TD15(St=1) 4.09 181.6 81.30 �46.8*** 31.39 187.8 84.91 �45.3***

TD15(St=2) �0.78 49.55 33.42 6.8* �6.01 50.65 33.16 2.9

TD17(St=1) �2.02 151.9 49.71 �9.3** �2.14 152.9 50.02 �9.3**

TD17(St=2) �12.27 10.68 31.74 �2.9 �11.37 10.50 31.20 �2.7

TD18(St=1) 118.1 88.97 59.57 7.0 105.9 88.79 71.02 4.8

TD18(St=2) �41.81 25.47 41.26 4.3 �38.10 25.85 34.77 6.6

Panel B: Other indices

BCTI(St=1) 208.99 115.3 66.58 �39.8*** 174.5 109.7 71.93 �36.9***

BCTI(St=2) �32.04 27.42 39.74 0.3 �31.49 26.70 37.39 4.0

BDI(St=2) �27.13 75.36 49.47 5.9 �22.78 74.96 49.24 5.7

BDI(St=1) 27.59 22.84 33.51 �3.3 21.82 22.70 33.59 �2.1

Note: This table reports sample moments for each regime, where an observation is classified as belonging to a particular regime if the regime probability of
being in regime 1 (or 2) is greater than 50%. The underlying model is that of Equations (6) and (7) was estimated for a battery of alternative time series for
robustness. In this table, we report results on individual routes that comprise BDTI (Panel A), as well as Baltic Clean Tanker Index and Baltic Dry Index (Panel
B) for comparison. As the results are insensitive to the choice of volatility measure employed (see Table 7), to save space, all results presented are based on a

RV1m. Note that, as of March 2020 BDTI routes are (Baltic Exchange, 2020): TD1 (280,000mt, Middle East Gulf to US Gulf); TD2 (270,000mt, Middle East Gulf
to Singapore); TD3C (270,000mt, Middle East Gulf to China); TD6 (135,000mt, Black Sea/Mediterranean); TD7 (80,000mt, North Sea to Continent); TD8
(80,000mt, Crude and/or DPP Heat 135F, Kuwait to Singapore); TD9 (70,000mt, Caribbean to US Gulf); TD12 (55,000mt, fuel oil, Amsterdam-Rotterdam-
Antwerp range to US Gulf); TD14 (80,000mt, no heat crude, South East Asia to East Coast Australia); TD15 (260,000mt, no heat crude, West Africa to China);

TD17 (100,000mt crude. Baltic to UK-Continent); TD18 (30,000mt fuel oil Baltic to UK-Continent); TD19 (80,000mt, cross Mediterranean); TD20 (130,000mt
West Africa to Rotterdam). Here, we consider the routes that have at least 10 years worth of data.
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(albeit at 10% level and Brent-specific). Overall, findings
corroborate that high volatilities in oil (and BDTI) lead to
significantly negative oil-BDTI correlation while low vol-
atilities in oil (and BDTI) is more likely to result in no
statistical association, although small positive or negative
correlation is possible and route-specific.

This is also consistent when considering the clean-
tanker index results in Table 8, Panel B. That is, the states
of BCTI are also associated with crude oil high-low vari-
ance states. Specifically, an average BCTI volatility of
110%–115% p.a. (26%–27%) finds the crude oil market
experiencing a volatility of 66%–72% (37%–40%). In line
with the BDTI results, when volatilities are high oil-BCTI
correlations are significantly negative (�36% to �40%).
Low volatilities lead to no significant association.

Furthermore, the BDI results differentiate from the
analysis so far. However, this is the only non-tanker case
presented. Although the states of BDI are associated with
differences in crude oil volatility as well, there seems to
be no oil-BDI correlation across these regimes. An aver-
age BDI annualised volatility of close to 75% (23%) finds
the crude oil market experiencing a volatility of approx.
50% (33.5%). When volatilities are high oil-BDI correla-
tions are close to 5% while low volatilities lead a correla-
tion of close to �3%, yet these are non-statistically
different from zero in both cases.

Finally, we have repeated our analysis and estimated
the regressions of Equations (4) and (5). Overall, a collec-
tive view of this unreported work and the results of this
section indicate that the studying individual routes, BCTI
and BDI neither offers any additional evidence nor it con-
tradicts any of the conclusions that drawn so far. In fact,
with the exception of BDI which constitutes a different
sector, results are similar to BDTI.

7 | CONCLUSION

This article examines the potential impacts of oil market
uncertainty on the variations in the oil-BDTI return rela-
tion. Our research indicates that in the short-run (one-
week period), oil returns have predictive power on the
returns of BDTI but not vice versa, consistent with previ-
ous literature, for example, Alizadeh and Nomikos
(2004). From a forward-looking perspective, a regression
framework reveals strong evidence of a negative relation
between oil uncertainty and the future correlation of oil
and dirty-tanker shipping returns. The negative relation
is more pronounced when crude oil price volatility is
high. Results hold when adding lagged realised correla-
tion values as a control variable, as the latter offers only
limited increase to explanatory power. Rolling regres-
sions suggest that the explanatory power of oil market

uncertainty is sample specific as the negative correlation
of oil and dirty-tanker shipping returns holds in relatively
volatile periods and is more pronounced in extremely tur-
bulent periods (e.g., 2008 financial crisis or lockdowns
due to COVID19). Our conjectures and findings about
the nature of the oil volatility and oil-tanker correlations
are confirmed also via a MRS framework. The identified
regimes of tanker shipping can be directly linked to
periods of high–low crude oil volatility with implications
on the level of correlation they exhibit to oil returns.
Results are robust across crudes (Brent and WTI) and dif-
ferent volatility proxies (parametric and nonparametric)
as well as route-specific returns and clean-tanker cargoes
as well.

Overall, time variation in the relation between tanker
freight rates and oil price volatility over the short term
seems to be substantial. Characterising this time varia-
tion has important implications for understanding the
economics of freight rate formation and has practical
applications in asset allocation and risk management of
transportation assets and portfolios. These results provide
market participants with useful warning signs of market
shocks and crises as oil price uncertainty greatly influ-
ences tanker transportation freight costs. Predictability
and linkages may prove useful to international investors
and traders, but also provide essential insights to policy-
makers and regulators, in terms of commercial strategies,
asset positioning, network supply chain modelling, asset
investment allocation, budgeting and risk management.

This article measures the effect of oil price uncertainty
on the relation of tanker returns and oil; given the impor-
tance of oil as a strategic commodity in all aspects of eco-
nomic activity. The implications of this study are important
for various stakeholders in the industry adding to their
understanding of this relation, as oil prices affect the ship-
ping market, both as a cargo and as a fuel. Our work
can be extended in several directions. First, we have
assumed that ‘freight’ is represented by either BDTI or
individual tanker routes. In further research, different
definitions of freight could be investigated. For exam-
ple, Theodossiou et al. (2020) use vessel earnings to
orthogonalise freight rates to possible changes on bun-
ker fuel cost and / or operating costs that may affect the
nominal freight rate the ship earns (see also Drobetz
et al., 2021; Nomikos & Tsouknidis, 2022). Another
important aspect to consider is the definition of uncer-
tainty. Creating uncertainty indices of disaggregated
supply and demand shocks of the oil or tanker market,
albeit an important question, is left for future research.
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ENDNOTES
1 An increase in crude oil price increases costs as bunker fuel is
considered a voyage cost and, in the case of a spot charter agree-
ment, this cost is paid by the shipowner. Moreover, if oil prices
rise as a result of increased real economic activity, higher freight
can compensate increased fuel costs, nevertheless this is not the
case if high prices are due to supply disruptions (see Gavriilidis
et al., 2018).

2 Kalouptsidi (2014) employs a dynamic model of entry and exit
that features constant required returns and procyclical time-
to-build delays and uses second-hand ship prices to study
shipping investment cycles. Findings indicate that construc-
tion lags and expected revenues have a considerable impact
on the level of investment in new ship construction. More-
over, moving from time-varying to constant to no time to
build reduces prices, while both the level and volatility of
investment increase.

3 The motivation for the use of the BDTI is threefold. First, Baltic
indices have been widely used to proxy global economic growth
as they provide information about global demand and supply for
seaborne trade (e.g., see Bakshi et al., 2011). Second, BDTI
reflects not only the condition of the tanker market but also the
macroeconomic elements of tanker rates (Alizadeh & Talley,
2011). Finally, the indices are used by practitioners to settle
freight derivatives contracts.

4 Worldscale (WS) is the primary framework for setting tanker
freight rates. Published rates and differentials of tanker voy-
ages reflect the nominal $/ton freight for a standard tanker
(sise of 75,000 dwt) with some assumptions on specifications
(e.g., 14.5 knots laden at 55 ton/day bunker consumption)
based upon a round voyage. This freight rate is known as
WS100 or ‘flat rate.’ Negotiated rates between shipowners and
charterers are then expressed as a percentage of the nominal
printed freight.

5 BDTI is computed from the reported dirty-tanker routes by the
Baltic Exchange. The index indicates the cost of tanker shipping
based on the average costs of some routes; calculated by the Bal-
tic Exchange and a panel of key shipbrokers.

6 Moreover, Bera and Jarque (1980) tests reveal normality depar-
tures for all series. The Ljung and Box (1978) statistic shows signs

of serial correlation: evident for the freight but less so for crude
oil. Engle, 1982 test indicates strong heteroscedasticity patterns.
Finally, based on the Augmented Dickey and Fuller (1981)
(ADF), and Phillips and Perron (1988) (PP) unit root tests (Panel
B) both crude oil prices are difference stationary. Conversely,
BDTI is integrated of order zero; the mean-reverting behaviour
of BDTI is also visible in Figure 1.

7 One can identify various demand and supply factors for tanker
freight rates. To name a few, international trade in oil and oil
products, world fleet, shipbuilding production, scrapping,
average haul, political events and the legislation framework,
vessels' lay-up tonnage, vessel speed (see, among others,
Stopford, 2009; Adland & Strandenes, 2007). For example,
Nomikos and Tsouknidis (2022) construct indices capturing
the economic activity in the shipping sector and provided a
framework to identify mutually uncorrelated supply and
demand shocks.

8 For more technical details and applications to oil price volatility
modelling and forecasting the reader is referred to Sadorsky
(2006), Nomikos and Pouliasis (2011) and Pouliasis and Papapos-
tolou (2018).

9 Engle, 1982 ARCH test indicates that a GARCH (1,1) is capable
to remove the heteroscedasticity effects of the returns (Q2 in
Table 1). Further, there are no signs of autocorrelation in the
crude oil standardised residual series, at 1% level. Note that, to
remove serial correlation for the BDTI, returns are filtered
through an autoregressive process of order 2 before estimating
the variance equation.

10 For instance, Wilson et al. (1996) provides evidence structural
breaks in the unconditional oil price volatility of futures con-
tracts. Fong and See (2003) also reports that futures price volatil-
ity exhibits regime shifts, in line with the theory of storage (see
also Nomikos & Pouliasis, 2011, 2015).

11 Whether the estimate of the slope is a1þa2 ln σoil,t�1ð Þþ
a3ρoil,BDTI,t�1 or a1þa2 ln σoil,t�1ð Þ the overall trend is similar
while differences are short-run and period-specific; this confirms
that oil market uncertainty captures most of the variation in the
slopes (confirmed also in Table 4 – adding correlation marginally
improves R2 in Equation 4).

12 We also estimate an alternative specification that uses a measure
of oil-BDTI weekly co-movement as the dependent variable
and lagged crude oil volatility as an explanatory variable;
Rstd resid
BDTI,t R

std resid
oil,t ¼ aþa2 ln σoil,t�1ð Þþ εt . The dependent variable is

the product of the standardised residuals of the weekly BDTI and
oil returns, estimated from the GARCH models in Section 2. In this
context, Rstd resid

BDTI,t R
std resid
oil,t measures whether the standardised resid-

uals move together, that is, a weekly correlation measure. Results
indicate that a2 coefficients are negative for both crude cases;
�0.425 (�0.423) for Brent (WTI) and significant at 1% (%5) level.

13 We can calculate the average expected duration being in state k
(Hamilton, 1989) as:

P∞
k¼1

kpk�1
11 1�p11ð Þ¼ 1�p11ð Þ�1:

14 Note that, some routes of BDTI components are excluded as we
consider routes that have at least 10 years of usable data. For
example data on TD3C (270,000 t Middle East Gulf – China),
TD19 (80,000mt, Ceyhan – Lavera) and TD20 (130,000mt, West
Africa – Continent) are available, respectively, from December
2015, September 2011, May 2014 onwards and thus excluded
from our dataset.
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