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Abstract

Pulse rate variability (PRV) describes the way pulse rate changes through time

and is measured from pulsatile signals such as the photoplethysmogram (PPG).

It has been proposed as a surrogate for heart rate variability (HRV). Nonetheless,

the relationship between these variables is not entirely clear, probably due to both

physiological and technical aspects involved in the extraction of PRV. Moreover, the

effects of cardiovascular changes on PRV have not been elucidated. In this thesis,

four studies were performed to (1) determine the best combination of some technical

aspects for the extraction of PRV from PPG signals; (2) evaluate the relationship

between PRV and HRV under different cardiovascular conditions; and (3) explore

the effects of cardiovascular changes on PRV.

First, PRV extraction gave lower errors when (1) signals were acquired for at least

120 s with a 256 Hz sampling rate and filtered with lower low cut-off frequencies

and elliptic, equiripple or Parks-McClellan filter; (2) cardiac cycles were determined

using the D2max algorithm and the a fiducial points; and (3) the Fast Fourier Trans-

form was applied to obtain frequency spectra. Secondly, the relationship between

HRV and PRV was found to be affected by cold exposure and changes in blood

pressure, while PRV was found to be different at different body sites. Finally, PRV

was affected by haemodynamic changes, such as target flow, stroke rate and blood

pressure, both in an in-vitro model and in-vivo data. Additionally, PRV was found

to be a potential tool for the estimation of blood pressure, with errors as low as

1.54± 0.17 mmHg, 1.07± 0.06 mmHg and 1.22± 0.09 mmHg for the estimation of

systolic, diastolic and mean arterial pressure.

Although more studies are needed to fully understand PRV and its clinical po-

tential, PRV should not be regarded as the same as HRV, and it could be consider

as a potential valuable biomarker for cardiovascular health.
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Chapter 1

Introduction

Pulse Rate Variability (PRV) refers to the changes in pulse rate (PR) overtime,

when measured from pulse waves such as the photoplethysmogram (PPG), and has

been widely used in recent decades as an alternative to heart rate variability (HRV)

(Schäfer & Vagedes 2013). HRV assesses the changes of heart rate (HR) measured

from the electrocardiogram (ECG) and has been used in different scenarios for eval-

uating the cardiac autonomic nervous system (ANS) and its regulation (Huikuri

et al. 1999, Quintana 2017, Malik et al. 2017). The assessment of PRV from PPG

signals is increasingly gaining attention due to the widespread use of PPG sensors

and their capability for obtaining cardiovascular information in a non-invasive, non-

intrusive manner, in addition to the cost-effectiveness of the PPG devices (Allen

2007, Kyriacou 2021).

Although HRV and PRV originate from similar processes, and pulse rate (PR)

have been found to be a good surrogate of heart rate (HR) (Schäfer & Vagedes

2013), the relationship between HRV and PRV is not straightforward, and there is

still no consensus regarding the validity of using PRV as a surrogate of HRV. Some

researchers argue that the differences between HRV and PRV are mainly due to

physiological aspects, such as changes of haemodynamics due to stress or disease

(Giardino et al. 2002, Charlot et al. 2009, Khandoker et al. 2011), the different

nature of PPG and ECG signals (Schäfer & Vagedes 2013), and the effects on PRV

of pulse transit time and other factors, e.g. external forces on the arterial vessels

(Chen et al. 2015, Gil, Orini, Bailón, Vergara, Mainardi & Laguna 2010, Trajkovic

et al. 2011). Moreover, PRV has been found to be present in the absence of HRV,

as shown by Constant et al. (1999) and Pellegrino et al. (2014), and there are
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reports of differences in PRV due to measurement site (Yuda, Yamamoto, Yoshida

& Hayano 2020). All of these suggest there are different processes affecting PRV

that are not related to HRV.

Besides physiological differences, other studies have concluded that the agree-

ment between PRV and HRV may be affected by technical aspects in the extraction

of PRV from pulse waves, such as the selection of fiducial points for the measurement

of pulse-to-pulse intervals (Posada-Quintero, H.F., Delisle-Rodŕıguez, D., Cuadra-

Sanz, M.B., & Fernández de la Vara-Prieto, R.R. 2013, Hemon & Phillips 2016,

Alqaraawi et al. 2016a) and the sampling rate used for the acquisition of the pulse

wave signals (Choi et al. 2017, Hejjel 2017, Baek et al. 2017). Moreover, there are no

published guidelines for the extraction of PRV from pulse waves and the standard-

isation of the related analyses. Therefore, most methodologies for PRV studies are

based on the guidelines for HRV assessment from ECG signals, published in 1996

(Task Force of the European Society of Cardiology and The North American Society

of Pacing and Electrophysiology 1996).

Hence, studies aiming to better characterise PRV and its relationship with HRV,

as well as attempting to standardise the procedure to obtain PRV from PPG signals

are needed. In this thesis, the aim was to understand how PRV and its relationship

with HRV are affected by cardiovascular changes, as well as to determine the appro-

priate technical aspects that need to be considered for the extraction of PRV from

PPG signals.

1.1 Outline

A brief summary of the chapters contained in this thesis is as follows.

Chapter 2 describes the anatomy and physiology of the cardiovascular system

of the human body with emphasis on describing haemodynamics and vascular me-

chanics, as well as some common disorders that can appear in the cardiovascular

system. Chapter 3 introduces the anatomy and physiology of the autonomic ner-

vous system of the human body and describes its relationship with cardiovascular

homeostasis. These two chapters are the physiological basis of this thesis.

Chapter 4 describes the origin, extraction, and application of heart rate vari-

ability (HRV), as well as its limitations and relation with cardiovascular disorders.

Then, in Chapter 5, photoplethysmography (PPG) and pulse rate variability (PRV)

2



are introduced. This chapter provides a profound review of the current literature

on PRV and its applications, as well as its relationship with HRV. Also, this chap-

ter describes the current state-of-the-art and the areas of interest for PRV analysis.

This is the last theoretical chapter of this thesis.

Chapter 6 focuses on the analysis of technical aspects for the assessment of

PRV from PPG signals. In this chapter, a computational model for simulating PPG

signals with varying PRV information is proposed, and six independent experiments

are described, and their results presented in order to determine the best combination

of factors for the extraction of PRV from PPG signals.

Chapter 7 presents the results of an in-vivo study, developed to understand

how whole-body cold exposure affects PRV and its relationship with HRV. This was

done to evaluate if cardiovascular changes, especially vasoconstriction, could affect

PRV in a different manner to HRV, as a model of arterial stiffening.

Chapter 8 and Chapter 9 evaluate the effect of hypo- and hypertension on

PRV and its relationship with HRV, as well as the capability of PRV to classify

blood pressure states and estimate blood pressure values using machine learning

algorithms.

Chapter 10 describes the development of an in-vitro system for the simulation

of the upper-limb circulatory system and the measurement of PPG and pressure

signals from this model. Also, a study is presented in which PRV was assessed from

PPG signals acquired from this model under different haemodynamic conditions and

in the absence of HRV.

Although a complete discussion of the results found in Chapters 6 to 10 is given

at the end of these chapters, the last chapter of this thesis, Chapter 10, contains

a summary of these discussions, as well as the main conclusions of this work and

suggestions for future studies.
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Chapter 2

Anatomy and Physiology of the

Cardiovascular System

2.1 The heart

Blood is a connective tissue constituted by plasma and a corpuscular portion, which

includes gases, electrolytes, metabolites, proteins and specialized cells, among others

(Conti 2011b). This element is of vital importance in every tissue of the human body,

and needs to be transported so it can reach every portion of the body. The heart, a

four-chambered pump, is the organ which controls and carry out the movement of

the blood throughout the body (Rangayyan 2002), and is essential for the correct

functioning of every organ and for understanding the physiology of the cardiovascular

system.

2.1.1 Anatomy of the heart

The heart is a four-chambered pump with two top chambers, named atria, and two

bottom chambers, called ventricles (Rangayyan 2002). The principal function of

the heart is to pump the heart to the circulatory system, which consists of both

the cardiovascular and the lymphatic system, and its pumping action creates the

pressure needed by the blood to circulate through the vessels spread around the

body (Fox 2016). Figure 2.1 illustrates the anatomy of the heart.

The blood reaches the heart from various vessels. The right atrium receives it

via the superior and inferior vena cava, and the left atrium gets the blood from the

pulmonary veins. Atria and ventricles communicate with each other via atrioven-
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Figure 2.1: Anatomy of the heart (Heart: function and structure - access revision n.d.)

tricular valves. The mitral valve communicates the left atria and ventricle, whereas

the tricuspid valve serves as a channel between the right chambers. These valves

serve as a gateway for the blood to pass from the atria to the ventricle, and prevent

the blood to return from the ventricle to the atria (Heart: function and structure -

access revision n.d.).

With each cardiac beat the blood is ejected from the ventricles via the aorta (left)

and the pulmonary artery (right) (Conti 2011c). Once again, there are specialized

valves that prevent the backflow of the blood from the vessels to the heart, called

semilunar valves (Heart: function and structure - access revision n.d.). Specifically,

the pulmonary valve is located between the right ventricle and the pulmonary artery,

and the aortic valve prevents backflow from the aorta to the left ventricle (Conti

2011c).

The heart is constituted by involuntary, cardiac muscle, which contracts in a
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rhythmic pattern (Conti 2011c). This muscle is composed of striated fibres called

myocytes, which feature an irregular structure with a single nucleus, high numbers

of mitochondria, diameters from 10 to 15 µm and lengths of around 50 µm (Conti

2011c). The fibres are connected by intercalated discs, which improve the contact

between fibres for a proper distribution of electrical potentials, and form sarcomeres

similar to those observed in skeletal muscle (Conti 2011c).

2.1.2 Mechanical activity of the heart

The cardiovascular system is composed of the heart and the vessels, and transport

blood from the centre to the periphery and from the periphery to the centre. Hence,

the four-chambered pump, i.e. the heart, can be divided into two main pumps, right

and left, which are in charge of the systemic or major circulation, and the pulmonary

or minor circulation, respectively (Conti 2011c).

The major circulation circuit has the principal function of delivering fundamental

nutrients, such as glucose, fatty acids, amino acids and mineral salts, along with

oxygen, to the tissue cells, while removing from the cellular interstitium the carbon

dioxide (the main product of the cellular metabolism) and other catabolites. On the

other hand, the main objective of the minor circulation is to ensure the oxygenation

of blood and the removal of carbon dioxide, which takes place in the lungs through

the gas exchange performed by the alveoli (Conti 2011c).

To accomplish these, the right and left pumps are connected in a serial manner

that assures the transportation of blood. The right atrium receives contaminated

blood, which comes from the systemic circulation and has collected metabolic waste,

from the inferior and superior vena cava. This blood is pumped from the right

atrium to the right ventricle, passing through the tricuspid valve, from where it goes

to the pulmonary circulation via the pulmonary valve, where the blood is oxygenated

again for its recirculation through the body tissue. From the pulmonary system, the

oxygenated blood reaches the left atrium via the pulmonary vein. The left atrium

expels the oxygenated blood to the left ventricle via the mitral valve, from where

blood is pumped to the systemic circulation via the aortic valve and the aorta, from

where it is distributed to the different arterial branches (Rangayyan 2002).

This process is known as the cardiac cycle (Figure 2.2), which refers to the re-

peating pattern of contraction and relaxation of the heart tissue (Fox 2016). The

cardiac cycle can be separated in two main phases, the ventricular systole (contrac-
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Figure 2.2: Summary of the cardiac cycle. The atria contract and the blood is transferred
to the ventricles via the atrioventricular (AV) valves. Then, the ventricles contract and pump
the blood to the minor and major circulation circuits. Finally, the atria and ventricles fill with
blood again during diastole to restart the cycle.

tion) and diastole (relaxation) (Rangayyan 2002). Although the atria also contract

and relax during the cardiac cycle, and hence present an atrial systole and diastole,

the terms systole and diastole are usually used to denote the ventricle activity, due

to the importance and magnitude of the contraction of these chambers (Fox 2016).

The cardiac cycle is repeated continuously, depending on the heart rate deter-

mined by the amount of times the blood needs to be pumped from the heart to the

vessels. This rate is determined according to the needs of the body in each moment

and is controlled by the firing rate of specialised pacemaker cells that constitute the

sino-atrial (SA) node (Rangayyan 2002). At an average heart rate of 75 beats per

minute (bpm), the cardiac cycle has a mean duration of 0.8 seconds, from which

around 0.5 seconds are spent in diastole and the remaining 0.3 seconds are used in

the systole (Fox 2016).

The duration of the cardiac cycle, along with the stroke volume, i.e., the amount

of blood that is pumped by the heart in a single contraction, determine the cardiac

output, which is the volume of blood pumped per minute (Heart: function and

structure - access revision n.d.). An average heart rate (70 bpm) and an average
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stroke volume (70 mL) imply an average cardiac output at rest of around 5 L/min

(Heart: function and structure - access revision n.d.).

During the systole, the ventricles have an isovolumetric contraction, which cause

the AV valves to close and the blood to be ejected. The diastole has several processes:

first, the ventricles present an isovolumetric relaxation and the semilunar valves are

closed; this is followed by a rapid filling phase in which both atria and ventricles are

relaxed and the blood starts filling the heart chambers; finally, the atrial contraction

takes part while the ventricles are relaxed, finalising the filling of the ventricles before

a new systole begins (Fox 2016).

These processes have pressure and volume changes related with them, both in

the left and the right side of the heart. The main differences between the two pumps

(right and left) are the magnitudes of the pressures and volumes needed to pump

the blood: since the left ventricle pumps the blood to the systemic circulation, it

needs higher pressures and volumes to ensure that it reaches every tissue in the

body, whereas the right pump needs lower magnitudes due to the lower complexity

of the system it infuses (Conti 2011c). Figure 2.3 illustrates the pressure and volume

changes that take place in the left ventricle, and their effects during the cardiac cycle.

2.1.3 Electrical activity of the heart

As mentioned above, the muscle fibres present in the heart muscle are specialised

fibres known as myocytes. Although they share the basic myosin-actin contraction

mechanism with skeletal muscle fibres, cardiac muscle fibres are highly specialised

and its membrane structure makes it autorhythmic, so the heart contracts on its

own without the impulses from the nervous system (Heart: function and structure

- access revision n.d.).

The heart comprises several types of tissues composed of myocytes: the SA

and the atrioventricular (AV) nodal tissue, atrial, Purkinje, and ventricular tissue

(Webster 2010). Each of these types of cell exhibit a different, characteristic action

potential and they are all electrically excitable (Webster 2010), constituting the

main effectors of the electrical activity of the heart. These specialised tissues are

illustrated in Figure 2.4.

A proper functioning of the cardiac conduction system plays a major role in the

contractile activity of the heart and, hence, in the proper development of the cardiac

cycle. The electrical activity of the heart starts in the SA node, which acts as the
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natural cardiac pacemakers and triggers the action potential. Once the SA node

fires, the electrical activity propagates through the atrial musculature at low rates,

causing the depolarization and contraction of the atria. The excitation wave reaches

the AV node, where it is delayed to assure the completion of the transfer of blood

from the atria to the ventricles. From there, the His bundle, the bundle branches,

and the Purkinje fibres propagate the stimulus to the ventricles at a higher rate, so

the wave of stimulus travels fast from the apex of the heart upwards, causing the

ventricles to rapidly depolarize and contract. Once the blood is pumped from the

ventricles, these repolarize and relax, before a new action potential is sent by the

SA node (Rangayyan 2002).

Figure 2.3: Pressure and volume changes in the left ventricle and arteries, where each num-
bered phase of the cycle refers to (1) the isovolumetric contraction of the heart; (2) the ejection
of blood from the heart; (3) the isovolumetric relaxation; (4) the rapid filling of the ventricles;
and (5) the atrial contraction. (Fox 2016)
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2.2 Blood vessels

Blood vessels are the organs that transport the blood pumped by the heart to the

rest of the body, both in the major and the minor circulation. There are 3 major

types of blood vessels: the arteries, which carry blood and metabolic substrates from

the heart; the capillaries, which transport metabolic substrates and waste products

to living tissue; and the veins, which carry blood back to the heart (Ostadfar 2016).

Figure 2.5 shows a schematic of the distribution of blood vessels.

The blood vessels can be classified as arteries, arterioles, capillaries, venules, and

veins, and each of these types have different morphological and physiological char-

acteristics (Table 2.1). These organs are distributed around the body to form, along

with the heart, the pulmonary, systemic and coronary circulation systems (Ostadfar

2016). In general, the vascular system executes two essential tasks: the distribution

Figure 2.4: Electrical system of the heart (Cypressvine 2019). The coordinated electrical
stimulation of the different tissue allows for the correct execution of the cardiac cycle.
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Table 2.1: Approximate characteristics of human blood vessels (Ostadfar 2016).

Vessel Internal Wall Length Average Function
type diameter thickness (cm) blood velo-

(mm) (mm) city (cm/s)

Aorta 25 2 50 45 Distribution
Pulse damping

Arteries 4 1 25 30 Distribution
Resistance

Arterioles 0.03 0.02 1 0.5 Resistance
Capillaries 0.006 0.001 0.1 0.03 Exchange
Venules 0.02 0.002 0.2 0.2 Collection

Capacitance
Veins 5 0.5 2.5 1 Capacitance
Vena Cava 30 1.5 50 14 Collection

of blood and the exchange of nutrients between the blood and the tissues, which is

mainly performed by the capillaries. In addition, vessels help regulate blood pres-

sure and blood volume by creating and modifying resistance and capacitance in the

vascular system (Ostadfar 2016).

2.2.1 Anatomy of the vessels

The anatomy of each type of blood vessel differs, due to the different actions they

perform in the circulatory system. The arteries, which are in charge of transporting

blood from the heart to the body tissues, are known as the higher-pressure part of

the cardiovascular system. Veins, on the contrary, are in charge of collecting blood

Figure 2.5: Schematic diagram of the distribution of blood vessels (Ostadfar 2016). Oxy-
genated blood travels through arteries and arterioles to capillaries, where oxygen is diffused to
the tissue. Contaminated blood travels back to the heart through venules and veins.

12



Table 2.2: Main human arteries and veins (Ostadfar 2016).

Main Arteries Main Veins

Aorta Vena Cava
Pulmonary artery Jugular veins
Subclavian artery Pulmonary vein
Carotid artery Femoral vein
Femoral artery Subclavian vein
Brachial artery Brachial vein
Renal artery Renal veins
Anterior tibial artery Anterior tibial vein
Common iliac artery Iliac veins
Ulnar artery Saphenous vein
Radial artery Radial vein
Posterior tibial artery Posterior tibial vein
Hepatic artery Hepatic vein
Mesenteric artery Mesenteric vein
Lateral circumflex artery Axillary vein
Popliteal artery Popliteal vein

and taking it back to the heart (Ostadfar 2016). Since nearly 60% of the total blood

volume is housed within the veins, these vessels also act as a reservoir for blood

(Rubenstein et al. 2016). Table 2.2 summarizes the main arteries and veins that are

found in a human body.

There are three main types of arteries in the human body: Elastic arteries, which

receive blood directly from the heart (i.e. aorta and pulmonary artery), have a high

wall thickness to diameter ratio in order to maintain blood pressure during both

systole and diastole, and contain greater number of elastic fibres on their walls to

allow for the elasticity behaviour needed by these vessels; muscular or distributing

arteries, which are in charge of distributing blood to various tissues and organs and

are mainly constituted by smooth muscle in their walls; and arterioles, which are

the smallest arteries, with only one or two layers of smooth muscle in their walls,

and allow for a drop in the blood pressure (Ostadfar 2016).

The arterial wall is composed of three layers: the tunica intima, the tunica media,

and the tunica adventitia (Figure 2.6) (Ostadfar 2016, Rubenstein et al. 2016).

Under normal conditions, the tunica intima is the only layer in contact of blood and

is composed of endothelial cells and a small connective tissue layer, primarily built of

elastic fibres that helps secure the endothelial cells in place (Rubenstein et al. 2016).

The tunica media, composed of smooth muscle cells, is responsible of changing the

arterial diameter in response to neural and humoral control, and helps maintain the
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Figure 2.6: Composition of the arterial wall of large elastic (top) and muscular (bottom)
arteries (Ostadfar 2016). In most arteries, the arterial wall is composed of the tunica intima,
the tunica media and the tunica adventitia.

integrity of the blood vessel while it is exposed to higher pressures (Rubenstein et al.

2016). Finally, the tunica adventitia, also known as tunica externa (Ostadfar 2016),

is responsible for anchoring the blood vessel to adjacent tissue (Rubenstein et al.

2016). This layer is mainly composed of collagen (Ostadfar 2016). The thickness of

each of these layers depends on the type or artery; nonetheless, the tunica media is,

in general, the thickest layer in the arterial wall (Rubenstein et al. 2016).

Veins, in contrast to the arteries, transport blood under much lower pressures,

usually below 5 mmHg; therefore, their walls are thinner than in the arteries, but

still are mainly composed of muscular tissue (Rubenstein et al. 2016). Also, the

inner diameters of the veins are smaller but comparable to that of the arteries in

similar locations (Rubenstein et al. 2016).

The venous wall is also composed of the three layers: Tunica intima, tunica media

and tunica adventitia, and although they have the same general anatomy, there are

some differences: the endothelial layer within the tunica intima is smooth because

veins are not usually significantly contracted or dilated, as occurs with arteries;

the tunica media is thinner and composed of smooth muscle cells and collagen; and

the tunica adventitia is the thickest layer, composed of collagen, elastin, and smooth

muscle cells (Rubenstein et al. 2016). Lastly, the veins differ from the arteries in that

the former contain valves that prevent the backflow of blood toward the capillary

beds, and that can act as a pump to help blood flow from the lower limbs back to
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the heart (Rubenstein et al. 2016).

The thickness and sizes of vessels’ layers differ according to the size of the vessel

(Fox 2016). Moreover, the venules, arterioles and capillaries have different struc-

tures. Arterioles are mainly formed by endothelium, which contains precapillary

sphincters; venules, on the other hand, are formed by endothelium wrapped by tu-

nica externa similar to that of medium-sized veins (Fox 2016). Unlike most of the

other vessels, capillaries are composed of one cell layer (endothelium), which per-

mits the rapid transfer of materials between the blood and the tissues; according

to the organ they are infusing, the endothelial lining of the capillaries change, so

they are classified as continuous, in which adjacent cells are closely joint together;

fenestrated, located in the kidneys, endocrine glands, and intestines, and in which

the main characteristic is the presence of wide intercellular pores that are covered by

a layer of mucoprotein; and discontinuous capillaries, in which the distance between

endothelial cells is greater, and are usually found in bone marrow, liver, and spleen

(Fox 2016). Figure 2.7 illustrates the structure of blood vessels.

2.2.2 Circulation of blood

Once the blood is pumped by the left ventricle, it goes through the aorta, which

makes a 180◦ turn in the aortic arch to take the blood to the descending aorta. This

arch contains branches that lead blood to the head and the arms, via the carotid and

subclavian arteries, respectively. The descending aorta goes to the pelvis, and on its

way there it distributes blood to the main arteries that infuse the major abdominal

organs, i.e., renal, hepatic, bronchial arteries, among others. Once in the pelvis, the

descending aorta branches into the left and right iliac arteries, and the sacral artery

(Rubenstein et al. 2016).

After the blood travels through the arteries, it enters the arterioles, the final

branch of the arterial system before entering the microcirculation and an impor-

tant player in the regulation and control of blood flow throughout the entire body

(Rubenstein et al. 2016).

After passing through the capillaries, the blood reaches the venules, which con-

verge into the veins, and then travels back to the heart via the inferior and superior

vena cava (Rubenstein et al. 2016).
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Figure 2.7: Structure of blood vessels (Fox 2016)

2.3 Haemodynamics and vascular mechanics

The cardiovascular system can be modelled as two cylindrical tubes that connect

two mechanical pumps in series, as shown in Figure 2.8 (Conti 2011a). Since the

two pumps are connected in series, it is expected that the volume of blood that is

pumped by the left ventricle is the same volume that is received by the right atrium,

and vice versa; also, it is assumed that the flow rate remains constant, meaning that

the mean velocity of blood decreases as the cross-sectional area of vessels increases

(Hoskins 2017). This behaviour has important consequences on the cardiovascular

function (Conti 2011a) and helps to understand the laws that govern the flow within

the arterial and venous systems.

2.3.1 Blood and blood flow

Blood is not a pure fluid, but a suspension of particles in a fluid base, known as

plasma. The particles that are suspended in plasma are red and white cells, platelets,
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macromolecules, especially proteins, and fragments of cells (Hoskins & Hardman

2017). Table 2.3 summarises some properties of the main components of blood.

Several forces act on blood and its particles in order to generate and sustain

blood flow, including forces related to gravity, velocity and shear, and chemical

and electrical forces (Hoskins & Hardman 2017). Although these forces apply to

every particle in the fluid, the viscosity and flow of blood is mainly affected by the

behaviour of red cells, or erythrocytes (Hoskins & Hardman 2017).

The rate of blood that flows to an organ is related to the resistance to flow in the

small arteries and arterioles of such organ (Fox 2016). In the simplest model, the

flow through a blood vessel, Q, is determined by the pressure difference across the

vessel, ∆P, and the resistance to flow throughout the vessel, R, as shown in (2.1)

(Rubenstein et al. 2016).

Q =
∆P

∆R
=
P1 − P2

R
(2.1)

This behaviour is analogous to that of an electrical circuit governed by Ohm’s

law, in which a driving force (the changes in pressure) is proportional to the flow

through the system (Rubenstein et al. 2016, Conti 2011a). Resistance to flow can-

not be measured, but can be derived from (2.1), assuming that the fluid flow and

fluid properties have no temporal variation and that there is a constant uniform

Figure 2.8: Simplified model of the cardiovascular system (Conti 2011a). In this model, the
cardiovascular system is simulated as two cylindrical tubes that connect two mechanical pumps
(left and right ventricles) in series.
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cross-section within a rigid blood vessel (Rubenstein et al. 2016). The resistance is

important to maintain the same flow rate: At a higher-pressure head, resistance to

flow must also increase (Rubenstein et al. 2016).

A more appropriate approximation to this behaviour is given by Hagen-Poiseuille’s

law, which takes into account the geometry of the vessel and calculates the volu-

metric flow of blood (2.2) (Rubenstein et al. 2016, Conti 2011a). The flow depends

on the dimensions of the conduct (its radius R and length L), the difference in the

pressures between the ends of the segment (∆P), and the fluid viscosity (µ) (Conti

Table 2.3: Components of blood (Hoskins & Hardman 2017).

Blood Percentage Principle Low con- High con-
compo- (by volume) function centration centration

nent

Red cells 40-50 Carrying oxygen. Blood loss,
sickle cell
anemia,
enlarged
spleen,
cancer.

Polycythaemia,
chronic
hypoxia,
blood doping,
dehydration.

White
cells

0.7 Immune system. Medication
and radiation
treatment,
immune
dysfunction,
toxins
(including
alcohol),
major
surgery.

Infection,
genetic
disorders,
leukaemia,
spleen
removal.

Platelets 0.3 Clotting of
blood.

Medication
and
chemother-
apy,
haemolytic-
uremic
syndrome,
snakebite.

Thrombocytosis.

Albumin 2 Maintenance of
osmotic pressure.

Reduced
production
(various
diseases).

Dehydration.
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2011a).

Q =
π∆PR4

8µL
(2.2)

It can be seen that vasodilation decreases the resistance of the vessel and increases

the flow, while vasoconstriction increases resistance and decreases flow (Fox 2016).

Remarkably, the flow varies in direct proportion to the fourth power of the ratio,

meaning that small variations of the ratio generate important variations of flow; this

is the main explanation to the fact that small changes in the diameter of arterioles

can induce notable variations of peripheral resistance and blood flow in microvascular

level (Conti 2011a). As stated in (Rubenstein et al. 2016), if changes in diameter

did not generate rapid changes in flow rate, blood vessels would have to dilate or

constrict significantly to respond to demands in tissue oxygenation levels, which

would be associated with important energy demands that would ultimately deplete

the smooth muscle cell of energy.

In the systemic circulation, the blood pressure reduces from 80-120 mmHg in the

aorta to near 2-4 mmHg in the arterioles, where the maximum pressure fall occurs;

therefore, the maximal peripheric resistance is given by these vessels, which regulate

the capillary flow to assure the proper behaviour of oxygen exchange (Conti 2011a).

Using (2.2), it is possible to estimate the average velocity of the blood, by dividing

the volumetric flow by the cross-sectional area of the vessel (2.3), and its maximum

velocity, which occurs at the axis of the tube (2.4) (Nichols et al. 2011).

V̄ =
R2∆P

8µL
(2.3)

Vaxial =
R2∆P

4µL
(2.4)

These equations can be considered as an approximation of the flow dynamics in

the veins and venules as well, although these vessels are generally not cylindrical,

and hence do not meet all the assumptions made for the derivation of the Hagen

Poiseuille’s law (Rubenstein et al. 2016).

There is a relationship between the flow and viscosity of blood, as is shown

in (2.2) (Nichols et al. 2011). Viscosity is a fundamental property of liquids that

represent the friction between the different liquid layers (Conti 2011a), and is defined
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as the ratio of shear stress (the force applied to the liquid layer) and shear rate (the

velocity gradient obtained between adjacent layers of the liquid) (Nichols et al. 2011).

Blood viscosity varies due to flow velocity, diameter of the vessels, and the quan-

tity and quality of the blood cells suspended on plasma (Conti 2011a). Although

blood is a non-Newtonian fluid, in the larger vessels the blood has a Newtonian-like

behaviour, showing a parabolic velocity profile and a laminar flow, and shows a be-

haviour similar to that expected from (2.2) (Conti 2011a). On the other hand, if

(2.2) is applied to a capillary, the hydrodynamic analysis of blood flow will present

several differences, not only due to viscosity changes but also because some param-

eters of the vessel cannot be measured accurately in the living vessel (Nichols et al.

2011).

2.3.2 Pressure and flow in arteries

Blood pressure is affected by three main factors: Blood volume, total peripheral

resistance, and cardiac rate (Fox 2016). However, it is different across the arterial

system, in which arterioles and capillaries have smaller pressures due to their di-

ameter and the resistance of flow; these smaller blood pressures allow for a proper

nutrient exchange in capillary level (Fox 2016).

Blood pressure is maintained within limits due to the measurement of pressure

levels performed by baroreceptors located in the aortic arch and in the carotid sinuses

(Fox 2016). Once these sensors measure the levels of pressure, parasympathetic or

sympathetic activity is stimulated according to the needs: If blood pressure is low,

sympathetic nerve activity increase, generating a compensatory increase in cardiac

output and total peripheral resistance; conversely, a high blood pressure generates

an increased activity in parasympathetic nerves which evoke a reduction in cardiac

output and total peripheral resistance (Fox 2016). The levels of blood pressure are

essential to assure a proper blood flow through the whole circulatory system.

Each time the heart pumps, the blood circulates through the arterial tree and the

pressure propagates from the aorta to the other arteries. This is due to the arterio-

venous pressure differences, which comes from the aorta (around 100 mmHg) to the

vena cava (which is close to 0) (Caro et al. 2012).

As mentioned by Caro et al (2012), if the vascular system consisted of a single,

long, straight, rigid tube, the volume flow rate Q would be uniform at all times and

directly proportional to the pressure difference between the two ends. Hence, the
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Figure 2.9: The Windkessel model of the arteries. In this model, the vessel is pictured
as a compliant chamber of volume V proportional to the pressure pea. The flow rate Q is
proportional to the pressure difference pea - pev, and may be different to the flow rate getting
into the system, QH (Rangayyan 2002)

pressure waveform at any point of the tube would be synchronous and similar to

that of the aorta, but with a different amplitude (Caro et al. 2012). However, this

does not occur in an in-vivo model due to the elasticity of blood vessels: When the

pressure passes through an artery, the vessel expands with the increase in pressure,

and when the pressure falls again it contracts again (Caro et al. 2012). This is known

as Frank’s or the Windkessel model (Figure 2.9).

From this model, it can be concluded that the rate of increase of volume of

the chamber must be equal to the difference between the two flows, QH and Q

(2.5) (Caro et al. 2012). Nonetheless, this model has an important shortcoming: It

assumes that all arteries are distended simultaneously, and hence fails to describe the

dynamic events in the cardiovascular system adequately and the wave propagation

feature of the cardiovascular system (Caro et al. 2012, Hoskins & Hose 2017). In

fact, when the blood is pumped to the aorta, this disturbance is propagated along

the arterial system in the form of a pressure wave, which generally originates at

the heart and travels distally, although it can propagate in either direction and is

modified by the reflection of components from the periphery (Caro et al. 2012).

dV

dt
= QH −Q (2.5)

The speed with which this pressure waves propagates through the arterial system

can be estimated by considering the arterial system to behave as a stretched string,

in which the velocity of propagation of a wave is given by the tension of the string

and its inertia; in the case of a blood vessel, the inertia term is supplied primarily

by the mass of the blood and can be characterized by the blood density (ρ), and the

tension of the string is dependent on the elasticity of the vessel walls (D), i.e. a more
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distensible wall will diminish the wave speed, while a stiffened wall will increase it

(Caro et al. 2012). Equation (2.6) shows a simplified relationship between the wave

speed, c, and these two factors, in which two assumptions are made: The blood

viscosity has no effect on the motion, and the elastic wall properties and the fluid

mechanics are linear; neither blood viscosity and the non-linear aspects of blood

flow affect the wave speed in a relevant manner in human arteries, especially large

arteries, although the latter influence the shape of the pressure and flow waveforms

(Caro et al. 2012).

c =
1√
ρD

(2.6)

The shape changes are associated with wave reflections from terminations and

branches of the vessels, as well as with the continuous tapering of individual vessels

and the different frequency components of the wave, which may travel at different

speed and being attenuated in a different manner (Caro et al. 2012). In fact, in any

point in which the properties of the vessel change, there will be partial reflection

of the wave (Caro et al. 2012); e.g., in a bifurcation, the parent branch not only

contains the incident wave but also contains a portion of the wave that is reflected

backwards into the parent branch (Rubenstein et al. 2016). Reflections are the

source of the greatest modification of pulse wave shape as it travels to the periphery

(Caro et al. 2012). Due to the way the wave propagates, there are also differences

in the pressure and flow waveforms at different distances from the heart, with an

increased pulse pressure with distance from the heart in young adults (Hoskins &

Hose 2017).

The flow in arteries depends mainly on the Reynolds number (Re) of the fluid.

The mean Re in the arterial system decreases from around 2000 in the aorta during

systole to very small Re in the microcirculation (Hoskins & Hose 2017). The larger

Re in the aorta means there is turbulent flow in the post-systolic phase, but in

healthy subjects the flow can be considered laminar in the remainder of the arterial

tree (Hoskins & Hose 2017). Although flow in long, straight tubes, such as arteries

in legs and arms, is mainly axial, there are also segments of the arterial system in

which rotational flow occurs, mainly due to curvature and bifurcations in arteries.

This rotational flow is also actively induced by twists of the left ventricle during

contraction, and is thought to serve as a way to stabilise flow in the arterial system
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and to mix blood to assure a more uniform distribution of red cells in arteries

(Hoskins & Hose 2017).

The understanding and measurement of the pressure and flow behaviour of blood

in arteries is essential to improve the diagnosis and treatment of diseases and ab-

normal conditions related to the cardiovascular system.

2.4 Abnormal conditions

Abnormal conditions may lead to several chronic cardiovascular diseases, such as

hypertension, heart failure, and diabetes mellitus (Sheng & Zhu 2018). Therefore,

understanding the complex processes that contribute to a normal activity of the car-

diovascular system may lead to new and effective strategies for prevention, diagnosis

and treatment of cardiovascular diseases (Sheng & Zhu 2018).

As was discussed above, the arterial blood pressure and the elasticity of the

vessels are crucial for obtaining a proper blood flow throughout the arterial tree and

for ensuring the transport of nutrients and oxygen through all the tissues in the

body. Hence, changes in these properties may generate diseases that can lead to

serious health conditions. The measurement of physiological data that could help

identify these changes is of invaluable interest and have been shown to aid in the

diagnosis and treatment of some important cardiovascular disorders such as hyper

and hypotension, and arterial stiffness.

2.4.1 Hyper- and hypotension

An arterial blood pressure of 120/80 mmHg (systolic/diastolic pressure) is consid-

ered as the normal and healthy value for arterial blood pressure (National Health

Service 2019a). Blood pressure values may vary around 120/80 mmHg throughout

the day but tend to be very close to these in healthy subjects (National Health Ser-

vice 2019a). Blood pressure is primarily regulated, in a beat-to-beat basis, by the

sympathoadrenal system, when changes in the pressure measured by baroreceptors

need to be balanced (Fox 2016). However, sustained increased or decreased values

of blood pressure, both during systole and diastole, are considered as abnormal con-

ditions that may affect the blood flow to tissues and, hence, the homeostasis of the

circulation.

Hypotension refers to blood pressure values that are equal to or less than 90/60

23



mmHg, and is related to light-headedness, blurred vision, weakness, confusion, and

fainting; although in fit subjects, a lower arterial pressure is expected, a lower blood

pressure can be related to pregnancy, some medicines, and some medical conditions,

such as diabetes mellitus (National Health Service 2017). Although it has not been

as studied as its counterpart, i.e. high blood pressure, some kinds of hypotension are

now clinically significant and recognized as a cause of impairment of quality of life

and potentially of worse outcomes (Magkas et al. 2019). One of the most studied

causes of low pressure is known as Orthostatic Hypotension (OH), and refers to

the pressure fall when changing from a supine position to a standing position; this

condition is considered as a cardiovascular disorder, which is highly prevalent in

elderly and frail subjects, as well as in patients with certain comorbidities (Magkas

et al. 2019). OH is defined as a sustained reduction of at least 20 mmHg or 10 mmHg

in systolic and diastolic blood pressure, respectively, within 3 minutes of standing

or head-up tilt to at least 60◦ on a tilt table (Magkas et al. 2019). OH is considered

as a major cause of syncope, and is related to loss of consciousness due to severe

hypotension and cerebral hypoperfusion (Magkas et al. 2019). In many cases, the

origin of OH is related to inadequate autonomic regulation of heart rate, venous

return, cardiac contractility, and vascular tone (Magkas et al. 2019).

Hypertension, on the other hand, is a condition in which the blood pressure

values are persistently raised from the normal values, causing an increase in the force

applied by the heart to pump the blood throughout the circulatory system (World

Health Organization 2019). Although it usually does not have noticeable symptoms,

hypertension increases the risk of different serious disorders, such as heart attacks

and strokes (National Health Service 2019a). In hypertensive patients, the arterial

blood pressure is equal to or higher than 140/90 mmHg (National Health Service

2019a). Blood pressure can be increased due to a higher total peripheral resistance

as a result of vasoconstriction of arterioles, or due to an increase in cardiac output,

whether it is because of elevations on heart rate or in stroke volume (Fox 2016).

When hypertension generates as a result to a known disease, it is called secondary

hypertension, while when it is the result of complex processes, it is regarded as

primary or essential hypertension, which is the most common source of hypertension

(Fox 2016). It is estimated that 1.13 billion people in the world have hypertension

(World Health Organization 2019); however, more patients are asymptomatic and

hypertension is usually not identified until substantial vascular damage has occurred

24



(Fox 2016).

Some of the physiological effects of hypertension are: (1) large- and medium-sized

arteries become thickened, rigid, dilated, and tortuous, generally with atheroma, and

smaller arteries have thickened tunica media, intimal expansion, and a narrowing

lumen; (2) in the heart, coronary artery atheroma is common, as well as long-term

cardiac functional impairment with left ventricular systolic dysfunction, and hyper-

tension may result in coronary artery disease, heart attacks and strokes; (3) intrac-

erebral haemorrhage and cerebral infarction are often related with hypertension due

to microaneurysms of the small arteries deep within the brain; (4) there is thick-

ening, irregularity and tortuosity in the retinal artery even with mild hypertension,

and emboli is often present in this artery due to hypertension; and (5) malignant

hypertension is often related with extensive and progressive fibrinoid necrosis of af-

ferent glomerular arterioles, glomerular infarction, and consequent renal impairment

(Beevers & Robertson 2007).

2.4.2 Arterial stiffness

The velocity of the pulse wave propagation throughout the circulatory system is

related to the elasticity of the vessel wall (Messas et al. 2013). The elasticity of the

vessel, also referred to as the arterial stiffness, has been considered as a precursor

for peripheral vascular disease and as an independent risk marker of cardiovascular

disease and atherosclerosis (Messas et al. 2013). The stiffening and thickening of

the arterial wall is called arteriosclerosis, and is manifested in two main forms:

Calcification of the arterial wall, associated with the deposition of calcium salts

between the tunica media and the tunica intima, or atherosclerosis, which refers to

the deposition of lipids within the arterial wall (Rubenstein et al. 2016). The latter

is the most common form of arteriosclerosis (Fox 2016) and is a risk factor for most

cardiovascular diseases, with increased prevalence in recent years (Roth, G.A., et al.

2020).

As stated by Rubenstein et al (2016), arteriosclerosis is an inflammatory disease

that originates due to altered fluid dynamic forces, which injures the wall of the

vessel or causes the oxidation of lipoproteins. It is a more general disease than

atherosclerosis, as it only requires the thickening and stiffening of blood vessels, and

tends to occur in concentric and diffuse patterns, whereas atherosclerosis usually

occurs asymmetrically at particular points (Rubenstein et al. 2016).
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Arteriosclerosis is highly related with aging and is a problem spread all around

the world but can be seen as a disease condition when occurs prematurely (Nichols

et al. 2011). It is directly related with increased systolic and diastolic blood pressure

(Izzo 2007). With aging, the arterial elastic lamellae fractures and the artery is stiff-

ened and dilated, causing and increased impedance and increased, early reflection;

this generates isolated systolic hypertension, which derives in left ventricle hyper-

trophy and impaired myocardial supply/demand, eventually leading to myocardial

ischemia, which later causes arrhythmias, ventricular enlargement, cardiac failure

and end-stage heart disease (Nichols et al. 2011).

Arterial stiffness is usually found in the aorta and the larger arteries, mainly due

to the effects of pressure and the stress they are subjected to during each cardiac

cycle, and the changes in diameter of the vessels due to blood flow; increased heart

rates and blood pressures are therefore related to premature aging arteries, since

larger pressures and an increase in the number of repetitions in which the artery

wall needs to expand will diminish the lifespan of the elastic fibres of the wall of the

vessel (Nichols et al. 2011).

2.5 Summary

The cardiovascular system mainly comprises the heart and blood vessels. These

organs have the vital role of transporting blood around the body, in order to carry

nutrients and oxygen to the tissue, and to help extract metabolic waste such as

carbon dioxide. Several features such as pressure, flow and viscosity of blood are

essential to allow for a proper functioning of the cardiovascular system, and of the

oxygenation of tissue.

Hence, the understanding of these features allow for a proper comprehension of

cardiovascular dynamics and abnormal conditions that may arise from changes in

blood pressure and flow. Some of the most studied conditions are the sustained

increase or decrease of pressure, i.e. hyper- and hypotension, and the stiffening

of arteries, that may lead to changes in flow and to critical pathologies such as

atherosclerosis.
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Chapter 3

Anatomy and Physiology of the

Autonomic Nervous System

3.1 The Nervous System

The human body features several control systems which are in charge of maintaining

the constancy of the internal environment, which is also known as homeostasis (Fox

2016). The concept of homeostasis has been of paramount importance for under-

standing several disorders that may be seen as a general failure of body systems but

that may be especially related to a single measurement that deviates significantly

from the normal range of values (Fox 2016).

Usually, these control systems are based on negative feedback loops: Changes

in the body stimulate sensors that send information to an integrating centre, such

as a particular region of the brain or spinal cord, or an endocrine gland, which is

in charge of directing the responses of muscles or glands in order to normalise the

values that are being measured by the sensors (Fox 2016).

The endocrine and nervous systems are the principal control systems in the hu-

man body, and they regulate the activities of most of the other systems (Fox 2016).

Specifically, the nervous system activity is based on nerve fibres which innervate the

organs that they regulate, called target organs, and stimulate them using electro-

chemical nerve impulses (Fox 2016).

The nervous system is divided into the central nervous system and the peripheral

nervous system. The former includes the brain and spinal cord, while the latter

includes the cranial nerves that arise from the brain and the spinal nerves that
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originate in the spinal cord (Fox 2016).

The nervous tissue is composed of nerve cells called neurons, which are specialised

cells for the generation and conduction of electrical events, and supporting cells,

which assist the functions of neurons and are known as neuroglia or glial cells (Fox

2016). Neurons have three distinct parts: A cell body, which contains the nucleus

and in which all metabolic activity of the cell takes place; dendrites, which are highly

branched cytoplasmic extensions of the cell body and which receive input from other

neurons or from receptor cells; and an axon, a large single cytoplasmic extension

which is in charge of conducting nerve impulses from the cell body to another neuron

or to an effector cell (Fox 2016) (Figure 3.1).

Neurons can be classified according to their function or their structure. Their

functional classification is based on the direction of conduction of the impulses:

Sensory (afferent) neurons conduct impulses from sensory receptors located in the

periphery to the central nervous system, while motor (efferent) neurons conduct

impulses from the central nervous system to the effector organs, whether they are

Figure 3.1: Structure of (a) a motor neuron, and (b) a sensory neuron (Fox 2016). In both
cases, the three distinct parts of the neuron, i.e., the cell body, the dendrites and the axon,
are present.
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muscles or glands (Fox 2016). Motor neurons can also be classified in two groups:

Somatic motor neurons, which are in charge of both reflex and voluntary control of

skeletal muscles; and autonomic motor neurons, which innervate involuntary effec-

tors such as smooth muscle, cardiac muscle and glands (Fox 2016). These autonomic

motor neurons, along with their central control centres, constitute the Autonomic

Nervous System (ANS), and play a vital role in regulating the activity of involuntary

muscles (Fox 2016). The ANS has the ultimate task of ensuring the survival and

procreation of species (Hamill et al. 2012).

3.2 Structure of the Autonomic Nervous System

Figure 3.2 illustrates the distribution of the ANS within the human body. Autonomic

motor nerves innervate organs, such as the heart, blood vessels, and visceral organ,

and are characterised by the involvement of two neurons in the efferent pathway: A

Figure 3.2: Distribution of the Autonomic Nervous System (Fox 2016). Red lines indicate
sympathetic nerves, while parasympathetic fibres are depicted in blue. Preganglionic and
postganglionic fibres are represented by solid and dashed lines, respectively.

29



preganglionic neuron, a first neuron that originates in the grey matter of the brain or

spinal cord, which synapses in an autonomic ganglion with a second neuron, called

postganglionic neuron, whose axon extends from the ganglion to the effector organ,

where it synapses with the target tissue (Fox 2016).

The origin of the preganglionic autonomic fibres (midbrain and hindbrain, and

the upper thoracic to the fourth sacral levels of the spinal cord) and the location

of the autonomic ganglion (head, neck, abdomen and parallel the right and left

sides of the spinal cord) help classify between the sympathetic and parasympathetic

divisions of the ANS (Fox 2016), which along the enteric nervous system constitute

the three major subdivisions of the autonomic system (Kim & Kim 2012).

The sympathetic nervous system (SNS) regulates the flight-or-fight response dur-

ing emergencies, by increasing the sympathetic outflow to effector organs such as

the heart and other viscera, while the parasympathetic nervous system (PNS) is

responsible of maintaining basal autonomic functions under normal conditions; the

enteric system, on the other hand, regulates peristalsis and modulates the activity

of secretary glands (Kim & Kim 2012).

3.2.1 Sympathetic Nervous System

The SNS, also known as the thoracolumbar division of the ANS, features pregan-

glionic neurons that originate in the thoracic and lumbar levels of the spinal cord, and

the sympathetic ganglia is located parallel the spinal cord (paravertebral ganglia)

(Fox 2016). Since the sympathetic nerves form a component of spinal nerves, they

are distributed along most of the skeletal muscles and skin in the body, where they

innervate blood vessels and other involuntary effectors (Fox 2016). The widespread

distribution of these neurons is important for the mass activation of almost all the

postganglionic sympathetic neurons, allowing for the entire SNS to be tonically ac-

tive and to increase its activity in response to emergency situations (Fox 2016).

3.2.2 Parasympathetic Nervous System

Unlike the SNS, preganglionic neurons from the PNS (craniosacral division of the

ANS) originate in the brain (i.e., in the midbrain, pons and medulla oblongata) and

in the sacral level of the spinal cord, from where axons travel to ganglia located in or

near the effector organs, which in turn supply the postganglionic fibres that synapse

with the effector cells (Fox 2016).
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The oculomotor, facial, glossopharyngeal, and vagus cranial nerves contain pre-

ganglionic parasympathetic fibres. Those fibres within the first three of these nerves

synapse in ganglia located in the head, while fibres located in the vagus nerve

synapse in ganglia located in several regions of the body; the latter provides the

major parasympathetic innervation in the body, which includes parasympathetic in-

nervation to the heart, lungs, oesophagus, stomach, pancreas, liver, small intestine,

and the upper half of the large intestine (Fox 2016). Preganglionic fibres that orig-

inate from the sacral levels of the spinal cord provide parasympathetic innervation

to the lower half of the large intestine, the rectum, and the urinary and reproductive

systems (Fox 2016).

3.3 Physiology of the Autonomic Nervous System

The effects of the SNS and PNS on visceral organs are thought to be different.

While the SNS prepares the body for intense physical activity in emergencies, by

increasing heart rate, blood glucose levels, and blood flow to the skeletal muscles, the

PNS is usually considered to act in an opposite way by slowing heart rate, dilating

visceral blood vessels, and increasing activity of the digestive tract (Fox 2016). The

difference in the responses from visceral organs to sympathetic and parasympathetic

nerve activity is due to the release of different neurotransmitters from each of the

two divisions, with the SNS primarily stimulating the release of epinephrine and

norepinephrine, and the PNS generating the release of acetylcholine (Fox 2016).

Interestingly, the SNS displays tonic activity, and as a result sympathetic nerves

tonically regulate the heart, blood vessels and other organs, while the PNS is not

normally activated as a whole and stimulation of parasympathetic nerves occurs in

a separate manner (Fox 2016).

Most visceral organs receive dual innervation (i.e., both sympathetic and parasym-

pathetic fibres innervate the organs), and usually they reflect an antagonistic effect,

in which the increased activity of one of the branches of the ANS is accompanied

by a decreased activity from the other branch. Nonetheless, in a few cases, the SNS

and PNS activity display complementary (stimulation from SNS and PNS produce

similar effects) or cooperative (stimulation from PNS and SNS produce different

effects that work together to promote a single action) behaviour. The effects of SNS

and PNS activity on salivary gland secretion and on the reproductive system are
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complementary and cooperative, respectively (Fox 2016). Other organs, such as the

adrenal medulla, the arrector pili muscles in the skin, the sweat glands in the skin,

and most blood vessels receive only sympathetic innervation; in these cases, regula-

tion is achieved by increasing or decreasing the firing rate of sympathetic fibres (Fox

2016).

Most autonomic reflexes originate from neural centres influenced by higher brain

areas and sensory input, which is in turn transmitted to brain centres that inte-

grate the received information and generate responses by modifying the activity of

preganglionic neurons (Fox 2016). The main brain structure involved in the regula-

tion of ANS activity is the medulla oblongata, located on the brain stem, to which

most sensory input travels in afferent fibres from the vagus nerve and where centres

for the regulation of cardiovascular, pulmonary, urinary, reproductive, and digestive

systems can be found (Fox 2016). The medula oblongata is also responsive to regu-

lation from other higher brain structures, such as the hypothalamus, which contains

centres for the control of body temperature, hunger and thirsts; the regulation of

the pituitary gland; and for various emotional states, making it one of the major

regulatory centres of the ANS (Fox 2016).

Along the hypothalamus, the limbic system plays an important role in regulating

visceral responses to emotional states. This system corresponds to a fibre tract and

nuclei located around the brain stem, and includes the cingulate gyrus of the cerebral

cortex, the hypothalamus, the fornix, the hippocampus, and the amygdaloid nucleus

(Fox 2016).

Finally, impulses from the cerebellum to the medulla oblongata also influence

ANS activity related to motion sickness, whereas the frontal and temporal lobes

of the cerebral cortex influence the response of lower brain areas as part of their

involvement in emotion and personality (Fox 2016).

3.4 Cardiovascular Autonomic Activity

The regulation of the cardiovascular system is mostly in charge of the ANS. Specifi-

cally, this system helps regulate cardiac output and promotes constriction and dila-

tion of blood vessels, for the regulation of blood flow and blood pressure (Fox 2016).

Especially, the sympathetic branch of the ANS plays a major role in maintaining

cardiovascular homeostasis and in regulating physiological functions (Sheng & Zhu
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2018). Figure 3.3 illustrates the origin and pathways of ANS fibres that innervate

the cardiovascular system. It can be seen that the PNS innervation, performed by

fibres from the vagus nerve, occurs only in the heart, whereas sympathetic fibres

that originate in the spinal cord innervate both the heart and blood vessels.

The ANS system mostly affects vasomotor tone and cardiac function, but also

has an effect on the systemic volume and the peripheral resistance by modulating

the release of certain hormones (Castillo & Adams 2012). Three areas of the brain

constitute an integrated functional system that coordinates the vasomotor status of

the cardiovascular system: The upper anterolateral medulla, the lower anterolateral

medulla, and the nucleus tractus solitarii. The first one of these areas is in charge of

vasoconstrictor stimuli, while the second one is in charge of vasodilation. The nucleus

tractus solitarii integrates both vasoconstrictor and vasodilator stimuli (Castillo &

Adams 2012). These areas are located in the thealamus, hypothalamus, and dorsal

Figure 3.3: Origin and pathways of ANS fibres that innervate the cardiovascular system
(Drew & Sinoway 2012). The heart is innervated both from fibres from the vagus nerve
and postganglionic sympathetic fibres, while blood vessels are only innervated by sympathetic
fibres.
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region of the medulla oblongata (Castillo & Adams 2012).

Changes in SNS activity perform a powerful control over the peripheral circula-

tion, with vascular nerves that terminate on small arteries, arterioles, venules and

veins, and adjust vascular resistance, volume capacity, and heart pacing (Castillo

& Adams 2012). In contrast, the PNS plays an insignificant role in regulating ar-

terial pressure; however, it is crucial in the modulation of heart rate, due to the

parasympathetic fibres of the vagus nerve which innervate both the sinoatrial and

atrioventricular nodes, as well as the atrium myocardium, providing chronotropic

control (Castillo & Adams 2012).

3.4.1 Autonomic control of the heart

The heart, as most visceral organs, has a dual innervation from the ANS, which

means that it has both sympathetic and parasympathetic fibres, and the effects of

the PNS and SNS are mainly antagonistic (Fox 2016). Figure 3.4 summarizes the

effects of the ANS on the heart.

Figure 3.4: Effects of the autonomic nervous system activity on the heart (Drew & Sinoway
2012).
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PNS control of the heart arises from the vagal nuclei within the medulla oblon-

gata in the brainstem, with the tenth cranial nerve, the Vagus nerve, as the way for

efferent nervous outflow; on the other hand, SNS control arises from the upper tho-

racic region of the spinal cord, where preganglionic efferent nerve fibres synapse with

postganglionic sympathetic fibres that reach the sinus and atrioventricular nodes in

the heart (Drew & Sinoway 2012). The main effects of the SNS are the increase in

heart rate, in force of ventricular contraction, in rate of relaxation, and in conduc-

tion velocity; on the contrary, the PNS activity decreases all these properties (Drew

& Sinoway 2012).

One of the main regulation tasks of the ANS in the heart is the control it performs

upon heart rate. The SNS increases HR mainly due to the right sympathetic fibres

that innervate mainly the sinus node, while the right fibres from the Vagus nerve

exercise the contrary action upon this node (Conti 2011c).

3.4.2 Autonomic control of the vessels

Unlike the heart, most blood vessels do not have dual innervation, and their regula-

tion is mainly achieved by increases and decreases in the firing rate of sympathetic

fibres (Fox 2016). The ANS control of blood vessels is essential to maintain and

regulate blood pressure within the arteries, and for regulating the distribution of

blood flow between and within individual vascular beds (Lombard & Cowley 2012).

The sympathetic regulation of cutaneous blood vessels also has an important role in

thermoregulation (Lombard & Cowley 2012).

Activation of the SNS elicits a vasoconstriction mediated by three main neu-

rotransmitters: Norepinephrine, adenosyl triphosphate (ATP), and neuropeptide Y

(Lombard & Cowley 2012). In general, the postganglionic efferent nerves of the SNS

ramify into small bundles, which form a plexus located in the tunica adventitia of

the vessel; the terminal effector plexus is located near the tunica media where adren-

ergic fibres establish neuromuscular contact; finally, these nerves end in varicosities

that have Schwann cell sheaths, which release the transmitters in response to the

action potential of the nerves (Lombard & Cowley 2012).

One of the main tasks of ANS regulation of blood vessels is the control of blood

flow. The sympathetic nerves produce an increase in the cardiac output and an

increase in the peripheral resistance; even under resting conditions, the adrenergic

sympathetic fibres help maintain the tone of the vascular smooth muscles and during
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an stimulation of its fibres, the SNS produces vasoconstriction in the digestive tract,

kidneys, and skin; on the contrary, cholinergic sympathetic fibres cause vasodilation

during the “fight or flight” reaction in the arterioles of skeletal muscle, promoting a

higher blood flow in this tissue (Fox 2016).

Although the ANS control on the blood vessels is achieved mainly by the SNS,

the cranial and sacral nerves, which belong to the PNS, also help regulate vascular

tone; nonetheless, the contribution of PNS in the regulation of vascular tone and

haemodynamics is small (Lombard & Cowley 2012). The PNS fibres that end in

arterioles are always cholinergic and, hence, always promote vasodilation; the PNS

innervation of blood vessels is limited to the digestive tract, external genitalia, and

salivary glands, and it is considered that the PNS is less important than the SNS in

the regulation and control of the total peripheral resistance (Fox 2016).

It is important to clarify that major arteries and precapillary arterioles are in-

nervated mainly by the SNS, but other vessels, such as venules, capillaries, and veins

are rarely innervated (Sheng & Zhu 2018).

3.4.3 Autonomic activity and changes in blood pressure and arte-

rial stiffness

The SNS is the principal system that controls changes in blood pressure that orig-

inate from the brain, and along with the adrenal medulla it becomes a powerful

control mechanism that cause rapid changes in arterial pressure (Northcott & Hay-

wood 2007). It is controlled by different central nervous system pathways, which are

activated by chemical, hormonal and neural stimuli (Northcott & Haywood 2007).

As mentioned by Sheng and Zhu ((2018)), autonomic cardiovascular control is im-

paired in hypertensive subjects, and the SNS activity is increased both in the heart

and the peripheral vessels, leading to increased cardiac output and vasoconstriction.

Moreover, autonomic dysfunction has already been associated with the appearance

of essential hypertension (Carthy 2014).

As mentioned by Grassi and Seravalle (2012), the control that ANS exerts over

the cardiovascular system undergoes important changes in hypertension, with resul-

tant sympathetic activation and parasympathetic inhibition, and these alterations

are related to the severity of the hypertensive state; and are potentiated when hy-

pertension is complicated by cardiac, metabolic or renal disease.

The regulation of ANS over arterial stiffness is still a matter of debate: Although
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it is thought that the main regulators of arterial stiffness are the structural compo-

nents of the arterial wall, the distending pressure, and smooth muscle, animal and

human experiments have shown that the autonomic activity controls the stiffness of

muscular brachial and carotid arteries (Mäki-Petäjä et al. 2016).

3.5 Summary

The proper functioning of the human body depends in the maintenance of proper

values and behaviour of the different systems that integrate it. This is called home-

ostasis. There are two main control systems that communicate and regulate activity

of the other systems in order to maintain homeostasis: The endocrine and the ner-

vous system. The nervous system, which tissue is made of specialised cells called

neurons, regulates the activity of the body systems using electrical energy, and gen-

erating the liberation of neurotransmitters for controlling the activity of tissues.

One of the subdivisions of the nervous system is the Autonomic Nervous System

(ANS), which is ”in charge” of controlling and regulating the activity of involuntary

tissue such as visceral organs and glands. It has a crucial role in regulating the

performance of systems such as the cardiovascular, pulmonary and reproductive

systems.

There are two branches in the ANS, the sympathetic and parasympathetic

branches, which originate from different locations in the brain and spinal cord, and

generate the excretion of different neurotransmitters in order to modify the be-

haviour of the systems. Usually, the sympathetic nervous system is related with the

liberation of norepinephrine, whereas the parasympathetic nervous system controls

the liberation of acetylcholine. Most of the organs have dual innervation, and this

dual innervation is usually antagonistic, i.e., the sympathetic and parasympathetic

activity act in an opposite manner in order to obtain the expected results. However,

the activity of the two branches can be complementary or cooperative in certain

systems, and some organs do not exhibit dual innervation but are only innervated

by sympathetic fibres.

The cardiovascular system is largely regulated by the ANS, with the heart having

dual innervation, whereas the blood vessels feature only sympathetic innervation.

In the heart, the ANS is in charge of controlling heart rate, cardiac output and

conduction velocity, with the sympathetic activity generating an increase in these
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variables, while parasympathetic activity decreases them. The blood vessels, on

the other hand, are regulated by sympathetic fibres which control the vasoconstric-

tion and vasodilation, having an important role in regulating blood pressure and

peripheral resistance. Since the ANS regulates cardiovascular performance, abnor-

mal activity of any of its branches can be related to diseases such as hypertension,

diabetes, and arterial stiffening.
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Chapter 4

Heart Rate Variability in the

Assessment of Cardiovascular

Autonomic Nervous System

4.1 Electrocardiography

As mentioned in section 3.4, the cardiac cycle follows a pattern and has a duration

that can be used to derive important information related to cardiac health. The

recording of this electrical behaviour is known as electrocardiography (ECG) and is

routinely used in clinical practice for monitoring the heart activity and diagnosing

cardiovascular diseases (Rangayyan 2002). An electrocardiogram can be understood

as the recording of the electrical potentials generated by the electrical activation of

the ventricles and excitatory cells in the cardiac muscle, measured in the body

surface (Webster 2010).

An electrocardiogram features a characteristic waveform from which the different

stages of the cardiac cycle can be identified (Figure 4.1): (1) The depolarization of

the atria result in the P wave, which is a slow, low-amplitude wave; (2) once the

electrical stimulus reaches the AV node, there is an iso-electric segment after the

P wave, known as the PQ interval; (3) afterwards, the rapid contraction of the

ventricles take place, generating a sharp biphasic or triphasic wave known as the

QRS complex; (4) since the ventricular cells have a relatively long action potential

duration, there is an iso-electric segment after the QRS segment, known as the ST

interval; (5) finally, the repolarization of the ventricles generate a slow wave called
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Figure 4.1: Electrocardiography waveform and its different characteristic waves during one
cardiac cycle. A normal cycle shows the P wave, related to the atrial depolarization; a QRS
complex, which is an indication of the rapid depolarization of the ventricles; and a T wave,
related to the repolarization of the ventricles (Rangayyan 2002).

the T wave (Rangayyan 2002). After the T wave, sometimes is possible to identify

another wave called the U wave, which has very low amplitude and is often absent

or masked by the next cardiac cycle (Reisner et al. 2006). This process repeats

itself in each cardiac cycle, generating a quasi-periodic signal from which important

information regarding the health status can be derived (Rangayyan 2002).

The idea to acquire the ECG from the body surface arises from the assumption

that the electrical activity of the heart can be represented by a current dipole, located

at the electrical centre of the heart, and whose magnitude and orientation can change

with time (Webster 2010). The net dipole at one particular moment of time is called

the heart vector, and as the depolarization of tissue spreads through the heart, this

vector changes in magnitude and direction as a function of time (Reisner et al. 2006).

For measuring ECG, then, it is necessary to obtain the voltage difference between two

points that are related to the cardiac vector, using biopotential electrodes located

in the skin (Webster 2010). In clinical practice, a standard 12-channel ECG using

four limb leads and chest leads in six positions is usually acquired (Rangayyan 2002).
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Each of these leads reveals the magnitude of the cardiac vector in a specific direction

at a given time (Reisner et al. 2006). The chest leads, known as precordial leads,

report activity in the transverse plane of the body, whereas the limb leads, give

information regarding the frontal plane of the body (Webster 2010). Hence, each of

the leads can illustrate at any time the behaviour of the cardiac vector, and form a

two-dimensional graph that represents the distribution of the electrical potential in

any instant (Reisner et al. 2006).

The ECG is an extremely useful and largely used tool for clinical assessment

of electrical pathologies, which usually come in two forms: Bradycardias, in which

the heart pumps too slowly or infrequently, and tachycardias, in which the cardiac

cycle is too short, implying a high pumping rate (Reisner et al. 2006). These are

regarded as heart rate abnormalities and can be detected from multi- and single

lead ECG traces. Some of these abnormalities have their origin in the ANS (Reisner

et al. 2006), which, as mentioned previously, is the control system for heart rate.

Therefore, ECG is a useful tool for measuring heart rate and obtaining valuable

information regarding the ANS activity over the cardiac cycle.

4.2 Heart Rate Variability

The term ”Heart Rate” refers to the number of heart beats that occur in a certain

time interval, usually a minute (Shaffer & Ginsberg 2017), and, therefore, is the

inverse value of the mean duration of cardiac cycles in that time. However, the du-

ration of each cardiac cycle is not the same and varies around that mean value. This

variation between adjacent cardiac cycle duration is called Heart Rate Variability

(HRV) (Shaffer & Ginsberg 2017) and is a reflection of changes in the balance be-

tween the cardiac sympathetic and parasympathetic branches of the ANS, regarded

as the sympathovagal balance (Clifford 2006).

HRV has been largely explored in the last 40 years due to its simplicity and non-

invasive nature to evaluate changes in the cardiac ANS and related diseases (Xhyheri

et al. 2012). Since the rate at which the heart pumps blood to the circulatory system

is determined by the sinus node in the heart, and this is controlled by the sympathetic

(SNS) and parasympathetic (PNS) branches of the ANS (Rangayyan 2002), changes

in heart rate indirectly reflect the behaviour of the cardiac control exercised by this

system (Kleiger et al. 2005). The measurement of the variability of the heart rate has
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been shown to reflect regulation of autonomic balance, blood pressure, gas exchange,

and gut, heart, and vascular tone, among others; and an optimal level of variation in

heart rate has been related with health and self-regulatory capacity, and adaptability

to different and changing environment conditions (Clifford 2006).

In 1996, the Task Force for the European Society of Cardiology and the North

American Society of Pacing and Electrophysiology published standards of measure-

ment, physiological interpretation, and clinical use for HRV (Task Force of the

European Society of Cardiology and The North American Society of Pacing and

Electrophysiology 1996). Guidelines were proposed in this document, including the

use of R peaks as fiducial point for segmenting the ECG into cardiac cycles, the

minimum length of measurements for obtaining valid HRV data, and the acquisition

and processing conditions needed to consider when analysing ECG data to extract

HRV information. Nonetheless, in recent years some of these standards have been

questioned and other aspects regarding HRV analysis have been established. For

instance, HRV has been traditionally extracted from short-term and long-term mea-

surements, i.e., from ECG signals recorded during at least 5 min or recorded for a

time period of 24 hours, respectively. In the case of short-term measurements, HRV

is usually analysed in the laboratory and different protocols are applied for the mod-

ification of autonomic activity; on the contrary, 24 h analysis is based on extracting

HRV information while the subject is performing usual daily activities (Kleiger et al.

2005). However, ultra-short term HRV analysis have now been proposed as an alter-

native to short-term measurements, although further validation is needed (Pecchia

et al. 2018). As explained by Li et al. (2019), the selection of the appropriate time

window is essential to understand the obtained results, given that short-term HRV

analysis is useful for tracking dynamic changes of cardiac autonomic function, while

long-term HRV is a more stable tool for assessing autonomic function and can be

more reliable for disease prognosis.

HRV is obtained by measuring the duration of each cardiac cycle from an ECG,

i.e., by identifying the QRS complexes, specifically the R peaks, and measuring the

time difference between consecutive cycles. This results in a time series of intervals,

also known as RR intervals, which when plotted against time delivers a graph known

as the tachogram (Clifford 2006). Figure 4.2 illustrates this process. It is important

to indicate that, for HRV analysis, only heart beats that originate from the sinus

node should be taken into account, which are referred to as normal-to-normal (NN)
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Figure 4.2: Derivation of heart rate variability from an electrocardiogram by extracting the
duration of cardiac cycles using the R peaks. (a) Identification of R peaks from an electro-
cardiogram and the subsequent measurement of RR intervals; (b) Tachogram extracted by
plotting the RR intervals against time.

intervals (Clifford 2006). Once the NN intervals are obtained, different indices are

extracted to characterise the changes in their duration. In general, these indices can

be classified in three groups, time-domain, frequency-domain and non-linear indices

(Shaffer & Ginsberg 2017).

4.2.1 Time-domain analysis

Time-domain indices quantify the amount of variability in the NN intervals, using

mainly statistical measures (Shaffer & Ginsberg 2017). Table 4.1 summarises some

of the most usually used time-domain indices. The most widespread indices used in
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Table 4.1: Time-domain indices for analysing HRV data (Shaffer & Ginsberg 2017).

Index Unit Description

AVNN ms Mean value of NN intervals
SDNN ms Standard deviation of NN intervals
SDANN ms Standard deviation of the average NN inter-

vals for each 5 min segment of a 24 h HRV
recording

SDNN index ms Mean of standard deviations of all NN inter-
vals for each 5 min segment of a 24 h HRV
recording

pNN50 % Percentage of successive RR intervals that
differ by more than 50 ms

HR max - HR min bpm Average difference between the highest and
lowest HR during each respiratory cycle

RMSSD ms Root mean square of successive RR interval
differences

SDSD ms Standard deviation of successive RR interval
differences

HRV triangular
index

- Integral of density of the RR interval his-
togram divided by its height

TINN ms Baseline width of the RR interval histogram

the literature are AVNN, SDNN, RMSSD and pNN50.

Some researchers have, as well, proposed modification to these indices. For exam-

ple, authors have suggested that using 35 ms as the difference in time for measuring

pNN50, instead of 50 ms, gives better results for detecting atrial fibrillation (Conroy

et al. 2017). Changing the time threshold for pNN50 has been applied by other

researches as well, in an attempt to achieve a generalisation of the technique (Clif-

ford 2006). Most of time-domain indices can be extracted either from short- and

long-term recordings, or from both, and some of the statistical indices have been

proposed for ultra-short term recording with windows lasting between 60 and 240

S(Shaffer & Ginsberg 2017).

The mathematical derivation of some of these indices can be done as shown in

(4.1) to (4.5), in which RRI refers to the peak-to-peak intervals detected from ECG

signals; N is the number of intervals detected in the PPG; and δ takes values of 1

when the condition is met, or 0 in any other case.

AV NN =
1

N

N∑
i=1

RRI(i) (4.1)
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SDNN =

√√√√ 1

N − 1

N∑
i=1

|RRI(i)−AV G|2 (4.2)

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

|RRI(i+ 1)−RRI(i)|2 (4.3)

NN50 =
N−1∑
i=1

δ(RRI(i+ 1)−RRI(i) ≥ 50ms) (4.4)

pNN50 =
NN50

N − 1
(4.5)

4.2.2 Frequency-domain analysis

Frequency-domain measurements are based on the estimation of absolute or relative

powers into four separated frequency bands: ultra-low frequency (ULF), very-low

frequency (VLF), low frequency (LF), and high frequency (HF) (Shaffer & Ginsberg

2017). The most commonly-used frequency-domain measurements for analysing

HRV are shown in Table 4.2. These indices are obtained after applying a frequency

transformation to the time-domain RR intervals tachogram, by applying a Fast

Fourier Transform (FFT) or autoregressive (AR) modelling (Shaffer & Ginsberg

2017). However, both FFT and AR models introduce non-linear distortion to data,

and need the data to be uniformly sampled for obtaining the frequency spectra,

so the RR intervals need to be resampled employing linear or cubic approaches

and using a sampling rate from 2 to 10 Hz, which could lead to overestimation

of the frequency-domain indices (Clifford 2006). It is usually accepted that using

a sampling rate of 4 Hz is appropriate for human beings (Berntson et al. 1997).

To overcome some of the difficulties related to the resampling of data, the Lomb-

Scargle periodogram has also been proposed as an alternative to obtained a frequency

spectrum without uniformly sampled data (Clifford 2006).

Depending on the duration of the recordings, certain bands of the frequency

spectrum can or cannot be obtained. The ULF band includes fluctuations in RR

intervals with a period from 5 min to 24 h; the VLF is comprised of intervals ranging

from 25 to 300 S; the LF band includes RR intervals with duration between 7 and

25 S; and the HF band, also regarded as the respiratory band, in influenced by

breathing from 9 to 24 bpm (Shaffer & Ginsberg 2017). Therefore, for measuring
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Table 4.2: Frequency-domain indices for analysing HRV data (Shaffer & Ginsberg 2017).

Index Unit Description

ULF power ms2 Absolute power of the ultra-low-frequency
band (≤ 0.003 Hz)

VLF power ms2 Absolute power of the very-low-frequency
band (0.003 – 0.04 Hz)

LF peak Hz Peak frequency of the low-frequency band
(0.04 – 0.15 Hz)

LF power ms2 Absolute power of the low-frequency band
(0.04 – 0.15 Hz)

nu Relative power of the low-frequency band
(0.04 – 0.15 Hz) in normalised units

% Relative power of the low-frequency band
(0.04 – 0.15 Hz)

HF peak Hz Peak frequency of the high-frequency band
(0.15 – 0.40 Hz)

HF power ms2 Absolute power of the high-frequency band
(0.15 – 0.40 Hz)

nu Relative power of the high-frequency band
(0.15 – 0.40 Hz) in normalised units

% Relative power of the high-frequency band
(0.15 – 0.40 Hz)

LF/HF % Ratio of the LF-to-HF power

reliable information from the ULF and the VLF, recording periods of at least 24

h and 5 min are needed, respectively, while LF and HF bands can be estimated

from shorter recordings of at least 2 and 1 minute duration, respectively (Shaffer

& Ginsberg 2017). The LF/HF ratio has been proposed usually as an indicator

of sympathovagal balance; however, recent studies have shown this is not accurate

since, unlike originally thought, LF does not reflect solely sympathetic activity, while

it is affected both by parasympathetic and sympathetic components (Ackermann

et al. 2021). Therefore, frequency-domain indices extracted from HRV should mainly

be considered as indicators of vagal activity.

The mathematical derivation of some of the absolute frequency-domain indices

is shown in (4.6) to (4.9), in which P refers to the power of the frequency spectrum,

while (4.10) to (4.12) describe the mathematical expressions for the measurement of

nLF, nHF and LF/HF.

V LF =
0.04∑

f=0.0033

P (i) (4.6)
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LF =
0.10∑

f=0.04

P (i) (4.7)

HF =
0.40∑

f=0.10

P (i) (4.8)

TP =
0.40∑

f=0.0033

P (i) (4.9)

nLF =
LF

TP
(4.10)

nHF =
HF

TP
(4.11)

LF/HF =
LF

HF
(4.12)

4.2.3 Non linear analysis

The oscillations of a healthy heart are complex and non-linear, and usually are best

described by mathematical chaos (Shaffer & Ginsberg 2017, Quintana 2017). This

non-linearity is determined by complex interactions of hemodynamic, electrophys-

iological, and humoral variables, and the autonomic and central nervous systems

(Task Force of the European Society of Cardiology and The North American Soci-

ety of Pacing and Electrophysiology 1996). Poincaré plots, low-dimension attrac-

tor plots, singular value decomposition, Lyapunov exponents, Kolmogorov entropy,

among others, have been used to describe the non-linear processes occurring in

HRV (Task Force of the European Society of Cardiology and The North Ameri-

can Society of Pacing and Electrophysiology 1996). In general, these non-linear

indices aim to quantitatively assess the quality, scaling, and correlation properties

of HRV (de Godoy 2016). In other words, they are related with the unpredictabil-

ity, fractability and complexity of the signal. Table 4.3 summarises some of the

most used non-linear parameters measured from HRV data. Although non-linear

indices from HRV are potentially powerful tools with the capability of accurately

reflecting autonomic regulation and the complexity of this system (Stein & Reddy

2005, Pernice et al. 2019a), standards for their measurement are lacking (Task Force
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Table 4.3: Commonly used non-linear indices for analysing HRV data (Shaffer & Ginsberg
2017).

Index Unit Description

S ms Area of the ellipse which represents total
HRV

SD1 ms Poincaré plot standard deviation perpendic-
ular to the line of identity

SD2 ms Poincaré plot standard deviation along the
line of identity

SD1/SD2 % Ratio of SD1-to-SD2
ApEn - Approximate entropy (measures the regular-

ity and complexity of a time series)
SampEn - Sample entropy (measures the regularity and

complexity of a time series)
DFA α1 - Detrended fluctuation analysis (describes

short-term fluctuations)
DFA α2 - Detrended fluctuation analysis (describes

long-term fluctuations)
D2 - Correlation dimension (estimates the min-

imum number of variables required to con-
struct a model of system dynamics)

of the European Society of Cardiology and The North American Society of Pacing

and Electrophysiology 1996) and their physiological explanation and utility are not

entirely elucidated (Germán-Salló & Germán-Salló 2016).

Some of the most used non-linear indices in HRV analysis are those extracted

from the Poincaré plot. This is a geometrical representation of a time series in

a Cartesian plane, which plots the actual data against the data occurring in the

future (Khandoker et al. 2013). For HRV, it is usually done by plotting the i-th

RR interval against the (i + 1)-th interval, although Poincaré analysis using larger

lags have demonstrated interesting results in several applications (Khandoker et al.

2013, Shi et al. 2009). The indices SD1, SD2 and SD1/SD2 are usually used for

quantifying the dynamics on the Poincaré plot, and are comparable to time- and

frequency-domain indices (Khandoker et al. 2013).

The extraction of Poincaré plot indices is usually done using the ellipse-fitting

method (Khandoker et al. 2013) and applying equations (4.13) to (4.16), where N is

the number of intervals analysed, RRI(i) corresponds to i-th peak-to-peak interval,

and RRI represents the mean value of the inter-beat intervals.

S = π(SD1)(SD2) (4.13)
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SD1 =

√√√√ 1

N − 1

N−1∑
i=1

(RRI(i+ 1)−RRI(i))2

2
(4.14)

SD2 =

√√√√ 1

N − 1

N−1∑
i=1

(RRI(i+ 1)−RRI(i)− 2(RRI))2

2
(4.15)

SD1/SD2 =
SD1

SD2
(4.16)

Entropy measures, e.g. ApEn, SampEn, have been used to quantify the regularity

and complexity of HRV time series (Shaffer & Ginsberg 2017, Task Force of the

European Society of Cardiology and The North American Society of Pacing and

Electrophysiology 1996). In HRV analysis, high ApEn implies low predictability

of the fluctuations, whereas small ApEn is related with a regular and predictable

signal. This measure was designed for brief time series in which some noise may be

present, while SampEn has been proposed as a less biased and more reliable measure

of regularity and complexity, even when calculated from shorter time series (Shaffer

& Ginsberg 2017).

The approximate and sample entropy (ApEn and SampEn, respectively) can be

measured using a pattern length, m, and a criterion of similarity, r (Semmlow &

Griffel 2014). In both cases, the RRIs are first adjusted according to their standard

deviation and the patterns with length m and m + 1 extracted. Then, the number

of patterns that lie within a radius r are denoted as Bn (4.17) and An (4.18), for

the patterns of length m and m+ 1, respectively.

Bn =

N−m∑
k=1

δ(‖xmn − xmk ‖ < r) (4.17)

An =

N−m∑
k=1

δ(
∥∥xm+1

n − xm+1
k

∥∥ < r) (4.18)

Then, ApEn can be measured as (4.19). SampEn is an unbiased version of ApEn,

in which the template match between the current template and itself is not counted.

It can be measured as shown in (4.20). The multi-scale entropy of HRV trends

can assessed using one of the entropy measurements, usually SampEn, with varying

scales of the time series, and then characterising it as the area under the curve of
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the resulting function (Semmlow & Griffel 2014).

ApEn(x,m, r,N) =

∑N−m+1
n=1 − lnAn
N −m+ 1

−
∑N−m

n=1 − lnBn
N −m

(4.19)

SampEn = − ln
A

B
= − ln

∑N−m+1
n=1 An
N−m+1∑N−m
n=1 Bn
N−m

(4.20)

Using detrended fluctuation analysis, DFA, it is possible to obtain the correla-

tions between successive RR intervals, resulting in slopes α1 and α2, which describe

brief and long-term fluctuations, respectively. DFA indices can be extracted from

HRV trends as explained by Golińska (2012), integrating the signal of the inter-

polated inter-beat intervals and segmenting it in segments of varying lengths, n,

according to the original length of the time series. Then, using least squares fit,

each segment is linearly approximated, denoted as yn. The average fluctuation F (n)

of the signal around the trend of each segment is computed as shown in (4.21), where

N is the length of the signal and n is the corresponding length.

F (n) =

√√√√ 1

N

N∑
k=1

(y(k)− yn(k))2 (4.21)

Then, a plot of lnF (n) against lnn is produced and two linear models from this

plot can be extracted. The first linear model is obtained using the F (n) related

to lower values of length, while the second linear model is obtained using F (n)

related to longer n. A1 and A2 are finally assigned as the slopes of these models,

respectively.

Finally, correlation dimension and Lyapunov exponents estimate the minimum

number of variables needed for constructing a model of the system dynamics: The

more variables required the more complex the system (Shaffer & Ginsberg 2017).

Lyapunov exponents can be computed by determining an embedded dimension of

the system and calculating trajectory divergence; a linear model can be fitted to

the resulting function and the value of the Lyapunov exponent assigned as the value

of the slope of the model (Semmlow & Griffel 2014). The correlation dimension,

D2, is obtained from the correlation sum as shown in 4.22, where N is the number

of points to analyse, Θ is the Heaviside operator (i.e. 1 for all positive values, 0

for all other values), R is a radius of a hypersphere and x is the attractor of the
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interpolated time series of inter-beat intervals. Values of R used in the subsequent

analyses presented in this thesis range from e−1 to e1, in steps of 0.1. Then, D2 is

calculated as the slope of the linear model derived from the function shown in (4.23)

(Semmlow & Griffel 2014).

Cd(R) =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

Θ(R− |x(i)− x(j)|) (4.22)

D2 =
d lnCd(R)

d lnR
(4.23)

4.3 Heart Rate Variability and cardiovascular changes

HRV has been largely studied as a marker of cardiac autonomic activity (Quintana

2017, Huikuri et al. 1999, Malik et al. 2017) and its major clinical applications have

been in risk-stratifying patients for arrhythmic death after myocardial infarction

and in the evaluation of autonomic neuropathy in diabetic patients (Villareal et al.

2002). The sinus node of the heart, modulated by both sympathetic (SNS) and

parasympathetic (PNS) branches of the Autonomic Nervous System (ANS), is the

main controller of heart rate, along with hormonal and mechanical factors (Constant

et al. 1999). As explained by Weatherred and Pruett, HRV can be considered as an

indicator of cardiac adrenergic receptor sensitivity, postsynaptic signal transduction,

and multiple neural reflexes, in addition to its main interpretation as an end-organ

response determined by nerve firing and electrochemical coupling (Weatherred &

Pruett 1995). A proper analysis of the variations in heart rate is therefore thought

to reflect the activity of cardiac SNS and PNS, and has been proposed as a potential

marker of common cardiovascular physiological and pathological conditions (Xhy-

heri et al. 2012), such as atherosclerosis (Xhyheri et al. 2012), peripheral arterial

disease (Goernig et al. 2008), hypertension, diabetes mellitus, myocardial infarction,

and heart failure (Takase 2010), among others. Moreover, since most HRV results

can be related to changes in the interaction between baroreceptors, the cardiores-

piratory unit, and the autonomic nervous system, the dysfunction in any of these

systems impacts normal homeostatic mechanisms that are reflected in HRV indices

(Weatherred & Pruett 1995).

HRV has been proposed as a diagnostic and prognostic tool, and low values of

HRV indices relate to cardiac events, such as myocardial infarction; progression of
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atherosclerosis; and heart failure (Huikuri et al. 1999, Weatherred & Pruett 1995).

Some studies relate HRV values with pathologies and conditions such as coronary

artery disease and sudden death (Xhyheri et al. 2012, Thayer et al. 2010, Moridani

et al. 2015), diabetes mellitus (da Silva et al. 2016), pain (Broucqsault-Dédrie et al.

2016), acute (Castaldo et al. 2015) and chronic stress (Murray 2012), metabolic

syndrome (Stuckey et al. 2014), depression (Liang et al. 2015, Vazquez et al. 2016,

Koenig et al. 2016, Hamilton & Alloy 2016), and bipolar disorders (Bassett 2016).

Furthermore, HRV has been used as a marker of social interaction (Shahrestani

et al. 2015), sports performance (Gavrilova 2016, Dong 2016), and emotional states

(Torres-Valencia et al. 2017, Choi et al. 2017).

Cardiovascular diseases and its relationship with HRV, especially, have gain im-

portant attention, with some results that encourage for further studies. In general,

it has been found that lower HRV indices may be related with a wide range of

cardiovascular diseases, such as acute myocardial infarction, hypertension, heart

failure, and arrhythmia (Takase 2010, Souza et al. 2021). Furthermore, it has been

suggested that lowering cardiovascular risk profiles is associated with an increased

HRV (Thayer et al. 2010), and that interventions such as physical training in car-

diovascular and elderly patients result in an increased HRV, usually accompanied

by a reduction in hemodynamic and metabolic parameters (Souza et al. 2021). In

a review published in 2012, Xhyheri et al. summarised the relationship between

cardiovascular health and HRV, and concluded that: (1) All HRV parameters were

reduced by aging in 24 h recordings; (2) diabetes affects HRV measurements, both in

time- and frequency-domain indices, when compared between healthy and diabetic

populations, which may be explained by an inadequate metabolic control and the

occurrence of diabetic neuropathy; (3) atherosclerosis generates a reduction in HRV

parameters, probably associated with the lipid accumulation in the tunica intima

and coronary narrowing, and a depressed HRV is associated with the occurrence of

stroke and increased risk of mortality; (4) HRV is related with several cardiovascu-

lar risk factors, such as cholesterol serum levels, hyperlipidaemia, hypertension, and

smoking; (5) reduced HRV can be used to identify an increment in cardiac mortal-

ity after myocardial infarction, as well as heart failure and ischemic sudden death

in apparently healthy people prior to death; and (6) HRV is related with coronary

instability (Xhyheri et al. 2012).

Special attention has been given to the relationship between HRV and diabetes.
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França da Silva et al. (2016) concluded that HRV is a good tool to discriminate car-

diac autonomic neuropathy in diabetic subjects, especially using non-linear indices

such as SampEn, SD1/SD2, ApEn, recurrence plot, DFA, Lyapunov exponents, and

correlation dimension, and using SDANN and HF information; moreover, it was

suggested that HRV indices could be used along with automatic classifiers to dis-

criminate between healthy and diabetic subjects. In line with these results, other

studies concluded that subclinical cardiac autonomic neuropathy is related with a

reduction in HRV, allowing for an early detection of the syndrome even before it be-

comes symptomatic (Fisher & Tahrani 2017, Vinik et al. 2018). Metabolic syndrome,

i.e., a clustering of risk factors that increase the risk of developing cardiovascular

diseases and type 2 diabetes mellitus, has also been related with HRV (Souza et al.

2021). It has been found that there were reduced HRV parameters in women with

metabolic syndromes, but men results were inconsistent, concluding that HRV is

altered differently in men and women with metabolic syndrome, but that results

were inconclusive (Stuckey et al. 2014).

Hypertension has also received important attention, in an attempt to identify in-

creased blood pressure using HRV. Researchers from the Framingham Heart Study,

which has been going on in United States since 1948 (Framingham Heart Study

2021), have shown that HRV was reduced both in men and women with systemic

hypertension, and that the LF power was associated with the development of this

disease in men (Carthy 2014). Moreover, it has been established that there is a

direct relationship between higher blood pressure values and the activation of SNS

(Mancia & Grassi 2014), and that lower HRV can be used to predict hypertension

onset (Hill & Thayer 2019). These conclusions are in line with the findings re-

ported by Weatherred and Pruett (1995), who concluded that HRV changes can be

used for the differentiation among normotensive, borderline hypertensive and mildly

hypertensive patients.

Finally, hemodynamic variables have also been related with HRV. In a study

performed with 59 type 1 diabetic patients, it was observed that HRV was directly

related with arterial stiffness: Lower frequency-domain parameters extracted from

HRV were observed in patients with stiffer arteries (Jensen-Urstad et al. 1999).

Similarly, in a study performed with 382 healthy and young Japanese men, a rela-

tionship between arterial stiffness and HRV was observed: LF/HF ratio was found

to be an independent predictor of the brachial-ankle pulse wave velocity, a simple
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and reliable marker of arterial stiffness (Nakao et al. 2004). Interestingly, in a study

published in 2013, it was found that lower HRV is associated with increased arterial

stiffness in both central and peripheral vascular beds in young subjects with type 1

diabetes, but there were no associations between HRV and arterial stiffness in the

control, non-diabetic group, except for an association between SDNN and peripheral

stiffness (Jaiswal et al. 2013). In patients with essential hypertension, a relationship

between HRV and arterial stiffness has also been observed (Carthy 2014). Finally,

Kyrlagkitsis et al (2016) found that, in healthy subjects, age was negatively asso-

ciated with non-linear HRV indices, such as entropy measurements, implying that

complexity is reduced in aged systems, i.e. in stiffer vessels.

4.4 Limitations of heart rate variability

However promising, HRV results have been found to be contradictory and inconclu-

sive, mainly due to the lack of standardisation of methodologies (Souza et al. 2021).

Thus, HRV has not yet been accepted as a reliable clinical tool by physicians for

supporting their diagnosis and monitoring of diseases (Kranjec et al. 2014, Veloza

et al. 2019). Amongst the research community, on the other hand, HRV is still

popular with a large volume of publications produced on an annual basis, as shown

in Figure 4.3.

Figure 4.3: Number of publications per year (up to 2021) in Scopus with the term “heart
rate variability” in title, abstract or keywords. The number of publications related to heart
rate variability has increased exponentially in the last decades.
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Although HRV has attracted a lot of attention due to its potential applications,

its clinical use is still restricted. First of all, different factors, which include phys-

iological, procedural, and technical factors can affect HRV measurements, which

preclude the generalisation of the results of studies specially in critically ill patients

(Karmali et al. 2017). Moreover, the methodology and design of the studies affect

the results grandly, and need to be taken into account when reporting and analysing

the outcomes of a study (Karmali et al. 2017, Souza et al. 2021, Quintana 2017).

Finally, it is important to notice that there is still debate regarding the capability

of HRV to provide information about sympathetic mechanisms, which could imply

a deficiency in the technique for assessing ANS activity (Owens 2020).

As mentioned, standards of measurement and guidelines for HRV research were

published in the late nineties in an attempt to have more comparable and gener-

alizable results (Task Force of the European Society of Cardiology and The North

American Society of Pacing and Electrophysiology 1996). These standards include

recommendations regarding sample rate, extraction of frequency- and time-domain

parameters, and signal processing for the assessment of HRV. For instance, it has

been recommended in these guidelines that HRV measurements should be derived

from ECG signals acquired at least with a 250-Hz sampling rate, by identifying R

peaks as the initial point of each cardiac cycle. Nonetheless, other latter studies have

recommended different parameters, such as using higher sampling frequencies, i.e.

500-1000 Hz, to assure that time resolution for identification of the location of the

R peaks does not affect the HRV data (Berntson et al. 1997). In addition, several

issues remain to be resolved in HRV research. One of the main confounders is the

fact that usually relevant co-variables are not reported, such as Body Mass Index,

physical status, ethnicity, or social background, all of which can alter HRV results,

along with age and gender (Hill & Thayer 2019, Souza et al. 2021, Ernst 2017).

Other variables, such as position, movement, recency of physical activity, tasks per-

formed during recording, and relationship variables, can affect HRV measurements

by changing ANS mechanisms, breathing mechanics or emotions (Shaffer & Ginsberg

2017). Likewise, most of these confounding variables are rarely controlled, although

they have the potential to substantially alter between- and within-subject variability

(Heathers 2014). The selection of the parameters to measure when analysing HRV

data is also important. Although time- and frequency-domain indices are more

standardised and validated, the increased use of non-linear measurements make the
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comparison among HRV studies more difficult. As mentioned by Ernst (2017), the

relevance of most of the non-linear indices that have been introduced in HRV anal-

ysis is still unclear, and there are no standardised norms for their measurement.

Moreover, the meta-analysis of the results reported in the literature is difficult and

some statistical considerations regarding the effect sizes of the studies should be

taken into consideration (Quintana 2017).

Finally, it is important to consider the equipment needed to obtain reliable HRV

information, which is based on the processing of good-quality ECG signals, which

need to be acquired during long-term (24-hour) or short-term (5-minute) recordings

(Shaffer & Ginsberg 2017, Xhyheri et al. 2012, Task Force of the European Society

of Cardiology and The North American Society of Pacing and Electrophysiology

1996). However, ECG signals acquisition needs cumbersome instrumentation in-

cluding the use of at least three skin-contact electrodes, and many cables (Webster

2010). Moreover, the frequency components of an ECG signal spam from nearly 0

Hz to frequencies above 100 Hz (Rangayyan 2002), which imply a higher sampling

rate needed for a reliable ECG recording. Trying to overcome the issues related to

ECG acquisition for HRV estimation, some researchers have proposed alternatives

to this signal, such as blood pressure (Constant et al. 1999, Ahmad et al. 2009),

photoplethysmography (Gil, Orini, Bailón, Vergara, Mainardi & Laguna 2010, Jey-

hani et al. 2015, Rauh et al. 2003), ballistocardiography (Pinheiro et al. 2009), and

near-infrared spectroscopy (Holper et al. 2016). Heart rate modulates these signals

as well, and their quasi-periodic nature relates to the rhythm of blood travelling

through the vessels. However, unlike ECG, their frequency content is more limited

(meaning that lower sampling rates are enough for acquiring a reliable signal), and

some of them need only one probe in order to obtain the signal. Hence, they may be

easier to apply in a regular manner both in clinical settings and in daily life using

wearable devices (Georgiou et al. 2018). Nonetheless, accurate fiducial point iden-

tification in most of these signals can be problematic and require further validation

for its use in HRV analysis (Berntson et al. 1997).

4.5 Summary

Heart rate variability (HRV) describes the changes through time in the duration

of cardiac cycles. It is usually measured from electrocardiographic (ECG) signals
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by detecting the R peaks and measuring the duration of the time interval between

consecutive R peaks. Then, from the series of these intervals, several time-domain,

frequency-domain and non-linear indices can be extracted to characterise HRV.

These indices have been used to identify and monitor diseases, especially cardio-

vascular and metabolic disorders. Although promising, several factors have impacted

HRV deployment for clinical use, but it has been increasingly used in research and

has been proposed as a good, noninvasive biomarker of cardiac autonomic activity.
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Chapter 5

Photoplethysmography and

Pulse Rate Variability

5.1 Photoplethysmography

Photoplethysmography (PPG) is a simple, low-cost, non-invasive, optical measure-

ment technique which serves for the detection of blood volume changes in peripheral

tissues, and is probably the most used signal in wearable devices nowadays, mostly

to detect volume changes in the microvascular bed of tissue using light scattering

properties (Kyriacou 2021). Therefore, a device that obtains the reflected or trans-

mitted light when this interacts with tissue allows for the assessment of the pulse

wave in the periphery. In each cardiac cycle, the diameter of the arteries varies,

modifying the optical pathlength (reaching minimum and maximum transmittance

values in the systole and the diastole, respectively) and, hence, the light detected by

an optical sensor (Budidha & Kyriacou 2021). Figure 5.1 shows the components of

a PPG signal, i.e., the pulsatile component (AC) and a quasi-DC component (DC)

(Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj, Kyriacou & Charlton 2021). The DC compo-

nent, a quasi-static component varies slowly due to respiration, vasomotor activity,

and vasoconstrictor waves, and is related with the tissues and average blood volume,

as well as the blood stores in the veins; Traube Hering Mayer waves and thermoregu-

lation also modify this component (Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj, Kyriacou

& Charlton 2021, Allen 2007). Superimposed to the DC component, the AC compo-

nent of the PPG signal is a quasi-periodic waveform with a fundamental frequency

that is usually around 1 Hz, which depends on heart rate (Mej́ıa-Mej́ıa, Allen, Bu-
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Figure 5.1: Absorbed and transmitted light in living tissue. Adapted from (Wieben 1997).
This behaviour of the light results in the photoplethysmographic signal, which has a pulsatile
component, also known as AC component, and a quasi-DC component.

didha, El-Hajj, Kyriacou & Charlton 2021, Allen 2007). This component reflects

the changes in the blood volume due to the cardiac cycle and is mainly explained

by changes in the volume of pulsatile arterial blood (Mej́ıa-Mej́ıa, Allen, Budidha,

El-Hajj, Kyriacou & Charlton 2021, Sun & Thakor 2016). The AC component is

around 1 to 2% of the total amplitude of the PPG signal (Budidha 2016) but im-

portant information can be extracted from it, such as the changes in pulse rate

through time, also known as Pulse Rate Variability, which has been proposed as an

alternative option to HRV (Schäfer & Vagedes 2013).

Several aspects may affect the PPG signal. Some of these factors are: (1) the

periodic increase and decrease in the tissue blood fraction, due to the cardiac ac-

tivity; (2) the distensibility of the skin vessels; (3) the distance between the light

source and detector, and the depth of the pulsing vasculature; (4) the extinction

coefficient of the blood volume at the measurement wavelength; (5) the scattering

of the light due to the erythrocytes; (6) venous pulsatile blood; and (7) the auto-

nomic function and the vasoconstriction and vasodilation processes (Njoum 2017,

Allen 2007). Furthermore, the PPG signal can be highly affected by factors such as

the ambient temperature and the contact pressure of the sensor against the tissue
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(Middleton et al. 2011, May et al. 2021).

5.1.1 The origin of photoplethysmography

There are several theories that explain the origin of the PPG signal (Kyriacou &

Chatterjee 2021). However, they are mostly based on the optical processes that

take place when light penetrates tissue. These are scattering, absorption, reflection,

transmission, and fluorescence, and their behaviour also depend on the type of tis-

sue irradiated and its different layers (Kyriacou 2021, Chatterjee & Kyriacou 2019).

Since tissue has several heterogeneous layers, the propagation of light in tissue de-

pends on the scattering and absorption properties of each component of the tissue

(Njoum 2017).

Light absorption is one of the primordial processes that occur when tissue is

illuminated. It has been described by the Beer-Lambert’s law, as shown in (5.1),

which describes the logarithmic attenuation of light travelling through an absorb-

ing medium (Kyriacou & Chatterjee 2021). When monochromatic light penetrates

a uniform medium, a part of the original intensity of the light, I0, is transmitted

through the medium, while some of it is absorbed, reflected and scattered; the inten-

sity of the light decreases exponentially with distance and depends on the extinction

coefficient (absorptivity) of the absorbing substance in the medium at a specific

wavelength, ε(λ); on the concentration of the absorbing substance, c; and on the

optical path length through the medium, d (Njoum 2017, Kyriacou & Chatterjee

2021).

I = I0e
−ε(λ)cd (5.1)

From Beer-Lambert’s law, it is possible to obtain an estimation of the properties

of transmittance, T , and unscattered absorbance, A, of the illuminated medium,

as shown in (5.2) and (5.2), respectively. These equations can be generalised to

mediums in which more than one substance absorbs light, by considering that the

total absorbance of light is the sum of the independent absorbances from each ab-

sorbing substance (Kyriacou & Chatterjee 2021, Chatterjee & Kyriacou 2019). Al-

though applying Beer-Lambert’s law requires certain assumptions, such as the use

of monochromatic and collimated light or considering pure and uniform absorption

properties in the irradiated medium, it can be used as an estimation of the absorp-
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tion of light in tissue (Njoum 2017).

T =
I

I0
= e(−ε(λ)cd) (5.2)

A = − lnT = ε(λ)cd (5.3)

When light penetrates skin, it crosses different pathways in each layer of the

tissue, which allow to estimate the optical properties of each skin layer, and which

depend highly on the wavelength used when illuminating the tissue, as illustrated

in Figure 5.2. The light that is absorbed by tissue is mostly related by the con-

centration of its natural chromophore, melanin, hence the transmission of the light

varies according to the skin type (Njoum 2017). When it reaches connective tissue

with nerves and blood vessels, light interacts mainly with the chromophores and es-

pecially with the erythrocytes, which carry haemoglobin, the strongest absorber of

visible light in the human body (Kyriacou & Chatterjee 2021). The number of ery-

throcytes present in tissue in a certain instant of time vary; hence, the light absorbed

by haemoglobin is constantly changing: The amount of light absorbed, scattered,

and reflected by tissue depends then on the volume of blood circulating through

Figure 5.2: Optical pathways in skin: Relationship between light wavelength and depth of
penetration in skin (mm) (Njoum 2017). The longer the wavelength, the deeper the penetration
of the light.
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the vessel of interest in a given time, resulting in the photoplethysmographic signal,

which describes the blood volume as a function of time (Kyriacou & Chatterjee

2021).

5.1.2 The photoplethysmographic waveform

Although the origin of the PPG signal and its features is still an active area of

research, the cardiac component of the PPG signal, i.e., the AC component, is

thought to originate from the site of maximum pulsation within the arteriolar vessels

(Alian & Shelley 2014). The PPG waveform resembles an arterial blood pressure

pulse wave, although with some important differences in its contour (Mej́ıa-Mej́ıa,

Allen, Budidha, El-Hajj, Kyriacou & Charlton 2021).

Figure 5.3 shows an example of the phases of the PPG pulse obtained from a

healthy subject. Each pulse wave from the AC component of the PPG signal can

be defined by two phases, the anacrotic phase (the rising edge of the pulse) and the

catacrotic phase (the falling edge of the pulse), which correspond to the rising and

Figure 5.3: Example of a healthy PPG pulse waveform with its different components, the
anacrotic and catacrotic phases. The morphology of the waveform also depends on the site of
measurement.
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falling limbs of the pulse wave (Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj, Kyriacou &

Charlton 2021). These phases are related to the systole and the diastole of the heart,

respectively, as well as to wave reflections from the periphery; in healthy subjects,

with compliant arteries, a dicrotic notch is usually observed during the catacrotic

phase (Allen 2007).

Although the pulsatile PPG signal is very similar to the blood pressure pulse and

it has been found to be altered similarly by vascular diseases (Allen 2007), venous

pressure waveform characteristics can affect PPG, which would be observed as large

peaks during diastole (Alian & Shelley 2014). The morphology of the pulsatile PPG

component is influenced by characteristics of cardiac ejection; circulatory changes,

such as arterial stiffness and blood pressure; respiratory and autonomic activity;

and several diseases (Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj, Kyriacou & Charlton

2021). This variety of factors that can affect PPG morphology make it challenging to

analyse the signal, making the extraction of reliable information from the PPG signal

a complex task (Elgendi 2020). Moreover, different kind of noises, including moving

artefacts and probe-tissue interface disturbance, tend to affect PPG morphology,

and hence affect the information obtained from it (Mej́ıa-Mej́ıa, Allen, Budidha,

El-Hajj, Kyriacou & Charlton 2021).

5.1.3 Applications of photoplethysmography

Currently, the most accepted application of PPG is pulse oximetry, which refers to

the measurement of SpO2, an estimation of the amount of oxygen in blood (Budidha

2016, Abay & Kyriacou 2021). However, this signal has been employed for various

applications, such as the assessment of vascular mechanics, blood pressure, blood

viscosity, and pulse transit time; and the measurement of pulse rate (PR) and pulse

rate variability (PRV) (Allen 2007, Alian & Shelley 2021), among others. Besides,

it is currently available in most clinical environments and its potential uses are still

under investigation (Kyriacou & May 2021).

Clinically and in research, PPG is currently used for real-time monitoring of

physiological parameters such as SpO2, PR, blood pressure, respiration, and cardiac

output (Alian & Shelley 2021, Sun & Thakor 2016). Since PR has been shown to

serve as a good estimate of heart rate (HR) (Schäfer & Vagedes 2013), the estimation

of HRV indices from PRV is being used indistinctly by several researchers, although

the relationship between HRV and PRV is still not clear. Even if PR and HR can
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be used alternatively, they both refer to the mean value of the behaviour of heart

rhythm during certain period of time, whereas PRV and HRV refer to the changes

around this mean, and are not necessarily an estimate of each other (Schäfer &

Vagedes 2013, Constant et al. 1999). The relationship between HRV and PRV has

been investigated by several studies, but there is still no consensus: While some

researchers claim that PRV can be used as a surrogate of HRV (Bolanos et al. 2006,

Gil, Orini, Bail, Vergara, Mainardi & Laguna 2010, Vescio et al. 2018), some indicate

that HRV and PRV may not be the same, especially during non-stationary conditions

or when measured from unhealthy subjects (Constant et al. 1999, Georgiou et al.

2018, Schäfer & Vagedes 2013, Rapalis et al. 2018). Nonetheless, due to the wide

range of applications of HRV, its relationship with several physiological and mental

diseases, and the easiness of pulse wave signals acquisition using PPG technology,

this signal has been largely used for the extraction of PRV information.

5.2 Pulse rate variability

5.2.1 Analysis and characteristics of pulse rate variability

As explained above, PPG has been used in recent years for the extraction of PRV

as an alternative to measure HRV dynamics. This has been mainly because of the

easiness and widespread use of PPG devices, and its capability to be included in

everyday, wearable devices (Schäfer & Vagedes 2013, Georgiou et al. 2018). In a

study performed by Natarajan et al. (2020), in which data from 8 million users of

Fitbit devices was considered, it was concluded that analysing the data acquired

from these wearable devices opens the door for large scale, longitudinal studies with

the aim to describe and standardise PRV values in healthy population, and for

research focused on its potential use in health promotion.

PRV analysis from the PPG is based on the detection of cardiac cycles from

the pulsatile component of the signal. And, as with HRV analysis from the ECG,

time-domain, frequency-domain and nonlinear indices are extracted from the time

series built from the duration of cardiac cycles. Several studies have also proposed

novel methods for the analysis of PRV and its characteristics, and some attention

has been given to the effects of acquisition and processing techniques applied for the

analysis of PRV, especially given how prone the PPG signal is to artefacts (Dobbs

et al. 2019, Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj, Kyriacou & Charlton 2021, Fine
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et al. 2021).

5.2.1.1 Fiducial point detection and pulse rate variability

One of the areas with more studies regarding the analysis of PRV from pulsatile

signals has been the selection of fiducial points to use for the segmentation of cardiac

cycles, given the pulse wave morphology, how it is affected by several environmental

and physiological disturbances, and the slowly changing nature of the signal. In an

attempt to understand the differences of PRV and HRV when obtained from several

fiducial points from the PPG, Chen et al. (2013) compared HRV indices obtained

from the ECG R peaks (RRI) to indices extracted from PRV traces obtained both

from the peak-to-peak (PPI) and the valley-to-valley (VVI) intervals. ECG and

finger PPG signals were obtained from 20 healthy subjects while seated, and RRI,

PPI, and VVI time series were measured. From these time series, SDNN, RMSSD,

pNN50, nLF, nHF, SD1, and SD2 indices were extracted, and their correlation was

evaluated. As reported, VVI and RRI were more strongly correlated than PPI

and RRI, especially for short-term analysis of PRV. Similarly, Posada-Quintero,

H.F., Delisle-Rodŕıguez, D., Cuadra-Sanz, M.B., & Fernández de la Vara-Prieto,

R.R. (2013) evaluated the interchangeability between PRV and HRV frequency-

domain indices when inter-beat intervals (IBIs) from the PPG were determined

using three different fiducial points, i.e. diastolic points (DP), maximum second

derivative points (MSD) and tangent intersection points (TI), which is determined

by the intersection of the tangent to the maximum slope point and the tangent of the

minimum value (Hemon & Phillips 2016). Using concordance correlation coefficients

and Bland-Altman analysis, they found that TI points were the most suitable to

compute PRV indices as surrogates of HRV, with the highest accuracy, precision

and reproducibility. Similar results were found by Hemon & Phillips (2016) who

concluded that TI gave the best accuracy for extracting SDNN and pNN50 indices,

while both TI and the valley points of the cycle are equally accurate for measuring

RMSSD. Interestingly, they found that using the systolic peak of the cycle for PRV

analysis resulted in the poorest correlation between HRV and PRV indices.

Parasnis et al. (2015) used data from the MIMIC-II database (Saeed et al. 2011,

Goldberger et al. 2000) to compare non-linear indices obtained from HRV and PRV

information acquired from 20 ICU patients. They extracted IBIs from the PPG by

detecting systolic peaks, valleys, maximum point of the first derivative, and max-
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imum point from the second derivative, and extracted multi-scale entropy (MSE),

SD1 and SD2 to characterize PRV and HRV traces. These indices were compared

between HRV and PRV using Pearson correlation coefficients and Concordance cor-

relation coefficients. The authors concluded that neither of these fiducial points give

reliable results for these non-linear indices when compared to HRV-derived indices.

Their conclusion could be observed from two perspectives: PRV information ob-

tained from PPG signals is not reliable to assess HRV dynamics, or PRV contains

different non-linear information to what is present in HRV.

In 2016, Pinheiro et al. (2016) compared HRV and PRV parameters with subjects

under three experimental settings, i.e. healthy subjects at rest, healthy subjects after

physical exercise, and subjects with cardiovascular diseases. PRV was obtained from

PPG signals by detecting the onsets, the time instants corresponding to 20% of

the pulse amplitude; the maximum points of the first derivative; the time instants

corresponding to 50% of the pulse amplitude; the time instants corresponding to

80% of the pulse amplitude; and the systolic peaks, and HRV and PRV indices

were compared using Spearman’s rank correlation coefficients, the normalised root

mean squared error and Wilcoxon’s rank sum test. It was found that for subjects at

rest the agreement between PRV and HRV indices was good, although this was not

the case for any of the other two experimental settings; and found that the lower

error between HRV and PRV were obtained when PRV was extracted using the time

instants when 50% or 80% of the amplitude was reached, or using the systolic peaks.

However, these authors suggest that the selection of the best fiducial point for PRV

analysis should be dependent on physiological conditions and the analysis context.

More recently, Peralta et al. (2019) investigated which fiducial points gave better

results for PRV analysis when compared to ECG-derived HRV indices, with PPG

signals acquired from the forehead and the finger. PPG and ECG signals were

recorded simultaneously while participants took part on a tilt-table test, and time

and frequency-domain indices were extracted from PRV and HRV traces. From both

forehead and finger PPG signals, systolic peaks, onsets, middle-amplitude points,

maximum slope points, and TI points were extracted for PRV analysis. It was found

that PRV derived from the middle amplitude points, the maximum slope points and

TI points gave the best results, with lower relative errors and higher correlation

coefficients and reliability indices, while the dependency of the performance of the

fiducial points on the morphology of the wave was also observed, with more reliable
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PRV information extracted from forehead PPG signals.

While most of these studies are based on evaluating traditional fiducial points

that can be visualised in the PPG signal or its derivatives, Wan-Hua et al. (2022)

proposed a technique for detecting the pulse wave forward peak and investigated how

reliable are time- and frequency-domain indices extracted from PRV traces measured

using this novel fiducial point when compared to traditional fiducial points. They

found that estimating PRV indices using the forward peak from the PPG signal

is more reliable than most of the other fiducial points, especially for PPG signals

acquired from elderly subjects and from different body sites.

Given the difficulties for reliable identification of fiducial points in the pulse

waveform, some authors have also aimed to develop new methods for the detection

of these points even when the quality of the signal is not great. Such is the case

of Ricardo Ferro, B.T., Ramı́rez Aguilera, A., & Fernández de la Vara Prieto, R.R.

(2015), who proposed a new methodology for the automatic detection of onsets

and peaks in the PPG signal using the Hilbert Huang Transform (HHT), which

was evaluated by comparing results to records annotated by trained experts and to

results provided by other widely used methods, i.e., foot approximation and adaptive

threshold methods. Good accuracy and precision of the method were observed when

compared to the annotated records, and it outperformed the foot approximation

and adaptive threshold methods. However, it was only tested in data obtained from

10 healthy subjects at rest, thus further validation of this methodology should be

performed. Alqaraawi et al. (2016) proposed the use of a Bayesian classification in

order to detect peaks in PPG signals. Although tested only with 3 subjects during

rest, the algorithm was found to have a high positive predictivity, good sensitivity,

and outperforms other algorithms available in the literature. These same authors

developed another algorithm based on linear prediction analysis and Wavelet analysis

for estimating PRV from PPG signals acquired by wearable devices (Alqaraawi et al.

2016b). The algorithm was tested in 3 subjects, both during rest (5 minutes) and

while subjects were walking (5 minutes) and was compared to 2 different algorithms

available in the literature, i.e., adaptive threshold (ADT) and automatic multiscale-

based peak detection (AMPD), in terms of sensitivity and positive predictive value.

It was found that the proposed algorithm outperformed ADT and AMPD both in

stationary and non-stationary conditions.

Novel methods for obtaining PRV information without the need of the identifi-
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cation of fiducial points have also been proposed. Hayano et al. (2005) proposed

the method of Pulse Frequency Demodulation (PFDM) for the assessment of PRV.

They simulated and acquired PPG signals (from the wrist of 33 healthy subjects)

and tested the PFDM method to obtain PRV traces. PFDM is based on complex

demodulation (CDM), a non-linear method that provides amplitude and frequency

of non-stationary, oscillatory signals as a continuous function of time. PFDM is a

customized CDM, in which the algorithm is modified so it delivers good results with

pulse signals. In order to evaluate the performance of the PFDM method, an ECG

signal was simulated or obtained simultaneously, and RR intervals were extracted to

use as gold standard. Both from the PFDM-derived PRV and the ECG-based HRV,

frequency-domain indices (LF and HF) of 5-min segments were extracted, and their

agreement was evaluated. It was found that PFDM provides a reliable assessment

of PRV information, and that its accuracy is not dependent on the time resolution

of the data, i.e. the sampling rate for acquiring the PPG signals could be lower

without compromising the results. Although it seems as a promising technique, it

was only tested in resting, sleeping subjects; hence, its applicability in other circum-

stances should be evaluated in further studies. Chang, Hsiao & Hsu (2014) aimed to

estimate the instantaneous PRV by applying HHT, and to explore a new frequency

band with higher time precision in the frequency domain. As the authors claim,

PRV could contain further information related to the peripheral circulation, due

to the small oscillations of the arterial pulse waves that result from the regulation

performed by the cardiac pumping function, the respiratory movement, and the vas-

cular tone. A good correlation was found between PRV obtained using HHT and

empirical mode decomposition (EMD), and ECG-derived HRV spectra. Results led

the authors to propose the measurement of a very-high frequency (VHF) band as

an index related to baroreflex and HF power, which could serve as an indicator of

parasympathetic activities and can only be obtained from pulse wave signals that

feature a sinusoid-like pattern. In a second study, these same researchers examined

the potential of the VHF band and interpreted its physiological meaning during dif-

ferent non-stationary conditions, due to their hypothesis that PRV is influenced by

volumetric and oxygenation changes, and contains more complex information than

HRV (Chang, Hsu & Hsiao 2014). According to their findings, VHF was influenced

by respiration and head-up tilt experiments, but its dominant frequency is neither

the respiratory rate nor its combination with pulse rate, although is a potential in-
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dicator of self-regulation. As authors concluded, the relationship and usefulness of

this novel index still need further examination, but could have useful information

for cardiovascular disease diagnosis. Recently, this technique was applied for the

identification of gaming disorder in college students (Chi & Hsiao 2021).

Xu et al. (2019) also proposed the utilisation of machine learning algorithms

for the extraction of PRV from PPG signals contaminated with noise due to finger

movement. These authors applied a deep recurrent neural network for accurate seg-

mentation of PPG cardiac cycles. Using three state-of-the-art methods and the pro-

posed neural network, three indices were extracted, i.e. the peak-to-peak intervals,

onset-to-onset intervals and instantaneous heart rates, from PRV traces measured

from PPG signals acquired from right and left hand fingers, with the left finger kept

static while the right finger was performing different movements to introduce move-

ment artefact to these signals. It was concluded that the proposed method was more

robust for the detection of cardiac cycles from PPG signals contaminated with mo-

tion artefacts, even when shallow neural networks were used. Similarly, Wittenberg

et al. (2020) applied neural networks to estimate the duration of cardiac cycles from

PPG signals. Their approach was based on the automatic detection of a fiducial

point in the PPG signal that represents the location of R peaks on ECG signals.

Signals from two publicly available databases were used, and time and frequency

domain indices from ECG-based HRV and PRV obtained applying the proposed

methodology were compared. It was found that applying neural networks may im-

prove the accuracy of PRV indices, although they observed important discrepancies

between PRV and HRV parameters. Finally, Kechris & Delopoulos (2021) devel-

oped a deep convolutional network framework for the measurement of RMSSD from

PRV without detecting fiducial points from the PPG signal. The model was trained

and tested using three publicly available databases, with simultaneously acquired

ECG and PPG signals. When compared to RMSSD values estimated from HRV the

results showed low errors, even improving the performance of traditional algorithms

for fiducial point detection available in the literature.

5.2.1.2 Effects of noise and pre-processing of the photoplethysmogram

on pulse rate variability assessment

The effects of pre-processing techniques applied to obtain PRV indices were initially

analysed by Akar et al. (2013). They compared the indices extracted from PRV time
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series after filtering (using a linear Butterworth filter or a non-linear weighted Myr-

iad filter) and detrending (using linear least-squares fitting and smoothness priors),

and using several power spectrum density (PSD) estimation techniques for extract-

ing frequency-domain indices, namely periodogram, Welch’s periodogram, and Burg

method. PPG data was obtained from the middle finger for two minutes, using a

sampling rate of 250 Hz, from each of the 15 healthy adults that volunteered for

the study. According to the results, the periodogram does not provide an effec-

tive solution for each frequency band, probably due to spectral leakage, whereas

Welch’s periodogram results are more reliable. Moreover, it can be concluded that

detrending affects the spectral components of the signal, and that the detrending

method needs to be further investigated. However interesting, these results were

not compared to an ECG-derived HRV, which would allow for further analysis of

the effects of pre-processing on PRV data estimation. In the same line, Kim & Ahn

(2019) evaluated the effects of filtering strategies on PRV from PPG signals, and

found that Butterworth bandpass filters are more robust than Elliptic filters for the

assessment of PRV time- and frequency-domain indices. As shown by Liu ET. al.

(2021), there is an increasing need for standardising and defining the filters used

for PPG pre-processing in PRV analysis, given the effects these processes may have

in the time location of the fiducial points measured from the PPG signals acquired

from different body sites.

Chou et al. (2014) also proposed an alternative method for deriving frequency

related information from PRV, but with the aim of diminishing the computational

complexity of the available methods. The method used the sliding window iterative

discrete Fourier transform and the Hilbert transform, and was tested both with

simulated and with real data, obtained from 30 subjects at rest. The results obtained

showed a very small maximum relative error when compared to indices measured

from time-domain-extracted PRV (measuring the pulse-to-pulse intervals), and was

found to have a good noise immunity.

Recently, more importance have been given to the capability of extracting reliable

PRV information from contaminated PPG signals. Baek & Cho (2019) proposed a

frequency-tracking algorithm for the measurement of instantaneous heart rate from

motion-artefact contaminated PPG signals obtained from the wrist. They suggested

a novel index similar to SDNN, but more reliable and which could be used as an

alternative for noisy PPG signals. Similarly, Haddad et al. (2020) developed an
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algorithm for the detection of ectopic beats from wrist PPG signals, for the dis-

crimination of sinus rhythm and atrial fibrillation based on PRV. The application of

their algorithm allowed for a sensitivity of 93.08 ± 3.83% and a specificity of 97.80

± 2.12% for detecting subjects with atrial fibrillation, meaning an increased speci-

ficity without significantly decreasing sensitivity when compared to other methods

available in the literature. Also, Zanon et al. (2020) proposed the measurement of

a quality index for PRV data, which is related to PRV accuracy and can be used as

an indication of reliability of PRV information. This method is based on the mea-

surement of the difference between HRV and PRV indices for the estimation of an

error and quality of the extracted parameters. Similarly, Vila et al. (2021) showed

importantly reduced error levels for the estimation of PRV indices when quality in-

dices were applied directly to the PRV trace in real-time, using data acquired from

wearable devices, while several authors have demonstrated the utility of assessing

and correcting the quality of the PPG signal before PRV analysis in order to obtain

more reliable results (Neshitov et al. 2021, Wang et al. 2021, Cosoli et al. 2021).

5.2.1.3 Minimal sampling rate for pulse rate variability analysis

Another important aspect in the extraction of PRV information is the effect of

sampling rate in the analysis of PRV. Choi & Shin (2017) aimed to assess this matter

by obtaining finger PPG and ECG simultaneously from 28 healthy volunteers. Data

was obtained for 20 minutes while participants were resting, and both signals were

acquired using 10 kHz sampling rate. PPG was then down-sampled to 5 kHz, 2.5

kHz, 1 kHz, 500 Hz, 250 Hz, 100 Hz, 50 Hz, 25 Hz, 15 Hz, 10 Hz and 5 Hz.

The agreement between HRV and PRV derived from all down-sampled PPGs was

analysed by extracting time- and frequency-domain indices. Significant differences,

especially in time-domain indices, were observed once the sampling rate was below

20 Hz, indicating that PRV information can be reliably obtained from signals with

a low sampling rate, allowing for a simpler analysis of this data in wearable and

portable devices, mostly based on microcontrollers. However, this low sampling rate

could affect PRV when different population is considered, such as people suffering

cardiovascular diseases (Hejjel 2017).

In an attempt to better understand this matter, Béres et al. (2019) simulated

PPG signals using cosine waves and evaluated how different sampling rates, and

the utilisation of cubic spline interpolation to increase sampling rate, affected time-
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domain, frequency-domain and Poincaré plot PRV parameters. They found that

different indices required different sampling rates, and that cubic spline interpolation

could be used for improving the results in case of lower sampling rates. Although

interesting, their study was based on a small sample of master PPG signals with

a original sampling rate of 1 kHz. These signals were decimated to simulate lower

sampling rates, but it is not clear how this decimation may have affected PRV

indices as well. The authors concluded that RMSSD, frequency-domain indices and

the shape of the Poincaré plot are more susceptible to lower sampling rates, and

the latter shows important differences due to interpolation. In a follow-up study

with 57 PPG signals acquired from healthy volunteers at 1 kHz sampling rate, Béres

& Hejjel (2021) aimed to validate the results obtained with simulated signals, and

evaluated as well the differences between cubic-spline and parabola interpolated

signals. Their results showed a similar trend, with different minimal sampling rates

needed according to the index of interest, with AVNN being particularly robust

regardless of sampling rate, while both interpolation techniques allowed for a reduced

error due to sampling rate, with a better performance when parabola interpolation

was applied. These results are based on the comparison of PRV indices extracted

from the master, 1-kHz PPG signals and indices obtained from the decimated and

interpolated PPG signals. In a similar study, Pelaez-Coca et al. (2022) investigated

how reducing the sampling rate of PPG signals by decimation affects PRV indices

extracted using several fiducial points. Their results, obtained by comparing PRV

to HRV indices using signals simultaneously acquired from 57 subjects, showed that

a novel fiducial point referred to as the interpolated medium point, gave the best

results when sampling rate was lowered down to 50 Hz. Their analysis was based on

time- and frequency-domain indices and PPG signals were acquired from the finger

and the forehead.

Given the applicability of low-sampled PPG signals in wearable devices and

video-based PRV, several authors have proposed methodologies for improving the

reliability of PRV analysis from low-sampled PPG signals. Baek et al. (2017) evalu-

ated the reliability of the parabola approximation method for analysis of PRV when

PPG was acquired using low sampling rates. When low sampling rates are used

for obtaining PPG data, a usual alternative is to interpolate the signals to obtain

a higher-sampling-rate representation of them (Panganiban, F.C. & de Leon, F.A.

2019). Due to the morphology of the PPG signal, cubic spline interpolation has
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been widely used for increasing its sampling rate. However, this methodology has a

large computational load and requires higher power consumption. Hence, this study

aimed to evaluate a simpler methodology, the parabola approximation method, for

estimating PRV from low-sampling-rate PPG signals. The results of comparing HRV

to PRV measured from 20-Hz sampled PPGs indicate that there was no significant

difference between the parabolic and spline interpolation methods, whereas the dif-

ference between HRV and the 20-Hz-sampled-PPG-derived PRV was higher in all

cases. In concordance with the results from Choi & Shin (2017), the HF band is

more influenced by low sample rates than the LF and VLF components. However,

the correlation analysis between non-linear indices indicate a special sensitivity of

these parameters to sampling rate.

Yoshida et al. (2019) aimed to improve the accuracy of PRV indices by esti-

mating the error between ECG-derived RR intervals and PPG-based IBIs, using a

multiple linear regression model. With a sample of only three healthy subjects, the

authors concluded that, by applying their proposed model, the mean absolute error

between RR intervals and PPG IBIs was reduced from 5.49 ms to 3.83 ms, with an

average improvement of the meant absolute percentage error of 17% on LF/HF ra-

tio, being reduced from 26.7% to 9.7%. Similarly, Watanabe et al. (2020) proposed

an error compensation method based on linear interpolation and autocorrelation

measurements for improving PRV measurements obtained from low-sampled PPG

signals. Applying their proposed method, the authors found that the mean absolute

percentage error of LF/HF was only degraded by 3.3% with PPG signals sampled at

10 Hz. Liu et al. (2020) also proposed a methodology for improving the extraction of

PRV information from smartphone-based PPG signals, which are usually sampled at

a maximum of 30 Hz, based on a sum of sinusoidal functions for fitting and estimat-

ing the quality of the PPG. Their main conclusion was that applying the proposed

signal quality index can increase the accuracy of PRV information obtained using a

smartphone application, while they also found the TI point to give the best results

when PRV was compared to ECG-based HRV. These methodologies open the door

for the extraction of reliable PRV information from PPG signals acquired using low

sampling rates, especially useful for wearable devices.
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5.2.1.4 Non-linear indices from pulse rate variability

As explained by Hayano & Yuda (2021), the use of non-linear indices and novel

approaches for their determination from PRV analysis can provide useful insights

regarding autonomic function and may contain useful information that is not readily

available from the classical time- and frequency-domain indices.

In terms of measurement of entropy-related indices from the PRV, Chou, Zhang,

Feng, Lu, Lu & Xu (2017) proposed a low-computational algorithm for the measure-

ment of basic scale entropy (BSE) with the theory of sliding window iterative, which

they called SWIBSEA, in order to allow a real-time analysis of BSE in wearable and

portable systems. When compared to the measurement of BSE using the traditional

analysis, SWIBSEA results were very similar and the computational load was much

lower. In a similar manner, some authors proposed the measurement of SWISSEA

instead of SSEA for the analysis of sign series entropy, using a similar sliding window

iterative analysis (Chou, Zhang & Yang 2017). Once again, results between SWIS-

SEA and SSEA were similar and the computational needs of the latter were much

lower, allowing for a real-time application of the method. As a proof of concept,

SWISSEA was evaluated for identifying age-related changes in PRV indices, success-

fully classifying between young and old subjects. Pernice et al. (2019c) computed

the complexity of PRV trends using a linear Gaussian approximation method for

the extraction of Conditional Entropy Measures and found that PRV-based indices

had a positive bias when compared to those extracted from HRV measured from

the ECG, most likely attributable to differences between HRV and PRV than to the

novel methodology proposed. Also, they found that these entropy measures could

be used to discriminate among three conditions: subjects in supine position, at 45◦

upright position after head-up tilt, and during a mental arithmetic task in supine

position, with increased differences when measured from PRV than from HRV.

In terms of detrended fluctuation analysis (DFA), Molkkari et al. (2019) used this

non-linear analysis for classifying among sleep stages. Although classification results

are not particularly good, these were obtained by using only DFA-related indices,

which showed visible differences among sleep stages although with high variance

within the same sleep phase. Other non-linear measurements have been extracted

for PRV analysis. For instance, Nardelli et al. (2020) proposed a cross-mapping

method to assess the quality of PRV trends obtained from the wrist and finger of
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healthy volunteers, with respect to HRV information. It was concluded that, using

cross-mapping for assessing PRV quality, the information obtained from finger PPG

was more reliable for PRV assessment than that obtained from the wrist.

Perhaps one of the main drawbacks of non-linear analysis for PRV and HRV is

the lack of standardisation of these measurements. Hence, the appearance of tools

for the extraction of these indices in a more guided and standard manner, such

as that proposed by Mayor et al. (2021), may increase their applicability and the

comparability among studies using these indices.

5.2.1.5 Pulse rate variability derived from video photoplethysmography

A special interest has arisen for the measurement of PRV from non-contact, image

based PPG signals. Non-contact PPG signals can be obtained by applying image

processing techniques to images obtained from a subject skin. The changes in blood

volume can be detected by filtering and segmenting the image obtained from the

camera while a light, such as the white, flash light available in most Smartphone

cameras, illuminates the body of a subject (Sun & Thakor 2016). One of the first

attempts to obtain PRV data from non-contact, image PPG (iPPG) was presented

in by Poh et al. (2011), who used a low-cost webcam for obtaining PRV data

applying an Independent Component Analysis (ICA) strategy for the acquisition

of PPG signals from the images, obtained using a camera speed of 15 frames per

second. A good agreement between the PPG and iPPG signals was observed, as

well as between both PRV frequency spectra, and a high correlation between indices.

These results led the authors to conclude that iPPG could be used to obtain PRV

information. However, some limitations emerged from this first approach: The

low sampling rate (15 frames per second) established for the camera, and the short

measurements performed (1-min long) which are not enough to measure the spectral

indices of PRV and HRV (Task Force of the European Society of Cardiology and

The North American Society of Pacing and Electrophysiology 1996). Based on this

study, Sun et al. (2012) aimed to assess the feasibility of iPPG for measuring PRV,

and investigated the influence of different sample rates on PRV analysis, since a

low sampling frequency could modify the PPG morphology and thus the derived

PPI series, which in turn could alter the frequency representation of PRV. The

agreement between indices obtained from iPPG- and PPG-derived PRV was assessed

using Bland-Altman analysis, and their correlation was evaluated using Pearson’s
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correlation coefficients. Significant correlations were found in the estimated results,

while the Bland-Altman analysis showed that none of the biases differed significantly

from zero. Importantly, no significant influence of the sampling rate was observed

on any of the measured indices.

In 2014, McDuff et al. (2014) continued the work reported by Poh et al. (2011)

by evaluating the use of a 5-band digital camera for the acquisition of PRV data in

subjects at rest and under cognitive stress. A special camera, capable of obtaining

red (R), green (G), blue (B), cyan (C) and orange (O) channels, was used for ac-

quiring images from 10 healthy volunteers at rest (2-min) and under cognitive stress

(2-min). It was found that the most correlated indices obtained from iPPG with re-

spect to those obtained using contact PPG, were those measured from iPPG signals

that contained images taken using the orange channel, with the greater correlation

obtained from the GCO combination. Hence, the authors propose to include colour

channel sensors closer to the orange, cyan, and green wavelengths.

Other studies have aimed to increase and analyse the effects of different factors on

the acquisition of image-based PRV: Guede-Fernández et al. (2015) found significant

differences among PRV traces and indices measured using different Smartphone

models and cameras, as well as an effect on PRV due to changes in posture; Blackford

et al. (2016) demonstrated that non-contact PPG can be measured from video

images taken 25 meters apart from the object, and that PRV can be estimated

from the obtained signal; Alghoul, K., Alharthi, S., Al Osman, H. & El Saddik,

A. (2017) compared two methods, i.e. ICA and Eulerian Video Magnification for

extracting iPPG signals from video, analysing the differences between the estimated

PRV indices and HRV indices obtained from ECG signals; and Melchor Rodŕıguez,

A., & Ramos-Castro, J. (2018) aimed to evaluate the effects of motion on iPPG-

based PRV analysis, and proposed a robust tracking method for improving results

during motion conditions. Similar attempts have been performed with the aim of

improving the extraction of PRV information from video-based PPG (Cho et al.

2021).

Video PPG is a promising technique and the potential of acquiring PRV from

these signals is immense. However, the acquisition of the PPG signals, as well as the

processing of this data for PRV analysis, is different to contact PPG. Hence, further

analysis of this technique is out of the scope of this work.
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5.2.2 Applications of pulse rate variability

Since the PPG signal is easier to acquire than the ECG, several researchers have

used PRV instead of HRV in different applications. These include the detection,

characterisation and monitoring of somatic diseases; the assessment of mental health;

research related with effects of drugs and medication on the ANS; and sleep studies.

5.2.2.1 Mental health

Several studies have related HRV with mental health conditions, such as depression

(Liang et al. 2015, Vazquez et al. 2016, Koenig et al. 2016, Hamilton & Alloy 2016),

bipolar disorders (Bassett 2016), and stress (Murray 2012, Tazarv et al. 2021, Beh

et al. 2021). Hence, PRV has been proposed as an alternative to HRV to detect,

assess, and investigate several mental health conditions and pathologies.

There has been an increasing interest in understanding how stress and emotions

are reflected in the ANS, and several studies have focused on measuring PRV indices

for assessing the effect of different techniques that allow for a better stress and

emotional management, such as Mindfulness-based stress reduction programs (Geary

& Rosenthal 2011), HRV biofeedback (Sakakibara et al. 2013), hypnosis (Kekecs

et al. 2016), Taoist meditation (Volodina et al. 2021) and Baduanjin exercises (Cai

et al. 2021). Moreover, PRV has been proposed as a technique for detecting stress

in a continuous manner, achieving promising results (Choi et al. 2017, Hao et al.

2017, Jobbágy et al. 2017, Zangróniz et al. 2018, Can et al. 2019), and for classifying

among different emotional states (Park et al. 2012, Mart́ınez-Rodrigo et al. 2019,

Cho et al. 2017, Suzuki et al. 2021, Bastos et al. 2021).

In an interesting study, an emotion recognition system based on the fusion of

features obtained from lagged Poincaré plots from both HRV and PRV was proposed

(Goshvarpour et al. 2017). The authors used finger PPG and ECG obtained from

35 college students while listening to musical excerpts selected to invoke 4 emotional

states (peacefulness, happiness, sadness, and fear). Using the R peaks from the

ECG and the systolic peaks from the pulse waveform, HRV and PRV were measured

respectively, and Poincaré plots with lags from 1 to 10 were obtained. It was found

that the emotional stimuli affected HRV and PRV Poincaré plots in a different way,

and that the Poincaré measures were significantly different between lag 1 and the

other lags in all emotional states, showing smaller p-values for PRV measures than
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for HRV measures. Moreover, using support vector machines, the authors reported

accuracy values higher than 70% when using PRV and HRV features separately or

when fusing the features. Interestingly, the better results were obtained using PRV

features solely, with an accuracy of 84.1%, which was 8% higher than what was

obtained using only HRV-derived features.

The relationship between other psychiatric disorders and PRV has also been

studied. Minassian et al. (2014) aimed to assess the relationship between posttrau-

matic stress disorder (PTSD) and HRV (measured as PPG-derived PRV) in 2430

male active-duty Marines. It was found that even when Traumatic Brain Injury is

accounted for, lower PRV is significantly associated with PTSD. This same group of

researchers evaluated if PRV indices before trauma were associated with the devel-

opment of PTSD in Marines and Sailors after their return from combat (Minassian

et al. 2015). Their findings imply that the measurement of PRV before deployment

of Marines and Sailors could help identify those subjects that are more vulnerable

for developing PTSD after combat, and thus that may be monitored during and after

deployment to prevent the development of PTSD or related conditions. Recently,

Cakmak et al. (2021) developed machine learning algorithms based on PRV and

actigraphy features for the extraction of circadian rhythm patterns and the deter-

mination of PTSD outcome, finding relatively good accuracy values for classifying

among different outcomes after a traumatic incident. Major depressive disorder

(MDD) has also been related with PRV, and has been proposed as a technique for

the self-assessment and screening of MDD. It has been observed that PRV reactivity

is lowered in patients with MDD, as compared to control subjects (Kobayashi et al.

2017), and that frequency-domain indices could be employed for the identification

of MDD patients, with high sensitivity (83%) and specificity (93%) (Dagdanpurev

et al. 2018). Schizophrenia (Akar et al. 2015), psychosis (Clamor et al. 2014) and

suicidal behaviour (Sheridan et al. 2021) have also been studied, in an attempt to

use PRV for the assessment and management of these conditions, while Cainelli

et al. (2022) used PRV information for predicting psychopathology and determining

social skills in children.

5.2.2.2 Pharmaceutical research

Due to the relationship between HRV and the ANS, and the information related to

cardiac regulation provided by HRV, some studies have tried to identify the effects

79



of pharmacological drugs using HRV. Mueck-Weymann et al. (2002) investigated

the effects of atypical antipsychotics, namely Olanzapine and Clozapine upon PRV,

with the aim of comparing their effects upon neurocardiac control in schizophrenic

patients and healthy controls. Authors found a greater decrement in PRV values in

the clozapine-treated patients than those observed in the olanzapine-treated group.

This last group also exhibited a similar LF/HF ratio to that observed in healthy

controls, implying a nearly equal reduction of modulation from both branches of

ANS. Authors implied that PRV could be used as a clinically relevant tool in the

rational use of drug therapies in patients with psychiatric disorders.

Later on, Arya et al. (2008) compared the Thiopentone sodium, propofol, and

midazolam for Electroconvulsive Therapy (ET), finding a lower variability when mi-

dazolam or propofol were used, whereas thiopentone sodium generated an increase

in pulse rate; with these results, authors recommended the use of propofol as anaes-

thetic agent during ET. In 2016, Sluyter et al. (2016) examined the relationship

between pattern of statin use and brachial blood pressure (BP), measures of arterial

function and cardiovascular autonomic function. Results indicate that the duration

of the statin-based treatment is inversely related to PRV parameters in people with

diagnosed or suspected cardiac arrhythmias, which could imply a reduction of the

risk of adverse cardiovascular outcomes.

5.2.2.3 Sleep studies

Researchers have applied PPG-derived PRV to analyse different sleep disorders and

conditions, and to study the role of ANS in the resting function of sleep. Many of

these studies attempted to diminish the instrumentation and costs related to sleep

studies based on polysomnography (PSG), and several researchers have studied the

relationship of PRV with different sleep disorders. Special attention has been paid

to the study of Obstructive Sleep Apnea (OSA), both in adults and in children, due

to the difficulties in the instrumentation and experimental setup that needs to be

applied during a PSG examination, which is the primary diagnostic tool for this

disorder.

Restorative function of sleep has been studied by means of PRV and other phys-

iological signals in postmenopausal women (Takahara et al. 2008), college students

(Sakakibara et al. 2008), children having different chronic conditions (Krivec et al.

2012), and subjects with OSA (Fujimoto et al. 2018, Constantin et al. 2008). Results
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from these studies indicate that PRV indices are related to subjective sleep reports,

and to sleep efficiency and fragmentation.

The relationship between Periodic Limb Movement Disorder (PLMD) and PRV

was studied by Krishnaswamy et al. (2010) who assessed whether the presence of

increased PRV without overnight desaturation was suggestive of occurrence of pe-

riodic limb movements. It was concluded that isolated, increased PRV in overnight

oximetry could serve as an indicator of the occurrence of periodic limb movements

during sleep. PRV was also employed to determine how oximetry findings affect night

maternal cardiac ANS modulation during uncomplicated pregnancy, in women with

and without sleep-disordered breathing (SDB); findings suggest that the parasym-

pathetic activity is attenuated in pregnant women with SDB, even in cases in which

low saturation episodes were sparse (Watanabe et al. 2015).

The identification of OSA episodes and the segmentation of sleep stages has been

of primary interest in the study of sleep. Hence, PRV has been proposed for en-

hancing the current techniques available for performing these tasks. Lazaro et al.

(2012) evaluated PPG-derived PRV instead of ECG-derived HRV to discriminate

between apnoeic and non-apnoeic decreases in amplitude fluctuations of the PPG

signal (DAP) events. The number of DAP events per hour has been used as dis-

criminator of children suffering from OSA and healthy children, so a HRV-based

algorithm to discriminate apnoeic from non-apnoeic DAP events was initially pro-

posed, in order to improve the determination of OSA in children. However, as these

researchers state, HRV requires the acquisition of ECG signal. Hence, they proposed

to replace HRV with PRV obtained from PPG, to decrease the system complexity.

The DAP events classifier (a linear discriminant) improved its performance using

PRV (70.4% accuracy) instead of HRV (67.9%), while the classification of subjects

as OSA or non-OSA achieved an accuracy of 86.7% while using PRV, compared to

the 80% obtained when using HRV information. This suggests that PRV not only

can be used to discriminate DAP events, but that it carries more information than

HRV for this purpose.

Following these results, these same authors analysed the discrimination of sleep

apnoea-related DAP in children, by comparing HRV and PRV as discriminators of

the same set of DAP events (Lázaro et al. 2014). PSG records from 21 children

were analysed in their study, with a total 268 DAP events, which were clustered

as apnoea-related and non-apnoea-related events according to their physiological
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characteristics. Moreover, they classified 1-hour segments of data as normal or

pathological based on the DAP events per hour ratio. It was found that this ratio,

which was obtained both with a previous published algorithm based in PPG and

SpO2 (Gil et al. 2008) and with the proposed algorithm using PRV for classifying

DAP events, had a better discriminant power between normal and pathological frag-

ments when PRV was used. Since the features selected for PRV were different from

those selected in a previous study which used HRV instead of PRV (Gil et al. 2009),

authors concluded that the correlation between HRV and PRV may be affected by

the respiratory abnormalities occurring during OSA episodes. Interestingly, DAP

events were more accurately classified using the PRV-extracted features (70.37%),

whereas the classification accuracy of subjects reached an 86.67% accuracy, which

was a better result than that obtained using HRV information, as well as when only

PPG and SpO2 information was applied.

Dehkordi et al. (2013b) investigated the effects of sleep disordered breathing

(SDB) and of different sleep stages on PPG-derived PRV, using the Phone Oximeter,

an oximeter sensor connected to a mobile phone. A large database containing PSG

and Phone Oximeter records from 142 children was used in this study. It was found

that during both rapid eye movement (REM) and non-rapid eye movement (NREM)

sleep, the mean pulse-to-pulse intervals appeared shorter for children with SDB in

respect to children in the non-SDB group, which may indicate higher sympathetic

activity in these subjects. Moreover, in the frequency domain, the LF component

and the LF/HF ratio were higher in the SDB group, which presented a lower HF

component as well, both during REM and NREM sleep; these results confirmed

the feasibility of using PRV in monitoring ANS regulation during different sleep

stages in both healthy and SDB children. Recently, Wulterkens et al. (2021) further

demonstrated the feasibility of using PRV information, alongside accelerometry, for

the classification of sleep stages using wrist-worn wearables, reaching accuracy values

of 76.4% and 77.9% for the classification of four sleep stages in adults and children,

respectively.

The combination of PRV and other physiological markers has been proposed for

classifying OSA patients. Garde et al. (2014) proposed to classify SDB and healthy

children using both oxygen desaturation (SpO2) patterns and time- and frequency

domain PRV indices using the Phone Oximeter. Using a linear classifier and the

extracted features, an accuracy of 85% was obtained for the classification between
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SDB and non-SDB subjects. Similarly, Then, these same authors evaluated the

combination of SpO2 and PRV features for identifying OSA events that occurred

with and without oxygen desaturation (Garde et al. 2015). It was determined that

one-minute long non-OSA and OSA segments with and without desaturation differed

in PRV-based features such as mean PPI, SDNN, nLF, and nHF, along with other

SpO2-based features that were found to discriminate the three classes, and authors

concluded that combining PRV and SpO2 information, the discrimination between

OSA and non-OSA patients was better than that obtained using solely SpO2-based

features, reaching an accuracy of 78.9% using a multiple logistic regression model.

These authors also reported a multivariate logistic model based on PRV- and SpO2-

based features for the classification of OSA and non-OSA segments lasting just 30

seconds, which provided an accuracy above 73% (Garde et al. 2016), while Lazazzera

et al. (2021) used PRV, PPG amplitude and SpO2 information for the classification

of sleep disordered breathing events, with an accuracy of 75.1% for the detection of

apnoeas and hypoapnoeas, and high accuracy values for the discrimination of central

and obstructive apnoeas.

In other study, PPG- and PRV-based features (46 and 40, respectively) where

combined for the discrimination of respiratory arrests in OSA patients, reaching suc-

cess rates above 80% when using different classifiers, such as k-Nearest Neighbours

(kNN), multi-layer artificial neural networks (ANN), and support vector machines

(SVM) (Bozkurt et al. 2019); whereas Aksahin et al. (2015) used synchronisation

measurements between HRV and PRV time series to discriminate OSA patients, re-

porting good results when ANN were employed. Interestingly, the synchronisation

between HRV and PRV during OSA differed from the synchronisation of these time

series in healthy patients, which could be indicative of a difference between HRV

and PRV due to respiratory pathologies.

Non-linear indices have also been proposed for classifying apnoeic and non-

apnoeic subjects. Dehkordi et al. (2016) examined the cardiac modulation in

children in response to apnoea/hypopnea events, using spectral analysis and De-

trended Fluctuation Analysis (DFA), which determines the short- and long-range

correlations in a time series. Findings indicate that cardiac sympathetic indices of

PRV were higher at apnoea/hypopnea events for most children suffering from SDB,

and that short- and large-range fluctuations of pulse rate were shown to be more

correlated in children with SDB. Authors considered this last result as a sign of the
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effects of breathing in pulse rate control: The control of pulse rate in the range

of respiratory-related time scales seems to be much tighter in children with SDB.

Garde et al. (2017) explored the usefulness of other non-linear indices, i.e., corren-

tropy spectral density (CSD), for the identification of apnoea/hypopnea events in

children. Authors compared the results of multivariate models based on CSD and

spectral density (PSD) of PRV. All features obtained from CSD were significantly

different to those obtained from PSD analysis, and the models implemented using

CSD- and PSD based features obtained an area under the ROC curve of at least

0.72 and 0.67, respectively, indicating a better classification performance when CSD

based features were used. Authors concluded that the performance improved using

non-linear features, which may preserve non-linear characteristics and high-order

moments of PRV data. More recently, Garde et al. (2019) recommended the use of

different thresholds for OSA screening in children, in order to enhance the perfor-

mance of a classifier by including an expression of uncertainty; their results showed

good accuracy, specificity and sensitivity, and illustrate the utility of a screening

tool for OSA that could be used at home before PSG examinations.

Regarding the classification of sleep stages, Dehkordi et al. (2014) classified

sleep and wake states with a 77% accuracy, and NREM and REM sleep with an

80% accuracy, using time- and frequency-domain indices measured from PRV in

children. Fonseca et al. (2017) aimed to validate a PPG-based sleep stage classifi-

cation methodology in healthy adults by comparing the results to PSG-based sleep

stage classification. Using a combination of time-, frequency-domain and non-linear

indices obtained from PRV, they found that the algorithm proposed underestimated

sleep onset latency and wake after sleep onset time by less than 10 minutes, and

total wake time by less than 15 minutes; while it overestimated total sleep time by

less than 15 minutes and sleep efficiency by less than 5%, in comparison with results

obtained from PSG, leading the authors to conclude that PPG-based PRV may be

a potential tool for evaluating sleep in healthy adults. Finally, Beattie et al. (2017)

aimed to classify sleep stages in healthy subjects by using motion-based, PRV-based,

and breathing based features. Using leave-one-out cross-validation, they achieved an

overall accuracy of 69% when trying to classify sleep stages into 4 categories: wake,

light sleep, deep sleep, and REM. These results demonstrate the utility of PRV in-

formation for a simple assessment of sleep quality and the screening of sleep-related

disorders.
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5.2.2.4 Somatic and cardiovascular diseases

Several somatic diseases have been related with changes in HRV. Hence, numerous

studies have applied PPG for the acquisition of PRV information instead of ECG

for the measurement of HRV, due to the ease of the PPG technique. Progressive

supranuclear palsy (Brefel-Courbon et al. 2000), rehabilitation of spinal cord injured

patients (Gal-On et al. 2005), syncope (Kamiya et al. 2005), traumatic brain injury

(Melinosky et al. 2018), obstructive lung diseases (Rahman et al. 2020), smoking

(Shi et al. 2009), and concussion (Coffman et al. 2021) are only a few examples of

diseases in which PRV has been analysed. The relationship between PRV and certain

cardiovascular changes have been of special interest, probably due to the origin

of the PPG signal and the nature of HRV information. Additionally, researchers

have aimed to understand the relationship between PRV and other cardiovascular

biomarkers.

• Blood pressure (BP): The continuous, non-invasive, ubiquitous measurement of

BP has been largely studied in the last decades due to the growing population

with BP-related diseases, and due to the importance of this variable in the

assessment of health condition in all patient populations (Mukkamala et al.

2015, El-Hajj & Kyriacou 2020). The relationship between BP and PRV has,

thus, attracted attention, mainly focusing on evaluating the feasibility of using

PRV information for estimating blood pressure values, and could be considered

as one of the main research areas in PRV.

Using the second-derivative of the PPG, PRV information, and the frequency

content of the PPG signal, Fukushima et al. (2013) developed a regression

model for the estimation of cardiovascular parameters, such as cardiac output,

total peripheral resistance, and BP, achieving a 0.71 correlation with measured

BP using conventional techniques. In (2016), Gaurav et al. reported mean ab-

solute errors of 4.47 and 3.21 mmHg when estimating systolic and diastolic BP

values, respectively, using PPG and PRV features, including RMSSD, pNN50,

pNN20, mean NN, SDNN, the ratio between SDNN and mean NN, SDSD,

SD2, LF, HF, and LF/HF, and a machine learning model based on artificial

neural networks. Radha et al. (2019) employed PPG and PRV information

for estimating the nocturnal systolic BP dip from a wrist-worn sensor using

PPG data obtained from 110 healthy volunteers. PRV information was ob-
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tained along with morphological features of the signal. Multi-scale entropy

analysis, using scales from 6 to 10, was used to characterize the PRV informa-

tion. Linear regression, random forest regression (RF), multi-layer perceptron

neural networks (MLP), and long- and short- term memory networks (LSTM)

were used as models for estimating BP values. The lowest root-mean squared

errors were obtained from the RF model with 32 trees, the MLP model with

8 perceptrons, and the LSTM with 32 cells, for the relative diastolic BP, the

relative systolic BP, and the systolic BP dip, respectively. For estimating the

systolic BP and its dip, RF with 32 trees featured errors of -1.17 ± 8.01 mmHg

and 3.77 ± 4.43 mmHg, whereas the LSTM with 32 cells showed errors of -2.60

± 9.82 mmHg and 0.13 ± 3.88 mmHg, respectively. These results indicate the

capability of PPG and PRV information to obtain relatively precise informa-

tion regarding systolic BP during sleep. Similarly, Fong et al. (2019) proposed

the estimation of BP values using a multi-channel PPG system and ensemble

support vector regression machines (SVR). With PPG probes located in the

fingertip, the wrist, and the arm, the authors measured morphological fea-

tures, time- and frequency-domain PRV indices, and pulse wave velocity, and

fed the ensemble SVR model with these, reporting mean errors of 7.29 ± 5.3

mmHg and 5.01 ± 4.1 mmHg in the estimation of systolic and diastolic BP,

respectively. Results showed that better results were achieved using ensemble

SVR and multiple PPG signals, when compared with SVR models using only

pulse wave velocity; pulse wave velocity and pulse amplitude; and pulse wave

velocity and heart rate information.

The identification of hypotension and hypertension from PRV analysis have

also been investigated. Bolea et al. (2017) aimed to predict hypotensive

events in pregnant women after spinal anaesthesia during programmed cae-

sarean labour. They found that differences of ApEn values between supine and

lateral decubitus positions had the best performance for identifying between

the control and prophylactic groups, while this index did not show differences

between the groups when computed from HRV, leading the authors to suggest

that hemodynamic changes may affect peripheral regulation more than heart

regulation, hence generating differences in PRV that are absent from HRV.

The main conclusion from this study was that PRV analysis could help to

predict hypotensive events in pregnant women during caesarean section. On
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the other hand, Lan et al. (2018) aimed to predict hypertensive events during

sleep using data acquired with a ring PPG probe. They found that, from the

time- and frequency-domain indices extracted, SDNN has the highest accuracy

rate for hypertension prediction, as well as a high recall rate and specificity,

and concluded that PRV could have potential as a pre-filtering mechanism for

hypertension prediction.

• Diabetes: Nitzan et al. (1998) evaluated some indices related to the variabil-

ity of pulse rate and the PPG morphology in diabetic and healthy patients,

using infrared PPG acquired from left and right index fingers. They found

that the standard deviation and average values of the amplitude of the pulse

and the duration of the IBIs were similar for males and females, and that

the average values of these indices are significantly decreased in diabetic sub-

jects. Moreover, they reported lower correlation coefficients between indices

extracted from the right and left fingers, which could be attributed to diabetic

neuropathy. In 2013, Wu et al. extracted frequency-domain and Poincaré plot

indices from PRV trends obtained from pulse waves of 75 subjects (healthy

young, healthy middle aged, and diabetic subjects) during 20 minutes while

changing the occlusion performed with a wrist cuff. Their results showed that,

compared with the values in healthy young individuals, LF and HF were sig-

nificantly reduced in elderly subjects with diabetes both before and after RH

induction and compared with the values in healthy subjects of the same age,

these indices were significantly reduced in subjects with diabetes after RH in-

duction, which means that both ageing and diabetes result in the reduction

of autonomic function. Also, they concluded that Poincaré plot indices were

capable of showing changes due to reactive hyperaemia in diabetic subjects,

while frequency-domain indices did not show these differences. In 2017, Reddy

et al. investigated the use of PRV features for classification of diabetic and

healthy subjects, with excellent results, while this same year, Moreno et al.

(2017) proposed the use of random forest and gradient boosting decision trees,

with several PRV indices and PPG features, for the screening of type 2 dia-

betes, and found that the receiver operating characteristic (ROC) curve area

reached a mean value of 70% across different groups of subjects for detecting

diabetic patients, with sensitivity and specificity values close to those consid-
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ered as valid for the gold standard method for the detection of type 2 diabetes.

In this same direction, Guzman et al. (2021) proposed a machine learning ap-

proach for the detection of glycaemic level using mostly PRV features, reaching

a mean absolute error of 16.24 mg/dL for the measurement of blood glucose

concentration.

Chon et al. (2014) proposed a method for quantitatively assessing cardiac au-

tonomic neuropathy in type 1 diabetic mice, based on time domain, frequency

domain and non-linear parameters measured from PRV. They found that the

non-linear Principal Dynamic Mode analysis was capable of separating the

dynamics associated with the sympathetic and parasympathetic nervous sys-

tems, and showed depressed sympathetic activity and autonomic imbalance

after 3 months of the study when the onset of diabetic neuropathy was de-

tected in some of the mice. However, they found that, by using PPG for PRV

analysis, other diabetic confounders, like arterial stiffness, microvascular dys-

function and poor peripheral circulation, were present, different to what could

be expected from ECG-derived HRV analysis.

Theodorakopoulou et al. (2021) investigated cardiac autonomic activity in

women with gestational diabetes compared to women with uncomplicated

pregnancies. They found that there is an impaired ability to adapt to ex-

ercise in women with gestational diabetes, which was observed in RMSSD and

SD1.

• Atrial fibrillation (AF) and cardiac arrhythmias: Several attempts have been

proposed for the detection of cardiac arrhythmias using PRV. Couderc et al.

(2015) compared the behaviour of PRV and HRV indices for the detection of

AF, and found that, probably due to differences between the electrical and

mechanical nature of ECG and PPG, the difference between time-domain and

Poincaré plot indices measured during AF and non-AF periods were larger

when obtained from the HRV. Nonetheless, McManus et al. (2016) used PRV

indices for the classification of several types of arrhythmias and found a sensi-

tivity of 0.97, a specificity of 0.94 and an accuracy of 0.95 for the discrimination

between an irregular pulse and AF. In 2017, Conroy et al. aimed to detect

AF using an earlobe PPG sensor and time-domain PRV indices, finding an

accurate automatic AF detection method, and suggesting that pNN35 was
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the index with the best performance for this task. Similarly, Krivoshei et al.

(2017) used time-domain and non-linear indices to detect AF using PRV de-

rived from video PPG. Their proposed methodology achieved a sensitivity and

sensitivity of nearly 95%, with the combination of normalized RMSSD and

SD1/SD2 indices giving the best results.

The interest in identifying and classifying AF using PRV has grown in the last

couple of years. Sluyter et al. (2019) used PRV indices to predict AF and

related cerebrovascular events. In their study, based on a large cohort study

with a sample size of 5000 adults and a median follow up of 4.6 years, they

found that using RMSSD and irregularity index were associated with a higher

risk of AF and associated cerebrovascular events, even among those adults

without prior AF diagnosis. Similarly, Millán et al. (2020) found the best fea-

tures for AF classification from PRV based on a systematic review, and that

sensitivity, specificity and accuracy above 98% can be achieved using machine

learning algorithms and these features, while Väliaho et al. (2021) proposed

the use of a combination of PRV and PPG features for the classification of

AF, and achieved an area under the ROC curve of 0.982. In this same year,

Ding et al. (2021) proposed a novel measurement from PRV based on time

synchronous averaging and the measurement of Euclidean distance among seg-

ments of PPG signals, and achieved nearly perfect accuracy, sensitivity and

specificity, while Ramesh et al. (2021) evaluated how classification algorithms

trained with ECG-derived HRV data performed when PPG-derived PRV in-

dices were used instead, and concluded that these models could be seamlessly

adapted for their use with ambulatory wearable devices based on PPG.

• Other cardiovascular conditions: Ahn & Kong (2011) explored the correlations

of PRV with Pulse Wave Velocity and Ankle-Brachial Pressure Index in 117

male adults, in order to evaluate if PRV could be related to atherosclerosis and

arterial stiffness. They found a positive correlation between this index and

SDNN, indicating that PRV seems to be associated with Peripheral Arterial

Disease. Similarly, Chen et al. (2021) found that PRV indices, measured

using a modified air-pressure-sensing system instead of PPG, were capable

of discriminating between young adults with low- and high-risk of developing

atherosclerosis.
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In 2015, Jans et al. characterised PRV during early postoperative mobilisation

and related its changes to orthostatic impairment. They observed that the

mean NN, SDNN, RMSSD and TP indices reduced progressively in the supine

position from baseline values to 6 h and 24 h after surgery, while LF decreased

during standing from baseline to 6 h and 24 h. HF increased during standing

from baseline to 6 h and 24 h and SampEn reduced in the supine position from

baseline, but returned at 24 h. The authors concluded that PRV could be

used to detect impairment of baroreflex control during postural change in the

early postoperative period, either caused by central (attenuated sympathetic

response or increased parasympathetic response) or peripheral mechanisms (by

delayed vascular reactivity).

Muhadi et al. (2016) proposed the use of time- and frequency-domain PRV

indices to predict Major Adverse Cardiac Events (MACE) in patients with

Acute Coronary Syndrome, and found that both LF and LF/HF showed the

best performance for classifying subjects with and without MACE, even con-

sidering the small percentage of subjects that showed MACE from the sample.

5.2.3 Relationship between pulse rate variability and heart rate

variability

Several authors have investigated the relationship between HRV and PRV, trying to

validate the use of PRV instead of HRV in different applications and as an alternative

approach, which could be more viable to perform in a regular basis than ECG-derived

HRV, especially due to the widespread use of PPG sensors in wearable devices

(Georgiou et al. 2018). Nonetheless, results from these studies are inconclusive and

contradictory, and several methodological aspects make it difficult to compare the

findings. In 2013, Schäfer & Vagedes published a review study in which they aimed

to summarise the studies reported, and to conclude whether PRV could serve as an

estimate of HRV. Their revision of the literature allowed them to conclude that PRV

is a good surrogate of HRV only for studies involving healthy, young, resting subjects,

and that further studies regarding the differences between HRV and PRV are needed.

In a more recent review, the authors aimed to compare HRV and PRV obtained

from wearable devices, and this same conclusion was reached: PRV could serve as a

surrogate of HRV only during resting scenarios, whereas in any other circumstances,
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it should not be considered as a good estimator of HRV information (Georgiou et al.

2018). In a meta-analysis performed by Dobbs et al. (2019), it was concluded that

HRV information acquired using portable devices based on different techniques,

including PPG, had a small amount of absolute error when compared to ECG-

derived HRV, which could be considered acceptable under certain circumstances

given the improved practicality and compliance of HRV measurements when acquired

using portable devices in everyday scenarios. Table 5.1 summarises some of the

studies that aimed to compare pulse-wave-derived PRV to HRV information, with a

total of 26 out of 60 studies (43.3%) concluding that HRV and PRV should not be

interchangeable, and that PRV could be affected differently by both physiological

and technical aspects when compared to HRV.
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5.2.4 Advantages and limitations of pulse rate variability

As has been already mentioned, PRV has been derived for the analysis of ANS

changes under different conditions, such as the presence of mental or somatic dis-

eases, during sleep, or for evaluating the effects of pharmacological drugs. Most of

these studies were performed considering PRV as a valid surrogate of HRV derived

from ECG signals, and some results were indeed similar to those obtained in compa-

rable studies performed using HRV data. Moreover, some of them even improved the

performance of classification systems when using PRV instead of HRV. For instance,

Lazaro et al. (2012) and Lázaro et al. (2014) demonstrated that PRV showed a bet-

ter performance than HRV in identifying decreases in amplitude fluctuations of the

PPG signal (DAP) events, when trying to classify them as apnoeic- and non-apnoeic-

related. Although encouraging, almost none of the results presented on these studies

included a comparison between HRV and PRV under the studied circumstances, and

with the same subjects. Additionally, some researchers have tried to generate novel

methods and techniques for the analysis of PRV. Hayano et al. (2005) proposed the

Pulse Frequency Demodulation Method with which it is possible to eliminate the

need of identifying fiducial points in the pulse wave in its time-domain representa-

tion, allowing for a less noise-sensitive extraction of frequency-domain parameters

from PRV; while Chang, Hsiao & Hsu (2014) and Ricardo Ferro, B.T., Ramı́rez

Aguilera, A., & Fernández de la Vara Prieto, R.R. (2015) developed strategies for

obtaining PRV information from PPG by applying Hilbert Huang transform. The

former even proposed a novel frequency band present in PRV, which they concluded,

was related with the vascular effects involved in the changes of PRV, meaning that

this information should not be available on HRV derived from ECG. This is probably

one of the first studies aiming to obtain further information from PRV than what

could be measured from traditional HRV parameters. This hypothesis has been fur-

ther analysed by Yuda, Shibata, Ogata, Ueda, Yambe, Yoshizawa & Hayano (2020),

who concluded that PRV contains additional information not available in HRV, and

should be treated as an independent biomarker rather than a surrogate of HRV.

PRV seems like a logic alternative to HRV since PPG signals carry very valuable

information regarding cardiovascular parameters and is very easy to acquire in a

long-term manner in real-life scenarios. However, many factors may affect PPG

and could probably alter PRV. One important aspect that has been studied is the
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effect of the fiducial point used for determining each cardiac cycle. This issue is not

remarkable when discussing HRV: R peaks are easily identified in most ECG traces,

and due to its magnitude, physical origin, and frequency content, they are ideal

marks for segmenting cardiac cycles and deriving HRV data (Clifford 2006). PPG,

on the other hand, is a smooth signal, with slow changes and relatively constant

frequency content. Identifying the fiducial point of the pulse wave may present an

interesting challenge and an important pitfall for PRV. As mentioned by Pinheiro

et al. (2016), the best fiducial point to be used in the analysis of PRV depends on

the physiological conditions of each subject and on the analysis to be performed,

making it crucial to have an automatic algorithm to select which fiducial point to use

in each case. It is worth mentioning that most of the studies evaluating differences

between PRV parameters measured from several fiducial points found the lowest

agreement between PRV and HRV when systolic peaks from PPG are detected

and used for segmenting cardiac cycles. This is troublesome, since most of the

available studies in the literature nowadays have analysed PRV obtained from these

systolic peaks, as an analogy to the detection of R peaks for the analysis of HRV.

As shown by Peng et al. (2015) and Hemon & Phillips (2016), systolic peaks are

more sensitive to environmental changes, such as temperature, and to movement

artefacts, and the algorithms to detect them may be less accurate, yielding less

reliable PRV information. Future studies regarding PRV should aim to compare

HRV and PRV using fiducial points different from the systolic peaks, especially

when vascular changes and movement artefacts are to be considered.

Also, the way PPG signals are acquired and processed for measuring PRV needs

to be regarded. PPG, being an optical technique, is based on the interaction be-

tween tissue and light (Kyriacou & Chatterjee 2021). The wavelength at which the

tissue is illuminated affect the depth at which light penetrates, with larger wave-

lengths reaching deeper tissue (Ash et al. 2017). It is still not clear if this could

imply a difference in PRV measured from several wavelengths, although PRV has

been measured indistinctly using red, infrared, green and even orange light. Another

important aspect is the sampling frequency used for measuring PRV. As mentioned,

Choi & Shin (2017) aimed to evaluate the effect of low sampling rates on the pa-

rameters derived from PRV and found no significant differences between PRV and

HRV parameters at sampling rates as low as 20 Hz. However, as noted by Hejjel

(2017), the results obtained during their study could have been influenced by the
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health status of the subjects and by the study design, and other studies have found

diminished similarity between HRV and PRV when PPG sampling rate was lower.

More research in this field should be performed to find the ideal sampling rate for

PRV analysis.

Processing of PPG and frequency domain analysis techniques could affect PRV

results as well, as shown by Akar et al. (2013), who found differences between

PRV estimation when frequency spectra is calculated differently and when differ-

ent detrending methods are applied. It is important to remark the methodological

issues that preclude a direct comparison between PRV studies. Some facts make

it harder to have a strong conclusion regarding the relationship between PRV and

HRV, as well as the capability of the former to yield more or different information

than the latter. Small sample sizes, uneven gender and age distribution in most

studies, different location of sensors and processing approaches, unclear estimation

strategies for the different time- and frequency-domain and non-linear indices; and

the lack of statistical validation, including agreement analysis in several studies,

difficult the comparison between studies and the development of novel and reliable

conclusions regarding the relationship between HRV and PRV, and the effects of car-

diovascular and autonomic changes on PRV. This lack of standardisation for PRV

analysis has recently been flagged by Dobbs et al. (2019), as a confounding factor in

their systematic review and meta-analysis. It is urgent to establish techniques and

methodological guidelines for PRV studies, such as those established for HRV, espe-

cially when PPG is becoming the most widely used technique for obtaining health

information in real-life scenarios.

As concluded by Schäfer & Vagedes (2013) in their review, PRV is different from

HRV not only due to errors in the fiducial points or due to the processing and ac-

quisition methods applied, but also due to the nature of PPG and ECG signals,

and the physiological factors that affect each of these. PPG, being of a mechani-

cal nature, can be affected by other factors different to those that affect HRV. The

most renowned differential factor is pulse transit time (PTT), the time the blood

takes to travel from the heart to the peripheral site where the pulse wave is be-

ing measured (i Caros 2011). As demonstrated by Constant et al. (1999) and Gil,

Orini, Bailón, Vergara, Mainardi & Laguna (2010), PTT has an important role in

explaining the differences between HRV and PRV, especially in parameters such as

HF and RMSSD. Therefore, the location of the sensor used for acquiring PPG could

141



affect the relationship between PRV and HRV, and thus it is possible to hypothe-

sise that PRV measured from different body sites may yield different information

regarding the vascular path that the blood had to travel. Moreover, the relationship

between PRV and PTT allows for the arising of several conclusions regarding the

relationship between PRV and cardiovascular health. Lu & Yang (2009) indicated

that three factors (electromechanical coupling in the cardiomyocyte, pre-ejaculation

period, and PTT) are subject to variations independent from heart rate and may be

influenced by cardiovascular and ANS diseases, which could affect the relationship

between HRV and PRV in diseased subjects; Gil, Orini, Bailón, Vergara, Mainardi

& Laguna (2010) and Nardelli et al. (2021) also pointed out the effects of aging and

blood pressure on PRV, suggesting that differences between PRV and HRV could

be also due to vascular ageing; Trajkovic et al. (2011) concluded that not only

PTT may affect PRV, but also other factors such as external forces on the arte-

rial vessels, pathologies, movement artefacts and methodological issues; Heathers

(2013) indicated that PRV from different body locations could allow to differentiate

local and systemic vasoconstrictive responses; Parasnis et al. (2015), after evalu-

ating non-linear parameters in cardiovascular patients both from HRV and PRV,

concluded by raising a question: Could cardiovascular disorders be responsible for

altering the behaviour of PRV differently to that of HRV?; Shin (2016) concluded

that differences between PRV and HRV were mainly due to physiological processes

affecting vascular behaviour; and as Vasconcellos et al. (2015) pointed out, there is

not a profound explanation yet for the physiological or technical aspects that may

affect the relationship between HRV and PPG-derived PRV, nor there is a clear

hypothesis regarding the relationship between PRV and cardiovascular diseases, or

the enhanced capability of PRV to detect cardiovascular changes over HRV. In con-

clusion, PRV has been used largely as a validated surrogate of HRV. However, their

relationship is still not clear, although in healthy, young and resting subjects, PRV

could be used as an alternative to HRV. Its application in cardiovascular disease

diagnosis and monitoring should be further evaluated, since previous studies indi-

cate that cardiovascular factors such as blood pressure and ageing may affect the

parameters obtained from PRV.
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5.3 Summary

Photoplethysmography (PPG), the measurement of blood volume changes using op-

tical means, is the most commonly used physiological signal both in clinical and

wearable devices, and contains a myriad of information valuable for assessing car-

diovascular health. Pulse rate variability has been largely measured from it, and

has been proposed by several authors as a valid surrogate of heart rate variability,

especially in healthy, young, resting subjects. Nonetheless, several technical and

physiological aspects seem to affect PRV in a different manner than HRV, leading

several authors to conclude that PRV may contain additional information not readily

available in HRV regarding cardiovascular and autonomic health. Given the effects

of technical aspects on PRV analysis, there is an urgent need to standardise the

assessment of this variable from PPG signals. This and further studies regarding

the effects of changes in cardiovascular variables, such as blood pressure and arterial

stiffness, are needed in order to better understand the relationship between PRV and

HRV and, even more importantly, the role of PRV role in the diagnosis, monitoring

and assessment of cardiovascular changes.
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Chapter 6

Effects of technical aspects on

the assessment of pulse rate

variability from

photoplethysmographic signals

6.1 Aims and objectives

The extraction of PRV information from PPG signals have become increasingly used

given the widespread availability of these signals in wearable devices and in clinical

setups. However, as explained in Chapter 5, there is still no standard regarding

the analysis of PPG signals for assessing PRV information, which makes it difficult

to compare and validate results from different studies. The aim of this analysis

was to determine the combination of parameters for PRV assessment from PPG

signals that gave the lower errors in the extraction of PRV indices when compared

to indices extracted from simulated PRV trends, considered as gold standard, using

a large database of simulated signals. The use of simulated PPG signals and PRV

information allows for the direct comparison of the expected results to the extracted

PRV information, instead of using HRV information as gold standard. Thus, this

allows for a direct analysis of how the different technical aspects affect PRV analysis,

and controls for the physiological differences that may be included in the comparison

against ECG-derived HRV indices.

The simulation and processing of photoplethysmographic signals, as well as the
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figures, were performed in MATLAB (version 2020b), while statistical analyses were

done in RStudio (version 1.4.1717) and Minitab (version 19.1).

6.2 Methods and materials

6.2.1 Data simulation

PPG signals were simulated using a modified version of the model proposed by Tang

et al. (Tang, Chen, Ward & Elgendi 2020, Tang, Chen, Allen, Alian, Menon, Ward

& Elgendi 2020). In their model, a single cardiac cycle was simulated using the sum

of two Gaussian functions with parameters set to simulate excellent and acceptable

quality PPG signals. The values they proposed for the parameters describing the

Gaussian functions, i.e. ai, bi and µi, were found by determining the optimal values

when comparing the simulated cardiac cycle to annotated PPG signals from the

MIMIC III database (Moody et al. 2020, Johnson et al. 2016, Goldberger et al.

2000). In the modified version of this model, used for this study, instead of altering

the quality of the PPG waveform it is possible to determine the ratio of the a

parameters, r, from the two Gaussian functions, which alters the amplitude of the

Gaussian functions and, therefore, the quality of the PPG cycle, determined by the

presence or absence of a dicrotic notch, and its amplitude. The b and µ parameters

were selected according to what has been suggested in the original model for the

excellent quality PPG. The resulting model for the PPG cycle is shown in (6.1),

where θ corresponds to the four quadrant inverse tangent of the cosine and sine

functions of the duration of the cycle.

z(t) = a(e
− (θ(t)−µ1)

2

2b21 ) +
1

r
a(e
− (θ(t)−µ2)

2

2b22 ) (6.1)

Then, the simulated cardiac cycles were appended and the resulting signal was

detrended and low-pass filtered using a second-order Butterworth filter with a cut-

off frequency of 15 Hz. The duration of each of the appended cardiac cycles was

modified in order to include PRV information on the PPG signal. This was done by

simulating PRV information as a sum of sinusoidal waves with randomly generated

parameters that fall inside plausible physiological values for PRV. The ranges for

these parameters are shown in Table 6.1.
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Table 6.1: Ranges for the Pulse Rate Variability (PRV) parameters and the generation of
PRV gold standard values.

Parameter Range Units
Low frequency peak location (LF) 0.04 - 0.15 Hz
High frequency peak location (HF) 0.15 - 0.40 Hz
Average pulse rate (PR) 40 - 200 Beats per

minute (bpm)
Standard deviation of pulse rate (SD) 0.05 - 0.08 s

The resulting function for the randomly generated PRV information is shown

in (6.2). As can be seen, a total of 4 sinusoidal waves are summed, each of them

with different fundamental frequencies, 2 for each of the main frequency bands in

PRV analysis. This was done to increase the variability of the frequency spectrum

and to alter the area of each of the frequency bands. Further studies should aim

to better simulate these components using alternative models, such as the integral

pulse frequency modulation model (Candia-Rivera et al. 2021).

PRV = PR+ SD
2∑
i=1

(sin (2πLF (i)t) + sin (2πHF (i)t)) (6.2)

Finally, the simulation framework allows for the inclusion of four different types

of noise to the PPG signal. These noises are respiratory noise, baseline wandering,

electromagnetic noise and movement artifact, and they can be added to the signal

either independently or as a combination of noises, and their parameters can be

modified accordingly. The mathematical model for the respiratory noise follows an

amplitude modulation method, and is shown in (6.3), where x(t) and y(t) represent

the clean and noisy PPG signals. There are two parameters that can be modified for

this type of noise, the proportion of noise amplitude with respect to the amplitude

of the PPG signal, An, and the fundamental frequency for the respiratory noise,

f [Hz].

y(t) = max (x(t))[1 + An(sin (2πft))]x(t) (6.3)

The mathematical model for baseline wandering noise is similar, as shown in

(6.4), but allows for the selection of N frequency components for the noise. In this

case, the parameters are also the proportion of amplitudes, An, and the fundamental
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frequencies of each of the sinusoidal waves to add as noise.

y(t) = max (x(t))[1 + An

N∑
i=1

(sin (2πf(i)t))]x(t) (6.4)

The electromagnetic noise is added as shown in (6.5), and the same two param-

eters, An and f , can be modified accordingly.

y(t) = x(t) +An[max (x(t))] sin (2πft) (6.5)

Finally, the model for the movement artifact is shown in (6.6). It consists on

the summation of N sinusoidal waves, each of them with a fundamental frequency

f within 1 and 10 Hz. The proportion of amplitudes An allows for the modification

of the signal-to-noise ratio, as with the previously described types of noise.

y(t) = x(t) +An[max (x(t))]
N∑
i=1

sin (2πf(i)t) (6.6)

Figure 6.1 summarises the simulation process, while Figure 6.2 illustrates the

resulting PPG signals when simulated without and with each of the described noise

types.

In this study, two groups of PPG signals were simulated, according to the ratio

r used to simulate the amplitude of the Gaussian function. Excellent quality PPG

signals were simulated with ratios of r = 2, while acceptable quality PPG signals

were considered as those with r = 4. The base cardiac cycles for these two values

of r are illustrated in Figure 6.3. The main difference between these signals can be

observed in the notoriety of the dicrotic notch, i.e. its amplitude when compared to

the amplitude of the systolic peak.

In general, using the proposed framework, PPG signals with varying qualities,

signal-to-noise ratio and signal quality, and with specific PRV content can be simu-

lated. Figure 6.4 depicts excellent and acceptable PPG signals simulated using the

model with the specified r values, and with randomly-generated PRV information.

6.2.2 Experiments

Six sequential experiments (Figure 6.5) were performed using PPG signals simulated

with the model described in the previous section. These experiments were performed

in order to understand the effect of some technical aspects on the extraction of PRV
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Figure 6.1: Framework for the simulation of photoplethysmographic (PPG) signals with
randomly-generated Pulse Rate Variability (PRV) information.

information from PPG signals, considering the randomly generated PRV information

as gold standard. The technical aspects of interest in these experiments were the

algorithms and fiducial points used for the extraction of PRV, the sampling rate used

for the acquisition of PPG signals, the techniques used for the extraction of spectral

information from PRV trends, the duration of the PPG signal used to measure PRV

indices, the management of outliers from PRV trends, and the effects of different

type of noises and filters on PRV assessment from PPG signals.

In all cases, a pilot test was performed to determine the sample size needed to

observe enough differences in the results. This was done as recommended in the
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Figure 6.2: Behaviour of the different types of noise on the simulated PPG signals.

literature (Alvarado Orellana 2014). A total of 384 PRV trends were randomly

generated and different PRV indices, specific to each experiment, were extracted

Figure 6.3: Photoplethysmographic cardiac cycles generated using the proposed mode, using
ratios of value (a) r = 2 (excellent quality), and (b) r = 4 (acceptable quality). The blue and
orange dotted lines illustrate the two Gaussian functions generated, while the black continuous
line shows the result of summing these two Gaussian functions, i.e., z.
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Figure 6.4: Example of photoplethysmographic (PPG) signals simulated using the proposed
model and randomly generated pulse rate variability (PRV) information. (a) PPG signal with
excellent quality (r = 2). (b) PPG signal with acceptable quality (r = 4). (c) PRV information
used for the generation of these signals.

from the generated PRV information, considered as gold standard. Then, the sample

size needed for the identification of differences as low as 2% of the mean value

obtained for each of the extracted indices was calculated applying (6.7) or (6.8) for

differences of means (used for AVNN, SDNN, RMSSD, VLF, LF, HF, TP, centroid-

related indices, S, SD1 and SD2) or for differences of proportions (used for pNN50,

nLF, nHF, LF/HF and SD1/SD2), respectively (Colimon 2018).

n =
2(Zα

2
− Zβ)S

(µ1 − µ2)2
(6.7)

n =
(Zα

2

√
2p2(1− p2)− Zβ

√
p1(1− p1) + p2(1− p2))2

(p1 − p2)2
(6.8)
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Figure 6.5: Flow diagram of experiments performed to understand the effects of technical
aspects on pulse rate variability analysis

A sample size was obtained for each index with type I and II errors of α = 0.05

and β = 0.2, respectively, and with S estimated as the standard deviation of each

index extracted from the PRV gold standard; µ1 as the mean value of each index

extracted from the PRV gold standard; µ2 as 1.02 times µ1; p1 as the mean value of

the proportions obtained from the PRV gold standard; and p2 as 1.02 times p1. The

final resulting sample sizes for each of the experiments are shown in Table 6.2. These

were determined by selecting a value near the minimum of the resulting sample sizes

obtained for the different indices, since a larger sample size can also lead to unreliable

results in the statistical analyses (Khalilzadeh & Tasci 2017, Kaplan et al. 2014).

Both excellent and acceptable quality PPG signals, each of the signals with different

and randomly-generated PRV content, were simulated for the subsequent analyses

according to these calculated sample sizes.

Table 6.2: Sample sizes selected for the different experiments.

Experiment Number of signals
Experiment 1: Interbeat interval detection
algorithms and fiducial points

125

Experiment 2: Sampling rate 125
Experiment 3: Spectral analysis 200
Experiment 4: Duration of signal 110
Experiment 5: Outlier management 117
Experiment 6: Noise management 117
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6.2.2.1 Experiment 1: Interbeat interval detection algorithms and fidu-

cial points

The aim of this experiment was to determine the interbeat intervals (IBIs) detection

algorithm and fiducial point that provided the best performance for assessment of

PRV from the simulated PPG signals, when compared to indices extracted from

the gold standard PRV trends. Therefore, several algorithms and fiducial points

were used for the extraction of PRV information, and time-domain (AVNN, SDNN,

RMSSD and pNN50) and Poincaré plot indices (S, SD1, SD2 and SD1/SD2) were

considered for this analysis. PPG signals with 1200 cycles were simulated, and

random PRV information was added to them. This resulted in PPG signals with

around 20-min duration, which is longer than what is usually used for short-term

PRV analysis, and was considered sufficient to observe changes, especially in the

analysed indices. A sampling rate of 2048 Hz was used, in order to diminish the

effects of a low sampling rate in the detection of the fiducial points.

Five algorithms available in the literature were implemented for the extraction

of IBIs from the simulated PPG signals, both with excellent and acceptable qual-

ity. The first of these algorithms, HeartPy, was proposed by van Gent et al. (van

Gent et al. 2019). In this algorithm systolic peaks are detected using an adaptive

threshold based on a moving average and the determination of regions of interest.

The threshold is adapted according to the instantaneous heart rate and the stan-

dard deviation of peak-to-peak intervals. At the end, detected peaks are corrected

based on outlier detection and rejection using the ±30% of the mean duration of

peak-to-peak intervals. The algorithm is robust against signal clipping and has low

computational load.

The second implemented algorithm was called D2max (Elgendi et al. 2013). The

first steps of this algorithm involve filtering, clipping and squaring the signal, before

generating blocks of interest based on two moving averages, which are designed based

on the expected duration of cardiac cycles and the a point in the second derivative of

the PPG signal. The location of the systolic peak from the PPG signal is determined

as the location of the maximum point in each block of interest. This algorithm has

been shown to be robust against movement artifacts.

The algorithm proposed by Argüello Prada and Serna Maldonado has also been

implemented in this study (Prada & Maldonado 2018). This algorithm, referred
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to as Upslopes, detects systolic upslopes instead of systolic peaks, since this is a

constant feature of the PPG morphology regardless of the subject from which the

signal is acquired or the body-site. The approach consists in identifying when there

is an upslope in the signal, which is easily determined by checking if the amplitude

of i-th sample of the signal is higher than the amplitude of the previous sample,

i − 1. A counter is updated until the condition is not met, and the value of the

counter determines if the portion of the signal corresponds to a new pulse or not,

depending on a comparison threshold. If the counter is smaller than the threshold,

the algorithm determines that the current upslope does not occur due to a new

cardiac cycle and starts counting again from zero. This is a simple algorithm which

could be applied in real-time embedded applications.

Another of the applied algorithms is based on the work proposed by Conn and

Borkholder (Conn & Borkholder 2013), which aims to identify the onset of the

cardiac cycles using Wavelet transform. This method applies a fifth-scale quadratic

spline Wavelet to the PPG, in which distinct peaks appear at the start of each beat.

Using these peaks, a threshold is generated for identifying the valid range for the

PPG onset, instead of the systolic peaks. Then, the third derivative of the PPG is

obtained, and the first zero-crossing of this signal within the valid range is assigned

as the onset of each pulse. Since it applies a Wavelet transform, this algorithm is

robust to noise and shows high performance for the identification of PPG onsets.

Finally, the algorithm proposed by Li and Dong (Li et al. 2010) for the detection

of cardiac cycles from arterial blood pressure waveforms has been applied. The

first stage of this algorithm applies a low pass filter and obtains the derivative

of the signal. Thresholds are also estimated from the filtered signal. Using the

first derivative of the signal, zero-crossings are detected, and beats are evaluated

according to the estimated thresholds and the detected zero-crossings. Then, peaks

and onsets are detected from each beat, and dicrotic notches are also detected using

inflection detection. In this study, the resulting onsets from this algorithm were used

to segment the interbeat intervals.

IBIs longer than 1.25 times the median duration of all the IBIs were corrected by

looking for additional cardiac cycles in each of these longer windows. IBIs shorter

than 0.75 times the median duration of IBIs were also detected and discarded. Then,

eight fiducial points were obtained from each segmented cycle. The extracted fidu-

cial points were the systolic peak (PKS); the onset, considered as the minimum
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Figure 6.6: Fiducial points extracted from each inter-beat interval detected from the pho-
toplethysmographic signals (continuous line), its second derivative (dashed line) and third
derivative (dotted line). Red circle: Systolic peak (PKS); blue circle: Onset (ONS); yellow
circle: Tangent intersection point (TI); orange circle: Maximum slope point (M1D); purple
diamond: a point from the second derivative (A); green diamond: b point from the second
derivative (B); white star: p1 point from the third derivative (P1); black star: p2 point from
the third derivative (P2).

point before the systolic peak (ONS); the onset determined as the intersection point

between the tangent line crossing the onset and the tangent line crossing the maxi-

mum slope point (TI); the location of the maximum point in the first derivative of

the PPG cycle (M1D); the a and b points from the second derivative of the PPG

cycle (A and B, respectively); and the p1 and p2 points obtained from the third

derivative of the PPG cycle (P1 and P2, respectively). These fiducial points have

been previously described in the literature (Mej́ıa-Mej́ıa, Allen, Budidha, El-Hajj,

Kyriacou & Charlton 2021). Figure 6.6 illustrates the identification of these fiducial

points in a segmented PPG cycle and its second and third derivatives.

PRV trends were obtained as the duration of IBIs extracted from each of the

fiducial points, which were in turn obtained from the cycles segmented using each of

the IBIs detection algorithms. Both time-domain and Poincaré plot indices were ob-

tained from each of the trends. Extracted time-domain indices were AVNN, SDNN,

RMSSD and pNN50, while S, SD1, SD2 and SD1/SD2 were measured from the 1-

lag Poincaré plot, obtained applying the ellipse-fitting technique (Khandoker et al.

2013). These indices were also extracted from the gold standard PRV trends, and the

differences between the indices assessed from detected and gold standard PRV were
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calculated. A factorial analysis was then applied to determine which differences were

minimal. Since the data did not follow a normal distribution, a Box-Cox transfor-

mation (Box & Cox 1964) was applied before the analysis of variance (ANOVA) for

each extracted index. In the cases in which the ANOVA showed a difference among

factors, post-hoc analyses were performed using Bonferroni pairwise comparisons.

Lastly, to determine which combination of algorithms and fiducial points gave

the lower differences between measured and gold standard PRV, the combinations

of factors that delivered minimal differences were obtained for each index after de-

termining which indices showed a significant interaction between algorithms and

fiducial points.

6.2.2.2 Experiment 2: Sampling rate

This experiment was conducted to evaluate the effects of lowering the PPG sampling

rate in PRV extracted using the best combination of IBIs detection algorithms and

fiducial points, as determined from the previous experiment. PPG signals with 1200

cardiac cycles were simulated using sampling rates of 32 Hz, 64 Hz, 128 Hz, 256 Hz,

512 Hz, 1024 Hz and 2048 Hz. PPG signals were generated independently for each

sampling rate, instead of resampling a single set of PPG signals simulated with a

larger sampling rate.

The combination of IBIs detection algorithm and fiducial point that performed

the best in the previous experiment for excellent and acceptable PPG signals was

used for extracting PRV trends and, as in the first experiment, time domain (AVNN,

SDNN, RMSSD and pNN50) and Poincaré plot indices (S, SD1, SD2 and SD1/SD2)

were calculated from these trends, and from the gold standard PRV. Student t-tests

and Mann-Whitney tests were used for comparing the indices measured from the

extracted and gold standard PRVs, for normally and non-normally distributed data,

respectively, while normality was assessed using Lilliefors tests, which is a normality

test suitable when the parameters of the null distribution are unknown and must be

estimated (Mathworks 2022).

6.2.2.3 Experiment 3: Spectral analysis

The goal in this third experiment was to determine the best combination of param-

eters for the extraction of frequency-domain indices from PRV, considering PPG

signals simulated with a properly selected sampling rate and applying the best per-
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forming combination of IBIs detection algorithm and fiducial points, resulting from

the previous experiments.

PRV trends were randomly generated, and their power spectra were calculated

using the fast Fourier transform (FFT) with 216 number of points (nFFT). Then,

frequency-domain indices were extracted. The indices considered in this experiment

were: The power of the very low frequency band (VLF); the absolute and relative

power of the low frequency band (LF and nLF); the absolute and relative power of

the high frequency band (HF and nHF); the total power of the spectrum between

0.0033 and 0.4 Hz (TP); the ratio between LF and HF (LF/HF); and the coordinates

of the centroid of LF, HF and TP (cLFx, cLFy, cHFx, cHFy, cTPx and cTPy).

Using these PRV trends, excellent and acceptable PPG signals with 1200 cy-

cles and a proper sampling rate were simulated, and IBIs were extracted using the

best performing combination of IBIs detection algorithm and fiducial points. Then,

different strategies for obtaining frequency spectra from the extracted PRV informa-

tion were used to assess frequency-domain indices. Several algorithms were applied

to extract the spectral content of PRV signals. FFT and Welch’s power spectral

density (PWELCH) were used as classical methods. Yule-Walker’s (PYULEAR),

Burg’s (PBURG), covariance (PCOV), and modified covariance (PMCOV) autore-

gressive models were used to obtain model-based methods, as well as the multiple

signal classification (PMUSIC) algorithm was used to obtain a pseudo-spectrum.

Finally, the Lomb-Scargle algorithm (PLOMB) was also applied. In the case of

classical and model-based algorithms, the parameters presented in Table 6.3 were

optimised. From the different combinations of parameters and the different methods

for spectral analysis, the mentioned frequency-domain indices were extracted.

As was performed in the first experiment, the difference between the indices

extracted from measured and gold standard PRV trends were obtained. These dif-

ferences were then used for the statistical analysis, in which independent factorial

analysis were first performed in order to obtain the combination of factors that

gave the lowest differences when spectra was obtained using each of the different

methods, except for the Lomb-Scargle periodogram, in which no parameters need

to be modified. Then, the best combination of factors was identified for each of the

methods and these were compared using a Kruskal-Wallis test, since data did not

follow a normal distribution according to the Lilliefors test of normality of data.

Using Wilcoxon rank sum tests with Bonferroni correction, post-hoc analyses were
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Table 6.3: Combinations of parameters used for the extraction of frequency spectra from pulse
rate variability trends. Frequency resolution: number of samples used to calculate spectrum
(nFFT) divided by the sampling rate of the signal.

Methods Interpolation Frequency Order
Technique Sampling rate (Hz) resolution (Hz)

Classical Linear
or cubic
spline

4, 8, 16,
32, 64,
128, 256

0.01,
0.001,
0.0001

-

Model-
based

Linear
or cubic
spline

4, 8, 16,
32, 64,
128, 256
Hz

0.01,
0.001,
0.0001

5, 10, 15,
20, 25,
30, 35,
40, 45,
50

performed for the indices in which the Kruskal-Wallis analysis showed statistically

significant differences among methods. The best combination of method, interpo-

lation technique, frequency resolution and model order was then identified. A sim-

ilar analysis was performed using cross-correlation and Pearson (XC Pearson) and

Spearman (XC Spearman) correlation measured frequency spectra obtained from

measured and gold standard PRV. This was done to assess the similarity among

spectra extracted with the different combinations of parameters and with the dif-

ferent methods. The cross-correlation was characterised using the maximum value

of cross-correlation found (XC max), and the lag at which this maximum occurred

(XC lags).

6.2.2.4 Experiment 4: Duration of signal

The aim of this experiment was to evaluate how the length of the PPG signal

affected the assessment of time-domain, frequency-domain and Poincaré plot indices.

Therefore, excellent and acceptable quality PPG signals with randomly generated

PRV information and different lengths were simulated. Sufficiently long PRV trends

were generated, and PPG signals were simulated using the same trend. The length

of the signals increased in steps of 30 s starting from 30 s up to 20 min (1200

s). IBIs were obtained using the best combination of algorithm and fiducial point

obtained from experiment 1, and using the minimum proper sampling rate as found

in experiment 2. Then, PRV indices were assessed, and for the case of frequency

domain indices, the best strategy for spectral analysis found in experiment 3 was

applied.
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Table 6.4: Outlier detection methods

Name Outlier definition
Median IBIs with values more than three scales median absolute devi-

ations from the median
Mean IBIs with values more than three standard deviations from

the mean
Quartiles IBIs with more than 1.5 interquartile ranges above the upper

quartile or below the lower quartile
Grubb’s test IBIs are detected in an iterative manner, assuming the sample

as normally distributed. IBIs are classified as outliers using
the largest absolute deviation from the sample mean in units
of the sample standard deviation as the statistic

Generalized ex-
treme Studen-
tized deviate
(GESD) test

Similar to the Grubb’s test but optimised for multiple outliers

Moving mean IBIs with values more than three standard deviations from
the mean over a window of 5 consecutive samples

Moving median IBIs with values more than three scales median absolute devi-
ations from the median over a window of 5 consecutive sam-
ples

The differences between indices obtained from extracted PRV trends and from

gold standard trends were measured, and Friedman rank sum tests were done to

evaluate the differences between duration of the signals. This was considered as an

appropriate non-parametric alternative to a 2-way ANOVA, where the utilisation

of long PRV trends for the generation of PPG signals with different duration was

considered as blocking factor and controlled for. Wilcoxon rank sum tests with

Bonferroni correction were used for post-hoc comparisons.

6.2.2.5 Experiment 5: Outlier management

The main objective of this experiment was to establish guidelines for outlier manage-

ment in PRV analysis, after the detection of interbeat intervals. IBIs were extracted

from acceptable and excellent quality simulated PPG signals and different outlier

detection and management techniques were used to determine the effects of these

methods in PRV indices. The sampling rates and duration of the simulated PPG

signals was set according to the results from experiments 2 and 4, respectively.

Cardiac cycles were identified from the simulated PPG signals using the best

performing algorithm and fiducial point found from experiment 1. Outliers in these

IBIs traces were detected and corrected applying the methods described in Tables
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6.4 and 6.5, respectively. From the extracted IBIs, the corrected IBIs, and gold

standard PRV traces, time-domain, frequency-domain and Poincaré plot indices

were extracted. Frequency-domain analysis was performed using the best performing

strategy found from experiment 3.

The differences between indices extracted from the gold standard and the original

and corrected IBIs were calculated and used for the statistical analyses. Factorial

analyses were performed to evaluate the effects of the detection and correction meth-

ods, as well as their interaction on the differences of each of the PRV indices. Since

the data did not follow a normal distribution, as checked using the Lilliefors test,

Box-Cox transformations were applied to the differences, after finding the optimal

lambda for each case. Then, the combination of factors that gave the lowest differ-

ence for each index was compared to the differences obtained if no outlier detection

and management strategy was applied, using Wilcoxon rank sum tests. A 95%

significance value was used for all the analyses.

Table 6.5: Outlier management methods

Name Description
Mean k = 5 Replaces each outlier for the mean value of the 5 previous

IBIs
Median k = 5 Replaces each outlier for the median value of the 5 previous

IBIs
Mean Replaces each outlier for the mean value of the IBIs
Median Replaces each outlier for the median value of the IBIs
Clip Replaces each outlier with the lower or upper threshold value

for elements smaller than or higher than three scaled median
absolute deviations from the median

Previous Replaces each outlier with the previous non-outlier value
Next Replaces each outlier with the next non-outlier value
Nearest Replaces each outlier with the nearest non-outlier value
Linear Replaces each outlier after linearly interpolating neighbour-

ing, non-outlier values
Spline Replaces each outlier after applying a cubic spline interpola-

tion with neighbouring, non-outlier values
Piecewise
Spline

Replaces each outlier after applying a shape-preserving piece-
wise cubic spline interpolation with neighbouring, non-outlier
values

Makima Replaces each outlier after applying a modified Akima cubic
Hermite interpolation with neighbouring, non-outlier values
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Figure 6.7: Example of noise-corrupted, excellent quality photoplethysmographic signals
simulated for experiment 6. RES: Respiratory noise; BW: Baseline wandering; EM: Electro-
magnetic noise; MA: Movement artifact.

6.2.2.6 Experiment 6: Noise management

The aim of this final experiment was to understand how different filtering tech-

niques applied to PPG signals corrupted with different types of noise affected PRV

indices, to determine the best performing filter to apply in PRV analysis. Therefore,

PPG signals were simulated with 15 different types of noise reached by applying

all possible combinations of the 4 types of noise that can be simulated with the

proposed framework. Table 6.6 summarises these combinations and the parameters

used for the generation of noise, while Figure 6.7 and 6.8 exemplify the excellent

and acceptable signals simulated with these noises, respectively. These signals were

simulated considering the more appropriate duration and sampling rate found in

previous analyses.

Additionally, different types of filters were designed in order to evaluate which
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Table 6.6: Parameters used for the simulation of noise corrupted photoplethysmographic
(PPG) signals. RES: Respiratory noise; BW: Baseline wandering; EM: Electromagnetic noise;
MA: Movement artifact. An: Proportion of the noise amplitude with respect to the PPG signal
amplitude; f : Fundamental frequency of the noise. x: Indicates the inclusion of the specific
type of noise in the resulting signal.

Combination Types of noise Parameters
RES BW EM MA An f (Hz)

C1 x - - - 0.1 0.15
C2 - x - - 0.5 [0.08, 0.18]
C3 - - x - 0.1 60
C4 - - - x 0.07 [1.02, 7.31, 5.06]
C5 x x - - RES: 0.1

BW: 0.5
RES: 0.15
BW: [0.08, 0.18]

C6 x - x - RES: 0.1
EM: 0.1

RES: 0.15
EM: 60

C7 x - - x RES: 0.1
MA: 0.07

RES: 0.15
MA: [1.02, 7.31, 5.06]

C8 - x x - BW: 0.5
EM: 0.1

BW: [0.08, 0.18]
EM: 60

C9 - x - x BW: 0.5
MA: 0.07

BW: [0.08, 0.18]
MA: [1.02, 7.31, 5.06]

C10 - - x x EM: 0.1
MA: 0.07

EM: 60
MA: [1.02, 7.31, 5.06]

C11 x x x - RES: 0.1
BW: 0.5
EM: 0.1

RES: 0.15
BW: [0.08, 0.18]
EM: 60

C12 x x - x RES: 0.1
BW: 0.5
MA: 0.07

RES: 0.15
BW: [0.08, 0.18]
MA: [1.02, 7.31, 5.06]

C13 x - x x RES: 0.1
EM: 0.1
MA: 0.07

RES: 0.15
EM: 60
MA: [1.02, 7.31, 5.06]

C14 - x x x BW: 0.5
EM: 0.1
MA: 0.07

BW: [0.08, 0.18]
EM: 60
MA: [1.02, 7.31, 5.06]

C15 x x x x RES: 0.1
BW: 0.5
EM: 0.1
MA: 0.07

RES: 0.15
BW: [0.08, 0.18]
EM: 60
MA: [1.02, 7.31, 5.06]

filtering strategy was related to more reliable PRV indices extracted from these

corrupted signals. Both finite (FIR) and infinite impulse response (IIR) filters were

considered, with different orders and low and high cut-off frequencies.

For FIR filters, 5 design methods were considered: Equiripple filter (FIREQR),

Hamming window (FIRWIN), constrained least squares (FIRCLS), least squares

(FIRLS) and Parks-McClellan (FIRPM). For FIREQR and FIRPM, the optimal or-

der was determined using MATLAB functions, whereas for the remaining FIR filters,
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Figure 6.8: Example of noise-corrupted, acceptable quality photoplethysmographic signals
simulated for experiment 6. RES: Respiratory noise; BW: Baseline wandering; EM: Electro-
magnetic noise; MA: Movement artifact.

the sampling rate fs was used as order of the filter. In all cases, a 3 dB passband

ripple and a 40 dB stopband attenuation were considered. Similarly, two design

methods were considered for IIR filters, i.e., Butterworth (IIRBUT) and Elliptic

(IIRELL) filters. For these filters, the order was also optimised using MATLAB

functions and 3 dB and 40 dB for passband ripple and stopband attenuation. A

total of 210 filters were designed by combining these parameters and the investi-

gated values of low and high cut-off frequencies. Low cut-off frequencies consid-

ered were fc,low ∈ [0.0, 0.1, 0.2, 0.5, 1.0, 2.0] Hz, while high cut-off frequencies were

fc,high ∈ [8, 10, 12, 15, 20] Hz.

These filters were then applied with zero-phase to the noise-corrupted simulated

PPG signals, and PRV trends were extracted from filtered signals, using the best

performing interbeat intervals detection algorithm and fiducial point. Outliers were
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detected and managed as found appropriate from the previous experiment, and

time domain, frequency domain and Poincaré plot indices were estimated from PRV

trends. Spectral analysis was performed according to results from experiment 3.

The difference between the extracted indices and the indices obtained from gold

standard PRV trends was measured, and the results obtained from applying the

different filters within each of the combination of noises were compared using a

factorial analysis, in order to evaluate which combination of cut-off frequencies,

filter type and filter topology gave the most accurate results. Since these differences

did not follow a normal distribution, a Box-Cox transformation was applied in each

case, and the factorial analyses results were derived after these transformations.

6.3 Results

6.3.1 Experiment 1: Interbeat interval detection algorithms and

fiducial points

A summary of the differences between indices obtained from measured and gold

standard PRV is presented in Figures 6.9 and 6.10, for excellent and acceptable

PPG signals, respectively. Some of the extracted indices behave differently due to

the algorithms used. For instance, there are differences in pNN50 and S among

algorithms and signal quality. This needs to be considered when deciding what

kind of algorithm to use for a specific analysis involving these two indices. On the

other hand, differences among fiducial points within the same algorithm are not very

significant for AVNN and SD2.
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Figure 6.11: Results obtained from the factorial analyses both with (a) excellent quality
PPG signals and (b) acceptable quality PPG signals. Blue bars: Standardised effects of the
algorithm. Orange bars: Standardised effects of the fiducial points. Grey bars: Standard-
ised effects of the interaction between the two factors. Yellow line: Reference value; higher
standardised effects imply significance of the factor or the interaction.

As explained, a factorial analysis was performed for each index, to identify if there

were differences among algorithms and fiducial points, and to assess whether the

interaction between algorithm and fiducial point showed any statistical significance.

Figure 6.11 summarises the results obtained from these factorial analyses. It can be

observed that AVNN and SD2 are the only indices in which the fiducial points or the

interaction between algorithms and fiducial points are not statistically significant,

while all indices have similar behaviour regardless of the quality of the signal, which

could be due to the fact that all the fiducial points extracted in this study belong to

the systolic phase of the cardiac cycle, and this is not highly affected by the difference

in quality in the proposed model. Only fiducial points from the systolic phase were

considered in this experiment due to the smooth changes and varying morphologies

of the diastolic phase of the cardiac cycle obtained from PPG signals, and because

the absence of a very distinct point in this phase could introduce additional errors in

the analysis. Moreover, most of the PRV-related studies reported in the literature

make use of the fiducial points included in this experiment.

Since the aim of this experiment was to determine the best combination of fidu-

cial points and algorithms used for PRV assessment, the differences between indices

measured from gold standard and extracted PRV that did show significant interac-

tions were determined and organised in ascending order (Figures 6.12 to 6.17).
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In all cases, the minimum difference between indices obtained from gold standard

and extracted PRV were obtained using D2Max, Upslopes or Wavelet algorithms,

and using A and ONS fiducial points. It is also noticeable that there are differences in

the best combination between excellent and acceptable PPG signals, with differences

being lower in the acceptable quality signals only for SDNN analysis. Therefore, it is

important to determine the algorithm and fiducial points to use in a given analysis

considering also the quality of the signals used.

Table 6.7: Results of the post-hoc comparisons between the combination of algorithms and
fiducial points with the five lowest differences to the gold standard for each time-domain index
extracted from excellent and acceptable quality photoplethysmographic (PPG) signals. (-):
Non-significant difference. (+): Significant differences.
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Then, post-hoc comparisons were performed among the 5 combinations that

showed the lowest differences, to determine whether there was a significant difference

among them (p-value lower than 5%). These results are shown in Tables 6.7 and 6.8.

For all indices, except for pNN50 obtained from acceptable PPG signals, the first

three combinations with lowest differences do not show any statistical difference.

For both excellent and acceptable PPG, D2max was the more frequent algorithm

(15 out of 18 combinations), while Delineator for SDNN, and Wavelet and HeartPy

for pNN50 also showed good performance. The only case in which D2max was not

considered the best algorithm was for pNN50, in which Wavelet and HeartPy showed

the best performance and did not have any statistically significant differences. When

the fiducial points are considered, it can be seen that the A, ONS and TI points

showed the best behaviour in all cases. There were statistically significant differences

among these fiducial points only for pNN50 measured from acceptable PPG signals.

However, the most frequency combination of algorithm and fiducial point that gave

the lowest difference between gold standard and extracted PRV was D2max - A (8

out of 12 cases).

In summary, the algorithm with the best behaviour when compared to gold

standard PRV was D2Max, while better results were obtained using the A point

from the second derivative as fiducial point for extraction of interbeat intervals.

In most applications, however, the TI and ONS points should give similarly good

results.

6.3.2 Experiment 2: Sampling rate

Figure 6.18 summarises the time-domain and Poincaré plot indices extracted from

the simulated data using different sampling rates. The red stars on top of the bars

indicate statistically significant differences with the gold standard. In most cases,

indices extracted from both acceptable and excellent quality simulated PPG signals

showed lower values than those obtained from gold standard PRV. The standard

deviation is similar among the groups and comparable in most cases as well. Im-

portantly, the difference between gold standard and extracted PRV indices seem to

remain stable for most of the sampling rates analysed, although differences become

more noticeable for sampling rates below 128 Hz.

Most indices showed statistically significant differences to the gold standard when

the sampling rate was 64 Hz, while above 256 Hz only SDNN showed statistically
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Table 6.8: Results of the post-hoc comparisons between the combination of algorithms and
fiducial points with the five lowest differences to the gold standard for each Poincaré-plot
index extracted from excellent and acceptable quality photoplethysmographic (PPG) signals.
(-): Non-significant difference. (+): Significant differences.

Index Excellent PPG Acceptable PPG
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significant differences. The analyses performed in this experiment were based on the

extraction of PRV information using inter-beat intervals detected with the D2Max

algorithm, and the a point from the second derivative of PPG as fiducial point.

6.3.3 Experiment 3: Spectral analysis

Using 256 Hz as sampling rate for the simulated PPG signals, and D2Max and a

fiducial point for the extraction of PRV trends, spectral analysis was performed to
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these PRV trends using the different approaches described previously. From the

obtained spectra, the difference between measured and gold standard frequency

domain indices, as well as correlation indices between gold standard and measured

spectra were obtained. As explained, a factorial analysis was performed for each

independent spectral analysis method. This was done in order to evaluate the effects

of interaction among the studied factors, i.e., type of interpolation used (A), the

number of data points used for obtaining the spectrum (B), the sampling rate used

for interpolation (C), and the order of the model (D). Tables 6.9 and 6.10 summarise

the results obtained from these analyses.

Figure 6.18: Mean and standard deviation of time-domain and Poincaré plot indices extracted
from pulse rate variability (PRV), both from excellent and acceptable quality simulated pho-
toplethysmographic (PPG) signals, with varying sampling rates. Blue bars: values obtained
from gold standard PRV; orange bars: values obtained from PRV extracted from excellent
quality PPG signals; yellow bars: values obtained from PRV extracted from acceptable quality
PPG signals. Red stars indicate statistically significant difference to gold standard.
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Table 6.9: Summary of results from factorial analyses performed to evaluate the effects of
interactions among factors altered for spectral analysis of pulse rate variability obtained from
excellent quality photoplethysmographic signals. A: Type of interpolation used; B: Number of
data points used for obtaining the spectrum; C: Sampling rate used for interpolation; D: Order
of the model. ?: Significant interaction or factor. -: Non-significant interaction or factor.
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A × B - - ? - - - - - - - - - - - - - -

A × C - - - - - - - - - - - - - - - - -

B × C ? ? ? ? - - - - - - - - - ? ? ? ?

A × B × C - - - ? - - - - - - - - - ? - - -
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Table 6.9 – continued from previous page
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Table 6.9 – continued from previous page
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B × C ? ? ? ? - - - - - - - - - ? ? ? ?
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It can be observed that the behaviour of indices extracted from excellent and

acceptable quality PPG signals is, in general, very similar. Also, in all cases, except
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for PWELCH and FFT, the features that showed a significant interaction among

all factors were related to correlation between spectra. In the case of FFT and

PWELCH, HF for excellent, and TP both for excellent and acceptable quality PPG

signals showed significant interaction among the three factors (A × B × C). Also

for these two methods, the number of data points used for spectral analysis and

the sampling rate used for interpolation (B × C) were the factors with the largest

amount of indices showing significant interaction. This shows the importance of

choosing an appropriate frequency resolution for frequency-domain analysis of PRV

when this is performed using classical methods.

Table 6.10: Summary of results from factorial analyses performed to evaluate the effects of
interactions among factors altered for spectral analysis of pulse rate variability obtained from
acceptable quality photoplethysmographic signals. A: Type of interpolation used; B: Number
of data points used for obtaining the spectrum; C: Sampling rate used for interpolation; D:
Order of the model. ?: Significant interaction or factor. -: Non-significant interaction or factor.
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Table 6.10 – continued from previous page
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B ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

C ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

D ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A × B ? ? ? ? ? ? ? - - - - - ? ? ? ? ?

A × C ? ? ? ? ? ? ? ? - - - ? ? ? ? ? ?
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Table 6.10 – continued from previous page

A
lg

o
ri

th
m

Interaction Indices

V
L

F

L
F

H
F

T
P

n
L

F

n
H

F

L
F

/H
F

cL
F
x

cL
F
y

cH
F
x

cH
F
y

cT
P
x

cT
P
y

X
C

la
gs

X
C

m
ax

X
C

S
p

ea
rm

a
n

X
C

P
ea

rs
o
n

P
C

O
V

B × C ? ? ? ? - - - - - - - - - ? ? ? ?

A × D ? ? ? ? ? ? ? - ? - - ? - ? ? - ?

B × D ? ? ? ? ? ? ? ? ? - ? - ? ? ? ? ?

C × D ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ? ?

A × B × C ? ? - - - - - - - - - - - ? ? ? ?

A × B × D ? - - - - ? ? - - - - - ? ? - - ?

A × C × D ? - - - ? ? ? - ? - - - ? ? - ? ?

B × C × D ? ? ? ? - - - - - - - - - ? ? ? ?

A × B × C × D - - - - - - - - - - - - - ? - - ?

P
M

C
O

V

A ? ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ?

B ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

C ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

D ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A × B ? ? ? ? ? ? ? - - - - - ? ? ? ? ?

A × C ? ? ? ? ? ? ? ? - - - ? ? ? ? ? ?

B × C ? ? ? ? - - - - - - - - - ? ? ? ?

A × D ? ? ? ? ? ? ? - ? - - ? - ? ? - ?

B × D ? ? ? ? ? ? ? ? ? - ? - ? ? ? ? ?

C × D ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ? ?

A × B × C ? ? - - - - - - - - - - - ? ? ? ?

A × B × D ? - - - - ? ? - - - - - ? ? - - ?

A × C × D ? - - - ? ? ? - ? - - - ? ? - ? ?

B × C × D ? ? ? ? - - - - - - - - - ? ? ? ?

A × B × C × D - - - - - - - - - - - - - ? - - ?

P
M

U
S

IC

A ? ? - ? ? ? ? ? ? - ? ? ? ? ? - ?

B ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

C ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

D ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

A × B ? ? - ? ? ? ? ? ? - ? ? ? ? ? - ?

A × C ? ? - ? ? ? ? ? ? - ? ? ? ? ? - ?

B × C ? ? ? ? - ? ? - - - ? - ? ? ? ? ?

A × D ? ? - ? ? ? ? ? ? - ? ? ? ? ? - ?
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Table 6.10 – continued from previous page

A
lg

o
ri

th
m

Interaction Indices

V
L

F

L
F

H
F

T
P

n
L

F

n
H

F

L
F

/H
F

cL
F
x

cL
F
y

cH
F
x

cH
F
y

cT
P
x

cT
P
y

X
C

la
gs

X
C

m
ax

X
C

S
p

ea
rm

a
n

X
C

P
ea

rs
o
n

P
M

U
S

IC

B × D ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ? ?

C × D ? ? ? ? ? ? ? ? ? - ? ? ? ? ? ? ?

A × B × C - ? - - - - - - - - - - - - - - ?

A × B × D ? ? - ? - ? ? - ? - ? ? ? ? ? - ?

A × C × D ? ? - ? - ? ? - - - ? ? ? - ? - ?

B × C × D ? ? ? ? - - - - - - - - ? ? ? ? ?

A × B × C × D - - - - - - - - - - - - - ? - - ?

In the case of modern methods, the behaviour is not as clear, since each method

showed different significant interactions. In the case of PYULEAR and PMUSIC,

the interactions between the type of interpolation used, the number of data points

and the order of the model (A × B × D), as well as the interactions between the

type of interpolation, the sampling rate used and the order of the model (A ×

C × D) were significant in the majority of the indices, while for PBURG, PCOV

and PMCOV the maximum level of significance for most of the indices was with

two-factor interactions.

The best combination of factors that gave the lowest difference for the mea-

surement of each of the PRV indices, as well as those that delivered maximal cross

correlation to gold standard spectra were determined for each of the methods that

allowed the selection of parameters, both for excellent and acceptable quality PPG

signals (Tables 6.11 and 6.12, respectively). Once the best combinations were identi-

fied for each of the methods, these and the results obtained using the Lomb-Scargle

periodogram were compared using a Kruskal-Wallis one-way analysis of variance for

each index. Table 6.13 summarises these results. Figures 6.19 to 6.21 show the mean

and standard deviation of the differences of frequency-domain indices obtained be-

tween gold standard and measured PRV trends, considering the best combinations

of factors for each spectral analysis method, while Figure 6.22 summarise the corre-

lation results after comparing gold standard and measured PRV spectra. The best

spectral analysis should have minimal differences to gold standard results, while

achieving maximal correlation results.
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Table 6.13: Summary of results obtained from the Kruskal-Wallis one-way analysis of variance
and post-hoc comparisons. ?: Significant differences. -: Non-significant differences.

PPG Index Best Significant differences
quality results

F
F

T

P
W

E
L

C
H

P
Y

U
L

E
A

R

P
B

U
R

G

P
C

O
V

P
M

C
O

V

P
M

U
S

IC

P
L

O
M

B

Excellent VLF PMUSIC - - - - - - ?
LF PWELCH - ? ? ? ? ? ?
HF FFT ? ? ? ? ? ? ?
TP FFT ? ? ? ? ? ? ?
nLF PMUSIC ? ? - ? ? ? ?
nHF PMUSIC ? ? ? ? ? ? ?
LF/HF PMUSIC ? ? ? ? ? ? ?
cLFx PMUSIC - - - - - - -
cLFy PCOV ? ? - - - - ?
cHFx PMUSIC - - - - - - -
cHFy PYULEAR ? ? ? - - - ?
cTPx PMUSIC ? ? - - - - ?
cTPy PMUSIC ? ? - - - - ?
XC lags PMUSIC ? ? ? ? ? ? ?
XC max PLOMB ? ? ? ? ? ? ?
Spearman PCOV ? ? - - - - -
Pearson PWELCH ? - - - - ? -

Acceptable VLF PMUSIC - - - - - - ?
LF PWELCH - ? ? ? ? ? ?
HF FFT ? ? ? ? ? ? ?
TP FFT ? ? ? ? ? ? ?
nLF PMUSIC ? ? - ? ? ? ?
nHF PMUSIC ? ? ? ? ? ? ?
LF/HF PMUSIC ? ? ? ? ? ? ?
cLFx PMUSIC - - - - - - -
cLFy PBURG ? ? - - - - ?
cHFx PBURG - - - - - - -
cHFy PYULEAR ? - - - - - ?
cTPx PMUSIC ? ? - - - - ?
cTPy PMUSIC ? ? - ? ? ? ?
XC lags PMUSIC ? ? ? ? ? ? ?
XC max PLOMB ? ? ? ? ? ? ?
Spearman PCOV ? ? - - - - -
Pearson PWELCH ? - - - - ? -
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From these results, it can be observed that the classical method with better

performance was FFT, while MUSIC showed the best performance among modern

methods. Both for excellent and acceptable quality PPG signals, PMUSIC was the

best performing method for 9 and 8 of 17 indices, respectively. In terms of classical

methods, FFT showed better behaviour than PWELCH. Also, it was found that

Table 6.14: Best parameters found for spectral analysis using fast Fourier transform (FFT)
for pulse rate variability (PRV) frequency-domain indices and for achieving maximal correlation
between measured and gold standard spectra.

Index Excellent PPG Acceptable PPG
Inter- nFFT fsi Inter- nFFT fsi

polation (fres, Hz) (Hz) polation (fres, Hz) (Hz)
VLF Spline 32768

(0.0078)
256 Spline 32768

(0.0078)
256

LF Linear 512
(0.0078)

4 Linear 1024
(0.0078)

8

HF Spline 512
(0.0078)

4 Spline 512
(0.0078)

4

TP Spline 32768
(0.0078)

256 Spline 32768
(0.0078)

256

nLF Spline 512
(0.0078)

4 Spline 512
(0.0078)

4

nHF Spline 512
(0.0078)

4 Spline 512
(0.0078)

4

LF/HF Spline 41944304
(0.000061)

256 Spline 262144
(0.00098)

256

cLFx Spline 32768
(0.0078)

256 Spline 32768
(0.0078)

256

cLFy Linear 16384
(0.0078)

128 Linear 4096
(0.0078)

32

cHFx Spline 512
(0.0078)

4 Spline 512
(0.0078)

4

cHFy Spline 8192
(0.00098)

8 Spline 4096
(0.00098)

4

cTPx Linear 65536
(0.000061)

4 Linear 65536
(0.000061)

4

cTPy Linear 2048
(0.0078)

16 Linear 512
(0.0078)

4

XC lags Spline 4096
(0.0078)

32 Spline 1024
(0.0078)

8

XC max Spline 65536
(0.000061)

4 Spline 65536
(0.000061)

4

Spearman Linear 65536
(0.000061)

4 Linear 65536
(0.000061)

4

Pearson Linear 65536
(0.000061)

4 Linear 65536
(0.000061)

4
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the Lomb-Scargle periodogram did not show good reliability for the extraction of

frequency-domain indices. Tables 6.14 and 6.15 summarise the parameters with best

performance for the extraction of each index using FFT or PMUSIC, respectively.

In summary, both for excellent and acceptable quality PPG signals, the FFT showed

better performances when obtained after applying a cubic spline interpolation and

resampling PRV trends to 4 Hz, while an optimal number of samples for measuring

the spectrum is 512, which gives a resolution frequency of 0.0078 Hz. In the case

of the MUSIC method, resampling PRV trends to 4 Hz using linear interpolation

and using a fifth order model gave the best results both for excellent and acceptable

quality signals. For excellent quality PPG signals, a resolution frequency of 0.0078

Hz was also found to perform the best, although for acceptable quality PPG signals

a number of samples that gave best results increased to 32768, for a resolution

frequency of 1.2207× 10−4 Hz. Since FFT is less complex than PMUSIC, and there

were not many significant differences between the best combinations of these two

methods, applying FFT with the recommended parameters was found to be the best

option for PRV spectral analysis.

6.3.4 Experiment 4: Duration of signal

One-hundred and ten excellent, and 110 acceptable quality PPG signals, with more

than 30 min duration were simulated, using a sampling rate of 256 Hz. These PPG

signals were then segmented into shorter PPG signals, with lengths ranging from 30

s to 20 min, in steps of 30 s. The interbeat intervals were then identified from each of

the shorter PPG segments using D2Max and the a fiducial point, and time-domain,

frequency-domain and Poincaré plot indices were assessed from these PRV trends.

Spectral analysis was performed using FFT with 512 data points after interpolating

the trends to 4 Hz with a cubic spline interpolation. The frequency resolution was

then 0.0078 Hz.

Figure 6.23 shows the behaviour of PRV indices measured from excellent quality

PPG signals with varying length. Statistical analyses showed non-significant dif-

ferences among lengths for RMSSD, nHF, LF/HF, cHFx, cHFy, cTPx, S, SD1 and

SD1/SD2. The mean value of the differences for time-domain, non-centroid related

frequency-domain and Poincaré plot indices tend to be smaller in PPG signals with

duration longer than 120 s, as well as their standard deviations. The higher mean

differences were observed in the extraction of non-centroid related frequency-domain
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indices. In the case of centroid-related frequency-domain indices, the trend is op-

posite, with lower differences for y-coordinates with shorter signals, while values

related to x-coordinates remain relatively stable regardless of the duration of the

signals. As was observed in experiment 3, these indices seem to be less affected by

technical aspects than y-coordinates of centroids.

Table 6.15: Best parameters found for spectral analysis using the multiple signal classification
(PMUSIC) spectral analysis method for pulse rate variability (PRV) frequency-domain indices,
and for achieving maximal correlation between measured and gold standard spectra.

Index Excellent PPG Acceptable PPG
Inter- nFFT fsi Order Inter- nFFT fsi Order

polation (fres, Hz) (Hz) polation (fres, Hz) (Hz)
VLF Spline 512

(0.0078)
4 50 Spline 512

(0.0078)
4 50

LF Linear 512
(0.0078)

4 25 Spline 1024
(0.0078)

8 50

HF Spline 512
(0.0078)

4 40 Spline 512
(0.0078)

4 45

TP Linear 512
(0.0078)

4 40 Spline 512
(0.0078)

4 40

nLF Linear 32768
(0.00098)

32 5 Linear 32768
(0.00098)

32 5

nHF Linear 8192
(0.0078)

64 5 Linear 1048576
(0.000061)

64 5

LF/HF Linear 2048
(0.0078)

16 5 Linear 4096
(0.0078)

32 5

cLFx Spline 32768
(0.00098)

32 25 Spline 32768
(0.00098)

32 25

cLFy Linear 4096
(0.0078)

32 5 Linear 4096
(0.0078)

32 5

cHFx Spline 32768
(0.0078)

256 15 Spline 32768
(0.0078)

256 15

cHFy Linear 262144
(0.00098)

256 10 Linear 262144
(0.00098)

256 10

cTPx Linear 131072
(0.00098)

128 15 Linear 131072
(0.00098)

128 15

cTPy Linear 524288
(0.000061)

32 5 Linear 524288
(0.000061)

32 5

XC lags Linear 262144
(0.00098)

256 5 Linear 262144
(0.00098)

256 5

XC max Linear 4194304
(0.000061)

256 15 Linear 4194304
(0.000061)

256 15

Spearman Spline 65536
(0.000061)

4 15 Spline 131072
(0.000061)

8 15

Pearson Linear 65536
(0.000061)

4 50 Linear 65536
(0.000061)

4 45
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In the case of acceptable quality PPG signals, Friedman rank sum tests showed

non-significant differences among lengths for nHF, cLFx, cHFx, cHFy, cTPx and

cTPy. The behaviour of the mean values and standard deviations (Figure 6.24)

is similar as that observed with excellent quality PPG signals: The differences be-

come smaller and less variable with PPG signals longer than 120 s, and differences

become stable with duration longer than 300 s. Again, differences are larger for

non-centroid related frequency-domain indices, while the same behaviour can be

observed in centroid-related indices.

Since the aim of this experiment was to determine how long PPG segments

need to be for reliable estimation of PRV indices, the minimum length at which

Figure 6.23: Mean and standard deviations of the differences between indices extracted from
measured and gold standard pulse rate variability trends with varying lengths of excellent
photoplethysmographic signals. Differences tended to stabilise with durations longer than 120
s.
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no significant differences were observed for each index and each PPG signal quality

were obtained from the post-hoc comparisons (Table 6.16). It was observed that

pNN50, HF, and TP needed at least 90 s long PPG signals. Hence, PPG signals of

at least this length should be considered for reliable PRV estimation.

6.3.5 Experiment 5: Outlier management

For this experiment, PPG signals were simulated using a sampling rate of 256 Hz

and with a length of 300 s (5 min), given the current guidelines for HRV and PRV

analysis (Task Force of the European Society of Cardiology and The North Ameri-

can Society of Pacing and Electrophysiology 1996) and that it is longer than what

Figure 6.24: Mean and standard deviations of the differences between indices extracted from
measured and gold standard pulse rate variability trends with varying lengths of acceptable
photoplethysmographic signals. Differences tended to stabilise with durations longer than 120
s.
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Table 6.16: Post-hoc comparisons results for differences between indices extracted from
measured and gold standard pulse rate variability trends that showed statistically significant
differences among photoplethysmographic signal duration, both with excellent and acceptable
quality.

Index Minimum length without significant differences (s)
Excellent PPG Acceptable PPG

AVNN 60 60
SDNN 30 30
RMSSD 30 60
pNN50 90 90
VLF 30 30
LF 60 60
HF 90 90
TP 90 90
nLF 30 30
nHF 30 30
LF/HF 30 30
cLFx 30 30
cLFy 30 30
cHFx 30 30
cHFy 30 30
cTPx 30 30
cTPy 30 30
S 30 30
SD1 30 60
SD2 60 60
SD1/SD2 30 60

was found in the previous experiment. Using D2Max and the a points as fiducial

points, PRV trends were obtained from the simulated PPG signals, and then outliers

were detected and corrected as explained above. From these trends, time-domain,

frequency-domain and Poincaré plot indices were extracted. As found in experiment

3, PRV trends were resampled to 4 Hz using a cubic spline interpolation and FFT

with 512 data points was used for spectral analysis.

Factorial analyses with Box-Cox transform were performed to determine the ef-

fects of the different methods for identifying and managing outliers. It was found

that there were significant differences due to the interaction of factors only for mea-

suring pNN50, both with excellent and acceptable quality signals. The detection

method was a significant factor for SDNN, RMSSD, SD1 and SD2 in both types

of signals, while AVNN and SD1/SD2 showed significant differences due to the de-

tection method only when measured in acceptable quality signals. The correction

method did not show statistically significant differences for any index or any type

205



of signal. Table 6.17 summarises the combination of factors that gave the lowest

difference to the gold standard for the estimated indices.

These best combination where then compared to PRV indices extracted from

Table 6.17: Combination of factors with the lowest difference to indices extracted from the
gold standard.

Index Excellent PPG Acceptable PPG
A B A B

AVNN † Quartiles Median Quartiles Median
SDNN ‡ GESD test Next Mean Next
RMSSD ‡ Moving me-

dian
Next Grubb’s test Next

pNN50 ? Mean Median k = 5 Mean Median
LF Moving me-

dian
Previous Moving me-

dian
Previous

HF Moving me-
dian

Median k = 5 Moving me-
dian

Piecewise
Spline

TP Moving me-
dian

Next Moving me-
dian

Nearest

nLF Moving me-
dian

Linear Moving me-
dian

Linear

nHF Moving me-
dian

Median k = 5 Mean Linear

LF/HF Moving me-
dian

Median k = 5 Moving me-
dian

Median k = 5

cLFx Mean Clip Moving me-
dian

Previous

cLFy Moving me-
dian

Linear Moving me-
dian

Median k = 5

cHFx Moving me-
dian

Previous Moving me-
dian

Previous

cHFy Moving me-
dian

Spline Moving me-
dian

Linear

cTPx Moving me-
dian

Mean Mean Clip

cTPy Moving me-
dian

Nearest Moving me-
dian

Clip

S Moving me-
dian

Next Moving me-
dian

Next

SD1 ‡ Moving me-
dian

Next Grubb’s test Median

SD2 ‡ Quartiles Linear Quartiles Median
SD1/SD2 † Mean Next Grubb’s test Makima
A: Detection method
B: Correction method
‡ Significant difference due to A on both types of signals
† Significant difference due to A on acceptable signals
? Significant difference due to the A × B on both types of signals
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the original interbaet intervals without managing outliers. It was found that only

RMSSD (p < 0.001) and SD1 (p < 0.001) showed significant differences when mea-

sured from excellent PPG signals, while S showed significant differences (p < 0.001)

when measured from both types of signals. In all these cases, the mean difference be-

tween extracted and gold standard indices were lower when no outlier management

strategy was applied, as shown in Table 6.18.

These results indicate that there is no need to apply any additional outlier man-

agement strategy besides those employed in the interbeat intervals detection algo-

rithm for a reliable PRV estimation.

6.3.6 Experiment 6: Noise management

As explained in the previous section, 5-min PPG signals were simulated and all the

possible combinations of noise were included to the simulated signals. These signals

were simulated using a 256 Hz sampling rate. The contaminated signals were then

filtered using different FIR and IIR filters, and varying cut-off frequencies. From

the filtered signals, PRV trends were obtained applying the D2max algorithm, and

using a points for the interbeat interval detection. No additional outlier manage-

ment strategy was applied to these trends and time-domain, frequency-domain and

Poincaré plot indices were obtained. Spectral analysis was performed after resam-

pling the trends to 4 Hz using a cubic spline interpolation, and by applying the FFT

with 512 data points.

Factorial analyses with Box-Cox transform were performed for each group of

signals with a particular combination of noises, to evaluate the impact of the type of

filter and cut-off frequencies on PRV analysis when contaminated PPG signals with

each noise are analysed. Tables 6.19 and 6.20 summarise the results obtained from

Table 6.18: Average difference to gold standard for indices that showed significant differences
between applying or not applying outlier management strategies

Index Excellent PPG Acceptable PPG
No manage- Best com- No manage- Best com-

ment bination ment bination
RMSSD −0.0014 ±

0.0062
0.0045 ±
0.0064

- -

S −0.0100 ±
0.0408

0.0115 ±
0.0448

−0.0076 ±
0.0374

0.0135 ±
0.0410

SD1 −9.78x10−4 ±
0.0043

0.0032 ±
0.0045

- -
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these factorial analyses, when using excellent and acceptable quality PPG signals,

respectively.

Table 6.19: Summary of results from factorial analyses performed to evaluate the effects
of interactions among factors altered for the filtering of excellent quality, noise contaminated
photoplethysmographic signals and pulse rate variability analysis. A: Type of filter; B: Low
cutoff frequency; C: High cutoff frequency. ?: Significant interaction or factor. - : Non-
significant interaction or factor.

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? - - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

Continued on next page
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
B

W
VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

E
M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? - - ? ? - ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

Continued on next page
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

E
M

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

AVNN ? ? ? ? ? ? ?

Continued on next page
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
R

E
S

+
B

W
SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

E
M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? - - ? ? - ?

nHF ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S
+

E
M

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

RES + SD2 ? ? ? ? ? ? ?

MA SD1/SD2 ? ? ? ? ? ? ?

B
W

+
E

M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - ?

cLFy ? ? ? ? ? ? ?

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

B
W

+
M

A

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? ? - ? - - ?

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

E
M

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
E

M
+

M
A

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

B
W

+
E

M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

RES + AVNN ? ? ? ? ? ? ?

BW + SDNN ? ? ? ? ? ? ?

MA RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S
+

B
W

+
M

A

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? ? - ? - - ?

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? - ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

E
M

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
R

E
S

+
E

M
+

M
A

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

+
E

M
+

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? ? ? - - ?

cLFy ? ? ? ? ? ? ?

cHFx ? ? - ? - - ?

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

AVNN ? ? ? ? ? ? ?
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Table 6.19 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S
+

B
W

+
E

M
+

M
A

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? ? ?

cHFx ? ? - ? - - ?

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? - ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

Table 6.20: Summary of results from factorial analyses performed to evaluate the effects of
interactions among factors altered for the filtering of acceptable quality, noise contaminated
photoplethysmographic signals and pulse rate variability analysis. A: Type of filter; B: Low
cutoff frequency; C: High cutoff frequency. ?: Significant interaction or factor. - : Non-
significant interaction or factor.

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
R

E
S

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? - - ? ? - -

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

B
W

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

E
M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? - ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

Continued on next page

220



Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
M

A
AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? - ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

B
W

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S
+

B
W

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

E
M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? - - ? ? - -

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? - - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

RES + SD1 ? ? ? ? ? ? ?

EM SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx - ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - - - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

+
E

M

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

B
W

+
E

M

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? ? ? - - ?

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

B
W

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - ?

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
B

W
+

M
A

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

E
M

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? - ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? ? ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

RES + AVNN ? ? ? ? ? ? ?

BW + SDNN ? ? ? ? ? ? ?

EM RMSSD ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

R
E

S
+

B
W

+
E

M

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - -

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

B
W

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? - - ?

Continued on next page

226



Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
R

E
S

+
B

W
+

M
A

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

E
M

+
M

A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? - ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx - ? - ? - - -

cLFy ? ? ? ? ? - -

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C

B
W

+
E

M
+

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?

nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? ? - ?

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

R
E

S
+

B
W

+
E

M
+

M
A

AVNN ? ? ? ? ? ? ?

SDNN ? ? ? ? ? ? ?

RMSSD ? ? ? ? ? ? ?

pNN50 ? ? ? ? ? ? ?

VLF ? ? ? ? ? ? ?

LF ? ? ? ? ? ? ?

HF ? ? ? ? ? ? ?

TP ? ? ? ? ? ? ?

nLF ? ? ? ? ? ? ?
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Table 6.20 – continued from previous page

Noise Index Interaction

A B C A × B A × C B × C A × B × C
R

E
S

+
B

W
+

E
M

+
M

A
nHF ? ? ? ? ? ? ?

LF/HF ? ? ? ? ? ? ?

cLFx ? ? - ? ? - -

cLFy ? ? ? ? ? - ?

cHFx ? ? - ? - - -

cHFy ? ? ? ? ? ? ?

cTPx ? ? ? ? ? ? ?

cTPy ? ? ? ? ? ? ?

S ? ? ? ? ? ? ?

SD1 ? ? ? ? ? ? ?

SD2 ? ? ? ? ? ? ?

SD1/SD2 ? ? ? ? ? ? ?

From these results, it can be seen that the three factors, i.e., the type of filter

and its cut-off frequencies, have a significant effect in most PRV indices, as well as

their interactions, when excellent and acceptable quality PPG signals are used, and

these are contaminated with different kind of noises. In line with what was found in

previous experiments, the x-coordinates of centroid-related indices tend to be less

affected by the interaction of factors.

As was done in previous experiments, the combinations of factors that gave the

lowest difference to gold standard indices were determined. These differences found

using the best combination of factors for each type of noise and each index are

shown in Figures 6.25 and 6.26. These figures show the absolute difference between

PRV indices obtained from measured and gold standard PRV trends. The pNN50

index is not shown given the extremely large differences shown in the measurement

of this index, probably due to the presence of outliers in the detection of IBIs from

contaminated PPG signals. Therefore, care should be taken when this particular

index is measured from PRV extracted from noisy PPG signals regardless of the

filtering strategy used. Interestingly, pNN50 was more affected when extracted from

noise-contaminated excellent quality PPG signals.
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Table 6.21: Best combination of factors for filtering excellent quality photoplethysmographic
signals with different types of noise. FIR: Finite impulse response filters. IIR: Infinite impulse
response filters. RES: Respiratory noise. BW: Baseline wandering. EM: Electromagnetic
noise. MA: Movement artifact. fclow: Low cut-off frequency. fchigh: High cut-off frequency.

Noise Type of filter fclow (Hz) fchigh (Hz)
RES IIR Elliptic 0 20
BW IIR Elliptic 0 12
EM IIR Elliptic 0 20
MA IIR Elliptic 0.2 20
RES + BW IIR Elliptic 0 20
RES + EM IIR Elliptic 0.2 20
RES + MA FIR Equiripple 1 8
BW + EM IIR Elliptic 0 20
BW + MA FIR Parks-McClellan 2 12
EM + MA IIR Elliptic 0.1 20
RES + BW + EM IIR Elliptic 0.1 20
RES + BW + MA FIR Equiripple 1 8
RES + EM + MA FIR Equiripple 0.1 12
BW + EM + MA FIR Equiripple 0.1 12
RES + BW + EM + MA FIR Equiripple 0.1 12

In the case of the other PRV indices obtained from noise contaminated, excellent

quality PPG signals, frequency-domain indices showed a relatively stable difference

to gold standard, regardless of the type of noise. VLF was the index that showed the

larger differences to gold standard. Time-domain and Poincaré plot indices did show

changes in the differences due to the noise present in the signal. Interestingly, the

more complex the noise, the lower differences were obtained after filtering the PPG

signal with optimal parameters. For these indices, AVNN was the most affected one.

A similar behaviour can be observed when PRV is obtained from noise-contaminated,

acceptable quality PPG signals.

The most common parameters that gave the lowest differences for each of the

types of noise are shown in Tables 6.21 and 6.22, for excellent and acceptable quality

PPG signals respectively. It was observed that the extraction of PRV from excellent

and acceptable quality PPG signals contaminated with different types of noise tends

to be more reliable if the PPG signals are filtered using elliptic IIR filters, or equirip-

ple or Parks-McClellan FIR filters. There were differences in these results due to

the different quality of signals, but these three types of filters showed the lowest dif-

ferences to gold standard indices. Again, it should be remarked that pNN50 showed

an unreliable behaviour, and care should be taken when measuring this index from

PRV extracted from noise-contaminated PPG signals.
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Table 6.22: Best combination of factors for filtering acceptable quality photoplethysmo-
graphic signals with different types of noise. FIR: Finite impulse response filters. IIR: Infinite
impulse response filters. RES: Respiratory noise. BW: Baseline wandering. EM: Electro-
magnetic noise. MA: Movement artifact. fclow: Low cut-off frequency. fchigh: High cut-off
frequency.

Noise Type of filter fclow (Hz) fchigh (Hz)
RES IIR Elliptic 0 20
BW FIR Parks-McClellan 0 20
EM IIR Elliptic 0 20
MA IIR Elliptic 0.1 20
RES + BW IIR Elliptic 0 12
RES + EM IIR Elliptic 0 20
RES + MA FIR Parks-McClellan 0 10
BW + EM FIR Parks-McClellan 0 20
BW + MA FIR Parks-McClellan 0 12
EM + MA FIR Parks-McClellan 0.1 20
RES + BW + EM IIR Elliptic 0 20
RES + BW + MA FIR Parks-McClellan 0 10
RES + EM + MA FIR Equiripple 0 8
BW + EM + MA FIR Parks-McClellan 0.5 15
RES + BW + EM + MA FIR Equiripple 0.5 8

For excellent quality PPG signals and most of the types of noises studied in this

experiment, lower low cut-off frequencies gave better results. In the case of high

cut-off frequencies, most results showed better performance when 20 Hz was used

as high cut-off frequency. Only when movement artifact and respiratory noise, or

when movement artifact, respiratory noise and baseline wandering where present in

the signal, the high cut-off frequency with better performance was found to be 8 Hz.

This could be a result of the frequency content of the movement artifact.

When acceptable quality signals were analysed, the lower low cut-off frequency

used, the better results were obtained, with most filters acting as low pass filters.

For high cut-off frequencies, a similar pattern was observed as in excellent quality

PPG signals.

6.4 Discussion

PPG-based PRV has been proposed as an alternative to evaluate cardiovascular

autonomic activity, instead of HRV acquired from ECG signals. However, the rela-

tionship between these two variables is not entirely understood, and there is evidence

of both physiological and technical aspects that may affect PRV differently to HRV

(Schäfer & Vagedes 2013). Moreover, although guidelines have been proposed for
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the extraction and analysis of HRV information from ECG signals (Task Force of

the European Society of Cardiology and The North American Society of Pacing and

Electrophysiology 1996), there is not a standard procedure for the analysis of PRV

information from pulse wave signals, specifically from PPG. In this chapter, the aim

was to evaluate how certain technical aspects affect the assessment of frequently

used time-domain, frequency-domain and Poincaré plot indices from PRV. For this,

a model for simulating PPG signals with varying PRV information was proposed,

and six experiments were performed for evaluating the effects of these technical

aspects on PRV assessment.

6.4.1 Signal simulation

Simulation of PPG signals opens the door for the development and assessment of

novel algorithms and techniques that aid in a more efficient and reliable analysis of

the PPG (Tang, Chen, Ward & Elgendi 2020, Tang, Chen, Allen, Alian, Menon,

Ward & Elgendi 2020). This is due to the capability of simulating a large number of

signals with varying features, such as sampling rate, mean heart rate or the quality

of the signal. Moreover, it allows for the analysis of signals in a controlled environ-

ment, in which no physiological or environmental factors can affect the information

obtained from the PPG.

Different mathematical models have been proposed in the literature for the sim-

ulation of PPG signals. As in the model used for this study, Tang et al. (Tang,

Chen, Ward & Elgendi 2020, Tang, Chen, Allen, Alian, Menon, Ward & Elgendi

2020) and Mart́ın-Mart́ınez et al. (2013) proposed simulating PPG signals based on

the summation of two independent Gaussian functions, whereas other models have

used more Gaussian functions for the simulation and parameter estimation of PPG

signals (Rubins 2008, Wang et al. 2013, Sološenko et al. 2017). The selection of the

2 Gaussian models for this study was based on the simplicity for modelling a single

pulse with a given duration. Moreover, the quality of the simulated signal in the

proposed model can be varied by changing the ratio of amplitudes of the Gaussian

functions, which allow for the simulation of PPG signals with varying morphology,

which could more reliably simulate signals acquired from different body sites, such

as the earlobe or the neck (Charlton et al. 2019), or with varying vascular conditions,

such as ageing (Allen & Murray 2003). Being able to simulate PPG signals with

varying morphology could also allow for other studies, such as the development of
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signal quality indices for PPG signals measured from different body sites (Nardelli

et al. 2020).

Since the main aim of this study was to evaluate the effects of some technical

aspects on PRV information extracted from PPG, the duration of the pulses for

the simulated PPG signals were determined using a sinusoidal wave with randomly

selected features, i.e., random amplitude, frequency content and offset. Each of these

features were related to specific PRV indices: The amplitude relates to the standard

deviation of the inter-beat intervals, SDNN; the frequency content was determined

to belong in the frequency bands of interest for short-term PRV analysis (i.e. low-

and high-frequency bands, LF and HF); and the offset relates to the average duration

of the inter-beat intervals, AVNN. Therefore, these parameters were generated in

specific ranges that could be observed in human beings.

By comparing the results obtained after processing the simulated signals to

known features from the simulated PRV information, it was possible to evaluate

the effects of some of these technical aspects on PRV, specifically the algorithms

and fiducial points used to detect cardiac cycles and the sampling rate used to ac-

quire PPG signals, in the absence of other confounding factors, such as movement or

respiration. Although these aspects may alter the technical aspects of PRV analy-

sis, they also have a physiological effect that may confound results of similar studies

when PRV is obtained from real PPG signals and compared to ECG-derived HRV.

Hence, although similar studies can be found in the literature, the validation of these

factors in these studies is based on the comparison between PRV- and HRV-related

indices, with HRV extracted from ECG signals considered as the gold standard. As

has been mentioned, although PRV and HRV have a similar origin and HR and PR

can be used as surrogates (Schäfer & Vagedes 2013), HRV and PRV are not always

the same, and by comparing indices extracted from these two techniques, a bias

could be introduced in the results. Hence, using simulated PPG signals with known

PRV information allows for an unbiased assessment of technical aspects related to

the acquisition and processing of PPG signals for the analysis of PRV information.

6.4.2 Experiment 1: Interbeat interval detection algorithms and

fiducial points

The first experiment performed in this study aimed to determine the effects of chang-

ing the inter-beat intervals detection algorithm and the fiducial points used for the

235



extraction of PRV from PPG signals.

In general, it was observed that D2Max outperformed the other evaluated algo-

rithms, especially when onset-related fiducial points were used, i.e., the A point from

the second derivative of the PPG, the valley (ONS), and the intersection point of

the tangent lines (TI) of the PPG. On the other hand, the combination of HeartPy

and A points, for excellent PPG quality, and Delineator and P2 points, for accept-

able PPG quality, were the algorithms and fiducial points that showed the worst

performance for extracting PRV indices. In line with previous studies that have

shown that PPG can be used to reliably estimate HR (Schäfer & Vagedes 2013),

AVNN and SD2, which has been shown to reflect the same processes from the PRV

(Khandoker et al. 2013), did not show a significant effect when the fiducial points

were modified. Therefore, these indices could be extracted reliably from PRV traces

derived using any of these fiducial points.

Although the combination of algorithms and fiducial points selected could affect

the extracted indices, it is important to notice that most of the best performing

combinations did not show statistically significant differences among them, opening

a variety of options for the extraction of PRV from PPG signals, which could depend

on several factors for the selection of the best combination for a given application,

such as the computing power available, the indices of interest and the expected signal

quality. Other algorithms and fiducial points have been proposed in the literature,

and could give different results. However, it is evident that fiducial points related

to the onset of the pulse tend to perform better, as do algorithms that are based on

the identification for these points for the segmentation of inter-beat intervals from

the PPG signal.

Similar studies can be found in the literature, in which authors compared PRV

indices extracted from PPG using different fiducial points for the estimation of inter-

beat intervals. Posada-Quintero, H.F., Delisle-Rodŕıguez, D., Cuadra-Sanz, M.B.,

& Fernández de la Vara-Prieto, R.R. (2013) and Hemon & Phillips (2016) found a

better performance when PRV was extracted from TI points, while Pinheiro et al.

(2016) concluded that using the time instants corresponding to 50%, 80% and the

maximum peak amplitude of the PPG waveform resulted in less errors for measuring

PRV. Although the results obtained by the latter authors do not correspond to those

obtained in this experiment, they also concluded that the selection of the best fiducial

point to use depended on the context, which is in line with the differences observed
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between PRV extracted from excellent and acceptable quality PPG signals. This

same conclusion has been achieved by Peralta et al. (2019), who found that there are

differences in the performance of PRV extracted from several fiducial points when

signals are obtained from the finger and the forehead, and they concluded that

there is a need to define the fiducial points with best performance under different

circumstances. In their results, they found that the middle amplitude point of the

PPG signal, M1D and TI points have the best accuracy for PRV analysis. In these

studies, however, the comparison was made between HRV and PRV indices, and the

number of signals used in each study were limited.

Regarding the analysis of the best performing algorithms for PRV analysis, stud-

ies reported in the literature are much more scarce. In 2020, Argüello Prada &

Paredes Higinio analysed the differences between a modified version of Upslopes

and detecting cardiac cycles by identifying the maximum of the first derivative of

the PPG signal, to determine PRV from PPG signals with sudden decreases in the

signal amplitude (Argüello Prada & Paredes Higinio 2020). They found that the

modified version of their algorithm, which they called MMPD, had better perfor-

mance for detecting the sudden amplitude changes in PPG signals, while also gave

better results in terms of PRV, although the differences were relatively small except

for pNN50. In a similar analysis, Koch et al. evaluated the performance of their

algorithm for PRV analysis (Koch et al. 2020). They applied their algorithm, which

is based on the detection of systolic peaks from the PPG using artificial neural net-

works, for the extraction of PRV indices from PPG signals included in two publicly

available databases, and found that it performed better when compared to two ref-

erence algorithms, i.e., an automatic multiscale-based peak detection and a decision

tree-based peak detection, especially when noisy PPG signals were involved. How-

ever, in both cases, the details about how the reference algorithms were applied is

not included.

In the case of the algorithms used in the present study, their performance has

been evaluated according to their sensitivity (Sen), positive predictivity (P+) and

root-mean-square error (RMSE) for the detection of cardiac cycles. Li et al. found

a Sen of 99.43%, a P+ of 99.45% and an average error rate of 1.14% for Delin-

eator when applied to arterial blood pressure waveforms (Li et al. 2010); Conn &

Borkholder reported Sen = 99.29% and P+ = 99.23%, with a temporal accuracy

of 3.8 ± 2.6 ms when their algorithm, Wavelet, was applied to PPG signals ac-
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quired from 13 subjects while exercising on a bike (Conn & Borkholder 2013); van

Gent et al. reported RMSE for HeartPy when comparing the developed algorithm

against the annotations from a PPG dataset with 20.7 h of recordings, and found

that, when compared against other algorithms available in the literature (i.e., the

Pan-Tompkins and HRVAS ECGViewer algorithms), HeartPy had lower errors for

peak location (0.89 ms), RMSE for peak-to-peak intervals (29.64), RMSE for beats

per minute (3.77) and RMSE for SDSD (167.77) (van Gent et al. 2019); Elgendi

et al. reported Sen = 99.84% and P+ = 99.89% for D2max, when signals obtained

from 40 healthy subjects under challenging conditions, and claim that D2max have

comparable performance to other algorithms even if it showed lower accuracy (El-

gendi et al. 2013); while Prada & Maldonado reported Se = 99.75%, P+ = 98.02%

and a Failure Detection Rate of 0.02% for Upslopes, concluding that their algorithm

performed better than a benchmark algorithm and two previous versions of their

own algorithm, when tested using two pediatric PPG recordings (Prada & Maldon-

ado 2018). The only case in which an index from PRV was assessed for any of these

algorithms was for HeartPy, and all of these algorithms were evaluated under dif-

ferent circumstances and databases. To the best of the knowledge of the author of

this thesis, there have not been any studies that aimed to find the best combination

of algorithms and fiducial points for the extraction of PRV information from PPG

signals.

6.4.3 Experiment 2: Sampling rate

Using lower sampling rates for the extraction of PRV from PPG signals is highly

desirable, especially for the continuous measurement of PRV indices in real-time

scenarios using wearable devices or video-based PPG signals. From the second

experiment performed in this study, it can be observed that, in most cases, the higher

the sampling rate, the better performance for the extraction of PRV information.

However, for most indices, the sampling frequency can be lowered to around 128

Hz, compared to the sampling rate suggested for HRV analysis (above 1 kHz (Task

Force of the European Society of Cardiology and The North American Society of

Pacing and Electrophysiology 1996)). Moreover, for applications in which obtaining

the instant heart rate is the aim, having sampling rates as low as 32 Hz does not

significantly affect the results. Hence, the selection of sampling rate depends on the

intended application, but can be around 8 times lower than that suggested for HRV
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analysis from ECG, which could save resources especially in real-time scenarios.

The results obtained for SDNN show an unexpected behaviour, in which in-

creasing sampling rate affects the results obtained, showing a significant difference

between the gold standard and the extracted PRV. More studies should aim to un-

derstand this behaviour, but it could be related to the way PRV information is being

simulated in the model applied in this study.

Previous studies have aimed to understand how using lower sampling rates may

affect PRV-related indices. Choi & Shin (2017) found that a sampling rate as low as

25 Hz was appropriate for the extraction of several PRV indices, while Ahn & Kim

(2020) suggested that the sampling rate of PPG signals should not be lowered than

500 Hz for PRV analysis, after they compared HRV and PRV tachograms using cross-

correlation. Also, Béres & Hejjel (2021) found that, as has been observed in this

study, the sampling rate needed depends on the indices of interest, with a sampling

rate as low as 5 Hz for the estimation of AVNN, and a sampling interval of at least 20

ms for the estimation of SDNN and RMSSD without interpolation of the PPG signal.

In line with this study, the results obtained suggest that the sampling rate should

be higher than 64 Hz for obtaining reliable results. As before, these previous studies

were performed comparing HRV and PRV indices from smaller databases, unlike

the results obtained in this experiment, in which PRV was compared to a known

value and from a larger database, where the sample size was statistically determined.

Therefore, there might be differences among the results and the conclusions that can

relate to these two factors.

It is important to mention that reducing the sampling rate below the suggested

values does not imply that PRV analysis cannot be performed. If PPG is acquired

using low sampling rates, interpolation can be used to increase the performance for

PRV measurement, as suggested by Béres, Holczer and Hejjel (Béres et al. 2019,

Béres & Hejjel 2021), while other alternatives have been suggested, such as the

parabola approximation method (Baek et al. 2017, Béres & Hejjel 2021), curve

fitting (Panganiban, F.C. & de Leon, F.A. 2019), or other interval compensation

methods (Watanabe et al. 2020).

6.4.4 Experiment 3: Spectral analysis

Frequency-domain indices are probably the most used HRV and PRV features since

their relationship with specific processes related to autonomic regulation have been
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shown in the literature (Task Force of the European Society of Cardiology and

The North American Society of Pacing and Electrophysiology 1996, Billman 2013,

Shaffer & Ginsberg 2017). However, at least for PRV analysis, there is no consensus

regarding how frequency spectra should be derived from PRV time-domain trends,

and very few research have been done concerning this issue.

As is mentioned in the guidelines for HRV analysis, the power spectral density

(PSD) from HRV can be obtained using non-parametric (classical, such as FFT) and

parametric (modern) methods (Task Force of the European Society of Cardiology

and The North American Society of Pacing and Electrophysiology 1996). However,

there are multiple algorithms and parameters that can be modified in order to cal-

culate this PSD both from HRV and PRV trends, and research is scarce related

to the optimisation of these parameters and their suitability to obtain frequency-

domain indices from PRV. Li et al. (2019) provide a useful summary of the dif-

ferent methodologies used for spectral analysis from HRV trends. In the case of

PRV, Akar et al. (2013) applied several pre-processing techniques for the extraction

of PRV indices from PPG signals, and compared the spectra obtained using the

periodogram, Welch’s and Burg’s algorithms. Although qualitative, their results

showed differences in the extracted spectra due to the methods used for its extrac-

tion. Chen et al. (2018) evaluated the differences between frequency-domain indices

extracted from PRV trends re-sampled using different sampling rates, concluding

that, from data obtained from wearable devices, better results were obtained us-

ing a 1 Hz re-sampling rate for interpolating pulse rate information and extracting

frequency-related information. And other studies have suggested the extraction of

frequency-related indices using novel time-frequency techniques, such as empirical

mode decomposition (Abeysekera & Jaisankar 2015, Chuang et al. 2015).

In the experiment performed in this study, the aim was to determine the best

parameters for the extraction of spectral information from PRV trends. It was found

that the morphology of the spectra, assessed by measuring cross-correlation indices

between spectra obtained from gold standard and measured PRV trends, is affected,

in most cases, by all the factors considered for obtaining the PSD and their inter-

action. However, PRV indices did not show this behaviour. In the case of classical

spectral analysis, indices were mostly affected by the number of data points and

the sampling rate used for interpolation before extracting PSD. Both these factors

are related to the frequency resolution of the obtained spectra, which was shown to

240



be a critical factor for the assessment of frequency-related information regardless of

the algorithm used for obtaining the spectra. The comparison of the behaviour of

indices extracted using different modern methods is less straightforward, indicating

the variability among the mathematical foundations for each of these algorithms. In

the case of Yule-Walker and MUSIC algorithms, three-way interactions including the

type of interpolation used and the order of the model showed significant behaviour,

while for the remaining methods two-way interactions showed the most significant

results.

It is noticeable that, in the case of centroid-related indices, there were more

significant interactions for indices related to the y-coordinate, particularly for the

centroid of the high-frequency band. This could be indicating that the different

methods for assessing PRV frequency-content tend to be relatively stable for the

distribution of the frequency-content, but there are differences in terms of the ampli-

tude of the spectra. Hence, additional care should be taken when amplitude-related

indices are of interest. Also of interest is the fact that Lomb-Scargle algorithm did

not show a better performance than the other methods studied. This algorithm is

based on probability distributions and does not require a periodically-sampled sig-

nal (Clifford 2006). However, its lower performance might be related precisely to

the unpredictability of PRV trends and the largely variable parameters used for the

simulation of PRV information.

In general, it was found that MUSIC and FFT had the best behaviour both

for excellent and acceptable quality PPG signals. In the case of MUSIC, the best

behaviour was found when PRV trends were resampled to 4 Hz using linear inter-

polation and when a fifth-order model was used, both for excellent and acceptable

quality PPG signals, with frequency resolution of 0.0078 and 0.000122 Hz respec-

tively. In the case of FFT, the best results regardless of quality of the signal were

obtained after applying a cubic spline interpolation to obtain a 4-Hz PRV trend,

and calculating the spectrum with 512 data points, for a frequency resolution of

0.0078 Hz. Given the simplicity of FFT, the computational load it has and the

easiness to perform it in any platform, including embedded systems, it is recom-

mended to obtain spectral information from PRV trends using this algorithm and

these combination of parameters.

It is important to remark that the gold standard measurements were extracted

using FFT, hence a bias could be present due to this. Nonetheless, the fact that the
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MUSIC algorithm also showed a good performance, and that Welch’s periodogram

showed comparable results to FFT, indicate that the results obtained are reliable.

Future studies should aim to verify these results using real data, or using simulated

data by considering as gold standard not the measured indices but the frequency of

sinusoidal components used for the generation of PRV trends.

6.4.5 Experiment 4: Duration of signal

Similarly as with sampling rate and given the growing interest in acquiring and

analysing PPG signals using everyday devices, such as smartwatches, or smartbands

or video-based PPG signals from smartphones, as well as using PRV for the ex-

traction of physiological information in a continuous manner, there is interest in

understanding how short can the analysis window be to obtain reliable PRV infor-

mation. In the case of HRV, the standard is to use windows as short as 5 min (Task

Force of the European Society of Cardiology and The North American Society of

Pacing and Electrophysiology 1996), although shorter segments of ECG signals have

been proposed for ultra-short HRV analysis (Pecchia et al. 2018). The results of this

experiment suggest that PPG signals as short as 120 s, for obtaining time-domain,

frequency-domain and Poincaré plot indices, give sufficiently reliable results, and

that the differences to gold standard indices stabilise using PPG signals longer than

300 s.

It has usually been accepted that frequency-domain indices are more affected by

the duration of the PPG signals used for PRV analysis than time-domain and non-

linear indices, although further validation and analysis of ultra-short-term indices

extracted both from HRV and PRV are needed (Shaffer & Ginsberg 2017). From the

results obtained in this study, it can be concluded that the differences between indices

obtained from longer duration gold standard trends and PRV indices measured from

ultra-short term signals of at least 120 s duration are comparable, and that these

differences become stable when measured from signals longer than 5 min. However,

these results should be considered with care given the simulated nature of the signals

used, and the fact that physiological processes are not considered in this study.

The effects of using ultra-short signals for PRV analysis could be larger in diseased

subjects or while executing different experimental protocols that may alter PRV

behaviour, and care should be taken given the effects of outliers in ultra-short-term

recordings (Shaffer & Ginsberg 2017).
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As should have been expected, indices related to long-term changes in PRV, i.e.

AVNN, LF- and TP-related indices, and SD2, are more affected by the duration of

the signal, mostly showing larger differences to gold standard as shorter segments are

employed. This could be explained by the nature of these indices, which are related

to long-term changes in PRV, and as explained by Shaffer & Ginsberg (2017) most of

these indices are not comparable between long-term and short-term analysis results.

Previous studies have reported on the validity of ultra-short-term measurements

for HRV or PRV. Baek et al. (2015) obtained 5-min PPG signals from 467 healthy

volunteers with a wide range of ages, and partitioned them into 270, 240, 210,

180, 150, 120, 90, 60, 30, 20 and 10 s segments. PRV indices were extracted from

these short segments as well as the 5-min original signals, which were used as gold

standard, and compared using correlation analysis, Kruskal-Wallis tests and Bland-

Altman analysis. They found that the minimum duration of PPG segments varied

according to group age and index, with a minimal duration of 10 s for AVNN; 20 s

for HF; 30 s for RMSSD; 60 s for pNN50; 90 s for LF, nLF, nHF, and LF/HF; 240

s for SDNN; and 270 s for VLF. Most of these results are in line with those found

in the current experiment, and the differences could be explained by the fact that

these authors used shorter segments as gold standard than what was used in this

experiment, and the effects of physiological factors that are not considered using

simulated data. Regardless, these authors suggest the reliability of obtaining most

PRV indices from ultra-short PPG signals. Similarly, Finžgar & Podržaj (2020)

investigated the feasibility of assessing ultra-short-term PRV from video PPG, and

compared their results to most of previous studies using video-based PPG and ultra-

short recordings. Although their results suggest that SDNN, RMSSD and pNN50

could be reliably extracted from ultra-short PPG segments (10 s, 30 s and 60 s),

their gold standard was indices extracted from 60 s segments, which should not

be considered as accepted yet. Hence, validity of their results is under question

and further analyses should be performed in the area of video-based PRV analysis.

Nonetheless, other studies have suggested the validity of using 60 s segments for

PRV analysis in healthy, fit subjects (Holmes et al. 2020).

Recently, similar studies have been reported for ECG-derived ultra-short-term

HRV analysis. Kim et al. (2021) showed that ultra-short-term HRV could be as-

sessed under static conditions with ECG signals with duration between 30 and 240

s, while under dynamic conditions longer segments are needed, even with unreliable
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results for some indices regardless of the duration of the segments for ultra-short-

term analysis. Gallardo et al. (2022) extracted LF/HF and SD1/SD2 from HRV

trends with varying lengths, and concluded that signals with duration of 180 s and

120 s, respectively, should be considered as the minimum reliable duration for ultra-

short-term HRV analysis. Finally, Canino et al. (2022) evaluated the feasibility of

using 120 s ECG signals for the extraction of ultra-short-term HRV indices under

different physiological conditions and data pre-processing techniques, and found that

indices carry information related to different physiological states, although were not

strongly predictors of aerobic fitness in healthy men, and found that most indices

are robust to artifact correction procedures.

According to the results found in this experiment, PPG segments should be

longer than 90 s for reliable estimation of PRV indices, which is in line with the re-

sults reported in the previously mentioned studies. Nonetheless, further studies with

real data both from healthy and unhealthy populations are needed to understand

the differences among ultra-short-, short- and long-term PRV indices, and how and

when could shorter segments of PPG signals be used for reliable estimation of PRV.

6.4.6 Experiment 5: Outlier management

In this experiment, the aim was to determine the best way to manage outliers and

ectopic beats from PRV traces, by investigating the effects of different detection

and correction strategies. The obtained results showed that most of the extracted

indices were not affected by the selection of outlier management strategies, and even

not controlling for outliers showed good results when compared against the gold

standard. This means that with good quality signals there is no need to manage

outliers before extracting PRV indices. This is especially true for the assessment of

frequency domain indices, which did not show any difference among outlier manage-

ment strategies. These results are both for excellent and acceptable PPG signals,

suggesting that PRV analysis might be performed without managing outliers when

the signal has a good signal-to-noise ratio and when the signal is measured from

different sites of the body.

However, the algorithm used for the detection of interbeat intervals in this exper-

iment did correct for possibly wrongly detected cycles. Hence, these results indicate

that there is no need to further correct outliers in PRV trends after applying the

steps already considered in the interbeat interval detection algorithm, which include
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the correction or deletion of longer or shorter than expected IBIs.

6.4.7 Experiment 6: Noise management

The final analysis performed in this study aimed to evaluate the effects of pre-

processing filters on PRV analysis extracted from PPG signals contaminated with

different types of noise. The application of filters in the PPG signal is essential to

improve the signal-to-noise ratio (SNR) of the signal, which tends to be low due

to the multiple artifacts that may affect the signal (Allen 2007, Mej́ıa-Mej́ıa, Allen,

Budidha, El-Hajj, Kyriacou & Charlton 2021). However, these filters may generate

changes in the PPG waveform that could affect the identification of fiducial points

from the signal and, hence, affect the reliability of the PRV information. Moreover,

the filters could induce time-shifts in the detection of fiducial points that could

determine the reliability of the PRV information extracted from the signal (Liu, H.,

Allen, J., Ghufran Khalid, S., Fei Chen, F. & Zheng, D. 2021).

The capability of simulating several types of noise with different parameters is

one of the main contributions of the proposed framework and, considering the sus-

ceptibility of PPG signals to noise, having a simulation framework that includes

different types and magnitude of noises could help in the development and testing

of robust algorithms for PPG signal processing, not only for PRV analysis. Further

types of noise could be modelled and included in the framework, but the currently

used types of noise were considered due to its effect on PPG signals. In this study,

each combination of noises was treated independently, since in most cases it is pos-

sible to identify the noise present in real PPG signals, and the filtering strategies to

each of types of noise can significantly vary. In line with this, it was observed that,

regardless of the combination of noise present in the PPG signal, the filter applied

and its cut-off frequencies had a significant effect on most PRV indices. Again, the

x-coordinates of centroid-related indices showed a more robust performance than y-

coordinates, indicating once more the robustness of these indices above those related

with the magnitude of frequency bands.

It is important to discuss the particular behaviour of pNN50. This index showed

important differences against gold standard indices, regardless of the noise and the

filters applied. Hence, care should be taken when this index is analysed from PRV

trends extracted from noise-contaminated signals, given it is largely affected by

outliers in the trends. For the other indices, a similar behaviour between excellent
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and acceptable quality, noise-contaminated PPG signals was observed. Interestingly,

for time-domain and Poincaré plot indices the differences to gold standard tended

to become smaller as the noise combination became more complex. For frequency-

domain indices, the differences tended to remain stable, especially for relative and

x-coordinate related indices. Time-domain and Poincaré plot indices showed larger

differences to gold standard than frequency-domain indices, from which VLF was the

index that showed larger differences. This could be explained by the fact that PRV

was extracted from short 5-min PPG signals, contaminated with noise, which could

have an important effect on the frequency spectra and the near DC components of

the signal. Nonetheless, it was observed that, applying the best performance filtering

strategies, the differences to gold standard can be considered acceptable.

In general, it was observed that PRV indices tend to show better reliability when

PPG signals are filtered using elliptic IIR filters or equiripple or Parks-McClellan

FIR filters. In terms of cut-off frequencies, lower low cut-off frequencies tended

to give better results, except for those excellent quality PPG signals contaminated

with a combination of baseline wandering, movement artifact and respiratory noise,

which needed higher low cut-off frequencies, most likely due to the frequency content

of the respiratory and baseline wandering noises. For higher cut-off frequencies,

both with excellent and acceptable quality PPG signals, the most common high

cut-off frequency was 20 Hz, which was the maximum considered cut-off frequency.

This could be an indication of the more important role played by the lower cut-off

frequency of the filter to remove the types of noises included in this study. Moreover,

higher cut-off frequencies affect less the morphology of the anacrotic phase of the

pulse, probably allowing a more precise detection of the fiducial point used in this

study. These results are in line with the results obtained in a similar study performed

with data obtained from healthy, resting subjects and by comparing PRV to HRV

information (Mej́ıa-Mej́ıa, May & Kyriacou 2021).

Other studies have aimed to understand the effects of digital filtering on PRV.

Akar et al. (2013) concluded that using a Butterworth filter and a nonlinear weighted

Myriad filter did not have a significant difference on PRV analysis. Kim & Ahn

(2019) evaluated the effects of Butterworth and elliptic filters for the assessment

of PRV from PPG signals, and concluded that there were no significant differences

between HRV and PRV time series, although small differences were observed in some

extracted indices. The results found in this study indicate differences in the type of
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filter and its parameters used given the different types of noise involved in the signal,

which is a factor that has not been taken into account in previous studies and could

explain, to some extent, the differences in results. Nonetheless, the present study

involves a large data set and multiple different factors that were not included in

these previous studies. Further studies should aim to validate the obtained results

in real data with different but controlled types of noise.

6.4.8 Limitations of the study

This study has some limitations. Firstly, simulated PPG signals with simulated

PRV information were used in this study. This was done for two main purposes.

It is simpler to obtain larger number of samples using simulated data, which gives

statistical validity to the experiment. The sample size for each of the experiments

in this study was estimated to be the optimal value in order to observe differences

of 2% in the measurement of the indices, compared to the gold standard. Also,

by simulating PRV information it was possible to obtain a gold standard that was

not HRV information obtained from the ECG. As mentioned, physiological aspects

may explain part of the differences between HRV and PRV, hence comparing them

in order to establish methodologies and strategies for obtaining PRV information is

not ideal. Regardless of the benefits, using simulated PPG signals may not represent

the entire variation of the PPG morphology, and the results from these experiments

need to be validated using real (in vivo based) PPG data. The simulation of PRV

information may also affect the results obtained. However, PRV was simulated

using physiologically feasible values, which may introduce larger variability of the

PRV but also simulate PRV information that could be obtained from most of the

healthy population. Future studies could optimise the PRV model to have a better

reflection of real PRV information.

Secondly, the experiments were done in a sequential manner, which means that

the results from one of the experiments were used in the subsequent ones. This

was done to have a controlled way to modify the parameters, but the combination

of factors, especially the effect of noise in previous experiments, needs to be con-

sidered in future studies. Finally, the agreement between indices was not assessed.

Future studies should investigate not only the significance of the difference but also

determine how the indices agree using techniques such as Bland-Altman analysis.
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6.5 Summary

The relationship between PRV and HRV is not straightforward, both due to phys-

iological differences and to effects caused by technical aspects on the extraction of

PRV information from pulsatile signals such as the PPG. The latter has not been

thoroughly studied and there is no consensus regarding the methodologies for the

extraction of PRV. In this chapter, a first approach for determining the best combi-

nation of factors for the extraction of PRV information from simulated PPG signals

was presented.

It was found that PRV information can be extracted from PPG signals with a

duration longer than 120 s and sampling rates above 128 Hz. This signals should be

filtered using lower low cut-off frequencies and elliptic IIR or equiripple or Parks-

McClellan FIR filters, depending on the type of noise present in the signal. Then,

PRV trends obtained using D2max and the a-point for the detection of cardiac cy-

cles and the measurement of interbeat intervals resulted in the best results, with

other algorithms such as Delineator showing a similar performance when coupled

with onset-related fiducial points. Also, it was found that there is no need to fur-

ther manage outliers and that FFT and MUSIC are the best methods for spectral

analysis, each of them with specific parameters.

In the next chapter, and considering most of these technical aspects that gave

the best results for the extraction of PRV from PPG signals, the effect of cold

exposure on the relationship between PPG-derived PRV and ECG-derived HRV is

analysed, as a first approach to understand the effect of physiological changes on

the relationship between these two variables.
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Chapter 7

Investigation of pulse rate

variability and heart rate

variability in conditions of

whole-body cold exposure

7.1 Aims and objectives

Besides the effects of technical aspects on PRV and its relationship to HRV, it has

been hypothesised that factors such as stress (Giardino et al. 2002), respiratory

patterns (Jan et al. 2019), exercise (Lin et al. 2014), orthostatic changes (Pernice

et al. 2018), and ambient temperature (Shin 2016) may have different effects on

PRV when compared to HRV, affecting their relationship. However, the origin of

these differences is still not clear, and may be related to changes in haemodynamics,

blood pressure or pulse transit time (PTT) (Charlot et al. 2009, Gil, Orini, Bailón,

Vergara, Mainardi & Laguna 2010, Chen et al. 2015). Since haemodynamics are

largely controlled by the ANS (Fox 2016), PRV might be affected by changes in this

regulation in response to external stimuli, such as colder temperature.

There are changes in the autonomic response that are generated by cold expo-

sure. When the body is exposed to cold the sympathetic nervous system is activated,

which increases vasoconstriction, involuntary contraction of muscles, heart rate, car-

diac output and blood pressure. These responses help maintain homeothermy by

modifying cardiovascular dynamics (Budidha & Kyriacou 2019). The strength of
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the sympathetic vasoconstriction, however, varies between core and peripheral loca-

tions. This was verified by Budidha & Kyriacou (2019), who aimed to differentiate

the autonomic response between peripheral and core tissue by measuring the fre-

quency response of PPG signals obtained from the finger, the toe, the ear lobe and

the ear canal. They found that the autonomic response was altered in peripheral

vasculature, whereas core vasculature was not as disturbed by cold exposure, im-

plying that the sympathetic response in core circulation is maintained during cold

exposure in order to keep homeostasis in the life-sustaining organs, such as the brain

and the heart.

To investigate the dependency of PRV on external factors such as the acquisi-

tion site and the temperature, a whole-body cold exposure study was performed

on healthy volunteers. PRV and HRV information was extracted from simultane-

ously obtained PPG and ECG signals, respectively. Red (660 nm) PPG signals were

recorded from the earlobe, the ear canal, the finger and the toe. It was hypothe-

sised that (1) PRV information from PPG signals obtained from the earlobe and ear

canal might not be affected by cold exposure as that of the finger and the toe; and

(2) the agreement between HRV and PRV is altered by whole body cold exposure.

The results obtained from this study are important for understanding the possible

differences between HRV and PRV, and might lead to further research that aims to

better understand PRV and its clinical applications.

7.2 Methods and materials

7.2.1 Experimental protocol

Twenty healthy volunteers (11 male and 9 female, 30.3 ± 10.4 years old) were re-

cruited to take part in this study. Subjects with any cardiovascular, pulmonary, or

metabolic conditions were excluded. All subjects were normotensive, normothermic,

did not take any medication at the time of the study, and were not diagnosed with

Raynaud’s disease. The study protocol was approved by Senate Research Ethics

Committee at City, University of London, and all subjects gave informed consent

before taking part in the study. Subjects were asked to refrain from ingesting bev-

erages with caffeine and alcohol, not to exercise or smoke at least 2 hours before

the test, and they were instructed to wear only one layer of clothes during the data

acquisition period, in order to maximise the effect of the stimulus on the body. Data
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Figure 7.1: Measurement protocol for the whole-body cold exposure study.

from all subjects was collected between 10:00 a.m. and 6:00 p.m., under controlled

conditions of temperature and humidity. This data was collected as part of a pre-

vious study performed at the Research Centre for Biomedical Engineering, at City,

University of London (Abay 2016).

The measurement protocol is shown in Figure 7.1. Upon arrival, subjects were

seated in a room maintained at 24 ± 1 ◦C for at least 10 minutes, to ensure haemo-

dynamic stabilization. After this period, the sensors for acquiring the signals were

attached to the subjects. The measurement started with a 2-min baseline measure-

ment (BM) stage, in which two minutes of signals were recorded from the subjects

while the room temperature was 24 ± 1 ◦C. The volunteers were then moved to an

adjacent, temperature-controlled room, maintained at 10 ± 1 ◦C (Cold Exposure,

CE). This temperature was selected because it reflects a more realistic change in

ambient temperature, which can be sustained for longer periods of time by healthy

adults, and generates changes in haemodynamics (King et al. 2013). Subjects re-

mained in this room and signals were recorded for 10 minutes before returning to the

original room at 24 ± 1 ◦C, for additional 10 minutes of signals recording (Cold Re-

covery, CR). During each phase of the measurement protocol, subjects were seated

in a comfortable swivel chair, with both hands located on the arm rest.

After each of the recording on the different stages, the measurement was paused

and the subject was transferred to the room for recording the next stage. The

recording was resumed as soon as the subject was moved, in order to record the

shock response of the autonomic activity on the periphery.

7.2.2 Signal acquisition and processing

7.2.2.1 Signal acquisition

Disposable electrodes were placed on the left and right shoulders, and on the right

hip (reference electrode) for obtaining lead I ECG signals, while PPG signals from
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the left index finger (F), toe (T), ear canal (EC) and earlobe (EL) were obtained

from each subject during the three stages of the study. Both red and infrared light

were used for acquiring PPG signals, but only those signals related to red light

were used for subsequent analysis. The signal acquisition was paused during the

transitions between the two rooms in order to avoid movement artefacts.

All PPG and ECG measurements were acquired using a research PPG acquisition

system (ZenPPG) developed in the Research Centre for Biomedical Engineering, at

City, University of London (Budidha 2016). All signals were acquired at a sampling

rate of 1 kHz.

7.2.2.2 PPG and ECG signal processing

PPG signals were down-sampled to 100 Hz to restrict the bandwidth of the sig-

nals and remove any unwanted noise. Afterwards, they were detrended, and the

first and last 10 seconds of each stage of the protocol were removed, to eliminate

any non-stationarities of the signal. Signals were then filtered using a fourth-order

bandpass Butterworth filter, with cut-off frequencies of 0.1 and 2 Hz. These cut-

off frequencies were selected to attenuate any unwanted noise and strengthen the

pulsatile component of the PPG signal.

Interbeat intervals were detected applying the algorithm Delineator described

in Chapter 6 and based on the work by Li et al. (2010). Then, different fiducial

Table 7.1: Signal quality indices (SQI) extracted from finger, toe, ear canal and ear lobe
PPG signals.

Signal quality index (SQI) Description
Template (SQIT ) Correspondence of each pulse to a template

derived from the whole signal
Skewness (SQIS) Skewness of each pulse of the PPG waveform
Kurtosis (SQIK) Kurtosis of each pulse of the PPG waveform
Ratio of frequencies (SQIR) Ratio of the frequency contents of each pulse
Signal to noise ratio (SQISNR) Signal to noise ratio of each pulse
Zero crossing rate (SQIZC) Zero-crossing rate of each pulse
Entropy (SQIE) Entropy of the signal in each cardiac cycle
Centroid (SQIC) Location of the centroid of each pulse, con-

sidered as the point in which the 50% of the
pulse is concentrated

Area under the curve
(SQIAUC)

Area under the curve concentrated at the cen-
troid of each pulse

Gaussian filters (SQIG) Level of correspondence of each pulse to a se-
ries of Gaussian filters
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points such as systolic peaks (PKS), onsets of the pulse (ONS), maximum slope

point (SLO), and the intersection point between tangent lines from the onset and

the maximum slope point were obtained from each PPG signal (TI). Once detected,

signal quality indices (SQI) described in the literature (Li & Clifford 2012, Karlen

et al. 2012, Elgendi 2016, Calle Uribe 2018), were applied to identify the quality

of the pulses segmented by each fiducial point in each PPG signal during each test

stage, and those that better segmented the pulses of each PPG signal were selected

and used for measuring PRV. Table 7.1 summarise the extracted SQI.

Using a k-means algorithm, the cardiac cycles were classified as bad and good

quality. This was done assuming that during the first stage of the test the quality

of the signal was maximal, and the cluster with most of the cardiac cycles of this

stage was considered as the good quality (GQ) group. Hence, the cycles classified

in this group during the other two stages (CE and CR) were considered as good

quality pulses. The proportion between GQ pulses and the total number of pulses

was measured for each fiducial point during each stage and from each body location.

Then, the fiducial point that showed the highest proportion of GQ pulses in each

case were selected for further analysis. This was performed to diminish the effect

of noise in the measurement of PRV, and in an attempt to automatically determine

the better fiducial point for each condition, as proposed in (Pinheiro et al. 2016).

ECG signals were also down-sampled to 100 Hz and R peaks were detected

using an algorithm based on the algorithms described in Pan & Tompkins (1985)

and Hamilton & Tompkins (1986). These processing steps were performed using

the 2019a version of MATLABR© (Mathworks, USA). Figure 7.2 shows a segment of

PPG and ECG signals and the extracted fiducial points from each of these signals.

7.2.2.3 HRV and PRV analysis

Using the time-difference between consecutive selected fiducial points from PPG

(IBIs trends) and the R peaks obtained from the ECG (RR intervals trends), HRV

and PRV were extracted, respectively. IBIs and RRIs that were 50% above or below

the median value of the trend were corrected. Time- and frequency-domain indices,

as well as Poincaré plot-derived indices, were obtained from the corrected trends.

The standard deviation of normal-to-normal intervals (SDNN), the root mean

square of successive interval differences (RMSSD) and the percentage of successive

intervals that differ by more than 50 ms (pNN50). For frequency-domain analysis,
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Figure 7.2: Example of photoplethysmographic (PPG) and electrocardiographic (ECG) sig-
nals used for the extraction of pulse rate variability and heart rate variability, respectively.
From top to bottom, the PPG signals correspond to the signals obtained from the finger, the
toe, the ear canal and the earlobe. The black stars show the R peaks detected from the ECG
signal, while the white, black, red and green circles show the detected onsets, peaks, maximum
slope points and tangent intersection points, respectively.

trends were interpolated using cubic-spline interpolation and a sampling rate of 4

Hz, and the power spectra were obtained using fast Fourier transform (FFT). The

absolute and relative powers of the low-frequency (0.04 - 0.15 Hz, LF and nLF) and

high-frequency (0.15 - 0.4 Hz, HF and nHF) bands, as well as the total power of the

spectrum (0.04 - 0.4 Hz, TP) and the ratio of the low-frequency and high-frequency

powers (LF/HF) were measured. Finally, the standard deviation of data located
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perpendicular (SD1) and along (SD2) the line of identity of the Poincaré plot and

their ratio (SD1/SD2) were obtained.

7.2.3 Statistical analysis

As explained above, the aim of this study was to compare the behaviour of core

and peripheral PRV during cold exposure, and to evaluate if and how PRV differed

to HRV during mild whole body cold exposure. Hence, two hypotheses were pro-

posed: (1) PRV from core vasculature (ear canal and earlobe) is less affected by

cold exposure than PRV from the periphery (finger and toe); and (2) PRV from

core vasculature is more similar to HRV than PRV from peripheral tissue, especially

during cold exposure.

To evaluate the first hypothesis, PRV indices obtained during the middle 2-min

segments of each stage of the test were compared using repeated-measures analysis of

variance (ANOVA), with sphericity corrections. Multiple comparisons with pairwise

t-tests and Bonferroni corrections were performed in case the ANOVA showed a

statistically significant difference during at least one stage. Also, the first (minutes

0 to 2), middle (minutes 4 to 6) and last (minutes 8 to 10) segments of cold exposure

and cold recovery stages were compared to baseline measurement, to evaluate the

behaviour of PRV and HRV indices when the ambient temperature was changing

and during stabilization in each stage. Although the guidelines recommend the use

of 5-min segments for HRV and PRV analysis, it was shown in previous chapter

that 120 s windows show reliable values for all analysed indices in this study. This

allowed for a comparison of condition within stages in order to understand the

progression of the conditions with cold exposure or cold recovery. Moreover, since

baseline measurements were only 2 min duration, the signals obtained on the rest

of the stages were also segmented to maintain consistency among stages.

The second hypothesis was evaluated using Bland-Altman analysis, to assess the

agreement between PRV and HRV indices during the first two minutes of each stage

of the test. A Bland-Altman ratio (BAR) was defined as the ratio of half the range

of limits of agreement (LoA, 7.1) to the average of the pairwise measurement means,

as proposed by Peng et al. (2015) (7.2). Agreement between HRV and PRV indices

was considered good (BAR ≤ 10%), moderate (10% ≤ BAR ≤ 20%) or insufficient

(BAR ≥ 20%). Also, the behaviour of the indices extracted from PRV and HRV

during each stage of the test was evaluated using a Friedman rank sum test with
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post hoc analyses performed using Nemenyi’s test, as post-hoc pairwise multiple

comparison test appropriate after the Friedman rank sum test (RDocumentation

2022). Finally, the level of linear relationship between the indices, was assessed using

Pearson or Spearman correlation analysis, for normally and non-normally distributed

data respectively. Normality of data was determined using a Shapiro-Wilk test and

a significance level of 5% (p-value < 0.05) was considered significant for all analyses.

LoA = (x)± 1.96σx, x = HRV − PRV (7.1)

BAR =

∣∣∣∣∣ 1.96(σx)

(HRV + PRV )

∣∣∣∣∣ , x = HRV − PRV (7.2)

Statistical analyses were done in RStudio (version 1.4.1717), while figures were

developed using MATLAB (version 2019a).

7.3 Results

7.3.1 Selection of fiducial points

After applying the proposed algorithm for selecting the best fiducial point in each

condition, it was observed that the lower proportion of good quality cardiac cycles

was obtained in the finger and toe, i.e. the peripheral tissue. The most accurate

results were obtained when cardiac cycles were segmented using the intersection of

tangent lines (TI) and the location of the maximum slope (SLO) as fiducial points.

The lowest performance was achieved when the systolic peaks (PKS) were used,

except for the finger PPG in which the performance of the peak detection algorithm

was better than most of the others. The behaviour of the extracted indices from

these fiducial points and from HRV is shown in Figure 7.3.

7.3.2 Changes in PRV and HRV during cold exposure

Results from the repeated-measures ANOVA and its related multiple comparisons for

time-domain and Poincaré plot indices are shown in Table 7.2, while Table 7.3 shows

the results obtained from absolute frequency-domain indices. Relative frequency

domain indices, i.e., nLF, nHF and LF/HF, did not show any statistically significant

differences among stages.
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Figure 7.3: Behaviour (mean value and standard deviation) of heart rate variability (HRV)
and pulse rate variability ( PRV) indices extracted during the whole duration of basal mea-
surement (BM, blue), cold exposure (CE, orange) and cold recovery (CR, yellow) stages. PRV
indices were extracted from photoplethysmograms acquired from the finger (F), toe (T), ear
canal (EC) and earlobe (EL). HRV was obtained from electrocardiograms.

7.3.2.1 Time-domain indices

SDNN showed statistically significant differences between baseline measurement and

cold exposure when measured from any location, except for the ear canal, while

RMSSD and pNN50 did not show statistically significant differences between these

stages when measured from the finger and the ear canal. All indices behaved simi-

larly when cold exposure and cold recovery were compared, except for pNN50 mea-

sured from the earlobe. Ear canal was the only location from which none of the

indices measured show any statistically-significant differences among stages.
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Table 7.2: P-values obtained from the repeated-measures ANOVA and its post hoc analyses,
when applied to time-domain and Poincaré plot-derived indices of PRV and HRV. Values in
red indicate statistical significance (p-value < 0.05). Sphericity corrections using Greenhouse-
Geisser correction were applied when Mauchly’s test showed statistically significant results, and
p-values shown are after these corrections. BM: baseline measurement; CE: cold exposure; CR:
cold recovery.

Index Source ANOVA Post hoc comparisons
BM vs

CE
CE vs

CR
BM vs

CR

SDNN (s)

HRV <0.001 0.005 0.086 0.025
Finger PRV 0.007 0.039 1.000 0.024
Toe PRV <0.001 <0.001 0.295 0.003
Ear canal PRV 0.118 - - -
Earlobe PRV 0.006 0.021 0.199 0.310

RMSSD (s)

HRV 0.001 0.004 0.174 0.004
Finger PRV 0.015 0.066 1.000 0.053
Toe PRV <0.001 <0.001 0.208 0.007
Ear canal PRV 0.250 - - -
Earlobe PRV 0.009 0.022 0.331 0.265

pNN50

HRV <0.001 <0.001 0.068 0.062
Finger PRV 0.006 0.123 0.633 0.018
Toe PRV <0.001 0.002 0.639 0.011
Ear canal PRV 0.168 - - -
Earlobe PRV <0.001 <0.001 0.002 0.774

SD1 (s)

HRV 0.001 0.004 0.170 0.005
Finger PRV 0.015 0.067 1.000 0.053
Toe PRV <0.001 <0.001 0.206 0.007
Ear canal PRV 0.250 - - -
Earlobe PRV 0.009 0.023 0.330 0.266

SD2 (s)

HRV 0.001 0.017 1.000 0.003
Finger PRV 0.004 0.029 1.000 0.012
Toe PRV 0.002 0.003 1.000 0.013
Ear canal PRV 0.076 - - -
Earlobe PRV 0.001 0.036 1.000 <0.001

SD1/SD2

HRV 0.001 0.005 0.131 0.015
Finger PRV 0.025 0.097 1.000 0.083
Toe PRV 0.002 0.004 0.261 0.046
Ear canal PRV 0.044 0.178 0.060 1.000
Earlobe PRV 0.021 0.047 0.192 0.724

7.3.2.2 Frequency-domain indices

Relative-power indices, i.e. nLF, nHF and LF/HF, did not show any difference

among stages. Regarding absolute-power indices (LF, HF and TP), and similar to

what was observed from time-domain indices, the ear canal-derived PRV indices

did not show any differences among stages. HRV-derived LF and HF did not show

differences among stages, and finger HF did not show differences in the post hoc
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Table 7.3: P-values obtained from the repeated-measures ANOVA and its post hoc analyses,
when applied to frequency-domain indices of PRV and HRV. Values in red indicate statistical
significance (p-value < 0.05). Sphericity corrections using Greenhouse-Geisser correction were
applied when Mauchly’s test showed statistically significant results, and p-values shown are af-
ter these corrections. Normalised frequency-domain indices did not show statistical differences
between stages from any of the signals. BM: baseline measurement; CE: cold exposure; CR:
cold recovery.

Index Source ANOVA Post hoc comparisons
BM vs

CE
CE vs

CR
BM vs

CR

LF (s2)

HRV 0.057 - - -
Finger PRV 0.008 0.028 0.162 0.077
Toe PRV 0.009 0.010 1.000 0.083
Ear canal PRV 0.622 - - -
Earlobe PRV 0.004 0.016 0.352 0.122

HF (s2)

HRV 0.024 0.070 0.134 0.059
Finger PRV 0.016 0.058 1.000 0.057
Toe PRV <0.001 <0.001 0.236 0.013
Ear canal PRV 0.057 - - -
Earlobe PRV 0.008 0.018 0.458 0.016

TP (s2)

HRV 0.031 0.085 0.230 0.061
Finger PRV 0.013 0.047 1.000 0.052
Toe PRV <0.001 <0.001 0.546 0.007
Ear canal PRV 0.581 - - -
Earlobe PRV 0.002 0.015 0.459 0.037

analyses. LF, HF and TP did not differ between cold exposure and cold recovery

when measured from any of the locations.

7.3.2.3 Non-linear indices

Ear canal-derived indices did not differ among stages from any of the Poincaré

plot-derived indices. Similarly, SD1 and SD1/SD2 did not show differences among

stages when measured from the finger. Most differences were obtained when baseline

measurement and cold exposure where compared, while no differences were shown

when cold exposure and cold recovery were compared.

7.3.3 Behaviour of PRV and HRV indices

Figure 7.4 illustrates the behaviour of the extracted indices when 2-min segments of

each stage were compared. Most indices showed a similar behaviour when measured

from PRV and HRV, but with a notorious overestimation of most indices when mea-

sured from PRV. LF/HF was the only index that was underestimated when measured

from PRV, while nLF was the index with the least overestimation when measured
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Figure 7.4: Behaviour of indices measured from HRV (blue line) and PRV from the finger
(orange line), toe (yellow line), ear canal (purple line) and earlobe (green line). BM: Baseline
measurement; CE (1): Cold exposure between the start of the stage and the second minute
of this stage; CE (2): Cold exposure between the 4th and 6th minutes of this stage; CE (3):
Cold exposure between the 8th and 10th minutes of this stage; CR (1): Cold recovery between
the start of the stage and the second minute of this stage; CE (2): Cold recovery between the
4th and 6th minutes of this stage; CE (3): Cold recovery between the 8th and 10th minutes
of this stage.

from PRV. The ear canal showed the higher differences in the trends between PRV

and HRV. Time-domain and non-linear indices showed that values tended to in-

crease after baseline measurement, and then, during cold recovery, indices tended to

recover to the values obtained during baseline. Frequency-domain indices did not

show this behaviour, probably due to the short segments used for analysis.

When indices measured from the different segments were compared using a

repeated-measures ANOVA (Table 7.4), ear canal was found to be the only loca-

tion with non-statistically significant differences among each 2-min segments. Most
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differences observed were among baseline measurements and the segments obtained

during cold exposure, and among cold exposure and cold recovery segments. On

the other hand, baseline measurement and cold recovery were statistically similar,

except for SD1, SD2 and RMSSD. Regarding frequency-domain indices, nLF and

LF/HF failed to show any difference among stages, probably due to the short time

segments used for this analysis.
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7.3.4 Agreement between PRV and HRV

7.3.4.1 Friedman rank sum tests

Results for the Friedman rank sum tests and its post hoc comparisons are presented

in Table 7.5. Since the aim was to evaluate the relationship between HRV and PRV,

only multiple comparisons between HRV and PRV are shown.

During baseline measurement, nLF and LF/HF did not show differences between

HRV and PRV, while LF, TP and SD2 failed to show differences from post hoc

analysis. Most of the other indices showed differences between HRV and toe PRV,

and between HRV and ear canal PRV, while RMSSD, nHF, SD1 and SD1/SD2

showed differences when PRV was measured from any location. Similar behaviour

was observed for nLF and LF/HF during cold exposure. However, all other indices

showed differences from post hoc analyses, mainly between HRV and toe PRV, and

HRV and ear canal PRV. None of the indices showed differences from all locations,

but RMSSD, SD1, and SD1/SD2 showed statistically significant differences when

measured from the earlobe. Finally, during cold recovery, the same results were

obtained for nLF and LF/HF. In this stage, also nHF failed to show any difference

among locations, and post hoc analyses from SD2 did not show any differences

between HRV and any of the PRV data. All differences observed were between HRV

and toe PRV, and between HRV and ear canal PRV.

7.3.4.2 Correlation analysis

During baseline measurement, non-significant correlation were observed from RMSSD,

nLF, LF/HF, SD1 and SD1/SD2 when these indices were measured from toe and

ear canal PRV. nHF did not show significant correlations when measured from any

location, and SDNN and LF had non-significant correlations when measured from

the ear canal. pNN50, HF, TP and SD2 showed statistically significant correlations

when measured from all locations.

The correlation between HRV and PRV during cold exposure showed that non-

significant correlations were obtained from SDNN, RMSSD, LF, TP and SD1, when

measured from the toe and the ear canal; from HF, nHF and SD1/SD2, when mea-

sured from the toe; from nLF, when measured from the earlobe; and from LF/HF,

when measured from the toe and the earlobe. Significant correlations from all lo-

cations were only observed from pNN50 and SD2. Similarly, during cold recovery,
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Table 7.5: P-values obtained from the Friedman rank sum test and the multiple comparison
tests performed between HRV and PRV from each location (F: Finger; T: Toe; EC: Ear canal;
EL: Earlobe), during each stage (BM: baseline measurement; CE: cold exposure; CR: cold
recovery) and with each index. Values in red indicate statistically significant differences (p-
value < 0.05).

Stage Index Friedman PRV vs HRV (Nemenyi’s Test)
test F T EC EL

BM

SDNN (s) <0.001 0.028 0.001 <0.001 0.067
RMSSD (s) <0.001 0.001 <0.001 <0.001 0.005
pNN50 <0.001 0.488 <0.001 <0.001 0.429
LF (s2) <0.001 1.000 1.000 0.610 1.000
HF (s2) <0.001 0.270 0.007 0.002 0.488
TP (s2) <0.001 0.940 0.302 0.143 0.992
nLF (n.u.) 0.527 - - - -
nHF (n.u.) <0.001 0.013 0.001 0.007 0.016
LF/HF 0.107 - - - -
SD1 (s) <0.001 0.001 <0.001 <0.001 0.005
SD2 (s) <0.001 0.954 0.650 0.372 1.000
SD1/SD2 <0.001 0.001 <0.001 <0.001 0.007

CE

SDNN (s) <0.001 0.988 <0.001 <0.001 0.529
RMSSD (s) <0.001 0.302 <0.001 <0.001 0.028
pNN50 <0.001 1.000 <0.001 0.061 0.429
LF (s2) <0.001 0.988 0.092 0.019 1.000
HF (s2) <0.001 0.954 <0.001 <0.001 0.569
TP (s2) <0.001 0.999 <0.001 <0.001 0.923
nLF (n.u.) 0.558 - - - -
nHF (n.u.) 0.026 0.997 0.107 0.650 0.213
LF/HF 0.431 - - - -
SD1 (s) <0.001 0.302 <0.001 <0.001 0.028
SD2 (s) <0.001 0.988 0.005 0.014 0.960
SD1/SD2 <0.001 0.270 <0.001 <0.001 0.013

CR

SDNN (s) <0.001 0.372 <0.001 <0.001 0.336
RMSSD (s) <0.001 0.164 <0.001 <0.001 0.092
pNN50 <0.001 0.762 0.001 0.003 1.000
LF (s2) <0.001 0.992 0.001 0.040 0.975
HF (s2) <0.001 0.610 <0.001 <0.001 0.448
TP (s2) <0.001 0.940 <0.001 0.008 0.855
nLF (n.u.) 0.387 - - - -
nHF (n.u.) 0.160 - - - -
LF/HF 0.390 - - - -
SD1 (s) <0.001 0.164 <0.001 <0.001 0.092
SD2 (s) 0.001 1.000 0.143 0.187 0.827
SD1/SD2 <0.001 0.057 <0.001 <0.001 0.107

pNN50 and SD2 showed significant correlations from all locations. However, non-

significant correlations were obtained from SDNN, RMSSD, nLF, nHF, LF/HF, SD1,

and SD1/SD2, when measured from the toe; from LF and TP, when measured from

the toe and the ear canal; and from HF, when measured from the ear canal. The
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Figure 7.5: Correlation coefficients (ρ) between HRV and PRV from each location during
each stage (BM: baseline measurement, white bars; CE: cold exposure, black bars; CR: cold
recovery, grey bars) and with each index. Stars over bars indicate statistically significant
correlations (p-value < 0.05).

results from the correlation analyses between HRV and PRV are shown in Figure

7.5.

7.3.4.3 Bland-Altman analysis

Since a high correlation does not necessarily indicate a strong agreement (Bland

& Altman 1986), Bland-Altman analysis was performed to assess the agreement

between PRV and HRV. Bland-Altman ratios (BAR’s) are presented in Figure 7.6.

Agreement between HRV and PRV measured from the earlobe was the highest and

most stable during the three stages, while ear canal PRV showed the worst agreement

in most of the indices during the three stages.

From time-domain indices, pNN50 showed a relatively stable, moderate agree-

ment when measured from all locations except for the finger. SDNN and RMSSD
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Figure 7.6: Bland-Altman ratios (BAR’s) between HRV and PRV from each location (finger:
blue line; toe: orange line; ear canal: grey line; earlobe: yellow line), during each stage (BM:
baseline measurement; CE: cold exposure; CR: cold recovery) and with each index. Agreements
were considered as good (BAR ≤ 10%), moderate (10% ≤ BAR ≤ 20%) or insufficient (BAR
≥ 20%).

had the lowest agreement when measured from the ear canal and the toe.

Frequency-domain indices obtained using absolute powers (i.e. LF, HF and TP)

showed the worst agreement, reaching BAR’s of up to 120%. Once again, earlobe

showed the best agreement during the three stages. Relative-power indices had

a different behaviour: nHF had good agreement from most locations and stages,

and moderate agreement was obtained when PRV was measured from the toe; and

LF/HF showed a good agreement from every location and during all stages, and only

toe-derived measurements showed a diminished agreement during cold exposure.

From Poincaré plot indices, SD2 showed good agreement in every location except

for the ear canal; the earlobe, finger and toe measurements showed a good and stable
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agreement. SD1 showed a bad agreement from the ear canal, especially during the

baseline measurement.

Bland-Altman plots (Figures 7.7 to 7.18) showed something similar. Cold ex-

posure affected agreement in most of the cases, but the measurement was not nec-

essarily recovered during cold recovery. SDNN, nHF and TP from the earlobe and

the ear canal tended to recover the agreement faster during cold recovery, than that

measured from the finger. However, most of the indices (i.e. nHF, LF/HF, SD1,

SD2, and SD1/SD2) showed that agreement was diminished during cold exposure,

but did not recover during the first two minutes of measurement during cold recov-

ery. From these plots, it can be seen that all indices showed an overestimation of the

measurement when obtained from PRV, except for LF/HF that tends to be under-

estimated. Over- and underestimation tend to be larger during cold exposure stage,

and toe-derived PRV indices were strongly affected by under- and overestimation.

7.4 Discussion

The main aims of this study were to evaluate if PRV showed any difference between

body locations during and after whole-body cold exposure, and if HRV and PRV

differed during these thermal changes. The obtained results provide strong evidence

for the primary hypotheses regarding the differences between HRV and PRV. Results

indicate that cold exposure may affect PRV in different ways when obtained from

peripheral and core vasculature, and that PRV may contain different information

that is not available in HRV. Although HRV and PRV showed a similar trend dur-

ing the whole-body cold exposure test, it was evident that PRV overestimated the

indices obtained from HRV, usually in a larger scale during the cold exposure. Also,

HRV and PRV should not be regarded as the same when different temperature con-

ditions are studied, and PRV may contain different information not available from

HRV, although further studies are needed to better understand the contribution of

sympathetic activity to PRV measurements.

7.4.1 Effects of cold exposure in peripheral and core vasculature

The sympathetic control of the ANS over cutaneous blood vessels is thought to

act differently over peripheral and core vasculature during cold exposure, probably

caused by modifications of cutaneous blood flow to changes in temperature, which
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Figure 7.7: Bland-Altman analysis for the assessment of agreement between SDNN indices
extracted from HRV and PRV, measured during the three stages of the study. Differences
and averages are shown in seconds. From left to right: Basal measurement, cold exposure and
cold recovery. From top to bottom, SDNN was obtained from the finger, the toe, the earlobe
and the ear canal. Continuous line: Mean value of the difference. Dashed lines: Limits of
agreement. Dotted lines: Confidence intervals. Black line: Zero difference.

are intended to maintain thermoregulation and homeostasis (Fox 2016). The sym-

pathetic nervous system generates vasoconstriction in the cutaneous vessels when

the temperature is low, producing a decrease in the cutaneous blood flow, which

reduces the rate at which the body losses heat, and the amount of blood that is
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Figure 7.8: Bland-Altman analysis for the assessment of agreement between RMSSD indices
extracted from HRV and PRV, measured during the three stages of the study. Differences and
averages are shown in seconds. From left to right: Basal measurement, cold exposure and cold
recovery. From top to bottom, RMSSD was obtained from the finger, the toe, the earlobe
and the ear canal. Continuous line: Mean value of the difference. Dashed lines: Limits of
agreement. Dotted lines: Confidence intervals. Black line: Zero difference.

travelling to peripheral tissues such as the fingertips, the palms of the hands, the

toes, and the nose, among others.

Different authors have reported distinct responses in core and peripheral vascu-

lature response to cardiovascular changes (Budidha & Kyriacou 2019, Alian et al.
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Figure 7.9: Bland-Altman analysis for the assessment of agreement between pNN50 indices
extracted from HRV and PRV, measured during the three stages of the study. From left to
right: Basal measurement, cold exposure and cold recovery. From top to bottom, pNN50 was
obtained from the finger, the toe, the earlobe and the ear canal. Continuous line: Mean value
of the difference. Dashed lines: Limits of agreement. Dotted lines: Confidence intervals. Black
line: Zero difference.

2011a,b). The former showed that PPG amplitude was differently affected by whole-

body cold exposure when PPG was measured from the finger (peripheral tissue) and

the earlobe and ear canal (core tissue), and concluded that ANS regulation is highly

affected in peripheral tissue, whereas core vasculature remains almost untouched,
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Figure 7.10: Bland-Altman analysis for the assessment of agreement between LF indices
extracted from HRV and PRV, measured during the three stages of the study. Differences
and averages are shown in squared seconds (s2). From left to right: Basal measurement, cold
exposure and cold recovery. From top to bottom, LF was obtained from the finger, the toe,
the earlobe and the ear canal. Continuous line: Mean value of the difference. Dashed lines:
Limits of agreement. Dotted lines: Confidence intervals. Black line: Zero difference.

indicating a prevalence of the body to maintain the conditions in vital organs at

the expense of peripheral circulation (Budidha & Kyriacou 2019). Alian et. al.

demonstrated that, when low-body negative pressure (LBNP) was used as a model

of haemorrhage, both time- (Alian et al. 2011a) and frequency-domain parameters

276



Figure 7.11: Bland-Altman analysis for the assessment of agreement between HF indices
extracted from HRV and PRV, measured during the three stages of the study. Differences
and averages are shown in squared seconds (s2). From left to right: Basal measurement, cold
exposure and cold recovery. From top to bottom, HF was obtained from the finger, the toe,
the earlobe and the ear canal. Continuous line: Mean value of the difference. Dashed lines:
Limits of agreement. Dotted lines: Confidence intervals. Black line: Zero difference.

(Alian et al. 2011b) measured from the variability of PPG amplitude from the earlobe

(core vasculature) and the finger (peripheral vasculature) showed different behaviour

after LBNP, and that peripheral vasculature showed larger changes that were not

significant from core tissue, probably due to greater changes in vasoconstriction in
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Figure 7.12: Bland-Altman analysis for the assessment of agreement between TP indices
extracted from HRV and PRV, measured during the three stages of the study. Differences
and averages are shown in squared seconds (s2). From left to right: Basal measurement, cold
exposure and cold recovery. From top to bottom, TP was obtained from the finger, the toe,
the earlobe and the ear canal. Continuous line: Mean value of the difference. Dashed lines:
Limits of agreement. Dotted lines: Confidence intervals. Black line: Zero difference.

peripheral tissue controlled by sympathetic activity.

In this study, it was observed that most PRV- and HRV-derived indices in-

creased during cold exposure when measured from any of the locations. However,

certain differences were observed. Remarkably, the ear canal indices did not show
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Figure 7.13: Bland-Altman analysis for the assessment of agreement between nLF indices
extracted from HRV and PRV, measured during the three stages of the study. From left to
right: Basal measurement, cold exposure and cold recovery. From top to bottom, nLF was
obtained from the finger, the toe, the earlobe and the ear canal. Continuous line: Mean value
of the difference. Dashed lines: Limits of agreement. Dotted lines: Confidence intervals. Black
line: Zero difference.

a statistically significant difference due to cold exposure when any of the indices

were compared among stages, while most of the other locations showed differences

between baseline measurement and cold exposure, as well as between baseline mea-

surement and cold recovery. This behaviour observed from the ear canal could be a
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Figure 7.14: Bland-Altman analysis for the assessment of agreement between nHF indices
extracted from HRV and PRV, measured during the three stages of the study. From left to
right: Basal measurement, cold exposure and cold recovery. From top to bottom, nHF was
obtained from the finger, the toe, the earlobe and the ear canal. Continuous line: Mean value
of the difference. Dashed lines: Limits of agreement. Dotted lines: Confidence intervals. Black
line: Zero difference.

hint of the differences on vascular regulation that is performed by the ANS when the

body is exposed to temperature differences (Fox 2016). Interestingly, HRV failed to

show any difference among stages when LF, HF and TP were measured, while most

of the PRV-derived indices showed differences between baseline measurement and
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Figure 7.15: Bland-Altman analysis for the assessment of agreement between LF/HF indices
extracted from HRV and PRV, measured during the three stages of the study. From left to
right: Basal measurement, cold exposure and cold recovery. From top to bottom, LF/HF was
obtained from the finger, the toe, the earlobe and the ear canal. Continuous line: Mean value
of the difference. Dashed lines: Limits of agreement. Dotted lines: Confidence intervals. Black
line: Zero difference.

the subsequent stages. Nonetheless, these results need to be considered with care

due to the short segments used for analysis, that may affect the results obtained

from frequency-domain analysis (Task Force of the European Society of Cardiology

and The North American Society of Pacing and Electrophysiology 1996).
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Figure 7.16: Bland-Altman analysis for the assessment of agreement between SD1 indices
extracted from HRV and PRV, measured during the three stages of the study. Differences and
averages are shown in seconds. From left to right: Basal measurement, cold exposure and cold
recovery. From top to bottom, SD1 was obtained from the finger, the toe, the earlobe and the
ear canal. Continuous line: Mean value of the difference. Dashed lines: Limits of agreement.
Dotted lines: Confidence intervals. Black line: Zero difference.

Although the same trend was observed between data obtained from HRV and

most PRV locations during the test, it is remarkable how over- and underestimation

are a constant factor in PRV analysis. Moreover, it tended to increase during cold

exposure, and was higher when PRV was measured from the toe and the ear canal.
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Figure 7.17: Bland-Altman analysis for the assessment of agreement between SD2 indices
extracted from HRV and PRV, measured during the three stages of the study. Differences and
averages are shown in seconds. From left to right: Basal measurement, cold exposure and cold
recovery. From top to bottom, SD2 was obtained from the finger, the toe, the earlobe and the
ear canal. Continuous line: Mean value of the difference. Dashed lines: Limits of agreement.
Dotted lines: Confidence intervals. Black line: Zero difference.

These two locations could be considered as the most peripheral and the most core

vasculature of the four locations used in this study, respectively, and it should be

further analysed how this differences may be influenced by ANS activity in these

sites. It is also interesting to observe how the values measured during baseline
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Figure 7.18: Bland-Altman analysis for the assessment of agreement between SD1/SD2
indices extracted from HRV and PRV, measured during the three stages of the study. From
left to right: Basal measurement, cold exposure and cold recovery. From top to bottom,
SD1/SD2 was obtained from the finger, the toe, the earlobe and the ear canal. Continuous
line: Mean value of the difference. Dashed lines: Limits of agreement. Dotted lines: Confidence
intervals. Black line: Zero difference.

were achieved from almost all locations after 10 minutes of recovery from the cold

recovery, but how they were affected almost immediately at the beginning of the

cold exposure. This could be considered as an example of the behaviour of ANS

regulation performed over the cardiovascular system during thermal changes.
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It is important to remark that only the fiducial points that proved to detect

cardiac cycles in a strongly reliable way were used for each subject and each PPG

signal, and PRV data was obtained after important pre-processing stages applied to

the PPG signals in order to improve their signal-to-noise ratio. Hence, these results

can be considered as a strong indication of the differences between PRV and HRV

when cardiovascular conditions are modified.

7.4.2 Relationship between PRV and HRV during whole-body cold

exposure

It was hypothesised that cold exposure affected the relationship between HRV and

PRV, implying that PRV may not be a suitable surrogate of HRV under conditions

that alter the vasculature and that it may contain different information due to

cardiovascular changes.

From the Friedman rank sum test, it was observed that there were statistically

significant differences between HRV and PRV, when the latter was measured from

different body sites. However, the relationship between PRV and HRV changed dur-

ing each stage, and from each location. Interestingly, and in line with the results

obtained from the other analyses, toe and ear canal PRV consistently showed statis-

tically significant differences to HRV. Also, frequency-domain indices, especially nLF

and LF/HF, were not found different between HRV and PRV. This was probably

due to the short time of analysis.

In general, the finger and the earlobe were the locations in which less differences

were observed, and during all stages the earlobe proved to be the body site in

which the relationship between HRV and PRV was less affected by the changes in

temperature. Especially during the baseline measurement, it was observed that HRV

and PRV differed especially when RMSSD, nHF, SD1 and SD1/SD2 parameters were

measured. All these parameters, except for SD1/SD2, reflect the short-term HRV

and PRV. Hence, PRV and HRV tend to differ more in short-term indices. In this

same line, some indices showed no difference among locations. These parameters,

which include LF, TP, nLF, LF/HF, and SD2, are expected to be a measurement

of long-term variability (Khandoker et al. 2013). Hence, the lack of differences may

be explained by the short measurement and due to the changes that are induced

with short exposure to cold temperatures, that may not be reflected in long-term

variability changes.
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SD1, RMSSD and HF reflect parasympathetic activity in HRV (Shaffer & Gins-

berg 2017), which usually leads to diminished heart rate and lowered force of atrial

contraction, among other effects (Drew & Sinoway 2012). In vessels, most of the

ANS activity is controlled by the sympathetic nervous system, which is in charge of

vasoconstriction and vasodilation in response to environmental changes (Lombard &

Cowley 2012). In this study, it was observed that a diminished temperature induced

a higher similarity between these indices from HRV and PRV in different body sites,

which might be explained by a lower parasympathetic activity and an increased

sympathetic activity. It is not clear how sympathetic and parasympathetic changes

may be affecting PRV-derived indices, and it might be possible that PRV may be

affected by these changes in a different manner when compared to HRV, which is

mainly a reflection of vagal activity (Laborde et al. 2017), and that sympathetic

changes in vascular autonomic activity are observable from PRV indices. SD1/SD2,

on the other hand, is supposed to be an index of short-term and long-term changes

of ANS activity (Khandoker et al. 2013). Hence, a change in either parasympathetic

or sympathetic activity should be reflected in this index, as was observed in the

results obtained in this study.

However, further studies are needed to better understand and characterize PRV

changes, and to evaluate how sympathetic changes may be affecting PRV-extracted

indices. This could be done by using blockade techniques for assessing the contribu-

tion of each branch of the ANS to PRV indices, or by comparing PRV results to more

specific measurements such as microneurography. To the knowledge of the authors,

the only blockade study that has been performed to evaluate changes in PRV was

done by Pellegrino et al. (2014). They showed that cardiovagal blockade induced an

overestimation of HF measured from PRV; cardiac sympathetic blockade implied a

moderate to high agreement between HRV and PRV in time- and frequency-domain

indices; and dual blockade implied a poor accuracy and precision for normalized

measures and LF/HF indices. Also, non-linear indices obtained from HRV and PRV

were largely affected by both sympathetic and parasympathetic blockade. Hence,

PRV and HRV can be supposed to act differently under different ANS conditions.

The correlation analysis was performed to further compare HRV and PRV. The

main result was the stronger correlations observed from the earlobe and the finger, in

all indices, compared to those measured from the ear canal and the toe. SD2 showed

an interesting behaviour: Significant correlations tended to show a lower correlation
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coefficient when PRV was measured from all locations during cold exposure; during

baseline measurement and cold recovery, the correlation is slightly higher, indicating

that the correlation of SD2 from HRV and PRV was more affected during the induced

hypothermia response. Several studies have used correlation analysis to assess the

relationship between HRV and PRV, some of them finding results similar to those

reported in this paper. When PRV and HRV correlation was assessed in subjects at

rest, earlobe and finger PRV have a good correlation to HRV indices (Shi et al. 2008,

Lu et al. 2009, Bulte et al. 2011, Okkesim et al. 2016); however, certain changes in

cardiovascular conditions have been found to alter the correlation between HRV and

PRV, including changes due to mental stress (Giardino et al. 2002), changes in the

position of the subjects (Lu et al. 2008, Gil, Orini, Bailón, Vergara, Mainardi &

Laguna 2010), and changes in cardiovascular dynamics (Charlot et al. 2009).

Finally, from the Bland-Altman analysis, SD2 and pNN50, to a lower extent,

showed the better agreement between HRV and PRV in all stages and from all body

sites. This is in line with the results obtained from the correlation analysis and the

Friedman’s test results. However, LF/HF showed a good agreement as well, which is

not reflected in the other analyses. This could be due to the short recordings which

highly affect frequency-domain indices. Interestingly, some of the Bland-Altman

plots derived from HRV and PRV data showed a behaviour similar to what was

hypothesised: The agreement is affected during cold exposure in all locations, but

during cold recovery, the agreement tends to recover. Although Shin (2016) does not

explain the location from which PPG signals were obtained, these results are in line

with those shown by in his study, in which differences in the relationship between

PRV and HRV were observed when ambient temperature increased.

Frequency-domain indices reflecting absolute powers, i.e. LF, HF and TP,

showed higher values of BARs than any other indices, reaching BARs above 100%.

This might be an indication of the effect of short-term recordings on these indices,

but further analyses should be performed to better understand how these indices

may relate when extracted from PRV and HRV. Also, the toe and ear canal mea-

surements were the ones that showed the higher differences between HRV and PRV,

in all three stages. It is hard to conclude regarding the origin of these differences.

Regarding the toe measurements, although the quality of the signals was the lowest,

it is plausible that the higher differences were due to the measurement site: PRV

has been shown to be affected by pulse transit time (PTT) variability (Gil, Orini,

287



Bailón, Vergara, Mainardi & Laguna 2010), and the distance between the heart

and the toe is larger than the others, implying a longer time for the pulse wave

to arrive to the site of measurement and increasing the chances of cardiovascular

changes that may affect PTT variability. And regarding the ear canal, these differ-

ences in agreement might be explained by the hypothesis that core vasculature is

less affected by environmental changes than the other locations. Although HRV is

measured directly from the heart, it could be considered as a measurement of the

summation of the changes in ANS activity in the cardiovascular system as a whole,

whereas the ear canal might be a reflection of more localised changes. Nevertheless,

the measurement on this body site is relatively new (Budidha 2016), and further

analyses should be performed.

It must be considered as well the effects that lower temperatures may have on

the photoplethysmographic signal, and how it is affected differently by these changes

to the electrocardiogram. Khan et al. (2015) demonstrated that the quality of PPG

signals acquired from colder fingers is much lower than those obtained at normal

temperature conditions, while higher temperatures allow for an improvement in the

quality of the signal and consequently of the oxygenation measurements obtained

from it. Pilt et al. (2013) and Pi et al. (2022) also reported important differences

in the PPG signal quality due to changes in temperature, which make it harder

to reliable extract physiological information from the signal. Although cold also

induces changes in the morphology of the ECG (Raiko et al. 2021), it’s quality,

especially for HRV assessment is less affected than the PPG. Hence, this may have

had an impact on the results obtained.

7.4.3 Limitations of the study

One of the main limitations for the analysis of PRV under the exposed circumstances

is the fact that PPG signals are highly affected by changes in vasculature derived

from cold exposure. This represents an increased difficulty for obtaining high quality

PPG signals and, therefore, for extracting reliable fiducial points from the signals.

To overcome this difficulty, different signal quality indices were extracted from PPG

cardiac cycles delimited by several fiducial points, i.e., systolic peaks, diastolic on-

sets, maximum slope points, and the point of intersection between tangent lines from

the diastolic onset and the maximum slope point. It was found that the best quality

of cardiac cycles was when cycles were delimited by the intersection point between
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the tangent lines, whereas the worst quality was obtained from the cardiac cycles

delimited by systolic peaks. These results are in line with those obtained by Peng

et al. (2015) and Hemon & Phillips (2016). However, the fiducial point selected

for each case was different, according to the results of each signal, as recommended

in the literature (Pinheiro et al. 2016). With this methodology, the probabilities of

having a low-quality PRV time-series was reduced. Also, the IBIs and RRIs were

manually corrected, to avoid outliers and mistakes that could affect the results.

It is important to consider as well that the sample size of this study was relatively

small, and composed mainly of young and healthy subjects, that do not represent

the population as a whole. Finally, a note should be made on the short segments

of signals used for the analyses performed in this study, which might affect the

results, especially those obtained from frequency-domain parameters. These short

recordings were selected in order to be able to compare the three stages, and to

observe the differences along time. Although longer recordings are recommended,

several studies have shown that short recordings of less than 10 minutes can be used

reliably for the analysis of time-domain and nonlinear indices from HRV and PRV

(Shaffer & Ginsberg 2017).

7.5 Summary

Cardiovascular responses to cold exposure have been shown to differ among different

body locations, and it has been suggested that this is due to autonomic activity and

that it can be assessed using PPG signals (Budidha & Kyriacou 2019). In this study,

a whole-body exposure protocol was performed to evaluate the effect of temperature

changes in PRV acquired from several body places, and its relationship with HRV.

From the obtained results, it can be concluded that PRV and HRV should not be

regarded as equal under all circumstances, and that hypothermia affects PRV in a

different manner, not only when compared to HRV but also when compared among

different body sites. PRV generally overestimates HRV indices, especially under

cold exposure. Moreover, there seems to be a tendency to maintain the autonomic

balance more properly in core vasculature.

Although further investigation is needed, the results shown in this chapter serve

as an indication of the effects of changes in vessel characteristics that can be ob-

served in PRV, but are not reflected in HRV, and are promising for future research,
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which may aim to understand the contribution of parasympathetic and sympathetic

activity in the measurement of these indices from PRV. Nonetheless, further research

that aims to clarify the contribution of sympathetic and parasympathetic activity

on PRV, by using methodological considerations such as using blockade studies, are

needed to better understand the results obtained in this study.

In the next chapter of this thesis, other crucial cardiovascular variable, i.e. blood

pressure, and its effect on PRV and its relationship with HRV is analysed, with the

objective of further understanding how PRV could be used for the assessment of

different cardiovascular changes.
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Chapter 8

Relationship between pulse rate

variability and heart rate

variability under different blood

pressure states in critically-ill

subjects

8.1 Aims and objectives

As mentioned in previous chapters, some studies have shown that PRV is a promis-

ing technique for identifying several physiological conditions, and that it is highly

correlated with HRV. However, these results have mainly been observed in healthy

or resting subjects in the supine position and several researchers have argued that

PRV is not necessarily a good surrogate for HRV, probably due to physiological

factors, such as changes in pulse transit time (PTT) (Schäfer & Vagedes 2013). As

explained by Constant et al. (1999) and Gil, Orini, Bailón, Vergara, Mainardi &

Laguna (2010), PTT plays an important role in the differences that are seen between

PRV and HRV.

PTT is the time it takes for the pulse wave to travel from the heart to the

peripheral tissue where it is being measured, and it has been shown to be related

to blood pressure (BP) (i Caros 2011). BP refers to the force that the heart uses to

pump blood through the circulatory system and is one of the main measurements
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used to understand the behaviour of the cardiovascular system (National Health

Service 2019b). Its associated abnormalities, especially hypertension (i.e., high blood

pressure), are associated with fatal cardiovascular diseases (Mousavi et al. 2019). As

explained by Karmali et al. (2017), HRV has been found to aid in the diagnosis and

increase the prognostic value of predisposing conditions for critical illness, including

hypertension, and some HRV parameters have been found to be abnormal even in

the early stages of this particular condition.

Because of the relationship between PTT and BP, and the effects of PTT on

PRV measurements (Constant et al. 1999, Gil, Orini, Bailón, Vergara, Mainardi &

Laguna 2010), the aim of this study was to evaluate the relationship between HRV

and PRV measured from ECG and PPG signals, respectively, obtained from critically

ill patients with hypotension, hypertension, or normotension. It was hypothesised

that HRV and PRV would not exhibit the same behaviour and that their relationship

would be affected by the BP state. To evaluate these hypotheses, signals obtained

from the public MIMIC-III database from Physionet were analysed, and PRV and

HRV indices were extracted and compared to assess the relationship between HRV

and PRV.

8.2 Methods and materials

8.2.1 Signal selection

A subset of 500 records was obtained from the MIMIC-III Waveform Database

(Johnson et al. 2016, Goldberger et al. 2000). Each record in the subset contained

the ECG, PPG, and invasive arterial BP (ABP) signals, which were obtained at a

125 Hz sampling rate, from critically ill subjects in adult intensive care units. As

the MIMIC-III is a publicly available database, ethical approval was not required

for this study.

These records were filtered to reject poor-quality signals and signals with length

of less than 5 min. First, signals with a duration of less than 5 min were discarded.

Then, a signal quality index (SQI) algorithm similar to that described in Chapter

7 was employed to detect good- and poor-quality ABP signals. A block diagram of

this algorithm is shown in Figure 8.1. It begins with the detection of the onsets from

each ABP signal, applying the Delineator algorithm (Li et al. 2010), and obtaining

the cardiac cycles. Then, the quality of each cardiac cycle was assessed using SQIs
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Figure 8.1: Signal quality assessment algorithm. The arterial blood pressure (ABP) signals
are segmented into cardiac cycles and signal quality indices are extracted for each cardiac cycle.
Then, these indices are used as features to group the cycles in two clusters, using a k-Means
algorithm. Then, signals are classified as good or poor-quality cycles using the ratio between
the number of points grouped in each cluster.

proposed in the literature (Li & Clifford 2012, Elgendi 2016, Karlen et al. 2012).

A K-Means clustering algorithm was employed to automatically group good-quality

(GQ) and poor-quality (PQ) cardiac cycles in two clusters, with the SQIs used as

features. Because it was expected that most of the cycles would be of good quality,

the larger cluster was considered the good-quality cluster. Then, the ratio (RGQ)

between the number of cycles grouped as “good-quality cycles” and the total number

of cycles was obtained as in (8.1). The records with a RGQ greater than or equal to

80% were considered good-quality signals, and the remaining records were discarded.

RGQ = (100%)
nGQ

nGQ + nPQ
(8.1)

8.2.2 Signal processing

MATLAB R© (version 2020a) was used for signal processing and figure generation.

ECG, PPG, and ABP signals from selected recordings were segmented into 5-min-

long portions, with a stride of 10 s between consecutive segments.
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8.2.2.1 Arterial blood pressure signals

After segmentation, 5-min-long ABP signals were filtered using a 12 Hz, fourth or-

der, lowpass Butterworth filter. Peaks and onsets were detected, corrected, and

interpolated using a cubic spline to obtain systolic blood pressure (SBP) and dias-

tolic blood pressure (DBP) trends. From the SBP and DBP information, events of

hypertension (SBP greater than 140 mmHg or DBP greater than 90 mmHg) and hy-

potension (SBP lower than 90 mmHg or DBP lower than 60 mmHg) were identified.

Then, each 5 min segment was labelled as hypertension, normotension, or hypoten-

sion according to the most frequent label in each 5 min segment. An example of

these trends and labels is shown in Figure 8.2.

8.2.2.2 Heart rate variability

After segmentation, R peaks were detected from ECG signals using the algorithm

proposed by Pan & Tompkins (1985). HRV was measured as the time difference,

in milliseconds, between consecutive R peaks. For the frequency-domain analysis,

the uneven HRV series was interpolated using a cubic spline interpolation and a

Figure 8.2: Example of the analysis of a 5 -min arterial blood pressure (ABP, gray line)
signal, with the trends for systolic (SBP, continuous line) and diastolic (DBP, dotted line)
blood pressure, as well as the determination of blood pressure state (BP State, dashed line).
Each 5-min segment is classified as hypotension (hypo), normotension (normo) or hypertension
(hyper) according to the most frequent state during the 300 seconds.
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sampling rate of 4 Hz, and the power spectrum was obtained using the Fast Fourier

Transform (FFT). Outliers in both the original and interpolated time series were

defined as values higher or lower than the mean value plus or minus 1.96 times the

standard deviation of the series. These outliers were then replaced with the mean

value of the five previous values in the time series. Figure 8.3 (a) illustrates this

process.

8.2.2.3 Pulse rate variability

After segmentation, the onset of each cardiac cycle from the 5-min-long PPG signals

was obtained as the intersection point of the tangent lines arising from the maximum

slope point and the valley of the waveform. This fiducial point was selected because

of its robustness for PRV analysis, as shown in previous work published by Hemon

& Phillips (2016) and Posada-Quintero, H.F., Delisle-Rodŕıguez, D., Cuadra-Sanz,

M.B., & Fernández de la Vara-Prieto, R.R. (2013) and on the results obtained in

Figure 8.3: Example of (a) an electrocardiographic (ECG) and (b) a photoplethysmographic
(PPG) signal. R peaks (black circles on the ECG signal) were detected from ECG signals to
measure heart rate variability (HRV) as the time interval between consecutive R peaks (RR
intervals). Onsets (black circles on the PPG signal) were detected from PPG signals to measure
pulse rate variability (PRV) as the time interval between consecutive onsets (PP intervals).
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Chapter 6. PRV was measured as the time difference, in milliseconds, between

consecutive onsets from the PPG signal, as shown in Figure 8.3 (b). Similar to the

method used for HRV trends, PRV was interpolated using a 4 Hz sampling rate and

a cubic spline interpolation, and outliers were detected and corrected. Again, FFT

was used to obtain the power spectrum.

8.2.2.4 Pulse rate and heart rate variability indices

Time- and frequency-domain, as well as non-linear indices extracted from Poincaré

plot, entropy, phase, and detrended-fluctuation analyses were obtained. A short

description of these indices is presented in Table 8.1. In addition to the classical in-

dices extracted from time-domain, frequency-domain and Poincaré plot analysis, ad-

ditional indices were obtained. From the spectral analysis, spectral analysis (SpEn)

was extracted as a measure of the level of entropy in the frequency representation of

HRV and PRV trends, while x- and y-coordinates from the centroids of each band

of interest, i.e. LF, HF and TP, were obtained as an additional characterisation of

these bands.

SpEn was computed as shown in (8.2), where N is the total number of points

available in the frequency spectrum and P (i) corresponds to the probability distri-

bution of the power spectrum, calculated as in (8.3), where PS represents the power

spectrum.

SpEn =

∑N
i=1 P (i) log2 P (i)

log2N
(8.2)

P =
PS∑
i PS(i)

(8.3)

The x- and y-coordinates of the centroid or centre of mass of the low- and

high-frequency bands and the total spectrum were calculated as shown in (8.4) and

(8.5), in which B refers to each of the bands (LF, HF or TP), f1 is the lower

frequency of each band, f2 is the higher frequency of each band, P is the power of

the frequency spectrum and f is the frequency value related to each power in the

frequency spectrum.

cBx =

∑f2
i=f1

f(i)P (i)∑f2
i=f1

(P (i))
(8.4)
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cBy =

∑f2
i=f1

1
2P (i)2∑f2

i=f1
(P (i))

(8.5)

From the Poincaré plot representation of PRV and HRV trends, a novel index

was proposed for the assessment of the compaction of these plots, as described in

(8.6), where N refers to the number of points in the Poincaré plot, Xi refers to the

i-th point, and U refers to the mean value of the ellipse. This index was inspired

from measures of performance in clustering analysis, and determines the Euclidean

distance between the points that form the ellipse and the mean value of the ellipse,

assessing how close the points are. Further validation of this index is needed, but

less compact ellipses are expected to be related to less varying PRV and HRV trends.

COM =

∑N
i=1‖Xi −U‖
N − 1

(8.6)

Additional non-linear measures based on entropy, phase and detrended fluctua-

tion analysis were extracted. Entropy-related indices were the basic-scale entropy

(BSE), sign-series entropy (SSE), approximate entropy (ApEn), sample entropy

(SampEn) and multi-scale entropy (MSE) with SampEn as base function. All these

indices have been extracted previously from PRV or HRV trends to characterise

their behaviour under specific conditions (Shaffer & Ginsberg 2017, Chou, Zhang,

Feng, Lu, Lu & Xu 2017, Chou, Zhang & Yang 2017).

The basic scale entropy (BSE) was measured as proposed by Chou, Zhang, Feng,

Lu, Lu & Xu (2017), using temporal sequence vectors of length m = 2 and a scaling

factor of α = 0.2. The measurement of BSE was done as follows: (1) A series

of vectors of size m, denoted as temporal sequence vectors (TSV), are constructed

from the PRV time series and the basic scales (BS) of these vectors was measured,

as shown in (8.7); (2) TSVs are classified and symbolized according to their mean

values and a scale BS, with a scale factor α; (3) the probability of each beat mode is

computed and BSE(m) is calculated as shown in (8.8), where π denotes the different

possible sequences to be obtained.

BS(i) =

∑m−1
j=1 (IBI(i+ j)− IBI(i+ j − 1))2

m− 1
(8.7)

BSE(m) = −
∑
pi

p(π) log2 p(π) (8.8)
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The sign-series entropy (SSE) of PRV was assessed as explained by Bian et al.

(2009), using a number of modes of m = 2. In the case of SSE, the first step was

to represent the inter-beat intervals according to their direction. Then, vectors of

size m were created to analyse the changing rule of the signal, according to the

representation obtained in the previous step. Then, the probability of each mode of

variation was computed and the SSE is calculated using (8.9).

SSE(m) = −
M∑
j=1

p(j) log2 p(j) (8.9)

Similarly, detrended-fluctuation analysis was used to obtain the short- (α1) and

long-range (α2) scaling exponents of these trends, as has also been done previously

(Shaffer & Ginsberg 2017), while phase analysis, i.e. Lyapunov exponents and cor-

relation dimension analysis, have also been performed to further understand the

non-linear behaviour of PRV and HRV trends, using analysis techniques explained

by Semmlow & Griffel (2014). The main drawback from the extraction of these

non-linear indices is the lack of standardisation for its assessment, and the difficulty

in finding physiological explanations for their behaviour. Future studies, both in

HRV and PRV, should aim to better determine the usefulness and interpretation of

these indices.

8.2.3 Statistical analysis

All statistical analyses were performed in MATLAB R© and R (version 3.6.1). A

significance level of 5% (p-value < 0.05) was considered significant for all analyses,

and the normality of data was assessed using a Lilliefors test. The aim of this study

was to assess the differences between HRV and PRV indices extracted from critically

ill subjects during hypo-, normo-, and hypertensive events. Hence, the level of the

linear relationship between PRV and HRV indices was evaluated using Spearman

correlation coefficients. The differences between HRV and PRV were also evaluated

using Friedman rank sum tests, and the differences among BP states were assessed

using Kruskal-Wallis tests, with pairwise Wilcoxon tests with Bonferroni correction

as post hoc analyses. Moreover, because a good correlation does not imply good

agreement, the agreement between HRV and PRV during each of the BP states was

assessed using Bland-Altman analysis.
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From the Bland-Altman plots, the bias and difference between limits of agree-

ment (LoAs) were obtained, and the ratio of agreement (BAR), as described in

Chapter 7, was measured using (7.1) and (7.2). Agreement values were categorised

as good (BAR ≤ 10%), moderate (10% < BAR ≤ 20%), or insufficient (BAR >

20%).

8.3 Results

8.3.1 Signal selection and segmentation

The dataset was filtered according to the length of the recordings and the quality of

the ABP signals for each patient. In total, 230 records with poor-quality ABP signals

and a short duration were discarded. The signals from the remaining 270 records

were used in the subsequent analysis. From these signals, 4937 5 min segments

were extracted, of which 54% were labelled as hypertensive, 25% were labelled as

hypotensive, and the remaining 22% were labelled as normotensive events. Table 8.2

summarises the behaviour of PRV and HRV indices extracted from signals labelled

as hypotension, normotension, and hypertension.

8.3.2 Correlation between PRV and HRV indices

The results from the analysis of the correlation between PRV and HRV indices are

summarised in Figure 8.4. Most of the indices showed a good correlation between

HRV and PRV during all three BP states, although some of the indices tended to

show a lower correlation during normotension. Interestingly, the entropy- and phase

derived indices had lower correlations. In addition, lower correlation coefficients

were observed for indices associated with short-term changes, such as RMSSD, SD1,

HF, and A1.

8.3.3 Comparison between HRV and PRV using the Friedman rank

sum test

Because most of the data obtained from the different indices were non-normally

distributed and did not comply with the assumption of homogeneity of variances,

Friedman rank sum tests were used as a non-parametric alternative to repeated

measures ANOVA. The results from these tests for the comparison between HRV
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Figure 8.4: Spearman correlation coefficients (ρ) between indices obtained from pulse rate
variability and heart rate variability in each blood pressure state. Most indices showed good
correlation regardless of blood pressure state, although some, such as SpEn and BSE, showed
lower correlations during normotension.

and PRV are shown in Table 8.3. For most indices, there were significant differences

(p-value < 0.001) between HRV and PRV, regardless of the BP state. Only VLF

and cTPy showed non-significant differences between the two measurement sources

during normotension.

8.3.4 Comparison between blood pressure states using Kruskal-

Wallis tests

Kruskal-Wallis tests, a non-parametric alternative to one-way ANOVA, were used

to compare indices among BP states when measured using PRV or HRV. Pairwise
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Table 8.3: Friedman rank sum tests results for the comparison between pulse rate variability
and heart rate variability in the different blood pressure states.

Indices Friedman rank sum test p-values
Hypotension Normotension Hypertension

AVNN 9.48× 10−14 ? 6.24× 10−10 ? 1.53× 10−21 ?
SDNN 3.32× 10−72 ? 2.01× 10−50 ? 9.98× 10−169 ?
RMSSD 1.21× 10−181 ? 1.40× 10−158 ? 0.00 ?
NN50 7.25× 10−22 ? 2.30× 10−50 ? 1.01× 10−134 ?
pNN50 1.23× 10−22 ? 5.56× 10−52 ? 8.87× 10−137 ?

VLF 2.48× 10−3 † 4.83× 10−1 2.42× 10−9 ?
LF 3.78× 10−34 ? 3.27× 10−46 ? 8.82× 10−89 ?
HF 7.96× 10−180 ? 4.73× 10−160 ? 0.00 ?
TP 1.86× 10−79 ? 7.94× 10−73 ? 1.00× 10−159 ?
nLF 4.39× 10−17 ? 6.89× 10−19 ? 5.16× 10−16 ?
nHF 1.12× 10−136 ? 1.07× 10−151 ? 3.10× 10−236 ?
LF/HF 3.62× 10−109 ? 1.31× 10−129 ? 4.12× 10−189 ?
cLFx 3.05× 10−14 ? 6.61× 10−24 ? 2.49× 10−66 ?
cHFx 4.05× 10−22 ? 1.44× 10−30 ? 6.27× 10−66 ?
cTPx 5.12× 10−134 ? 8.87× 10−163 ? 4.34× 10−250 ?
cLFy 1.17× 10−19 ? 8.72× 10−24 ? 3.47× 10−34 ?
cHFy 1.13× 10−142 ? 7.43× 10−136 ? 1.33× 10−242 ?
cTPy 1.40× 10−7 ? 4.31× 10−1 1.61× 10−9 ?
SpEn 5.09× 10−56 ? 1.32× 10−90 ? 1.74× 10−172 ?

S 4.08× 10−183 ? 5.69× 10−161 ? 0.00 ?
SD1 1.21× 10−181 ? 1.40× 10−158 ? 0.00 ?
SD2 8.76× 10−14 ? 5.67× 10−10 ? 1.42× 10−21 ?
SD1/SD2 1.69× 10−179 ? 3.20× 10−156 ? 0.00 ?
COM 2.75× 10−73 ? 2.70× 10−50 ? 1.56× 10−169 ?

BSE 1.35× 10−262 ? 1.58× 10−230 ? 0.00 ?
SSE 2.22× 10−77 ? 7.27× 10−114 ? 1.34× 10−251 ?
ApEn 2.58× 10−21 ? 8.74× 10−57 ? 4.37× 10−83 ?
SampEn 2.44× 10−19 ? 8.46× 10−56 ? 4.03× 10−88 ?
MSE 3.63× 10−30 ? 2.21× 10−29 ? 9.07× 10−30 ?

D2 1.09× 10−11 ? 3.28× 10−22 ? 1.00× 10−14 ?
LYA 1.18× 10−12 ? 7.83× 10−18 ? 5.71× 10−16 ?

A1 1.71× 10−102 ? 1.04× 10−101 ? 8.73× 10−215 ?
A2 5.62× 10−25 ? 2.89× 10−29 ? 1.45× 10−34 ?

‡: p-value less than 5.00× 10−2; †: p-value less than 5.00× 10−3; ?: p-value less
than 5.00× 10−4.

Wilcoxon tests were used as post hoc analyses when the Kruskal-Wallis results in-

dicated significant differences. The results are shown in Table 8.4 and Table 8.5.

There were statistically significant differences among BP states from all indices, ex-

cept for cHFx measured using HRV. The pairwise comparisons revealed that most

of the indices showed differences among the three stages, especially when measured

using PRV.
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Table 8.4: Kruskal-Wallis and post-hoc multiple comparisons p-values for the comparison
among blood pressure states from indices measured from pulse rate variability.

Indices KWa Multiple comparisons
PW1b PW2c PW3d

AVNN 2.1× 10−60 ? 7.5× 10−36 ? 6.3× 10−1 3.8× 10−59 ?
SDNN 9.8× 10−57 ? 1.0× 10−25 ? 1.8× 10−55 ? 1.9× 10−4 ?
RMSSD 1.1× 10−53 ? 2.8× 10−20 ? 1.4× 10−55 ? 1.6× 10−3 †
NN50 8.5× 10−43 ? 1.7× 10−6 ? 6.6× 10−41 ? 8.7× 10−12 ?
pNN50 1.5× 10−43 ? 1.3× 10−6 ? 1.4× 10−41 ? 5.6× 10−12 ?

VLF 2.7× 10−70 ? 1.5× 10−14 ? 7.6× 10−64 ? 3.5× 10−21 ?
LF 5.1× 10−75 ? 2.5× 10−4 ? 1.1× 10−66 ? 2.1× 10−30 ?
HF 9.2× 10−32 ? 1.6× 10−8 ? 1.3× 10−33 ? 2.8× 10−4 ?
TP 1.3× 10−62 ? 2.5× 10−11 ? 1.6× 10−57 ? 2.9× 10−19 ?
nLF 4.7× 10−5 ? 2.7× 10−4 ? 7.4× 10−1 2.3× 10−4 ?
nHF 4.2× 10−29 ? 6.1× 10−3 ‡ 1.9× 10−29 † 1.5× 10−8 †
LF/HF 4.8× 10−20 ? 6.2× 10−1 5.0× 10−19 ? 2.8× 10−8 ?
cLFx 8.8× 10−12 ? 5.5× 10−12 ? 2.1× 10−4 ? 1.8× 10−5 ?
cHFx 1.6× 10−7 ? 3.5× 10−5 ? 4.6× 10−7 ? 6.9× 10−1

cTPx 2.0× 10−21 ? 1.2× 10−2 ‡ 3.1× 10−21 ? 7.8× 10−7 ?
cLFy 3.2× 10−73 ? 1.3× 10−6 ? 4.4× 10−67 ? 3.1× 10−26 ?
cHFy 1.3× 10−40 ? 3.0× 10−29 ? 3.8× 10−31 ? 1.6× 10−6 ?
cTPy 1.1× 10−56 ? 2.5× 10−43 ? 2.5× 10−48 ? 2.3× 10−1

SpEn 2.5× 10−40 ? 4.2× 10−39 ? 5.8× 10−28 ? 8.3× 10−3 ‡
S 1.3× 10−49 ? 2.3× 10−6 ? 8.6× 10−51 ? 6.8× 10−12 ?
SD1 1.1× 10−53 ? 2.8× 10−20 ? 1.4× 10−55 ? 1.6× 10−3 †
SD2 2.0× 10−60 ? 7.9× 10−36 ? 6.2× 10−1 3.6× 10−59 ?
SD1/SD2 1.2× 10−64 ? 4.9× 10−53 ? 2.8× 10−51 ? 2.3× 10−2 ‡
COM 1.1× 10−56 ? 8.8× 10−26 ? 2.1× 10−55 ? 2.0× 10−4 ?

BSE 1.4× 10−7 ? 9.5× 10−1 2.5× 10−6 ? 1.7× 10−4 ?
SSE 7.1× 10−24 ? 4.4× 10−2 ‡ 2.2× 10−23 ? 3.0× 10−8 ?
ApEn 1.1× 10−6 ? 1.2× 10−5 ? 9.5× 10−6 ? 1.0
SampEn 8.2× 10−10 ? 9.2× 10−11 ? 1.4× 10−5 ? 2.8× 10−2 ‡
MSE 1.1× 10−5 ? 6.0× 10−6 ? 1.2× 10−2 ‡ 1.5× 10−2 ‡
D2 5.7× 10−3 ‡ 4.0× 10−1 3.5× 10−3 † 7.0× 10−1

LYA 2.9× 10−14 ? 6.9× 10−8 ? 2.3× 10−14 ? 1.0

A1 1.3× 10−37 ? 3.7× 10−2 ‡ 3.8× 10−33 ? 1.7× 10−16 ?
A2 2.4× 10−2 ‡ 1.8× 10−2 ‡ 3.9× 10−1 2.8× 10−1

a Kruskal-Wallis test results. b Pairwise comparisons (PW) between hypotension
and normotension. c PW between hypotension and hypertension. d PW between
normotension and hypertension.
‡: p-value less than 5.00× 10−2; †: p-value less than 5.00× 10−3; ?: p-value less
than 5.00× 10−4.

8.3.5 Bland-Altman analysis to assess agreement

Because neither correlation analyses nor ANOVA could be used to evaluate the agree-

ment between HRV and PRV measurements, Bland-Altman analyses were performed
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Table 8.5: Kruskal-Wallis and post-hoc multiple comparisons p-values for the comparison
among blood pressure states from indices measured from heart rate variability.

Indices KWa Multiple comparisons
PW1b PW2c PW3d

AVNN 3.8× 10−61 ? 3.5× 10−36 ? 6.4× 10−1 6.1× 10−60 ?
SDNN 4.0× 10−53 ? 4.8× 10−26 ? 6.1× 10−51 ? 3.2× 10−4 ?
RMSSD 2.6× 10−63 ? 4.0× 10−15 ? 2.2× 10−63 ? 1.3× 10−11 ?
NN50 5.8× 10−46 ? 5.3× 10−2 2.9× 10−36 ? 8.0× 10−21 ?
pNN50 5.7× 10−46 ? 5.1× 10−2 2.5× 10−36 ? 9.4× 10−21 ?

VLF 4.2× 10−68 ? 3.8× 10−19 ? 3.1× 10−63 ? 4.2× 10−16 ?
LF 3.0× 10−64 ? 2.2× 10−4 ? 1.7× 10−57 ? 1.6× 10−25 ?
HF 3.8× 10−30 ? 1.1× 10−1 1.8× 10−26 ? 1.2× 10−13 ?
TP 5.6× 10−57 ? 5.0× 10−9 ? 1.3× 10−51 ? 2.8× 10−19 ?
nLF 7.1× 10−7 ? 1.2× 10−6 ? 2.4× 10−3 † 4.4× 10−3 †
nHF 1.4× 10−20 ? 3.9× 10−9 ? 3.1× 10−22 ? 1.0
LF/HF 1.5× 10−17 ? 3.3× 10−11 ? 2.0× 10−16 ? 2.7× 10−1

cLFx 7.6× 10−17 ? 6.9× 10−15 ? 5.8× 10−11 ? 7.9× 10−4 †
cHFx 5.5× 10−1 - - -
cTPx 3.2× 10−17 ? 2.4× 10−8 ? 4.1× 10−18 ? 1.0
cLFy 1.3× 10−65 ? 8.3× 10−7 ? 5.9× 10−61 ? 2.5× 10−22 ?
cHFy 8.9× 10−20 ? 8.2× 10−8 ? 1.1× 10−21 ? 8.9× 10−1

cTPy 2.0× 10−55 ? 1.2× 10−46 ? 2.9× 10−45 ? 3.7× 10−1

SpEn 9.8× 10−48 ? 1.4× 10−48 ? 3.9× 10−25 ? 6.5× 10−10 ?

S 5.7× 10−59 ? 6.3× 10−2 2.4× 10−50 ? 2.4× 10−27 ?
SD1 2.6× 10−63 ? 4.0× 10−15 ? 2.2× 10−63 ? 1.3× 10−11 ?
SD2 3.7× 10−61 ? 3.8× 10−36 ? 6.3× 10−1 5.9× 10−60 ?
SD1/SD2 3.1× 10−71 ? 6.4× 10−61 ? 2.1× 10−56 ? 4.7× 10−1

COM 2.7× 10−53 ? 2.7× 10−26 ? 4.6× 10−51 ? 3.6× 10−4 ?

BSE 8.6× 10−34 ? 1.0 6.3× 10−24 ? 1.0× 10−21 ?
SSE 1.9× 10−23 ? 9.7× 10−4 † 3.7× 10−10 ? 1.9× 10−20 ?
ApEn 4.2× 10−10 ? 1.9× 10−10 ? 7.1× 10−6 ? 1.5× 10−2 ‡
SampEn 4.7× 10−16 ? 3.4× 10−17 ? 1.7× 10−7 ? 6.6× 10−5 ?
MSE 1.5× 10−4 ? 1.2× 10−3 † 1.0 2.3× 10−4 ?

D2 1.2× 10−7 ? 4.2× 10−2 ‡ 2.8× 10−3 † 5.5× 10−7 ?
LYA 3.3× 10−24 ? 3.3× 10−3 † 1.4× 10−22 ? 7.8× 10−9 ?

A1 4.8× 10−30 ? 3.0× 10−6 ? 7.0× 10−32 ? 3.2× 10−5 ?
A2 2.4× 10−2 ‡ 1.1× 10−1 1.0 2.3× 10−2 ‡
a Kruskal-Wallis test results. b Pairwise comparisons (PW) between hypotension
and normotension. c PW between hypotension and hypertension. d PW between
normotension and hypertension.
‡: p-value less than 5.00× 10−2; †: p-value less than 5.00× 10−3; ?: p-value less
than 5.00× 10−4.

for each extracted index. Bias and limits of agreement (LoAs) were measured, and

the results are summarised in Figure 8.5 and Figure 8.6.

As shown in Figure 8.5, most of the indices were overestimated when measured

from PRV. Some others were underestimated, such as nLF, nHF, LF/HF, SSE, D2,
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Figure 8.5: Bias between indices obtained from pulse rate variability and heart rate variability
in each blood pressure state. Pulse rate variability tends to overestimate most indices, while
the differences between these variables is more notorious during normotension.

A1, and A2. Indices associated with short-term changes were especially overesti-

mated when measured from PRV. Although a general conclusion is difficult to be

achieved, for most of the indices the bias differed according to the blood pressure

state. Interestingly, most indices showed a larger absolute bias during normotension.

A similar trend was observed in the differences between the upper and lower LoAs,

with large differences especially in indices associated with short-term changes. The

largest differences were observed for D2, SampEn, and most of the frequency-domain

indices. NN50 and pNN50 showed a bias and difference between LoAs of zero, which

shows very good agreement between HRV and PRV.
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Figure 8.6: Differences between upper (LoAU) and lower (LoAL) limits of agreement obtained
from Bland-Altman analysis comparing indices measured from pulse rate variability and heart
rate variability in each blood pressure state. Most indices related to short-term changes showed
insufficient agreement, and the state of agreement was generally not affected by blood pressure.

The BAR results are shown in Table 8.6. For NN50 and pNN50, the bias and

difference between LoAs were equal to zero for all conditions, and thus, the ratio was

not measured because the agreement was total. The agreement tended to remain as

good, moderate, or insufficient regardless of the blood pressure state. Most of the

indices that showed insufficient agreement are associated with short-term changes.
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Table 8.6: Ratio of agreement (BAR, %) derived from Bland-Altman analysis

Indices Hypotension Normotension Hypertension

AVNN 3.92× 10−1 ↑ 5.01× 10−1 ↑ 4.43× 10−1 ↑
SDNN 2.64× 103 ↓ 1.81× 103 ↓ 1.57× 103 ↓
RMSSD 5.12× 103 ↓ 5.31× 103 ↓ 4.29× 103 ↓
NN50 0.00 ↑ 0.00 ↑ 0.00 ↑
pNN50 0.00 ↑ 0.00 ↑ 0.00 ↑
VLF 2.27× 10−7 ↑ 5.01× 10−8 ↑ 7.81× 10−8 ↑
LF 6.29× 10−7 ↑ 4.99× 10−7 ↑ 3.71× 10−7 ↑
HF 1.36× 10−6 ↑ 1.33× 10−6 ↑ 9.33× 10−7 ↑
TP 2.23× 10−7 ↑ 2.27× 10−7 ↑ 1.16× 10−7 ↑
nLF 7.41× 101 ↓ 6.44× 101 ↓ 6.65× 101 ↓
nHF 4.47× 101 ↓ 6.03× 101 ↓ 4.53× 101 ↓
LF/HF 1.05× 102 ↓ 1.37× 102 ↓ 1.26× 102 ↓
cLFx 3.07× 101 ↓ 3.96× 101 ↓ 5.81× 101 ↓
cHFx 3.49 ↑ 7.39 ↑ 7.86 ↑
cTPx 2.14× 102 ↓ 2.41× 102 ↓ 2.40× 102 ↓
cLFy 6.08× 10−5 ↑ 4.00× 10−5 ↑ 2.63× 10−5 ↑
cHFy 3.36× 10−4 ↑ 2.45× 10−4 ↑ 2.43× 10−4 ↑
cTPy 1.70× 10−5 ↑ 8.54× 10−6 ↑ 2.83× 10−6 ↑
SpEn 7.04× 10−2 ↑ 1.72× 10−1 ↑ 8.91× 10−2 ↑
S 1.00× 103 ↓ 1.01× 103 ↓ 8.08× 102 ↓
SD1 7.24× 103 ↓ 7.51× 103 ↓ 6.07× 103 ↓
SD2 1.39× 10−1 ↑ 1.77× 10−1 ↑ 1.56× 10−1 ↑
SD1/SD2 1.66× 104 ↓ 1.61× 104 ↓ 1.46× 104 ↓
COM 3.36× 105 ↓ 2.27× 105 ↓ 1.66× 105 ↓
BSE 1.58 ↑ 1.41 ↑ 1.37 ↑
SSE 2.90 ↑ 3.12 ↑ 3.49 ↑
ApEn 4.09× 101 ↓ 9.03× 101 ↓ 6.70× 101 ↓
SampEn 5.28× 101 ↓ 1.39× 102 ↓ 8.97× 101 ↓
MSE 3.80 ↑ 5.14 ↑ 2.71 ↑
D2 3.33× 102 ↓ 1.17× 103 ↓ 9.49× 102 ↓
LYA 4.15 ↑ 4.58 ↑ 1.85 ↑
A1 3.58× 101 ↓ 3.17× 101 ↓ 3.10× 101 ↓
A2 1.13× 101 ↔ 9.12 ↑ 7.47 ↑
Good agreement (↑): BAR < 10%; moderate agreeement (↔): 10% ≤ BAR <
20%; insufficient agreement (↓): BAR ≥ 20%.

8.4 Discussion

HRV has been proposed as a useful, non-invasive, indirect measurement of the car-

diac autonomic nervous system. It has been used for several decades as an indicator

of parasympathetic and sympathetic activity (Clifford 2006), and it has been studied

as a biomarker for a broad range of diseases. However, it has been found that the

measurement of HRV in real-life scenarios can be impaired by several conditions,
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especially because of the cumbersome instrumentation needed for the acquisition of

the ECG signals, which has, to some extent, precluded the usefulness and acceptance

of HRV as a tool for clinicians to diagnose and monitor diseases, and for larger public

health applications (Karmali et al. 2017). Hence, several researchers have started to

investigate the possibility of replacing HRV information with a very similar signal,

PRV, which is based on pulse waves that are easier to obtain and more ubiquitous,

such as PPG signals (Georgiou et al. 2018, Kyriacou 2021). Nonetheless, and as was

largely discussed in Chapter 5, the promise of PRV as a valid surrogate for HRV

has been questioned, and some studies have concluded that, although they are very

similar, PRV and HRV are not exactly the same and that PRV may not be a suitable

surrogate for HRV, especially when measured in disease states and in older subjects

(Schäfer & Vagedes 2013).

Various explanations for the differences between HRV and PRV have been given.

Some authors argue that the differences are mainly due to processing issues, such

as the identification of fiducial points from the PPG signal (Hemon & Phillips 2016,

Pinheiro et al. 2016), the sampling rate used for the acquisition of the signals (Béres

et al. 2019, Béres & Hejjel 2021), and the processing techniques used for the anal-

ysis of PRV (Akar et al. 2013). A profound analysis regarding the effects of these

technical aspects on PRV is presented in Chapter 6. However, other authors have

suggested that, although these factors may affect PRV, physiological issues may

have a more profound effect on the differences between these two signals (Schäfer

& Vagedes 2013, Yuda, Shibata, Ogata, Ueda, Yambe, Yoshizawa & Hayano 2020).

The relationship between HRV and PRV may be affected by not only PTT but also

other factors, such as external forces on the arterial vessels (Trajkovic et al. 2011),

the presence of pathologies, including cardiovascular disorders (Parasnis et al. 2015,

Shi et al. 2009), and the body location at which PRV is being measured (Heathers

2013, Yuda, Yamamoto, Yoshida & Hayano 2020). An important contributor to

these differences is respiratory activity, which affects vasoconstriction and modu-

lates aortic and left-ventricular pressure, altering the time of opening of the aortic

valve during the cardiac cycle (Khoo & Chalacheva 2019). Nonetheless, several pro-

cesses take part in the information transmission from the pure electrical ECG and

the R waves to the mechanical PPG pulse wave, as is explained in (Yuda, Shibata,

Ogata, Ueda, Yambe, Yoshizawa & Hayano 2020). These factors may also explain in

part the differences observed between HRV and PRV, especially under non-resting
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conditions and in non-healthy, older subjects. Hence, PRV should not be considered

a surrogate of HRV, but should be treated as an independent biomarker instead,

which may contain additional information not available in HRV (Yuda, Shibata,

Ogata, Ueda, Yambe, Yoshizawa & Hayano 2020).

Thus, because of the differences observed in previous studies between HRV and

PRV, the aim of this study was to assess the relationship between these two signals

in critically ill subjects hospitalised in intensive care units. Because these subjects

exhibited changes in blood pressure, PRV and HRV were also compared when the

subjects experienced normotension or hyper- and hypotensive events.

8.4.1 Selection of signals using Signal Quality Indices

Good quality ABP signals were selected for the reliable labelling and extraction

of blood pressure information. This was done merging several signal quality in-

dices (SQI’s) proposed in the literature for the assessment of signal quality in pulse

waves. These indices are capable of identifying low-quality segments of a pulse wave

by themselves according to different criteria, but merging them and establishing

proper thresholds to identify the good and poor quality signals is not an easy task

(Orphanidou 2018). Therefore, the use of machine learning techniques has been ap-

plied in different studies for automatically setting these thresholds and grouping the

data, with varying success (Li & Clifford 2012, Pereira et al. 2020). The methodol-

ogy proposed in this study, which employs a largely used clustering algorithm, the

k-Means, has one important advantage: It does not require prior labels regarding

the quality of the signal, and is very simple to apply. Nonetheless, as is usual with

this clustering technique, it depends on the presence of outliers, on the initialisation

parameters of the algorithm, and on the embedded structure of the data. Therefore,

its applicability and suitability should be evaluated for each application. Future

studies should aim to validate and optimise this algorithm for multiple applications,

and to evaluate the behaviour of other clustering algorithms for the identification of

poor-quality PPG signals.

8.4.2 Linear correlation between PRV and HRV

Among the time-domain indices, an almost perfect correlation was observed between

HRV and PRV for AVNN, regardless of BP state. For SDNN, NN50, and pNN50,

higher correlations were observed as BP increased, but pNN50 had the lowest corre-
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lation of the time-domain indices in all BP states. RMSSD, which reflects short-term

changes in HRV and PRV (Shaffer & Ginsberg 2017), had a lower correlation, with

a correlation coefficient below 0.8, during normotension.

The frequency-domain indices exhibited different trends. Absolute indices (VLF,

LF, HF, and TP) and the ratio between LF and HF (LF/HF) had stable and high

correlations. For normalised indices, on the other hand, there were differences ac-

cording to the BP state, with better correlations during normotension. Spectral

entropy (SpEn) exhibited a behaviour similar to that observed for RMSSD. Indices

related to the centroid of the frequency bands in the y-coordinate were relatively

stable, while the x-coordinate of the centroids featured the worst correlations, espe-

cially for the x-coordinate of the HF band centroid.

The correlations for the non-linear indices were, in general, worse than those

for the time- and frequency-domain indices. This was especially true for the phase-

related indices, the correlation dimension and the Lyapunov exponent. Among the

Poincaré plot indices, SD2 had a nearly perfect correlation between HRV and PRV,

while SD1/SD2 and SD1 exhibited behaviors similar to that of RMSSD. The cor-

relations for the entropy-related indices were also relatively poor. The correlation

for the BSE values was strongly affected by normotension, and although SampEn,

ApEn, and SSE were stable regardless of the BP state, their correlation coefficients

were low. Finally, A1 and A2 from the detrended fluctuation analysis behaved simi-

larly to SD1 and SD2, respectively, probably because of the differences between the

short- and long-term changes in HRV and PRV.

8.4.3 Comparison between PRV and HRV under each BP state

The Friedman rank sum test results indicated that there were differences between

PRV and HRV in all BP states for all indices, except for the measurements of VLF

and cTPy, which showed non-significant differences between HRV and PRV during

normotension. These two indices need to be considered with care because they are

probably a reflection of long-term changes, especially VLF, and require recordings

longer than 5 min. In general, these results indicate that PRV and HRV are not the

same, regardless of the BP state.

In addition, it was also determined if there were individual differences in PRV

and HRV among BP states. The Kruskal-Wallis test results revealed that, in general,

both HRV and PRV were different among hypotension, normotension, and hyper-
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tension states. The only index for which there was not a statistically significant

difference was cHFx when measured from HRV. Based on the post hoc compar-

isons, it was concluded that PRV showed more differences than HRV. Again, as was

observed for the correlations, these differences were especially observed in the non-

linear indices and in indices reflecting short-term changes, such as RMSSD, SD1,

SpEn, and A1. Interestingly, most of the differences were observed when normoten-

sion was compared to either of the two other BP states.

8.4.4 Agreement between PRV and HRV

Three measurements were obtained from the Bland-Altman analysis to evaluate the

agreement between HRV and PRV: the bias, difference between limits of agreement,

and BAR.

For the time-domain indices, SDNN and RMSSD were overestimated when using

PRV, whereas AVNN, NN50, and pNN50 had a bias close to zero. The absolute-

power frequency-domain indices were also overestimated when using PRV, especially

HF, LF/HF, and TP. On the contrary, the relative power indices were usually un-

derestimated. The y-coordinate of the centroid of the HF band was also largely

overestimated when using PRV. This same trend was observed for all Poincaré-plot

indices, as well as for SampEn and ApEn, whereas SSE, D2, and both A1 and A2

were underestimated. The degrees of over- and underestimation tended to be larger

during normotension. This same trend was observed for the limits of agreement:

larger differences were observed during normotension and when some short-term

indices, such as RMSSD, HF, cHFy, SD1, and A1, were measured.

The obtained BARs indicated good agreement for AVNN, VLF, LF, HF, TP

cHFx, cLFy, cHFy, cTPy, SpEn, SD2, BSE, SSE, MSE, LYA, and A2. Insufficient

agreement was observed for SDNN, RMSSD, nLF, nHF, LF/HF, cLFx, cTPx, S,

SD1, SD1/SD2, COM, ApEn, SampEn, D2, and A1. Most short-term indices showed

an extremely large BAR, which indicates a very poor agreement between HRV and

PRV for the measurement of these indices in critically ill patients regardless of the

blood pressure state. There was no indication that blood pressure changes caused

significant changes in the agreement.
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8.4.5 Limitations of the study

This study has several limitations. First, the signals used were obtained from an

available database from Physionet. Thus, several variables were not controlled for,

and although all subjects were hospitalised in an intensive care unit, their diagnosis

was unknown, which may have affected the results. Another limitation involves the

segmentation of the data into 5-min-long segments, which may have been too short

for the extraction of some indices, especially frequency-domain indices. However,

this length was considered necessary to obtain as many segments as possible during

each BP state and still ensure sufficient data for the PRV and HRV analysis, and was

a good trade-off considering the results obtained from the analyses shown in Chapter

6. Moreover, an overlap of 10 s was used to separate the segments, which might

have been too short to reflect BP changes. Again, this was done to produce a larger

database. Another limitation of the study involves the classification of segments in

each BP state, specifically determining exactly which state was predominant in each

segment, especially in subjects who exhibited two or more BP states during the entire

recording. A larger number of available segments might have helped to mitigate this

effect, and outliers for each PRV and HRV index were corrected. It is important

to mention that MIMIC-III database lacks synchronicity (Liang et al. 2019), which

could bias the results obtained in this study. Finally, it is also worth noting that

some of the extracted indices were not optimised, especially the non-linear indices

such as Poincaré-plot indices, BSE, SSE, phase indices, and DFA-related indices.

Using an optimisation procedure for these indices might lead to different results

than those obtained in this study, as can be seen in (Shi et al. 2009).

8.5 Summary

The aim of this study was to assess the differences between HRV and PRV in criti-

cally ill subjects with different blood pressure values. For this aim, the correlation,

comparison, and agreement between HRV and PRV were investigated. The results

indicated that PRV and HRV were not the same regardless of the blood pressure

state of the subjects, especially when nonlinear indices and indices associated with

short-term changes were analysed, which agrees with the results obtained by other

researchers (Gil, Orini, Bailón, Vergara, Mainardi & Laguna 2010, Shi et al. 2009,

Bolea et al. 2017) and those described in Chapter 7. Interestingly, the differences
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tended to be larger during normotension. Moreover, PRV tends to over- or under-

estimate HRV regardless of blood pressure state. Although both signals behaved

similarly in most cases, the Kruskal-Wallis results indicate that PRV seems to be

more sensitive to changes in blood pressure. This could be considered as an indica-

tion that PRV contains additional information not available in HRV, which might

help increase the applicability of the technique in clinical scenarios. Moreover, the

widespread use of PPG in wearable devices is generating a lot of research with PRV,

which is aiming to apply this more practical technique, in comparison with HRV, for

the diagnosis and monitoring of several physiological phenomena related to disease

(i.e., cardiovascular disease, mental health). This, in turn, shows the applicability

and potential of PRV for public health studies and, hence, for screening subjects

that may need later further analyses in the clinical setting, with more specialised

tools.

Future studies are needed to clarify the origin of the differences between HRV

and PRV. Moreover, and as was done with classical time-domain, frequency-domain

and Poincaré plot indices in Chapter 6, it is critical that non-linear indices are stan-

dardised and their physiological explanation determined for them to be adopted in

PRV studies, given their increased sensitivity to scenarios such as the one presented

in this study. This would enhance the quality of the research in this field, allowing

the comparability among results obtained in different studies using these indices, and

possibly increasing the applicability of PRV in clinical settings and its capability to

diagnose and screen for disease.

In the next chapter the capability of PRV to identify BP states and estimate

BP values using machine learning algorithms is evaluated. This could aid in the

non-invasive, continuous measurement of blood pressure using PPG signals.
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Chapter 9

Pulse rate variability for the

classification and estimation of

blood pressure states using

machine learning algorithms

9.1 Aims and objectives

As mentioned in previous chapters, blood pressure (BP), the force with which the

blood is pumped around the circulatory system (National Health Service 2019b), is

one of the main vital signs measured in clinical and non-clinical environments (El-

Hajj & Kyriacou 2020, 2021). Ideal BP values are considered to be between 90/60

and 120/80 mmHg, for diastolic (DBP) and systolic BP (SBP) respectively, whereas

sustained high BP, also called hypertension, and sustained low BP, known as hy-

potension, are considered to be BP measurements higher than 140/90 mmHg and

lower than 90/60 mmHg (National Health Service 2019b). Both hypertension and

hypotension are abnormal conditions that may affect the blood flow to tissues and,

hence, regular BP monitoring is essential for the detection, prevention and treatment

of related diseases (El-Hajj & Kyriacou 2020). Specifically with hypertension, al-

though it usually does not have noticeable symptoms, it increases the risk of various

serious disorders, such as heart attacks and strokes (Chan et al. 2019). Since most

patients are asymptomatic at the early stages of hypertension, it is usually detected

only after substantial vascular damage has occurred and when more serious diseases
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appear, not only in the cardiovascular system but in other vital organs (El-Hajj &

Kyriacou 2020, Beevers & Robertson 2007, Welykholowa et al. 2020).

The measurement of BP has been traditionally performed using invasive, direct

methods based on catheters, or non-invasive indirect techniques based on the infla-

tion of a cuff (El-Hajj & Kyriacou 2020). However, both techniques pose several

challenges and limitations. The invasive alternative can only be performed during

surgery or in patients in intensive care units and carries with an increased risk of

infection (El-Hajj & Kyriacou 2020). On the other hand, although the cuff-based

methods can be applied in any environment, it does not allow for continuous mea-

surements due to the inflation and deflation of the cuff, and having repetitive mea-

sures in short periods can be cumbersome and impractical for certain applications,

such as in sleep studies (Mukkamala et al. 2015, Radha et al. 2019).

In the last few decades, increased attention has been given to non-invasive, con-

tinuous and cuff-less alternatives for the estimation of BP (Chan et al. 2019, We-

lykholowa et al. 2020, Hosanee et al. 2020). Most of these novel techniques are

based on the analysis of physiological signals, especially PPG (El-Hajj & Kyriacou

2020, Hosanee et al. 2020, Elgendi et al. 2019). Some proposed strategies for the

estimation of BP using PPG are based on machine learning (ML) algorithms and

the extraction of PPG features that may reflect BP-related changes in PPG signals

(El-Hajj & Kyriacou 2020, 2021). With the increasing availability of data and the

development of powerful ML techniques, BP estimation based on this kind of anal-

ysis seems like a promising alternative for the ubiquitous, continuous measurement

of BP values, as well as for the identification of hypertensive and hypotensive events

in a real-time manner.

Blood pressure is primarily regulated by the sympathoadrenal system on a beat-

to-beat basis (Fox 2016) and PPG-based PRV might contain information related to

BP that allows for the identification of hypertension and hypotension using ML tech-

niques. Moreover, the appearance of essential hypertension (i.e. high BP without

underlying conditions) has been related with autonomic dysfunction (Carthy 2014).

Therefore, and after the results obtained in the previous chapter, where differences

were observed between PRV measured under different blood pressure states, the

aim of this study was to evaluate the applicability of PRV for the identification of

hypertensive, normotensive and hypotensive events, and to assess the capability of

PRV-based ML algorithms for the estimation of BP values. This was done initially
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with data obtained from critically ill patients available at MIMIC-III, but was also

applied in a small sample of healthy volunteers as a proof of concept.

9.2 Methods and materials

9.2.1 Critically-ill patients

9.2.1.1 Signal selection

The same set of data used in Chapter 8 was considered for this study. This consists of

270 records extracted from MIMIC-III (Johnson et al. 2016, Goldberger et al. 2000),

with simultaneously acquired PPG and ABP signals from critically-ill patients using

a sampling rate of 125 Hz. ABP signals were obtained invasively from one of the

radial arteries, while PPG signals were measured as the uncalibrated raw output of

a probe located in the fingertip.

9.2.1.2 Signal processing

MATLAB R© (version 2020a) was used for signal processing and figure generation.

PPG and ABP signals were segmented into 5-min (PPG5 and ABP5) and 1-min

(PPG1 and ABP1) segments, with a stride of 10 s between consecutive segments in

both cases. These lengths were selected in order to evaluate the behaviour of PRV

in short segments of time, i.e. 1-min segments, which would better characterise

instantaneous changes in physiological parameters and lead to lower delays in the

identification of BP states; and to compare these results to those obtained using the

standard duration of signals for HRV and PRV analysis, i.e. 5-min segments.

After segmentation, ABP5 and ABP1 segments were filtered using a 12 Hz,

fourth-order, lowpass Butterworth filter. As was done for the analysis in Chapter

8, the peak and onset of each cycle in the filtered segments were detected using

Delineator (Li et al. 2010) and used for estimating the SBP and diastolic blood

pressure (DBP) values. Then, each cycle was classified as a hypertension event

(SBP greater than 140 mmHg or DBP greater than 90 mmHg), a hypotension event

(SBP lower than 90 mmHg or DBP lower than 60 mmHg) or a normotension event.

An example of these classification is shown in Figure 9.1. Then, the whole 5-min or

1-min segment was labelled as hypertension, normotension or hypotension according

to the most frequent event in the segment.
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Figure 9.1: Example of the analysis of a 5-min arterial blood pressure signal (light gray
line), with the trends for systolic (red, dotted line) and diastolic (blue, dotted line) blood
pressure, as well as the determination of the instantaneous blood pressure state (dark gray
line). Each cycle was classified as hypertensive, normotensive or hypotensive according to the
thresholds for hypertension (green, discontinuous lines) and hypotension (yellow discontinuous
lines), and the most common state in the segment. For instance, this 5-min segment was
labelled as hypertension since this was the most common state for the individuals pulses.

The mean SBP, DBP and mean arterial pressure (MAP, calculated as shown

in 9.1) values for each ABP5 and ABP1 segment were also extracted for regression

analyses.

MAP =
1

3
SBP +

2

3
DBP (9.1)

Similarly, the cardiac cycles were detected from PPG5 and PPG1 signals using

the same algorithm, and the intersection point of the tangent lines arising from the

maximum slope point and the valley of the waveform was used as fiducial point

to determine the time location of each cardiac cycle. PRV was measured as the

time difference, in milliseconds, between consecutive onsets from the PPG signal,

as shown in Figure 9.2. For the frequency-domain analysis, the unevenly sampled

PRV series were interpolated using a cubic spline interpolation and a sampling rate

of 4 Hz, and the power spectrum was obtained using the Fast Fourier Transform

(FFT). Outliers in both the original and interpolated time series were defined as

values higher or lower than the mean value plus or minus 1.96 times the standard

deviation of the series. These outliers were detected and replaced with the mean

value of the five previous values in the time series.
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Figure 9.2: Example of a photoplethysmography (PPG) signal. Onsets (black circles) were
detected from PPG signals to measure pulse rate variability (PRV) as the time interval between
consecutive onsets (PP intervals).

9.2.1.3 Feature extraction

The time-domain, frequency-domain and non-linear indices analysed in Chapter 8

were obtained from PRV data from each 5 min and 1 min segment. These indices

were considered as features for the identification of blood pressure states and the

estimation of blood pressure values. Some non-linear indices were extracted solely

from 5-min segments due to the lack of changes in shorter periods of time.

Alongside the already extracted indices, the auto-mutual information function

(AMIF) was obtained from PRV trends as explained in (Semmlow & Griffel 2014).

This function was then characterised using the lag at which the AMIF reached

a value of 1
e (LagT); the value of the first local maximum of the function (PD);

and the lag of this first local maximum (LagPD). The AMIF function describes the

relationship between a signal (x) and its delayed version (x′), and its a measurement

related to the long-term memory of a signal (Semmlow & Griffel 2014). The AMIF

can be estimated as shown in (9.2), where p(x, x′) is the probability of events in

the original and delayed signals to occur simultaneously, and p(x) and p(x′) are the

probabilities of obtaining a particular value from the signal and its delayed version,

respectively.

AMIF =
∑

p(x, x′) log2
p(x, x′)

p(x)p(x′)
(9.2)

Also, the embedded dimension (EMB DIM) was computed for the extraction

of LYA and to be used as a feature. It was computed using a nearest neighbours
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algorithm, as suggested by Semmlow & Griffel (2014).

9.2.1.4 Classification of blood pressure states

Extracted features were used for the classification of blood pressure states applying

machine learning (ML) algorithms. These algorithms were used in a multi-class

scenario, in which the aim was to classify each segment in three classes: hypotension,

normotension, and hypertension. In order to compare the performance in each

scenario, all processes explained here were applied to the features extracted from 5-

min and 1-min segments. In both cases, the dataset obtained was initially balanced

in order to randomly include the same amount of samples for each of the three

classes.

A feature selection framework was applied to determine the combination of fea-

tures that better discriminate among classes. Three receiver operating characteristic

(ROC) curves were obtained for each feature, one for each class against the other

two classes, the ROC curve for the bi-class problem of hypotension against all other

classes, normotension against all other classes, and hypertension against all other

classes. Then, the mean area under the ROC curve (AUCk) was measured as a first

separability criterion for each feature. Then, the multi-class Fisher Discriminant

Ratio (FDRk) was obtained from each feature applying (9.3), where M is the num-

ber of classes; µi and µj are the mean values of the k-th feature when measured

from the observations of class i and j, respectively; and σi and σj are the standard

deviations of the k-th feature when measured from the observations of class i and

j, respectively.

FDRk =
M∑
i

M∑
j 6=i

(µi − µj)2

σ2i + σ2j
(9.3)

Features were filtered using the scheme suggested in (Theodoridis & Koutroum-

bas 2009). A single separability criterion Ck was obtained for each feature as the

mean value of AUCk and FDRk. Then, the features were sorted in descending order

and a subset of the features was initialised with the feature with higher Ck, xi1.

To select the next feature to be included in the subset, xi2, the Pearson correlation

coefficients ρi1j between xi1 and the remaining features were computed, and S(j)

was computed as the difference between 0.8 times Ck and 0.2 times |ρi1j |, j 6= i1. xi2

was selected as the feature for which S(j) was maximum.
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This procedure was repeated until all features were included in the subset, but

using the difference between Cj and the mean value of the correlation coefficients

of the j-th feature with respect to the n features already included in the subset, as

shown in (9.4). Once all features were included in the subset, those with S(j) lower

than the median value of all resulting S were discarded.

S(j) = 0.8Cj −
0.2

n

n−1∑
r=1

|ρirj | (9.4)

After this filtering process, a sequential forward selection (SFS) scheme with k-

fold cross-validation (k = 10) was applied to identify the best combination of features

for each machine learning algorithm applied. This resulted in the combination of

ranked features which delivered the maximum F1 score in the classification using

each of the tested machine learning algorithms, described in the next section.

Several machine learning algorithms were applied for the multi-class classification

of hypertensive, hypotensive and normotensive events (Table 9.1). These algorithms

were applied using all filtered and forward-selected features. The performance of

these algorithms was assessed applying a 10-fold cross-validation methodology and

computing the confusion matrices for each fold. From the confusion matrices, the

true positives (TP-2), true negatives (TN), false positives (FP) and false negatives

(FN) where obtained for each class, as shown in Figure 9.3. These values were used

for computing the accuracy (ACC), sensitivity (TPR), specificity (TNR), positive

predictive values (PPV) and F1 scores (F1) for hypertension, hypotension and nor-

motension classification, as shown in (9.5) to (9.9). Then, the mean and standard

deviations of the performance in the 10 folds was measured.

Table 9.1: Machine learning algorithms applied for the classification of blood pressure states.

Algorithm Parameters
k Nearest Neighbors
(k-NN)

k = 3, 5, 7, 9.

Artificial Neural Net-
works (NN)

Feed forward networks with one n layer, with n n neu-
rons, n = 2, 3, ..., 20.

Support Vector Ma-
chines (SVM)

Support vector machines with linear (S1), radial-basis
(scale σ = 0.5, 1, 1.5, 2, S2-S5) and polynomial (order
n = 3, 4, 5, S6-S8) kernels, both using a One-vs-All
(OvA) and One-vs-One (OvO) scheme.
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ACC =
TP − 2 + TN

TP − 2 + TN + FP + FN
(9.5)

TPR =
TP − 2

TP − 2 + FN
(9.6)

TNR =
TN

TN + FP
(9.7)

PPV =
TP − 2

TP − 2 + FP
(9.8)

F1 =
2TP

2TP + FP + FN
(9.9)

Figure 9.3: Definition of true positives (TP-2), true negatives (TN), false positives (FP) and
false negatives (FN) from (a) the confusion matrix for the i-th class of a multi-class problems;
(b) the confusion matrix of this study for the hypotension class; (c) the confusion matrix of this
study for the normotension class; (d) the confusion matrix of this study for the hypertension
class.
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9.2.1.5 Estimation of blood pressure values

The extracted features were also used to estimate the mean value of SBP, DBP and

MAP in each 5-min and 1-min segment. This was done using all extracted features

and the best features selected after the filtering steps as previously explained. The

combinations of features that provided the best performance regression algorithms

were also obtained using a forward selection scheme, using the mean absolute error

(MAE) as the optimisation function (9.10).

MAE =

∑n
i=1 |BPreal −BPestimated|

n
(9.10)

Regressive support vector machines (rSVM) and function fitting neural networks

(fNN), using the Levenberg-Marquardt training function and one hidden layer, were

applied for the estimation of blood pressure values. As in the classification scheme,

a 10-fold cross-validation technique was applied to avoid over fitting of the model.

rSVM’s were applied using a linear kernel, radial-basis kernels with varying scale,

and polynomial kernels with varying orders; and fNN’s were optimised by increasing

the number of neurons in the hidden layer from 5 to 20.

The results from the regression algorithms were analysed using the mean and

standard deviations of MAE with each algorithm. The best performance algorithm

was then applied to the whole data set to assess the accuracy of the model. Wilcoxon

rank sum tests were applied to compare the real values of SBP, DBP and MAP with

the estimated values obtained from the selected model, and the agreement between

real and estimated values was assessed using Bland-Altman analysis. These analyses

were performed after detecting and correcting outliers.

9.2.2 Healthy volunteers

9.2.2.1 Signal acquisition

PPG and continuous, non-invasive ABP signals were simultaneously acquired from

20 healthy volunteers (12 men, 34 ± 5 years old; 8 women, 32± 4 years old). Subjects

with cardiovascular, pulmonary, or metabolic diseases were excluded from this study.

All subjects were seated on a comfortable chair, with their hands approximately at

heart level. Infrared PPG signals were acquired from the index finger of each subject,

using a custom-made, research-grade PPG acquisition system, BioBlocksTM (Pleth
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AILytics Ltd, United Kingdom). ABP signals were simultaneously acquired using a

CNAP Monitor (CN Systems, Austria) with the sensor located on the middle and

ring fingers of the same hand as the PPG probe. The CNAP monitor is based on

the Vascular Unloading Technique and utilises a dual finger probe for a beat-to-beat

measurement of ABP (CNAP Blood Pressure 2021). Both PPG and BP signals were

digitised and acquired using a Data Acquisition Card (National Instruments, United

States) and a Virtual Instrument developed in LabVIEWTM (National Instruments,

United States). Signals were acquired for approximately 15 minutes with a sampling

rate of 1 kHz, and stored for offline processing, which was performed in MATLAB

R2019b (Mathworks, United States).

9.2.2.2 Arterial blood pressure analysis

Arterial blood pressure (ABP) signals were segmented into 5-minute segments with

the stride length of 10 seconds. Once segmented, each ABP signal portion was

filtered using a 50th-order moving-average filter and calibrated using (9.11), where

XV olts is the measured signal, in Volts, and XmmHg is the calibrated pressure signal

in pressure units (mmHg). This calibration equation was determined as suggested

for the CNAP Monitor.

XmmHg = 50 + 100
XV olts − 0.0703

0.1683− 0.0703
(9.11)

Peaks and onsets were detected from the calibrated pressure signals using the

Delineator algorithm (Li et al. 2010). Then, these points were interpolated using a

cubic spline interpolation, to obtain an estimated trend for the systolic (SBP) and

diastolic blood pressures (DBP). The mean values of these three trends were then

obtained for each ABP segment.

9.2.2.3 Pulse rate variability analysis

Similar to ABP signals, PPG signals were segmented into 5-min and 1-min segments

with a 10-second stride between consecutive segments. The segmented PPG signals

were then filtered using a second order Butterworth band pass filter, with cut-

off frequencies of 0.5 and 12 Hz. Inter-beat intervals (IBIs) were extracted from

the PPG segments applying the D2Max algorithm (Elgendi et al. 2013). From

the extracted IBIs, PRV trends were obtained from the duration of IBIs for the
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subsequent extraction of PRV-related features. Outliers from these trends were

detected as those IBIs with duration lower than the average duration of IBIs minus

1.96 times their standard deviation, or with duration higher than the average plus

1.96 time their standard deviation. An interpolated trend was also obtained for the

assessment of frequency-related information, using a cubic spline interpolation with

sampling rate of 4 Hz.

The features extracted from the signals obtained from critically-ill patients were

also extracted from this data.

9.2.2.4 Estimation of blood pressure values

In the case of healthy subjects, only the estimation of blood pressure values was con-

sidered, given the smaller sample and low numbers of hypertensive and hypotensive

events. A process similar to that performed with critically-ill patients was followed,

were regressive support vector machines were trained and their performance evalu-

ated for the estimation of SBP, DBP and MAP.

Regressive SVMs were trained using a 10-fold cross-validation strategy after ran-

domising the features extracted from 5-min and 1-min segments. In the case of mod-

els trained using all and filtered features, linear, radial-basis (σ ∈ [0.5, 1.0, 1.5, 2.0])

and polynomial (order n ∈ [2, 3, 4, 5]) Kernel functions were considered; only radial-

basis Kernel functions were used when sequentially forward selected features were

considered. Filtered and SFS features were those chosen in the analysis performed

with signals from MIMIC-III. As with data obtained from hospitalised subjects, the

average and standard deviation of MAEs were computed to evaluate the perfor-

mance of these models, and the agreement between target and estimated BP values

was assessed using Bland-Altman analyses and the values estimated using the best

performing algorithms for the estimation of SBP, DBP and MAP.

9.3 Results

9.3.1 Critically-ill patients

A total of 4937 5-min segments were extracted and merged, of which 54% were la-

belled as hypertensive, 25% as hypotensive, and the remaining 22% as normotensive

events. Similarly, 11417 1-min segments were obtained and merged. From these,
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51% corresponded to hypertensive events, 31% to normotensive events, and 18%

were labelled as hypotensive. These data sets were used for the regression tasks.

The data set in the classification task was balanced by randomly selecting equal

number of segments for each class. This was applied to both the 5-min and 1-min

segment data sets. Hence, for the 5-min segments, randomly-selected hypertensive

and hypotensive segments were discarded to obtain 1080 samples for each class,

whereas for 1-min segments, some normotensive and hypertensive events were not

included in the final data set so a total of 2049 segments were considered for each

sample. A total of 3240 5-min segments and 6147 1-min segments were included for

further analyses.

9.3.1.1 Feature extraction

Tables 9.2 to 9.4 summarise the features extracted from 5-min and 1-min segments,

respectively, of PRV under each BP state. Appendix A includes figures comparing

the behaviour of PRV indices compared to blood pressure values.

Table 9.2: Time-domain and Poincaré plot indices extracted from 5-min and 1-min segments
of pulse rate variability. Values are shown as Mean ± Standard Deviation.

Features, units Length of Hypotension Normotension Hypertension
segments

AVNN, s 5-min 0.826 ± 0.104 0.756 ± 0.137 0.837 ± 0.094
1-min 0.827 ± 0.098 0.775 ± 0.133 0.835 ± 0.092

SDNN, s 5-min 0.011 ± 0.007 0.014 ± 0.011 0.016 ± 0.012
1-min 0.049 ± 0.032 0.041 ± 0.029 0.053 ± 0.037

RMSSD, s 5-min 0.012 ± 0.005 0.015 ± 0.008 0.016 ± 0.009
1-min 0.066 ± 0.040 0.055 ± 0.038 0.069 ± 0.043

NN50 5-min 2.580 ± 9.182 4.879 ± 12.732 6.129 ± 13.496
1-min 9.473 ± 9.510 7.672 ± 8.012 9.519 ± 8.241

pNN50 5-min 0.006 ± 0.021 0.013 ± 0.034 0.017 ± 0.039
1-min 0.135 ± 0.125 0.108 ± 0.118 0.141 ± 0.123

S, s2 5-min 0.061 ± 0.027 0.072 ± 0.045 0.082 ± 0.048
1-min 0.353 ± 0.230 0.281 ± 0.217 0.372 ± 0.249

SD1, s 5-min 0.008 ± 0.004 0.010 ± 0.006 0.011 ± 0.006
1-min 0.047 ± 0.028 0.039 ± 0.027 0.049 ± 0.030

SD2, s 5-min 2.337 ± 0.295 2.138 ± 0.386 2.367 ± 0.265
1-min 2.340 ± 0.279 2.194 ± 0.375 2.363 ± 0.260

SD1/SD2 5-min 0.004 ± 0.002 0.005 ± 0.003 0.005 ± 0.003
1-min 0.020 ± 0.011 0.017 ± 0.011 0.020 ± 0.012

COM 5-min 0.000 ± 0.001 0.001 ± 0.001 0.001 ± 0.002
1-min 0.007 ± 0.011 0.005 ± 0.009 0.008 ± 0.016
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Table 9.3: Frequency-domain indices extracted from 5-min and 1-min segments of pulse rate
variability. Values are shown as Mean ± Standard Deviation.

Features, units Length of Hypotension Normotension Hypertension
segments

VLF, s2 5-min 1.309 ± 3.112 1.544 ± 3.099 4.208 ± 9.140
(×108) 1-min 2.097 ± 9.329 1.383 ± 6.101 3.484 ± 18.230
LF, s2

(×108)
5-min 0.751 ± 1.297 1.045 ± 2.097 2.056 ± 4.128

1-min 6.239 ± 20.470 4.632 ± 18.681 8.910 ± 33.490
HF, s2

(×108)
5-min 1.444 ± 3.085 1.687 ± 2.889 2.147 ± 3.985

1-min 9.818 ± 17.896 7.447 ± 15.194 11.031 ± 20.958
TP, s2

(×108)
5-min 3.504 ± 5.811 4.277 ± 7.431 8.411 ± 15.108

1-min 18.154 ± 42.404 13.462 ± 36.295 23.425 ± 63.988
LF/HF 5-min 0.705 ± 0.388 0.931 ± 0.824 0.974 ± 0.742

1-min 0.499 ± 0.515 0.599 ± 0.708 0.668 ± 0.897
nLF 5-min 0.259 ± 0.101 0.242 ± 0.097 0.266 ± 0.114

1-min 0.269 ± 0.096 0.273 ± 0.116 0.275 ± 0.118
nHF 5-min 0.432 ± 0.169 0.419 ± 0.221 0.363 ± 0.171

1-min 0.643 ± 0.135 0.617 ± 0.175 0.607 ± 0.191
cLFx, Hz 5-min 0.087 ± 0.008 0.084 ± 0.009 0.086 ± 0.009

1-min 0.094 ± 0.010 0.092 ± 0.011 0.093 ± 0.012
cHFx, Hz 5-min 0.273 ± 0.013 0.276 ± 0.021 0.275 ± 0.016

1-min 0.273 ± 0.016 0.275 ± 0.019 0.275 ± 0.020
cTPx, Hz 5-min 0.146 ± 0.046 0.141 ± 0.052 0.130 ± 0.049

1-min 0.204 ± 0.033 0.197 ± 0.042 0.197 ± 0.049
cLFy, s2 5-min 0.684 ± 1.177 1.087 ± 2.226 2.399 ± 6.954
(×106) 1-min 3.843 ± 12.577 2.716 ± 9.698 5.726 ± 22.975
cHFy, s2 5-min 0.815 ± 2.288 1.541 ± 2.485 0.923 ± 1.633
(×106) 1-min 3.087 ± 5.292 2.322 ± 4.622 3.540 ± 7.142
cTPy, s2 5-min 4.825 ± 20.172 3.514 ± 6.168 10.562 ± 27.309
(×106) 1-min 4.199 ± 12.652 2.958 ± 9.023 6.397 ± 25.340
SpEn 5-min 24.537 ± 1.645 23.862 ± 1.292 23.806 ± 1.909

1-min 22.089 ± 0.580 22.298 ± 0.636 21.981 ± 0.572

9.3.1.2 Five-minute segments

Figure 9.4 (a) shows the results from the filtering of the features according to the

separability criterion S, which includes the AUC and FDR values of each feature, as

well as the cross-correlation coefficient among features. Nineteen out of the original

37 features were selected, whereas the remaining features were discarded from further

analyses. The selected features were then used for the identification of the best

combination of features for each machine learning algorithm. The results of the SFS

scheme are shown in Tables 9.5 and 9.6.
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Table 9.4: Entropy, phase and detrended-fluctuation analysis indices extracted from 5-min
and 1-min segments of pulse rate variability. Values are shown as Mean ± Standard Deviation.

Features Length of Hypotension Normotension Hypertension
segments

BSE 5-min 5.654 ± 0.288 5.684 ± 0.231 5.709 ± 0.232
1-min 4.788 ± 0.321 4.914 ± 0.259 4.886 ± 0.275

SSE 5-min 2.693 ± 0.169 2.663 ± 0.205 2.631 ± 0.175
1-min 2.597 ± 0.242 2.547 ± 0.258 2.505 ± 0.252

ApEn 5-min 0.433 ± 0.131 0.417 ± 0.120 0.417 ± 0.126
1-min 0.294 ± 0.168 0.331 ± 0.194 0.295 ± 0.149

SampEn 5-min 0.454 ± 0.203 0.403 ± 0.164 0.424 ± 0.199
1-min 0.245 ± 0.196 0.295 ± 0.235 0.244 ± 0.170

MSE 5-min 4.985 ± 1.952 4.625 ± 1.932 4.858 ± 1.923
1-min 6.154 ± 1.626 6.118 ± 1.753 6.068 ± 1.595

LagT 5-min 1.122 ± 1.093 1.007 ± 0.086 1.067 ± 0.446
PD 5-min 0.092 ± 0.080 0.088 ± 0.024 0.097 ± 0.039
LagPD 5-min 153.950 ±

42.452
164.540 ±
59.024

154.471 ±
36.301

D2 5-min -0.541 ± 33.236 -1.120 ± 31.724 -1.189 ± 33.201
1-min -1.272 ± 23.880 -0.039 ± 23.496 0.039 ± 19.490

LYA 5-min 3.271 ± 1.101 3.524 ± 1.182 3.536 ± 1.117
1-min 3.787 ± 0.879 3.710 ± 0.797 3.977 ± 0.822

EMB. DIM 5-min 0.951 ± 0.133 0.962 ± 0.131 0.963 ± 0.108
1-min 0.976 ± 0.033 0.972 ± 0.041 0.976 ± 0.033

A1 5-min 0.665 ± 0.386 0.676 ± 0.180 0.740 ± 0.209
1-min 0.768 ± 0.406 0.748 ± 0.339 0.757 ± 0.395

A2 5-min 0.865 ± 0.252 0.897 ± 0.239 0.878 ± 0.231
1-min 0.561 ± 0.252 0.600 ± 0.281 0.610 ± 0.304
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Table 9.5: Results of the sequential forward selection scheme to identify the best combination
of features for each machine learning algorithm using 5 min segments. Bullets indicate the
features selected as part of the best combination for each algorithm.

Features

Algorithm
k-NN a Support Vector Machine

k
=

3
—

—
—

k
=

5
—

—
—

k
=

7
—

—
—

k
=

9
—

—
— One vs All One vs One

L
in

ea
r
a
—

— RBF c Poly d

L
in

ea
r—

— RBF Poly

—
σ

=
0
.5

—

σ
=

1
.0

σ
=

1
.5

σ
=

2
.0

n
=

3

n
=

4

n
=

5

σ
=

0
.5

σ
=

1
.0

σ
=

1
.5

σ
=

2
.0

n
=

3

n
=

4

n
=

5

SD1/SD2 - - - - • - - • - - • - • - • - - - - •
SpEn - - - - • - - - - - - • • - - • • • • •
cHFx - - - - - - - - - • • - - - - - - • - -
SDNN • - - - - - - - • - - - - - - - - - - -
AVNN • • • - • • - • • • • • • - - - • - - •
RMSSD - - - - - - - • - - - - - • • • • - • -
SD1 - - - - - - - - - • - - - - - - • - - -
nLF - - - - • - - - - • • - - - - - - - - -
COM • • • - - - - - - - - - - - - - - - - -
SD2 • - • • - - • - • - - - • - - - - • - -
NN50 - • - - - - - - - - - - • - - - - • - -
cLFx - - - - - - - - - • - - - - - - - - - -
VLF - • - • - - - - - - - - - - - - - - - -
pNN50 - - - - - - - - - - - - • - • - - - - -
nHF - - - - • - - - - - - - - - - - - - - -
S • - - - - • • - - - - • • • • • - - • -
EMB. DIM - - - - - - - - - - - - - - - - - - - -
TP • • - - - - - - - - - - - - - - - - - -
cHFy • • - - - - - - - - - - - - - • - - - -
a k-NN: k-Nearest neighbors. k: Number of nearest neighbors.
b Linear: Support vector machine with linear kernel function.
c RBF: Support vector machine with radial-basis kernel function. σ: Scale of the function.
d Poly: Support vector machine with polynomial kernel function. n: Order of the poly-
nomial.

The results from the classification of each blood pressure state using all, filtered

and forward selected features are shown in Figures 9.5 to 9.9.
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Table 9.6: Results of the sequential forward selection scheme to identify the best combination
of features for each feed forward neural network using 5 min segments. Bullets indicate the
features selected as part of the best combination for each algorithm.

Features Hidden neurons
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SD1/SD2 • - - - - - - - - - - - - - - • • - -
SpEn - - - • • - - - • • - • • - - - - • -
cHFx - • • - - - • - • - - - - - - - - - •
SDNN - - - - - - - - - - - - - - - - - - -
AVNN - - • - • • • • • - - - - - • - • • -
RMSSD - • - - • - - - - • • - • - - - - - -
SD1 - - - - - - • - - - - - - - - - - - •
nLF - • - - - - - - - - - - - - - - • - -
COM - - - - - - - - - - - - - - - - - - -
SD2 - • - • - - - - - • • • • • - • - - •
NN50 - - - - - - - - - - - - - - - - - - -
cLFx - - • - - - - - - - - - - - - - - - -
VLF - - - - - - - • - - - - - - - - - - -
pNN50 - - - - - - - - - - - - - - - - - - -
nHF - - - • - - - - • - - - - - - - - - -
S - - • • • • - • • - - • • • • - - • -
EMB. DIM - - - - - - - - - - - - - - - - • - -
TP - - - - - - - - - - - - - - - - - - -
cHFy - • - - - - - - • - - - - - - - - - -
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The results from the regression analyses using each of the fNN’s and rSVM’s

models and all and filtered features are shown in Figure 9.10. Since the best results

were obtained using radial-basis functions, these algorithms were optimised and the

best combination of features for these models were obtained (Table 9.7).

Using 5-min segments, the algorithm with lower MAE’s was the RBF SVM with

a scale of 0.5, with less than 5 mmHg mean MAE for each blood pressure value.

Hence, this model was applied and agreement between estimated and real values was

assessed using Bland-Altman analysis (Figure 9.11). The mean difference between

real and estimated values was -0.034, 0.020 and -0.051 mmHg for MAP, SBP and

DBP values, respectively. From these analyses, it can be observed that the difference

between real and estimated values has a directly proportional behaviour, i.e. as the

mean value increases, so does the difference between the real and estimated values.

Wilcoxon rank sum tests resulted in p-values of 0.313, 0.697 and 0.140 for MAP,

SBP and DBP, respectively, indicating a similar behaviour of the estimated values

when compared to real values obtained from invasive ABP signals.

9.3.1.3 One-minute segments

The same process as described above was performed using the features extracted

from 1-min segments of PRV. Figure 9.4 (b) shows the filtering process of the fea-

tures, which resulted in 17 out of 34 features rejected, and Tables 9.8 and 9.9 show

the results obtained after the SFS scheme. The results from the classification using

Table 9.7: Mean absolute errors ± standard deviation of the estimation of blood pressure
values measured using regressive support vector machines (rSVM’s) with radial-basis functions
after obtaining the best combinations of features using sequential forward selection, extracted
from 5-min and 1-min segments of pulse rate variability.

Length of Kernel scale Mean absolute error (mmHg)
segments (σ) —–MAP a—– —–SBP b—– —–DBP c—–

5-min

0.5 2.55 ± 0.78 4.74 ± 2.33 1.78 ± 0.14
1.0 2.59 ± 0.77 4.95 ± 2.37 1.86 ± 0.13
1.5 2.90 ± 0.79 5.50 ± 2.37 2.08 ± 0.18
2.0 3.35 ± 0.79 6.35 ± 2.34 2.39 ± 0.18

1-min

0.5 6.08 ± 0.14 10.93 ± 0.21 4.88 ± 0.11
1.0 6.24 ± 0.07 11.39 ± 0.24 4.90 ± 0.14
1.5 6.32 ± 0.09 11.58 ± 0.16 5.02 ± 0.13
2.0 6.48 ± 0.09 11.91 ± 0.19 5.13 ± 0.12

a MAP: Mean arterial pressure.
b SBP: Systolic blood pressure.
c DBP: Diastolic blood pressure.
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Figure 9.10: Results of the estimation of blood pressure values measured using regressive
support vector machines (rSVM’s) and fitting neural networks (fNN’s). Mean absolute errors
and standard deviations were measured from models obtained using all (red bars) and filtered
features (yellow bars) extracted from 5-min (left column) and 1-min (right column) segments
of pulse rate variability. SXn: Support vector machine with linear kernel (X = L), radial-basis
kernel (R) with varying scale n, or polynomial kernel (P) with varying polynomial order n.
NX: Neural network with X n neurons.

all, filtered and forward-selected features are shown in Figure 9.5 to 9.9.

Confusion matrices for classification algorithms using 5-min and 1-min segments

and the analysed algorithms using all, filtered and forward-selected features are

shown in Appendix B.

Regression analysis was also performed and results using all and filtered features

are shown in Figure 9.10. Table 9.7 contains the results obtained after regression

analysis using the best combination of features obtained from radial-basis rSVM’s,

which showed the lowest MAE’s using all and filtered features. As was done with the

models obtained using 5-min PRV segments, Bland-Altman analysis was performed

to assess agreement between real and estimated values, results of which are shown in

Figure 9.12. MAP, SBP and DBP showed biases of 0.311, 0.265 and 0.377 mmHg,

respectively. Once again, there is a directly proportional behaviour in the difference

between real and estimated values. Wilcoxon rank sum tests indicated that both real
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Figure 9.11: Bland-Altman plots for the assessment of agreement between real (R) and
estimated (E) values of mean arterial pressure (MAP), systolic blood pressure (SBP) and
diastolic blood pressure (DBP). Estimated values were obtained using support vector machines
with radial-basis kernel function, and using the best combination of features measured from
5-min pulse rate variability segments. Dashed lines: Limits of agreement. Solid line: Bias. In
all cases, agreement between predicted and target values was good, indicated by low biases
and limits of agreement, although a better agreement was observed for estimation of MAP and
DBP.

and estimated values come from comparable distributions, with p-values of 0.986,

0.600 and 0.400 for MAP, SBP and DBP, respectively.
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Table 9.8: Results of the sequential forward selection scheme to identify the best combination
of features for each machine learning algorithm using 1 min segments. Bullets indicate the
features selected as part of the best combination for each algorithm.

Features

Algorithm
k-NN a Support Vector Machine
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=

1
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σ
=

2
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n
=

3

n
=

4

n
=

5

A2 - - - - - - - - - - - • • - - - - - • •
BSE - - - - - - - - - • • - - - - - - - - -
nHF - - - - - - - - • - • - - - - - - - - -
RMSSD - - • - - - - - • • - - • - - - - - - -
SSE - - - - - - - - • • • • - - - • • - - -
cTPx - - - - • - - - - - - - - - - - - - - -
SD1 - - - - - - • - - • - - - - - - - • - -
cLFx - - - - - - - - - - - - • - - - - • - -
S • • - • - - • - - • - - - • • • - - • -
MSE - - - - - - - - - • - - • - - - - - - -
SampEn • • - • - - • • - • - - - • • - - - - -
nLF - - - - - - - - - - - - - - - - - - - -
SD1/SD2 - • - • - • • - - - • - • - - - • - - -
D2 - - - - - - - - - - - - • - - - - - - -
pNN50 • • • • - - • - - - • • • - • • • - • •
LF/HF - - - - - - - - - - - - • - - - - - - -
AVNN • • • • - • • • • • • • - • • • • • • •
a k-NN: k-Nearest neighbors. k: Number of nearest neighbors.
b Linear: Support vector machine with linear kernel function.
c RBF: Support vector machine with radial-basis kernel function. σ: Scale of the function.
d Poly: Support vector machine with polynomial kernel function. n: Order of the poly-
nomial.

9.3.2 Healthy volunteers

9.3.2.1 Feature extraction

Table 9.10 summarises the features extracted from 5-min and 1-min segments. A

total of 1280 samples were obtained from 5-min segments, while 1760 1-min segments

were considered.

9.3.2.2 Estimation of blood pressure values

Results from the regression analyses using rSVM’s models and all, filtered and SFS

features extracted from 5-min segments are shown in Table 9.11, while those obtained
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Table 9.9: Results of the sequential forward selection scheme to identify the best combination
of features for each feed forward neural network using 1 min segments. Bullets indicate the
features selected as part of the best combination for each algorithm.

Features Hidden neurons
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A2 - - - • • - - - - - - - - - - - - - -
BSE - - - • - - - - - - - - - - - - - - -
nHF - - - - - - - - - - - - - - - - - - -
RMSSD • - - - - - - • - - - - - - - - - - -
SSE - - - • • - - • - - - - - - - - - • -
cTPx - - - - • - - - - - - - - - - - - - -
SD1 - - - - • - - - - - - - - - - - - • -
cLFx - • - - - - - - - - - - - - - - - - -
S - - - - • - - - - - - - - - - - - - -
MSE - - - - - - - • - - - - - - - - - - -
SampEn • - - - - - - - - - - - - - - - - - -
nLF - - - - - - - - - - - - - - - - - - -
SD1/SD2 - - - - - - - - - - - - - - - - - - -
D2 - - - - - - - - - - - - - - - - - - -
pNN50 - - • - - - - - - - - - - - - - - - -
LF/HF - - - - - - - - - - - - - - - - - - -
AVNN - • • • • • • • • • • • • • • • • • •

from 1-min segments are shown in Table 9.12. It can be seen that, with features

obtained from both 5-min and 1-min PRV trends, the best performance was achieved

when using SFS features and a RBF Kernel function with a scale of 2. In the

case of 5-min segments, the mean absolute errors were 1.22 ± 0.09 mmHg, 1.54 ±

0.17 mmHg, and 1.07 ± 0.06 mmHg for the estimation of MAP, SBP and DBP,

respectively. MAE’s of 4.68 ± 0.49 mmHg, 6.86 ± 0.72 mmHg and 4.06 ± 0.44

mmHg for the estimation of MAP, SBP and SBP respectively, were obtained when

using SFS features extracted from 1 min PPG signals.

Bland-Altman analyses were performed to assess the agreement between the

estimated values using the best performing algorithms for each case and the target

BP values. Bland-Altman plots are shown in Figures 9.13 and 9.14, for 5-min and 1-

min segments respectively, alongside a scatter plot comparing the estimated (dots)

and target (crosses) values. It can be observed that the agreement tends to be

satisfactory when 5-min segments are considered, with limits of agreement around

3 mmHg, 5 mmHg and 2 mmHg for MAP, SBP and DBP respectively, and with

a small positive bias. On the contrary, limits of agreement for 1 min segments

are larger, with near 20 mmHg, 30 mmHg and 10 mmHg for MAP, SBP and DBP.
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Figure 9.12: Bland-Altman plots for the assessment of agreement between real (R) and
estimated (E) values of mean arterial pressure (MAP), systolic blood pressure (SBP) and
diastolic blood pressure (DBP). Estimated values were obtained using support vector machines
with radial-basis kernel function, and using the best combination of features measured from
1-min pulse rate variability segments. Dashed lines: Limits of agreement. Solid line: Bias.
The agreement was better for MAP and DBP, indicated by tighter limits of agreement.

However, this is probably explained by the larger amount and magnitude of outliers.

Both with 5-min and 1-min data, there are increased errors as the mean value of the

target and predicted values get higher, implying that, as BP increases, the proposed

model tends to have lower performance. This might be due to the fact that the

vast majority of segments considered were normotensive and the homogeneity of the

sample used in this study. From the scatter plots, nonetheless, it can be observed

that the predicted values follow a similar trend to that of the target values, both
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Table 9.10: Pulse rate variability indices extracted from 5-min and 1-min segments. Values
are shown as mean ± standard deviation.

Features, units Length of segments
5 min 1 min

Time-domain AVNN, s 0.861 ± 0.141 0.860 ± 0.141
SDNN, s 0.038 ± 0.017 0.035 ± 0.018
RMSSD, s 0.032 ± 0.016 0.031 ± 0.016
NN50 43.002 ± 40.111 7.757 ± 7.922
pNN50 0.137 ± 0.141 0.133 ± 0.148

Frequency-domain VLF, s2 (×108) 13.244 ± 11.431 1.420 ± 2.473
LF, s2 (×108) 15.469 ± 15.580 2.957 ± 3.606
HF, s2 (×108) 11.584 ± 8.939 2.248 ± 2.059
TP, s2 (×108) 40.297 ± 31.144 6.625 ± 6.738
LF/HF 1.850 ± 1.664 1.864 ± 2.205
nLF 0.351 ± 0.134 0.414 ± 0.172
nHF 0.298 ± 0.151 0.387 ± 0.204
cLFx, Hz 0.084 ± 0.011 0.085 ± 0.013
cHFx, Hz 0.248 ± 0.029 0.250 ± 0.031
cTPx, Hz 0.109 ± 0.034 0.136 ± 0.044
cLFy, s

2 (×106) 15.773 ± 17.869 2.545 ± 3.305
cHFy, s

2 (×106) 8.938 ± 7.746 1.442 ± 1.419
cTPy, s

2 (×106) 23.478 ± 18.602 2.974 ± 3.591
SpEn 20.802 ± 0.812 21.788 ± 1.241

Poincaré plot S, s2 0.181 ± 0.110 0.177 ± 0.113
SD1, s 0.022 ± 0.011 0.022 ± 0.012
SD2, s 2.435 ± 0.399 2.432 ± 0.400
SD1/SD2 0.009 ± 0.004 0.009 ± 0.004
COM 0.003 ± 0.003 0.003 ± 0.003

Detrended fluctuation A1 0.995 ± 0.228 1.085 ± 0.319
analysis (DFA) A2 0.790 ± 0.156 0.804 ± 0.275

Entropy analysis BSE 5.113 ± 0.359 4.510 ± 0.353
SSE 2.083 ± 0.102 2.045 ± 0.131
ApEn 0.385 ± 0.066 0.309 ± 0.066
SampEn 0.359 ± 0.076 0.446 ± 0.150
MSE 5.561 ± 1.249 2.467 ± 0.979

Phase analysis LagT 1.003 ± 0.056 1.000 ± 0.000
PD 0.103 ± 0.019 0.309 ± 0.060
LagPD 161.064 ± 33.189 30.386 ± 6.754
D2 2.325 ± 32.153 0.482 ± 25.139
LYA 4.335 ± 0.973 4.035 ± 0.625
EMBDIM 0.993 ± 0.074 0.987 ± 0.023

a Detrended fluctuation analysis

with data obtained from 5-min and 1-min segments. Again, the differences become

larger as the target blood pressure becomes larger.
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Table 9.11: Mean absolute errors ± standard deviation of the estimation of blood pressure
values measured using regressive support vector machines (rSVM’s) with linear, radial-basis
(RBF, different scales σ) and polynomial (different orders n) Kernel functions, with all, filtered
and sequentially forward selected (SFS) features, extracted from 5-min pulse rate variability
segments.

Features Kernel function Mean absolute error (mmHg)
—–MAP a—– —–SBP b—– —–DBP c—–

All Linear 9.32 ± 0.99 13.10 ± 1.75 7.62 ± 0.65
RBF (σ = 0.5) 12.75 ± 0.62 16.98 ± 1.60 11.01 ± 0.52
RBF (σ = 1.0) 8.76 ± 0.54 12.58 ± 1.54 7.40 ± 0.37
RBF (σ = 1.5) 4.78 ± 0.34 6.82 ± 0.87 4.07 ± 0.30
RBF (σ = 2.0) 3.12 ± 0.22 4.25 ± 0.50 2.72 ± 0.22
Polynomial (n = 2) 2.77 ± 0.23 4.43 ± 0.36 2.17 ± 0.18
Polynomial (n = 3) 2.73 ± 0.28 4.34 ± 0.52 2.21 ± 0.25
Polynomial (n = 4) 11.43 ± 13.54 5.71 ± 1.63 15.30 ± 7.02

Filtered Linear 10.34 ± 1.39 14.23 ± 2.22 8.76 ± 1.02
RBF (σ = 0.5) 5.26 ± 0.57 7.65 ± 1.01 4.44 ± 0.44
RBF (σ = 1.0) 2.33 ± 0.22 2.95 ± 0.37 2.05 ± 0.22
RBF (σ = 1.5) 1.65 ± 0.15 2.05 ± 0.23 1.46 ± 0.16
RBF (σ = 2.0) 1.48 ± 0.16 1.90 ± 0.27 1.29 ± 0.15
Polynomial (n = 2) 4.11 ± 0.55 6.36 ± 0.98 3.14 ± 0.37
Polynomial (n = 3) 2.11 ± 0.29 3.10 ± 0.49 1.70 ± 0.20
Polynomial (n = 4) 2.72 ± 0.74 4.52 ± 1.41 2.25 ± 0.90

SFS RBF (σ = 0.5) 2.48 ± 0.32 2.52 ± 0.44 1.66 ± 0.16
RBF (σ = 1.0) 1.49 ± 0.12 1.83 ± 0.22 1.33 ± 0.12
RBF (σ = 1.5) 1.28 ± 0.11 1.57 ± 0.20 1.14 ± 0.07
RBF (σ = 2.0) 1.22 ± 0.09 1.54 ± 0.17 1.07 ± 0.06

a MAP: Mean arterial pressure.
b SBP: Systolic blood pressure.
c DBP: Diastolic blood pressure.

9.4 Discussion

In this proof-of-concept study, PRV was used for the identification of BP states and

the estimation of BP values in critically ill patients and healthy volunteers. BP is

one of the main vital signs, and identifying trends that may lead to hypertensive or

hypotensive events, as well as estimating reliable BP values in a continuous manner

could aid in the prevention, monitoring and treatment of cardiovascular changes

and disorders related to hypertension or hypotension (El-Hajj & Kyriacou 2020).

Hence, the results presented in this paper show the applicability of PRV as a tool

for assessing BP changes using only PPG signals.

Although the classification results are not satisfactory for identifying all the

classes, the proposed methodology showed a relatively good performance for the

identification of hypertension events, which might be of particular interest due to
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Table 9.12: Mean absolute errors ± standard deviation of the estimation of blood pressure
values measured using regressive support vector machines (rSVM’s) with linear, radial-basis
(RBF, different scales σ) and polynomial (different orders n) Kernel functions, with all, filtered
and sequentially forward selected (SFS) features, extracted from 1-min pulse rate variability
segments.

Features Kernel function Mean absolute error (mmHg)
—–MAP a—– —–SBP b—– —–DBP c—–

All Linear 11.11 ± 0.82 15.07 ± 1.24 9.59 ± 0.58
RBF (σ = 0.5) 13.07 ± 0.73 17.24 ± 1.10 11.40 ± 0.65
RBF (σ = 1.0) 12.93 ± 0.73 17.10 ± 1.09 12.28 ± 0.65
RBF (σ = 1.5) 11.31 ± 0.68 15.21 ± 1.02 9.84 ± 0.58
RBF (σ = 2.0) 8.58 ± 0.57 11.98 ± 0.98 7.43 ± 0.43
Polynomial (n = 2) 8.14 ± 0.64 11.41 ± 1.31 6.95 ± 0.40
Polynomial (n = 3) 15.60 ± 1.78 25.50 ± 3.85 12.30 ± 1.33
Polynomial (n = 4) 21.12 ± 7.35 28.35 ± 7.40 43.26 ± 39.21

Filtered Linear 11.49 ± 0.74 15.43 ± 1.46 10.11 ± 0.59
RBF (σ = 0.5) 11.65 ± 0.79 15.76 ± 1.63 10.08 ± 0.53
RBF (σ = 1.0) 7.12 ± 0.49 10.11 ± 1.02 6.12 ± 0.39
RBF (σ = 1.5) 5.25 ± 0.37 7.42 ± 0.70 4.61 ± 0.31
RBF (σ = 2.0) 4.91 ± 0.41 7.10 ± 0.71 4.29 ± 0.32
Polynomial (n = 2) 7.76 ± 0.47 11.30 ± 0.95 6.52 ± 0.34
Polynomial (n = 3) 8.81 ± 1.44 12.07 ± 1.47 7.55 ± 1.42
Polynomial (n = 4) 39.95 ± 40.68 56.33 ± 44.07 28.75 ± 18.64

SFS RBF (σ = 0.5) 6.83 ± 0.77 8.04 ± 1.07 4.39 ± 0.51
RBF (σ = 1.0) 5.19 ± 0.62 7.48 ± 0.96 4.31 ± 0.50
RBF (σ = 1.5) 4.91 ± 0.54 6.92 ± 0.83 4.19 ± 0.47
RBF (σ = 2.0) 4.68 ± 0.49 6.86 ± 0.72 4.06 ± 0.44

a MAP: Mean arterial pressure.
b SBP: Systolic blood pressure.
c DBP: Diastolic blood pressure.

the relationship of hypertension and the appearance or worsening of cardiovascular

diseases. Also, the results from the task of estimating blood pressure values shows

promise as a potential tool for the non-invasive, continuous blood pressure estima-

tion using PPG-based devices. Moreover, using more powerful machine learning

models and additional non-linear features, as well as optimising some of the indices

extracted in this study and improving the ABP data labelling process, could im-

prove classification results, in order to reach better performance for identification of

all classes.

9.4.1 Classification of blood pressure states

The results obtained from the classification of hyper-, normo- and hypotensive events

show that PRV may aid in the identification of these trends, although the perfor-
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Figure 9.13: Bland-Altman plots for the assessment of agreement between real (R) and
estimated (E) values of mean arterial pressure (MAP), systolic blood pressure (SBP) and
diastolic blood pressure (DBP) from healthy subjects. Estimated values were obtained using
support vector machines with radial-basis kernel function, and using the best combination
of features measured from 5-min pulse rate variability segments. Dashed lines: Limits of
agreement. Solid line: Bias. Dotted lines: Linear model. Left column: Scatter plot of
estimated and target values. Right column: Bland-Altman plots. Bland-Altman plots show
good agreement, indicated by low biases and limits of agreement, and a tendency to increase
the error as the mean value of the estimated and target values increase. It can also be observed
that most predicted values follow the behaviour of targets.

mance metrics were lower than 80% in most cases. Similar studies have reported

encouraging results related to the identification of BP states using PRV. Lan et al.

(2018) used PRV information for identifying hypertensive and normotensive sub-

jects and compared the capability of some PRV indices for classifying the subjects,
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Figure 9.14: Bland-Altman plots for the assessment of agreement between real (R) and esti-
mated (E) values of mean arterial pressure (MAP), systolic blood pressure (SBP) and diastolic
blood pressure (DBP) from healthy subjects. Estimated values were obtained using support
vector machines with radial-basis kernel function, and using the best combination of features
measured from 1-min pulse rate variability segments. Dashed lines: Limits of agreement. Solid
line: Bias. Dotted lines: Linear model. Left column: Scatter plot of estimated and target val-
ues. Right column: Bland-Altman plots. Bland-Altman plots show good agreement, although
limits of agreement are larger than those obtained with 5 min segments. Most predicted values
follow the behaviour of targets, especially during normotension.

with SDNN, AVNN, and nHF having the best performance. Bolea et al. (2017) used

PRV- and PTT-based features to predict hypotension after spinal anaesthesia during

caesarean labor, and reported a sensitivity of 76%, specificity of 70%, and accuracy

of 72%. These two studies illustrate the capability of PRV to identify hyper- and

hypotensive events, such as is presented in this study. Moreover, other studies have

aimed to classify hypertensive events from the MIMIC database using only PPG

information. Nath et al. (2018) reported an overall accuracy of 90.8% for classify-

ing normotension, stage 1 and 2 of pre-hypertension, and hypertension; Liang et al.
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(2018) obtained F-scores of 80.52%, 92.55% and 82.95% for classifying normotension

against pre-hypertension, normotension against hypertension, and pre-hypertension

against hypertension, respectively; and Xiaoxiao et al. (2020) reached F-scores of

88.03%, 70.94% and 84.88% for the same classification tasks as the previous study.

The last two studies used deep learning models for the identification of blood pres-

sure states. To the knowledge of the author of this thesis, no studies have aimed to

classify hypotension events from the MIMIC database.

It was observed that the ML algorithms tested in this study showed better speci-

ficity and accuracy than sensitivity and precision. This means that the algorithms

were more powerful when classifying those events that did not belong to each of

the classes (i.e., true negatives). This was especially true for hypotensive and nor-

motensive events. On the other hand, the identification of hypertensive events out-

performed the other two classes. This is important because of the effect hypertension

has in blood flow and cardiovascular mechanics. As has been mentioned, hyperten-

sion has several physiological effects, such as the thickening of large and medium

arteries, the appearance of coronary artery atheroma and long-term cardiac function

impairment with left ventricular systolic dysfunction; micro aneurysms that appear

in small arteries within the brain that may result in intracerebral hemorrhage and

cerebral infarction, the thickening and appearance of emboli in the retinal artery, and

extensive and progressive fibrinoid necrosis of glomerular arterioles and consequent

renal impairment (Beevers & Robertson 2007). Therefore, identifying hypertensive

events is crucial for monitoring cardiovascular health. In the case of the classification

of hypertension events, the proposed methodology showed a maximum F1-score of

66.78% ± 3.65% and a maximum accuracy of 83.08% ± 1.48%, obtained with for-

ward selected features and a k-NN model.

For the 5-min PRV segments, the k-NN algorithms showed a very stable perfor-

mance, with no evident changes due to the number of nearest neighbours. These

algorithms showed a relatively high PPV, as well as a high TNR, for the identi-

fication of hypertensive events, and this behaviour was not highly affected by the

features used (all, filtered, or SFS). Nonetheless, hypo- and normotensive segments

were not well identified using k-NN algorithms. NNs and SVMs had similar behav-

ior, but with relatively better performance for identifying normotension. As with

k-NNs, hypotensive events were difficult to identify using only PRV-based features.

SVMs were highly affected by the features used. It can be observed that the
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identification of normotension and hypotension is highly improved by using the best

combination of features in each case, although the performance of the identification

of hypertension is slightly diminished. In this case, the SVMs with RBF kernels

showed the best average performance, with mean ACC around 70%; mean TPR,

mean PPV and mean F1 around 50%; and mean TNR around 75%. From these

results, it can be concluded that PRV may aid in the classification of blood pres-

sure states, although using additional information, probably available also in PPG

signals, may improve the performance of the algorithms.

Interestingly, by diminishing the window size to 1-min the performance of the

classifiers for identifying hypotension and normotension was improved. However, the

mean performance was better using 5-min segments. This might be explained by

the fact that a 1-min window for PRV analysis is not enough for reflecting changes

due to the nature of PRV and the dynamics of autonomic activity. Again, using

SFS features improved the mean performance, especially on SVMs. This difference

in performance between 5-min and 1-min segments for identifying hypo- and nor-

motension might be explained by the way the segments are labelled; for example,

when using 1-min segments it is more likely that small changes are identified and

correctly labelled in each class. However, the analysis of HRV and PRV is recom-

mended to be done using windows of at least 5-min due to the slow-changing nature

of these variables (Task Force of the European Society of Cardiology and The North

American Society of Pacing and Electrophysiology 1996, Shaffer & Ginsberg 2017)

and making it possible that the changes are not as evident in 1-min segments, which

might explain the better average performance of the classification using 5-min seg-

ments. Both for the classification and estimation of BP, having shorter segments

of PPG for the extraction of PRV features might be desirable, to allow for smaller

delays in estimating the states or the values. However, this variable should be opti-

mised in future studies, to achieve a balance between good performance and duration

of segments.

9.4.2 Estimation of blood pressure values

Although identifying BP states could aid in the monitoring of BP, estimating BP

values using only PPG signals could enhance the prevention and treatment of disor-

ders related to BP changes. From the obtained results using signals from critically-ill

subjects, especially those obtained using 5-min segments, and signals acquired from

353



healthy volunteers, it can be observed that using only PRV-derived features and ML

algorithms, it is possible to obtain good estimates of mean, systolic and diastolic

arterial blood pressures using the proposed methodology.

The application of machine learning algorithms for the extraction of BP values

from the PPG is currently widely studied, and several authors have proposed dif-

ferent methods for the estimation of blood pressure values from signals obtained

from the MIMIC database. Table 9.10 summarises some of these results found in

the literature and compares them to the results obtained in this study. It can be

observed that using PRV-based features and regression SVMs, a comparable and

acceptable performance was obtained.

As stated by El-Hajj & Kyriacou (2020), the American National Standards of the

Association for the Advancement of Medical Instrumentation (AAMI) established

that a non-invasive technique is reliable for the estimation of BP values if the mean

difference and standard deviation does not exceed 5 ± 8 mmHg when compared to

a reference BP evaluated on no less than 85 patients. The obtained results from

critically-ill patients showed that, using 5-min segments with an overlap of 10 s,

it is possible to have reliable measures of MAP, SBP and DBP using radial-basis

SVM’s with scales of 0.5 and 1, using only PRV-based features. The minimum

average errors obtained were 2.55 ± 0.78, 4.74 ± 2.33 and 1.78 ± 0.14 mmHg for

MAP, SBP and DBP, respectively. The results obtained using 1-min segments

Table 9.13: Comparison of the obtained results to results found in the literature. SBP:
Systolic blood pressure. DBP: Diastolic blood pressure. MAP: Mean arterial pressure.

Study Mean Absolute Error (mmHg)
SBP DBP MAP

Slapničar et al. (2018) 4.47 2.02 -
Slapničar et al. (2019) 9.43 6.88 -
Leitner et al. (2019) 3.43 1.73 -
Athaya and Choi (2021) 3.68 ± 4.42 1.97 ± 2.92 2.17 ± 3.06
Aguirre et al. (2021) 14.39 ± 0.42 6.57 ± 0.20 8.89 ± 0.10
This study (critically-ill sub-
jects, 5-min)

4.74 ± 2.33 1.78 ± 0.14 2.55 ± 0.78

This study (critically-ill sub-
jects, 1-min)

10.93 ± 0.21 4.88 ± 0.11 6.08 ± 0.14

This study (healthy subjects,
5-min)

1.22 ± 0.09 1.54 ± 0.17 1.07 ± 0.06

This study (healthy subjects,
1-min)

4.68 ± 0.49 6.86 ± 0.72 4.06 ± 0.44
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from critically-ill patients did not show enough reliability according to the AAMI

standards, with minimum average errors of 6.08 ± 0.14, 10.93 ± 0.21 and 4.88 ±

0.11 mmHg for MAP, SBP and DBP respectively. This can be also explained by the

slow-changing nature of PRV, which does not reflect changes in a reliable manner

in windows shorter than 5-min. Although the sample size in the healthy subjects

experiments was small and hence the results are not necessarily generalisable, this

same behaviour is observed, where results obtained using 5-min segments showed

better performance than those obtained using 1-min segments. All MAE’s become

smaller and achieve AAMI’s standards except for the estimation of SBP using 1-min

segments when healthy subjects’ signals were analysed, with errors below 2 mmHg

for the estimation of all three BP values when using PRV features selected from 5-

min PPG signals. Adding additional PPG-based features to the 1-min PRV features

may also result in better performance with shorter signal windows. It is important

to notice as well that SBP tends to have higher errors than MAP and DBP in both

critically-ill and healthy subjects. This could be related to the autonomic regulation

of systolic and diastolic pressures, or to the variability of these values. Further

analysis is needed to better understand these differences.

Other studies have aimed to use PRV to estimate BP values. Gaurav et al.

(2016) extracted PRV- and PPG-based features from PPG signals obtained from

the MIMIC II database (Saeed et al. 2011) and applied artificial neural networks

to estimate systolic and diastolic blood pressure, with mean absolute errors of 4.47

and 3.21 mmHg. Fong et al. (2019) obtained PPG signals using a multi-sensor

system located at the wrist, and extracted PRV, PPG and PTT features in order to

estimate BP values using support vector machines. They obtained a mean absolute

error of 7.29 ± 5.3 mmHg for SBP, and 5.01 ± 4.1 mmHg for DBP.

The results obtained in the present study, using ML algorithms based only on

PRV features, are comparable to what has been reported in these studies. Moreover,

Bland-Altman analysis from results obtained from critically-ill subjects indicate a

small bias between estimated and real values, with limits of agreement around ± 5

mmHg for MAP and DBP, and around ± 10 mmHg for SBP; and Wilcoxon rank

sum tests showed that estimated and real values did not have statistically significant

differences. It is important to remark that these results, including the Bland-Altman

plots, were obtained using data from all segments, not for individual subjects, which

probably improves the performance of the algorithms. Nonetheless, and as a proof-
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of-concept study, these results show that PRV might be used for the estimation of

BP, although SBP tends to show higher errors than MAP and DBP.

9.4.3 Limitations of the study

This study has some limitations that need to be highlighted. First, the critically-ill

patients signals were obtained from an available database from Physionet. Thus, sev-

eral variables were not controlled for, and although all subjects were hospitalised in

an intensive care unit, their diagnosis was unknown, which may have affected the re-

sults. In the case of the signals obtained from healthy volunteers, these were acquired

from a small, relatively homogeneous sample and under controlled circumstances,

which decreases the sources of error and makes these results less generalisable.

Another limitation involves the stride of 10 s used to separate the segments,

which might have been too short to reflect BP changes. This was done to produce

a larger database, but the performance might be improved using a different overlap.

Also, although the segments were randomised, the introduction of just 10 s of stride

could imply the use of very similar segments in the training and testing dataset and

hence increase the risk of overtraining. In the classification task, another limitation

of the study involves the classification of segments in each BP state, specifically

determining exactly which state was predominant in each segment, especially in

subjects who exhibited two or more BP states during the entire recording. Although

outliers for each PRV index were corrected, a larger number of available segments

might have helped to mitigate this effect. Also, the balancing of the dataset could

have affected the results. Future studies should aim to alleviate the class imbalance

problem using more robust strategies, such as applying gradient boosting techniques.

Finally, it is also worth noting that some of the extracted indices were not opti-

mised, especially the non-linear indices. Using an optimisation procedure for these

indices might lead to different results from those obtained in this study. Moreover,

additional non-linear indices, such as slope entropy and state space correlation en-

tropy, could prove useful for this application and might yield different results. It

might be worth evaluating the behaviour of such indices in future studies; however,

there is no standard for the extraction of this type of features for PRV analysis,

which make it hard to select which non-linear features to use for a given application.

The extraction of different non-linear indices could lead to different and possibly

better results.
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9.5 Summary

The aim of this study was to evaluate the applicability of PRV-derived features

for the classification and estimation of BP values using ML algorithms, using data

obtained from critically ill patients and healthy subjects. The results obtained show

promise for the use of PRV for both tasks, although several aspects should be further

optimised in order to increase performance, especially for the classification of BP

states. Specifically, the identification of hypertensive events in critically ill subjects

using the proposed methodology shows promise and could be a useful tool for a

continuous, non-invasive monitoring of cardiovascular diseases that may arise due

to the presence of hypertensive events.

Also, this study shows that using only PRV-based features, BP can be reliably

estimated. This is a promising result, since PRV features are easily computed from

PPG signals, which can be continuously obtained in real-life scenarios, including

intensive care units. In future studies, the applicability of these technique should be

evaluated in less homogeneous samples and in daily-life scenarios. Moreover, addi-

tional PRV-based features, as well as other machine learning algorithms, should be

evaluated for increasing the performance of the classification of blood pressure states

using only PRV information, which could lead to a non-invasive, non-intrusive, con-

tinuous, and low-complexity system for the identification of blood pressure using

wearable devices. Future studies should aim to evaluate how applying more com-

plex techniques for the extraction of features from PPG and PRV can increase the

performance of the models for the classification and estimation of blood pressure,

and to optimise the duration of the segments and their overlap for delivering better

and more instantaneous results.

From this chapter and the results found in Chapters 7 and 8, it can be concluded

that PRV does not always behave exactly the same as HRV, that haemodynamic

changes alter the relationship of these two variables, and that PRV could be used to

assess certain haemodynamic variables, such as blood pressure. However, the origin

of PRV and its differences to HRV are still not clarified. In the next chapter, the

results from an in-vitro study performed to evaluate PRV and its relationship with

some haemodynamic variables in the absence of HRV are presented and discussed.
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Chapter 10

In-vitro Study to Assess Pulse

Rate Variability in the Absence

of Heart Rate Variability

10.1 Aims and objectives

It has been concluded from previous studies that PRV could be used for assessing

cardiovascular variables such as blood pressure (Chapter 9), and that, although

HRV and PRV show similar trends under haemodynamic changes, they should not

be considered to be the same, since the former tends to over- or underestimate

some of these indices and to a different extent depending on the cardiovascular

state (Chapters 7 and 8). However, it is difficult to understand the origin of these

differences in data obtained from in-vivo studies, since both HRV and PRV relate to

the changes in the duration of cardiac cycles, but are measured using signals with

different origins (Schäfer & Vagedes 2013).

In an attempt to understand the differences between HRV and PRV, Constant

et al. (1999) evaluated how PRV changed in children with pacemakers set to a

fixed heart rate. They observed that PRV was present even in the absence of HRV

and concluded that the differences between PRV and HRV arise from respiratory

patterns and Pulse Transit Time (PTT). In 2014, Pellegrino et al. aimed to under-

stand the relationship between PRV and HRV in rabbits during ventricular pacing,

to drive HRV to zero, and cardiac autonomic blockade, using atropine (cardiova-

gal blockade), metoprolol (sympathetic blockade) and both drugs (dual blockade)
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to understand the autonomic substrates of HRV and PRV. Their results showed

that: (a) PRV remained non-negligible even during ventricular pacing, when HRV

was almost completely eliminated, and HRV and PRV behaviour was not related in

this scenario; (b) time-domain indices showed strong correlations between HRV and

PRV during cardiac autonomic blockade; (c) LF and HF indices showed a relatively

good agreement between HRV and PRV during cardiac autonomic blockade, but

with a consistent overestimation of HF and TP values, while normalised indices and

LF/HF showed very poor accuracy and precision, especially during atropine and

dual blockade and most likely because of the intrinsic PRV when HRV is decreased;

and (d) non-linear measures, especially those based on entropy analysis, showed poor

agreement and low correlation between HRV and PRV during any of the conditions

of autonomic blockade. Although they did not obtain PRV from human PPG sig-

nals, but from an invasive arterial pressure sensor placed into the abdominal aorta

of rabbits, their results showed that PRV contains different information that may

explain its differences to HRV; and they hypothesized that these differences must

come from changes in pre-ejection time, i.e., the time after ventricular depolariza-

tion and before opening of the aortic valve and which is a function of contractility,

preload and afterload, or in PTT, which changes due to pulse pressure and arterial

elasticity.

It can be difficult to perform studies to understand the effects of specific param-

eters on PRV changes and its relationship with HRV in healthy volunteers. Hence,

in this chapter, the development of an in-vitro setup for the simulation of the upper

body circulatory system is proposed, from which PPG signals can be acquired while

blood pressure and flow are modified by changing the stroke rate of a commercial

pump that replicates the activity of the heart, but without the effects of autonomic

modulation, i.e., in the absence of HRV. Moreover, given the limitations of this

in-vitro setup, the effects of respiration are also not present. This allows for the

investigation of the effects of changing only cardiovascular parameters on PRV as-

sessed from the obtained PPG signals. It was hypothesised that PRV indices would

be present even in the absence of HRV changes, and that they are affected both by

blood pressure and blood flow changes.
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10.2 Materials and methods

10.2.1 In-vitro setup

An in-vitro setup was built for the simulation of the upper-body circulatory system,

which includes the heart, the arteries and the venous return, as well as the simulation

of tissue for the acquisition of optical signals from this setup, including the use of

artificial blood and the simulation of skin layers in the points of PPG measurement.

10.2.1.1 Upper body circulatory rig

Figure 10.1 shows a diagram of the designed rig that simulates the upper-body

circulatory system. This consists of a commercial pulsatile pump (PD-1100, BDC

Laboratories, United States) that replicates heart activity; silicon tubes with varying

diameters and wall thicknesses that simulate arterial segments and venous return;

and a tank that mimics the venous blood reservoir. Table 10.1 summarises the

characteristics of arterial and venous segments replicated in this setup, which were

selected according to average human vessel sizes reported in the literature (Dotter

et al. 1950, Poonam et al. 2013, Chakravarthi et al. 2014, Nasr 2012).

10.2.1.2 Radial and deep-palmar arch phantoms

Since the aim of this study was to acquire and analyse PRV information obtained

from PPG signals from this in-vitro model, two independent phantoms were used

to simulate the points of measurement of these PPG signals. The inclusion of the

Figure 10.1: Diagram of designed rig for the simulation of upper-body circulatory system,
which consists of a commercial pump that replicates heart activity; aorta, subclavian, brachial,
radial and deep-palmar arch arterial segments; a venous reservoir; and a single vein replicating
the venous return. Pressure sensors are placed to measure the pressure of the fluid flowing
through the system, and silicon, custom-made phantoms are used for the placement of photo-
plethysmography (PPG) sensors.
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Table 10.1: Characteristics of arterial and venous segments replicated on the in-vitro setup.

Vessel segment Length (mm) Inside diameter (mm)
Aorta 120 20
Subclavian artery 80 10
Brachial artery 200 4
Radial artery 220 2.3
Deep palmar arch arteries 250 1.6
Venous system 220 2.3

phantoms allows a better positioning of PPG sensors and a more accurate replication

of tissue surrounding the arteries.

Figure 10.2 illustrates the design of the built phantoms. In both cases, the

phantoms consist of a clear, hollow cuboid with length of L = 60mm, width of

15mm, height of H = 5mm, and wall thickness of T = 1.5mm. These cuboids were

3D printed using clear resin (Formlabs, Somerville, MA, USA) and filled with clear

polydimethylsiloxane (PDMS) with 3% catalyst, which has been shown to replicate

mechanical properties of skin (Nomoni et al. 2020), and a single custom-made tube

was passed through each of the phantoms, to replicate the radial and deep-palmar

arch arteries. In the case of the radial artery, this was located closer to the edge

of the phantom, since the radial artery is relatively superficial in the wrist. Hence,

x1 < x2 for the radial phantom. On the contrary, and since the deep palmar arch

phantom is replicating a finger, the vessel passing through this phantom was located

aproximately in the vertical center of the cuboid, with x1 = x2. In both cases, the

inner diameters dr and dp have the values selected and shown in Table 10.1. The

vessels used for the simulation of these arterial segments were custom-made following

the methodology proposed by Nomoni et. al. (Nomoni et al. 2019, 2020).

Figure 10.2: Design of phantoms for replicating tissue and positioning photoplethysmo-
graphic sensors
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10.2.1.3 Artificial blood

In order to be able to acquire PPG signals from this in-vitro system, it was necessary

to produce a fluid that simulates some of the optical properties of blood. This

was done using deioinized water, Indian ink, phosphate-buffered saline (PBS) and

a cyan die (Epson 102 cyan ink, Epson, Japan). The amount of each of these

components were determined according to the volume of Indian ink, Vind. The

volume of deionized water, VH2O used was determined as shown in (10.1), while

the amount of PBS, mPBS , and the volume of cyan ink, Vcyan, were determined

according to (10.2) and (10.3), respectively. This recipe was based on the work

presented by Akl et al. (2012).

VH2O =
100Vind
0.226

(10.1)

mPBS = 98.9VH2O (10.2)

Vcyan =
4.17VH2O

100
(10.3)

The optical spectrum of this fluid were verified using a UV/VIS/NIR spectropho-

tometer (Lambda 1050, PerkinElmer, United States), with which the absorbance of

the fluid at different wavelengths was assessed. This artificial blood was expected to

have a green/blue colour which would increase the absorbance in red and infrared

regions of light.

10.2.1.4 Pressure and photoplethysmography measurements

As illustrated in Figure 10.1, several pressure measurements were obtained in the sys-

tem. Pressure sensors (PRESS-S-000, PendoTECH, United States) were connected

to the tubing via plastic Luer connectors. The readings of these pressure sensors

were acquired using a data acquisition card (NI cDAQ-9178, National Instruments,

United States) connected to a computer in which a LabVIEWTM (National Instru-

ments, United States) Virtual Instrument (VI) was running.

Simultaneously, two modified commercial neonatal PPG probes (Solaris Medical

Technology Inc., United States) were placed on the developed phantoms and con-

nected to a ZenPPG, a dual-wavelength, dual-channel research PPG acquisition and
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processing system developed in the Research Centre for Biomedical Engineering at

City, University of London (Rybynok et al. 2012, Budidha et al. 2018). The PPG

signals were also acquired using a data acquisition card (NI USB-6162, National

Instruments, United States) and the same LabVIEWTM VI. In this VI, signals were

acquired, visualised and stored for offline processing, and was also used to set the

currents going through the red and infrared LEDs in the commercial PPG probes

to a value around 30 mA.

10.2.1.5 Setup validation

Cardiac output (CO) has a direct relationship with stroke rate (SR) and stroke

volume (SV), as shown in (10.4). As explained by Kumar et al. (2019), SV refers to

the volume of blood ejected from the ventricle with each heartbeat and depends on

the difference between end-diastolic (EDV) and end-systolic volumes (ESV), and is

decreased as heart rate increases due to shortening of diastolic filling time.

CO = Q = SR× SV (10.4)

Moreover, blood pressure (BP) can be described as the ratio between CO and

the compliance (C) of the system (10.5). Hence, BP can be described in terms of

SR and SV, and is expected to increase if CO increases.

BP =
CO

C
=
SR× SV

C
(10.5)

Therefore, the behaviour of the in-vitro setup was assessed by changing stroke

rate (SR) and target flow (TF) of the pump, which changes SV. Modifying these

two variables, changes in cardiac output (CO) can be controlled and the measured

pressure should be modified. SR was changed from 60 beats per minute (bpm) to

180 bpm in steps of 30 bpm, while TF was changed from 1 L/min to 5 L/min, in

steps of 0.5 L/min. The mean pressure at each measuring location was assessed to

evaluate the changes in BP as SR and TF are modified, while HR was measured

from both pressure and PPG signals. Finally, SV values were assessed by extracting

the maximum value of the pattern used to drive the pump. The pattern used was

the built-in pattern recommended by the pump manufacturer.
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10.2.2 In-vitro experiment

Since the main aim of this study was to determine the relationship between PRV

and haemodynamic changes in the absence of HRV, a experiment was carried out

to evaluate the effects of changing stroke rate and target flow on PRV indices.

10.2.2.1 Experimental protocol

A experimental protocol was established to evaluate the effects of changing stroke

rate and target flow on PRV indices. Stroke rates were changed from 60 to 180 bpm

with 30 bpm steps, while target flow was increased from 1 to 5 L/min, in steps of 0.5

L/min. This results in a total of 45 combinations. Target flow was kept stable until

data with all stroke rates was acquired, and then target flow was increased. 10-min

of data was acquired from each combination of factors, and this was repeated two

times.

As was mentioned previously, a LabVIEWTM VI was employed to acquire PPG

and pressure signals. A sampling rate of 2 kHz was used for acquiring data. Pressure

measurements were taken from the aortic, subclavian, brachial, radial and deep

palmar arch (DPA) arterial segments, while PPG signals were obtained from the

phantoms located at the radial and DPA vessels.

Before acquiring the data, the baseline values of pressure measurements without

any pumping activity were acquired to obtain the offset of each of the pressure

sensors, which were then used to convert this data from voltage units to pressure

units (mmHg), considering a sensitivity of 3.85 psi/mV for the pressure sensors.

10.2.2.2 Data processing

The acquired signals were processed offline using MATLAB R© (version 2020a). Ini-

tially, pressure signals were converted from voltage to millimeters of mercury (mmHg),

as explained above. Then, both PPG and pressure signals were resampled to 256 Hz

using linear interpolation, and filtered using a second order, low pass Butterworth

filter, with cutoff frequency of 20 Hz.

Only red PPG signals were used for further analysis in this study. These were

segmented into 5 min portions, with a stride of 30 seconds between consecutive

segments. Then, interbeat intervals (IBIs) were identified using D2Max (Elgendi

et al. 2013) and, as was done in previous studies, IBIs were corrected according to
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their length. The a fiducial point was used to extract PRV trends from the portioned

signals and time-domain (AVNN, SDNN, RMSSD, NN50 and pNN50), frequency-

domain (VLF, LF, HF, TP, LF/HF, nLF, nHF, cLFx, cLFy, cHFx, cHFy, cTPx,

cTPy and SpEn), Poincaré plot (S, SD1, SD2, SD1/SD2 and COM), detrended

fluctuation analysis (A1 and A2) and entropy indices (BSE, SSE, ApEn, SampEn

and MSE) were extracted from these PRV trends.

Pressure signals were also segmented into 5 min intervals with a 30 s stride.

Peaks and valleys were detected from these signals, and the mean systolic (SBP)

and diastolic (DBP) pressure per each 5 min segment and each measurement location

were determined as the mean amplitude of the peaks and onsets, respectively. Mean

pressure (MAP) was calculated as shown in (10.6).

MAP =
1

3
SBP +

2

3
DBP (10.6)

10.2.2.3 Statistical analysis

Figures were generated using MATLAB R© (version 2020a) and statistical analy-

ses were performed using RStudio (version 1.4.1717). Two independent analyses

were performed to evaluate the effects of changing haemodynamics on PRV indices.

Firstly, linear regression was used to evaluate the linear relationship between pres-

sures measured from each location, and PRV indices. This was done to assess if

a linear model could explain the relationship between BP and PRV. Secondly, a

factorial analysis was performed to assess if changing SR and TF had an effect on

PRV indices. This was done to evaluate if these changes had a significant impact on

PRV, even in the absence of HRV. Since data did not follow a normal distribution,

as was verified with the Lilliefors test, Box-Cox transformations were applied by

finding the optimal lambda for each index. In all cases, a level of significance of 5%

was considered.

10.3 Results

10.3.1 In-vitro setup

Figure 10.3 shows the constructed rig to simulate part of the upper-body circula-

tory system. As explained, this system includes a commercial pulsatile pump that

replicates the heart activity. This pump can follow different patterns for generating
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Figure 10.3: Constructed rig for the in-vitro experiment. This consists of a commercial
pump that replicates heart activity, tubing that mimics arteries and veins from the upper-body
circulatory system, and a fluid that have similar optical properties as blood. Pressure sensors
and photoplethysmographic (PPG) probes were used to measure the pressure in the tubes and
the optical pulsatile signals from two developed phantoms, that model the skin. PPG signals
are acquired and processed using a custom-made system (ZenPPG) while pressure information
is acquired directly from a data acquisition card.

each cardiac cycle. In this study, the built-in pattern was used, which changes the

stroke volume according to the SR and TF (Figure 10.4). Greater stroke volumes

can be obtained by decreasing SR and increasing TF.

In order to acquire optical signals such as the PPG, it was necessary to develop

a fluid that replicates the optical behaviour of blood, which is referred as artificial

blood in Figure 10.3. Figure 10.5 shows the absorbance spectra obtained when the

developed fluid was tested using the spectrophotometer. It can be observed that

the artificial blood has a peak absorbance at around 610 nm, replicating part of

the optical behaviour of real blood. Since the maximum absorbance was observed

at this wavelength, the subsequent analysis with PPG signals and PRV information

were performed using only this wavelength.

A validation of this setup was performed, to assess if the measured pressure is

affected by changes in SR and TF, and if the correct SR can be measured from

the optical signals acquired. Figure 10.6 exemplifies the signals acquired from the

rig using a SR of 60 bpm and a TF of 3 L/min, while Figures 10.7 and 10.8 show

the behaviour of pressure measurements and pulse rate measurement, respectively,
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Figure 10.4: Pattern used for controlling the pumping activity of the pulsatile pump. The
ejected volume is larger as target flow increases, while it becomes smaller as stroke rate in-
creases.

as SR and TF are modified. As can be observed, the measured pressure signals

feature good quality and follow the expected behaviour, i.e. the pressure increases

as target flow increases within a same stroke rate, while it decreases when stroke

rate is increased. Also, it can be observed that the pressure measured in the aorta is

Figure 10.5: Spectrum obtained from the spectrophotometer and the artificial blood. The
maximum absorbance was obtained with a wavelength of 610 nm.
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Figure 10.6: Pressure and photoplethysmographic (PPG) signals acquired from the con-
structed rig when stroke rate was set to 60 beats per minute and target flow was set to 3
L/min. DPA: Deep palmar arch.

greater than the rest of the locations, and becomes lower in the subclavian segment.

Then, it starts increasing slightly due to the smaller area and increased resistance

in the subsequent arterial segments. From the PPG signals, it can be observed that

the pulse rate can be reliable extracted from the signals, although the measurement

becomes less reliable with lower stroke volumes, i.e. higher stroke rates and lower

target flows.

10.3.2 Pressure and Pulse Rate Variability measurements

Figures 10.9 and 10.10 exemplify the PPG and pressure signals measured under dif-

ferent stroke rates and target flows, respectively. It can be observed that the quality

of the PPG signals decreases as the stroke volume decreases, while the pressure

values are also diminished. From these signals, the mean pressure value and PRV

indices were extracted.

Figure 10.11 summarises the behaviour of systolic, diastolic and mean pressure
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Figure 10.7: Behaviour of mean pressure measured from the aorta, subclavian, brachial,
radial and deep palmar arch (DPA) locations while changing stroke rate and target flow. The
measured pressure increases as target flow increases within the same stroke rate. At lower
target flows and greater stroke rates, pressure values decrease.

measurements extracted from each of the acquired pressure signals during the ex-

periment, while Figures 10.12 to 10.19 show the mean and standard deviation of

Figure 10.8: Behaviour of pulse rate measured from the radial (left) and deep palmar arch
(right) phantoms using photoplethysmographic sensors while changing stroke rate and target
flow. As stroke rate increases, the measured pulse rate increases as well. With greater stroke
rates and lower target flows, i.e., lower pulse pressure, the quality of the signals obtained from
the deep palmar arch phantom is lowered, increasing the errors in the measurement of pulse
rate.
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Figure 10.9: Example of photoplethysmographic (PPG) signals acquired from the con-
structed rig under different stroke rates and target flows. The amplitude of the signals become
larger as the target flow increases and the stroke rate decreases, and when measured from the
radial PPG phantom.

PRV indices extracted from each of the PPG signals during each combination of SR

and TF.

10.3.3 Linear regression between PRV and arterial blood pressure

Linear regression and correlation analyses were done to evaluate if there is a lin-

ear relationship between PRV indices and any of the measured pressure values, i.e.,

systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean pressure

(MAP), from any of the measurement locations. The Spearman correlation coef-
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Figure 10.10: Example of pressure signals acquired from the constructed rig under different
stroke rates and target flows. The amplitude of the signals become smaller as the pulse travels
further away from the pump, and as the target flow decreases and the stroke rate increases.

ficient (ρ) was extracted for each case (Figure 10.20) and a linear model between

pressure values and PRV indices was fitted after applying Box-Cox transformations

to the data. From these models, the adjusted coefficient of determination (R2, the

greater the better), and the Akaike’s Information Criteria (AIC, the lower the bet-

ter) and Bayesian Information Criteria (BIC, the lower the better) were extracted.

Figures 10.21 to 10.23 show the behaviour of these indices. It can be observed that

a linear model does not properly reflect changes in PRV indices. However, from the

cross-correlation results, some of the indices showed a relatively high inverse rela-

tionship (ρ closer to -1), and higher correlation between indices extracted from the
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Figure 10.11: Mean and standard deviation of pressure measurements acquired under differ-
ent stroke rates (SR) and target flows (TF) conditions. MAP: Mean arterial pressure. SBP:
Systolic blood pressure. DBP: Diastolic blood pressure. Pressure measurements are higher
with lower stroke rates and higher target flows, while the difference between SBP, DBP and
MAP become unsignificant as stroke rates increase.

radial PPG and pressure values. Moreover, the three different pressure values have

a similar tendency. The R2 values show a similar trend, in which relationship seems

to be stronger between radial-related PRV indices and pressure measurements. It is

also worth noting that the behaviour of the linear regression results was very similar
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Figure 10.12: Mean and standard deviation of time-domain indices extracted from pulse rate
variability under different stroke rates (SR) and target flows (TF) conditions, and measured
from the radial (blue) and deep palmar arch (orange) phantoms. Most indices show larger
variability when measured from the deep palmar arch phantom, while some indices show clear
differences due to changes in stroke rate and target flow.

regardless of the location of measurement of pressure information.

10.3.4 Relationship between PRV and cardiac output changes

Factorial analyses were performed to understand the relationship between each of

the extracted indices and SR and TF changes. Figures 10.24 and 10.25 summarise

the effect estimates and significance for each of the factors and their combination

when PRV indices were extracted from the radial and DPA phantoms, respectively.

All interactions showed statistically significant differences, meaning that changing

SR and TF has a statistically significant effect on all PRV indices.
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Figure 10.13: Mean and standard deviation of absolute frequency-domain indices extracted
from pulse rate variability under different stroke rates (SR) and target flows (TF) conditions,
and measured from the radial (blue) and deep palmar arch (orange) phantoms. Most indices
show larger variability when measured from the deep palmar arch phantom.

When measured from the radial phantom, some of the indices were clearly more

affected by SR, such as AVNN, NN50 and SD2, in which the estimate for the effect

of SR is clearly larger than the estimate for the effect of TF and the interaction.

Similarly, some indices had larger estimates for TF, such as SDNN, RMSSD, COM,

absolute frequency domain indices, and y-coordinate centroid-related indices. A1 is

the only index measured from this location that has a larger effect estimate for the

interaction between the two factors.

In the case of indices extracted from the DPA phantom, this behaviour changes.

SD2, AVNN and NN50 continue to have a remarkable larger effect estimate with

changes in SR, while the interactions become stronger in this case, with most indices
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Figure 10.14: Mean and standard deviation of relative frequency-domain indices extracted
from pulse rate variability under different stroke rates (SR) and target flows (TF) conditions,
and measured from the radial (blue) and deep palmar arch (orange) phantoms. Most indices
show larger variability when measured from the deep palmar arch phantom. There are notable
differences due to target flow within each stroke rate level.

showing larger effects for these than for the independent factors.

Figures 10.26 to 10.29 show the post hoc analyses for each of the independent

factors. Target flow changes induce statistically significant differences especially on

time domain, Poincaré plot, DFA and entropy-related indices, both for radial and

DPA measured PRV, while relative and centroid-related frequency-domain indices

were more affected by TF changes when extracted from signals obtained from the

radial phantom. The effects of changing SR showed a very similar behaviour regard-

less of the point of measurement, with significant differences observed among most

levels, especially again on time-domain and non-linear indices.
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Figure 10.15: Mean and standard deviation of the x-coordinates of the centroid-related
indices extracted from pulse rate variability under different stroke rates (SR) and target flows
(TF) conditions, and measured from the radial (blue) and deep palmar arch (orange) phantoms.
Most indices show larger variability when measured from the deep palmar arch phantom,
although this variability is lower than other type of indices.

Figures 10.30 and 10.31 show the results for the post-hoc analyses of the inter-

actions. Both for radial and DPA PRV indices the results follow the same trend.

Time-domain, centroid-related frequency-domain and non-linear indices are largely

affected by the changes in target flow and stroke rate, while absolute and relative

frequency-domain indices showed less significant differences among possible combi-

nations. There were more significant differences as SR and TF increased.
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Figure 10.16: Mean and standard deviation of the y-coordinates of the centroid-related
indices extracted from pulse rate variability under different stroke rates (SR) and target flows
(TF) conditions, and measured from the radial (blue) and deep palmar arch (orange) phantoms.
Most indices show larger variability when measured from the deep palmar arch phantom. There
is notorious differences in the behaviour of the indices due to stroke rate.
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Figure 10.17: Mean and standard deviation of Poincaré plot indices extracted from pulse rate
variability under different stroke rates (SR) and target flows (TF) conditions, and measured
from the radial (blue) and deep palmar arch (orange) phantoms. Most indices show larger
variability when measured from the deep palmar arch phantom. As the stroke rate increases,
indices become lower with increasing target flow.
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Figure 10.18: Mean and standard deviation of detrended fluctuation analysis indices ex-
tracted from pulse rate variability under different stroke rates (SR) and target flows (TF)
conditions, and measured from the radial (blue) and deep palmar arch (orange) phantoms.
The variability of these indices measured from either phantom is similar.
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Figure 10.19: Mean and standard deviation of entropy-related indices extracted from pulse
rate variability under different stroke rates (SR) and target flows (TF) conditions, and mea-
sured from the radial (blue) and deep palmar arch (orange) phantoms. Most indices show
larger variability when measured from the deep palmar arch phantom. Some indices show
increasing values as target flow increases within the same stroke rate.
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Figure 10.20: Cross-correlation coefficients (ρ) between systolic, diastolic and mean pressure
signals measured from the aorta, subclavian, brachial, radial and deep palmar arch (DPA),
and pulse rate variability indices extracted from photoplethysmographic signals acquired from
the radial (left column) and DPA (right column) phantoms. Some of the indices showed a
relatively high inverse relationship (ρ closer to -1), and there was higher correlation between
indices extracted from the radial PPG and pressure values. The three pressure measures have
a similar tendency.
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Figure 10.21: Adjusted coefficient of determination (R2) for linear models between systolic,
diastolic and mean pressure values measured from the aorta, subclavian, brachial, radial and
deep palmar arch (DPA), and pulse rate variability indices obtained from red photoplethys-
mographic signals acquired from the radial and DPA phantoms. The relationship between
pressure measures and pulse rate variability indices seems to be stronger when radial-related
indices are considered. The behaviour of the linear regression results was very similar regardless
of the location of measurement of pressure information.
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Figure 10.22: Akaike’s Information Criteria (AIC) for linear models between systolic, di-
astolic and mean pressure values measured from the aorta, subclavian, brachial, radial and
deep palmar arch (DPA), and pulse rate variability indices obtained from red photoplethys-
mographic signals acquired from the radial and DPA phantoms. A lower AIC implies a better
fit of the linear model. Better results were observed with the x-coordinates of centroid-related
indices.
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Figure 10.23: Bayesian Information Criteria (BIC) for linear models between systolic, di-
astolic and mean pressure values measured from the aorta, subclavian, brachial, radial and
deep palmar arch (DPA), and pulse rate variability indices obtained from red photoplethys-
mographic signals acquired from the radial and DPA phantoms. A lower BIC implies a better
fit of the linear model. Better results were observed with the x-coordinates of centroid-related
indices.
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Figure 10.24: Effect estimates for stroke rate (SR), target flow (TF) and their interaction
on each of the indices extracted from pulse rate variability (PRV) measured from the radial
phantom. Red stars on top of the bars indicate statistically significant effects. All indices
showed statistically significant effects from each factor and their interaction.

Figure 10.25: Effect estimates for stroke rate (SR), target flow (TF) and their interaction on
each of the indices extracted from pulse rate variability (PRV) measured from the deep palmar
arch phantom. Red stars on top of the bars indicate statistically significant effects. All indices
showed statistically significant effects from each factor and their interaction.
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10.4 Discussion

As has been seen in previous studies and in the previous chapters of this thesis, PRV

has been shown to be different to HRV (Schäfer & Vagedes 2013, Yuda, Shibata,

Ogata, Ueda, Yambe, Yoshizawa & Hayano 2020), even in circumstances in which

HRV is reduced or absent (Constant et al. 1999, Pellegrino et al. 2014). However, the

origin of these differences are not entirely clear, and could be related to respiratory

modulation or to cardiovascular changes, such as changes in PTT (Constant et al.

1999, Pellegrino et al. 2014).

Understanding how much cardiovascular changes, specifically changes in haemo-

dynamics, explain the differences between HRV and PRV is difficult in in-vivo stud-

ies. Hence, in this study, the use of an in-vitro setup was proposed to evaluate if,

in the absence of HRV in this simplified model, changes in cardiac output generated

by changes in stroke rate and stroke volume could affect PRV indices. Moreover, it

was evaluated if there exists a linear relationship between PRV indices and blood

pressure measurements.

10.4.1 In-vitro setup

An in-vitro model was built following anatomical characteristics of the upper-limb

circulatory system. This section of the body was chosen since PRV is usually mea-

sured from the finger or the wrist, and because blood pressure is usually assessed

on the arm, both invasively and non-invasively. Although it is not possible to com-

pletely mimic the anatomy and physiology of the circulatory system in an in-vitro

model, the length of the arterial segments, the diameter of the vessels and the be-

haviour of the pulsatile pump were designed and selected to have them as similar

as possible to the average human being. Also, the artificial blood used was shown

to have an optical response partly similar to the optical spectrum of blood. Hence,

optical signals can be acquired using the proposed artificial blood recipe, with better

performance for red wavelengths, where the absorbance peak is maximum.

The behaviour of the system was validated by measuring pressure signals at

each arterial segment, PPG signals at the radial and deep palmar arch segments,

and by altering stroke rate, target flow, and hence stroke volume. It was observed

that the system behaved as expected. From the PPG signals it was possible to

determine stroke rate reliably, although the signals became noisier as the stroke
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volume was decreased, lowering signal-to-noise ratio in these signals and making it

harder to properly determine stroke rate. From the pressure signals, the expected

performance was observed: As stroke volume increased, pressure increased in all

measurement sites. Also, there were differences in the magnitudes of the pressure

signals that were expected given the differences in resistance to flow given by the

different vessel diameters.

As explained by Nomoni et al. (2020) and May et al. (2021), using this kind of

setups have become increasingly useful in the study of PPG signals and light-tissue

interaction, since it allows for a dynamic simulation of the circulatory system as well

as the investigation of several processes that are difficult to investigate in in-vivo

studies due to the large amount of uncontrolled variables. Moreover, using these in-

vitro setups allows for the investigation of extreme conditions that can be difficult

or unethical to simulate in in-vivo circumstances, such as the complete absence of

autonomic regulation. To the best of the knowledge of the author of this thesis, this

is the first study that aims to investigate PRV in an in-vitro model in the absence

of HRV or any other physiological processes, such as respiration.

10.4.2 Behaviour of pressure measurements and PRV indices with

haemodynamic changes

Pressure values were measured from each arterial segment of the rig. From these

signals, mean arterial pressure (MAP), and systolic (SBP) and diastolic blood pres-

sure (DBP) values were extracted. Pressure measurements behaved as expected,

with increased pressures as stroke volume increased. Hence, with increased target

flows at a given stroke rate, the blood pressure increased. But when stroke rate is

increased, blood pressure decreases since the volume of blood per stroke is lowered.

The measurements obtained are relatively robust, as shown by the small standard

deviations, even when pressures are near zero. Also, and as expected, the differ-

ence between MAP, SBP and DBP become larger as pressure increases, since the

amplitude of the signal acquired is also increased.

The behaviour of PRV indices extracted from PPG signals acquired from both

phantoms is also worth analysing. In general, it can be seen that indices extracted

from the DPA phantom tend to have larger variabilities, probably due to the lower

quality of the signal obtained from this location, which makes it harder to accurately

determine cardiac cycles.
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Specifically, from time-domain indices, it can be observed that the measurement

of AVNN is generally stable except for the cases in which the amplitude of the signal

is too small, such as when SR is 150 and 180 bpm and TF is lower than 2 L/min.

SDNN and RMSSD had a very similar behaviour, with relatively lower values as TF

increases. A similar although not as clear behaviour can be observed from NN50

and pNN50.

In absolute-power frequency-domain indices, the results obtained when SR was

150 and 180 bpm had an important outlier when TF was 1 L/min. Again, this is

likely due to the lower quality of the signals at this stroke volumes. LF, HF and

TP showed a similar behaviour, with increased values as TF increased to 3 L/min

and then decreased values as TF was increased to 5 L/min. Interestingly, it can be

observed that there is an important difference in magnitudes between VLF, LF and

HF, with larger magnitudes in the HF band. This is in line with the results reported

by Constant et al. (1999), who concluded that this frequency band was more affected

by cardiovascular factors such as PTT, even when HRV was dramatically reduced.

This can also be observed from nLF and nHF, with most nHF values close to 0.9.

However, the trend of increasing and decreasing values as TF increases is not visible

in these two indices. However, as SR increased, LF/HF and nLF tended to decrease

with increases in TF, while nHF showed the opposite behaviour. SpEn did not show

a clear trend with changes in TF, but did show a continuous increase as SR surged.

Centroid-related indices showed similar results when y-coordinates were anal-

ysed. Again, there is an important outlier as stroke rate increased and target flow

was kept low, but the inverted parabolic behaviour observed when SR is lower is also

present in these indices. However, x-coordinates were less affected by changes, mean-

ing that the power of the band tends to be around the same frequencies regardless

of stroke volume changes, while the amplitude of the band does vary with haemo-

dynamic changes. This is in line with what was observed in the studies presented

in previous chapters of this thesis.

As has been explained in previous chapters, SD1 is expected to behave as

RMSSD. This can be seen in the results obtained from Poincaré plot indices, where

the behaviour is exactly the same. S, SD1/SD2 and COM also have the same trend

with varying magnitudes. And SD2 has a similar behaviour as AVNN, which is also

expected from the literature (Khandoker et al. 2013).

Finally, from the remaining non-linear indices, it can be seen that magnitudes
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tend to remain relatively stable regardless of changes in stroke rate. A trend is hard

to determine from DFA-related indices, while from entropy-related indices, the most

visible trend can be observed from SSE, where it increases with rising TF. BSE,

ApEn, SampEn and MSE did not show such clear patterns of behaviour.

10.4.3 Linear regression between PRV and arterial blood pressure

Linear regression analyses between pressure measurements and PRV indices were

performed to evaluate if the relationship between these variables could be explained

using a linear model. Three main conclusions can be derived from these results:

(a) The models behaved similarly regardless of the location of measurement of the

pressure; (b) the models did not show a difference between MAP, SBP and DBP;

and (c) the linear relationship tends to be stronger when PRV indices are extracted

from the radial phantom.

From the Spearman correlation analysis it was found that stronger correlations,

reflected in correlation coefficients closer to ± 1, were observed with SDNN, RMSSD,

NN50, pNN50, VLF, SD1, SD1/SD2 and SSE measured from the radial phantom.

AVNN and SD2 showed the correlation coefficients closer to zero, hence these indices

are not expected to be linearly related with blood pressure. These two indices

reflect changes in instantaneous heart rate, which has been shown to be robust when

measured from PPG signals (Schäfer & Vagedes 2013). With the results found in this

study, it can be concluded that these measurements should not be linearly affected

by blood pressure changes, and have a robust performance regardless of changes

in stroke rate and target flow. Similar results were observed from the adjusted

coefficients of determination, R2. The indices that showed better R2 were SDNN,

RMSSD, NN50, pNN50, VLF, SD1, SD1/SD2 and SSE, but values were below

0.5 for all indices, indicating that a linear model is not the best fit for modelling

the relationship between blood pressure and PRV indices. Since there are several

non-linear processes that affect HRV and PRV in in-vivo circumstances (Shaffer &

Ginsberg 2017), it is possible that fitting higher-order models to this data increases

the R2 values.

Both Akaike’s and Bayesian Information Criteria were extracted as well, as a

relative assessment of the linear model fit for each of the indices and each of the pres-

sure measurements. Both show similar results, with lower values for x-coordinates

of centroids, SSE, ApEn and SampEn. Hence, these models were classified as the
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better fit. Interestingly, NN50 showed lower values when measured from the radial

phantom, while when it was measured from the DPA phantom it did not show low

values of AIC or BIC. This could be due to effects of noise in the measurement of

this variable and hence in the linear models.

In conclusion, from these analyses it can be seen that some PRV indices tend to

have a strong cross-correlation with pressure measurements, although these do not

behave linearly. Also, it is worth noting again that there is no difference due to the

magnitude of the pressure (which changes with location of measurement) or due to

the type of pressure that is being analysed.

10.4.4 Relationship between PRV and cardiac output changes

The main aim of this study was to assess if PRV indices were affected by stroke rate

and target flow changes, in the absence of HRV and autonomic regulation. From the

factorial analyses, it was observed that all indices measured from both phantoms

had statistically significant effects due to the interaction of factors and due to the

factors individually.

From the radial phantom, and similarly to what was observed from the behaviour

of PRV indices, AVNN and SD2 had an important effect due to SR. MSE showed

also larger estimates due to the effect of SR on its magnitude. In addition to these

indices, NN50, S, SD1/SD2, A2 and BSE also showed larger estimates due to the

effect of SR than TF or the interaction when measured from the DPA phantom.

This might be due to the increased number of outliers and the lower quality of the

signal. In concordance too with the qualitative observations of the behaviour of

the indices, SDNN, RMSSD, pNN50, absolute-power and y-coordinates of centroid

related frequency domain indices, S, SD1, SD1/SD2 and COM showed that TF has

the larger effect estimate when measured from the radial phantom. When measured

from the DPA phantom, and again most likely due to the quality of the signal, the

greater effect estimates were found on the interaction of both factors.

Regardless of the differences between phantoms and signal qualities obtained, it

is remarkable that all indices showed a statistically significant effect due to these

haemodynamic changes, meaning that even in the absence of HRV and autonomic

regulation, changing stroke rate and target flow affect PRV indices. Given the

greater susceptibility of DPA-related indices to noise, the remaining discussion is

focused solely on data obtained from the radial phantom.
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Post hoc analyses were performed to evaluate the origin of these differences.

Only focusing on target flow changes, most differences occurred when comparing

lower flows to TF values greater than 2.5 L/min and for time-domain, centroid

related frequency-domain, and non-linear indices. For absolute and relative power

indices, the majority of the differences were observed when comparing TF = 1

L/min to the rest of the conditions. Changes on stroke rate had a significant effect

on most indices, especially when SR was increased to 180 bpm. The indices that

showed the lower amount of significant comparisons among levels were VLF, LF

and COM. Moreover, the interactions showed significant differences in most possible

combinations of factors, showing that both SR and TF play an important role in

PRV and its regulation even in the absence of HRV.

These results corroborate those reported by Constant et al. (1999) and Pellegrino

et al. (2014), who concluded that PRV is modulated by other aspects different to

HRV. Although from these results it is evident that in this in-vitro setup PRV was

present and affected by stroke volume changes, further studies should be performed

to better understand the origins of the changes in PRV and to try to replicate these

results in an in-vivo model. Moreover, these results alongside the development of

the in-vitro model could allow for a better understanding of PRV in a controlled

manner and its relationship with cardiovascular diseases.

10.4.5 Limitations of the study

The main limitation of this study is the restrictions imposed by the in-vitro model.

As has been already mentioned, it is not possible to completely simulate the be-

haviour of the cardiovascular system and the autonomic nervous system in an in-

vitro model, limiting the physiological phenomena and anatomical features to be

studied (May et al. 2021). However, having this controlled scenario allowed for

understanding how PRV alone would react to haemodynamic changes, and was con-

sidered a good first step in the route to better understand the interaction of PRV and

cardiovascular changes. Also, lower quality of signals with decrease stroke volumes

may have affected the results obtained, especially when PPG signals were measured

from the DPA phantom. However, the best performing algorithm and fiducial point

selected on Chapter 6 were used in an attempt to make the results more robust

and it was observed that only very extreme conditions were difficult to analyse. Fi-

nally, only a linear model was used to relate PRV indices and blood pressure values.
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Future studies should aim to apply higher-order models to better understand the

relationship between these variables.

10.5 Summary

PRV has been shown to be affected by additional aspects different to HRV (Con-

stant et al. 1999, Pellegrino et al. 2014, Gil, Orini, Bailón, Vergara, Mainardi &

Laguna 2010) but it is difficult to isolate PRV from these other variables in order

to understand how it could be affected by changes such as increases or decreases on

blood flow and blood pressure. An in-vitro model was designed and implemented

in this study, in which the upper-circulatory system was simulated and from which

pressure and PPG signals could be measured. In the absence of HRV and auto-

nomic regulation, PRV indices were extracted from PPG signals measured from this

in-vitro system, alongside pressure signals. It was observed that PRV was affected

due to changes in stroke rate and target flow, and that some of these PRV indices

are related with pressure measurements.

Although there is a need to validate these results in in-vivo studies, it can be

concluded that PRV acts differently due to changes in cardiovascular parameters

regardless of the presence of HRV. Nonetheless, it should be expected that HRV

plays an important role in the modulation of PRV, making it difficult to observe

these changes in data obtained from healthy or diseased subjects. Future studies

could aim to utilise both HRV and PRV to dilucidate the effects of cardiovascular

changes on PRV after subtracting HRV information.

Moreover, future studies should aim to better understand the origin of these

differences between HRV and PRV under the light of cardiovascular changes. Also, it

could be beneficial to implement autonomic regulation in the in-vitro setup, in order

to improve the physiological simulation of the cardiovascular system and to analyse

the differences between HRV and PRV under different cardiovascular parameters.
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Chapter 11

Discussion, Conclusions and

Future Work

HRV has been largely explored in the last 40 years due to its simplicity and non-

invasive nature to evaluate changes in the cardiac ANS and related diseases (Xhyheri

et al. 2012). The rate at which the heart pumps blood to the circulatory system is

determined by the sinus node in the heart, which is controlled by the sympathetic and

parasympathetic branches of the ANS (Rangayyan 2002). Hence, changes in heart

rate indirectly reflect the behaviour of the cardiac control exercised by this system.

Its analysis has been used in the understanding and perhaps detection and diagnosis

of various cardiovascular diseases amongst other pathophysiological phenomena. For

example, HRV has been studied and used for the diagnosis and assessment of acute

myocardial infarction (Task Force of the European Society of Cardiology and The

North American Society of Pacing and Electrophysiology 1996, Takase 2010, Karmali

et al. 2017), diabetes (Takase 2010, Xhyheri et al. 2012), hypertension (Takase 2010),

and atherosclerosis (Xhyheri et al. 2012), among others.

Some researchers have tried to implement HRV measurements using physiolog-

ical signals different from the ECG. A commonly used alternative to ECG for the

assessment of HRV is PPG, as a non-invasive, non-intrusive, simple and low-cost

technique for the acquisition of pulse waves (Allen 2007, Kyriacou 2021). HRV in-

formation derived from these pulse waves has been denoted as PRV, indicating that

the information is not based on heart rate but on pulse rate changes over time. PRV

has been derived for the analysis of autonomic changes under different conditions,

such as the presence of mental or somatic diseases, during sleep, or for evaluating
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the effects of pharmacological drugs.

PRV seems like a logical alternative to HRV since PPG signals carry a lot of

valuable information regarding cardiovascular parameters, and is very easy to acquire

in a long-term manner and in real-life scenarios. However, several technical and

physiological factors may affect PPG and probably alter PRV. In this thesis, two

main work packages were executed to (1) identify which selection of some technical

factors allow for better extraction of PRV data from PPG signals, and (2) explore

how cardiovascular changes affect PRV.

11.1 Standardisation of pulse rate variability extraction

from PPG signals

PRV has been shown to be affected by technical aspects selected for its extraction

from PPG signals, such as sampling rate, the selection of fiducial points used to

extract cardiac cycles, and the filtering of PPG signals before detecting these fiducial

points. One important aspect that has been studied is the effect of the fiducial points

used for determining each cardiac cycle. This issue is not remarkable when discussing

HRV: R peaks are easily identified in most ECG traces, and due to its magnitude,

physical origin, and frequency content, they are ideal marks for segmenting cardiac

cycles and deriving HRV data. PPG, on the other hand, is a smooth signal, with

slow changes and relatively constant frequency content. Identifying the fiducial point

of the pulse wave may present an interesting challenge and an important pitfall for

PRV. As mentioned by Pinheiro et al. (2016), the best fiducial point to be used in

the analysis of PRV depends on the physiological conditions of each subject and on

the analysis to be performed, making it crucial to select the fiducial point to use

appropriately.

The way PPG signals are acquired and processed for measuring PRV is also

important. PPG, being an optical technique, is based on the interaction between

tissue and light (Kyriacou 2021). The wavelength at which the tissue is illuminated

affect the depth at which light penetrates, with longer wavelengths reaching deeper

tissue (Ash et al. 2017). It is still not clear if this could imply a difference in PRV

measured from several wavelengths, although PRV has been measured indistinctly

using red, infrared, green and even orange light. Another important aspect is the
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sampling frequency used for measuring PRV, as well as the pre-processing of PPG

and frequency domain analysis techniques that could affect PRV results. Hence, it

is important to establish guidelines for standardising PRV estimation, which would

allow comparing results from similar studies without having to consider processing

and acquisition differences, which may affect the conclusions reached.

In this thesis, a first approach to establish these guidelines was performed. It

was found that, with simulated signals with excellent and acceptable quality, the

sampling rate needed for reliable estimation of PRV from PPG signals was at least

256 Hz, and the duration should be at least 120 s. Also, the D2Max algorithm along

with the a fiducial point delivered the best estimation of PRV trends, as well as

using FFT for spectral analysis with cubic-spline interpolation and a 4 Hz sampling

rate. Finally, it was found that using Elliptic IIR filters to pre-process the PPG

signal tended to deliver the best results.

It is worth remarking that these results were obtained using simulated signals,

with varying PRV content. As has been explained, this was done in order to increase

the sample size available and, at the same time, obtain a gold standard different to

HRV, since PRV should not be considered exactly the same as HRV and hence should

not be coerced to exactly replicate HRV data. Nonetheless, the use of simulated

signals implies that many of the physiological and technical aspects that may affect

the PPG waveform, such as changes in amplitude, the presence and absence of

dicrotic notches, or even the inversion of the signal, have not been considered in

this study. Also, most of the results were obtained using signals that were not

contaminated with any noise, in an attempt to identify those parameters that allowed

for a better extraction of PRV indices from PPG signals under ideal conditions.

Therefore, more studies are needed to continue determining how noise affects the

parameters established in this thesis. However, although more studies are needed,

this is one of the first studies aiming to establish these guidelines considering a gold

standard different to HRV, and provides a first framework to understand how using

different technical aspects for PRV assessment may affect the results under different

conditions. Although this studies have concerned mainly on PRV analysis from

PPG signals, establishing guidelines for many PPG-related applications is becoming

crucial for the advancement of the technique.

Future studies should aim to validate and further standardise PRV assessment

from PPG using both simulated and real data, including also evaluating the effects
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of other technical aspects, such as body site, wavelength and type of sensor used for

the acquisition of PPG signals.

11.2 Relationship between cardiovascular changes and

pulse rate variability

As was concluded by Schäfer & Vagedes (2013), PRV is different from HRV not

only due to errors in the fiducial points or due to the processing and acquisition

methods applied, but also due to the nature of PPG and ECG signals and the phys-

iological factors that affect each of these. PPG, being of a mechanical nature, can

be affected by other factors different to those that affect HRV. The most renowned

differential factor is PTT, the time that the blood takes to travel from the heart

to the peripheral site where the pulse wave is being measured (i Caros 2011). As

demonstrated by Constant et al. (1999) and Gil, Orini, Bailón, Vergara, Mainardi

& Laguna (2010), PTT has an important role in explaining the differences between

HRV and PRV, especially in short-term parameters, such as HF and RMSSD. There-

fore, the location of the sensor used for acquiring PPG could affect the relationship

between PRV and HRV, and thus it is possible to hypothesize that PRV measured

from different body sites may yield different information regarding the vascular path

that the blood had to travel. Moreover, Lu et al. (2009) indicated that three factors

(electromechanical coupling in the cardiomyocyte, pre-ejection period, and PTT)

are subject to variations independent from heart rate and may be influenced by car-

diovascular and ANS diseases, which could affect the relationship between HRV and

PRV in diseased subjects. Gil, Orini, Bailón, Vergara, Mainardi & Laguna (2010)

also pointed out the effects of aging and blood pressure on PRV, suggesting that dif-

ferences between PRV and HRV could be also due to vascular aging. Trajkovic et al.

(2011) concluded that not only PTT may affect PRV, but also other factors such as

external forces on the arterial vessels, pathologies, movement artefacts and method-

ological issues. Heathers (2013) indicated that PRV from different body locations

could allow to differentiate local and systemic vasoconstrictive responses. Parasnis

et al. (2015), after evaluating non-linear parameters in cardiovascular patients both

from HRV and PRV; concluded by raising a question: Could cardiovascular disorders

be responsible for altering the behaviour of PRV differently to that of HRV? And as

Vasconcellos et al. (2015) pointed out, there is not a profound explanation yet for
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the physiological or technical aspects that may affect the relationship between HRV

and PPG-derived PRV, nor there is a clear hypothesis regarding the relationship

between PRV and cardiovascular diseases, or the enhanced capability of PRV to

detect cardiovascular changes over HRV.

Although not all these questions were answered in this thesis, from the studies

carried out two main conclusions were reached: (1) PRV is affected by cardiovascular

changes in a different manner to HRV and is present even in the absence of autonomic

regulation and HRV; and (2) PRV is a potential tool capable of aiding in the diagnosis

and monitoring of cardiovascular variables, such as blood pressure and blood flow.

From the results obtained from the whole-body cold exposure study, it was evi-

dent that cold exposure affects PRV in different ways when obtained from peripheral

and core vasculature, and that it contains different information that is not available

in HRV. Although HRV and PRV showed a similar trend during the whole-body

cold exposure test, it was evident that PRV overestimated the indices obtained from

HRV, usually in a larger scale during the cold exposure. Also, HRV and PRV should

not be regarded as the same when different temperature conditions are studied, and

PRV may contain different information not available from HRV. Further studies

are needed to better understand the contribution of sympathetic activity to PRV

measurements as well as to characterize the effects of vasoconstriction of PRV in-

dices. Also, future studies could aim to evaluate the capability of PRV to detect

and monitor disorders related to arterial stiffening and vasoconstriction.

Similarly, PRV was shown to be affected differently to HRV with changes in blood

pressure and was successfully used for the estimation of blood pressure values, both

with data obtained from critically-ill subjects and from healthy volunteers. As has

been reported in the literature, short-term related indices such as SDNN, RMSSD

and HF were more affected by blood pressure states in PRV, and although PRV and

HRV had similar trends again, it was found that PRV overestimated these indices.

Future studies trying to understand the relationship between HRV and PRV should

aim to better understand the contribution of SNS activity on PRV measurements.

Moreover, it could be worth analysing how the differences between HRV and PRV

change with this kind of changes, since the way PRV and HRV differ could be

an indication of changes in peripheral and central ANS. For instance, Figure 11.1

shows the behaviour of AVNN and SDNN indices extracted from both HRV and PRV

signals from different subjects at different blood pressure values. It can be seen that,
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Figure 11.1: Comparison between AVNN and SDNN indices extracted from pulse rate vari-
ability (PRV) and heart rate variability (HRV) from subjects with different blood pressure
values.

while AVNN extracted from HRV is almost perfectly linearly related to this index

extracted from PRV, this is not the case for SDNN. Some of the differences could

be due to technical factors, but it could be interesting to relate these differences

to changes in blood pressure and evaluate the capability of these differences in the

assessment of cardiovascular changes.

As has been mentioned previously, an additional contribution of this thesis was

that it was shown that PRV is a potential tool capable of aiding in the monitoring

and diagnosis of cardiovascular diseases. This was done by showing that PRV indices

were capable of estimating BP values in a proof-of-concept study, and that there

are differences in PRV due to haemodynamics changes even in the absence of HRV.

Although the classification results were not satisfactory for identifying blood pressure

states, PRV was shown to be able to classify hypertensive events in a relatively

good manner, as well as to estimate blood pressure values with low errors. Future

studies should aim to validate these results in larger datasets and to dilucidate the

physiological explanation of the relationship between PRV indices and hyper- and

hypotension.

Finally, in a first attempt to better understand how PRV may relate with haemo-

dynamic changes, an in-vitro model was built to evaluate PRV in the absence of

HRV and autonomic regulation. It was found that PRV was present and showed

differences due to changes in blood flow and blood pressure. Although the rela-

tionship between PRV indices and blood pressure was not linear, it was evident

that stroke volume changes have an effect on PRV indices, especially those related

with short-term variability. This was observed in a setup without any other con-

founding variable, which suggests that PRV might contain information regarding
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these changes, and is a potential tool for the non-invasive, continuous detection of

these changes. Future studies should aim to validate these results in data obtained

from healthy and diseased subjects. Furthermore, the availability of the in-vitro

model opens the door for the generation of PPG signals with varying haemody-

namic conditions, which could aid in the development of techniques that apply PRV

information for the assessment, diagnoses and monitoring of cardiovascular diseases,

and for carrying out other research related with PPG and cardiovascular changes,

with or without the extraction of PRV.

11.3 Conclusion

Pulse rate variability has been used in recent decades for multiple applications as

a surrogate of heart rate variability. It has been applied for the monitoring of mental

health disorders, such as depression, anxiety and stress; for the assessment of sleep

quality and obstructive sleep apnea; for the diagnosis, monitoring and assessment of

respiratory and somatic disorders; and for the evaluation of cardiovascular health,

using it for the evaluation of conditions such as peripheral arterial disease, atrial

fibrillation, diabetes and blood pressure changes. Nonetheless, pulse rate variability

is far from being fully understood, and there is still no consensus about the different

physiological phenomena that may be affecting it, and how it relates to its precursor,

i.e., heart rate variability.

In this thesis two main contributions were made. First, an initial approach to

establish guidelines for the assessment of pulse rate variability from photoplethys-

mographic signals was proposed. This is one of the first attempts to standardise

the technique, which is essential to reach its full potential and to allow for the com-

parison of different studies and to establish methodologies that can allow for the

validation of the technique. Although this was done using simulated data and it

still needs to be validated using data obtained from healthy subjects, the results

obtained show that the effect of technical aspect on pulse rate variability assessment

can be controlled and diminished by using appropriate processing and extraction

strategies.

Secondly, it was shown that pulse rate variability is affected by cardiovascular

changes, such as blood pressure changes and vasoconstriction, that this is true even

in the absence of heart rate variability, and that its relationship with heart rate
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variability is not straightforward and it may contain additional information to heart

rate variability. More research is needed to fully explain these differences between

pulse and heart rate variability, and to better link the physiology to the different

indices that are extracted from pulse rate variability, especially for the non-linear

indices, but it was found that pulse rate variability is a potential tool for the as-

sessment of cardiovascular changes and that it has applications in the monitoring

and assessment of several diseases, not only in clinical setting but also in everyday

scenarios, making it a useful technique for public health.
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Appendix A

Behaviour of Pulse Rate

Variability indices against Blood

Pressure

Figures A1 to A9 show the behaviour of pulse rate variability indices when compared

against blood pressure values.
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Figure A1: Behaviour of time domain indices extracted from pulse rate variability, compared
to systolic blood pressure (BP, left column), diastolic BP (centre column) and mean arterial
BP (right column).
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Figure A2: Behaviour of absolute frequency domain indices extracted from pulse rate vari-
ability, compared to systolic blood pressure (BP, left column), diastolic BP (centre column)
and mean arterial BP (right column).
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Figure A3: Behaviour of relative frequency domain indices extracted from pulse rate vari-
ability, compared to systolic blood pressure (BP, left column), diastolic BP (centre column)
and mean arterial BP (right column).
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Figure A4: Behaviour of the x-coordinate of centroid-related frequency domain indices ex-
tracted from pulse rate variability, compared to systolic blood pressure (BP, left column),
diastolic BP (centre column) and mean arterial BP (right column).
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Figure A5: Behaviour of the y-coordinate of centroid-related frequency domain indices ex-
tracted from pulse rate variability, compared to systolic blood pressure (BP, left column),
diastolic BP (centre column) and mean arterial BP (right column).
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Figure A6: Behaviour of Poincaré plot indices extracted from pulse rate variability, compared
to systolic blood pressure (BP, left column), diastolic BP (centre column) and mean arterial
BP (right column).
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Figure A7: Behaviour of entropy-related indices extracted from pulse rate variability, com-
pared to systolic blood pressure (BP, left column), diastolic BP (centre column) and mean
arterial BP (right column).
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Figure A8: Behaviour of phase-related indices extracted from pulse rate variability, compared
to systolic blood pressure (BP, left column), diastolic BP (centre column) and mean arterial
BP (right column).
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Figure A9: Behaviour of detrended fluctuation analysis related indices extracted from pulse
rate variability, compared to systolic blood pressure (BP, left column), diastolic BP (centre
column) and mean arterial BP (right column).
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Appendix B

Confusion matrices

Tables A1 to A33 show the confusion matrices obtained with each of the algorithms

developed in this study. These matrices were calculated as shown previously, but

are presented as the percentage of samples classified as each condition, and as the

mean ± standard deviation after the 10-fold cross-validation.
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Akar, S., Kara, S., Latifoǧlu, F. & Bilgiç, V. (2013), ‘Spectral analysis of pho-

toplethysmographic signals: The importance of preprocessing’, Biomed. Signal

Process. Control 8, 16–22.

Akl, T., King, T., Long, R., Ericson, M., Wilson, M., McShane, M. & Coté, G.
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Huikuri, H., Mäkikallio, T., Airaksinen, K., Mitrani, R., Castellanos, A. & Myer-

burg, R. (1999), ‘Measurement of heart rate variability: a clinical tool or a research

toy?’, J. Am. Coll. Cardiol. 34, 1878–83.

i Caros, J. S. (2011), Continuous non-invasive blood pressure estimation, PhD thesis,

ETH Zurich, Zurich, Switzerland.

Izzo, J. (2007), Comprehensive Hypertension, 1 edn, Mosby Elsevier, Philadelphia,

PA, chapter Hemodynamics of Hypertension, pp. 123–133.

Jaiswal, M., Urbina, E., Wadwa, R., Talton, J., Jr, R. D., Hamman, R., Fingerlin,

T., Daniels, S., Marcovina, S., Dolan, L. & Dabelea, D. (2013), ‘Reduced heart

rate variability is associated with increased arterial stiffness in youth with type 1

diabetes: the search cvd study’, Diabetes care 36, 2351–2358.

Jan, H., Chen, M., Fu, T., Lin, W., Tsai, C. & Lin, K. (2019), ‘Evaluation of

coherence between ecg and ppg derived parameters on heart rate variability and

respiration in healthy volunteers with/without controlled breathing’, J. Med. Biol.

Eng. 39, 783–795.

Jans, O., Brinth, L., Kehlet, H. & Mehlsen, J. (2015), ‘Decreased heart rate variabil-

ity responses during early postoperative mobilization – an observational study’,

BMC Anesthesiol. 15, 120.

Jensen-Urstad, K., Reichard, P. & Jensen-Urstad, M. (1999), ‘Decreased heart rate

variability in patients with type 1 diabetes mellitus is related to arterial wall

stiffness’, J. Intern. Med. 245, 57–61.

Jeyhani, V., Mahdiani, S., Peltokangas, M. & Vehkaoja, A. (2015), Comparison

of hrv parameters derived from photoplethysmography and electrocardiography

signals, in ‘Annu Int Conf IEEE Eng Med Biol Soc’, pp. 5952–5955.
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Triviño, C. (2019), ‘Variabilidad de la frecuencia cardiaca como factor predictor

de las enfermedades cardiovasculares’, Rev. Colomb. Cardiol. 26, 205–210.

Verma, A., Aarotale, P., Dehkordi, P., Lou, J. & Tavakolian, K. (2019), ‘Relationship

between ischemic stroke and pulse rate variability as a surrogate of heart rate

variability’, Brain Sci. 9, 162.

Vescio, B., Salsone, M., Gambardella, A. & Quattrone, A. (2018), ‘Comparison

between electrocardiographic and earlobe pulse photoplethysmographic detection

for evaluating heart rate variability in healthy subjects in short- and long-term

recordings’, Sensors (Basel) 18, 844.

Vila, G., Godin, C., Charbonnier, S. & Campagne, A. (2021), ‘Real-time quality

index to control data loss in real-life cardiac monitoring applications’, Sensors

21, 5357.

Villareal, R., Liu, B. & Massumi, A. (2002), ‘Heart rate variability and cardiovas-

cular mortality’, Curr. Atheroscler. Rep. 4, 120–127.

Vinik, A., Casellini, C., Parson, H., Colberg, S. & Nevoret, M. (2018), ‘Cardiac

autonomic neuropathy in diabetes: A predictor of cardiometabolic events’, Front.

Neurosci. 12, 591.

Volodina, M., Smetanin, N., Lebedev, M. & Ossadtchi, A. (2021), ‘Cortical and

autonomic responses during staged taoist meditation: Two distinct meditation

strategies’, PLoS ONE 16, e0260626.

Väliaho, E., Kuoppa, P., Lipponen, J., Hartikainen, J., Jäntti, H., Rissanen, T.,
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