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ABSTRACT

Computer simulation modeling is an important part of engineering design. 
The process of creating quality products under variable conditions is called 
robust engineering design. Frequently these simulation models are expensive to 
run and it can take many runs to find the appropriate parameter settings of the 
engineering design. To reduce the cost of robust engineering design, it has been 
proposed that statistical models be used to predict the results of the simulator at 
unobserved values of the inputs. This involves running experiments on the com-
puter simulation models, or computer experiments. Computer experiments have 
no random error and frequently involve a large number of experimental factors; 
because of this, there are many reasons why standard prediction and design 
methods may not work well.

Methods from spatial statistics, frequently refered to as kriging, are used to 
predict new observations of the simulation model. A generalized linear model 
with unknown covariance parameters is used on several examples of high dimen-
sions. The model requires estimation of the covariance function parameters and 
methods are described for parameter estimation and model building.

Latin hypercube sampling is used for the experimental design. Latin hyper-
cube sampling is as easy to use as Monte Carlo sampling and has been shown to 
have better estimation properties. The space filling properties of Latin hypercube 
sampling are investigated here and shown to fill the design space more uniformly 
than Monte Carlo sampling.

These statistical methods are applied to two circuit simulation models. The 
results show that these methods work well on computer experiments and can 
form the basis for a methodology in robust engineering design. Although these 
methods have been applied to circuit design problems, the methods are applica-
ble to a wide variety of computer simulation models.

Robust engineering design received a great deal of attention when Taguchi’s 
ideas were introduced. An investigation into the methods that Taguchi intro-
duced revealed some shortcomings from a statistical view. General conclusions 
are drawn about the efficacy of traditional Taguchi methods compared with the 
prefered model-based approach of the thesis.
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Key to Symbols and Abbreviations

DACE - Design and Analysis of Computer Experiments. Used here as the name 

for a robust engineering design methodology.

FORWARD - Name of algorithm for computing maximum likelihood estimates 

LHS - Latin Hypercube Sampling 

LM - Loss Method

MC&B - McKay, Conover, and Beckman

ONETIME - Name of algorithm for computing maximum likelihood estimates

RED - Robust Engineering Design

RSM - Response Surface Methodology

RM - Response Method

SN - Signal - Noise

SRS - simple random sample
STW - Shoemaker, Tsui and Wu

SWMW - Sacks, Welch, Mitchell, and Wynn

sj-,5 - i th row of experimental design S 

x ,X - input value for prediction, deterministic and random. 

y (x), F(x) - response variable, deterministic and random, 

y s , Y s - data from experiment with design S . 

y(x) - estimate of y(x).
n ,nD ,nN ,nr - sample size: general, inner array, outer array, random sample. 

V (x ,w ), R (x ,w ) - Variance and Correlation function of stochastic process.
Rs - Correlation matrix for design S

(0, p ) - Parameters for correlation function R(x,w )

(3, - i th coefficient of linear model.

E q(X) - Expectation of X over distribution with parameter 0.

Vare(X ) - Variance of X over distribution with parameter 0.
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-Chapter 1 -

Robust Engineering Design 
and Computer Experiments

1.1 Introduction

The power of computers has grown exponentially over the last decade. 
With the increase in power, the uses for computers has expanded rapidly. This 

is true particularly in the area of simulation modeling, where everything from the 

weather to airplanes are now being modeled on computers. Many problems 

being modeled have features that are not well known in reality. This leads to 

tinkering with the code or experimentation to get a better understanding of how 

the system being modeled works. Although computer power has been increas-

ing, the expense of running many of these simulation models has increased even 

more rapidly and running the simulators can still be an expensive exercise. 

Experimental design and statistical prediction models can be used to minimize 

the number of runs of the simulation model, just as they do in physical or "real" 
experiments.

Another field that has developed rapidly at the same time is research into 

methods for building quality products, one aspect of which is robust engineering 

design. Research into methods for robust engineering design delve into a wide 

range of statistical topics from experimental design to data exploration, estima-

tion and prediction. This thesis investigates the application of statistics to 

research strategies for robust engineering design for computer simulation models. 

Robust engineering design is a natural application for statistical research on com-

puter experiments because of the widespread use of computer simulation in 

engineering design and the importance of robust engineering design in industry 
today.

The thesis has been organized so that those whose main interests are in 

either robust engineering design or design and analysis of computer experiments 

but not necessarily both may look at relevant sections without missing much. 
The reader most interested in robust engineering design is directed to Sections 

1.3-1.5 and Chapters 5-7. Readers interested more in the statistical aspects of
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the design and analysis of computer experiments should look to Section 1.2 and 

Chapters 2-4, and 6.

Sections 1.3-1.5 give an introduction to the problem of robust engineering 

design and have a brief overview of the main strategies for robust engineering 

design. Chapter 6 gives a detailed description of a strategy for robust engineer-
ing design developed from work on computer experiments and applies it to 

several examples. Chapter 7 looks more closely at the underlying problems in 

robust engineering design and discusses how the main strategies attempt to 

approximate the system and find solutions.

Section 1.2 gives an introduction to computer experiments and why new 

methods of analysis are useful for this field of research. Chapter 2 gives an 
overview of an area of spatial statistics known as kriging and defines the statisti-
cal model used throughout this thesis. Chapter 3 describes some methods in 

parameter estimation and applies the statistical models described in Chapter 2 to 

some examples. Chapter 4 discusses computer experiments and experimental 

design, in particular the use of Latin hypercube sampling, and develops some 

new theory on the space filling properties of Latin hypercube sampling. Chapter 

6 as mentioned applies the methods of design and analysis of computer experi-

ments to the problem of robust engineering design.

1.2 Computer Experiments - An Introduction

An excellent discussion of statistics and computer experiments is given in 

Sacks, Welch, Mitchell, and Wynn1 and a summary of their comments would be 

useful. Interest in computer experiments is growing and numerous examples 

have begun to reach the literature. Naturally, traditional statistical methods have 

typically been applied to these early examples, but it is useful to restate the 

objectives of computer experiments and examine how computer experiments may 

differ from physical experiments.

The single factor which differentiates computer experiments from physical 

experiments is random error. Computer experiments, unlike physical experi-
ments, do not have a random error component unless it has been explicitly added 
to the code via a random number generator. Despite similar goals, the absence 
of random error creates some important differences with physical experiments.

• The classic ideas in experimental design on blocking, replication and randomi-
zation are not applicable.
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• The full complexity of the computer model is measurable.

• The error of prediction is due solely to systematic bias.

• The distributional assumptions of least squares models are irrelevant.

There are a large number of objectives for computer experiments, however 
the following could be considered the primary ones:

1. Prediction at untried inputs.

2. Optimize the response or a function of the response.

3. Tune the code to physical data.

Prediction can be thought of as a primary objective, since if one is able to 
predict the simulation model accurately and inexpensively, the predictor can be 
used as a cheap substitute in further studies such as optimization.

If prediction is taken as the main objective, the primary statistical questions 

are:

1. For what values of the inputs should data be collected, and how many?

2. How should the data be used to most accurately estimate or predict new 

observations of the simulation model?

As mentioned classic statistical methods have been applied to computer experi-

ments, most notably least squares fitting. Since there is no random error to mask 

the complexity of the simulation model and simulation models are unlikely to 

have simple low order polynomial response surfaces, it is not surprising that 

Iman and Helton2 found many situations where the response surface was not 

estimated adequately by least squares models. The suggested alternative for 

prediction models and experimental design are discussed in Chapter 2 and 4 
respectively.

1.3 Robust Engineering Design - An Overview

The problem of designing and building high quality products has been 
highly publicized in the last 10 to 15 years. A perceived dominance in quality 

products by Japanese manufacturers and the introduction of Taguchi methods 

during the late 1970’s and early 1980’s led to a flurry of activity by manufactur-

ers to incorporate Taguchi’s philosophy. It has also led to a critical review of 

Taguchi’s methods and efforts to develop better optimization strategies.

Robust Engineering Design (RED) is the process of designing a product that 

will perform well under variable conditions. The variability may be due to any

-13-



of a large number of possible sources: manufacturing variability, environmental 

variability, or product degradation over time. The design process is increasingly 

carried out on computers, using computer-aided design/computer-aided engineer-

ing (CAD/CAE) tools. The ideas of RED remain the same, but many of the 

differences between physical and computer experiments are reflected in differ-
ences between computer design and physical design problems.

The goal of researchers studying the process of RED is to develop a stra-

tegy that will make RED simple and efficient. The rest of this chapter describes 

the work that has been done to achieve this goal and reviews several currently 

popular methods. A discussion of some of the difficulties in implementing RED 

and how these methods attempt to resolve them can be found in Chapter 7.

All strategies in RED share many of the same ideas and definitions. First, 

the designer needs to define an appropriate measure of performance and create a 

list of variables or factors they feel will influence the performance of the pro-

duct. Engineers commonly refer to these factors as parameters, but this will be 

avoided here because of possible confusion with the use of the word parameter 

as used in statistics. After observing the product’s response at preselected con-
ditions the designer can use estimates of the product’s performance to select fac-

tor values to improve the product’s performance under variable conditions.

Let X=(Xv ...J(d) denote the ¿-dimensional vector of input factors the 

designer wishes to vary in the computer simulation model. Once the factor list, 

represented by X, is obtained they need to be split into two categories, design 

and noise factors. Design factors are used by the designer to develop the pro-
duct. Noise factors are variables that the designer has control of only during the 

design stage, e.g. manufacturing variability, or environmental variability. Once 

past the design stage these factors are not controllable and should be considered 

random variables. Some design factors may have variations from noise factors 

superimposed. We write Xi=Ci+Ui to differentiate between the design factors, 

c,-, and noise factors, Ui , that may make up Xi . If an input factor is not a design 

factor, then c, has a fixed value (make it 0) and is ignored. Similarly, if there is 

no noise factor component of Xt , then t/,=0. The performance y is, therefore, a 

function of X=c+U, where c =(clv..,cd) and U =(Ulf...,Ud).

Generally, non-additive f / ’s can be dealt with by treating them as factors 

with no designable adjustment. In specific cases other routes may be available.
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For example, to accommodate multiplicative variation, write Xt = ci Ui , or work 

on a logarithmic scale to produce additive variation.

After some investigation the designer may want to subdivide the design fac-

tors into two further categories: location factors and dispersion factors. Location 

factors are design factors that have little influence on the amount of variability 
produced by the noise factors but affect the mean response. Dispersion factors 

are design factors that do influence product variability. One of the crucial aspects 

of all strategies in RED is how to identitify and investigate the interaction 

between dispersion factors and noise factors.

Let us investigate the mathematical formulation of the RED problem in 

more detail. In a physical system let

(1.3.1) Y = /(X )  + e(c),

represent the outputs of the product or process under study. The output or 

response, Y, is a random vector and the variability comes from two sources: 

e(c)  which is the random or measurement error and U, the noise factors. Also 

note that the random error could be a function of the design factors and model-

ing e(c)  could help to improve product robustness. When using simulation 

models to emulate the physical system there is no measurement error and e (c) 

does not need to be included in (1.3.1) and all variability is due to the noise fac-

tors.

The goal of RED is to find input factor settings so the response attains a 

stated target. In reality, the response is not an individual item, but a population 
of manufactured items operating under a range of possible conditions. Let QD 

be the sample space for the design factors and QN be the sample space for the 

noise factors. Then Q = QD x i l N is the sample space for X. RED studies are 

concerned with trying to find values of c so that all events in Q.N attain the 

stated target. This is an unrealistic goal, but we can try to minimize the varia-
tion of this population around the target.

The variability of the population around the target needs to be measured so 

the appropriate levels for the design factors can be chosen. This variability is 

measured and summarized by the loss function and risk function. A function 
that measures the performance of a product under specific conditions is usually 

referred to as a loss function. Many features of a product’s performance may 

make up the loss function, e.g. customer satisfaction and cost. A common
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example of a loss function, /(y), is the quadratic loss function, ( y - t )2, where y 

is the product response and / is the target the designer is trying to meet. The 

designer typically is not interested in results under specific conditions but in the 

product’s performance under varying conditions. A function that defines how 

well the product performs, as measured by the loss function, under varying con-

ditions is usually known as a risk function or performance measure. The goal of 

the designer is to minimize the risk function by proper selection of c. Two com-

mon forms of risk function are expected loss, E,j(l(y)), and maximum loss,

max/(y). Computing the risk function requires knowing both / (X )  in (1.3.1)
u

and the distribution of U. Since one or both are usually unknown the risk func-

tion is estimated and referred to as estimated risk or a performance statistic. 
When y is a vector, loss functions and risk functions are needed for each com-

ponent of y and minimizing risk becomes a multivariate decision making prob-
lem.

The quadratic loss function is a commonly used loss function. When 

expected loss is used as the risk function in conjunction with the quadratic loss 

function, there are two ways to try to minimize the risk function. The risk func-

tion is the mean squared error of 7 , MSE (Y ), and can be written as:

MSE (Y) = Ej j (Y - t  )2 = Varu (Y) + (Eu ( Y ) - t  )2,

where t is the target and Y is a random variable because it is a function of U . 

One approach is to use the dispersion factors to minimize Varv (Y) and then use 

the location factors to adjust to target, i.e. eliminate bias. This approach in the 

form described is called the dual response approach3 because it usually involves 

modeling both the mean and variance of 7. The Taguchi method could be con-

sidered a variation of the dual response approach because the approach to 

minimizing risk is the same: minimize variability using dispersion factors and 

then adjust to target with the design factors. The second approach is to minim-
ize MSE(Y)  directly, in which case identification of location and dispersion fac-

tors is not essential. This approach can not be used unless the response 7 is 
known or estimated. The implementation and benefits of these two optimization 
methods will be discussed briefly later in this chapter and in Chapter 7.

To summarize, the goal of the designer is to minimize the variability of the 

population around a target. A robust product design is found by choosing 

dispersion factor settings that minimize this variability and using the location
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factors to keep the product response on target. All strategies in RED follow this 

general philosophy either explicitly or implicitly.

Strategies for RED can be classified in two general categories. Shoemaker, 

Tsui, and Wu (STW)4 refer to these general approaches as the loss model (LM) 
approach and the response model (RM) approach. The LM approach uses an 

experimental plan that allows risk to be estimated directly from experimental 

observations. The "Taguchi" method is the classic example of the LM approach. 

The RM approach does not attempt to directly estimate the risk, but instead con-

centrates on accurate prediction of the response using statistical models, or pred-

ictors. The RM approach uses estimates of the response rather than observed 

response values at a specific product factor setting to estimate risk.

1.4 Loss Model Approach ("Taguchi" Method)

The "Taguchi" method 5 6 is a commonly used tool in many areas where 

quality improvement is an issue. Kacker7 gives a good overview of the method, 

while Phadke and Dehnad 8 and Box, et al. 9 give some good additional com-

ments and criticisms and Kacker and Shoemaker 10 and Phadke 11 provide more 

examples. The "Taguchi" method is an easily implemented procedure, which 

helped the spread of RED ideas in industry.

The Taguchi method can be briefly summarized by a few basic ideas. An 

experimental plan is developed so product variability can be measured at each 

setting of the design factors in the experimental plan. The settings of the design 

factors are usually deviations from a nominal or "working" set of design factor 

values. The designer can determine which design factors influence product vari-

ability by identifying which design factors have a significant effect on the 

estimated variance over the range of input values. The settings of design factors 

that influence product variability are chosen to minimize the product variability. 

Those design factors that do not influence product variability are used to either 

adjust the mean product response to its performance target or to save on costs. 
Note that in the Taguchi method it is assumed that the location factors can be 
used to adjust to the performance target and this allows the performance target to 
be separated from the risk function.

To estimate risk directly from the experiment it is necessary to have multi-

ple observations at each setting of the design factors. These observations are 

intended to mimic the variability that occurs in the real world. If noise factors
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can be controlled by the designer an experimental plan can be used to determine 

specific settings for these noise factors. An experimental plan for noise factors 

increases the separation of noise factor input values allowing maximum disper-

sion of the noise factor settings, which implies maximum dispersion of the pro-

duct response, in a minimal number of runs. If the noise factors can not be 

incorporated into an experimental design then replication is the only option. Put-

ting the noise factors in an experimental plan helps to produce larger variability 

in the response than random sampling, but it does not lend itself to producing 

true estimates of product variability.

The experimental plan used to simulate "natural" variability is a product 

array formed of two subplans, the inner and outer arrays in Taguchi’s terminol-
ogy. The inner array is for the design factors and the outer array is for the 
noise factors. All interaction effects between design factors and noise factors are 
estimable when a product array is used for the experimental plan. Taguchi has 

published a series of orthogonal arrays for use in constructing product arrays and 

further work has been carried out by a large number of researchers to find more 

arrays. The two subplans form a product array by combining all outer array runs 

with each inner array run. The resulting experimental plan has a total of nDnN 

runs, where nD and nN are the number of runs for the inner and outer arrays 

respectively.

Product arrays increase rapidly in size with an increase in the number of 

factors involved. To keep the number of runs as small as possible some design 

concessions are usually made. The most important concession is that the number 

of interaction effects between design factors or between noise factors that are 

estimable in the experimental design is kept to a minimum. Frequently the 

designs are Plackett-Burman12 type designs, designs that are only able to esti-

mate main effects. Transformations to produce additive models can be used to 

help eliminate interactions that may exist. Box 13 and Logothetis14 discuss pos-
sible strategies.

Besides reducing the number of interactions that are estimable, replication 
and the number of factor levels are reduced to help keep the size of the experi-

mental design small. This leads to the use of saturated or almost saturated 

designs which create special problems in uncovering important factors. There 

has been a considerable amount of work in this area because of the importance
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of the Taguchi method and the desire to make the product array as small as pos-

sible. Berk and Picard15 give a good overview to this area of research. The 

experimental plan is usually limited to 2-level orthogonal arrays since 3-level 

orthogonal arrays double the degrees of freedom per factor hence almost dou-

bling the size of the experimental plan. The use of 2-level experimental plans 

limits the class of models that may be used to estimate the response.

Taguchi uses the Signal-Noise (SN) ratio to measure product variability. 
As the term implies the function is a ratio of the mean (the signal) and variance 

(the noise). The goal of the Taguchi method is to find settings of the dispersion 

factors that maximize the SN ratio, which is equivalent to minimizing the risk 

function. Once the experiment has been run, SN ratios are calculated for each 

run in the inner array. The designer can use these results to identify the disper-

sion factors and location factors. The dispersion factor settings are chosen to 
maximize the SN ratio. The location factor settings are chosen to adjust the pro-
duct response to target. Usually the dispersion factor settings are selected from 

the finite set of experimental plan values. Discussion of the actual process of 

choosing location factor settings is curiously ignored in the literature. The new 

settings should give an immediate improvement in product robustness. Further 

experimentation, with the new settings as the new nominal points, can be done to 
make further improvements in product robustness.

Vining and Myers3 state that Taguchi has developed over 60 variations of 

the Signal-Noise ratio. This is due to the need for different SN ratios for dif-

ferent combinations of objectives and model assumptions. León, Shoemaker, and 
Kacker16 and Box13 give a detailed review of Taguchi’s SN ratio. León, 
Shoemaker, and Kacker16 introduce PerMLAs, a generalized version of Taguchi’s 
SN ratio. The conclusion that comes from this work is that one must be careful 

in considering which SN ratio to use otherwise the results will be of dubious 

value.

Vining and Myers3 suggested the dual response approach, estimation of the 

mean and variance separately for each point of the inner array, to overcome 

many of the difficulties in using the SN ratio. This method also introduces more 
complicated models for estimating the response moving from ANOVA to regres-

sion techniques. They use standard linear regression models for estimating the 

mean and variance. Nelder and Lee17 extend this idea by using generalized 

linear models to simultaneously model the mean and variance. The strategy
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remains the same, identify location and dispersion factors, minimize variability 
and adjust to target.

1.5 Response Model Approach

Response model approaches use an estimate of the response to get an esti-

mate of product variability. Two methods, Response Surface Methodology 
(RSM) and the strategy reviewed in Welch and Sacks18 referred to here as 
DACE, are now currently in use.

The approaches are similar in that they both use estimates of the response 

to estimate product variability and they both use combined arrays for their exper-

imental plans. Since the response rather than risk is being modeled, it is less 

important to have replication at the design factor settings and eliminates the need 

for the outer array used in the LM approach. Instead all factors, design and 
noise, can be put into a single experimental plan, the combined array. The use 
of combined arrays generates large savings in experimental runs.

The RM approach fits well with the CAD/CAE RED problem since there is 

no real product variability. Any product variability is controlled by the designer 

through the CAD/CAE software. Instead of using experimental runs to model 

variability directly, the RM approach strives to build a good predictor of the 
response surface then apply the variability to the predictor rather than the simula-

tor. Since the predictor is cheaper to run than the simulator, more "replications" 

can be used to get an estimate of product variability when using the predictor.

The two methods differ most notably in the choice of model for estimating 

the response. RSM uses classic regression models while DACE uses a Gaussian 

stochastic process. This difference leads to different strategies in searching for 
optimal solutions. These differences will be discussed in detail in the overview 

of the two methods and in the discussion section. As described in the literature, 

they also differ in the approach to minimizing risk. RSM carries over the ideas 

of minimizing variance and adjusting to target as used in the LM approach while 

DACE tries to minimize MSE(Y) directly. In practice either optimization 

approach could be used with either RSM or DACE.

1.5.1 Response Surface Methodology

Response Surface Methodology introduced by Box and Wilson19 has a long 

statistical history. RSM predates the ideas of Taguchi and has thus not covered 

noise factors in Taguchi’s sense. RSM is discussed in many texts.20 21 22 The
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extensive theory on RSM can readily be applied to RED. Myers23 extends it to 

include noise factors and applies it to RED. An early application of RSM can be 
found in Alvarez, et al?^

RSM can be split into three stages: screening and identification, region 

seeking, and optimization. Small experiments are carried out to identify location 

and dispersion factors. The estimated linear models developed from these exper-

iments are used to indicate in which direction the designer should search in the 
design factor space for design factor settings that produce a more robust product 

design. When a region is found which indicates no further searching is neces-

sary, a final experiment is carried out to locate the optimal solution.

The design and analysis of the experiments are drawn from the work in 
linear regression models. The experimental plans typically suggested are two or 
three-level orthogonal arrays, frequently fractional factorials or central composite 
designs. The same ideas on transformations used in the LM approach are appli-

cable here, especially to separate location and dispersion factors. The models 

used are classic linear regression models typically of first or second order. By 

the nature of the division of product factors into design and noise factors, it 

seems essential that three way interactions involving design and noise factors 

also need to be considered. STW4 give a real example where three way interac-
tions are significant.

If separate models are proposed for the mean response and response vari-

ance and a combined array is used for the experimental design, identifying 

dispersion factors can be difficult. Box and Meyer 25 and Nair and Pregibon26 

discuss methods for finding and estimating dispersion factors.

The model that is generated from screening experiments can be used to esti-

mate product variability. This can be done easily from the the model if the noise 

factors are assumed to be independent random variables with mean 0 and vari-

ance of .  If the noise factors are not independently distributed it becomes much 

more difficult to model the variance from the regression model. Monte Carlo 

estimation can be used to estimate variance using the assumed noise factor distri-
bution. The models for mean response and product variability can then be used 

to find improved product factor settings. This also can lead to new regions to 
investigate for further improvements.
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1.5.2 DACE

The DACE method described in Bernardo, et al?~ and outlined in Welch 

and Sacks18 was developed from previous work on prediction and computer 

experiments which is reviewed in Sacks, Welch, Mitchell, and Wynn.1 Examples 

can be found in the literature27 and in Chapter 6.

The sequential experimentation plan can be summarized in six steps.

Step 1. Model the performance y and develop the loss function.

Step 2. Design an experiment and collect the data from the simulation runs.

Step 3. Use the data to estimate the parameters of the statistical model chosen 

in Step 1.

Step 4. Decompose y into effects due to individual factors and interaction 

effects.

Step 5. If the predictor is not accurate enough then select a smaller region 

where the optimal response is most likely to occur. Repeat Steps 2-5.

Step 6. When the predictor reaches a satisfactory level of accuracy optimize 

the chosen performance measure. Do a confirmatory run. Return to 
Step 5 if necessary.

The aim is to scan a large region of the input space for likely solutions and 
focus on these regions during subsequent experimentation to produce more accu-

rate models of the response surface.

The experimental plan is generated using Latin Hypercube Sampling (LHS) 

which was introduced by McKay, Conover, and Beckman28 for use in computer 

experiments. LHS is a readily implemented experimental plan with good space 

filling properties. Chapter 4 contains a discussion of some theoretical aspects of 
LHS.

For the statistical model we use a stochastic process of the form

Y( x ) = t f i i x f t i  + Z(x).
i - 1

Where Z (x) is a stochastic process with mean zero and correlation

Corr (Z (x ),Z (w )) = R (x ,w )

between the responses at two inputs x and w and variance

Var (Z(x)) = ct2.
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A discussion of this model is given in Sacks, Welch, Mitchell, Wynn1 (SWMW) 
and an overview is given in Chapter 2. There are many possible choices for R , 

some are discussed in Chapter 2. The correlation function used in the above 
work is

R (x ,w) = Y \exP I xi ~wi IPi)
i

The stochastic process interpolates between design points and computes 

estimates of the response according to the correlation matrix R and the observa-
tions. No prior assumptions about interactions and nonlinearities need to be 
made.

The initial stages may not generate models that can predict the response 

accurately enough for the optimization procedure to pinpoint product factor set-

tings. The predictor should be accurate enough to eliminate regions where the 

solution will not be found and subsequent regions will be selected to eliminate 

these areas from consideration. The plots in Step 3 listed above give visual 

information about the relationship between product factors and the response and 

can help guide the selection of a new subregion. A few reductions in the size of 

the region under study will produce an accurate predictor and optimization algo-
rithms can then be used to locate the product factor settings that meet design 
specifications.

It is feasible to estimate product variability directly from the statistical 

model used in DACE by integrating over the noise factors using the relevant dis-

tribution. In most cases it will be more practical to use a Monte Carlo estimate 

of the variance or MSE to estimate product variability. An estimate of the distri-

bution of the noise factors needs to be fully described to compute the estimate in 

either case. The cost of prediction is inexpensive, so an estimate of product 
variability can use hundreds of predictions.
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- Chapter 2 - 

Spatial Statistics

2.1 Introduction

In Section 1.2 the nature of computer simulation models and how they 

invite the same types of questions as experiments in the physical world was dis-

cussed. This similarity in research questions would certainly invite the use of 

the same techniques. There are some differences between computer experiments 

and physical experiments that make the use of classic statistical techniques for 

computer experiments, such as linear models, suspect. The most important of 

these differences is that the output of a computer experiment is not affected by 

random error, the same input will always give the same output. These differ-
ences have been discussed in Section 1.2.

Since computer simulation models are typically fairly complex, nonlinear 

systems of equations it is unlikely that polynomials, especially low order polyno-

mials favored in regression, will estimate the response surface accurately. There 

are several examples in the literature that emphasize this point.1 2 3 Also, the 
discrepency between the true response surface and the predicted surface using 

polynomial models is due to bias and an increase in sample size will not be 

helpful in reducing this error. Another drawback of linear models is that they 

are not interpolators, i.e. a model where y (s)= y(s) when s is a point in the 

experimental design, so estimates at the design points do not necessarily equal 

the response, which is known to be the true value.

The response surface which the simulation model produces is not random, 

however we can assume that y is a realization of a stochastic process. Then 
measures of uncertainty can be made. What is needed is a statistical model that 
has the following properties:

1. An ability to model complex surfaces.

2. The model is an interpolating predictor.

3. Developed theory and applications for realizations of random functions, or

stochastic processes are available.
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Statistical models from the field of spatial statistics have these properties, 
although the models have typically been studied in only two or three dimensions.

In Section 2.2 the statistical model used for this thesis is described. Section

2.3 is a discussion of some correlation functions that could be used with the 

model described in Section 2.2. Section 2.4 contains a description of a version 

of ANOVA main effects used with stochastic process and Section 2.5 describes 

some robustness properties of the model.

2.2 Statistical Model used in Thesis

The model treats the deterministic response y(x) as a realization of a sto-

chastic process, Y (x ), and has the form

(2.2.1) r (x )= £ / ,(x )P f +Z(x).
¿=i

The stochastic process Z (x) is assumed to have mean zero and covariance

V (w ,x) = ct2 R (w ,x)

between Z(w) and Z(x), where a 2 is the process variance and R(w,x) is the 
correlation.

Before deriving estimates for the parameters and y (x), more notation needs 

to be defined. Let S be the experimental design with elements Sy, i = 1, . . . , n 

and 7 = 1 , . . . ,d , where n is the number of runs in the design and d is the 

number of factors in the experiment. Let s f be the i th row of S . Let y s be the 

vector of responses for the design S . Let

Rs ={R(si , s j )}, 1 Zi  < zz, 1 <7  <n

be the correlation matrix for the stochastic process Z at the design sites and

r(x) = [R (s1,x), . . . ,R (sn,x)Y

be the correlations between the Z ’s at the design points and an untried input x.

Let p = [p1, . . . , PA.]' be the kxl  vector of coefficients for the linear model. 

Let the k functions in the regression at an untried input x be written as

/ ( x )  = [ / 1(x), . . . , f k(x)Y

and let the n x k regression design matrix be written as

F =

n  s„)
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There are two methods that can be used to develop a predictor for this 

model, a frequentist approach or a Bayesian approach. If a Gaussian distribution 

is assumed, which is the case for the work in this thesis, the two approachs pro-

duce the same results given an improper prior distribution on the (3’s for the 

Bayesian approach.

2.2.1 Best Linear Unbiased Predictor

One method of analysis of this class of models is found in the field of spa-

tial statistics and is known as kriging.4 A current review of the subject can be 

found in Cressie.5 Given a design S and the response ys and assuming that the 

(3’s and ct2 are unknown but R(x,  w) is known, consider the linear predictor

y(x) = c '(x )y 5

of y(x). If the frequentist view is held, one can replace y s by the random vec-

tor Y s and treat y (x) as random. The best linear unbiased predictor (BLUP) is 

obtained by finding c(x), an nx  1 vector, which minimizes

M 5£[y(x)]=£[c/(x)Ys -T (x )]2

subject to the unbiasedness condition

£ [c '(x )Y 5]= £[7(x)].

which gives

c'(x)F - f  (x) = 0.

The MSE can be rewritten as

MSE [y (x)] = Var (7 (x)) + Var (7 (x)) -  2Cov (7 (x), 7 (x))

= ct2[1 + c'(x)Rs c ( x ) - 2 c ' r ( x )].

Therefore the BLUP is found by minimizing

c '(x )RS c (x) -  2c 'r (x)

subject to

F'c  ( x ) - /  (x) = 0.

Let X(x) a k xl vector be the Lagrange multipliers needed for the con-
strained minimization of the MSE. The Lagrangian function is

Lm =c'(x)Rs c ( x ) -2c ' r ( x )  + X/( x ) ( E ' c ( x ) - f /(x)) 
and using matrix differentiation
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_ - = 2RS c (x) -  2r (x) + F X(x) = 0.
ac (x)

Solving for c (x) gives

(2 .2.2) c(x) = Rs- l( r (x) - l /2FMx))

and using F'c (x) = /  (x) to solve for A(x) gives

Mx) = 2(F 'Rs~lF )~\F 'Rs~lr (x) - /  (x)).

Substituting for A,(x) in (2.2.2)

c (x) = R f \ r  (x ) -F (F  'Rs~lF )~1(F 'Rs~lr (x) - /  (x))

and the predictor is

(2.2.3) j ( x ) = / /(x)p + r/(x)/?f1(y5 -F p )

where fi = (F'Rs XF ) 1F'RS ly s is the generalized least squares estimate of (3.

These results show that the predictor is made up of two parts: the generalized 

least squares predictor and an interpolator through the residuals from the general-

ized least squares regression model. The mean squared error for y (x) is given 

by

Typically, the correlation parameters, (0, p), are not known either. Zim-

merman and Cressie^ show that (2.2.3) is an unbiased estimator of E(Y(x))  if it 

is assumed that the distribution of (T5,T(x)) is symmetric about its mean and 

that (0 ,p) is an even and translation-invariant function of Y. This is true when 

7(x) is assumed to have a Gaussian distribution and the estimates of (0,p) are 

the maximum likelihood estimates. However, the estimates of MSE(y(x)) will 

be biased.

2.2.2 Bayes Predictor

To develop a Bayes predictor for the model (2.2.1) assume that Z(x) has 
known covariance and that the prior distribution on P is Gaussian with mean p. 

and covariance oj^I , where oh  is known. For simplicity, also assume that the 

prior on P is independent of Z(x). By standard theory the best Bayes predictor 
for y (x) is

(2.2.4)

(2.2.5) yB(x)=E[Y(x) \ ys ],
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where E [7 (x) I y s ] is the expectation of F (x) conditioned on the data y s . The 

multivariate distribution of (F (x ),Y s ) is multivariate Normal with mean

Y 5 F[l
F (x) l / ' ( x ) ^ J

and covariance

C D 
J ) ' E.

where

C — Cov (YS) = RS +ali FF/,

D =Cov(Y(x),Y s ) = r(x) + a ^ F f ( \ )  

and

E = Var(Y(x)) = o2 + o 2f ' ( x ) f ( x ) .

Then the conditional mean of F (x) given Y s = y s is

(2.2.6) E [F(x) I y 5 ] = /  '(x)p + (r '(x ) + o 2Mf  'F')(RS + o 2MF F T \ y  s ~F W

The purpose of this section is to show that when cr^— the Bayes predictor is 

the same as (2.2.3). To reduce the notation, l e t / ( x ) = /  and r(x ) = r.

The inverted matrix in the second term on the right hand side of (2.2.6) can 
be rewritten as

(Rs + a i,F F T , =Rs~l -o i ,R s-'F U  ' R f lF T lF ' « f 1.

The inverted matrix in this equation can be rewritten as

(2.2.7) (/ + o 2 A r 1 = - L ( I  + 1 A -1) - ^ " 1,

where A =F'Rs~lF . Since A is a positive definite matrix, for a =  l / a ^ —>0

(/ + a A -1)-1 =/ -  aA -1 +o (a ).

Rewriting (2.2.7) using this result, (2.2.6) can be rewritten as

(2.2.8) f ' ^  + ir'  + o l f ' F ) ( R s~l - CA“1C / + aCA" U -1C'  + o (a))E, 

where C =Rs~lF , and E =ys -F[L. Now (2.2.8) can be rewritten as

(2.2.9) f  /\l + r ' ( R f 1 -C A ~lC')E +ar /CA~iC'E +f 'FCA~lA 1C /E +o(a),
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since o ^ f ' F ( R s l -CA 1C')E=0.  Taking the terms in (2.2.9) individually: 

r ' (R f1 -  CA ~lC')E = r 'Rs~lyS ~ r ' R f lF P, where ¡3 = (F ' R f lF )~lF 'R f ^ g ,

f  'FCA~lA~lC'E = /'¡3-/(1 , and ar'CA~lE + o(ot)-»0 as oc—>0. So simplifying 

(2.2.8) and returning to original notation gives

E ( Y ( x ) \ Y s ) = r'Rs-1ys - r 'R s- 1F&+f'&

=f 'P + r'Rs~i(}’s -F'&)

as o ^ —>°°, (a—>0), which is the same as the best linear unbiased predictor in

(2.2.3).

2.2.3 Maximum Likelihood Estimation

The predictors described all involve model parameters. Typically, some or 

all of the parameters are not known and need to be estimated. There are many 

ways to estimate these parameters. If Rs is known, then the parameters p and 

cr2 could be estimated by least squares. Several methods of estimating unknown 

covariances are described in Cressie.5 A common method of estimation, which is 

used for the work in this thesis, is maximum likelihood estimation.

If the stochastic process is assumed to have a Gaussian distribution, then 
the density function is

(2no2)~nl2\Rs I~1/2exp {_ L (y s -F ^ )R s~](ys -FP )}
2 CT

and the In likelihood is

(2.2.10) In L* = -i_ [rtln a2 + ln IRs I + (ys - F f t R f ' i J s  "F P )/a2].

yv r \

The parameter estimates P and ct depend on the value of Rs hence on 

(0, p). When Rs is known the maximum likelihood estimates of P and a 2 are

P = (F ' R f lF )-1F ' R f xy s

and

d2= 2 ()’s - F W « s ‘ 1(y s - f 'P )-

The estimate for P is the generalized least-squares estimate and a 2 is the stan-

dard MLE of a 2 for a Gaussian distribution with a linear model and known 

covariance.

-31-



When Rs , or equivalently for the case here, when (0, p ) is not known max-

imum likelihood estimates are computed using an iterative procedure. First, an 

initial estimate of Rs is used to compute estimates of |3 and a  . These estimates 

are substituted into (2.2.10) and the log likelihood can be rewritten as

(2.2.11) InL =-i_[«lnCT2 + ln \RS I],

Then (2.2.11) is minimized with respect to (0, p). These estimates of Rs are 

used to get new estimates of [3 and ct2 and the procedure is repeated until InL in

(2.2.11) has reached a maximum. Further discussion on methods of computing 

maximum likelihood estimates is in Chapter 3.

2.3 Correlation Function

To compute estimates for the model given in the previous section a correla-
tion function, /? (w , x ), needs to be specified. There is a large number of 

choices for /?(w,x) .  The correlation function used here is from the stationary 

family of correlation functions, R (w, x) =R (w - x )  and assumes that any non- 

stationary behavior can be modeled by the linear model part of the stochastic 

process. Also, we have chosen to restrict our choice of correlations to those 

which are products of one dimensional correlations, R (w ,x) = Yl^j (wj ~ xj)- 

One benefit of using this class of correlation functions is the simplification of 

some mathematical and computational problems. This is still a highly flexible 

family of correlation functions and is found to be adequate for predicting the 
response in most situations.

The correlation function used in the examples and study for this thesis is

(2.3.1) R (w ,x) = n exP (-0 y 1 wj ~xj 1 f J»
j =i

where Qj ^0  and 1 <pj <2. Other possible correlation functions are

(2.3.2) /?; (w,x) = n ( l “ 0y Iwy -Xj  l)+
j =i

which gives a linear spline for the predicted response and

(2.3.3) Rc (w ,x) = n n  ~ aj(wj ~xj )2 + bj I wj - * j \ \
j =i

which for certain choices of cij and bj produce cubic spline predictors. Currin, 

et al? compared the predictive ability for these correlation functions as well as 

others on several small examples. The empirical RMSE for the correlation
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function (2.3.1) is consistently one of the best predictors of the correlation func-

tions examined. Stein in his comments on SWMW' proposed the correlation 

function

(2-3-4) n r. .1ov_1 (aj IWJ -Xj I )V̂ v (a7 I Wj -Xj  I).
j = 1 1 (V)Z

where K v is a modified Bessel function of order v. A comparison of this corre-

lation function with (2.3.1) in the rejoinder to Stein in SWMW showed the 

predictive accuracy of the two correlation functions for the example tested was 

essentially the same.

Understanding the Parameters

The parameters in the correlation function (2.3.1) drive the predictor, espe-

cially when the linear model part of the stochastic process is assumed to be a 

constant. The shape of the prediction surface is not obvious from the values of 

the correlation parameters. The 0’s and p ’s have different effects on the predic-

tion surface. If p =2 then the covariance function is infinitely differentiable and 

the prediction surface will be smooth which should be the case for most analytic 
functions. If p < 2 the covariance function is only once differentiable and the 

surface becomes rougher as p —»1. For p = 1 the correlation function is a product 

of Ornstein-Uhlenbeck processes, which are continuous but not very smooth. 

Smaller p also has the effect of "inflating the value" of 0.

The meaning of the value for 0 is more difficult to read. For 0 = 0 the vari-

able is not significant; if 0 = °° then the variable is uncorrelated. For values of 0 
between zero and infinity the effect is somewhat relative to other 0’s and the 

data. For "small” 0’s the main effects are linear. As 0 increases the effect of x 
on the response becomes more nonlinear. "Large" 0’s also can imply that the 

variable is part of an interaction term. It is difficult to determine whether a 

"large" 0 is due to nonlinear main effects or interactions without plotting the 
main effects.

2.4 Estimating Main Effects and Interactions

Since the parameter values themselves give only limited insight into the 
shape of the response surface, plotting the main effects and interactions of the 

input factors is strongly advocated. These effects are the continuous version of 

the effects in classic ANOVA, but instead of averaging over the data the models 

are integrated over the design space. The overall mean, the average of y(x)
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over the experimental region, is defined to be:

(2.4.1) Ho = Jy(x)II<k*.
k=1

The main effect for xt is defined to be:

(2.4.2) (1/ (xt ) = Jy (x )Y\dxk -  |a0,
k*i

Second order interactions of xt and Xj are

(2.4.3) 1Mj (x, ,x/) = |v (x ) n  dxk ~ 14/ (*/) “  |4y (Xj ) -  (I0.
k*i,j

In such a way, interactions can be computed to any q -order interaction desired 
and y (x) can be rewritten as

d
y(x)  = [l0+ ^ \ i i (xi) + ^ i j ( x iqCj)+ • ■ ■ +(I1...rf(x1, . . . ,xd).

¡=i i<j

Just as in the discrete case, the sums of squares of the above decomposition can 

be written as

d
J j 2(x) = lt02+ E l l i;2(x/ ) + Xl4,y(^4:;)+ • ' ' + V-l..d(x v ■ ■ ■ >xd)-

(=1 i<j

Plotting is difficult for more than 2-dimensions, but the information may be used 

to determine whether any higher-order interactions exist. To obtain estimates of 

these integrals, y (x) can be replaced with y (x). Since

E (fL7 (x)) = E (Jy (x )U d xk) = \E (y (x ) ) J 1 ^  = ¡y (x ) Y l dxk = E ((1/), 
ker ker kei

where I is the index set of variables over which to integrate, the estimates of the 

main effects and interactions are unbiased. For numerical quadrature problems 

the overall mean, p,0, can be used as an estimate of Jy(x) o'x. To see the effect 

of the input variables the integrals can be computed for m evenly spaced points 

and the values plotted.

These integrals are not difficult to compute. The only place where x occurs 
in the predictor (2.2.3) is in r(x). Since r(x ) is a product of one dimensional 
correlation functions,

Jr (x )U dxk = n j r (x )dxk •
kei kei

This property reduces the cost and increases the numerical accuracy in
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computing the estimates of main effects and interactions.

For large simulation models it is cumbersome to plot all the possible main 

effects and interactions, a total of d (d + l)/2 plots. To reduce the number of 

plots, ANOVA - like tables are used to determine important effects. These 

tables are constructed as follows:

1. Variation around the overall mean, J(7 - \ i 0)2d x, can be estimated by tak-

ing a random sample of size nr and computing

SS(r) = -  Ho)2.
n r k =l

We have found that a random sample of size nr -1000 is a good comprom-

ise between efficiency and accuracy in obtaining an estimate of variation. 
We are not estimating variability in the statistical sense, but are trying to 

estimate the amount of fluctuation of the response surface about |i0 and in 

that sense it is similar to the total sums of squares in ANOVA.

2. Let m equal the number of points for which (J,; (x k) are computed. For all 

i = l ,  • • • -d , estimate the corresponding squared integral by
i m

SS([ii ) = ± ^ [ [ i i (xk)]2.
m  k=  1

3. Repeat Step 2. for as many q -order interactions as desired.

4. For all the sums of squares computed in Steps 2 and 3 compute the ratio of 
S S i ^ lS S iY ) .

Like discrete ANOVA sums of squares, the sums of squares can be decom-
posed for the continuous case, but

SS ( f ) * Z S S  01;) + z s s  (Hij) + S S (HW )
/ ' = 1  i < j

because SS(Y) is only an estimate of j(F -(J.0)2<afx, however the decomposition 

should be a reasonable estimate. The sums of squares for main effects and 

interactions will allow the variables to be ranked in importance for their effect 

on the response. The ratios SS ([it )/SS (7) provide a measure of importance of 

the effect compared to the variation in the response surface. These ratios are not 

the equivalent of F-tests in ANOVA, since the decomposition here is comparing 

the effects to the variation of the response over the input space and not the error
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variance around the response. The choice of the cut-off value is a subjective 

decision. Besides choosing which effects to plot, the ratios can be used to 

search for higher-order interactions if so desired.

2.5 Robustness

Since the model parameters are unknown and finding a good predictor is 
the goal, we would like the prediction error to be robust to misspecified model 
parameters. In general, the linear model part of the stochastic process is reduced 

to a constant, (30. This in turn is estimated by the mean of the data, y~, the 

robustness properties of which are well studied. When the linear model term is 

(30 the robustness of the covariance function parameters, (0,p) is important. 

There are two small scale studies that provide insight into the robust properties 

of the covariance parameters.

Sacks, Schiller, and Welch8 earned out a small robustness study where 

0i= • • • =0rf=0 and p x= • • • =pd = 2 to find optimal experimental designs 

using integrated mean squared error (IMSE)

/ e(s,r)=_L j£ e(F(x)-r(x))2rfx
CT2

as the optimization criterion. The study also contains evidence for the robustness 

of the correlation function parameters. Two studies are carried out, for d= 2 and 

d —1. In both cases T(x) is the realization of a Gaussian stochastic process. 

Both studies show that the IMSE is reasonably robust to misspecified 0, espe-

cially if 0 is underestimated.

A small empirical study in two dimensions is described in Welch, et alP In 

this study a deterministic function was used as the example and the maximum 
likelihood estimates were computed. The MLE values of 0 and p were per-

turbed separately to see how the changes affected the empirical root mean 

squared error (ERMSE). Changing p from its MLE value of 2.0 to 1.0 only 

increased the ERMSE from 5.5% to 8% of the range of Y and even at p = 1.8 

the ERMSE increased only marginally. The changes to 0 were similar to those 

from the previous study which showed that underestimation (even up to an order 
of magnitude) had limited effect on the ERMSE while overestimation of 0 by an 

order of magnitude increased ERMSE from 5.5% to 12% of the range of Y .
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- Chapter 3 -

Parameter Estimation and Model Building

3.1 Introduction

In Section 2.2 we outline a model that treats the deterministic output of a 

computer code as the realization of a stochastic process, following SWMW.1 A 

discussion of this statistical model can be found in Chapter 2. The model 

automatically adapts to nonlinear and interaction effects in the data. This 

reduces the problem of statistical model building to a problem of screening for 

important factors. The approaches discussed in this chapter are used to identify 
important variables (model building) and build a predictor (parameter estimation) 
without making any assumptions of linearity or additivity.

The model parameter estimates are typically computed by maximum likeli-

hood methods with the assumption that the response is a realization of a Gaus-

sian stochastic process. Given the correlation parameters (0,p) of correlation 

function (2.3.1) the MLE of |3 is the generalized least squares estimate and the 

MLE of ct2 is a 2 = l/n(y - F  ft)1 R f ' (y  -Ffi).  Substituting |3 and a 2 into the 

likelihood (2.2.4), the problem is to maximize

(3.1.1) /(0, p) = -_!_(«In ct2 + In det Rs ),

which is a function of only the correlation parameters, (0, p), and the data. Full 

maximum likelihood estimation of all the correlation parameters, followed by 
plotting of estimated main effects and interactions, could be used to identify 

important effects. However, if the dimension d of x is large, there will be many 

correlation parameters, and maximum likelihood is intractable or at least numeri-
cally costly.

Initially, the maximum likelihood estimates are computed for unconstrained 

(0,p); even for small problems this is too expensive to be feasible. For example, 
as mentioned in Welch, et al.,2 to compute the MLE for a problem with 20 input 
variables and an experimental plan of 50 runs it took 2 CPU hours on a Cray 

X-MP. One option is to use a single parameter, p , by setting p t = p
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for i =1, . . . , d . This reduces the number of parameters to be estimated 
approximately by half.

Two strategies for using the likelihood equation to get parameter estimates 

are described in this chapter. One strategy, which will be referred to as FOR-

WARD, limits the number of parameters that are optimized by initially assigning 

all the variables to a single (Q0,p 0), i.e. 0; = 0O and pt = p 0 for i =1, . . . ,d, 

and then during a number of stages allows significant variables to have their own 

(Q,p) when computing the MLE. The algorithm is essentially a forward selec-
tion technique for the correlation parameters, 0,:. This method reduces the 

number of parameters to be estimated, but requires several, possibly many, MLE 

optimizations of increasing costs. The method gives good results at a reasonable 

cost for sets of input variables with a low proportion of important factors. The 

second strategy, which will be referred to as ONETIME, continually updates the 

parameter estimates by computing MLE for (0( ,p; ) given the rest of the parame-

ters are fixed.

Before describing the two algorithms some notation needs to be developed. 

Let D ={1, . . .  ,d}  be the set of indices for the input variables and let C be a 

subset of D and C'  the complement of C. Let 0C ={©¿=00 for i e C}, i.e. 

those variables in C will have the same parameter estimate 0f . Also, let 0C, be 

the set of unconstrained parameters for those variables in C'. Both algorithms 

are sequential in nature; let dCk be the parameter estimate at the k th stage of the 

algorithm. This notation is applied to the power parameters, p, as well.

The FORWARD algorithm is described in Section 3.3 and two examples 

are presented in Section 3.4 to show how the algorithm, and the statistical model 

in general, performs. Section 3.5 describes the second algorithm, ONETIME, 
and Section 3.6 compares the performance of the two algorithms. Section 3.7 
provides some further remarks. First, in Section 3.2 a brief overview of the 
costs of computing the maximum likelihood estimates.

3.2 Computing Costs for the MLE

Optimization for large numbers of parameters can be expensive. Computer 

costs can be divided into two types, time and memory. The memory costs vary 

little in comparison to time costs for the different algorithms so when referring 

to costs, time costs will be implied. The cost of computing the maximum likeli-

hood estimate is a function of the cost due to the number of calls to the
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objective function, the likelihood equation, and the length of time required to 
compute the objective function. The total cost of the algorithm is approximately 

the product of these two costs.

The cost due to the number of function calls will not be considered here. 

There is an extensive literature on the subject of optimization algorithms. A 

recent text by Zhigjavsky3 gives a broad survey of the field. The optimization 

algorithm used is the AMOEBA subroutine as given in Numerical Recipes.4 This 

routine is a variation of the Nelder-Mead simplex algorithm.5 There are some 
overhead costs when running the optimization algorithm, but these costs are 

greatly outweighed by the cost of computing the likelihood.

There are several specialized algorithms for computing MLE. Marshall and 

Mardia6 and Kitanidis7 propose methods for covariance functions which are 

linear in their parameters. Zimmerman8 discusses methods for making compu-

tations easier for regularly spaced data. Dietrich and Osborne9 develop algo-

rithms for a restricted set of covariance functions with the assumption that the 

range parameters are known. Vecchia10 shows that the likelihood can be 

approximated by the product of likelihoods from subsets of the data. This tech-
nique requires anisotropic parameters to be known or non-existant for the algo-

rithm to be effective. None of these methods are applicable given our choice of 

design and covariance function, so we have continued to use the more general 

optimization approach already mentioned to compute maximum likelihood esti-

mates.

We discovered that for the correlation function (2.3.1), the generation of the 

covariance matrix, R, is responsible for well over half the cost of computing an 

individual likelihood value which means that it is the cause of over half the cost 
of computing the MLE. The reason for this is twofold. First, the correlation 
matrix requires on O (dn2) arithmetic operations. Secondly, when computing 

unconstrained estimates of the parameters the correlation matrix needs to be 

computed at each step of the optimization. It is clear that the computation of 

MLE’s for this model quickly becomes prohibitively expensive, especially since 

the sample size, n, increases as d increases. The methods described in the next 

section attempt to reduce computational costs by looking at near-optimal esti-

mates of model parameters.
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3.3 FORWARD Algorithm

The basic ideas of the FORWARD algorithm are as follows. Initially, in 

the correlation function (2.3.1) we set 0, = • • • =0rf=0o and 

p l= ■ ■ ■ =pd =pQ. so that numerical maximization of the likelihood is only 

over 0O and p 0. As the factors have the same scales, this reflects prior belief 

that all factors are on the same footing. (Alternatively, knowledge that particular 

factors are active could be used to shortcut the first few of the stages to be 
described.)

At each stage, let C denote the set of indices of factors constrained to share 

common values of Qj and of pj, while the remaining factors are allowed their 

own values of Qj and pj. Starting with C = {1, . . . ,d j ,  the algorithm iterates 

in the following way. For each j  in C in turn, we remove the constraint Qj = 0O 

and Pj =po and maximize the log likelihood (3.1.1) subject to 0,: =0O and pt =p0 

for all i in C — { j  }. The Xj that leads to the largest likelihood is removed from 

C. The procedure continues until none of the factors in C makes a large 

improvement in the likelihood relative to the previous stage. We now give a for-

mal definition of the algorithm, then we discuss some variants to reduce comput-

ing time.

1. Maximize the log likelihood (3.1.1) subject to 0t = = 0rf=0o and

p i=  ' ■ ' =p o- and denote the maximum by l0.

2. Set C ={1, . . . ,d}.

3. Repeat Steps 4, . . .  ,7 until termination.

4. For each j  in C do:

5. Maximize the log likelihood in equation (3.1.1) subject to 0,- =0O 

and Pi=po for all i in C -  { j  }, and denote the maximum by /■.

6. Let j* denote the factor producing the largest increase, lj ~ /0, in the 

log likelihood at Step 5.

7. IF: lj" — /o is sufficiently large then set C = C - { j * }  and /0 = /y* 

(remove factor j* from C)

ELSE: stop, taking the estimates associated with l0 from the previous 

stage.

The optimization algorithm used at Steps 1 and 5 is the Numerical Recipies 
routine AMOEBA; see Chapter 5 for details. This algorithm relies on choosing
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several starting points to help avoid settling for only a local optimum. This is a 
characteristic of many optimization routines. We make several, usually five, 
tries from different starting points. Even when these tries drive to the same 

optimum it does not guarantee that a global optimum has been found, a common 

problem with maximum likelihood.

The algorithm is similar in spirit to forward selection of regression vari-

ables, but the relationship between the factor effects and the introduced parame-

ters is more subtle. In experiments with factor sparsity, we have typically found 

that the few ’strong’ factors are the first to demand their own values of dj and 

Pj. These strong factors usually have a large estimated 0; , and removing them 

from C tends to drive down the estimated common 0O for factors in C. If there 

are relatively few runs, the estimated common 0O can eventually become zero, 

suggesting that factors in C are completely inactive. On the other hand, the 
estimated common 0O may be nonzero at termination, suggesting that factors in 

C have a minor effect. These minor effects need not be identical just because 

the factors have the same correlation parameters. We have also noticed in prob-

lems where factor sparsity is absent that factors can be removed from C because 

they demand a zero value of 0; and are presumably inactive.

Thus, the algorithm tends to terminate early by identifying exceptions: fac-
tors that are either exceptionally active or exceptionally inactive. In all cases, 
the final maximum likelihood estimates can be used to construct a predictor of 

y(x). Then, estimated effects can be plotted, as outlined in Section 2.4, to iden-

tify the important factors, interactions, etc.

Discussion about the stopping criterion has been deliberately vague. From 

one stage to the next, two correlation parameters are introduced. A standard 

asymptotic likelihood ratio test would suggest that twice the improvement in the 

log likelihood is distributed with a critical value of about 6 for 5% signifi-

cance. We have found a cutoff of 5—6 reasonable in a number of applications, 

although there are many reasons why this should not be regarded as a proper sta-

tistical test. The common 0O provides another indication of termination. If its 

estimate becomes zero, the factors sharing the common 0O are apparently inac-

tive. If 00*0 it is not necessarily true that all variables in C are active. Main 

effects plots or further testing using 2 In L can be used to indicate which vari-

ables in C are truly active. This occurs because the difference between 0O and
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0; for some i in C may be too small to be significant. Finally, when a stage 

produces only a modest change in the likelihood, not meeting the above cri-
terion, it is prudent to run the algorithm for at least one further stage. We have 

sometimes found that several small changes in the likelihood can be followed by 

a larger change, presumably because the model does not fit well until several 

factors all receive their own correlation parameters.

The algorithm as described may still require excessive computer time. At 

each stage, a maximum likelihood computation is performed in Step 5 for each 

of the (many) factors in C. An adaptation dramatically reduces computational 

cost further.

Steps 4 and 5 find the factor that gives maximum increase in the likelihood 

when given its own values of Qj and pj. To get an inexpensive indication of the 

change in the likelihood, we replace Step 5 above by a maximization of the 

likelihood only over Qj, keeping all other parameters (0;- for i* j  and p, for all 

/') fixed at the values that produced /0 at the previous iteration:

5'. Maximize the log likelihood (3.1.1) over 0-, keeping all other parameters 

fixed at the values estimated at the previous iteration, and denote the max-

imum by I'j.

This one-dimensional line search, or some other adaptation, is forced by practical 
necessity. It is obviously much cheaper than the optimization over many param-

eters. In a number of test examples, including those reported in Section 3.4, it 

introduces the same factors as the full optimization. Even if it failed to find the 

factor giving the greatest change in the log likelihood, the factor could still 

emerge at a later stage. One could also try optimizing over both Qj and pj, but 

Qj seems to be the more important parameter.

Letting j* denote the factor index in C that produces the largest increase 
I ' j- lo  in Step 5', we now perform the stage’s single maximum likelihood com-

putation involving more than one parameter. Thus, Step 6 is replaced by:

6'a. Let j* denote the factor producing the largest increase, l ' j - l 0, in the log 

likelihood at Step 5'.

6'b. Maximize the log likelihood (3.1.1) subject to 0; = 0O and Pi=p0 for all i in 

C-{J* }, and denote the maximum by /•*.
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Note that the stopping criterion is based on the likelihood calculated at Step 6'b 

and not on the line search approximation in Step 5'.

Other variants which were tried include giving several factors their own 0 ■ 

and pj values simultaneously, if more than one factor is indicated by the line 

searches.

At each stage of this algorithm two optimizations take place. The first is 
the MLE optimization for (0C ,pc ,Qc ,,pc ,). The number of parameters estimated 

at each stage is 2k +2 for k<,d, where k is the number of parameters in C', 
rather than the 2d+2 parameters for the full parameterization. The second optimi-

zation is for finding the input variable which maximizes the reduction of the 

likelihood (step 5'). This optimization is extremely cheap. Not only is it a one 

dimensional optimization problem on 0(- which usually requires no more than 

10-20 function calls, the calculation of Rs is reduced to 0 ( n 2).

3.4 Examples

It is important to test the algorithms on known functions of suitable com-
plexity so that a true measure of the algorithms success can be taken. The first 

example therefore takes a completely known function. In the second example 

we embed a real code, involving six inputs whose effects are fairly well under-

stood, in a function of 20 inputs, where the 14 further inputs are designed to be 

almost inactive.

3.4.1 A Known Function

For the first example, y(x) is a known function defined on the 20- 

dimensional input space [-l/2,+l/2]20. The most important part of y(x) is

5xn l(1+Xj ) + 5(x4-x 20)2 + x5 + 40x39 -  5x19,

and there are very small effects from most of the remaining factors:

0.05x 2 + 0.08x 3 -  0.03x 6 + 0.03x7 -  0.09x9 -  0.01xlo -  0.07xn

+ 0.25x 123 -  0.04x 14 + 0.06x 15 -  0.01x17 -  0.03xlg

This function is designed to be challenging, with strong nonlinear effects and 

two interactions.

We will describe analyses of data from Latin hypercube sampling designs11 

of 30, 40, and 50 runs. For a discussion of Latin hypercube designs refer to 
Chapter 4.
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We first describe the analysis of the data from the 50-run design. Taking 
the predictor (2.2.3) with correlation function (2.3.1) and the linear model part 
just a constant (3, we used the algorithm of Section 3.3 as modified for the cheap 

line searches (Step 5'). Table 3.1 shows that the initial maximum log likelihood 
subject to 0 t = • • • = 02O = 0 and p x= ■ ■ ■ =p20=p is -33.5 (-2 In L = 67.0). 

Line searches over Qj for j  = \, , 20 in turn, lead to a best maximum log

likelihood of -27.6 when 0 12 is unconstrained. This is similar to the value of 

-26.0 (-2 In L = 52.0) given in Table 3.1 for the full maximization over 0 12, p J2, 

and the other 19 factors’ common 0C and p (Step 6'b). At the next stage, the 

line searches identify 019, and so on.

Factors With Own 

0; and Pj

0 for

Factors in C -2 Log Likelihood Change

— .15 67.0 --

12 .051 52.0 15.0
12, 19 .039 43.6 8.4

12, 19, 20 .035 33.0 10.6
12, 19, 20, 4 .00032 5.4 27.6
12, 19, 20, 4, 1 .000015 -20.6 26.0
12, 19, 20, 4, 1, 5 0 -42.4 21.8

Table 3.1 Known-Function Example

The first six factors to receive their own 0;- and p- are x 12, x l9, x 20, x 4, x v 

and x 5. All of these stages lead to large changes in the likelihood, satisfying our 

benchmark criterion of about 5 -6  for twice the increase in the log likelihood. 
With these six factors having their own 0 • ’s and p j ’s, the estimated common 0C 

is zero, and the line searches show approximately zero change in the log likeli-

hood for the remaining factors. Thus, having correctly identified the six impor-

tant factors, the algorithm terminates. Running time is about 5 minutes on a 

Cray X-MP.

Clearly, the cheap line searches (Step 5') of the algorithm in Section 3.3 

correctly identify the important factors. There is also a considerable saving in
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computing time: running the algorithm with the fuller search in Step 5 takes a 

total of nearly 2 hours of Cray X-MP CPU time.

At termination, the estimated 0^’s and p j ’s are:

j l 4 5 12 19 20

0.021 0.036 0.000085 0.011 0.0030 0.030

p j 2.00 2.00 2.00 2.00 1.70 2.00

Rather than attempt to interpret these numbers it is usually more productive to 
plot the estimated main effects and interactions as outlined in Section 2.4.

Figure 3.1 shows the estimated main effects of x x, x 4, x 5, x 12, * 19, and x 20. 

[The remaining factors have an estimated common 0 of zero, so the fitted predic-

tor y(x) is constant with respect to these variables.] The quadratic effects of x 4 

and *20 and the cubic effect of x 19 are immediately apparent. Inspection of the 

estimated two-factor interaction effects for each pair of identified factors sug-

gests large interactions between x x and x l2 and between x 4 and x20. F°r exam-

ple, Figure 3.2 is the contour plot of the estimated interaction effect of x 4 and 

x 20, which agrees well with the true interaction, -10x4x20. The contour plot of 

the estimated interaction of x x and x 12 has contours ranging from about -1 to 1, 

and is therefore also non-trivial relative to the estimated main effects in Figure 

3.1. Thus, although x x has no main effect, it is picked up by the algorithm, and 

its purely interaction effect is revealed. The remaining estimated two-factor 

interactions are negligible: none of these plots has contours of magnitude much 

larger than about ±0.1. Thus, only the two real interactions are identified.

To assess the accuracy of a predictor, we now typically perform a cross 

validation. Let y_/(x; ) denote the best linear unbiased predictor (2.2.3) of y(x,) 

based on all the data except the observation y(x (). A cross-validation version of 

the empirical root mean square error (ERMSE) is then

(3.4.1)
V /2

[y- i ix ihy ix ,)]2 ■ .

Here, the cross-validation ERMSE is 0.201, relative to a data range of about -4.4 

to 8.1. To minimize computation, the MLEs of the correlation parameters are 
not re-computed for each prediction; they are still based on the complete data 

set. Nonetheless, the cross-validation ERMSE is a good measure of prediction 
uncertainty in this example. To show this, we generated y at 100 random points
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Known Function: Predicted vs. True Response

Predicted Response 
Figure 3.3
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in the 20-dimensional region. At these new points, the ERMSE is 0.198, very 

close to the cross-validation ERMSE. The plot in Figure 3.3 of y { \ )  against 

y(x) at the 100 random points demonstrates the accuracy of the predictor.

To reduce computing time for the likelihood maximizations, we performed 

another analysis, fixing p x = ■ ■ • =p2o=P (regardless of the status of C). This 

roughly halves the number of correlation parameters to optimize, and reduces 

computing time by about 25%. The six important factors are still identified, but 

the accuracy of the final predictor is compromised. The ERMSE at the same 

100 random points, is now .247 (versus .198 with different Pj ’s).

We now describe some standard screening methods applied to the data from 

the 50-run Latin hypercube. Fitting a first-order model in x x, . . . , x20 to the 

ranks of y by least squares (a minor departure from the stepwise method advo-

cated by Iman and Conover12 ), and arbitrarily taking \t I >2 to indicate signifi-

cance, identifies only x x and x l2. The relatively unimportant x 13 has r=1.98, so 

might also be included in practice. Repeating this with the raw y ’s rather than 

the ranks gives \t I >2 for the unimportant variables x 17 and x 18 as well. Resi-

dual analysis is not very revealing because there are several inadequacies mask-

ing each other; though, armed with foreknowledge, there is a suggestion of the 

cubic effect of x X9. Using residual analysis to cope with possible interactions 

would be tedious when there are many x,- ’s.

Without identifying the important factors, any predictor is likely to be inac-
curate. Even if a quadratic model is fitted by least squares to the six important 

factors, the predictor remains relatively inaccurate. Fitting such a model, fol-

lowed by backward elimination removing the term with the smallest 11 1 value 

until I r I >2 for all terms, gives an ERMSE at the 100 random points of about 

0.91, nearly five times as large as that for our predictor.

Alternative screening methods based on other designs might also be con-
sidered. For example, two-level, Plackett-Burman designs13 are often used for 

screening, at least in physical experiments with random error. A 28-run, first- 

stage design (plus center point) would allow further runs to estimate interactions 

and quadratic effects for the important factors and still probably stay within a 
total of 50 runs. As with the above linear main-effects analyses, the Plackett- 

Burman design cannot be expected to do well, and it only finds x 12 and x 19.
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Applying our algorithm to the data from the « = 30 or « =40 Latin hyper-

cubes is less successful. With « = 30 only x x and x l2 are detected, and with 

« = 40 only x l2 is found. In both cases, several of the remaining important fac-

tors would be the next to enter, but they lead to small changes in the likelihood. 

Thus, it appears that our challenging example is too challenging without at least 
50 runs. Repeating the «=40 and «=50 analyses with data from new Latin 
hypercubes confirms that 40 runs are inadequate but 50 runs is successful.

To summarize the first example, with 50 runs from a Latin hypercube our 

algorithm correctly identifies the six important factors, and the fitted model leads 

to a fairly accurate predictor. Fitting first-order models to the raw responses or 

their ranks by least squares fails to identify some of the important factors and 
may even find unimportant inputs to be significant. Similarly, a first-stage, 
Plackett-Burman design fails here. The complexity of the response relationship 

necessitates 50 runs for our algorithm to be successful.

3.4.2 Circuit Simulation

The second example is based on the circuit-simulation code analyzed by 

SWMW.1 In their treatment, six inputs (transistor widths) are varied, and with 30 

runs of the code a reasonably accurate predictor was found. Thus, the nature of 

the relationship between y and x x, . . . , x 6 is fairly well understood. To the out-

put of this real code, a clock skew, a small contribution from x 7, . . . , x 20 was 

added. In this way a function with a 20-dimensional input is created, where it is 

known which variables are important and their effects, yet the function is realis-
tic.

A 50-run Latin-hypercube design was again tried for the 20 inputs. All 

inputs are normalized to [-1/2,+1/2], To generate the data, factors x x, . . . , x6 

from the design are fed into the circuit-simulation code, and the 50 resulting 

clock skews are augmented with small, linear effects due to x 7, . . . , x20.

Table 3.2 shows that the algorithm gives factors x 5, x 3, x 6, x 2, and x 4, in 

that order, their own d j ’s and P j’s. Thereafter, the change in the log likelihood 

is rather smaller, and the algorithm terminates with these factors. Thus, all of 

the “ real” inputs except x x are identified; the original SWMW1 analysis also 

found x x to be irrelevant (to the surprise of the engineer), so the algorithm 

correctly identifies the five important factors.

-51-



Factors With Own 

0;- and pj

0 for

Factors in C -2 Log Likelihood Change

— .014 -139.0 —

5 .0032 -147.0 8.0
5, 3 .0027 -153.8 6.8
5, 3, 6 .0067 -161.4 7.6
5, 3, 6, 2 .0018 -169.8 8.4

5, 3, 6, 2, 4 .00043 -196.6 26.8
5, 3, 6, 2, 4, 18 .00014 -201.0 4.4

5, 3, 6, 2, 4, 18, 9 .0000014 -204.6 3.6

Table 3.2 Circuit-Simulation Example

At termination, the estimated 0;- ’s and p j ’s are:

j 2 3 4 5 6

% 0.035 0.058 0.15 0.065 0.97

Pj 2.00 1.90 1.61 1.85 2.00

The estimated main effects are shown in Figure 3.4. Factors x x and

x 7, . . . , x 20, which share a common 0 = 0.00043 and p =1.96, produce a blur of 

very small main effects in the figure.

Plots of the estimated interactions identify the interactions between x 3 and 

x 6 and between x 4 and x 6 as reasonably large relative to the main effects in Fig-

ure 3.4. The larger of these is the x 4—x 6 interaction, plotted in Figure 3.5, 

which was also found in the SWMW1 analysis. As with standard factorial 

experiments, when two factors interact their joint effect on the response should 

be considered. Figures 3.6 and 3.7 show the estimated joint effect (overall mean 
plus main effects plus interaction effect) of x 3 and x 6 and of x 4 and x6 on the 

clock skew. As skews close to zero are desirable, these joint effects call for 

small values of x 3 and x 6 with the value of x 4 less important. The main effects 

of factors x 2 and x 5 could also be used to bring the skew on target, and, in fact, 

there are many combinations of x 2, . . . , x 6 that make the predicted skew close 

to zero.
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The cross-validation ERMSE in (3.4.1) is 0.104, relative to a data range of 

-1.71 to -0.10. Therefore the predictor captures the major part of the variability 

in the function. At 100 new, random points the ERMSE is 0.102, so the cross 

validation is again a good indicator of prediction accuracy.

The cheap line search in Step 5' of the algorithm in Section 3.3 is success-
ful in identifying the important factors. Running the algorithm with the fuller 

search in Step 5 finds the same factors, but increases running time from about 5 
minutes to over 1 hour on a Cray X-MP.

Fitting a first-order model in x v . . . , x 20 to the skews, y,  identifies 

x 2, . . . , x 6 as having \t I>2. Using the ranks of the skews instead is less con-

clusive: i =1.64 for a' 4, whereas /=1.79 for one of the unimportant factors. A 

second-order model fitted to x 2, ■ ■ ■ .x5, followed by backward elimination 

removing the term with the smallest 11 1 value until I / 1 >2 for all terms, gives an 

ERMSE of 0.131 at the 100 random points, about 30% greater than that from 
our predictor.

Running the algorithm on data from a 30-run Latin hypercube successfully 

finds x 2, . ■ ■ , x 5, so a smaller experiment would be adequate for screening in 

this case. The resulting predictor is, of course, not so accurate; it has an 

ERMSE of 0.167.

3.5 ONETIME Algorithm

The FORWARD algorithm has two drawbacks. The algorithm relies 

heavily on the assumption that a small number of variables effect the response. 

If this is not the case the computation of large optimization problems is still 
required. Also, it assumes the number of important factors is a low percentage 

of the total number of input factors. If the percent of significant factors is large, 

say more than 50% of the factors, FORWARD will screen out the unimportant 

factors and leave the important factors in C .

The new algorithm, ONETIME, is a numerical optimization algorithm rather 

than the model building algorithm of FORWARD. ONETIME reduces the cal-

culation of the parameter estimates to a series of two dimensional optimizations 

over the pair (di ,pi ) in (dD,pD). These small optimization problems are more 

likely to find global optima so a single starting point, the previous values for 

(0, ,Pj), is sufficient. The steps in the algorithm are as follows:
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Step 1.
Let C0 = D and k =0 and compute Lk = max l(dCo,pCo). Now let C be the

empty set, so C'=D  and let (0D,pD) = (0Co,pDo).

Step 2.

For variable xt , i= 1, . . . ,d compute

Lt = max l(Qi,Pi I 0D-{/p Pd -{/})•
(fin Pi)

and let (Q*,p*) be the estimates that maximize Lt . Replace estimates for

(0/.P,-) in (®D’Pd )• with and let L*k+l =Ld .

Step 3.

Repeat Step 2 until Lk+1 - L k <e.

This algorithm gives unconstrained estimates of (0,p).

This algorithm is very similar to the FORWARD algorithm except that 

instead of computing the MLE over (|3,CT2,0,p) we use the estimates of 0 and p 

as a basis for improving the likelihood one variable at a time. The cost for Step 

2 in this algorithm is only slightly larger than the cost of Step 5' in FORWARD. 

The savings comes from never performing the costly step of estimating the MLE 
over all parameters through standard procedures. Of course this means that we 

can never be sure that the estimates we get are the maximum likelihood esti-

mates of the parameters. The number of repetitions of Step 2 before convergence 

is dependent on the number of input variables. From the examples it appears 

that 15-20 iterations is adequate for most problems. Choosing the stopping rule 

is not straightforward; the use of the test statistic 21nL is not advised since this 

is a numerical convergence algorithm. It appears that significant reduction in the 

likelihood value can still be made after Lk+l -Lk approaches zero, so it is impor-

tant not to stop too soon.

One can use these estimates for similar model building or screening prac-
tices as the FORWARD algorithm by testing the hypothesis H 0 : 0/; = 0  for 

i = 1, . . . ,d. As in the FORWARD algorithm, 2 In L can be used as the test 

statistic under the assumption that it has a x |  distribution.

3.6 Comparison of FORWARD and ONETIME Algorithms

The FORWARD algorithm uses a fairly traditional approach to computing 

parameter estimates. The ONETIME algorithm is a numerical optimization
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routine and why it should find the global optimum is an open question. Two 

possible explanations have to do with unimodality of the likelihood function and 

the starting optimization of the algorithm. If the likelihood function is unimodal 

then the algorithm should work quite well. It is unlikely that the likelihood 

function will be unimodal under all circumstances, but there is some (conflicting) 

evidence14 15 ^  about the prevalence of unimodality, none of which pertains to 
the covariance structure used here. Starting with a common (0,p) and computing 

the MLE may also help to explain the success of the ONETIME algorithm. The 

MLE, (0,p), behaves somewhat like a weighted average of the "important" fac-

tors (0 large) and the "unimportant" factors (0 small). The 0’s for these two 

classes quickly diverge with the 0’s for the important factors initially increasing 

and the 0’s for the unimportant factors quickly being driven to near zero. Then 

it is just a matter of the important factors sorting themselves out to their respec-

tive values. From this, just the first few stages of the ONETIME algorithm 

could be used as a screening method and then a more traditional maximum likel-

ihood approach could be used with the 0’s for the unimportant variables set to 

zero.

Since the theoretical evidence available to show that the likelihood maximi-

zation of the ONETIME algorithm are MLE is extremely limited, empirical evi-

dence must be used to show the efficiency of ONETIME. Any algorithm that 

uses likelihood calculations to obtain parameter estimates should accomplish 

three goals.

1) Find parameter estimates that have a likelihood value near the maximum
likelihood when each x( has its own unconstrained parameters (0, ,/?; ).

2) The predictive ability of these estimates should be nearly as good as the full
MLE.

3) It must be cheaper than computing the actual MLE.

The algorithm is of no interest if it does not achieve the last two goals and it is 

difficult to determine its usefulness if the first goal is not accomplished.

Thirteen different response variables are used to compare the performance 

of the two algorithms. The 13 response variables span 4 different computer 

simulation models and 8 different experimental designs. All the experimental 
designs used are Latin hypercube samples.11
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3.6.1 Description of Examples

Two of the simulation models are described thoroughly in Section 3.4. The 

results for the known function example in Section 3.4.1 are identified as TOY30, 

TOY40, TOY50 depending on the sample size and the results for the circuit 
example in Section 3.4.2 are labeled TAT30, and TAT50 respectively. The other 

2 simulation models are also computer circuit simulation models. One is a VLSI 

Voltage-Shifter circuit and is referred to as the ATT example. The other is a 

proprietary circuit from INTEL.

In the ATT example we model 3 different responses: Voltage (VOLT), 

Gain (GAIN), and Bandwidth (BW). Each response is modeled using 14 input 

factors and a sample size of 62. This example is discussed in detail in Section 
6.3.

For the INTEL example we ran two experiments using the same input fac-

tors. One experiment covered the full experimental space of the input variables 

and the second experiment looked at a subset of this space. For the experiment 

on the full space 3 response variables: TDH, VCTDL, and ICC, are used to com-

pare the two MLE algorithms. The sample size for this experiment varied for 

the different responses since the responses at some input settings were not valid. 

The sample sizes were 63, 67 and 59 respectively. From the second experiment 
study two response variables, VSTDH and TDL, were used for comparision. 

The sample size for the responses in this experiment is 75 runs. The decision 

about which response variables to test for which experiment in the INTEL exam-

ple was arbitrarily made, there were 8 response variables in the actual problem 

and it did not seem necessary to make comparisons for all 8 responses from all 

stages of the primary study. A more detailed description of this example is dis-
cussed in Section 6.4

3.6.2 Comparison Results

For each example the two algorithms, FORWARD and ONETIME, are 

compared on three points: computation time, 2 In likelihood value, and predictive 

efficiency. We do not include a comparison with a true MLE calculation for two 

reasons. The first and simplest is that it would be prohibitively expensive, but 
this does not excuse the need to make the comparison. The second reason 

addresses that need. The FORWARD algorithm computes MLEs on a con-

strained set of parameters. As long as FORWARD correctly places the variables
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in the sets C and C'  and the factors in C are insignificant or have small effects 
then the MLE from the FORWARD algorithm should be nearly the same as 

those from an unconstrained optimization. In the two toy simulation models the 

important variables are known and FORWARD successfully captured all the 

important variables, so estimates should be essentially the same as if the parame-

ters had been unconstrained. For the ATT and INTEL examples the important 
variables are not known, but the success in searching for optimal parameter 
values, which was the primary purpose for investigating these circuits, is sup-

porting evidence for a good statistical model. It seems reasonable then, that if 

ONETIME compares favorably to FORWARD then it will compare favorably to 

the unconstrained MLE.

As mentioned in the introduction an algorithm needs to be able to accom-

plish three goals to be considered as a substitute for unconstrained maximum 

likelihood estimates. Two of these three criteria are easy to measure, the time it 

takes to reach a solution and the computed maximum likelihood value. The third 

criterion, predictive ability of the resulting model, is measured by one or two 

statistics. The two toy examples were inexpensive to run and the code was 

available for running further tests. For these examples Latin hypercube samples 
were generated with n=100 to calculate the RMSE of prediction. Random sam-

ples were not available for the two circuit simulator examples so for all four 

examples cross-validation RMSE of prediction was computed.

When optimizing the likelihood function one parameter at a time, as in 

ONETIME, parameter order may be important. To check the effect of parameter 

order the experimental design columns were randomly permuted to generate nine 
different data sets and parameter estimates are computed for each data set. The 
timing results for ONETIME in Table 3.3 is for one data set not the combined 

time for all nine permutations. All other results for ONETIME gives the best 
result of the nine data sets.

The timing results are in Table 3.3 and Table 3.4 gives the -2 In likelihood 

values for the 13 data sets. The timing results in Table 3.3 clearly show that the 

ONETIME algorithm is much faster than FORWARD even if one considered the 

sum of all nine trials. Table 3.4 shows that the two algorithms give roughly the 

same likelihood value, except for TOY40 and VOLT where ONETIME did con-

siderably better. The %OPT column of Table 3.4 gives the percentage of the 9 

permutations that reach the best likelihood value. For 9 of the 13 responses the
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results were stable over the permutation of design columns. Two responses with 

a low %OPT, TOY40 and TOY30, had considerable variation in the computed 

maximum likelihood values for the different permuations which is reflected in 

the high Coefficient of Variation, which is shown in the CV column of Table 

3.4. For CUBIC TOY40, the variability is due to a major improvement in the 

maximum likelihood value for one of the permuted data sets. The improvement 
is more modest for VOLT and is more likely due to the factors in C not being 

homogeneous. The results show that parameter order will occasionally affect the 

likelihood computation, but using 4 or 5 permuted designs should capture the 

best result. This still leads to a considerable savings in time. The results also 

show that the variability in likelihood solutions between permuted data sets may 

be used to distinguish between stable and unstable optimizations.

The prediction and cross validation results are in Table 3.5. From the 
results of the two toy examples we can see that the ONETIME algorithm does 

only slightly worse predicting new input values than the FORWARD algorithm. 

One can also see that for the circuit simulation models that the two algorithms 

give similar cross-validation results. In all examples, except the cubic toy prob-

lem for n =30 and n =40, both algorithms give a prediction error ^10% of the 

response range. These results combined with the likelihood results are strong 

evidence that the ONETIME and FORWARD algorithms compute parameter 
estimates effectively for the examples given.

Both algorithms use -2 In L as a test statistic, but for somewhat different 

purposes. FORWARD uses -2 In L to determine which variable to add next to 
the model, the equivalent of an F-test in regression. The ONETIME algorithm 

uses the test statistic more like a multiple comparison t-test in regression. For 

both of these tests, assuming a %2 distribution, the critical value is 6.00. See 

Tables 3.6-3.8 for listing of A(-21nL) for the ONETIME algorithm. The 

equivalent results for the FORWARD algorithm give the same list with only a 

small number of exceptions, besides the failure of the FORWARD algorithm to 
identify important factors for TOY30 and TOY40. When the "significant" fac-
tors from the test statistic are compared with the size of their main effects plots 
there is strong agreement between the two measures of factor influence. The 
comparison does show that factors with test statistic values between 6.0 and 20.0 

tend to be insignificant factors or have small linear effects. Multiple testing has 

some influence on overestimation of significant factors. For example,

-62-



X.996 = H-3 would be the Bonferroni style critical value for 15 multiple com-

parisons and a  = .95. This brings the critical value much more into line with 

what the main effects show to be important factors.

3.7 Conclusion

The curse of dimensionality apparently requires a rapid increase in the 
number of observations as the dimension of the input grows. Yet, with factor 
sparsity, the problem is not nearly so bad, provided the few important factors can 

be identified. In this situation, the methods used here can find the important 

variables and can detect curvature and interactions, without explicitly modeling 

such effects. The simplicity of modeling the effects when using these methods 

carries over to the issue of experimental design as well. Since the methods do 

not explicitly model interactions, etc., the reasons for using orthogonal designs 

are diminished and with it the difficulties in choosing alias structures for experi-

mental designs for unknown models. Fitting a useful predictor of the response is 
often possible without collecting further data. Cross validation seems to provide 
a good indication of accuracy.

Various methods based on fitting first-order models failed to find the impor-

tant effects in the first example. This does not rule out the possibility that a 

determined application of residual analysis, etc., would improve these regression 

models to the point of being useful. On the other hand, searching for interac-

tions would, at best, be fairly tedious with a large number of input factors. 

Moreover, the methods discussed here are data adaptive and can find interactions 

and other complexities in a fairly automatic way.

Computing time can be substantial for the FORWARD algorithm, but is 

reasonable for the ONETIME algorithm (30-45 minutes for problems given here 

on Sun SPARC2). Often, computer codes are themselves computationally 

expensive, so expensive data justify a careful analysis. Even if data are cheap to 

generate, it may be difficult to solve a high-dimensional problem simply by 

increasing the amount of data; a more intricate analysis may be necessary any-

way.
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EXAMPLE FORWARD ONETIME

CUBIC TOY50 283.6 16.9

CUBIC TOY40 181.7 9.8

CUBIC TOY30 108.5 6.1

TAT TOY50 373.9 13.9

TAT TOY30 70.5 5.6
ATT VOLT 561.4 22.1
ATT GAIN 504.8 20.7
ATT BW 505.1 13.8

INTEL TDH 349.6 15.7
INTEL VCTDL 279.4 16.4

INTEL ICC 201.9 11.6
INTEL VSTDH 350.2 16.9
INTEL TDL 604.3 24.6

Table 3.3 Computation Time (CPU seconds on Cray XMP)

EXAMPLE FORWARD ONETIME %OPT WORST 1C VI

CUBIC TOY50 -42.3 -42.9 100 -42.9 0.00

CUBIC TOY40 10.9 -11.8 11 19.2 1.06
CUBIC TOY30 7.6 7.6 33 29.4 0.54
TAT TOY50 -205.7 -209.6 78 -195.3 0.02
TAT TOY30 -115.5 -116.8 55 -114.9 0.01
ATT VOLT -166.2 -179.6 100 -179.6 0.01
ATT GAIN -61.9 -61.9 89 -54.0 0.04
ATT BW -236.9 -237.2 33 -210.9 0.04
INTEL TDH 140.1 139.9 100 139.9 0.01
INTEL VCTDL -247.7 -248.9 100 -248.9 0.00
INTEL ICC 342.8 342.6 100 342.6 0.00
INTEL VSTDH -438.3 -440.5 100 -440.5 0.00
INTEL TDL -344.7 -347.4 78 -335.4 0.01

Table 3.4 Maximum Likelihood Results (-2*ln Likelihood)
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EXAMPLE RANGE of Y FORWARD ONETIME

CUBIC TOY50 10.4 0.20 (0.20) 0.26 (0.20)
CUBIC TOY40 7.8 0.89 (1.6) 0.27 (0.31)

CUBIC TOY30 12.5 0.87 (1.10) 0.89 (0.81)
TAT TOY50 1.62 0.09 (0.10) 0.13 (0.14)
TAT TOY30 1.52 0.06 (0.16) 0.09 (0.15)
ATT VOLT 3.85 0.124 0.102
ATT GAIN 5.32 0.40 0.41
ATT BW 2.14 0.24 0.27
INTEL TDH 27.38 2.41 2.33
INTEL VCTDL 1.06 0.11 0.12
INTEL ICC 133.9 11.6 11.9
INTEL VSTDH 0.343 0.041 0.041
INTEL TDL 5.62 0.047 0.048

Table 3.5 Cross-Validation (Prediction) RMSE

INPUT TDH VCTDL ICC VSTDH TDL

* 1 0.0 5.0 45.6 108.9 117.2

* 2 86.1 39.0 0.7 0.5 17.3
x 3 12.2 48.7 55.1 20.9 478.4

x 4 23.1 7.6 18.1 61.9 99.8

*5 26.1 69.4 28.3 7.5 15.0

*6 94.8 9.3 18.5 0.0 0.0
x 7 5.2 4.2 0.0 4.8 73.7

*8 0.0 5.2 14.2 101.7 340.5

*9 36.7 8.1 6.9 9.6 0.0

*10 0.0 40.1 0.7 5.9 2.3

*11 64.2 0.0 21.2 0.0 474.2

Table 3.6 Change in -2 In L for Intel Example X 95 2 = 6.0
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INPUT TOY30 TOY40 TOY50 TAT30 TAT50

*1 17.1 54.9 57.9 -0.5 1.4

*2 0.0 0.0 0.5 -0.5 1.8

*3 0.0 0.0 1.0 -0.5 2.3

*4 34.6 67.2 139.5 33.3 84.8

*5 9.2 35.5 63.5 62.8 142.0

*6 0.0 0.0 0.0 -0.5 1.4

*7 0.0 0.0 0.0 0.7 10.9

*8 0.0 0.0 0.4 8.7 1.4

* 9 0.0 0.0 0.0 -0.5 7.5

*10 2.5 0.0 0.0 -0.5 1.5

*11 0.0 0.0 0.0 -0.5 4.6

*12 81.6 114.9 196.1 59.2 84.4

*13 0.0 0.0 0.0 -0.5 1.4

*14 0.0 0.0 0.1 0.4 1.4

*15 0.0 0.0 0.0 -0.5 1.4

*16 0.0 0.0 0.0 -0.5 1.4

*17 0.0 0.0 0.0 15.4 4.4

*18 0.0 0.0 0.0 1.8 16.0

*19 34.5 80.5 191.6 52.1 125.2

*20 27.4 64.7 138.5 59.2 112.0

Table 3.7 Change in -2 In L for Cubic Toy and Tat Toy Examples = 6.0
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INPUT VOLT GAIN BW

* 1 140.6 105.2 0.0

* 2 3.6 0.7 191.2

* 3 -0.4 37.6 25.9

*4 43.9 9.2 61.0

*5 20.9 0.0 71.6

*6 2.6 0.0 0.0

*7 106.7 0.0 97.2

*8 237.2 122.2 4.2

* 9 237.9 84.3 32.5

*10 86.6 0.0 0.0

*11 90.1 2.1 0.0

*12 -0.4 6.4 0.0

*13 31.3 0.0 0.0

*14 -0.4 15.9 0.0

Table 3.8 Change in -2 In L for ATT Example % 95 2 = 6.0
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- Chapter 4 -

Latin Hypercube Sampling

4.1 Introduction

Most experimental designs have been developed for physical experiments, 

but there are several important differences between physical and computer exper-

iments that make these experimental design less than ideal. Computer experi-
ments tend to have large number of input variables with large regions of interest 

and nonlinear response variables. These two traits create problems in choosing a 

strategy for experimental design. Large numbers of input variables make spread-

ing points throughout the input space a difficult task without also making the 

sample sizes too large. If the function is nonlinear, then it is necessary to take 

more values across the range of the inputs so the function can be mapped accu-
rately.

The first part of this section is devoted to an overview of some standard 

experimental designs and their use with computer experiments. The second part 

gives an introduction to Latin hypercube sampling (LHS). In section 4.2 it is 

shown that LHS asymptotically fills the entire experimental space. Section 4.3 
gives a brief introduction to discrepency functions and describes how the varia-

bility of random designs, such as LHS, can be used as a measure or discrepency. 

This section also compares results for variance and other discrepency functions 

for LHS and simple random sampling (SRS).

4.1.1 Experimental Design and Computer Experiments

Most research in experimental design has been based on the assumption that 

the response can be effectively modeled by a low order polynomial and that the 
models are estimated using least squares. Steinberg and Hunter1 give the most 

recent overview of experimental design. Concentrating for the moment just on 

the properties of experimental designs there are several difficulties in using stan-

dard experimental design methods that have been developed for physical experi-
ments.

Factorial designs, and more generally, orthogonal arrays2 3 are the classic 

experimental designs for low order polynomials but do not adequately address
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the problems of modeling nonlinear functions and large numbers of input factors. 

For factorial designs, sample size increases rapidly as the number of input factors 

increases. The design could be highly fractionated, but this leads to estimation 

and confounding problems when using linear models. The number of levels at 

which each variable is tested also needs to remain small to keep the sample size 

small. This can make estimation of nonlinear functions difficult. Finding frac-

tional designs is difficult for larger problems and must either be looked up in 

published tables, which only addresses a finite number of possibilities, or com-
puter algorithms could be used to determine the alias structure.4 5 These algo-

rithms do not necessarily find the best designs and can be computationally 
expensive.

Many orthogonal arrays have been developed that are smaller than regular 

fractional factorials. A notable example is Plackett-Burman type designs,6 which 

are designed for estimating main effects. Wang and Wu7 8 is some of the more 

recent work to make orthogonal arrays flexible in the selection of factor levels 

and keeping the number of runs small. These orthogonal arrays tend to be diffi-
cult to compute and still have the same problem with the tradeoff between sam-

ple size and number of factor levels. Results are scattered throughout the litera-

ture so determining what types of designs are available and best for any given 
situation is not a simple task.

Orthogonality is a useful property for experimental designs, but it is not an 

essential one, especially if the purpose of the experiment is to develop a predic-

tion model and not estimate parameters. For computer experimentation orthogo-

nal arrays have a major drawback. One of the properties of an orthogonal array 

is that if the design is projected onto a smaller space, as is the case if input vari-

ables are nonsignificant, the corresponding design is still orthogonal, but with 

more replicates at each design point. For computer experiments this replication 
is a waste of sampling points since there is no measurement error.

For other classes of experimental design, such as oc-optimality and maximin, 

the choice of sample size is more flexible than for orthogonal arrays. However, 

these designs have difficulties of their own. Optimal designs usually require that 

model parameters be known to develop the experimental design. Of course, it is 

usually just these parameters that the investigator is trying to estimate. These 

designs also tend to be very expensive to compute when there is a moderate 
number of input factors.
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Initially, experimental designs for computer experiments were developed for 
numerical integration problems.9 10 These attempts did not have much success 

beyond d =1 and the numerical analysis literature 11 also have had difficulties 

devising strategies for d> 1. Monte Carlo simulation studies, which typically 

used simple random sampling, quickly became the sampling method of choice 

for computer experiments because they are quick and easy to implement for high 

dimension problems and many of the initial studies in computer experiments 
investigated the distribution of the response given "random" inputs. However, 

SRS can be improved upon as a design strategy.

4.1.2 Latin Hypercube Sampling - A Review

Latin hypercube sampling, introduced by McKay, Conover and Beckman 

(MC&B),12 is an extension of lattice sampling described by Patterson.13 Initially, 

LHS was used in sensitivity analysis as an improvement to SRS for estimating 

cumulative distribution functions.14 15 The length of the citation list for MC&B 

indicates that LHS is in common use today.

Constructing a Latin hypercube sample is a straightforward process. 
Assume the experimental space has been scaled to [0,1 ]rf, where d is the number 

of input variables. Let z = [0,1, ■ • • .«-1], where n is the number of runs in 
the experimental plan. Then

71;(z )+l/2
■s / = ------------- ,j =1, . . .  ,d

n

is the j ,h column of the experimental design S, where nv . . .  ,n d are indepen-

dent uniform random permutations of z. This algorithm places the design points 

in the center of the randomly selected sections of the grid. MC&B suggest ran-

domizing the location within these selected locations, i.e. let s*j=Sij + y,y, where 

y¡j is a uniform random variable on [-l/2n ,1/2/7 ]. This helps to simplify some 

theoretical calculations, but does not improve the structure of the design. This 
becomes apparent when n is a moderate size, causing the range of y¡j to be trivi-

ally small. For the designs in this thesis the design values will not be random-

ized.

Several variations on MC&B initial LHS algorithm have been developed. 

Iman and Conover 16 discuss methods for inducing correlations between the 
input variables. Handcock17 develops an algorithm called cascading Latin hyper-

cube sampling. This type of Latin hypercube sampling generates clusters of
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points at several levels, the number of levels chosen by the designer. At each 

level a standard LHS is carried out to locate the clusters, then at the lowest level 

one further LHS is created to locate the design points for the cascading Latin 

hypercube sampling. This design was developed to improve estimates of scale 
and smoothing parameters in the Matérn class of covariance functions.

MC&B show that for estimators of the form

T ( X l , . . . , Y tt) =  - t g ( Y i ),
n i=i

where F¿ = h (x ¡) and h (x f) is a square integrable function, the variance is 

smaller using LHS than it is using random sampling or stratified sampling if cer-

tain conditions of monotonicity are met. Stein18 and Owen19 20 21 expand on 

the work by MC&B on variance estimation and asymptotic behavior of the esti-
mates. Stein extends the work on comparing variances by showing that asymp-

totically Cov(h (X1),/i(X2))<0 so that Var (h (X LHS)) < Var (h (X SRS)) without 

the monotonicity restrictions given by MC&B. Stein also shows that the more 

additive the function Y =h(x), the smaller the variance is when using LHS. 

Stein derives a central limit theorem for E(h(X)) and outlines another algorithm 

as an alternative to the one given in Iman and Conover.16 Owen extends Stein’s 

work on the central limit theorem and shows that the variance for integrals of 

h(X )  is less using LHS than SRS.

None of these papers address the physical, or space filling properties, of 

LHS. Two concepts can be used to investigate how well a design fills up the 
input space.

1. How completely does the design cover the input space?

2. How uniformly are the design points spread throughout the input space?

The answer to the first question tries to get a measure on how well the code has 

been exercised, i.e. how well the full range of all input variables is covered. The 
latter question is addressed by using discrepency functions to compare designs to 

a uniform distribution. For example, a 2k full factorial design does not cover the 

input space very completely only having observations in the corners while SRS 

covers the full input space more completely. Conversely, the 2k design spreads 
points more uniformly through the input space than SRS.
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4.2 Asymptotic Space Filling Property

The purpose of this section is to show that for any neighborhood around an 

arbitrarily selected point x, the probability of at least one design point being in 

the neighborhood tends to one as n —»<». This statement implies that for some n 

there will be no point in the input space that will not be within some prescribed 

distance of a design point, with probability 1. After the proof, an application of 

this property is given.

Proof:

Let a neighborhood of x = (x1; . . . ,xd) be defined as N 5(x) = [x±5]. Let 

s* = (s*i ,  .  .  .  ,  s*j) = s i ,  if sn £ A5(x 1). If n > 1/5, then there exists a design 

point s* in S. Since n>  1/5 and the values of the design points are equally

spaced at intervals of 1 In, P{sik £ N h{xk))=ph, where p 5 = max { _ :  _  <S}.
j=i,...,n n n

The design points are randomized independently over the input variables so these 

probabilities are independent for £ =2, . . . ,d . Then

P(sik $ N 5(x), k=2,...,d) = 1 -  f t p  [ 4  £ N b(xk)] = 1 - p g " 1.
k=  2

It is sufficient that there is at most one point in A 5(x) and the probability of this 

is

(4.2.i) l -  n  ( i - p r i ) = i - a - / > r i r ^ i , n ^ ° o
Sn e Ns(Xi)

since p 6 is a constant.

For SRS the first dimension has the same probability distribution as any 
other dimension so

P {s € A 6(x )) = 1 -  (1 -  5rfr ,

so SRS has this property as well.

4.2.1 Application

Computer simulation models typically do not have any measurement error, 

which implies that theoretically the M SE(Y(x)) can be zero. This will happen if 

h(x) is a simple linear model and regression is used to estimate the model. 

However, if the model is incorrect then bias will prevent MSE (Y (x))—>0 for 

regression no matter how large the sample size.
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Assume that y (x) is a realization of a stochastic process which has the form

F(x) = (3 + Z(x).

Where Z(x) is a stochastic process with mean zero and correlation

Corr (Z (x), Z (w)) = R (x, w )

between the responses at two inputs x and w and the variance

Var (Z (x)) = a 2.

Let Rs be the correlation matrix for the experimental plan, S and 

r (x )= R (x ,s i ) be the vector of correlations between x and each point in the 

experimental plan. If the best linear unbiased predictor (2.2.3) is used and it is 
assumed (3 is known, then M SE(Y(x)) = ct2(1 -  r '(x )R f1r (x)). Details of this 

model can be found in Chapter 2. The result given in this section can be used to 

show that MSE(Y{x))—>0 for any x as the design points get close to x 

for an interpolating predictor.

Proof.

Let x = s * + 5, where

s * = min | |x - s ; ||, thens * € A 5(x).
i = l,...,n

Then MSE (T (x)) can be rewritten as

a 2(l -  r '(s * + b )R flr(s* + 5)).

Let r 6(s/ ) = r(s / +5) then by the Cauchy-Schwarz theorem:

l
K r V s /X - 1r 6(8/*))(r/(slX - 1r ( s ; ) ) lT i  I r ̂ (s *)Rfxr (s *) I.

Since M SE(Y(x))>0 and MSE(Y(s*))=0, this implies that r /(s* )R f1r(s*)=  1 

and

l
1 ^ \r '&(s*)Rs~lr 6(s* )\Y Z \r /6(s* )R f1r(s*)\.

Now because r (x) is a continuous function, as S—>0

r 'b(s *)Rs~lr (s '(s i )Rs~'r (s *) = 1

and MSE(Y(x))—>0. Combined with the argument in Section 4.2 it is clear that 

MSE(Y(x)) can be made arbitrarily small (in probability) by taking n suffi-

ciently large: i.e. under LHS there exists n0 such that for n>n0 and r|,£
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arbitrarily small, P (MSE (Y(x)<r\)> \ - e .  This is true even if R (x ,w) is 

misspecified since the predictor is an interpolator and r (s) = 0 even if R (x ,w) is 

incorrect.

4.3 Discrepency Functions

Discrepency functions are used to measure how well points are uniformly 
spread throughout the design space. Let (l(A) be the volume of the region A. 
Then x = {x x,x 2, . . . ,xN} is a uniform sequence if for any A

# {xx G A }
___ —___ -» |l(A ), N

Discrepency functions measure the deviation of finite sequences from fl(A). 

Two common discrepency functions are ordinary discrepency, or Kolmogorov 
deviation, and L2 discrepency. Ordinary discrepency is defined as

# {Xj- £ A }
Dn  =sup I-----  ----- -p (A ) I

A N

for A = {[0,/iJ x • ■ • x [0,brf]}. L 2 discrepency is defined as

L y # {x ■ £ A }
¿ V  = J[------------~ ft(A )]2 dy ,

o ™

where A ={[0,y]x • ■ • x[0,y]}. For random designs, such as SRS and LHS, L2 

discrepency can be written as

y
DIN1 = \Var{X)dy,

o

where X is a random variable with a binomial distribution.

4.3.1 Variance as Discrepency Function

Most experimental plans, such as orthogonal arrays, D-optimal and Maxi- 

min designs can be considered deterministic, i.e. the design points are determined 

numerically and there is no random component involved. When a LHS or a SRS 

is generated the resulting experimental plan is a random event or random design. 

Deterministic designs typically are difficult to derive for large numbers of input 

variables or may be inflexible in the number of experimental runs in the design, 
such as for orthogonal arrays. Random designs are more readily computed than 

deterministic designs since they rely on the process of randomization to spread 

out the design points while deterministic designs rely on various, often complex,
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mathematical structures to derive the design. This is one of the reasons why 

SRS has been so popular in large experimental settings.

An experimental plan has good space filling properties if the experimental 

region is covered fully and uniformly. The results in Section 4.2 show that the 

experimental region is completely covered asymptotically for LHS. One way to 
determine how uniformly a random design fills the experimental region is to 

measure the variability in the number of design points that fall in an arbitrary 
region of the experimental region. If the variability is small then the number of 

points in a randomly placed region will be close to the mean for that sized 

region. Since the region is randomly placed the mean number of design points 

in different regions must be approximately the same. This implies that the design 

points are dispersed over the experimental region in a more uniform manner than 

a experimental plan with higher variance.

Stein18 has shown this to be true asymptotically by his proof that the vari-

ance of any square integrable function from a Latin hypercube sample is less 
than from a simple random sample. Let h (x) be an indicator function where

(4.3.1) h ( \ )
1 if x is in Vd 
0 otherwise

where Vd is a region in [0,l]rf. The following result shows that this can be 

extended to all n for the function h (x) given in (4.3.1).

One of benefits of using variance as a measure of discrepency for random 

designs is that no simulation studies are necessary for comparing different ran-

dom designs and average squared discrepency, which for random designs is 

equivalent to ]Varp (X)dp can be used for comparison to deterministic designs. 

The mean and variance are now computed for SRS and LHS.

In general the problem can be set out as follows. Let the full experimental 

region be scaled to be on the unit cube [0,1 ]rf. A rectangular subregion, 

Vd =V{X, . . . ,xVd, of the experimental space can be described as follows. 

Select 0 ^P (^1  and 0 < v/: ^1 — for i= l,...,d . Then 

[v^Vj +p x. . . .  ,x  [vd,vd+pd] = Vd is a subregion of the full experimental 

space, where pt is the length of the i th side. Let p x-  ■ ■ • =pd =p . Let 5 be a 

design for d input variables with n runs and be the i th observation for the 

j th input variable.
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Let X  = I Vd (~'|S I, be the number of design points in Vd . Now let

then

\ if s{j is in Vj 

0 otherwise

n d
X = £  UQij-

¡=i y-i

Let XLHS and XSRS be the number of points in Vd for LHS and SRS respec-

tively.

Note that for fixed i, Qtj is independent of Qik for all j  and k for both 

LHS and SRS since randomization on each input variable is taken separately in 

both sampling methods. However, Qik is not independent of Qjk , i* j ,  for LHS 

but is for SRS. Since the probability of a point from a SRS being in Vd is p d, 

the relative volume of Vd to [0,l]rf, XSRS ~ Bin(n , p d ) and E(XSRS) = npd and 

V<*r(XSRS) = npd (1 - p d).

Let m = [np ] + 1, where [np ] is the integer part of np . Fix j  and let
fl

Qj = X  Qij • Then Qj is the number of design points for the j th variable that are
i=l

in Vj and Qj - m  or Qj = m - 1 depending on the position of Vd in [0,l]rf. Then

P(Qij = 1 I Qj=m) = m/n 

and

P (Qij = 1 I Qj=m-\) = (m-\)/n.

Define P (Qj = m )= p * and assume that p* =np Then

E(XLHs ) = i l l E Q J(E(Qij\Qj)).
i = 1 7=1

Since the columns of S and the marginal distribution of the rows of S are identi-
cally distributed

z7 /v  \ ^  A /  * m * .m - 1 .p« = z n ( p  —+(i- p  )— ) = «(—i-U -1 n n n
m —l f]-+------ ) =np L

n

Assume Qj is binomially distributed with probability p * = n p - (m - 1), then
E(Xlh s ) = E(Xsrs)
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To compute Var(XLHS) it remains to compute E {X 2HS). 

E  (X lhs) = t  h EQ, E(Gy1 Qj) + 2 £  E (G y  I Qj)
1=1j=l i<kj=\

= E(X) + n(n-\)(p* m {m -\) + n _n*^(m -l)(m -2) ^  
«(«-1) «(«-1)

Then

VTtr (XLHS) = np d +n (n -1)( ( m - l )  
«(«-1)

)rf (2np -  m )d —{np d)2.

To prove that Var (Xu/S) is uniformly less than Var (XSRS) it needs to be 

shown that Var{XSRS)>Var{XLHS) for all p which follows if

npd{1 - p d) ^ npd+n (2np -m )d~{npd)2.
n (n -1)

This can be reduced to

(4.3.2) p 2 d > ( m - \  y j ( 2 n p - m y

n n - 1

and can be rewritten as

f  (p) = n (n - \)p 2 -  2 np (m -  1) +m 2 -  m ^ 0.

The first and second derivatives of /  (p) show that the extremum is a minimum 

and is found at p = {m -l)/{n -l); the value of f ( p )  at the minimum is n- m  

which is greater than zero and the inequality is shown to be correct.

This result shows that Var(XLHS)<Var(XSRS) over all randomly placed 

cubic regions. The result is readily extended to any rectangular region by replac-

ing p by P j ,  p* by p j  and m by mj in the equations above. The equations 

remain fundamentally the same and equation (4.3.2) can be rewritten as

d d

n p f 2  r i (
i -1 j = i  n  > i

Since the result holds for any p such that (m -l)ln <p <m tn when d = 1, then it 
also holds for the product when the P j’s are different.

The result also holds for any given (nonrandomly placed) rectangular region 
by using the design S 1 where s i  =sp +jj and y- is a random variable with a 

uniform distribution on [-1/2«,l/2n].
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4.3.2 Behavior of Latin Hypercube Sampling

For the results in this section assume that Vd is cubic with sides of length 
p . Variance is a function of n , p , and d and p d is the percent volume of [0,l]rf 

which the randomly placed cubic region covers. For SRS, variance is only a 

function of n and v =pd . This is not the case for LHS, but from a few empiri-

cal studies and examination of (4.1.1) it is apparent that changing d has only a 

minimal effect on the results if n and v are fixed. Figures 4.1 and 4.2 show the 

typical shape for the standard deviations of X for LHS and SRS in relation to n 

and v respectively. Figure 4.2 shows that Var{XLHS) is nearly the same as 

Var(XSRS) for small regions Vd where the chances of any points falling in Vd 

are small; then well before v =0.5 the two variances diverge only to converge 

again at v = 1 .0 .

The relative efficiency shown in Figures 4.3 and 4.4 is the ratio of standard 

deviation of XSRS to XLHS. Figure 4.3 shows that as n -s>°° the relative effi-

ciency has a maximum limit which it approaches fairly quickly. This behavior is 

true for all values of v . Figure 4.4 is a plot of this limit of relative efficiency 

versus v. The figure shows that the amount of clustering of design points in 

LHS becomes relatively less than that for SRS as the scale of observation 
increases. The relative efficiency quickly drops to one for 0.98 <v ^1.0.

The scatter of points in Figure 4.3 is due to oscillatory behavior of 

Var (XLHS) as a function of n . The reason for this can be seen from the expan-

sion

Var (XLHS) = Ev Var (XLHS I U) + Varv (E (XLHS I U )).

Since U is binomial with probability p * , Varv (E (XLHS It/)) is a quadratic func-
tion for (m -l)ln  <,p <,mln and

Var(XLHS) =EU Var{XLHS It/) for p* =0 or 1 .

The oscillations dampen to the limit as n —>°° since np = [np ] for all n .

The mean and variance of XSRS is the same whether XSRS is a combination 

of two samples of size n l and n2 or one sample of size n l + n 2. This can 

readily be seen from the equations for the mean and variance. This is true for 

the mean of XLHS but is not the case for the variance. However, Table 4.1 

shows that the variance for two combined samples is only slightly larger than a 

single sample. The efficiency will vary somewhat given different n and v
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because of the oscillatory behavior of Var(X[HS).

% Volume with d=10

n 0.1 0.4 0.7

29 1.89 3.04 1.03
58 3.75 5.27 2.04

116 7.46 10.44 4.04

232 14.89 20.64 8.01

Table 4.1: Variance of Combined LHS

4.4 Conclusion

Latin hypercube sampling was developed to improve the variance of simula-
tion study estimates. LHS has been shown to have better variances for these 

estimates than simple random sampling. LHS has also been used as the experi-

mental design for model estimation for linear models and Gaussian stochastic 

processes. The benefits of using LHS for model estimation is that it tests each 

variable at many different input values. The variance of these model estimates 

have also been shown to be better than for SRS, especially if the models are 
nearly linear.

The work in this chapter uses the variance of the number of design points 

in an arbitrary region to measure the uniformity of a design and shows that LHS 

cover the experimental space more completely and more uniformly than SRS. It 
also shows that several small LHS, with a total number of n runs, have nearly 

the same space filling capacity as one large LHS with n runs.
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- Chapter 5 -

Numerical Optimization Algorithms

5.1 Introduction

To avoid having the topic of optimization repeating itself at various points 

in other chapters a description and discussion of the numerical optimization algo-

rithms used in this thesis has been left to this chapter. The robust engineering 
design method described in Chapter 3 uses numerical optimization algorithms at 

two separate times: for maximization of the likelihood equation and when 

searching for a robust engineering design with the statistical model as a cheap 

emulator of the simulation model. The MLE optimization problem is a univariate 

optimization problem but has a large number of inputs. The search for optimal 

engineering designs in the described examples were multivariate optimization 
problems with a moderate to large number of inputs.

Although these optimization problems play an integral part in developing 

the predictor and finding optimal engineering designs, we did not have the incli-

nation or expertise to develop new optimization algorithms. Our goal was to find 

an optimization algorithm that was already available and achieved good results. 

During the investigation of the examples in Chapter 6 , several different optimiza-
tion algorithms were used. A brief outline and discussion of the algorithms are 

given in Section 5.2-5.4. The rest of this section gives a brief overview of loss 

functions, optimization algorithms and their relationship.

Numerical optimization algorithms search for the minimum (maximum) of 

the objective function given possible constraints on (functions of) the inputs. 
The objective function for model parameter estimation is the likelihood function 
as stated in (3.1.1). This objective function has a univariate response. The objec-
tive function for optimization of the engineering design is the loss function. As 

mentioned in Section 1.3, the loss function may be a multivariate response func-
tion.

Two ways to handle problems with a multivariate response objective func-
tion are: to create a univariate response from the multiple responses, or to treat 

one of the responses, or a function of several responses, as the target to be 
minimized and the rest held within stated boundaries or constraints. Frequently,
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the organization of the response vector into targets and constraints follows 

readily from the specification description. Several possibilities for the loss func-

tion were considered from these two approaches, especially for the voltage- 
shifter circuit example in Chapter 6 . However, a thorough study for the best loss 

function was not carried out because it was beyond the scope of the main focus 

of our research.

The optimization algorithm that can be used for finding the optimal solution 

depends on the objective function. For example, the Nelder-Mead simplex 
method does not allow constraints on the inputs, while the adaptive random 

search (ARS) algorithm and the non-linear programming method, NPSOL, do 

allow constraints. The Nelder-Mead simplex algorithm has been used for com-

puting maximum likelihood estimates throughout the research. For multivariate 

objective functions a univariate response needs to be created from the multivari-
ate response if the Nelder-Mead simplex is to be used. If constraints are added 
then ARS or NPSOL can be used.

There is some common notation for all algorithms. Let x be the d- 

dimensional vector of inputs over which the function y(x) is to be optimized, 

where y(x) may be a multivariate response.

5.2 Nelder-Mead Simplex

The Nelder-Mead simplex is an optimization algorithm which requires a 

univariate response objective function and no constraints on the inputs. This 

optimization algorithm is used to compute the maximum likelihood estimates for 

the model described in Chapter 2. Since the correlation parameters are con-

strained, 0>O and \ <p <2, and the Nelder-Mead simplex algorithm requires no 

constraints, the correlation parameters are translated to 0 ' = ln0 and 

p ' = {p -  1.5)) during the search part of the optimization.

The basic idea of the Nelder-Mead simplex algorithm is to take d +1 points, 
Xj, . . . ,x d+1, in the input space and replace the highest point, x H with 

x H = a x H, where a  = - l , 0 < a < l ,  or a > l  or a suitable combination of the 

three. The different a ’s are referred to as a reflection, contraction or expansion. 

A stepwise outline of the algorithm as loosely described in Numerical Recipes is:

1. Starting point x 0 and

x ,• = x o + A,e i , /' = 1, . . . , d.
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2. Compute reflection. If there is an improvement then try expansion, if not try 
contraction.

3. If no movement in Step 2. try multiple contraction around the value of x 

which gives a minimum.

4. Repeat Steps 2 and 3 until stopping rule.

Two stopping rules: either the change in x from one step to the next is less than 

to/ or the value of y (x) from one step to the next is less than /to/, where to/ and 
/to/ are user defined tolerances.

This algorithm will always find a local minimum, but does not necessarily 

find the global minimum, a common problem with optimization algorithms. To 

improve the chances that the minimum found is a global minimum it is sug-

gested that the algorithm be run several times, each time from a different starting 

point. From personal experience starting from 3 to 5 different points is usually 

sufficient.

Two different versions of this algorithm were used at various times for 

computing maximum likelihood estimates, the subroutine E04CCF from the 

NAG library and AMOEBA from Numerical Recipes.1 From informal comparis-

ons of the two algorithms we decided that the AMOEBA version of the algo-

rithm was more efficient and regularly found better solutions than the NAG ver-
sion.

5.3 Adaptive Random Search

The first algorithm used for the engineering design optimization problem 

with constraints was adaptive random search2 3 4 as described by Pronzato, et 

al,5 As the name implies this is a global random optimization algorithm. Most 
random search algorithms are an iteration of two steps: generate new observa-
tions from some distribution and select the best setting from the new observa-

tions according to a given rule and repeat with new observations.

The adaptive random search algorithm chooses its new observations from 

distributions with different variances to create ever decreasing search areas. The 

best of the search areas is then investigated more closely before the procedure 

repeats itself. Let z = x + r where r is a random vector, normally distributed 

with mean zero and variance

L(a) = diag [q 1, ct2, . . . ,o d].

Let a (1) = x max- x min, where x max and x min are the upper and lower bounds of
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the input space and ct(,) = 0.1' ‘ct^ ’ i = 2, . . .  , f  x. An outline for the algorithm 

is:

1. Select x max and x min and set the starting point x 0 = 0.0. Let k =0.

2. For j  =1, . . . , / j  :

Generate f 2(j) observations of y (x £+r )  where r is normally distributed 

with variance E(ct(-/)). If z is outside the input space then x is ignored. Let 

x* equal the best set of inputs, z, from the new observations. Let k - k + 1.

3. For the most successful generate / 4 new observations of yCx^+r) 

and let x* equal the best set of inputs, z, from the new observations. Let 

k =k +1.

4. Repeat Steps 2 and 3 until a stopping rule has been reached. There is a 

series of three stopping rules, the order of implementation is: Stop if

a. a maximum number of iterations is reached.

b. ct^  ̂ has been selected f 5 times.

c. y (x) has reached some predetermined criterion.

The last rule typically is not implemented because of the difficulty in establish-

ing criteria approximating the optimal solution.

There are a number of parameters in the algorithm that need to be assigned. 

We used the values suggested in Pronzato, et al.\ / 1= / 5 = 5, / 2( / ) = / 3//, and 

f  3 =f  4 = 100. Since the input variables are scaled to [-0.5,0.5] for our prediction 

models, / x = 4 was also used because f l = 5 did not generate a lot of movement 

relative to the required accuracy in x.

The adaptive random search algorithm can handle any type of objective 

function and constraint problem, as long as appropriate decision making rules are 

coded, because the new observations are selected at random. It is only a matter 

of testing whether the new point fulfills the criterion better than previously 
selected points. If the new point is better then the previous point it is kept for 
reference and additional points are tested to try to improve on it.

5.4 NPSOL

A method for handling optimization problems with a smooth nonlinear 

objective function and both linear and nonlinear constraints is a nonlinear pro-

gramming algorithm which has several acronyms, but will be referred to here as 

NPSOL. The implementation of the algorithm used is the NAG version of

-88-



NPSOL, subroutine E04UCF. The description that follows is an overview of the 

NAG manual description. See also Gill, et alP

A formal construction of the problems which NPSOL is designed to solve 

can be stated as

where y(x)  is the objective function and x, A , and c (x) are the bound, linear 

and nonlinear constraint functions respectively.

An initial estimate of the solution is given and the routine first finds a solu-

tion that satisfies the bound and linear constraints. Once this occurs a series of 

major and minor iterations are carried out. The major iterations are used to find 

the optimal solutions, while the minor iterations are used to find solutions to 

quadratic programming subproblems needed for the major iteration. Derivatives 

for y (x) and c (x) are requested for the algorithm, but finite differences are used 

to compute estimates for those derivatives that are not furnished.

The major iterations create a sequence {x*.} that converge to x * , a first 

order Kuhn-Tucker point of (5.4.1). The sequence is of the form 

x*+i=x*+cip,  where xk is the current value, cc>0 is the step length and p is 

the search direction. Given the search direction the major iteration calculates a 

steplength a  that produces a sufficient decrease in an augmented Lagrangian 
merit function.

The search direction is determined from the solution of the quadratic pro-

gramming subproblem and is the minor iteration of NPSOL. The quadratic pro-

gramming subproblem can be specified as

where g is the gradient of y (x) at x, H is an approximation to the Hessian of 

the Lagrangian function, AN is the Jacobian matrix of c(x) and 1* and w* are 

new bounds, which are a function of / and u and the constraints in (5.4.1).

(5.4.1)
x

Minimize y (x) subject to : 1 < Ax f ^ u ,
.c(x) .

P
Ap

¿ivP
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5.5 Conclusion

Most deterministic algorithms only guarantee a local optimum and several 

starting points are used to help ensure a global optimum. This is not necessary 

for the ARS algorithm because the algorithm moves around the input space in a 

random manner. Eliminating multiple starting points reduces the total number of 

observations that may be used. From casual observations we felt that ARS did 

not consistently give as good results as AMOEBA or NPSOL.

Numerical optimization methods have not received much attention in the 

discussion about robust engineering design methods, but there are many benefits 
to their use. The use of existing optimization algorithms can lead to better solu-

tions more quickly than the sequential improvement philosophy of Taguchi. The 

search for the best optimization algorithm was not exhaustive by any means and 

an improvement in the optimization algorithm would immediately improve the 

efficiency of the search for maximum likelihood estimates and optimal engineer-

ing designs.
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- Chapter 6 -

Case Studies in Robust Engineering Design

6.1 Introduction

A major problem for integrated circuit designers is how to design circuits so 

that performances, as predicted by a circuit simulator, are insensitive to uncon-
trollable variations in the manufacturing process and in the operating conditions. 

Statistical circuit design methods 1 attempt to optimize the performances of a cir-

cuit design in the presence of these uncontrollable variations.

Statistical modeling of circuit and process simulators to achieve consistently 

good performance has become increasingly prominent.2 3 4 In some examples,3 4 

circuit performances are modeled as quadratic functions of all the input factors 

of interest: the designable factors, the uncontrollable statistical variations, and the 

operating conditions. The statistical model is fitted from relatively few runs of 

the simulator. A key characteristic of these approaches is that the statistical 

model can be used as a computationally cheap surrogate for maximizing yield, 

minimizing variations of performances around targets, or optimizing other meas-

ures of quality.

These and other existing tools for statistical circuit design work well when 

the number of circuit factors is small, no more than about ten, and the space of 

factor values is sufficiently restricted to admit simple modeling. With more fac-
tors, the number of circuit simulations required to fit quadratic models can 

exceed practical limits. Also, if the factors are allowed wide ranges the simple 

quadratic models may not be effective for approximating the performance func-

tions.3 4 The methods of Taguchi5 for finding robust designs likewise appear 

inadequate for treating many nonlinear situations.3 In these circumstances optimi-

zation is a formidable task. All standard routines have difficulties that inhibit or 

prohibit their use. Non-differentiability of performance functions stops some. 

Failure to converge and getting trapped at local optima are common occurrences. 

Many have trouble incorporating constraints on the performance functions. Most 
serious is that all require large numbers of function evaluations.
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Unless function evaluations are cheap, direct application of an optimization 

routine to the simulated performances is not feasible. Optimizing via an inex-

pensive approximation to the simulator is more feasible, but the approximation 

itself must be accurate for reliable optimization. Unfortunately, these two 

requirements—few simulator runs and an accurate approximation—conflict with 

each other.

These difficulties are overcome by multi-stage experimentation and, during 

each stage, by building a statistical model (predictor) of the simulator. The 
advantages of sequential experimentation for optimization are well known, e.g. 

Box and Draper,6 in which the term "evolutionary operation" is used. Such 

methods have typically relied on the adequacy of simple models over small fac-
tor ranges to indicate a local direction of improvement. Instead, a predictor is 

built on the region of interest and obtain sub-ranges of the factors where the 

optimum is predicted to lie. On the smaller region we build a more accurate 

model and continue the search. To cope with many factors, their large ranges, 

and, hence, complex performances, a class of approximating functions (predic-
tors) that is highly data-adaptive is used. These predictors often have much less 
error than polynomial models.7 8 This blend of sequential experimentation and 

modeling allows the optimum to be found in a few stages (usually 2 or 3) and 
with comparatively few simulation runs.

In outline the approach is:

Step 1. Postulate a statistical model for each performance.

Step 2. Plan an experiment and run the simulator to collect the data.

Step 3. Use the data to fit the models.

Step 4. Check the accuracy of prediction and plot the factor effects.

Step 5. If the models are insufficiently accurate, choose a subregion for the next 

experiment and return to Step 1.

Step 6. When the models are sufficiently accurate, optimize the objective (loss, 

yield, etc.,) using the fitted model in place of the performance functions.

Section 6.2 formulates the problem and elaborates on these steps. In Sec-

tion 6.3 and 6.4 these techniques are applied to multiple performances and cri-

teria, and incorporate manufacturing variations. The example used in Section 6.3 

is that of a GaAs voltage shifter circuit. In Section 6.4 the methods are applied
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to a digital logic circuit with 20  performances of interest, but with no manufac-

turing variations. In Section 6.5 the methods and the results of their applications 

are discussed.

6.2 Modeling and Optimization

Circuit performances generally depend on design factors, operating condi-
tions (environmental noise factors), and on statistical variations of device factors 
(uncontrollable manufacturing noise factors). Some designable factors may have 

uncontrollable variations superimposed. We focus initially on a single perfor-

mance, denoted by y. Let X=(Xlv..,Xd) denote the ¿-dimensional vector of 

varying input factors to the circuit simulator, all the other inputs remaining fixed. 

We typically normalize each Xt to he in [-0.5, 0.5], We write Xi=ci+Ui to dif-

ferentiate between the controllable and uncontrollable components of XL. If an 

input factor has no designable adjustment, then c;- has a fixed value (make it 0 ) 

and is ignored. Similarly, if there is no uncontrollable variation, then Ut = 0. The 

performance y is, therefore, a function of X=c+U, where c=(c x,...,cd) and 

U=(i/ 1,...,Ud). Finally, let x be a realization of X.

We adopt the Taguchi5 objective of minimizing a "loss", for example a 

measure of variability around a target performance. For recent accounts of 

Taguchi methods see Dehnad9 , Phadke10 or Chapters 1.2-1.4, 7. The particular 

loss used invariably depends on the problem. For the example of Section 6.3, 

the target value of the output voltage is 5 V and it is the fluctuation around 5 V 

due to U that we want to minimize. This suggests the loss structure

(6.2.1) Lmax  (c) = JI y (c +U )-5 12 d T(U),

where T(U) is the noise factor distribution and the ultimate objective to minim-

ize this loss by choice of c. A more complicated loss involving many more per-

formance functions and criteria is exemplified in Section 6.4.

We now detail the six step scheme outlined in Section 1.

Step 1. Postulate a tentative approximating model for the performance.

Low order polynomial models are well known, but, unless the performance 

function is simple, which is likely to occur only when the input ranges are small, 
these models can be misleading. For this and other reasons 7 8 we have adopted 

a different class of models. A brief overview is given here, but see Chapter 2 
for a thorough discussion. If x is the vector of input factors, let
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(6.2.2) y(x) = |3 + Z(x).

Here, Z(x) is a stochastic process having a correlation structure

Corr (Z(x),Z(w)) = R (x,w)

between the responses at two vectors of inputs x and w and having the constant 
variance

Var Z(x) = ct2.

We can also include, for example, linear terms:

(6.2.3) y{ \ )  = p0 + +Z(x).
/=i

The correlation structure of Z(x) captures the systematic departures from a 
simple model, such as the constant in (6.2.2). Typically, Z(x) and Z(w) are 
highly correlated for x near w. As y is deterministic and is often smooth, Z 

(through R ) should have corresponding properties. The specific R we use is of 

the form

(6.2.4) R ( \ , w ) = J^exp (-0,- Ixt-w i IPi).
i

The correlation constants 0 and p are unknown, as are a 2 and (3 or (31; . . . ,(3rf. 

The 0 ’s are non-negative and the p ’s are between 1 and 2. These constants are 
estimated in Step 3.

Whether to include the linear terms in model (6.2.3) can be dealt with in 

each individual problem. In most cases we have found little advantage to using 

(6.2.3) so we typically start with (6.2.2) to allow more data to be used for 

estimating the correlation constants of R (higher order models such as (6.2.3) 

"use up" degrees of freedom).

Step 2. Plan an experiment and run the simulator to collect the data.

We use a Latin hypercube experimental plan to select the inputs. These 
plans have some attractive properties for computer experiments. They are simple 
to generate and cover the experimental region fairly uniformly. See Chapter 4 

for a further discussion of Latin hypercube sampling.

The question of sample size is a difficult one. Earlier empirical evidence 

indicated that the estimation procedure used in Step 3 needs about 3 observations 

per constant. Since we may want to discard outlying data, some extra
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observations should be added at initial stages of experimentation. Discarding 

data is suspect if the goal is to model performances over the entire region. Our 

purpose, however, is optimization, so deleting outlying data can be helpful by 

allowing more accurate fitting on more relevant parts of the region. Criteria for 

selecting sample sizes are the subject of ongoing research.

Step 3. Use the data to fit the model.

We estimate the correlation constants in R via maximum likelihood and 

obtain y . The mathematical details and computational methods are described in 

Chapters 2 and 3.

Step 4. Check the accuracy of prediction and plot the factor effects.

To measure the accuracy of the predictor y from the fitted model, we com-
pute a root mean squared error of prediction using (2.2.4) at a number of ran-

domly selected points in the region. In the example of Section 6.3 we choose 20 

points. The range of these errors is a good indicator of the accuracy of the pred-

ictor. In the example of Section 6.4 extra runs were not available, so cross- 

validation estimates of error (3.4.1) were used to estimate the accuracy of the 
predictor.

To visualize the fitted models, we decompose y into a mean value, main 

effects due to individual factors, and second-order interactions between them.8 

This is described in Section 2.4 as well. The estimated main effect due to xt is 

the average of y over all factors except xt minus the mean value. These effects 

are then plotted. The main effect can provide an excellent, yet simple, indication 

of how a factor affects the performance. Contour plots of the estimated interac-

tion effects are useful for indicating the joint influence of pairs of factors.

At this point we reach a fork in the procedure. If prediction is sufficiently 

accurate for the particular problem go to Step 6; otherwise proceed to Step 5.

Step 5. Choose a subregion for the next experiment.

An optimization routine (see Step 6 below) can be used to find the center of 

the new subregion, while the plots in Step 4 are useful in choosing new limits 

for the factors. The new region has to be selected to take into account the fact 

that uncontrollable variations cannot be restricted. Then repeat Steps 1 to 4, 
with data drawn from the new subregion.
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Step 6. Optimize the loss function.

The loss depends on the performance function. We replace y by y and 

seek to optimize the resulting predicted loss. For example, in Section 6.3 we 

minimize over c, LMAX(c) = JI_y (c +U)—5 12 dT(U) as an estimate of (6.2.1). 

Because we commonly meet non-differentiable functions subject to complicated 

constraints various numerical optimization algorithms have been tried. See 
Chapter 5 for more details. Inspection of the main effects plots can help choose 

a starting point. This algorithm is also used at Step 5. After finding an estimate 

of the optimum we do a confirmatory run. If the confirmatory run is unsatisfac-

tory, we take steps to improve the models; see Section 6.3 for an example. A 

new stage with further data might be necessary if we can not improve the fit of 

the models.

When there are multiple performances we model the performances individu-

ally following Steps 1, 3 and 4. Only one experimental plan is carried out. 

Optimization is then performed on a single loss function which combines the 

multiple criteria.

The six steps just described clearly can accommodate other classes of 

models in Step 1 and other optimizing algorithms in Step 6. We have found that 
our particular choices make the sequential process efficient.

6.3 Voltage-Shifter Circuit Example

Figure 6.1(a) shows a GaAs voltage-shifter circuit. It ideally shifts the cir-

cuit input signal by 5 V as in Figure 6.1(b). Such a circuit can be applied to 

amplifiers or other larger circuits requiring a level-shifting function; in our case 
it is used for high-frequency transmission. This means that as well as achieving 
an accurate level shift of 5 V, the circuit should provide a large AC gain and a 

broad AC frequency bandwidth so that high-frequency systems can operate prop-
erly.

As the bandwidth becomes broader, the waveform of the gain may rise 

before falling. For stability of the circuit, this ripple effect should be minimized. 

The objective here is to maximize gain and bandwidth while keeping the voltage 

shift close to the target of 5 V and minimizing ripple.

Table 6.1 gives the ranges of the 14 varying inputs to the circuit simulator. 

We use logarithmic scales for some factors. Nine of the factors are designable; 
of these, log(ref), log(cload), log(clvs), and log(jl) (xv . . . ,x 4 respectively)
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have significant additive uncontrollable variations. For example, log(ref) has a 

total range of [log(0.9 KQ), log(6.4 KQ)], but a designable range of [log(1.2 

KQ), log(4.8 KQ)]. The other designable factors, j7, j9, log(rcomp), log(rlvs/ref) 

and j6/jl (x5, . . . ,x 9 respectively), have negligible noise components which 

were set equal to zero. The noise factors, x 10, . . . , x u  are noises in the power 

supplies (vpp, vn, and vnn), the threshold voltage (jmodvto), and the ohmic 

resistance (jmodrs). The ranges of all variations correspond to ±3ct . All of the 
total ranges are later normalized to [-0.5, +0.5],

i Factor Range of ci Range of u,•

1 log(ref in K Q) [log(1.2), log(4.8)] ±log(1.33)
2 log(cload in pF) [log(0.05), log(0.2)] ± log(2)
3 log(clvs in pF) [log(0.01), log(l.O)] ±log(2)
4 log(jl in mm) [log(0.02), log(0.045)] ± log(l.l)
5 j7 in mm [0.015, 0.045] —

6 j9 in mm [0.0075, 0.0225] —

7 log(rcomp in K Q) [log(l.35), log(5.4)] —

8 log(rlvs/ref) [log(0.2475), log(l.O)] —

9 J6/J1 [0.5, 2.0] —

10 vpp in V — [4.5, 5.5]
11 vn in V — [-3.3, -2.7]
12 vnn in V — [-5.72, -4.68]
13 jmodvto in V — [-0.9375, -0.5625]
14 jmodrs in Q — [1.05, 2.45]

Table 6.1 Input factors and their ranges: Voltage-shifter circuit

The performances we model are

y 1 = log(3dB bandwidth), bandwidth measured in GHz, 

y 2 = voltage shift (V),

y 3 = gain in dB, the frequency response at 0.1 GHz.

To monitor ripple we also model y 4, . . . ,y 9, the gains at frequencies of 0.191, 

0.363, 0.692, 1.318, 2.512, and 4.786 GHz. We use as a numerical measure of 
the ripple:
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(6.3.1) RIP = maxy_3? 9 (yj -  y 3).

Thus RIP measures the size of the upward fluctuation of the frequency response 

curve.

The most desirable circuit has maximum bandwidth and gain, a voltage 

shift of 5 V, and zero ripple. These goals cannot be met because of the uncon-
trollable variations, and because some of these criteria may conflict. We there-
fore need a means to combine these performances in order to measure the quality 
of a particular design.

The route we follow is to form a loss statistic to balance the need for good 

nominal performance and for low variability over the uncontrollable variations. 

With the notation of Section 6.2, each yj is a function of x = c + U ,  where 

x =(xj, . . . ,a' 14), and similarly for c and U. So by good nominal (U =0) per-

formance, we mean y ^ c ) and y3(c) large, ly2(c)-5l small, and RIP(c) small.

To measure the variabilities of bandwidth and gain around the nominal we 
use

Var (j ,c ) = |(y; (c +U )-yy (c ))2 d T(U)

for j = 1 and 3. Here T is the distribution of U, which we take to be indepen-

dent normals with standard deviations given by 1/6 of the ranges of the ut ’s. 

We also let

Var(2 ,c) = J ly 2(c+U)-5 I2 d r(U )

measure the variability of the voltage shift around the target. We do not use a 
corresponding variability measure for ripple; the first stage experiment suggests 
it is sufficient to only look at nominal ripple.

Formally, the problem we pose is

(6.3.2) maxc [ y l(c)+y3(c)-^V ar(\,c )  -  ^Var (3,c) ]

subject to

<Var{2,c) < 0.1T 

and

RIP{c) < 0.01 dB.
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We now apply the six-step modeling and optimization strategy described in 

Section 6.2 to the loss function and constraints given above. Each performance 

y ,• is modeled as

(6.3.3) y.(x ) = (3;- + Zj(x),

but all the p t ’s in (6.2.4) are taken to be equal. Since there are nine responses 

there are nine sets of correlation constants to be estimated.

At the first stage we select a Latin hypercube experimental design of 75 

runs for the 14 input factors. Table 6.2 lists the values of y v y 2, y 3, and RIP 

for the first five runs. There are some very badly behaved circuits. For exam-

ple, runs 2 and 3 have very low gains. Thirteen points in all have 

gain < -7 dB , and these outlying data are deleted for the statistical modeling (as 
noted in Step 2).

Run Volt Gain log(BW) Ripple

1 5.31 -5.58 9.5992 1.09
2 6.53 -15.51 9.9065 0.00

3 6.60 -19.95 9.4026 0.00
4 4.48 -2.65 9.9210 0.00
5 5.44 -2.37 9.7036 0.54

Table 6.2 Performances for the first five experimental-design points:

Voltage-shifter circuit.

Model (6.3.3) is fit separately to each of y 1 ,..., y 9 using the remaining 62 

runs (Step 3). Typical root mean squared errors associated with the predictors 

y 1# y 2, and y3 are 0.05 log GHz, 0.14 V, and 0.30 dB (Step 4). They are size-

able, suggesting the need to reduce the experimental region to improve accuracy.

To guide the choice of the second-stage experimental region (Step 5) we 
optimize (6.3.2) with respect to the design factors c and with yj replaced by y j . 

The integrals in (6.3.2) for Var(J ,c) are estimated from 100 Monte Carlo sam-

ples of U from r (U ). Around this tentative optimum we choose a sub-region for 
c x ...,c9 using main-effect plots and interaction plots.
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Figures 6.2, 6.3, and 6.4 show the main effects of the 14 inputs on 
bandwidth, voltage, and gain. As the interaction plots contain no exploitable 

information, it is sufficient to consider these figures only. There are several not-

able features:

(a) The estimated bandwidth, y l5 is strongly dependent on cload (x2), with 

lower values giving higher values of bandwidth. There is some dependence on 

jl (x4), j7 (x5), rcomp (x7), and little effect from the uncontrollable factors

* 1 0 >  • • • ’ X ] 4 -

(b) The estimated voltage, y 2, depends strongly on rlvs/ref (x8) and j6/jl

(x9). Also, ref (xx), j l  (x4) and rcomp (x7) have effects of a practical magni-

tude. This means that there are many tradeoffs between c 8, c9, etc., that can

keep voltage on target. Of considerable importance is the fact that the uncon-

trollable factors vpp (x10), vn (xu ), and jmodvto (x13) have a significant effect 

on y 2, indicating potential difficulty in controlling variability of the voltage shift.

(c) The estimated gain, y3, has large effects from ref (x ,), rlvs/ref (x8), and

j6/jl (xg), with smaller but practical effects from civs (x3), jl  (x4) and from the

uncontrollable factor jmodrs (x14).

Based on the tentative optimization and these plots, we reduce the ranges 

for the controllable factors. For example, on the normalized, logarithmic scale, 

the "optimal" value of (Cj) is roughly at its lower bound of -0.35. Figures 6.3 

and 6.4 show that the only way to get larger gain values while maintaining vol-

tage shift near 5 is to take small values of x v Figure 6.2 shows that x 1 is unim-

portant for bandwidth. Thus, we choose a fairly tight sub-region for c x: the inter-

val [-0.353, -0.3]. After adding in ±0.147, the ±3ct range for u u which cannot 

be reduced, the total range for x x becomes [-0.50,-0.15] after some rounding. 

Similarly, promising sub-ranges are identified for c 2 ...,c9.

We now repeat steps 2 - 4 on the new region. Fifty runs from a Latin 

hypercube design produce no poor circuits, a reflection of the move to an 

appropriate part of the space. The root mean squared error of prediction drops to 

about 0.004 log GHz, 0.035 V, and 0.01 dB for y v y 2, and y 3, suggesting that 

we now have predictors reliable enough for optimization. However, when the 

"optimal" c is tested by a confirmatory run for the nominal circuit (U =0), the 
nominal voltage is 4.88 V rather than the predicted 4.95 V. Rather than taking 
more data we add first-order regression terms to the model for voltage, as in
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(6.2.3). This improves the accuracy of the voltage predictor enough so that the 
estimated optimum meets the required voltage constraints. The new "optimal" 

c, ’s lead to accurate predictions at the nominal (U =0) and produce low variabil-

ities as shown in Table 6.3. The improvement over the initial design is indicated 

in Table 6.3. The confirmations for Var (j ,c) required a Monte Carlo sample of 

100 circuit simulation runs—we do this just for demonstration purposes. The 

Monte Carlo sample is obtained by picking 100 random vectors U according to 

their distribution.

Initial Nominal ^Var (y\c)
Predicted True Predicted True

log(bandwidth (GHz)) log(3.33) log(6.62) log(6.41) .044 .045
voltage (V) 4.99 4.975 4.929 .091 .111
gain (dB) -2.786 -1.913 -1.928 .037 .038
ripple (dB) 0.000 0.000 0.000 — —

Table 6.3 Nominal performances and variabilities at the second-stage optimal c: 
Voltage-shifter circuit.

6.4 Output Buffer Example

The example is an output buffer. Output buffers translate logic signals 

between integrated circuits and external connections. Of particular interest to the 

designer when considering components are:

1. The time between state transitions.

2. The control of voltage spikes due to changing currents.

These two performance criteria are in direct conflict, i.e. faster switching means 
more noise and so a trade-off is necessary.

The example is a proprietary circuit from INTEL so certain information has 

been left out or altered to mask the true results. The input ranges for the experi-

mental plan are scaled to [-0.5,0.5] for analysis and this is the range in which 

the results will be reported. Also, the values used for targets in the constraints 

have been replaced with constants, Kv, where v is the variable associated with 

the constant.
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There are 11 input variables used in experimentation, ten device sizes 
(Ti , Pj, Nj i =1,2 and j=  1,...,4) and Cload. All the input variables were 

assumed for this exercise to not have uncontrollable variation, i.e. U =0. The 

ranges for these input variables covered a large area to look for as many solu-

tions as possible. No nominal settings were given as in the example in Section 

6.3.

There are 16 response variables used to define the specifications for the cir-

cuit. There are two types of specifications, constraints and targets. The response 
variables are:

1. The delays in nanoseconds, TDH and T[)l  ■

2. The four power supply noises in volts, VCTDH, Vc t d l  > Vst d h  * ar|d VSTDI .

3. The two drive strengths in volts, VUP and VDN.

4. The two DC Current drives in milliamps, IOL and I0H.

5. The two loaded output transition times in nanoseconds, TR and TF.

6. The four peak currents in milliamps, ISTDL, Is t d h  > hroi. > an(i ¡cron ■

The goal is to find a circuit that minimizes the four power supply noises 

given a value of the input variable Cload and a set of constraints on the remain-

ing 12 response variables. The three values of Cload that were investigated are 

-0.25, 0.0, and 0.25. The general requirements for the optimal circuit design are 
the following.

Given the following constraints:

1 • Tnn < Kt d h  and TDL < KTDI .

2. ¡s = KJSIst d l  ~^st d h  > 0 and IC = KIC I Ic t d h  I ~ ^ c t d l  I > 0-

3. Tr  <Kt r  and TF <KTF.

Io l  > K/o l  an<3 I o h  > Kio h  ■

5. VUP > KVUP and VDN <KVDN.

Find the device sizes that minimize = max ( fsroi ,FO T  ,f cro/( ).

6.4.1 Results

For this example it took two stages, each with an experimental plan of 75 
runs, to produce statistical models accurate enough to locate an accurate estimate 

of the input factor values for the optimal circuit. We found that for Cload =0.25 

there were no viable solutions. For Cload= 0.0 we were able to find factor
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values so that Vmax = 0.875V. For Cload= -0.25 we found factor values so that 

V =0  595V

A question posed at the conclusion of the second stage led to a third stage 

experiment. The goal for this stage was to find the minimum Vmax at 

Cload =-0-25 and Cload =0.0 with no constraints except for the delay constraints. 

For Cload= 0.0 we were able to find factor values so that Vmax = 0.765V. For 

Cioad = “0-25 we found factor values so that Vmax = 0.500V. The rest of this sec-

tion gives a detailed account of how these solutions were located.

Stage 1

The primary goal of this stage was to reduce the size of the problem. This 

was accomplished by reducing the region of the input space where the search for 

the optimal factor values was conducted and by trying to reduce the number of 

response variables that needed tending. Since we were looking for results at 

three separate values of Cload there are two possible strategies for reducing the 

region, separate regions for each value of Cload or one region which is large 

enough to contain the solutions for all Ctoad values of interest. After analyzing 

the data from the first stage a single subregion was used to search for solutions 

for all values of Cload.

There are three ways in which the number of response variables can be 
reduced:

1. Several response variables can be combined into one function.

2. They are superfluous for the circuit specifications given.

3. They can be made superfluous by restricting the search area to a region

where the response always meets the relevant constraint.

From viewing the scatter plots of input vs. response it was apparent that 

there were many observations, particularly on the edges of the input space, that 

had response values far from the performance specifications. This led to the use 

of three "sub" designs. The subdesign for TR, TF » Cd l  ’ and Td h  contained 63 

points. The subdesign for the response variables V5roL, VSTDH, VCTDl  , and 

VCTdh  contained 67 points. The third subdesign used 59 points and was used to 

model the two constraints Ic and Is .

It was also apparent that four of the response variables: VUP, VDN, IOL, and 

IOH are dependent on a single input variable, either T 1 or T2, so there was no
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need to model these responses. See Figure 6.5a-d. From the graphs of the 

experimental data it is clear that to meet the constraints on VUP ,VDN ’ ̂  OL ’ and 

IOH that T j and T2 have to be greater than -0.25. Because of the clear relation-

ship between these responses and the input factors the number of response vari-

ables which need to be considered can be reduced to twelve.

There were two opportunities to combine response variables into a single 

function. We started by modelling Is and Ic and their corresponding constraints. 

By generating predictors for Is and Ic as well as for the individual responses we 

found that the cross-validation ERMSE (3.4.1) for Is and Ic were only slightly 

larger than the cross-validation ERMSE for ISt d l  anc* 1c td h  respectively, while 

the CV RMSE for ISTDH and ICTDL were an order of magnitude larger. From 

these results a decision was made to use Is and Ic rather than the individual 

responses. We also considered a similar approach for Vmax; this is a much more 

complex function and did not give as accurate a predictor as 

max (VSTDL y STDH ,VCTDL y c td h  ) so was abandoned. By considering these 

options we were able to reduce the number of "response variables" from 12 to
10.

The remaining 10 responses are modeled as (6.3.7); CV RMSE estimates 

and main effects plots were produced as well. The CV RMSE estimates showed 

that the statistical models do not predict the response variables accurately enough 

for making precise statements about an optimal solution. The main effects plots 

showed that most variables depend on CIoad and that response variables could be 

divided into roughly two groups, those that depend on T v P x and N 3 and those 

that depend on T2, N 2 and P4. See Table 6.4 for a list of significant input vari-

ables for all responses and the CV ERMSE for the respective response variables. 
Some of the more important interactions are :

1. Ti, P 3 for Is .

2. t 2, n 2 and T2, Cload

3. t 2, n 3 for Td l  .

4. Pi, P i for VCTDL .

5. * 2, Cloud f°r VsTDH ■

Since the predictors were not sufficiently accurate, the goal at this time is 
not to find a precise value of an optimal solution, but to narrow our search to a
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smaller region of the original input space. The next step (Step 5) was to use the 
statistical models of the response variables to determine the subregion of the 

input space where the optimal configuration of factor values was located.

Response

Variable

Influential 

Input Variables CV ERMSE

Data

Range

Tf T \, C i oad 0.82 20.1

T r T 2'  Cload 0.80 22.3

h T\^ Cload’ T i ,  P  A, N v  P  3 4.86 82.75

Ic N 3, P  x, N 2, T x, C lo a d ,  T 4t N 3, P 2 13.8 133.75

T d h T2 '  Cload  ’ T A, N 2, P 2 , P 3 , P x 2.14 27.4

T d l Cload  ’ T 2 , T x, P  J, N 3, N x 1.27 13.9

VcTDH N  2 ’ T 2 , P a , C lo a d ,  N  Ai P  2’ T x 0.08 1.07

VcTDL p 2 , R i , y v 4 , t 2 , n x , n 2 , p 4 0 .10 1.07

VSTD H T  x, N  x, P 3 , C lo a d ,  N  3' H  2' N  Ai P  2 0 .10 0.82

VsTDL P  1’ T x, N A, T 2 , N x, C lo a d ,  N 3 0.13 1.48

Table 6.4 Influential Variables in Stage 1 in order of importance.

First, response variables that are only affected by two inputs were studied. 

The main effects plots, see Figs. 6 .6  and 6.7, show that the ls constraint is met 

when T x and T2 > - 0.25, so can be dropped along with VUP, VDN, IOL, and 

I o h - The models for TR and TF show that T l or T2 and Cload are the only 

influential variables. Figure 6.8 shows that the equation aT 1 +b*Cload <KTF, 

gives an accurate picture of the relationship between T x and TF. The variables 

T2 and Tr  have a similar relationship as is shown in Figure 6.9. These func-

tional estimates show that when Cloatj< 0.0 the constraints for TR and T,. are 

met if T j and T2 are > -0.25 and when Cload >0.0 the constraints are met if T x 

and T2 >0.0. By dealing with just T x and T2 we have reduced the number of 

response variables to seven.

The problem has now been reduced to finding the region(s) in the factor 

space that meet the constraints on TDH, TDL, and lc and minimizes Vmax. The 

main effects plots, Figs. 6.10-6.16, indicate that the inputs and responses could
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be roughly divided into two groups. T { and P , influence TDL, Ic , and VSTDL, 

while Td l  and Ic are also strongly influenced by N 3. The response variables 

Tq h  and VCTDH are affected by T2, N 2, and P A. VSTDH and VCTDL appear to be 

affected by many variables making them easier to adjust and are typically the 

smallest of the four noises over the region, allowing us to focus our attention 

elsewhere initially.

The question now is, how can the noise variables be minimized and still 

meet the delay and Ic constraints? First, the main effects plots show the region 

of r 2 that does the most to reduce VCTDH is out of bounds due to other con-

straints. This leads us to consider keeping T 2 to the right and N 2 and P A as far 

left as the TDH constraint allows. This also works well for the TR constraint, 

because we now do not need to worry about Cload >0.0. The main effects plots 

show that P 2 only influences Ic and VCTDL. If we let P 2 be slightly negative we 

maximize the positive effect on Ic while reducing VCTDL.

Input

Variable

Stage1 

Range

Stage2

Range

Stage3

Range

T i [-0.5,0.5] [0.0,0.3] [-0A0.1]

t 2 [-0.5,0.51 [-0.1,0.31 [-0.1,0.31

P i [-0.5,0.51 [-0.4,-0.11 [-0.4,0.01

Nx [-0.5,0.51 [0.0,0.251 [-0.3,0.11

Pi [-0.5,0.51 [-0 .2 ,-0.11 [-0.4,-0.1]

n 2 [-0.5,0.51 [-0.5,0.0] [-0.5,0.01

P 3 [-0.5,0.51 [0 .0 ,0 .2] [0 .0 ,0 .2]
n 3 [-0.5,0.51 [-0.4,0.01 [0.0,0.4]

P a [-0.5,0.51 [-0.4,0.25] [-0.4,0.25]
N a [-0.5,0.51 [0.25,0.5] [0.25,0.5]

r̂  load [-0.5,0.51 [-0.4,03] [-0.4,0.3]

Table 6.5 Regions of Inputs Modeled at 4 Different Stages

We then move on to dealing with TDL, VSTDL, and Ic . The main com-

ponents of these three responses are T P  x and N s. For all three responses the
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affect of these three inputs are nearly identical. For example, decreasing T P  x 

or N 3 from .1 to -.2 increases the value for TDL by the same amount. We are 

now in somewhat of a quandary, decreasing T x, P \ or N 3 increases Ic  and 

decreases VSTDL which is the goal. However, decreasing these inputs increases 

Td l  which we do not want. The problem is to find a favorable tradeoff for 

these three variables. After selecting the ranges for these variables we choose 

the remaining input ranges to minimize V STDH and V C t d l  • The subregion used 

in the next stage is in Table 6.5.

Stage 2

The data from the second stage experiment show that the region selected 

meets the constraints for TR, Tr , and Is as expected. We also find that the con-

straint for Ic is fulfilled over the full region and that VCTDL is always less than 

one of the other noise variables. This reduces the number of response variables 
that need to be modelled to five. We compute the parameter estimates for our 

statistical models of the responses. After looking at the CV ERMSE (Table 6 .6 ) 
we decide our models are accurate enough to make a serious attempt at finding 

an optimal circuit design.

Response

Variable
Influential 

Input Variables CV ERMSE

Td l T'load ’ T i, Ti, P 3, P 2 0.05

Td h T 2’ Cload’ T N 2 0.11

Vc t d h ^ 2’ T2, Cjoad ’ T 3, Nx, A4W3, Tx 0.05

VsTDH N x, N 2, Cload, P 2, A4, T x, T2, P 3, P x 0.09

VsTDL P N x ,  E 2, Cioad, T2, P 4, iV4, N 3 0.07

Table 6 .6  Influential Variables in Stage 2 in order of importance.

The number of constraint variables that still may be an issue has been 
reduced to the two delays. The objective function therefore is now:

1. Given: TDL <KTDL and TDH <KTDH .

2. Find Vmax.
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Since VCTDL is always less than the other peak noises we feel it can be 

eliminated from the computation of Vmax, to generate some savings in the cost of 

running the optimizer. Since the values of the delays that are used in the optimi-

zation are only estimates of the true values it is prudent to run the optimization 

for constraints KTDL ±e and Kt d h ±b , where £ can be taken to be approximately 

the RMSE(Td h ) and RMSE(TDL) respectively. This helps to ensure that the 

delay constraints are met when the true values are actually computed. Six inputs 

generated using the optimization routine and different constraint values, three for 

Cioad~~0-25 and three for Cload= 0.0, were run through the simulation model 

for confirmation. The results from the confirmation points give circuits that 
meet all the constraints and l/ max = 0.585 for Cload=-0.25 and Vmax = 0.875 for 

C/oad =0.0. We also were able to determine that there was no circuit that met all 

the constraints for Cload =0.25.

Stage 3

After Stage 2 a new question was posed, if all the constraints except the 

delays were eliminated how would the factor values for the optimal circuit from 

Stage 2 change? One of the reasons that the region for Stage 2 was chosen, 

given the similarity of the behavior of 7 \, P x, and N 3, was the constraints on the 

response variables forced us to stay away from large negative values of T 1. This 

led us to switch the range for 7 , and N 3 for the experimental region of this 

stage. Since T 1 could be set further to the left than the constraints previously 

allowed we could expect lower noise values at least for VSTDL. However T2 

increased TDH much more than N 2 or P 4 so we could not try a similar swap 

with these variables. Also, from Stage 1 it appeared that when T2 is very small 

it caused Td i, to increase as well. This additional source of increasing td l  

could not be countered effectively by other input variables. So only VSTDL is 

influenced by eliminating the constraints.

Since this region had also been under consideration for the search for an 

optimal circuit whether constraints were included or not, we ran the optimizer 
under both conditions. When searching for the optimal circuit with constraints 

the objective function included many of the constraints that had been eliminated 

by the choice of the region in Stage 2. The constraints and targets for this stage 

include: TR, TF , Ic , Is as well as the delays and the three noises VSJDL, VSTDH, 

VCt d h  '■> again VCt d l  's not a factor in determining the maximum noise level.
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Response Influential

Variable Input Variables CV ERMSE

Tf ^ 1’ Qoarf 0.07

Tr ^ 2’ Cload ’ H2 0 .02

Is T l’ P V Cload ’ ^  V I3 2 1.39

Ic T !■> 1*2’ ? 2’ I3 1’ l̂oad ’ N 2 2.78

Tf)i. T V Cloud ’ 0.09

Td h Cloud ’ ^ 2’ T2, P 2 0.15

VCTDH N 2, P 4, T2, Cload, T L 0 .02

VSTDIl H v  T\, T2, P 1, P 4, P 3, N 3, Cload 0.05

VsTDL P v Cioad, N 3, T2 , T { 0.06

Table 6.7 Influential Variables in Stage 3 in order of importance.

The results for this stage are summarized in Table 6.7. There is little 

difference in the estimates of the optimization with or without constraints. Upon 

confirmation we find that given Cload~ - 0.25 the circuit with constraints does 

slightly better, 0.5V, than does the circuit found in Stage 2. The circuit found 

for the optimization without constraints was not predicted well and did not give 

as good results as the circuit found with constraints. However, by looking at the 

main effects plots it is apparent that we could have expected only slight 

improvements since we were not able to influence the other noise variables by 
the change in the location of the search.

The circuit had previously been "optimized" using standard industry 

methods. Our solutions for Cload= -0.25 and Cload= 0.0 were as good or 

slightly better than those previously discovered. The strategy used by industry to 

determine their solutions required 3000 simulator runs compared to the 225 runs 
used by the sequential strategy in this example.

6.5 Discussion

6.5.1 Polynomial Models

As noted in Section 6.2, various methods of approximating the performance 

functions could be substituted in a modular way. To illustrate some of the disad-

vantages of using low order polynomials, a fairly standard choice for modeling,
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we repeat parts of the voltage-shifter example in Section 6.3. At the first stage, 

a full quadratic model in 14 dimensions would require 120 points, considerably 

more than is necessary for our predictor. To avoid a comparison based on a dif-

ferent design and different data, a regression model is fit using the same data by 

selecting terms from a full quadratic model. For each performance function our 

selection process finds the same active variables as we found in Steps 3 and 4 

and a quadratic model is fit to these variables.

The prediction errors are 1.5 to 3 times those from model (6.2.2). More-

over, the constrained optimization (6.4.2) leads to a different part of the space 

when using these less accurate quadratic regressions. A confirmation run at the 

regression optimum has large ripple and poor bandwidth-regression leads to a 
wrong part of the space.

At the second stage, regression models (fitted from the 50-point data set in 

the "correct" subregion) fare somewhat better. The prediction errors are now 

from 1.3 to 2 times those from model (6.2.2), and the optimization leads to 

essentially the same optimal point as model (6.2.2). This is not surprising. 

When factor ranges narrow low order polynomials become more competitive 
predictors.

Increasing the amount of data will not in itself guarantee substantially 

improved regression models. Reduction of systematic error from these models 

may also require including more model terms (e.g., third-order terms). As the 

models become larger, though, they will become computationally more demand-

ing because of the need to do model selection.

6.5.2 Taguchi Approach

A traditional approach to resolving multiple performances is to combine 

them into a single objective function.1 Yield is a common choice.2 4 In contrast 

to yield, Taguchi5 emphasizes reduction of variability in the performances of 
interest to minimize measures of economic loss. The resulting choice of design- 

able factors is intended to be robust, that is, to make the circuit insensitive to 

manufacturing and other uncontrollable variabilities. Although yield is a con-
venient single criterion, one concern leading to Taguchi’s view is the fact that 

the performance constraints defining yield are often arbitrary and create impracti-

cal differences between circuits that just pass and those that just fail.
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In the voltage-shifter example we combined performances and criteria into a 

single objective and also followed Taguchi’s route by incorporating reduction of 

variability as one of the criteria. However, by modeling performances, the user 

can substitute these models into tailor-made objective functions at the optimiza-

tion stage. If desired, these models could also be used to predict, and hence 

optimize, yield.

Though our approach has the same overall objectives as the Taguchi 

approach, there are a number of differences between the strategy in Steps 1 to 6 

of Section 6.2 and the methods advanced by Taguchi. Taguchi seeks to model 

criteria or losses. As noted,3 this can not only lead to inefficient use of the data, 

but also to a poor engineering design. Furthermore, the Taguchi methods have 

difficulty reconciling multiple criteria in the optimization. An analysis of the 

voltage-shifter example based on Taguchi’s signal-to-noise ratios, using an exper-

imental plan of 729 simulator runs, had to be abandoned because of difficulty in 
reconciling the signal-to-noise ratios. For a more complete discussion of the dif-

ferent strategies for robust engineering design see Chapter 7.

6.5.3 Region Reduction

Region reduction can be approached in a sequential manner for the multiple 

criteria optimization problem. There are a few ad hoc rules to remember during 

region reduction.

1. Constraint response variables that are only influenced by one or two input 

variables should be handled first.

2. If gt (Y) is part of the objective function, gt (Y) should be used if the pred-

iction error for this model is not much worse than the error for gl (Y).

3. The information gained from modeling the responses can be used to help 

cluster inputs and the responses they influence into fairly disjoint groups. 

Then region reduction is a series of "independent" region reduction prob-

lems rather than one large one. The variables that form these disjoint sets 

should be handled next.

4. Input variables that have a minimal effect on the target responses should be 
used to make sure the new region is as far inside the constraint region as 
possible.

5. The ranges for input variables that most influence target response variables 
should be adjusted last.
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The decomposition of the optimization problem into clusters may also be useful 

to reduce the cost of numerical optimization. More work needs to be done to 

automate this procedure.

Another benefit of using statistical models with numerical optimization 

algorithms is brought out in the example. Often investigators will be interested in 

finding a solution for a fixed value of one or more of the input variables. They 

may also want to look at several different settings for these inputs. The use of 
statistical models gives more flexibility to the investigator in experimenting with 

the selection of input values.

This example showed several advantages in using a sequential strategy to 

find an optimal circuit over single stage methods. The sequential method allows 

the investigator to develop successively more accurate predictors using many 

fewer simulation runs than a single stage method would to get a predictor of 

equivalent accuracy. For example, if one reduces the range of each of 20 input 

variable by half, the area of the new range for the circuit described is 0.005% of 

the initial range. One would need to take a huge number of observations in a sin-

gle stage method to produce a design with a similar density of simulation runs 

and hence similar accuracy of the predictor. Also, by reducing the experimental 

space there is a strong possibility of simplifying the performance function used 

during optimization. This was seen in our example by the elimination of various 

constraints from the performance function at the end of stage 1. In a one stage 

method this reduction would not be possible.

6.5.4 Latin Hypercube Sampling

We, and other teams, have found Latin hypercubes useful for simulation 
experiments. Instead of complete randomization of the Latin hypercube columns 

with respect to each other, we now use a method that controls the pairwise corre-

lations between factors. For the examples of this article, near-orthogonality of 
the columns is probably desirable. Alternatively, if two uncontrollable variations 

are correlated, this could also be accommodated. For more details on the proper-
ties of Latin Hypercube Sampling see Chapter 4.

The use of LHS designs led to some unsuspected benefits in the digital 

logic circuit example. Because LHS designs use many levels for each input vari-

able, drawing conclusions for simple response functions VDN, VUP, IOL, and IOH 

was straightforward. No modeling was required; plotting some simple graphs,
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which should be plotted as a matter of course, gave enough information to come 

to the necessary decisions. Even the decisions for TF and TR could be reached 

by looking at some simple contour plots. This is because LHS when projected 

to lower dimensions is still a LHS. Even though the general relationships 

between inputs and the responses were known in advance and are relatively sim-
ple, without using LHS it would not have been possible to reach the appropriate 
conclusions as quickly, if at all. If the true relationships are not known even in 

these simple responses it could become difficult to model them with the two or 

three input levels typically used in most experimental plans.

6.5.5 Plots of Factor Effects

Our sequential strategy is assisted by graphical display of the effects of 
individual factors (Step 4). More automation in moving to the next subregion is 
desirable, and we are working on this problem, but engineers nonetheless often 

find these plots revealing. The information is easily displayed and little experi-
ence is required to interpret them.

6.5.6 Computation Time

When the stochastic-process model (6.2.2) is used, computing the maximum 

likelihood estimates of the correlation parameters is often the biggest computa-

tional expense. In the voltage-shifter example, the total time for Steps 3 and 4 

(fit, check, and plot) for all nine performances is 6 hours on a SUN 3/80 at 

Stage 1. For comparison, generating the 75 simulator runs takes about 2 hours, 

and the optimization requires about 30 minutes.

In our experience these times are quite reasonable for moderately compli-
cated problems like that of the voltage shifter, which was chosen because previ-

ous attempts at analysis had not been entirely successful. Fitting polynomials, 

usually a cheaper alternative, requires more data to achieve commensurate accu-

racy. More data obviously increases simulation time and, if used to fit larger 

polynomial models, model fitting and selection may become burdensome.

The model fitting strategies in Steps 1 and 3 have been used by other work-
ers (A. Owen, J. Koehler, and S. Sharifazadeh at Stanford) for modeling device 

simulators (e.g., PISCES, SUPREM). Often, generating data is much more 

expensive for such simulators than for circuit simulation. With expensive data, 
the greater efficiency of the stochastic-process model (6.2.2) becomes even more 
advantageous.
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6.6 Conclusion

We have given a strategy for finding optimum circuit designs with com-

paratively few circuit simulator runs. This strategy uses sequential experimenta-

tion and statistical modeling of performance functions to accurately approximate 
the simulator over successively smaller sub-regions on which to search for the 

optimum. We use models that treat a performance function as the realization of 

a stochastic process. These models are more data adaptive and flexible than 

polynomials, hence better accuracy typically follows. Many factors, performance 

functions and criteria can be treated using this strategy. The features of this stra-

tegy and its advantages are exemplified in two instances.
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- Chapter 7 -

Discussion of Statistical Methods of RED

7.1 Introduction

It is useful to separate the general strategy and philosophy of RED, where 

there is widespread agreement, from the tools and methods that have evolved to 
implement this philosophy. All the methods are concerned with the same sub-

jects: model fitting, interactions, loss functions and optimization, noise factor dis-

tribution and the efficiency with which RED can be carried out. It is useful to 

discuss these topics separately rather than within the different methods. By sub-

dividing the RED problem into fairly independent components it may be easier 

to build a consensus strategy. This may eliminate some of the confusion that is 

inevitable when there are several methods available for those attempting to apply 

RED in industry. The rest of the sections in this chapter discusses these subjects 

and other RED related topics.

7.2 Estimation and Noise Parameter Distribution

When computing the mean and variance of Y the expectation is really over 

the noise factors, U, not Y since Q is the true sample space. To obtain estimates 

of the mean and variance of Y the distribution of U needs to be defined or 

approximated in some way. One of the fundamental differences between the LM 

approach and the RM approach is how assumptions are made about the distribu-

tion of U. The other fundamental difference in the two approaches is how they 
estimate E (Y ) and predict estimates of E(Y)  at new settings of the design fac-
tors.

The methods for estimating the mean and variance of the response in the 
LM approach and the RM approach are almost the reverse of each other. The 

RM approach uses the predictor y (c ,U )=y (X) to estimate Y and

Ef/(y(c,U))= J y (c ,U)dU

is used to estimate E jj {Y). Ev (y(X)) in turn can be estimated by
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£ u Cv(c,U)) = £y(c,U )rfU ,
«•w

where cd;V is a computer generated random sample from the same distribution as 

U. The LM approach estimates E (Y (sD)) = r|(s D) and Varjj (Y (sD)) = a 2(s D) by

A(s d )= E  yi(sD)
s , € s n

and

o 2 ( s d ) =  E  0 7/ ( s o ) - f l ( s o ) ) 2
s, e sN

respectively the mean and variance of Y over the outer array, SN, at each design 

point, sD, of the inner array. The LM approach can then use the estimates 

f)(sD) and ct2(s d  ) to minimize variance and adjust to target or the estimates can 

be treated as response variables and modeled themselves, let the models be 

designated q(c) and ct (c ) respectively.

There are two sets of assumptions needed for the estimation of E li(Y) and 

Varv {Y), the model fitting assumptions and the distribution assumptions of U. 

For the RM approach all the input factors are treated like design factors, i.e. 

none of the input factors are random variables, when modeling y(X). The distri-

bution of U is only needed when estimating the risk function. The LM approach 

models the mean over U, so f|(c) and ct(c ) are functions of only the design fac-

tors. However, model and distribution assumptions about U are involved when 

estimating ^(c) and a(c) and so are involved in the estimation of f|(c) and 

c t 2 ( c ) .

7.2.1 Distribution of Noise Parameter

Since the RM approach has no "replication" at the design factors it is 

impossible to get estimates of E^{Y)  and Varv (Y) without explicitly stating the 

distribution of U. This allows for a lot of flexibility in the choice of distribu-

tions, but also requires a degree of knowledge (or confidence) by the designer to 

write down a distribution. Common distributional assumptions are that U has a 

symmetric distribution with mean zero and variance a 2. It is also common to 

assume that U is normally distributed. One benefit of the RM approach is that 

changes in the assumed distribution can be made and new estimates of E(Y)  and 
Var{Y) using a new distribution can be computed just by generating a random 

sample of Y using the new distribution. No new observations need to be taken
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from the simulation model. These random samples should be inexpensive to 

generate since the predictor is inexpensive to run.

As described in Chapter 1, the LM approach estimates the mean and vari-

ance by using the outer array to get sample means and variances. The settings 

of the noise factors in the outer array are fixed at given experimental design 

values. In this situation, the proxy distribution of U is a discrete distribution 

with probability 1 \nN for each run in the outer array. The outer array could also 

be thought of as a set of representative points of the distribution of the noise fac-

tors. The nature of the distribution, assuming that the points in the outer array 

are truly representative, will depend on the experimental design of the outer 

array. Many of the assumptions that are stated explicitly in the RM approach, 

plus some that are not, are made implicitly when creating the outer array. 
Hence, the designer is not eliminating the decisions about these assumptions, 
they are just being made indirectly.

A common choice of experimental design for the outer array is a two-level 

orthogonal array which assumes that there are a minimal number of interactions 

between noise factors. If the points of this design are to be "representative" of 

the distribution of U, the noise factors must be independent and the distribution 

be symmetric with mean zero and variance a function of the range of the noise 

factors. The latter assumptions were made in the response model approach, 
while the assumption of independence was not. These assumptions can not be 

changed without changing the design of the outer array or changing to the RM 

approach style of analysis.

7,2.2 Model Fitting Assumptions

The design factors are the usual focal point of model fitting for both the 

RM and LM approach. However, the noise factors also have a role to play in 

fitting the response for both approaches. In the RM approach the design and 

noise factors are treated in the same manner when building the model.

Since the RM approach uses y(X) to get estimates of the mean and vari-

ance, only distribution assumptions enter into the computation of E v y(c). This 

creates a nice division between modeling and distributional assumptions. Given 

the distribution of U, errors in the model will effect the estimation of the mean 

and variance. Model errors could occur due to bad assumptions for either the 
design factors and the noise factors, but are restricted to the estimation of y(X).
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The LM approach assumptions about model building are split into two 
parts, the design factors are used to model f|(c) and model assumptions for the 
noise factors are also implied when choosing the outer array for estimating f\(c).

When a two level experimental design is used for the outer array the 

requirement that these points be "representative" of the distribution of U forces 

some implicit assumptions about the effect of U on Y . Since it is only a two- 

level design it is necessary to assume the effect of U on Y is linear. So even 

though the LM approach appears to more "data-driven" than the "model-driven" 
RM approach this is not the case. Unlike the LM approach, the RM approach 

does not need experimental designs with small numbers of levels which gives the 

RM approach greater flexibility in choosing designs and models.

It is also worthwhile to note that

E( f ( c , \ J ) )*E( f {c

where j% = E (U), unless /  (c ,U) is a first order linear function in the noise fac-

tors. The designer may be particularly prone to this error when the RSM method 

is used. For example, if

Y = g /1(c)|3+g /2(U )a + g /3(c,U)y

and let £'(U) = 0, then E(Y) = g'(c)(3 only if g(U) is a first order linear func-
tion for all the noise factors.

The assumptions for the design factors are typical model fitting assump-

tions, e.g. interactions, additivity, linearity. If the assumed model does not fit 

then errors in prediction will occur. The stochastic process used in DACE 

makes fewer direct assumptions about the shape of the function, such as interac-

tions and linearity, than the LM approach and RSM, but model assumptions need 
to be checked for all the methods discussed. An important reason why so many 
different PerMIA’s are needed is that they are dependent on which model 

assumptions are made. There are many model checking tools available and these 

should be used to determine the accuracy of the model.

The design-noise factor interactions are the driving force behind RED. 

Without these interactions reductions in product variability would not be possi-

ble. So it is important to identify and accurately estimate the important interac-

tions. The LM approach avoids identification decisions by making all design- 

noise factor interactions estimable with the negative consequence of large sample
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sizes. Most of the degrees of freedom in the LM approach are used to estimate 

all the D xN interactions. It is unlikely that all these terms are significant. It is 

more efficient to choose which interactions to estimate including DxD  and 

NxN  interactions. The RM approach is flexible in choosing which interaction

terms to estimate, helping to reduce sample size, but opens up the possibility of

missing an important interaction. This trade-off is a fundamental difference 
between the two approaches.

7.2.3 Further Topics

It is important to remember why the designer is interested in the variance of 

the noise factor. Variance is used to estimate the range of the noise factors. If 

the noise factor has a normal distribution with mean zero and variance a 2 = 1/9 

then 99% of input values will be between [-1,1]. If the noise factor has a uni-

form distribution and ct=1/3 only 91% of input values will be in the range [-1,1]. 

If the range [-1,1] represents 95% of the input values given a normal distribution
it will only cover 70% of values if the noise factor has a uniform distribution.

These examples show that even if an accurate estimate of the variance of the 

noise factors is known, if the distribution is not known there can be a significant 

misrepresentation of the actual product variation.

In both the LM approach and RSM it is suggested that some screening 

experiments be carried out. Screening of design factors is useful in reducing the 

sample size of future experimental plans. These screening experiments fre-

quently have only 2-level experimental plans. Both the LM approach and RSM 

rely on investigating one region of the input space then moving to another, possi-

bly completely new, region in the search for optimal product factor settings. 

Screening results may become invalid when moving from one region to another. 
If the response has a complicated surface, design factors that were unimportant 

in the original space may be important factors in later regions. This is true espe-

cially if there has been a considerable shift in location of the input range. If 

these new regions are not rescreened important factors may be lost.

DACE starts by looking at a large design factor space. DACE will have a 

tendency to miss factors with smaller effects because the power of the experi-

mental plan will not be strong enough to find them. Small effect factors will start 
to appear as the subregions become smaller so it is important not to screen out 
factors too readily when using this approach as well.
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7.3 Loss Functions and Optimization

Finding the product factor settings that best achieve the design specifica-

tions under manufacturing and environmental variability is the goal of RED. 

The product response can usually be described in mathematical terms. Finding 

optimal solutions of a mathematical function is the goal of a large body of 

research. If the mathematical functions are known, and computing solutions to 

these functions is inexpensive, it is straightforward to use a numerical optimiza-
tion algorithm to search for a solution. In RED the function is usually unknown 
(physical experiments) or the function is too expensive to put through a numeri-

cal optimization algorithm (computer experiments). If an accurate and cheap 

predictor can be found it can be used in place of the unknown or expensive 

function. This is the goal of the RM approach. It seems wasteful to ignore the 

large volume of work on optimization and not aim for the best solution as 
directly as possible by using these optimization techniques.

The response surface over a large range of the design and noise factors is 
likely to be a complicated function. Simple first or second order polynomials 

will often not fit the true response surface very accurately. This has led RSM to 

focus on a small area of the input range. The response surface is more likely to 

behave as a low order polynomial locally. The search for optimal solutions is 

then a matter of moving from one region to another until an optimal region is 

found. We will refer to this as small region exploration. DACE is capable of 

modeling more complicated surfaces than second order polynomials so the 

designer can attempt to model much larger regions. DACE then looks for subre-

gions where likely solutions appear to be located. We will refer to this as large 
region exploration.

There are several drawbacks to using small region exploration. When using 

small region exploration it is necessary to have nominal settings available before 

trying to minimize product variability, otherwise it may not be possible to adjust 
to target for the range of inputs chosen. Once the nominal settings have been 

chosen, reducing variability only guarantees an optimal solution for that starting 

point. It is possible that another choice of initial nominal settings may lead to a 
better optimal solution. Also, optimization algorithms are hampered when using 
small region exploration because the algorithms can not search for global optima 

over the full input space.
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To get a reasonable picture of the response surface with large region 
exploration it is important to have a fairly large experiment at the first stage, 
possibly larger than the first stage of RSM but still considerably less then the 

LM approach. The goal of the first stage is to be able to find general trends and 

relationships between variables. It will give enough information to choose a 

subregion where a new, smaller experiment will give a more accurate picture of 

the response surface. It is true that looking over a large design factor range will 

initially include a lot of space that does not remotely meet the response require-

ments. Some of this is due to taking observations on a rectangular space and 

even though the information may be "useless" for the problem at hand it could 

be valuable later. It also allows the designer to locate all feasible regions. This 

gives more flexibility in choosing the best solution possible. The focusing aspect 

of large region exploration gives designer a solid endpoint to the search. Once 
an accurate predictor has been established there is no need for further experimen-

tation.

The performance measure in engineering design problems may be very 

complicated. Frequently the performance measure will involve many responses,

i.e. multi-objective criteria. Besides the usual task of reducing variability some 

responses may need to satisfy some constraint. Sometimes specifications require 
a function of several responses to be constrained in some way. Trying to 
develop portmanteau performance measures, such as SN ratios and PerMIAs, to 

handle all situations is a daunting task. A performance measure can handle a 

much larger range of design specification problems other than just reducing vari-

ability when using predictors of the response. The task of developing perfor-

mance measures is not difficult with the RM approach. The performance meas-

ure typically will closely mirror the given engineering design specifications. Per-

formance measures based on real engineering objectives can be used with confi-

dence since the predictor emulates the true behavior of the process under study. 
Multi-objective optimization already familiar in engineering design studies to 

find nominal settings would require only a small adjustment to include robust-

ness requirements.

The use of a numerical optimization algorithm is simplified if the terms in 
the performance measure that reduce variability are mean squared error rather 
than variance. This expectation can be written as the sum of two terms, 

(E(y (x)) -  T)2, or bias, and Var(y). Bias will dominate this sum when starting
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the numerical optimization from a random set of values for the input factors. 
This could lead to finding solutions that are only local optima. However, the 

nature of region selection in DACE provides a check against this occurring. 
When selecting a new region for investigation the designer can use main effect 

and interaction plots to identify dispersion factors and regions where variability 

is reduced. This helps to ensure the new region contains a solution that gives a 

real reduction in variability.

7.4 Sample Size

Computer simulation models typically have large numbers of variables 

available for investigation. This is because the functions are complicated and all 

the factors that may affect the output are known and readily available for experi-

mentation. For computer experiments the product array becomes very costly for 

even modestly sized problems by computer experiment standards. For example, 

a simulation code with 20 control factors and 10 noise factors will require over 

800 runs of the simulation code. If each run takes one minute of CPU then the 

full experiment will take over 13 hours of CPU time. The combined array 

reduces the size of the experimental plan, it will need only a small fraction of 

this number of runs for an identically sized problem. Also, remember that any 

screening experiments that are used to help reduce the size of the product array 

should be included when discussing the costs of factor design.

A single experiment using DACE typically will not yield an immediate 

solution. Further experimentation will be necessary to explore the chosen subre-

gions. The cost of this sequential experimentation is a linear function. The 

example given in the first paragraph of this section would allow 5 experiments 

of 150 runs each before being equal to the number of runs in one product array 
experiment. Examples from this thesis and Bernardo, et al.1 show that for fewer 
runs than in one step of the LM approach DACE will find a globally optimal 

solution. Since the RSM approach uses combined arrays the size of experimen-
tal plans will be similar to DACE. The difference in sampling costs between 

DACE and RSM will depend more on the number of experiments carried out in 

the sequential search for a solution. DACE is likely to need fewer experiments 

than the RSM approach because DACE is able to accurately model much larger 
regions than RSM.
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7.5 Ease of Use

An important reason why Taguchi’s methods have become so widespread is 

the ease with which they can be learned and incorporated into real engineering 

design problems. Recent work on LM approaches have done much to improve 

on Taguchi’s initial method. However, the improvements have created new 

complications or pointed to overlooked ones. The designer now must be con-
cerned about transformations, interactions, design selection, and selection of the 

performance measure. When selecting the performance measure the designer 

must either select the correct SN ratio or PerMIA if using "traditional" methods 

or model both the mean and variance. For multi-variate response RED problems 

this can quickly become cumbersome as it doubles the number of models that 

need to be estimated. After factor settings minimizing product variability have 

been found, location factors need to be adjusted so the response is on target. 

Decisions then need to be made whether a new experiment should be conducted 
to make further improvements. Many of these concerns apply to RSM as well.

DACE helps to eliminate some of these choices and works toward finding 

an optimal solution. By looking at each stage individually it is apparent how the 

number of decisions that the designer needs to make can be reduced.

1. Choose Design. The use of LHS in computer experiments makes design 

selection easy, no concern about interactions and aliasing. Only a decision 

about sample size is necessary and general guidelines are already available.

2. Analyze Results. The use of the stochastic process eliminates the need to 

decide on the functional form to be estimated as well as expanding the class 
of functions that can be modeled.

3. Plot Analysis and Optimize. The plots help to identify important factors 

and the nature of their effect on the responses. The plots, combined with 

optimization results, help to locate solution regions. The optimization can 
take advantage of prepackaged optimization code so the designer only needs 

to develop the performance measure.

4. If the model is not accurate enough, choose the next subregion. Once a 

likely area to look in is selected, choosing the next subregion is not diffi-
cult. For example, reducing the ranges of 10 out of 20 factors by half 

reduces the size of the new region to .001 of the previous region. This is 

one reason why the stochastic process can produce accurate models after
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only a few stages. This allows the designer to be conservative in selecting 

the subregion and reduces the chance of missing the "correct" region.

4a. If satisfied with the model, confirm solution from 3. Confirmation is 

important for any statistical approach to RED. Once the results of DACE 

have been confirmed the designer can then go on to search other promising 

regions that may have been discovered from the initial stages of experimen-

tation. When these regions have been investigated the designer can be con-

fident that the best possible factor settings for that engineering design have 

been found.

The first three steps can be easily automated. The designer only needs to 

be concerned with understanding the effects plots and writing routines to calcu-

late the performance statistic for the optimization code. Step 4 is more difficult 

to automate because for large design problems there may be several subregions 

worth investigating and choosing the size of the next region is a fairly subjective 

process. At this point engineering principles as well as model information may 

be applied to help with selecting the next subregion. Choosing when to stop 

building new subregions is also a subjective decision depending on the model 

accuracy needed by the designer.

7.6 System and Tolerance Design

Robust engineering design has been split into three major phases, system 

design, parameter design and tolerance design. This categorization is useful but 

it has also led to a division in the development of methods in RED. The work 

on methods for parameter design is a good example. The LM approach and 

RSM typically assume that some nominal setting of product factors is available, 

i.e. that system design has been completed. Once factor settings have been 

chosen to increase product robustness the task of tolerance design is left uncom-
pleted.

Separating system design from parameter design has led most research on 

methods for parameter design to assume that some nominal setting of the control 

factors is available as a starting point. However, a significant part of the cost in 

engineering design is the time it takes to find initial settings. It would be useful 

to eliminate the need of finding an initial nominal setting, but modeling the vari-

ance and the mean separately makes this difficult. When minimizing variability 

without any concern for the mean there is a strong chance that adjustment to
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target will be impossible without affecting product variability. The LM approach 

and RSM have avoided this difficulty by using the nominal settings as a base 

from which to start.

DACE used in computer experiments can easily combine parameter design 

with the part of system design that involves finding the nominal settings. The 

designer typically knows the factor settings which meet engineering design 

specifications will fall within some broad region. Instead of spending time find-

ing the nominal settings, the designer can perform an experiment using these 

expanded ranges and generate estimates of the responses. The designer can use 

these predictors to search for regions where engineering design specifications are 

met. This gives the designer several advantages. The first advantage is that the 

last stages of system design may be skipped. Second, it allows systematic search 

in a much larger region to locate all feasible designs. This could lead to a 

design selection that may have been overlooked. Third, it gives the designer an 

early glimpse at how the product factors behave in changing the response.

Tolerance design can be incorporated into either the RM or the LM 

approach. The available factor plots can be used to determine the spread of the 

response due to a specific noise factor. If the noise factor has a small slope this 

would be a candidate for loosening the specifications. Alternatively, the 

discovery that a noise factor has a large influence on the response could lead to 

a tightening of the tolerance for that noise factor. This information is not readily 

available when using the LM approach because it is bound up in the perfor-

mance measure. The advantage of the RM approach is that the noise factor dis-

tribution can be changed and the effects tested without further experimentation 

by using the predictor to estimate what would occur under the new noise distri-

bution.

7.7 Physical RED vs. Computer RED

The ideas in DACE discussed in this thesis were developed from work on 

computer-aided design problems. Many of the ideas are also applicable to physi-

cal RED problems. There are a few points where difficulties may arise. These 

areas need to be investigated to see what changes might be made for use in phy-

sical RED problems. One aspect of physical RED problems that is not of con-

cern in CAD/CAE RED problems is experimental error. Experimental error is 

the result of uncontrolled noise factors, noise factors whose variability is
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measured by replication and are not part of Taguchi’s outer array, and measure-

ment error. The ideas of combined arrays and modeling the response are still 

valid for controllable noise factors. When experimental error exists it needs to 

be measured and cannot be assumed to be constant over the range of inputs. 

Replication will be necessary and a measure of variability will need to be taken 

at each point in the combined array. This measure will need to be modeled and 
incorporated into the performance measure. These are difficulties that affect all 

three strategies discussed.

In computer experiments changing the values of the input factors is a 

straightforward task. In physical experiments this is frequently not the case. It is 

unlikely that LHS can be used in its present form for physical experiments. The 

number of different settings can be reduced depending on the ease with which 

the factor setting can be altered in the physical experiment. An arrangement of 

run order could be found to reduce the number of changes. Work of a similar 

nature has already been done on orthogonal arrays,2 and may be applicable to 

these adjusted Latin Hypercube Samples.

There is no theoretical reason why the stochastic process models used in 
DACE cannot be used in physical experiments. One way to incorporate experi-

mental error is to use a covariance structure of the form o2(R + y/), where I is 

the identity matrix and a2y is a measure of experimental error. Further work is 

being carried out to see how effective this model is in physical experiments.

7.8 Conclusion

The LM approach is a popular and successful strategy in RED but many 

statistical weaknesses have become apparent. The LM approach builds simple 

linear models and makes assumptions about the noise factor distribution which 

are hard to assimilate with reality. The RM approaches build more complicated 
models but the assumptions involved with these models also occur, sometimes 
implicitly, in the LM approach. Checking model assumptions is equally impor-

tant for the LM and RM approaches, but the extra flexibility in choosing experi-

mental design in the RM approach gives the RM approach an advantage in 

checking the assumptions.

The RM approaches have more flexibility in the choice of noise factor dis-
tribution. This allows the designer to choose noise factor distributions which 

mimic real variability and not one that is forced upon the designer by the choice
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of design when using the outer array of LM approach. Separating the distribu-

tion assumptions of the noise factors from the experimental design allows experi-

mentation with different distributions without the need for further observations 
from the simulation model.

The use of a stochastic process as a predictor helps to reduce model error 
by interpolation through the design points. This works well with experimenta-

tion on computer simulation models. DACE has no hidden costs or hidden 

assumptions so the statistical difficulties can be approached directly. When 

using the stochastic process of DACE many of the modeling difficulties that 

arise when using linear models can be avoided, such as confounding, nonlinear-

ity and additivity. DACE gives the designer a straightforward and efficient way 

to solve engineering design problems. It also leads directly to optimal solutions 
so more time can be spent by the designer developing entirely new engineering 

designs rather than making adjustments to old designs.
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- Chapter 8 -

Conclusions and Further Research

The investigation of methods for robust engineering design has led to 
inquiries into a number of statistical topics as well as others, such as optimiza-

tion. Two areas that were investigated more thoroughly because of their connec-

tion to computer experiments was spatial modeling and experimental design. 

Also, to help the development of robust engineering design methods a thorough 

investigation of the underlying probability model was necessary to identify weak 

points in the different methods outlined. The conclusions from this thesis can be 
roughly broken into spatial models, Latin hypercube sampling and robust 
engineering design.

Spatial Models

The spatial models described in Chapter 2 were used to predict the response 

of several different circuit simulation models. The predictions were accurate 

enough so that the predictor could be used to find optimal robust engineering 

designs. These examples, as well as others mentioned in the literature, are evi-

dence that the predictor, particularly with the covariance function (2.3.1), can be 

used successfully to estimate computer simulation models. The examples also 

extend the used of spatial statistical models to higher dimensions than usually 

found in the literature.

The work in this thesis resulted in a software package for the design and 
analysis of computer experiments. The software is still fairly crude, but com-

plete. There are still improvements that can be made in the efficiency of parts of 

the code, most notably in computing cross-validation results. While the research 

described in Chapter 3 led to maximum likelihood estimation methods for the 

model parameters at a reasonable cost in high dimension problems, work still can 

be done to improve the cost effectiveness of estimating the parameters for the 
spatial models described.

The study of spatial statistics is a fast growing field with many opportuni-

ties for further research. The covariance function used in this thesis has not been 

investigated thoroughly on a theoretical basis. Further study of the robustness of 

the parameters in the covariance function from both the prediction and MLE
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perspective would be useful. An investigation of a variety of known functions 

would be useful to determine the range of functions that may be well estimated, 

e.g. the limits to roughness of a function or the effect of nonstationarity. The 

spatial model described in Chapter 2 could also be applied to problems with 

measurement error.

The theoretical basis for the ONETIME algorithm used to compute max-

imum likelihood estimates is not well developed. There are many avenues to 

explore in understanding why and when this algorithm works successfully. An 

important topic that is currently receiving some attention is the modality of the 

likelihood function. This is an intriguing area where our models do not quite fall 
into the families described in previous work. Further understanding of the 

parameter values and what they mean could also be helpful to gain a better intui-

tive feel to why the ONETIME algorithm works as well as it does.

Latin Hypercube Sampling

Latin hypercube sampling was developed for designing experiments for high 

dimensional computer experiments. Latin hypercube sampling is fast and simple 

to implement and previous work has shown that Latin hypercube sampling is 
asymptotically more efficient than simple random sampling or stratified random 

sampling and estimates from Latin hypercube sampling are asymptotically nor-

mally distributed.

Latin hypercube sampling together with the spatial models used for the 

research in this thesis appear to form a good basis for the design and analysis of 

computer experiments. This conclusion is based mainly on the nature of com-

puter experiments, but asymptotic results from Chapter 4 show that MS£(Y)—>0 
as n —>°° for Latin hypercube sampling, but not for simple random sampling or 

many deterministic designs when an interpolator is used for the statistical predic-

tor.

Variability in the spatial location of design points in random designs is used 

as a measure of discrepency and comparisons were made between Latin hyper-

cube sampling and simple random sampling. This measure of discrepency 

showed that Latin hypercube sampling is better, on average, in evenly spacing 
points throughout the input space.

The investigation of the space filling properties of Latin hypercube sam-

pling is still at the initial stages. Further comparisons of the new discrepency
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function with more experimental designs, in particular stratified random sam-

pling, need to be examined. Also, values for other discrepency functions should 

be computed for Latin hypercube sampling for comparison to nonrandom 

designs.

Robust Engineering Design

Taguchi developed a simple experimental method that helped to make pro-
duct performance robust to many types of variability, thus improving quality. 

The methods he used to find the product settings, while solid in principle, are 

not particularly efficient and have many theoretical problems from a statistical 

point of view. Examination of the underlying model in the RED problem show 

that the statistical assumptions about the type of function estimated and noise 

factor distribution are used for both the LM and RM approach, but the RM 
approach allows for more flexibility in choosing what assumptions are made. In 

particular, the RM approach has more flexibility in the selection of designs and 

statistical models available for estimation and prediction and more flexibility and 

opportunity for experimentation with different distributions for the noise factors.

DACE predicts the complicated response surface of simulation models 

better than regression polynomials used in RSM. DACE also can use a different 

approach to optimization. DACE can model a larger input space and still pro-

duce a reasonable accurate predictor, hence DACE does not need an initial set of 

nominal values before starting the optimization search. Investigation into using 

DACE on physical systems and manufacturing processes needs to be carried out 
to check what adjustments may be necessary to the procedures used in DACE. 

Also, optimization algorithms play a more important role when using DACE and 
further investigation is needed on choosing algorithms for these multivariate 
optimization problems.

The general strategy for experimentation in RED has largely been settled, 

however there are many statistical questions still worthy of further investigation. 

One area of study in RED that has largely been ignored is the estimation of the 
noise factor distribution. This would involve applying much of the work on den-
sity estimation and further research into estimating covariance matrices and mul-

tivariate density functions. This is an important area to pursue from an applica-

tion point of view and has many opportunities in statistical research.
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- Appendix 1 -

DACE Code and User’s Guide

A l.l User’s Guide

The DACE software performs several tasks:

1. Computes parameter estimates of stochastic process using likelihood func-

tion in two ways:

a. Full MLE, i.e. all parameters are free to vary.

b. ONETIME algorithm, see Section 3.5.

2. Computes likelihood values (3.1.1) for any number of given parameter esti-

mates.

3. Predicts response given parameter estimates, via (2.2.3).

4. Computes cross-validation for parameter estimates, via (3.4.1).

5. Computes values for "main effects" plots, see Section 2.4.

Al.1.1 Source and Header Files

There are 10 source files and 10 header files necessary to compile the 

DACE software. The source files end with the suffix .c and the header files end 

with the suffix .h and the file names will be written in bold type. The prefixes 

for the 10 pairs of source and header files are: dace,rb_alloc, rb_covm, 

rb_effects,rb_like, rb_math, rb_matman, rb_opt, rb_predict, and rb_print. 
The main function is in dace and contains the structure for choosing the user 
requested tasks. The main tasks for the rest of the source files are as follows:

1. rb_alloc - memory allocation routines.

2. rb_covm - various covariance computation functions.

3. rb_effects - functions for computing main effects.

4. rb_like - functions for computing likelihoods.

5. rb_math - miscellaneous mathematical functions.

6. rb_matman - some matrix manipulation functions.

7. rb_opt - functions involved with optimization.
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8. rb_predict - functions for computing predictions.

9. rb_print - various input/output routines.

Al.1.2 Variable Definitions

All variables will be capitalized in this document for clarity. In the source 

code only global variables are capitalized. There are 20 global variables used in 

the DACE software they are identified below as part of their definition. All 
variables except a few obvious character strings are either integer or double 

scalars, vectors or matrices. Variable descriptions follow C programming 

language notation.

1. N - Number of runs in experiment. Number of rows in **S. Input by user. 

Global Variable.

2. NX - Number of input variables. Number of columns in **S. Input by 
user. Global Variable.

3. P - Number of parameters in linear model part. Typically P=l, a constant 

linear model. Input by user. Global Variable.

4. SEED - Seed for random number generator used for starting MLE or gen-

erating random inputs for prediction. Input by user.

5. NFILES - Number of data files where input variables and responses are 

stored. At this time looks for either all data in one file or input variables in 

one file and response variables in another file. Input by user.

6. NY - Number of response variables in input files. Input by user.

7. SELY - Response variable that user wants to analyze. Input by user.

8. **S - Input variables (columns) experimental run (rows) values. Input by 
user.

9. **TEMPY - Matrix with all response variables (columns) for respective 

experimental runs (rows). Input by user.

10. *KIN1,*KIN2 - Index vectors containing subscripts of variables used to 

compute linear model terms from **S. Some examples,

a. if KIN1[1]=1 and KIN2[1]=0 then f 1(xi )=xil .

b. if KIN1[1]=1 and KIN2[1]=1 then f 1(xi )=xi\  .

c. if KIN1[1]=1 and KIN2[1]=2 then f  1(xi )=xilxi2.

-150-



11. *Y - Vector with response variable selected for analysis by user. Global 

Variable.

12. NDEC - Used repeatedly as indice for decisions on whether tasks described 

above should be carried out. Typically 0 or 1 but for decision on MLE can 

be 0, 1 or 2. No MLE = 0, FULL MLE = 1, ONETIME algorithm = 2. 

Input by user.

13. **SDIFF - N*(N-l)/2 by NX matrix which contains IS[i][j] - S[k](j]l for 

i<k, k<N and j<NX. Global Variable.

14. **F - Contains linear model input values. Global Variable.

15. *THETA - Vector of covariance function parameters. See (2.3.1).

16. *POWER - Vector of covariance function parameters. See (2.3.1).

17. *BETA - Vector of linear model parameters. See (2.3.1).

18. **V - Correlation matrix.

19. GAMMA - "Nugget" parameter in covariance function, 

(**V/ = **V + y/), where I is the identity matrix.

20. SIGMAZ - "Scale" parameter in covariance function.

21. READ_PARAM - Indicator variable. If MLE has not been carried out 

program prepares to a user given file to read in model parameters. The 
order of parameters in file is: SIGMAZ, GAMMA, -2*LN Likelihood, 

*BETA,*THETA,*POWER.

The following variables are used only in likelihood computations.

22. NLOOP - For FULL MLE it is the number of random starts for computing 

MLE, suggested value ^ 5. For CHEAP MLE it is the number of rounds 

through all variables, suggested value is 15. Input by user.

23. NLIKE - The number of user given sets of model parameters which will be 

used to compute their likelihoods. Input by user.

24. FUNC_DECISION - Determines the type of constraints on the covariance 
function during the computation of the MLE:

a. FUNC_DECISION=0: FULL MLE, all parameters except GAMMA=0 
free to vary.

b. FUNC_DECISION=1: COMMON (0,p), 01=, . . . ,=Qd and

Pi=>----- =Pd-
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c. FUNC_DECISION=2: SINGLE (0 ,p), optimize over (0f,pf) only.

d. FUNC_DECISION=3: GAMMA ONLY, Fix (6,p) and optimize 
over GAMMA only.

This is a global Variable.

25. NGAM - Indicator variable that indicates whether GAMMA is fixed = 0. 

Global Variable.

26. OLD_THETA - Contains value of 0,- when optimizing one at a time on xi . 

Global Variable.

27. OLD_POWER - Contains value of when optimizing one at a time on xt . 

Global Variable.

28. NPK - The variable which is currently being optimized during one at a time 

MLE. Global Variable.

29. LIKE - The likelihood value.

30. OLD_LIKE - The likelihood value from previous stage.

The following variables are used only in prediction and cross-validation 

computations.

31. NUMPRED - The number of points at which user wants to predict. Input 
by user.

32. RAND_IND - Indicator variable states whether user would like set of ran-

dom input points for prediction, yes = 1. Input by user.

33. TRUEY_IND - If user gives a set of points for prediction, TRUEYJND is 

indicator variable stating whether true responses are available, yes = 1. 
Input by user.

34. **PREDX - Set of points which will be used for prediction. Input by user 
if RANDJND = 0.

35. *TRUEY - Response values for prediction sites. Input by user if 
TRUEYJND = 1.

36. *YHAT - Prediction estimates for PREDX.

37. *EMSE - Expected RMSE estimates for PREDX.

38. **SUBV - Used in Cross-Validation. **SUBV=**V_i-, where **V_i is 

**V with the i th row and column deleted.
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39. **SUBS - Used in Cross-Validation. **SUBS=**jS_i, where is **S

with the i th row deleted.

40. *SUBY - Used in Cross-Validation. *SUBY=*y_f,where * * Y is **Y 

with the i th row deleted.

41. **FPRED - Linear model terms for prediction sites.

42. *CVYHAT - Stores Cross-Validation estimates of response.

43. *CVMSE - Stores Cross-Validation estimates of Expected RMSE.

The following variables are used only in main effects computations.

44. INTLEV - The highest order of interaction levels user is interesting in com-

puting. INTLEV=1 main effects only, INTLEV=2, Second order interac-

tions. Input by user.

45. USESIG - Use "significance test" to determine which variables to include in 
main effects computations. The "significance test" is / / o:0, =O, signifi-

cance level is A(-2In L)>  6. Input by user.

46. INT_IND - Indicator vector of length NX which states which variables are 

included for main effects computations, yes=l.

47. NUMPTS - The number of points at which to compute main effects. 

Currently hardwired into program at NUMPTS=21.

48. *MUIND - Vector which contains labels i of xi the variables for which 

main effects are computerd

49. *X - Vector of points at which to compute main effects.

50. **MU - Results of main effects. For main effects columns are for different 

variables. For higher order interactions columns is results at Xjk .

51. MUO - Overall mean.

52. *MU1 - Main effects.

53. NUMINTR - Number of interactions computed so far.

54 **INTR - Contains integration values for variables included for main effects 

computations.

55 *MULEXP - Product of integrals for variables not included for main effects 
computations.

56 *NULEXP - Product of integrals for variables included for main effects 
computations.
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57 SS Y - estimate of variability of estimated response surface from 1000 ran-

domly selected points, l/«r£(y; - | l 0)2.

58 *SS - Squared deviation of main effects from zero.

Al.1.3 Subroutines

Subroutines which can be found in the source files listed above except

rb_alloc.c are briefly described below. For clarity they are written in this docu-

mentation as SUBROUTINE(). In the source code they are not capitalized.

1. void COVM() - Covariance function when computing full MLE. In 

rb_covm.c.

2. void COVMl() - Covariance function when computing MLE with common 

(0,p) for all variables. In rb_covm.c.

3. void CHP_COVM() - Covariance function when computing MLE for ONE-

TIME. Optimizing over one variable at a time, both 0 and power. In 

rb_covm.c.

4. void SLC_COVM() - Covariance function when computing MLE for FOR-

WARD. Optimizing over one variable at a time, but power fixed. In 

rb_covm.c.

5. double CALMU0() - Computes overall integrated mean. In rb_effects.c.

6. void CALMU1() - Computes main effects. In rb_effects.c.

7. void CALMU2() - Computes interaction effects. In rb_effects.c.

8. void INIT_ME() - Is the structure within which main effects, etc. are com-

puted. In rb_effects.c.

9. double GETLIKE() - Computes likelihood for Gaussian stochastic process. 

In rb_like.c.

10. double COMPMLE() - Computes all parameter estimates for MLE. GET- 

LIKE only computes estimates for Q,p, y. In rb_like.c.

11. double CHPMLEO - Structure which computes CHEAP MLE. In 

rb_like.c.

12. void DET_SIG() - Determines "significance" of input variables. / / o:0, = O .  

Critical value is 0, < 6.0. In rb_like.c.

13. void MULT_LIKE() - Structure which computes as many likelihoods as 

desired for user given parameter values. In rb_like.c.
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14. void DES_DIST() - Computes 1% -  sjk I for all i <j <N and 1 <k <NX. 

In rbjmatman.c.

15. void VEC_V() - Takes **V, the covariance matrix, and translates it to a 

vector. In rb_matman.c.

16. void MAT_V() - Takes the vector version of **V and translates it back to a 

matrix. In rb_matman.c.

17. void CD() - Computes Cholesky decompostion. Output is lower triangular 
matrix. In rb_math.c.

18. void INVMAT() - Inverts matrix. Result is returned in lower triangular part 

of input matrix. In rb_math.c.

19. double RB_ABS() - Computes absolute value of x. In rb_math.c.

20. void QR() - Computes QR decompostion. In rb_math.c.

21. void XTOF() - Takes design matrix **S and computes **F the input matrix 

for the linear model part of stochastic process. In rb_math.c.

22. void GET_RINVY() - Computes Rs~ly for main effects. In rb_math.c.

23. double NORMIN() - Computes integral of exp (-Q\sik-Sjk \Pk). In 

rb_math.c.

24. double FUNK() - Function used in optimization routine for computing 

MLE’s. In FUNK, FUNC_DECISION determines which covariance func-
tion to use. In rb_opt.c.

25. int AMOEBA() - The optimization routine used to compute MLE’s It has 

been taken from Nelder & Mead Numerical Recipes for FORTRAN and 

translated to C. In rb_opt.c,

26. double RUNOPT() - Function from which optimization routine is run. In 
rb_opt.c.

27. void INITIAL() - Computes some initial calculations needed for getting 

predictions. In rb_predict.c.

28. void PREDICTO - Computes y . In rb_predict.c.

29. void GET_EMSE() - Computes MSE (y ). In rb_predict.c.

30. void GET_PRED() - Function from which prediction and MSE estimates 

are computed. In rb_predict.c.
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31. void GET_CV() - Function from which Cross-validation results are com-

puted. In rb_predict.c.

32. double MEPRED() - Computes predictions for estimate of overall estimate 

of response surface variability. In rb_predict.c.

33. void PRNT_LIKE() - Routine prints results of likelihood calculations. In 

rb_print.c.

34. void PRED_OUT() - Routine prints results of prediction part of program. 
In rb_print.c.

Al.1.4 Example of Input To Dace

Title /* title for job */

50 20 1 4658 /* n,nx,p,seed for random number*/

1 1 1  /* nfiles, ny,sely */

toya.des50y /* design file and response file */

0 /* kinl */

0 /* kin2 */

0 /* gamma */

/* if any following decisions is no (=0) then associated 

inputs need not be entered */

1 /* decision on mle (l,full,2=cheap) */
5 /* # random starts for full, # loops thru cheap mle */

like.dump /* dump file for mle */ 

mle.out /* mle results file */

1

30
param.in

like.out

/* decision on multiple likelihood calculations */

/* # of likelihoods to calculate */

/* file with parameters for likelihood calculations */ 

/* file name for likelihood output */ 1

1 /* decision on prediction */

param.in /* file with parameters to read if necessary */

100 0 /* # points to predict at, from random inputs (yes=l) */

toya.ranlOOy /* file name with pts to predict at */

1 /* Do you have true responses for prediction? */

pred.out /* file name for prediction output */
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cv.out

1 /* decision for cv calculations 

/* file name for cv output
*/

*/

toya

2 1

1 /* decision for main effects calculations */

/* interaction level to compute, use sign level */

/* prefix for output files: .muO, .me, .¡nt, .med added */

Al.1.5 Description of Output

The output files are reasonably self explanatory except for the main effects 

output and to a lesser extent the computation of likelihoods. Except for the main 

effects output, the output for each type of computation is their own file. As 

mentioned the output for the main effects is spread over four output files. There 

is also a dump file for maximum likelihood estimates which contains information 

about the optimization process, but the file mle.out contains all pertainent infor-
mation.

All output contains the job title the parameter estimates used for the compu-

tation and the name of the data file used for the job. For the main effects output 

this information is in the file with suffix .med. The output files for the likeli-

hood computations do not contain the parameter estimates. The results for pred-

iction, cross-validation and maximum likelihood calculations are labeled and 

should be self explanatory. The parameter estimates from the MLE calculations 
are in the same order as needed for param.in file to make the input file easier to 

construct. The prediction and cross-validation output has the same format. A 

line after the parameter estimates gives the empirical RMSE, the standard devia-

tion of the empirical RSME and the maximum deviation at the predicted values. 

A list of true and predicted values with RMSE (Y ) follows the summary statistics.

The main effects output is divided into four output files with the suffices 

described above. They will be refered to here as outputmed, output.me, 

output.int, and outputsf. The output file outputmed contains the parameter 

estimates, etc. and the ANOVA-like sums of squares for main effects and higher 

order interactions. The output file output.muO contains the value of (y(x)dx, 

¡3, KIN1 and KIN2. The main effects computations assume that a constant 

model has been used. The value of (I0 in (2.4.1) is obtained by adding Jy(x)dx 

and p. The main effects in (2.4.2) are found in the output file output.me. The 

first row of the output file contains the number of factors which the main effects
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were computed for and the indices for those factors. The main effects values 

start in the second row of the output file and the columns are the results for the 
different factors. The interaction effects in (2.4.3) and joint effects are con-

structed the same way and are in the files output.int and outputsf respectively. 
The joint effects are

i \ i j ( X i > X j ) = J}’ (x) n dxk ■
k * i , j

The interaction effects are for all pairs of variables i , j ,  i <j , found in the output 

file output.me. The data in the respective output files are the interaction or joint 
effects values over a grid of points with the second dimension changing fastest 

and the data being read row by row. The matrices for the effects are also 
ordered with the second variable increasing fastest.
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int N; 
int NX; 
int P;
double **S; 
double *Y; 
double **V; 
double **F; 
double **SDIFF;

int NOPT; 
int NGAM; 
int NPK;
int FUNC_DECISION; 
int NFCALLS; 
double OLD_THETA; 
double OLD_POWER; 
double OLD_GAMMA; 
double **TV;

char DUMP_FILE[40]; 
char MLE_FILE[40]; 
char PRED_FILE[40];

/* This is dace.c */
/*This is the main function for dace and calls all other routines*/ 
/*............................................ ................. ......................*/

#include<stdio.h>
#include<string.h>
#include<time.h>
#include "dace.h"
#include "rb_alloc.h"
#include "rb_covm.h"
#include "rb_effects.h" 
finclude "rbjike.h"
#include "rb_matman.h"
#include ”rb_predict.h"
#include "rb_dace_pmt.h"
#define RAND_MAX (pow(2,31)-l)

_____ ___ ___  ̂!

main()

{
int i,j,kjifiles,ny,sely,*kinl,*kin2,ndec,seed,read_param=l;
int numpred,truey_ind,rand_ind;
int nloop,itmaxjilike;
int intlev,usesig,*int_ind;
double **s;
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double *theta,*power,gamma,*beta,sigmaz,like; 
double **predx,*truey,ran_num,*yhat,*emse; 
double tol,**tempy; 
long temp_ran;
char temp_name[100],*fname,*oname,*data_file,*data_file2,*title 
char temp_title[ 100],datetime[30]; 
long clock;

FILE *inl;
FILE *in2;
FILE *out;
FILE *outl;

/* Read in job title and dimensions of the problem */

clock=time(0);
strcpy (datetime ,cti me(&cl oc k));

title=gets(temp_title, 100);

scanf("%d %d %d %d",&N,&NX,&P,&seed); 
scanf("%d %d %d",&nfiles,&ny,&sely);

scanf("%s",temp_name);
data_file=AllocChar(strlen(temp_name));
strcpy(data_file,temp_name);

if(nfiles=2)
{

scanf("%s",temp_name);
data_file2=AllocChar(strlen(temp_name));
strcpy(data_file2,temp_name);
in2=fopen(data_file2,"r");

}

/* Allocate space to standard variables */

s=AllocDouble2(N,NX);
SDIFF=Alloc Double2(N*(N-l)/2,NX);
Y=AllocDouble(N);
theta=AllocDouble(NX);
power=AllocDouble(NX);
beta=AllocDouble(P);
kinl=AllocInt(P);
kin2=AllocInt(P);
F=AllocDouble2(N,P);
V=AllocDouble2(N,N);
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int_ind=AllocInt(NX);
tempy=AllocDouble2(N,ny);

/* Read in data */

inl=fopen(data_file,"r");

for(j=0;j<N;j++)
{

for(i=0;i<NX;i++) fscanf(inl,"%lf",&s[j][i]); 
for(k=0;k<ny;k++)

{
if(nfiles== 1 )fscanf(inl%lf" ,&tempy [j] [k]); 
if(nfiles==2)fscanf(in2,"%lf',&tempy[j][k]);

}
Y[j]=tempy[j] [sely-1];

}

FreeDouble2(N,ny,tempy);
fclose(inl);
if(nfiles==2)fclose(in2);

for(i=0;i<P;i++) scanf("%d",&kinl [i]); 
for(i=0;i<P;i++) scanf("%d",&kin2[i]); 
scanf("%lf',&gamma);

NGAM= (gamma) ? 1 : gamma ;

srandom(seed);

scanf("%d",&ndec);

/* This section computes MLEs using one at a time likelihood */ 
/* estimation techniques */

if(ndec)
{

read_param=0;
itmax=100;
tol=0.0001;

scanf("%d",&nloop);

scanf(" % s'1', temp_name); 
strcpy(DUMP_FILE,temp_name);

scanf("%s",temp_name);
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strcpy(MLE_FILE,temp_name);

out=fopen(MLE_FlLE,"w");
outl=fopen(DUMP_FILE,"w");

xtof(s,N,P,kinl,kin2,F);
des_dist(N,NX,s,SDIFF);

fputs(title,out); 
fputs(title,outl); 
fprintf(out,"\n%s\n", datetime); 
fprintf(out 1 ,"\n%s\n", datetime);

if(ndec==l)
{

fprintf(out,'\n");
fprintf(outl,"\n");
fpnntf(out,"RESULTS FROM FULL MLENn");
fprintf(outl,"RESULTS FROM FULL MLE\n");
fprintf(out,'Yi");
fprintf(outl,"Nn");
itmax=itmax*50;

like=mle(out,outl,N,NX,P,SDIFF,F,Y,theta,powei',&gamma,beta,&sigmaz,tol,\e
nloop,itmax);

}

if(ndec==2)

{
fprintf(out,"\n");
fprintf(outl,"\n");
fpnntf(out,"RESULTS FROM ONE AT A TIME MLEXn"); 
fprintf(outL"RESULTS FROM ONE AT A TIME MLEVr'); 
fprintf(out,"\n");
fprintf(outl,"\n");

like=chpmle(out,out 1,N,NX,P,SDIFF,F,Y,theta,power,&gamma,beta,&sigmaz,tol,\e 
nloop,itmax);

}

fprmtf(out,"\n");
fprmtf(out,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fprintf(out," AND %s",data_file2);
fprintf(out,"\n");
fprintf(outl,"\n");
fprmtf(outl,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fpnntf(outl," AND %s",data_file2);
fprintf(outl,"\n");
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fclose(out);
fclose(outl);

}

scanf("%d",&ndec);

/* This section computes nlike likelihood values for */
/* nlike sets of theta and power */

if(ndec)
{

read_param=0;
scanf("%d",&nlike);
scanf("%s",temp_nanre);
fname=AllocChar(strlen(temp_name));
strcpy(fname,temp_name);
inl=fopen(fname,"r");
FreeChar(strlen(temp_name),fname);

scanf("%s",temp_name);
fname=AllocChar(strlen(temp_name));
strcpy(fhame,temp_name);
out=fopen(fname,"w");
FreeChar(strlen(temp_name),fname);

fputs(title,out);
fprintf( out,"\n%s\n",datetime); 
fprintf(out,"\n");
fprintf(out,"LIKELIHOOD RESULTSNn"); 
fprintf(out,'\n");

xtof(s,N,P,kinl,kin2,F); 
des_di s t(N,NX,s ,SDIFF);

for(j=0;j<nlike;j++)

{
for(i=0;i<NX;i++) fscanf(inl ,"%lf',&theta[i]); 
for(i=0;i<NX;i++) fscanf(inl,"%lf'’,&power[i]);

covm(N,NX,SDIFF,theta,power,gamma,V); 
hke=compmle(N,P,Y,F,V,&sigmaz,beta);

fprintf(out,"RESULTS FOR PARAMETER SET %d\n",j+l); 
fpnntf(out,"-2*LN LIKELIHOOD= %lf\n",like); 
fprintf(out,"SIGMAZ= %ll\n",sigmaz);
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}

fprmtf(out,"\n");
fprintf(out,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fprintf(out," AND %s",data_file2);
fprintf(out,"\n");

fclose(inl);
fclose(out);

for(i=0;i<P;i++) fpnntf(out,"BETA= %li\n",beta[i]);

}

scanf(" %d" ,&ndec);

/* This section computes predicted values for given parameters and */ 
/* given or randomly selected prediction points */

if(ndec)

{

if(read_param)

{
scanf("%s",temp_name);
fname=AllocChar(strlen(temp_name));
strcpy(fname,temp_name);
inl=fopen(fname,"r");
FreeChar(strlen(temp_name),fname);

fscanf(inl,"%lf %lf %lf',&sigmaz,&gamma,&like); 
for(i=0;i<P;i++) fscanf(inl,"%lf',&beta[i]); 
for(i=0;i<NX;i++) fscanf(inl ,"%lf ,&theta[i]); 
for(i=0;i<NX;i++) fscanf(inl ,"%lf',&power[i]); 
read_param=0;

}

scanf("%d %d",&numpred,&rand_ind); 
scanf("%d %d %d",&nfiles,&ny,&sely); 
predx=AllocDouble2(numpred,NX);

/* computing random inputs for prediction if required */

if(rand_ind)

{
for(i=0;i<numpred;i++)

for(j=0;j<NX;j++)
{
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temp_ran=random(); 
ran_num=temp_ran; 
predx [i] [j ]=ran_num/R AND_MAX-0.5 ;

}

else
{

/* or reading inputs in from file */

scanf("%s",temp_name);
data_file=AllocChar(strlen(temp_name));
strcpy(data_file,temp_name);

if(nfiles==2)

{
scanf("%s",temp_name);
data_file2=AllocChar(strlen(temp_name));
strcpy(data_file2,temp_name);
in2=fopen(data_file2,"r");

}

inl=fopen(data_file,"r"); 
tempy=AllocDouble2(numpred,ny); 
tmey=All ocDouble(numpred) ;

for(j=0;j<numpred;j++)

{
for(i=0;i<NX;i++) fscanf(inl,"%lf',&predx[j][i]); 
for(k=0;k<ny;k++)

{
if(nfiles==l)fscanf(inl,"%lf',&tempy[j][k]); 
if(nfiles==2)fscanf(in2," %lf ' ,&tempy [j] [k] );

}
truey [j]=tempy[j] [sely-1 ] ;

}

FreeDouble2(numpred,ny,tempy);
fclose(inl);
if(nfiles==2)fclose(in2);

}
scanf("%s",temp_naine);
fname=AllocChar(strlen(temp_name));
strcpy(fname,temp_name);

out=fopen(fname,"w");
FreeChar(strlen(temp_name),filarne);

-165-



yhat=AllocDouble(numpred);
emse=AllocDouble(numpred);

fputs(title,out);
fprintf(out,"\n%s\n", datetime); 
fprintf(out,"\n");
fprintf(out,"PREDICTION RESULTS\n");
pmt_like( out, N, NX, P, theta, power, gamma, beta, sigmaz, like);
fprintf(out,'\n");

get_pred(N,NX,P,km l,km2,s,Y,theta,power,gamma,sigmaz,numpred,predx,yhat,erase); 
pred_out(out,numpred,truey_ind,truey,predx,yhat, erase);

fprintf(out,"\n");
fprintf(out,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fprintf(out," AND %s",data_file2);
fprintf(out,"\n");

fclose(out);

}

/* This section computes cross-validation results for given parameters */ 

scanf("%d",&ndec);

if(ndec)

{

if(read_param)
{

scanf("%s",temp_name);
fname=AllocChar(strlen(temp_name));
strcpy(fname,temp_name);
inl=fopen(fname,"r");
FreeChar(strlen(temp_name),fname);

fscanf(inl,"%lf %lf %lf',&sigmaz,&gamma,&like); 
for(i=0;i<P;i++) fscanf(inl ,"%lf \&beta[i]); 
for(i=0;i<NX;i++) fscanf(inl,"%lf',&theta[i]); 
for(i=0;i<NX;i++) fscanf(int,"%lf',&power[i]); 
read_param=:0;

}

scanf(" % s" ,temp_name);
fname=AllocChar(strlen(temp_name));
strcpy(fname,temp_name);

-166-



out=fopen( fname, " w " ) ;
FreeChar(strlen(temp_name),fname) ;

fputs(title,out);
fprmtf( out,"\n%s\n",datetime); 
fpnntf(out,"\n");
fpnntf( out,"CROSS-VALIDATION RESULTSVt"); 
pmt_like( out,N,NX,P,theta,power,gamma,beta,sigmaz,like); 
fprintf(out,"\n");

get_cv(out,N,NX,P,s,Y,theta,power,gamma,sigmaz,kinl,kin2); 

fprintf(out,'\n");
fprintf(out,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fprintf(out," AND %s",data_file2);
fprintf(out,"\n");

fclose(out);

}

/* This section computes main effects results for selected variables */

scanf("%d",&ndec);

if(ndec)
{

if(read_param)

{
scanf('" %s" ,temp_name); 
fname=AllocChar(strlen(temp_name)); 
strcpy(fname,temp_name); 
in 1 =fopen(fname," r");
FreeChar(strlen(temp_name), fname);

fscanf(inl,"%lf %lf %lf',&sigmaz,&gamma,&like); 
for(i=0;i<P;i++) fscanf(inl,"%lf',&beta[i]); 
for(i=0;i<NX;i++) fscanf(inl ,"%lf'',&theta[i]); 
for(i=0;i<NX;i++) fscanf(inl,"%lf',&power[i]); 
read_param=0;

}

scanf("%d %d",&intlev,&usesig);

/* either use significance levels to choose factors to compute */ 
/* main effects for or input factors manually */
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if(usesig)
det_sig(N,NX J\s , Y,theta,power,gamma,kin l,kin2,int_ind); 

else
for(i=0;i<NX;i++)scanf("%d",&int_ind[i]);

/* preparation of output file names */

scanf("%s",temp_name);
oname=AllocChar(strlen(temp_name));
strcpy(oname,temp_name);

fname=AllocChar(strlen(oname)+4); 
strcpy (fname,oname) ; 
fhame=strcat(fhame,". med" ) ; 
out=fopen(fname," w' ' ) ;
FreeChar(strlen(oname)+4,fname);

fputs(title,out);
fprintf(out,'\n%s\n",datetime); 
fprintf(out,"Sn");
fprintf(out,"MAIN EFFECTS RESULTS\n\n");

pmt_like( out, N, NX, P, theta, power, gamma, beta, sigmaz, like); 
fprintf(out,"Vi");

init_me(out, oname,N, NX, P,s,Y, theta, power, gamma, kinl,kin2,int_ind,intlev); 

fprintf(out,"\n");
fprintf(out,"THE DATA FOR THIS RUN IS IN THE FILE %s",data_file);
if(nfiles=2)fprintf(out," AND %s",data_file2);
fpnntf(out,"\n");

fclose(out);

}

FreeDouble2(N,N,V); 
FreeDouble2(N,NX,s); 
FreeDouble2(N,P,F); 
FreeDouble(N,Y); 
FreeDouble(NX, theta); 
FreeDouble(NX, power); 
FreeDouble(P,beta) ; 
FreeDouble(numpred,yhat) ; 
FreeDouble(numpred, erase); 
FreeInt(P,kinl); 
FreeInt(P,kin2);
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FreeInt(NX,int_ind) ;

return;

}
/*....................................................... ......................*/
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extern double getlike(); 
extern double compmleO; 
extern double mle(); 
extern double chpmle(); 
extern void det_sig(); 
extern void mult_like();

/* This is rb_like.c */
/* These routines compute likelihood values */
I*__________ _____ __________________*/
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include "rb_alloc.h"
#include "rb_covm.h"
#include "rb_math.h"
#include "rb_opt.h"
#include "rb_dace_pmt.h"
#include "dace.h"
/*................... ......... ...... .............................................*/

double getlike(n,p,y,f,v,sigmaz,r,c) 
int n,p;
double *y,**f,**v,**r,*c,*sigmaz;

{
int i,j,k;
double fcn,det,**ftilda,tempf,tempy,*z,*ytilda,ss,*resid,**q;
ftilda=AllocDouble2(n,p+l);
ytilda=AllocDouble(n);
resid=AllocDouble(n);
q=AllocDouble2(n,p);
z=Al 1 ocDoubl e(n) ;

cd(n,v,z);
det=0.;
for(i=0;i<n;i++) det=det-log(z[i]); 
det=2*det;

for(k=0;k<n;k++)

{
for(i=0;i<p;i++)
{

tempf=f[k] [i];
for(j=0;j<k;j++) tempf=tempf-v[k][j]*ftilda[j][i]; 
ftilda[k] [i]=tempf*z[k];

}
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for(k=0;k<n;k++)

{
tempy=y[k];
for(j=0;j<k;j++) tempy=tempy-v[k][j]*ytilda[j]; 
ytilda[k]=tempy*z[k];

}

if(p==0)
{

ss=0.;
for(i=0;i<n;i++) ss=ss+ytilda[i]*ytilda[i]; 
*sigmaz=ss/n;

fcn=n*log(*sigmaz) + d e t;
fcn=fcn/100.;
retum(fcn);

}

for(i=0;i<n;i++) ftilda[i][p]=ytilda[i]; 
qr(ftilda,n,p,p+l,q,r,ytilda,c);

for(i=0;i<n;i++)

{
resid[i]=0.;
for(j=0;j<p;j++) resid[i]=resid[i]+q[i][j]*c[j]; 
resid[i]=ytilda[i]-resid[i];

}

ss=0.;
for(i=0;i<n;i++) ss=ss+resid[i]*resid[i];
*sigmaz=ss/n;

fcn=n*log(*sigmaz) + det; 
fcn=fcn/100.;

FreeDouble2(n,p+1 ,ftilda);
FreeDouble2(n,p,q);
FreeDouble(n,y ti Ida);
FreeDouble(n, resid);
FreeDouble(n,z);

retum(fcn);

}
/*........... ........................... ................. ...............*i
double compmle(n,p,y,f,v,sigmaz,beta) 

int n,p;
double *y,**f,**v,*sigmaz,*beta;
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{
int i,j;
double **r,*c,fcn; 
c=AllocDouble(n); 
r=AllocDouble2(p,p);

fcn=getlike(n,p,y,f,v,sigmaz,r,c);
fcn=fcn*100.;
for(i=0;i<p;i++)

{
beta[i]=c[i];
for(j =p-1 ;j >i ;j - )  beta [i]=beta [i] -r[i] [j ] *beta [j ] ; 
beta[i]=beta[i]/r[i] [i] ;

}

FreeDouble(n,c);
FreeDouble2(p,p,r);

retum(fcn);
}
/*___ ___________ _______ _________________

double mle(out,outl,n,nx,p,sdiff,f,y,theta,power,gamma,beta,sigmaz,toljaloop,itmax) 
int n,nx,p,nloop,itmax;
double **sdiff,**f,*y,*theta,*power,*gamma,*beta,*sigmaz,tol;
FILE *out,*outl;

{
int i,j,k,iter,nopt;
double like,t_üke,*dx,ran_num,tempgam,RAND_MAX,*gtheta,*gpower,ggamma; 
double old_like= 10000000; 
long temp_num;

nopt= (NGAM) ? 2*nx+l : 2*nx; 
dx=All ocDouble(nopt) ; 
gtheta=AllocDouble(nx); 
gpower=All ocDouble(nx) ;

RAND_M AX=2147483647; 
for(j=0;j<nloop;j++)
{

for(i=0;i<nx;i++)

{
temp_num=random(); 
ran_num=temp_num ;
dx[i]=log(ran_num/RAND_MAX+0.000000001); 
ran_num=random() ;
dx[nx+i]=asin(2*(ran_num/RAND_MAX-0.5));

}
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ran_num=rand();
if (NGAM) dx[2*nx]=log(ran_num/RAND_MAX+0.0000000001);

NFCALLS=0;
FUNC_DECISION=0;
like=runopt(dx,nopt,tol,&iter,itmax);

fprintf(out 1 ,"NFCALLS= %d # ITERS= %d MAX ITERS ALLOWED= %d\n",\ 
NFCALLS,iter,itmax);

for(i=0;i<nx;i++)

{
theta[i]=exp(dx[i]);
po wer[i]=sin(dx [nx+i] )/2+1.5;

}
*gamma= (NGAM) ? exp(dx[2*nx]) : 0;

covm(n,nx,sdiff,theta,power,*gamma,V); 
t_like=compmle(n,p,y,f,V,sigmaz,beta);

if(like<old_like)

{
for(i=0;i<nx;i++)

{
gtheta [i]=exp(dx [i] ); 
gpower[i]=sin(dx[nx+i])/2+l .5;

}
ggamma= (NGAM) ? exp(dx[2*nx]) : 0; 
old_like=t_like;

}

pmt_like(outl,n,nx,p,theta,power,*gatnma,beta,*sigmaz,t_like);

}

for(i=0;i<nx;i++)

{
theta[i]=gtheta[i]; 
power[i]=gpower[i] ;

}
*gamma=gg anima;
covm(n,nx,sdiff,theta,power,*gamma,V); 
t_like=compmle(n,p,y,f,V,sigmaz,beta);

pmt_like(out,njix,p,theta,power,*gamma,beta,*sigmaz,t_like);

FreeDouble(nopt,dx);
FreeDouble(nx,gtheta) ;
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FreeDouble(nx,gpower);

retum(oldjike);
}
/*__________________ _____________________ */

double chpmle(out,out l,n,nx,p,sdiff,f,y,theta,power,gamma,beta,sigmaz,toi,nloop,Umax) 
int ngix,p,nloop,itmax;
double **sdiff,**f,*y,*theta,*power,*gamma,*beta,*sigmaz,tol;
FILE *out,*outl;

{
int i,j,k,iter,nopt;
double like,old_like,t_like,*dx,ran_num,tempgam,RAND_MAX; 
long temp_num;

/* FILE *out;
FILE *outl;
out=fopen(MLE_F!LE,"w"); 
outl=fopen(DUMP_FTLE,"w"); */

nopt= (NGAM) ? 3 : 2; 
dx=All ocDoubl e(nopt) ;

RAND_M AX=2147483647;
temp_num=random();
ran_num=temp_num;
dx[0]=log(ran_num/RAND_MAX+0.000000001 ); 
ran_num=random();
dx[l]=asin(2*(ran_num/RAND_MAX-0.5));
ran_num=rand();
if (NGAM) dx [2]=log(ran_num/RAND_MAX+0.0000000001 );

NFCALLS=0;
FUNC_DECISION= 1 ; 
old_like=runopt(dx,nopt,tol,&iter,itmax);

for(i=0;i<nx;i++)
{

theta[i]=exp(dx [0] ); 
power[i]=sin(dx[ 1 ])/2+l. 5;

}
*gamma= (NGAM) ? exp(dx[2]) : 0;

covm(n,nx,sdiff,theta,power,*gamma,V); 
t_like=compmle(n,p,y,f,V,sigmaz,beta);

pmt_like(outl,n,nx,p,theta,power,*gamma,beta,*sigmaz,old_like); 
pmt_like(out,n,nx,p,theta,power,*gamma,beta,*sigmaz,old_like);
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covm 1 (n,nx,sdiff,theta,power,*gamma,V);

FUNC_DECISION=2;

for(j=0;j<nloop;j-t-+)
{

for(i=0;i<nx;i++)

{
OLD_THETA=theta[i];
OLD_POWER=power[i];
dx[0]=log(theta[i]+0.000000001);
dx[l ]=asin(2*(power[i]-1.5));
if(NGAM) dx[2]=log(*gamma+0.0000000001);
NPK=i;
NFCALLS=0;

like=runopt(dx,nopt,tol,&iter,itmax);

fprintf(outl,"NFCALLS= %d # ITERS= %d MAX ITERS ALLOWED= %d\n",\ 
NFC ALLS ,iter,itmax);

if(like<old_like)
{

theta[i]=exp(dx[0]); 
po wer [i]=sin(dx [ 1 ] )/2+1.5;
*gamma= (NGAM) ? exp(dx[2]) : 0; 
covm(n,nx,sdiff,theta,power,*garnma,V); 
t_like=compmle(n,p,y,f,V,sigmaz,beta); 
old_like=t_like;

}
}

fprintf(out,"FOR LOOP %d -2*LN LIKELIHOOD= %10.41e\n",]+l,old_like); 
pmt_like(outl,n,nx,p,theta,power,*gamma,beta,*sigmaz,old_like);

}

pmt_like(out,n,nx,p,theta,power,*gamnia,beta,*sigmaz,old_like);
/* fclose(out); 

fclose(outl); */

FreeDouble(nopt,dx);

retum(old_like);
}
/*..........— ............................-................... -----.............*/
void det_sig(n,nx,p,s,y,theta,power,gamma,kinl,kin2,int_ind) 

int n,nx,p,*kinl,*kin2,*int_ind;
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{
int i,j;
double tlike,like,sigmaz;
double **sdiff,**v,*ntheta,**r,*c,fcn,**f;

sdiff=All ocDouble2(n*(n-1 )/2,nx);
v=A11 ocDouble2(n,n);
f=AllocDouble2(n,p);
r=AllocDouble2(p,p);
c=AllocDouble(n);
ntheta=AllocDouble(nx);

des_dist(n,nx,s,sdiff); 
xtof(s,n,p,kinl ,kin2,f);

covm(n,nx,sdiff, theta, power, gamma,v);
tlike=getlike(n,p,y,f,v,&sigmaz,r,c);
tlike=tlike*100.;

for(i=0;i<nx;i++)

{
int_ind[i]=0;
for(j=0;j<nx;j++) ntheta|j]=theta|j]; 
ntheta[i]=0;

covm(n,nx,sdiff,ntheta,power,gamma,v);
like=getlike(n,p,y,f,v,&slgmaz,r,c);
like=like*100.;

if(like-tlike>6)int_ind[i]=l;

}

FreeDouble2(n*(n-1 )/2,nx,sdiff);
FreeDouble2(n,n,v);
FreeDouble2(n,p,f);
FreeDouble2(p,p,r);
FreeDouble(n,c);
FreeDouble(nx,n theta);

return;

}
I*-----------------------
void mult_like(n,nx,p,kinl ,kin2,s,y,theta,power,gamma,nlike) 

int n,nx,p,*kinl,*kin2,nlike; 
double **s,*y,*theta,*power,gamma;

{

double **s,*y,*theta,*power,gamma;
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int ij;
double **sdiff,**v,**f,*beta,like,sigmaz; 
sdiff=AllocDouble2(n*(n-1 )/2,nx); 
f=Alloc Double2(n,p); 
v=AllocDouble2(nji);

xtof(s ,n,p,kinl ,kin2,f); 
des_dist(n,nx,s,sdiff);

for(j=0;j<nlike;j++)
{

for(i=0;i<nx;i++) fscanf(in,"%lf',&theta[i]); 
for(i=0;i<nx;i++) fscanf(in,"%lf',&power[i]); 
fclose(in);

covm(noix,sdiff,theta,power,gamma,v); 
like=compmle(n,p,y,f,v,&sigmaz,beta);

fprintf(out,"RESULTS FOR PARAMETER SET %d:\n",j); 
fprintf(out,"-2*LN LlKELIHOOD= %1 An",like); 
fprintf(out,"SIGMAZ= %lf\n",sigmaz); 
for(i=0;i<P;i++) fprintf(out,"BETA= %lf\n",beta[i]);

}
return;

}
/*---------------------------------------- -................. */
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^*********:fc*****rp]̂ jg jg predict Ji****************************^

extern void initial(); 
extern void predict(); 
extern void get_emse(); 
extern void get_pred(); 
extern void get_cv(); 
extern double mepredQ;

/* This is rb_predict.c */
/* These routines are used for prediction and cross-validation */ 
/*— ....... -.................. .............................. .................- * /
#include<math.h>
#include<stdio.h>
#include "rb_math.h"
#include "rb_alloc.h"
#include "rb_matman.h"
#include "rb_covm.h"
/ * - .........- ..................... .............................................................................. — * /

void initial(n,p,f,v,veci,vec2,fvf)
int n,p;
double **f(**v,**vec 1 ,**vec2,**fvf;

{
int i,j,k;
double **a;
a=AllocDouble2(pji);

invmat(n,v);

for(i=0;i<n;i++)
for(j=i+l;j<n;j++) v[i][j]=v|j][i];

for(i=0;i<p;i++)
for(j=0;j<n;j++)

for(k=0;k<n;k++) a[i][j]=a[i] [j]+f[k][i]*v[k][j];

for(i=0;i<p;i++)
for(j=0;j<p;j++)

for(k=0;k<n;k++) fvf[i][j]=fvf[i][j]+a[i][k]*f[k][j]; 

if(p==l) fvf[0][0]=1 ./fvf[0][0]; 

if(p!=l) invmat(p,fvf); 

for(i=0;i<p;i++)
for(j=i+l;j<p;j++) fvf[i][j]=fvf[j][i]; 

for(i=0;i<p;i++)
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for(j=0;j<n;j++)
{

veci [i][j]=0; 
for(k=0;k<p;k++)

vec 1 [i] [j ]=vec 1 [i] [j]+fvf [i] [k] *a [k] [j ] ;
}

for(i=0;i<n;i++)
for(j=0;j<n;j++)

I
vec2[i] [j]=-1.0*v[i] [j] ;
for(k=0;k<p;k++) vec2[i][j] =vec2 [i] [j ]+a [k] [i] * vec 1 [k] [j ] ;

}

FreeDouble2(p,n,a);

return;
}
/*................................................ .................. *i
void predict(n,nx,p,s,y,theta,power,numpred,x,fpred,vec 1 ,vec2,yhat) 

int n,nx,p,numpred;
double **s,*y,*theta,*power,**x,**fpred,**vec 1 ,**vec2,*yhat;

{
int i,j,k;
double *r,*vl,*v2; 
i^AllocDouble(n); 
vl=AllocDouble(p); 
v2=Al 1 ocDouble(n);

for(i=0;i<p;i++)
for(j=0;j<n;j++) vl[i]=vl[i]+vecl[i][j]*y[j]; 

for(i=0;i<n;i++)
for(j=0;j<n;j++) v2[i]=v2[i]-vec2[i][j]*y[j];

for(i=0;i<numpred;i++)
{

for(j=0;j<n;j++)
{

r[j]=0;
for(k=0;k<nx;k++) r[j]=r|j]-theta[k]*pow(rb_abs(s[j][k]-x[i][k]),power[k]); 
r[j]=exp(r[j]);

}

yhat[i]=0;
for(j=0;j<n;j++) yhat[i]=yhat[i]+r[j]*v2[j];
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}

FreeDouble(n,r);
FreeDouble(p,vl);
FreeDouble(n,v2);

return;
}
/ * - - ...................................................... .................. .........................- - - - - .........................- * /

void get_emse(n,nx,p,s,theta,power,sigmazjiumpred,x,fpred,veci,vec2,fvf,erase) 
int njix,pjrumpred;
double **s,*theta,*power,sigmaz,**x,**fpred,**vecl,**vec2,**fvf,*emse;

{
rat i,j,k; 
double *r,dl; 
n=AllocDouble(n);

for(i=0;i<numpred;i++)
{

for(j=0;j<n;j++)

{
r[j]=0;
for(k=0;k<nx;k++) r[j]=r|j]-theta[k]*pow(rb_abs(s[j][k]-x[i][k]),power[k]); 
r[j]=exp(r[j]);

}

emse[i]=l;

for(j=0;j<p;j++)
{

dl=0;
for(k-0;k<p;k++) d 1 =d 1 +fvf[j] [k]*fpred[i][k]; 
erase [t]=emse [i]+fpred[i] [j] *d 1 ;

}

for(j=0;j<p;j++)

{
dl=0;
for(k=0;k<n;k++) d 1 =dl -i-vec 1 [j] [k] *r[k] ; 
emse[i]=emse[i]-2*lpred[i][j]*dl;

}

for(j=0;j<n;j++)
{

dl=0;
for(k=0;k<n;k++) dl=dl+vec2[j][k]*r[k];

for(j=0;j<p;j++) yhat[i]=yhat[i]+fpred[i][j]*vl[j];
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}

emse[i]=sigmaz*emse[i];
}

FreeDouble(n,r);

return;

}
/*-......... -............------------------------ -----............-....... */
void get_pred(n,nx,p,kinl,kin2,s,y,theta,power,gamma,sigmaz,numpred,predx,yhat,emse) 

int n,nx,p,*kinl,*kin2,numpred;
double **s,*y,*theta,*power,gamma,sigmaz,**predx,*yhat,*emse;

{
int i,j;
double **f,**sdiff,**v,**fpred,**vec 1 ,**vec2,**fvf;

f=AllocDouble2(n,p);
v=All ocDouble2(n,n);
sdiff= AllocDouble2(n*(n-1 )/2,nx);
fpred=AllocDouble2(numpred,p);
vecl=AllocDouble2(p,n);
vec2=AllocDouble2(n,n);
fvf=AllocDouble2(p,p);

des_di st(n ,nx ,s ,sdiff); 
xtof(s,n,p,kinl ,kin2,f); 
covm(n,nx,sdiff,theta,power,gamma, v); 
xtof(predx,numpred,p,kinl,kin2,fpred); 
initial(n,p,f,v,vecl,vec2,fvf);
predict(njix, p,s,y, theta, powerjnumpred,predx,fpred,vecl,vec2,yhat); 
get_emse(nmx,p,s, theta, power, sigmaz,numpred,predx,fpred,vecl,vec2,fvf,emse);

FreeDouble2(n,p,f);
FreeDouble2(n,n,v);
FreeDouble2(n*(n-1 )/2,nx,sdiff);
FreeDouble2(numpred,p,fpred);
FreeDouble2(p,n,vec 1);
FreeDouble2(n,n,vec2);
FreeDouble2(p,p,fvf);

return;

}
/*------------------------------------- - ......... - -----------------------------*/
void get_cv(out,n,nx,p,s,y,theta,power,gamma,sigmaz,kinl,kin2) 

int n,nx,p,*kml,*kin2;

emse[i]=emse[i]+r[j]*dl;
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double **s,*y,*theta,*power,gamma,sigmaz;
RLE *out;

{
int i,j,k,m;
double **sdiff,**v,**subv,**subs,*suby,**f,**predx,*yhat,*emse; 
double **vecl,**vec2,**fvf,**fpred,*cvyhat,*cvmse;

v=AllocDouble2(n,n);
subv=AllocDouble2(n-1 ,n-1);
sdiff=AllocDouble2(n*(n-l)/2,nx);
subs=All ocDouble2(n-1 ,nx);
suby=AllocDouble(n-l);
f=AllocDouble2(n-1 ,p);
fpred=AllocDouble2( 1 ,p);
predx=AllocDouble2( 1 ,nx);
vecl=AllocDouble2(p,n);
vec2=AllocDouble2(n,n);
fvf=AllocDouble2(p,p);
yhat=All ocDouble( 1);
emse=Alloc Double(l);
cvyhat=AllocDouble(n);
cvmse=AllocDouble(n);

des_dist(n ,nx ,s ,sdiff); 
covm(n,nx,sdiff,theta,power,gamma,v);

for(i=0;i<n;i++)

{
m=0;
for(j=0;j<n;j++)
{

if(i= j)
{

for(k=0; k<nx; k++) predx [0] [k]=s [j] [k];

}
else
{

suby[m]=y[j];
for(k=0;k<nx;k++) subs [m] [k]=s [j] [k]; 
for(k=0;k<n;k++)
{

if(k<i)subv[m] [k]=v[j][k]; 
if(k>i)subv[m][k-l]=v[j][k];

}
m ++;

}
}
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xtof(subs,n-1 ,p,kinl ,kin2,f); 
xtof(predx,l,p,kinl,kin2,fpred); 
initial(n-1 ,p,f,subv,vecl ,vec2,fvf);
predict(n-1, nx,p, subs, suby, theta, power, 1 ,predx,fpred,vec 1 ,vec2,yhat); 
get_emse(n-1, nx,p, subs, theta, power, sigmaz, 1 ,predx,fpred,vec 1 ,vec2,fvf, erase);

cvyhat[i]=yhat[0];
cvmse[i]=emse[0];

}

pred_out(out,n,l,y,s,cvyhat,cvmse);

FreeDouble2(n,n,v);
FreeDouble2(n-1 ,n-1 ,subv);
FreeDouble2(n*(n-l)/2,nx,sdiff);
FreeDouble2( 1 ,p,fpred);
FreeDouble2(n-1 ,nx,subs);
FreeDouble(n-1 ,suby);
FreeDouble2(n-1 ,p,f);
FreeDouble2(l ,nx,predx);
FreeDouble2(p,n,vecl);
FreeDouble2(n,n,vec2);
FreeDouble2(p,p,fvf);
FreeDouble( 1 ,yhat);
FreeDouble( 1 ,emse);
FreeDouble(n,c vyhat) ;
FreeDouble(nxvmse);

return;

}
/ * - - ---- --------------------- -------------------- - .........................— - ...................... * /

double mepred(n,nx,p,s,y,theta,power,f,v,kinl ,kin2) 
int njrx,p,*kinl,*kin2; 
double **s,*y,*theta,*power,**f,**v;

Í
int i,j,numpred=1000;
double **vecl,**vec2,**fvf,**fpred,**predx,*yhat; 
double yavg=0,ssy=0,RAND_MAX=2147483647;

fpred=AllocDouble2(numpred,p);
predx=AllocDouble2(numpred,nx);
veci =AllocDouble2(p,n);
vec2=AllocDouble2(n,n);
fvf=AllocDouble2(p,p);
yhat=AllocDouble(numpred);

for(i=0;i<numpred;i++)
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xtof(predx,numpred,p,kinl,kin2,fpred); 
ini tial(n,p,f,v,veci ,vec2,fvf);
predict(njix,p,s,y,theta,power jiumpred,predx,fpred,veci,vec2,yhat);

for(i=0;i<numpred;i++) yavg=yavg+yhat[i]; 
yavg=yavg/numpred;

for(i=0;i<numpred;i++) ssy=ssy+(yhat[i]-yavg)*(yhat[i]-yavg); 
ssy=ssy/numpred;

FreeDouble2(numpred,p,fpred);
FreeDouble2(p,n,vec 1 );
FreeDouble2(n,n,vec2);
FreeDouble2(p,p,fvf);
FreeDouble(numpred,yhat);

retum(ssy);
}
/ * - ..............................- ...................................................................... - ............................* /

for(j=0;j <nx;j++) predx [i] [j ]=(random ()/RAND_MAX)-0.5 ;
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^ g jg  rÌ3 e f f e c t s  ^ ^ » I * ^ ^ ^ • i ' - f - H * ^ H»» i* H * 4**1»H*-í*H ' -i- j

extern double calmuOO; 
extern void calmili(); 
extern void calmu2(); 
extern void init_me();

/* This is rb_effects.c */
/* These routines compute main effects and interactions */
/*................ ................. ......................................*i
#include<stdio.h>
#include<string.h>
#include<math.h>
#include "rb_alloc.h"
#include "rb_covm.h"
#include "rbjike.h"
#include "rb_math.h"
#include "rb_matman.h"
#include "rb_predict.h"
/*........................................... —-...................... ............... */
double cal muO(n,rinvy,mu 1 exp,numintr,intr,nulexp) 

int n,numintr;
double *rinvy,*mulexp,**intr,*nulexp;

{
int i,j;
double result=0;

for(i=0;i<n;i++) nulexp[i]=mulexp[i]; 

for(i=0;i<numintr;i++)
for(j=0;j<n;j++) nulexp[j]=nulexp[j]*intr|j][i]; 

for(i=0;i<n;i++) result=result+nulexp[i] *rinvy[i] ; 

retum(result);
}
/*.................... -....................................... ...........*/
void calmul (out l,ftiame,n,nx,numpts,int_ind,s,theta,power,ssy,rinvy,numintr,\ 
intr,nulexp,muO,mu) 

int n,nx,numpts,*int_ind,numintr;
double ssy,*nulexp,**intr,**s,*theta,*power,*rinvy,muO,**mu; 
char *fname;
FILE *outl;

{
int i,j,k,*muind; 
int cnt=0;
double *x,*bulexp,etox,*ss;
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FILE *out;

bulexp=AllocDouble(n);
x=AllocDouble(numpts);
muind=AllocInt(numintr);
ss=AllocDouble(numintr);

x[0]=-0.5;
for(i=l;i<numpts;i++) x[i]=x[i-l]+l./(numpts-l);

for(i=0;i<nx;i++) if(int_ind[i]) muind[cnt++]=i;

for(i=0 ; i <numintr;i++) 
for(k=0;k<numpts;k++)
{

mu[k][i]=0;
for(j=0;j<n;j++)

{
etox=pow(rb_abs(s[j][muind[i]]-x[k]),power[mumd[i]]); 
etox=exp(-1. *theta [muind[i]] *etox) ; 
bulexp [j ]=nulexp[j ] *etox/intr [j ] [i] ; 
mu [k] [i]=mu[k] [i]+bulexp Q] *rinvy [j ] ;

}
}

for(k=0;k<numpts;k++) 
for(i=0;i<numintr;i++) mu[k] [i]=mu[k][i]-muO;

out=fopen(fname,"w"); 
fprintf(out," %d",numintr);
for(i=0;i<numintr;i++) fprintf(out," %d",mumd[i]+l);

fprintf(out,"\n");
for(k=0;k<numpts;k++)
{

for(i=0; i<nummtr; i++)
{

fprintf(out,"%8.31f',mu[k][i]); 
ss [i]=ss [i]+mu[k] [i] *mu[k] [i] ;

}
fprintf(out,'\n");

}

for(i=0;i<numintr;i++)
fprintf(outl," Var %2d MSE= %12.41e MSE/VAR(Y)= %8.41An",mumd[i]+l,\ 
ss[i]/numpts,(ss[i]/numpts)/ssy);

fclose(out);
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FreeDouble(n,bulexp);
FreeDouble(numpts,x);
Freelnt(numintr,muind);
FreeDouble(numintr,ss);

retum;

}
/*...................... ...... ......................................................... */

void calmu2(out2,oname,n,nx,numpts,int_md,s,theta,power,beta,ssy,rinvy,numintr,\ 
intr,nulexp,muO,mul ) 

int n,nx,numpts,*int_ind,numintr;
doublé ssy,*nulexp,**intr,**s,*theta,*power,*beta,*rinvy,muO,**mul; 
char *oname;
FILE *out2;

{
int i,j,k,l,m,*muind; 
int cnt=0,cntint=0;
doublé *x,*bulexp,temp,etox,etoy,**mu,*ss; 
char *fname,*fnamel;

FILE *out;
FILE *outl;

fname=AllocChar(strlen(oname)+4);
strcpy(fnaine,oname);
fname=strcat(ihame,".int");

fnainel=AllocChar(strlen(oname)+3); 
strcpy(fnamel ,oname); 
inaine 1 =strcat(fnamel,".sf');

out=fopen(fname,"w"); 
out 1 =fopen(fname 1 w" );

bulexp=AUocDouble(n);
x=AllocDouble(numpts);
mu=AllocDouble2(numpts,numpts);
muind=AllocInt(numintr);

x[0]=-0.5;
for(i=l;i<numpts;i++) x[i]=x[i-l]+l./(numpts-l); 

for(i=0;i<nx;i++) if(int_ind[i]) muind[cnt++]=i; 

ss=All ocDouble(numintr*(numintr-1 )/2) ; 

for(i=0;i<nunnntr;i++)
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for(k=0;k<numpts;k++)
for(l=0;l<numpts;l++)
{

mu[k][l]=0;
for(j=0;j<n;j++)

{
temp=pow(rb_abs(s[j][muind[i]]-x[k]),power[muind[i]]); 
etox=exp(-1. *theta[muind[i]] *temp); 
temp=pow(rb_abs(s[j][muind[m]]-x[l]),power[muind[m]]); 
etoy=exp(-1. *theta[muind[m]]*temp); 
bulexp[j]=nulexplj]*etox*etoy/(mtr[j][i]*intr[j][m]); 
mu[k] [l]=rau[k] [l]+bulexp[j] *rinvy [j] ;

}
}

for(k=0;k<numpts;k++)
{

for(j=0;j<numpts;j++) fprintf(outl," %8.31f',mu[k][j]+beta[0]); 
fprintf(outl,'\n");

}

for(k=0;k<numpts;k++) 
for(j=0;j <numpts ;j++)
{

mu[k] [j]=mu[k] [j]-mul [k][i]-mul [j] [m]-muO; 
ss [cntint] =ss [cntint]+mu[k] [j] *mu[k] [j ] ;

}

ss[cntint]=ss[cntint]/(numpts*numpts);
fprintf(out2,"Var %2d Var %2d MSE= %12.41e MSE/VAR(Y)= %8.4H\n",\
muind[i]+1 ,muind[m]+l ,ss [cntint] ,ss [cntint]/ssy);
cntint++;

for(k=0;k<numpts ; k++)

{
for(j=0;j<numpts;j++) fprintf(out," %8.31f',mu[k][j]); 
fprintf(out,"\n");

}

for(m=i+l ;m<numintr;m++)

{

}

fclose(out);
fclose(outl);

FreeChar(strlen(oname)+3 ,fname 1 );
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FreeChar(strlen(oname)+4,fname);
FreeDouble(n,bulexp);
FreeDouble(numpts ,x);
FreeDouble(numintr*(numintr-1 )/2,ss);
FreeDouble2(numpts,numpts,mu);
Freelnt(numintr,muind);

return;

}
___________________________________________

void init_me(out2,oname,n,nx,p,s,y,theta,power,gamma,kinl,kin2,int_ind,intlev) 
int n,nx,p,*kinl ,*kin2,intlev,*int_ind; 
double * *s, *y,*theta,*power,gamma; 
char *oname;
FILE *out2;

{
int i,j,k;
int numintr=0,numpts=21;
double **f,**sdiff,**v,*beta,like,sigmaz;
double *rinvy,*mulexp,*nulexp,**intr,muO,**mul ,ssy;
char *fname,*fnamel;

FILE *out;

beta=AllocDouble(p);
rinvy=AllocDoubie(n);
mulexp=AllocDouble(n);
nulexp=AllocDouble(n);
intr=AllocDouble2(n,nx);
sdiff=AllocDouble2(n*(n-1 )/2,nx);
v=AllocDouble2(n,n);
f=AllocDouble2(n,p);

des_dist(n,nx,s,sdiff); 
xtof(s,n,p,kinl ,kin2,f); 
covm(n,nx,sdiff,theta,power,gamma,v); 
like=compmle(n,p,y,f,v,&sigmaz,beta);

covm(n,nx,sdiff,theta,power,gamma,v);

ssy=mepred(n,nx,p,s,y,theta,power,f,v,kinl,kin2); 
fprintf(out2," Variance of Y= %12.51e\n\n",ssy);

get_rinvy(n,p,f,v,y,beta,rinvy);

for(i=0;i<n;i++) mulexp[i]=l;
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if(int_ind[i])
{

for(j=0;j<n;j++) intr[j][numintr]= normin(theta[i],power[i],s[j][i]); 
numintr++;

}
else
{

for(j=0;j<n;j++) mulexp[j]=mulexp[j]*normin(theta[i],power[i],s[j][i]);
}

}

muO=calmuO(n,rinvy,mulexp,numinti,intr,nulexp);

mul=AllocDouble2(numpts,nuniintr);

fname=All oc Char( s trlen( oname)+4) ; 
strcpy (fname ,oname) ; 
fhame=strcat(fname,".muO"); 
out=fopen(fname,"w");

fprintf(out,"%12.41e\n",mu0); 
for(i=0;i<p;i++) fprintf(out," %12.41e",beta[i]); 
fprintf(out,"\n");
for(i=0;i<p;i++) fprintf(out," %d",kinl[i]); 
fprintf(out,"\n");
for(i=0;i<p;i++) fprintf(out," %d",kin2[i]);
fprintf(out,"\n");
fclose(out);

FreeChar(strlen(oname)+4, fname);

if(intlev<=2)
{

fname=AllocChar(strlen(oname)+3); 
strcpy(ftiame,oname); 
fname=strcat(fname.me");

calmul(out2, fname, n,nxjiumpts,int_ind,s, theta, power, ssy,rinvy,numintr,\ 
intr,nulexp,muO,mul );

FreeChar(strlen(oname)+3, fname);
}

for(i=0;i<nx;i++)

{

if(intlev==2)
calmu2(out2,onaine,njix,numpts,int_ind,s, theta, power,beta, ssy,rinvy,numintr,\
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intr,nulexp,muO,mul);

FreeChar(strlen( oname)+3 ,fhame 1 ) ;
FreeDouble(n ,ri n vy) ;
FreeDouble(n,mulexp);
FreeDouble(n,nulexp);
FreeDouble2(n,nx,intr);
FreeDouble2(n*(n-1 )/2,nx,sdiff);
FreeDouble2(n,n,v);
FreeDouble2(n,p,f);
FreeDouble2(numpts jiumintr,mu 1 ) ;

return;

}
/*.............................................................................................*/
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^********:fc******rjihis is rb covm h****************************/

extern void covm(); 
extern void covml(); 
extern void chp_covm(); 
extern void slc_covm();

/* This is rb_covm.c */
/* These routines compute covariance matrices */
/* from the n*(n-l)/2 by nx matrix **sdiff */
/■*__................................................... ................................................*j

#include<math.h>
#include<stdio.h>
#include "rb_math.h"
#include "rb_alloc.h"
#include "rbjnatman.h"
/*______________________________________

void covm(n,nx,sdiff,theta,power,gamma,v) 
int n,nx;
double **sdiff,*theta,*power,gamma,**v;

{
int i,j,k; 
double *vdiff;
vdiff=AllocDouble(n*(n-l)/2);

for(i=0;i<n*(n-1 )/2;i++)

{
for(k=0;k<nx;k++)

vdiff[i]=vdiff[i]-theta[k]*pow(sdiff[i][k],power[k]);
vdiff[i]=exp(vdiff[i]);

}

mat_v(n,vdiff,v);
for(i=0;i<n;i++) v[i] [i]=l .0+gamma;

FreeDouble(n*(n-1 )/2,vdiff);

retiun;
}
/*___________________________ ______________ */

void covm 1 (n,nx,sdiff,theta,power,gamma,v) 
int n,nx;
double **sdiff,*theta,*power,gamma,**v;

{
int i,j,k; 
double *vdiff;
vdiff=AllocDouble(n*(n-l)/2);
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for(i=0;i<n*(n-1 )/2;i++)
{

for(k=0;k<nx;k++)
vdiff[i]=vdiff[i]-pow(sdiff[i][k],power[0]); 

vdiff [i]=exp(theta [0] * vdiff [i]);

}

mat_v(n,vdiff,v);
for(i=0;i<n;i++) v[i] [i]=1.0+gamma;

FreeDouble(n*(n-l)/2,vdiff); 

return;

}
/*.............. ........ ........................................................ - - * /
void chp_covm(npk,n,sdiff,theta,power,gamma,ngam,old_theta,old_power,v) 

int n,npk,ngam;
double **sdiff,*theta,*power,gamma,old_theta,old_power,**v;

{
int i,j,k; 
double *vdiff;
vdiff=AllocDouble(n*(n-l)/2); 

vec_v(n,v,vdiff); 

for(i=0;i<n*(n-1 )/2;i++)
vdiff[i]=vdiff[i]*exp(old_theta*pow(sdiff[i] [npk],old_power)-\ 
theta[0]*pow(sdiff[i][npk],power[0]));

mat_v(n,vdiff,v); 
if(ngam=l)

for(i=0;i<n;i++) v[i][i]=v[i][i]+gamma;

FreeDouble(n*(n-1 )/2, vdiff); 

return;
}
/ * - .........- ----------------------------------------------- ------------ ------------------ -----* /

void slc_covm(npk,n,sdiff,theta,old_theta,old_power,v) 
int n,npk;
double **sdiff,*theta,old_power,old_theta,**v;

{
int i,j,k; 
double *vdiff;
vdiff=AllocDouble(n*(n-l)/2); 

vec_v(n,v,vdiff);
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for(i=0;i<n*(n-1 )/2;i++)
vdiff[i]=vdiff[i]*exp((old_theta-theta[0])*pow(sdiff[i][npk],old_power));

mat_v(n,vdiff,v);

FreeDouble(n*(n-l)/2,vdiff);

return;

}
/* - -------- -------------------- --------------------------------*/
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extern double funk(); 
extern int amoeba(); 
extern double runopt();
^****************************************************************j

/* This is rb_opt.c */
/*These routines are used for the optimization algorithms AMOEBA*/
/*—-......................................----- ------------- */
#include<math.h>
#mclude "rb_alloc.h"
«include "rb.math.h"
«include "rbjike.h"
«include "dace.h"
/* - ------------------------------------------—- ................*/
double fimk(dx) 

double *dx;

{
int i,j,k;
double **r,*c,*theta,*power,gamma,fen,sigmaz; 
double **tv;

tv=AllocDouble2(N,N); 
r=Al 1 ocDouble2(PT>) ; 
c=AllocDouble(N);

NFCALLS++;

if(FUNC_DECISION==0)
{

/* MLE - OPT 1 THETA,POWER FOR EACH VARIABLE */

theta=AllocDouble(NX);
power=AllocDouble(NX);

for(i=0;i<NX;i++)

{
theta[i]=exp(dx[i]); 
power[i]=sin(dx [NX+i] )/2+1.5;

}
gamma= (NGAM) ? exp(dx[2*NX]) : 0; 
covm(N, NX, SDIFF, theta, power, gamma, tv);

FreeDouble(NX,theta);
FreeDouble(NX, power);

}
else if(FUNC_DECISION== 1 )
{
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/* CHPMLE - OPT 1 THETA,POWER FOR ALL VARIABLES */

theta=AllocDouble(l); 
po wer=A1 locDouble( 1);

theta [0]=exp(dx [0]); 
po wer [0]=sm(dx [ 1 ] )/2+1.5; 
gamma= (NGAM) ? exp(dx[2]) : 0; 
covml(N,NX,SDIFF,theta,power,gamma,tv);

FreeDonble( 1,theta);
FreeDouble( 1,power);

}
else
{

for(i=0;i<N;i++)
for(j=i;j<N;j++)

{
tv[i][j]=V[i][j];
tv[j][i]=tv[i][j];

}
switch(FUNC_DECISION)

{
case 2 ;
{

/* CHPMLE - OPT 1 THETA,POWER AT TIME FOR EACH VARIABLE */

theta=AllocDouble(l);
power=AllocDouble(l);

theta[0]=exp(dx[0]); 
power[0]=sin(dx[l])/2+l .5; 
gamma= (NGAM) ? exp(dx[2]) : 0;
chp_covnr(NPK,N,SDIFF,theta,power,gamma,NGAM,OLD_THETA,OLD_POWER,tv);

FreeDouble( 1,theta);
FreeDouble( 1,power); 
break;

}
case 3 :
{

/* OPT OVER GAMMA ONLY */ 

gamma=exp(dx[0]);
tv [i] [i]=tv [i] [i] -OLD_GAMMA+gamma; 
break;
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inhi=ihi;
ihi=i;

else if(fxi[i]>fxi[inhi]) if(i!=ihi)inhi=i;
}
rtol=2*rb_abs(fxi[ihi]-fxi[ilo])/(rb_abs(fxi[ihi])+rb_abs(fxi[ilo]));

while(rtol>ftol && iter<itmax)
{
iter-H-;

for(j=0;j<nopt;j++) pbar[j]=:0; 
for(i=0;i<nopt+1 ;i++)

if(i!=ihi) for(j=0;j<nopt;j++) pbar[j]=pbar[j]+xi[i][j];

for(j =0;j <nopt;j ++)
{

pbar[j]=pbar[j]/nopt;
pr[j]=( 1 +alpha)*pbar[j]-alpha*xi [ihi] [j] ;

}
ypr=funk(pr);

if(ypr<=fxi [ilo] )

{
for(j=0;j<nopt;j++)

prr[j]=gamma*pr[j]+(l -gamma)*pbar[j] ; 
ypri^funk(prr);

i f( yp rr<fxi [ilo])
{

for(j=0;j<nopt;j++) xi[ihi][j]=prr[j]; 
fxi[ihi]=yprr;

}
else

{
for(j=0;j<nopt;j++) xi[ihi][j]=pr[j]; 
fxi[ihi]=ypr;

}
}
else if(ypr>=fxi[inhi])
{

1

if(ypr<fxi[ihi])
{

for(j=0;j<nopt;j++) xi[ihi][j]=pr[j]; 
fxi[ihi]=ypr;

}
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for(j=0;j<nopt;j-H-) prr[j]=beta*xi[ihi][j]+(l-beta)*pbar[j];
yprr=funk(prr);
if(yprr<fxi[ihi])

{
for(j=0;j<nopt;j++) xi[ihi][j]=prr[j]; 
fxi[ihi]=yprr;

}

else

{
for(i=0;i<nopt+1 ;i++)
{

if(i!=ilo)

{
for(j=0;j <nopt ;j ++)

{
pr[j]=0.5*(xi[i][j]+xi[ilo][j]);
xi[i][j]=pr[j];

}
fxi[i]=funk(pr);

}
}

}
}
else
{

for(j=0;j<nopt;j++) xi[ihi][j]=pr|j]; 
fxi[ihi]=ypr;

}

ilo=l;

ihi= (fxi [0]>fxi [ 1 ] ) ? 1 : 2; 
inhi= (fxi[0]<fxi [ 1 ]) ? 1 : 2;

for(i=0;i<nopt+1 ;i++)
{

if(fxi[i]<fxi[ilo])ilo=i; 
if(fxi [i]>fxi [ihi] )

{
inhi=ihi;
ihi=i;

}
else if (fxi [i] >fxi [inhi] ) 

if(i!=ihi)inhi=i;

}
rtol=2*rb_abs(fxi[ihi]-fxi[ilo])/(rb_abs(fxi[ihi])+rb_abs(fxi[ilo]));
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}

FreeDouble(nopt,pr);
FreeDouble(nopt,prr);
FreeDouble(nopt,pbar);

retum(iter);
}
/*.....................................................................................*/

double runopt(dx,nopt,tol,iter,itmax) 
int nopt,*iter,itmax; 
double *dx,tol;

{
int i,j,k,nbest=0; 
double **xi,*ptxi,*fxi,fcn;

xi=AllocDouble2(nopt+l ,nopt); 
ptxi=AllocDouble(nopt); 
fxi=AllocDouble(nopt+1);

for(j=0;j<nopt;j++) xi[0][j]=dx[j]; 
for(k=0;k<nopt;k++)

for(j=0;j<nopt;j++) xi[k+l][j]= (k==j) ? dx[j]+l : dx[j];

for(k=0;k<nopt+l ;k++)

{
for(j=0;j <nopt;j++) ptxi [j ]=xi [k] [j ]; 
fxi[k]=funk(ptxi);

}

*iten=amoeba(xi,fxi,nopt,tol,itmax);

/* write output results were here */ 

fcn=fxi[0];
for(k= 1 ;k<nopt+1 ;k++) 

if(fcn>fxi[k])

{
nbest=k;
fcn=fxi[k];

}

for(i=0;i<nopt;i++) dx[i]=xi [nbest] [i];

FreeDouble2(nopt+l,nopt,xi);
FreeDouble(nopt,ptxi);
FreeDouble(nopt+l,fxi);
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retum(fcn);

/*............................. ............................. -................ */
}
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/* */ 

extern void pmt_like(); 
extern void pred_out();

/* This is rb_print.c */
/* These routine print output for the different tasks */

#mclude<stdio.h>
#include<math.h>
#include "rb_alloc.h"
/* .....................................................................__*/

/* pm tjike prints parameter values and likelihood values */
/*.................... ..................... ....... ....... ...... *i
void pmt_like(out,n,nx,p,theta,power,gamma,beta,sigmaz,like) 

int n,nx,p;
double *theta,*power,gamma,*beta,sigmaz,like;

/* char file_name[40];*/
FILE *out;

{
int i;

/* FILE *out; 
out=fopen( file_name," a"); */

fprintf(out,"\n");
fprintf(out,"N= %d NX= %d\n",n,nx);
fprintf(out,"SIGMAZ= %10.41e GAMMA= %8.41f -2*LN LIKELIHOOD= %10.41e\n",\
sigmaz,gamma,like);
fprintf(out,"BETA=");
for(i=0;i<p;i++)

{
fprintf(out," %10.41e",beta[i]); 
if((i+l)%5==0)fprintf(out,"\n");

}
if(p%5) fprintf(out,"\uTHETA= "); 
if(p%5==0) fprintf(out.,"THETA= "); 
for(i=0;i<nx;i++)

{
fprintf(out," %10.41e",theta[i]);
if((i+l)%5==0 && i+l<nx)fprintf(out,"\nTHETA= ");

}
if(p%5) fprintf(out,"\nPOWER= "); 
if(p%5==0) fprintf(out,"POWER= "); 
for(i=0;i<nx;i++)

fprintf(out," %10.41e",power[i]);
{
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fprintf(out,'\n");
/* fclose(out); */

}
_________________________________________________*/

/* pred_out calculates summary statistics and prints prediction results */
/*........................................................ ........................_*i
void pred_out(out,numpred,truey_ind,truey,predx,yhat,emse) 

int numpred,truey_ind; 
double *truey,**predx,*yhat,*emse;
FILE *out;

{
int i,j;
double *diff,err=0,ss=0,diffmax=-1; 
diff=AllocDouble(numpred);

if(truey_ind)

{
for(i=0;i<numpred;i++)

{
diff [i]=(truey [i] -yhat [i]) *(truey [i] -yhat [i]); 
if(diff[i]>diffmax) diffmax=diff[i]; 
err=err+diff[i];

}

err=err/numpred;

for(i=0;i<numpred;i++) ss=ss+(diff[i]-err)*(diff[i]-err); 

ss=ss/numpred;

fprintf(out," ERMSE STD. ERR(ERMSE) MAXIERRNn"); 
fprintf(out,"%12.41e %12.41e %12.41e\n\n",sqrt(err),sqrt(ss),\
sqrt(diffmax));

fprintf(out,"CASE Y YHAT RMSE(YHAT)\n"); 
for(i=0;i<nimipred;i++)
fprintf(out,"%4d %12.41e %12.41e %12.41e\n",i+l,truey[i],yhat[i],\ 
sqrt(emse[i]));

}
else
{

fprintf(out,"CASE YHAT RMSE(YHAT)\n"); 
for(i=0;i<numpred;i++)
fprintf(out,"%4d %12.41e %12.41e\n",i,yhat[i],sqrt(emse[i]));

if((i+l)%5==0 && i+l<nx)fprintf(out,'\nPOWER= ");

}
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FreeDouble(numpred,diff) ; 

return;

}
/ * ........... ..................... ............. - .................. ............ ................ - * /

}
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y***************'^^ jg jjiatli h****************************/
extern void cd(); 
extern void invmat(); 
extern double rb_abs(); 
extern void qr(); 
extern double normin(); 
extern void xtof(); 
extern void get_rinvy();
/********** *********************************:{::*: r*:***********:*::}:̂ *̂ ;̂
/* This is rb_math.c */
/* these are various math routines */
/*.........- ............................. - ................... ...... .......... - - - - - */
#include<math.h>
#include "rb_alloc.h"
/*----------- ----------------------------------------------------*/
void cd(n,v,z) 

int n;
double **v,*z;

{
int i,j,k;
double *vd;
vd=AIlocDouble(n);

for(i=0;i<n;i++) vd[i]=v[i][i];

for(i=0;i<n;i++)
{

z[i]=l./sqrt(v[i][i]); 
for(j=i+l;j<n;j++) v[j][i]=v|j][i]*z[i];

for(j=i+l;j<n;j++)
for(k=j;k<n;k++) v[k][j]=v[k][j]-v[j][i]*v[k][i];

}

for(i=0;i<n;i++) v[i][i]=vd[i];
FreeDouble(n,vd);
return;

}
/ * — ................... ............................— - ................... - ................... * /

void invmat(n,v) 
int n;
double **v;

{
int i,j,k,temp; 
double *z,*w,sum; 
w=AllocDouble(n); 
z=AllocDouble(n);
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cd(n,v,z);

for(i=0;i<n;i++) v[i][i]=l ,/z[i];

for(i=n-l;i>=0;i—)
{

v[i][i]=z[i]; 
for(k=i;k>=0;k—)
{

sum=0;
for(j=k+1 ;j<=i ;j++)

{
sum=sum+v[j] [i] *v[j] [k] ; 
v[k][i]=(-sum*z[k]);

}
}

}

for(i=0;i<n;i++)
{

w[i]=0;
for(j=i;j<n;j++) w[i]=w[i]+v[i][j]*v[i][j]; 
for(j=i+l;j<n;j++)

{
v[j][i]=0;
for(k=j;k<n;k++) vß][i]=v|j][i]+v[i][k]*v[j][k];

}
}

for(i=0;i<n;i++) v[i][i]=w[i];

FreeDouble(n,z);
FreeDouble(n,w); 
return;

}
/*------- ------—-...................
double rb_abs(x) 

double x;
{

if(x<0) x=-l*x; 
retum(x);

}
/ * - - - ................- ..............................- ..........................

void qr(x,n,p,ncol,q,r,y,c) 
int n,p,ncol;
double **x,*y,**q,**r,*c;

{

*/

■*/
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int i,j,k;

for(j=0;j<p;j++)
{

r[j][j]=0.;
for(i=0;i<n;i++) r[j][j]=r[j][j]+x[i]|j]*x[i]lj]; 
r|j][j]=sqrt(r|j]|j]);

for(i=0;i<n;i++) q[i][j]=x[i][j]/r[j] [j];

for(k=j+l;k<p;k++) r[j][k]=0.; 
for(i=0;i<n;i++)

for(k=j+l;k<p;k++) r[j][k]=r|j][k]+x[i][k]*q[i][j]; 

c[j]=0;
for(i=0;i<n;i++) c[j]=c[j]+y[i]*q[i][j]; 

for(i=0;i<n;i++)
for(k=j+1 ;k<ncol;k++) x [i] [k]=x [i] [k]-q[i] [j] *r[j] [k];

}

return;

}
/*_............................... ...................... ...... .........................*/

double nornnn(theta,power,x) 
double theta,power,x;

{
int i;
double result;
double u=-0.5,du=0.0001,sum=0;

for(i=0;i<=l 0000;i++)

{
sum=sum+exp(-l.*theta*pow(rb_abs(x-u),power));
u=u+du;

}

result=sum/l 0001; 

retum(result);

}
/*...................... - .............. - ............... - .............................*/
void xtof(s,n,p,kinl,kin2,f) 

int n,p,*kinl,*kin2; 
double **s,**f;

int i,j;
{
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double ss;

for(i=0;i<p;i++)
{

if(kin2[i]==0)

if(kinl[i]=0) 
for(j=0;j<n;j++) f[j][i]=l; 

else
for(j=0;j<n;j++) f[j][i]=s[j][kinl[i]-l];

else

{
if(kin2[i]~kinl[i])

{
ss=0;
for(j=0;j<n;j++) ss=ss+s[j][kin2[i]-l]*s[j][kinl[i]-l]; 
for(j=0;j<n;j++) f[j][i]=l-n*s[j][kinl[i]-l]*s[j][kin2[i]-l]/ss; 

}
else

for(j=0;j<n;j++) f[j][i]=s[j][kinl[i]-l]*s[j][kin2[i]-l];
}

}

return;
}
/* --................................... -..............-...........-*/
void get_rinvy(n,p,f,v,y,beta,rinvy) 

int n,p;
double **f,**v,*y,*beta,*rinvy;

{
int i,j;
double yhat,*resid; 
resid=AllocDouble(n);

for(i=0;i<n;i++)

{
yhat=0;
for(j=0;j<p;j++) yhat=yhat+f[i][j]*beta[j]; 
resid[i]=y[i]-yhat;

}

for(i=0;i<n;i++)
{

rinvy[i]=0;
for(j=0;j<n;j++) rinvy[i]=rinvy[i]+v[i][j]*residlj];
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FreeDouble(n, resid); 

return;

}
/*__________________________________________

}
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y***************^^̂  h************************/
extern void des_dist(); 
extern void vec_v(); 
extern void mat_v();
/******************* * * * * * * * * * *  sJcîJî ***:£:£* **** ********:****:{::{:;£:* * y

/* This is rb_matman.c */
/* These routines perforai various matrix manipulations */
/ * ........................... - ...................................... - - * /

#include "rb_math.h"
/ * ............................................ - ............................................................ - * /

void des_dist(nmx,s,sdiff) 
int n,nx;
double **s,**sdiff;

{
int i,j,k,m=0;

for(i=0;i<nx;i++)

{
m=0;
for(j=0;j<n;j++) 

for(k=j+l ;k<n;k++) 
sdiff[m++][i]=rb_abs(s[j][i]-s[k][i]);

}

return;

}
/*.................... .......
void vec_v(n,mat,vec) 

int n;
double **mat,*vec;

{
int i,j,m=0;

-*/

for(i=0;i<n;i++)
for(j=i+l;j<n;j++)

vec[m++]=mat[i][j];

return;
}
/*............-....................................... -----.....*/
void mat_v(n,vec,mat) 

int n;
double **mat,*vec;

{
int i,j,m=0;

for(i=0;i<n;i++)
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for(j=i+l;j<n;j++)
{

mat [i] [j ] =vec [m++] ; 
mat[j][i]=mat[i][j];

}

return;

}
I*__________________________________________*j
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/****************** ’Ji'jîs î3 alloc h *************************/

extern char **AllocChar2();
extern char *AllocGiar();
extern void FreeChar();
extern long *AllocLong();
extern void FreeLongO;
extern int *AllocInt();
extern int **AllocInt2();
extern void Freelnt();
extern void Freelnt2();
extern float *AllocFloat();
extern float **AllocFloat2();
extern void FreeFloat();
extern void FreeFloat2();
extern double *AllocDouble();
extern double **AllocDouble2();
extern void FreeDouble();
extern void FreeDouble2();

/* This is rb_alloc.c */
/* Routines used for allocating and freeing memory in DACE code*/
/*.......... ....................- ------ -------- ------- —-*/
#include<malloc.h> 
char **AllocChar2(n) 

int n;

{
char **B;
B = ( char **) calloc(n,sizeof(char *)); 
return B;

}
/*------------------- ------------------------------ -*/
char *AllocChar(n) 

int n;

{
char *B;
B = ( char *) calloc(n,sizeof(char)); 
return B;

}
/*............... ................. -............... - .................-.........*/
void FreeChar(n,B) 

int n; 
char *B;

{
cfree(B, n, sizeoflchar)); 
return;

}
/*------------- ------- -................ ............. ....... -*/
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long *AllocLong(n) 
int n;

{
long *B;
B = ( long *) calloc(n,sizeof(long)); 
return B;

}
/*_________________________________________

void FreeLong(n,A) 
int n; 
long *A;

{
cfree(A, n, sizeof(long));

}
/*„................ -....................................... ......... ..........

int *AllocInt(n) 
int n;

{
int *B;
B = ( int *) calloc(n,sizeof(int)); 
return B;

}
/*________________ ___________________ ___

int **AllocInt2( n, p) 
int n,p;

{
int i; 
int **A;
A = (int **) calloc(n , sizeof(int *)); 
for(i=0;i<n;i++) A[i]=AllocInt(p); 
return A;

}
/*----------- ------------- -----............- ............... */
void FreeInt(n,A) 

int n; 
int *A;

{
cfree(A, n, sizeof(int));

}
/*........ -............... —......... ...............- ............-*/
void Freelnt2( n, p , A) 

int n,p; 
int **A;

{
int i;
for(i=(n-l);i>=0;i—) cfree(A[i], p, sizeof(int) ); 
cfree(A, n , sizeof(int *));
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/*-........ -----........................ ........ .................. */
float *AllocFloat(n) 

int n;
{

float *B;
B = ( float *) calloc(n,sizeof(float)); 
return B;

}
/*.............-.................... .................. ..... -.....*/
float **AllocFloat2( n, p) 

int n,p;

{
int i;
float **A;
A = (float **) calloc(n , sizeof(float *)); 
for(i=0;i<n;i++) A[i]=AllocFloat(p); 
return A;

}
/*-.....—..................................... ...... -.........—-*/
void FreeFloat(n,A) 

int n; 
float *A;

{
cfree(A, n, sizeof(float));

}
/* --........ -...... -.............. - ......................-...... */
void FreeFloat2( n, p , A) 

int n,p; 
float **A;

{
int i;
for(i=(n-l);i>=0;i~) cfree(A[i], p, sizeof(float) ); 
cfree(A, n , sizeof(float *));

}
/*----- -----..........--------- ------------- ----------*/
double *AllocDouble(n) 

int n;
{

double *B;
B = ( double *) calloc(n,sizeof(double)); 
return B;

}
/*—......................... .......................... -..........*/
double **AllocDouble2( n, p) 

int n,p;
{
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int i;
double **A;
A = (double **) calloc(n , sizeof(double *)); 
for(i=0;i<n;i++) A[i]=AllocDouble(p); 
return A;

}
/*_____________ __________________________________________*i

void FreeDouble(n,A) 
int n;
double *A;

{
cfree(A, n, sizeof(double));

}
J-fc___ ____________________________ __* j
void FreeDouble2( n, p , A) 

int n,p; 
double **A;

{
int i;
for(i=(n-l);i>=0;i~) cfree(A[i], p, sizeof(double) ); 
cfree(A, n , sizeof(double *));

}
/* ■*/
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