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CANet: Context Aware Network for Brain Glioma
Segmentation

Zhihua Liu, Lei Tong, Long Chen, Feixiang Zhou, Zheheng Jiang, Qianni Zhang, Yinhai Wang, Caifeng Shan,
Senior Member, IEEE, Ling Li and Huiyu Zhou

Abstract—Automated segmentation of brain glioma plays an
active role in diagnosis decision, progression monitoring and
surgery planning. Based on deep neural networks, previous
studies have shown promising technologies for brain glioma
segmentation. However, these approaches lack powerful strategies
to incorporate contextual information of tumor cells and their
surrounding, which has been proven as a fundamental cue to
deal with local ambiguity. In this work, we propose a novel
approach named Context-Aware Network (CANet) for brain
glioma segmentation. CANet captures high dimensional and
discriminative features with contexts from both the convolu-
tional space and feature interaction graphs. We further propose
context guided attentive conditional random fields which can
selectively aggregate features. We evaluate our method using pub-
licly accessible brain glioma segmentation datasets BRATS2017,
BRATS2018 and BRATS2019. The experimental results show that
the proposed algorithm has better or competitive performance
against several State-of-The-Art approaches under different seg-
mentation metrics on the training and validation sets.

Index Terms—Brain glioma, conditional random field, graph
convolutional network, image segmentation.

I. INTRODUCTION

GLIOMA is one of the most prevalent types of adult brain
tumor with fateful health damage impacts and high mor-

tality [1]. To provide sufficient evidence for early diagnosis,
surgery planning and post-surgery observation, Magnetic Res-
onance Imaging (MRI) with multi-modalities (e.g. T1, T1 with
contrast-enhanced (T1ce), T2 and Fluid Attenuation Inversion
Recover (FLAIR)) is a widely used diagnosis technique to
provide reproducible and non-invasive measurement, including
structural, anatomical and functional characteristics.

Medical image segmentation provides fundamental guid-
ance and quantitative assessment for medical professionals to
achieve disease diagnosis, tumor growth monitoring, planning
treatment and follow-up services [2], [3]. Fig. 1 shows an
overview of the brain glioma segmentation task. However,
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Fig. 1. Examples of multi-modality image slices from BraTS17 with the
ground-truth and our segmentation results. In this figure, green represents GD-
Enhancing Tumor (numerical label 2), yellow represents Pertumoral Edema
(numerical label 1) and red represents Necrotic and Non-Enhancing Tumor
Core (NCR\ECT, numerical label 4).

manual segmentation requires professional expertise and tends
to be time consuming and labour intensive. Previous methods
on automated brain glioma segmentation were based on tra-
ditional machine learning algorithms [4]–[7], which strongly
rely on hand-crafted features, such as textures [8] and local
histograms [9]. However, finding the best hand-crafted features
or optimal feature combinations is impracticable. In recent
years, deep learning techniques, especially deep convolutional
neural network (DCNN), have been deployed to effectively
learn high dimensional discriminative features from data and
widely used on various medical imaging tasks [10].

Inter-class ambiguity is a common issue in brain glioma
segmentation. This issue makes it hard to achieve accurate
dense voxel-wise segmentation if we only consider isolated
voxels, as different classes’ voxels may share similar intensity
values or feature representations. To address this issue, we aim
to learn relational information between glioma cells and their
surroundings by exploring their feature interaction graphs.
We here propose a context-aware network, namely CANet, to
achieve accurate dense voxel-wise brain glioma segmentation
in MRI images. Our contributions in this work are summarised
below:

• We propose a novel brain glioma segmentation approach
by introducing feature interaction graph reasoning as a
parallel auxiliary branch to model the relation between
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Fig. 2. The architecture of the proposed context aware network.

glioma cells and their surroundings. The intermediate fea-
ture representations are further exploited and aggregated
within a customized context guided attentive conditional
random field (CGA-CRF) framework. To our knowledge,
this is the first practice on brain glioma segmentation that
incorporates relational information from the generated
features.

• We formulate the mean-field approximation of the infer-
ences in the proposed CGA-CRF as a convolution oper-
ation, whereas CGA-CRF is implemented as sequential
deep neural networks layers. Our formulation demon-
strates the generalization capability of the proposed CGA-
CRF that can be embedded within any deep neural
architecture seamlessly to achieve end-to-end training.

• We conduct extensive evaluations to demonstrate that
our proposed approach outperforms several State-of-
The-Art methods under different evaluation metrics on
the Multimodal Brain Tumor Image Segmentation Chal-
lenge (BraTS) datasets, i.e. BraTS2017, BraTS2018 and
BraTS2019.

II. RELATED WORK

We construct our novel brain glioma segmentation approach
upon recent successes of deep neural networks and proba-
bilistic graphical models. Below, we briefly review related
methods categorising them into three sub-areas, i.e. brain
glioma segmentation, semantic segmentation using conditional
random field combined with convolutional neural network, and
graph neural network in medical image analysis.

Brain Glioma Segmentation. Early research works on
brain glioma segmentation mainly used traditional machine
learning algorithms, such as clustering [6], random decision
forests [7], Bayesian models [11] and graph-cuts [12]. Shin
[6] used sparse coding for generating edema features and K-
means for clustering tumor voxels. However, how to optimise
the size of coding dictionary is an intractable problem. Pereira
et al. [13] classified voxels’ labels using random decision
forests, which heavily relied on hand-crafted features and
complicated postprocessing. Corso et al. [11] used a Bayesian
formulation for incorporating soft model assignments into the

affinity calculation. This method considered the weighted ag-
gregation of multi-scale features, but ignored the relationship
between different scales. Wels et al. [12] proposed a graph-cut
based method to learn optimal graph representations for tumor
segmentation, resulting in a superior performance. However,
this method required a prolonged inference duration for dense
segmentation tasks, as the number of vertices in its graph is
proportional to the number of the voxels. Konukoglu et al. [14]
and Menze et al. [15] incorporated a reaction-diffusion based
biophysical tumor growth framework for glioma segmentation.
The former focused on constructing the irradiation invasion
margin at a single time instance while the latter focused on
formalizing the macroscopic tumor growth model on longitude
data. However, both methods required detailed domain knowl-
edge to define the parameters, which limits generalization
performance of their methods.

Promising achievements have been made on multi-modal
MRI brain glioma segmentation using DCNN. Zikic et al. [16]
was one of the earliest works that apply DCNN onto brain
glioma segmentation. Havaei et al [17] proposed an improved
DCNN by using muconvolutional kernels to extract local and
global features. Zhao et al. [18] proposed a modified fully
convolutional network (FCN) [19] with conditional random
fields as post-processing module for refining brain glioma
segmentation. Dong et al. [20] proposed a modified U-Net
[21] for brain glioma segmentation. These previous works used
2D convolutional kernels on 2D image slices generated from
the original 3D volumetric data. Methods of using 2D slices
decrease the number of the used parameters and require less
memory. However, this procedure also leads to the missing of
spatial contexts. To minimise information loss and exploit the
evidence of adjacent slices, Lyksborg et al. [22] ensembled
three 2D CNNs on three orthogonal 2D patches.

To fully make use of 3D information, recent works applied
3D convolutional kernels onto volumetric data. Kamnitsas
et al. [23] proposed a two pathway 3D DCNN, followed
by a dense CRF, for brain glioma segmentation. Authors
of [23] further extended the work using model ensembling
[24]. Their proposed system EMMA ensembled the models
from fully convolutional network (FCN) [19], U-Net [21] and
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DeepMedic [25]. To avoid over-fitting problems in 3D voxel-
level segmentation on limited training datasets, Myronenko
[26] proposed a 3D DCNN with an additional variational
autoencoder to regularise the decoder by reconstructing the
input image.

Medical image datasets (e.g. BraTS) usually have imbalance
and inter-class interference problems. To address this issue
whilst maintaining segmentation performance, Chen et al. [27]
and Wang et al. [28] both applied cascaded network structures
for segmenting brain glioma, where the input of the inner
region segmentation network is the output of the outer region
segmentation network. However, cascaded cropping networks
mainly focus on one tumor region in one particular network
stage and cannot infer the relationship between different tumor
regions.

Semantic segmentation using conditional random field
and convolutional neural network. Brain glioma segmen-
tation, along with the generic semantic segmentation, aims to
assign each pixel with a specific semantic label. Among all the
traditional machine learning methods, probabilistic graphical
model, especially conditional random field has been consid-
ered as one of the most successful representation methods
for solving semantic segmentation tasks [29]–[32]. In order
to learn complex unary and pairwise potentials in the end-
to-end fashion, recently proposed works focused on solving
CRF using deep neural networks. Zheng et al. [33] formulated
the mean-field updates of CRF as a recurrent neural network
(RNN). Thus CRF parameters can be updated iteratively with
back-propagation. There are mainly two drawbacks in the
aforementioned works. First, most of them exploit CRF as a
post-processing component to refine the segmentation labels,
and hence cannot regulate the feature learning procedure.
Second, most of these works allow CRF to smooth the
segmentation map by encouraging spatial coherence [34].
Different from these works, our proposed CGA-CRF mainly
contributes to feature aggregation, jointly trained with the
network backbone. Moreover, our proposed CGA-CRF con-
siders the contextual information extracted from both the
convolution/interaction spaces and the contextual attributes can
be generated from a learned attention mechanism.

Graph Neural Network in Medical Image Analysis.
In recent years, graph neural network attracts the attention
of researchers in medical image analysis for relational in-
formation learning [35]. Parisot et al. [36] constructed a
population graph for degenerative disease classification where
each node represents features from an individual patient. Li et
al. [37] proposed a topology-adaptive graph neural network
for landmark detection with applications on X-ray images.
Chao et al. [38] introduced a graph neural network to model
the relationship between inter lymph nodes for gross tumor
detection. Other research works also applied graph neural
network directly onto structured data. For example, Chen et
al. [39] applied graph neural network for intracranial artery
labeling using cerebral artery map data. Li et al. [40] fed
the brain functional graph data into graph neural network for
brain biomarker analysis. The aforementioned research works
treated pre-localised regions of the image as graph vertices,
which greatly limits the generalisation of these methods over

different datasets. Our feature interaction graph treats the
feature instances as vertices, which provides the relational
learning ability and data independent transferability.

III. PROPOSED METHOD

In this section, we describe our proposed CANet for voxel-
wise brain glioma segmentation. We first describe the proposed
feature interaction graph in detail. Then we introduce the
novel feature fusion module, CGA-CRF, which selectively
aggregates the features generated from different contexts and
learns to render optimal features. Finally, the formulation of
the mean-field updates in CGA-CRF as sequential convolu-
tional operations is described, enabling the network to achieve
end-to-end training. The proposed segmentation framework is
illustrated in Fig. 2. Supplementary B summarises the training
steps of our proposed CANet.

Different from previous works, our proposed CANet can
implicitly capture long-range relational information by rea-
soning on the feature interaction graph, which have not been
fully studied in the literature. Both contexts (feature interaction
graph and convolution) utilise the intermediate feature map
X ∈ RN×C derived from the shared encoder backbone
as input, where N = H × W × D is the total number
of the feature instances in the intermediate feature map. C
is the number of the feature dimension. The graph context
generates representations in the feature interaction graph space
XG ∈ RN×C and the convolution generates a coordinate space
representation XC ∈ RN×C .

The main concept behind the design of CGA-CRF is to
generate an optimal segmentation map H ∈ H associated with
an MRI image I ∈ I by exploiting the relationship between
the final representation XF ∈ RN×C and the intermediate
feature representation X with auxiliary long-range relational
information XG, generated from the interaction space with
its convolution features XC . Different from direct concatena-
tion XF = concat(X,XG, XC) or element-wise summation
XF = X +XG +XC , we aim to learn a set of latent feature
representations XF through a novel conditional random field.
Since XC and XG may contribute differently during the
learning XF , we adopt the idea of an attention mechanism
and generalise it to a gate node of CRFs. The gate node
can regulate the information flow and discover the relevance
between different contexts and latent features.

A. Context Guided Feature Extraction

1) Graph Context: Projection with Adaptive Sampling
We first use the collected feature map to create a feature
interaction space by constructing an interaction graph G =
{V,E,A}, where V represents the set of nodes in the inter-
action graph, E represents the edges between the interaction
nodes and A represents the adjacency matrix. Given a learned
high dimensional feature X = {xn}Nn=1 ∈ RN×C with
xn ∈ R1×C from the back-bone network, we first project the
original feature onto the feature interaction space, generating
a projected feature XPROJ = {xprojn }Nn=1 ∈ RK×C′

. K is
the number of the interaction nodes in the interaction graph
and C ′ is the interaction space dimension. A naive method for
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producing each element xprojn ∈ XPROJ , n = {1, ...,K} uses
the linear combination of its neighbor elements [41]:

xprojn =
∑
∀m∈Nn

wnmxmA[n,m] (1)

where Nn denotes the neighbors of voxel n. The naive
approach normally employs a fully-connected graph with
redundant connections and parameters between the interaction
nodes, being very difficult to optimise. More importantly, the
linear combination method lacks an ability to perform adaptive
sampling because different images contain different contextual
information of brain glioma (e.g. location, size and shape). We
deal with this issue by adopting the adaptive sampling strategy
[42]:

4m = wn,mxn + bn,m

xprojn =
∑
∀m∈Nn

wnmρ(xm|V,m,4m)A[n,m] (2)

where wn,m ∈ R3×(K×C) and bn,m ∈ R3×1 are the shift
distances which are learned individually for each raw feature
xn through stochastic gradient decent. ρ()̇ is the trilinear
interpolation sampler which samples a shifted feature node
around feature node xm, given the learned deformation 4m
and the total set of interaction graph nodes V .

Interaction Graph Reasoning After projected the input
features onto the interaction graph G with K feature nodes
V = {v1, ..., vk} and edges E, we follow the definition of
the graph convolution network [43], [44]. In particular, we
define AG as the graph adjacency matrix on K × K nodes
and WG ∈ RD×D as the weight matrix, and the formulation
of the graph convolution operation is formulated as follows:

XG = σ(AGXPROJWG)

= σ((I − ÂG)XPROJWG)
(3)

where σ() is sigmoid activation function. We first apply Lapla-
cian smoothing and update the adjacency matrix to (I − ÂG)
so as to propagate the node feature over the entire graph. In
practice, we implement ÂG and WG using a 1×1 convolution
layer. We also implement I as a residual connection which
maximises the gradient flow [45].

Re-Projection Once the reasoning has been finished, we re-
project the features back to the original coordinate space with
output XG ∈ RN×D. We use trilinear interpolation here to
calculate each graph feature instance xgn ∈ XG, n ∈ {1, ..., N}
after having transformed the features from the interaction
space to the coordinate space. As a result, we have the
interaction graph feature XG with dimension D over N
feature instances, identical to XC .

2) Convolution Context Branch: The convolution context
branch is composed of an encoder and a decoder with skip
connections between these two components. The encoder
reduces the spatial dimensionality of the feature map whilst
the expansive path recovers the feature map’s spatial dimen-
sionality and the details of objects. One of the advantages of
using this architecture is that it fully exploits the features with
different scales of contextual information, where large scale
features can be used to localise objects and small scale yet

high dimensionality features can provide more detailed and
accurate information for classification.

However, networks with 3D kernels contain more param-
eters to learn during feature extraction. It has been observed
that training such 3D model often fails in various reasons such
as over-fitting and gradient vanishing or exploding. In order to
address the issues mentioned above, we deploy a deep super-
vised mechanism for better training the convolution context
branch [46]. The proposed deep supervision mechanism thus
reinforces the gradient flow and improves the discriminative
capability during the training procedure.

Specifically, we use additional upsampling layers to reshape
the features created at the deep supervised layer with the
resolution of the final output. For each transform layer, we
apply the softmax function to obtain additional dense seg-
mentation maps. For these additional segmentation results, we
calculate the segmentation errors with regards to the ground-
truth segmentation maps. The auxiliary losses are combined
with the loss from the output layer of the whole network and
we further back-propagate the gradient for parameter updating
during each iteration in the training stage.

We denote the set of the parameters in the deep supervised
layers as WS = {ws}Ss=1 and ws as the parameters of the
upsampling layer s. The auxiliary loss for a deep supervision
layer s is formulated using cross-entropy:

Ls =

N∑
n=1

− log1(p(yn|osn;ws)) (4)

where 1 is the indicator function which is 1 if the segmentation
result is correct, otherwise 0. Y = {yn}Nn=1 is the ground-truth
of voxel n and O = {on}Nn=1 is the predicted segmentation
label of voxel n generated from the upsampling layer s.
Finally, the deep supervision loss Ls can be integrated with
the loss LT from the final output layer. The parameters of
the deep supervised layers WS can be updated with the rest
parameters WT−S from the whole framework simultaneously
using back-propagation:

L = LT (Y |O;WT−S ,WS) +

S∑
s=1

δsLs(O;ws)

+ λ(||WT−S ||2 +

S∑
s=1

(||ws||2))

(5)

where δs represents the weight for the supervision loss of
each upsampling layer. As the training procedure continues to
approach to the optimal parameter sets, δs reduces gradually.
The final operation of Eq. (5) is the L2-regularisation of the
total trainable weights with scalar λ.

B. Context Guided Attentive CRF Fusion Module

We further propose a novel context guided attentive CRF
module to perform feature fusion, motivated from two per-
spectives. The graph model of our proposed CGA-CRF is
illustrated in Fig. 3. There are two reasons to use CGA-
CRF for feature fusion. Firstly, assigning segmentation labels
by maximising probabilities may result in incorrect boundary
segmentation due to the neighboring voxels of sharing similar
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Fig. 3. Graph model illustration of previous feature fusion schemes: (a) Basic encoder-decoder neural network, (b) multi-scale neural network, (c) multi-scale
CRF, and (d) our proposed context guided attentive CRF. I denotes the input 3D MRI image. S denotes a particular feature scale. XC and XG represent the
hidden features generated from the convolutional operation and graph convolutional practice respectively. AGC indicates the attention map generated from
the corresponding feature XC and XG. Best viewed in color.

feature representation. Secondly, previous works fuse features
from different sources by using a channel-wise concatenation
or element-wise summation mechanism. However, these mech-
anisms simplifies the relationship between different source
feature maps, which may result in information loss. Different
from previous related works and using the inference ability
of a probabilistic graphical model, we employ the conditional
random field model to learn optimised latent fusion features
for final settlement. As information from different contexts
may contribute to the final results with different degrees, we
integrate the attention gates of the CGA-CRF to regulate
how much information should flow between features. We
further show the implementation of CGA-CRF mean-field
updates with sequential convolution operations, which allows
our CGA-CRF fusion module can be integrated with any
neural networks as sequential layers and trained in an end-
to-end fashion. Compared with previous architectures such as
encoder-decoder neural network (Fig. 3 (a)) and multi-scale
neural network (Fig. 3 (b)), our proposed CGA-CRF (Fig.
3 (d)) has a strong inference ability and can jointly learn
the hidden representation of features encoded by the neural
network backbone, improving the generalisation ability of the
segmentation model. Compared with previous architectures
such as multi-scale CRF (Fig. 3 (c)), our proposed CGA-CRF
model first uses an attention gate by directly modeling the
cost energy in the network (Eq. (7)). The attention gate thus
regulates the information flow from the features encoded by
the backbone neural network to the latent representations by
minimising the total energy cost. We evaluate the effectiveness
of each component in the experiment section.

1) Definition: Given the feature map XC = {xcn}Nn=1

from the convolution context branch and the feature map
XG = {xgn}Nn=1 from the interaction graph branch, our goal is
to estimate the relationship between the hidden representation
HG = {hgn}Nn=1, H

C = {hcn}Nn=1, the attention variable
AGC = {agcn }Nn=1 and the final fused representation XF =
{xfn}Nn=1. We formalise the problem by designing CGA-CRF
with a gibbs distribution:

P (XF , AGC |I,Θ) =
1

Z(I,Θ)
exp{−E(XF , AGC , I,Θ)}

(6)

where E(XF , AGC , I,Θ) is the associated energy:

E(XF , AGC , I,Θ) =ΦG(HG, XG) + ΦC(HC , XC)

+ ΨGC(HG, HC , AGC)
(7)

where I is the input 3D MRI image and Θ is the set of param-
eters. In Eq. (7), ΦG is the unary potential between the latent
graph representation HG and the graph features XG. ΦC is the
unary potential related to latent convolution representation HC

and convolution feature XC . In order to drive the estimated
latent representation H towards the observation X , we use the
Gaussian function created in previous works [47]:

Φ(H,X) =

N∑
n=1

φ(hn, xn) = −
N∑

n=1

1

2
||hn − xn||2. (8)

The final term shown in Eq. (7) is the attention guided pair-
wise potential between the latent convolution representation
HC and the latent graph representation HG. The attention
term AGC controls the information flow between the two latent
representations where the graph representation may or may
not contribute to the estimated convolution representation. We
define:

ΨGC(HG, HC ,AGC) =

N∑
n=1

∑
m∈Nn

ψ(agcm , h
c
n, h

g
m)

=

N∑
n=1

∑
m∈Nn

agcmh
c
nΥGC

n,mh
g
m

(9)

The ΥGC
n,m ∈ RDG×DC

is the kernel potential associated with
hidden feature maps HG and HC , where DG, DC represents
the dimensionality of the features XG and XC respectively.

2) Inference: By learning latent feature representations
to minimise the total segmentation energy, the system can
produce an appropriate segmentation map, e.g. maximum a
posterior P (XF , AGC |I,Θ). However, the optimisation of
P (XF , AGC |I,Θ) is intractable due to the computational
complexity of the normalisation constant Z(I,Θ), which is
exponentially proportional to the cardinality of XF and AGC .
Therefore, in order to derive the maximum a posterior in an
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efficient way, we adopt mean-field updates to approximate a
complex posterior probability distribution:

P (XF , AGC |I,Θ) ≈Q(XF , AGC) ≈ Q(HG, HC , AGC)

=

N∏
n=1

qn(hGn )qn(hCn )qn(agcn )

(10)

Here, we use the product of independent marginal distri-
butions q(hg), q(hc) and q(agc) to approximate the complex
distribution P (XF , AGC , I,Θ). To achieve a satisfactory ap-
proximation, we minimise the Kullback-Leibler (KL) diver-
gence DKL(Q||P ) between the two distributions Q and P .
By replacing the definition of the energy E(XF , AGC , I,Θ),
we formulate the KL divergence in Eq. (10) as follows:

DKL(Q||P ) =
∑
h

Q(h) ln(
Q(h)

P (h)
)

=
∑
h

Q(h)E(h) +
∑
h

Q(h) lnQ(h) + lnZ

(11)

From Eq. (11), we minimise the KL divergence by directly
minimising the free energy FE(Q) =

∑
hQ(h)E(h) +∑

hQ(h) ln(Q(h)). In FE(Q), the first item represents the
cost for labelling each voxel and the second item represents
the entropy of distribution Q. We can further expand the
expression of FE(Q) by replacing Q and E with Eqs. (10)
and (7) respectively:

FE(Q) =

N∑
n=1

qn(hgn)qn(hcn)qn(agcn )(ΦG + ΦC + ΨGC)

+

N∑
n=1

qn(hgn)qn(hcn)qn(agcn )(ln(qn(hgn)qn(hcn)qn(agcn )))

(12)

Eq. (12) shows that the problem of minimising FE(Q)
can be transferred to a constrained optimisation problem with
multiple variables, formulated below:

min
qn(h

g
n),qn(hc

n),qn(a
gc
n )
FE(Q),∀n ∈ N

s.t.
N∑

n=1

qn(hgn) = 1,

N∑
n=1

qn(hcn) = 1,

∫ 1

0

qn(agcn )dagcn = 1

(13)

We can calculate the first order partial derivative by differen-
tiating FE(Q) w.r.t each variable. For example, we have:

∂FE

∂qn(hcn)
= φc(hcn, x

c
n)+

∑
m∈Nn

Eqm(agc
m ){agcm}Eqm(hg

n)ψ
gc(hcn, h

g
m)

− ln qn(hcn) + const
(14)

By assigning 0 to the left hand side of Eq. (14), we reach:

qn(hcn) ∝ exp{φc(hcn, xcn)+∑
m∈Nn

Eqm(agc
m ){agcm}Eqm(hg

m)ψ(hcn, h
g
m)} (15)

Fig. 4. Details of the mean-field updates within CGA-CRF. The circled
symbols indicate message-passing operations within the CGA-CRF block.
Best viewed in colors.

Eq. (15) shows that, once the other two independent vari-
ables q(hg) and q(agc) are fixed, how q(hc) is updated during
the mean-field approximation. Furthermore, we follow the
above procedure and obtain the updating of the remaining two
variable as follows:

qn(hgn) ∝ exp{φg(hgn, x
c
n)+

Eqm(agc
m ){agcm}

∑
m∈Ni

Eqm(hc
m)ψ(hcn, h

g
m)} (16)

qn(agcn ) ∝ exp{agcn Eqn(hc
n)
{
∑

m∈Nn

Eqm(hg
m){ψ(hcn, h

g
m)}}}

(17)
where Eq() represents the expectation with respect to the distri-
bution q(). Eqs. (15-17) shown above denote the computational
procedure of seeking an optimal posterior distributions of hc,
hg and agc during the mean-field approximation. Intuitively,
Eq. (15) shows that, the latent convolution feature hcn for
voxel n can be used to describe the observation, referred
to feature xcn. Afterwards, we use the re-weighted messages
from the latent features of the neighboring voxels to learn the
co-occurrent relationship of the pixels. The attention balance
between the latent convolution and the graph features for
voxel n allows us to re-weight the pairwise potential message
from the neighbours of voxel n, and then use the attention
variable to re-weight the total value of voxel n. By denoting
āgcn = Eq(agc

n ){agcn } and h̄n = Eq(hn){hn}, we have the
feature update as follows:

h̄gn = xgn + āgcn
∑

m∈Nn

ΥGC
n,mh̄

c
m (18)

h̄cn = xcn +
∑

m∈Nn

āgcmΥGC
n,mh̄

g
m (19)

āgcn is also derived from the probabilistic distribution, i.e.
its value lies in [0, 1]. Here, we choose the Sigmoid function
to formulate the updates for āgcn :

āgcn = σ(−
∑

m∈Nn

agcmh
c
nΥGC

n,mh
g
m) (20)

where σ(.) denotes the sigmoid activation function.
3) CGA-CRF Inference as Convolutional Operations: We

implement the mean-field updates of CGA-CRF as sequential
convolutional operations in order that the CGA-CRF can be
trained with any neural network in an end-to-end fashion.
The algorithm for implementing mean-field approximation
using convolutional operations is described in Algorithm 1.
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Algorithm 1: Algorithm for Mean-Field Approxima-
tion of CGA-CRF.

Input: Tensor instance from the feature interaction graph
output XG and convolution output XC . Initialise hidden
graph feature map instance HG with XG. Initialise
hidden convolutional feature map instance XC with XC

Output: Estimated optimised feature map HC as XF .
1: while in iteration number do
2: ÂGC ← HC � (ΥGC ∗HG);
3: ĀGC ← σ(−(ÂGC));
4: HG ← ΥGC ∗HG;
5: H̄C ← ĀGC �HG;
6: HC ← XC ⊕ H̄C ;
7: end while
8: return Optimised feature map HC as XF .

Following Algorithm 1, we compile each iteration of the mean-
field updates by a set of convolution operations. The output
of the previous sequential convolution blocks are sent to the
next sequential convolution blocks to complete one iteration. A
graph illustration of Algorithm 1 is shown in Fig. 4. Through
this implementation, we aim to jointly estimate the hidden
feature maps HG, HC and the attention map AGC based on
the derivation shown in Section III-B2 in a data-driven manner.

Based on Eq. (20), we implement the update process of
attention map AGC as follows: (1) Execute the message
passing between hidden feature maps HG and HC , ÂGC ←
HC � (ΥGC ∗ HG). Here, ΥGC is a convolution kernel
sliding on HG. We set the kernel size of ΥGC as 3. ∗
and � represents the convolutional and element-wise product
respectively. (2) Normalise the ÂGC using sigmoid function
ĀGC ← σ(−(ÂGC)).

We utilise the attention map AGC as a switch to regulate
the message flow when updating HG and HC . Specifically,
the mean-filed update of HG and HC can be implemented
as follows: (1) Execute the message passing on HG: HG ←
ΥGC ∗ HG. (2) Multiply the interaction graph feature with
attention map H̄C ← ĀGC �HG. (3) Update HC by adding
the unary potential using residual connections: HC ← XC ⊕
H̄C , where ⊕ represents the element-wise summation.

By implementing the mean-field updates as sequential con-
volution operations, HG, HC and AGC can be learnt and up-
dated jointly. Note that the generalised mean field approxima-
tion is guaranteed to converge to a local optimum rather than a
global optimum. Thus, to reduce the computational time of our
proposed CGA-CRF, we have examined the iteration numbers
of mean-field approximation of our CGA-CRF progressively
and set the iteration number as 5 to reach a trade-off between
competitive performance and small parameter size.

IV. EXPERIMENTAL SETUP

To demonstrate the effectiveness of the proposed CANet
for brain glioma segmentation, we conduct experiments on
three publicly available datasets: the Multimodal Brain Tumor
Segmentation Challenge 2017 (BraTS2017), the Multimodal
Brain Tumor Segmentation Challenge 2018 (BraTS2018) and

the Multimodal Brain Tumor Segmentation Challenge 2019
(BraTS2019) [48]–[50]. Supplementary C presents data aug-
mentation and implementation settings.

Datasets. The BraTS20171 consists of 285 cases of pa-
tients in the training set and 44 cases in the validation set.
BraTS20182 shares the same training set with BraTS2017
and includes 66 cases in the validation set. BraTS20193

expands the training set to 335 cases and the validation set
to 125 cases. Each case is composed of four MR sequences,
namely native T1-weighted (T1), post-contrast T1-weighted
(T1ce), T2-weighted (T2) and Fluid Attenuated Inversion
Recovery (FLAIR). Each sequence has a 3D MRI volume of
240×240×155. Ground-truth annotation is only provided in
the training set, which contains the background and healthy
tissues (label 0), necrotic and non-enhancing tumor (label 1),
peritumoral edema (label 2) and GD-enhancing tumor (label
4). We first consider the 5-fold cross-validation on the training
set where each fold contains (by random division) 228 cases
for training and 57 cases for validation. We then evaluate
the performance of the proposed method on the validation
set. The validation result is generated from the official server
of the contest to determine the segmentation accuracy of the
proposed methods.

Evaluation Metrics. Following previous works [28], [23],
[49], the segmentation accuracy is measured by Dice score,
Sensitivity, Specificity and Hausdorff95 distance respectively.
In particular,
• Dice score: Dice(P, T ) = |P1∩T1|

(|P1|+|T1|)/2
• Sensitivity: Sens(P, T ) = |P1∩T1|

|T1|
• Specificity: Spec(P, T ) = |P0∩T0|

|T0|
• Hausdorff Distance: Haus(P, T ) =
max{supp∈P1

inft∈T1
d(p, t), supt∈T1

infp∈P1
d(t, p)}

where P represents the model prediction and T represents
the ground-truth annotation. T1 and T0 are the subset voxels
predicted as positives and negatives for the tumor regions.
Similar set-ups are made for P1 and P0. Furthermore, the
Hausdorff95 measures the distance when comparing model
prediction against ground-truth segmentation [51]. sup rep-
resents the supremum and inf represents the infimum. For
each metric, three regions namely enhancing tumor (ET, label
1), whole tumor (WT, labels 1, 2 and 4) and the tumor core
(TC, labels 1 and 4) are evaluated individually.

V. RESULTS AND DISCUSSION

In this section, we present both quantitative and qualitative
experimental results of different methods. We first conduct an
ablation study of our method to show the effective impact
of building a feature interaction graph and CGA-CRF on the
segmentation performance. We also perform extensive analysis
on the encoder backbone and different iteration numbers of
approximation in CGA-CRF. Afterwards, we compare our
approach with several State-of-The-Art methods on different
datasets. Finally, we present the analysis of failure cases.

1https://www.med.upenn.edu/sbia/brats2017.html
2https://www.med.upenn.edu/sbia/brats2018.html
3https://www.med.upenn.edu/cbica/brats-2019/



viii

TABLE I
QUANTITATIVE RESULTS OF THE CANET COMPONENTS BY FIVE FOLD CROSS-VALIDATION FOR THE BRATS2017 TRAINING SET (DICE, SENSITIVITY

AND SPECIFICITY). ALL THE METHODS ARE BASED ON CANET WITH UNET AS THE BACKBONE. THE BEST RESULT IS SHOWN IN BOLD TEXT AND THE
RUNNER-UP RESULT IS UNDERLINED.

DICE Sensitivity Specificity Hausdorff95
Backbone+ ET WT TC ET WT TC ET WT TC ET WT TC

CC 0.686 0.875 0.821 0.857 0.925 0.863 0.997 0.991 0.996 6.791 6.886 7.939
GC 0.637 0.894 0.822 0.977 0.970 0.944 0.987 0.987 0.997 9.899 6.403 5.812

CC+GC+Concatenation 0.682 0.861 0.803 0.857 0.922 0.861 0.997 0.989 0.994 7.755 9.377 11.432
CC+GC+CGA-CRF 0.685 0.903 0.873 0.807 0.924 0.870 0.997 0.993 0.996 7.804 3.569 4.036

Fig. 5. Qualitative comparison of different baseline models and the proposed CANet by cross validation on the BraTS2017 training set. From left to right,
each column represents the input FLAIR data, ground truth annotation, segmentation result of CANet with only the convolution branch, segmentation result
of CANet with only the graph convolution branch, segmentation output of CANet with HCA-FE and concatenation fusion scheme, segmentation output of
CANet with HCA-FE and CG-ACRF fusion module. Best viewed in colors.

A. Ablation Studies

We first evaluate the impact of building the feature inter-
action graph and CGA-CRF. To this end, we apply 5-fold
cross-evaluation on the BraTS2017 training set and report the
mean results. Table I shows the quantitative results, while
the qualitative results can be found in Fig. 5 as an example
of the segmentation outputs. We start from two baselines.
The first baseline is the fully convolution network with deep
supervision on the backbone convolution encoder (CC). The
second baseline only uses the proposed interaction graph in
the convolution encoder without deep supervision (GC). We
then evaluate the proposed (whole) CANet system (CC+GC)
with concatenated feature maps from CC and GC together
without any additional feature fusion method. Finally, we
evaluate the proposed feature fusion module CGA-CRF, which
takes the feature map with different contexts and outputs the
optimal latent feature map for the final segmentation. For the
experiments shown in Table I and Fig. 5, we use the encoder of
UNet as the backbone network with 5 iterations in our CGA-
CRF. The experiments described later include the analysis on
different backbones with iteration numbers.

From Table I, we observe that the GC obtains better
performance than CC. For dice scores, GC achieves 0.894

for the entire tumor and 0.822 for the tumor core. CC only
achieves a dice score of 0.875 on the entire tumor and 0.821 on
the tumor core, which is 2% and 0.2% lower than those by GC
respectively. For hausdorff95, GC achieves 6.403 on the entire
tumor and 5.812 on the tumor core. CC achieves 6.886 and
7.939, which are 0.493 and 2.127 higher than those of GC on
the entire tumor and the tumor core, respectively. From Fig. 5,
we observe that GC can accurately predict individual regions.
For example, the GD-enhanced tumor region normally does
not appear at the outside of the tumor region. This superior
performance may benefit from the information learned from
the feature interactive graph as the feature nodes of different
tumor regions have strong structural association between them.
Learning the relationship may help the system to predict
correct labels of the tumor regions. However, the sensitivity of
GC is much higher than that of CC. In Table I, for example,
the sensitivity score of GC is higher than that of CC: 12.02%
higher on the enhancing tumor, 4.469% higher on the entire
tumor, 8.104% higher on tumor core, respectively. We observe
poor segmentation results at the NCR/ECT region by GC,
inferior to CC with the ground truth shown in Fig. 5.

We then evaluate the complete CANet with the extracted
feature maps by CC and GC simultaneously. Here, we fuse
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TABLE II
QUANTITATIVE RESULTS FOR DIFFERENT ITERATION NUMBERS BY CG-ACRF MEAN-FIELD APPROXIMATION ON THE FIVE FOLD CROSS-VALIDATION OF

THE BRATS2017 TRAINING SET WITH RESPECT TO DICE, SENSITIVITY, SPECIFICITY AND HAUSDORFF95. THE BEST RESULT IS IN BOLD AND THE
RUNNER-UP RESULT IS UNDERLINED.

Dice Sensitivity Specificity Hausdorff95
Iteration # ET WT TC ET WT TC ET WT TC ET WT TC

1 0.657 0.861 0.790 0.901 0.920 0.852 0.995 0.990 0.994 7.997 7.749 10.488
3 0.681 0.873 0.807 0.873 0.923 0.869 0.996 0.990 0.994 7.614 6.801 8.941
5 0.685 0.903 0.873 0.807 0.924 0.870 0.997 0.993 0.996 7.804 3.569 4.036
7 0.664 0.855 0.769 0.854 0.921 0.860 0.996 0.990 0.993 9.850 9.720 12.042

10 0.685 0.850 0.784 0.837 0.931 0.858 0.997 0.988 0.993 8.067 11.149 11.650

Fig. 6. Examples to illustrate the results with different iteration numbers by mean-field approximation in the proposed CG-ACRF. Columns from top to
bottom represent different patient cases. Rows from left to right indicate FLAIR data, ground truth annotation, attentive map generated by CANet with different
iteration numbers (from 1 to 10) in CG-ACRF respectively. Best viewed in colors.

the feature maps of CC and GC using a naive concatenation
method, which has less over-segmentation results. Depicted
in Table I, the sensitivity of CC+GC is much lower than
that of GC. The sensitivity of CC+GC is 0.857 on the
enhancing tumor (ET), 0.922 on the whole tumor (WT) and
0.861 on the tumor core (TC), respectively. From Fig. 5, we
witness that by introducing the feature interaction graph, the
segmentation model can correct some misclassified regions
produced by CC. However, the concatenation fusion method
does not demonstrate any benefit on the overall segmentation
performance. CC+GC has a dice score of 0.861 on the whole
tumor and 0.803 on the tumor core, which are 3.292% and
1.94% lower than those of GC respectively. We also observe
the loss of the boundary information shown in Fig. 5, espe-
cially the boundaries of NCR/ECT and GD-enhancing tumors
excessively shrinks compared with those of GC and CC.

We finally evaluate the effectiveness of our proposed CGA-
CRF. By introducing the CGA-CRF fusion module, our seg-
mentation model outperforms the other methods. Benefiting
from the inference ability of CGA-CRF, it presents a satisfac-

tory segmentation output. For the whole tumor and the tumor
core, its Dice scores are 0.903 and 0.873 respectively, which
are the top scores in the leader-board. Its Hausdorff95 also
is the lowest. For the whole tumor and the tumor core, its
hausdorff95 values are 3.569 and 4.036 respectively. Referring
to much lower sensitivity scores reported in Table I, we
conclude that the superior performance has been achieved by
the complete CANet. The same conclusion can be drawn from
Fig. 5 where CGA-CRF can detect optimal feature maps that
benefit the downstream deconvolution networks and outline
small tumor cores and edges, which may be lost when we use
a down-sampling operation in the encoder backbone.

Backbone Test We then evaluate the effectiveness of dif-
ferent encoder backbones. To do so, we use 5 fold cross-
validation on the BraTS2017 training set with complete
CC+GC and 5-iteration CGA-CRF. We here choose the
State-of-The-Art encoder backbones, e.g. VGG16, ResNet18,
ResNet30, ResNet50 and UNet encoder path. For each back-
bone, we feed the feature map from the last convolution
block into the feature interaction graph branch to extract the
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TABLE III
QUANTITATIVE RESULTS OF THE STATE-OF-THE-ART MODELS BY CROSS-VALIDATION ON THE BRATS2017 TRAINING SET WITH RESPECT TO DICE,

SENSITIVITY, SPECIFICITY AND HAUSDORFF. THE BEST RESULT IS SHOWN IN BOLD AND THE RUNNER-UP RESULT IS UNDERLINED.

Dice Sensitivity Specificity Hausdorff95
Model ET WT TC ET WT TC ET WT TC ET WT TC

3D-UNet [52] 0.706 0.865 0.810 0.803 0.906 0.829 0.998 0.990 0.995 6.624 8.193 8.958
No-New Net [53] 0.741 0.871 0.812 0.767 0.893 0.831 0.999 0.992 0.995 3.930 7.055 7.641

Attention UNet [54] 0.672 0.863 0.778 0.847 0.900 0.862 0.996 0.990 0.992 9.347 9.676 10.668
PRUNet [55] 0.710 0.891 0.814 0.788 0.900 0.841 0.998 0.990 0.996 7.205 7.414 9.187

3D-ESPNet [56] 0.690 0.895 0.844 0.805 0.947 0.881 0.997 0.990 0.997 6.894 4.156 5.778
CANet (Ours) 0.685 0.903 0.873 0.807 0.924 0.870 0.997 0.993 0.996 7.804 3.569 4.036

Fig. 7. Examples of segmentation results by cross validation on the BraTS2017 training set. Qualitative comparisons with other brain glioma segmentation
methods are presented. The eight columns from left to right show the frames of the input FLAIR data, the ground truth annotation, the results generated
from our CANet (UNet encoder backbone and 5-iteration CGA-CRF), 3DUNet [52], NoNewNet [53], Attention UNet [54], PRUNet [56], respectively. Black
arrows indicate the failure cases in these comparison methods. Best viewed in colors.

Fig. 8. Performance comparison with different encoder backbones: (a) and (b)
indicate the comparisons with dice score and hausdorff95 by cross validation
on the BraTS2017 training set using different encoder backbones respectively.
Best viewed in colors.

interaction graph contexts and feed the feature map from the
second last convolution block into the convolution branch to
generate deep supervised feature maps. This practice has been
proved to be effective, efficient and simple. The segmentation
results with respect to Dice and Hausdorff95 are shown in
Fig. 8. ResNet outperforms the VGG16 mainly due to the in-
volved residual connection and batch normalisation. However,

comparing ResNet and the encoder of UNet, the encoder of
UNet achieves better segmentation performance in terms of
Dice and Hausdorff95 due to the multiple scale feature maps
and skip connection for feature fusion. We choose the encoder
of UNet as the backbone network for the final segmentation
model in our approach.

Iteration Test we manually set the iteration number in
the mean-field approximation of CG-ACRF. Since the mean-
field approximation can only guarantee a local optimal, we
examine the consequence of different iteration numbers. Table
II reports the quantitative result of using different iteration
numbers, i.e. 1, 3, 5, 7, and 10. With increasing iterations,
our proposed model performs better. However, we observe
that no additional performance benefit can be gained when
the iteration number exceeds 5. Fig. 6 presents the probability
map during segmentation, where the light color represents the
region with a lower probability while the dark color represents
the area with a higher probability. We observe that using only
one iteration, CANet can outline the region of interest using
the fused feature maps. By increasing the iteration number
to 3 or 5, CG-ACRF can gradually extract an optimal feature
map, leading to accurate segmentation. We further increase the
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TABLE IV
QUANTITATIVE COMPARISONS BETWEEN CANET AND THE OTHER STATE OF THE ART TECHNIQUES ON THE BRATS2017 VALIDATION SET WITH

RESPECT TO DICE AND HAUSDORFF95. THE BEST RESULTS OUT OF EACH CATEGORY ARE SHOWN IN BOLD. ’-’ DEPICTS THAT THE RESULT OF THE
ASSOCIATED METHOD HAS NOT BEEN REPORTED YET. ? AND † REPRESENTS THE FINAL WINNER AND RUNNER-UP SOLUTION RESPECTIVELY.

Dice Hausdorff95 Model
Parameter

Approach Method ET WT TC ET WT TC

Kamnitsas et al. [24] ? Mean: 0.738 0.901 0.797 4.500 4.230 6.560 -StdDev: - - - - - -

Wang et al. [28] † Mean: 0.786 0.905 0.838 3.282 3.890 6.479 5.95E5StdDev: - - - - - -
Ensemble Zhao et al. [57] Mean: 0.754 0.887 0.794 - - - -StdDev: - - - - - -

Isensee et al. [58] Mean: 0.732 0.896 0.797 4.550 6.970 9.480 -StdDev: - - - - - -

Jungo et al. [59] Mean: 0.749 0.901 0.790 5.379 5.409 7.487 -StdDev: 0.277 0.086 0.239 10.068 9.710 8.935

Islam et al. [60] Mean: 0.689 0.876 0.761 12.938 9.820 12.361 1.34E8StdDev: 0.304 0.086 0.221 26.453 13.516 20.826

Lopez et al. [61] Mean: 0.567 0.783 0.685 23.828 30.316 38.077 1.57E7StdDev: - - - - - -

Shaikh et al. [62] Mean: 0.650 0.870 0.680 - - - 2.31E7StdDev: 0.320 0.110 0.340 - - -

Castillo et al [63] Mean: 0.690 0.860 0.690 - - - 2.22E7StdDev: - - - - - -
Single Prediction Li et al. [64] Mean: 0.704 0.871 0.682 7.699 10.396 13.062 3.80E5StdDev: 0.307 0.083 0.304 14.407 15.754 17.573

Jesson et al. [65] Mean: 0.713 0.899 0.751 6.980 4.160 8.650 4.29E6StdDev: 0.291 0.070 0.240 12.100 3.370 9.350

Roy et al. [66] Mean: 0.716 0.892 0.793 6.612 6.735 9.806 -StdDev: - - - - - -

Pereira er al. [67] Mean: 0.719 0.889 0.758 5.738 6.581 11.100 -StdDev: - - - - - -

CANet (Ours) Mean: 0.728 0.892 0.821 5.496 7.392 10.122 3.34E7StdDev: 0.286 0.082 0.167 11.690 11.917 16.966

iteration number to 7 and 10 but no further improvement has
been made. Therefore, we set the iteration number to 5 as a
working trade-off between the segmentation performance and
the number of the engaged parameters.

B. Comparison with State-of-The-Art methods

We choose several State-of-The-Art deep learning based
brain glioma segmentation methods, including 3D UNet [52],
Attention UNet [54], PRUNet [55], NoNewNet [53] and 3D-
ESPNet [56]. We first consider 5-fold cross-validation using
the BraTS2017 training set. Each fold contains randomly
chosen 228 cases for training and 57 cases for validation.
In these cross-validation experiments, we consider CANet
with CC+GC and CGA-CRF fusion modules with 5-iteration,
leading to the best performance in the ablation tests. As
shown in Table III, our CANet outperforms the other State-
of-The-Art methods on several metrics while the results of
the proposed method is competitive for the other metrics.
The Dice score of CANet is 0.903 and 0.873 for the whole
tumor and the tumor core respectively, where the former is
8% higher and the later is 3% higher than individual runner
up results. The Hausdorff95 values of CANet are 3.569 and
4.036 for the whole tumor and the tumor core, which are
much lower than the runner up scores, i.e. 4.156 and 5.778,
respectively. Based on the individual score generated from the
official evaluation server, we argue that the Dice score of ET
from our proposed CANet is affected by the data-imbalance
issue. The evaluation of enhancing tumor only considers the

prediction of pertumoral edema, which only exists in the High-
Grade Glioma (HGG) patients. As the training set contains
more HGG cases than the LGG (Lower-Grade Glioma) cases,
our system may learn a bias and make inaccurate prediction on
some LGG cases in validation as the HGG cases contain false
positives for the prediction of pertumoral edema labels. This
false positive prediction leads to 0 Dice score on ET instead of
1 for LGG cases, thus decrease the performance of our system.
We further summarise additional and detailed data-imbalance
issues and failure case analysis in Supplementary G.

To further evaluate the segmentation output, we compare
the segmentation output of the proposed approach against
the ground-truth. Fig. 7 shows that the proposed CANet can
effectively predict the correct regions including small tumor
cores and complicated edges while the other state of the
art methods fail to do so. In Supplementary D, Fig. S4
presents the exemplar segmentation result and the ground-truth
annotation in 3D visualisation. From Supplementary D Fig.
S4, we observe that our proposed CANet effectively captures
3D forms and shape information in all different circumstances.

Fig. S5 of Supplementary E reports the training curve of
CANet and the other State-of-The-Art methods. Our proposed
method converges to a lower training loss using less epochs,
compared against the other methods. Taking the advantage of
the powerful feature interaction graph and the proposed fusion
module CGA-CRF, CANet achieves satisfactory outlining of
brain glioma. With the training epoch increasing, CANet fine-
tunes the segmentation map and successfully detects small
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TABLE V
QUANTITATIVE RESULTS OF THE BRATS2018 VALIDATION SET WITH RESPECT TO DICE AND HAUSDORFF95. THE BEST RESULTS OUT OF EACH

CATEGORY ARE SHOWN IN BOLD. ’-’ REPRESENTS THE RESULT OF THE ASSOCIATED METHOD HAS NOT BEEN REPORTED YET. ? AND † REPRESENTS THE
FINAL WINNER AND THE RUNNER-UP SOLUTION RESPECTIVELY.

Dice Hausdorff95 Model
Parameter

Approach Method ET WT TC ET WT TC

Isensee et al. [53] † Mean: 0.796 0.908 0.843 3.120 4.790 8.020 1.45E7StdDev: - - - - - -

McKinley et al. [68] Mean: 0.793 0.901 0.847 3.603 4.062 4.988 -StdDev: - - - - - -

Zhou et al. [69] Mean: 0.792 0.907 0.836 2.800 4.480 7.070 -StdDev: - - - - - -
Ensemble Cabezas et al. [70] Mean: 0.740 0.889 0.726 5.304 6.956 11.924 -StdDev: 0.277 0.075 0.243 9.964 11.939 13.448

Puch et al. [71] Mean: 0.758 0.895 0.774 4.502 10.656 7.103 1.48E6StdDev: 0.264 0.070 0.253 8.227 19.286 7.084

Feng et al. [72] Mean: 0.787 0.906 0.834 3.964 4.018 5.340 -StdDev: - - - - - -

Sun et al. [73] Mean: 0.805 0.904 0.849 2.777 6.327 6.373 -StdDev: - - - - - -

Carver et al. [74] Mean: 0.710 0.880 0.770 4.460 7.090 9.570 2.20E7StdDev: 0.290 0.080 0.260 8.320 11.570 14.080

Chen et al. [27] Mean: 0.707 0.845 0.731 10.385 11.822 15.066 1.33E7StdDev: 0.264 0.100 0.230 21.205 23.610 20.560
Single Prediction Salehi et al. [75] Mean: 0.704 0.822 0.733 9.668 9.610 13.909 1.20E7StdDev: 0.289 0.136 0.242 13.757 13.036 14.965

Myronenko [26] ? Mean: 0.816 0.904 0.860 3.805 4.483 8.278 2.01E7StdDev: - - - - - -

Weninger et al. [76] Mean: 0.712 0.889 0.758 8.628 6.970 10.910 -StdDev: - - - - - -

Gates et al. [77] Mean: 0.678 0.806 0.685 14.523 14.415 20.017 -StdDev: - - - - - -

CANet(Ours) Mean: 0.767 0.898 0.834 3.859 6.685 7.674 3.34E7StdDev: 0.247 0.082 0.167 11.690 10.135 14.981

TABLE VI
QUANTITATIVE RESULTS OF THE BRATS2019 VALIDATION SET WITH RESPECT TO DICE AND HAUSDORFF95. THE BEST RESULT IS SHOWN IN BOLD AND

THE RUNNER-UP RESULT IS UNDERLINED. ? REPRESENTS THE FINAL WINNER SOLUTION.

Dice Hausdorff95
Method ET WT TC ET WT TC

Jiang et al. [78] ? 0.802 0.908 0.863 3.206 4.444 5.862
Zhao et al. [79] 0.702 0.893 0.800 4.766 5.078 6.472
Wang et al. [80] 0.737 0.894 0.807 5.994 5.677 7.357

Li et al. [81] 0.771 0.886 0.813 6.033 6.232 7.409
Myronenko et al. [82] 0.800 0.894 0.834 3.921 5.890 6.562

CANet (Ours) 0.759 0.885 0.851 4.809 7.091 8.409

tumor cores and boundaries. We illustrate the probability
map of our proposed CANet and 3D UNet in Fig. 9. From
Fig. 9, we witness that our CANet can localize the shape
contour of the target tumor to achieve precise segmentation,
while the standard 3D UNet may lead to uncertainty, e.g.
first row (WT probability map) and last row (TC probability
map) in Fig. 9. Also the standard U-Net may misclassify
healthy surroundings to be tumor tissues, e.g. second row (WT
probability map) and thrid row (ET probability map) in Fig. 9.

We further investigate the segmentation results on the
BraTS2017, BraTS2018 and BraTS2019 validation sets, where
the quantitative result of each patient case is generated from
the online evaluation server. The mean and standard deviation
results are reported in Tables IV, V and VI. Box plot in
Supplementary F - Fig. S6 shows the distribution of the seg-
mentation result among all the patient cases in the validation
set. For the BraTS2017 validation set, our proposed CANet

with complete CC+GC and 5-iteration CGA-CRF achieves
the State-of-The-Art results of mean Dice scores on ET, TC
and mean Hasdorff95 score on ET among the single model
segmentation benchmarks. Our CANet has the Dice on ET of
0.728 with standard deviation 0.286, higher than the approach
reported in [67]. The Dice on TC by CANet is 0.821, which
is higher than the runner-up result reported in [66]. The
Hausdorff95 on ET of CANet is 5.496, which is much lower
than the runner-up generated in [67]. For the BraTS2018
validation set, our proposed CANet achieves the State-of-The-
Art result for Hausdorff95, i.e. 7.674, on the tumor core, while
the other results are all runner-ups. Note that the method
proposed by Myronenko [26] has the best performance using
most of the evaluation metrics. In the Myronenko’s method,
they set up an additional branch of using autoencoder to
regularise the encoder backbone by reconstructing the input
3D MRI image. This autoencoder branch greatly enhances
the feature extraction capability of the backbone encoder.
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Fig. 9. Examples of segmentation probability maps of our proposed CANet
and 3D UNet. Columns from top to bottom represent different patient cases.
Rows from left to right indicate the FLAIR data, ground truth annotation,
attentive map generated by CANet with 5 iterations in CG-ACRF and attentive
map generated by 3D UNet respectively. Best viewed in colors.

In our framework, we regularise the network weights using
a L2-regularisation without any additional branch, and the
result of our proposed CANet is better than the other single
prediction methods. Be reminded that the standard single
prediction models generate the segmentation outcomes only
using one network, and do not need much computational
resources and a complicated voting scheme. For BraTS2019,
our proposed CANet with complete CC+GC and 5-iteration
CGA-CRF achieves competitive performance against the top
performer. CANet’s Dice on TC reaches the runner-up and
Dice on ET reaches the third place, compared with the other
State-of-The-Arts methods [78]–[82]. Note that methods like
Jiang et al. [78] used two U-Net in the their single architecture
where the first U-Net generates the coarse segmentation result
and the second U-Net refines the coarse result to a precise
one for the final segmentation output. Thus, this method can
be regarded as a variant of model ensembling. Compared with
the other State-of-The-Art methods, the result of our proposed
CANet is very competitive in terms of accuracy.

Note that even adding additional neural blocks for mean
field approximation, the parameters of our system suit the
system well. We report the parameter size of our proposed
model and other baseline candidates in Tables IV and V (we
employ the parameter setup of [83]). Our system maintains
the parameter size at a middle level (3.34E7), compared with
the other baseline methods such as Islam et al. [60] (1.38E8),
Shaikh et al. [62] (2.31E7), Castillo et al. [63] (2.22E7)
and Carver et al. [74](2.20E7). We train our system for 200
epoches with a batch size of 2, which takes 27 hours for
training. For the evaluation purpose, our system carries out
each case within 0.88 seconds.

VI. CONCLUSION

In summary, we have proposed a novel 3D MRI brain
glioma segmentation approach called CANet. Considering
different contextual information with standard and graph con-
volutions, we proposed a novel hybrid context aware feature
extractor combined with deep supervised convolution and
graph convolution contexts. Different from previous works
that used naive feature fusion schemes such as element-wise
summation or channel-wise concatenation, we here designed a
novel feature fusion model based on conditional random fields,
called context guided attentive conditional random field (CGA-
CRF), which effectively learns the optimal latent features for
downstream segmentation. Furthermore, we formulated the
mean-field approximation within CGA-CRF as a convolutional
operation, which incorporates the CGA-CRF in a segmenta-
tion network to perform end-to-end training. We conducted
extensive experiments to evaluate the effectiveness of the
proposed feature interaction graph method, CGA-CRF and
the complete CANet framework. The results have shown that
our proposed CANet achieved the State-of-The-Art results
with several evaluation metrics. In the future, we consider
combining the proposed network with novel training methods
that can better handle the imbalance issue in the datasets.
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VII. SUPPLEMENTARY B

Fig. S1 summarises the training steps of CANet.

Fig. S1. Training flow of the proposed CANet. Best viewed in colors.

VIII. SUPPLEMENTARY C

Data Augmentation For each sequence in each case, we set all the voxels outside the brain to zero and normalise the
intensity of the non-background voxels to be of zero mean and unit variance. During the training, we use randomly cropped
images of size 128×128×128. We further set up a common augmentation strategy for each sequence in each case: (i) Randomly
rotate an image with the angle between [-20◦, +20◦]; (ii) Randomly scale an image with a factor of 1.1; (iii) Randomly mirror
flip an image across the axial coronal and sagittal planes with the probability of 0.5; (iv) Random intensity shift between [-0.1,
+0.1]; (v) Random elastic deformation with σ = 10.

Implementation Details We implement the proposed CANet and other benchmark experiments using the PyTorch framework
and deploy all the experiments on 2 parallel Nvidia Tesla P100 GPUs for 200 epochs with a batch size of 4. We use the Adam
optimizer with an initial learning rate α0 = 1e−4. The learning rate is reduced by a factor of 5 after 100, 125 and 150 epochs.
We use a L2 regulariser with a weight decay of 1e−5. We store the weights for each epoch and use the weights that lead to
the best dice score for inference. The source code will be publicly accessible4.

IX. SUPPLEMENTARY D

Fig. S2 shows the exemplar segmentation result and the ground truth annotation in 3D visualisation described in Section
V-B.

Fig. S2. 3D segmentation results of two volume cases by cross validation on the BraTS2017 training set. The first and third rows indicate the ground truth
annotations. The second and fourth rows indicate the segmentation result of our proposed CANet with HCA-FE and 5-iteration CG-ACRF, respectively. Rows
from left to right indicate the qualitative comparison of the whole tumor, NCR/ECT, GD-enhancing tumor and Pertumoral Edema respectively. Best viewed
in colors.

4https://github.com/ZhihuaLiuEd/canetbrats
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X. SUPPLEMENTARY E

Fig. S3 reports the training curve of CANet and the other state-of-the-art methods using the BraTS2017 training set, described
in Section V-B.

Fig. S3. The learning curve of the state of the art methods and our proposed CANet with HCA-FE and 5-iteration CG-ACRF. Best viewed in color.

XI. SUPPLEMENTARY F

Fig. S4 shows the distribution of the segmentation results among all the patient cases in the BraTS2017 and BraTS2018
validation sets described in Section V-B.

Fig. S4. Boxplot of the segmentation results by CANet with HCA-FE and 5-iteration CG-ACRF, respectively. Dots within yellow boxes are individual
segmentation results generated for the BraTS2017 validation set. Dots within blue boxes are individual segmentation results generated for the BraTS2018
validation set. Best viewed in color.
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XII. SUPPLEMENTARY G

Fig. S5 shows the statistical information of the BraTS2017 training set. As an example, we here report two failure
segmentation cases by our proposed approach, shown in Fig. S6. During the whole training process, CANet focuses on
extracting feature maps with different contextual information, e.g. convolutional and graph contexts. However, we have not
designed specific strategies for handling the imbalanced issue of the training set. The imbalanced issue is presented in
two aspects. Firstly, there exists an unbalanced number of voxels in different tumor regions. As the exemplar case named
“Brats17 TCIA 605 1” is shown in Fig. S6, the NCR/ECT region is much smaller than the other two regions, suggesting poor
performance of segmenting NCR/ECT. Secondly, there exists an unbalanced number of patient cases from different institutions.
This imbalance introduces an annotation bias where some annotations tend to connect all the small regions into a large region
while the other annotation tends to label the voxels individually. As the exemplar case named ”Brats17 2013 23 1” is shown
in Fig. S6, the ground truth annotation tends to be sparse while the segmentation output tends to be connected together. In the
future work, we will consider an effective training scheme based on active/transfer learning which can effectively handle the
imbalance issue in the dataset. In spite of the imbalance issue, our segmentation method on the overall cases qualitatively
outperforms the other state-of-the-art methods.

Fig. S5. Statistics of the BraTS2017 training set. The left hand side figure of (a) shows the FLAIR and T2 intensity projection, and the right hand side figure
shows the T1ce and T1 intensity projection. (b) is the pie chart of the training data with labels, where the top figure shows the HGG data labels while the
bottom figure shows the LGG labels. There are large regions and label imbalance cases here. Best viewed in colors.

Fig. S6. Qualitative comparisons in the failure cases. Rows from left to right indicate the input data of the FLAIR modality, ground truth annotation,
segmentation result from our CANet, segmentation result from the other SOTA methods respectively. Our results look better than the SOTA methods’ results.
Best viewed in colors.
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