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1 | INTRODUCTION

It is quite common in empirical health economics to specify models where two or more outcome variables are potentially asso-
ciated conditional on a set of covariates. Modeling such association matters for efficiency, but also for addressing endogeneity 
in a recursive system of equations. The choice of model is dictated by the nature of the dependent variables. For example, for 
two jointly determined binary responses, the bivariate probit is frequently used (see Waters (1999), Farbmacher et al. (2017), 
Humphreys et al. (2014), among others). Often, however, there will be a mix of outcomes. As typical example, consider a joint 
model for insurance status and health care utilization, as in Deb and Trivedi (2006) and Marra et al. (2020). In such cases, one 
can use copulae to introduce dependence between outcomes with known arbitrary margins. In fact, the copula approach allows 
the marginal distributions to be chosen to best fit the data.

In this paper, we are interested in expenditures for medical services (per person and year) and their effect on health, based 
on a joint model with associated outcomes. Modeling medical expenditure data is a challenge because they display a substantial 
fraction of zeros, often more than 50%, in combination with a continuous distribution of positive amounts that is highly skewed. 
In single equation models, which neglect the joint determination of outcomes, estimation of regression parameters does not 
rely on a correctly specified distribution, and determinants of expenditure have often been estimated using the Gamma pseudo 
maximum likelihood estimator (Manning et al., 1987), linear regression for logarithmic non-zero expenditures (Manning & 
Mullahy, 2001), or a variety of two-part models (Mullahy, 1998). For the copula approach, however, it is important to find a 
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suitable marginal distribution for expenditures. Kurz (2017) recently argued that a compound Gamma distribution can provide 
a good characterization of health care expenditures. Specifically, assume that expenditures Y is a sum of N independent and 
identically distributed Gamma random variables, where N is distributed as Poisson(ω). Then the probability of a zero expendi-
ture is given by exp (−ω) and the distribution of positive amounts is skewed to the right. The compound gamma distribution is 
a special case of the more general Tweedie family of distributions. A plot based on quantile residuals confirms the suitability 
of the Tweedie for modeling the marginal distribution of health care expenditures in our application.

Our main technical contribution is then to build a flexible copula regression model for the joint determination of a Tweedie 
variable and a Bernoulli response (in our application an indicator whether a mental health index falls below a given threshold) 
and describe the steps for an efficient estimation algorithm. The proposed model is flexible in the sense that it is possible to: 
choose several link functions for the Bernoulli margin, incorporate (linear and non-linear) covariate effects into any distribu-
tional parameter, and allow for the exploration of a wide set of copulae. Moreover, it can be made fully interdependent, recur-
sive, or “seemingly unrelated”, by imposing zero-constraints on corresponding coefficients. A similar model has been proposed 
by Marra et  al.  (2020) who focused on binary and count margins (see, also, the references therein for alternative simpler 
versions, with different types of margins). Our new model has been implemented in the GJRM package (Marra & Radice, 2022), 
written for the programming language R (R Core Team, 2022). To the best of our knowledge, this is the first freely available 
implementation of a flexible copula regression model involving the Tweedie distribution.

In terms of substantive application, we use the proposed framework for estimating the causal effect of expenditure on 
health. We revisit data from the Rand Health Insurance Experiment (RHIE, e.g., Manning et al., 1987; Aron-Dine et al., 2013). 
The experiment generated exogenous variation in expenditure, by providing more or less insurance coverage to participating 
households. The experiment lasted for a period of up to 5 years, and health evaluations were conducted both before and after. 
Unfortunately, the public use files only contain information on mental rather than physical health, and that is one reason why 
our analysis is focused on the effect of mental health expenditures on mental health.

The other reason is that empirical studies on mental health expenditures are relatively scarce, despite their policy rele-
vance. The OECD assesses that more spending on mental health (often outpatient psychotherapy) could massively increase 
productivity and well-being (OECD, 2014). The United Nations include improved mental care provision among the sustainable 
development goals (United Nations, 2015). Nevertheless, among the stream of papers that came out of the RHIE, only one dealt 
explicitly with mental health (Manning et al., 1986). A possible explanation is that mental spending in the RHIE accounted only 
for around 4% of overall spending. Regarding overall expenditures, earlier analyzes of the data suggested a strong “first-stage” 
effect (i.e., more generous insurance coverage increased expenditures) but no systematic “reduced-form” effect (of more gener-
ous insurance cover on actual health, or mental health, as in Manning et al. (1989)). A formal analysis of the direct effect of 
increased mental spending on mental health has, to the best of our knowledge, not yet been undertaken for these data.

The bivariate model we implement is recursive: it postulates a direct effect of the Tweedie distributed health expenditure 
variable on the Bernoulli outcome “mental health below x”, but not vice-versa. Joint estimation using the copula approach 
allows for common, or correlated, unobserved components. Ignoring such confounders would bias the effect size. Direct reverse 
causation is unlikely in our application, as spending is measured in the years prior to the health outcome. To better achieve 
empirical identification, we instrument spending using RHIE's random assignment of individuals to insurance plans with 
different levels of cost-sharing. Our approach is an alternative to ad hoc endogeneity corrections, such as plug-in or control 
function approaches, that are not designed for non-normal and non-linear reduced forms as evidently required for the mixed 
discrete-continuous variable “mental spending” (e.g., Rivers & Vuong, 1988; Wooldridge, 2010). Using the copula approach 
with appropriate margins for the binary mental health indicator and the semi-continuous mental spending variable, we address 
the endogeneity of spending in a model-consistent way, based on a specification of the joint probability function that could have 
generated the observed data.

Our main findings are as follows. The Tweedie margin fits the expenditure data well, as evidenced by approximately 
normally distributed quantile residuals. Among the eleven copulae and three binary link functions considered, the Gaussian 
copula with probit link exhibits the smallest Akaike information criterion (AIC) value. The instrument for mental spending 
(made up of several categories) is highly significant (p-value of 0.00027 using the Wald test). Substantively, we find that the 
probability of low mental health is strongly predicted by the initial mental health score. The probability is higher for women 
and for the less educated, although the latter effect is not statistically significant (p-value of 0.14). The estimated Gaussian 
copula parameter indicates positive dependence. Ignoring such dependence leads to a spurious estimate in the univariate model, 
where an increase in spending by $1000 (or about 3500 inflation adjusted dollars in 2022) predicts a 8.3% points increase of 
the probability of having a mental health index below 50 (on a 0 − 100 scale). Once the endogeneity of spending is accounted 
for, the  average partial effect (APE) switches sign. The point estimate of −1.9% points is of modest size and not statistically 
significant.
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The paper is organized as follows. Section 2 introduces the Tweedie-Bernoulli copula model by discussing its components. 
Section 3 discusses the results of a simulation study. Section 4 presents the application whereas Section 5 concludes the paper. 
Appendix A provides a set of technical results that are required to implement the Tweedie distribution in a copula context, 
whereas Appendix B discusses parameter estimation and the related implementation in R.

2 | COPULA MODEL

The copula regression model introduced in this paper aims at modeling in a flexible way the joint distribution of a Bernoulli 
outcome variable and a semi-continuous (endogenous) variable. In the application, Y1 ∈ {0, 1} is the binary outcome “low 
mental health” and 𝐴𝐴 𝐴𝐴2 ∈ ℝ

+

0
 is mental spending. Assume that

𝐹𝐹12(𝑦𝑦1, 𝑦𝑦2|𝝑𝝑) = 𝐶𝐶(𝐹𝐹1(𝑦𝑦1|𝜋𝜋), 𝐹𝐹2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇); 𝜃𝜃), (1)

where ϑ = (π, μ, σ, ν, θ)′, F1(y1|π) and F2 (y2|μ, σ, ν) represent the marginal cumulative distribution functions (cdfs) of Y1 
and Y2 taking values in (0, 1), C : (0, 1) 2 → (0, 1) is a two-place copula function whose specification does not depend on the 
marginals, and θ is a copula dependence parameter that quantifies the association between the two random variables (see, e.g., 
Nelsen, 2006, for further details). Variable Y1 is modeled via a Bernoulli distribution with parameter π ∈ [0, 1] (representing 
the probability that the outcome is equal to 1), and Y2 using a Tweedie distribution with parameters μ, σ and ν (see Section 2.1). 
Note that π, μ, σ, ν and θ can be specified as functions of covariate effects as detailed in Section 2.2. Hence, the marginal model 
for Y1 can be regarded as a generalized additive model and that for Y2 as a generalized additive model for location scale and 
shape (e.g., Rigby & Stasinopoulos, 2005; Wood, 2017). Function C can be specified as in tab. 1 of Marra et al. (2020) which 
reports several copulae.

As opposed to classical copula regression settings, variable Y2 appears as an explanatory variable in the equation for π, hence 
giving the model a recursive structure. This in turn implies that Y2 is endogenous with respect to Y1 if the dependence between 
the two marginals (captured by θ) is statistically significant; see Han and Vytlacil (2017), Marra et al. (2020) and references 
therein for some works which have adopted the same logic for copula regression models. Note that, for the model adopted in this 
paper, Sklar (1973)'s result can only guarantee that the copula is unique over the range of the outcomes. However, for applied 
purposes, in a regression context, this is not problematic as noted by several authors including Joe (2014), Nikoloulopoulos and 
Karlis (2010) and Trivedi and Zimmer (2017).

The joint density 𝐴𝐴 𝐴𝐴12(𝑦𝑦1, 𝑦𝑦2) , required for calculating the model's log-likelihood, is built by considering the four possible 
combinations of values that (Y1, Y2)′ can take. That is,

𝑓𝑓12(𝑦𝑦1, 𝑦𝑦2) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

𝐶𝐶(𝐹𝐹1(0|𝜋𝜋), 𝐹𝐹2(0|𝜇𝜇, 𝜇𝜇, 𝜇𝜇); 𝜃𝜃) if 𝑦𝑦1 = 0 and 𝑦𝑦2 = 0

𝐹𝐹2(0|𝜇𝜇, 𝜇𝜇, 𝜇𝜇) − 𝐶𝐶(𝐹𝐹1(0|𝜋𝜋), 𝐹𝐹2(0|𝜇𝜇, 𝜇𝜇, 𝜇𝜇); 𝜃𝜃) if 𝑦𝑦1 = 1 and 𝑦𝑦2 = 0

𝑓𝑓2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇)𝜕𝜕𝐶𝐶(𝐹𝐹1(0|𝜋𝜋), 𝐹𝐹2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇); 𝜃𝜃)
𝜕𝜕𝐹𝐹2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇) if 𝑦𝑦1 = 0 and 𝑦𝑦2 > 0

𝑓𝑓2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇)
{
1 −

𝜕𝜕𝐶𝐶(𝐹𝐹1(0|𝜋𝜋), 𝐹𝐹2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇); 𝜃𝜃)
𝜕𝜕𝐹𝐹2(𝑦𝑦2|𝜇𝜇, 𝜇𝜇, 𝜇𝜇)

}
if 𝑦𝑦1 = 1 and 𝑦𝑦2 > 0

, (2)

where f2 (y2|μ, σ, ν) = ∂F2 (y2|μ, σ, ν)/∂y2 denotes the density function of the Tweedie distribution. The first two lines of Equa-
tion (2) show the probabilities associated with their respective events, whereas the last two lines show the densities obtained by 
differencing the first two lines of Equation (2) with respect to y2 when y2 > 0. For notational convenience, we dropped obser-
vation index i from the formulae above. However, it should be clear from the context of the paper that a set of n observations is 
assumed to be available for practical modeling.

2.1 | Tweedie distribution

The Tweedie distribution is a linear exponential dispersion model (Jørgensen, 1987) with a power mean-variance relationship, 
that is

var(𝑌𝑌 ) = 𝜎𝜎𝜎𝜎𝜈𝜈, 
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MARRA et Al.1308

where 𝐴𝐴 𝐴𝐴 = 𝔼𝔼(𝑌𝑌 ) , σ > 0 is a scale parameter and 𝐴𝐴 𝐴𝐴 ∈ ℝ controls the shape of the relationship. Widely used distributions 
such as the Gaussian, Poisson and Gamma are nested by the Tweedie family and can be recovered by setting ν to the relevant 
value (e.g., ν = 0 for the Gaussian). In this work, we are interested in the interval ν ∈ (1, 2), for which a Tweedie-distributed 
random variable can be represented as the sum of N independent Gamma-distributed random variables, where N is Poisson 
distributed. The resulting density is supported on the non-negative real line and has a positive mass at y = 0. Prior applications 
of the Tweedie compound Poisson-Gamma distribution are mainly known from the actuarial sciences, where the distribution 
is used to model insurance claim payments data (see, e.g., Smyth & Jørgensen, 2002). Kurz (2017) provides an application to 
total medical expenditures.

Fitting reliably the proposed copula regression model involving a Tweedie margin, using the method mentioned in Appen-
dix B, requires the ability to compute the Tweedie probability density function and cdf as well as their first and second order 
derivatives with respect to μ, σ and ν. Such quantities are not trivial to compute.

The density of the Tweedie is

𝑓𝑓 (𝑦𝑦|𝜇𝜇𝜇 𝜇𝜇𝜇 𝜇𝜇) = 𝑎𝑎(𝑦𝑦𝜇 𝜇𝜇𝜇 𝜇𝜇) exp

[
1

𝜇𝜇
{𝑦𝑦𝑦𝑦 − 𝜅𝜅(𝑦𝑦)}

]
𝜇 

where

𝜉𝜉 =
𝜇𝜇1−𝜈𝜈

1 − 𝜈𝜈
for 𝜈𝜈 ≠ 1 and 𝜉𝜉 = log𝜇𝜇 for 𝜈𝜈 = 1, 

and

𝜅𝜅(𝜉𝜉) =
𝜇𝜇2−𝜈𝜈

2 − 𝜈𝜈
for 𝜈𝜈 ≠ 2 and 𝜅𝜅(𝜉𝜉) = log𝜇𝜇 for 𝜈𝜈 = 2. 

As explained in Dunn and Smyth (2005), evaluating the Tweedie density requires approximating the factor a (y, σ, ν), which 
does not have a closed-form expression, using specifically designed numerical methods. Wood et al. (2017) provide methods 
for computing the first and second order derivatives of the log-density, while avoiding numerical problems. In Appendix A, we 
explain how to compute the Tweedie cdf and its derivatives.

2.2 | Additive predictor

Each of the parameters in ϑ is linked to covariate effects via an additive predictor 𝐴𝐴 𝐴𝐴 ∈ ℝ and a known monotonic one-to-one 
transformation function g that maps the parameter space to the real line. For the proposed model, we have gπ(π)  =  ηπ, 
gμ(μ) = ημ, gσ(σ) = ησ, gν(ν) = ην and gθ(θ) = ηθ, where gπ(⋅) can be specified using a logit, probit or cloglog link 
function, gμ(μ) = log(μ), gσ(σ) = log(σ), gν(ν) = log ((ν − 1.001)/(1.999 − ν)), and gθ depends on the chosen copula (e.g., for 
Gumbel  gθ(θ) = log (θ − 1)). Dropping for simplicity the subscript denoting the parameter the additive predictor belongs to, ηi 
can be written as

𝜂𝜂𝑖𝑖 = 𝛽𝛽0 +

𝐾𝐾∑
𝑘𝑘=1

𝑠𝑠𝑘𝑘(𝐳𝐳𝑘𝑘𝑖𝑖), 𝑖𝑖 = 1, . . . , 𝑛𝑛, (3)

where 𝐴𝐴 𝐴𝐴0 ∈ ℝ is an overall intercept, zki denotes the kth sub-vector of the complete covariate vector zi (potentially containing 
various types of covariates) and the K functions sk (zki) represent generic effects which are chosen according to the type of 
covariate(s) considered. Each sk (zki) can be approximated as a linear combination of Jk basis functions 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 (𝐳𝐳𝑘𝑘𝑘𝑘) and regression 
coefficients 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘𝑘 ∈ ℝ , that is, (e.g., Wood, 2017)

𝑠𝑠𝑘𝑘(𝐳𝐳𝑘𝑘𝑘𝑘) =

𝐽𝐽𝑘𝑘∑
𝑗𝑗𝑘𝑘=1

𝛽𝛽𝑘𝑘𝑗𝑗𝑘𝑘𝑏𝑏𝑘𝑘𝑗𝑗𝑘𝑘 (𝐳𝐳𝑘𝑘𝑘𝑘). (4)

This formulation implies that the vector of evaluations 𝐴𝐴 {𝑠𝑠𝑘𝑘(𝐳𝐳𝑘𝑘1), . . . , 𝑠𝑠𝑘𝑘(𝐳𝐳𝑘𝑘𝑘𝑘)}
′ can be written as Zkβk with 𝐴𝐴 𝜷𝜷𝑘𝑘 =

(
𝛽𝛽𝑘𝑘1, . . . , 𝛽𝛽𝑘𝑘𝑘𝑘𝑘𝑘

)′ 
and design matrix 𝐴𝐴 𝐴𝐴𝑘𝑘[𝑖𝑖𝑖 𝑖𝑖𝑘𝑘] = 𝑏𝑏𝑘𝑘𝑖𝑖𝑘𝑘 (𝐳𝐳𝑘𝑘𝑖𝑖) . This allows Equation (3) to be written as
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MARRA et Al. 1309

𝜼𝜼 = 𝛽𝛽0𝟏𝟏𝑛𝑛 + 𝐙𝐙1𝜷𝜷1 +⋯ + 𝐙𝐙𝐾𝐾𝜷𝜷𝐾𝐾, (5)

where 1n is an n-dimensional vector made up of ones. Equation (5) can also be written as η = Zβ, where Z = (1n, Z1, …, ZK) 
and 𝐴𝐴 𝜷𝜷 =

(
𝛽𝛽0, 𝜷𝜷

′
1
, . . . , 𝜷𝜷′

𝐾𝐾

)′ .
Each βk has an associated quadratic penalty 𝐴𝐴 𝐴𝐴𝑘𝑘𝜷𝜷

′
𝑘𝑘
𝐃𝐃𝑘𝑘𝜷𝜷𝑘𝑘 whose role is to enforce specific properties on the kth function, such 

as smoothness. Matrix Dk only depends on the choice of basis functions. Smoothing parameter λk ∈ [0, ∞) controls the trade-
off between fit and smoothness, and plays a crucial role in determining the shape of 𝐴𝐴 𝐴𝐴𝐴𝑘𝑘(𝐳𝐳𝑘𝑘𝑘𝑘) . The overall penalty can be defined 
as β′Dλβ, where Dλ = diag (0, λ1D1, …, λKDK). Note that the first term in Dλ is set to 0 since β0 is not penalized in estimation. 
However, it could be replaced with 0 should some parameter vector(s) in β also be unpenalized. Finally, the smooth functions 
are subject to centering (identifiability) constraints, which impose that 𝐴𝐴

∑𝑛𝑛
𝑖𝑖=1 𝑠𝑠𝑘𝑘(𝐳𝐳𝑘𝑘𝑖𝑖) = 0 for every k (see Wood (2017) for more 

details). The above smooth function representation allows one to specify a rich variety of covariate effects (such as linear, 
nonlinear and spatial Markov random field effects) and we refer the reader to Wood (2017) for full details. The overall penalty 
is used during model fitting as explained in Appendix B.

Consider the compact form for the random vectors Y1 = (Y11, …, Y1n)′ and Y2 = (Y21, …, Y2n)′. Then, by some slight abuse 
of notation, 𝐴𝐴 𝐘𝐘1 ∼ 1(𝝅𝝅) and 𝐴𝐴 𝐘𝐘2 ∼ 2(𝝁𝝁,𝝈𝝈, 𝝂𝝂) , where 𝐴𝐴 1 and 𝐴𝐴 2 denote the Bernoulli and Tweedie distributions, respectively, 
and π = (π1, …, πn)′, μ = (μ1, …, μn)′, σ = (σ1, …, σn)′ and ν = (ν1, …, νn)′ are modeled through

𝜼𝜼𝜋𝜋 = 𝑔𝑔𝜋𝜋(𝝅𝝅) = 𝛽𝛽10𝟏𝟏𝑛𝑛 + 𝜷𝜷end𝐘𝐘2 + 𝐙𝐙11𝜷𝜷11 +⋯ + 𝐙𝐙1𝐾𝐾𝜷𝜷1𝐾𝐾,

𝜼𝜼𝜇𝜇 = 𝑔𝑔𝜇𝜇(𝝁𝝁) = 𝛽𝛽20𝟏𝟏𝑛𝑛 + 𝐙𝐙21𝜷𝜷21 +⋯ + 𝐙𝐙2𝐾𝐾𝜷𝜷2𝐾𝐾,

𝜼𝜼𝜎𝜎 = 𝑔𝑔𝜎𝜎(𝝈𝝈) = 𝛽𝛽30𝟏𝟏𝑛𝑛 + 𝐙𝐙31𝜷𝜷31 +⋯ + 𝐙𝐙3𝐾𝐾𝜷𝜷3𝐾𝐾,

𝜼𝜼𝜈𝜈 = 𝑔𝑔𝜈𝜈(𝝂𝝂) = 𝛽𝛽40𝟏𝟏𝑛𝑛 + 𝐙𝐙41𝜷𝜷41 +⋯ + 𝐙𝐙4𝐾𝐾𝜷𝜷4𝐾𝐾,

 

where the functions g are applied element-wise. The same specification can also adopted for the dependence parameter 
vector θ = (θ1, …, θn)′ in which case ηθ = gθ(θ) = β501n + Z51β51 + ⋯ + Z5Kβ5K. Term βendY2, the endogenous effect of the 
semi-continuous variable on the binary response, modeled using representation Equation (4) as for any other covariate in the 
model, enters equation ηπ, hence giving the model setup a recursive structure as explained in Section 2. In terms of specification, 
covariates might be common across the additive predictors, except for the equation(s) related to the endogenous variable which 
should include at least one variable (an instrument) that is not included in the other predictors (e.g., Han & Vytlacil, 2017). 
Finally, note that not all parameters have to be specified as functions of predictors.

3 | SIMULATION STUDY

This section provides simulation evidence on the practical performance of the proposed approach. The data generating process 
(DGP) has been designed to mimic some of the features of the data as well as results from the case study that follows in the 
next section. For instance, the distributions of the binary and semi-continuous variables have been simulated to look similar to 
their observed versions, and the values for σ, ν and θ chosen to be close to the estimates obtained from the empirical analysis. 
The DGP has the form

𝑌𝑌2 ∼ TW with𝜇𝜇 = 𝑔𝑔−1𝜇𝜇 (1 + 𝑠𝑠2(𝑧𝑧1) + 𝑠𝑠3(𝑧𝑧2) + 𝑧𝑧3), 𝜎𝜎 = 𝑔𝑔−1𝜎𝜎 (4.24), 𝜈𝜈 = 𝑔𝑔−1𝜈𝜈 (0.22),

𝑌𝑌1 ∼ Bernoulli with𝜋𝜋 = Φ{−3 + 𝛽𝛽end𝑦𝑦2 + 𝑠𝑠1(𝑧𝑧1) + 𝑧𝑧2},
 

where 𝐴𝐴 𝐴𝐴1(𝑧𝑧) = 𝑧𝑧 + exp
{
−30(𝑧𝑧 − 0.5)2

}
 , 𝐴𝐴 𝐴𝐴2(𝑧𝑧) = 0.6{exp(𝑧𝑧) + sin(2.9𝑧𝑧)} and s3(z) = 0.6 sin (2πz), and the inverses of the g 

functions can be worked out from the expressions reported in Section 2.2 of the paper. Parameters β12 and β21 are set to 1 and 
hence not displayed in the equations above. As an empirically relevant benchmark, βend is set to 0. Variables z1, z2 and z3 (the 
instrument) are generated using a multivariate standard Gaussian with correlation parameters set at 0.5, and then transformed 
using the distribution function of a standard Gaussian. Regressor z3 is dichotomised by rounding it. Associated responses are 
generated via function BiCopSim(), from the package VineCopula (Schepsmeier et al., 2019), using the Gaussian copula 
with dependence parameter specified as θ = tanh (0.41). We considered sample sizes of 1500 and 3000, while the number of 
replicates was set to 500.

Using gjrm() we fitted models with probit and TW marginals, and a handful of copulae available in the pack-
age, specifically N, C0, J180, G0, G180, FGM, F and PL. We also fitted a univariate model with TW distribution (using 
gamlss() within GJRM), the Gaussian copula model with probit and TW marginals that does not account for covariate 
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MARRA et Al.1310

z2, the Gaussian copula model with probit and Gaussian marginals, and that with probit and Gamma marginals. We 
also considered the two-stage residual inclusion (2SRI) approach where the first stage involved a Tweedie regression for the 
endogenous variable and the second step a probit regression for the binary outcome (e.g., Terza et al., 2008). The correct 
model is the one based on the N copula with probit and TW marginals and all covariates in the model, whereas all the 
others served to assess the impacts that various misspecifications have on the endogenous effect of interest. The smooth 
components in the models were represented using penalized low rank thin plate splines with second order penalty and 10 
bases (Wood, 2017). For each replicate, curve estimates were constructed using 200 equally spaced fixed values in the (0, 
1) range.

Figure 1 shows the estimates for the endogenous parameter of interest βend under several fitted models. As expected, the 
simple univariate model, which does not correct for endogeneity, is clearly not able to capture the true parameter value; the 
estimates are upwardly biased, reflecting the positive copula dependence. When the copula is misspecified the results show 
some non-vanishing bias, hence suggesting that mis-modeled dependence structure plays a role in the estimation of the effect of 
interest. Misspecifying the regression structure does not seem to affect the effect on interest, while using the incorrect marginal 
distribution for the semi-continuous outcome has a detrimental impact on the estimation of βend in terms of bias and variance. 
The 2SRI approach yields rather unreliable estimates; this was somewhat expected since, with such high share of zeros in the 
semi-continuous outcome, the residuals obtained from the first stage may be a too crude approximation of unobserved factors. 
The results obtained under the correct model (N) exhibit the best bias-variance tradeoff. We also report, for the correct model, 
the results for the other model's terms, namely β12, β21, σ, ν, θ, s1 (⋅), s2 (⋅) and s3 (⋅); these are displayed in Figures 2 and 3. 
Although these are not of primary interest, the findings further support the empirical effectiveness of the proposed approach 
since the true values are overall well recovered.

4 | APPLICATION TO MENTAL CARE SPENDING AND HEALTH

The empirical literature on the effect of health insurance on utilization and health is decades old, substantial, and still growing. 
The most recent example for the U.S. are numerous studies evaluating the Affordable Care Act of 2010 (see, e.g., Mazurenko 
et al. (2018) for a systematic review). In that reform, Medicaid coverage was extended to nonelderly adults with incomes up to 
138% of the federal poverty level. After a subsequent Supreme Court ruling, states were allowed to opt out, and by 2017, eight-
een states had decided to do so. Evaluations of that policy therefore mostly use a difference-in-differences design, comparing 
trends for treated and non-treated adults depending on the state they live in.

Earlier studies of the topic often employed data from two genuine large scale experiments, the 2008 Oregon Health Insur-
ance Experiment and the 1974 RHIE. The RHIE data contain detailed information on medical spending, and they are freely 
available as public use files from https://www.icpsr.umich.edu/icpsrweb/NACDA/studies/06439; see Deb and Trivedi (2002) 
or Aron-Dine et al. (2013) for a more detailed description of data and variables.

Kurz  (2017) reports for the RHIE data that the Tweedie model provides a better fit for overall spending than other 
single-equation models, including the Tobit. Here, we focus on the bivariate relation between mental care spending and mental 
health. The RHIE provides a mental health score both at baseline and on exit from the program. The exit score will be our 
outcome variable. In addition, mental health expenditures are listed as a separate cost category in the data. Average spending on 
mental health is low, mostly due to the high share of non-users (90% in our sample). The average annual amount spent among 
users is $236. While the high share of zeros can be a problem for traditional modeling approaches, it is compatible with the 
compound Poisson-Gamma framework of the Tweedie distribution.

Random plan-assignment is used as an instrument for spending on mental care. There were a total of 14 different insurance 
plans that can be classified into four types of coverage: full insurance; individual deductible plans; coinsurance plans; and cata-
strophic coverage only. We find evidence for instrument relevance: spending is higher for plans with more generous coverage. 
This comes with a caveat; Aron-Dine et al. (2013) provide some evidence that attrition from the experiment is more prevalent in 
the catastrophic coverage group, and there is possibly some selection based on better health, indicating a violation of the usual 
exclusion restriction. In our set-up, we are able to condition on mental health at baseline, and additionally allow for associated 
confounders in the bivariate model, thereby alleviating concerns that non-random attrition may invalidate our results.

Thus, we estimate a recursive copula two-equation model for spending (a semi-continuous variable with a mass point 
at zero) and a binary indicator of later mental health. The dependence between spending and the distribution of mental 
health stemming from associated unobservables is modeled using copulae. The benchmark specification combines Tweedie 
marginal models with the probit Bernoulli margin, using a Gaussian copula. Other variants are explored. The effects of contin-
uous covariates are modeled via spline functions. Our application also provides a template for related analyses, as the same 
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MARRA et Al. 1311

methodology can be used to estimate the effect of any type of health care spending on any type of binary health outcome. In 
addition, the order of the equations can be reversed to accommodate a situation of a Tweedie model with binary endogenous 
regressor.

F I G U R E  1  Estimates for βend (the endogenous parameter of interest) obtained via GJRM by applying copula and univariate models to 
simulated data based on the Gaussian copula with probit and Tweedie margins. The correct model is denoted by N, while the other models are 
misspecified in various ways. Specifically, we have additionally considered (i) Seven more copula models (C0, J180, G0, G180, FGM, F, PL) 
with probit and TW margins, (ii) A univariate model with TW distribution, (iii) The Gaussian copula model with probit and TW marginals but 
without covariate z2, (iii) The Gaussian copula model with probit and Gaussian marginals, (iv) The Gaussian copula model with probit and 
Gamma marginals and (v) The two-stage residual inclusion approach. Circles indicate mean estimates while bars represent the estimates' ranges 
resulting from 5% to 95% quantiles. The true value is 0 and is denoted by the dashed horizontal line. (a) n = 1500. (b) n = 3000.
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MARRA et Al.1312

4.1 | Description of data and model

To obtain our final sample, we excluded all individuals under the age of 18, as well as those with missing information on any 
of the variables employed in the analysis. This leaves us with 2777 observations. Of those, 69% were enrolled in the program 
for 3 years and the remaining 31% for 5 years. The spending variable is obtained as the average yearly spending for mental care 
during the enrollment period (mentalexp).

Mental health, mhix, was evaluated upon exit from the program, on a 0–100 scale with mean 76; by dichotomizing mhix 
at a given point x, we obtain the Bernoulli outcome “𝐴𝐴 𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖 < 𝑥𝑥 ”. Thus, we effectively estimate a model for the distribution 
function 𝐴𝐴 𝐴𝐴 (𝑥𝑥) = 𝑃𝑃 (𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖 < 𝑥𝑥) where x can be varied. In our application, we let x ∈ {30, 40, 50, 60, 70, 80, 90}, and thus trace 
out the distribution function of mhix at these points. This is in the spirit of Chernozhukov et al. (2013) who study the use of 
distribution regressions as a flexible approach for estimating treatment effects. In order to save space, we focus our reporting 
on the cut-off of x = 50 and label all individuals falling below that threshold as having “low mental health” (lowmhix). This 
applies to 5% of the sample. We summarize the effect estimates at other thresholds in a single graph.

For the Tweedie model, only the location parameter μ is specified as a function of covariates; modeling σ and ν using addi-
tive predictors does not alter the substantive conclusions, hence we focus on the location parameter only. Therefore, the model 
equations for the Bernoulli and Tweedie margins are

𝜋𝜋𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕𝚕 = 𝑔𝑔−1𝜋𝜋 (𝛽𝛽10 + 𝑠𝑠11(𝚕𝚕𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚕𝚕𝚖𝚖𝚕𝚕𝚖𝚖) + 𝛽𝛽12𝚏𝚏𝚖𝚖𝚕𝚕𝚖𝚖𝚕𝚕𝚖𝚖 + 𝛽𝛽13𝚕𝚕𝚕𝚕𝚕𝚕𝚖𝚖𝚖𝚖 + 𝛽𝛽14𝚖𝚖𝚕𝚕𝚕𝚕𝚙𝚙 + 𝑠𝑠12(𝚕𝚕𝚕𝚕𝚕𝚕) + 𝑠𝑠13(𝚖𝚖𝚊𝚊𝚖𝚖) + 𝑠𝑠14(𝚖𝚖𝚎𝚎𝚎𝚎𝚎𝚎)) 

and

F I G U R E  2  Estimates of other model's 
parameters obtained by applying gjrm() to 
simulated data based on a Gaussian copula 
with probit and Tweedie margins when 
fitting correctly specified models. Circles 
indicate mean estimates while bars represent 
the estimates' ranges resulting from 5% to 
95% quantiles. True values are indicated by 
dashed horizontal lines. (a) n = 1500. (b) 
n = 3000.
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MARRA et Al. 1313

𝜇𝜇𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖 = exp(𝛽𝛽20 + 𝛽𝛽21𝚏𝚏𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖 + 𝛽𝛽22𝚠𝚠𝚠𝚠𝚠𝚠𝚖𝚖𝚖𝚖 + 𝛽𝛽23𝚖𝚖𝚙𝚙𝚙𝚙𝚙𝚙 + 𝛽𝛽24𝟙𝟙(𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚙𝚙𝚖𝚖𝚖𝚖 = 2) + 𝛽𝛽25𝟙𝟙(𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚙𝚙𝚖𝚖𝚖𝚖 = 3) 

+𝛽𝛽26𝟙𝟙(𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙𝚙 = 4) + 𝑠𝑠21(𝚖𝚖𝚖𝚖𝚖𝚖) + 𝑠𝑠22(𝚙𝚙𝚊𝚊𝚙𝚙) + 𝑠𝑠23(𝚙𝚙𝚎𝚎𝚎𝚎𝚎𝚎) ) 

were π is the binary response probability, 𝐴𝐴 𝐴𝐴−1𝜋𝜋  is derived according to the link function chosen for π, and μ is the expected value 
of mental expenditure. Thus, both equations have six variables in common, namely the mental health score at enrollment (mhi), 
age, gender (female = 1), race (white = 1), the education of the household head in years (educ), as well as the indicator 
variable poor. Participants are classified as being poor if the per-capita household income falls into the lower tercile of the 
distribution.

The factor variable plantype is an instrument, that is, it is included in the second equation but excluded from the first 
equation. In our data, 33% of observations are assigned to the first, full coverage plan; 22% to the deductible plan; 27% to the 
coinsurance plan, and the remaining 18% to the catastrophic coverage plan. F-tests for balancing of the pre-treatment variables 
by plan type do not reject the null hypothesis of no difference (p-values between 0.16 and 0.64) except for the variable poor, 
which is underrepresented in the catastrophic plan, a finding echoing Aron-Dine et al. (2013).

4.2 | Results for the univariate models

Table 1 shows estimation results obtained using the univariate approach where the Bernoulli and Tweedie marginals have 
been estimated separately, as single equation models. For the Bernoulli margin, using information criteria, the probit link was 
selected.

The Tweedie coefficients determine the relative change in expected spending associated with an increase in the covariate 
value. For example, women are predicted to spend [exp (0.5692) − 1] × 100 = 76.7% more than men, keeping everything else 

F I G U R E  3  Estimates of smooth effects obtained by applying gjrm() to simulated data based on a Gaussian copula with probit and 
Tweedie margins when fitting correctly specified models. True functions are represented by black solid lines, mean estimates by dashed lines and 
point-wise ranges resulting from 5% to 95% quantiles by shaded areas. (a) n = 1500. (b) n = 3000.
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MARRA et Al.1314

constant. The omitted plantype1 is “full insurance”, so plantype4 (catastrophic insurance) cuts spending on mental care 
relative to full insurance by approximately 60% (exp (−0.8792) − 1 = −0.5849). The plantype variable as a whole has a 
significant impact on the response (p-value = 0.00027 obtained using the Wald test), as are all the covariates as well as the three 
spline functions for mhi, age and educ.

Significant predictors of lowmhix are female, initial mhi as well as educ. Age, race and poverty status seem not to 
matter. Note that we initially considered a smooth function of mentalexp, that is 𝐴𝐴 𝐴𝐴11(𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖𝚖) . Since this resulted in a 
straight line estimate, we eventually let the variable enter the equation parametrically. Spending on mental care has a positive 
coefficient and a z-value of 2.762. Thus, we find indeed that, in this univariate model, higher spending is associated with an 
increased probability of low mental health. Specifically, the approximate probit APE predicts a 8.3% points increase in low 
mental health per $1000 increase in spending. A 95% interval for the APE obtained by Bayesian posterior simulation (based 
on the result mentioned in Appendix B) is given by [0.017, 0.189], confirming the statistical significance of the effect. This 
counterintuitive finding likely reflects associated “shocks”. During the enrollment period of three or 5 years, individual unob-
served traits related to mental problems can drive up both mentalexp as well as the probability of low mental health upon 
exit, hence generating a spurious positive association in the univariate model. This is exactly the type of problem that estimation 
of the joint model can address.

We tested for interactions between poor and plantype, but found no significant evidence for heterogeneous effects. For 
the sake of completeness, we report in Figure 4 the histogram as well as the QQ-plot for the Tweedie quantile residuals, the 
latter together with 95% confidence bands. Almost all points are within the intervals, hence supporting the fact that the Tweedie 
distribution provides an appropriate characterization for mental spending.

4.3 | Results for the bivariate model

The great advantage of the copula approach in conjunction with flexible model margins is the modularity that gives the prac-
titioner the opportunity to explore many unique combinations of elements in order to determine, on one hand, the best fitting 
model, and, on the other, the sensitivity of key results of interest to modeling assumptions. In our case, we take the Tweedie 
margin as well as the set of covariates as given. In contrast, we consider three link functions for the Bernoulli lowmhix 
equation (probit, logit and cloglog) and eleven different copulae to account for the dependence between the two 
equations. The copula models were based on the equations shown in the previous section and were fitted using the GJRM R 
package discussed in Appendix B. Specifying the dependence parameter as function of covariates did not, in this case, return 
any interesting results as all covariate effects were insignificant. Note that we used only the rotated 180° versions of the Clay-
ton, Gumbel and Joe copulas because the data support the presence of positive dependence between the two equations, hence it 
would not make sense to consider rotations allowing for negative dependence. We employed the AIC and Bayesian information 
criterion (BIC) in order to find the best fitting model given the covariates and the Tweedie margin for spending. Results are 
provided in Table 2.

T A B L E  1  Results from single equation 
models (n = 2777). The first two columns 
refer to the Tweedie margin and the last two 
to the Bernoulli (with probit link) margin. 
As for the smooth functions, we report 
effective degrees of freedoms (representing 
the degrees of complexity of the estimated 
curves) and p-values. 95% intervals for σ and 
ν are obtained by posterior simulation.

Dependent variable

mentalexp (Tweedie) lowmhix (Bernoulli with probit link)

Estimate Std. Error Estimate Std. Error
(Intercept) 0.2965 0.4213 −2.1539 0.1528

mentalexp× 10 3 0.6444 0.2333
female 0.5692 0.1881 0.3157 0.0991
white 1.9382 0.4009 0.0717 0.1330
poor 0.4539 0.2114 −0.0025 0.1023
plantype2 0.1550 0.2279
plantype3 −0.6482 0.2403
plantype4 −0.8792 0.2873
s(mhi) 1.611 p-val < 2e–16 2.051 p-val < 2e–16
s(age) 6.389 p-val = 0.028 1.000 p-val = 0.551
s(educ) 6.059 p-val < 2e–16 1.002 p-val = 0.022

σ 69.9 (63.8, 76.9)

ν 1.55 (1.52, 1.58)
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MARRA et Al. 1315

The information criteria select the same copula function, namely the Gaussian, but not the same link function for the binary 
response (probit using the AIC and cloglog using the BIC), although the substantive conclusions are robust with respect 
to the selected copula and link function (see last column of Table 2). The full results of the joint Gaussian copula model with 
Bernoulli (with probit link) and Tweedie margins are given in Table 3, whereas the three estimated smooth functions (for mhi, 
age and educ) are shown in Figure 5, panel for the mental health equation).

We find that better initial mental health is associated with lower spending as well as a reduced probability of low mental 
health on exit from the program. The estimated smooth functions are nearly linear in both cases. The positive and significant 
association indicates that controlling for initial mental health takes out at least some of the individual heterogeneity that drives 
both spending and subsequent mental health. The effect of age is again similar in both equations, displaying a pronounced 
M-shape with estimated peaks in the late twenties and mid-fifties. The effect of education is less uniform and only imprecisely 
determined, especially for the spending equation.

The main result of interest is the effect of spending on mental health. The point estimate in the probit equation of the 
bivariate recursive copula model is given by −0.2647, with a standard error of 0.2821. Allowing for endogeneity of spending 
overturns the earlier finding of a positive and statistically significant association from the single-equation approach. The point 
estimate as such corresponds to an APE of −0.019 (with a Bayesian 95% confidence set equal to [−0.043, 0.032]), slightly 
negative but statistically insignificant.

Figure 6 shows the APE, together with 95% confidence interval, obtained for different values of the cut-off point used for 
the mental health variable, namely x ∈ {30, 40, 50, 60, 70, 80, 90}. We see that all effects are negative, except for x = 90. An 
increase in expenditures shifts the distribution downward over much of the range, except for the right tail, where we estimate a 
decrease in the complementary probability. However, none of these changes is statistically significant.

Using the 2SRI approach, we obtained an APE of 0.383 with a very wide 95% confidence set equal to [−0.046, 0.937], a 
positive value but statistically insignificant. However, as found in the simulation study, this method may not produce reliable 
estimates of the effect of interest.

Not finding an effect of spending on mental health may be surprising at first. However, it is compatible with findings in the 
related literature studying the effect of insurance coverage on mental health. For instance, Brook et al. (1983) demonstrate for 
the RHIE data that there is no significant effect of insurance status on mental health. Using a regression discontinuity design 
that exploits the onset of medicare when turning 65, Rhodes (2018) finds no mental health effect of better insurance coverage 
either.

In summary, there is strong evidence that the single-equation negative association between mental spending on mental 
health is driven by the endogeneity of spending, for example, due to health “shocks” occurring after the initial mental health 
score is determined. A copula model can address this endogeneity problem in the context of joint estimation of two non-linear 
outcome equations. Doing so leads to a null-finding that mirrors the consensus of the previous RHIE literature: while insurance 

F I G U R E  4  Histogram and normal Q–Q plot (with 95% confidence bands) of normalized quantile residuals for the mental spending variable 
produced after fitting a Tweedie univariate regression model. [Colour figure can be viewed at wileyonlinelibrary.com]
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MARRA et Al.1316

generosity had a sizable effect on spending (of any type, not only mental care), its effects on health outcomes measured upon 
conclusion of the experimental period were small if any.

5 | CONCLUSIONS

This paper presents an estimation approach, based on copulae, that consistently estimates the effect of an endogenous 
semi-continuous regressor on a binary outcome. The approach offers a convenient test for the presence of endogeneity, via the 
copula dependence parameter.

In our application, we reconsider data from the RHIE and estimate the effect of medical expenditures on the binary variable 
“low mental health”, using random insurance plan assignment as an instrument for spending. The expenditure variable has 
around 90% of zeros and we find that the Tweedie distribution provides a good fit to the data. The Gaussian copula dependence 
parameter is positive and statistically significant, indicating the presence of factors unobserved to the analyst that increase both 

T A B L E  2  Akaike information criterion 
(AIC) and Bayesian information criterion 
(BIC) values by different copulae and link 
functions for the Bernoulli margin. The 
probit average partial effect (APE), with 
the corresponding 95% interval obtained by 
Bayesian posterior simulation, is reported for 
each model.

Link function Copula AIC BIC APE
probit N 5891.504 6107.676 −0.019 (−0.043, 0.032)
logit N 5895.133 6100.153 −0.006 (−0.017, 0.021)
cloglog N 5896.859 6095.220 −0.004 (−0.013, 0.022)
probit C0 5897.271 6114.967 −0.001 (−0.029, 0.052)
logit C0 5900.432 6106.005 −0.001 (−0.012, 0.026)
cloglog C0 5901.629 6103.694 −0.001 (−0.010, 0.019)
probit C180 5895.136 6110.731 −0.018 (−0.045, 0.051)
logit C180 5898.891 6102.091 −0.003 (−0.016, 0.040)
cloglog C180 5900.447 6098.598 −0.001 (−0.011, 0.033)
probit J0 5899.430 6114.035 −0.014 (−0.050, 0.102)
logit J0 5903.010 6105.085 0.002 (−0.014, 0.065)
cloglog J0 5904.366 6101.348 0.002 (−0.011, 0.039)
probit J180 5897.499 6115.236 −0.001 (−0.029, 0.054)
logit J180 5900.621 6107.059 −0.001 (−0.012, 0.027)
cloglog J180 5901.842 6104.033 −0.001 (−0.010, 0.019)
probit G0 5897.583 6112.597 −0.017 (−0.049, 0.083)
logit G0 5901.302 6104.262 −0.001 (−0.016, 0.050)
cloglog G0 5902.787 6100.008 0.001 (−0.011, 0.036)
probit G180 5891.693 6108.226 −0.016 (−0.040, 0.035)
logit G180 5895.074 6100.828 −0.006 (−0.016, 0.020)
cloglog G180 5896.893 6095.932 −0.004 (−0.012, 0.018)
probit AMH 5896.485 6106.838 0.012 (−0.018, 0.064)
logit AMH 5899.617 6098.679 0.005 (−0.009, 0.033)
cloglog AMH 5901.260 6096.626 0.003 (−0.007, 0.023)
probit FGM 5895.972 6105.752 0.013 (−0.018, 0.064)
logit FGM 5899.083 6097.999 0.005 (−0.009, 0.034)
cloglog FGM 5900.974 6095.574 0.004 (−0.007, 0.024)
probit T 5897.080 6113.935 −0.027 (−0.051, 0.034)
logit T 5901.212 6108.210 −0.004 (−0.018, 0.069)
cloglog T 5903.132 6099.329 0.001 (−0.013, 0.078)
probit F 5893.310 6110.670 −0.007 (−0.034, 0.043)
logit F 5896.291 6103.940 −0.003 (−0.014, 0.023)
cloglog F 5898.574 6098.664 −0.002 (−0.011, 0.018)
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MARRA et Al. 1317

T A B L E  3  Results from the chosen 
copula model (n = 2777). 95% intervals for σ, 
ν, and θ are obtained by posterior simulation. Dependent variable

mentalexp (Tweedie) lowmhix (Bernoulli with probit link)

Estimate Std. Error Estimate Std. Error
(Intercept) 0.3344 0.4168 −2.1177 0.1520

mentalexp × 10 3 −0.2647 0.2821
female 0.5793 0.1868 0.3298 0.0979
white 1.8936 0.3960 0.0492 0.1308
poor 0.4685 0.2096 0.0334 0.1004
plantype2 0.1614 0.2246
plantype3 −0.6830 0.2365
plantype4 −0.8356 0.2825
s(mhi) 1.461 p-val < 2e-16 2.219 p-val < 2e-16
s(age) 6.270 p-val = 0.0461 4.458 p-val = 0.469
s(educ) 6.050 p-val < 2e-16 1.000 p-val = 0.144

σ 70 (63.5, 77.3)

ν 1.55 (1.52, 1.59)

θ 0.386 (0.229, 0.527)

F I G U R E  5  Estimated smooth effects of mhi, age and educ and associated 95% point-wise intervals obtained when fitting a Gaussian 
copula model with Bernoulli (with probit link) and Tweedie margins to data from the Rand Health Insurance Experiment (RHIE). The top plots 
refer to the probit equation whereas the bottom ones to the Tweedie equation. The jittered rug plot, at the bottom of each graph, shows the covariate 
values. The number in brackets in the y-axis caption represents the effective degrees of freedom of the respective smooth curve.
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MARRA et Al.1318

spending and the probability of low mental health. An example would be the emergence of a mental health problem due to an 
adverse life event.

The methodology presented in this paper is fundamentally parametric and as such may suffer from the usual potential 
drawbacks resulting from model mis-specifications. Indeed, we provide evidence, by way of a simulation study, that the choice 
of copula and marginal distributions matters: mis-specification of either has detrimental effects on bias and variance of the 
parameter of interest.

Therefore, our modeling framework has the advantage of enabling model exploration via the various functional forms avail-
able in GJRM, which provides a wide set of copulae and marginal distributions, as well as much flexibility in the way regressor 
effects are specified. This helps researchers to explore several permutations of functional forms and regressor effects, and to 
select and test for the best model. Arguably, such exploration is consistent with the philosophy of non-parametric methods, in 
that it lets the data to point to meaningful model structures.
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APPENDIX A: TWEEDIE CDF AND ITS DERIVATIVES
For 1 < ν < 2, a Tweedie variable Y can be written as the sum of N independent Gamma-distributed random variables W1, …, 
WN with shape −α and scale γ, while N follows a Poisson distribution with rate ω. In terms of the Tweedie parameters, we have

𝜔𝜔 =
𝜇𝜇2−𝜈𝜈

𝜎𝜎(2 − 𝜈𝜈)
, 𝛼𝛼 = (2 − 𝜈𝜈)∕(1 − 𝜈𝜈), 𝛾𝛾 = 𝜎𝜎(𝜈𝜈 − 1)𝜇𝜇𝜈𝜈−1. 

Hence, the cdf of Y is

𝐹𝐹 (𝑦𝑦) = 𝑃𝑃

(
𝑁𝑁∑
𝑖𝑖=1

𝑤𝑤𝑖𝑖 < 𝑦𝑦

)
=

∞∑
𝑘𝑘=1

𝑃𝑃𝐺𝐺

(
𝑘𝑘∑
𝑖𝑖=1

𝑤𝑤𝑖𝑖 < 𝑦𝑦

)
𝑃𝑃𝑃𝑃 (𝑁𝑁 = 𝑘𝑘), (6)

where the second equality holds due to the Law of Total Probability, PG is equivalent to the cdf 𝐴𝐴
(
𝐹𝐹𝑘𝑘
𝐺𝐺

)
 of a Gamma distribution 

with parameters −kα and γ, while PP is the probability mass function (fP) of a Poisson with rate ω.
We approximate the infinite sum in Equation (6) by

𝐹𝐹 (𝑦𝑦) ≈ 𝐹𝐹 (𝑦𝑦) =

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝐹𝐹𝑘𝑘
𝐺𝐺
(𝑦𝑦)𝑓𝑓𝑃𝑃 (𝑘𝑘), 

for some kmax ≥ kmin whose values are chosen as follows. Given that fP is maximal at k = ⌊ω⌋ and then monotonically decreases 
as k moves away from the mode, a reasonable approach is to choose kmin and kmax such that fP(k) < ϵfP (⌊ω⌋) for k < kmin or 
k > kmax, for some small ϵ. If we do so, it is clear that a very pessimistic upper bound on the approximation error is

|𝐹𝐹 (𝑦𝑦) − 𝐹𝐹 (𝑦𝑦)| < 𝑃𝑃𝑃𝑃 (𝑁𝑁 < 𝑁𝑁min or𝑁𝑁 𝑁 𝑁𝑁max) = 1 − 𝑃𝑃𝑃𝑃 (𝑁𝑁min < 𝑁𝑁 < 𝑁𝑁max), 

which is easy to compute. Of course, kmin and kmax are not known in advance, but we can initialize k to ⌊ω⌋ and then increase 
k until fP(k) < ϵfP (⌊ω⌋), which leads to kmax. Then k is set to the Poisson mode and decreased until kmin is found or k = 0.

First and second derivatives of the (approximate) Tweedie cdf, 𝐴𝐴 𝐹𝐹 (𝑦𝑦) , w.r.t. θ = {μ, σ, ν} are obtained by firstly calculating 
the derivatives w.r.t. ψ = {α, γ, ω} and then using the Jacobian of the transformation to convert them to the θ-based parametri-
zation. The gradient of 𝐴𝐴 𝐹𝐹 (𝑦𝑦) and the diagonal entries of the Hessian w. r.t ψ are

𝜕𝜕𝑗𝑗𝐹𝐹

𝜕𝜕𝜕𝜕𝑗𝑗
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝜕𝜕𝑗𝑗𝐹𝐹 𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕𝑗𝑗
𝑓𝑓𝑃𝑃 ,

𝜕𝜕𝑗𝑗𝐹𝐹

𝜕𝜕𝜕𝜕𝑗𝑗
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝜕𝜕𝑗𝑗𝐹𝐹 𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕𝑗𝑗
𝑓𝑓𝑃𝑃 ,

𝜕𝜕𝑗𝑗𝐹𝐹

𝜕𝜕𝜕𝜕𝑗𝑗
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝐹𝐹𝑘𝑘
𝐺𝐺

𝜕𝜕𝑗𝑗𝑓𝑓𝑃𝑃

𝜕𝜕𝜕𝜕𝑗𝑗
, 

for j = 1 or 2, while the non-diagonal Hessian elements are
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𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝜕𝜕2𝐹𝐹𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝑓𝑓𝑃𝑃 ,

𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝜕𝜕𝐹𝐹 𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑃𝑃

𝜕𝜕𝜕𝜕
,

𝜕𝜕2𝐹𝐹

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
≈

𝑘𝑘max∑
𝑘𝑘=𝑘𝑘min

𝜕𝜕𝐹𝐹 𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑃𝑃

𝜕𝜕𝜕𝜕
. 

The derivatives w.r.t. γ and ν are given by

𝜕𝜕𝜕𝜕 𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕
= −

1

Γ(−𝑘𝑘𝑘𝑘)

𝑦𝑦

𝜕𝜕2

(
𝑦𝑦

𝜕𝜕

)−𝑘𝑘𝑘𝑘−1

𝑒𝑒
−
𝑦𝑦

𝜕𝜕 ,
𝜕𝜕2𝜕𝜕𝑘𝑘

𝐺𝐺

𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘
= 𝑘𝑘

𝜕𝜕𝜕𝜕𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕

{
Γ(1)(−𝑘𝑘𝑘𝑘)

Γ(−𝑘𝑘𝑘𝑘)
− log

𝑦𝑦

𝜕𝜕

}
, 

𝜕𝜕2𝐹𝐹𝑘𝑘
𝐺𝐺

𝜕𝜕𝜕𝜕2
=

𝑦𝑦 exp

{
−𝑦𝑦

𝜕𝜕
− (𝑘𝑘𝑘𝑘 + 1) log

(
𝑦𝑦

𝜕𝜕

)
− log Γ(−𝑘𝑘𝑘𝑘)

}
{𝜕𝜕(1 − 𝑘𝑘𝑘𝑘) − 𝑦𝑦}

𝜕𝜕4
, 

𝜕𝜕𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕
= 𝜕𝜕𝑃𝑃 (𝑘𝑘)

(
𝑘𝑘

𝜕𝜕
− 1

)
,

𝜕𝜕2𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕2
=

𝜕𝜕𝜕𝜕𝑃𝑃

𝜕𝜕𝜕𝜕

(
𝑘𝑘

𝜕𝜕
− 1

)
−

𝑘𝑘

𝜕𝜕2
𝜕𝜕𝑃𝑃 (𝑘𝑘), 

where Γ is the gamma function and Γ (1) (−kα)/Γ(−kα) is the digamma function. Derivatives w.r.t. α require computing the deriv-
ative of the lower incomplete gamma function w.r.t. its first argument. To our best knowledge, no numerical routine is currently 
available to approximate this quantity efficiently and stably, hence we use finite differences to approximate (mixed) derivatives 
of 𝐴𝐴 𝐹𝐹𝐺𝐺 w.r.t. α. The gradient of 𝐴𝐴 𝐹𝐹  w.r.t. θ is obtained by 𝐴𝐴 ∇𝜽𝜽𝐹𝐹 = 𝐉𝐉∇𝜓𝜓𝐹𝐹  , where

𝑱𝑱 =

⎡⎢⎢⎢⎢⎣

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣

2−𝜕𝜕

𝜕𝜕
𝜕𝜕 0

𝜕𝜕−1

𝜕𝜕
𝜕𝜕

−
𝜕𝜕

𝜕𝜕
0

𝜕𝜕

𝜕𝜕

𝜕𝜕2−𝜕𝜕{1+(𝜕𝜕−2)log𝜕𝜕}

(𝜕𝜕−2)2𝜕𝜕

1

(𝜕𝜕−1)2
𝜕𝜕

(
log𝜕𝜕 +

1

𝜕𝜕−1

)

⎤⎥⎥⎥⎥⎦
 

is the Jacobian of the transformation. The Hessian is then obtained by

∇′
𝜽𝜽
∇𝜽𝜽𝐹𝐹 = 𝐉𝐉∇′

𝝍𝝍∇𝝍𝝍𝐹𝐹𝐉𝐉
𝑇𝑇 +

[
𝜕𝜕𝑱𝑱

𝜕𝜕𝜕𝜕
∇𝝍𝝍𝐹𝐹 𝐹

𝜕𝜕𝑱𝑱

𝜕𝜕𝜕𝜕
∇𝝍𝝍𝐹𝐹 𝐹

𝜕𝜕𝑱𝑱

𝜕𝜕𝜕𝜕
∇𝝍𝝍𝐹𝐹

]
𝐹 

where

𝜕𝜕𝑱𝑱

𝜕𝜕𝜕𝜕
=

⎡⎢⎢⎢⎢⎣

𝐉𝐉11

(
1−𝜈𝜈

𝜕𝜕

)
0 𝐉𝐉13

(
𝜈𝜈−2

𝜕𝜕

)

−
𝐉𝐉11

𝜎𝜎
0

𝐉𝐉13

𝜎𝜎

2−𝜈𝜈

𝜕𝜕
𝐉𝐉31 +

1

𝜕𝜕

𝜕𝜕2−𝜈𝜈

(𝜈𝜈−2)𝜎𝜎
0

𝛾𝛾

𝜕𝜕
+ 𝐉𝐉13

(
log𝜕𝜕 +

1

𝜈𝜈−1

)

⎤⎥⎥⎥⎥⎦
,

𝜕𝜕𝑱𝑱

𝜕𝜕𝜎𝜎
=

⎡⎢⎢⎢⎢⎣

2−𝜈𝜈

𝜕𝜕
𝐉𝐉21 0

𝜈𝜈−1

𝜕𝜕
𝐉𝐉23

−2
𝐉𝐉21

𝜎𝜎
0 0

−
𝐉𝐉31

𝜎𝜎
0 𝐉𝐉23

(
log𝜕𝜕 +

1

𝜈𝜈−1

)

⎤
⎥⎥⎥⎥⎦
, 

𝜕𝜕𝑱𝑱

𝜕𝜕𝜕𝜕
=

⎡⎢⎢⎢⎢⎣

2−𝜕𝜕

𝜇𝜇
𝐉𝐉31 −

𝜔𝜔

𝜇𝜇
0

𝜕𝜕−1

𝜇𝜇
𝐉𝐉33 +

𝛾𝛾

𝜇𝜇

−
𝐉𝐉31

𝜎𝜎
0

𝐉𝐉33

𝜎𝜎

−𝐉𝐉31

(
log𝜇𝜇 +

2

𝜕𝜕−2

)
+

𝜇𝜇2−𝜕𝜕 log𝜇𝜇

(𝜕𝜕−2)2𝜎𝜎
−

2

(𝜕𝜕−1)3
−𝛾𝛾

1

(𝜕𝜕−1)2
+ 𝐉𝐉33

(
log𝜇𝜇 +

1

𝜕𝜕−1

)

⎤⎥⎥⎥⎥⎦
, 

with Jij indicating the element in row i and column j of the Jacobian.

APPENDIX B: SOME FITTING DETAILS
Let us assume that a random sample 𝐴𝐴 {(𝑦𝑦1𝑖𝑖, 𝑦𝑦2𝑖𝑖, 𝐳𝐳𝑖𝑖)}

𝑛𝑛
𝑖𝑖=1

 is available, then the log-likelihood function, ℓ(δ), can be obtained by 
taking the logarithm of f12 (y1, y2) defined in Equation (2) and creating the indicator variables corresponding to the four possible 
combinations of the responses. The parameters are defined as 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑔𝑔−1𝐴𝐴

(
𝜂𝜂𝐴𝐴𝑖𝑖

)
 , 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑔𝑔−1𝐴𝐴

(
𝜂𝜂𝐴𝐴𝑖𝑖

)
 , 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑔𝑔−1𝐴𝐴

(
𝜂𝜂𝐴𝐴𝑖𝑖

)
 , 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑔𝑔−1𝐴𝐴

(
𝜂𝜂𝐴𝐴𝑖𝑖

)
 and 

𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑔𝑔−1
𝐴𝐴

(
𝜂𝜂𝐴𝐴𝑖𝑖

)
 , and δ contains the coefficient vectors associated with 𝐴𝐴 𝐴𝐴𝜋𝜋𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝜇𝜇𝑖𝑖 , 𝐴𝐴 𝐴𝐴𝜎𝜎𝑖𝑖 , 𝐴𝐴𝜈𝜈𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝜃𝜃𝑖𝑖 , that is 𝐴𝐴 𝜹𝜹 =

(
𝜷𝜷
′
𝜋𝜋, 𝜷𝜷

′
𝜇𝜇, 𝜷𝜷

′
𝜎𝜎, 𝜷𝜷

′
𝜈𝜈, 𝜷𝜷

′
𝜃𝜃

)′ .
Because of the modeling flexibility offered by the additive predictors in the model, parameter estimation is achieved by 

maximizing the penalized log-likelihood

𝓁𝓁𝑝𝑝(𝜹𝜹) = 𝓁𝓁(𝜹𝜹) −
1

2
𝜹𝜹
′
𝐒𝐒𝝀𝝀𝜹𝜹, (7)
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where Sλ = diag (λπDπ, λμDμ, λσDσ, λνDν, λθDθ), each smoothing parameter vector in Sλ contains all the smoothing parameters 
related to the corresponding D component, and 𝐴𝐴 𝝀𝝀 =

(
𝝀𝝀
′
𝜋𝜋,𝝀𝝀

′
𝜇𝜇,𝝀𝝀

′
𝜎𝜎,𝝀𝝀

′
𝜈𝜈,𝝀𝝀

′
𝜃𝜃

)′ . Estimation of δ and λ is based on an extension of the 
efficient and stable trust region algorithm with integrated automatic multiple smoothing parameter selection discussed in Marra 
et al. (2020), which uses analytical derivative information of ℓp(δ). We would like to mention that, while the implementation of 
the proposed model exploited the infrastructure of GJRM as well as several of its internal functions, extending GJRM to accom-
modate a Tweedie marginal required a great deal of programming work.

Inferential results are derived using known theory for general penalized likelihood-based models. Specifically, at 
convergence, reliable intervals for any linear function of δ are obtained using the Bayesian large sample approximation 

𝐴𝐴 𝜹𝜹
𝑎𝑎
∼ 𝑁𝑁

(
�̂�𝜹,
(
𝑯𝑯
(
�̂�𝜹
)
+ 𝐒𝐒𝝀𝝀

)−1) , where 𝐴𝐴 𝑯𝑯
(
�̂�𝜹
)
 is the observed information matrix (Hessian of the negative log likelihood) at 𝐴𝐴 �̂�𝜹 . 

Intervals for non-linear functions of δ can be conveniently obtained via posterior simulation (e.g., Marra et al., 2020), whereas 
p-values for all the terms in the model can be obtained by using the results in Wood (2017) which are based on 𝐴𝐴 𝑯𝑯𝑝𝑝

(
�̂�𝜹
)−1 . Under 

some classical model assumptions, it can be proved that 𝐴𝐴 �̂�𝜹 − 𝜹𝜹
0 = 𝑂𝑂𝑃𝑃

(
𝑛𝑛−1∕2

)
 as n → ∞, where δ° denotes the “true” parameter 

vector. For more information, the reader can consult the on-line supplementary material of Marra et al. (2020) which provides 
general asymptotic arguments that can also be applied to the current context.

Fitting the model in R
The proposed copula model can be employed via the gjrm() function in the R package GJRM (Marra & Radice, 2022). An 
example of the syntax is

fl <- list(y1 ∼ y2 + s(z1) + z3,
      y2 ∼ z1 + s(z2) + z3,
      ∼ z1 + z3,
      ∼ s(z1) + s(z2) + z3
      ∼ z1 + z3)
mo <- gjrm(fl, margins = c("probit", "TW"), data = md, BivD = "C0", Model = "B")

where fl is a list containing five equations: the first equation is for parameter π of the Bernoulli distribution of the binary 
outcome y1 with probit link function (logit and cloglog are also allowed for); the second, third and fourth equations 
are for parameters μ, σ and ν of the Tweedie distribution used to model y2; the fifth equation is for the copula dependence 
parameter θ. z1 and z2 are continuous covariates and z3 is a binary covariate. Argument BivD specifies the copula function 
(Clayton in this case), Model = ”B” implies that a bivariate model is employed and md is a data frame. Symbol s() refers 
to the smooth function mentioned in Section 2. Default is bs = ”tp” (penalized low rank thin plate spline) with k = 10 
(number of basis functions) and m = 2 (order of derivatives). However, argument bs can also be set to, for example, cr 
(penalized cubic regression spline), ps (P-spline) and mrf (Markov random field), to name but a few. Note that, for example, 
for uni-dimensional smooth functions of continuous covariates, the specific choice of spline definition will not have an impact 
on the estimated curves. Furthermore, the default value of k = 10 (which can be increased if desired) is arbitrary although it 
generally offers enough modeling flexibility in applications. Functions such as AIC(), summary() and predict() can be 
employed in the usual manner. Function post.check() will produce, for the Tweedie margin, a histogram and normal Q-Q 
plot of modified normalized quantile residuals constructed as follows. For a continuous distribution, F2 (y2i|μi, σi, νi) is uniform. 
Under correct specification, therefore, the sample values 𝐴𝐴 𝐴𝐴2(𝑦𝑦2𝑖𝑖|�̂�𝜇𝑖𝑖, �̂�𝜎𝑖𝑖, �̂�𝜈𝑖𝑖), 𝑖𝑖 = 1, . . . , 𝑛𝑛 , should be approximately uniform, and 
the transformed values 𝐴𝐴 Φ−1(𝐹𝐹2(𝑦𝑦2𝑖𝑖|�̂�𝜇𝑖𝑖, �̂�𝜎𝑖𝑖, �̂�𝜈𝑖𝑖)) , where Φ −1 (⋅) is the quantile function of a standard normal distribution, approx-
imately standard normal. To account for the probability mass at zero, we employ an adjustment based on the idea of sampling 
uniform variates with bounds given by 0 and the upper probability of those observations (Dunn & Smyth, 1996). Residual anal-
ysis for the binary margin is not informative (e.g., Collett, 2002). Here, a sensitivity analysis based on different link functions 
can be carried out; experience suggests that the model fit will not be significantly affected by this choice.
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