

City, University of London Institutional Repository

Citation: Ghanem, M.C. (2022). Towards an efficient automation of network penetration

testing using model-based reinforcement learning. (Unpublished Doctoral thesis, City,
University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29885/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Towards an efficient automation of network
penetration testing using model-based

reinforcement learning
Intelligent Automated Penetration Testing Framework

Mohamed Chahine Ghanem

Supervisor: Professor Thomas Chen

School of Science & Technology
 City, University of London

This Thesis is Submitted for the Degree of
Doctor of Philosophy (Ph.D)

August 2022

Dedication
I dedicate my thesis work to my loyal family and cooperative friends. A special feeling of gratitude to
S-Y without her things would be much different, my Children (Lindsey, Elian and Ayden) without them
this research would be finished three years ago, to my father and my mother who still support my back
and flourish my heart with her continuous precious prayers to achieve my dreams. Special thanks to my
cheerful trustworthy brothers and sisters who have continuously encouraged me and lifted my spirit with
their deep heartfelt laughter who have never left my side. I also dedicate this work to my companions at
City, University of London who have been advising me during my tough days and sharing me their
beneficial experiences throughout the journey. I will always appreciate all what they have done, words
of encouragements and special thanks to my friends at City, Kroll, and MD. My colleagues at London
Metropolitan University especially Prof. Karim Ouazzane and Dr Preeti Patel who stayed by my side,
glaring at me with a pushing look and unforgettable inspiring words.

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents of this
dissertation are original and have not been submitted in whole or in part for consideration for any other
degree or qualification in this, or any other university. This thesis is my own work and contains nothing
which is the outcome of work done in collaboration with others, except as specified in the text and
acknowledgements.

Mohamed Chahine GHANEM
 31 August 2022

Acknowledgements
I would like to express my deep sincere gratitude to my advisor whom I can proudly name as my teacher,
Prof. Thomas Chen for his support, patience, trust, and encouragement in addition to his immense
knowledge that has always been advantageous to complete this piece of work. His tremendous inspiration
and valuable advice led me to a deeper understanding of the topic and lightened my journey to grow as a
researcher at the field of offensive cyber security, artificial intelligence, and machine learning.

 Abstract
Penetration Testing (PT) is an offensive method for assessing and evaluating the security of digital asset
by planning, generating, and executing all or some of the possible attacks that aim to exploit its
vulnerabilities. In large networks, penetration testing become repetitive, complex and resources
consuming despite the use of autonomous tools. To maintain the consistency and efficiency of PT in
medium and large network context. it is imperative to go through making it intelligent and optimized
which will allow regular and systematic testing without having to provide a prohibitive amount of human
labor in one hand and reducing the precious consumed time and tested system downtime in another hand.
Reinforcement Learning (RL) led testing will unburden human experts from the heavy repetitive tasks
and unveil special and complex situations such as unusual vulnerabilities or combined non-obvious
combinations which are often ignored in manual testing. In this research, we are concerned with the
specific context of improving current automated testing systems and making them intelligent, targeted,
and efficient by embedding reinforcement learning techniques where it is relevant. The proposed
Intelligent Automated Penetration Testing Framework (IAPTF) utilizes RL because of its relevance to
sequential decision-making problems, it relies on a model based RL where planning and learning are
combined and decomposed tasks to represent it as POMDP domain accounting for major PT features,
tasks and information flowchart to realistically reflect the real-world context. The problem is then solved
on an external POMDP-solver using different algorithms to identify most efficient options. As we
encountered a huge scaling-up challenges in solving large POMDP which reflect the regular
representation of PT on large networks, we propose thus a Hierarchical representation on which we
divided large networks into security clusters and enabling IAPTF to deal with each cluster separately as
small networks (intra-clusters), later we proceed to the testing of the network of clusters heads to ensure
covering all possible complex and multistep attacking vectors largely adopted by nowadays hackers. The
obtained results are unanimous and defeat both previous results and any human performances in term of
consumed time, number tested vectors and accuracy especially in large networks. The learning is the
second strength of our new model, as the generalization of the extracted knowledge become easier and
allowing therefore the re-usability notably in the case of retesting the same network with few changes
which is often the real-world context in PT. The performance enhancement and the knowledge extracted,
and reuse confirm the efficiency, accuracy, and suitability of our proposed framework. Finally, IAPTF is
designed to offload and ultimately replace human expert and to be independent, comprehensive, and
versatile so it can integrate any automated PT platform or toolkit. Initially, the framework connects
directly with Metasploit and Nessus APIs as both free versions coding architecture allows to perform
such utilization.

Keywords: penetration testing; artificial intelligence; machine learning; reinforcement learning;
hierarchical reinforcement learning; network security auditing; offensive cyber-security; vulnerability
assessment.

Table of Content

 Chapter 1: Introduction ...5

1.1 Research Motivation ...7

1.2 Problem Statement ..9

1.3 Scope of the Research: ..10

1.4 Contributions and Novelty...11

1.5 Thesis Outline ..13

Chapter 2: Methodology ...16

2.1 Research questions: ...16

2.2 Research Methodology: ...17

2.3 Employed Research Method ..19

2.4 Research Data Input...20

2.5 IAPTF modular choice ..20

2.6 Optimization evaluation and criteria ...21

2.7 Intelligent Penetration Testing and Learning Choices ...21

2.8 Expertise extraction, generalization, and replay ..24

2.9 Representing penetration testing RL problem as POMDP ..25

2.10 Addressing the scalability problem in medium and large LANs ...25

2.11 Virtual test-bed networks, design, and testing ...26

Chapter 3: Literature Review ..28

3.1 Preface ...28

3.2 Literature Review Methodology ..29
3.2.1 Planning: ...29
3.2.2 Executing: ...29
3.2.3 Reporting: ..29

3.3 The need for offensive cyber-security ...30

3.4 Anatomy of a Cyber Attack ...31

3.5 PT Background ..32
3.5.1 Phase 1: Information Gathering, Planning, and Preparation ...33
3.5.2 Phase 2: Network Discovery ...33
3.5.3 Phase 3: Attacking, Exploiting, and Pivoting..34
3.5.4 Phase 4: Reporting, Analysis, and Mitigation ...35

3.6 Penetration Testing Types and Levels ...35
3.6.1 White Box ...35
3.6.2 Black Box ..35
3.6.3 Grey Box ...36

3.7 Testing Intensity and coverage ..36
3.7.1 Comprehensive penetration test ..36
3.7.2 Targeted penetration test ...37

3.8 PT versus Vulnerability Assessment ...37

3.9 The versatility of PT ..38

3.10 PT automation state of the art ..38

3.11 Review of related research works ..39
3.11.1 Regular and Blind Automation ...40
3.11.2 Graph-based approaches ...40
3.11.3 Classic and Intelligent Planning Approaches ..42
3.11.4 Expert-System and Knowledge-Based Approaches ..46
3.11.5 Statistical and heuristic approaches ...47
3.11.6 Artificial Intelligence and intelligent planning approaches...48
3.11.7 Machine Learning approaches ..50

Chapter 4: Reinforcement Learning ...54

4.1 Reinforcement Learning ..55

4.2 Markov Decision Process ..56
4.2.1 Partially Observable Markov Decision Process ..58
4.2.2 Process histories ..59
4.2.3 Performance measures ...60
4.2.4 Policy Graph representations ..60
4.2.5 Finite versus Infinite horizon ..62
4.2.6 Stochastic policies ...63
4.2.7 Policy trees ..63

4.3 From POMDP to α-vectors and belief state MDPs ..65
4.3.1 Implicit POMDP policies ..67
4.3.2 Belief state MDPs..67

4.4 Policy Graph for Finite-state POMDP ...69
4.4.1 Finite State Controller model ..70

4.5 Policy graph value ...71

4.6 Value iteration ...71

4.7 Policy Search ...72

4.8 Policy improvement ...73

4.9 Gradient-based optimization ...74

4.10 Policy graph values: ...75

4.11 Initial beliefs ..76

4.12 Reinforcement Learning Approaches: ...76

4.13 Model-based vs Model-free modelling approach ..77
4.13.1 Model-free POMDP ..78
4.13.2 Model based POMDP..79
4.13.3 POMDP solving approach: value function vs policy search ...80
4.13.4 Policy-search approach ...81
4.13.5 Value-function approach: ..81
4.13.6 Reward function approach ..82

4.14 Solving POMDP algorithms: ...82
4.14.1 Approximate solving: ..82
4 .14 .2 Exact solving ..83
4.14.3 Challenges with POMDP ..87

Chapter 5: Proposed Model of Network Penetration Testing as RL problem ..89

5.1 Explanatory network example ...89

5.2 From PT data to POMDP environments ..90
5.2.1 Initial Belief ..92
5.2.2 State space ...92
5.2.3 Action space ..95
5.2.4 Observation space ...97
5.2.5 Transitions and Observations Probabilities ...98
5.2.6 IAPTF Rewarding Scheme: ..104

5.3 Reward calculation ..105
5.3.1 Using CVSS probabilities to calculate the Rewards: ..105
5.3.2 Exploitation reward calculation: ...106
5.3.3 Reward allocation ..110

5.4 Hierarchical POMDP for medium and large networks ..113
5.4.1 Option 1: task-based approach ..113
5.4.2 Option 2: Security Cluster approach ...116
5.4.3 IPATF adequate Hierarchical RL approach ..119

Chapter 6: Intelligent Automated Penetration Testing Framework ..121

6.1 IAPTF anatomy and functional diagram ...121

6.2 IAPTF-Preparation module ...123
6.2.1 The networking data ..124
6.2.2 Sub-networks and Topology ...124
6.2.3 Connectivity and Reachability ..126
6.2.4 Network Vulnerability Assessment ...127
6.2.5 Security and logging data ..129

6.3 IAPTF-Processing module ..130
6.3.1 Machines configurations and defense ...132

6.4 Medium and Large networks Security Clustering ...132

6.5 Heads of cluster Network ..141

6.6 IAPTF memory and expertise handling ...143

6.7 CLIPS Expert System ..145
6.7.1 IAPTF-Core: ...147

 6.8 IAPTF operative modes ..149
6.8.1 Stand Alone (Level 3): ..149
6.8.2 Under supervision (Level 2): ...150
6.8.3 Background assistant (Level 1): ..150
6.8.4 Early-stage (Level 0): ..151

Chapter 7: Testing, Results and Discussion ..152

7.1 Setup of Experiments...152

7.2 Testbed Networks construction ...152

7.3 Evaluating PT generated POMDP problems solving using SolvePOMDP ...155

7.4 IAPTF optimal Discount Factor value ..156

7.5 IAPTF Testing variable and evaluation metrics ..160

7.6 Exploration- PT coverage ..165

7.7 Exploitation-Testing Validation ..169

7.8 PT generated traffic ...170

7.9 IAPTF- Expertise extraction and Retesting ...171

7.10 Discussion and reflections ...176
7.10.1 Reinforcement Learning and modelling choices ...176

7.10.2 IAPTF performance...177
7.10.3 Expertise extraction and retesting ...179
7.10.4 Exploration and Exploitation ..180

Chapter 8: Conclusion ..184

8.1 Research Output Discussion ..184

8.2 Review of Contributions ...186

8.3 Identify and Address Limitations ...187

8.4 Directions for Future Work ...187

8.5 Closing Remarks ...188

References...189

Appendix A ..195

Appendix B: List of publications ...196

Journal Papers ...196

Conference Papers ...196

List of Tables
Table 1: a comparative study of RL modelling, learning, and solving approaches [88]............................. 77
Table 2: PERSEUS Randomized Point-based Value Iteration approximate solving Algorithm [123]. 83
Table 3Basic Incremental Vector pruning algorithm [135]. ... 84
Table 4: implementation of incremental pruning combined with decomposed LP [137]. 85
Table 5: Find Belief Std – computes the belief in which w improves U the most [138]. 87
Table 6: OS detection output with transition and observation probabilities calculation example in
Windows. .. 101
Table 7: OS detection output with transition and observation probabilities calculation example in Mac OS
machine. .. 101
Table 8: Example network topology for the network represented using an adjacency matrix. 127
Table 9: IAPTF-Prep modules, programs and scripts roles and description. .. 142
Table 10: SolvePOMDP Experiments parameters and their values. ... 161
Table 11: Time and standard deviation in seconds consumed to solve POMDP problem for different size
LANs ... 195
Table 12: Time in seconds consumed to solve POMDP problem for Re-testing cases after introducing a
variable percentage of change and using last testing output as initial belief. ... 195

List of Figures
Figure 1: Cumulative and yearly number of vulnerabilities discovered from 1988 till 2020 6
Figure 2: Machine Learning families and their main application domains ... 22
Figure 3: AI techniques candidates for an optimised PT practice [4] ... 23
Figure 4: choices made in this research for an RL-led Penetration testing 24
Figure 5: typical corporate medium size LAN equivalent testbed. ... 27
Figure 6: Average weekly attacks per organisation by industry in 2020 ... 30
Figure 7: average exploit price in the dark and legitimate market ... 31
Figure 8: The Offensive and Active security standard workflow .. 32
Figure 9: Penetration testing standard phases .. 33
Figure 10: Difference between the three PT approaches; black-box, white-box and grey-box in term of
input and ethical hacker starting position 36
Figure 11: versatility in PT practice and richness of testing tasks, approaches and methods 38
Figure 12: An example of an automated generated penetration (attack) graph ... 41
Figure 13: Different planning approach previously investigated for PT context 43
Figure 14: related work which propose intelligent DIRP system working diagram 49
Figure 15: automated planning for remote penetration testing framework proposed by LGS Innovations-
Bell Labs. .. 50
Figure 16: summary of previous research work on PT automation in form of tree of approaches 52
Figure 17: RL paradigm, the agent learns the optimal policy which represents a map of actions that lead to
the greatest cumulative reward [64]. ... 55
Figure 18: MDP relationships between states, actions At, rewards Rt received at stage R(St, At) and
progressing to state St+1. .. 57
Figure 19: POMDP relationships between states, actions, rewards, and observations. 58
Figure 20: A policy tree for horizon t. For each observation, there is a branch to nodes at a lower level.
Each node can be labeled with any action from the set A . .. 64
Figure 21: example of two-state POMDP representing the whole belief space B for value function. 66
Figure 22: illustration of policy tree branches rearrangement to produce stationary policy 70
Figure 23: POMDP policy graph joint influence diagram. ... 70
Figure 24: different RL learning and modelling approaches with solving methods 78
Figure 25: model-based versus model-free RL 79
Figure 26: RL different approaches inputs and outputs . .. 81
Figure 27: Generalized policy iteration scheme with interaction between value and policy functions 86
Figure 28: Medium size corporate LAN composed of 50 machines... 90
Figure 29: IAPTF reinforcement learning and memory management diagram. ... 91
Figure 30: Initial Belief state when nothing is known for the RL agent, and the starting point is Internet
with a value of 1.0 ... 92
Figure 31: POMDP State space representation of two machines; computer M7 and router R3. 94
Figure 32: POMDP State space representation including security clustering and Head-of-Cluster
information. ... 95
Figure 33: POMDP Actions space made from 11 specific actions and 2 generic actions 96
Figure 34: POMDP extended Actions space made from 17 specific actions and 2 generic actions 96
Figure 35: POMDP extended Actions space made from 17 specific actions and 2 generic actions 98
Figure 36: Nmap NSE OS detection and fingerprinting sample output .. 99
Figure 37: NESSUS vulnerability assessment output and OS detection validation 100
Figure 38: Windows Machine OS detection Transitions and Observations probabilities POMDP
representation .. 101
Figure 39: MacOS Machine OS detection Transitions and Observations probabilities POMDP
representation .. 102
Figure 40: A portion of POMDP Transitions probabilities representation 103

Figure 41: A portion of POMDP Observations probabilities representation. ... 104
Figure 42: qualitative metric entry to calculate Base, Temporal and Environmental scores. 108
Figure 43: Impact, Exploitability and Overall CVSSv3 score for CVE-2011-0660. 109
Figure 44: Impact, Exploitability and Overall CVSSv3 score for CVE-2016-9209. 109
Figure 45: POMDP reward representation in POMDP for Exploitation actions. 110
Figure 46: POMDP reward representation in POMDP for Privilege Escalation actions. 110
Figure 47: POMDP reward representation in POMDP for Pivoting actions. ... 110
Figure 48: POMDP reward allocation for vulnerability assessment and discovery action. 112
Figure 49: POMDP reward allocation for termination actions. .. 112
Figure 50: Standard PT practice cyclic activities diagram . .. 114
Figure 51: Task based hierarchical modelling of network PT practice... 116
Figure 52: large corporate LAN architecture with security isolation illustration 117
Figure 53: Security cluster based hierarchical modelling of network PT practice. 118
Figure 54: IAPTF anatomy and key modules and components. ... 122
Figure 55: IAPTF overall functioning diagram and inter-modules interaction. 123
Figure 56: Sub-networking division of test bed output example. ... 125
Figure 57: Example firewall and Intrusion detection systems location and impact on the connection
between subnets SN0, SN1, SN2, SN3 and SN4 and defines which services are permitted in each
direction. ... 130
Figure 58: An illustrative example of small LAN made of two sub-networks (SN0 and SN1) and
parallelly five clusters (C0,C1,C2, C3 and C4). ... 135
Figure 59: An example network made of nine security cluster (initially five sub-networks) C0, C1…C8.
 .. 138
Figure 60: illustrative example of clusters’ size reduction by excluding low-risk, and redundant machines
following by the selection of heads of clusters (HoCs). ... 140
Figure 61: Overall security clustering output including cluster composition definition, election of head of
cluster. ... 141
Figure 62: IAPTF-Core with Expert System extraction, validation, and replay diagram. 144
Figure 63: IAPTF-Preparation and IAPTF-Processing detailed functioning diagram. 145
Figure 64: IAPTF-memory and Expert System expertise extraction, validation, and replay diagram. 147
Figure 65: Metasploit Community and Professional framework architecture ... 148
Figure 66: IAPTF-Core components, functional diagram, and interaction mechanisms. 149
Figure 67: Small corporate LAN of 20 machines replication on VirtualBox ... 154
Figure 68: virtual LANs replicate exportation following open virtualization format. 155
Figure 69: Solving different LANs POMDPs using PERSEUS-LPSolve with Initial Belief and variable
discount rates. ... 157
Figure 70: Solving different LANs size associated POMDPs using GIP-LPSolve and variable discount
rates ... 158
Figure 71: Solving different LANs size associated POMDPs using GIP-LPSolve with Initial Belief and
variable discount rates ... 159
Figure 72: Solving variant size LANs associated POMDP time consumed and standard deviation when
using different algorithms. .. 163
Figure 73: Time-efficiency comparison of IAPTF (HRL), CEH and fully automated MSF. 165
Figure 74: Number of attack vectors reconstituted from PGs covered by each if the solving algorithms in
different size LANs. .. 166
Figure 75: Comparison of total number of valid attack vectors for the four algorithms CEH. 168
Figure 76: 3-D comparison of IAPTF, CEH and MSF performances in term of time and valid attack
vectors covered. .. 169
Figure 77: 3-D comparison of IAPTF, CEH and MSF performances in term of time and exploitation ratio.
 .. 170
Figure 78: 3-D comparison of IAPTF, CEH and MSF performances in term of generated network traffic.

 .. 171
Figure 79: Re-testing the same network with introducing a percentage of change using RL-GIP-LPSolve.
 .. 173
Figure 80: Re-testing the same network with introducing a percentage of change using HRL-GIP-
LPSolve. .. 174
Figure 81: IAPTF re-testing performances’ enhancement by algorithm on small, medium and large size
LANs. .. 175
Figure 82: Partial illustration of IAPTF output attacking vectors on a 20-machines LAN. 181
Figure 83 : Partial illustration of IAPTF output attack vectors on a 100-machines LAN. 182

Chapter 1: Introduction
In the cyber era we are living in, our lives are becoming more and more accustomed to the presence
of IT equipment, devices, and systems. This emerging technology is associated with objects that,
through the connection to the internet and data transmission, make everyone's life more
comfortable. Nonetheless, this comfort comes at a cost, as IT networks are increasingly larger,
complex, and inter-connected to ensure a wide range of tasks for the benefit of users and
organizations [1]. In parallel to this evolution in networking, cyber threats are becoming more
frequent, complex, and sophisticated creating more opportunities for cyber criminals to launch
malicious attacks in the hopes of gaining access to sensitive data for their own gain [2-3]. The
flexibility comes at a huge cost as cyber-security practitioners, experts and researchers noticed
that cyber threats are becoming more frequent, complex, and sophisticated following the general
rule of attack surface evolution. In engineering fields, the complexity is the worst enemy of
security, and networks are not an exception to these unanimous rules. Protecting complex
networks and critical assets from cyber threats pushed the network security professional into the
trap of bolting on more and more security layers and policies [4]. The result was overly complex
adding the multi-levels of security which is often vulnerable when faced with a high-caliber
attacker because of what it contained in term of vulnerabilities due to human errors,
misconfigurations, systems weaknesses. Thus, ensuring that the applied security measures are
effective is the cyber-security communities’ major concern, several approaches have been
proposed and adopted over time. Nevertheless, using the offensive approach demonstrated that is,
the best and most reliable method and the most favorably adopted by the security experts [5].

Penetration Testing, also shortly known as Pentesting or PT, is an active method for assessing and
evaluating a digital assets security (network, web, server providing some service.) by trying to
identify vulnerabilities and attempting to exploit them [2]. PT constitutes a central, often
mandatory component of the cyber-security audit and embeds all standard auditing and testing
tasks starting from information gathering and analysis, planning, generating, and executing the
appropriate attacks targeting the identified vulnerabilities. Such assessments are usually seen as
the best method to identify exactly how effective the existing security controls are against a skilled
adversary and validating the efficacy of defensive mechanisms, as well as end-user adherence to
security policies. PT practice is a methodological approach involves an active extraction, analysis,
and exploitation of the assessed assets and its potential vulnerabilities [1]. PT relies on a set of
classic tools that automate repetitive and complex tasks. The PT test are often initiated and carried
out from the position of a potential attacker and involves active exploitation of security
vulnerabilities, real-time exploring and decision making as the practice evolves is the key. The
human PT expert’s knowledge, decision-making, and reasoning are a cornerstone of the PT

practice. PT tools, systems and frameworks were developed with the aim of making the practice
efficient and allow regular and systematic testing without a prohibitive amount of human labor
along with reducing the precious consumed time and networks downtime. Additionally, they are
designed to offload human experts from the heavy tasks and helping him/her to focus upon more
special and complex situations such as unusual vulnerabilities or combined non-obvious
combinations (application flaws, improper configurations, risky end-user behaviors) which
require particular attention in order to produce the best results.
One of the main branches of PT is network testing, and in the context of medium to large size
networks, performing penetration testing is often lengthy, very complex and resource intensive
despite the extensive use of highly developed autonomous and usually expensive systems and
frameworks. Additionally, the wide variety of assets and vectors such as servers, endpoints, web
applications, wireless networks, network devices, mobile devices and other potential points of
exposure are also playing against the pen-tester breaking through the network firewall and evolved
beyond by pivoting across networks machines, systems and applications and attempting to find a
new path of attack or revealing how chains of exploitable vulnerabilities to progress further within
the target network critical systems and data.

Figure 1: Cumulative and yearly number of vulnerabilities discovered from 1988 till 2020 [7].

The PT practice has significantly evolved in the last decade especially with the appearance of
automated versatile tools and systems such as Metasploit, Core Impact, Nessus and other toolkits
which come under Kali and Parrot OS distributions which paved the way for more automated PT
when aggregated with the existing portfolio of scripts and codes commanded and orchestrated by

human PT experts. To achieve more efficiency, there was several research works that focused on
using AI and specifically ML techniques within PT but mainly investigated at least one activity
planning and revealed more efficient and effective than automated testing notably in delivering
flawless results and saving time and resources. Core Impact, a tool relying on a research project
was the first to propose an AI-led automation of one activity of PT, namely vulnerability
assessment, aiming to achieve a better efficiency.
In this chapter, we will cover the reasons and motivations for pursuing this research on embedding
adequate machine learning techniques within current PT automated tools and systems. In addition,
the problem statement and the scope of this work will be detailed along with the proposed
methodology for conducting the research project. It will tie the research questions with aims and
contribution expected by the end of this research. Finally, this chapter will clarify how this thesis
is structured and what each chapter tries to accomplish.

1.1 Research Motivation
In this section, we discuss the motivations behind our conquest of an intelligent automation in
network penetration testing practice. This research is rooted in a real-world problem that experts
and technicians working in offensive cyber security field are continuously facing. In fact, the need
for PT is increasing making it a central and mandatory component of the cyber-security audit and
compliance with different standards and regulations worldwide. This research seeks to propose
scientific solution to a real-world problem by investigating the practice automation, elect the most
adequate AI approach and propose a versatile framework which produce an intelligent and
optimized penetration tests on network context while remain intelligent, autonomous and self-
learner.
The PT practice has significantly evolved to keep the pace with cyber advisories, and this led to
the appearance of dozens of commercial and professional systems and frameworks which all aim
to offer an automation of the different PT activities and tasks. Nonetheless, the existing automation
remains either local (specific to one activity such as the vulnerability assessment or scanning) or
not optimized (covering all cases) leaving significant issues to professionals using such systems.
It has long been believed that PT is about testing the different defenses mechanisms of digital
assets through ensure effectiveness in countering cyber threats and attacks and ensuring that any
weaknesses or vulnerabilities in are identified and fixed before they are exposed and exploited by
a real hacker. However, in practice, PT became a check-box exercise in which a set of standard
systems and tools are used to test for a series of known vulnerabilities or routine tests which in
fact does not adhere to the practice core aim which is mimicking hackers in their operation-modes,
techniques, and methods regardless the efficiency on the technology and performance of the used
system.
The current PT automated systems and framework are in fact acting as tools fully controlled by

the expert to perform tasks following the human decisions because of the lack of prioritization and
optimization. The expert use output to analyse, plans and request the execution of the required
tasks and those systems only execute the expert instruction which in practice very similar to the
time when the practice was admittedly manually oriented requiring highly skilled and experienced
individuals capable of understanding that is: think, decide and act in the most complex situations.
Generally, these systems and frameworks fail specifically to perform in an acceptable manner
when the assessed asset size and complexity reach or exceed a certain level. In fact, a higher
number of machines and online services mean larger exposition surface with attacks that can range
in scale from massive state attacks to simple attacks on individuals and SMEs in the hopes of
gaining credentials or financial details. In addition, other issue arises with the use of such
automated systems in combination with issues raised on the manual approach notably:
➢ The high cost in term of human resources associated with expert systematic and periodic

testing along with the impact on the assets’ performances and systems downtime during
the working hours.

➢ The high volume in term of data produced by comprehensive nontargeted testing and
which is often wasted and unexploited properly.

➢ The nature of the PT environment where the high threats’ emergence and fast changing
rate along with assets continuous security protection evolution and update which require
system regular testing.

➢ The evolving attacks complexity with more evasive threats launched in which hackers
adopt complex and indirect attack routes, techniques, technologies, this results in unlikely
paths being used to squeeze through the security layers which is difficult to be imitated by
pentesters.

➢ The huge amount of repeatability as most of the performed activities and tasks are repeated
with hardly any change and this is representing a significant part testers time, often
repeating does not require PT human expert decision making or manual intervention which
results in decreasing the performances.

➢ The common high degree of obfuscation in large infrastructures notably in the corporate
and financial sector where organization tend to use in-house developed security systems
making the coverage of the whole assets challenging.

So far, both manual and regular (also referred to as blind) automation of PT fail fundamentally in
addressing current challenges. In addition, recently the practice became more comprehensive and
includes all standard auditing and testing tasks starting from information gathering and analysis,
identifying vulnerabilities and executing the relevant attacks against the identified security flaws,
it ensures the right application of security mechanisms and solutions, and it is widely trusted and
adopted as industry standard. Therefore, the main motivation behind this research is to introduce
a framework where automated PT practice become more efficient and effective by taking

advantage of different AI techniques at different levels, the sought framework will, at this stage,
cover networks and infrastructures PT and by embedding the adequate AI techniques and
complementary solution will optimize the practice and enhance efficiency and effectiveness of
current industrial tools and systems notably Metasploit and Nessus. In other words, the motivation
is about removing (or reducing to the minimal) the PT human expert from the practice and pushing
towards intelligent solutions relying on AI and notably ML to offload the human expert, making
PT accessible to non-experts, and on the other hand making it more efficient and accurate in terms
of consumed time, testing coverage, resource use and impact on the assessed assets.
Reinforcement learning is the designated best candidate subset of artificial intelligence which
serve our problem requirements which is an entity that can learn and adapt without following
explicit instructions but instead by interacting with its environment [23]. The introduction of RL
in PT, especially with the current size and complexity of network infrastructure, is expected to
bring a quantitative and qualitative contribution to the practice notably as PT is, more than ever,
time and resource constrained practice as well as versatile in sense when it relies on real hackers’
approaches and methodologies, all the aforementioned characteristics of PT are making it more
difficult notably especially when aiming to comprehensively test medium and large networks.
Even though repeating the practice on the same or similar assets should make it easier and faster,
manual and blind automated PT brings no help or improvements in term of accuracy or time-
efficiency.

1.2 Problem Statement
In this research, our overall aim is to enhance performance in term of efficiency and accuracy in
current unoptimized automated networks’ PT practice. In the beginning, most PT activities and
tasks were performed manually with limited number of tests run against a small size computer
network and thus making manual PT quite efficient (time and resources wise) and effective as
experts were unlikely to dismiss or omit important tests. Then, the proliferation of large computer
networks and the increase in complexity associated with the employment higher number of
application and security mechanisms and the automation of processes forced the automation of PT
tools and system in a hope of covering more ground in a shorter amount time [12]. Nonetheless,
the automation revealed as not enough especially with current corporates and organizations
complex networks with hundreds and more of IP addresses and increasing networks complexity,
application and virtualization making it impossible to rely on blind automation requiring a huge
amount of time and computational resources and making it more difficult for PT experts be in
control of such automated tools to assess the security of every component in a reasonable amount
of time. Furthermore, as PT is a repetitive process where organizations are legally and technically
required to perform security testing either periodically (monthly, quarterly and yearly basis) or
after each major systems upgrade occurrence (new installed software, applied system upgrades,

user policy modification, security patching, addition of infrastructure) which remains a key
requirements in the overall security compliances and industry standard in many fields such as PCI-
DSS and RBI-ISMS in financial sector, HIPAA in healthcare institutions and ISO-27001 for other
businesses information security compliance [13].
As this research focus on optimizing of the currently pseudo-automated PT practice, we
anticipated that this optimization will requires a platform that covers the entire practice which
enables embedding of the adequate AI techniques, Metasploit and Nessus PT systems were the
only viable options. Therefore, we are going to develop an automated PT modular framework
which utilize Metasploit and Nessus and which will serve as host for embedding the adequate AI
techniques which is reinforcement learning in order to optimise the automation through the
modelling of PT as RL problem and representing in form of POMDP environments and solved
later to determine the vulnerabilities’ requiring testing as well as the prioritisation in term of
complex attack vectors (also called paths) to be tested and acted on their outcome in an interactive
way. At later stage determined by obtaining initial results, our second research aim is shifted into
tackling the scalability through better approach in dealing with medium and large networks PT
generated POMDP environments which requires huge amount of time and computational power
for solving. This scalability issue became problematic with larger environment as discussed in the
RL chapter and thus we introduced the hierarchical representation of large problem through
dividing POMDP environment which are often the results of large LANs and MANs networks,
we investigated different options of enhancing the efficiency of IAPTF especially in solving
medium and large size POMDP which are the logic result of representing PT in medium and large
size LANs and MANs.
Furthermore, we anticipated the major issue related to embedding AI and notably RL in the PT
process and specifically the sequential decision-making diagram. In practice, applying RL to
solve a real-world complex problem such PT can be particularly tricky as the problem can be
viewed from different angles with each having its own associated domain representation. In PT
this can range from a simple planning (decision) problem allowing and research for the optimal
attack plan which reduce the use of resources or ordering tasks to achieve the sought results, this
point of viewing thing was specifically tackled by previous research which considered the
different phases of the PT practice as entirely independent (not related or proactive) and thus
modelled the PT as MDP and POMDP aiming to determine the best policy (policy search
approach) which optimises the use of resources and time.

1.3 Scope of the Research:
In this section, we briefly discuss the scope and limitations of this research. The need for an
intelligent automation in the PT practice is persistent, general and apply for all PT different
variants notably their application domain, this is reflected by the huge versatility in PT practice

which will be detailed and discussed in chapter 3. Nonetheless, in this research we are only
concerned by one application of PT namely network (infrastructure) PT. This domain of
application is the most common and the most technically challenging where the existing
automation provided by industrial and open-source systems and tools is critically lagging in term
of addressing current security challenges. Therefore, the scope of this research is limited to the
domain of networks’ and infrastructures’ PT with a possible extension in term of application of
our framework in future to cover more PT domains such strategic large grids (Internet and energy),
web applications and IoT (Internet of Things) testing.

1.4 Contributions and Novelty
PT is undoubtedly the most efficient way to prove the falsity of the hypothesis that a specific
network, system or software application is secure by identifying and exploiting existing
vulnerabilities. In offensive cyber-security practice in general, few works engaged with the use
and integration of machine learning capabilities within the existing system or developed such
solution. As PT practice is mostly about knowledge, expertise, decision making (judgments) and
even instinct (or guessing), An intelligent automated PT practice which relies on one or more of
AI techniques in its different phases to improve efficiency and accuracy. This research is about
investigating the use of AI in PT practice to offload and ultimately replace the costly and unreliable
human expert. It is all about identifying where and how the AI and more specifically RL can be
embedded in the current PT practice. The research resulted into developing an Intelligent
Automated Penetration Testing Framework (IAPTF) which will utilize reinforcement learning and
others AI techniques (intelligent planning and optimization) along with expert and cognitive
techniques to perform PT efficiently and accurately in context of large and complex computer
networks. Our proposed framework will be custom developed, built on a novel modeling of the
PT environment and practice representing it in the best possible way which reflects the reality of
the cyber environment and adversary profiles. Using techniques from AI (optimized planning),
RL (partially observable Markov decision process or POMDP) and ES. In a first phase, an initial
model will be developed, implemented, and tested in real world situations. After successfully
validating the proposed model, the proposed solution will be integrated into an existing PT
automated platform, the introduction of the pre-processing and optimization solution will,
therefore, be considered and tested.
The IAPTF is intended to partially (at early stage) and fully (after maturity) substitute the human
expert and act (perform penetration tests) alone automatically with efficiency and accuracy
especially on the deterministic or already seen scenario. Also, the intended system will be able to
understand the situation, think (find the solution) and act in due course with or without the
assistance of the human expert (which will be detailed later in the RL part). It will be
independently responsible for self-improving its performance by constantly updating data related

to the environmental parameters, acting policies and the results (output) of the tests which will
reduce considerably the consumed memory as no duplicated data or bad experiences will be
uselessly stored. As with a human expert, the system will pre-eliminate the testing of previously
confirmed failed tested attack (with the same input) both from the system own experience and the
security data (blocked by firewall or IDS) but this will be very carefully considered as scenario
with no firm confirmation or miss one or more factors contributing to the failure will not be
included as experience but only as a general example configuration for the learning and
experience. The system’s acquired expertise will exclude all attack testing scenarios where a
failure occurred, but other alternative(s) is/are available which a genuine attacker could explore
by following different attack paths or approaches. In such situation, the system will rely on itself
to plan and test the remaining attack plans that pivot before including the experience in its
memory.
Furthermore, while an extensive academic literature exists on offensive cyber and its automation,
the literature is almost entirely focusing on the planning of attacks and penetration tests
independently of the real-life context. This research is among the first to approach the whole PT
practice optimisation by embedding the adequate AI techniques. Therefore, after investigating the
feasibility and the adequate AI approach, we proposed a modelling of PT as a RL problem, an
implementation along within a novel framework named IAPTF and proceeded with testing in real-
world reconstructed virtual networks created to evaluate the output of this research. The proposed
framework is capable of imitating a human expert in performing an efficient automated
penetration testing. In detail, this research contributions include:

1. Identifying research gaps by reviewing literature published on PT automation and
different optimization approaches covered so far.

2. Identifying general principles and metrics for measuring the effectiveness and efficiency
of an automated PT based on a comparison with current human-led practice.

3. Explaining the differences between the vulnerability assessment and PT in the cyber
environment and the uniqueness and versatility of PT practice.

4. Investigating different AI techniques suitability for optimising the current automation of
PT practice.

5. Explaining in a comprehensive manner how network PT is performed and extracting key
elements relevant for the targeted AI embedding within the practice.

6. Providing a RL modelling of network PT practice and proposing a representation of the
problem domain as partially observed Markov Decision process (POMDP) environment.

7. Developing an Intelligent Automated Penetration Testing Framework which covers the full PT
practice and acts as replacement of the human tester in performing network PT.

8. Gathering real-world network security and configuration data and using it to reproduce a

virtual equivalent network to be used for testing and validation in this research.

9. Testing, evaluating, and validating the proposed framework in different testbeds and with
different variables.

10. Demonstrating how effective is an AI-led PT compared with a human expert notably in
terms of reliability and coverage measured by the number of attack vectors tested and
their complexity.

11. Providing an Expert System based approach of handling repeated (regular re-testing) in
PT practice and which best choices for both opponents.

12. Investigating how hierarchical RL representation of large POMDP environment address
the scalability issue in the context of medium and large size networks.

Finally, it is important to highlight that this works seeks to embed RL in the whole PT process
including most of activities and task currently manually or automated. The introduction if IAPTF
is the cornerstone in this research as it enables the integration of AI through the interaction of the
software RL agent (or eventually RL agents) with the assessed networks (environments) which
actually covers the entire PT practice and not be limited to attacks’ planning which does not reflect
the proactivity of the practice which is more than just a controlling or planning exercise. The
ultimate output of this research is a framework in which we implement the RL model of PT, and
which replaces the human and is intelligent to make decisions and learn from itself. Therefore,
viewing the PT as a planning problem is insufficient as the real-world situation of PT practice is
quite different and every phase is closely inter-related, pro-active, and often repetitive.

1.5 Thesis Outline

This PhD thesis is organized in six chapters following this introductory chapter. A brief
explanation about every chapter content is summarized follow. Chapter 2 will summarize the
methodology and provides an outline of the research methodology used to identify the motivations,
answer the research questions and problem, explaining research sampling and analysis methodology.
In addition, the chapter will explain the limitation of the research method. It highlights the approach of
research beginning by review of traditional PT practice (Manuel testing using tools and systems)
methods and approaches. It investigates the differences between networks and other domain of
applications for understanding the relationship aiming for producing a precise comparison presenting
either similarity or differences. Furthermore, intelligent penetration testing automation section will be
formed as result of embedding AI techniques and specifically Reinforcement Learning together with
automated PT practice supported by the proposed framework. This chapter will also anticipate the
scalability and efficiency issue which will be encountered in medium and large networks context and
how we are going to deal with this major challenge. To tie this chapter, final section will explain

expected research output and how test-bed networks are designed to enable framework testing, obtained
results evaluation and performances validation.

Chapter 3 cover the Literature review chapter and provides an overview about main concepts of
penetration testing and other related essential concepts related to offensive cyber security. Then, the
chapter investigates the improvement of PT automations. This chapter will enumerate, and categories
major approaches on the automation and optimization of the PT practice at different stages and activities
along with presenting a critical analysis of each approach. Then, chapter will investigate the challenges
of achieving an efficient PT and notably in context of medium and large size networks and will critically
evaluate the suitability of major optimization approaches in term of suitability and limitations if not
successfully working. Finally, the chapter will summarize, and survey previous research works and
studies conducted in the field of PT and Vulnerability Assessment (VA) automation and optimization
and focus how these literature will be employed as the starting point for our research and specifically,
how the knowledge gap will get filled as a result of our research project.

Chapter 4 cover all the theoretical body of knowledge around AI technique to be utilized in this research
for an intelligent and optimized PT namely Reinforcement Learning. The chapter introduce RL, the
main component constituting RL environment and the different formalisms of RL problems with a
special focus on POMDP. The chapter cover the solving approaches namely value iteration and policy
search, algorithms and methods employed within the AI community and emphasis on the mathematical
basics in relation with RL domain and different theorems and demonstrations relevant to our research.
This chapter also covers the crucial task of modelling a problem as POMDP and the use of different
approaches namely model-based and model-free as well as the major wolving POMDP algorithms.

Chapter 5 introduce the proposed RL and HRL model for network PT practice and its representation as
POMDP problem. This chapter will present a comprehensive model elaboration documentation
and different steps undertook towards building the proposed model and ho it will be represented
in form of POMDP notably in form of States, Actions, Initial belief, Observations, Transitions and
Rewards.

Chapter 6 details the different components of the proposed framework we named IAPTF. This
chapter explain the design and implementation of different modules notably IAPTF-Prep, IAPTF-
Core and IAPTF-memory and highlight the interactions between different modules. Also, a brief
description will be allocated to each function and script developed during this research ti facilitate
the work of IAPTF and ultimately test the proposed framework including the efficiency and
accuracy of RL-led PT compared with human and blind automation testing. At the end of Chapter
6 we will present the global IAPTF framework and introduce the different test-bed networks
designed and created in virtual environment for the sake of testing the framework.

Chapter 7 covers the actual testing of the proposed models and the IAPTF framework in general.
This chapter introduce the different test carried out to validates the relevance of RL and HRL
model of PT practice and also to determine the best testing parameters to be adopted in later stage
such as the discount factor and the solving method, algorithms and approaches. The second part
of testing deals with evaluating the performances of IAPTF in comparison with human Certified
Ethical Hacker (CEH) and blind automation in term of consumed time, testing coverage,
relevance, and efficiency. A deep critical comparison and evaluation is then presented along with
results discussion to finally highlight the ultimate research contribution to domain of PT and
offensive cyber security in general.

Finally, this thesis Conclusion summarizes research findings and shed lights mainly over the
contribution. It focuses on present tasks accomplished during the research project aligned with the
outcomes achieved. Conclusion chapter ties research questions, that has been listed at the
beginning of the chapter with the results gained after analyses. In addition, the chapter discusses
the limitation within cyber deterrence domain. Moreover, it points to the direction needed for
future work.

Chapter 2: Methodology
Our research methodology examines the optimisation of PT automation in the context of large
networks and how it should work to solve the problem of deterring cyber threats. In summary, the
proposed methodology is expected to address in a scientific manner the real-world problem of
efficiency and effectiveness related to the current PT automation. Furthermore, it answers research
questions raised and address the succinctly research problem and thus achieving the overall aims of this
research. This chapter provides an outline of the research methodology followed to gradually
answer research questions, explaining research methodology and chosen approaches. The
methodology chapter will cover main milestones of our journey towards an intelligent network
penetration testing. This will start by reviewing the state of the art in the domain of PT automation
and optimization, identify key elements of the current practice requiring an optimization, survey and
critically evaluate the suitability of many AI techniques to our problem domain and later developing,
testing and evaluating the proposed IAPTF [23].

2.1 Research questions:

In this section, we attempt to formalise our research aims and objectives into tangible and
scientifically sound research questions. As already discussed in chapter 1, the size and complexity
of today’s corporate and organizations networks are making the regular and systematic testing
problematic and adding further issues to the current PT practice. As both manual and automated
testing fail to achieve the intended objectives within the allocated time and resources, we are
concerned in this research with embedding AI within the process and addressing the efficiency and
accuracy issues raised in the motivations. As one of the aims in this research is developing an
intelligent automated PT framework which will rely on especially reinforcement learning (RL),
other classic AI techniques (intelligent planning and optimization) along with expert and cognitive
techniques (expert system). This enables the framework to replace the human expert and efficiently
and effectively reasoning, prioritising, and acting in the face of complex PT problem which contain
a vast amount of uncertainty and versatile testing scenarios. Therefore, the key questions that arise
for this research are:

➢ Which activities, tasks and subtasks of the current network PT are blindly automated and
making the practice slow and heavy in term of resources and generated traffic?

➢ Which AI technique will fit the purpose of optimising the sequential decision making made
by the human expert?

➢ How to apply or embed the elected AI techniques to the current automated systems used
for PT and making it intelligent and thus efficient and effective?

➢ How to reduce the human expert intervention and ultimately remove it from the different
phases of PT practice. In other words, can the human expert in the field of PT be replaced

by an intelligent system or framework which relies on AI?
➢ Can an intelligent machine assisted-PT enable non-expert PT practicians to perform

complex tests by assisting users in form of indications and suggestions which can be
accepted or rejected by the expert?

➢ Should the AI-led PT framework be allowed to operate independently as stand-alone PT
framework or enable direct interaction and control for a supervising human expert to enable
benchmarking and auditing capabilities?

➢ How efficient and effective is the proposed AI-led penetration testing in comparison with
human experts such as certified ethical hacker or fully automated machine?

➢ Which metrics should we use to measure efficiency and effectiveness of AI-led testing?
In other words, this research aims to answer the big general question, "How to replace the human
expert by an intelligent framework which employs AI along with fully automated PT systems to
produce an intelligent and automated framework?". Answering this question needs a deep
understanding and analysis of the fundamentals of PT practice, defining the adequate model for the
practice as RL problem, representing the RL problem and solving it to finally extract the expertise
and store it for future use. Furthermore, considering the scaling up issue in large networks, the
research needs to answer the additional question of how to deal efficiently with large networks. This
research attempts to split these challenges and tackle each individual question.

2.2 Research Methodology:
In this section we present our research methodology which is our systematic approach adopted toward
our aim of replacing human expert pentester from current manual and automated PT practice and
enhance performances to reach a new conclusion on the contribution and relevance of the use of
reinforcement learning in PT automation and optimization. The methodology used in this research
begins with reviewing the offensive and few closely related defensive cyber security domains to digest
different approaches and methods used for optimization and automation notably in vulnerability
assessment and the wide penetration testing domain. Then we moved into traditional PT automation
theory, principles, approaches and challenges in order to have a full grasp of the practice and
understand the theory that could lead us into intelligent PT automation domain understanding by
analysing research problem and electing the most suitable and adequate ML technique. This system
should be fully intelligent and optimised enough to reason as a human expert but with better
performances and take advantage of the particularities of the PT practice to enhance efficiency and
accuracy.
There are different methodology elements adopted in different phases of this research. First, we will
start the research by doing a domain understanding the PT domain and its different components notably
the interaction between the environment and the human expert. In this step, we aim to grasp the manual
(human) PT process and notably, the reasoning and approach and the decision-making process by

scrutinizing certified ethical hacker way of thinking and executing the task in context of a large network
(analyze the methods, thinking, tools and techniques that experts use to execute advanced security
testing). Additionally, we aim to identify what human expertise is made from in context of PT and what
kind of prior knowledge PT experts rely on in terms of data, information, guidelines, and
recommendation gathered from previous similar experiences. This will be followed by a full mapping
of PT data workflow which includes, but is not limited to, the target network topology, subnets,
machines’ configuration, security architectures, protection updates and patches. In addition, we cover
data output from vulnerabilities scanners, available threat intelligence data, intrusion detection and
security incidents data imported from Security Information and Event Management (SIEM).
The second element, we will proceed into reviewing related PT automation literature and full grasp
the principles, functioning, approaches of PT practice followed by a critical study of the current
automation in PT in general and in network PT practice specifically, we will scrutinize different
automation and optimisation propositions and analyse them. As we elaborated in chapter 1 research
motivations, large organizations’ network PT is problematic where both manual and regular
automation fail to achieve the intended testing objectives within the allocated time and resources.
Therefore, we considered embedding adequate state-of-the-art AI techniques within automated
systems and tools used for PT and therefore making the full practice activities fully automated,
intelligent, and optimised. The aim is to offload (reduce the intervention) the human expert and
ultimately replace them by a fully autonomous and functional PT framework which covers each
phase, activity, and task of the practice. Here, we will decorticate the PT practice and identify all
activities, tasks and sub-tasks which will enable us to elaborate a measurable definition of the term
expertise from an automated framework/system and how this can be extracted, implemented and
used within the elaborated processes and data workflow in PT.
The third element will be investigating different AI techniques that fit the aim of our research with
a special focus on reinforcement learning approaches. This review includes also rule-based expert
systems, attack graphs, neural networks, decision trees, clustering, and association rules. At this
step, we select the adequate technique which is RL, and we will deepen our research by proposing
an initial model PT practice as RL problem and propose a novel representation the global network
PT problem as set of POMDPs.
Finally, we will complete this research by enhancing the model to address the medium and large
networks issue and we will proceed into the development, implementation of IAPTF which will
embed the RL module and expert system as well. In addition, a different hierarchical RL model
will be implemented to address the scaling-up issue in the proposed RL model, enhancing
performances, and tackling operational issues such as expertise capturing and generalization. The
research methodology six steps are summarized as follow:

➢ Grasping the PT domain and main areas around environments and component along with

the interaction between the different entities and expert.
➢ Reviewing the current state of the art of the current methods of PT automation at different

phases of the practice namely, information gathering, discovery, vulnerabilities assessment
and exploiting to fully digest and analyze the functioning mechanisms of each and the
reason why they fail to meet the PT expectation in term of efficiency and accuracy.

➢ Studying the PT experts (Certified Ethical Hackers) and criminal hackers operating
approaches and decision-making process when performing tests. This includes detailed
understanding of what, why and how of every task and activity that expert performs from
the initial reconnaissance and data gathering to the exploiting and post-exploitation tasks.

➢ Investigating how AI (more specifically ML) can replace or reduce human intervention in
sequential decision process and notably PT and which approach is more suitable and likely
to produce results.

➢ Producing an initial model of network PT as RL problem and ensured that all PT tasks and
variables are captured and represented. The representation as RL problem will be
implemented and solved using an external state-of-the-art POMDP solver which constitute
alongside with the IAPTF environments generator the framework core module.

➢ Enhancing the proposed model notably by addressing performances and efficiency issue
through the introduction of a new Hierarchical RL model and development of dedicated
Pre-processing, Security Clustering, Expert System and Memory management modules.

➢ Testing the proposed solution and evaluating its contribution in term of efficiency and
accuracy in real-world complex scenarios and subsequently introducing the appropriate
changes in due course.

This adopted methodology aims to achieve the research final output which is a novel RL model of
PT and a framework IAPTF that will offload and eventually replace the human expert in
performing all PT phases in context of computer networks. The projected framework will automate
with optimisation all aspects of the PT practice including a wide variety of activities and tasks and
will take advantage of use of different AI and machine learning techniques in different approaches
to answer the research questions.

2.3 Employed Research Method
This section aims to describe methods used in our research to collect data for virtual networks
(testbeds) re-creation, elaborating the RL model of PT and finally to develop, test and validate IAPTF
framework. The method employed will take advantage of use of RL algorithms. Optimized planning
and rule-based expert systems to produce an intelligent framework which aims to assist and
eventually replace the human expert in carrying network PT activities and tasks. In this section, we
will detail methods used in our research to design, implement and test IAPTF with a special emphasis

on virtual test-bed networks’ construction out of data collected from real-world corporate networks.
This research will produce a proof-of-concept (PoC) framework along with its practical
implementation which will replace the human expert in performing PT in an intelligent (efficient and
effective) manner.

2.4 Research Data Input
The input of this research are different size virtual networks which mimic the real world and
constructed from importing and using real networks data. In term of collecting data, as this was the
first phase, we extracted imported data from real-world small, medium and large corporate networks.
The collected data include networking, functioning and security data which was used to recreate
virtual equivalent of these networks in a virtual box platform. Computer machines and servers were
included in the virtual networks by directly downloading virtual equivalent from a specialized open-
source website vulnshub.com which serves as repository and provides materials that allow ethical
hackers to experience in digital security, computer software and network administration using
virtual appliances. Security mechanism including firewalls, routers and IDPSs were also imported
along with the associated configurations (implemented security policy) and included in the virtual
networks by adopting a specific approach of considering them as machines and forcing the traffic
to transit through them in a specific way to reflect the real-world scenarios, thus approach was
unavoidable as the virtual environment is restricted in term of networking. To sum up, we
constructed 53 different networks with size varying from 2 to 250 machines and were categorised
as follow: 2-50 small LAN, 55-100 medium LAN and 105-250 large LAN. Even though our
research focuses on medium and large networks, we were obliged to start from small LAN to test the
framework modules, the proposed RL model and the POMDP representation solving. Finally, it is
worth to mention that the 200-250 machine limitation is just for testing purposes and larger networks
can be also accommodated with the adequate hardware.

2.5 IAPTF modular choice
In this research we opted at early stage for a modular framework that covers the entire PT practice.
The choice is justified by the nature of PT itself and the sought-after framework. Moreover, we were
not sure to what extent this research will be pushed in term of implementation. Therefore, we started
the development of the first module which used input data from information gathering, discovery and
vulnerability assessment phases to represent it as POMDP environments. Then we launch the RL
solving process where the software agent will determine which attack vector to follow then instruct
Metasploit MSF to execute attacks and act on the obtained feedback. This module is the heart of our
research and is named IAPTF-Core. The second module is named IAPTF-Prep and groups all data
acquisition, collection, transfer, and formatting, pre-processing and feature extraction functions
which work together as independent scripts. As with a human PT expert, this module aims to pre-
eliminate previously confirmed failed attacks (while target configuration remains unchanged) and

attacks which will certainly fail because of the security mechanism (blocked by firewall or IDS). The
third module of the framework is IAPTF-memory which serve as the main memory for the
framework and the expert system in charge of expertise capturing, generalization, storing and
replaying. Lastly, the Metasploit (MSF) is considered as an entire module of IAPTF and consists of
interfaces, libraries, MSF modules, tools and plugins which all will be controlled by the IAPTF-
core through Ruby scripts.

2.6 Optimization evaluation and criteria
Currently, penetration testing efficiency is measured and assessed following several quantitative
metrics which are widely adopted and standardized as performances measurement criteria. We
elaborated a list of five which represent the best possible way measured metrics to assess a PT cycle.
Fist metric is the average running time which is a straightforward metric to measure and reflect the
time required to complete a testing cycle (which is also translated into cost as experts are often hourly
paid) constraint in current PT practice, thus this metric will perfectly reflect the efficiency part of the
measurement. The second metric is the testing coverage measured by the number of performed tests
which are in our research measured by the number of valid attack vectors executed by IAPTF, this
metric reflects the effectiveness part of the measurement. The third metric is slightly subjective and
deal with the overall attacks success rate in term of high-value target compromising and executed
post-exploitation activities such as rootkits deployment. This metric is highly probabilistic as the
success rate of any exploit execution varies significantly and depends on other variables such as the
execution order, the used configurations and existing security defenses and attacks’ detection
capacities. Lastly, the fourth metric is the amount of network traffic generated which is crucial in
corporates as the downtime should be maintained to the minimal and thus systematic and
comprehensive testing imply more tests and thus network traffic is generated, in addition to increase
in detection probability by the existing IDSs. In fact, skilled hacker makes the least noise as possible
especially during the information gathering and discovery phase as any suspected traffic will result
in prevention action by IDSs or attract the attention of the SOC operator.

2.7 Intelligent Penetration Testing and Learning Choices
In this section we briefly discuss the choice of RL for our proposed IAPTF. All ML approaches
respectively supervised learning, unsupervised learning, semi-supervised learning, and
reinforcement learning were initially considered in this research with the aim of identifying the most
suitable and adequate one for our context [23]. The choice of RL is justified by the sequential
decision-making process characterizing the PT which was highlighted as result of our deep study
manual PT practice.

Figure 2: Machine Learning families and their main application domains [21]

Therefore, we conclude that the only relevant approach for the sought-after full PT practice
automation and optimization framework is RL. Furthermore, RL reflects the interactivity and
dynamicity in the PT practice which is fundamentally different from previous use of AI in PT and
even proposed RL approaches [32] which was limited to attack planning and often resulted into a
high level of inaccuracy as the generated plans for attacking were isolated from the real PT
environment notably in discovery and exploitation activities and tasks. We also investigated the
relevance of other complementary AI techniques to be used alongside the main RL approach and
considered decision trees, attack graphs optimisation, and rule-based expert systems.

Figure 3: AI techniques candidates for an optimised PT practice [4]

The expert system choice is backed by the lack of knowledge extraction, re-usability and
improvement as it is the case during manual penetration which is the main reason behind expert PT
high efficiency. Doing this allowed IAPTF to perform better and continuously learn, memorize and
reply expertise gained from previous experiences.
Finally, we briefly describe the RL model, representation and solving choices made in throughout
this research. The figure 4 summarize the choices made which will be critically discussed in Chapter
6.

Figure 4: choices made in this research for an RL-led Penetration testing [24].

As we described earlier, after settling on modeling network PT as a RL problem as result of the
reasoning approach followed is more of a deductive approach than inductive. The RL suitability
for an automated and optimized PT framework that replace the human expert came after a
comprehensive review of all candidates following the deep PT domain understanding and
following a deductive reasoning approach. The model-based RL option is then selected to be the
more suitable and reflective of the PT practice as we propose an accurate model as part of the RL
problem definition which includes state transition and observation probabilities and rewarding
distributions to calculate optimal actions. Finally, model-based solving algorithms utilise dynamic
programming for solving following two main approaches namely Policy Iteration and Value
Iteration. In term of solving POMDP choices, and as IAPTF aims to replace the human expert in
decision making, the solving choice will be value iteration following by direct policy search.

2.8 Expertise extraction, generalization, and replay

IAPTF is designed to learn and adapt without following explicit instructions but instead by
interacting with its environment and achieve expert-level competence in solving problems or
extracting knowledge from human experts’ operative modes in form of performing tasks and taking
decisions. To convert this knowledge into useable acting policy, we opted to develop a separate
module named IAPTF-Memory which includes the processing engine, expertise extraction and
validation scripts, expertise generalisation scripts and the CLIPS expert system. This module
development is challenging because of its complexity and arduous (labor-intensive) script coding
but remains a crucial component of IAPTF. In this research, we will prioritize the option of
enabling the framework to be supervised by a certified ethical hacker. On the top of CEH
supervision, we allow IAPTF to receive some high-quality initial knowledge to get it started, and
then leave it to learn the rest for itself or from observing the human expert handling it. We

anticipated that IAPTF, after a period of time, will perform better than a human expert in both time
and coverage along with pinpointing new complex attacking paths which human expert would not
discover. IAPTF acquired expertise will then be used directly on similar cases and scenarios. In
addition failed attacks will also be excluded when tested asset configurations remain unchanged,
but when other exploit alternatives are available (variants which a genuine attacker could exploit)
the attack is repeated. In such situations, IAPTF will rely on its core RL module to plan and execute
the relevant attack plans as well as the associated post-exploitation and pivoting before including
the acquired expertise in its memory.

2.9 Representing penetration testing RL problem as POMDP

Each network PT exercise will be represented in a set of POMDP environments, we provide here a
brief description of the method adopted in elaborating POMDP. Basically, the IAPTF-prep output is
the raw date used for elaborating the first POMDP, but further data is generated throughout the
practice progression and will follow several processes that reflect the complexity of the PT practice
activities. In a few occasions, we include data provided initially when testing approach is white-box
or when re-testing the same network which is an important factor to be considered. In fact,
information gathering, probing, and scanning data generated as part of early vulnerability assessment
by automated systems and tools (which are part of the Metasploit professional including InsightVM
and Nexpose) will be served be processed and double-checked in comparison with this provided data.
The second phase is the security clustering which will be detailed in Chapter 6 which aims to classify
each machine under a given security cluster. At the end of these phases, a python script will import
and pare the raw data files (.text, .xml and .log) and input for IAPTF-Core. The data will be then
translated into POMDP files with Actions, States, Initial-belief, Observations, Transitions and
Rewards. The only exception is the Rewards which will be allocated using a pre-defined grid. All
other POMDPs components are purely the product of the real-world extracted data including some
processing notably in the transitions and observations probabilities calculation detailed in Chapter 5
and data from the cyclic information gathering, discovery and vulnerability assessment phases will
be fed to IAPTF-Core during the continuous update process as part of the Initial Believe (starting
point) for RL.

2.10 Addressing the scalability problem in medium and large LANs
In this research we encountered a famous curse of dimensionality problem which stands for the
exponential growth in computational power demand as result of the increase of the size of POMDP
environment [38]. The scalability problem itself was expected giving the complexity of the PT and
therefore its representation as RL problem which often leading to very large POMDP environments
in term of number of states, transitions, and observations. Therefore, we considered different
approaches to model PT as Hierarchical RL problem instead of regular RL modelling in context of

medium and large size networks. Different representation has been shortlisted, investigated,
implemented, and tested to find the most suitable Hierarchical RL (HRL) in the context of PT. The
selected hierarchical approach namely security clustering proved to be the most adequate and take
advantage of HRL reducing dimensionality through decomposing the RL problem into several sub-
problems which ultimately overcome the scalability problem in regular modelling. This point will be
detailed further in Chapter 5.

2.11 Virtual test-bed networks, design, and testing
To achieve the research goals, we opted for real-world networks to be used as testbed and evaluate
the proposed RL model in one hand, and on the other hand test IAPTF efficiency and effectiveness.
As a matter of fact, we needed to set limits in term of network size and to make some decision
regarding the nature of networks and we decided to import real networks data, setups and security
configuration and reconstruct a virtual equivalent that mimic the real ones. This choice is also forced
by the General Data Protection Regulation (GDPR) [33], and other privacy and security restrictions
related to performing tests on real networks for research purposes and the associated implication in
term of requesting authorizations [6], mitigating risks and post-testing checklists which make our
research lasting longer in addition to the associated costs. Figure 5 illustrates a sample corporate
medium size LAN of 50 machines as one of 53 different networks with size varying from 2 to 250
machines created for this research.

Figure 5: typical corporate medium size LAN equivalent testbed.

Chapter 3: Literature Review

The literature review subjects are structured as per the research methodology. This research review

and categorisation is built to serve research approach and to help to provide answers for the

research questions. The chapter has been organised as follows: Section 2 introduces the offensive

cybersecurity and the wide PT practice along with the rationale and reasons behind the increasing

need for PT practice, and we will present an anatomy of a typical cyber-attack to consolidate the

presented topic. Section 3 discusses the actual PA practice and the various testing types,

approaches and tools notably Metasploit Community and Pro, and details of Network PT methods.

Section 4 reviews the activities and tasks constituting the network PT and the development of the

theory and its involvement in enhancing security and preventing cyber-attacks and how

organisations can benefit from this extra security along with new compliance requirements.

Section 5 pinpoint the uniqueness of PT practice compared with other cybersecurity activities and

domains, and highlight the crucial role human expert intervention in the practice. Section 6 goes

through current approach and methods used in PT automation and challenges associated with

dealing with large assets and the repeatability. We will review related works and categorises them

and will present a research tree summarising who, what, how and when PT automation and

optimisation techniques have been proposed and implemented. Section 7 reviews the literature

that mainly discussing machine learning use in PT optimisation and provide a brief description of

the relevant AI techniques. Section 8 goes through what are the challenges of penetration testing.

Finally, Section 9 summarises what could make an AI-led network PT work successfully and

limitations if not working as expected. Finally, section 10 summarises the literature review chapter

and specifies a research road map.

3.1 Preface

The aim of this literature review chapter is to establish a theoretical base for our research work in

term of offensive cybersecurity, PT and vulnerability assessment, the current state-of-the-art in

terms of PT automation, human expert role in the practice, the use of AI in improving and

optimising PT tools and systems, and research gaps. Towards the goal of the literature review,

there is a need to align it with research requirements such as research problem, research questions,

research methodology and approach followed. This alignment will achieve the expected

advantages from the following systematic literature review.

3.2 Literature Review Methodology

The approach followed in selecting and classifying the literature is focused on three parameters:

traditional deterrence, game theory and cyber deterrence. The work has been executed via three

main phases which can be simply explained as:

3.2.1 Planning:

The main objective of this phase is to locate and specify the literature we are looking for and the

parameters we should follow aligned with the research project problem and research questions.

Focusing the literature over the research problem “optimising automated PT” will drive research

project and gain up to date understanding about penetration testing, AI and ML topics.

Specifically, literature is carefully selected that are linked to the main research question and

utilized to bridge AI techniques applied for cybersecurity problem to the benefit of PT and

vulnerability assessment.

3.2.2 Executing:

As the fundamental problem of this research project is “replace or at least limit the human expert

intervention in PT practice?” inspired by other cybersecurity fields such as intrusion detection and

prevention and security auditing. Based on this mission the selection, filtration and prioritisation

of the literature was conducted. For that, offensive cybersecurity, network PT, vulnerability

assessment, applied reinforcement learning for sequential decision making, attack graphs, were

parameters for selecting the literature. Other issues were considered like linkage to the research

problem, quality of publications, credibility of publisher and specialty of the authors.

3.2.3 Reporting:

Reporting is the final phase of reviewing the literature task. The structure of reporting begins by

introducing main concepts, approaches and contributions of PT automation and optimization.

Then explain different strengths and weaknesses of the proposed solution related directly to

network PT. Finally, we elaborated a research graph where different research works are

categorised under the adequate rubrics.

3.3 The need for offensive cyber-security

Cyber-attacks and exploits have constituted the cyber risks and exposure during the last decades.

A key element about cyber-attacks is that they remain non-standard in term of methods and

approaches and involve the use of a variety of tools, systems, and scripts to accomplish different

activities and tasks [9-11]. In the heart of this cyber advisories we find exploits which are pieces

of software, data or sequence of commands that take advantage of a vulnerability to cause

unintended behavior or to gain unauthorized access to sensitive data [3-4]. Figure 6 illustrate the

number of weekly reported cyber-attacks during 2020 per organisation per industry [4].

Figure 6: Average weekly attacks per organisation by industry in 2020 [11].

Cyber attacking and hacking is a full-scale business across the world with global cybercrime costs

expected to grow by 15 percent per year over the next five years, reaching $10.5 trillion USD

annually by 2025, up from $3 trillion USD in 2015 [5-6]. This evolution is illustrative and reflect

an explosion in number of exploits, attacking techniques and technologies. Figure 7 illustrated

average zero-day exploit price in dark-web which reflect time and effort invested into developing

and weaponising exploits which the observation enable researcher and managers to grasp the

https://www.upguard.com/blog/vulnerability
https://www.upguard.com/blog/sensitive-data
https://www.microsoft.com/security/blog/2016/01/27/the-emerging-era-of-cyber-defense-and-cybercrime/

current and forecast for the cyber advisories [13].

Figure 7: average exploit price in the dark and legitimate market [14].

3.4 Anatomy of a Cyber Attack

 PT practice is a standard and well-established security auditing method designed to

imitating hackers’ footsteps and approaches by imitating the same behavior that real attacker will

eventually adopt when attacking the digital asset. To achieve this aim, PT practice was divided

into activities and steps following a certain logic. The division itself is just a way to help the

penetration tester better cope with the pattern of steps that we describe below. Of course, this

division in steps is not arbitrary and corresponds to a well-established practice in the field of

offensive cyber-security domain. In this part, we attempt to summarise the major constituent of

PT. An example of real-world attack starts with a Reconnaissance phase where hacker gather

network information and build a knowledge about system profiles. Second phase named

Discovery in which the hacker will be attempting to identify and perform vulnerabilities analyses

the available information such as OS, device, service, and application and available exploit. The

third phase named Exploitation where hackers attempt to launch programs and scripts to

compromise the target, access and manipulate data, often in this phase hackers operate many

breaks to seek further information or re-adapt the configuration of exploits. The hacker fourth

phase is often to proceed with leverage compromised systems as beachheads to attack other

network resources through proxy pivots and test defensive technologies’ ability to identify and

stop attacks client-side and testing of end users and endpoints. Finally, the hacker exfiltrates

important data and installs backdoors and rootkits which enable him to gain sustainable and

permanent access to the controlled system for future use. Figure 8 summarises the hacker typical

workflow in network environment [18-20].

Figure 8: The Offensive and Active security standard workflow [18].

3.5 PT Background

PT has been a cornerstone in cyber security practice during the last decade. It implies planning

and performing a real and controlled attack on a digital asset (computer machine, Web server, IoT,

software or network) with the aim of evaluating its security [3]. The process of PT is divided into

a sequence of tasks in order to methodically and comprehensively assess the security of the system

and often include actively identifying vulnerabilities and perform a set of actions to test if the

target could be compromised by running exploits against those vulnerabilities [6].

Figure 9: Penetration testing standard phases [24].

In practice, PT activities and tasks shown in Figure 9 vary from case to case but generally include

four main phases as follows:

3.5.1 Phase 1: Information Gathering, Planning, and Preparation

As with real world cyber-attacks, the PT practice relies heavily upon what the tester and/or the

system knowledge of the target asset, and thus the ability of gathering, structuring, and processing

the relevant information prior to starting the exploitation is a key point for the global practice. The

information itself can be very wide and vary from one asset to another. In a network context, these

properties often include general knowledge about the assessed asset, previous incident, previous

PT attempts, active domains, and machines (network devices and hosts). This first crucial phase

is widely known among the pen-tester (and hackers) as information gathering or reconnaissance.

This phase includes performing tasks (set of actions, observations, and transitions) which will be

detailed below [14-15].

3.5.2 Phase 2: Network Discovery

During this phase, the tester performs a deep and comprehensive reconnaissance against the

targeted asset to gather as much information as possible, from which the next phase effectiveness

will heavily depend upon. In practice this is a complex, often incomplete and resource consuming

phase. There are many ways to gather this data and it depends upon the target (network, Web, or

client). In this phase we differentiate Network Discovery which attempts to discover additional

systems, servers, and devices; Host Discovery to determine open ports on these devices; and

Service Interrogation which investigates identifying actual services running. Overall, tasks related

to discovering, dressing and determining the network content, topology and configurations are

performed using systems relying upon mechanisms such as ARP, TCP SYN packets, ICMP echo

request, TCP connect and passive discovery. Following an initial discovery, a more

comprehensive and deep discovery is also performed to get a clear idea about the network

functioning and enumerating in the best possible way the network components, communication,

used configuration. Tasks such as port scanning, OS identification, running applications and

services identification are performed. The output of this phase is crucial for the later phases and

usually, incomplete or partial results are initially obtained (lack of information or reliability of the

results) and thus this phase will be re-iterated depending upon the required information [8].

This phase usually requires heavy involvement from the human tester despite the use of semi-

automated or fully automated tools and systems such as Nmap and Nessus. The intervention of

the human is often necessary. For instance, OS detection utilizing the running service produce

results with a certain degree of uncertainty (probabilistic) and the use of further techniques by the

pen-tester such as social engineering and Google hacking (using publicly available information to

gain insight into the target organization) although these techniques are difficult (or impossible) to

automate [23].

3.5.3 Phase 3: Attacking, Exploiting, and Pivoting

During the attack phase, the tester will attempt to identify (select) and launch the matching (giving

the outcome of the precedent phase) exploits. Exploits are pieces of systems (code) that allows

taking advantage of the systems’ vulnerabilities (such as injecting malicious code in the system's

memory to modify the execution of the original code. One way that benefits the attacker to retrieve

information, install an agent or gain access) in order to compromise or control the targeted asset.

Once a system is compromised it can serve as a starting point (also known as vantage point) for

launching other attacks against the connected or reachable systems so new attack vectors and paths

can be revealed and tested. This practice of mimicking attacker behavior is widely known among

the offensive cyber security community to be the most efficient in term of revealing system hidden

weaknesses or open new attack vectors. A perfect example to illustrate the pivoting concept is a

successful attack against a machine belonging to a subnetwork which after installing the agent and

gaining access (controlling). Then, the privilege escalation process is performed to attempt a

deeper penetration into the compromised system such as local exploits in order to gain “admin”

privileges which will be used to compromise other machines belonging to the sub-network which

are linked (via trusted connection) to the compromised machine [22]. The compromised machine

could also be used to launch a new Local Information Gathering campaign to collect additional

information about reachable systems or capture sensitive data transiting within the sub-network.

This phase ends usually by performing a cleaning to erase the attacker footprints in order to avoid

the reusability by an unauthorized party [17].

3.5.4 Phase 4: Reporting, Analysis, and Mitigation

Recommendations for PT are often prioritised by severity or impact. They are not necessarily

rated according to their overall contribution to the organization’s cyber risk. This reduces the value

of a PT report and means that organisations do not necessarily make the right decisions about

where to focus their remedial efforts across the spectrum of defensive, detective and operational

security controls [17].

3.6 Penetration Testing Types and Levels

This section provides a brief summary of the different types and levels of PT (Figure 10) employed

to assess and exploit potential network vulnerabilities. This categorization is often theoretical as

the real-world situation is quite different and may require combinations of the below types and

levels of tests depending upon the specificity of the situation and the client requirements.

Moreover, the type and the scope of testing are generally established and agreed prior the

beginning and may be changed or extended during the work [21-23].

3.6.1 White Box

White box testing is a PT method (also apply for software context) where the tester has complete

knowledge of the internal structure, content, and configuration of the assessed asset. It is also

called glass box testing, open box testing, transparent box testing, structural testing, and clear box

testing. All these terms indicate that internal mechanisms are visible to testers. In white box

testing, it is all about testing internal security in place (coding, infrastructure of software) and used

often as methodology that validates the internal security. It also used to carry out vulnerabilities

assessment such as highlight threats from inside the network that was using knowledge of your

network, such as IP addresses, router access, active ports, web servers, FTP, and even passwords

[2-3].

3.6.2 Black Box

This means that testers are given very little or no information prior to the penetration test. It is also

referred to as "blind testing" because the tester will start by finding an open route to access the

network which is often through the Internet. In a black box penetration test, the attacker will be

unfamiliar with the assessed asset, which mirrors the everyday penetration attacks or "hacks". This

will stimulate more accurate results, as they will not be privy to any additional information and

would produce a relatively accurate indication of potential threats to your network [6].

3.6.3 Grey Box

Grey box is meant to illustrate the partial disclosure of information about the assessed asset. In

between black box and white box testing, gray box testing is without any doubt the most realistic

and accurate representation of the hacking activities as hackers will rarely attack an asset which

they have no knowledge about and tend to gather a partial knowledge about the target from

different sources in advance. Therefore, in this approach, the penetration tester will be given

partial details about the network infrastructure and left with the obligation to gather enough

information to initiate the testing [7-9].

Figure 10: Difference between the three PT approaches; black-box, white-box and grey-box in term of

input and ethical hacker starting position [17].

3.7 Testing Intensity and coverage

We distinguish two main testing intensity practice which is dictated by the amount of test to cover,

namely: comprehensive testing also known as type 1 PT, and targeted testing referred to as type 2

PT.

3.7.1 Comprehensive penetration test

Comprehensive testing aims to identify and testing specific (not all) vulnerabilities and that the

assessed asset (networks, systems, websites and web applications, or wireless networks) may be

exposed to. This is often a medium load of work which requires a moderate effort and use of

resources and combines both manual assessments (where systematic and logical thought

processes, analytical thinking and skillful decision-making are required) with automated scans to

assess the true extent of the assets vulnerabilities [10]. This type of testing is obligatory conducted

by highly skilled penetration tester and should include a detailed report providing

recommendations for fixing any spotted security breach and addressing each of the identified

issues. Such testing provides with a good overview of an organisation’s security posture and in

most cases, is a faster and more cost-effective solution than the lengthier Level 2 Penetration Test.

IT security governance bodies (CREST, NIST and SANS) recommend a Level 1 Penetration

Testing that will identify exploitable vulnerabilities before they can be uncovered by an

indiscriminate cyber-attack [12].

3.7.2 Targeted penetration test

Targeted testing requires an extensive effort and involves looking in details at all the potential

vulnerabilities and explicitly attempt the relevantly associated exploits one by one to determine

whether a successful exploitation is possible, and if so what kind of damage to the asset the

attacker can do such as obtaining access to the sensitive resources. A targeted penetration test is a

painstakingly detailed process of identifying security holes and vulnerabilities in your hardware

and software (including printers, fax machines, workstations), systems or web applications and

then attempting to exploit them. Due to the extent of these tests, Level 2 Penetration Tests often

take several weeks to complete and are usually only recommended to clients who require a

complex cyber-attack simulation [13].

3.8 PT versus Vulnerability Assessment

A vulnerability assessment (VA) is a series of automated scans and tests that provide a very high-

level overview of the potential vulnerabilities and exposures that exist in the assessed system or

network. Often, VA consist of providing overall and general insights of the system security and

potential point of exposure which can be used by the attacker. On the other hand, PT plays a

critical part in maintaining the security of a network by actively probing it for weakness and

vulnerabilities. It mainly focuses on identifying, assessing the existing vulnerability, and

attempting to exploit them by executing the adequate attack and exploits. Nowadays, PT involves,

https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/web-application-penetration-test
https://www.itgovernance.co.uk/shop/product/wireless-network-penetration-test
https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/web-application-penetration-test

in addition, the comprehensive assessment and testing of the entire state of a network by emulating

real adversaries (mimicking the attacker approaches), including the use of the attacker techniques,

tactics, procedures, and the way they define the potential goals. PT practice requires a high level

of expertise and in-depth knowledge of the systems and securities measure functioning along with

the adequate resources [17].

3.9 The versatility of PT

The PT is characterized by its many domains of practicing and uniqueness in term of versatility

of testing contexts and the level of expertise required for ensuring reliable results. For that, when

we consider an intelligent automation if PT practice, we intend to cover the entire practice which

present many challenges and is far different from other cyber security fields in term of operating

modes and practicing environments where each of the contexts has its own uniqueness [15]. The

PT is very versatile in term of testing vectors such as networks, databases, cloud infrastructure,

web applications, wireless and IoT., and in term of testing approaches and methods. Figure 11,

illustrates the versatility in the PT practice as discussed in out previous work [23].

Figure 11: versatility in PT practice and richness of testing tasks, approaches and methods [23].

3.10 PT automation state of the art
 During the last decade, cyber-security firms and security systems developers have been

heavily focusing on producing automated and semi-automated PT frameworks and systems aiming

to facilitate the work of network penetration testers and make the assessment of network security

more accessible to non-experts. Multiple systems are available for public use varying from free

and open source to more costly products. Popular products used in PT communities include Core-

Impact, Nexpose, Nessus, Qualys, Tenable, Immunity Canvas and Metasploit [18]. The main

contribution offered by these systems compared with the traditional security and vulnerabilities

scanners such as Nessus, is their functionalities (planning, scanning, and exploiting) along with

simplicity and flexibility of use (automation of certain tasks, visualization, reporting). Yet, the

offered automation (mainly related to the planning phase of the practice) remains limited to the

planning of the practice, the organization of the tasks and the optimization/visualization (usually

phase 1 and 2) and the automated reporting (phase 4). Nevertheless, the heart of the PT practice

(phase 3) was often neglected or poorly exploited. In fact, determining the exploitable

vulnerabilities and launching the relevant exploits, digging inside, and pivoting to create a new

vector of attack is undoubtedly the most challenging part. The difficulty itself lies on the current

PT systems which have radically changed and evolved and have become more complex, covering

new attack vectors, and shipping increasing numbers of exploits and information gathering

modules. Thus, the problem of efficiency has emerged and controlling alike framework

successfully along with maintaining efficiency, is indeed the most important challenge [19].

3.11 Review of related research works
This research is rooted in a long line of research and development on network PT, starting

with the planning phase for which work was undertaken and propositions were made with some

already in existence in the industry, whilst others remain research ideas. As the penetration testing,

automation, and enhancement (usually means optimisation and efficiency) domain is situated

between both cyber-security and AI research fields, several axes of research were addressed

starting with the consideration of attack graphs and progressed throughout different research fields

and methodologies of Automated Planning and consequently the sub-area of AI. Early research,

focused on the modeling penetration as attack graphs, planning attacks, and decision trees which

all reflected the insight that researcher had relating to the PT practice as standard sequential

decision making. In theory, these researchers were very encouraging and produced tremendous

results although (real world implementation) most of the proposed work was more relevant to

vulnerabilities assessment practice than to PT. This section of the literature review considers the

most significant contributions in this regard and will summarise previously completed research

with a special focus on the adopted approaches and the contributions. For clarity, we start by

addressing the full picture of the research in this field (Figure bellow) and will proceed into

dividing the research axes by type, methodology, and approach. Attack graphs are the most known

security model for representing the chains of vulnerability exploits in a network first introduced

by the work of [19] which proposed an attack graph that break down the environment of network

vulnerabilities assessment tasks by modelling the space of possible attacks into atomic components

called attack actions. Each action is described by a conjunctive pre-condition and post-condition

over relevant properties of the system under attack [20]. This approach is closely related to the

syntax of classical planning formalisms and thus later research used the classical planner to attempt

to solve the problem by finding the optimized solution. An attack graph represents all known

sequences of actions that compromise a system in form of a graph.

3.11.1 Regular and Blind Automation
An obvious way to produce a system or tool which autonomously performs PT is by

automating all or some of the tasks and subtasks for each phase of the penetration testing practice.

While automated PT tools are great for discovering low-hanging fruit, automatic vulnerability

scanners should not be confused with advanced human expert testing which include a deep

understanding of an organisation’s current security configuration and attempting targeted testing

against specific high-profile areas of the application that will require more time and attention.

Human testers rely on their expertise to find flaws that require logic and comprehension. Many

organizations use automated tools and systems which blindly performs all the tests without any

exception or pre-elimination. These systems are often guided by a skilled human tester, but many

steps are automated such as vulnerability scanners to test multiple systems for the presence of

vulnerabilities. The disadvantage of such an approach is mostly noticed in the medium and large

network context where time, resources, generated traffic, and network congestion is too high, thus

making the use of such approach limited to a small network or by writing scripts which are itself

very inconvenient for expert point of view.

3.11.2 Graph-based approaches
An attack graph is undoubtedly the oldest method for planning security tests especially in

a network context and was for a while used in penetration testing. In cyber-security, the attack

graphs are particularly efficient in analysing security flaws in computer networks. In addition to

the use in the defense part, several researchers tackled the problem of enhancing the PT practice

by generating and optimising the attack graphs and met a lot of challenges. Some methods were

only theoretical and not applicable for practical scenarios where other methods produced some

consistent results by reducing the number of scenarios, attack vectors or even finding new attacks

paths which a human may not notice or just omit.

An algorithm to automatically generate a penetration graph was proposed by (Qiu et al.,

2014) which optimises the network topology before generating the penetration graph which helps

to reduce the amount of redundant information and provides a clear overview of the networks’

possible security flaws by exploring all possible attack paths from the raw information gathering

output, optimising the reachability matrix (network inter-connections) and highlighting the most

critical attack paths. The researchers pretend to be able to generate multi-path correctly and

effectively in all situations.

Figure 12: An example of an automated generated penetration (attack) graph

In a previous research work entitled “An Intelligent Technique for Generating Minimal Attack

Graph” [24], an approach based on planner has been proposed for time-efficient scalable

representation of the attack graphs. The planner itself relies on a special purpose search algorithm

from an AI domain to determine the best solutions within a large state space without suffering state

space explosion. In addition, another research performed by [25] where he assumed the action in

the attack graph by assigning two values: action cost and success-probability. He then proposed

an algorithm for computing an action selection policy which minimises the expected cost of

performing an attack. Finally, he modeled the problem as a finite-horizon MDP problem and used

forward search, transposition tables and pruning techniques (enhancing the structure of the attack

graph). As a result, he compared the obtained results using the proposed approach to a generic

MDP solver along with a solver transforming the problem to an unconstrained influence diagram

and demonstrated the performance enhancement (reducing the runtime) [26].

In a PT context, attack representation is not a hierarchy (tree) but often a directed acyclic

graph (as the practice diagram is in reality) due to the repetitively and interrelation between nodes

which means performing an action can be beneficial in several possible branches at once if the

action has more than one root-node path in the attack graph. This results in the probability of the

action being counted multiple times and the overall probability of success is increased. This causes

the expected cost (computed as first probability) or penalty to decrease but remains admissible so

can be added on later [22]. Since a minimised value is compared with the expected cost this issue

keeps the heuristics still admissible.

3.11.3 Classic and Intelligent Planning Approaches
The automation of the planning phase in PT practice was the first approach to be tackled

by researchers for the simple fact that it was very close to the attack graph for security auditing

and vulnerabilities assessment. This approach encloses different planning mechanisms that

automatically finds a plan when given as input [24]. A high-level description of the relevant world

properties (the state variables), the initial state, a goal condition, and a set of actions where each

action is described in terms of a pre-condition and a post-condition over state variable values. In

classical planning, the initial state is completely known, and the actions are deterministic, so the

underlying state model is a directed graph (the state space), and the plan is a path from the initial

state to a goal state in that graph [25].

This grounds PT in a well-researched formalism, highlighting important aspects relating to

the nature of this problem. This approach was initially followed by [24-25] attempting to make

strong independence assumptions for the sake of scaling and lacks a clear formal concept of what

the attack planning problem actually is. The founding motivation for applying automated planning

mechanisms in a PT context is facilitating and assisting the decision-making process within manual

or autonomous systems [26]. The AI planning techniques’ generality of concepts and models make

them applicable to the diverse context where a control problem emerges and network security

assessment and PT are undoubtedly a natural application [23]. The latter investigates the idea of

AI and optimised attack planning as an approach for automated security assessment starting with

[27-28] works.

Figure 13: Different planning approach previously investigated for PT context [28].

Subsequent planning for PT using attack graphs techniques was proposed and will be detailed in

this section. However, most of the proposed solutions lacked efficiency as blind automation did

not tackle the problem related to optimising the penetration itself by validating and executing the

attack paths resulting from the analysis phase. A brilliant piece of research [29] introduced a

complete PDDL representation of the attack problem along with a practical implementation that

integrates a planner into a PT tool. Their research allowed an automated generation of attack plans

(single and multi-paths) for real world PT scenarios, and to validate these attacks by executing the

corresponding exploits against the real target network [28]. The idea was executed using an

algorithm for transforming the information acquired during the information gathering phase of the

PT into the planning domain, and they showed how the scalability issues of attack graphs can be

solved using the proposed model for small and medium sized networks. Nevertheless, the proposed

approach is very limited in a large network context and fails to cope with dynamic environment

characterising the cyber security domain [30]. Related works carried out by [30-32] highlighted

the failure of the classic modeling approach in dealing with the uncertainty in the domain of PT,

especially the lack of accurate and complete knowledge about the assessed system which the

classical planned requires producing a plausible result. The researcher worked on an industrial

system considered to be one of the market leaders. In the vulnerabilities assessment (Core-Impact)

modelled the problem as partially observable Markov decision processes (POMDP) and

integrating for the first part the first phase (information gathering) of the practice within the

remaining mechanisms by utilising the particularity of POMDP in terms of the open and flexible

“Initial Belief State”. This work provided a first intelligent PT system with a mix of scanning,

planning, assessing and exploiting. There were two major flaws in this reasoning; the information

gathering (scans and enumeration) does not yield perfect knowledge so a residual uncertainty

remains, and the significant impact of the scanning on the assessed network as it often generates

large amount of traffic susceptible to be detected by security system and requires a long running

time. They wanted a technique that (like a real hacker) can deal with uncertainty by intelligently

inserting scanning actions where they are used for scheduling the best exploits. The proposed

model itself is questioned as it obviously fails to model the full picture of PT and focusing rather

on the separate entities [31].

Similar research work carried out by [32] adopted an intelligent planning approach to generate a

minimal attack graph described as a time-efficient scalable representation of the attack graphs. A

planner is a special purpose search algorithm from an artificial intelligence domain, used for

identifying solutions within a large state space without suffering state space explosion [33]. A case

study has also been presented and the proposed methodology is found to be more efficient than

some of the earlier reported works [34]. In another related research, introduced a game-theoretic

model for anticipating and preventing attacks in a computer network by representing the network

security components and the associated interactions [35]. This approach remains very limited in

covering the entire scope as a huge gap will always exist between a network administrator who

uses the limited resource to secure the network and an attacker who is flexible and can adopt hard

to prevent complex and multi-stage attacks which are aconsidered to be NP-hard problem than the

solving rquire huge amount of time when it is large graphs [36]. Later, [37] presented another

approach which first translates an attack graph into an MDP and solves it using policy search with

a set of pruning techniques. This solution fails too in complex real-world scenarios where the

search for the policies is more expensive in terms of time rather than establishing it.

Furthermore, the attack graph techniques have also been used for the analysis of threats that arise

through the possible combinations of cyber-attacks and related actions which then modeled as

planning optimization in [33-36]. Other previous work [36-38] used classical planning and hence

ignores all the incomplete knowledge that characterises the information gathering and vulnerability

assessments. More recent work [32] proposed an independent point of view PDDL language

modeling of the attack planning by considering each asset (machine or system) separately. These

works were further enhanced by [33-35] and introduced models that considered the uncertainty in

the PT practice at the action level (machine alone context) was introduced in form of POMDP

planning problem. In fact, the last work the uncertainty was introduced into a POMDP model both

at the initial belief state and the probabilistic action outcomes as in [37-38]. The first contributes

to considering the real dynamics of the system when the second enhances the choice of the relevant

exploits to test. Unlike the MDPs approach, POMDPs allow to model information gathering as an

integral part of the problem, thus providing for the first time a means to intelligently mix scanning

actions with actual exploits.

In applied research works conducted by [39-41], researchers tackled the problem of automatically

designing an efficient plan for remote PT with no prior knowledge of the target network’s

machines, they proposed a model for generating and executing remote testing plans that considers

the uncertainty of using remote tools both to gain knowledge of the system and to provide the PT

actions. Our solution provides automated generation of multi-step penetration test plans that are

robust to uncertainty during execution. We tackle this problem by making use of modeling

techniques from POMDPs. The researcher attempted to automate this process by taking advantage

of efficient solutions for solving POMDPs, and further, automatically derive these models through

automated access to vulnerability databases such as the national vulnerabilities database (NVD).

We demonstrate our implemented solution on a series of example problems.

Recently, important research was carried-out by [44-46] which tackled the attack mitigation issue

as part of the PT practice by adopting a what-if approach for conducting a comprehensive analysis

of the different mitigation strategies on a simulated PT platform. The work used automated attack

generation based on the adversary network model which analyses the different mitigation actions

such as changes to the network topology, system updates, configuration changes, etc. They aimed

to determine optimal combinations that minimise the maximal attacker success and proved the

efficiency of the proposed what-if analysis approach which can be derived from network scan,

public vulnerability databases and manual inspection with various degrees of automation and

detail. They also used a simulated PT approach allowing automated attack-finding when different

network changes were applied (topology, system updates, configuration changes, etc.). As a result,

they noticed that using this technique they were able to determine the optimal combinations that

minimise the maximal attacker success and therefore proposing the best mitigation strategy. This

work covers mainly the mitigation phase, which is out of the scope of our research, nevertheless

the simulation part will be considered as an option later in our research.

3.11.4 Expert-System and Knowledge-Based Approaches
In this section, we will provide an extensive description of expert system (ES) and

knowledge-based expert system (KBES) as part of this research will rely on these technologies.

ES or KBES is a system which solves specific types of problems by codifying human experts’

knowledge in a knowledge base, and by mimicking the human problem-solving

process. Technologies use qualitative knowledge rather than mathematical models provides the

needed support. In fact, it is a computer system that applies reasoning methodologies to knowledge

in a specific domain to render advice or recommendations, much like a human expert. A computer

system that achieves a high level of performance in task areas that, for human beings, require years

of special education and training. The basic concepts of ES include:

➢ How to determine who experts are (level of experience and knowledge)?

➢ How expertise can be transferred from a person to a computer?

➢ How the system works in term of reasoning?

As in any other domain, an expert is a human being who has developed a high level of proficiency

in making judgments in a specific, usually narrow, domain. The penetration testing was not

considered as a good candidate to apply these approaches but similar work on defensive cyber-

security demonstrated the feasibility and the efficiency of these approaches in solving the complex

and large problem along with capturing the human expertise and modeling it for future use.

3.11.5 Statistical and heuristic approaches
Purely mathematic techniques, such as statistical and heuristics were the first to be proposed for

improving the PT system performance and accuracy. They rely on simplistic, easily evaded data

processing which utilises several variants of algorithms to attempt identifying a mathematical

solution to the problem. Research work in this regard was earlier presented by [55-56]. The

researchers proposed the use of certain criteria to evaluate individual testing steps and the non-

deterministic behavior of the tested system. They considered six heuristic algorithms based on

these ideas and implemented four of them having a game-like approach to imitate the black-box

PT [57]. The algorithms were compared by measuring the number of testing steps required for

finding or spotting a vulnerability in the assessed system [58].

Academic work by [59] surveyed the use of statistic and heuristic-based approach to enhance the

automated PT system performances. They were concerned with the planning and the scale-up

challenges in the previously proposed approaches and their impact on performance. The research

focused on the development of a powerful reachability extraction system based on heuristics along

with a planning graph, which is an interesting means to obtain informative look-ahead heuristics

for search and has become ubiquitous in state-of-the-art heuristic search planners. They proposed

heuristics classical planner allowing a flexibility to adapt to more expressive scenarios that

consider action costs, goal utility, numeric resources, time, and uncertainty.

The heuristic approach was again used, although differently, by [60] to find optimal policies to

execute when using attack graphs. The work is based on two major criteria: action failures and

costs. They designed a heuristic approach to compute the lower bound of the expected cost of an

attack graph by setting costs of the actions to zero and considering only the actions’ probabilities,

enabling more freedom in action ordering as any (valid) ordering will produce the same probability

of success of the policy and thus the overall expected cost. They used the produced heuristics to

order the action in which compute remaining actions’ expected costs by prioritizing the most

promising action. Although the principle of ordering action used is scientifically correct, the

context of attack graph (PT) creates an issue since attack representation in form of AG is not

always in form of hierarchy (tree) but instead often a directed acyclic graph. In addition to this,

the possibility of attack or exploit failure makes finding the optimal sequence of attack action non-

trivial. These particularities cause expected cost (probability) or penalty to decrease but remains

admissible, therefore the research concluded that performing an action can still be beneficial in

several possible branches at once if action has more than one root-node path in the attack graph.

Ultimately, this will result in the probability of the action being count multiple times into the

overall probability of success is increased.

3.11.6 Artificial Intelligence and intelligent planning approaches
 Very few research works tackled the potential intervention of AI in the offensive cyber-

security domain in general and PT in specific. In fact, ML was widely used within the cyber-

defense community in designing security systems able to learn and act alone on a real-time basis

without referring or waiting for human (such as an incident responder) decisions or approval. To

the best of our knowledge, ML capabilities with advanced algorithms that can adapt and learn

along with probabilistic mathematics for learning the patterns was never considered for the domain

of PT. These approaches were widely adopted in defensive cyber-security such as intrusion

detection and anti-viruses in which systems inspired from the human immune system were

developed to identify and responds to cyber threats autonomously without referring to a cyber

defense expert or professional to make decisions.

 Excluding the work carried out by [14-15] and [17] which were mostly oriented on

planning for PT rather than intelligent practice (full process), the AI intervention was considered

neither by industry developers nor by researchers. A system named DIRP was proposed in which

a standardized automated cyber-attacks emulation was imagined possible based on an intelligence

automation model and data interoperability by fusing information from multiple freeware

programs that can be thought of as cyber sensors into an interoperable, robust system in a manner

that can tailor itself and learn over time [29-30].

Figure 14: related work which propose intelligent DIRP system working diagram [61].

During latest work carried by MITRE Corporation (Applebaum et al., 2016) which tackled the

problem of making the network security red teamwork autonomous and intelligent, which would

play a critical part in assessing the security of a network by comprehensively and accurately

probing it for weakness and vulnerabilities. Unlike vulnerability assessment, which is typically

focused on identifying vulnerabilities, PT automation aims to effectively assess the entire state of

a network by emulating and launching real adversaries, including their techniques, tactics,

procedures, and goals. Unfortunately, executing a comprehensive testing is prohibitive: cost (time

and exploits’ fees) and impact on the network making it useless in a real-world situation. We seek

to solve this problem by creating a framework for an intelligent automation of the PT by focusing

on every part of the practice along with the post-compromise scenarios (after the perimeter has

been breached or a machine has been controlled).

Additional work proposed solution which act autonomously and self-learn as a human tester will

do, the machine learning enabled the system to learn independently, execute the learned policies

and actively move through the target network using the acquired results to look for further

weaknesses and not only limited to an automated planner designed to accurately reason about

future plans in the face of the vast amount of uncertainty in red teaming scenarios. Our solution is

custom developed, built on a logical encoding of the cyber environment and adversary profiles,

using techniques from classical planning, Markov decision processes, and Monte Carlo

simulations [54]. In related work, researcher proposed a framework which focus on planning and

reported that they have been able to successfully validated our planner against other techniques

via a custom simulation. The tool in question has been deployed to identify vulnerabilities and is

currently used to train defending blue teams [66].

Figure 15: automated planning for remote penetration testing framework proposed by LGS Innovations-

Bell Labs.

Other approaches relied on YARA rules which are pieces of programming language working on

defining several variables that contain patterns found in a sample data and if some or all the

conditions are met, depending on the rule, then it can be used to successfully attack vector

identification. This approach is very limited to strict small number of attacks with a pre-defined

structure [46].

3.11.7 Machine Learning approaches

The first attempt to optimize PT automation using machine learning methods was introduced by

MIT researcher in form of ML module named AI2 that learn and replay attack planning from set

of data input and processed accordingly [49]. In parallel, a similar approach was put forward by

Core Security researchers [50] and implemented in their commercial PT system Core Impact with

an addition of RL modelling from a previous research work, the proposed approach is basic and

limited to small assets and attempt to capture security variables and solves scenarios based on the

probability of success of actions and generated traffic. No mention of the variables and timing

allowed for such small scenarios and the proposed software was tested in practice on a 50-machine

network and fails fundamentally to address the required points namely test coverage and producing

results within the allocated testing time frame. In related work, [53] attempted to automate PT by

mitigating vulnerabilities and countermeasures by conducting comprehensive what-if analyses. A

conceptual framework is provided to reason about mitigation actions applied to a network model.

The approach determines optimal combinations that minimize attacker success following a holistic

mitigation strategy [54].

In a recent work, [51] attempted to apply RL to solve capture the flag (CTF) scenarios.

Fundamentally, CTF competitions are very specific scenarios which do not account for many

variables in typical PT, but the study was significant for investigating the relevance of different

RL techniques. An additional noteworthy proposal aimed to automate exploitation and post-

exploitation by combining deep RL and the PowerShell empire post-exploitation framework [52].

RL agents pick a PowerShell module and use its internal features as action states and then compare

the learning progress of three RL models: A2C, Q-Learning, and SARSA. The results showed that

A2C is the most efficient and trained agent can eventually obtain the admin privileges of the

domain controller system [54]. Another research investigated the application of model-free RL to

pentesting and tested the standard Q-learning algorithm using both tabular and neural network

solving implementations. The output was that both tabular and neural network implementations

were able to find optimal attack paths for small size networks but fails to achieve acceptable results

in medium and large networks due to the scalability problem for model-free representation which

results in huge environments [55]. Finally, research focused into the automation of PT using deep

learning which proposed a two-step approach: first using the Shodan search engine to collect

relevant server data in order to build a realistic network topology, and second employing multi-

host multi-stage vulnerability analysis to generate an attack tree for that network. The researchers

employed deep Q-learning network (DQN) methods to discover the easiest to exploit attack path

from the possible candidates out of thousands of input scenarios, and DQN and enabled optimal

path discovery with an accuracy of 86%. Again, this approach is relevant for simple network and

the second DQN approach fails above a certain network size [57-58].

Overall, we elaborated this graph summarises the research undergone and reading and

summarizing the output of related works. We categorised the previous work on automated PT

under 3 main approaches: blind or regular automation, targeted or script-based automation and

optimized automation which the AI approaches fall under. Figure bellow categorises reviewed

research works under each of the categories.

Figure 16: summary of previous research work on PT automation in form of tree of approaches [23].

To conclude this chapter, a good amount of literature had been produced and been surveyed in this

research after being organised in a scientific structured way that straightforward categorized

literature review from traditional to the offensive cyber security notably VA and PT [59]. We

elaborate a summarized list of the identified issues and shortfalls of previous related works as well

as the limits of the proposed solutions summarized into the following points:

➢ Computer-generated plan and attack graph based on static data would isolate the tester
from the complexity and dynamicity of the real-world network security and therefore make
the accuracy and pertinence of the results very limited to the context in which the tests
were made in and negatively impact the security posture of the organisations.

➢ Suitability of the proposed models and representation into dealing with versatile networks’
topologies, configurations, and securities architectures along with the dynamic context,
usually the proposed solutions were limited into efficiency by many assumptions.

➢ The continuous and inevitable need for a human expert supervising or controlling the
system and making crucial decisions results in the proposed system being less accessible
to non-experts as well as the lack of optimisation in the use of the knowledge gained during
previous testing practices.

➢ The eventual compatibility of the proposed solution to be incorporated or embedded within
the industry’s PT systems and framework, are mostly planning solutions and eventual
implementation will leave the problem of fully automation unsolved.

➢ Blindly automated PT indeed solves the problem of human labor but creates an even bigger
problem of efficiency as the required time will increase sharply and often goes beyond the
limits. The generated traffic will also create additional problems related to network
congestion, security detection, and downtime which are all undesirable problems for any
prudent network security professional. Attacks allow the user to perform reproducible tests,
which opens the path to computing security metrics whose evolution would be a key
indicator of the security posture of organisations.

Chapter 4: Reinforcement Learning
Reinforcement learning (RL) is a branch of machine learning that allows a system software agent

to automatically determine the ideal behavior within a specific context by interacting with its

environment and receive rewards for actions performed with the aim of maximizing its

performance. RL provides a conceptual framework to address a fundamental problem in AI: the

development of situated agents learning how to behave while interacting with the environment.

The problem is formulated as an agent-centric optimisation in which the objective is to choose

actions that result in the highest possible reward, in the long run, resulting and therefore learning

the optimal actions to take from each state [60]. Over the last decade, RL has exerted a seismic

influence on planning and sequential decision-making problem solving and cognitive science in

general. Whereas it was initially treated as a repository of specific computational techniques, RL

has become a general framework for thinking about motivating behavior and learning in humans’

expertise in many fields. With the increasing popularity among AI researchers, the RL role has

broadened and gradually moved beyond a classical gaming and robotics view of RL, tackling many

fundamental real-world problems [61-62].

RL ultimately aims to determine optimal actions’ selection policies in sequential decision-making

processes as it deals properly with delayed rewarding. The general framework is based on

sequential interactions between an agent and its environment, where the environment is

characterized by a set of states and an agent that executes actions from the set of predefined actions.

The agent interacts with the environment and transitions from one state to another following the

execution of actions. The sequential decision-making process, therefore, consists of a sequence of

states and a sequence of actions during a period starting from an initial state and finishing at a

terminal state. For each transition or observation related to action taken and resulting in progress

from one state to another, a reward (also called feedback) is allocated to the agent which the value

is either positive (rewarding) when pursuing actions that lead to beneficial outcomes, or they may

be negative (punishing) when pursuing actions that lead to worse outcomes. RL enable an

autonomous computer system to learn from his own experience using the received rewards and

punishments resulting from the performed actions. The RL agent is trained to take actions, giving

the current environment parameters, that maximise a cumulative reward and therefore using trial

and error to explore his environment [63]. A Markov decision process is one of the mathematical

formalisms widely used to implement RL algorithms. The relevant components of this formalism

are the state space, action space, transition probabilities, and rewards [64].

Figure 17: RL paradigm, the agent learns the optimal policy which represents a map of actions that lead to

the greatest cumulative reward [64].

Figure 17 illustrates Interactions between the agent and the environment proceed by the agent

observing the state of the environment, selecting an action which it believes is likely to be

beneficial, and then receiving a reward, from the environment that indicates the utility of the action

[62]. In practice, there are many different formulations of RL are also known as approaches with

each having different algorithms and implementation. As a matter of fact, RL is defined by a

specific type of problem, and all its solutions are classed as RL algorithms although all require that

the agent makes the best decision (action) possible based on his current state. A different approach

has been developed to either accommodate various types of environments or to utilize slightly

different learning mechanisms [65].

4.1 Reinforcement Learning
RL comes as a natural choice for solving real-world problems requiring sequential decision making

when a human expert performs several tasks that depend one on the other in a very strict order. It

is more relevant to the cases when this expert works with incomplete knowledge. Therefore,

partially observable Markov decision processes (POMDPs) provide a natural representation for

sequential decision tasks under uncertainty and particularly network PT. This representation roots

into a well-established model of Markov decision processes (MDPs) [66] and is distinct by the

feature of allowing the RL agent to act even when it fails to identify the exact environment state.

The POMDP formalism is reputed to be efficient and powerful which helped to extend MDPs

application to several real problems [67]. PT is a sequential decision process in which PT experts

interact and perform actions and wait for the outcome. As with any sequential decision process

automation using RL, it is expected to involve an agent that interacts synchronously with the

external environment or system; the sequence of system states can be modelled as a stochastic

process [68-69]. The agent’s goal is to maximize reward by choosing appropriate actions. These

actions and the history of the environment states determine the probability distribution over

possible next states [66].

4.2 Markov Decision Process
The easiest way for modeling a sequential decision problem is the famous Markov decision process

(MDP) model. MDP is an extension of Markov chains with a set of decisions (actions) and costs

(reward) structure. For each state of the process, a decision must be made regarding which action

should be taken. The chosen action affects both the transition probabilities and the costs (or

rewards) incurred. The goal is to choose an optimal action in every state to increase some

predefined measure of performance. The decision process for doing this is referred to as the

Markov decision process [64]. In MDP, a state is a description of the agent’s environment position

at a particular point in time. Although we will deal with continuous state and action spaces when

describing large problems, we generally assume that the environment can be in a finite number of

states, and the agent can choose from a finite set of actions. Let S = {S0, ….SN } be a finite set of

states. Since the MDP is stochastic, a particular state at any time t ∈ T, can be viewed as a random

variable St whose domain is the state space [70].

Figure 18: MDP relationships between states, actions At, rewards Rt received at stage R(St, At) and

progressing to state St+1.

For a process to be Markovian, the state has to contain enough information to predict the next state.

This means that the past history of system states (earlier than the current state) is irrelevant to

predicting the future [71].

At each stage, the agent can affect the state transition probabilities by executing one of the

available actions. The set of all actions will be denoted by A and for each action a ∈ A is described

by S × S state transition matrix, whose entry in an ith row and jth column is the probability that

agent will move from state si to state sj if action a is executed [72].

When we assume that the MDPs are stationary and thus the transition probabilities do not depend

on the current time or system’s states. The transition function T: S x Ai → Δ (S) summarises the

effects of Δ (S) which is a function that for each state and action associates probability distributions

over the states space S. Thus, for each s and a, the transition function T will determine the

probability of transiting from a state to another when executing a specific action as follow:

Finally, Giving R(s, a) is an immediate reward that MDP agent would receive for executing action

a while being in state, the reward function that for each state and action is as follow R : S x A →

R [66].

4.2.1 Partially Observable Markov Decision Process

In this section, we formally introduce the POMDP model and related decision-making concepts.

The Markov decision process (MDP) is a modelling variant for solving an RL problem which entails

sequential decisions. As with MDP, the goal of the agent is to act in such a way as to maximise

some form of expected long-term reward. There are many cases where the Markovian assumption

may not be valid [73]. Such cases include those where the agent either cannot perfectly observe the

state information, in which case the problem is referred to as a partially observable Markov decision

process (POMDPs) [74], or if there is a long temporal dependence between states and the feedback

provided. Approaches to solving these types of problems often include retaining some form of the

state history [63-67], such as by using recurrent neural networks or a more complex variant that

relies on long short-term memory (LSTM) [71].

Figure 19: POMDP relationships between states, actions, rewards, and observations.

POMDP shares many elements with the fully observable MDP and in practice is a tuple <S , A ,T,

R, O , Z>, consisting of the exhaustive set of possible state space S , the exhaustive set of possible

actions that can be taken space A , transitions or observations probabilities of transitioning between

the various states given actions T and O, reward function R and observation function Z. POMDP's

ultimate objective is to develop a policy which is a graph mapping actions to state aiming to produce

the greatest possible cumulative rewards. Nonetheless, what distinguishes a POMDP from MDP is

that the agent now perceives an observation o ∈ Ω, instead of observing states directly. The set of

observations Ω = {o1, ..., on} represent all possible observations the agent can receive. The

observation is therefore conditioned by state s, action a, and follow the observation function O : S

×A× Ω → [0,1]. The probability of observing o in state s0 after executing a is O (s0, a, o). Note that,

for O to be a valid probability distribution over possible observations it is required that s∈S, a∈A,

o∈Ω, O (s0 , a , o)≥ 0 and ∑o∈Ω O(s0 , a , o) = 1 [68].

4.2.1.1 Observation function
A POMDP is comprised of an underlying MDP, extended with an observation space O and

observation function Z. Let O be a set of observations an agent can receive. In MDPs, the agent

has full knowledge of the system state. In partially observable environments, observations are only

probabilistically dependent on the underlying environment state [23]. Determining which state the

agent is in becomes problematic, because the same observation can be observed in different states.

Z: S x A →Δ(O) is an observation function that specifies the relationship between system states

and observations [71-74]. Z (s,a,o) is the probability that observation o will be recorded after an

agent performs action a and lands in state as:

4.2.2 Process histories
History in POMDP stand for the log of everything that happened during the execution. Thus,

POMDP complete history from the beginning until the time t is a sequence of triples:

The set of all complete histories is denoted as H. Rewards depend only on visited states and

executed actions, and system history is used to evaluate RL agent’s performance and represented

as a sequence of states and actions. The system history h from the set of all system histories Hs

provides an external, objective view about the process; value functions will be defined on the set

s in the next subsection. In POMDP, an agent cannot fully observe the underlying world state and

thus it can only base its decisions on the observable history as the agent has prior beliefs about the

world that are summarized by the probability distribution called initial belief b0 and cover all states.

The agent starts by executing some action a0 based solely on initial belief b0 and the observable

history until time step t is then a sequence of action and observation pairs (A0, O1), (A1, O2),...,

(At−1, Ot). The set of all possible observable histories will be denoted as Ho. Finally, it is important

to highlight that representing Ho impact directly POMDP solution algorithms and the policy output

as the observable history will used by RL agent internal memory [64].

4.2.3 Performance measures

At each step in POMDP, the agent has to decide what action to perform based on its internal

observable history, the policy π: H→A is a set of rules that map observation into actions and

is defined as a probabilities distribution over all possible sequences of states and actions

starting by the initial belief distribution b0. The RL agent goal is to pick a policy that

maximises the objective function that is defined on the set of system histories Hs called value

function V. This function is essential for the learning as it assign a real number to each hs, a

system history hi is prioritized over hj only when V(hi) > V (hj) [37]. Overall, the value

function is a mapping from the set of RL agent histories into real numbers:

In POMDP formulations, the value function V have a structure that makes it much easier to

represent and evaluate and generally V is additive thus the value of a given system history is

the sum of rewards accrued at every step. In the case where the decision process stops after a

finite number of steps H, the problem is called finite horizon problem and usually aims to

maximize the total expected reward. The value function for a RL system h of length H is

simply the sum of rewards attained at each stage [68]:

The sum of rewards over an infinite horizon is unbounded and therefore we introduce a discount

factor γ to mathematically address the problem so the rewards received later get discounted and

will impact lesser than current rewards. The value function for a total discounted reward problem

is [74]

4.2.4 Policy Graph representations

POMDP agent’s task is to determine the best course of actions in an uncertain environment

following a given criterion of optimality. This can be in context of infinite horizon the discounted

sum of rewards. The POMDP agent’s behavior is determined by the policy π which represent a

general mapping from the observation histories to actions π : Ho i→ A. while the history is

represented as:

Therefore, the action is represented the policy π at time t as: at = π(ht). The expected policy value

when considering the initial belief distribution b0 is represented as Prob (h|π, b0) for histories Hs.

The expected policy value for the policy π:

Thus, the value of the policy π at a given starting state s0 will be denoted:

The agent’s goal is to find a policy π that maximal expected value Vπ. Finally, it is important to

highlight that the general policy format as mapping arbitrary observation histories to actions is not

practical and POMDP solving algorithms exploit value and observation functions to calculate

tractable policies where observable histories can be represented as probability distributions over

system states. Generally, any POMDP where the agent can fully observe all state is reduces to

MDP, the sequence of states forms a Markov chain impose that next state depends only on the

current state making the history of the previous states irrelevant [75-79].

4.2.5 Finite versus Infinite horizon

In finite horizon MDP, knowing the current state and stage is sufficient for the agent to represent

the whole observability and thus maximizing total reward whether using a discount rate or not. A

policy π is therefore reduced to a map of states to actions π : S × T → A. π(s, t) is the policy at

state s when t stages are left to end the process, the expected value of a policy is calculated

following Bellman recurrence as:

The value functions in the set Vtπ (0≤t≤H) is t-step where H is the number of stages the process

goes through. A policy π∗ is optimal if VH
π∗ (s) ≥ VH

π’(s) for all H policies π and all states where

optimal value function is in fact a value function with optimal policy. Therefore, the Bellman’s

principle of optimality [77] allows to calculate the optimal t-step value function as follow:

For infinite horizon problems, optimal decisions can be calculated based only on the current system

state, since at any stage, there is still an infinite number of time steps remaining [76-78]. Therefore,

the value of a stationary policy π can be determined by a recurrence analogous to the finite horizon

as bellow:

As the POMDP agent goal is to find the optimal policy π∗ that maximise the value function V for

all system states, The value function is:

Value-iteration methods calculate optimal value functions directly and derive the optimal policies

implicitly from value functions [80]. We introduce here the notion of a Q-function, Q(s, a) is the

value of executing action a at state s, and then following the optimal policy:

Thus, infinite horizon optimal policy is a greedy of value function:

4.2.6 Stochastic policies
In MDP, a stochastic infinite horizon policy is the generalisation of a deterministic policy which

assigns a distribution for all actions to a state instead of mapping every action to a state ψ : S →

∆(A). Mapping states to actions ψ(s, a) is the probability that action a will be executed at state s

and when we add expectation over actions, we can rewrite the value function as:

Generally, stochastic policies are not advantageous in context of infinite horizon MDPs but very

useful in context of POMDPs as it enables us to convert the discrete action space to a continuous

space of distributions actions, then the value function is optimized [81-82].

4.2.7 Policy trees

In POMDP environments, RL agent can only base its decisions on the history of its actions and

observations and not simply mapping states to actions which results in complicated form of policy

graph as:

Like MDPs, when only one stage left, the agent can only to execute an action while it can execute

an action with two stages left, it will receive an observation, and after it will execute the last action

[83].

Figure 20: A policy tree for horizon t. For each observation, there is a branch to nodes at a lower level.

Each node can be labeled with any action from the set A [76].

In a finite horizon of length H, a policy is a tree of height H where all policies for H are represented

in finite policy trees where each node prescribes an action to be taken at a particular stage along

with the observation received that determines the next branch to follow [84-85]. A policy tree size

in horizon H will have a size of possible H- horizon policy trees of:

In context of recursive policy trees, we rely on the notion of conditional plans σ ∈ Γ is a pair <a,

ν> where a is an action, and ν : O →Γ is the observation strategy. The set of all observation

strategies will be denoted as ΓO; obviously, its size is Γ |O|. Γt be the set of all conditional plans

available to an agent with t stages left Γt = {(a, νt) | a ∈ A, νt ∈ ΓOt−1}. In this case, representing

policy trees as conditional plans allows us to write down a recursive expression for their value

function [77]. The value function of a non-stationary policy πt is formulated as bellow where σ0(s)

is the action to be executed at the last stage

In POMDP, the actual system state is not fully observed, the value of a particular policy tree with

respect to the initial belief state b is:

Therefore, an optimal t-step value function for the belief state b is the simple result of the

enumeration of all policy trees for Γt:

Thus, the t-step value function for the continuous belief simplex b is represented by the max of the

finite (often doubly exponential of t) conditional plans [81-84].

4.3 From POMDP to α-vectors and belief state MDPs
POMDP value function is linear and convex [66]. The value of any policy tree Vσ is linear in b,

V∗ is therefore the upper surface of the collection of all value functions of policies for Γt. ασ be a

vector of size |S| with the entries are the of policies tree corresponding to σ in each state:

When applying the α-vectors representation we have a V*
t which contains all t-step α-vectors

corresponding to t-step policy trees and sufficient to produce an optimal t-horizon value

function:

The optimal value function Vt is represented by the upper surface of the α-vectors V* (figure

bellow) where the worst case any policy in Γt might (rarely in reality) be in some beliefs superior.

Many vectors in within Vt are often dominated and thus omitted from representing in the optimal

value function. In Figure 21, the vector α3 is completely dominated by α1, whereas vector α1 is

jointly dominated by both vectors α0 and α2 together [85].

Figure 21: example of two-state POMDP representing the whole belief space B for value function Vt(b)

[85].

Therefore, it is possible clean (often called prune) which will result in lowering the number of α-

vectors representing the optimal value function Vt∗ as follow:

In the resulting parsimonious set, all α-vectors which are representing policy trees) are relevant

[86-89]. A vector α is useful if R (α, V) is non-empty and is not dominated by other vectors as

follow:

In practice, the existence of such these regions is done using linear programming (LP) in many

value-based POMDP solving algorithms regardless the adopted methods for pruning the α-vectors

in Vt.

4.3.1 Implicit POMDP policies

An explicit t-step POMDP policy can be either represented using policy tree or using recursive

conditional plan. In a given b0, the optimal t-step policy is determined by locating value function

Max in the set of useful policy trees, then, the RL agent will perform actions at the nodes, and follow

the observation links to the determined policy sub-trees [76]. the optimal policy at b with t-stages

remaining is:

Instead of keeping the entire policy trees, we can simply preserve the useful vectors in each t-

stage. Therefore, POMDP implicit t-step policy is defined by performing greedy one-step

lookahead. We introduce the Q-value function Qt(b, a) as a value of taking action a at belief state b

while continuing throughout the optimal policy for t-1 remaining stages while bo
a is the belief state

that results from b after taking action a and receiving observation o:

4.3.2 Belief state MDPs

In a finite horizon POMDP, policy is a mapping from belief states and stages to actions π: B × T→

A. previous research demonstrated that a proper update of the probability distribution for the entire

state space S is enough to summarize all the observable history for the POMDP agent without any

loss of optimality [75]. Therefore, a POMDP can be converted into a continuous MDP where belief

states is fully observable and annotated as quadruple <B, A,T b, Rb>. In the following

representation:

➢ B = ∆(S) is the new continuous state space.

➢ A is the action space exactly the same as in POMDP.

➢ T b : B × A i→ B is the belief transition function as follow:

After the execution of action, and observation, the updated belief b0
a can be calculated from the

previous belief b as follow:

• Rb : B × A → R is the reward function:

Then, the RL agent will have just to execute the action prescribed by the policy, and then update

its probability distribution in order to follow the policy. Nonetheless, in context of infinite horizon

the value function remains convex but not anymore linear. The optimal policy for infinite horizon

problems a stationary mapping of action from beliefs π: B→ A [77-79]. Thus, it is determined

using greedy one-step lookahead from the optimal value V∗ as follow:

N

4.4 Policy Graph for Finite-state POMDP
The optimal infinite horizon value function V∗ is often arbitrarily approximated to a set of finite-

horizon value functions V0, V1,... , Vt, with t tend to infinity where all optimal policies are often

linear and convex despite some situation where they are convex but contain infinitely many facets

[70]. Thus, optimal value are linear so whoever two successive Vt and Vt+1 are equal will results

in optimal value:

Because each vector α in V∗ has an associated belief space region annotated R(α, V∗) where it

dominates all other remaining vectors represented as follow:

When an optimal value function V* is represented as a set (finite) of vectors, all belief states within

one region are automatically considered new belief states for each given action and the associate

resulting observation. In this case, the belief transitions constitute a policy graph (PG) where each

node correspond to belief space when optimal actions and transitions are matched to observations

[66-71]. Therefore, RL agent is not required to formally maintain its belief state b and perform the

heavy computing operations of updating it while determining the optimal α-vector but simply

using the starting node which is by default optimised for use as initial belief b0. When the POMDP

does not allow the representation of the infinite horizon policies in form of finite policy graph the

above operation is slightly modified to extract from a suboptimal value function the near-optimal

policy graph. This will raise of course the tracabilty issue as only with a limited size of PG that the

tracabilty of solving is achieved and remains approximate otherwise as it depends on the whole

history of observations and actions which is often sacrificed to ease the solving of the POMDP

problem by assuming that RL agent is constrained in term of memory and only required (the agent)

to execute a policy that are present in the mapping internal states-actions [66-68].

Figure 22: illustration of policy tree branches rearrangement to produce stationary policy [78].

4.4.1 Finite State Controller model

A deterministic PG π is a triple <N ,ψ, η>, where:

➢ N the set of nodes n constituting the internal memory states.

➢ ψ : N→ A the action selection function that for each node ψ(n).

➢ n : N x O → N the node transition function that for each which assign to every observation

the successor node n which in form of observation strategy already defined as trees or

conditional plans. In a stochastic FSC, the function ψ and the internal transition function η

are therefore stochastic.

Figure 23: POMDP policy graph joint influence diagram.

Thus, ψ :N →∆(A) which is a stochastic action selection function that for each node distribution

for all system actions:

While n: N x O → ∆(N) is the node transition function when assign a probability distribution

for every node and observation as:

4.5 Policy graph value
In the POMDP environment, the agent stored PG π =<N,ψ, η> is used to determine policy graph can be

calculated using Bellman’s equation when Tπ is the transition matrix is as follows:

Given the stochastic nature of the functions ψ and η, the transition matrix Tπ will account for expectation

over actions a and observations o is formulated as follows:

When Rπ is consequently the reward vector:

4.6 Value iteration
In MDPs. the standard method is to find the optimal infinite horizon policy π∗ using a sequence

of optimal finite horizon value functions V0∗, V1∗. . . , Vt∗ [90]. The difference between the

optimal value function and the optimal t-horizon value function described earlier is that t goes to

infinity:

given the Bellman error E, the optimal value function can be calculated in a finite number of steps

as follow:

In POMDP context, it is first reduced into a continuous belief-state MDP to enable then the calculate

optimal infinite horizon POMDP policies where the value function is calculated as the following:

Where:

The ultimate aim of any value-iteration algorithm is to find the set t+1 representing value function

Vt+1, given the previous set of α-vectors t. Algorithms largely differ in how they compute value

function representations with most naive way is to construct the set of conditional plans Vt+1 which

is done by enumerating all both sets of actions and observations and mappings to the set Vt with

the size of Vt+1 equals |A||Vt||O| accounting for many vectors in the Vt that are to be dominated

[92-95].Some algorithms calculate V’t+1 by generating Vt+1 of size |A| x |Vt||O| and later pruning

by eliminating the dominated α-vectors using linear programming. Incremental pruning algorithm

such as IP proposed by [78] and others build the set V’t+1 directly from V’t without considering

any useless conditional plans making these method on of the most efficient exact value-iteration

solving that can solve medium size POMDPs when adequate computational power is supplied.

4.7 Policy Search
Policy iteration algorithms works differently from value iteration as they proceed by iteratively

improving the policies themselves generating a sequence π0, ... , πt which converges to the optimal

infinite horizon policy π∗, as t converges to ∞. Policy Iteration works on two stages basis; policy

computing then policy improvement. For MDP policy iteration, it starts with initializing π0(s), then

repeat the policy iteration and improvement steps until πt+1(s) = πt(s) meaning that the policy does

not change [102]. At a first stage, the value of policy is calculated as:

Later the policy evaluation is calculated based on Q-function as:

Finally, the policy improvement is computed for all states as:

Therefore, MDP policy iteration converge much faster with the only disadvantage of the higher

computational requirements as it calculate for each step, a policy evaluation requiring a |S| × |S|

linear system. In POMDP policy iteration, as the importance is to represent a policy so that its value

function can be calculated easily. This there is a use of FSC in the explicitly representation which

is independent from the Vπ. Hansen proposed an approach to directly represent a policy using FSC

and the algorithm execute policy iteration in set of MDPs. After, it performs regular policy iteration

steps with evaluation and improvement done using dynamic programming update to results in a

sequence of finite-state controllers π0, π1…,πt converges to the optimal policy π∗ as t converges

to ∞. The policy evaluation works at each controller node which corresponds to an α-vector.

Because of the deterministic nature of the PG, ψ(n) outputs the action with the α-vector

representation of a V is formulated as:

When:

With the policy evaluation having a maximum running time of |N × S|2.

4.8 Policy improvement
The policy improvement consists of performing dynamic programming backup for each step t in

which the POMDP value function Vπ represented in form of finite set of α-vectors is replaced by

an improved value function V’. This later is then represented by another most of exact solving

algorithms notably the Witness and Incremental pruning perform very well in medium size

POMDPs [99-102].

For every step, a set of α-vectors Vπ is calculated from the finite-state controller π as described

above and later is processed using dynamic programming backup to produce a new Vπ as follow:

➢ For each vector α ∈ V where action and linked α are similar to the action and CP existing

in the initial π, the node will be maintained in the π’,

➢ When α is dominating more than one node in π it is then inserted into the π by changing

the action and successor links to the vector α,

➢ Else, if any new action and observation strategy associated with α is found it is added π.

Finally, the pruning is done by removing any useless node in π which have no correspondence

with α-vector in V. Note that the policy improvement does not affect in any case the FSC which

remains optimal. In practice, POMDP policy only requires a few steps to converge as the policy

evaluation complexity is negligible when it is compared to the worst-case exponential complexity

of the associated dynamic programming improvement which gives this solving approach clear

advantage over value iteration in solving large POMDPs especially when the initial belief state is

known [103].

4.9 Gradient-based optimization

Exact solving approach of POMDPs is famous for being time and computational power consuming

in addition to the high intractability. This is mainly due to fact that optimal policies can be either

very large or sometime infinite. The example illustrating this last issue is the number of numbers

of controller nodes which grow twice exponentially for a given H which is also the case for α-

vectors number required to represent the value function which multiplied exponentially in value

iteration. Therefore, the obvious solution is the approximation through the restriction in the set of

policies with the aim of determining the best policy in the set [94].

All POMDPs policies can be represented in form of policy graphs PG which is an efficient

restriction to limit the set of infinite policies to be representable by finite PG or a limited size FSC

which achieve a compromise or balance between the requirement of observable history and the

ability to reduce the size and complexity of the policy space taking into consideration that exact

policy iteration does not place any constraints on the policy graph structure but some algorithms

exploit computational advantage of searching in restricted FSCs to improve performances.

Research works [95-97] and [99] proposed the search for optimal memoryless policies while [88]

and [100] worked on finding sequences of reactive policies with a direct search in an imported

policies set using called finite policy graphs. In this research, the restricted policy space that we

will be consider is representable by a limited size stochastic finite-state controller and use of a

gradient-based policy search method. The major contribution of this gradient based POMDP policy

search methods is the reformulation of finding optimal POMDP policies problem as a nonlinear

numerical optimization problem for which the gradient of V [101].

4.10 Policy graph values:

The value of a stochastic PG π, with V and R vectors with a of length |N|x|S| and γ <= 1, is now

summarizing in form of matrix of a size |N|x|S| by |N|x|S| is as follow:

the vector Vπ is therefore optimised by picking the functions ψ and η which enable converting the

problem into nonlinear optimisation [102].

4.11 Initial beliefs
Vπ contains the total discounted cumulative reward which depends on the state s and node n in which

POMDP agent starts from called initial beliefs and annotated b0. In reality this is the best representation that

agent have about the environment and is represented as follow:

 With a total cumulative discounted reward:

In POMDP, we often assume that agent starts from the first node and its prior knowledge about the

world is formulated as:

4.12 Reinforcement Learning Approaches:

There are two RL approaches for agent functioning: model-based and model-free. In the model-based

approach, the RL agent will use a predictive model of the environment to learn by attempting different

actions in each state and choosing the best one. The model-based approach uses past experiences in the

form of a sequence of instances <at, ot, rt> to learn a POMDP model that is likely to generate the

sequence. Modern algorithms and computing capabilities allow for a tractable solution for POMDPs

with reasonably sized state spaces. In model-based, the agent uses a predefined internal model, one

that both predicts action outcomes and estimates the immediate reward associated with specific

situations. Decisions are made not based on stored action values, but instead following a planning

approach. This approach makes use of the internal model and therefore the suitability and efficiency

of candidates will depend on their behavior in the specific context [88].

Table 1: a comparative study of RL modelling, learning, and solving approaches [88]

Over the past decade, many research works investigated possible roles for model-free RL in human

experts’ decision-making. In the model-free approach, the modelling step is intentionally omitted to

allow direct learning of the policies. Model-free RL assumes that learning occurs without access to any

internal representation of the environment structure. Instead of building such an internal model, the RL

agent will simply store estimates for the expected values of the actions available in each state and this

will be shaped to become a history of direct interaction with the environment. In our research and

giving the PT context, we opted for the model-free approach and later for a more direct method of

solving RL which is Policy Search which will be fully justified in the next chapter [104-105].

4.13 Model-based vs Model-free modelling approach
In this section we describe different POMDP modelling approaches namely model-free and model-based

which both will be initially considered four our proposed framework. We initially discuss here the two

RL modelling approach and highlighting the pros and cons of each. Finally, we will sum up in

selecting the model-free approach after excluding the model-based approach [106].

Figure 24: different RL learning and modelling approaches with solving methods [108].

4.13.1 Model-free POMDP

Model-free approach RL agent will use algorithm that will compute optimal policy without utilizing the

POMDP environment transition, and reward functions. In practice, a model-free RL agent estimates a value

function or the policy directly by interacting with the environment without requiring neither the transition

function T nor the reward function R. Thus, a value function can be thought of as a function which evaluates

a state (or an action taken in a state), for all states and from it a policy can then be derived [109].

In fully observable MDP the main assumption is that the RL agent might be unaware of the state transition

and reward probabilities and try to navigate the solve the problem, the agent simply relies on some trial-

and-error experience for action selection [110]. This latter is problematic in POMDP where agent is not

aware of any state space but only some aspects of the problem that structural mainly such as the actions it

can execute and the expected rewards without real accuracy. Model-free POMDP [111] attempt to learn

how acting without learning the major parameters of the model which make it a trivial approach to cope

with an unknown state space observed through the use the observation space rather than relying on the

completely unknown state space, thus the main assumption here is that observation could correspond to a

state entry. This use of observations often generates two major issues in POMDP [112]. The first is when

the agent is misled by varied observation output which are very different or irrelevant to the environment

and the RL agent is required to make the difference between the relevant and irrelevant observations. The

second problem with model-free POMDP is the size of the O space which might inferior to A which results

in the RL agent suffering the well-known perceptual aliasing problem. This is worst when having numerous

states correspond to the same precept can and thus the same optimal action causing the downsize of the S

space. This results in the agent will be forced to perform different actions in each state despite the fact that

s and s’ generate the same observation which will harm deeply the calculation of the optimal policy graph

[113].

Figure 25: model-based versus model-free RL [66].

4.13.2 Model based POMDP

In model-based learning, the RL agent exploits a previously learned model to accomplish the task and

therefore it has access to a model of the environment. In this context, a model-based algorithm is an

algorithm that uses the transition function and the reward function in order to estimate the optimal policy.

The agent might have access only to an approximation of the transition function and reward functions,

which can be learned by the agent while it interacts with the environment, or it can be given to the agent.

In general, in a model-based algorithm, the agent can potentially predict the dynamics of the environment

(during or after the learning phase), because it has an estimate of the transition function (and reward

function) [114]. However, note that the transition and reward functions that the agent uses in order to

improve its estimate of the optimal policy might just be approximations of the "true" functions. Hence, the

optimal policy might never be found (because of these approximations) [115-118]. The main advantage in

model-based RL is that it allows the agent to plan by thinking ahead as it distills the results from planning

ahead and translate it into learned policy. The main downside is that in medium and highly complex

scenarios a true modelling of the environment is not usually available [119-121].

4.13.3 POMDP solving approach: value function vs policy search

In this section we describe different POMDP solving approaches, we will then highlight those main

characteristics of both policy search and value function [89]. The aim of the POMDP agent is to find

(take) actions which fulfill its task in the best possible way and thus learn an optimal policy. In fact, an

optimal policy does not map the state to action but instead it maps observation and beliefs to actions π(b).

Contrary to MDPs, the policy π(b) is a function or set of probability distributions over S. As already

discussed in this chapter, a policy π can be characterized by a value function Vπ: Δ(S)→R which is defined

as the expected future discounted reward Vπ(b) the agent can gather by following π starting from belief b.

Because the POMDP representation complexity in term of elaborating the environment especially in large

problems where the real-world effect impacts the complexity. We describe two major approaches of

reinforcement learning: the first which learn a value function over states of the world, and the second which

search in the space of policies directly [121].

There are many different approaches to solve a RL problem with two popular solving approach

namely, value function and policy search [121]. The value function approach allows an RL agent

evolving within the environment to select the sequences of actions that lead to maximizing the overall

value which is often done on the long term and not only in the immediate future. On the other hand,

policy-search approach looks directly in the space of policies for the best course of action.

Constraining the policy space facilitates the search and may lead tractable (although approximate)

POMDP solution algorithms [123-124]. Finite-state controllers (FSCs) are the policy representation

of choice in such situation by providing a compromise between the requirement that action choices

depend on certain aspects of observable history and the ability to easily control the complexity of

policy space being searched [125].

Figure 26: RL different approaches inputs and outputs [126].

4.13.4 Policy-search approach

The policy is the decision-making function which the agent adopts (or try to learn) to later follow. It

specifies what action the agent should take in any of the situations it might encounter. In the RL policy-

search approach, the agent “ultimate” target is to dress the best policy (decision sequences) that maximize

the received award and achieve the initial pre-set objectives such as minimising the solving consumed time

and/or number of episodes, thus the other RL components will be used and manipulated to improve the

policy [110].

4.13.5 Value-function approach:

The value function is used in the learning process to control it over a long time, it specifies what is good in

the long run. As a simple example, the value of a state is the total amount of reward the agent can expect

to accumulate over the future when starting from the current state. Unlike the reward scheme which

determines immediate desirability, the function value deals with the long-term desirability. In analogy to

the human way of acting and thinking, rewards are an immediate pleasure (if high reward) or pain (if low)

whereas values correspond to the more refined far-sighted judgment of how pleased or displeased we are

that our environment is in a particular state. Most of the research work on improving RL technique focus

on improving approximate value functions. The value of an action is its overall utility; for example, an

action may bring a high reward, but lead to low-value states, making it low-value [127-129].

4.13.6 Reward function approach

In this RL approach, defining (finding or determining) the adequate reward function that maximizes the

benefits received or produce the sought decision policies is the goal of the RL agent. It maps the state of

the environment to a single number, a reward, indicating the intrinsic desirability of the state. The agent's

objective is to maximise the total reward it receives in the long run. When adopting the policy search

approach, the reward function is not learned directly as fixed rewarding mechanism will be used as input

for the RL system. The transition probabilities also do not have to be learned [130]. The agent can directly

learn the action values, or even directly the policy, with policy search approach method for instance. There

are, however, techniques for which the reward and the transition probabilities must be either provided or

learned [131].

4.14 Solving POMDP algorithms:
4.14.1 Approximate solving:

We present here the most popular approximate solving algorithms. PERSEUS is a point-based value

iteration algorithm for POMDPs designed by [132] in which the value function update scheme is

implemented with a randomized approximate backup operator that increases the value of all belief points

in B and thus exploiting the value function characteristics. In every stage (value backup), PERSEUS

improves the value of all points in the belief set by updating the value with a random gradient selected from

the available subset of the points [133].

At stage n and giving the value function Vn, PERSEUS calculate the next value function Vn+1 that

improves the value of all values in B resulting in value function Vn+1 that upper bounds Vn over B which

removes the necessity of performing linear programming [134]. The RL agent will first randomly explore

its environment and built B the set of reachable belief points which are then fixed during the entire algorithm

execution phases. PERSEUS will then use the built, from the initial belief, the value function V0 in form of

vector. Then, starting with V0, PERSEUS will keep performing backup stages until it reaches the

convergence criterion as described in algorithm 1 below.

Table 2: PERSEUS Randomized Point-based Value Iteration approximate solving Algorithm [123].

The most attractive feature in PERSEUS is its extensibility to solve large size POMDP enticements as it

relies on the principle of ‘improve–only’ during its backup stage which involves a maximization over all

actions in A. in small and medium size action space, PERSEUS can cache in advance the transition,

observation, and reward models for all actions and thus achieve an optimised implementation of backups.

In large and continuous action spaces where a full maximization over actions is infeasible, PERSEUS

enable the use of max operator that performs the maximisation over a random subset of A [130]. This

method enables PERSEUS to compute some sampled action which can generate temporary models that are

cached for later use notably when the same action is reconsidered in next iterations. Finally, the key factor

for picking PERSEUS algorithm is the efficiency in term of time and memory as picking a belief b which

later backed up will the result into vector improvement for many belief points in B and not only the related

value function of the picked belief and thus computing value functions with a smaller number of vectors

[135].

4.14 .2 Exact solving
4 .14.2.1 Incremental Pruning

Incremental Pruning algorithm (detailed in algorithm 2) starts by generating |A||Vn||O| vectors of the entire

horizon H over Vn and then proceeds to the pruning of dominated vectors.

Table 3Basic Incremental Vector pruning algorithm [135].

Incremental Pruning methods [122] save hugely in terms of computation time as it exploits the following

feature:

Therefore, the number of constraints in the LPs used for pruning purposes will grow and leading to better

performance. The basic IP algorithm exploits the specific context of the above equation when it computes

Vn+1 as bellow:

In general, computing exact solutions for POMDPs is an intractable problem [123] which increased

the use of approximate solving algorithms [140]. Therefore, IP algorithm will determine the best

action for the available state set in a very efficient manner by relying on comparison of the value

function with the witness which led to superior performance and asymptotic complexity.

4.14.2.2 Generalized Incremental Pruning

We present here the most popular and efficient exact solving algorithms. Generalised Incremental

Pruning (GIP) is an exact POMDP solving algorithm which computes optimal solutions for POMDPs

following linear programming (LP) solving and pruning techniques. In fact, exact solving of POMDP

is challenging because of the high computational requirements for LP based algorithms. GIP is

different from major exact solving algorithms which utilise subroutines functions to prune dominated

vectors in value functions and therefore require a huge number of linear programs (LPs) to be solved

and it represents a large part of the total running time [141-143].

Table 4: implementation of incremental pruning combined with decomposed LP [137].

In GIP, pruning subroutines are decomposed using a Benders decomposition [111-114]. The resulting

algorithm incrementally adds LP constraints and uses only a small fraction of the constraints. Our

algorithm significantly improves the performance of existing pruning methods and the commonly

used incremental pruning algorithm. The GIP variant of is the fastest optimal pruning based POMDP

algorithm.

Figure 27: Generalized policy iteration scheme with interaction between value and policy functions [96].

GIP employ enhanced filter function as the intermediate value vectors are passed through to remove

the irregularity by performing dynamic programming updates in POMDPs [109]. In practice.

Nonetheless this decomposition is not automatically applied but only when in context of complex

pruning for POMDPs resulting in GIP algorithm that only require a limited number of constraints in

the original LP to find an optimal LP solving of the POMDP problem. GIP is memory efficient

compared with other IP variants and proved as the fastest exact algorithm for solving small and

medium size POMDP problems, the decomposition approach is behind the performance enhancement

[87].

Table 5: Find Belief Std – computes the belief in which w improves U the most [138].

4.14.3 Challenges with POMDP
In practice, the realistic extension of MDPs dramatically increases the complexity of POMDPs,

making exact solutions virtually intractable. Dealing with uncertainty and partial observability in

sequential decision problems is a very challenging for the RL intelligent agents. POMDPs are widely

approved as successful representation for sequential decision making and planning problem under

uncertainty and have proved successful in most of real-world applications such as robotics and people

assistance [134].

A significant number of research works focused on POMDPs and made many breakthroughs notably

solving to optimality medium and size problem when enough processing power is provided. Although

several efficient approximate methods for POMDPs exist such as PERSEUS [43-44], optimal

solutions are more respected notably with recent advances in LP and the increasing computational

power [135]. Furthermore, the advantage of exact (optimal) solutions is that they are independent of

external parameters such as incremental pruning [137] which is the most popular method to determine

optimal solving for POMDP basing on a subroutine that prune (eliminate) dominated vectors from

value functions to enable subroutine solving of large number LPs. Nonetheless, checking whether a

vector is dominated is often a costly operation which result into LP representing a major part of the

total running time. Most research attempted to address the scalability of the LP subroutine by solving

less LPs taking advantage of POMDP structure which allow the creation of LPs with fewer constraints

and thus deriving much faster and efficient exact solving algorithms [99-100].

Unfortunately, the generality of POMDPs entails high computational cost. The problem of finding

optimal policies for finite-horizon POMDPs has been proven to be PSPACE-complete [117]. The

intractability of exact solving algorithms and notably GIP LP-Solve algorithm and current solution

algorithms, especially those that use dynamic programming to construct (approximately) optimal

value functions [139], the application of POMDPs remains limited to very small problems. In addition,

to act optimally the RL agent might need to consider all the previous history of observations and

actions, rather than just the current state it is in [123]. Finite-state controllers (FSCs) are the policy

representation of choice in such work, providing a compromise between the requirement that action

choices depend on certain aspects of observable history and the ability to easily control the complexity

of policy space being searched.

While optimal FSCs can be constructed if no restrictions are placed on their structure [47], it is more

usual to impose some structure that one hopes admits a good parameterization, and search through

that restricted space. One way is to consider the problem of finding the best FSC of a given size for a

completely specified POMDP. Even with the FSC size restriction constraint, the problem remains NP-

hard [135-139]; therefore, gradient ascent (GA) has proven to be especially attractive for solving this

type of problems because of its computational properties [46-49]. Unfortunately, gradient-based

approaches can converge to arbitrarily bad local optimal.

Chapter 5: Proposed Model of Network Penetration Testing as

RL problem

In this chapter we will detail the process of defining the RL model for network PT which enable IAPTF to

move from IAPTF-Prep data and previous tests data directly inputted towards a POMDPs problem. This

process is done several times for each testing as the output POMDP will change in line with testing data

updates as result of PT progression. As we already discussed in Chapter 2 and Chapter 4, we opted for a

model-based approach because of its relevance to our problem context notably the fact that model-based

methods use the knowledge of the probabilistic environment as a guide and the RL agent plans and

navigates the environment aiming to learn the best actions for each state which reflect the PT practice. We

present here the different steps undertaken to progress from PT domain data and information to formulate

it as a RL problem represented in the form of POMDP environments. We present an extensive explanation

on actions, states, and observations’ definition using the motivational network we presented in the previous

section as illustrative example. In addition, we will allocate a section to explain the rewarding calculation

processes developed for this modelling purpose. Finally, we will present a novel hierarchical RL model

which was introduced late in this research as result of the poor performances of solving large POMDP and

difficulties in extracting expertise to enable future reuse [23-24].

5.1 Explanatory network example

We introduce here one of the 53 created different size networks which includes 50 machines that we will

use as an explanatory example to introduce our proposed RL model of network PT practice. This network

(figure 28) is a typical small and medium enterprise (SME) or regional corporate network with DMZ

including WEB, DNS and GFI servers, internal storage including mail and data servers and other subnets

notably sensitive internal storage, production, Bring Your Own Device (BYOD), Microsoft HypeV, and

VMWare ESX server along with employees’ workspaces. We opted for such rich and complex network to

provide detailed explanation of the proposed RL model and POMDP representation of PT practice within

IAPTF. In total, this network includes 46 physical machines and 4 virtual machines consisting of

computers, servers, networking devices such as routers and switches in addition to security devices that

run an Operating System such as firewalls and IDPSs.

Figure 28: Medium size corporate LAN composed of 50 machines.

5.2 From PT data to POMDP environments

We describe here the full process of elaborating an RL environment for a sample PT starting from a given

explanatory medium LAN example. The overall extraction and elaboration process is explained is the

results of our domain understanding and PT activities, tasks and sub-tasks details grasping and the

proposed model and consequently its POMDP formulation mirror the entire PT practice as explained in

the functional diagram illustrated in Figure 29 bellow.

Figure 29: IAPTF reinforcement learning and memory management diagram.

We also highlight the dynamic nature of the formulated POMDP and the associated frequent changes as

the PT progress and information used in the elaboration are updated or upgraded. The RL POMDP

environment is made from:

➢ States Space

➢ Actions Space

➢ Initial Belief

➢ Observation Space

➢ Transitions Probabilities

➢ Observations Probabilities

➢ Rewards

In addition, each POMDP file will include information about the value of the discount rate (factor) which

is a real value between 0 and 1. At early stage of the model elaboration we attempted to determine the best

discount rate value which guarantees the balance between efficiency and effectiveness or the RL solving

algorithm. We thus tested five possible discount rates “0.99”, “0.95” “0.9” and “0.7” to finally settle on

the discount rate of “0.95”. Finally, the POMDP files header also includes detail about the adopted solving

approach, and we opted for reward as values.

5.2.1 Initial Belief

Previous test data is directly used to artificially boost the POMDP problem solving when the pre-

processing output indicate a certain degree of similarity with at least one previous test. This operation is

performed by a script part of the IAPTF-Prep module which compares current IAPTF-PrepOut.txt file with

stored text files stored in IAPTF-Memory. This comparison aims to identify similarity in machine

configuration such as OS versions, service pack/ version, open ports and running services. During IAPTF

early lifecycle, this operation is optional and can be adapted by the human CEH who will rely on their

expertise to only include the adequate data and discard the rest of the data. It is important to highlight that

the output of the past testing either successful, failure or incomplete is directly fed to POMOP Initial Belief

after being adapted to the new environment along with current information gathering and discovery data.

In case of retesting process, IAPTF-Memory will directly import the data from the last testing output [24].

As the aim is to replace human expert in PT, the framework memory was built around the idea of favoring

automation over the human expert which is left with the task of dealing with failure into performing some

PT tasks or successfully carrying out tests. Similar to CEH operative mode, IAPTF includes an internal

evaluation logging procedure to recognize that what has been done could be useful in another context or

with minor amendments when required by CEH. Also, CEH will initially, provide feedback on the failed

and incomplete testing to select and store the highly prominent ones for future use even if they ultimately

failed. In terms of data, IAPTF will be mainly dealing with the policies stored into the PG file which

constitutes the outcome of the POMDP problem solver [123]. Below is an example of POMDP initial

belief for an environment of 100 states and where the only known information refereed by 1.0 value is the

first state which is Internet. This reflects a Blackbox PT practice when the tester has no prior knowledge

about the assessed network.

Figure 30: Initial Belief state when nothing is known for the RL agent, and the starting point is Internet with a

value of 1.0

5.2.2 State space

The state space S is defined as the collection of all known states for each machine, networking, or

security components constituting the network including virtual appliances and cloud backup servers.

In other words, a machine is any appliance running an OS and using services and applications. S

contains all relevant information, from the PT expert view, about the assessed network. It will include

information about any software or hardware machine including virtual and networking equipment that runs

an OS. The information is OS parameters, port, services and applications, OS patches and updates. In

addition, S contains relevant security and connectivity information. This information is represented in

POMDP language using a special notation that aims to minimize the size of the file but remain succinct.

In practice, most of the State space is elaborated at an early stage mimicking modern PT techniques relying

on strong discovery and starting knowledge to feed CEHs and automated system before launching the

initial information gathered phases. Nonetheless, some information will remain missing or not accurate

enough and thus represented in a probabilistic way after being enhanced by information coming from the

pre-processed output to avoid redundant or useless representations [23].

Any machine or connecting device within the network will be assigned a unique number “i” and will be

represented as either Mi or Ri and the remaining associated information is represented in, but not limited

to, the following way Mi-OS1-Port80-ServiceXXX or Ri-OS2-Port443-ServiceYYY. The information

initially represented are often updated as the discovering and scanning tasks progress to confirm previous

probabilistic information or to add a new one. Furthermore, network routers are considered to be more

than just transmission equipment, in fact, they can run operating systems and embed one or more security

isolation and protection mechanisms notably FWs (firewalls), AVs (Anti-Viruses), IDPSs (intrusion

detection/prevention systems), VLANs (virtual LANs) and others. Following this logic, network and

firewalls are either considered as machines (running OS and thus having vulnerabilities) or simply as

security isolation delimiter for clustering purposes. The figure 31summarizes the state space representation

for two M7 computer and R3 router. We included the generic start state “internet” from which the hacker

and ethical hacker start the PT along with the last state “Terminal” which, when reached, the PT is

completed.

Figure 31: POMDP State space representation of two machines; computer M7 and router R3.

In addition to the machine and devices information, state-space will include information about the

networking and security configuration of the assessed network such as connectivity, security isolation

(sub-net, virtual LAN) and defense restrictions. The purpose of such representation is to enable future

hierarchical POMDP representation which will be discussed later in this chapter. The following example

summarises the information captured about two machines Mi and Mj as Mi-Mj-TCP-SSH-0”. In a later

stage, as we introduced the security clustering method to divide the network into a set of security cluster,

we added to the current POMDP representation the security cluster number j (Cj) to which the machine or

networking device belong. Furthermore, the representation accounts for the Head-of-Cluster by adding the

HoCj annotation and the relevant security and networking configurations after the Machine ID as

illustrated in figure 32 below:

Figure 32: POMDP State space representation including security clustering and Head-of-Cluster information.

Finally, the networking information are not static and thus we opted to represent it within the POMDP

observations to reflect the real-world situation [23-24].

5.2.3 Action space

The action space A is the set of available actions that were deducted from our study of activities,

tasks and sub-tasks performed by the pentesters and hackers. We elaborated the network POMDP

model action space in a reflection of the sub-tasks performed by pentesters but in a structured way. We

accounted for all PT tasks and sub-tasks following a concise annotation. As with any RL problem, the

number of actions is known, static and limited and PT does not fall out of this logic. Initially, we opted for

more generic actions that fits all type of activity without differentiate between doing the task for the first

time or repeating it. We therefore proposed an Action space made from 11 actions namely MachineStatus,

OSDetect PortProb, SVCDetect, VulnAssess, Exploit, Pivot ShellPersist, PrivEscalation, in addition to

some generic action that will be used for control purpose by RL agent namely Terminate and Give_Up.

Figure 33 illustrates the 11 action and brief description of each action.

Figure 33: POMDP Actions space made from 11 specific actions and 2 generic actions

We then extended the action space to include 19 in total to reflect the real-world when different Probing

levels which are different in term of intensity and reflection the Nmap software predefined probing profile

respectively ProtProbv1 for NULL probing, ProtProbv2 for regular probing and ProtProbv3 for

comprehensive and slow probing. We also added the retesting actions such as OSCheck for

rechecking operating system and versions, PingSweep and TraceRoute for advanced discovery,

SVCCheck for rechecking service detection and Re-Exploit for re-attempting the exploit with or without

changing parameters as summarized in figure 34 .

Figure 34: POMDP extended Actions space made from 17 specific actions and 2 generic actions

The number of actions that the expert can perform is huge and cannot be totally represented within the RL

action space which led us to introduce these limited contextual actions. Furthermore, as in PT domain

successful or failed action might require further or repeating actions, we defined some additional actions

to differentiate between the original action and the other action. In practice, the purpose of such

representation is to deal with the special and complex scenarios notably:

➢ failed action to fully (root) control a machine that leads to further action attempting user session

or escalates privileges or switching to other attack paths.

➢ dealing with action relying on uncertain information, sub-tasks that fail because of the assumption

made and require further actions when additional information becomes available and might be

successful.

➢ actions prevented or stopped by security defense (FWs or IDPSs) which may be re-attempted under

different circumstances.

5.2.4 Observation space

The observations space O is the set of available observations we deducted from the non-confirmed

states. In a decision process, observations provide information to the decision maker for deciding the

future course of action [88]. We propose to represent a comprehensive observation space which

include all possible observations, this will enable our RL agent to establish and devise rich policies

with a different course of action for each possible observation which ultimately will tend to select the

same course of action for many different observations that share similar features. In our model we

represent different observations for each machine such as the status Mi-Off when turned off and Mi-

On when machine ais running. In addition, we also add four generic observations which reflect

observation used by the RL agent to tackle some situations and ends the test respectively: Test-

Achieved, Test-Partially, Test-Stopped and Test-Overtime. Finally, the networking and reachability

data is modelled in form of pivoting observation. Detailed observation space representation is

provided in figure 35.

Figure 35: POMDP extended Actions space made from 17 specific actions and 2 generic actions

The observations space reflects the probabilistic nature of PT practice where states are not always

deterministic notably as results of action (scanning, fingerprinting, exploiting) which made us adopt the

model-based approach and allocating the adequate probabilities for Transitions and Observations in order

to mirror the real-world PT practice [130-133].

5.2.5 Transitions and Observations Probabilities

In this section, we describe and illustrate the transition and observation probabilities calculation based on

real CVE and NVD data and mathematical formulation. Initially, all transitions and observations

probabilities were uniformly sampled in the form T: * : * : * X and O: * : * : * Y with probabilities X=

1/total number of states and Y= 1/ total number of observations. For a realistic Transitions and

Observations probabilities calculation we considered multiple approaches. We settled on the most

appropriate calculation method based on Nmap NSE and Nessus output to determine Transition and

Observation probabilities for each action. We will be relying on vulnerability assessment output (NMAP

and NESSUS) and other sources to define vulnerabilities discovery and information gathering and

Cyber Threat Intelligence. We rely om two major online databases VulDB and NESSUS Auditing

DB. The starting point in transition and observation probabilities calculation is the IAPTF-Prep

output covering information gathering (scanning and fingerprinting) and discovery which are mainly

resulting from Nmap scanning results as illustrated in figure 36.

Figure 36: Nmap NSE OS detection and fingerprinting sample output

In addition, we correlate the Nmap data with NESSUS vulnerability assessment output as illustrated

in figure37 below. As highlighted, the VA output confirms the OS detection and advance that the

assessed machine is running Windows XP Service Pack 3.

https://vuldb.com/?kb.cti

Figure 37: NESSUS vulnerability assessment output and OS detection validation

From all data available we create the following OS fingerprinting table which combines and collates

all data. For efficiency reason, we artificially edit the probabilities to only leave a maximum of three

possible OS out of six which reflect highest three probabilities and we discard the remaining ones as

illustrated in the table 2. We provide two examples summarising IAPTF OS detection and

fingerprinting in two major OS namely Microsoft Windows and Apple Mac OS. For the windows

machine, only Windows XP SP3, Windows Vista SP1 and SP2 options are considered with

probability respectively 0.75, 0.15 and 0.1.in Mac OS machine, only three possible OS out of eleven

are maintained as summarised in table 2. note that the choice of maximal three options is purely

functional and aims to reduce the size of the POMDP on one hand and enable a better solving

convergence on the other hand. In practice, it is highly unlikely that a machine OS detection with

probability of 0.1 is an accurate detection.

Table 6: OS detection output with transition and observation probabilities calculation example in Windows.

The representation of machine OS and version detection is illustrated in figure 38:

Figure 38: Windows Machine OS detection Transitions and Observations probabilities POMDP

representation

Another example of transition OS detection probabilities in Mac OS is illustrated in table 3.
Table 7: OS detection output with transition and observation probabilities calculation example in Mac OS

machine.

In this case the number of probable OS version is eleven and we narrow it down to three by discarding

the least probable OS configuration. Nonetheless, the observation probability for undetected OS

version will increase considerably and will represent the sum of the omitted 8 probabilities to reach

0.21 and so 21%. This is the perfect illustration of uncertainty in PT practice and which we reflect

perfectly in our POMDP environments. Figure 39 illustrates the POMDP representation for machine

number 23 in the explanatory network.

Figure 39: MacOS Machine OS detection Transitions and Observations probabilities POMDP representation

The next step in this part is probabilities allocation for port probing and service detection. This step

is less problematic as port have only three statuses: Open, Closed and Filtered. Often, the simplest

scan can determine whether the port is closed or not. On few occasions results are unclear as some

ports are simply filtered and cannot tell if they are open as illustrated in Figure 40 Transitions.

Figure 40: A portion of POMDP Transitions probabilities representation .

Finally, we provide here the Observation probabilities allocation for the rest of actions on which we

highlight the fact that we started by allocated a uniformed probabilities for all state-observation which the

total sum represents 0.1 in order to allow the RL agent further exploration. In the figure 41, this uniform

probability is set to 0.000574713 which reflects the portion of each of the 174 observations in this example.

Figure 41: A portion of POMDP Observations probabilities representation.

5.2.6 IAPTF Rewarding Scheme:

This section details the reward calculation and allocation approach adopted in the IAPTF generated

POMDP environments. We present here two approaches: reward calculation and reward allocation. The

reward calculation applies for exploitation and post-exploitation (privileges escalation and pivoting)

activities and will rely on a well-defined mathematical formulation using IAPTF-Prep and National

Vulnerability Database (NVD) CVSS data for each exploit (CVE). After considering multiple approaches,

we settled on the most appropriate mathematical calculation inspired from the Common Vulnerability

Scoring System (CVSS) established by the National Vulnerability Database which we esteem adequate

in the context of PT. Additionally, we considered to use real-world data built from IAPTF past tests and

enhanced by the human expert initially meant to passively supervise the IAPTF.

5.3 Reward calculation
5.3.1 Using CVSS probabilities to calculate the Rewards:

The proposed method recognizes that information gathering using network remote scanning and discovery

tools and the system often produce an uncertain result. Thus, in this research, as we focus on black box

penetration testing, we will assume that information gathering phase undertaken by the expert using the

PT system facilities can only provide probabilistic information about the operating system and services

running on the target machine. The reward is annotated as R : action a : state s : state s’ : observation o

reward-value. During this research, the probabilistic nature of the exploits and attacks (RL actions) is a

crucial factor to be considered. As we aim to mirror to the best the real-world environment which will

allow us to simulate real scenarios. Thus, we are going to use the well-established and standard sources

for as an input for generating the action probabilities (actions, observations, transitions). Indeed, Common

Vulnerability and Exploits (CVE, NVD …etc.) constitute a reliable online vulnerability/ exploit catalog

and database of known proven vulnerabilities associated with different type of systems/ software which

were, being or can be exploited to compromise these targets. The use of such sources is motivated by the

rich content, easy accessibility, regular update and the available scoring function and mechanism such as

CVSS.

The National Vulnerability Database (NVD) provides CVSS scores for almost all known vulnerabilities.

As a starting point for this research, only individual vulnerabilities will be considered in the method of

computing the Cost using the DVSS and a dynamic cost-centric framework. The Common Vulnerability

Scoring System (CVSS) provides an open framework for communicating the characteristics and impacts

of IT vulnerabilities. Thus, CVSS is the most suitable and reliable measurement approach for this

research’s vulnerability impact scores attribution (or success probabilities which will be derived from the

CVSS overall scores). Furthermore, we opted for Varying Rewards as we noted that the results of a generic

rewarding scheme are very negative and that they are diverging we undertook few steps so we can improve

through the introduction of special rewards for some actions. This is part of the process in RL that gives

us control as to what the algorithm optimizes for. We want to discourage the algorithm from terminating

before reaching the pivoting and privileges escalation and thus we introduced a small positive reward for

each move action. The calculated scores of intrinsic, time-based, and ecological metrics by combining

related sub-scores and modeling the problem’s parameters into a mathematical framework to develop a

unique severity cost. The third version of CVSS equations is done following the CVSS v3.0 equations

[139].

5.3.2 Exploitation reward calculation:

To calculate the reward for each of the action/state combination we relied on a realistic approach in cyber

risk assessment and used data from NVD namely CVSS version 3 calculator. The aim was to determine

the reward value that the IAPTF RL agent should receive for each action in terms of exploitation, pivoting

post-exploitation as being used NVD and CVE qualitative metrics translated into exploitability. In fact,

CVSS scores are computed in sequence such that the Base Score is used to calculate the Temporal Score

and the Temporal Score is used to calculate the Environmental Score. Impact is measured from the

concatenation of Confidentiality Impact (C), Integrity Impact (I) and Availability Impact (A). The

Exploitability measured from the concatenation Attack Vector (AV), Attack Complexity (AC), Privileges

Required (PR), User Interaction (UI), Scope (S), and the overall impact value previously calculated.

Finally, the Temporal Score Metrics is the concatenation of Exploit Code Maturity (E), Remediation Level

(RL) and Report Confidence (RC) and the overall exploitability value previously calculated. The Base

Score is a function of the Impact and Exploitability sub score equations defined as follow:

And the Exploitability sub score is defined as:

The environmental score is defined as:

Finally, the Modified Exploitability sub score is defined as:

Figure 42 summarises different qualitative entries used to calculate each metrics.

Figure 42: qualitative metric entry to calculate Base, Temporal and Environmental scores.

The overall reward is the concatenation of Impact Metrics, Exploitability Metrics and Temporal Score

Metrics calculated from the qualitative value and then used during the overall reward calculation. Below

are two explanatory real-world examples to illustrate reward calculation for two CVEs IAPTF:

Explanatory Example 1: CVE-2011-0660 is windows Server Block Message (SMB) related

vulnerability where a client could allow remote code execution on Microsoft Windows Server 2008 SP2

and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1,

Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016, allows an information disclosure

vulnerability in the way that it handles certain requests. The security update addresses the vulnerabilities

by correcting the manner in which the CIFS Browser handles specially crafted Browser messages and

correcting the manner in which the SMB client validates specially crafted SMB response. To exploit the

vulnerability, an attacker would have to be able to authenticate and send SMB messages to an impacted

Windows SMB Server. Figure 43 summarises the calculated CVSS score for this CVE.

Figure 43: Impact, Exploitability and Overall CVSSv3 score for CVE-2011-0660.

Explanatory Example 2: CVE-2016-9209 is a vulnerability in TCP processing we encounter often in

CISCO FirePOWER system software that could allow an unauthenticated, remote attacker to download

files that would normally be blocked. There are many Cisco products which are vulnerable such as

Adaptive Security Appliance (ASA) 5500-X Series with FirePOWER Services, Advanced Malware

Protection (AMP) for Networks. Overall CVSS score for CVE-2016-9209 is illustrated in figure 44.

Figure 44: Impact, Exploitability and Overall CVSSv3 score for CVE-2016-9209.

Finally, after obtaining the overall CVSS score, the reward for the Exploit, PrivEscalation and Pivot is

respectively 5, 10 and 15 added to the overall CVSS score. For instance, the execution of Exploit CVE-

2011-0660 against the machine M22 running Windows 7 SP1 and having port 445 open will receive a

positive reward of 13 for exploitation and 18 for admin privilege escalation and 23 for installing a rootkit

and perform pivoting as illustrated in figure 45,46 and 47.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9209

Figure 45: POMDP reward representation in POMDP for Exploitation actions.

Figure 46: POMDP reward representation in POMDP for Privilege Escalation actions.

Figure 47: POMDP reward representation in POMDP for Pivoting actions.

5.3.3 Reward allocation

In the second part of IAPTF rewarding scheme rely on the allocation of reward values following a human

CEH expert rewarding grid and the use of some default rewarding values are used for generic situations.

Rewarding the performed actions will be predefined by a human CEH who will have to decide the adequate

reward for each action performed depending on his/her overall insight he has on the practice, experience

and testing achievements. Afterward, IAPTF will relieve the human expert from the rewarding task and

only request a human decision on the global PG (attack policies). IAPTS reward function will be utilised,

and thus the reward for the performed actions will be calculated following well-established criteria such

as: reaching a terminal state; achieving a final (global) target or local goal (controlling intermediates

machines); or failing to reach any goal. The criteria for the choice of rewards will mainly be the estimated

value of the achievement, the time consumed; and the degree of generated traffic and thus associated risk

of detection. We detail below the manual reward allocation rules:

➢ Estimated machine value: The objective of a PT is to successfully fingerprint or discovery

vulnerabilities in specific machine in a network. Here we thus propose to assign a fixed reward for

each successful exploit on an uncontrolled or partially compromised machine which will vary from

1 to 10 depending on the position (DMZ, Workspace, Sensitive), and future prospect beyond this

achievement.

➢ Time Consumed: Each scanning, discovery or probing action requires an execution time and may

be achieved within or beyond the allocated time. Thus, the more time is consumed the less is the

reward allocated. We define a discount function which multiplies the maximum forward into the

percentage of time allocated to complete the action (MachineStatus, Prob, OSDetect, SVCDetect,

and VulAssess), so that the expected duration of the PT tasks may be minimised by assigning each

transition, an action that goes overtime will results in negative reward.

➢ Risk of Detection: this is explicitly represented by assigning a discounted reward for aggressive

actions causing large traffic and thus having high risk of detection and prevention by the network

IDSs.

Figure 48: POMDP reward allocation for vulnerability assessment and discovery action.

Furthermore, we allocate the following reward for these special cases reward allocation. For Give Up

action will receive a positive reward (10) if the RL already achieved at least one of the predefined targets

(either as admin/root or lower privileges). Nonetheless, if the RL did not yet achieve any target Give Up

action receive a very bad reward (-100). Action leading to exceed the maximal allowed time (Run

Overtime) will receive simply a null reward. Finally, the Terminate action is a twofold problem from

rewards allocation point of view. The RL agent that reaches this state can be either considered as a good

or bad outcome depending on the context and thus rewarding (positive value) or punishing (negative

reward) is allocated basing on previous states and history H of the agent but not ignoring the previous

achievements prior reaching such state. Thus, a double weight of measure will be adopted and the allocated

Negative or Positive values. When the previous achieved results were so far interesting (potentially valid

attack path) and only the last action to the terminal state the reward for this action will be highly positive

(+100). In some situation a Null (zero) reward is allocated despite being relatively bad situation which will

allow the RL agent to expand further for a couple of state before facing a negative reward forcing the

termination. Nonetheless, the action leading to a terminal state from a poor or null previous state should

imperatively be severely punished by allocating a negative value (such –100) which will force the

termination of the sub-test. It is worth to highlight that we adopted a progressive rewarding approach thus

the closer to the target/aim the higher is reward value as shown in figure 49.

Figure 49: POMDP reward allocation for termination actions.

5.4 Hierarchical POMDP for medium and large networks

In this section, we detail the methodology adopted to address our research problem which is

addressing the scaling-up issue in solving PT RL problem (large and complex POMDP environment)

in context of large computer networks. Initially, we will re-introduce the proposed POMDP model

which will be serving as a starting point to the introduction of the new hierarchical RL model for

representing large network PT. To achieve this goal we had to consider two options: the PT phases

separation and security cluster separation and the later was undoubtedly the most adequate in term of

efficiency and relevance.

In this research, our objective turned into finding the perfect way in dealing with medium and large

PT associate POMDP environments in terms of consumed solving time and memory. This scalability

issue became more impactful with larger environment as discussed in the RL chapter and thus the

urgent need for a hierarchical representation of large problem through dividing POMDP environment

which are often the results of large LANs and MANs networks, we investigated different options of

enhancing the efficiency of IAPTF especially in solving medium and large size POMDP which are

the logic result of representing PT in medium and large LANs and MANs. The obvious approach to

address scalability issue in POMDP solving is by solving smaller environments which is

consequently dividing large environments into many smaller ones reflected by either splitting large

network into a number of sub-networks or by considering each phase activities and tasks separately.

We detail here the two approaches considered and implemented initially within IAPTF, then we will

justify the choice of the clustering approach to achieve an efficient hierarchical RL representation of

PT.

5.4.1 Option 1: task-based approach

PT is a task-oriented practice with a well-established sequential order and some repetition of some

tasks depending on the context. A natural way of tackling the scaling problem in RL solving is by

dividing large POMDP environments following task or group of tasks approaches. In fact, the manual

and automated PT multi-step procedure with the general principle behind is to evaluate and test the

security of any computing resource. The approach considered into breaking down the complex PT

practice into phases each grouping several costumed tasks. The idea came from the vulnerability

assessment and security auditing industry where each activity is performed separately but in a

sequential order and where the output of the first phase is used as input for the second one. By

considering each of the PT phases separately, such as Vulnerability Assessment, Exploitation, Post-

exploitation, and Validation, we can elaborate a POMDP problem with the data relevant for each

phase and will be resulting into smaller POMDP environments which are easier and faster to process

and solve and therefore enhancing IPATF performances. As described in Chapter 2, the PT

procedures are better tackled when they are grouped into phases which are a set of tasks and sub-

tasks (figure 50). Below are the main phases, activities, tasks, and sub-tasks are being considered in

our aim of representing the PT into a hierarchical RL and thus dividing it into many sub POMDP

environments.

Figure 50: Standard PT practice cyclic activities diagram [27].

The first phase in PT is to perform vulnerability assessment (VA) of the target network which is a set

of activities such as network discovery, port scanning & probing, vulnerability analysis and finally

vulnerability identification and validation. Each of these activities is multi-task such as scanning and

probing which is a set of tasks varying from hosts and servers’ discovery, port scanning and finally

OS fingerprinting. For each task, many sub-tasks are implicitly performed taking the example of host

discovery which is done through launching first a ping sweep then following up by doing traceroute

discovery. Note that the PT versatility impose that tester/system to identify additional computing

resources that have the potential to affect one or more mission critical systems which is often based

upon the assessed asset functioning. The associated network POMDP environments will contain

exclusively the vulnerability assessment and discovery information and aim to solve it as separate

RL problem with the aim of serving as input for the next phase POMDP.

The second phase is Exploitation with all the required prioritization of the launched exploits, payloads

with the available resources in term of exploitability, running time and importance level. This is done

through multiple activity such as validating the relevance of the exploit based on several factors,

ordering and sorting the planed exploits following a logical diagram such as data sensitivity,

frequency of usage, type of application and cost and finally launching the exploits and assessing the

outcome. Each of these activities is itself a set of tasks and sub-tasks such as exploitation, which is a

set of shortlisting the relevant exploits, establishing an order, customize the exploit variables to match

the target IP, architecture, kernel, and variant. Again, all associated network POMDP environments

will contain exclusively exploitation and attacking information and aim to solve it as separate RL

problem with the aim of serving as input for the next phase POMDP.

The third phase in our view of PT in IAPTF is the post-exploitation which group all activities done

by the tester to follow-up the exploitation phase. In practice this phase is mainly constituted of

privilege escalation and pivoting activities which are multi-tasks and highly versatile. Tasks are

typically related to establish guest control or executing the relevant buffer-over-flow to force

privilege escalation. Then, this later outcome is used ti achieve full control over the asset and to

launch new attach against adjacent computers by repeating the phase 1 and 2 activities which should

produce a different output. In this phase, all associated network POMDP environments will contain

post-exploitation and attacking information in addition to a small fraction of vulnerability assessment

and exploitation phases as there will be cyclic activities requiring the inclusion of such information.

Again, this POMDP will be solved separately with a major difference related to the number of

POMDO problems to reflect the version for each of the pivoting point representation and this will be

processed later to serve ss input for the next phase POMDP. The fourth phase is the validation where

all activities related to checking the status of the targeted machines and results in term of success and

failure are grouped together and examined. In addition, the different adopted attack paths are

extracted and reconstructed to produce a clear attacking scenario checklist. This is highly automated

phase and human interaction will be simply validation or changing the stored data.

Finally, the fifth phase is the reporting and recommendation which is fully automated and does not

require any further RL involvement. In this phase, activities such as summarising the output pf tests

and attacks launched and effects along with the recommendations are achieved using Expert System

database where such information are stored and in form of pre-defined recommendations. In fact, the

CLIPS expert system embedded with IAPTF will base on the determined threats and impact levels

notably crucial, critical, serious, and minor to address the security weaknesses and how they should

be dealt with, depending on the threat, it is eliminated by applying various security measures, such

software patching, reconfigurations, managing access control permissions, network monitoring and

encryption. This phase also will output a generic testing report (document) which is a simple format

that offer guide on the minimization of consequences if an attack occurs in future.

Figure 51: Task based hierarchical modelling of network PT practice.

5.4.2 Option 2: Security Cluster approach

The second and most plausible option is the decomposition of the network itself and maintain the

regular PT multi-phases approach in proceeding. In fact, this approach lies on well-established

practice in network security maintenance and development where the large networks are initially

divided into smaller sub-networks following a given rule. The rules are often related to the

functioning, configuration, or location. While such approaches is commonly adopted, it lacks depth

from a security point of view as it reflects more the administrator and technician view of the network.

We propose a novel approach of dividing network in security cluster which we adopt the security

separation and isolation of the cluster (grouping several computers) having the same security

protection level and online exposure. This approach mimics the hacker behavior as they see the

network form security point of view and class section based on their security level.

Figure 52: large corporate LAN architecture with security isolation illustration [45].

Performing PT different tasks requires from the PT expert to meet some basic requirements. One of

the most important requirements in PT is to clearly identify and understand the assessed network

security mechanism and most importantly the firewalls functioning and the resulting isolation. This

knowledge is totally extracted from the vulnerability assessment and reconnaissance tasks which is

a combination of topology and network defense. This will result in identifying the relevant attack

paths based on the knowledge of existing connections between machines and/or sub-networks and

firewall filtering. This is a crucial phase as any cyber attacker will, after performing the initial

reconnaissance, try to sketch a logical security map of the target network and assess the ability to

reach the targeted machine. Often, tester can initially reach only few machines from his external

position (high-value targeted machines cannot initially be reached) and the overwhelming majority

of assessed network machines are unreachable directly form the Internet. Thus, a progressive

approach is unavoidable, the tester will attempt to gain partial or full control of the reachable

machines and then use these controlled machines as a launching point for the future attacks as it is

likely that they share a sub-network with one of them: and those which are unreachable from any

controlled computer.

Figure 53: Security cluster based hierarchical modelling of network PT practice.

The network clustering is a crucial phase for our research as this will allow an easy and simple RL

modelling of large network PT environment which mirror the real-world hacking operative mode. In

fact, it is hard to deal with each network connectivity separately and this will generate larger

environment problem and increase solving complexity notably when representing the full LAN

topology. The network clustering is therefore our proposed method to incorporate the information

about the network connectivity within the RL model along with maintaining the solvability of the

problem in an adequate amount of time. The full technical details about how the security clustering

is done will be detailed in the next chapter.

5.4.3 IPATF adequate Hierarchical RL approach

In our quest for better performances in IAPTF, we identified two main approaches for automatically

decompose large POMDP environments into smaller POMDPs. Secondly, we are concerned with the

computation of optimal policies, using hierarchically decomposed POMDPs. Most of the work to

date has targeted this second problem. In practice, this first hierarchical approach which relies on a

division of PT phases will generate higher-level POMDPs which have a direct control over more

specialized POMDPs. At the high level, the POMDP policy consists of selecting appropriate sub-

modules (i.e. hierarchical actions), while at the lower-level, specialized POMDPs have policies

involving direct actions onto the problem domain (i.e. non-hierarchical actions). This division of

tasks is not strict, and POMDPs of all levels can have both hierarchical and non-hierarchical actions,

except for lowest-level POMDPs which have only non-hierarchical actions. Belief states are always

maintained over all POMDPs of the hierarchy and are updated after each action/observation pair.

When a specific specialized POMDP is selected, it is identified as an ``active module” and is

responsible for the learner's action selection at that given time step. The belief state is updated

according to a default action, thereby ensuring that they capture the entire history and will produce

the appropriate behaviour when later selected as an ``active module".

We have shown that in a domain such as a conversational speech interface, structure can indeed be

exploited to obtain a policy much faster than with a conventional POMDP, and furthermore allowed

us to build a larger POMDP-based dialogue manager than was possible with non-hierarchical

POMDP representations. Such structure is not present in all domains, however is found in a great

variety of applications, ranging from the dialogue task, to robot navigation tasks where the domain

could be divided into a set of separate problems according to building topology (e.g. each room gets

a separate POMDP). The speedup obtained by applying our hierarchical approach to POMDPs can

be remarkable in domains with appropriate structure. The hierarchical POMDPs generator will first

develops a high-level PT plan to sequence the overall (complex) PT models to be converted into a

detailed continuous state plan. This hierarchical planning approach results in a decomposition of the

POMDP planning problem into smaller sub-parts that can be solved with significantly lower

computational costs. The ability to sequence the visitation of local dynamics models also provides a

powerful way to leverage the hybrid dynamics to reduce state uncertainty. We evaluate the proposed

planner on a navigation task in the simulated domain and on an assembly task with a robotic

manipulator, showing that our approach can solve tasks having high observation noise and nonlinear

dynamics effectively with significantly lower computational costs compared to direct planning

approaches.

Chapter 6: Intelligent Automated Penetration Testing

Framework
In this chapter, we will gradually introduce the detailed methodology which enabled us to produce

IAPTF through the different phases of conception, design, modelling, and implementation. The proposed

framework has been built in several steps. Initially we focused on the core reinforcement learning module

which include the software RL agent, the memory where POMDP stored and POMDP solving mechanism.

The RL agent communicate via scripts with MSF Console. Nonetheless, the development of IAPTF-Core

module sits in the heart of IAPTF and illustrate a real-world implementation of our proposed RL modelling

of the network PT practice detailed in previous chapter. The proposed model implementation had been

through two major milestones related to the adopted model for representing the PT domain as RL problem

in form of POMDP, the two milestones are namely, the regular RL which was initially developed,

implemented, and tested, and the hierarchical RL (HRL) which was later introduced to address scalability

encountered in solving large POMDP as described in chapter 5. The second phase of the development was

the design, development and implementation of all complementary modules and systems including the data

extraction, preprocessing, security clustering, POMDP elaborator, expert system, attack vectors generator

and post-testing system. In other words, this phase covers all modules, scripts and system constituting

IAPTF except the RL referred to in this work as IAPTF-Core. Figure 54 illustrates the full functioning of

IAPTF and summarises the main modules and system utilized. The next sections of this chapter will

gradually introduce keys components of the IAPTF framework including the IAPTF-Core module where

the proposed RL model is implemented alongside with the IAPTF-Memory which are the focus of this

research work.

6.1 IAPTF anatomy and functional diagram
We present in this section the proposed representation of the PT problem in the form of POMDP

environments. The proposed representation which is a core component of our research is introduced

here through a series of illustrative examples for a smooth introduction of the main concepts and

method used in our proposed IAPTF. In the context of PT, there is no need to fully represent the state

of the network to describe the current situation. The modelling will only focus on the features and

aspects that are relevant for the task at hand. An example of the network topology and security

architecture is not required to be included within the RL state space as in networking the main network

topology and defense is assumed to be static and known. But it will have to account for the

configuration and status of each computer on the network. The detailed environment description is

detailed as follows.

Our research output is twofold: RL model of PT practice and a framework named Intelligent

Automated Penetration Testing Framework (IAPTF). Figure 54 illustrates the final design in form of

a functional diagram of the proposed framework. Overall, IAPTF starts by using automated scripts to

process existing and acquired data from early-stage PT tasks to perform the network clustering and

networking and defense data processing. These tasks are done through automated python scripts with

many XML and log files as inputs and produce core data for elaborating the initial PT POMDP

environment including identifying the asset composition and different security clusters which will be

detailed later in this chapter. The data generated from this operation is then stored in IAPTF memory

in two distinct formats: first raw format which will be handled later by IAPTF and second, generalised

data which will serve future use of the framework. The generalisation is done through the removal of

all specific information associated with the data such as IP and MAC addresses, machines names or

other irrelevant information from a future use point of view. In other words, the output of each phase

will be made general and then stored with IAPTF memory and used also within the Expert System

implemented and embedded in IAPTF.

Figure 54: IAPTF anatomy and key modules and components.

On the other hand, the functional diagram is crucial to highlight the contribution of each module as

well as the interaction and complementarity between them. IAPTF operates in a sequential order but

highly interactive. The output of each module serves as the input for the next one. Notably the output

of IAPTF-Prep in the form of data acquisition and filtering output is fed directly into IAPTF-Proc for

processing and outputting structured and cleaned data that will be fed to the IAPTF-Memory to

elaborates the different POMDPs environments files which will be then complemented and solved by

IAPTF-Core. The figure 55 illustrates the full functional diagram for IAPTF.

Figure 55: IAPTF overall functioning diagram and inter-modules interaction.

In the next session we will introduce the different modules following the logical sequence of the

functional diagram.

6.2 IAPTF-Preparation module
In this section we will describe the details of different modules and system constituting IPATF-Prep.

As described in Chapter 5, POMDPs files and notably the state space should include, for each phase

or cluster of the system, all relevant information from a networking and security point of view. It will

include, but not limited to, the OS, services, topology, security architecture, patches and knowledge

base, version, subnetting and other networking information. This information will be represented

under a specially introduced annotation designed to be brief, clear, precise, and easy to handle from

point of view programming and data processing. In IAPTF-Prep, the different modules will attempt to

extract, reconstruct, structure and represent all the information which the POMDP-Generator module

requires to build the POMDP and especially state spaces which also come with some uncertainty

related to the nature of the PT practice. Data extraction and Filtering programs and scripts are

networking data, topology data, reachability data, along with vulnerability assessment data.

6.2.1 The networking data

The network data that defines corporate networks are often referred by connections and configurations

of machines and limited in this research to the following sources: subnetworks, topology, machines

network interfaces and networking services. Every network machine could have several services at

different levels of machine. The extracted data at this stage is an abstract which includes relevant

details of a real-world networks. In addition, at this stage of data capturing, there is no requirement

nor benefit for developing an intelligent (AI-led) module to perform such activities as stand-alone

software and is enough to capture and extract networking data including topology, sub-netting, and

connections (reachability) between machines along with location of switches, routers, firewalls and

IDSs in the network. The reason for this abstraction is to try and keep the simulator as simple as

possible and at the level of representation that will be used in elaborating the POMDP environments.

The proposed scripts are expected to work on determining which networking data can be used on top

of vulnerability scans and assessments to store and to be used against which machine and in what

order. Moreover, some specific details related to VA and PT such as ports status, service configuration

along with details on application specific implementations are also copied to another raw XML file to

be included in the Security data later. This choice comes from PT nature which is highly interactive

even at automated levels with systems, toolkits and frameworks such as Metasploit which customize

and utilises data on different exploits depending on the scenario and launch it.

6.2.2 Sub-networks and Topology

Computer networks are made of multiple subnets, single machines and devices. A subnet is a smaller

network within the larger network that is composed of several machines that are reachable to each

other. Each subnet has its own address, which is the first number in any machine’s 32-bist IP address

and comes with subnet mask to define the network, subnet, and machine address. In IAPTF, we opted

for a security-oriented approach in regard to network splitting which we will detail in the security-

clustering section. Nonetheless, it is important to capture, extract and process subnets data as we

require the maximum information about network functioning and machines’ reachability in one hand,

and also enable a full abstraction of the network addressing. In fact, we often deal with single machines

as target and not the full subnet despite the fact that all machines within a subnet can fully

communicate and have relatively the same security protection and restriction in contrast to the Inter

subnets communication is overseen by network topology, filtering, defense settings. The subnets data

is therefore extracted and stored in the Connxion.XML file for future use.

Figure 56: Sub-networking division of test bed output example.

The network topology (also called reachability) is defined as subnets inter-connection based on

existing controls and restriction mechanisms which regulate which subnets can communicate directly

with each other and with the external network. As an illustrative example, in the network in figure 56is

composed of five subnets SN0, SN1, SN2, SN3 and SN4. SN0 and SN1 are the subnets in the part of

network that is connected to the Internet often referred to as a demilitarized zone (DMZ) while subnets

SN2 and SN3 are located in the part connected to internal workspace and have thus a different

addressing. SN4 is here for internal storage and production. Note that machines can only communicate

with the ones within the subnet or adjacent ones if they are adjacent and reachable.

6.2.3 Connectivity and Reachability
In IAPTF network topology is represented by an adjacency matrix, with rows and columns

representing the different subnets. An example matrix is as shown in figure 57. In practice, IAPTF-

Prep will use a simple python script Topology.py which will, from the addressing data, extract the

different existing subnets. Then another script named Reachability.py will combine data from the

topology and Security.xml to elaborate the full security-oriented network topology in form of

adjacency matrix. The ones in the matrix stand for a direct connection between different subnets where

one or more machine in the subnet can reach at least one machine in the second subnet. The

reachability values are crucial from an offensive security point of view and therefore IAPTF

reachability script named test-reachability.py are deployed within IAPTF-Prep and facilitate using

Internet Control Message Protocol (ICMP) shortly known as ping. The scripts will run on the entire

network using different machines in different subnets as starting points and initiate an ICMP request

between source and destination host and only validate the reachability if the ICMP request is

successfully. In the case where the destination host is behind a firewall and thus non-responsive, ping

echo reply from the firewall reply should not be considered and the matrix value is set to zero “0”.

Finally, it is worth to highlight the reciprocity nature of the reachability matrix which completely

different from the proposed security clustering where the firewall one-way filtering characteristic is

captured and utilised in determining security clusters’ composition.

Table 8: Example network topology for the network represented using an adjacency matrix.

.

6.2.4 Network Vulnerability Assessment

The vulnerability assessment data includes static (initial output) discovery, scanning, enumeration and

vulnerabilities assessment. Enumeration data are embedded in IAPTF and used to represent fully or

partially information about ports, services and version of software running on different machine in the

target network. These data are, to a certain extent, analogous to vulnerability assessment software such

as Nessus with special focus on the security side of services, the data are validated to extract service

and security information that hackers would exploit and simply ignore all other non-vulnerable

running services and software. Each service is defined by its name or a short abbreviation such as

FTP, SMB (for Samba), or HTTP which are unique and specific in term of version, so it would be

possible to track vulnerabilities and know what services require patching SMB-v3.6.x. The ultimate

goal of is to achieve root or admin control throughout executing the adequate Meterpreter session

against the set target. Thus, the service version and port scanning and enumeration will help to narrow

down the required activities so this goal is achieved and thus IAPTF agent to earn full control over the

target machine. In IAPTF, these activities are launched at first phase independently from the

Metasploit MSF using small pieces of software and scripts (Nmap NSE and Nessus) with the aim of

building enough memory for IAPTF functioning. The following steps are performed when the initial

enumeration and scans are launched:

➢ scan all reachable (from the internet hacker computer) for open ports and identify

subnet SN0 SN1 SN2 SN3 SN4

SN0 1 1 0 1 0

SN1 1 1 1 0 0

SN2 0 1 1 1 0

SN3 1 0 1 1 1

SN4 0 0 0 1 1

running services

➢ complete the enumeration of all identified services

➢ validate the results and launch the initial vulnerability assessment

➢ confirm existing vulnerability and export all outputs into the relevant XML files to

be uploaded into IAPTFR-Prep

As with manual PT process, IAPTF-Prep enumeration module will initiate by extracting the important

data using externally crafted Nmap Python scripts together with two built-in NSE (Nmap Scripting

Engine) scripts Vulscan and Vulners. The basic concept behind NSE is the offered automation and

flexibility to weaponize Nmap features. Nonetheless, it remains heavy to run and thus often avoided

by PT experts who adopt more hand-crafted simple scripts to automate a wide variety of tasks related

to a given scenarios and which can be launched in parallel with the enhanced efficiency. IAPTF-Prep

imports and uses directly Nmap’s Vulners and Vulscan to identify, fingerprint and enumerates ports

services along with finding relevant information about the CVE of a service such as SSH, RDP or

SMB. Moreover, external scripts are embedded in the IAPTF-Prep module to improve data capturing

and validate information related to vulnerable services. Vulners script offers the possibility of working

online and querying the CVE and NVD databases every time the NSE script is used. Vulscan queries

to either a online database on internal pre-downloaded database synchronized with ExploitDB.

Vulners scripts are compatible with VulDB and NVD which are used as references for defining

vulnerabilities severity ranging from: Critical, High, Medium, or Low which match the CVSSv3

criticality score between 0 and 10. After this step, IAPTF-Prep second module will oversee searching

the extracted data aiming to identify initial vulnerabilities out of NSE scans. Then comes the role of

PreProcessing.py main program which will process the data into IAPTF memory following CLIPS

expert system format which was designed to fit our research RL needs and structured in the form of

decision trees that remain compatible with other AI applications. Final data processed will contains

seven fields, namely:

➢ Machine OS, version/architecture, and patch/service pack

➢ Security clustering and subnets defense

➢ Open and Filtered Port as found by Nmap

➢ Running Service with version and variant if applicable

➢ Imported CVE database set with relevant vulnerabilities

➢ Available exploits and payloads.

6.2.5 Security and logging data

The final component of the network model are the firewalls that exist along the connections between

any subnets and between the network and the external environment. Firewalls act to control which

services can be communicated with on machines in a given subnet from any other connection point

outside of the subnet. They function to allow certain services to be used and accessed from machines

within a subnet with the correct permissions, while blocking access to that service from unwanted

entry points. Each firewall is defined by a set of rules which dictate which service traffic is permitted

for each direction along a connection between any two subnets or from the external network. Figure

58 shows an example firewall that sits between subnets and which allow access to the SSH and FTP

services on machines on SN3 from machines on SN1 and SN2 and access to FTP and HTTP services

on machines on subnet SN1 from machines on SN3. In a real-world setting firewall rules are typically

set by defining which port can be accessed, however for simplicity and since for most cases the same

services are run on the same port numbers, we have decided to instead define rules by service rather

than port.

Figure 57: Example firewall and Intrusion detection systems location and impact on the connection between

subnets SN0, SN1, SN2, SN3 and SN4 and defines which services are permitted in each direction.

Finally, the IAPTF-Prep include a python scripty named VulnAssessment.py which imports directly

Vulnerability Assessment to concatenated it to the data extracted regarding security, topology, and

networking. IAPTF-Prep imports direct data from the Nessus-NM and Tenable-IO in form of vulnerability

scanning and assessment output XML files.

6.3 IAPTF-Processing module
This section will detail the first modules of IAPTF namely IAPTF-Prep and IAPTF-Proc which are in fact

a set of program and scripts enabling the acquisition, extraction, and processing of the different data from

different sources. This module oversees moving from Networking, Security and Vulnerability

Assessment data to build the different POMDP environments which fits our model representation of

the real-world PT practice environment. As we discussed in Chapter 5, the POMDP representation of

PT practice requires projecting to the best all features and characteristics of the real environment. The

system will thus require a memory that increases alongside its development and capturing of features and

data increasing. The RL agent memory and environment model often consume most of the storage capacity.

If there are S states and A actions, then a complete model will take up space proportional to |S| x |S| x |A|

because it maps state-action pairs to probability distributions over states. By contrast, the reward and value

functions might just map states to real numbers and thus be of size S. As an exception, RL learning policy

search approach where a second value function determines is in the agent agenda (not the reward function)

the system memory can increase further.

As the proposed RL model focuses on the relevant aspect of the PT practice which are also the cyber

attackers used key information, this module aims to produce POMDPs files from the raw data received

from IAPTF-Prep and using Python scripts to perform the pre-processing, processing and structuring

and ultimately produce optimized representation of the PT domain in the form of POMDPs problem.

In IAPTF-Proc some fundamental networking features and aspects were neglected and not considered

in the environment modelling. This is due to the irrelevance of this data for the PT practice and include

such useless details will result in enlarging the domain size and thus compromise the efficiency. The

sought after IAPTF-Proc is a multi-scripts module which facilitates the processing of different format

extracted data notably networking, vulnerability assessment and security LOG and XML file to

produce cleaned IAPTF-memory format data which then be used in the representation of the early-

stage PT POMDP environments. As we had already discussed in the previous chapter, the RL can be

of great help to the PT community only when properly embedded notably by striking a balance

between contribution and cost in terms of time and computational resources. With computer networks

expanding in size, the PT task represented in the form of POMDP environment size will increase too,

resulting in high scalability issue as the solving becomes time and resources consuming. The reason

behind human expert success in PT is that testers often take advantage of the context and utilise this

to reduce the workload by performing multiple pre-elimination of the useless or non-productive testing

scenarios where the tester is sure that the outcome would be negative, or the cost would exceed the

expected reward. The IAPTF-Processing system is a crucial part towards a fully automated and

intelligent PT framework by preparing the field for the IAPTF-Core to solve relevant and potentially

rewarding problems which enhance considerably the testing time and reduce the use of resources along

with generating meaningful and consistent results. The IAPTF-Proc is made of many scripts and a

large module. The main scripts are configuration.py and security.py and the security-clustering.

6.3.1 Machines configurations and defense
The most primitive security entity of network security is the machine. A machine in IAPTF refers to

any IT device that is connected to the network and hence can be reached and exploited. In this module,

each machine i is defined by its address which includes the following:

➢ machine name in the form of Mi (machine), Ri (networking router or switch), Vi (virtual

machine) or Ti (IoT device),

➢ subnet to which this machine belongs,

➢ security protection (DiD score) level.

An example machine definition can be for a given web application server in DMZ called M2 belonging

to subnet SN1 and having a medium host security protection of 3 out of 5, this machine is represented

as M2_SN1_3. It is important to highlight that the security protection level is completely independent

from the machine value from the point of view of sensitivity, as such machines that the hackers and

thus pentesters would want to gain access to or that the owner wants to protect. The other important

data is the running services that are used for communication purposes only. This can be either within

the same subnet or any reachable subnets. The services available on each machine are defined on its

configuration profile and thus for each machine on the network as this data is largely heterogeneous

and machines does not necessarily have the same configuration such as workstations, Web servers,

file storage. Note that these services present on a machine will be added later to the other services

when it comes to build the vulnerability profile which aims to list services vulnerable or potentially

vulnerable to attackers aiming to exploit.

6.4 Medium and Large networks Security Clustering
Performing PT different tasks requires the pentester expert to meet some basic requirements. One of

the most important requirements to know and understand the assessed network “general” security

topology which will result in identifying the relevant attack paths based on the knowledge of existing

connections between Machines (systems) and/or Sub-Nets. This is a crucial phase as any cyber

attacker will, after performing the initial reconnaissance, try to sketch a logical security map of the

target network and assess the ability to reach the targeted machine. Often, the PT expert can initially

reach only a few machines from his external (Internet) position (high-value targeted machines cannot

initially be reached) and the overwhelming majority of assessed network machines are unreachable

directly from the Internet. Thus, a progressive approach is unavoidable, the tester will attempt to gain

partial or full control of the reachable machines and then use these controlled machines as a launching

point for future attacks as it is likely that they share a sub-network with one of them: and those which

are unreachable from any controlled computer.

The network clustering is a crucial phase in the IAPTF as it will allow an easy and simple RL

modelling of a large network PT environment which mirrors perfectly the reality. In real-world PT, it

is hard to deal with each network connectivity separately and this case will create an additional

problem to the existing ones: the large environment problem and complexity of representing the actual

topology. The network clustering is therefore our proposed method to incorporate the information

about the network connectivity within the RL model along with maintaining the solvability of the

problem in an adequate amount of time.

The following network clustering method aims to divide the medium and large size network (or even

a small network) into a certain number of clusters. The definition of the word cluster here is a set of

machines and systems that:

➢ belong to the same security level (protected by the same set of security devices and

mechanisms) and,

➢ reachable to each other (direct connection without passing through any network security

component excluding the host-based systems and software) and,

➢ serving a similar or complementary purpose within the network such as Data Server,

Workstation, or Printing.

As we already mentioned in the previous chapter, the proposed clustering of the network is quite

simple and does not obey always conventional networking criteria and rules (sub-net, LAN, MAN,

WAN, WLAN ….). Instead, we will utilises a security-based method by:

➢ Building a complete and comprehensive map of the assessed network including the existing

divisions following the networking (functional) rules (WLAN, LAN, Internal, Public …)

map,

➢ Determine network reachability data which reflect the ability for a machine to reach other

machines without passing through the existing security measures. This is done by exploiting

data from the network equipment ensuring the isolation such as firewalls, IDSs, Routers,

DMZ.

As illustrative example, the assessed small LAN in figure 59 composed of 18 machines including 11

computer machines named M0, M1 …, M10 and 7 networking devices (firewalls, routers and IDSs)

in addition to the ethical hacker machine which is connected through the Internet (external) but will

be considered later as an independent cluster for the modelling purpose. The 18 Machines are divided

from networking point of view into two sub-networks namely SN0 and SN1. Nonetheless, the

proposed clustering approach will divide the network into security clusters following a rigorous and

realistic approach inspired from the real-world situation of security isolation and how hackers perceive

the network (clustering approach detailed in next section) resulting into five different security clusters

(C0, C1, C2, C3 and C4) with each cluster grouping several machines such as C1 which is the DMZ

(M0 Application Server and M1 Web Server).

Figure 58: An illustrative example of small LAN made of two sub-networks (SN0 and SN1) and parallelly

five clusters (C0,C1,C2, C3 and C4).
In our proposed POMDP model only details about the machine-to-machine connections information

are included initially. This is in reality the reflection of cluster-to-cluster (inter-cluster connectivity)

which provides information regarding the type of connections (active and available) along with the

type of the used protocol, security and other relevant information such as the number of hopes.

The number of hopes is purely related to the existing security mechanism separating two different

machines (clusters) such as firewalls, IDSs, IPSs, routers. In the connectivity representation only one

route is mentioned for the same two entities giving the same connection protocol, as example is M0

and M2 can be connected via an TCP-FTP connection via more than one route, giving the fact that

such scenario (FTP connection) has the same security protection for all the connectivity only the

shortest (with less hopes) route is represented as follow:

➢ C0-C2-TCP-FTP-1: Direct intra-cluster connection with a firewall (FW0) separating the

cluster C0 and cluster C2.

➢ C0-C2-TCP-TelNet-2: connection via a third cluster (C1) which will result in passing through

an additional security mechanism (FW2)

➢ C0-C2-TCP-SSH-2: composite route including connection passing through two or more other

clusters’ security isolation and filtering to reach the other end.

The most important component of IAPTF-Prep is the security clustering scripts. This module output

is twofold. Firstly, the clusters constitutions in term of name and IP address of each machine and the

belonging cluster. Secondly, the head (or heads) of each cluster which is in theory the most vulnerable

machine with root/admin control. The proposed approach focuses on a key characteristic of network

PT practice namely security isolation overview. This is a common approach for hackers and cyber

attackers as they oversee the target network from a security point of view and not simply networking

functioning in the aim of extracting key information about the security isolation and reachability. It

will be noticed in the proposed approach we call clustering that some fundamental networking features

and aspects were neglected and not considered in the task of dividing large LANs and WANs and thus

modelling them into smaller POMDP environments. Finally, it is important to highlight that one-way

filtering approach adopted in firewalls, routers and IDPSs is a key element in our proposed clustering

approach making the clustering approach fundamentally different form the regular subnetting

approach which is by default symmetric (reciprocity of reachability between subnets) as illustrated in

the figure 60 where SN0 and SN1 are considered the only subnets in the network following the

symmetric reachability approach.

On contrast to the subnetting, the proposed security clustering produce a completely different result.

This proposed approach backs a hierarchical structure of POMDPs inspired from the corporate

network architecture which is, from a hacking point of view, characterized by multi-layered security

protection (also known as Defense-in-Depth or shortly DiD). In this module, data regarding DiD and

other security and isolation device locations and configuration are used directly and sometimes

assisted by hand-crafted scripts, to find a security-based clustering of the LAN and MAN. We then

investigated a more efficient technique to automate the decomposition process and designed a security-

oriented clustering scripts which use conventional networking data such as reachability, routing table,

access lists (ACLs) along with the defensive cyber security information such as firewalls, IDPSs

position and functioning to provide an automatic decomposed of medium and large size networks in

an appropriate manner. In few cases, where the size of some cluster exceeds 50 machines, this cluster

is divided into 2 to 3 sub-clusters which will be accounted as distinct security clusters. Such decision

was made after observing IAPTF performance decline in large networks, and it allows the computation

of best policies, while most reducing the complexity required to compute these policies. In term of

adapting the proposed POMDP representation, we opted for a two-levels approach. First is to consider

each security cluster as a separate network and only represent the data about machines in that cluster

in the low-level POMDP environments. Then we represent the network of the head of each cluster and

including all possible connections including machine-to-machine and cluster-to-cluster connections

information to fully reflect the real-world inter-cluster connectivity. In the Clustering module we

implemented three scripts. The first script defines the cluster composition and named

Cluster_composition.py which the output is the full security clustering of the network. In other words,

the result is many clusters (number will depend on the size of the network, configurations and security

setting DiD but will be at least 3) which each contain many machines belonging to the same cluster

will be treated similarly. The idea behind this assumption is the nature of the networking environment.

The machine belonging to the same sub-net often have a similar defense and protection. In fact, an

attacker who gains a control of a machine will easily progress to the rest of the machines on the same

sub-net or cluster as a trust relation (in some applications) exist between the infected machine and the

remaining allowing the attacker to take advantage to run (execute) the exploit against those machines.

The second script named Clusters_Connectivity.py oversees capturing and processing information

regarding the type of connections (active and available) along with the type of the used protocol,

security, and other relevant information such as the number of hopes. The number of hopes is purely

related to the existing security mechanism separating two different machines (cluster) such as

firewalls, IDSs, IPSs, routers etc. The full detail about the representation is detailed in the previous

chapter. The following Network Clustering method aims to divide the medium and large size network

(or even a small network) into a certain number of clusters. The definition of the security cluster

concept in IAPTF is simply a set of machines and system that have to same security protection and

have the same attack surface (exposure) from a hacker point of view, and this is elaborating following

the concatenation of networking, security, and vulnerability assessment data. As results, applying the

Clustering python script, to the output is illustrated in figure 60 where each cluster group several

machines such as C1 which is in this case the DMZ (M0 Application Server and M1 Web Server).

Figure 59: An example network made of nine security cluster (initially five sub-networks) C0, C1…C8.

The third scripts named HoC.py is in charge of identifying the head of clusters HoC (on some occasion

more than one machine is designated as HoC). The idea starts by reducing the low-risk machine first

and only focus on machine with a large attack surface. Attack surface stands for the number of open

ports, running services and associated vulnerabilities in the machine making it more likely to be

targeted and exploited by hackers. We exclude any honeypot machine (or even a honeynet) from being

HoC. An illustrative example with the output of HoC.py on the test-bed network basing on IAPTF-

Prep vulnerability assessment output data is in the figure 61. In this research will initially deal with

Clusters as Machine and thus all the machines belonging to the same cluster will be treated similarly.

The idea behind this assumption is the nature of modern corporate networking environment. The

machine belonging to the same sub-net often has a similar defense and protection. In fact, an attacker

who gains control of a machine will easily progress to the rest of the machine on the same subnet or

cluster as a trust relation (in some applications) exists between the infected machine and the remaining

allowing the attacker to take advantage to run (execute) the exploit against those machines. It is

obvious that reducing the size of the inter-clusters network is not a straightforward activity. As shown

above many security clusters will have more than one machine maintained such as C1, C7 and C8.

And some clusters will have a set of machines with identical configuration maintained such as C4 and

C7 again. Therefore, we opted for a rigorous approach to reducing the size of the final Inter-Clusters

network and only include the strict minimum so the associated POMDP environment size can be

maintained to small size and therefore enabling a fast exact solving. The figure 61 illustrates how

Head of Clusters are selected. Therefore, we introduce the head of cluster notion. Initially, this notion

was defined to serve simplicity purpose as IAPTF will need to complete the PT tasks including the

inter-cluster testing and to do so we will deal with the entire cluster as one single machine from security

point of view and thus all the machines.

Figure 60: illustrative example of clusters’ size reduction by excluding low-risk, and redundant machines

following by the selection of heads of clusters (HoCs).

Thus, Internet (public) cluster will have hacker’s machine as the head of Cluster and thus the starting

point. The second challenging case is often the DMZ which is C1 in this case as machines in this zone

are often more exposed and have a larger attack surface. In this case we strike a balance between

reliability and flexibility and implemented a multi-HoC function which compares the vulnerabilities

scores of each of the finalist candidates HoC and only select two (worst case) and designate them as

HoCi-a and HoCi-b with i is the cluster ID. The final output of the clustering phase is 09 small size

LANs and a network constituted from Heads of Clusters. This enables us to represent two-layers

POMDP representation of any medium or large LAN as illustrated in figure 62.

Figure 61: Overall security clustering output including cluster composition definition, election of head of

cluster.

6.5 Heads of cluster Network
In the connectivity representation only one route is mentioned for the same two entities given the same

connection protocol. As an example C0 and C2 can be connected via an TCP connection via more

than one route, given the fact that such scenario (FTP connection) has the same security protection for

all the connectivity only the shortest (with less hopes) route is represented as follow:

➢ C0-C2-TCP-FTP-1: Direct intra-cluster connection with a firewall (FW0) separating the

cluster C0 and cluster C2.

➢ C0-C2-TCP-FTP-2: connection via a third cluster (C1) which will result in passing through an

additional security mechanism (FW2)

➢ C0-C2-TCP-FTP-4: composite route including connection passing through two or more other

clusters’ security isolation and filtering to reach the other end.

Finally, the network of HoCs will be represented as POMDP and then solved in the same manner as

with small network case with the only difference of using the resulting Policy Graph as an input for a

global attacking vector script named Overall_Attacking.py. this later will produce a comprehensive

attack vector policies covering the entire medium and large size network by combining PGs resulting

from intra-cluster solving and the PG resulting from the inter-clusters. This script will be operating

directly on data stored in IAPTF memory and after establishing the global PG the results will be

processed again using another scripts named Generalisation_PG.py which will remove any specific

information or machine ID and make the decision policy general for future use by the Expert System

CLIPS.

Table 9: IAPTF-Prep modules, programs and scripts roles and description.

File Description

Connexion.py

Script to capture (import) networking and connection data, process and structure it

according to the IAPTF requirements

Topology.py

Script to capture and determine network topology and subnetting, process and

structure it according to the IAPTF requirements

Scanning.py

Program to capture (import) all network discovery, fingerprinting and scanning

tools output, process, and structure it according to the IAPTF requirements

LOGs.py

Script to import, clean and structure according to the IAPTF requirements all

available networking and security devices and software log files

Security.py

Script to capture and process security defense (DiD) data and network security

layout and structure it according to the IAPTF requirements.

VulnAssess.py

Clustering.py

Generator.py

Program to collate and process all captured data output from Connexion.py,

Scanning.py and Security.py to then structure it according to the IAPTF

requirements

Program to collate and process all captured data output from Connexion.py,

Topology.py, LOGs.py and Security.py to then defines security clusters.

 Script to collate and generate the POMDPs environments from the input

6.6 IAPTF memory and expertise handling

In our proposed framework, the main challenge we face is the expertise capturing and re-usability

which is a crucial component in context of PT practice that is highly repetitive and the decision-making

it a cornerstone in cyber security field. To take full advantage of this particularity rather than having

it as counterweight to our framework performances, we proposed a module within IAPTF that is

dedicated to extracting the knowledge output during PT tasks and make it general (perform

generalization processing) then store it into an Expert System for future use. The expertise capturing,

generalization and handling activities are performed mainly within two modules: IAPTF-Memory and

IAPTF-Expert_System. We distinguish two functioning diagrams in IAPTF: the first only account for

the expert system and expertise capturing and processing programs which require the supervision of

the human expert (mainly in early life stage pf IAPTF) and a second comprehensive functioning

diagram which embed the Expert System and Expertise acquisition within the IAPTF-Core where the

RL Agent acts instead of the human expert. Figure 63 details the comprehensive functioning diagram.

Figure 62: IAPTF-Core with Expert System extraction, validation, and replay diagram.

The first part of this activity is the generalisation tasks which are done through python scripts directly

on the output XML files of the POMDP pentesting solving results. Once done, we progress into storing

this precious knowledge in a basic Expert System (we annotated ES) using CLIPS. The diagram of

IAPTF shown in figure 64 refers to the ES. There are several different modules in the proposes

architecture, but we only focus in this section on functions which offload the POMDP solving XML

files and extract from the policy graph (PG), based on standard formula and input regarding network

configuration the decision (acting) policy made in each situation which is extracted in their original

context to avoid irrelevant generalization. Then, a python script named “ES_Generalization.py” is

applied to data to produce a general format from which as specific data is removed such as IP

addresses, Machine name, non-generic data.

Figure 63: IAPTF-Preparation and IAPTF-Processing detailed functioning diagram.

6.7 CLIPS Expert System
The next step in building the IAPTF memory is the implementation of the Expert System which will

oversee storing and reusing of decision policies. Since the aim of this research is mainly applying RL

in PT practice, the ES comes in second priority, and we decided that we will not implement a heavy

weight ES within IAPTF and only rely on CLIPS which is a public domain software tool for building

expert systems. We will briefly describe how the general production system tool CLIPS is used to

extract, process, store and reuse expertise for network PT purposes using previous testing captured

experiences. The proposed system can also be utilised in case of decision-making assistance notably

when retesting the same asset. In term of expertise capture and handling, we opted for a direct

application of CLIPS Expert System to achieve our objective of capturing and replaying human CEH

expertise and knowledge. CLIPS is a complete environment for developing IAPTF expert systems

which includes an integrated editor and a debugging tool and enable inferences or reasoning. The

CLIPS provides the three key elements of: memory for data, knowledgebase, and rule-base. The

written program consists of rules, facts, and objects with the inference engine to select rules (action)

to be executed for a given object. In IAPTF, we built a PT expert system by performing some

modification into the default CLIPS code by introducing features such as single and multiple string

pattern matching, certainty factors and timestamp with uses of MSF plugins adapted for pre-

processing. The complexity of MSF in term of data handling and storing add nonetheless more

complexity and challenges for our proposed Expert System. To overcome these shortcomings, we

proposed an integration of our developed CLIPS Expert System with “MSF POSTGRESQL” database.

Thus, IAPTF allows the simplification of the complex data workflow by considering complete testing

and attacking scenarios instead of atomic actions. Finally, the modular structure of IAPTF enables us

to propose a second variant of the expertise handling diagram which doesn’t account for the RL

IAPTF-Core. This is particularly useful in case for retesting without changes (security compliance and

auditing) and in context of small networks not requiring an advanced exploration but instead a check-

list testing. Figure 65 illustrates the IAPTF framework expertise handling when excluding the IAPTF-

Core RL module and testing results on different network size scenarios are detailed in chapter 7.

Figure 64: IAPTF-memory and Expert System expertise extraction, validation, and replay diagram.

6.7.1 IAPTF-Core:
The main component of IAPTF is the RL module which rely on the proposed POMDP modeling of

PT practice as detailed in Chapter 5. In this section we will detail IAPTF-Core functional diagram and

the different arrangement made to enable this module to access POMDP files stored into the IAPTF-

Memory along with the extracted expertise sored in the CLIPS Expert System. The proposed IAPTF-

Core is fully independent, modular, and optional and can be embedded with any other industrial PT

framework. The current version is associated with Metasploit framework (MSF) and Nessus as an

external module communicating via customized python scripts imputed through Metasploit MSFRPC

API.

Figure 65: Metasploit Community and Professional framework architecture [102].

The purpose of such configuration is to avoid modifying the core component of the MSF and allowing

us, for research purposes, to measure the IAPTF performances independently from the used PT system

or framework. The Console and CLI circled in red are the entry points for IAPTF-Core to communicate

and exchange data with MSF. The figure 67 illustrated the different components, functional diagram

and interaction mechanisms adopted in IAPTF-Core.

Figure 66: IAPTF-Core components, functional diagram, and interaction mechanisms.

The Exploit Databases and attacking payloads and program import and fetching is twofold. The MSF

Console imports the Exploits and the Payloads used for exploitation and post exploitation in addition

to DB-Nmap NSE discovery scripts imported within the MSF POSTGRESQL. On the other hand, we

developed the CVEs importing and fetching named Exploit_import.py which is a python program that

oversees importing and restructuring CVE and NVD database along with creating a local mirror within

the IAPTF-Memory. Key features of this module are:

➢ Storing and structuration format enabling CVE use and search by the IAPTF-Core directly

basing on customized research criteria

➢ Enabling the usage of a lighter version of the large database both in term of number of CVEs

and the description information stored within the original databases CVE and NVD. Only

relevant information from PT point of view is kept in IAPTF-Memory.

➢ Direct interaction with Metasploit MSF console to enable real-time search narrowing and

prioritisation based on NVD score as calculated per CVSS v3

6.8 IAPTF operative modes
PT involves complex and versatile activities which often come with automation challenges. To ensure

that IAPTF is effective and able to achieve the sought aim of an optimised automated PT which is

achieved by relying on AI techniques specifically RL and ES. IAPTF is designed and implemented to

perform network PT under different contexts and operative modes notably as stand-alone, under-

supervision or user-assistant and learning-only by capturing the knowledge from human expert.

Therefore, IAPTF has four different operating modes with the selection of the adequate will depend

on the context and the level of maturity (learning) as follow:

6.8.1 Stand Alone (Level 3):
this is the most advanced level of automation and optimisation that IAPTF can reach and constitute

the aim of this research. In this mode IAPTF is fully intelligent and autonomous in performing the PT

tasks after reaching the pre-set level of learning enabling it to act at least in the same way as a human

expert Certified Ethical Hacker would do. In practice, the framework does not need to learn how to

behave with all possible scenarios (which is technically impossible) but the assessed networks

configuration will play a key role in the choice of the operating mode as previously completed testing

with a degree of similarity will enable the IAPTF to use the acquired knowledge to achieve at worst

an acceptable result. In this mode, the system will be responsible for auto-reward the RL agent actions

by assigning automatically the relevant rewards following a pre-determined rewarding function, and

updating and improving its decision policies when better attack paths are obtained.

6.8.2 Under supervision (Level 2):
this is a mode where IAPTF is partially autonomous which is in practice the standard mode for all first

testing activities and early stage of commercial use. IAPTF in this mode is autonomous but remain

under human CEH supervision for validation purposes. The system is then under constant and

continuous supervision (locally or remotely) by a high-caliber (CEH at least) human pentester expert.

The logic is that after a certain level of learning the framework will be enabled to take over the human

expert to perform the penetration under supervision which is done for quality and consistency purposes

by modifying the rewarding and evaluating mechanism. This will enable the human expert to be in

charge of evaluating the accuracy, relevance and persistence of the testing by scrutinising the different

attack vectors launched and evaluate the effectiveness and efficacy and allocating the relevant

rewards. In this mode, human CEH will be only in charge of evaluating, which is done basing on his

expertise, thus if IAPTF is performing above the threshold in each step (each action undertaken in a

given state) the POMDP reward will be maintained. It is worth to mention that in many occasions,

IAPTF will follow different attack paths which were never considered and/or explored by the expert

which will be evaluated separately by the CEH to enable the framework to proceed further and carry

on penetrating the network along with ensuring that the followed path does not lead to exceeding the

maximum allocated resources. Upon completion, all the newly discovered path will be subject to a

generalisation and stored in the IAPTF CLIPS expert system for future use.

6.8.3 Background assistant (Level 1):
in this mode IAPTF will be operating in the background of the manual human testing and only assist

the expert in the decision making. The framework will capture the data and proceed to computing and

processing, on a real-time basis, of the network variables and then suggest better alternatives if they

exist and were missed by the expert. In the meanwhile, IAPTF will continue the learning by capturing

the key information to be used in the POMDP representation optimisation and observing the CEH

approach to extract the decision policy and assign the adequate rewards for any accepted suggestion

it makes. The idea here is to accelerate the construction of the expert system knowledge which will at

first stage help the ES to evaluate its decision policy before storing and introduce the relevant

adaptation if required. Furthermore, the ES will store any decision alongside the associated context

data in its memory after performing the Generalisation required for future use.

6.8.4 Early-stage (Level 0):
IAPTF is here in a learning only mode and will be using artificial data created from simulations. The

idea here is to run IAPTF on as much cases as possible to allow the validation of the performances

alongside the construction of internal knowledge base from repeating the test already completed by

high caliber tester and extract the relevant data, policies and rewarding. In this situation, the framework

can learn from the decision (actions and choices) undertaken by the expert during his work and extract

the relevant knowledge from repeated test to build its memory.

Chapter 7: Testing, Results and Discussion

In this chapter, we will detail the different phases undertaken to develop test bed networks, test IAPTF and

notably the RL module IAPTF-Core in different scenarios and conditions to validate RL modelling of PT

practice. We also implement and test the new Hierarchical RL modelling for medium and large LANs

following the security clustering approach and the functioning of the rule-based Expert System and

Framework Memory in expertise capturing, generalization and replay

7.1 Setup of Experiments

The POMDP problem solving experiments were run on high-performance HP Z2 server with CPU Intel

Xeon Processor E7-2176, 8 Core, 20MB Cache and 3.70GHz, and unbuffered RAM of 64GB DDR4 2666

DIMM ECC, Graphical NVIDIA Quadro P4000 8GB GFX. This machine runs Linux Calculate 20 kernel

5.4.6 64-bits which is a fast and resource-efficient Linux distribution based on Gentoo and maintains

an optimal balance between state-of-the-art processing libraries and a renowned stability. The remaining

IAPTF Modules, Script and Programs were hosted and run on a different machine DELL XPS 15 with CPU

Intel Core i7- Processor 10750H, 6 Cores and 2.60GHz and unbuffered RAM of 16GB DDR4 dual-

channel, Graphical NVIDIA GeForce GTX 1659Ti 4GB. This machine is running KALI Linux 2019.2 64-

bits on Bare Metal mode which grant direct installation and access to the machine hardware to enhance

performances.

7.2 Testbed Networks construction

In this section we provide a detailed explanation of the data capturing and reproduction of virtual LANs

used for testing IAPTF. Building virtual LANs which can be used within the virtual context for simulating

PT requires the use of realistic data, architecture and configurations which mimic the real networks that we

cannot perform live testing due to existing restriction notably the GDPR regulation and Legal Framework

in the UK and many other countries. Nonetheless, it is completely legal to capture the physical network

data and recreate virtual clones with the same configuration, some functional sacrifices are compulsory as

the virtual environments remain restricted thus some configurations will be imitated and not completely

replicated. The starting point is the virtual machines (computers, servers, mobile, networking devices and

security devices) which are either virtualized directly form the sources when possible or we use an existing

pre-configured equivalent from online repository such as vulnhub.com [100] and darknet.org.uk [101]

which provides VMware and VirtualBox materials allowing security practitioners to gain practical hands-

on experience with digital security, computer applications and network administration on virtual machine

environments. On few occasions, and this is relevant to servers and security devices cloning, we opted for

the creation of the vulnerable virtual appliance from scratch using SecGen [102] which is a free utility to

create lab environments for hacking challenges such as CTF. In total, for testing IAPTF we designed and

implemented 53 VirtualBox LANs with different sizes varying from 2 machines to 250 machines. The used

testbeds are, to the best of our knowledge, an illustration of the real-world networks widely adopted by

corporates and organizations which include Internet-connected side, DMZ, intranet, and internal sensitive

segments where crucial data is kept securely. The results of the virtualization phase on a 20-machines LAN

constituted from 10 end-user machines (desktop, laptop, server or mobile), 4 networking devices (router or

switch) and 6 security devices (firewall or IDS) is illustrated in figure 67.

http://www.vulnhub.com/

Figure 67: Small corporate LAN of 20 machines replication on VirtualBox

The replicated LANs are then exported following open virtualization format 2.0 (*.ova file) and deployed

into the testing server using the same virtual environment parameters. Note that not only machine data is

exported in form of appliances, but we include networking and addressing data along the .ova files. Figure

68 illustrates the .ova file generation for the previous 20-machines LAN.

Figure 68: virtual LANs replicate exportation following open virtualization format.

7.3 Evaluating PT generated POMDP problems solving using SolvePOMDP

In the first phases of this research, we aimed to assess the effectiveness of the proposed POMDP modelling

of PT and evaluating our choices in terms of learning approaches, used algorithms, and capturing and

managing the expertise as we discussed in detail in Chapter 4. In this work, we tested IAPTF performance

on different size experimental networks composed of variant number of machine and networking routers

varying from 2 to 200 machines. Networking equipment is considered as machines as well as any network

equipment that runs an OS and applications. The only excluded machine is the hacker(s) computer(s) which

will be represented as one entity along with the Internet. Figure 69 shows a sample large LAN with 100

machines. In this research we adopted a gradual simulating and testing approach to evaluate the test our

proposed framework. We thus elaborated a multi-stage approach for validating the adequacy and relevance

of our proposed RL model and POMDP representation. At early stage, we attempted to calibrate

SolvePOMDP which is a Java program that solves POMDPs by executing value iteration and policy search

algorithm to find both exact and approximate solutions for POMDP developed by Erwin Walraven in [22-

24]. POMDPSolve is reputed to be flexible, reliable, and efficient and which we picked instead of re-

implementing the solving algorithms. We run several tests to decide on the relevance if the proposed RL

model and to calibrate SolvePOMDP using different solving approaches and three solving algorithms

namely PERSEUS-LPSolve, GIP-LPSolve and the modified GIP-LPSolve_InitialBelief.

7.4 IAPTF optimal Discount Factor value

To determine which discount rate γ value (between 0 and 1) is best for our SolvePOMDP program which

thus produces the best results and strike the balance time-efficiency vs results quality, we opted for a

quantitative approach by attempting to solve POMDP environments resulting from PT representation as RL

problems using different discount rate values between 0.8 and 0.99. As discussed in the RL chapter, the

objective is to maximise the sum discounted reward using a discount factor γ <=1 as optimality criteria with

different algorithm to find the optimal policy. The results (figures 70) clearly show that γ=0.95 (in amber)

is the best value so solving algorithms PERSEUS and the two variants of GIP strike a balance between

efficiency and accuracy of solving and producing the optimal policy graph. In the first tests, we run solving

tests on different networks size varying from 2 to 200 machines and we attempted to manipulate the discount

rate (factor). SolvePOMDP was run without time horizon limit until a target precision Epsilon equals 0.0001

is reached. We tested several options of discount rate varying from 0.8 to 0.99 and evaluate the suitability

of each discount rate in accordance with the quality of the PG and the convergence time for the solving

algorithm will briefly discuss below the effect of changing discount rate. figure 70 show the obtained results

for PERSEUS, GIP-LPSolve and GIP-LPSolve_InitialBelief for 26 different LANs with size varying from

2 to 200 machines. The approximate solving with PERSEUS shows that 0.99 discount rate slows down

considerably the solving algorithm especially on large LANs with number of machines more than 100. In

fact, for the biggest LAN, PERSEUS solves the POMDP problem in approximately 4x105 seconds

compared with 2.75x105, 2.4x105 and 2x105 with 0.95, 0.9 and 0.8 discount rates respectively as shown in

figure 69.

Figure 69: Solving different LANs POMDPs using PERSEUS-LPSolve with Initial Belief and variable

discount rates.

The impact of smaller discount rate is more noticeable in exact solving methods such as GIP-LPSolve where

in 200-machine networks the required solving time is 2.4x106 for 0.99 compared with 1.7x106, 1.65x106

and 1.55x106 with 0.95, 0.9 and 0.8 discount rates respectively as shown in figure 70.

Figure 70: Solving different LANs size associated POMDPs using GIP-LPSolve and variable discount rates

Furthermore, with the projection of heavily using the modified GIP version on which the Initial Belief is

manipulated and fed directly to the solving algorithm through a Java parser, we performed the same testing

to confirm that the selection of the discount rate will not impact the performances. The obtained results

show that solving with GIP-LPSolve_InitialBelief using the 0.99 discount rate slows down considerably

the solving algorithm especially on large LANs as the 200-machine LAN POMDP problem is solved in

approximately 17.25x105 seconds compared with 9.75x105, 9x105 and 8.25x105 with 0.95, 0.9 and 0.8

discount rates respectively as shown in figure 71. Full results are presented in Appendix 1 Discount Rate

table.

Figure 71: Solving different LANs size associated POMDPs using GIP-LPSolve with Initial Belief and

variable discount rates

The obtained results illustrated in figures 72 show the deep impact, for the three algorithms of the variant

discount factor value γ=0.99 on slowing down the solving performances and thus increasing consumed

time. Where such discount rate remains strongly recommended in small network (typically smaller than 20

machines), it is therefore avoided in medium and large LANs. We noticed that γ=0.95 is the only candidate

that meets both requirements for time efficiency and for policy graph quality in term of exploration and

relevance. γ=0.95 and γ=0.99 discount rates produced nearly the same Policy Graph in testing scenarios

where the network size is more than 100 machines. On the other hand, and as illustrated in figure 72 the

time consumed for γ=0.9 and γ=0.8 is not significantly different from the γ=0.95 and this leads us to

conclude that not enough solving time is saved for these two values compared with the decreasing in the

policies quality which is noticed at the number of vectors in the raw PG and consequently the number of

the valid attack vector that our framework will attempt if such values are adopted. To sum up, the discount

rate testing enable us to conclude with confidence that γ=0.95 is the perfect balance between time efficiency

and solving accuracy. To conclude this section, the obtained results with all three algorithms and for

different testbed LANs back the election of a discount rate (factor) equal to 0.95 which is the balance

between improving performance by in one hand requiring shorter solving (convergence) time by 1/3

compared with a discount rate of 0.99, and in another hand allowing enough exploration and policies

improvement to reach a quality output PGs compared with 0.8 and 0.9 discount rates.

7.5 IAPTF Testing variable and evaluation metrics

In this section, we test and evaluate the performance of IAPTF-Core module on generated virtual LANs,

the IAPTF-Processing output POMDP environments as result of the POMDP-generator Python program.

This testing will be based in metrics we extract from IAPTF-Processing output as follow:

➢ Number of machines N in the tested network,

➢ Number of identified vulnerabilities V,

➢ Number of available exploits E,

➢ Number of security clusters C (in HRL context),

➢ Number of unchanged machines I (in re-testing context).

In re-testing, IAPTF-Processing compares the configuration of each machine in reference to the old

configuration stored in IAPTF-Memory and determines the number of unchanged machine configuration I

since the last testing. On the other hand, the expertise extraction and reusage are also considered during the

retesting comparison. Furthermore, the evaluation metrics adopted in this research are:

➢ Total testing time including RL algorithm solving, pre-processing and post-processing

➢ Number of attack vectors attempted which we use to estimate the network traffic generated

➢ Exploration and coverage measured by the number of valid attack vectors attempted.

For consistency purposes, we opted to introduce an additional quantitative value to be used in comparing

different approach on the top of time consumed and testing coverage of the proposed IAPTF with both

human expert (CEH) and industrial automated solution (MSF Pro). The proposed ratio is set to evaluate the

exploitation of IAPTF in comparison with both human expert (CEH) and industrial automation (MSF Pro).

We introduce the notion Exploitation Ratio which is calculated for CEH, IAPTF and blind automated MSF

as follow:

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒 (𝑁) ∗ 𝑉𝑎𝑙𝑖𝑑 𝐴𝑡𝑡𝑎𝑐𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝛥) ∗ √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑠 (𝑉) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑠 (𝐸)

With the number of Valid Attack vectors being measured in both IAPTF and MSF Pro but only estimated

in CEH context basing on the author experience. We define Congestion factor as the impact of PT on the

assessed network and will equal to 1 for human-led testing as CEH will only launch relevant attacks, while

the Congestion Factor 𝛥 defined on 2 to 5 scale for IAPTF and MSF Pro with 5 allocated to high number

of attacks compared with network size. For each scenario we tried to keep as many settings as consistent as

possible, to better elucidate the effect of the variable of interest. The table 6 provides details of the different

parameter values used. The max steps value chosen as this is intended to produce good performance across

a range of scenario sizes during preliminary testing. Similarly for the values of sensitive machines and

action costs.
Table 10: SolvePOMDP Experiments parameters and their values.

The IAPTF-Core testing was rigorous and extensive, being aware of the volatility in solving

performances of POMDP and notably when using approximate solving or when relying on linear

programming (LP) and the associated complexity of finding optimal policies for POMDPs. This later

are then solvable in polynomial time which is much efficient and enable huge solving-time reduction

compared with PSPACE problem [125-128]. The testing was repeated several times for each network

and calculated the mean value and standard deviation for each test scenario. Given the time constraints,

we opted for a threefold testing approach. We repeated the testing 10 times for small LANs (2-25

machines) and 5 times for medium LANs (30-95 machines) and only 3 times for large LANs (100-

200 machines). The reason of reducing the number of testes in large LANs is the time required to

solve POMDPs which exceeds 468.05 hours (19.5 days) for exact solving of 200-machines POMDPs.

The IAPTF-Core was gradually tested by initially using approximate solving to validate the RL

modeling and POMDP representation, then the exact solving was applied in two phases. First the

regular RL modelling where the entire network was considered at once. Secondly the proposed

hierarchical RL model where networks are divided into security cluster and associated POMDPs are

built then solved as described in Chapter 6. The obtained results illustrate the complexity of solving

medium and large PT problems notably where the aim is reaching the optimal policy. The PERSEUS

approximate solving algorithm is confirmed to be very efficient with all network size but remain

unreliable notably in the quality of the output PG and the testing coverage (exploration).

As anticipated, the exact solving is time consuming and despite the use of the linear programming

with GIP named GIP-LPSolve the solving time is significantly high and largely exceed the acceptable

threshold for PT practice in all medium and large LANs despite the use of LPs. Upon the obtained

results, we decided to introduce some changes within the solving algorithm GIP aiming a better

performance from IAPTF on a short-term basis. We opted for prioritised transitions and observations

through the manipulation of the associated probabilities along with introducing some customisation

into the initial beliefs sampling. In detail, the initial belief is now extracted directly from the output of

previous testing which reflect the better the real-world situation in PT where tester rely on reports of

previous testing to elaborate a full awareness of the assessed network. Indeed, the networks changes

over time as result of hardware/software upgrade and update, security architecture changes,

configurations, and architecture changes notably by adding new machines and removing others.

Nevertheless, the vast majority of machines configuration and defence remain unchanged over short

period (weeks to months). The IAPTF exploits this crucial feature in the quest of performance

enhancement in solving medium and large size POMDP by opting-out the heavyweight GIP initial

belief sampling and simply use python scripts to process last testing output and elaborate a complete

initial belief data that is directly injected into the POMDP environment and thus processed by GIP.

This new variant of GIP is named here GIP-LPSolve with Initial Belief. The modified GIP-LPSolve

with Initial Belief produce a huge improvement (35 to 50%) in GIP performances which is due to the

reduction of the observation space and the narrowing of RL exploration area, this comes of course

with a major drawback which constitute the construction of the initial belief input either manually or

with a customized script.

Figure 72: Solving variant size LANs associated POMDP time consumed and standard deviation when using

different algorithms.

The performance enhancement in large LANs with size exceeding 100-machine (determined

threshold) is clear when adopting the hierarchical modelling with the obvious security clustering

function reaching the best performance in large networks by dividing networks into an optimal size

of 7 to 10 machines per cluster and thus enabling fast solving of POMDPs of the dozens of clusters

and the POMDP of HoCs. Finally, given the encountered difficulties when solving large network

POMDPs and especially when the GIP is used, we introduced the HRL modelling which split the large

POMDP problem into sub-problems following a security clustering approach and solve each of the

cluster POMDP separately before solving the POMDP constructed from the Heads of Clusters only.

As discussed in Chapter 6, this approach is very close to the human hacker operating mode by

considering different LANs machines based on their cyber exposure, attack surface and security

protection regardless of their sub-network. The HRL involve solving a number of small POMDPs

equals to C+1 where C is the number of security cluster, rather than solving large POMDP which is

time consuming. The obtained results were better than expected in term of efficiency and performance

enhancement. HRL GIP-LPSolve performed closely to the fast approximate solving PERSEUS and

especially in large LANs with a projected equality in 200+ machines networks. On the other hand,

HRL GIP-LPSolve with Initial Belief outperformed the approximate solving and all other algorithms

and perform particularly well in large networks (100+ machines) with solving time equal to 40% of

the approximate PERSEUS and 10% of the time requires for GIP-LPSolve with Initial Belief. In small

LANs, some loss of performance was noticed in HRL-GIP-LPSolve due to the extra-processing added

for defining a hierarchical PODMP problems for each security cluster and HoC POMDP. Since we

use value approximation at the higher nodes of the hierarchy to represent the value of selecting the

various specialized lower-level POMDPs. Further testing showed that this loss of performance is

minimal in very small LANs where the use of hierarchy is unjustified due to irrelevance on dividing

a small POMDP into two or more smaller POMDP causing performance loss because of the extra

computing required for different HRL functions and programs. It is worth to mention that as we

calculated the complete testing time required for IAPTF to complete full PT exercise on different

LANs which include the POMDPs HRL-GIP-LPSolve time, pre-processing and post-processing, we

compare the overall result with both human expert CEH approximate consumed time along with a

calculated time from Metasploit which is a python-based automation of MSF framework integrated

with Armitage and Nessus .

Figure 73: Time-efficiency comparison of IAPTF (HRL), CEH and fully automated MSF.

The figure 73 illustrates the comparison in term of consumed time and shows that IAPTF outperforms

both CEH with the gap widen in large LANs. The efficiency of IAPTF compared with the blind

automation is striking with IAPTF requiring only 17% of the MSF consumed time to complete 200-

machine LANs testing.

7.6 Exploration- PT coverage
The second metric for testing the RL model of PT practice and the proposed IAPTF is by measuring

and comparing the exploration and exploitation capabilities. In fact, the POMDP solving time is not

enough to be considered as deterministic metric for evaluation of the proposed RL model and

implementation and notably the quality of the solving which remain the key factor in PT practice. As

with human expert, RL-led PT practice is performed following software RL agent decision-making

which involves fundamental choices and results in exploring the POMDP environment, This test is

designed to measure the exploration of IAPTF-Core in terms of the number of covered attack vectors.

The number of attack paths is defined as the number of full paths concatenated (re-ordered and

gathered) Policy Graphs (PGs) resulting from the solving. In fact, the PGs are concatenated to form a

complete attack path where the starting point is the hacker machine, or any machine controlled at

admin/root level and thus used as pivot point for lateral movement and the end is a machine state

either secure (fail exploit) or successful exploitation and privilege escalation. This reconstruction is

done automatically using a python script and does not account for the feasibility and the relevance of

the attack path in question. Figure 74 shows the total number of attempted attack vectors obtained

with an exact solving of the POMDPs for different size LANs reconstructed from the output PGs of

IAPTF-Core. Figure 74 presents a comparative illustration of number of attacks attempted by the four

solving algorithms in different size LANs.

Figure 74: Number of attack vectors reconstituted from PGs covered by each if the solving algorithms in

different size LANs.

From the obtained results, it is obvious that the classic implementation of GIP-LPSolve covers more

attack vectors despite being more time-consuming. The output policy graph (PG) in GIP-LPSolve is

larger as this solving algorithm perform more action and observe more states with the aim to compute

the best possible policy starting without prior knowledge and pre-eliminated testing directions. HRL-

GIP-LPSolve output approximately half the number of attack paths which is explained by the fact that

the hierarchical RL algorithm will solve a number of small POMDPs equal to the number of security

clusters plus the head of clusters (HoC) POMDP (C+1) resulting into RL performing a local

exploration and thus covering less attack vectors. On the other hand, both customized initial-belief

variant of GIP (RL and HRL) produced approximately the output a third of GIP-LPSolve. These two

implementations rely on the use of last testing output as customized Initial Belief to feed the solving

algorithm pre-eliminate many paths and push the RL agent to ignore certain paths which reduces the solving

time but also reduces the number of attempted attacks by relying on the fully observable state and thus

reducing the number of attacks possibilities which will operate as attack pre-elimination mechanisms.

The total number of attack vectors is important to measure the exploration but insufficient. We here

highlight the fact that PGs size and number of attack vectors attempted, known as attack coverage rate, is

subjective and often misleading as not all attack vectors are valid and complete. The program introduced in

IAPTF is a set of python scripts that examine all attack vector and eliminate non-relevant, repetitive, cyclic

and unworthy attack victors. The results for the four algorithms is unexpected as the gap between GIP-

LPSolve and other three candidate because marginal which validate again the HRL assumption made and

the robustness of the proposed model. We introduced, for comparison purposes, the average number of

attack vector covered by CEH in figure 75.

Figure 75: Comparison of total number of valid attack vectors for the four algorithms CEH.

It is obvious that on the top of the overall performance enhancement and notably, GIP LPSolve with

initial belief and HRL- GIP-LPSolve algorithms produce a similar quality of the produced decision

policies which remain was beyond human expertise especially in the case of the medium and large

LANs when the size and complexity impact human CEH and therefore omit a significant number of

composite (non-obvious) attacking vectors s. On the other hand, IAPTF explores more attack vectors

and attempt higher number of composite attacks resulting in discovering additional attack vectors

which most of CEH would ignore.

Finally, we elaborated an illustrative graph for comparing both time efficiency and valid attack vector

coverage for IAPTF using HRL- GIP-LPSolve with Initial belief as it is the most efficient

implementation in term of time and valid attack vector along with the estimated values for human

expert CEH and a calculated values for MSF fully automated testing illustrated in figure 76.

Figure 76: 3-D comparison of IAPTF, CEH and MSF performances in term of time and valid attack vectors

covered.

It is obvious that IAPTF is the fastest PT approach and second best explorative behind the blind automation

(brute-force) which remain far more time costly. IAPTF is faster and more explorative than the costly

human CEH.

7.7 Exploitation-Testing Validation
In PT practice, success in not binary or measured by successful attacks and exploitation as a failed

attack of attempted properly is a success in term of confirming that an asset is secure against the attack

and will be reported accordingly for compliance purposes. In addition, notion such as false positive

and false negative are not possible to measure and explain in PT practice. We thus introduced a new

metric named exploitation ratio which is synonym of testing validation and represent the cumulative

number of successful of failed valid attacks attempted and thus to be reported at the end of testing.

We calculated this ratio for IAPTF, CEH and MSF and reported obtained results in figure 77.

Figure 77: 3-D comparison of IAPTF, CEH and MSF performances in term of time and exploitation ratio.

The obtained results have once again backed IAPTF generally and the HRL modelling of PT

specifically. In this occasion IAPTF outperforms both the lengthy blind automation (MSF) and the

unreliable CEH where despite being time efficient remain costly and report less valid tests.

7.8 PT generated traffic
PT efficiency is often assessed by measuring the disturbance (network downtime) caused during its

execution in term of network congestion or eventually downtime. This is measured by the amount of

generated reconnaissance, discovery, exploitation, and post-exploitation traffic. Furthermore, the

amount of generated traffic is usually considered proportionate to the risk of detection as most of

network security mechanisms and especially Intrusion Detection Systems rely on the abnormal traffic

monitoring for attack detection. In this research, we estimated the amount generated traffic by

calculated the number of testing sub-tasks performed by IAPTF, CEH and MSF and we represented

in figure 78 the obtained results in parallel with the time required for completing different LANs size

testing.

Figure 78: 3-D comparison of IAPTF, CEH and MSF performances in term of generated network traffic.

Obtained results illustrated in figure 78 strengthen the RL-led PT position as IAPTF remains far less

noisy in term of generated network traffic than the blind automated MSF which is completely expected

as it attempts fewer attacking vectors. Nonetheless, CEH remain stealthier as human expert is

particularly keen on not trigger security mechanism in the network but this approach is less reliable

(effective) because of the small amount of valid tests produced and also lower testing coverage.

7.9 IAPTF- Expertise extraction and Retesting
As we discussed in Chapter 2 and specifically the research contribution, the proposed RL model of

IAPTF is introduced and implemented to tackle two major issues in the PT practice, having presented

in previous sections tested and validated the RL and HRL modelling of PT practice and proved the

performance enhancement of such AI-led PT in term of testing time, testing exploration, testing

exploitation, and reducing network congestion. Furthermore, the use of RL enabled the

implementation of IAPTF expertise extraction, generalisation, and re-use mechanisms which we

tested to assess their impact on performance enhancement. We proceeded to re-test the same network

by introducing gradual changes to certain number of machine configurations mimicking the real-world

situation where networks change over time as result of hardware/software upgrade and update,

security architecture changes, configurations, and architecture changes notably by adding new

machines and removing others. The testing was carried out in two phases. First the regular RL

implementation of GIP-LPSolve with customised Initial Belief and then in a later stage the introduced

HRL-GIP-LPSolve with customised Initial Belief, The tests used the output of previous testing

(performed before introducing the changes into the LANs) and measured the time required for solving.

The IAPTF utilise this crucial feature in the quest of performance enhancement in solving medium

and large size POMDP by opting out of the heavyweight GIP initial belief sampling and simply use

python scripts to process last testing output and elaborate a complete initial belief data that is directly

injected into the POMDP environment and thus processed by GIP. This new variant of GIP is named

here GIP-LPSolve with Initial Belief.

The obtained results were surprisingly better than expected in term of performance enhancement. GIP-

LPSolve with Initial Belief performed much better than the classic GIP in terms of consumed time

and policy graph (PG) accuracy were calculated by dividing the number of attack vectors by the total

number of policy graph. The performances are unanimous and showed in Figure 79. Furthermore, to

assess the contribution of IAPTF expertise extraction, generalisation and reuse and its impact on

performance enhancement, we proceeded to re-test the same network with or without introducing

minor or major changes to a different number of machine configurations. The obtained results in the

context of 100- to 200-machine LANs were extremely encouraging and nearly halved the consumed

time in solving as shown in Figure 79.

Figure 79: Re-testing the same network with introducing a percentage of change using RL-GIP-LPSolve.

The obtained results were unanimous. The performance enhancement in small LANs were marginal

but started to increase in medium LANs to reach very efficient results in 100-machine LANs. The

large LANs context is further better, and results were extremely encouraging as shown in Figure 79.

Overall, retesting RL-GIP-LPSolve produced very good results in small and medium LANs but

remained relatively high in large LANS. The results show some loss of performance for HRL

(compared with regular RL for very small networks) with number of machines up to 10 machines (4

clusters, 33 vulnerabilities, 24 exploits). This issue is completely justified by the fact that clustering

and cluster processing is useless and only slow down IAPTF. In small networks, security clustering

produce often a big number of security clusters and thus many very small (2-3 machines) POMDPs

on the top of the POMDP representing the Heads of clusters. This will result in forcing IAPTF in

executing a big amount of data manipulation and POMDPs' solving which are in fact unnecessary.

The fact that Regular RL solving of entire POMDP is faster. However, HRL-GIP effect is largely

appreciated in larger networks and reach a very good rate in 100-machine network (25 clusters, 102

vulnerabilities, 80 exploits). HRL approach requires 224087.118 ± 12564.7 (2.6 days) compared with

538318.624± 31964.2 (6.2 days) in regular RL-GIP. Going beyond the 100-machine size, HRL is at

least 4 times more efficient and reaching 200-machine size (52 clusters, 153 vulnerabilities, 115

exploits), HRL-GIP performed almost as well as approximate PERSEUS and required 340582.592

±16297.8 (3.9 days) compared with 1685011.539± 71160.5 (19.5 days) for RL-GIP and 278369.056

± 5236.9 (3.2 days). When we repeat the tests using the output of previous testing as initial belief

(after processing), GIP-HRL surpasses PERSEUS performance and only required 1.2 days compared

with 3.2 for approximate. We then tested the HRL-GIP-LPSolve with different LANs and changes

percentages, as shown in figure 80.

Figure 80: Re-testing the same network with introducing a percentage of change using HRL-GIP-LPSolve.

The obtained results outperformed the regular RL representation in all medium size LANs. In context

of large LAN as illustrated in figure 81 the performance were beyond expectation with a clear

performance enhancement in the retesting with 10% and 30% changes and with the 100-machines

threshold for HRL-GIP-LPSolve retesting compared with first testing.

Finally, it worth to highlight that despite the re-testing covered different percentage of change, the

10% and 30% scenarios are the most probable and realistic as in networking the vast majority of

machines configuration and defence remain unchanged or only experience few changes (not exceeding

10% over short period (weeks to months) and 30% over medium period (up to 2-years). The figure 81

illustrate IAPTF the amount of contribution of both hierarchical RL modelling and Initial Belief

customization by using last test output data.

Figure 81: IAPTF re-testing performances’ enhancement by algorithm on small, medium and large size

LANs.

The performances enhancement in retesting is unanimous with obtained results surprisingly better in

term of performance enhancement. HRL-GIP-LPSolve performed much better than the classic GIP in

term if consumed time with results in the context of 100 to 200 machines LANs extremely positive.

7.10 Discussion and reflections
Discussing IAPTF results is a multi-step operation starting by discussing RL choice and validating

the proposed model and learning approach. Later, we examine and discuss the obtained results in

solving real-world PT problems modelled as POMDPs, then we proceed with discussing the obtained

results obtained with different algorithms, RL representation and Initial Belief handling approaches

as well different security auditing re-testing and compliance scenarios. This discussion focuses on the

five evaluation metrics set initially which are: consumed time, coverage (exploration), reliability

(exploitation), congestion and finally expertise extraction and reply in retesting with or without

changes.

7.10.1 Reinforcement Learning and modelling choices
The choice of POMDP over MDP which are quite tractable to solve and easy to specify is because

this later only consider the perfect knowledge of state which is mostly not the case in PT practice [36].

In fact, POMDP accounts for all sources of uncertainty uniformly and allows for continuous network

discovery and information gathering actions. Nonetheless, POMDP choice comes with the price of

enormous intractability in solving the problem optimally [23-24]. Consequently, we opted for

modelling the POMDP as Belief-State MDP, this approach comes with the excellent news related to

the fact that Value-Iteration is an exact method for determining the value function of POMDPs and

the optimal action can be read from the value function for any belief state but the time complexity of

solving POMDP in value-iteration is exponential in term of number of actions, number of observations

and the dimensionality of the belief space which grows with number of states [140-141].

In term of solving approach, which is Policy Iteration for POMDPs, we opted for this option as it

mimics the best possible way the PT expert decision making and self-learning and improvement. In

general, Policy Iteration algorithms choose a policy and then determine the value function based on

the current policy to later update the value function, based on Bellman’s equation, and finally update

the policy and optionally iterate. Policy Iteration algorithms for POMDPs considered for this research

are first GIP which is the improvement of original algorithm that was complex by introducing an

efficient evaluation mechanism to assess local value function from policy and also the representation

of policy using finite-state controller [49]. The second option considered was the PERSEUS Point-

Based Value Iteration [65] which solve POMDP for finite set of belief points through initializing

linear segment for each belief point and iterate while occasionally and keep adding new belief points

as long as the improvements fall below a threshold. Finally, it is important to highlight that despite

the use of a high performance server and optimised solving algorithms, large networks with size

exceeding 200-machine result in very large POMDPs problems that are outside the scope of tractable

exact solutions. The HRL modelling was then proposed to overcome this specific issue and making

IAPTF universal and operational in all scenarios.

7.10.2 IAPTF performance
Overall, the obtained results consolidate prior assumptions on the role of ML and specifically RL in

the automation of decision-making, performance enhancement and optimisation in the use of

resources in offensive cyber security and notably PT practice. Commercial and open-source PT

systems and frameworks were designed initially to work either under human instructions or in a

blindly automated manner, but both approaches fail to address the current environment in which PT

practice is evolving notably the increasing size and complexity of the networks, the high number of

vulnerabilities and the composite testing scenarios which mimic modern hackers operating

approaches. HRL modelling is very efficient when used in the appropriate context (medium and large

LANs), and IAPTF results are additional evidence of the drastic performance enhancement compared

to an average human expert.

In practice, the output of the RL solving is acting policies graphs (PGs) which undergo additional

processing to convert the results into a more understandable format. In addition to the consumed time

for solving the POMDP problem, other factors will be considered notably the time required to perform

different PT tasks by the Metasploit MSF and other variables which are either calculated or

approximated to define the overall consumed time that IAPTF will take to perform a full testing on

the test-bed networks. The obtained results shown in the Figures 71-83 illustrate an initial comparison

of different RL solving algorithms performances on different LANs which were also compared with

manual PT consumed time based on the author’s experience as a PT consultant and CEH as well as

empirical estimation of the overall time required to perform an automated PT with no optimisation. It

is clearly obvious that IAPTF outperforms both manual and automated PT. In addition, different

discount rates were considered in the optic of finding a suitable balance between performance

enhancements and preserving the realistic nature of our IAPTF.

In regular RL model, IAPTF performs better than CEH expert in small and medium size LANs when

accounting for the gain associated to expertise extraction and cost cut. This was expected as solving

large POMDP problems and time wasted in interactions will slow down the IAPTF. Nevertheless, the

weakness in the performances is covered by IAPTF testing coverage (validated PGs) which exceed

by at least double human covered attack paths, a human tester is often pushed to pre-eliminate some

testing vectors or omitting some complex attacking vectors which in some case revealed catastrophic

for the asset security. The coverage and exploration metrics will be measured in detail and discussed

in future works. Finally, we noticed that IAPTF performance on large size LANs decreases sharply,

and this is mainly due to the complexity which impacts the size of the POMDP environments along

with usage of memory during the solving of the problem. This major issue is currently being dealt

with by proposing a hierarchical PT POMDP model relying on grouping several machines under the

same cluster which will be detailed in future works along with improving IAPTF.

Nonetheless, regular RL approach required to solve large POMDP environment generated from a

medium size LAN required a huge amount of time of 149.5 hours (6.2 days) for a network of 100

machines and which is an unreasonable amount of time. The poor performances in medium networks

of 100-200 machines was expected as the exact POMDP solving is a P-SPACE complete problem

compared with NP-complete in approximate solving, thus the time required for solving became

computationally intractable. We tested the new hierarchical representation of PT which meant solving

several small size POMDP problem for each cluster then solving the inter-clusters POMDP problem.

We accounted for the overall time required. The obtained results for five solving approaches, namely

PERSEUS, RL-GIP-LPSolve, RL-GIP-LPSolve+Initial Belief HRL-GIP-LPSolve, and HRL-GIP-

LPSolve+Initial Belief are plotted in figure 79 showing the mean values and standard deviations. In

GIP as with other exact solving with linear programming (LP) algorithm is PSPACE-hard problem

which in computational complexity theory can be solved using an amount of memory that is

polynomial in the input length (polynomial space) and thus requiring polynomial time for finding

optimal policies for POMDPs when that solution by linear programming is possible. When the

decision horizon is large the use of discounted factor is crucial with the role of LP to ensure that the

problem is solvable in polynomial time which is a huge reduction from the above PSPACE-hard

making the solving equivalent to a MDPs which are fully observable POMDPs.

The performance enhancement in large LANs with size exceeding 100-machine is clear in hierarchical

modelling where the security clustering is impactful as the security cluster size become more

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/Polynomial-time_reduction

consistent (large corporate networks clustering produce typically 6 to 15 machines per cluster) and

HRL GIP-LPSolve solving becomes more time-efficient in large LANs which is the ultimate

validation of the HRL modelling designed and implemented to solve large LANs. In small LANs, we

noticed that HRL GIP-LPSolve and HRL GIP-LPSolve with Initial Belief are relatively slower than

GIP-LPSolve and GIP-LPSolve with Initial Belief This loss of performance is expected and justified

by the extra processing done when defining a hierarchical structure for a problem, since we use value

approximation at the higher nodes of the hierarchy to represent the value of selecting the various

specialized lower-level POMDPs. The multiple testing shows that this loss of performance is minimal

in small LANs with number less than 20 machines which is not the best scenario where the use of

hierarchy is justified by the structure of the domain. We are looking at techniques to predict bounds

on the performance loss as a function of the selected hierarchy. Finally, it worth to mention that despite

the fact that the testing was limited to 200-machines HRL GIP-LPSolve with IB version is expected

to solve extra-large LANs efficiently and effectively.

7.10.3 Expertise extraction and retesting
In terms of re-testing, the performed test on different LANs after introducing four different percentage

of change in the assessed network with the changes introduced represent 10%, 30%, 50% and 75%.

The obtained results confirmed one of this research hypotheses namely RL expertise extraction and

reuse crucial impact when used as prior knowledge (initial belief) on algorithms’ overall performances

by notably accelerating the convergence toward optimal policy graph. The obtained results in the

context of 100- to 200-machine LANs were outstanding and reduced considerably consumed time in

10% and 30% context. The retesting brilliant results are mainly due to the use of the enhanced GIP-

LPSolve which utilises a new mechanism in creating and managing POMDP initial belief was proved

very efficient especially in small and medium size LANs. In fact, GIP LPSolve is a variant of an exact

solving RL algorithm which are often labelled as good in results quality but bad in performance, but

the introduced changes in initial belief sampling and managing along with prioritising some decision

sequence over others enabled the new variant to perform much better and even outperform other RL

approximate solving algorithms. On the other hand, re-testing of the same network after the

introduction of minor changes in few machines permitted to appreciate the full contribution of RL to

PT practice by cutting drastically the consumed time and thus, allowing a fast and reliable re-testing

which is often the case in PT when periodic re-testing is compulsory despite the lack of any significant

configuration changes within the networks systems.

The explanation of the obtained results with different algorithms has deep roots in the functioning of

the algorithms and how they use the data represented in the POMDP environment along with the initial

belief sampling. In fact, policy search algorithms adopt a direct but approximate technique to solve

the RL problem and thus sacrifice accuracy for the sake of performance. This applies for the two

versions of PERSEUS, GIP -LPSolve and GIP-LPSolve_IB with different levels depending on the

solving approach and optimiaation. On the other side, the exact solving algorithm and notably the GIP

reputed by their bad performances but good results and utilising this algorithm within IAPTF were

not meant for finding the exception but for comparison and evaluation purposes. The obtained results

with the GIP were expected and confirmed that relying on the basic version of GIP would not produce

any positive output. Therefore we implemented a customised version (mainly on belief sampling and

sequences prioritization) which indeed produced far better results on re-testing scenario and even

outperformed the approximate approaches in case of exactly or nearly similar network re-testing

where the adopted customisation brought the sought impact on the IAPTF performance.

7.10.4 Exploration and Exploitation
RL is the only branch of machine learning that can enable, within a predefined environment, a software

agent to explore and perform sequential decision-making under uncertainty and produce decision

policies (also known as policy graphs) that have a high degree of accuracy and relevance along with

acceptable performances in relation to complex tasks. The RL approach considered for PT practice is

black-box (sometimes grey-box when initial belief is provided) as the RL agent explore and make

decisions with respect to RL environment input data. These decisions are PGs which are translated

into attack vectors using automated scripts. The output PGs and thus attack vector interpretation is a

tricky task and require deep understanding of IALTF and especially RL model functioning along with

mechanisms used such as scripting for cleaning and constructing attack vectors. Exploitation

measurement is rooted in the deep problem of “explainable AI” and in this work we focused on the

results output and its explanation. Form the obtained results, we confirm that IAPTF exploration and

exploitation back the third hypothesis for this research as a RL-led PT practice produce more reliable

result in term of testing different vulnerabilities and more accurate results in term of percentage of

valid attack vector converted into confirmed testing output. All variant algorithms implemented in

IAPTF exceed by far any CEH performance with the number even doubled in large networks making

IAPTF more reliable in terms of PT output confidence. In practical terms, using the adequate RL

algorithm and adopting a new learning scheme enabled IAPTF to produce a very optimised attack

policies when targeting the Machine M9 suspected to contain sensitive information and defined as the

most secured machine within the test-bed network as illustrated in Figure 84. Indeed, the produced

policy is from an attacker point of view obvious but getting an automated system to opt for such attack

vectors despite being not minimal in terms of cost of the exploits and consumed time is the novelty in

IAPTF which is able to sacrifice simplicity for a higher objective. IAPTF exploring and large coverage

capabilities were able to find a very complex and non-obvious attack path in medium-size networks

where, relying on authors experience, no human tester will directly consider adopting the below attack

path despite being relevant and exploitable by hackers but instead will mainly focus on shorted and

more direct attack paths.

Figure 82: Partial illustration of IAPTF output attacking vectors on a 20-machines LAN.

The situation in large LANs is completely different as the attack vectors and notably composite and

complex are less obvious to grasp by human CEH and often omitted or ignored. The figure 85

summarises few attack vectors (the most relevant). The high priority target encircled in red are located

in different security clusters which requires the RL agents to procced to many pivoting (lateral

movement) operations which is illustrated by the different attack vectors.

Figure 83 : Partial illustration of IAPTF output attack vectors on a 100-machines LAN.

To sum up, IAPTF does not only outperform CEH and blind automated system in term of time but

also in term of exploration (covered attack) and exploitation (relevance and pertinence) of the executed

and tested attacks. Several other positive outcomes were noticed, notably the pertinence of the

produced result as solving POMDP resulted in PGs converted into valid attack vectors and assessment

validated that IAPTF outperform CEH and blind automation in all five-assessment metrics. We

estimate the evaluated the overall contribution of IAPTF to be twice better than human CEH in 200-

machine network and 5 to 6 times better than blind automation and this despite the framework

heavyweight pre-processing and post-processing.

Chapter 8: Conclusion

8.1 Research Output Discussion
This section reviews the findings of the experiments conducted during this research to evaluate the

proposed RL and HRL models and the performance of IAPTF in automating the testing of different

size LANs recreated out of real-world data in our virtual environment.

PT is a complex and labor-intensive practice which despite the current use of tools and mostly

automated systems, the complexity of PT tasks is also a major concern in current practice. This

research has developed a new model and novel framework for PT using RL. Experiments conducted

during this research have demonstrated the effectiveness of using RL to enable a software agent

controlling an automated PT system to conduct vulnerability testing, exploration, and validation.

There were a variety of POMDP solving algorithms used in the experiments: exact solving GIP and

approximate solving PESEUS with both using linear programming and different approaches in

handling and generating the initial belief. These RL solving approaches and algorithms were

employed in different scenarios and inputs to real computer networks data represented in the form of

POMDPs. All the solving approaches looked at achieved efficiency in term of consumed time,

accuracy in term of vulnerability exploitation, and relevance in term of decision policies precision.

The different solving approaches and algorithms were used into different networks varying in size

from 2 to 200 machines created for this purpose and obtained results were compared as described in

Chapter 7.

Overall, the proposed RL approach implemented within IAPTF outperforms fully automated PT

systems by far in all testing scenarios including small LANs. During the first phase of IAPTF when

only regular RL implementation were introduced, the performances of the framework were equivalent

to the human expert (CEH) in small LANs but the gap started to widen in medium LANs (over 25

machines) to become huge in large LANs. This was due to our choice of opting into an exact solving

of POMDP which is complex and costly, nonetheless the testing coverage and relevance of IAPTF is

far superior than the CEH measured by the number of overall covered attack vectors and valid attack

vectors respectively. Furthermore, this research proposed and implemented with the IAPTF the

Hierarchical RL model of PT to tackle the scalability issue in large LANs. The obtained results

showed that IAPTF performance outperforms any human expert (CEH) both in terms of consumed

time (efficiency) and in terms of testing coverage and test relevance (effectiveness) [141].

Finally, we highlight that the IAPTF includes a further feature which is crucial towards the

optimisation of the current PT automation, namely the expertise extraction, generalization and replay

which enable fast retesting notably in security compliance scenarios. IAPTF permits the re-usability

of the testing output by either learning and/or capturing the expertise during the test and storing it in

the system memory for future use. It was proved to be very efficient in re-testing scenarios (very

common in PT) and nearly similar cases when the testing time and accuracy of the produced results

were exceptional. At a later stage of this research, we tackled the scalability issue raised in medium

and large size networks by adopting and implementing a two-level hierarchical representation of the

PT environment as POMDP problems. The first level tackled a set of small networks (security

clusters) considered as independent small POMDP problem to solve, whereas the second level tackled

the inter-clusters network composed from the head of clusters machines which are elected to be the

most vulnerable and likely to be used by hackers for pivoting after achieving an accepted privilege

escalation. This approach was then confirmed and validated in this research as the most realistic and

optimal strategy to help a full RL-led automation of PT along with producing an efficient result in

term of timing and expertise capturing. The HRL representation enabled a better explanation of the

obtained results and more visibility about the testing coverage as well as an effective execution of

different PT activities by notably excluding impossible scenarios which are often time consuming

[141].

The methodology for conducting the research was done after a comprehensive review of related works

and PT literature in general which enabled us to complete the domain understanding and identify the

research gap and elaborate research questions. Then we proceeded with decomposing network PT

practice in activities, tasks and subtasks to identify and understand the human expertise. Next we

reviewed different AI techniques to elect the most relevant ones for our research which revealed to be

RL because of its suitability to the domain of sequential decision making under uncertainty. At an

early stage we proposed a POMDP representation of PT problem which does not only cover the

planning but the entire practice. Then this research produced a novel application of RL techniques to

the interactive part (and not the planning) of offensive cybersecurity domain which allows PT systems

and frameworks to become intelligent and autonomous and thus perform most of testing and re-testing

tasks with no or little human intervention. The proposed system named IAPTF can act as a module

and integrate with most of the industrial PT frameworks to significantly improve the efficiency and

accuracy of medium and large networks context. The proposed modelling of PT in the form of the RL

problem allowed the coverage of the entire PT practice and thus producing a system fit for the real-

world context. The current implementation of IAPTF is integrated into the most used PT frameworks

such as Metasploit and permitted highly efficient testing in terms of consumed time, allocated

resources, covered tests and accuracy of the produced results.

8.2 Review of Contributions
The major contribution of this approach is to apply RL techniques to a real-world problem of

automating and optimising PT practice. The research resulted into a net improvements of PT

framework performances notably in terms of consumed time and covered attack-vectors as well as

enhancing the produced results reliability and persistence. Our work lead optimistically to a PT system

free from human error. The second major contribution of the system is the ability to capture the

expertise of human experts without instructing it as IAPTS will rely initially upon the expert feedback

in form of rewarding values until it reaches a certain maturity. Thirdly, IAPTS will increase testing

coverage by attempting tests that a human expert will not be able to explore because of the frequent

lack of time. Finally, IAPTS permits the re-usability of the testing output by either learning and/or

capturing the expertise during the test and storing it with the system memory for future use. It was

proved to be very efficient in re-testing scenarios (very common in PT) and nearly similar cases when

the testing time and accuracy of the produced results were exceptional.

IAPTF performance, when adopting regular RL model, on relatively medium and large networks is

far superior to the current industry baseline covering acceptable time usually allocated to PT expert.

When we introduced the Hierarchical RL model, the performance improvement became striking

notably when comparing blind automation and CEH with the novel hierarchical POMDP model of

PT practice. The HRL approach relies on a complex processing during which the large networks are

initially divided into segments (clusters) following a security-oriented approach and the overall

POMDP environment will contain the representation of the clusters rather than all machines within

the network. This approach has been tested and results obtained were carefully examined. The

validated outcomes are excellent as HRL solves two major issues faced during the IAPTF testing: the

performance enhancement as the system will be solving several small POMDP problems rather than

dealing with one large and complex environment. In addition, the hierarchical model simplified and

enhanced the process of expertise capturing and handling as this later is easily identified and

reconstructed following the two levels (intra-cluster and inter-clusters) and then generalised and

stored in the system memory employing expert system for future use which will depend on the

changes introduced in the assessed network [142].

8.3 Identify and Address Limitations

Despite the fact of addressing the scalability and re-usability issues raised in the middle of this

research notably by adopting the hierarchical RL model to tackle large LANs and also the use of

expert system for experience generalisation and reply, this work encountered three limitations which

are beyond the scope of this research. The first limitation of IAPTF is the need of high-caliber human

expert supervision during early learning phases where this expert will perform or closely supervise

PT activities undergone by IAPTF and adjust the learning and veto the output of the system to ensure

a good quality training by acting as a rewarding provider for the RL agent actions. The second

limitation of this research is that IAPTF and more specifically the RL and HRL model is designed

and built to cover computer networks and infrastructures PT and thus does not account for application

testing, web testing and IoT testing. This limitation is due to the adopted approach of applying RL in

the form of POMDP which requires a set of modules to capture and process real-world PT data and

then use a software agent to solve the problem and enable an optimised automation of PT practice

along with improving the performances and also enhancing the output results’ reliability and

persistence which will lead optimistically to a PT system free from human error. Therefore, upgrading

IAPTF capability to cover new testing variant and context should imperatively pass through the

extension or eventually the development of new RL model and thus POMDP. The third limitation of

IAPTF is the ability to capture expertise from unusual and complex testing vector choices when the

human expert cannot validate the relevance and adequacy to enable the CLIPS expert system to

process (make it general) and store it for future use without the intervention of IAPTF-Core module.

8.4 Directions for Future Work
Research and sciences always open the door for more questions rather than only answering existed

questions. For that, in this research I assume further research on embedding AI techniques and

optimising current automation of Vulnerability Assessment and PT is highly recommended and

needed for the benefit of improving cyber resilience and security and offer a better protection to IT

infrastructures form the fast-emerging cyber-threats and making cyber space a secured domain as

possible. Future research direction in this domain will include:

➢ Investigating and implementing multi-agent solving as an alternative to improve performance

on complex and large POMDP environments. This opting can be very beneficial in case of

parallel testing where more than one session is launched on the system and in case of

hierarchical modelling of large networks where the environment representation (states,

actions, observations, transitions, and reward) associated with each phase of PT will be stored

separately.

➢ Attempting a multi-layer hierarchical model which account for all phases, activities, tasks and

sub-tasks of PT practice. This approach would address the expertise identification, capturing

and generalisation and thus completely get rid of human expert intervention at early stage if

learning.

➢ Extend the RL and HRL model to account for more testing scenarios such as application, web

and IoT testing.

➢ Generalising the PT RL model itself to include web-penetration testing and eventually IoT and

extend the IAPTF modules to accommodate for such upgrade.

➢ Attempt to extend the use of RL in more cyber security domain notably where human expert

is heavily required such as incident handling and digital forensics.

8.5 Closing Remarks
In this research, I have worked towards a proof-of-concept framework which rely on RL branch of AI

and other techniques to replace human expert in conducting PT and vulnerability assessment activities

in an optimised and autonomous way. The sought-after framework is not intended to be stand-alone

software but to integrate commercial and open-source existing systems such as Metasploit Pro, Core-

Impact, Nessus and others. This research validated the theoretical model of network PT practice as a

POMDP environment interaction problem and not just as planning problem, and which was then

adapted to larger networks by adopting a hierarchical POMDP representation following the splitting

of large networks into several security clusters and dealing with each one of them separately to then

process the network composed from the head of clusters. Furthermore, during this research and before

reaching the proposed formal RL and HRL models we contributed into formalising the network PT

practice and advancing the domain understanding in relation to offensive cyber security evolution in

parallel with real-world hackers and cyber-criminal organisations development.

References
[1] He, L., Bode, N. Network penetration testing. In: Blyth, A. (ed.) EC2ND. pp 3–12. Springer, London
(2006).
[2] Bacudio, A., Yuan, X., Chu, B., Jones, M.: An Overview of Penetration Testing. International Journal of
Network Security & Its Applications 3(1-2), 19–38 (2011). https://doi.org/10.5121/ijnsa.2011.3602
[3] Backes, M., Hoffmann, J., K¨unnemann, R., Speicher, P., Steinmetz, M.: Simulated penetration testing and
mitigation analysis. (2017)ArXivabs/1705.05088.
[4] Phong, C., Yan, W.: An overview of penetration testing. International Journal of Digital Crime and
Forensics (IJDCF) 6, 50–74 (2014). https://doi.org/10.4018/ijdcf.2014100104
[5] Abu-Dabaseh, F., Alshammari, E.: Automated penetration testing: An overview. Computer Science and
Information Technology (2018)
[6] Yaqoob, I., Hussain, S., Mamoon, S., Naseer, N., Akram, J.: Penetration testing and vulnerability
assessment. Journal of Network Communications and Emerging Technologies (JNCET) 7, 12–21 (2017)
[7] Singleton, C, Moore, S. and McMillen, D. Top 10 Cybersecurity Vulnerabilities. (2021). Security
intelligence report, IBM, USA.
[8] Ghanem, M., Chen, T.: Reinforcement learning for efficient network penetration testing. Information 11, 6
(2019). https://doi.org/10.3390/info11010006.
[9] Sarraute, C., Buffet, O., Hoffmann, J.: Pomdps make better hackers: Accounting for uncertainty in
penetration testing., proceedings of the twenty-sixth aaai conference on artificial intelligence, pp. 1816–1824
(2012).
[10] Boddy, M., Gohde, J., Haigh, T., Harp, S.: Course of action generation for cyber security using classical
planning., proceedings of the 15th international conference on automated planning and scheduling. ICAPS’05,
pp. 12–21 (2005).
[11] Sarraute, C., Richarte, G., Luc´angeli Obes, J.: An algorithm to find optimal attack paths in
nondeterministic scenarios., proceedings of the acm conference on computer and communications security.
(2013). https: //doi.org/10.1145/2046684.2046695
[12] Zennaro, F.M., Erdodi, L.: Modeling penetration testing with reinforcement learning using capture-the-
flag challenges and tabular q-learning. ArXiv abs/2005.12632 (2020)
[13] Maeda, R., Mimura, M.: Automating post-exploitation with deep reinforcement learning. Computers &
Security 100, 102108 (2021). https: //doi.org/10.1016/j.cose.2020.102108
[14] Bertoglio, D.D., Zorzo, A.F.: Overview and open issues on penetration test. Journal of the Brazilian
Computer Society 23(1), 1–16 (2017)
[15] Mohan, V. (2014). A comparison of various reinforcement learning algorithms to solve race track
problem. https://pdfs.semanticscholar.org.
[16] Schaul, T., Quan, J., Antonoglou, I., and Silver, D. 2016. Prioritized experience replay, Google
DeepMind. Conference paper at ICLR 2016.
[17] Singhal, A. and Ou, X. (2011). Security risk analysis of enterprise Networks using probabilistic attack
graphs. NIST Interagency Technical Report 7788.
[18] PETS Technical Guidelines. (2021). Available: http://www.penteststandard.org/index.php PTES
Technical Guidelines.
[19] OSSIG. Penetration Test Framework (PTF). (2022). Available: http://cuchillac.net.
[20] Scarfone, K., Souppaya, M., Cody, A. and Orebaugh, A. Technical Guide to Information Security Test
and Assessment. 2022.
[21] Kennedy, D., O’Gorman, J., Kearns, D. and Aharoni, M. Metasploit. The Penetration Tester’s Guide.
San Francisco. 2011.
[22] Layton, T. penetration studies: a technical overview.(2019). https://www.sans.org/reading-
room/whitepapers.
[23] Schreuders, Z. C. and Ardern, L. Generating randomised virtualised scenarios for ethical hacking and
computer security education: SecGen implementation and deployment. In Workshop on Cybersecurity
Training & Education (VIBRANT15), 2015.

[24] Sawilla, R.E., Ou, X., 2008. Identifying critical attack assets in dependency attack graphs. In: Jajodia, S.,
Lopez, J. (Eds.), Computer Security - ESORICS 2008. In: Lecture Notes in Computer Science, volume 5283.
Springer Berlin Heidelberg, pp. 18–34. doi: 10.1007/978- 3- 540- 88313- 5 _ 2 .
[25] Ou, X. , Singhal, A. , 2012. Quantitative Security Risk Assessment of Enterprise Networks. Springer.
[26] Mell, P. , Scarfone, K. , Romanosky, S. , 2006. Common vulnerability scoring system. Secur. Privacy
85–89.

https://securityintelligence.com/author/camille-singleton/
file:///D:/My%20PhD%20CyberSec/PhD%20Writting%20UP%20IMP/Moore
file:///D:/My%20PhD%20CyberSec/PhD%20Writting%20UP%20IMP/McMillen
https://securityintelligence.com/
https://securityintelligence.com/
https://pdfs.semanticscholar.org/

[27] Bistarelli, S. , Dall’Aglio, M. , Peretti, P. , 2006. Strategic games on defense trees. In: International
Workshop on Formal Aspects in Security and Trust. Springer, pp. 1–15 .
[28] Boddy, M.S. , Gohde, J. , Haigh, T. , Harp, S.A. , 2005. Course of action generation for cyber security
using classical planning. In: ICAPS, pp. 12–21 .
[29] Borbor, D. , Wang, L. , Jajodia, S. , Singhal, A. , 2017. Securing networks against un-patchable and
unknown vulnerabilities using heterogeneous hardening options. In: IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, pp. 509–528 .
[30] Polatidis, N., Pavlidis, M. and Mouratidis, H., 2017. Cyber-attack path discovery in a dynamic supply
chain maritime risk management system. Computer Standards International conference.
[31] Creasey, J. and Glover, I. CREST: A guide for running an effective Penetration Testing program.
http://www.crest-approved.org (2017).
[32] Almubairik, N. and Wills, G. Automated Penetration Testing Based on a Threat Model. The 11th
International Conference for Internet Technology and Secured Transactions (ICITST), (2016).
[33] Denis, M., Zena, C. and Hayajneh, T. Penetration testing: Concepts, attack methods, and defense
strategies. In 2016 IEEE Long Island Systems, Applications and Technology Conference (LISAT), (2016).
[34] Morgan, J.P. Global cybersecurity spending exceeded 1 trillion dollars for 2017-2021. Cybercrime
Magazine, (2021).
[35] Ferreira, A. and Kleppe, H. Effectiveness of automated application penetration testing tools, (2011).
[36] Conheady, S. Social engineering in IT security: Tools, tactics, and techniques. McGraw-Hill Education
Group, (2014).
[37] Broad, J. and Bindner, A. Hacking with Kali: practical penetration testing techniques. Newnes, (2013).
[38] Haubris, K. and Pauli, J. Improving the efficiency and effectiveness of penetration test automation. 10th
International Conference on Information Technology IEEE, pages 387-391. (2013).
[39] Jaswal, N. Mastering Metasploit. Fourth Edition Packt Publishing, (2020).
[40] Mirjalili, M., Nowroozi, A. and Alidoosti. M. A survey on web penetration test. Advances in Computer
Science International Journal, 3(6):107-121, (2014).
[41] Nickerson, C., Kennedy, D., Smith, E., Rabie, A. and McCray, J. Penetration testing execution standard.
http://www.pentest-standard.org. 2014.
[42] Shah, S., Babu M. and Mehtre, M. An overview of vulnerability assessment and penetration testing
techniques. Journal of Computer Virology and Hacking Techniques, 11(1):27-49, (2015).
[43] Stefinko, Y., Piskozub, A. and Banakh, R. Manual and automated penetration testing, benefits and
drawbacks, modern tendency. In 13th IEEE International Conference on Modern Problems of Radio
Engineering, Telecommunications and Computer Science (TCSET), pages 488-491. (2016).
[44] Khan, S. and Parkinson, S., Review into state of the art of vulnerability assessment using artificial
intelligence. Guide to Vulnerability Analysis for Computer Networks and Systems, pages 3-32. (2018).
[45] Samant, N. (2011). Automated Penetration Testing. Master thesis submitted to San Jose State
University, Spring 2011. B. Schneier. Attack trees. Dr Dobbs Journal, 1999.
[46] Bacudio, A., Yuan, X., Chu, B. and Jones, M., An overview of penetration testing. International Journal
of Network Security & Its Applications, 3(6), page 19. (2011).
[47] Obes, J.L., Richarte, G., and Sarraute, C. (2013). Attack Planning in the Real World. Journal Article,
CoRR, abs/1306.4044.
[48] Sarraute, C. Buffet, O., and Hoffmann, J. (2012). POMDPs make better hackers: Accounting for
uncertainty in penetration testing. Proceedings of the 26th AAAI Conference on Artificial Intelligence
(AAAI’12), pages 1816– 1824, Toronto, ON, Canada, July 2012. AAAI Press.
[49] Obes, J.L., Richarte, G., and Sarraute, C. (2013). Attack Planning in the Real World. Journal Article,
CoRR, abs/1306.4044.
[50] Sarraute, C. 2012. Automated attack planning. Instituto Tecnologico de Buenos-aires, Ph.D. Thesis,
Argentina, submitted on 02/07/2012.
[51] Sarraute, C., Richarte, G. and Lucangeli, J. An algorithm to find optimal attack paths in non-
deterministic scenarios. In Workshop on Security and Artificial Intelligence, pages 71–80, 2011.
[52] Jimenez, S., De-la-rosa, T., Fernandez, S., Fernandez, F. and Borrajo, D. 2009. A Review of Machine
Learning for Automated Planning. The Knowledge Engineering Review, Vol. 00:0, 1–24.c 2009, Cambridge
University Press.
[53] Pasquale, L, Hanvey, S., Mcgloin, M. and Nuseibeh, B. (2016). Adaptive Evidence Collection in the
Cloud Using Attack Scenarios. Preprint submitted to Computers and Security Journal February 8, 2016.
[54] Hoffmann, J. (2015). Simulated penetration testing: From “Dijkstra” to “Turing Test++”. Proceedings of
the 25th International Conference on Automated Planning and Scheduling (ICAPS’15). AAAI Press, 2015.
[55] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. 3rd Ed. Prentice Hall,
2009.

http://www.crest-approved.org/

[56] Phillips, C. Swiler, L. P. (1998). A graph-based system for network-vulnerability analysis. In
Proceedings of the New Security Paradigms Workshop 1998.
[57] Thaier, H. (2014). Attack Graph Approach to Dynamic Network Vulnerability Analysis and
Countermeasures, Ph.D. thesis submitted to the University of Bedfordshire.
[58] NIST. 2017. Computer Security Resource Center - National Vulnerability Database. https://nvd.nist.gov.
Last Accessed 23/05/2021.
[59] Qiu, X., Jia, Q., Wang, S., Xia, C. AND Shuang, L. (2014). Automatic generation algorithm of
penetration graph in penetration testing, 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud
and Internet Computing.
[60] Dean R., McKinnel, T., Dargahi, A., and Kim-Kwang, R. A systematic literature review and meta-
analysis on artificial intelligence in penetration testing and vulnerability assessment. Computers & Electrical
Engineering, Volume 75, 175-188, (2019).
[61] Sheyner, O., Haines, J., Jha, S., Lippmann, R. and Wing, J. Automated generation and analysis of attack
graphs. In Proceedings 2002 IEEE Symposium on Security and Privacy, pages 273-284. IEEE, (2002).
[62] Shmaryahu, D., Shani, G., Hoffmann, G. and Steinmetz, M. Constructing plan trees for simulated
penetration testing. In The 26th international conference on automated planning and scheduling, volume 121,
(2016).
[63] Thrun, S. and Littman, M.L., Reinforcement learning: an introduction. AI Magazine, 21(1), pages 103-
143. (2000).
[64] Applebaum, A., Miller, D., Strom, B., Korban, C. and Wol, R. (2016). Intelligent, automated red team
emulation. ACSAC '16 Proceedings of the 32nd Annual Conference on Computer Security Applications,
Pages 363-373. ISBN 978-1-4503-4771-6/16/12.
[65] Backes, M. Hoffmann, J., Kunnemann, R., Speicher, P. and Steinmetz, M. (2017). Simulated Penetration
Testing and Mitigation Analysis. http://arxiv.org/abs/1705.05088.
[66] Durkota, K., Lisý, V., Bošanský, B., Kiekintveld, C. and Pěchouček, M., 2019. Hardening networks
against strategic attackers using attack graph games. Computers & Security, 87, p.101578.
[67] Z. Hu, R. Beuran, and Y. Tan. Automated penetration testing using deep reinforcement learning. In 2020
IEEE European Symposium on Security and Privacy Workshops (EuroS PW), page 2, (2020).
[68] Chu, G., 2021. Automation of Penetration Testing. Ph.D Thesis, University of Liverpool.
[69] Montuno., D, 2018. Machine Learning in Vulnerability Assessment. Defence Research and
Development Canada – Ottawa Research Centre.
[70] Niculae, S., Dichiu, D., Yang, K. and Bäck, T., Automating penetration testing using reinforcement
learning. (2020).
[71] Maeda, R. and Mimura, M., 2021. Automating post-exploitation with deep reinforcement
learning. Computers & Security, 100, p.102108.
[72] Dayan, P. and Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive,
Affective, & Behavioral Neuroscience 2008, 8 (4), 429-453 doi:10.3758/CABN.8.4.429.
[73] Dejmal, S., Fern, A. and Nguyen, T. (2008). Reinforcement Learning for Vulnerability Assessment in
Peer-to-Peer Networks. IAAI'08 Proceedings of the 20th national conference on Innovative applications of
artificial intelligence V3. Pages 1655-1662, Chicago, Illinois — July 13 - 17, 2008, AAAI Press ISBN: 978-
1-57735-368-3.
[74] Durkota, K, Lisy, V., Bosansk, B. and Kiekintveld, C. (2015). Optimal Network Security Hardening
Using Attack Graph Games. IJCAI2015 Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence.
[75] Ghosh, N. and Ghosh, S. (2009). An Intelligent Technique for Generating Minimal Attack Graph,
August 6, 2009
[76] Chowdary., A, Huang., D, Mahendran.,J, Romo.,D, Deng.,Y. and Sabur., A. 2020. Autonomous Security
Analysis and Penetration Testing. Arizona State University.
[77] McKinnel, D., Dargahi, T., Dehghantanha, A. and Choo, K., 2019. A systematic literature review and
meta-analysis on artificial intelligence in penetration testing and vulnerability assessment. Computers and
Electrical Engineering, 75, pp.175-188.
[78] Speicher, P., Steinmetz, M., Hoffmann, J., Backes, M. and Künnemann, R., 2019. Towards automated
network mitigation analysis. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing.
[79] Spaan, M. (2012). Partially Observable Markov Decision Processes, Reinforcement Learning: State of
the Art, Springer Verlag, 2012.
[80] Taylor, M., Whiteson, S. and Stone, P. (2007). Temporal Difference and Policy Search Methods for
Reinforcement Learning: An Empirical Comparison. In Proceedings of the Twenty-Second National
Conference on Artificial Intelligence (AAAI 07), pp. 1675-1678, Vancouver, Canada, July 2007.
[81] Tangkaratt, V., Van Hoof, H., Parisi, S., Neumann, G., Peters, J. and Sugiyama, M. 2016. Policy Search

https://nvd.nist.gov/
http://arxiv.org/abs/1705.05088

with High-Dimensional Context Variables.
[82] Veeramachaneni, K., Arnaldo, I., Cuesta-Infante, A., Korrapati, V., Bassias, C. and Li, K. 2016. AI2:
Training a big data machine to defend. CSAIL, MIT Cambridge. Our work
[83] Al-Emran, M.: Hierarchical reinforcement learning: A survey. International Journal of Computing and
Digital Systems 4, 2210–142 (2015). https://doi.org/10.12785/ijcds/040207
[84] Moerland, T., Broekens, J., Jonker, C.: Model-based Reinforcement Learning: A Survey, (2020).
https://doi.org/10.48550/arXiv.2006.16712.
[85] Roijers, D.M., Vamplew, P., Whiteson, S., Dazeley, R.: A survey of multiobjective sequential decision-
making. Journal of Artificial Intelligence Research 48, 67–113 (2013).
[86] Spaan, M.T.: Partially observable markov decision processes. In: Reinforcement Learning, pp. 387–414.
Springer, (2012)
[87] Jain, A., Niekum, S.: Efficient Hierarchical Robot Motion Planning Under Uncertainty and Hybrid
Dynamics (2018).
[89] Stock, S.: Hierarchical hybrid planning for mobile robots. KI-K¨unstliche Intelligenz 31(4), 373–376
(2017)
[90] Joglekar, N. Hierarchical planning under uncertainty: Real options and heuristics, page 291–313.
https://doi.org/10.1016/B978-0-7506-8552-8.50014-1. (2008).
[91] Babenko, L., Kirillov, A.: Development of automated malware detection system. izvestiya SFedU.
Engineering sciences, 153–167 (2022). https://doi.org/10.18522/2311-3103-2021-7-153-167
[92] Zhou, R., Pan, J., Tan, X., Xi, H.: Application of clips expert system to malware detection system, vol.
1, pp. 309–314. https://doi.org/10.1109/CIS. (2008).
[93] Pineau, J., Gordon, G.: Point-based value iteration: An anytime algorithm for POMDP. proceedings
international joint conference of artificial intelligence., pp. 1025–1032 (2003)
[94] Spaan, M., Vlassis, N.: Perseus: Randomized point-based value iteration for POMDP. Journal Artificial
Intelligence Research. (JAIR) 24, pages 195–220 (2005).
[95] Walraven, E., Spaan, M.T.J.: Accelerated vector pruning for optimal POMDP solvers. In: AAAI (2017).
[96] Zhang, W., Nevin, D., Zhang, N., Supervisor, T., Golin, G.: Algorithms for partially observable markov
decision processes. doi.org/10.14288/1.0098252 (2003)
[97] Walraven, E., Spaan, M.: Accelerated vector pruning for optimal POMDP solvers. Proceedings of the
AAAI Conference on Artificial Intelligence 31(1) (2017).
[98] Valea,. O and Oprisa,. C. 2020. Towards Pentesting Automation Using the Metasploit Framework.
Technical University of Cluj-Napoca and Bitdefender.
[99] Andrew, Y. and Jordan, M. PEGASUS: A policy search method for large MDPs and POMDPs.
Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence (2013).
[100] Cassandra, A.R., Littman, M.L., Zhang, N.L.: Incremental pruning: A simple, fast, exact method for
partially observable Markov decision processes. arXiv preprint arXiv:1302.1525 (2013)
[101] Hans, E.W., Herroelen, W., Leus, R. and Wullink, G., A hierarchical approach to multi-project
planning under uncertainty. Omega, 35(5), page 563-577. (2007).
[102] Kim, S. and Lee, H., Software systems at risk: An empirical study of cloned vulnerabilities in practice.
Computers & Security, 77, pp.720-736. (2018).
[103] Gatti, C. (2015). Design of Experiments for Reinforcement Learning, Springer International Publishing
Switzerland 2015.Springer Theses, DOI 10.1007/978-3-319-12197-0_2.
[104] Meuleau, N., Kim, K., Kaelbling, L., Cassandra, A. 2013. Solving POMDPs by Searching the Space of
Finite Policies. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI1999).
[105] Heinl, C. H. 2016. Artificial (Intelligent) Agents and Active Cyber Defense: Policy Implications. 6th
International Conference on Cyber Conflict. NATO CCD COE Publications, Tallinn.
[106] MITRE, C., 2019. Common vulnerabilities and exposures (cve). Retrieved from https://cve.mitre.
org/about/index. html.
[107] Heinrich, J. and Silver, D. 2016. Deep Reinforcement Learning from Self-Play in Imperfect-
Information Games, University College London.
[108] Kervinen, A. and Virolainen, P. (2005). Heuristics for Faster Error Detection With Automated Black
Box Testing. Electronic Notes in Theoretical Computer Science 111 (2005) 53–71.
[109] McKinnel, D.R., Dargahi, T., Dehghantanha, A. and Choo, K.K.R., A systematic literature review and
meta-analysis on artificial intelligence in penetration testing and vulnerability assessment. Computers &
Electrical Engineering, 75, pages 175-188. (2019).
[110] Bryce, D. and Kambhampati, S. (2007). A Tutorial on Planning Graph–Based Reachability Heuristics.
Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602, SPRING
2007
[111] Li, Z., Zou, D., Xu, S., Jin, H., Qi, H. and Hu, J., December. VULPECKER: an automated vulnerability

https://doi.org/10.48550/arXiv.2006.16712
https://doi.org/10.1016/B978-0-7506-8552-8.50014-1
https://doi.org/10.1109/CIS
https://arxiv.org/find/cs/1/au:+Ng_A/0/1/0/all/0/1
https://arxiv.org/find/cs/1/au:+Jordan_M/0/1/0/all/0/1

detection system based on code similarity analysis. In Proceedings of the 32nd Annual Conference on
Computer Security Applications, page 201-213, (2016).
[112] Giarratano, J., Ph.D. CLIPS User’s Guide Version Quicksilver Beta,December 31st 2007.
http://clipsrules.sourceforge.net/OnlineDocs.html.
[113] CLIPS Reference Manua Volume I Basic Programming Guide Quicksilver Beta, December 31st
2021.http://clipsrules.sourceforge.net/OnlineDocs.html
[114] Svacina, J., Raffety, J., Woodahl, C., Stone, B., Cerny, T., Bures, M., Shin, D., Frajtak, K. and
Tisnovsky, P., On vulnerability and security log analysis: A systematic literature review on recent trends. In
Proceedings of the International Conference on Research in Adaptive and Convergent Systems. pages 175-
180. (2020).
[115] Jesse Hoey and Pascal Poupart. 2005. Solving POMDPs with continuous or large discrete observation
spaces. In Proceedings of the 19th international joint conference on Artificial intelligence (IJCAI'05). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1332–1338.

[116] Douglas Aberdeen and Jonathan Baxter. Scalable internal-state policy-gradient methods for POMDPs.
In Proceedings of the Nineteenth International Conference on Machine Learning, pages 3–10, (2002).
[117] Hansen, E. Solving POMDPs by searching in policy space. In Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence, pages 211–219, Madison, WI, 1998.
[118] Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101:99–134,
(1998).
[119] Leonid Peshkin, Nicolas Meuleau, and Leslie P. Kaelbling. Learning policies with external memory. In
Proceedings of the Sixteenth International Conference on Machine Learning, pages 307–314, San Fran-
cisco, CA, (1999).
[120] Littman, M. Memoryless policies: Theoretical limitations and practical results. In Dave Cliff, Philip
Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors, Proceedings of the Third International
Conference on Simulation of Adaptive Behavior, Cambridge, MA, 1994. The MIT Press.
[121] Madani O, Hanks O, and Condon A. On the undecidability of probabilistic planning and infinite-
horizon partially observable decision problems. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, pages 541–548, Orlando, 1999.
[122] Marco Wiering and Juergen Schmidhuber. HQ-learning. Adaptive Behavior, 6(2):219–246, 1997.
[123] Meuleau N, Kim K, Kaelbling L, and Cassandra A. Solving POMDPs by searching the space of finite
policies. In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pages 417–426,
Stockholm, 1999.
[124] Spaan MTJ, Vlassis N (2005a) Perseus: Randomized point-based value iteration for POMDPs. Journal
of Artificial Intelligence Research 24:195–220
[125] Papadimitriou C and Tsitsiklis J. The complexity of Markov decision processes. Mathematics of
Operations Research, 12(3):441–450, 1987.
[126] Varakantham P, Maheswaran R, Tambe M (2005) Exploiting belief bounds: Practical POMDPs for
personal assistant agents. In: Proc. of Int. Conference on Autonomous Agents and Multi-Agent Systems
[127] Vlassis N, Toussaint M (2009) Model-free reinforcement learning as mixture learning. In: International
Conference on Machine Learning, ACM, pp 1081–1088.
[128] Jain, A., Niekum, S.Efficient Hierarchical Robot Motion Planning Under Uncertainty and Hybrid
Dynamics (2018)
[129] Stock, S.: Hierarchical hybrid planning for mobile robots. KI-Kunstliche Intelligenz 31(4), 373{376
(2017)
[130] Joglekar, N.: Hierarchical planning under uncertainty: Real options and heuristics, pp. 291{313 (2008).
https://doi.org/10.1016/B978-0-7506-8552-8.50014-1.
[131] Babenko, L., Kirillov, A.: Development of automated malware detection system. izvestiya SFedU.
Engineering sciences, 153{167 (2022). https://doi.org/10.18522/2311-3103-2021-7-153-167
[132] Zhou, R., Pan, J., Tan, X., Xi, H.: Application of clips expert system to malware detection system, vol.
1, pp. 309{314 (2008). https://doi.org/10.1109/CIS.2008.100
[133] Pineau, J., Gordon, G.: Point-based value iteration: An anytime algorithm for pomdps., proceedings
international joint conference of artificial intelligence., pp. 1025{1032 (2003)
[134] Zhang, W., Nevin, D., Zhang, N., Supervisor, T., Golin, G.: Algorithms for partially observable
markov decision processes. doi.org/10.14288/1.0098252 (2003)
[135] Walraven, E., Spaan, M.: Accelerated vector pruning for optimal pomdp solvers. Proceedings of the
AAAI Conference on Artificial Intelligence31(1) (2017)
[136] Barreto, A., Hou, S., Borsa, D., Silver, D. and Precup, D., 2020. Fast reinforcement learning with
generalized policy updates. Proceedings of the National Academy of Sciences, 117(48), pp.30079-30087.

[137] Sutton, R. and Barto, A. 2018. Reinforcement Learning: An Introduction (MIT Press, 2018).
[138] Kober, J., Bagnell, A. and Peters, J. 2013. Reinforcement learning in robotics: A survey. International
Journal of Robotics Research. 32, 1238–1274 (2013)
[139] Janner, M., Fu, J., Zhang, M. and Levine, S., 2019. When to trust your model: Model-based policy
optimization. Advances in Neural Information Processing Systems, 32.
[140] Dimitrakakis, C. and Ortner, R., 2018. Decision making under uncertainty and reinforcement learning.
Book available at http://www.cse.chalmers.se.
[141] Ghanem, M., Chen, T. and Nepomuceno, E. 2022. Hierarchical Reinforcement Learning for Efficient
and Effective Automated Penetration Testing of Large Networks, Journal of Intelligent Information Systems,
https://doi.org/10.21203/rs.3.rs-1686285/v1.

http://www.cse.chalmers.se/

Appendix A

Table 11: Time and standard deviation in seconds consumed to solve POMDP problem for different size

LANs

Table 12: Time in seconds consumed to solve POMDP problem for Re-testing cases after introducing a

variable percentage of change and using last testing output as initial belief.

Appendix B: List of publications

Journal Papers

• Ghanem, M.C.; Chen, T.M.; Nepomuceno, E.G. Hierarchical Reinforcement
Learning for Efficient and Effective Automated Penetration Testing of Large
Networks. Journal of Intelligent Information Systems. 2022.
https://doi.org/10.21203/rs.3.rs-1686285/v1

• Ghanem, M.C.; Chen, T.M. Reinforcement Learning for Efficient Network
Penetration Testing. Information. 2020, 11, 6.
https://doi.org/10.3390/info11010006

Conference Papers
• Ghanem, M.C.; Chen, T.M. Reinforcement Learning for Intelligent Penetration

Testing. Second World Conference on Smart Trends in Systems, Security and
Sustainability (WorldS4), 2018, pp. 185-192, doi:
10.1109/WorldS4.2018.8611595.

https://www.researchgate.net/profile/Erivelton-Nepomuceno?_sg%5B0%5D=yvbuS8x1XyNl3FXLbVkiOME7lF38TzKqSR6DOukZ1w578MBHjxnmGnQiry5S5gRSN1BymME.n1tWK3HGYJRCLbSncRBnd5EDNc2ISrcFtY8mTbW4BjOh9qQe3vfALw8_FvyenyzumRtvI1FBvCGygvIrssZ2rQ&_sg%5B1%5D=l4gw7Rim185jiIdlsN6EpjBmyEPwwF_c_BQoUnCF60kcfh3b2HS6WZtbn5tL3SsLu3AzJFU.15_eDDD279nEBCbrc2t4zVpvLtTvFq4xmn8kOl7w1m45MmTI8jSKMQ1tUmmwsKZf5rW-SifJiJAVBYhKozJ2iQ
http://dx.doi.org/10.21203/rs.3.rs-1686285/v1

