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                                                  Abstract 
Penetration Testing (PT) is an offensive method for assessing and evaluating the security of digital asset 
by planning, generating, and executing all or some of the possible attacks that aim to exploit its 
vulnerabilities. In large networks, penetration testing become repetitive, complex and resources 
consuming despite the use of autonomous tools. To maintain the consistency and efficiency of PT in 
medium and large network context. it is imperative to go through making it intelligent and optimized 
which will allow regular and systematic testing without having to provide a prohibitive amount of human 
labor in one hand and reducing the precious consumed time and tested system downtime in another hand. 
Reinforcement Learning (RL) led testing will unburden human experts from the heavy repetitive tasks 
and unveil special and complex situations such as unusual vulnerabilities or combined non-obvious 
combinations which are often ignored in manual testing. In this research, we are concerned with the 
specific context of improving current automated testing systems and making them intelligent, targeted, 
and efficient by embedding reinforcement learning techniques where it is relevant. The proposed 
Intelligent Automated Penetration Testing Framework (IAPTF) utilizes RL because of its relevance to 
sequential decision-making problems, it relies on a model based RL where planning and learning are 
combined and decomposed tasks to represent it as POMDP domain accounting for major PT features, 
tasks and information flowchart to realistically reflect the real-world context. The problem is then solved 
on an external POMDP-solver using different algorithms to identify most efficient options. As we 
encountered a huge scaling-up challenges in solving large POMDP which reflect the regular 
representation of PT on large networks, we propose thus a Hierarchical representation on which we 
divided large networks into security clusters and enabling IAPTF to deal with each cluster separately as 
small networks (intra-clusters), later we proceed to the testing of the network of clusters heads to ensure 
covering all possible complex and multistep attacking vectors largely adopted by nowadays hackers.  The 
obtained results are unanimous and defeat both previous results and any human performances in term of 
consumed time, number tested vectors and accuracy especially in large networks. The learning is the 
second strength of our new model, as the generalization of the extracted knowledge become easier and 
allowing therefore the re-usability notably in the case of retesting the same network with few changes 
which is often the real-world context in PT. The performance enhancement and the knowledge extracted, 
and reuse confirm the efficiency, accuracy, and suitability of our proposed framework. Finally, IAPTF is 
designed to offload and ultimately replace human expert and to be independent, comprehensive, and 
versatile so it can integrate any automated PT platform or toolkit. Initially, the framework connects 
directly with Metasploit and Nessus APIs as both free versions coding architecture allows to perform 
such utilization.  

 
Keywords: penetration testing; artificial intelligence; machine learning; reinforcement learning; 
hierarchical reinforcement learning; network security auditing; offensive cyber-security; vulnerability 
assessment.
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Chapter 1: Introduction  
In the cyber era we are living in, our lives are becoming more and more accustomed to the presence 
of IT equipment, devices, and systems. This emerging technology is associated with objects that, 
through the connection to the internet and data transmission, make everyone's life more 
comfortable. Nonetheless, this comfort comes at a cost, as IT networks are increasingly larger, 
complex, and inter-connected to ensure a wide range of tasks for the benefit of users and 
organizations [1]. In parallel to this evolution in networking, cyber threats are becoming more 
frequent, complex, and sophisticated creating more opportunities for cyber criminals to launch 
malicious attacks in the hopes of gaining access to sensitive data for their own gain [2-3]. The 
flexibility comes at a huge cost as cyber-security practitioners, experts and researchers noticed 
that cyber threats are becoming more frequent, complex, and sophisticated following the general 
rule of attack surface evolution. In engineering fields, the complexity is the worst enemy of 
security, and networks are not an exception to these unanimous rules. Protecting complex 
networks and critical assets from cyber threats pushed the network security professional into the 
trap of bolting on more and more security layers and policies [4]. The result was overly complex 
adding the multi-levels of security which is often vulnerable when faced with a high-caliber 
attacker because of what it contained in term of vulnerabilities due to human errors, 
misconfigurations, systems weaknesses. Thus, ensuring that the applied security measures are 
effective is the cyber-security communities’ major concern, several approaches have been 
proposed and adopted over time. Nevertheless, using the offensive approach demonstrated that is, 
the best and most reliable method and the most favorably adopted by the security experts [5]. 
 
Penetration Testing, also shortly known as Pentesting or PT, is an active method for assessing and 
evaluating a digital assets security (network, web, server providing some service.) by trying to 
identify vulnerabilities and attempting to exploit them [2]. PT constitutes a central, often 
mandatory component of the cyber-security audit and embeds all standard auditing and testing 
tasks starting from information gathering and analysis, planning, generating, and executing the 
appropriate attacks targeting the identified vulnerabilities. Such assessments are usually seen as 
the best method to identify exactly how effective the existing security controls are against a skilled 
adversary and validating the efficacy of defensive mechanisms, as well as end-user adherence to 
security policies. PT practice is a methodological approach involves an active extraction, analysis, 
and exploitation of the assessed assets and its potential vulnerabilities [1]. PT relies on a set of 
classic tools that automate repetitive and complex tasks. The PT test are often initiated and carried 
out from the position of a potential attacker and involves active exploitation of security 
vulnerabilities, real-time exploring and decision making as the practice evolves is the key. The 
human PT expert’s knowledge, decision-making, and reasoning are a cornerstone of the PT 



 

practice.  PT tools, systems and frameworks were developed with the aim of making the practice 
efficient and allow regular and systematic testing without a prohibitive amount of human labor 
along with reducing the precious consumed time and networks downtime. Additionally, they are 
designed to offload human experts from the heavy tasks and helping him/her to focus upon more 
special and complex situations such as unusual vulnerabilities or combined non-obvious 
combinations (application flaws, improper configurations, risky end-user behaviors) which 
require particular attention in order to produce the best results.  
One of the main branches of PT is network testing, and in the context of medium to large size 
networks, performing penetration testing is often lengthy, very complex and resource intensive 
despite the extensive use of highly developed autonomous and usually expensive systems and 
frameworks. Additionally, the wide variety of assets and vectors such as servers, endpoints, web 
applications, wireless networks, network devices, mobile devices and other potential points of 
exposure are also playing against the pen-tester breaking through the network firewall and evolved 
beyond by pivoting across networks machines, systems and applications and attempting to find a 
new path of attack or revealing how chains of exploitable vulnerabilities to progress further within 
the target network critical systems and data.  

 
Figure 1: Cumulative and yearly number of vulnerabilities discovered from 1988 till 2020 [7]. 

The PT practice has significantly evolved in the last decade especially with the appearance of 
automated versatile tools and systems such as Metasploit, Core Impact, Nessus and other toolkits 
which come under Kali and Parrot OS distributions which paved the way for more automated PT 
when aggregated with the existing portfolio of scripts and codes commanded and orchestrated by 



 

human PT experts. To achieve more efficiency, there was several research works that focused on 
using AI and specifically ML techniques within PT but mainly investigated at least one activity 
planning and revealed more efficient and effective than automated testing notably in delivering 
flawless results and saving time and resources. Core Impact, a tool relying on a research project 
was the first to propose an AI-led automation of one activity of PT, namely vulnerability 
assessment, aiming to achieve a better efficiency. 
In this chapter, we will cover the reasons and motivations for pursuing this research on embedding 
adequate machine learning techniques within current PT automated tools and systems. In addition, 
the problem statement and the scope of this work will be detailed along with the proposed 
methodology for conducting the research project. It will tie the research questions with aims and 
contribution expected by the end of this research. Finally, this chapter will clarify how this thesis 
is structured and what each chapter tries to accomplish. 

1.1 Research Motivation   
In this section, we discuss the motivations behind our conquest of an intelligent automation in 
network penetration testing practice. This research is rooted in a real-world problem that experts 
and technicians working in offensive cyber security field are continuously facing. In fact, the need 
for PT is increasing making it a central and mandatory component of the cyber-security audit and 
compliance with different standards and regulations worldwide. This research seeks to propose 
scientific solution to a real-world problem by investigating the practice automation, elect the most 
adequate AI approach and propose a versatile framework which produce an intelligent and 
optimized penetration tests on network context while remain intelligent, autonomous and self-
learner.  
The PT practice has significantly evolved to keep the pace with cyber advisories, and this led to 
the appearance of dozens of commercial and professional systems and frameworks which all aim 
to offer an automation of the different PT activities and tasks. Nonetheless, the existing automation 
remains either local (specific to one activity such as the vulnerability assessment or scanning) or 
not optimized (covering all cases) leaving significant issues to professionals using such systems.  
It has long been believed that PT is about testing the different defenses mechanisms of digital 
assets through ensure effectiveness in countering cyber threats and attacks and ensuring that any 
weaknesses or vulnerabilities in are identified and fixed before they are exposed and exploited by 
a real hacker. However, in practice, PT became a check-box exercise in which a set of standard 
systems and tools are used to test for a series of known vulnerabilities or routine tests which in 
fact does not adhere to the practice core aim which is mimicking hackers in their operation-modes, 
techniques, and methods regardless the efficiency on the technology and performance of the used 
system.  
The current PT automated systems and framework are in fact acting as tools fully controlled by 



 

the expert to perform tasks following the human decisions because of the lack of prioritization and 
optimization. The expert use output to analyse, plans and request the execution of the required 
tasks and those systems only execute the expert instruction which in practice very similar to the 
time when the practice was admittedly manually oriented requiring highly skilled and experienced 
individuals capable of understanding that is: think, decide and act in the most complex situations. 
Generally, these systems and frameworks fail specifically to perform in an acceptable manner 
when the assessed asset size and complexity reach or exceed a certain level. In fact, a higher 
number of machines and online services mean larger exposition surface with attacks that can range 
in scale from massive state attacks to simple attacks on individuals and SMEs in the hopes of 
gaining credentials or financial details. In addition, other issue arises with the use of such 
automated systems in combination with issues raised on the manual approach notably:  
➢ The high cost in term of human resources associated with expert systematic and periodic 

testing along with the impact on the assets’ performances and systems downtime during 
the working hours.  

➢ The high volume in term of data produced by comprehensive nontargeted testing and 
which is often wasted and unexploited properly. 

➢ The nature of the PT environment where the high threats’ emergence and fast changing 
rate along with assets continuous security protection evolution and update which require 
system regular testing. 

➢ The evolving attacks complexity with more evasive threats launched in which hackers 
adopt complex and indirect attack routes, techniques, technologies, this results in unlikely 
paths being used to squeeze through the security layers which is difficult to be imitated by 
pentesters. 

➢ The huge amount of repeatability as most of the performed activities and tasks are repeated 
with hardly any change and this is representing a significant part testers time, often 
repeating does not require PT human expert decision making or manual intervention which 
results in decreasing the performances. 

➢ The common high degree of obfuscation in large infrastructures notably in the corporate 
and financial sector where organization tend to use in-house developed security systems 
making the coverage of the whole assets challenging. 

So far, both manual and regular (also referred to as blind) automation of PT fail fundamentally in 
addressing current challenges. In addition, recently the practice became more comprehensive and 
includes all standard auditing and testing tasks starting from information gathering and analysis, 
identifying vulnerabilities and executing the relevant attacks against the identified security flaws, 
it ensures the right application of security mechanisms and solutions, and it is widely trusted and 
adopted as industry standard. Therefore, the main motivation behind this research is to introduce 
a framework where automated PT practice become more efficient and effective by taking 



 

advantage of different AI techniques at different levels, the sought framework will, at this stage, 
cover networks and infrastructures PT and by embedding the adequate AI techniques and 
complementary solution will optimize the practice and enhance efficiency and effectiveness of 
current industrial tools and systems notably Metasploit and Nessus. In other words, the motivation 
is about removing (or reducing to the minimal) the PT human expert from the practice and pushing 
towards intelligent solutions relying on AI and notably ML to offload the human expert, making 
PT accessible to non-experts, and on the other hand making it more efficient and accurate in terms 
of consumed time, testing coverage, resource use and impact on the assessed assets. 
Reinforcement learning is the designated best candidate subset of artificial intelligence which 
serve our problem requirements which is an entity that can learn and adapt without following 
explicit instructions but instead by interacting with its environment [23]. The introduction of RL 
in PT, especially with the current size and complexity of network infrastructure, is expected to 
bring a quantitative and qualitative contribution to the practice notably as PT is, more than ever, 
time and resource constrained practice as well as versatile in sense when it relies on real hackers’ 
approaches and methodologies, all the aforementioned characteristics of PT are making it more 
difficult notably especially when aiming to comprehensively test medium and large networks. 
Even though repeating the practice on the same or similar assets should make it easier and faster, 
manual and blind automated PT brings no help or improvements in term of accuracy or time-
efficiency.  

1.2 Problem Statement 
In this research, our overall aim is to enhance performance in term of efficiency and accuracy in 
current unoptimized automated networks’ PT practice. In the beginning, most PT activities and 
tasks were performed manually with limited number of tests run against a small size computer 
network and thus making manual PT quite efficient (time and resources wise) and effective as 
experts were unlikely to dismiss or omit important tests. Then, the proliferation of large computer 
networks and the increase in complexity associated with the employment higher number of 
application and security mechanisms and the automation of processes forced the automation of PT 
tools and system in a hope of covering more ground in a shorter amount time [12]. Nonetheless, 
the automation revealed as not enough especially with current corporates and organizations 
complex networks with hundreds and more of IP addresses and increasing networks complexity, 
application and virtualization making it impossible to rely on blind automation requiring a huge 
amount of time and computational resources and making it more difficult for PT experts be in 
control of such automated tools to assess the security of every component in a reasonable amount 
of time. Furthermore, as PT is a repetitive process where organizations are legally and technically 
required to perform security testing either  periodically (monthly, quarterly and yearly basis) or 
after each major systems upgrade occurrence (new installed software, applied system upgrades, 



 

user policy modification,  security patching, addition of infrastructure) which remains a key 
requirements in the overall security compliances and industry standard in many fields such as PCI-
DSS and RBI-ISMS in financial sector, HIPAA in healthcare institutions and ISO-27001 for other 
businesses information security compliance [13].  
As this research focus on optimizing of the currently pseudo-automated PT practice, we 
anticipated that this optimization will requires a platform that covers the entire practice which 
enables embedding of the adequate AI techniques, Metasploit and Nessus PT systems were the 
only viable options. Therefore, we are going to develop an automated PT modular framework 
which utilize Metasploit and Nessus and which will serve as host for embedding the adequate AI 
techniques which is reinforcement learning in order to optimise the automation through the 
modelling of PT as RL problem and representing in form of POMDP environments and solved 
later to determine the vulnerabilities’ requiring testing as well as the prioritisation in term of 
complex attack vectors (also called paths) to be tested and acted on their outcome in an interactive 
way. At later stage determined by obtaining initial results, our second research aim is shifted into 
tackling the scalability through better approach in dealing with medium and large networks PT 
generated POMDP environments which requires huge amount of time and computational power 
for solving. This scalability issue became problematic with larger environment as discussed in the 
RL chapter and thus we introduced the hierarchical representation of large problem through 
dividing POMDP environment which are often the results of large LANs and MANs networks, 
we investigated different options of enhancing the efficiency of IAPTF especially in solving 
medium and large size POMDP which are the logic result of representing PT in medium and large 
size LANs and MANs. 
Furthermore, we anticipated the major issue related to embedding AI and notably RL in the PT 
process and specifically the sequential decision-making diagram.  In practice, applying RL to 
solve a real-world complex problem such PT can be particularly tricky as the problem can be 
viewed from different angles with each having its own associated domain representation. In PT 
this can range from a simple planning (decision) problem allowing and research for the optimal 
attack plan which reduce the use of resources or ordering tasks to achieve the sought results, this 
point of viewing thing was specifically tackled by previous research which considered the 
different phases of the PT practice as entirely independent (not related or proactive) and thus 
modelled the PT as MDP and POMDP aiming to determine the best policy (policy search 
approach) which optimises the use of resources and time.  

1.3 Scope of the Research: 
In this section, we briefly discuss the scope and limitations of this research. The need for an 
intelligent automation in the PT practice is persistent, general and apply for all PT different 
variants notably their application domain, this is reflected by the huge versatility in PT practice 



 

which will be detailed and discussed in chapter 3. Nonetheless, in this research we are only 
concerned by one application of PT namely network (infrastructure) PT. This domain of 
application is the most common and the most technically challenging where the existing 
automation provided by industrial and open-source systems and tools is critically lagging in term 
of addressing current security challenges. Therefore, the scope of this research is limited to the 
domain of networks’ and infrastructures’ PT with a possible extension in term of application of 
our framework in future to cover more PT domains such strategic large grids (Internet and energy), 
web applications and IoT (Internet of Things) testing.  

1.4 Contributions and Novelty 
PT is undoubtedly the most efficient way to prove the falsity of the hypothesis that a specific 
network, system or software application is secure by identifying and exploiting existing 
vulnerabilities. In offensive cyber-security practice in general, few works engaged with the use 
and integration of machine learning capabilities within the existing system or developed such 
solution. As PT practice is mostly about knowledge, expertise, decision making (judgments) and 
even instinct (or guessing), An intelligent automated PT practice which relies on one or more of 
AI techniques in its different phases to improve efficiency and accuracy. This research is about 
investigating the use of AI in PT practice to offload and ultimately replace the costly and unreliable 
human expert. It is all about identifying where and how the AI and more specifically RL can be 
embedded in the current PT practice. The research resulted into developing an Intelligent 
Automated Penetration Testing Framework (IAPTF) which will utilize reinforcement learning and 
others AI techniques (intelligent planning and optimization) along with expert and cognitive 
techniques to perform PT efficiently and accurately in context of large and complex computer 
networks. Our proposed framework will be custom developed, built on a novel modeling of the 
PT environment and practice representing it in the best possible way which reflects the reality of 
the cyber environment and adversary profiles. Using techniques from AI (optimized planning), 
RL (partially observable Markov decision process or POMDP) and ES. In a first phase, an initial 
model will be developed, implemented, and tested in real world situations. After successfully 
validating the proposed model, the proposed solution will be integrated into an existing PT 
automated platform, the introduction of the pre-processing and optimization solution will, 
therefore, be considered and tested. 
The IAPTF is intended to partially (at early stage) and fully (after maturity) substitute the human 
expert and act (perform penetration tests) alone automatically with efficiency and accuracy 
especially on the deterministic or already seen scenario. Also, the intended system will be able to 
understand the situation, think (find the solution) and act in due course with or without the 
assistance of the human expert (which will be detailed later in the RL part). It will be 
independently responsible for self-improving its performance by constantly updating data related 



 

to the environmental parameters, acting policies and the results (output) of the tests which will 
reduce considerably the consumed memory as no duplicated data or bad experiences will be 
uselessly stored. As with a human expert, the system will pre-eliminate the testing of previously 
confirmed failed tested attack (with the same input) both from the system own experience and the 
security data (blocked by firewall or IDS) but this will be very carefully considered as scenario 
with no firm confirmation or miss one or more factors contributing to the failure will not be 
included as experience but only as a general example configuration for the learning and 
experience. The system’s acquired expertise will exclude all attack testing scenarios where a 
failure occurred, but other alternative(s) is/are available which a genuine attacker could explore 
by following different attack paths or approaches. In such situation, the system will rely on itself 
to plan and test the remaining attack plans that pivot before including the experience in its 
memory.   
Furthermore, while an extensive academic literature exists on offensive cyber and its automation, 
the literature is almost entirely focusing on the planning of attacks and penetration tests 
independently of the real-life context. This research is among the first to approach the whole PT 
practice optimisation by embedding the adequate AI techniques. Therefore, after investigating the 
feasibility and the adequate AI approach, we proposed a modelling of PT as a RL problem, an 
implementation along within a novel framework named IAPTF and proceeded with testing in real-
world reconstructed virtual networks created to evaluate the output of this research. The proposed 
framework is capable of imitating a human expert in performing an efficient automated 
penetration testing. In detail, this research contributions include: 

1. Identifying research gaps by reviewing literature published on PT automation and 
different optimization approaches covered so far. 

2. Identifying general principles and metrics for measuring the effectiveness and efficiency 
of an automated PT based on a comparison with current human-led practice. 

3. Explaining the differences between the vulnerability assessment and PT in the cyber 
environment and the uniqueness and versatility of PT practice. 

4. Investigating different AI techniques suitability for optimising the current automation of 
PT practice.   

5. Explaining in a comprehensive manner how network PT is performed and extracting key 
elements relevant for the targeted AI embedding within the practice.  

6. Providing a RL modelling of network PT practice and proposing a representation of the 
problem domain as partially observed Markov Decision process (POMDP) environment. 

7. Developing an Intelligent Automated Penetration Testing Framework which covers the full PT 
practice and acts as replacement of the human tester in performing network PT. 

8. Gathering real-world network security and configuration data and using it to reproduce a 



 

virtual equivalent network to be used for testing and validation in this research. 

9. Testing, evaluating, and validating the proposed framework in different testbeds and with 
different variables.  

10.  Demonstrating how effective is an AI-led PT compared with a human expert notably in 
terms of reliability and coverage measured by the number of attack vectors tested and 
their complexity. 

11. Providing an Expert System based approach of handling repeated (regular re-testing) in 
PT practice and which best choices for both opponents. 

12. Investigating how hierarchical RL representation of large POMDP environment address 
the scalability issue in the context of medium and large size networks. 

 
Finally, it is important to highlight that this works seeks to embed RL in the whole PT process 
including most of activities and task currently manually or automated. The introduction if IAPTF 
is the cornerstone in this research as it enables the integration of AI through the interaction of the 
software RL agent (or eventually RL agents) with the assessed networks (environments) which 
actually covers the entire PT practice and not be limited to attacks’ planning which does not reflect 
the proactivity of the practice which is more than just a controlling or planning exercise. The 
ultimate output of this research is a framework in which we implement the RL model of PT, and 
which replaces the human and is intelligent to make decisions and learn from itself. Therefore, 
viewing the PT as a planning problem is insufficient as the real-world situation of PT practice is 
quite different and every phase is closely inter-related, pro-active, and often repetitive. 

1.5 Thesis Outline 

This PhD thesis is organized in six chapters following this introductory chapter. A brief 
explanation about every chapter content is summarized follow. Chapter 2 will summarize the 
methodology and provides an outline of the research methodology used to identify the motivations, 
answer the research questions and problem, explaining research sampling and analysis methodology. 
In addition, the chapter will explain the limitation of the research method. It highlights the approach of 
research beginning by review of traditional PT practice (Manuel testing using tools and systems) 
methods and approaches. It investigates the differences between networks and other domain of 
applications for understanding the relationship aiming for producing a precise comparison presenting 
either similarity or differences. Furthermore, intelligent penetration testing automation section will be 
formed as result of embedding AI techniques and specifically Reinforcement Learning together with 
automated PT practice supported by the proposed framework. This chapter will also anticipate the 
scalability and efficiency issue which will be encountered in medium and large networks context and 
how we are going to deal with this major challenge. To tie this chapter, final section will explain 



 

expected research output and how test-bed networks are designed to enable framework testing, obtained 
results evaluation and performances validation. 

Chapter 3 cover the Literature review chapter and provides an overview about main concepts of 
penetration testing and other related essential concepts related to offensive cyber security. Then, the 
chapter investigates the improvement of PT automations. This chapter will enumerate, and categories 
major approaches on the automation and optimization of the PT practice at different stages and activities 
along with presenting a critical analysis of each approach. Then, chapter will investigate the challenges 
of achieving an efficient PT and notably in context of medium and large size networks and will critically 
evaluate the suitability of major optimization approaches in term of suitability and limitations if not 
successfully working. Finally, the chapter will summarize, and survey previous research works and 
studies conducted in the field of PT and Vulnerability Assessment (VA) automation and optimization 
and focus how these literature will be employed as the starting point for our research and specifically, 
how the knowledge gap will get filled as a result of our research project. 

Chapter 4 cover all the theoretical body of knowledge around AI technique to be utilized in this research 
for an intelligent and optimized PT namely Reinforcement Learning. The chapter introduce RL, the 
main component constituting RL environment and the different formalisms of RL problems with a 
special focus on POMDP. The chapter cover the solving approaches namely value iteration and policy 
search, algorithms and methods employed within the AI community and emphasis on the mathematical 
basics in relation with RL domain and different theorems and demonstrations relevant to our research. 
This chapter also covers the crucial task of modelling a problem as POMDP and the use of different 
approaches namely model-based and model-free as well as the major wolving POMDP algorithms. 

Chapter 5 introduce the proposed RL and HRL model for network PT practice and its representation as 
POMDP problem. This chapter will present a comprehensive model elaboration documentation 
and different steps undertook towards building the proposed model and ho it will be represented 
in form of POMDP notably in form of States, Actions, Initial belief, Observations, Transitions and 
Rewards.   

Chapter 6 details the different components of the proposed framework we named IAPTF. This 
chapter explain the design and implementation of different modules notably IAPTF-Prep, IAPTF-
Core and IAPTF-memory and highlight the interactions between different modules. Also, a brief 
description will be allocated to each function and script developed during this research ti facilitate 
the work of IAPTF and ultimately test the proposed framework including the efficiency and 
accuracy of RL-led PT compared with human and blind automation testing. At the end of Chapter 
6 we will present the global IAPTF framework and introduce the different test-bed networks 
designed and created in virtual environment for the sake of testing the framework.  



 

Chapter 7 covers the actual testing of the proposed models and the IAPTF framework in general. 
This chapter introduce the different test carried out to validates the relevance of RL and HRL 
model of PT practice and also to determine the best testing parameters to be adopted in later stage 
such as the discount factor and the solving method, algorithms and approaches. The second part 
of testing deals with evaluating the performances of IAPTF in comparison with human Certified 
Ethical Hacker (CEH) and blind automation in term of consumed time, testing coverage, 
relevance, and efficiency. A deep critical comparison and evaluation is then presented along with 
results discussion to finally highlight the ultimate research contribution to domain of PT and 
offensive cyber security in general.   

Finally, this thesis Conclusion summarizes research findings and shed lights mainly over the 
contribution. It focuses on present tasks accomplished during the research project aligned with the 
outcomes achieved. Conclusion chapter ties research questions, that has been listed at the 
beginning of the chapter with the results gained after analyses. In addition, the chapter discusses 
the limitation within cyber deterrence domain. Moreover, it points to the direction needed for 
future work. 

 

  



 

Chapter 2: Methodology 
Our research methodology examines the optimisation of PT automation in the context of large 
networks and how it should work to solve the problem of deterring cyber threats. In summary, the 
proposed methodology is expected to address in a scientific manner the real-world problem of 
efficiency and effectiveness related to the current PT automation. Furthermore, it answers research 
questions raised and address the succinctly research problem and thus achieving the overall aims of this 
research. This chapter provides an outline of the research methodology followed to gradually 
answer research questions, explaining research methodology and chosen approaches. The 
methodology chapter will cover main milestones of our journey towards an intelligent network 
penetration testing. This will start by reviewing the state of the art in the domain of PT automation 
and optimization, identify key elements of the current practice requiring an optimization, survey and 
critically evaluate the suitability of many AI techniques to our problem domain and later developing, 
testing and evaluating the proposed IAPTF [23]. 

2.1 Research questions: 

In this section, we attempt to formalise our research aims and objectives into tangible and 
scientifically sound research questions. As already discussed in chapter 1, the size and complexity 
of today’s corporate and organizations networks are making the regular and systematic testing 
problematic and adding further issues to the current PT practice. As both manual and automated 
testing fail to achieve the intended objectives within the allocated time and resources, we are 
concerned in this research with embedding AI within the process and addressing the efficiency and 
accuracy issues raised in the motivations. As one of the aims in this research is developing an 
intelligent automated PT framework which will rely on especially reinforcement learning (RL), 
other classic AI techniques (intelligent planning and optimization) along with expert and cognitive 
techniques (expert system). This enables the framework to replace the human expert and efficiently 
and effectively reasoning, prioritising, and acting in the face of complex PT problem which contain 
a vast amount of uncertainty and versatile testing scenarios. Therefore, the key questions that arise 
for this research are: 

➢ Which activities, tasks and subtasks of the current network PT are blindly automated and 
making the practice slow and heavy in term of resources and generated traffic?  

➢ Which AI technique will fit the purpose of optimising the sequential decision making made 
by the human expert?  

➢ How to apply or embed the elected AI techniques to the current automated systems used 
for PT and making it intelligent and thus efficient and effective? 

➢ How to reduce the human expert intervention and ultimately remove it from the different 
phases of PT practice. In other words, can the human expert in the field of PT be replaced 



 

by an intelligent system or framework which relies on AI? 
➢ Can an intelligent machine assisted-PT enable non-expert PT practicians to perform 

complex tests by assisting users in form of indications and suggestions which can be 
accepted or rejected by the expert?  

➢ Should the AI-led PT framework be allowed to operate independently as stand-alone PT 
framework or enable direct interaction and control for a supervising human expert to enable 
benchmarking and auditing capabilities?  

➢ How efficient and effective is the proposed AI-led penetration testing in comparison with 
human experts such as certified ethical hacker or fully automated machine? 

➢ Which metrics should we use to measure efficiency and effectiveness of AI-led testing?  
In other words, this research aims to answer the big general question, "How to replace the human 
expert by an intelligent framework which employs AI along with fully automated PT systems to 
produce an intelligent and automated framework?". Answering this question needs a deep 
understanding and analysis of the fundamentals of PT practice, defining the adequate model for the 
practice as RL problem, representing the RL problem and solving it to finally extract the expertise 
and store it for future use. Furthermore, considering the scaling up issue in large networks, the 
research needs to answer the additional question of how to deal efficiently with large networks. This 
research attempts to split these challenges and tackle each individual question.  

2.2 Research Methodology: 
In this section we present our research methodology which is our systematic approach adopted toward 
our aim of replacing human expert pentester from current manual and automated PT practice and 
enhance performances to reach a new conclusion on the contribution and relevance of the use of 
reinforcement learning in PT automation and optimization. The methodology used in this research 
begins with reviewing the offensive and few closely related defensive cyber security domains to digest 
different approaches and methods used for optimization and automation notably in vulnerability 
assessment and the wide penetration testing domain. Then we moved into traditional PT automation 
theory, principles, approaches and challenges in order to have a full grasp of the practice and 
understand the theory that could lead us into intelligent PT automation domain understanding by 
analysing research problem and electing the most suitable and adequate ML technique. This system 
should be fully intelligent and optimised enough to reason as a human expert but with better 
performances and take advantage of the particularities of the PT practice to enhance efficiency and 
accuracy.   
There are different methodology elements adopted in different phases of this research. First, we will 
start the research by doing a domain understanding the PT domain and its different components notably 
the interaction between the environment and the human expert. In this step, we aim to grasp the manual 
(human) PT process and notably, the reasoning and approach and the decision-making process by 



 

scrutinizing certified ethical hacker way of thinking and executing the task in context of a large network 
(analyze the methods, thinking, tools and techniques that experts use to execute advanced security 
testing). Additionally, we aim to identify what human expertise is made from in context of PT and what 
kind of prior knowledge PT experts rely on in terms of data, information, guidelines, and 
recommendation gathered from previous similar experiences. This will be followed by a full mapping 
of PT data workflow which includes, but is not limited to, the target network topology, subnets, 
machines’ configuration, security architectures, protection updates and patches. In addition, we cover 
data output from vulnerabilities scanners, available threat intelligence data, intrusion detection and 
security incidents data imported from Security Information and Event Management (SIEM).  
The second element, we will proceed into reviewing related PT automation literature and full grasp 
the principles, functioning, approaches of PT practice followed by a critical study of the current 
automation in PT in general and in network PT practice specifically, we will scrutinize different 
automation and optimisation propositions and analyse them. As we elaborated in chapter 1 research 
motivations, large organizations’ network PT is problematic where both manual and regular 
automation fail to achieve the intended testing objectives within the allocated time and resources. 
Therefore, we considered embedding adequate state-of-the-art AI techniques within automated 
systems and tools used for PT and therefore making the full practice activities fully automated, 
intelligent, and optimised. The aim is to offload (reduce the intervention) the human expert and 
ultimately replace them by a fully autonomous and functional PT framework which covers each 
phase, activity, and task of the practice. Here, we will decorticate the PT practice and identify all 
activities, tasks and sub-tasks which will enable us to elaborate a measurable definition of the term 
expertise from an automated framework/system and how this can be extracted, implemented and 
used within the elaborated processes and data workflow in PT. 
The third element will be investigating different AI techniques that fit the aim of our research with 
a special focus on reinforcement learning approaches. This review includes also rule-based expert 
systems, attack graphs, neural networks, decision trees, clustering, and association rules. At this 
step, we select the adequate technique which is RL, and we will deepen our research by proposing 
an initial model PT practice as RL problem and propose a novel representation the global network 
PT problem as set of POMDPs. 
Finally, we will complete this research by enhancing the model to address the medium and large 
networks issue and we will proceed into the development, implementation of IAPTF which will 
embed the RL module and expert system as well. In addition, a different hierarchical RL model 
will be implemented to address the scaling-up issue in the proposed RL model, enhancing 
performances, and tackling operational issues such as expertise capturing and generalization.  The 
research methodology six steps are summarized as follow: 
 

➢ Grasping the PT domain and main areas around environments and component along with 



 

the interaction between the different entities and expert. 
➢ Reviewing the current state of the art of the current methods of PT automation at different 

phases of the practice namely, information gathering, discovery, vulnerabilities assessment 
and exploiting to fully digest and analyze the functioning mechanisms of each and the 
reason why they fail to meet the PT expectation in term of efficiency and accuracy. 

➢ Studying the PT experts (Certified Ethical Hackers) and criminal hackers operating 
approaches and decision-making process when performing tests. This includes detailed 
understanding of what, why and how of every task and activity that expert performs from 
the initial reconnaissance and data gathering to the exploiting and post-exploitation tasks. 

➢ Investigating how AI (more specifically ML) can replace or reduce human intervention in 
sequential decision process and notably PT and which approach is more suitable and likely 
to produce results.  

➢ Producing an initial model of network PT as RL problem and ensured that all PT tasks and 
variables are captured and represented. The representation as RL problem will be 
implemented and solved using an external state-of-the-art POMDP solver which constitute 
alongside with the IAPTF environments generator the framework core module. 

➢ Enhancing the proposed model notably by addressing performances and efficiency issue 
through the introduction of a new Hierarchical RL model and development of dedicated 
Pre-processing, Security Clustering, Expert System and Memory management modules.  

➢ Testing the proposed solution and evaluating its contribution in term of efficiency and 
accuracy in real-world complex scenarios and subsequently introducing the appropriate 
changes in due course. 
 

This adopted methodology aims to achieve the research final output which is a novel RL model of 
PT and a framework IAPTF that will offload and eventually replace the human expert in 
performing all PT phases in context of computer networks. The projected framework will automate 
with optimisation all aspects of the PT practice including a wide variety of activities and tasks and 
will take advantage of use of different AI and machine learning techniques in different approaches 
to answer the research questions.  

2.3 Employed Research Method  
This section aims to describe methods used in our research to collect data for virtual networks 
(testbeds) re-creation, elaborating the RL model of PT and finally to develop, test and validate IAPTF 
framework. The method employed will take advantage of use of RL algorithms. Optimized planning 
and rule-based expert systems to produce an intelligent framework which aims to assist and 
eventually replace the human expert in carrying network PT activities and tasks. In this section, we 
will detail methods used in our research to design, implement and test IAPTF with a special emphasis 



 

on virtual test-bed networks’ construction out of data collected from real-world corporate networks. 
This research will produce a proof-of-concept (PoC) framework along with its practical 
implementation which will replace the human expert in performing PT in an intelligent (efficient and 
effective) manner.  

2.4 Research Data Input 
The input of this research are different size virtual networks which mimic the real world and 
constructed from importing and using real networks data.  In term of collecting data, as this was the 
first phase, we extracted imported data from real-world small, medium and large corporate networks. 
The collected data include networking, functioning and security data which was used to recreate 
virtual equivalent of these networks in a virtual box platform. Computer machines and servers were 
included in the virtual networks by directly downloading virtual equivalent from a specialized open-
source website vulnshub.com which serves as repository and provides materials that allow ethical 
hackers to experience in digital security, computer software and network administration using 
virtual appliances. Security mechanism including firewalls, routers and IDPSs were also imported 
along with the associated configurations (implemented security policy) and included in the virtual 
networks by adopting a specific approach of considering them as machines and forcing the traffic 
to transit through them in a specific way to reflect the real-world scenarios, thus approach was 
unavoidable as the virtual environment is restricted in term of networking. To sum up, we 
constructed 53 different networks with size varying from 2 to 250 machines and were categorised 
as follow: 2-50 small LAN, 55-100 medium LAN and 105-250 large LAN.  Even though our 
research focuses on medium and large networks, we were obliged to start from small LAN to test the 
framework modules, the proposed RL model and the POMDP representation solving.  Finally, it is 
worth to mention that the 200-250 machine limitation is just for testing purposes and larger networks 
can be also accommodated with the adequate hardware. 

2.5 IAPTF modular choice 
In this research we opted at early stage for a modular framework that covers the entire PT practice. 
The choice is justified by the nature of PT itself and the sought-after framework. Moreover, we were 
not sure to what extent this research will be pushed in term of implementation. Therefore, we started 
the development of the first module which used input data from information gathering, discovery and 
vulnerability assessment phases to represent it as POMDP environments. Then we launch the RL 
solving process where the software agent will determine which attack vector to follow then instruct 
Metasploit MSF to execute attacks and act on the obtained feedback. This module is the heart of our 
research and is named IAPTF-Core. The second module is named IAPTF-Prep and groups all data 
acquisition, collection, transfer, and formatting, pre-processing and feature extraction functions 
which work together as independent scripts. As with a human PT expert, this module aims to pre-
eliminate previously confirmed failed attacks (while target configuration remains unchanged) and 



 

attacks which will certainly fail because of the security mechanism (blocked by firewall or IDS). The 
third module of the framework is IAPTF-memory which serve as the main memory for the 
framework and the expert system in charge of expertise capturing, generalization, storing and 
replaying. Lastly, the Metasploit (MSF) is considered as an entire module of IAPTF and consists of 
interfaces, libraries, MSF modules, tools and plugins which all will be controlled by the IAPTF-
core through Ruby scripts. 

2.6 Optimization evaluation and criteria 
Currently, penetration testing efficiency is measured and assessed following several quantitative 
metrics which are widely adopted and standardized as performances measurement criteria. We 
elaborated a list of five which represent the best possible way measured metrics to assess a PT cycle. 
Fist metric is the average running time which is a straightforward metric to measure and reflect the 
time required to complete a testing cycle (which is also translated into cost as experts are often hourly 
paid) constraint in current PT practice, thus this metric will perfectly reflect the efficiency part of the 
measurement. The second metric is the testing coverage measured by the number of performed tests 
which are in our research measured by the number of valid attack vectors executed by IAPTF, this 
metric reflects the effectiveness part of the measurement. The third metric is slightly subjective and 
deal with the overall attacks success rate in term of high-value target compromising and executed 
post-exploitation activities such as rootkits deployment. This metric is highly probabilistic as the 
success rate of any exploit execution varies significantly and depends on other variables such as the 
execution order, the used configurations and existing security defenses and attacks’ detection 
capacities. Lastly, the fourth metric is the amount of network traffic generated which is crucial in 
corporates as the downtime should be maintained to the minimal and thus systematic and 
comprehensive testing imply more tests and thus network traffic is generated, in addition to increase 
in detection probability by the existing IDSs. In fact, skilled hacker makes the least noise as possible 
especially during the information gathering and discovery phase as any suspected traffic will result 
in prevention action by IDSs or attract the attention of the SOC operator.  

2.7 Intelligent Penetration Testing and Learning Choices  
In this section we briefly discuss the choice of RL for our proposed IAPTF. All ML approaches 
respectively supervised learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning were initially considered in this research with the aim of identifying the most 
suitable and adequate one for our context [23]. The choice of RL is justified by the sequential 
decision-making process characterizing the PT which was highlighted as result of our deep study 
manual PT practice.  
 
 



 

 
Figure 2:  Machine Learning families and their main application domains [21] 

 
Therefore, we conclude that the only relevant approach for the sought-after full PT practice 
automation and optimization framework is RL. Furthermore, RL reflects the interactivity and 
dynamicity in the PT practice which is fundamentally different from previous use of AI in PT and 
even proposed RL approaches [32] which was limited to attack planning and often resulted into a 
high level of inaccuracy as the generated plans for attacking were isolated from the real PT 
environment notably in discovery and exploitation activities and tasks. We also investigated the 
relevance of other complementary AI techniques to be used alongside the main RL approach and 
considered decision trees, attack graphs optimisation, and rule-based expert systems.   



 

 
Figure 3: AI techniques candidates for an optimised PT practice [4] 

 
The expert system choice is backed by the lack of knowledge extraction, re-usability and 
improvement as it is the case during manual penetration which is the main reason behind expert PT 
high efficiency. Doing this allowed IAPTF to perform better and continuously learn, memorize and 
reply expertise gained from previous experiences. 
Finally, we briefly describe the RL model, representation and solving choices made in throughout 
this research. The figure 4 summarize the choices made which will be critically discussed in Chapter 
6.  
 



 

 
Figure 4: choices made in this research for an RL-led Penetration testing [24]. 

 
As we described earlier, after settling on modeling network PT as a RL problem as result of the 
reasoning approach followed is more of a deductive approach than inductive. The RL suitability 
for an automated and optimized PT framework that replace the human expert came after a 
comprehensive review of all candidates following the deep PT domain understanding and 
following a deductive reasoning approach. The model-based RL option is then selected to be the 
more suitable and reflective of the PT practice as we propose an accurate model as part of the RL 
problem definition which includes state transition and observation probabilities and rewarding 
distributions to calculate optimal actions. Finally, model-based solving algorithms utilise dynamic 
programming for solving following two main approaches namely Policy Iteration and Value 
Iteration.  In term of solving POMDP choices, and as IAPTF aims to replace the human expert in 
decision making, the solving choice will be value iteration following by direct policy search.  
 

2.8 Expertise extraction, generalization, and replay 

IAPTF is designed to learn and adapt without following explicit instructions but instead by 
interacting with its environment and achieve expert-level competence in solving problems or 
extracting knowledge from human experts’ operative modes in form of performing tasks and taking 
decisions.  To convert this knowledge into useable acting policy, we opted to develop a separate 
module named IAPTF-Memory which includes the processing engine, expertise extraction and 
validation scripts, expertise generalisation scripts and the CLIPS expert system. This module 
development is challenging because of its complexity and arduous (labor-intensive) script coding 
but remains a crucial component of IAPTF. In this research, we will prioritize the option of 
enabling the framework to be supervised by a certified ethical hacker. On the top of CEH 
supervision, we allow IAPTF to receive some high-quality initial knowledge to get it started, and 
then leave it to learn the rest for itself or from observing the human expert handling it. We 



 

anticipated that IAPTF, after a period of time, will perform better than a human expert in both time 
and coverage along with pinpointing new complex attacking paths which human expert would not 
discover. IAPTF acquired expertise will then be used directly on similar cases and scenarios. In 
addition failed attacks will also be excluded when tested asset configurations remain unchanged, 
but when other exploit alternatives are available (variants which a genuine attacker could exploit) 
the attack is repeated. In such situations, IAPTF will rely on its core RL module to plan and execute 
the relevant attack plans as well as the associated post-exploitation and pivoting before including 
the acquired expertise in its memory. 

2.9 Representing penetration testing RL problem as POMDP 
 
Each network PT exercise will be represented in a set of POMDP environments, we provide here a 
brief description of the method adopted in elaborating POMDP. Basically, the IAPTF-prep output is 
the raw date used for elaborating the first POMDP, but further data is generated throughout the 
practice progression and will follow several processes that reflect the complexity of the PT practice 
activities.  In a few occasions, we include data provided initially when testing approach is white-box 
or when re-testing the same network which is an important factor to be considered. In fact, 
information gathering, probing, and scanning data generated as part of early vulnerability assessment 
by automated systems and tools (which are part of the Metasploit professional including InsightVM 
and Nexpose) will be served be processed and double-checked in comparison with this provided data. 
The second phase is the security clustering which will be detailed in Chapter 6 which aims to classify 
each machine under a given security cluster. At the end of these phases, a python script will import 
and pare the raw data files (.text, .xml and .log) and input for IAPTF-Core. The data will be then 
translated into POMDP files with Actions, States, Initial-belief, Observations, Transitions and 
Rewards. The only exception is the Rewards which will be allocated using a pre-defined grid. All 
other POMDPs components are purely the product of the real-world extracted data including some 
processing notably in the transitions and observations probabilities calculation detailed in Chapter 5 
and data from the cyclic information gathering, discovery and vulnerability assessment phases will 
be fed to IAPTF-Core during the continuous update process as part of the Initial Believe (starting 
point) for RL.  

2.10 Addressing the scalability problem in medium and large LANs  
In this research we encountered a famous curse of dimensionality problem which stands for the 
exponential growth in computational power demand as result of the increase of the size of POMDP 
environment [38]. The scalability problem itself was expected giving the complexity of the PT and 
therefore its representation as RL problem which often leading to very large POMDP environments 
in term of number of states, transitions, and observations. Therefore, we considered different 
approaches to model PT as Hierarchical RL problem instead of regular RL modelling in context of 



 

medium and large size networks. Different representation has been shortlisted, investigated, 
implemented, and tested to find the most suitable Hierarchical RL (HRL) in the context of PT. The 
selected hierarchical approach namely security clustering proved to be the most adequate and take 
advantage of HRL reducing dimensionality through decomposing the RL problem into several sub-
problems which ultimately overcome the scalability problem in regular modelling. This point will be 
detailed further in Chapter 5. 

2.11 Virtual test-bed networks, design, and testing   
To achieve the research goals, we opted for real-world networks to be used as testbed and evaluate 
the proposed RL model in one hand, and on the other hand test IAPTF efficiency and effectiveness. 
As a matter of fact, we needed to set limits in term of network size and to make some decision 
regarding the nature of networks and we decided to import real networks data, setups and security 
configuration and reconstruct a virtual equivalent that mimic the real ones. This choice is also forced 
by the General Data Protection Regulation (GDPR) [33], and other privacy and security restrictions 
related to performing tests on real networks for research purposes and the associated implication in 
term of requesting authorizations [6], mitigating risks and post-testing checklists which make our 
research lasting longer in addition to the associated costs. Figure 5 illustrates a sample corporate 
medium size LAN of 50 machines as one of 53 different networks with size varying from 2 to 250 
machines created for this research. 
 



 

 
Figure 5: typical corporate medium size LAN equivalent testbed. 

 

  



 

Chapter 3: Literature Review 

The literature review subjects are structured as per the research methodology. This research review 

and categorisation is built to serve research approach and to help to provide answers for the 

research questions. The chapter has been organised as follows: Section 2 introduces the offensive 

cybersecurity and the wide PT practice along with the rationale and reasons behind the increasing 

need for PT practice, and we will present an anatomy of a typical cyber-attack to consolidate the 

presented topic. Section 3 discusses the actual PA practice and the various testing types, 

approaches and tools notably Metasploit Community and Pro, and details of Network PT methods. 

Section 4 reviews the activities and tasks constituting the network PT and the development of the 

theory and its involvement in enhancing security and preventing cyber-attacks and how 

organisations can benefit from this extra security along with new compliance requirements. 

Section 5 pinpoint the uniqueness of PT practice compared with other cybersecurity activities and 

domains, and highlight  the crucial role human expert intervention in the practice. Section 6 goes 

through current approach and methods used in PT automation and challenges associated with 

dealing with large assets and the repeatability. We will review related works and categorises them 

and will present a research tree summarising who, what, how and when PT automation and 

optimisation techniques have been proposed and implemented. Section 7 reviews the literature 

that mainly discussing machine learning use in PT optimisation and provide a brief description of 

the relevant AI techniques. Section 8 goes through what are the challenges of penetration testing. 

Finally, Section 9 summarises what could make an AI-led network PT work successfully and 

limitations if not working as expected. Finally, section 10 summarises the literature review chapter 

and specifies a research road map. 

3.1 Preface 

The aim of this literature review chapter is to establish a theoretical base for our research work in 

term of offensive cybersecurity, PT and vulnerability assessment, the current state-of-the-art in 

terms of PT automation, human expert role in the practice, the use of AI in improving and 

optimising PT tools and systems, and research gaps.  Towards the goal of the literature review, 

there is a need to align it with research requirements such as research problem, research questions, 

research methodology and approach followed. This alignment will achieve the expected 



 

advantages from the following systematic literature review. 

3.2 Literature Review Methodology 

The approach followed in selecting and classifying the literature is focused on three parameters: 

traditional deterrence, game theory and cyber deterrence. The work has been executed via three 

main phases which can be simply explained as: 

3.2.1 Planning:  

The main objective of this phase is to locate and specify the literature we are looking for and the 

parameters we should follow aligned with the research project problem and research questions. 

Focusing the literature over the research problem “optimising automated PT” will drive research 

project and gain up to date understanding about penetration testing, AI and ML topics. 

Specifically, literature is carefully selected that are linked to the main research question and 

utilized to bridge AI techniques applied for cybersecurity problem to the benefit of PT and 

vulnerability assessment. 

3.2.2 Executing:  

As the fundamental problem of this research project is “replace or at least limit the human expert 

intervention in PT practice?” inspired by other cybersecurity fields such as intrusion detection and 

prevention and security auditing. Based on this mission the selection, filtration and prioritisation 

of the literature was conducted. For that, offensive cybersecurity, network PT, vulnerability 

assessment, applied reinforcement learning for sequential decision making, attack graphs, were 

parameters for selecting the literature. Other issues were considered like linkage to the research 

problem, quality of publications, credibility of publisher and specialty of the authors. 

3.2.3 Reporting:  

Reporting is the final phase of reviewing the literature task. The structure of reporting begins by 

introducing main concepts, approaches and contributions of PT automation and optimization. 

Then explain different strengths and weaknesses of the proposed solution related directly to 

network PT. Finally, we elaborated a research graph where different research works are 

categorised under the adequate rubrics.  

 



 

3.3 The need for offensive cyber-security  

Cyber-attacks and exploits have constituted the cyber risks and exposure during the last decades. 

A key element about cyber-attacks is that they remain non-standard in term of methods and 

approaches and involve the use of a variety of tools, systems, and scripts to accomplish different 

activities and tasks [9-11]. In the heart of this cyber advisories we find exploits which are pieces 

of software, data or sequence of commands that take advantage of a vulnerability to cause 

unintended behavior or to gain unauthorized access to sensitive data [3-4]. Figure 6 illustrate the 

number of weekly reported cyber-attacks during 2020 per organisation per industry [4]. 

 

 
Figure 6: Average weekly attacks per organisation by industry in 2020 [11]. 

Cyber attacking and hacking is a full-scale business across the world with global cybercrime costs 

expected to grow by 15 percent per year over the next five years, reaching $10.5 trillion USD 

annually by 2025, up from $3 trillion USD in 2015 [5-6]. This evolution is illustrative and reflect 

an explosion in number of exploits, attacking techniques and technologies. Figure 7 illustrated 

average zero-day exploit price in dark-web which reflect time and effort invested into developing 

and weaponising exploits which the observation enable researcher and managers to grasp the 

https://www.upguard.com/blog/vulnerability
https://www.upguard.com/blog/sensitive-data
https://www.microsoft.com/security/blog/2016/01/27/the-emerging-era-of-cyber-defense-and-cybercrime/


 

current and forecast for the cyber advisories [13]. 

 
Figure 7: average exploit price in the dark and legitimate market [14]. 

3.4 Anatomy of a Cyber Attack  

 PT practice is a standard and well-established security auditing method designed to 

imitating hackers’ footsteps and approaches by imitating the same behavior that real attacker will 

eventually adopt when attacking the digital asset. To achieve this aim, PT practice was divided 

into activities and steps following a certain logic. The division itself is just a way to help the 

penetration tester better cope with the pattern of steps that we describe below. Of course, this 

division in steps is not arbitrary and corresponds to a well-established practice in the field of 

offensive cyber-security domain. In this part, we attempt to summarise the major constituent of 

PT.  An example of real-world attack starts with a Reconnaissance phase where hacker gather 

network information and build a knowledge about system profiles. Second phase named 

Discovery in which the hacker will be attempting to identify and perform vulnerabilities analyses 

the available information such as OS, device, service, and application and available exploit. The 

third phase named Exploitation where hackers attempt to launch programs and scripts to 

compromise the target, access and manipulate data, often in this phase hackers operate many 

breaks to seek further information or re-adapt the configuration of exploits. The hacker fourth 

phase is often to proceed with leverage compromised systems as beachheads to attack other 

network resources through proxy pivots and test defensive technologies’ ability to identify and 

stop attacks client-side and testing of end users and endpoints. Finally, the hacker exfiltrates 

important data and installs backdoors and rootkits which enable him to gain sustainable and 

permanent access to the controlled system for future use. Figure 8 summarises the hacker typical 

workflow in network environment [18-20]. 



 

 
Figure 8: The Offensive and Active security standard workflow [18]. 

 

 

3.5 PT Background 

PT has been a cornerstone in cyber security practice during the last decade. It implies planning 

and performing a real and controlled attack on a digital asset (computer machine, Web server, IoT, 

software or network) with the aim of evaluating its security [3]. The process of PT is divided into 

a sequence of tasks in order to methodically and comprehensively assess the security of the system 

and often include actively identifying vulnerabilities and perform a set of actions to test if the 

target could be compromised by running exploits against those vulnerabilities [6].  

 



 

 
Figure 9: Penetration testing standard phases [24]. 

In practice, PT activities and tasks shown in Figure 9 vary from case to case but generally include 

four main phases as follows: 

3.5.1 Phase 1: Information Gathering, Planning, and Preparation 

As with real world cyber-attacks, the PT practice relies heavily upon what the tester and/or the 

system knowledge of the target asset, and thus the ability of gathering, structuring, and processing 

the relevant information prior to starting the exploitation is a key point for the global practice. The 

information itself can be very wide and vary from one asset to another. In a network context, these 

properties often include general knowledge about the assessed asset, previous incident, previous 

PT attempts, active domains, and machines (network devices and hosts). This first crucial phase 

is widely known among the pen-tester (and hackers) as information gathering or reconnaissance. 

This phase includes performing tasks (set of actions, observations, and transitions) which will be 

detailed below [14-15]. 

3.5.2 Phase 2: Network Discovery 

During this phase, the tester performs a deep and comprehensive reconnaissance against the 

targeted asset to gather as much information as possible, from which the next phase effectiveness 

will heavily depend upon. In practice this is a complex, often incomplete and resource consuming 

phase. There are many ways to gather this data and it depends upon the target (network, Web, or 

client). In this phase we differentiate Network Discovery which attempts to discover additional 

systems, servers, and devices; Host Discovery to determine open ports on these devices; and 

Service Interrogation which investigates identifying actual services running. Overall, tasks related 

to discovering, dressing and determining the network content, topology and configurations are 



 

performed using systems relying upon mechanisms such as ARP, TCP SYN packets, ICMP echo 

request, TCP connect and passive discovery. Following an initial discovery, a more 

comprehensive and deep discovery is also performed to get a clear idea about the network 

functioning and enumerating in the best possible way the network components, communication, 

used configuration. Tasks such as port scanning, OS identification, running applications and 

services identification are performed. The output of this phase is crucial for the later phases and 

usually, incomplete or partial results are initially obtained (lack of information or reliability of the 

results) and thus this phase will be re-iterated depending upon the required information [8].  

This phase usually requires heavy involvement from the human tester despite the use of semi-

automated or fully automated tools and systems such as Nmap and Nessus. The intervention of 

the human is often necessary. For instance, OS detection utilizing the running service produce 

results with a certain degree of uncertainty (probabilistic) and the use of further techniques by the 

pen-tester such as social engineering and Google hacking (using publicly available information to 

gain insight into the target organization) although these techniques are difficult (or impossible) to 

automate [23].  

3.5.3  Phase 3: Attacking, Exploiting, and Pivoting 

During the attack phase, the tester will attempt to identify (select) and launch the matching (giving 

the outcome of the precedent phase) exploits. Exploits are pieces of systems (code) that allows 

taking advantage of the systems’ vulnerabilities (such as injecting malicious code in the system's 

memory to modify the execution of the original code. One way that benefits the attacker to retrieve 

information, install an agent or gain access) in order to compromise or control the targeted asset. 

Once a system is compromised it can serve as a starting point (also known as vantage point) for 

launching other attacks against the connected or reachable systems so new attack vectors and paths 

can be revealed and tested. This practice of mimicking attacker behavior is widely known among 

the offensive cyber security community to be the most efficient in term of revealing system hidden 

weaknesses or open new attack vectors. A perfect example to illustrate the pivoting concept is a 

successful attack against a machine belonging to a subnetwork which after installing the agent and 

gaining access (controlling). Then, the privilege escalation process is performed to attempt a 

deeper penetration into the compromised system such as local exploits in order to gain “admin” 

privileges which will be used to compromise other machines belonging to the sub-network which 



 

are linked (via trusted connection) to the compromised machine [22]. The compromised machine 

could also be used to launch a new Local Information Gathering campaign to collect additional 

information about reachable systems or capture sensitive data transiting within the sub-network. 

This phase ends usually by performing a cleaning to erase the attacker footprints in order to avoid 

the reusability by an unauthorized party [17]. 

3.5.4 Phase 4: Reporting, Analysis, and Mitigation 

Recommendations for PT are often prioritised by severity or impact. They are not necessarily 

rated according to their overall contribution to the organization’s cyber risk. This reduces the value 

of a PT report and means that organisations do not necessarily make the right decisions about 

where to focus their remedial efforts across the spectrum of defensive, detective and operational 

security controls [17]. 

3.6 Penetration Testing Types and Levels  

This section provides a brief summary of the different types and levels of PT (Figure 10) employed 

to assess and exploit potential network vulnerabilities. This categorization is often theoretical as 

the real-world situation is quite different and may require combinations of the below types and 

levels of tests depending upon the specificity of the situation and the client requirements. 

Moreover, the type and the scope of testing are generally established and agreed prior the 

beginning and may be changed or extended during the work [21-23]. 

3.6.1 White Box 

White box testing is a PT method (also apply for software context) where the tester has complete 

knowledge of the internal structure, content, and configuration of the assessed asset. It is also 

called glass box testing, open box testing, transparent box testing, structural testing, and clear box 

testing. All these terms indicate that internal mechanisms are visible to testers. In white box 

testing, it is all about testing internal security in place (coding, infrastructure of software) and used 

often as methodology that validates the internal security. It also used to carry out vulnerabilities 

assessment such as highlight threats from inside the network that was using knowledge of your 

network, such as IP addresses, router access, active ports, web servers, FTP, and even passwords 

[2-3].  

3.6.2 Black Box 



 

This means that testers are given very little or no information prior to the penetration test. It is also 

referred to as "blind testing" because the tester will start by finding an open route to access the 

network which is often through the Internet. In a black box penetration test, the attacker will be 

unfamiliar with the assessed asset, which mirrors the everyday penetration attacks or "hacks". This 

will stimulate more accurate results, as they will not be privy to any additional information and 

would produce a relatively accurate indication of potential threats to your network [6].  

3.6.3 Grey Box  

Grey box is meant to illustrate the partial disclosure of information about the assessed asset. In 

between black box and white box testing, gray box testing is without any doubt the most realistic 

and accurate representation of the hacking activities as hackers will rarely attack an asset which 

they have no knowledge about and tend to gather a partial knowledge about the target from 

different sources in advance. Therefore, in this approach, the penetration tester will be given 

partial details about the network infrastructure and left with the obligation to gather enough 

information to initiate the testing [7-9]. 

 
Figure 10: Difference between the three PT approaches; black-box, white-box and grey-box in term of 

input and ethical hacker starting position [17]. 

3.7 Testing Intensity and coverage  

We distinguish two main testing intensity practice which is dictated by the amount of test to cover, 

namely: comprehensive testing also known as type 1 PT, and targeted testing referred to as type 2 

PT.  

3.7.1 Comprehensive penetration test 

Comprehensive testing aims to identify and testing specific (not all) vulnerabilities and that the 



 

assessed asset ( networks, systems, websites and web applications, or wireless networks) may be 

exposed to. This is often a medium load of work which requires a moderate effort and use of 

resources and combines both manual assessments (where systematic and logical thought 

processes, analytical thinking and skillful decision-making are required) with automated scans to 

assess the true extent of the assets vulnerabilities [10]. This type of testing is obligatory conducted 

by highly skilled penetration tester and should include a detailed report providing 

recommendations for fixing any spotted security breach and addressing each of the identified 

issues. Such testing provides with a good overview of an organisation’s security posture and in 

most cases, is a faster and more cost-effective solution than the lengthier Level 2 Penetration Test. 

IT security governance bodies (CREST, NIST and SANS) recommend a Level 1 Penetration 

Testing that will identify exploitable vulnerabilities before they can be uncovered by an 

indiscriminate cyber-attack [12]. 

3.7.2 Targeted penetration test   

Targeted testing requires an extensive effort and involves looking in details at all the potential 

vulnerabilities and explicitly attempt the relevantly associated exploits one by one to determine 

whether a successful exploitation is possible, and if so what kind of damage to the asset the 

attacker can do such as obtaining access to the sensitive resources. A targeted penetration test is a 

painstakingly detailed process of identifying security holes and vulnerabilities in your hardware 

and software (including printers, fax machines, workstations), systems or web applications and 

then attempting to exploit them. Due to the extent of these tests, Level 2 Penetration Tests often 

take several weeks to complete and are usually only recommended to clients who require a 

complex cyber-attack simulation [13]. 

3.8 PT versus Vulnerability Assessment  

A vulnerability assessment (VA) is a series of automated scans and tests that provide a very high-

level overview of the potential vulnerabilities and exposures that exist in the assessed system or 

network. Often, VA consist of providing overall and general insights of the system security and 

potential point of exposure which can be used by the attacker.  On the other hand, PT plays a 

critical part in maintaining the security of a network by actively probing it for weakness and 

vulnerabilities. It mainly focuses on identifying, assessing the existing vulnerability, and 

attempting to exploit them by executing the adequate attack and exploits. Nowadays, PT involves, 

https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
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https://www.itgovernance.co.uk/shop/product/infrastructure-network-penetration-test
https://www.itgovernance.co.uk/shop/product/web-application-penetration-test


 

in addition, the comprehensive assessment and testing of the entire state of a network by emulating 

real adversaries (mimicking the attacker approaches), including the use of the attacker techniques, 

tactics, procedures, and the way they define the potential goals. PT practice requires a high level 

of expertise and in-depth knowledge of the systems and securities measure functioning along with 

the adequate resources [17]. 

3.9 The versatility of PT 

The PT is characterized by its many domains of practicing and uniqueness in term of versatility 

of testing contexts and the level of expertise required for ensuring reliable results.  For that, when 

we consider an intelligent automation if PT practice, we intend to cover the entire practice which 

present many challenges and is far different from other cyber security fields in term of operating 

modes and practicing environments where each of the contexts has its own uniqueness [15]. The 

PT is very versatile in term of testing vectors such as networks, databases, cloud infrastructure, 

web applications, wireless and IoT., and in term of testing approaches and methods. Figure 11, 

illustrates the versatility in the PT practice as discussed in out previous work [23].  

 
Figure 11: versatility in PT practice and richness of testing tasks, approaches and methods [23]. 

3.10 PT automation state of the art  
 During the last decade, cyber-security firms and security systems developers have been 

heavily focusing on producing automated and semi-automated PT frameworks and systems aiming 

to facilitate the work of network penetration testers and make the assessment of network security 

more accessible to non-experts. Multiple systems are available for public use varying from free 

and open source to more costly products. Popular products used in PT communities include Core-



 

Impact, Nexpose, Nessus, Qualys, Tenable, Immunity Canvas and Metasploit [18]. The main 

contribution offered by these systems compared with the traditional security and vulnerabilities 

scanners such as Nessus, is their functionalities (planning, scanning, and exploiting) along with 

simplicity and flexibility of use (automation of certain tasks, visualization, reporting). Yet, the 

offered automation (mainly related to the planning phase of the practice) remains limited to the 

planning of the practice, the organization of the tasks and the optimization/visualization (usually 

phase 1 and 2) and the automated reporting (phase 4). Nevertheless, the heart of the PT practice 

(phase 3) was often neglected or poorly exploited. In fact, determining the exploitable 

vulnerabilities and launching the relevant exploits, digging inside, and pivoting to create a new 

vector of attack is undoubtedly the most challenging part. The difficulty itself lies on the current 

PT systems which have radically changed and evolved and have become more complex, covering 

new attack vectors, and shipping increasing numbers of exploits and information gathering 

modules. Thus, the problem of efficiency has emerged and controlling alike framework 

successfully along with maintaining efficiency, is indeed the most important challenge [19]. 

3.11 Review of related research works 
This research is rooted in a long line of research and development on network PT, starting 

with the planning phase for which work was undertaken and propositions were made with some 

already in existence in the industry, whilst others remain research ideas. As the penetration testing, 

automation, and enhancement (usually means optimisation and efficiency) domain is situated 

between both cyber-security and AI research fields, several axes of research were addressed 

starting with the consideration of attack graphs and progressed throughout different research fields 

and methodologies of Automated Planning and consequently the sub-area of AI. Early research, 

focused on the modeling penetration as attack graphs, planning attacks, and decision trees which 

all reflected the insight that researcher had relating to the PT practice as standard sequential 

decision making. In theory, these researchers were very encouraging and produced tremendous 

results although (real world implementation) most of the proposed work was more relevant to 

vulnerabilities assessment practice than to PT. This section of the literature review considers the 

most significant contributions in this regard and will summarise previously completed research 

with a special focus on the adopted approaches and the contributions. For clarity, we start by 

addressing the full picture of the research in this field (Figure bellow) and will proceed into 

dividing the research axes by type, methodology, and approach.  Attack graphs are the most known 



 

security model for representing the chains of vulnerability exploits in a network first introduced 

by the work of [19] which proposed an attack graph that break down the environment of network 

vulnerabilities assessment tasks by modelling the space of possible attacks into atomic components 

called attack actions.  Each action is described by a conjunctive pre-condition and post-condition 

over relevant properties of the system under attack [20]. This approach is closely related to the 

syntax of classical planning formalisms and thus later research used the classical planner to attempt 

to solve the problem by finding the optimized solution. An attack graph represents all known 

sequences of actions that compromise a system in form of a graph. 

3.11.1 Regular and Blind Automation 
An obvious way to produce a system or tool which autonomously performs PT is by 

automating all or some of the tasks and subtasks for each phase of the penetration testing practice. 

While automated PT tools are great for discovering low-hanging fruit, automatic vulnerability 

scanners should not be confused with advanced human expert testing which include a deep 

understanding of an organisation’s current security configuration and attempting targeted testing 

against specific high-profile areas of the application that will require more time and attention. 

Human testers rely on their expertise to find flaws that require logic and comprehension. Many 

organizations use automated tools and systems which blindly performs all the tests without any 

exception or pre-elimination. These systems are often guided by a skilled human tester, but many 

steps are automated such as vulnerability scanners to test multiple systems for the presence of 

vulnerabilities. The disadvantage of such an approach is mostly noticed in the medium and large 

network context where time, resources, generated traffic, and network congestion is too high, thus 

making the use of such approach limited to a small network or by writing scripts which are itself 

very inconvenient for expert point of view.  

3.11.2 Graph-based approaches  
An attack graph is undoubtedly the oldest method for planning security tests especially in 

a network context and was for a while used in penetration testing. In cyber-security, the attack 

graphs are particularly efficient in analysing security flaws in computer networks. In addition to 

the use in the defense part, several researchers tackled the problem of enhancing the PT practice 

by generating and optimising the attack graphs and met a lot of challenges. Some methods were 

only theoretical and not applicable for practical scenarios where other methods produced some 

consistent results by reducing the number of scenarios, attack vectors or even finding new attacks 

paths which a human may not notice or just omit.  



 

 

An algorithm to automatically generate a penetration graph was proposed by (Qiu et al., 

2014) which optimises the network topology before generating the penetration graph which helps 

to reduce the amount of redundant information and provides a clear overview of the networks’ 

possible security flaws by exploring all possible attack paths from the raw information gathering 

output, optimising the reachability matrix (network inter-connections) and highlighting the most 

critical attack paths. The researchers pretend to be able to generate multi-path correctly and 

effectively in all situations. 

 

 
Figure 12:  An example of an automated generated penetration (attack) graph 

 

In a previous research work entitled “An Intelligent Technique for Generating Minimal Attack 

Graph” [24], an approach based on planner has been proposed for time-efficient scalable 

representation of the attack graphs.  The planner itself relies on a special purpose search algorithm 

from an AI domain to determine the best solutions within a large state space without suffering state 

space explosion. In addition, another research performed by [25] where he assumed the action in 

the attack graph by assigning two values: action cost and success-probability.  He then proposed 

an algorithm for computing an action selection policy which minimises the expected cost of 



 

performing an attack. Finally, he modeled the problem as a finite-horizon MDP problem and used 

forward search, transposition tables and pruning techniques (enhancing the structure of the attack 

graph). As a result, he compared the obtained results using the proposed approach to a generic 

MDP solver along with a solver transforming the problem to an unconstrained influence diagram 

and demonstrated the performance enhancement (reducing the runtime) [26]. 

In a PT context, attack representation is not a hierarchy (tree) but often a directed acyclic 

graph (as the practice diagram is in reality) due to the repetitively and interrelation between nodes 

which means performing an action can be beneficial in several possible branches at once if the 

action has more than one root-node path in the attack graph.  This results in the probability of the 

action being counted multiple times and the overall probability of success is increased.  This causes 

the expected cost (computed as first probability) or penalty to decrease but remains admissible so 

can be added on later [22]. Since a minimised value is compared with the expected cost this issue 

keeps the heuristics still admissible. 

3.11.3 Classic and Intelligent Planning Approaches 
The automation of the planning phase in PT practice was the first approach to be tackled 

by researchers for the simple fact that it was very close to the attack graph for security auditing 

and vulnerabilities assessment. This approach encloses different planning mechanisms that 

automatically finds a plan when given as input [24].  A high-level description of the relevant world 

properties (the state variables), the initial state, a goal condition, and a set of actions where each 

action is described in terms of a pre-condition and a post-condition over state variable values. In 

classical planning, the initial state is completely known, and the actions are deterministic, so the 

underlying state model is a directed graph (the state space), and the plan is a path from the initial 

state to a goal state in that graph [25].  

This grounds PT in a well-researched formalism, highlighting important aspects relating to 

the nature of this problem. This approach was initially followed by [24-25] attempting to make 

strong independence assumptions for the sake of scaling and lacks a clear formal concept of what 

the attack planning problem actually is. The founding motivation for applying automated planning 

mechanisms in a PT context is facilitating and assisting the decision-making process within manual 

or autonomous systems [26]. The AI planning techniques’ generality of concepts and models make 

them applicable to the diverse context where a control problem emerges and network security 

assessment and PT are undoubtedly a natural application [23]. The latter investigates the idea of 



 

AI and optimised attack planning as an approach for automated security assessment starting with 

[27-28] works. 

 
Figure 13: Different planning approach previously investigated for PT context [28]. 

 

Subsequent planning for PT using attack graphs techniques was proposed and will be detailed in 

this section. However, most of the proposed solutions lacked efficiency as blind automation did 

not tackle the problem related to optimising the penetration itself by validating and executing the 

attack paths resulting from the analysis phase.  A brilliant piece of research [29] introduced a 

complete PDDL representation of the attack problem along with a practical implementation that 

integrates a planner into a PT tool. Their research allowed an automated generation of attack plans 

(single and multi-paths) for real world PT scenarios, and to validate these attacks by executing the 

corresponding exploits against the real target network [28].  The idea was executed using an 

algorithm for transforming the information acquired during the information gathering phase of the 

PT into the planning domain, and they showed how the scalability issues of attack graphs can be 

solved using the proposed model for small and medium sized networks. Nevertheless, the proposed 



 

approach is very limited in a large network context and fails to cope with dynamic environment 

characterising the cyber security domain [30]. Related works carried out by [30-32] highlighted 

the failure of the classic modeling approach in dealing with the uncertainty in the domain of PT, 

especially the lack of accurate and complete knowledge about the assessed system which the 

classical planned requires producing a plausible result. The researcher worked on an industrial 

system considered to be one of the market leaders.  In the vulnerabilities assessment (Core-Impact) 

modelled the problem as partially observable Markov decision processes (POMDP) and 

integrating for the first part the first phase (information gathering) of the practice within the 

remaining mechanisms by utilising the particularity of POMDP in terms of the open and flexible 

“Initial Belief State”. This work provided a first intelligent PT system with a mix of scanning, 

planning, assessing and exploiting. There were two major flaws in this reasoning; the information 

gathering (scans and enumeration) does not yield perfect knowledge so a residual uncertainty 

remains, and the significant impact of the scanning on the assessed network as it often generates 

large amount of traffic susceptible to be detected by security system and  requires a long running 

time. They wanted a technique that (like a real hacker) can deal with uncertainty by intelligently 

inserting scanning actions where they are used for scheduling the best exploits. The proposed 

model itself is questioned as it obviously fails to model the full picture of PT and focusing rather 

on the separate entities [31].  

 

Similar research work carried out by [32] adopted an intelligent planning approach to generate a 

minimal attack graph described as a time-efficient scalable representation of the attack graphs. A 

planner is a special purpose search algorithm from an artificial intelligence domain, used for 

identifying solutions within a large state space without suffering state space explosion [33]. A case 

study has also been presented and the proposed methodology is found to be more efficient than 

some of the earlier reported works [34].  In another related research, introduced a game-theoretic 

model for anticipating and preventing attacks in a computer network by representing the network 

security components and the associated interactions [35]. This approach remains very limited in 

covering the entire scope as  a huge gap will always exist between a network administrator who 

uses the limited resource to secure the network and an attacker who is flexible and can adopt hard 

to prevent complex and multi-stage attacks which are aconsidered to be NP-hard problem than the 

solving rquire huge amount of time when it is large graphs [36]. Later, [37] presented another 



 

approach which first translates an attack graph into an MDP and solves it using policy search with 

a set of pruning techniques. This solution fails too in complex real-world scenarios where the 

search for the policies is more expensive in terms of time rather than establishing it.   

 

Furthermore, the attack graph techniques have also been used for the analysis of threats that arise 

through the possible combinations of cyber-attacks and related actions which then modeled as 

planning optimization in [33-36]. Other previous work [36-38] used classical planning and hence 

ignores all the incomplete knowledge that characterises the information gathering and vulnerability 

assessments. More recent work [32] proposed an independent point of view PDDL language 

modeling of the attack planning by considering each asset (machine or system) separately. These 

works were further enhanced by [33-35] and introduced models that considered the uncertainty in 

the PT practice at the action level (machine alone context) was introduced in form of POMDP 

planning problem. In fact, the last work the uncertainty was introduced into a POMDP model both 

at the initial belief state and the probabilistic action outcomes as in [37-38]. The first contributes 

to considering the real dynamics of the system when the second enhances the choice of the relevant 

exploits to test. Unlike the MDPs approach, POMDPs allow to model information gathering as an 

integral part of the problem, thus providing for the first time a means to intelligently mix scanning 

actions with actual exploits. 

In applied research works conducted by [39-41], researchers tackled the problem of automatically 

designing an efficient plan for remote PT with no prior knowledge of the target network’s 

machines, they proposed a model for generating and executing remote testing plans that considers 

the uncertainty of using remote tools both to gain knowledge of the system and to provide the PT 

actions. Our solution provides automated generation of multi-step penetration test plans that are 

robust to uncertainty during execution. We tackle this problem by making use of modeling 

techniques from POMDPs. The researcher attempted to automate this process by taking advantage 

of efficient solutions for solving POMDPs, and further, automatically derive these models through 

automated access to vulnerability databases such as the national vulnerabilities database (NVD). 

We demonstrate our implemented solution on a series of example problems.  

Recently, important research was carried-out by [44-46] which tackled the attack mitigation issue 

as part of the PT practice by adopting a what-if approach for conducting a comprehensive analysis 

of the different mitigation strategies on a simulated PT platform. The work used automated attack 



 

generation based on the adversary network model which analyses the different mitigation actions 

such as changes to the network topology, system updates, configuration changes, etc. They aimed 

to determine optimal combinations that minimise the maximal attacker success and proved the 

efficiency of the proposed what-if analysis approach which can be derived from network scan, 

public vulnerability databases and manual inspection with various degrees of automation and 

detail. They also used a simulated PT approach allowing automated attack-finding when different 

network changes were applied (topology, system updates, configuration changes, etc.). As a result, 

they noticed that using this technique they were able to determine the optimal combinations that 

minimise the maximal attacker success and therefore proposing the best mitigation strategy. This 

work covers mainly the mitigation phase, which is out of the scope of our research, nevertheless 

the simulation part will be considered as an option later in our research. 

3.11.4 Expert-System and Knowledge-Based Approaches  
In this section, we will provide an extensive description of expert system (ES) and 

knowledge-based expert system (KBES) as part of this research will rely on these technologies. 

ES or KBES is a system which solves specific types of problems by codifying human experts’ 

knowledge in a knowledge base, and by mimicking the human problem-solving 

process. Technologies use qualitative knowledge rather than mathematical models provides the 

needed support. In fact, it is a computer system that applies reasoning methodologies to knowledge 

in a specific domain to render advice or recommendations, much like a human expert. A computer 

system that achieves a high level of performance in task areas that, for human beings, require years 

of special education and training. The basic concepts of ES include:  

➢ How to determine who experts are (level of experience and knowledge)? 

➢ How expertise can be transferred from a person to a computer? 

➢ How the system works in term of reasoning? 
  

As in any other domain, an expert is a human being who has developed a high level of proficiency 

in making judgments in a specific, usually narrow, domain. The penetration testing was not 

considered as a good candidate to apply these approaches but similar work on defensive cyber-

security demonstrated the feasibility and the efficiency of these approaches in solving the complex 

and large problem along with capturing the human expertise and modeling it for future use.   



 

  
3.11.5 Statistical and heuristic approaches 
Purely mathematic techniques, such as statistical and heuristics were the first to be proposed for 

improving the PT system performance and accuracy. They rely on simplistic, easily evaded data 

processing which utilises several variants of algorithms to attempt identifying a mathematical 

solution to the problem. Research work in this regard was earlier presented by [55-56]. The 

researchers proposed the use of certain criteria to evaluate individual testing steps and the non-

deterministic behavior of the tested system. They considered six heuristic algorithms based on 

these ideas and implemented four of them having a game-like approach to imitate the black-box 

PT [57]. The algorithms were compared by measuring the number of testing steps required for 

finding or spotting a vulnerability in the assessed system [58]. 

Academic work by [59] surveyed the use of statistic and heuristic-based approach to enhance the 

automated PT system performances. They were concerned with the planning and the scale-up 

challenges in the previously proposed approaches and their impact on performance. The research 

focused on the development of a powerful reachability extraction system based on heuristics along 

with a planning graph, which is an interesting means to obtain informative look-ahead heuristics 

for search and has become ubiquitous in state-of-the-art heuristic search planners. They proposed 

heuristics classical planner allowing a flexibility to adapt to more expressive scenarios that 

consider action costs, goal utility, numeric resources, time, and uncertainty. 

 

The heuristic approach was again used, although differently, by [60] to find optimal policies to 

execute when using attack graphs.  The work is based on two major criteria: action failures and 

costs. They designed a heuristic approach to compute the lower bound of the expected cost of an 

attack graph by setting costs of the actions to zero and considering only the actions’ probabilities, 

enabling more freedom in action ordering as any (valid) ordering will produce the same probability 

of success of the policy and thus the overall expected cost. They used the produced heuristics to 

order the action in which compute remaining actions’ expected costs by prioritizing the most 

promising action. Although the principle of ordering action used is scientifically correct, the 

context of attack graph (PT) creates an issue since attack representation in form of AG is not 

always in form of hierarchy (tree) but instead often a directed acyclic graph.  In addition to this, 

the possibility of attack or exploit failure makes finding the optimal sequence of attack action non-

trivial. These particularities cause expected cost (probability) or penalty to decrease but remains 



 

admissible, therefore the research concluded that performing an action can still be beneficial in 

several possible branches at once if action has more than one root-node path in the attack graph. 

Ultimately, this will result in the probability of the action being count multiple times into the 

overall probability of success is increased.  

 
3.11.6 Artificial Intelligence and intelligent planning approaches 
 Very few research works tackled the potential intervention of AI in the offensive cyber-

security domain in general and PT in specific. In fact, ML was widely used within the cyber-

defense community in designing security systems able to learn and act alone on a real-time basis 

without referring or waiting for human (such as an incident responder) decisions or approval. To 

the best of our knowledge, ML capabilities with advanced algorithms that can adapt and learn 

along with probabilistic mathematics for learning the patterns was never considered for the domain 

of PT. These approaches were widely adopted in defensive cyber-security such as intrusion 

detection and anti-viruses in which systems inspired from the human immune system were 

developed to identify and responds to cyber threats autonomously without referring to a cyber 

defense expert or professional to make decisions. 

 

 Excluding the work carried out by [14-15] and [17] which were mostly oriented on 

planning for PT rather than intelligent practice (full process), the AI intervention was considered 

neither by industry developers nor by researchers.  A system named DIRP was proposed in which 

a standardized automated cyber-attacks emulation was imagined possible based on an intelligence 

automation model and data interoperability by fusing information from multiple freeware 

programs that can be thought of as cyber sensors into an interoperable, robust system in a manner 

that can tailor itself and learn over time [29-30]. 



 

 
Figure 14: related work which propose intelligent DIRP system working diagram [61]. 

 
During latest work carried by MITRE Corporation (Applebaum et al., 2016) which tackled the 

problem of making the network security red teamwork autonomous and intelligent, which would 

play a critical part in assessing the security of a network by comprehensively and accurately 

probing it for weakness and vulnerabilities. Unlike vulnerability assessment, which is typically 

focused on identifying vulnerabilities, PT automation aims to effectively assess the entire state of 

a network by emulating and launching real adversaries, including their techniques, tactics, 

procedures, and goals. Unfortunately, executing a comprehensive testing is prohibitive: cost (time 

and exploits’ fees) and impact on the network making it useless in a real-world situation. We seek 

to solve this problem by creating a framework for an intelligent automation of the PT by focusing 

on every part of the practice along with the post-compromise scenarios (after the perimeter has 

been breached or a machine has been controlled).  

Additional work proposed solution which act autonomously and self-learn as a human tester will 

do, the machine learning enabled the system to learn independently, execute the learned policies 

and actively move through the target network using the acquired results to look for further 

weaknesses and not only limited to an automated planner designed to accurately reason about 

future plans in the face of the vast amount of uncertainty in red teaming scenarios. Our solution is 



 

custom developed, built on a logical encoding of the cyber environment and adversary profiles, 

using techniques from classical planning, Markov decision processes, and Monte Carlo 

simulations [54]. In related work, researcher proposed a framework which focus on planning and 

reported that they have been able  to successfully validated our planner against other techniques 

via a custom simulation. The tool in question has been deployed to identify vulnerabilities and is 

currently used to train defending blue teams [66]. 

 

 
Figure 15: automated planning for remote penetration testing framework proposed by LGS Innovations-

Bell Labs. 
 
Other approaches relied on YARA rules which are pieces of programming language working on 

defining several variables that contain patterns found in a sample data and if some or all the 

conditions are met, depending on the rule, then it can be used to successfully attack vector 

identification. This approach is very limited to strict small number of attacks with a pre-defined 

structure [46]. 

 
3.11.7 Machine Learning approaches  
 
The first attempt to optimize PT automation using machine learning methods was introduced by 

MIT researcher in form of ML module named AI2 that learn and replay attack planning from set 

of data input and processed accordingly [49]. In parallel, a similar approach was put forward by 

Core Security researchers [50] and implemented in their commercial PT system Core Impact with 

an addition of RL modelling from a previous research work, the proposed approach is basic and 



 

limited to small assets and attempt to capture security variables and solves scenarios based on the 

probability of success of actions and generated traffic. No mention of the variables and timing 

allowed for such small scenarios and the proposed software was tested in practice on a 50-machine 

network and fails fundamentally to address the required points namely test coverage and producing 

results within the allocated testing time frame.  In related work, [53] attempted to automate PT by 

mitigating vulnerabilities and countermeasures by conducting comprehensive what-if analyses. A 

conceptual framework is provided to reason about mitigation actions applied to a network model. 

The approach determines optimal combinations that minimize attacker success following a holistic 

mitigation strategy [54]. 

In a recent work, [51] attempted to apply RL to solve capture the flag (CTF) scenarios. 

Fundamentally, CTF competitions are very specific scenarios which do not account for many 

variables in typical PT, but the study was significant for investigating the relevance of different 

RL techniques. An additional noteworthy proposal aimed to automate exploitation and post-

exploitation by combining deep RL and the PowerShell empire post-exploitation framework [52]. 

RL agents pick a PowerShell module and use its internal features as action states and then compare 

the learning progress of three RL models: A2C, Q-Learning, and SARSA. The results showed that 

A2C is the most efficient and trained agent can eventually obtain the admin privileges of the 

domain controller system [54]. Another research investigated the application of model-free RL to 

pentesting and tested the standard Q-learning algorithm using both tabular and neural network 

solving implementations. The output was that both tabular and neural network implementations 

were able to find optimal attack paths for small size networks but fails to achieve acceptable results 

in medium and large networks due to the scalability problem for model-free representation which 

results in huge environments [55].  Finally, research focused into the automation of PT using deep 

learning which proposed a two-step approach: first using the Shodan search engine to collect 

relevant server data in order to build a realistic network topology, and second employing multi-

host multi-stage vulnerability analysis to generate an attack tree for that network. The researchers 

employed deep Q-learning network (DQN) methods to discover the easiest to exploit attack path 

from the possible candidates out of thousands of input scenarios, and DQN and enabled optimal 

path discovery with an accuracy of 86%. Again, this approach is relevant for simple network and 

the second DQN approach fails above a certain network size [57-58]. 

 



 

Overall, we elaborated this graph summarises the research undergone and reading and 

summarizing the output of related works. We categorised the previous work on automated PT 

under 3 main approaches: blind or regular automation, targeted or script-based automation and 

optimized automation which the AI approaches fall under. Figure bellow categorises reviewed 

research works under each of the categories.   

 

 
Figure 16: summary of previous research work on PT automation in form of  tree  of approaches [23]. 

 

To conclude this chapter, a good amount of literature had been produced and been surveyed in this 

research after being organised in a scientific structured way that straightforward categorized 

literature review from traditional to the offensive cyber security notably VA and PT [59]. We 

elaborate a summarized list of the identified issues and shortfalls of previous related works as well 

as the limits of the proposed solutions summarized into the following points: 

➢ Computer-generated plan and attack graph based on static data would isolate the tester 
from the complexity and dynamicity of the real-world network security and therefore make 
the accuracy and pertinence of the results very limited to the context in which the tests 
were made in and negatively impact the security posture of the organisations. 



 

➢ Suitability of the proposed models and representation into dealing with versatile networks’ 
topologies, configurations, and securities architectures along with the dynamic context, 
usually the proposed solutions were limited into efficiency by many assumptions. 

➢ The continuous and inevitable need for a human expert supervising or controlling the 
system and making crucial decisions results in the proposed system being less accessible 
to non-experts as well as the lack of optimisation in the use of the knowledge gained during 
previous testing practices. 

➢ The eventual compatibility of the proposed solution to be incorporated or embedded within 
the industry’s PT systems and framework, are mostly planning solutions and eventual 
implementation will leave the problem of fully automation unsolved. 

➢ Blindly automated PT indeed solves the problem of human labor but creates an even bigger 
problem of efficiency as the required time will increase sharply and often goes beyond the 
limits. The generated traffic will also create additional problems related to network 
congestion, security detection, and downtime which are all undesirable problems for any 
prudent network security professional. Attacks allow the user to perform reproducible tests, 
which opens the path to computing security metrics whose evolution would be a key 
indicator of the security posture of organisations. 

 
 
 
 
 
 
 
 

  



 

Chapter 4: Reinforcement Learning  
Reinforcement learning (RL) is a branch of machine learning that allows a system software agent 

to automatically determine the ideal behavior within a specific context by interacting with its 

environment and receive rewards for actions performed with the aim of maximizing its 

performance. RL provides a conceptual framework to address a fundamental problem in AI: the 

development of situated agents learning how to behave while interacting with the environment. 

The problem is formulated as an agent-centric optimisation in which the objective is to choose 

actions that result in the highest possible reward, in the long run, resulting and therefore learning 

the optimal actions to take from each state [60]. Over the last decade, RL has exerted a seismic 

influence on planning and sequential decision-making problem solving and cognitive science in 

general. Whereas it was initially treated as a repository of specific computational techniques, RL 

has become a general framework for thinking about motivating behavior and learning in humans’ 

expertise in many fields. With the increasing popularity among AI researchers, the RL role has 

broadened and gradually moved beyond a classical gaming and robotics view of RL, tackling many 

fundamental real-world problems [61-62].  

RL ultimately aims to determine optimal actions’ selection policies in sequential decision-making 

processes as it deals properly with delayed rewarding. The general framework is based on 

sequential interactions between an agent and its environment, where the environment is 

characterized by a set of states and an agent that executes actions from the set of predefined actions. 

The agent interacts with the environment and transitions from one state to another following the 

execution of actions. The sequential decision-making process, therefore, consists of a sequence of 

states and a sequence of actions during a period starting from an initial state and finishing at a 

terminal state. For each transition or observation related to action taken and resulting in progress 

from one state to another, a reward (also called feedback) is allocated to the agent which the value 

is either positive (rewarding) when pursuing actions that lead to beneficial outcomes, or they may 

be negative (punishing) when pursuing actions that lead to worse outcomes. RL enable an 

autonomous computer system to learn from his own experience using the received rewards and 

punishments resulting from the performed actions. The RL agent is trained to take actions, giving 

the current environment parameters, that maximise a cumulative reward and therefore using trial 

and error to explore his environment [63]. A Markov decision process is one of the mathematical 

formalisms widely used to implement RL algorithms. The relevant components of this formalism 



 

are the state space, action space, transition probabilities, and rewards [64]. 

 
Figure 17: RL paradigm, the agent learns the optimal policy which represents a map of actions that lead to 

the greatest cumulative reward [64]. 

Figure 17 illustrates Interactions between the agent and the environment proceed by the agent 

observing the state of the environment, selecting an action which it believes is likely to be 

beneficial, and then receiving a reward, from the environment that indicates the utility of the action 

[62]. In practice, there are many different formulations of RL are also known as approaches with 

each having different algorithms and implementation. As a matter of fact, RL is defined by a 

specific type of problem, and all its solutions are classed as RL algorithms although all require that 

the agent makes the best decision (action) possible based on his current state. A different approach 

has been developed to either accommodate various types of environments or to utilize slightly 

different learning mechanisms [65]. 

4.1 Reinforcement Learning  
RL comes as a natural choice for solving real-world problems requiring sequential decision making 

when a human expert performs several tasks that depend one on the other in a very strict order. It 

is more relevant to the cases when this expert works with incomplete knowledge. Therefore, 

partially observable Markov decision processes (POMDPs) provide a natural representation for 



 

sequential decision tasks under uncertainty and particularly network PT. This representation roots 

into a well-established model of Markov decision processes (MDPs) [66] and is distinct by the 

feature of allowing the RL agent to act even when it fails to identify the exact environment state. 

The POMDP formalism is reputed to be efficient and powerful which helped to extend MDPs 

application to several real problems [67]. PT is a sequential decision process in which PT experts 

interact and perform actions and wait for the outcome. As with any sequential decision process 

automation using RL, it is expected to involve an agent that interacts synchronously with the 

external environment or system; the sequence of system states can be modelled as a stochastic 

process [68-69]. The agent’s goal is to maximize reward by choosing appropriate actions. These 

actions and the history of the environment states determine the probability distribution over 

possible next states [66].  

4.2 Markov Decision Process 
The easiest way for modeling a sequential decision problem is the famous Markov decision process 

(MDP) model. MDP is an extension of Markov chains with a set of decisions (actions) and costs 

(reward) structure. For each state of the process, a decision must be made regarding which action 

should be taken. The chosen action affects both the transition probabilities and the costs (or 

rewards) incurred. The goal is to choose an optimal action in every state to increase some 

predefined measure of performance. The decision process for doing this is referred to as the 

Markov decision process [64]. In MDP, a state is a description of the agent’s environment position 

at a particular point in time. Although we will deal with continuous state and action spaces when 

describing large problems, we generally assume that the environment can be in a finite number of 

states, and the agent can choose from a finite set of actions. Let S = {S0, ….SN } be a finite set of 

states. Since the MDP is stochastic, a particular state at any time t ∈ T, can be viewed as a random 

variable St whose domain is the state space [70]. 



 

 

 
Figure 18: MDP relationships between states, actions At, rewards Rt received at stage R(St, At) and 

progressing to state St+1. 

For a process to be Markovian, the state has to contain enough information to predict the next state. 

This means that the past history of system states (earlier than the current state) is irrelevant to 

predicting the future [71]. 

 

At each stage, the agent can affect the state transition probabilities by executing one of the 

available actions. The set of all actions will be denoted by A and for each action a ∈ A  is described 

by S × S state transition matrix, whose entry in an ith row and jth column is the probability that 

agent will move from state si to state sj if action a is executed [72]. 

 
When we assume that the MDPs are stationary and thus the transition probabilities do not depend 

on the current time or system’s states. The transition function T:  S x Ai → Δ (S) summarises the 

effects of Δ (S) which is a function that for each state and action associates probability distributions 

over the states space S. Thus, for each s and a, the transition function T will determine the 

probability of transiting from a state to another when executing a specific action as follow: 

 



 

Finally, Giving R(s, a) is an immediate reward that MDP agent would receive for executing action 

a while being in state, the reward function that for each state and action is as follow R : S x A → 

R [66]. 

4.2.1 Partially Observable Markov Decision Process 

In this section, we formally introduce the POMDP model and related decision-making concepts. 

The Markov decision process (MDP) is a modelling variant for solving an RL problem which entails 

sequential decisions. As with MDP, the goal of the agent is to act in such a way as to maximise 

some form of expected long-term reward. There are many cases where the Markovian assumption 

may not be valid [73]. Such cases include those where the agent either cannot perfectly observe the 

state information, in which case the problem is referred to as a partially observable Markov decision 

process (POMDPs) [74], or if there is a long temporal dependence between states and the feedback 

provided. Approaches to solving these types of problems often include retaining some form of the 

state history [63-67], such as by using recurrent neural networks or a more complex variant that 

relies on long short-term memory (LSTM) [71]. 

 
Figure 19: POMDP relationships between states, actions, rewards, and observations. 

POMDP shares many elements with the fully observable MDP and in practice is a tuple <S , A ,T, 

R, O , Z>, consisting of the exhaustive set of possible state space S , the exhaustive set of possible 

actions that can be taken space A , transitions or observations probabilities of transitioning between 

the various states given actions T and O, reward function R and observation function Z. POMDP's 

ultimate objective is to develop a policy which is a graph mapping actions to state aiming to produce 

the greatest possible cumulative rewards. Nonetheless, what distinguishes a POMDP from MDP is 

that the agent now perceives an observation o ∈ Ω, instead of observing states directly. The set of 



 

 

observations Ω = {o1, ..., on} represent all possible observations the agent can receive. The 

observation is therefore conditioned by state s, action a, and follow the observation function O : S 

×A× Ω → [0,1]. The probability of observing o in state s0 after executing a is O (s0, a, o). Note that, 

for O to be a valid probability distribution over possible observations it is required that s∈S, a∈A, 

o∈Ω, O (s0 , a , o)≥ 0 and  ∑o∈Ω O(s0 , a , o) = 1 [68]. 

4.2.1.1 Observation function 
A POMDP is comprised of an underlying MDP, extended with an observation space O and 

observation function Z. Let O be a set of observations an agent can receive. In MDPs, the agent 

has full knowledge of the system state. In partially observable environments, observations are only 

probabilistically dependent on the underlying environment state [23]. Determining which state the 

agent is in becomes problematic, because the same observation can be observed in different states. 

Z: S x A →Δ(O) is an observation function that specifies the relationship between system states 

and observations [71-74]. Z (s,a,o) is the probability that observation o will be recorded after an 

agent performs action a and lands in state as: 

 
4.2.2 Process histories 
History in POMDP stand for the log of everything that happened during the execution. Thus, 

POMDP complete history from the beginning until the time t is a sequence of triples: 

 
The set of all complete histories is denoted as H. Rewards depend only on visited states and 

executed actions, and system history is used to evaluate RL agent’s performance and represented 

as a sequence of states and actions. The system history h from the set of all system histories Hs 

provides an external, objective view about the process; value functions will be defined on the set 

s in the next subsection. In POMDP, an agent cannot fully observe the underlying world state and 

thus it can only base its decisions on the observable history as the agent has prior beliefs about the 

world that are summarized by the probability distribution called initial belief b0 and cover all states. 

The agent starts by executing some action a0 based solely on initial belief b0 and the observable 

history until time step t is then a sequence of action and observation pairs (A0, O1), (A1, O2),..., 

(At−1, Ot). The set of all possible observable histories will be denoted as Ho. Finally, it is important 

to highlight that representing Ho impact directly POMDP solution algorithms and the policy output 

as the observable history will used by RL agent internal memory [64].  



 

4.2.3 Performance measures 

At each step in POMDP, the agent has to decide what action to perform based on its internal 

observable history, the policy π: H→A is a set of rules that map observation into actions and 

is defined as a probabilities distribution over all possible sequences of states and actions 

starting by the initial belief distribution b0.  The RL agent goal is to pick a policy that 

maximises the objective function that is defined on the set of system histories Hs called value 

function V. This function is essential for the learning as it assign a real number to each hs, a 

system history hi is prioritized over hj only when V(hi) > V (hj) [37]. Overall, the value 

function is a mapping from the set of RL agent histories into real numbers: 

 

In POMDP formulations, the value function V have a structure that makes it much easier to 

represent and evaluate and generally V is additive thus the value of a given system history is 

the sum of rewards accrued at every step. In the case where the decision process stops after a 

finite number of steps H, the problem is called finite horizon problem and usually aims to 

maximize the total expected reward. The value function for a RL system h of length H is 

simply the sum of rewards attained at each stage [68]: 

 
The sum of rewards over an infinite horizon is unbounded and therefore we introduce a discount 

factor γ to mathematically address the problem so the rewards received later get discounted and 

will impact lesser than current rewards. The value function for a total discounted reward problem 

is [74] 

 

4.2.4 Policy Graph representations 

POMDP agent’s task is to determine the best course of actions in an uncertain environment 

following a given criterion of optimality. This can be in context of infinite horizon the discounted 

sum of rewards. The POMDP agent’s behavior is determined by the policy π which represent a 

general mapping from the observation histories to actions π : Ho i→ A. while the history is 



 

represented as: 

 

Therefore, the action is represented the policy π at time t as: at = π(ht). The expected policy value 

when considering the initial belief distribution b0 is represented as Prob (h|π, b0) for histories Hs. 

The expected policy value for the policy π: 

 

Thus, the value of the policy π at a given starting state s0 will be denoted: 

 

The agent’s goal is to find a policy π that maximal expected value Vπ. Finally, it is important to 

highlight that the general policy format as mapping arbitrary observation histories to actions is not 

practical and POMDP solving algorithms exploit value and observation functions to calculate 

tractable policies where observable histories can be represented as probability distributions over 

system states. Generally, any POMDP where the agent can fully observe all state is reduces to 

MDP, the sequence of states forms a Markov chain impose that next state depends only on the 

current state making the history of the previous states irrelevant [75-79].



 

4.2.5 Finite versus Infinite horizon  

In finite horizon MDP, knowing the current state and stage is sufficient for the agent to represent 

the whole observability and thus maximizing total reward whether using a discount rate or not. A 

policy π is therefore reduced to a map of states to actions π : S × T → A. π(s, t) is the policy at 

state s when t stages are left to end the process,  the expected value of a policy is calculated 

following Bellman recurrence as: 

 

The value functions in the set Vtπ (0≤t≤H) is t-step where H is the number of stages the process 

goes through. A policy π∗ is optimal if VH
π∗ (s) ≥ VH

π’(s) for all H policies π and all states where 

optimal value function is in fact a value function with optimal policy. Therefore, the Bellman’s 

principle of optimality [77] allows to calculate the optimal t-step value function as follow: 

 

 

For infinite horizon problems, optimal decisions can be calculated based only on the current system 

state, since at any stage, there is still an infinite number of time steps remaining [76-78]. Therefore, 

the value of a stationary policy π can be determined by a recurrence analogous to the finite horizon     

as bellow: 

 

As the POMDP agent goal is to find the optimal policy π∗ that maximise the value function V for 

all system states, The value function is: 

 

Value-iteration methods calculate optimal value functions directly and derive the optimal policies 

implicitly from value functions [80]. We introduce here the notion of a Q-function,  Q(s, a) is the 



 

value of executing action a at state s, and then following the optimal policy:   

 

Thus, infinite horizon optimal policy is a greedy of value function: 

 
4.2.6 Stochastic policies 
In MDP, a stochastic infinite horizon policy is the generalisation of a deterministic policy which 

assigns a distribution for all actions to a state instead of mapping every action to a state ψ : S → 

∆(A). Mapping states to actions ψ(s, a) is the probability that action a will be executed at state s 

and when we add expectation over actions, we can rewrite the value function as:  

Generally, stochastic policies are not advantageous in context of infinite horizon MDPs but very 

useful in context of POMDPs as it enables us to convert the discrete action space to a continuous 

space of distributions actions, then the value function is optimized [81-82]. 

4.2.7 Policy trees 

In POMDP environments, RL agent can only base its decisions on the history of its actions and 

observations and not simply mapping states to actions which results in complicated form of policy 

graph as: 

 

Like MDPs, when only one stage left, the agent can only to execute an action while it can execute 

an action with two stages left, it will receive an observation, and after it will execute the last action 

[83].  



 

 
Figure 20: A policy tree for horizon t. For each observation, there is a branch to nodes at a lower level. 

Each node can be labeled with any action from the set A [76]. 

In a finite horizon of length H, a policy is a tree of height H where all policies for H are represented 

in finite policy trees where each node prescribes an action to be taken at a particular stage along 

with the observation received that determines the next branch to follow [84-85]. A policy tree size 

in horizon H  will have a size of possible H- horizon policy trees of: 

 

In context of recursive policy trees, we rely on the notion of conditional plans σ ∈ Γ is a pair <a, 

ν>  where a is an action, and ν : O →Γ is the observation strategy. The set of all observation 

strategies will be denoted as ΓO; obviously, its size is Γ |O|.  Γt be the set of all conditional plans 

available to an agent with t stages left Γt = {(a, νt) | a ∈ A,  νt ∈ ΓOt−1}. In this case, representing 

policy trees as conditional plans allows us to write down a recursive expression for their value 

function [77]. The value function of a non-stationary policy πt is formulated as bellow where σ0(s) 

is the action to be executed at the last stage 



 

 

 

In POMDP, the actual system state is not fully observed, the value of a particular policy tree with 

respect to the initial belief state b is: 

 

Therefore, an optimal t-step value function for the belief state b is the simple result of the 

enumeration of all policy trees for Γt: 

 

Thus, the t-step value function for the continuous belief simplex b is represented by the max of the 

finite (often doubly exponential of t) conditional plans [81-84].  

4.3 From POMDP to α-vectors and belief state MDPs 
POMDP value function is linear and convex [66]. The value of any policy tree Vσ is linear in b, 

V∗ is therefore the upper surface of the collection of all value functions of policies for Γt. ασ be a 

vector of size |S| with the entries are the of policies tree corresponding to σ in each state: 

 

When applying the α-vectors representation we have a V*
t which contains all t-step α-vectors 

corresponding to t-step policy trees and sufficient to produce an optimal t-horizon value 

function: 

 

The optimal value function Vt is represented by the upper surface of the α-vectors V* (figure 

bellow) where the worst case any policy in Γt might (rarely in reality) be in some beliefs superior. 

Many vectors in within Vt are often dominated and thus omitted from representing in the optimal 



 

value function. In Figure 21, the vector α3 is completely dominated by α1, whereas vector α1 is 

jointly dominated by both vectors α0 and α2 together [85].  

 
Figure 21: example of two-state POMDP representing the whole belief space B for value function Vt(b) 

[85]. 

Therefore, it is possible clean (often called prune) which will result in lowering the number of  α-

vectors representing the optimal value function Vt∗ as follow: 

 



 

 

 

In the resulting parsimonious set, all α-vectors which are representing policy trees) are relevant 

[86-89]. A vector α is useful if R (α, V) is non-empty and is not dominated by other vectors as 

follow: 

 

In practice, the existence of such these regions is done using linear programming (LP) in many 

value-based POMDP solving algorithms regardless the adopted methods for pruning the α-vectors 

in Vt.  

4.3.1 Implicit POMDP policies 

An explicit t-step POMDP policy can be either represented using policy tree or using recursive 

conditional plan. In a given b0, the optimal t-step policy is determined by locating value function 

Max in the set of useful policy trees, then, the RL agent will perform actions at the nodes, and follow 

the observation links to the determined policy sub-trees [76]. the optimal policy at b with t-stages 

remaining is: 

 

Instead of keeping the entire policy trees, we can simply preserve the useful vectors in each t-

stage. Therefore, POMDP implicit t-step policy is defined by performing greedy one-step 

lookahead. We introduce the Q-value function Qt(b, a) as a value of taking action a at belief state b 

while continuing throughout the optimal policy for t-1 remaining stages while bo
a is the belief state 

that results from b after taking action a and receiving observation o: 

 
 

4.3.2 Belief state MDPs 

In a finite horizon POMDP, policy is a mapping from belief states and stages to actions π: B × T→ 

A. previous research demonstrated that a proper update of the probability distribution for the entire 

state space S is enough to summarize all the observable history for the POMDP agent without any 

loss of optimality [75]. Therefore, a POMDP can be converted into a continuous MDP where belief 

states is fully observable and annotated as quadruple <B, A,T b, Rb>. In the following 

representation: 



 

➢ B = ∆(S) is the new continuous state space. 

➢ A is the action space exactly the same as in POMDP. 

➢ T b : B × A i→ B is the belief transition function as follow: 

 

 

After the execution of action, and observation, the updated belief b0
a can be calculated from the 

previous belief b as follow: 

 
• Rb : B × A → R is the reward function: 

 

Then, the RL agent will have just to execute the action prescribed by the policy, and then update 

its probability distribution in order to follow the policy.  Nonetheless, in context of infinite horizon 

the value function remains convex but not anymore linear. The optimal policy for infinite horizon 

problems a stationary mapping of action from beliefs π: B→ A [77-79]. Thus, it is determined 

using greedy one-step lookahead from the optimal value V∗ as follow: 

 



 

N 

4.4 Policy Graph for Finite-state POMDP 
The optimal infinite horizon value function V∗ is often arbitrarily approximated to a set of finite-

horizon value functions V0, V1,... , Vt, with t tend to infinity where all optimal policies  are often 

linear and convex despite some situation where they are convex but contain infinitely many facets 

[70]. Thus, optimal value are linear so whoever two successive Vt and Vt+1 are equal will results 

in optimal value: 

 

Because each vector α in V∗ has an associated belief space region annotated R(α, V∗) where it 

dominates all other remaining vectors represented as follow: 

 

When an optimal value function V* is represented as a set (finite) of vectors, all belief states within 

one region are automatically considered new belief states for each given action and the associate 

resulting observation. In this case, the belief transitions constitute a policy graph (PG) where each 

node correspond to belief space when optimal actions and transitions are matched to observations 

[66-71]. Therefore, RL agent is not required to formally maintain its belief state b and perform the 

heavy computing operations of updating it while determining the optimal α-vector but simply 

using the starting node which is by default optimised for use as initial belief b0. When the POMDP 

does not allow the representation of the infinite horizon policies in form of finite policy graph the 

above operation is slightly modified to extract from a suboptimal value function the near-optimal 

policy graph. This will raise of course the tracabilty issue as only with a limited size of PG that the 

tracabilty of solving is achieved and remains approximate otherwise as it depends on the whole 

history of observations and actions which is often sacrificed to ease the solving of the POMDP 

problem by assuming that RL agent is constrained in term of memory and only required (the agent) 

to execute a policy that are present in the mapping internal states-actions [66-68]. 

 



 

 

 
Figure 22: illustration of policy tree branches rearrangement to produce stationary policy [78]. 

4.4.1 Finite State Controller model 

A deterministic PG π is a triple <N ,ψ, η>, where: 

➢ N the set of nodes n constituting the internal memory states. 

➢ ψ : N→ A the action selection function that for each node ψ(n). 

➢  n : N x O → N the node transition function that for each which assign to every observation 

the successor node n which in form of observation strategy already defined as trees or 

conditional plans. In a stochastic FSC, the function ψ and the internal transition function η 

are therefore stochastic. 

 
Figure 23: POMDP policy graph joint influence diagram. 

Thus, ψ :N →∆(A) which is a stochastic action selection function that for each node distribution 



 

for all system  actions: 

 

While n: N x O → ∆(N) is the node transition function when assign a probability distribution 

for every node and observation as:   

 
 

4.5 Policy graph value 
In the POMDP environment, the agent stored PG π =<N,ψ, η> is used to determine policy graph can be 

calculated using Bellman’s equation when Tπ  is the transition matrix is as follows: 

 

Given the stochastic nature of the functions ψ and η, the transition matrix Tπ will account for expectation 

over actions a and observations o is formulated as follows: 

 

 

When Rπ is consequently the reward vector: 

 

4.6 Value iteration 
In MDPs. the standard method is to find the optimal infinite horizon policy π∗ using a sequence 

of optimal finite horizon value functions V0∗, V1∗. . . , Vt∗ [90].  The difference between the 

optimal value function and the optimal t-horizon value function described earlier is that t goes to 

infinity:     

 

given the Bellman error E, the optimal value function can be calculated in a finite number of steps 

as follow: 



 

 

In POMDP context, it is first reduced into a continuous belief-state MDP to enable then the calculate 

optimal infinite horizon POMDP policies where the value function is calculated as the following: 

 
 

 

Where:   

 

The ultimate aim of any value-iteration algorithm is to find the set t+1 representing value function 

Vt+1, given the previous set of α-vectors t. Algorithms largely differ in how they compute value 

function representations with most naive way is to construct the set of conditional plans Vt+1 which 

is done by enumerating all both sets of actions and observations and mappings to the set Vt with 

the size of Vt+1 equals  |A||Vt||O| accounting for many vectors in the Vt that are to be dominated 

[92-95].Some algorithms calculate V’t+1 by generating   Vt+1 of size |A| x |Vt||O| and later pruning 

by eliminating the dominated α-vectors using linear programming. Incremental pruning algorithm 

such as IP proposed by [78] and others build the set  V’t+1  directly from  V’t without considering 

any useless conditional plans making these method on of the most efficient exact value-iteration 

solving that can solve medium size POMDPs when adequate computational power is supplied. 

4.7 Policy Search  
Policy iteration algorithms works differently from value iteration as they proceed by iteratively 

improving the policies themselves generating a sequence π0, ... , πt which converges to the optimal 

infinite horizon policy π∗, as t converges to ∞.  Policy Iteration works on two stages basis; policy 

computing then policy improvement. For MDP policy iteration, it starts with initializing π0(s), then 

repeat the policy iteration and improvement steps until πt+1(s) = πt(s) meaning that the policy does 

not change [102]. At a first stage, the value of policy is calculated as: 

 



 

Later the policy evaluation is calculated based on Q-function as: 

 

Finally, the policy improvement is computed for all states as: 

 
Therefore, MDP policy iteration converge much faster with the only disadvantage of the higher 

computational requirements as it calculate for each step, a policy evaluation requiring a |S| × |S| 

linear system. In POMDP policy iteration, as the importance is to represent a policy so that its value 

function can be calculated easily. This there is a use of FSC in the explicitly representation which 

is independent from the Vπ.  Hansen proposed an approach to directly represent a policy using FSC 

and the algorithm execute policy iteration in set of MDPs. After, it performs regular policy iteration 

steps with evaluation and improvement done using dynamic programming update to results in a 

sequence of finite-state controllers π0, π1…,πt converges to the optimal policy π∗ as t converges 

to ∞. The policy evaluation works at each controller node which corresponds to an α-vector. 

Because of the deterministic nature of the PG, ψ(n) outputs the action with the α-vector 

representation of a V is formulated as: 

 
When:  

 
 

With the policy evaluation having a maximum running time of |N × S|2. 

 

4.8 Policy improvement 
The policy improvement consists of performing dynamic programming backup for each step t in 

which the POMDP value function Vπ represented in form of finite set of α-vectors is replaced by 

an improved value function V’. This later is then represented by another most of exact solving 

algorithms notably the Witness and Incremental pruning perform very well in medium size 

POMDPs [99-102].    



 

For every step, a set of α-vectors Vπ is calculated from the finite-state controller π as described 

above and later is processed using dynamic programming backup to produce a new Vπ as follow: 

➢ For each vector α ∈ V where action and linked α are similar to the action and CP existing 

in the initial π, the node will be maintained in the π’, 

➢ When α is dominating more than one node in π it is then inserted into the π by changing 

the action and successor links to the vector α, 

➢ Else, if any new action and observation strategy associated with α is found it is added π.  

Finally, the pruning is done by removing any useless node in π which have no correspondence 

with α-vector in V.  Note that the policy improvement does not affect in any case the FSC which 

remains optimal. In practice, POMDP policy only requires a few steps to converge as the policy 

evaluation complexity is negligible when it is compared to the worst-case exponential complexity 

of the associated dynamic programming improvement which gives this solving approach clear 

advantage over value iteration in solving large POMDPs especially when the initial belief state is 

known [103]. 

4.9 Gradient-based optimization 

Exact solving approach of POMDPs is famous for being time and computational power consuming 

in addition to the high intractability. This is mainly due to fact that optimal policies can be either 

very large or sometime infinite. The example illustrating this last issue is the number of numbers 

of controller nodes which grow twice exponentially for a given H which is also the case for α-

vectors number required to represent the value function which multiplied exponentially in value 

iteration. Therefore, the obvious solution is the approximation through the restriction in the set of 

policies with the aim of determining the best policy in the set [94].   

All POMDPs policies can be represented in form of policy graphs PG which is an efficient 

restriction to limit the set of infinite policies to be representable by finite PG or a limited size FSC 

which achieve a compromise or balance between the requirement of observable history and the 

ability to reduce the size and complexity of the policy space taking into consideration that exact 

policy iteration does not place any constraints on the policy graph structure but some algorithms 

exploit computational advantage of searching in restricted FSCs to improve performances.  

Research works [95-97] and [99] proposed the search for optimal memoryless policies while [88] 



 

 
 

and [100] worked on finding sequences of reactive policies with a direct search in an imported 

policies set using called finite policy graphs. In this research, the restricted policy space that we 

will be consider is representable by a limited size stochastic finite-state controller and use of a 

gradient-based policy search method. The major contribution of this gradient based POMDP policy 

search methods is the reformulation of finding optimal POMDP policies problem as a nonlinear 

numerical optimization problem for which the gradient of V [101]. 

4.10 Policy graph values: 

The value of a stochastic PG π, with V and R vectors with a of length |N|x|S| and γ <= 1, is now 

summarizing in form of matrix of a size |N|x|S| by |N|x|S| is as follow: 

 

 
the vector Vπ  is therefore optimised by picking the functions ψ and η which enable converting the 

problem into nonlinear optimisation [102].  

 

 



 

4.11 Initial beliefs 
Vπ contains the total discounted cumulative reward which depends on the state s and node n in which 

POMDP agent starts from called initial beliefs and annotated b0. In reality this is the best representation that 

agent have about the environment and is represented as follow: 

 

 With a total cumulative discounted reward: 

 

In POMDP, we often assume that agent starts from the first node and its prior knowledge about the 

world is formulated as: 

 

4.12 Reinforcement Learning Approaches:  

There are two RL approaches for agent functioning: model-based and model-free. In the model-based 

approach, the RL agent will use a predictive model of the environment to learn by attempting different 

actions in each state and choosing the best one. The model-based approach uses past experiences in the 

form of a sequence of instances <at, ot, rt> to learn a POMDP model that is likely to generate the 

sequence. Modern algorithms and computing capabilities allow for a tractable solution for POMDPs 

with reasonably sized state spaces. In model-based, the agent uses a predefined internal model, one 

that both predicts action outcomes and estimates the immediate reward associated with specific 

situations. Decisions are made not based on stored action values, but instead following a planning 

approach. This approach makes use of the internal model and therefore the suitability and efficiency 

of candidates will depend on their behavior in the specific context [88].  
 
 
 
 
 



 
Table 1: a comparative study of RL modelling, learning, and solving approaches [88] 

 

Over the past decade, many research works investigated possible roles for model-free RL in human 

experts’ decision-making. In the model-free approach, the modelling step is intentionally omitted to 

allow direct learning of the policies. Model-free RL assumes that learning occurs without access to any 

internal representation of the environment structure. Instead of building such an internal model, the RL 

agent will simply store estimates for the expected values of the actions available in each state and this 

will be shaped to become a history of direct interaction with the environment.  In our research and 

giving the PT context, we opted for the model-free approach and later for a more direct method of 

solving RL which is Policy Search which will be fully justified in the next chapter [104-105]. 

4.13 Model-based vs Model-free modelling approach  
In this section we describe different POMDP modelling approaches namely model-free and model-based 

which both will be initially considered four our proposed framework. We initially discuss here the two 

RL modelling approach and highlighting the pros and cons of each. Finally, we will sum up in 

selecting the model-free approach after excluding the model-based approach [106]. 



 

 
Figure 24:  different RL learning and modelling approaches with solving methods [108]. 

 
4.13.1 Model-free POMDP  

Model-free approach RL agent will use algorithm that will compute optimal policy without utilizing the 

POMDP environment transition, and reward functions. In practice, a model-free RL agent estimates a value 

function or the policy directly by interacting with the environment without requiring neither the transition 

function T nor the reward function R. Thus, a value function can be thought of as a function which evaluates 

a state (or an action taken in a state), for all states and from it a policy can then be derived [109]. 

 

In fully observable MDP the main assumption is that the RL agent might be unaware of the state transition 

and reward probabilities and try to navigate the solve the problem, the agent simply relies on some trial-

and-error experience for action selection [110]. This latter is problematic in POMDP where agent is not 

aware of any state space but only some aspects of the problem that structural mainly such as the actions it 

can execute and the expected rewards without real accuracy. Model-free POMDP [111] attempt to learn 

how acting without learning the major parameters of the model which make it a trivial approach to cope 

with an unknown state space observed through the use the observation space rather than relying on the 



 
completely unknown state space, thus the main assumption here is that observation could correspond to a 

state entry. This use of observations often generates two major issues in POMDP [112]. The first is when 

the agent is misled by varied observation output which are very different or irrelevant to the environment 

and the RL agent is required to make the difference between the relevant and irrelevant observations. The 

second problem with model-free POMDP is the size of the O space which might inferior to A which results 

in the RL agent suffering the well-known perceptual aliasing problem. This is worst when having numerous 

states correspond to the same precept can and thus the same optimal action causing the downsize of the S 

space. This results in the agent will be forced to perform different actions in each state despite the fact that 

s and s’ generate the same observation which will harm deeply the calculation of the optimal policy graph 

[113].  

 
Figure 25: model-based versus model-free RL [66]. 

4.13.2 Model based POMDP  

In model-based learning, the RL agent exploits a previously learned model to accomplish the task and 

therefore it has access to a model of the environment. In this context, a model-based algorithm is an 

algorithm that uses the transition function and the reward function in order to estimate the optimal policy. 

The agent might have access only to an approximation of the transition function and reward functions, 

which can be learned by the agent while it interacts with the environment, or it can be given to the agent. 

In general, in a model-based algorithm, the agent can potentially predict the dynamics of the environment 



 
(during or after the learning phase), because it has an estimate of the transition function (and reward 

function) [114]. However, note that the transition and reward functions that the agent uses in order to 

improve its estimate of the optimal policy might just be approximations of the "true" functions. Hence, the 

optimal policy might never be found (because of these approximations) [115-118]. The main advantage in 

model-based RL is that it allows the agent to plan by thinking ahead as it distills the results from planning 

ahead and translate it into learned policy. The main downside is that in medium and highly complex 

scenarios a true modelling of the environment is not usually available [119-121]. 

4.13.3 POMDP solving approach: value function vs policy search  

In this section we describe different POMDP solving approaches, we will then highlight those main 

characteristics of both policy search and value function [89]. The aim of the POMDP agent is to find 

(take) actions which fulfill its task in the best possible way and thus learn an optimal policy. In fact, an 

optimal policy does not map the state to action but instead it maps observation and beliefs to actions π(b). 

Contrary to MDPs, the policy π(b) is a function or set of probability distributions over S. As already 

discussed in this chapter, a policy π can be characterized by a value function Vπ: Δ(S)→R which is defined 

as the expected future discounted reward Vπ(b) the agent can gather by following π starting from belief b.  

Because the POMDP representation complexity in term of elaborating the environment especially in large 

problems where the real-world effect impacts the complexity. We describe two major approaches of 

reinforcement learning: the first which learn a value function over states of the world, and the second which 

search in the space of policies directly [121].  

There are many different approaches to solve a RL problem with two popular solving approach 

namely, value function and policy search [121]. The value function approach allows an RL agent 

evolving within the environment to select the sequences of actions that lead to maximizing the overall 

value which is often done on the long term and not only in the immediate future. On the other hand, 

policy-search approach looks directly in the space of policies for the best course of action. 

Constraining the policy space facilitates the search and may lead tractable (although approximate) 

POMDP solution algorithms [123-124]. Finite-state controllers (FSCs) are the policy representation 

of choice in such situation by providing a compromise between the requirement that action choices 

depend on certain aspects of observable history and the ability to easily control the complexity of 

policy space being searched [125]. 



 

 
Figure 26: RL different approaches inputs and outputs [126]. 

4.13.4 Policy-search approach 

The policy is the decision-making function which the agent adopts (or try to learn) to later follow. It 

specifies what action the agent should take in any of the situations it might encounter. In the RL policy-

search approach, the agent “ultimate” target is to dress the best policy (decision sequences) that maximize 

the received award and achieve the initial pre-set objectives such as minimising the solving consumed time 

and/or number of episodes, thus the other RL components will be used and manipulated to improve the 

policy [110].  

4.13.5 Value-function approach:  

The value function is used in the learning process to control it over a long time, it specifies what is good in 

the long run. As a simple example, the value of a state is the total amount of reward the agent can expect 

to accumulate over the future when starting from the current state. Unlike the reward scheme which 

determines immediate desirability, the function value deals with the long-term desirability. In analogy to 

the human way of acting and thinking, rewards are an immediate pleasure (if high reward) or pain (if low) 

whereas values correspond to the more refined far-sighted judgment of how pleased or displeased we are 

that our environment is in a particular state. Most of the research work on improving RL technique focus 

on improving approximate value functions. The value of an action is its overall utility; for example, an 



 
action may bring a high reward, but lead to low-value states, making it low-value [127-129]. 

4.13.6 Reward function approach 

In this RL approach, defining (finding or determining) the adequate reward function that maximizes the 

benefits received or produce the sought decision policies is the goal of the RL agent. It maps the state of 

the environment to a single number, a reward, indicating the intrinsic desirability of the state. The agent's 

objective is to maximise the total reward it receives in the long run. When adopting the policy search 

approach, the reward function is not learned directly as fixed rewarding mechanism will be used as input 

for the RL system. The transition probabilities also do not have to be learned [130].  The agent can directly 

learn the action values, or even directly the policy, with policy search approach method for instance. There 

are, however, techniques for which the reward and the transition probabilities must be either provided or 

learned [131]. 

4.14 Solving POMDP algorithms: 
4.14.1 Approximate solving:  

We present here the most popular approximate solving algorithms. PERSEUS is a point-based value 

iteration algorithm for POMDPs designed by [132] in which the value function update scheme is 

implemented with a randomized approximate backup operator that increases the value of all belief points 

in B and thus exploiting the value function characteristics. In every stage (value backup), PERSEUS 

improves the value of all points in the belief set by updating the value with a random gradient selected from 

the available subset of the points [133]. 

At stage n and giving the value function Vn, PERSEUS calculate the next value function Vn+1 that 

improves the value of all values in B resulting in value function Vn+1 that upper bounds Vn over B which 

removes the necessity of performing linear programming [134].  The RL agent will first randomly explore 

its environment and built B the set of reachable belief points which are then fixed during the entire algorithm 

execution phases. PERSEUS will then use the built, from the initial belief, the value function V0 in form of 

vector. Then, starting with V0, PERSEUS will keep performing backup stages until it reaches the 

convergence criterion as described in algorithm 1 below. 

 

 



 
Table 2: PERSEUS Randomized Point-based Value Iteration approximate solving Algorithm [123]. 

 

 

The most attractive feature in PERSEUS is its extensibility to solve large size POMDP enticements as it 

relies on the principle of ‘improve–only’ during its backup stage which involves a maximization over all 

actions in A. in small and medium size action space, PERSEUS can cache in advance the transition, 

observation, and reward models for all actions and thus achieve an optimised implementation of backups. 

In large and continuous action spaces where a full maximization over actions is infeasible, PERSEUS 

enable the use of max operator that performs the maximisation over a random subset of A [130]. This 

method enables PERSEUS to compute some sampled action which can generate temporary models that are 

cached for later use notably when the same action is reconsidered in next iterations. Finally, the key factor 

for picking PERSEUS algorithm is the efficiency in term of time and memory as picking a belief b which 

later backed up will the result into vector improvement for many belief points in B and not only the related 

value function of the picked belief and thus computing value functions with a smaller number of vectors 

[135]. 

4.14 .2  Exact solving  
4 .14.2.1  Incremental Pruning 

Incremental Pruning algorithm (detailed in algorithm 2) starts by generating |A||Vn||O| vectors of the entire 

horizon H over Vn and then proceeds to the pruning of dominated vectors.  

 

 

 



 
Table 3Basic Incremental Vector pruning algorithm [135]. 

 
Incremental Pruning methods [122] save hugely in terms of computation time as it exploits the following 

feature: 

 
Therefore, the number of constraints in the LPs used for pruning purposes will grow and leading to better 

performance. The basic IP algorithm exploits the specific context of the above equation when it computes 

Vn+1 as bellow: 

 

In general, computing exact solutions for POMDPs is an intractable problem [123] which increased 

the use of approximate solving algorithms [140]. Therefore, IP algorithm will determine the best 



 
action for the available state set in a very efficient manner by relying on comparison of the value 

function with the witness which led to superior performance and asymptotic complexity. 

4.14.2.2 Generalized Incremental Pruning 

We present here the most popular and efficient exact solving algorithms. Generalised Incremental 

Pruning (GIP) is an exact POMDP solving algorithm which computes optimal solutions for POMDPs 

following linear programming (LP) solving and pruning techniques.  In fact, exact solving of POMDP 

is challenging because of the high computational requirements for LP based algorithms. GIP is 

different from major exact solving algorithms which utilise subroutines functions to prune dominated 

vectors in value functions and therefore require a huge number of linear programs (LPs) to be solved 

and it represents a large part of the total running time [141-143].  

Table 4: implementation of incremental pruning combined with decomposed LP [137]. 

 

In GIP, pruning subroutines are decomposed using a Benders decomposition [111-114]. The resulting 

algorithm incrementally adds LP constraints and uses only a small fraction of the constraints. Our 



 
algorithm significantly improves the performance of existing pruning methods and the commonly 

used incremental pruning algorithm. The GIP variant of is the fastest optimal pruning based POMDP 

algorithm. 

 
Figure 27: Generalized policy iteration scheme with interaction between value and policy functions [96]. 

GIP employ enhanced filter function as the intermediate value vectors are passed through to remove 

the irregularity by performing dynamic programming updates in POMDPs [109]. In practice. 

Nonetheless this decomposition is not automatically applied but only when in context of complex 

pruning for POMDPs resulting in GIP algorithm that only require a limited number of constraints in 

the original LP to find an optimal LP solving of the POMDP problem. GIP is memory efficient 

compared with other IP variants and proved as the fastest exact algorithm for solving small and 

medium size POMDP problems, the decomposition approach is behind the performance enhancement 

[87].  



 
Table 5: Find Belief Std – computes the belief in which w improves U the most [138]. 

 
4.14.3 Challenges with POMDP 
In practice, the realistic extension of MDPs dramatically increases the complexity of POMDPs, 

making exact solutions virtually intractable. Dealing with uncertainty and partial observability in 

sequential decision problems is a very challenging for the RL intelligent agents. POMDPs are widely 

approved as successful representation for sequential decision making and planning problem under 

uncertainty and have proved successful in most of real-world applications such as robotics and people 

assistance [134].  

A significant number of research works focused on POMDPs and made many breakthroughs notably 

solving to optimality medium and size problem when enough processing power is provided. Although 

several efficient approximate methods for POMDPs exist such as PERSEUS [43-44], optimal 

solutions are more respected notably with recent advances in LP and the increasing computational 

power [135]. Furthermore, the advantage of exact (optimal) solutions is that they are independent of 

external parameters such as incremental pruning [137] which is the most popular method to determine 

optimal solving for POMDP basing on a subroutine that prune (eliminate) dominated vectors from 

value functions to enable subroutine solving of large number LPs. Nonetheless, checking whether a 

vector is dominated is often a costly operation which result into LP representing a major part of the 

total running time. Most research attempted to address the scalability of the LP subroutine by solving 

less LPs taking advantage of POMDP structure which allow the creation of LPs with fewer constraints 

and thus deriving much faster and efficient exact solving algorithms [99-100].  

Unfortunately, the generality of POMDPs entails high computational cost. The problem of finding 

optimal policies for finite-horizon POMDPs has been proven to be PSPACE-complete [117]. The 

intractability of exact solving algorithms and notably GIP LP-Solve algorithm and current solution 



 
algorithms, especially those that use dynamic programming to construct (approximately) optimal 

value functions [139], the application of POMDPs remains limited to very small problems. In addition, 

to act optimally the RL agent might need to consider all the previous history of observations and 

actions, rather than just the current state it is in [123]. Finite-state controllers (FSCs) are the policy 

representation of choice in such work, providing a compromise between the requirement that action 

choices depend on certain aspects of observable history and the ability to easily control the complexity 

of policy space being searched. 

While optimal FSCs can be constructed if no restrictions are placed on their structure [47], it is more 

usual to impose some structure that one hopes admits a good parameterization, and search through 

that restricted space. One way is to consider the problem of finding the best FSC of a given size for a 

completely specified POMDP. Even with the FSC size restriction constraint, the problem remains NP- 

hard [135-139]; therefore, gradient ascent (GA) has proven to be especially attractive for solving this 

type of problems because of its computational properties [46-49]. Unfortunately, gradient-based 

approaches can converge to arbitrarily bad local optimal. 

 

 
 
 
 
  



 

Chapter 5: Proposed Model of Network Penetration Testing as 

RL problem  

In this chapter we will detail the process of defining the RL model for network PT which enable IAPTF to 

move from IAPTF-Prep data and previous tests data directly inputted towards a POMDPs problem. This 

process is done several times for each testing as the output POMDP will change in line with testing data 

updates as result of PT progression. As we already discussed in Chapter 2 and Chapter 4, we opted for a 

model-based approach because of its relevance to our problem context notably the fact that model-based 

methods use the knowledge of the probabilistic environment as a guide and the RL agent plans and 

navigates the environment aiming to learn the best actions for each state which reflect the PT practice. We 

present here the different steps undertaken to progress from PT domain data and information to formulate 

it as a RL problem represented in the form of POMDP environments. We present an extensive explanation 

on actions, states, and observations’ definition using the motivational network we presented in the previous 

section as illustrative example. In addition, we will allocate a section to explain the rewarding calculation 

processes developed for this modelling purpose. Finally, we will present a novel hierarchical RL model 

which was introduced late in this research as result of the poor performances of solving large POMDP and 

difficulties in extracting expertise to enable future reuse [23-24].  

5.1 Explanatory network example 

We introduce here one of the 53 created different size networks which includes 50 machines that we will 

use as an explanatory example to introduce our proposed RL model of network PT practice. This network 

(figure 28) is a typical small and medium enterprise (SME) or regional corporate network with DMZ 

including WEB, DNS and GFI servers, internal storage including mail and data servers and other subnets 

notably sensitive internal storage, production, Bring Your Own Device (BYOD), Microsoft HypeV, and 

VMWare ESX server along with employees’ workspaces. We opted for such rich and complex network to 

provide detailed explanation of the proposed RL model and POMDP representation of PT practice within 

IAPTF. In total, this network includes 46 physical machines and 4 virtual machines consisting of 

computers, servers, networking devices such as routers and switches in addition to security devices that 

run an Operating System such as firewalls and IDPSs. 



 

 
Figure 28: Medium size corporate LAN composed of 50 machines. 

5.2 From PT data to POMDP environments 

We describe here the full process of elaborating an RL environment for a sample PT starting from a given 

explanatory medium LAN example. The overall extraction and elaboration process is explained is the 

results of our domain understanding and PT activities, tasks and sub-tasks details grasping and the 

proposed model and consequently its POMDP formulation mirror the entire PT practice as explained in 

the functional diagram illustrated in Figure 29 bellow.  



 

 
Figure 29: IAPTF reinforcement learning and memory management diagram. 

We also highlight the dynamic nature of the formulated POMDP and the associated frequent changes as 

the PT progress and information used in the elaboration are updated or upgraded. The RL POMDP 

environment is made from: 

➢ States Space 

➢ Actions Space 

➢ Initial Belief  

➢ Observation Space  

➢ Transitions Probabilities 

➢ Observations Probabilities 

➢ Rewards 

In addition, each POMDP file will include information about the value of the discount rate (factor) which 

is a real value between 0 and 1. At early stage of the model elaboration we attempted to determine the best 

discount rate value which guarantees the balance between efficiency and effectiveness or the RL solving 

algorithm. We thus tested five possible discount rates “0.99”,  “0.95” “0.9” and “0.7” to finally settle on 

the discount rate of “0.95”. Finally, the POMDP files header also includes detail about the adopted solving 

approach, and we opted for reward as values.  



 
5.2.1 Initial Belief 

Previous test data is directly used to artificially boost the POMDP problem solving when the pre-

processing output indicate a certain degree of similarity with at least one previous test. This operation is 

performed by a script part of the IAPTF-Prep module which compares current IAPTF-PrepOut.txt file with 

stored text files stored in IAPTF-Memory. This comparison aims to identify similarity in machine 

configuration such as OS versions, service pack/ version, open ports and running services. During IAPTF 

early lifecycle, this operation is optional and can be adapted by the human CEH who will rely on their 

expertise to only include the adequate data and discard the rest of the data. It is important to highlight that 

the output of the past testing either successful, failure or incomplete is directly fed to POMOP Initial Belief 

after being adapted to the new environment along with current information gathering and discovery data. 

In case of retesting process, IAPTF-Memory will directly import the data from the last testing output [24]. 

As the aim is to replace human expert in PT, the framework memory was built around the idea of favoring 

automation over the human expert which is left with the task of dealing with failure into performing some 

PT tasks or successfully carrying out tests. Similar to CEH operative mode, IAPTF includes an internal 

evaluation logging procedure to recognize that what has been done could be useful in another context or 

with minor amendments when required by CEH. Also, CEH will initially, provide feedback on the failed 

and incomplete testing to select and store the highly prominent ones for future use even if they ultimately 

failed. In terms of data, IAPTF will be mainly dealing with the policies stored into the PG file which 

constitutes the outcome of the POMDP problem solver [123]. Below is an example of POMDP initial 

belief for an environment of 100 states and where the only known information refereed by 1.0 value is the 

first state which is Internet. This reflects a Blackbox PT practice when the tester has no prior knowledge 

about the assessed network.   

 
Figure 30: Initial Belief state when nothing is known for the RL agent, and the starting point is Internet with a 

value of 1.0 

5.2.2 State space  

The state space S is defined as the collection of all known states for each machine, networking, or 



 
security components constituting the network including virtual appliances and cloud backup servers. 

In other words, a machine is any appliance running an OS and using services and applications. S 

contains all relevant information, from the PT expert view, about the assessed network. It will include 

information about any software or hardware machine including virtual and networking equipment that runs 

an OS. The information is OS parameters, port, services and applications, OS patches and updates. In 

addition, S contains relevant security and connectivity information. This information is represented in 

POMDP language using a special notation that aims to minimize the size of the file but remain succinct. 

In practice, most of the State space is elaborated at an early stage mimicking modern PT techniques relying 

on strong discovery and starting knowledge to feed CEHs and automated system before launching the 

initial information gathered phases. Nonetheless, some information will remain missing or not accurate 

enough and thus represented in a probabilistic way after being enhanced by information coming from the 

pre-processed output to avoid redundant or useless representations [23]. 

Any machine or connecting device within the network will be assigned a unique number “i” and will be 

represented as either Mi or Ri and the remaining associated information is represented in, but not limited 

to, the following way Mi-OS1-Port80-ServiceXXX or Ri-OS2-Port443-ServiceYYY. The information 

initially represented are often updated as the discovering and scanning tasks progress to confirm previous 

probabilistic information or to add a new one. Furthermore, network routers are considered to be more 

than just transmission equipment, in fact, they can run operating systems and embed one or more security 

isolation and protection mechanisms notably FWs (firewalls), AVs (Anti-Viruses), IDPSs (intrusion 

detection/prevention systems), VLANs (virtual LANs) and others. Following this logic, network and 

firewalls are either considered as machines (running OS and thus having vulnerabilities) or simply as 

security isolation delimiter for clustering purposes. The figure 31summarizes the state space representation 

for two M7 computer and R3 router. We included the generic start state “internet” from which the hacker 

and ethical hacker start the PT along with the last state “Terminal” which, when reached, the PT is 

completed. 



 

 
Figure 31: POMDP State space representation of two machines; computer M7 and router R3. 

In addition to the machine and devices information, state-space will include information about the 

networking and security configuration of the assessed network such as connectivity, security isolation 

(sub-net, virtual LAN) and defense restrictions. The purpose of such representation is to enable future 

hierarchical POMDP representation which will be discussed later in this chapter. The following example 

summarises the information captured about two machines Mi and Mj as Mi-Mj-TCP-SSH-0”. In a later 

stage, as we introduced the security clustering method to divide the network into a set of security cluster, 

we added to the current POMDP representation the security cluster number j (Cj) to which the machine or 

networking device belong. Furthermore, the representation accounts for the Head-of-Cluster by adding the 



 
HoCj annotation and the relevant security and networking configurations after the Machine ID as 

illustrated in figure 32 below: 

 
Figure 32: POMDP State space representation including security clustering and Head-of-Cluster information. 

Finally, the networking information are not static and thus we opted to represent it within the POMDP 

observations to reflect the real-world situation [23-24]. 

5.2.3 Action space  

The action space A is the set of available actions that were deducted from our study of activities, 

tasks and sub-tasks performed by the pentesters and hackers. We elaborated the network POMDP 

model action space in a reflection of the sub-tasks performed by pentesters but in a structured way. We 

accounted for all PT tasks and sub-tasks following a concise annotation. As with any RL problem, the 

number of actions is known, static and limited and PT does not fall out of this logic. Initially, we opted for 

more generic actions that fits all type of activity without differentiate between doing the task for the first 

time or repeating it. We therefore proposed an Action space made from 11 actions namely MachineStatus, 

OSDetect PortProb, SVCDetect, VulnAssess, Exploit, Pivot ShellPersist, PrivEscalation, in addition to 

some generic action that will be used for control purpose by RL agent namely Terminate and Give_Up. 

Figure  33 illustrates the 11 action and brief description of each action.  



 

 
Figure 33: POMDP Actions space made from 11 specific actions and 2 generic actions 

We then extended the action space to include 19 in total to reflect the real-world when different Probing 

levels which are different in term of intensity and reflection the Nmap software predefined probing profile 

respectively ProtProbv1 for NULL probing, ProtProbv2 for regular probing and ProtProbv3 for 

comprehensive and slow probing. We also added the retesting actions such as OSCheck for 

rechecking operating system and versions, PingSweep and TraceRoute for advanced discovery, 

SVCCheck for rechecking service detection and Re-Exploit for re-attempting the exploit with or without 

changing parameters as summarized in figure 34 . 

 
Figure 34:  POMDP extended Actions space made from 17 specific actions and 2 generic actions 

The number of actions that the expert can perform is huge and cannot be totally represented within the RL 

action space which led us to introduce these limited contextual actions. Furthermore, as in PT domain 

successful or failed action might require further or repeating actions, we defined some additional actions 

to differentiate between the original action and the other action. In practice, the purpose of such 



 
representation is to deal with the special and complex scenarios notably: 

➢ failed action to fully (root) control a machine that leads to further action attempting user session 

or escalates privileges or switching to other attack paths. 

➢ dealing with action relying on uncertain information, sub-tasks that fail because of the assumption 

made and require further actions when additional information becomes available and might be 

successful. 

➢ actions prevented or stopped by security defense (FWs or IDPSs) which may be re-attempted under 

different circumstances. 

5.2.4 Observation space 

The observations space O is the set of available observations we deducted from the non-confirmed 

states. In a decision process, observations provide information to the decision maker for deciding the 

future course of action [88]. We propose to represent a comprehensive observation space which 

include all possible observations, this  will enable our RL agent to establish and devise rich policies 

with a different course of action for each possible observation which ultimately will tend to select the 

same course of action for many different observations that share similar features. In our model we 

represent different observations for each machine such as the status Mi-Off when turned off and Mi-

On when machine ais running. In addition, we also add four generic observations which reflect 

observation used by the RL agent to tackle some situations and ends the test respectively:  Test-

Achieved, Test-Partially, Test-Stopped and Test-Overtime. Finally, the networking and reachability 

data is modelled in form of pivoting observation. Detailed observation space representation is 

provided in figure 35.  



 

 
Figure 35:  POMDP extended Actions space made from 17 specific actions and 2 generic actions 

The observations space reflects the probabilistic nature of PT practice where states are not always 

deterministic notably as results of action (scanning, fingerprinting, exploiting) which made us adopt the 

model-based approach and allocating the adequate probabilities for Transitions and Observations in order 

to mirror the real-world PT practice [130-133]. 

5.2.5 Transitions and Observations Probabilities  

In this section, we describe and illustrate the transition and observation probabilities calculation based on 

real CVE and NVD data and mathematical formulation. Initially, all transitions and observations 

probabilities were uniformly sampled in the form T: * : * : * X and  O: * : * : * Y with probabilities X= 

1/total number of states and Y= 1/ total number of observations. For a realistic Transitions and 

Observations probabilities calculation we considered multiple approaches. We settled on the most 

appropriate calculation method based on Nmap NSE and Nessus output to determine Transition and 

Observation probabilities for each action. We will be relying on vulnerability assessment output (NMAP 



 
and NESSUS) and other sources to define vulnerabilities discovery and information gathering and 

Cyber Threat Intelligence. We rely om two major online databases VulDB and NESSUS Auditing 

DB. The starting point in transition and observation probabilities calculation is the IAPTF-Prep 

output covering information gathering (scanning and fingerprinting) and discovery which are mainly 

resulting from Nmap scanning results as illustrated in figure 36. 

 
Figure 36: Nmap NSE OS detection and fingerprinting sample output 

 

In addition, we correlate the Nmap data with NESSUS vulnerability assessment output as illustrated 

in figure37 below. As highlighted, the VA output confirms the OS detection and advance that the 

assessed machine is running Windows XP Service Pack 3.  

https://vuldb.com/?kb.cti


 

 
Figure 37: NESSUS vulnerability assessment output and OS detection validation 

From all data available we create the following OS fingerprinting table which combines and collates 

all data. For efficiency reason, we artificially edit the probabilities to only leave a maximum of three 

possible OS out of six which reflect highest three probabilities and we discard the remaining ones as 

illustrated in the table 2. We provide two examples summarising IAPTF OS detection and 

fingerprinting in two major OS namely Microsoft Windows and Apple Mac OS. For the windows 

machine, only Windows XP SP3, Windows Vista SP1 and SP2 options are considered with 

probability respectively 0.75, 0.15 and 0.1.in Mac OS machine, only three possible OS out of eleven 

are maintained as summarised in table 2. note that the choice of maximal three options is purely 

functional and aims to reduce the size of the POMDP on one hand and enable a better solving 

convergence on the other hand. In practice, it is highly unlikely that a machine OS detection with 

probability of 0.1 is an accurate detection.  



 
Table 6: OS detection output with transition and observation probabilities calculation example in Windows. 

 

The representation of machine OS and version detection is illustrated in figure 38: 

 
Figure 38: Windows Machine OS detection Transitions and Observations probabilities POMDP 

representation 

Another example of transition OS detection probabilities in Mac OS is illustrated in table 3.  
Table 7: OS detection output with transition and observation probabilities calculation example in Mac OS 

machine. 

 



 
In this case the number of probable OS version is eleven and we narrow it down to three by discarding 

the least probable OS configuration. Nonetheless, the observation probability for undetected OS 

version will increase considerably and will represent the sum of the omitted 8   probabilities to reach 

0.21 and so 21%. This is the perfect illustration of uncertainty in PT practice and which we reflect 

perfectly in our POMDP environments. Figure 39 illustrates the POMDP representation for machine 

number 23 in the explanatory network. 

 
Figure 39: MacOS Machine OS detection Transitions and Observations probabilities POMDP representation 

The next step in this part is probabilities allocation for port probing and service detection. This step 

is less problematic as port have only three statuses: Open, Closed and Filtered. Often, the simplest 

scan can determine whether the port is closed or not. On few occasions results are unclear as some 

ports are simply filtered and cannot tell if they are open as illustrated in Figure 40 Transitions. 



 

 
Figure 40: A portion of POMDP Transitions probabilities representation . 

Finally, we provide here the Observation probabilities allocation for the rest of actions on which we 

highlight the fact that we started by allocated a uniformed probabilities for all state-observation which the 

total sum represents 0.1 in order to allow the RL agent further exploration. In the figure 41, this uniform 

probability is set to 0.000574713 which reflects the portion of each of the 174 observations in this example.  



 

 
Figure 41: A portion of POMDP Observations probabilities representation. 

5.2.6 IAPTF Rewarding Scheme: 

This section details the reward calculation and allocation approach adopted in the IAPTF generated 

POMDP environments. We present here two approaches: reward calculation and reward allocation. The 

reward calculation applies for exploitation and post-exploitation (privileges escalation and pivoting) 



 
activities and will rely on a well-defined mathematical formulation using IAPTF-Prep and National 

Vulnerability Database (NVD) CVSS data for each exploit (CVE).  After considering multiple approaches, 

we settled on the most appropriate mathematical calculation inspired from the Common Vulnerability 

Scoring System (CVSS) established by the National Vulnerability Database which we esteem adequate 

in the context of PT. Additionally, we considered to use real-world data built from IAPTF past tests and 

enhanced by the human expert initially meant to passively supervise the IAPTF.  

5.3 Reward calculation  
5.3.1 Using CVSS probabilities to calculate the Rewards:  

The proposed method recognizes that information gathering using network remote scanning and discovery 

tools and the system often produce an uncertain result. Thus, in this research, as we focus on black box 

penetration testing, we will assume that information gathering phase undertaken by the expert using the 

PT system facilities can only provide probabilistic information about the operating system and services 

running on the target machine.  The reward is annotated as R : action a : state s : state s’ : observation o 

reward-value. During this research, the probabilistic nature of the exploits and attacks (RL actions) is a 

crucial factor to be considered. As we aim to mirror to the best the real-world environment which will 

allow us to simulate real scenarios. Thus, we are going to use the well-established and standard sources 

for as an input for generating the action probabilities (actions, observations, transitions). Indeed, Common 

Vulnerability and Exploits (CVE, NVD …etc.) constitute a reliable online vulnerability/ exploit catalog 

and database of known proven vulnerabilities associated with different type of systems/ software which 

were, being or can be exploited to compromise these targets. The use of such sources is motivated by the 

rich content, easy accessibility, regular update and the available scoring function and mechanism such as 

CVSS.  

The National Vulnerability Database (NVD) provides CVSS scores for almost all known vulnerabilities. 

As a starting point for this research, only individual vulnerabilities will be considered in the method of 

computing the Cost using the DVSS and a dynamic cost-centric framework. The Common Vulnerability 

Scoring System (CVSS) provides an open framework for communicating the characteristics and impacts 

of IT vulnerabilities. Thus, CVSS is the most suitable and reliable measurement approach for this 

research’s vulnerability impact scores attribution (or success probabilities which will be derived from the 



 
CVSS overall scores). Furthermore, we opted for Varying Rewards as we noted that the results of a generic 

rewarding scheme are very negative and that they are diverging we undertook few steps so we can improve 

through the introduction of special rewards for some actions. This is part of the process in RL that gives 

us control as to what the algorithm optimizes for. We want to discourage the algorithm from terminating 

before reaching the pivoting and privileges escalation and thus we introduced a small positive reward for 

each move action. The calculated scores of intrinsic, time-based, and ecological metrics by combining 

related sub-scores and modeling the problem’s parameters into a mathematical framework to develop a 

unique severity cost. The third version of CVSS equations is done following the CVSS v3.0 equations 

[139]. 

5.3.2 Exploitation reward calculation: 

To calculate the reward for each of the action/state combination we relied on a realistic approach in cyber 

risk assessment and used data from NVD namely CVSS version 3 calculator. The aim was to determine 

the reward value that the IAPTF RL agent should receive for each action in terms of exploitation, pivoting 

post-exploitation as being used NVD and CVE qualitative metrics translated into exploitability.  In fact, 

CVSS scores are computed in sequence such that the Base Score is used to calculate the Temporal Score 

and the Temporal Score is used to calculate the Environmental Score. Impact is measured from the 

concatenation of Confidentiality Impact (C), Integrity Impact (I) and Availability Impact (A). The 

Exploitability measured from the concatenation Attack Vector (AV), Attack Complexity (AC), Privileges 

Required (PR), User Interaction (UI), Scope (S), and the overall impact value previously calculated. 

Finally, the Temporal Score Metrics is the concatenation of Exploit Code Maturity (E), Remediation Level 

(RL) and Report Confidence (RC) and the overall exploitability value previously calculated.  The Base 

Score is a function of the Impact and Exploitability sub score equations defined as follow:  

 

And the Exploitability sub score is defined as:  



 

 

 

The environmental score is defined as: 

 

Finally, the Modified Exploitability sub score is defined as:  

 

Figure 42 summarises different qualitative entries used to calculate each metrics.   



 

 
Figure 42: qualitative metric entry to calculate Base, Temporal and Environmental scores. 

The overall reward is the concatenation of Impact Metrics, Exploitability Metrics and Temporal Score 

Metrics calculated from the qualitative value and then used during the overall reward calculation. Below 

are two explanatory real-world examples to illustrate reward calculation for two CVEs IAPTF: 

Explanatory Example 1:  CVE-2011-0660 is windows Server Block Message (SMB) related 

vulnerability where a client could allow remote code execution on Microsoft Windows Server 2008 SP2 

and R2 SP1, Windows 7 SP1, Windows 8.1, Windows Server 2012 Gold and R2, Windows RT 8.1, 

Windows 10 Gold, 1511, 1607, and 1703, and Windows Server 2016, allows an information disclosure 

vulnerability in the way that it handles certain requests. The security update addresses the vulnerabilities 



 
by correcting the manner in which the CIFS Browser handles specially crafted Browser messages and 

correcting the manner in which the SMB client validates specially crafted SMB response. To exploit the 

vulnerability, an attacker would have to be able to authenticate and send SMB messages to an impacted 

Windows SMB Server. Figure 43 summarises the calculated CVSS score for this CVE. 

 
Figure 43: Impact, Exploitability and Overall CVSSv3 score for CVE-2011-0660. 

Explanatory Example 2: CVE-2016-9209 is a vulnerability in TCP processing we encounter often in 

CISCO FirePOWER system software that could allow an unauthenticated, remote attacker to download 

files that would normally be blocked. There are many Cisco products which are vulnerable such as 

Adaptive Security Appliance (ASA) 5500-X Series with FirePOWER Services, Advanced Malware 

Protection (AMP) for Networks. Overall CVSS score for CVE-2016-9209 is illustrated in figure 44. 

 
Figure 44: Impact, Exploitability and Overall CVSSv3 score for CVE-2016-9209. 

Finally, after obtaining the overall CVSS score, the reward for the Exploit, PrivEscalation and Pivot is 

respectively 5, 10 and 15 added to the overall CVSS score. For instance, the execution of Exploit CVE-

2011-0660 against the machine M22 running Windows 7 SP1 and having port 445 open will receive a 

positive reward of 13 for exploitation and 18 for admin privilege escalation and 23 for installing a rootkit 

and perform pivoting as illustrated in figure 45,46 and 47.  

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9209
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2016-9209


 

 
Figure 45: POMDP reward representation in POMDP for Exploitation actions. 

 

 
Figure 46: POMDP reward representation in POMDP for Privilege Escalation actions. 

 

 

Figure 47: POMDP reward representation in POMDP for Pivoting actions. 

5.3.3 Reward allocation  

In the second part of IAPTF rewarding scheme rely on the allocation of reward values following a human 

CEH expert rewarding grid and the use of some default rewarding values are used for generic situations. 

Rewarding the performed actions will be predefined by a human CEH who will have to decide the adequate 

reward for each action performed depending on his/her overall insight he has on the practice, experience 

and testing achievements. Afterward, IAPTF will relieve the human expert from the rewarding task and 

only request a human decision on the global PG (attack policies). IAPTS reward function will be utilised, 

and thus the reward for the performed actions will be calculated following well-established criteria such 

as: reaching a terminal state; achieving a final (global) target or local goal (controlling intermediates 



 
machines); or failing to reach any goal. The criteria for the choice of rewards will mainly be the estimated 

value of the achievement, the time consumed; and the degree of generated traffic and thus associated risk 

of detection. We detail below the manual reward allocation rules: 

➢ Estimated machine value: The objective of a PT is to successfully fingerprint or discovery 

vulnerabilities in specific machine in a network. Here we thus propose to assign a fixed reward for 

each successful exploit on an uncontrolled or partially compromised machine which will vary from 

1 to 10 depending on the position (DMZ, Workspace, Sensitive), and future prospect beyond this 

achievement. 

➢ Time Consumed: Each scanning, discovery or probing action requires an execution time and may 

be achieved within or beyond the allocated time. Thus, the more time is consumed the less is the 

reward allocated. We define a discount function which multiplies the maximum forward into the 

percentage of time allocated to complete the action (MachineStatus, Prob, OSDetect, SVCDetect, 

and VulAssess), so that the expected duration of the PT tasks may be minimised by assigning each 

transition, an action that goes overtime will results in negative reward. 

➢ Risk of Detection: this is explicitly represented by assigning a discounted reward for aggressive 

actions causing large traffic and thus having high risk of detection and prevention by the network 

IDSs.  

 



 

 
Figure 48: POMDP reward allocation for vulnerability assessment and discovery action. 

 

Furthermore, we allocate the following reward for these special cases reward allocation. For Give Up 

action will receive a positive reward (10) if the RL already achieved at least one of the predefined targets 

(either as admin/root or lower privileges). Nonetheless, if the RL did not yet achieve any target Give Up 

action receive a very bad reward (-100). Action leading to exceed the maximal allowed time (Run 

Overtime) will receive simply a null reward.   Finally, the Terminate action is a twofold problem from 

rewards allocation point of view. The RL agent that reaches this state can be either considered as a good 

or bad outcome depending on the context and thus rewarding (positive value) or punishing (negative 

reward) is allocated basing on previous states and history H of the agent but not ignoring the previous 

achievements prior reaching such state. Thus, a double weight of measure will be adopted and the allocated 

Negative or Positive values. When the previous achieved results were so far interesting (potentially valid 

attack path) and only the last action to the terminal state the reward for this action will be highly positive 

(+100). In some situation a Null (zero) reward is allocated despite being relatively bad situation which will 

allow the RL agent to expand further for a couple of state before facing a negative reward forcing the 

termination. Nonetheless, the action leading to a terminal state from a poor or null previous state should 

imperatively be severely punished by allocating a negative value (such –100) which will force the 

termination of the sub-test. It is worth to highlight that we adopted a progressive rewarding approach thus 

the closer to the target/aim the higher is reward value as shown in figure 49.  

 

Figure 49: POMDP reward allocation for termination actions. 

 



 
5.4 Hierarchical POMDP for medium and large networks 

In this section, we detail the methodology adopted to address our research problem which is 

addressing the scaling-up issue in solving PT RL problem (large and complex POMDP environment) 

in context of large computer networks. Initially, we will re-introduce the proposed POMDP model 

which will be serving as a starting point to the introduction of the new hierarchical RL model for 

representing large network PT. To achieve this goal we had to consider two options: the PT phases 

separation and security cluster separation and the later was undoubtedly the most adequate in term of 

efficiency and relevance. 

In this research, our objective turned into finding the perfect way in dealing with medium and large 

PT associate POMDP environments in terms of consumed solving time and memory. This scalability 

issue became more impactful with larger environment as discussed in the RL chapter and thus the 

urgent need for a hierarchical representation of large problem through dividing POMDP environment 

which are often the results of large LANs and MANs networks, we investigated different options of 

enhancing the efficiency of IAPTF especially in solving medium and large size POMDP which are 

the logic result of representing PT in medium and large LANs and MANs. The obvious approach to 

address scalability issue in POMDP solving is by solving smaller environments which is 

consequently dividing large environments into many smaller ones reflected by either splitting large 

network into a number of sub-networks or by considering each phase activities and tasks separately. 

We detail here the two approaches considered and implemented initially within IAPTF, then we will 

justify the choice of the clustering approach to achieve an efficient hierarchical RL representation of 

PT.  

5.4.1 Option 1: task-based approach  

PT is a task-oriented practice with a well-established sequential order and some repetition of some 

tasks depending on the context. A natural way of tackling the scaling problem in RL solving is by 

dividing large POMDP environments following task or group of tasks approaches. In fact, the manual 

and automated PT multi-step procedure with the general principle behind is to evaluate and test the 

security of any computing resource. The approach considered into breaking down the complex PT 

practice into phases each grouping several costumed tasks. The idea came from the vulnerability 



 
assessment and security auditing industry where each activity is performed separately but in a 

sequential order and where the output of the first phase is used as input for the second one. By 

considering each of the PT phases separately, such as Vulnerability Assessment, Exploitation, Post-

exploitation, and Validation, we can elaborate a POMDP problem with the data relevant for each 

phase and will be resulting into smaller POMDP environments which are easier and faster to process 

and solve and therefore enhancing IPATF performances. As described in Chapter 2, the PT 

procedures are better tackled when they are grouped into phases which are a set of tasks and sub-

tasks (figure 50). Below are the main phases, activities, tasks, and sub-tasks are being considered in 

our aim of representing the PT into a hierarchical RL and thus dividing it into many sub POMDP 

environments. 

 
Figure 50: Standard PT practice cyclic activities diagram [27]. 

The first phase in PT is to perform vulnerability assessment (VA) of the target network which is a set 

of activities such as network discovery, port scanning & probing, vulnerability analysis and finally 

vulnerability identification and validation. Each of these activities is multi-task such as scanning and 

probing which is a set of tasks varying from hosts and servers’ discovery, port scanning and finally 



 
OS fingerprinting. For each task, many sub-tasks are implicitly performed taking the example of host 

discovery which is done through launching first a ping sweep then following up by doing traceroute 

discovery. Note that the PT versatility impose that tester/system to identify additional computing 

resources that have the potential to affect one or more mission critical systems which is often based 

upon the assessed asset functioning. The associated network POMDP environments will contain 

exclusively the vulnerability assessment and discovery information and aim to solve it as separate 

RL problem with the aim of serving as input for the next phase POMDP. 

The second phase is Exploitation with all the required prioritization of the launched exploits, payloads 

with the available resources in term of exploitability, running time and importance level. This is done 

through multiple activity such as validating the relevance of the exploit based on several factors, 

ordering and sorting the planed exploits following a logical diagram such as data sensitivity, 

frequency of usage, type of application and cost and finally launching the exploits and assessing the 

outcome. Each of these activities is itself a set of tasks and sub-tasks such as exploitation, which is a 

set of shortlisting the relevant exploits, establishing an order, customize the exploit variables to match 

the target IP, architecture, kernel, and variant. Again, all associated network POMDP environments 

will contain exclusively exploitation and attacking information and aim to solve it as separate RL 

problem with the aim of serving as input for the next phase POMDP. 

The third phase in our view of PT in IAPTF is the post-exploitation which group all activities done 

by the tester to follow-up the exploitation phase. In practice this phase is mainly constituted of 

privilege escalation and pivoting activities which are multi-tasks and highly versatile. Tasks are 

typically related to establish guest control or executing the relevant buffer-over-flow to force 

privilege escalation. Then, this later outcome is used ti achieve full control over the asset and to 

launch new attach against adjacent computers by repeating the phase 1 and 2 activities which should 

produce a different output. In this phase, all associated network POMDP environments will contain 

post-exploitation and attacking information in addition to a small fraction of vulnerability assessment 

and exploitation phases as there will be cyclic activities requiring the inclusion of such information. 

Again, this POMDP will be solved separately with a major difference related to the number of 

POMDO problems to reflect the version for each of the pivoting point representation and this will be 



 
processed later to serve ss input for the next phase POMDP. The fourth phase is the validation where 

all activities related to checking the status of the targeted machines and results in term of success and 

failure are grouped together and examined. In addition, the different adopted attack paths are 

extracted and reconstructed to produce a clear attacking scenario checklist. This is highly automated 

phase and human interaction will be simply validation or changing the stored data. 

Finally, the fifth phase is the reporting and recommendation which is fully automated and does not 

require any further RL involvement. In this phase, activities such as summarising the output pf tests 

and attacks launched and effects along with the recommendations are achieved using Expert System 

database where such information are stored and in form of pre-defined recommendations. In fact, the 

CLIPS expert system embedded with IAPTF will base on the determined threats and impact levels 

notably crucial, critical, serious, and minor to address the security weaknesses and how they should 

be dealt with, depending on the threat, it is eliminated by applying various security measures, such 

software patching, reconfigurations, managing access control permissions, network monitoring and 

encryption. This phase also will output a generic testing report (document) which is a simple format 

that offer guide on the minimization of consequences if an attack occurs in future. 

 
Figure 51: Task based hierarchical modelling of network PT practice. 

 
5.4.2 Option 2: Security Cluster approach  

The second and most plausible option is the decomposition of the network itself and maintain the 



 
regular PT multi-phases approach in proceeding. In fact, this approach lies on well-established 

practice in network security maintenance and development where the large networks are initially 

divided into smaller sub-networks following a given rule. The rules are often related to the 

functioning, configuration, or location. While such approaches is commonly adopted, it lacks depth 

from a security point of view as it reflects more the administrator and technician view of the network. 

We propose a novel approach of dividing network in security cluster which we adopt the security 

separation and isolation of the cluster (grouping several computers) having the same security 

protection level and online exposure. This approach mimics the hacker behavior as they see the 

network form security point of view and class section based on their security level. 

 
Figure 52: large corporate LAN architecture with security isolation illustration [45]. 

Performing PT different tasks requires from the PT expert to meet some basic requirements. One of 

the most important requirements in PT is to clearly identify and understand the assessed network 

security mechanism and most importantly the firewalls functioning and the resulting isolation. This 



 
knowledge is totally extracted from the vulnerability assessment and reconnaissance tasks which is 

a combination of topology and network defense. This will result in identifying the relevant attack 

paths based on the knowledge of existing connections between machines and/or sub-networks and 

firewall filtering. This is a crucial phase as any cyber attacker will, after performing the initial 

reconnaissance, try to sketch a logical security map of the target network and assess the ability to 

reach the targeted machine. Often, tester can initially reach only few machines from his external 

position (high-value targeted machines cannot initially be reached) and the overwhelming majority 

of assessed network machines are unreachable directly form the Internet. Thus, a progressive 

approach is unavoidable, the tester will attempt to gain partial or full control of the reachable 

machines and then use these controlled machines as a launching point for the future attacks as it is 

likely that they share a sub-network with one of them: and those which are unreachable from any 

controlled computer. 

 
Figure 53: Security cluster based hierarchical modelling of network PT practice. 

The network clustering is a crucial phase for our research as this will allow an easy and simple RL 

modelling of large network PT environment which mirror the real-world hacking operative mode. In 

fact, it is hard to deal with each network connectivity separately and this will generate larger 

environment problem and increase solving complexity notably when representing the full LAN 



 
topology. The network clustering is therefore our proposed method to incorporate the information 

about the network connectivity within the RL model along with maintaining the solvability of the 

problem in an adequate amount of time. The full technical details about how the security clustering 

is done will be detailed in the next chapter.  

5.4.3 IPATF adequate Hierarchical RL approach 

In our quest for better performances in IAPTF, we identified two main approaches for automatically 

decompose large POMDP environments into smaller POMDPs. Secondly, we are concerned with the 

computation of optimal policies, using hierarchically decomposed POMDPs. Most of the work to 

date has targeted this second problem.  In practice, this first hierarchical approach which relies on a 

division of PT phases will generate higher-level POMDPs which have a direct control over more 

specialized POMDPs. At the high level, the POMDP policy consists of selecting appropriate sub-

modules (i.e. hierarchical actions), while at the lower-level, specialized POMDPs have policies 

involving direct actions onto the problem domain (i.e. non-hierarchical actions). This division of 

tasks is not strict, and POMDPs of all levels can have both hierarchical and non-hierarchical actions, 

except for lowest-level POMDPs which have only non-hierarchical actions. Belief states are always 

maintained over all POMDPs of the hierarchy and are updated after each action/observation pair. 

When a specific specialized POMDP is selected, it is identified as an ``active module” and is 

responsible for the learner's action selection at that given time step. The belief state is updated 

according to a default action, thereby ensuring that they capture the entire history and will produce 

the appropriate behaviour when later selected as an ``active module".  

We have shown that in a domain such as a conversational speech interface, structure can indeed be 

exploited to obtain a policy much faster than with a conventional POMDP, and furthermore allowed 

us to build a larger POMDP-based dialogue manager than was possible with non-hierarchical 

POMDP representations. Such structure is not present in all domains, however is found in a great 

variety of applications, ranging from the dialogue task, to robot navigation tasks where the domain 

could be divided into a set of separate problems according to building topology (e.g. each room gets 

a separate POMDP). The speedup obtained by applying our hierarchical approach to POMDPs can 

be remarkable in domains with appropriate structure.  The hierarchical POMDPs generator will first 



 
develops a high-level PT plan to sequence the overall (complex) PT models to be converted into a 

detailed continuous state plan. This hierarchical planning approach results in a decomposition of the 

POMDP planning problem into smaller sub-parts that can be solved with significantly lower 

computational costs. The ability to sequence the visitation of local dynamics models also provides a 

powerful way to leverage the hybrid dynamics to reduce state uncertainty. We evaluate the proposed 

planner on a navigation task in the simulated domain and on an assembly task with a robotic 

manipulator, showing that our approach can solve tasks having high observation noise and nonlinear 

dynamics effectively with significantly lower computational costs compared to direct planning 

approaches. 

  



 

Chapter 6: Intelligent Automated Penetration Testing 

Framework  
In this chapter, we will gradually introduce the detailed methodology which enabled us to produce 

IAPTF through the different phases of conception, design, modelling, and implementation.  The proposed 

framework has been built in several steps. Initially we focused on the core reinforcement learning module 

which include the software RL agent, the memory where POMDP stored and POMDP solving mechanism. 

The RL agent communicate via scripts with MSF Console. Nonetheless, the development of IAPTF-Core 

module sits in the heart of IAPTF and illustrate a real-world implementation of our proposed RL modelling 

of the network PT practice detailed in previous chapter. The proposed model implementation had been 

through two major milestones related to the adopted model for representing the PT domain as RL problem 

in form of POMDP, the two milestones are namely, the regular RL which was initially developed, 

implemented, and tested, and the hierarchical RL (HRL) which was later introduced to address scalability 

encountered in solving large POMDP as described in chapter 5.  The second phase of the development was 

the design, development and implementation of all complementary modules and systems including the data 

extraction, preprocessing, security clustering, POMDP elaborator, expert system, attack vectors generator 

and post-testing system. In other words, this phase covers all modules, scripts and system constituting 

IAPTF except the RL referred to in this work as IAPTF-Core. Figure 54  illustrates the full functioning of 

IAPTF and summarises the main modules and system utilized. The next sections of this chapter will 

gradually introduce keys components of the IAPTF framework including the IAPTF-Core module where 

the proposed RL model is implemented alongside with the IAPTF-Memory which are the focus of this 

research work.   

6.1 IAPTF anatomy and functional diagram 
We present in this section the proposed representation of the PT problem in the form of POMDP 

environments. The proposed representation which is a core component of our research is introduced 

here through a series of illustrative examples for a smooth introduction of the main concepts and 

method used in our proposed IAPTF. In the context of PT, there is no need to fully represent the state 

of the network to describe the current situation. The modelling will only focus on the features and 

aspects that are relevant for the task at hand. An example of the network topology and security 



 
architecture is not required to be included within the RL state space as in networking the main network 

topology and defense is assumed to be static and known. But it will have to account for the 

configuration and status of each computer on the network. The detailed environment description is 

detailed as follows. 

Our research output is twofold: RL model of PT practice and a framework named Intelligent 

Automated Penetration Testing Framework (IAPTF). Figure 54 illustrates the final design in form of 

a functional diagram of the proposed framework. Overall, IAPTF starts by using automated scripts to 

process existing and acquired data from early-stage PT tasks to perform the network clustering and 

networking and defense data processing. These tasks are done through automated python scripts with 

many XML and log files as inputs and produce core data for elaborating the initial PT POMDP 

environment including identifying the asset composition and different security clusters which will be 

detailed later in this chapter. The data generated from this operation is then stored in IAPTF memory 

in two distinct formats: first raw format which will be handled later by IAPTF and second, generalised 

data which will serve future use of the framework. The generalisation is done through the removal of 

all specific information associated with the data such as IP and MAC addresses, machines names or 

other irrelevant information from a future use point of view.  In other words, the output of each phase 

will be made general and then stored with IAPTF memory and used also within the Expert System 

implemented and embedded in IAPTF.  

 
Figure 54: IAPTF anatomy and key modules and components. 

On the other hand, the functional diagram is crucial to highlight the contribution of each module as 



 
well as the interaction and complementarity between them. IAPTF operates in a sequential order but 

highly interactive. The output of each module serves as the input for the next one. Notably the output 

of IAPTF-Prep in the form of data acquisition and filtering output is fed directly into IAPTF-Proc for 

processing and outputting structured and cleaned data that will be fed to the IAPTF-Memory to 

elaborates the different POMDPs environments files which will be then complemented and solved by 

IAPTF-Core. The figure 55 illustrates the full functional diagram for IAPTF. 

 

 
Figure 55: IAPTF overall functioning diagram and inter-modules interaction. 

In the next session we will introduce the different modules following the logical sequence of the 

functional diagram.  

6.2 IAPTF-Preparation module 
In this section we will describe the details of different modules and system constituting IPATF-Prep. 

As described in Chapter 5, POMDPs files and notably the state space should include, for each phase 

or cluster of the system, all relevant information from a networking and security point of view. It will 

include, but not limited to, the OS, services, topology, security architecture, patches and knowledge 

base, version, subnetting and other networking information. This information will be represented 

under a specially introduced annotation designed to be brief, clear, precise, and easy to handle from 

point of view programming and data processing. In IAPTF-Prep, the different modules will attempt to 



 
extract, reconstruct, structure and represent all the information which the POMDP-Generator module 

requires to build the POMDP and especially state spaces which also come with some uncertainty 

related to the nature of the PT practice. Data extraction and Filtering programs and scripts are 

networking data, topology data, reachability data, along with vulnerability assessment data. 

 
6.2.1 The networking data  

The network data that defines corporate networks are often referred by connections and configurations 

of machines and limited in this research to the following sources: subnetworks, topology, machines 

network interfaces and networking services.  Every network machine could have several services at 

different levels of machine. The extracted data at this stage is an abstract which includes relevant 

details of a real-world networks. In addition, at this stage of data capturing, there is no requirement 

nor benefit for developing an intelligent (AI-led) module to perform such activities as stand-alone 

software and is enough to capture and extract networking data including topology, sub-netting, and 

connections (reachability) between machines along with location of switches, routers, firewalls and 

IDSs in the network. The reason for this abstraction is to try and keep the simulator as simple as 

possible and at the level of representation that will be used in elaborating the POMDP environments. 

The proposed scripts are expected to work on determining which networking data can be used on top 

of vulnerability scans and assessments to store and to be used against which machine and in what 

order. Moreover, some specific details related to VA and PT such as ports status, service configuration 

along with details on application specific implementations are also copied to another raw XML file to 

be included in the Security data later. This choice comes from PT nature which is highly interactive 

even at automated levels with systems, toolkits and frameworks such as Metasploit which customize 

and utilises data on different exploits depending on the scenario and launch it. 

6.2.2 Sub-networks and Topology 

Computer networks are made of multiple subnets, single machines and devices. A subnet is a smaller 

network within the larger network that is composed of several machines that are reachable to each 

other. Each subnet has its own address, which is the first number in any machine’s 32-bist IP address 

and comes with subnet mask to define the network, subnet, and machine address. In IAPTF, we opted 

for a security-oriented approach in regard to network splitting which we will detail in the security-

clustering section. Nonetheless, it is important to capture, extract and process subnets data as we 



 
require the maximum information about network functioning and machines’ reachability in one hand, 

and also enable a full abstraction of the network addressing. In fact, we often deal with single machines 

as target and not the full subnet despite the fact that all machines within a subnet can fully 

communicate and have relatively the same security protection and restriction in contrast to the Inter 

subnets communication is overseen by network topology, filtering, defense settings. The subnets data 

is therefore extracted and stored in the Connxion.XML file for future use. 

 
Figure 56: Sub-networking division of test bed output example. 

The network topology (also called reachability) is defined as subnets inter-connection based on 

existing controls and restriction mechanisms which regulate which subnets can communicate directly 

with each other and with the external network. As an illustrative example, in the network in figure 56is 



 
composed of five subnets SN0, SN1, SN2, SN3 and SN4. SN0 and SN1 are the subnets in the part of 

network that is connected to the Internet often referred to as a demilitarized zone (DMZ) while subnets 

SN2 and SN3 are located in the part connected to internal workspace and have thus a different 

addressing. SN4 is here for internal storage and production. Note that machines can only communicate 

with the ones within the subnet or adjacent ones if they are adjacent and reachable.  

6.2.3 Connectivity and Reachability 
In IAPTF network topology is represented by an adjacency matrix, with rows and columns 

representing the different subnets. An example matrix is as shown in figure 57.  In practice, IAPTF-

Prep will use a simple python script Topology.py which will, from the addressing data, extract the 

different existing subnets. Then another script named Reachability.py will combine data from the 

topology and Security.xml to elaborate the full security-oriented network topology in form of   

adjacency matrix. The ones in the matrix stand for a direct connection between different subnets where 

one or more machine in the subnet can reach at least one machine in the second subnet. The 

reachability values are crucial from an offensive security point of view and therefore IAPTF 

reachability script named test-reachability.py are deployed within IAPTF-Prep and facilitate using 

Internet Control Message Protocol (ICMP) shortly known as ping. The scripts will run on the entire 

network using different machines in different subnets as starting points and initiate an ICMP request 

between source and destination host and only validate the reachability if the ICMP request is 

successfully. In the case where the destination host is behind a firewall and thus non-responsive, ping 

echo reply from the firewall reply should not be considered and the matrix value is set to zero “0”. 

Finally, it is worth to highlight the reciprocity nature of the reachability matrix which completely 

different from the proposed security clustering where the firewall one-way filtering characteristic is 

captured and utilised in determining security clusters’ composition. 
 

 

 



 
 

 

 

 

Table 8: Example network topology for the network represented using an adjacency matrix. 
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6.2.4 Network Vulnerability Assessment 

The vulnerability assessment data includes static (initial output) discovery, scanning, enumeration and 

vulnerabilities assessment. Enumeration data are embedded in IAPTF and used to represent fully or 

partially information about ports, services and version of software running on different machine in the 

target network. These data are, to a certain extent, analogous to vulnerability assessment software such 

as Nessus with special focus on the security side of services, the data are validated to extract service 

and security information that hackers would exploit and simply ignore all other non-vulnerable 

running services and software.  Each service is defined by its name or a short abbreviation such as 

FTP, SMB (for Samba), or HTTP which are unique and specific in term of version, so it would be 

possible to track vulnerabilities and know what services require patching SMB-v3.6.x. The ultimate 

goal of is to achieve root or admin control throughout executing the adequate Meterpreter session 

against the set target. Thus, the service version and port scanning and enumeration will help to narrow 

down the required activities so this  goal is achieved and thus IAPTF agent to earn full control over the 

target machine. In IAPTF, these activities are launched at first phase independently from the 

Metasploit MSF using small pieces of software and scripts (Nmap NSE and Nessus) with the aim of 

building enough memory for IAPTF functioning. The following steps are performed when the initial 

enumeration and scans are launched: 

➢ scan all reachable (from the internet hacker computer) for open ports and identify 

subnet SN0 SN1 SN2 SN3 SN4 

SN0 1 1 0 1 0 

SN1 1 1 1 0 0 

SN2 0 1 1 1 0 

SN3 1 0 1 1 1 

SN4 0 0 0 1 1 



 
running services 

➢ complete the enumeration of all identified services  

➢ validate the results and launch the initial vulnerability assessment  

➢ confirm existing vulnerability and export all outputs into the relevant XML files to 

be uploaded into IAPTFR-Prep 

As with manual PT process, IAPTF-Prep enumeration module will initiate by extracting the important 

data using externally crafted Nmap Python scripts together with two built-in NSE (Nmap Scripting 

Engine) scripts Vulscan and Vulners. The basic concept behind NSE is the offered automation and 

flexibility to weaponize Nmap features. Nonetheless, it remains heavy to run and thus often avoided 

by PT experts who adopt more hand-crafted simple scripts to automate a wide variety of tasks related 

to a given scenarios and which can be launched in parallel with the enhanced efficiency. IAPTF-Prep 

imports and uses directly Nmap’s Vulners and Vulscan to identify, fingerprint and enumerates ports 

services along with finding relevant information about the CVE of a service such as SSH, RDP or 

SMB. Moreover, external scripts are embedded in the IAPTF-Prep module to improve data capturing 

and validate information related to vulnerable services. Vulners script offers the possibility of working 

online and querying the CVE and NVD databases every time the NSE script is used. Vulscan queries 

to either a online database on internal pre-downloaded database synchronized with ExploitDB. 

Vulners scripts are compatible with VulDB and NVD which are used as references for defining 

vulnerabilities severity ranging from: Critical, High, Medium, or Low which match the CVSSv3 

criticality score between 0 and 10. After this step, IAPTF-Prep second module will oversee searching 

the extracted data aiming to identify initial vulnerabilities out of NSE scans. Then comes the role of 

PreProcessing.py main program which will process the data into IAPTF memory following CLIPS 

expert system format which was designed to fit our research RL needs and structured in  the form of 

decision trees that remain compatible with other AI applications. Final data processed will contains 

seven fields, namely: 

➢ Machine OS, version/architecture, and patch/service pack 

➢ Security clustering and subnets defense  

➢ Open and Filtered Port as found by Nmap 

➢ Running Service with version and variant if applicable 



 
➢ Imported CVE database set with relevant vulnerabilities 

➢ Available exploits and payloads. 

 

6.2.5 Security and logging data 

The final component of the network model are the firewalls that exist along the connections between 

any subnets and between the network and the external environment. Firewalls act to control which 

services can be communicated with on machines in a given subnet from any other connection point 

outside of the subnet. They function to allow certain services to be used and accessed from machines 

within a subnet with the correct permissions, while blocking access to that service from unwanted 

entry points. Each firewall is defined by a set of rules which dictate which service traffic is permitted 

for each direction along a connection between any two subnets or from the external network. Figure 

58 shows an example firewall that sits between subnets and which allow access to the SSH and FTP 

services on machines on SN3 from machines on SN1 and SN2 and access to FTP and HTTP services 

on machines on subnet SN1 from machines on SN3. In a real-world setting firewall rules are typically 

set by defining which port can be accessed, however for simplicity and since for most cases the same 

services are run on the same port numbers, we have decided to instead define rules by service rather 

than port. 



 

 
Figure 57: Example firewall and Intrusion detection systems location and impact on the connection between 

subnets SN0, SN1, SN2, SN3 and SN4 and defines which services are permitted in each direction. 

Finally, the IAPTF-Prep include a python scripty named VulnAssessment.py which imports directly 

Vulnerability Assessment to concatenated it to the data extracted regarding security, topology, and 

networking. IAPTF-Prep imports direct data from the Nessus-NM and Tenable-IO in form of vulnerability 

scanning and assessment output XML files.    

 

6.3 IAPTF-Processing module 
This section will detail the first modules of IAPTF namely IAPTF-Prep and IAPTF-Proc which are in fact 

a set of program and scripts enabling the acquisition, extraction, and processing of the different data from 



 
different sources. This module oversees moving from Networking, Security and Vulnerability 

Assessment data to build the different POMDP environments which fits our model representation of 

the real-world PT practice environment.  As we discussed in Chapter 5, the POMDP representation of 

PT practice requires projecting to the best all features and characteristics of the real environment. The 

system will thus require a memory that increases alongside its development and capturing of features and 

data increasing. The RL agent memory and environment model often consume most of the storage capacity. 

If there are S states and A actions, then a complete model will take up space proportional to |S| x |S| x |A| 

because it maps state-action pairs to probability distributions over states. By contrast, the reward and value 

functions might just map states to real numbers and thus be of size S. As an exception, RL learning policy 

search approach where a second value function determines is in the agent agenda (not the reward function) 

the system memory can increase further.  

As the proposed RL model focuses on the relevant aspect of the PT practice which are also the cyber 

attackers used key information, this module aims to produce POMDPs files from the raw data received 

from IAPTF-Prep and using Python scripts to perform the pre-processing, processing and structuring 

and ultimately produce optimized representation of the PT domain in the form of POMDPs problem. 

In IAPTF-Proc some fundamental networking features and aspects were neglected and not considered 

in the environment modelling. This is due to the irrelevance of this data for the PT practice and include 

such useless details will result in enlarging the domain size and thus compromise the efficiency.  The 

sought after IAPTF-Proc is a multi-scripts module which facilitates the processing of different format 

extracted data notably networking, vulnerability assessment and security LOG and XML file to 

produce cleaned IAPTF-memory format data which then be used in the representation of the early-

stage PT POMDP environments. As we had already discussed in the previous chapter, the RL can be 

of great help to the PT community only when properly embedded notably by striking a balance 

between contribution and cost in terms of time and computational resources. With computer networks 

expanding in size, the PT task represented in the form of POMDP environment size will increase too, 

resulting in high scalability issue as the solving becomes time and resources consuming. The reason 

behind human expert success in PT is that testers often take advantage of the context and utilise this 

to reduce the workload by performing multiple pre-elimination of the useless or non-productive testing 

scenarios where the tester is sure that the outcome would be negative, or the cost would exceed the 



 
expected reward. The IAPTF-Processing system is a crucial part towards a fully automated and 

intelligent PT framework by preparing the field for the IAPTF-Core to solve relevant and potentially 

rewarding problems which enhance considerably the testing time and reduce the use of resources along 

with generating meaningful and consistent results. The IAPTF-Proc is made of many scripts and a 

large module. The main scripts are configuration.py and security.py and the security-clustering. 

6.3.1 Machines configurations and defense 
The most primitive security entity of network security is the machine. A machine in IAPTF refers to 

any IT device that is connected to the network and hence can be reached and exploited. In this module, 

each machine i is defined by its address which includes the following: 

➢ machine name in the form of Mi (machine), Ri (networking router or switch), Vi (virtual 

machine) or Ti (IoT device), 

➢ subnet to which this machine belongs, 

➢ security protection (DiD score) level.   

An example machine definition can be for a given web application server in DMZ called M2 belonging 

to subnet SN1 and having a medium host security protection of 3 out of 5, this machine is represented 

as M2_SN1_3. It is important to highlight that the security protection level is completely independent 

from the machine value from the point of view of sensitivity, as such machines that the hackers and 

thus pentesters would want to gain access to or that the owner wants to protect.  The other important 

data is the running services that are used for communication purposes only. This can be either within 

the same subnet or any reachable subnets. The services available on each machine are defined on its 

configuration profile and thus for each machine on the network as this data is largely heterogeneous 

and machines does not necessarily have the same configuration such as workstations, Web servers, 

file storage. Note that these services present on a machine will be added later to the other services 

when it comes to build the vulnerability profile which aims to list services vulnerable or potentially 

vulnerable to attackers aiming to exploit. 

6.4 Medium and Large networks Security Clustering  
Performing PT different tasks requires the pentester expert to meet some basic requirements. One of 

the most important requirements to know and understand the assessed network “general” security 



 
topology which will result in identifying the relevant attack paths based on the knowledge of existing 

connections between Machines (systems) and/or Sub-Nets. This is a crucial phase as any cyber 

attacker will, after performing the initial reconnaissance, try to sketch a logical security map of the 

target network and assess the ability to reach the targeted machine. Often, the PT expert can initially 

reach only a few machines from his external (Internet) position (high-value targeted machines cannot 

initially be reached) and the overwhelming majority of assessed network machines are unreachable 

directly from the Internet. Thus, a progressive approach is unavoidable, the tester will attempt to gain 

partial or full control of the reachable machines and then use these controlled machines as a launching 

point for future attacks as it is likely that they share a sub-network with one of them: and those which 

are unreachable from any controlled computer. 

The network clustering is a crucial phase in the IAPTF as it will allow an easy and simple RL 

modelling of a large network PT environment which mirrors perfectly the reality. In real-world PT, it 

is hard to deal with each network connectivity separately and this case will create an additional 

problem to the existing ones: the large environment problem and complexity of representing the actual 

topology. The network clustering is therefore our proposed method to incorporate the information 

about the network connectivity within the RL model along with maintaining the solvability of the 

problem in an adequate amount of time. 

The following network clustering method aims to divide the medium and large size network (or even 

a small network) into a certain number of clusters. The definition of the word cluster here is a set of 

machines and systems that: 

➢ belong to the same security level (protected by the same set of security devices and 

mechanisms) and, 

➢ reachable to each other (direct connection without passing through any network security 

component excluding the host-based systems and software) and, 

➢ serving a similar or complementary purpose within the network such as Data Server, 

Workstation, or Printing. 

As we already mentioned in the previous chapter, the proposed clustering of the network is quite 

simple and does not obey always conventional networking criteria and rules (sub-net, LAN, MAN, 

WAN, WLAN ….). Instead, we will utilises a security-based method by: 



 
➢ Building a complete and comprehensive map of the assessed network including the existing 

divisions following the networking (functional) rules (WLAN, LAN, Internal, Public …) 

map, 

➢ Determine network reachability data which reflect the ability for a machine to reach other 

machines without passing through the existing security measures. This is done by exploiting 

data from the network equipment ensuring the isolation such as firewalls, IDSs, Routers, 

DMZ.  

As illustrative example, the assessed small LAN in figure 59 composed of 18 machines including 11 

computer machines named M0, M1 …, M10 and 7 networking devices (firewalls, routers and IDSs) 

in addition to the ethical hacker machine which is connected through the Internet (external) but will 

be considered later as an independent cluster for the modelling purpose. The 18 Machines are divided 

from networking point of view into two sub-networks namely SN0 and SN1. Nonetheless, the 

proposed clustering approach will divide the network into security clusters following a rigorous and 

realistic approach inspired from the real-world situation of security isolation and how hackers perceive 

the network (clustering approach detailed in next section) resulting into five different security clusters 

(C0, C1, C2, C3 and C4) with each cluster grouping several machines such as C1 which is the DMZ 

(M0 Application Server and M1 Web Server). 



 

 
Figure 58: An illustrative example of small LAN made of two sub-networks (SN0 and SN1) and parallelly 

five clusters (C0,C1,C2, C3 and C4). 
In our proposed POMDP model only details about the machine-to-machine connections information 

are included initially. This is in reality the reflection of cluster-to-cluster (inter-cluster connectivity) 

which provides information regarding the type of connections (active and available) along with the 

type of the used protocol, security and other relevant information such as the number of hopes.  

The number of hopes is purely related to the existing security mechanism separating two different 

machines (clusters) such as firewalls, IDSs, IPSs, routers. In the connectivity representation only one 

route is mentioned for the same two entities giving the same connection protocol, as example is M0 

and M2 can be connected via an TCP-FTP connection via more than one route, giving the fact that 

such scenario (FTP connection) has the same security protection for all the connectivity only the 

shortest (with less hopes) route is represented as follow: 

➢ C0-C2-TCP-FTP-1: Direct intra-cluster connection with a firewall (FW0) separating the 

cluster C0 and cluster C2.  

➢ C0-C2-TCP-TelNet-2: connection via a third cluster (C1) which will result in passing through 

an additional security mechanism (FW2) 



 
➢ C0-C2-TCP-SSH-2:  composite route including connection passing through two or more other 

clusters’ security isolation and filtering to reach the other end. 

The most important component of IAPTF-Prep is the security clustering scripts. This module output 

is twofold. Firstly, the clusters constitutions in term of name and IP address of each machine and the 

belonging cluster. Secondly, the head (or heads) of each cluster which is in theory the most vulnerable 

machine with root/admin control.  The proposed approach focuses on a key characteristic of network 

PT practice namely security isolation overview. This is a common approach for hackers and cyber 

attackers as they oversee the target network from a security point of view and not simply networking 

functioning in the aim of extracting key information about the security isolation and reachability. It 

will be noticed in the proposed approach we call clustering that some fundamental networking features 

and aspects were neglected and not considered in the task of dividing large LANs and WANs and thus 

modelling them into smaller POMDP environments. Finally, it is important to highlight that one-way 

filtering approach adopted in firewalls, routers and IDPSs is a key element in our proposed clustering 

approach making the clustering approach fundamentally different form the regular subnetting 

approach which is by default symmetric (reciprocity of reachability between subnets) as illustrated in 

the figure 60 where SN0 and SN1 are considered the only subnets in the network following the 

symmetric reachability approach.    

On contrast to the subnetting, the proposed security clustering produce a completely different result.  

This proposed approach backs a hierarchical structure of POMDPs inspired from the corporate 

network architecture which is, from a hacking point of view, characterized by multi-layered security 

protection (also known as Defense-in-Depth or shortly DiD). In this module, data regarding DiD and 

other security and isolation device locations and configuration are used directly and sometimes 

assisted by hand-crafted scripts, to find a security-based clustering of the LAN and MAN. We then 

investigated a more efficient technique to automate the decomposition process and designed a security-

oriented clustering scripts which use conventional networking data such as reachability, routing table, 

access lists (ACLs) along with the defensive cyber security information such as firewalls, IDPSs 

position and functioning to provide an automatic decomposed of medium and large size networks in 

an appropriate manner. In few cases, where the size of some cluster exceeds 50 machines, this cluster 

is divided into 2 to 3 sub-clusters which will be accounted as distinct security clusters. Such decision 



 
was made after observing IAPTF performance decline in large networks, and it allows the computation 

of best policies, while most reducing the complexity required to compute these policies. In term of 

adapting the proposed POMDP representation, we opted for a two-levels approach. First is to consider 

each security cluster as a separate network and only represent the data about machines in that cluster 

in the low-level POMDP environments. Then we represent the network of the head of each cluster and 

including all possible connections including machine-to-machine and cluster-to-cluster connections 

information to fully reflect the real-world inter-cluster connectivity. In the Clustering module we 

implemented three scripts. The first script defines the cluster composition and named 

Cluster_composition.py which the output is the full security clustering of the network. In other words, 

the result is many clusters (number will depend on the size of the network, configurations and security 

setting DiD but will be at least 3) which each contain many machines belonging to the same cluster 

will be treated similarly. The idea behind this assumption is the nature of the networking environment. 

The machine belonging to the same sub-net often have a similar defense and protection. In fact, an 

attacker who gains a control of a machine will easily progress to the rest of the machines on the same 

sub-net or cluster as a trust relation (in some applications) exist between the infected machine and the 

remaining allowing the attacker to take advantage to run (execute) the exploit against those machines. 

The second script named Clusters_Connectivity.py oversees capturing and processing information 

regarding the type of connections (active and available) along with the type of the used protocol, 

security, and other relevant information such as the number of hopes. The number of hopes is purely 

related to the existing security mechanism separating two different machines (cluster) such as 

firewalls, IDSs, IPSs, routers etc.  The full detail about the representation is detailed in the previous 

chapter. The following Network Clustering method aims to divide the medium and large size network 

(or even a small network) into a certain number of clusters. The definition of the security cluster 

concept in IAPTF is simply a set of machines and system that have to same security protection and 

have the same attack surface (exposure) from a hacker point of view, and this is elaborating following 

the concatenation of networking, security, and vulnerability assessment data. As results, applying the 

Clustering python script, to the output is illustrated in figure 60 where each cluster group several 

machines such as C1 which is in this case the DMZ (M0 Application Server and M1 Web Server). 



 

 
Figure 59: An example network made of nine security cluster (initially five sub-networks) C0, C1…C8. 

The third scripts named HoC.py is in charge of identifying the head of clusters HoC (on some occasion 

more than one machine is designated as HoC). The idea starts by reducing the low-risk machine first 

and only focus on machine with a large attack surface. Attack surface stands for the number of open 

ports, running services and associated vulnerabilities in the machine making it more likely to be 

targeted and exploited by hackers. We exclude any honeypot machine (or even a honeynet) from being 

HoC. An illustrative example with the output of HoC.py on the test-bed network basing on IAPTF-



 
Prep vulnerability assessment output data is in the figure 61. In this research will initially deal with 

Clusters as Machine and thus all the machines belonging to the same cluster will be treated similarly. 

The idea behind this assumption is the nature of modern corporate networking environment. The 

machine belonging to the same sub-net often has a similar defense and protection. In fact, an attacker 

who gains control of a machine will easily progress to the rest of the machine on the same subnet or 

cluster as a trust relation (in some applications) exists between the infected machine and the remaining 

allowing the attacker to take advantage to run (execute) the exploit against those machines.  It is 

obvious that reducing the size of the inter-clusters network is not a straightforward activity. As shown 

above many security clusters will have more than one machine maintained such as C1, C7 and C8. 

And some clusters will have a set of machines with identical configuration maintained such as C4 and 

C7 again. Therefore, we opted for a rigorous approach to reducing the size of the final Inter-Clusters 

network and only include the strict minimum so the associated POMDP environment size can be 

maintained to small size and therefore enabling a fast exact solving.  The figure 61 illustrates how 

Head of Clusters are selected. Therefore, we introduce the head of cluster notion. Initially, this notion 

was defined to serve simplicity purpose as IAPTF will need to complete the PT tasks including the 

inter-cluster testing and to do so we will deal with the entire cluster as one single machine from security 

point of view and thus all the machines.  



 

 
Figure 60: illustrative example of clusters’ size reduction by excluding low-risk, and redundant machines 

following by the selection of heads of clusters (HoCs). 
 

Thus, Internet (public) cluster will have hacker’s machine as the head of Cluster and thus the starting 

point. The second challenging case is often the DMZ which is C1 in this case as machines in this zone 

are often more exposed and have a larger attack surface.  In this case we strike a balance between 

reliability and flexibility and implemented a multi-HoC function which compares the vulnerabilities 

scores of each of the finalist candidates HoC and only select two (worst case) and designate them as 

HoCi-a and HoCi-b with i is the cluster ID.   The final output of the clustering phase is 09 small size 

LANs and a network constituted from Heads of Clusters. This enables us to represent two-layers 

POMDP representation of any medium or large LAN as illustrated in figure 62.  

 



 

 
Figure 61: Overall security clustering output including cluster composition definition, election of head of 

cluster. 
 

6.5 Heads of cluster Network 
In the connectivity representation only one route is mentioned for the same two entities given the same 

connection protocol. As an example C0 and C2 can be connected via an TCP connection via more 

than one route, given the fact that such scenario (FTP connection) has the same security protection for 

all the connectivity only the shortest (with less hopes) route is represented as follow: 



 
➢ C0-C2-TCP-FTP-1: Direct intra-cluster connection with a firewall (FW0) separating the 

cluster C0 and cluster C2.  

➢ C0-C2-TCP-FTP-2: connection via a third cluster (C1) which will result in passing through an 

additional security mechanism (FW2) 

➢ C0-C2-TCP-FTP-4:  composite route including connection passing through two or more other 

clusters’ security isolation and filtering to reach the other end. 

Finally, the network of HoCs will be represented as POMDP and then solved in the same manner as 

with small network case with the only difference of using the resulting Policy Graph as an input for a 

global attacking vector script named Overall_Attacking.py. this later will produce a comprehensive 

attack vector policies covering the entire medium and large size network by combining PGs resulting 

from intra-cluster solving and the PG resulting from the inter-clusters. This script will be operating 

directly on data stored in IAPTF memory and after establishing the global PG the results will be 

processed again using another scripts named Generalisation_PG.py which will remove any specific 

information or machine ID and make the decision policy general for future use by the Expert System 

CLIPS. 

 
 

Table 9: IAPTF-Prep modules, programs and scripts roles and description. 

File Description 

Connexion.py 

 

 

Script to capture (import) networking and connection data, process and structure it 

according to the IAPTF requirements 

Topology.py 
 
 
 

Script to capture and determine network topology and subnetting, process and 

structure it according to the IAPTF requirements  

Scanning.py 

 

 

 

Program to capture (import) all network discovery, fingerprinting and scanning 

tools output, process, and structure it according to the IAPTF requirements 



 
LOGs.py 

 

Script to import, clean and structure according to the IAPTF requirements all 

available networking and security devices and software log files 

 

Security.py 

 

 

Script to capture and process security defense (DiD) data and network security 

layout and structure it according to the IAPTF requirements. 

VulnAssess.py 

 

 

 

Clustering.py 

 

 

Generator.py 

Program to collate and process all captured data output from Connexion.py, 

Scanning.py and Security.py to then structure it according to the IAPTF 

requirements 

 

Program to collate and process all captured data output from Connexion.py, 

Topology.py, LOGs.py and Security.py to then defines security clusters. 

 

 Script to collate and generate the POMDPs environments from the input 

 
6.6 IAPTF memory and expertise handling 
 
In our proposed framework, the main challenge we face is the expertise capturing and re-usability 

which is a crucial component in context of PT practice that is highly repetitive and the decision-making 

it a cornerstone in cyber security field. To take full advantage of this particularity rather than having 

it as counterweight to our framework performances, we proposed a module within IAPTF that is 

dedicated to extracting the knowledge output during PT tasks and make it general (perform 

generalization processing) then store it into an Expert System for future use. The expertise capturing, 

generalization and handling activities are performed mainly within two modules: IAPTF-Memory and 

IAPTF-Expert_System. We distinguish two functioning diagrams in IAPTF: the first only account for 

the expert system and expertise capturing and processing programs which require the supervision of 

the human expert (mainly in early life stage pf IAPTF) and a second comprehensive functioning 

diagram which embed the Expert System and Expertise acquisition within the IAPTF-Core where the 

RL Agent acts instead of the human expert. Figure 63 details the comprehensive functioning diagram. 



 

 
Figure 62: IAPTF-Core with Expert System extraction, validation, and replay diagram. 

The first part of this activity is the generalisation tasks which are done through python scripts directly 



 
on the output XML files of the POMDP pentesting solving results. Once done, we progress into storing 

this precious knowledge in a basic Expert System (we annotated ES) using CLIPS. The diagram of 

IAPTF shown in figure 64 refers to the ES. There are several different modules in the proposes 

architecture, but we only focus in this section on functions which offload the POMDP solving XML 

files and extract from the policy graph (PG), based on standard formula and input regarding network 

configuration the decision (acting) policy made in each situation which is extracted in their original 

context to avoid irrelevant generalization. Then, a python script named “ES_Generalization.py” is 

applied to data to produce a general format from which as specific data is removed such as IP 

addresses, Machine name, non-generic data.  

 
Figure 63: IAPTF-Preparation and IAPTF-Processing detailed functioning diagram. 

6.7 CLIPS Expert System 
The next step in building the IAPTF memory is the implementation of the Expert System which will 

oversee storing and reusing of decision policies. Since the aim of this research is mainly applying RL 

in PT practice, the ES comes in second priority, and we decided that we will not implement a heavy 

weight ES within IAPTF and only rely on CLIPS which is a public domain software tool for building 

expert systems. We will briefly describe how the general production system tool CLIPS is used to 

extract, process, store and reuse expertise for network PT purposes using previous testing captured 

experiences. The proposed system can also be utilised in case of decision-making assistance notably 



 
when retesting the same asset. In term of expertise capture and handling, we opted for a direct 

application of CLIPS Expert System to achieve our objective of capturing and replaying human CEH 

expertise and knowledge. CLIPS is a complete environment for developing IAPTF expert systems 

which includes an integrated editor and a debugging tool and enable inferences or reasoning. The 

CLIPS provides the three key elements of: memory for data, knowledgebase, and rule-base. The 

written program consists of rules, facts, and objects with the inference engine to select rules (action) 

to be executed for a given object. In IAPTF, we built a PT expert system by performing some 

modification into the default CLIPS code by introducing features such as single and multiple string 

pattern matching, certainty factors and timestamp with uses of MSF plugins adapted for pre-

processing. The complexity of MSF in term of data handling and storing add nonetheless more 

complexity and challenges for our proposed Expert System. To overcome these shortcomings, we 

proposed an integration of our developed CLIPS Expert System with “MSF POSTGRESQL” database. 

Thus, IAPTF allows the simplification of the complex data workflow by considering complete testing 

and attacking scenarios instead of atomic actions. Finally, the modular structure of IAPTF enables us 

to propose a second variant of the expertise handling diagram which doesn’t account for the RL 

IAPTF-Core. This is particularly useful in case for retesting without changes (security compliance and 

auditing) and in context of small networks not requiring an advanced exploration but instead a check-

list testing. Figure 65 illustrates the IAPTF framework expertise handling when excluding the IAPTF-

Core RL module and testing results on different network size scenarios are detailed in chapter 7.  



 

 
Figure 64: IAPTF-memory and Expert System expertise extraction, validation, and replay diagram. 

6.7.1 IAPTF-Core: 
The main component of IAPTF is the RL module which rely on the proposed POMDP modeling of 

PT practice as detailed in Chapter 5. In this section we will detail IAPTF-Core functional diagram and 



 
the different arrangement made to enable this module to access POMDP files stored into the IAPTF-

Memory along with the extracted expertise sored in the CLIPS Expert System. The proposed IAPTF-

Core is fully independent, modular, and optional and can be embedded with any other industrial PT 

framework. The current version is associated with Metasploit framework (MSF) and Nessus as an 

external module communicating via customized python scripts imputed through Metasploit MSFRPC 

API. 

 
Figure 65: Metasploit Community and Professional framework architecture [102]. 

 

The purpose of such configuration is to avoid modifying the core component of the MSF and allowing 

us, for research purposes, to measure the IAPTF performances independently from the used PT system 

or framework. The Console and CLI circled in red are the entry points for IAPTF-Core to communicate 

and exchange data with MSF. The figure 67 illustrated the different components, functional diagram 

and interaction mechanisms adopted in IAPTF-Core.  



 

 
Figure 66: IAPTF-Core components, functional diagram, and interaction mechanisms. 

The Exploit Databases and attacking payloads and program import and fetching is twofold. The MSF 

Console imports the Exploits and the Payloads used for exploitation and post exploitation in addition 

to DB-Nmap NSE discovery scripts imported within the MSF POSTGRESQL. On the other hand, we 

developed the CVEs importing and fetching named Exploit_import.py which is a python program that 

oversees importing and restructuring CVE and NVD database along with creating a local mirror within 

the IAPTF-Memory. Key features of this module are: 

➢ Storing and structuration format enabling CVE use and search by the IAPTF-Core directly 

basing on customized research criteria  

➢ Enabling the usage of a lighter version of the large database both in term of number of CVEs 

and the description information stored within the original databases CVE and NVD. Only 

relevant information from PT point of view is kept in IAPTF-Memory. 

➢ Direct interaction with Metasploit MSF console to enable real-time search narrowing and 

prioritisation based on NVD score as calculated per CVSS v3  

6.8 IAPTF operative modes  
PT involves complex and versatile activities which often come with automation challenges. To ensure 

that IAPTF is effective and able to achieve the sought aim of an optimised automated PT which is 

achieved by relying on AI techniques specifically RL and ES. IAPTF is designed and implemented to 

perform network PT under different contexts and operative modes notably as stand-alone, under-

supervision or user-assistant and learning-only by capturing the knowledge from human expert. 

Therefore, IAPTF has four different operating modes with the selection of the adequate will depend 

on the context and the level of maturity (learning) as follow: 

6.8.1 Stand Alone (Level 3):  
this is the most advanced level of automation and optimisation that IAPTF can reach and constitute 



 
the aim of this research. In this mode IAPTF is fully intelligent and autonomous in performing the PT 

tasks after reaching the pre-set level of learning enabling it to act at least in the same way as a human 

expert Certified Ethical Hacker would do. In practice, the framework does not need to learn how to 

behave with all possible scenarios (which is technically impossible) but the assessed networks 

configuration will play a key role in the choice of the operating mode as previously completed testing 

with a degree of similarity will enable the IAPTF to use the acquired knowledge to achieve at worst 

an acceptable result. In this mode, the system will be responsible for auto-reward the RL agent actions 

by assigning automatically the relevant rewards following a pre-determined rewarding function, and 

updating and improving its decision policies when better attack paths are obtained.  

6.8.2 Under supervision (Level 2):  
this is a mode where IAPTF is partially autonomous which is in practice the standard mode for all first 

testing activities and early stage of commercial use. IAPTF in this mode is autonomous but remain 

under human CEH supervision for validation purposes. The system is then under constant and 

continuous supervision (locally or remotely) by a high-caliber (CEH at least) human pentester expert. 

The logic is that after a certain level of learning the framework will be enabled to take over the human 

expert to perform the penetration under supervision which is done for quality and consistency purposes 

by modifying the rewarding and evaluating mechanism. This will enable the  human expert to be in 

charge of evaluating the accuracy, relevance and persistence of the testing by scrutinising the different 

attack vectors launched and evaluate the  effectiveness and efficacy and allocating the relevant 

rewards.  In this mode, human CEH will be only in charge of evaluating, which is done basing on his 

expertise, thus if IAPTF is performing above the threshold in each step (each action undertaken in a 

given state) the POMDP reward will be maintained. It is worth to mention that in many occasions, 

IAPTF will follow different attack paths which were never considered and/or explored by the expert 

which will be evaluated separately by the CEH to enable the framework to proceed further and carry 

on penetrating the network along with ensuring that the followed path does not lead to exceeding the 

maximum allocated resources. Upon completion, all the newly discovered path will be subject to a 

generalisation and stored in the IAPTF CLIPS expert system for future use. 

6.8.3 Background assistant (Level 1):  
in this mode IAPTF will be operating in the background of the manual human testing and only assist 

the expert in the decision making. The framework will capture the data and proceed to computing and 



 
processing, on a real-time basis, of the network variables and then suggest better alternatives if they 

exist and were missed by the expert. In the meanwhile, IAPTF will continue the learning by capturing 

the key information to be used in the POMDP representation optimisation and observing the CEH 

approach to extract the decision policy and assign the adequate rewards for any accepted suggestion 

it makes. The idea here is to accelerate the construction of the expert system knowledge which will at 

first stage help the ES to evaluate its decision policy before storing and introduce the relevant 

adaptation if required. Furthermore, the ES will store any decision alongside the associated context 

data in its memory after performing the Generalisation required for future use. 

6.8.4 Early-stage (Level 0):  
IAPTF is here in a learning only mode and will be using artificial data created from simulations. The 

idea here is to run IAPTF on as much cases as possible to allow the validation of the performances 

alongside the construction of internal knowledge base from repeating the test already completed by 

high caliber tester and extract the relevant data, policies and rewarding. In this situation, the framework 

can learn from the decision (actions and choices) undertaken by the expert during his work and extract 

the relevant knowledge from repeated test to build its memory.  

  



 
 

Chapter 7: Testing, Results and Discussion  

In this chapter, we will detail the different phases undertaken to develop test bed networks, test IAPTF and 

notably the RL module IAPTF-Core in different scenarios and conditions to validate RL modelling of PT 

practice. We also implement and test the new Hierarchical RL modelling for medium and large LANs 

following the security clustering approach and the functioning of the rule-based Expert System and 

Framework Memory in expertise capturing, generalization and replay    

7.1 Setup of Experiments  

The POMDP problem solving experiments were run on high-performance HP Z2 server with CPU Intel 

Xeon Processor E7-2176, 8 Core, 20MB Cache and 3.70GHz, and unbuffered RAM of 64GB DDR4 2666 

DIMM ECC, Graphical NVIDIA Quadro P4000 8GB GFX. This machine runs Linux Calculate 20 kernel 

5.4.6 64-bits which is a fast and resource-efficient Linux distribution based on Gentoo and maintains 

an optimal balance between state-of-the-art processing libraries and a renowned stability. The remaining 

IAPTF Modules, Script and Programs were hosted and run on a different machine DELL XPS 15 with CPU 

Intel Core i7- Processor 10750H, 6 Cores and 2.60GHz   and unbuffered RAM of 16GB DDR4 dual-

channel, Graphical NVIDIA GeForce GTX 1659Ti 4GB. This machine is running KALI Linux 2019.2 64-

bits on Bare Metal mode which grant direct installation and access to the machine hardware to enhance 

performances. 

7.2 Testbed Networks construction  

In this section we provide a detailed explanation of the data capturing and reproduction of virtual LANs 

used for testing IAPTF. Building virtual LANs which can be used within the virtual context for simulating 

PT requires the use of realistic data, architecture and configurations which mimic the real networks that we 

cannot perform live testing due to existing restriction notably the GDPR regulation and Legal Framework 

in the UK and many other countries. Nonetheless, it is completely legal to capture the physical network 

data and recreate virtual clones with the same configuration, some functional sacrifices are compulsory as 

the virtual environments remain restricted thus some configurations will be imitated and not completely 



 
replicated. The starting point is the virtual machines (computers, servers, mobile, networking devices and 

security devices) which are either virtualized directly form the sources when possible or we use an existing 

pre-configured equivalent from online repository such as vulnhub.com [100] and darknet.org.uk [101] 

which provides VMware and VirtualBox materials allowing security practitioners to gain practical hands-

on experience with digital security, computer applications and network administration on virtual machine 

environments. On few occasions, and this is relevant to servers and security devices cloning, we opted for 

the creation of the vulnerable virtual appliance from scratch using SecGen [102] which is a free utility to 

create lab environments for hacking challenges such as CTF. In total, for testing IAPTF we designed and 

implemented 53 VirtualBox LANs with different sizes varying from 2 machines to 250 machines. The used 

testbeds are, to the best of our knowledge, an illustration of the real-world networks widely adopted by 

corporates and organizations which include Internet-connected side, DMZ, intranet, and internal sensitive 

segments where crucial data is kept securely. The results of the virtualization phase on a 20-machines LAN 

constituted from 10 end-user machines (desktop, laptop, server or mobile), 4 networking devices (router or 

switch) and 6 security devices (firewall or IDS) is illustrated in figure 67. 

http://www.vulnhub.com/


 

 
Figure 67: Small corporate LAN of 20 machines replication on VirtualBox 

The replicated LANs are then exported following open virtualization format 2.0 (*.ova file) and deployed 

into the testing server using the same virtual environment parameters. Note that not only machine data is 

exported in form of appliances, but we include networking and addressing data along the .ova files. Figure 

68 illustrates the .ova file generation for the previous 20-machines LAN.   



 

 
Figure 68: virtual LANs replicate exportation following open virtualization format. 

7.3 Evaluating PT generated POMDP problems solving using SolvePOMDP  

In the first phases of this research, we aimed to assess the effectiveness of the proposed POMDP modelling 

of PT and evaluating our choices in terms of learning approaches, used algorithms, and capturing and 

managing the expertise as we discussed in detail in Chapter 4. In this work, we tested IAPTF performance 

on different size experimental networks composed of variant number of machine and networking routers 

varying from 2 to 200 machines. Networking equipment is considered as machines as well as any network 

equipment that runs an OS and applications. The only excluded machine is the hacker(s) computer(s) which 

will be represented as one entity along with the Internet. Figure 69 shows a sample large LAN with 100 

machines. In this research we adopted a gradual simulating and testing approach to evaluate the test our 

proposed framework. We thus elaborated a multi-stage approach for validating the adequacy and relevance 

of our proposed RL model and POMDP representation. At early stage, we attempted to calibrate 

SolvePOMDP which is a Java program that solves POMDPs by executing value iteration and policy search 

algorithm to find both exact and approximate solutions for POMDP developed by Erwin Walraven in [22-

24]. POMDPSolve is reputed to be flexible, reliable, and efficient and which we picked instead of re-



 
implementing the solving algorithms. We run several tests to decide on the relevance if the proposed RL 

model and to calibrate SolvePOMDP using different solving approaches and three solving algorithms 

namely PERSEUS-LPSolve, GIP-LPSolve and the modified GIP-LPSolve_InitialBelief. 

7.4 IAPTF optimal Discount Factor value 

To determine which discount rate γ value (between 0 and 1) is best for our SolvePOMDP program which 

thus produces the best results and strike the balance time-efficiency vs results quality, we opted for a 

quantitative approach by attempting to solve POMDP environments resulting from PT representation as RL 

problems using different discount rate values between 0.8 and 0.99.  As discussed in the RL chapter, the 

objective is to maximise the sum discounted reward using a discount factor γ <=1 as optimality criteria with 

different algorithm to find the optimal policy. The results (figures 70) clearly show that γ=0.95 (in amber) 

is the best value so solving algorithms PERSEUS and the two variants of GIP strike a balance between 

efficiency and accuracy of solving and producing the optimal policy graph.  In the first tests, we run solving 

tests on different networks size varying from 2 to 200 machines and we attempted to manipulate the discount 

rate (factor). SolvePOMDP was run without time horizon limit until a target precision Epsilon equals 0.0001 

is reached. We tested several options of discount rate varying from 0.8 to 0.99 and evaluate the suitability 

of each discount rate in accordance with the quality of the PG and the convergence time for the solving 

algorithm will briefly discuss below the effect of changing discount rate. figure 70 show the obtained results 

for PERSEUS, GIP-LPSolve and GIP-LPSolve_InitialBelief for 26 different LANs with size varying from 

2 to 200 machines. The approximate solving with PERSEUS shows that 0.99 discount rate slows down 

considerably the solving algorithm especially on large LANs with number of machines more than 100. In 

fact, for the biggest LAN, PERSEUS solves the POMDP problem in approximately 4x105 seconds 

compared with 2.75x105, 2.4x105 and 2x105 with 0.95, 0.9 and 0.8 discount rates respectively as shown in 

figure 69.  



 

 
Figure 69: Solving different LANs POMDPs using PERSEUS-LPSolve with Initial Belief and variable 

discount rates. 

The impact of smaller discount rate is more noticeable in exact solving methods such as GIP-LPSolve where 

in 200-machine networks the required solving time is 2.4x106 for 0.99 compared with 1.7x106, 1.65x106 

and 1.55x106 with 0.95, 0.9 and 0.8 discount rates respectively as shown in figure 70.  



 

 
Figure 70: Solving different LANs size associated POMDPs using GIP-LPSolve and variable discount rates 

Furthermore, with the projection of heavily using the modified GIP version on which the Initial Belief is 

manipulated and fed directly to the solving algorithm through a Java parser, we performed the same testing 

to confirm that the selection of the discount rate will not impact the performances. The obtained results 

show that solving with GIP-LPSolve_InitialBelief using the 0.99 discount rate slows down considerably 

the solving algorithm especially on large LANs as the 200-machine LAN POMDP problem is solved in 

approximately 17.25x105 seconds compared with 9.75x105, 9x105 and 8.25x105 with 0.95, 0.9 and 0.8 

discount rates respectively as shown in figure 71. Full results are presented in Appendix 1 Discount Rate 

table.   



 

 
Figure 71: Solving different LANs size associated POMDPs using GIP-LPSolve with Initial Belief and 

variable discount rates 

The obtained results illustrated in figures 72 show the deep impact, for the three algorithms of the variant 

discount factor value γ=0.99 on slowing down the solving performances and thus increasing consumed 

time. Where such discount rate remains strongly recommended in small network (typically smaller than 20 

machines), it is therefore avoided in medium and large LANs. We noticed that γ=0.95 is the only candidate 

that meets both requirements for time efficiency and for policy graph quality in term of exploration and 

relevance. γ=0.95 and γ=0.99 discount rates produced nearly the same Policy Graph  in testing scenarios 

where the network size is more than 100 machines. On the other hand, and as illustrated in figure 72 the 

time consumed for γ=0.9 and γ=0.8 is not significantly different from the γ=0.95 and this leads us to 

conclude that not enough solving time is saved for these two values compared with the decreasing in the 

policies quality which is noticed at the number of vectors in the raw PG and consequently the number of 

the valid attack vector that our framework will attempt if such values are adopted. To sum up, the discount 

rate testing enable us to conclude with confidence that γ=0.95 is the perfect balance between time efficiency 

and solving accuracy.  To conclude this section, the obtained results with all three algorithms and for 

different testbed LANs back the election of a discount rate (factor) equal to 0.95 which is the balance 



 
between improving performance by in one hand requiring shorter solving (convergence) time by 1/3 

compared with a discount rate of 0.99, and in another hand allowing enough exploration and policies 

improvement to reach a quality output PGs compared with 0.8 and 0.9 discount rates.  

7.5 IAPTF Testing variable and evaluation metrics 

In this section, we test and evaluate the performance of IAPTF-Core module on generated virtual LANs, 

the IAPTF-Processing output POMDP environments as result of the POMDP-generator Python program. 

This testing will be based in metrics we extract from IAPTF-Processing output as follow: 

➢ Number of machines N in the tested network,  

➢ Number of identified vulnerabilities V,  

➢ Number of available exploits E,  

➢ Number of security clusters C (in HRL context), 

➢ Number of unchanged machines I (in re-testing context). 

In re-testing, IAPTF-Processing compares the configuration of each machine in reference to the old 

configuration stored in IAPTF-Memory and determines the number of unchanged machine configuration I 

since the last testing. On the other hand, the expertise extraction and reusage are also considered during the 

retesting comparison. Furthermore, the evaluation metrics adopted in this research are: 

➢ Total testing time including RL algorithm solving, pre-processing and post-processing   

➢ Number of attack vectors attempted which we use to estimate the network traffic generated   

➢ Exploration and coverage measured by the number of valid attack vectors attempted. 

For consistency purposes, we opted to introduce an additional quantitative value to be used in comparing 

different approach on the top of time consumed and testing coverage of the proposed IAPTF with both 

human expert (CEH) and industrial automated solution (MSF Pro). The proposed ratio is set to evaluate the 

exploitation of IAPTF in comparison with both human expert (CEH) and industrial automation (MSF Pro). 

We introduce the notion Exploitation Ratio which is calculated for CEH, IAPTF and blind automated MSF 

as follow:  

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑖𝑜𝑛 =
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑠𝑖𝑧𝑒 (𝑁) ∗ 𝑉𝑎𝑙𝑖𝑑 𝐴𝑡𝑡𝑎𝑐𝑘 𝑣𝑒𝑐𝑡𝑜𝑟𝑠

𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 (𝛥) ∗ √𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑉𝑢𝑙𝑠 (𝑉) ∗ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑠 (𝐸)
 



 
With the number of Valid Attack vectors being measured in both IAPTF and MSF Pro but only estimated 

in CEH context basing on the author experience. We define Congestion factor as the impact of  PT on the 

assessed network and will equal to 1 for human-led testing as CEH will only launch relevant attacks, while 

the Congestion Factor 𝛥  defined on 2 to 5 scale for IAPTF and MSF Pro with 5 allocated to high number 

of attacks compared with network size. For each scenario we tried to keep as many settings as consistent as 

possible, to better elucidate the effect of the variable of interest. The table 6 provides details of the different 

parameter values used. The max steps value chosen as this is intended to produce good performance across 

a range of scenario sizes during preliminary testing. Similarly for the values of sensitive machines and 

action costs. 
Table 10: SolvePOMDP Experiments parameters and their values. 

 



 
 

The IAPTF-Core testing was rigorous and extensive, being aware of the volatility in solving 

performances of POMDP and notably when using approximate solving or when relying on linear 

programming (LP) and the associated complexity of finding optimal policies for POMDPs. This later 

are then solvable in polynomial time which is much efficient and enable huge solving-time reduction 

compared with PSPACE problem [125-128]. The testing was repeated several times for each network 

and calculated the mean value and standard deviation for each test scenario. Given the time constraints, 

we opted for a threefold testing approach. We repeated the testing 10 times for small LANs (2-25 

machines) and 5 times for medium LANs (30-95 machines) and only 3 times for large LANs (100-

200 machines). The reason of reducing the number of testes in large LANs is the time required to 

solve POMDPs which exceeds 468.05 hours (19.5 days) for exact solving of 200-machines POMDPs. 

The IAPTF-Core was gradually tested by initially using approximate solving to validate the RL 

modeling and POMDP representation, then the exact solving was applied in two phases. First the 

regular RL modelling where the entire network was considered at once. Secondly the proposed 

hierarchical RL model where networks are divided into security cluster and associated POMDPs are 

built then solved as described in Chapter 6.  The obtained results illustrate the complexity of solving 

medium and large PT problems notably where the aim is reaching the optimal policy. The PERSEUS 

approximate solving algorithm is confirmed to be very efficient with all network size but remain 

unreliable notably in the quality of the output PG and the testing coverage (exploration).  

As anticipated, the exact solving is time consuming and despite the use of the linear programming 

with GIP named GIP-LPSolve the solving time is significantly high and largely exceed the acceptable 

threshold for PT practice in all medium and large LANs despite the use of LPs. Upon the obtained 

results, we decided to introduce some changes within the solving algorithm GIP aiming a better 

performance from IAPTF on a short-term basis. We opted for prioritised transitions and observations 

through the manipulation of the associated probabilities along with introducing some customisation 

into the initial beliefs sampling. In detail, the initial belief is now extracted directly from the output of 

previous testing which reflect the better the real-world situation in PT where tester rely on reports of 

previous testing to elaborate a full awareness of the assessed network.  Indeed, the networks changes 

over time as result of hardware/software upgrade and update, security architecture changes, 

configurations, and architecture changes notably by adding new machines and removing others. 



 
Nevertheless, the vast majority of machines configuration and defence remain unchanged over short 

period (weeks to months). The IAPTF exploits this crucial feature in the quest of performance 

enhancement in solving medium and large size POMDP by opting-out the heavyweight GIP initial 

belief sampling and simply use python scripts to process last testing output and elaborate a complete 

initial belief data that is directly injected into the POMDP environment and thus processed by GIP. 

This new variant of GIP is named here GIP-LPSolve with Initial Belief. The modified GIP-LPSolve 

with Initial Belief produce a huge improvement (35 to 50%) in GIP performances which is due to the 

reduction of the observation space and the narrowing of RL exploration area, this comes of course 

with a major drawback which constitute the construction of the initial belief input either manually or 

with a customized script.  

 
Figure 72: Solving variant size LANs associated POMDP time consumed and standard deviation when using 

different algorithms. 

 

The performance enhancement in large LANs with size exceeding 100-machine (determined 

threshold) is clear when adopting the hierarchical modelling with the obvious security clustering 



 
function reaching the best performance in large networks by dividing networks into an optimal size 

of 7 to 10 machines per cluster and thus enabling fast solving of POMDPs of the dozens of clusters 

and the POMDP of HoCs.  Finally, given the encountered difficulties when solving large network 

POMDPs and especially when the GIP is used, we introduced the HRL modelling which split the large 

POMDP problem into sub-problems following a security clustering approach and solve each of the 

cluster POMDP separately before solving the POMDP constructed from the Heads of Clusters only. 

As discussed in Chapter 6, this approach is very close to the human hacker operating mode by 

considering different LANs machines based on their cyber exposure, attack surface and security 

protection regardless of their sub-network. The HRL involve solving a number of small POMDPs 

equals to C+1 where C is the number of security cluster, rather than solving large POMDP which is 

time consuming.  The obtained results were better than expected in term of efficiency and performance 

enhancement. HRL GIP-LPSolve performed closely to the fast approximate solving PERSEUS and 

especially in large LANs with a projected equality in 200+ machines networks. On the other hand, 

HRL GIP-LPSolve with Initial Belief outperformed the approximate solving and all other algorithms 

and perform particularly well in large networks (100+ machines) with solving time equal to 40% of 

the approximate PERSEUS and 10% of the time requires for GIP-LPSolve with Initial Belief. In small 

LANs, some loss of performance was noticed in HRL-GIP-LPSolve due to the extra-processing added 

for defining a hierarchical PODMP problems for each security cluster and HoC POMDP. Since we 

use value approximation at the higher nodes of the hierarchy to represent the value of selecting the 

various specialized lower-level POMDPs. Further testing showed that this loss of performance is 

minimal in very small LANs where the use of hierarchy is unjustified due to irrelevance on dividing 

a small POMDP into two or more smaller POMDP causing performance loss because of the extra 

computing required for different HRL functions and programs. It is worth to mention that as we 

calculated the complete testing time required for IAPTF to complete full PT exercise on different 

LANs which include the POMDPs HRL-GIP-LPSolve time, pre-processing and post-processing, we 

compare the overall result with both human expert CEH approximate consumed time along with a 

calculated time from Metasploit which is a python-based automation of MSF framework integrated 

with Armitage and Nessus . 



 

 
Figure 73: Time-efficiency comparison of IAPTF (HRL), CEH and fully automated MSF. 

 

The figure 73 illustrates the comparison in term of consumed time and shows that IAPTF outperforms 

both CEH with the gap widen in large LANs. The efficiency of IAPTF compared with the blind 

automation is striking with IAPTF requiring only 17% of the MSF consumed time to complete 200-

machine LANs testing. 

 

7.6 Exploration- PT coverage 
The second metric for testing the RL model of PT practice and the proposed IAPTF is by measuring 

and comparing the exploration and exploitation capabilities. In fact, the POMDP solving time is not 

enough to be considered as deterministic metric for evaluation of the proposed RL model and 

implementation and notably the quality of the solving which remain the key factor in PT practice. As 

with human expert, RL-led PT practice is performed following software RL agent decision-making 

which involves fundamental choices and results in exploring the POMDP environment, This test is 

designed to measure the exploration of IAPTF-Core in terms of the number of covered attack vectors.  



 
 

The number of attack paths is defined as the number of full paths concatenated (re-ordered and 

gathered) Policy Graphs (PGs) resulting from the solving. In fact, the PGs are concatenated to form a 

complete attack path where the starting point is the hacker machine, or any machine controlled at 

admin/root level and thus used as pivot point for lateral movement and the end is a machine state 

either secure (fail exploit) or successful exploitation and privilege escalation. This reconstruction is 

done automatically using a python script and does not account for the feasibility and the relevance of 

the attack path in question. Figure 74 shows the total number of attempted attack vectors obtained 

with an exact solving of the POMDPs for different size LANs reconstructed from the output PGs of 

IAPTF-Core. Figure 74 presents a comparative illustration of number of attacks attempted by the four 

solving algorithms in different size LANs. 

 
Figure 74: Number of attack vectors reconstituted from PGs covered by each if the solving algorithms in 

different size LANs. 

 



 
From the obtained results, it is obvious that the classic implementation of GIP-LPSolve covers more 

attack vectors despite being more time-consuming. The output policy graph (PG) in GIP-LPSolve is 

larger as this solving algorithm perform more action and observe more states with the aim to compute 

the best possible policy starting without prior knowledge and pre-eliminated testing directions. HRL-

GIP-LPSolve output approximately half the number of attack paths which is explained by the fact that 

the hierarchical RL algorithm will solve a number of small POMDPs equal to the number of security 

clusters plus the head of clusters (HoC) POMDP (C+1) resulting into RL performing a local 

exploration and thus covering less attack vectors. On the other hand, both customized initial-belief 

variant of GIP (RL and HRL) produced approximately the output a third of GIP-LPSolve.  These two 

implementations rely on the use of last testing output as customized Initial Belief to feed the solving 

algorithm pre-eliminate many paths and push the RL agent to ignore certain paths which reduces the solving 

time but also reduces the number of attempted attacks by relying on the fully observable state and thus 

reducing the number of attacks possibilities which will operate as attack pre-elimination mechanisms.  

The total number of attack vectors is important to measure the exploration but insufficient. We here 

highlight the fact that PGs size and number of attack vectors attempted, known as attack coverage rate, is 

subjective and often misleading as not all attack vectors are valid and complete. The program introduced in 

IAPTF is a set of python scripts that examine all attack vector and eliminate non-relevant, repetitive, cyclic 

and unworthy attack victors. The results for the four algorithms is unexpected as the gap between GIP-

LPSolve and other three candidate because marginal which validate again the HRL assumption made and 

the robustness of the proposed model. We introduced, for comparison purposes, the average number of 

attack vector covered by CEH in figure 75. 



 

 

Figure 75: Comparison of total number of valid attack vectors for the four algorithms CEH. 

 

It is obvious that on the top of the overall performance enhancement and notably, GIP LPSolve with 

initial belief and HRL- GIP-LPSolve algorithms produce a similar quality of the produced decision 

policies which remain was beyond human expertise especially in the case of the medium and large 

LANs when the size and complexity impact human CEH and therefore omit a significant number of 

composite (non-obvious) attacking vectors s. On the other hand, IAPTF explores more attack vectors 

and attempt higher number of composite attacks resulting in discovering additional attack vectors 

which most of CEH would ignore.  

 

Finally, we elaborated an illustrative graph for comparing both time efficiency and valid attack vector 

coverage for IAPTF using HRL- GIP-LPSolve with Initial belief as it is the most efficient 

implementation in term of time and valid attack vector along with the estimated values for human 

expert CEH and a calculated values for MSF fully automated testing illustrated in figure 76.  



 

 
Figure 76: 3-D comparison of IAPTF, CEH and MSF performances in term of time and valid attack vectors 

covered. 

It is obvious that IAPTF is the fastest PT approach and second best explorative behind the blind automation 

(brute-force) which remain far more time costly. IAPTF is faster and more explorative than the costly 

human CEH. 

7.7 Exploitation-Testing Validation 
In PT practice, success in not binary or measured by successful attacks and exploitation as a failed 

attack of attempted properly is a success in term of confirming that an asset is secure against the attack 

and will be reported accordingly for compliance purposes. In addition, notion such as false positive 

and false negative are not possible to measure and explain in PT practice. We thus introduced a new 

metric named exploitation ratio which is synonym of testing validation and represent the cumulative 

number of successful of failed valid attacks attempted and thus to be reported at the end of testing. 

We calculated this ratio for IAPTF, CEH and MSF and reported obtained results in figure 77. 

 



 

 
Figure 77: 3-D comparison of IAPTF, CEH and MSF performances in term of time and exploitation ratio. 

The obtained results have once again backed IAPTF generally and the HRL modelling of PT 

specifically. In this occasion IAPTF outperforms both the lengthy blind automation (MSF) and the 

unreliable CEH where despite being time efficient remain costly and report less valid tests.  

7.8 PT generated traffic 
PT efficiency is often assessed by measuring the disturbance (network downtime) caused during its 

execution in term of network congestion or eventually downtime. This is measured by the amount of 

generated reconnaissance, discovery, exploitation, and post-exploitation traffic. Furthermore, the 

amount of generated traffic is usually considered proportionate to the risk of detection as most of 

network security mechanisms and especially Intrusion Detection Systems rely on the abnormal traffic 

monitoring for attack detection. In this research, we estimated the amount generated traffic by 

calculated the number of testing sub-tasks performed by IAPTF, CEH and MSF and we represented 

in figure 78 the obtained results in parallel with the time required for completing different LANs size 

testing.   



 

 

Figure 78: 3-D comparison of IAPTF, CEH and MSF performances in term of generated network traffic. 

 

Obtained results illustrated in figure 78 strengthen the RL-led PT position as IAPTF remains far less 

noisy in term of generated network traffic than the blind automated MSF which is completely expected 

as it attempts fewer attacking vectors. Nonetheless, CEH remain stealthier as human expert is 

particularly keen on not trigger security mechanism in the network but this approach is less reliable 

(effective) because of the small amount of valid tests produced and also lower testing coverage.  

7.9 IAPTF- Expertise extraction and Retesting  
As we discussed in Chapter 2 and specifically the research contribution, the proposed RL model of 

IAPTF is introduced and implemented to tackle two major issues in the PT practice, having presented 

in previous sections tested and validated the RL and HRL modelling of PT practice and proved the 

performance enhancement of such AI-led PT in term of testing time, testing exploration, testing 

exploitation, and reducing network congestion. Furthermore, the use of RL enabled the 

implementation of IAPTF expertise extraction, generalisation, and re-use mechanisms which we 



 
tested to assess their impact on performance enhancement. We proceeded to re-test the same network 

by introducing gradual changes to certain number of machine configurations mimicking the real-world 

situation where networks change over time as result of hardware/software upgrade and update, 

security architecture changes, configurations, and architecture changes notably by adding new 

machines and removing others. The testing was carried out in two phases. First the regular RL 

implementation of GIP-LPSolve with customised Initial Belief and then in a later stage the introduced 

HRL-GIP-LPSolve with customised Initial Belief, The tests used the output of previous testing 

(performed before introducing the changes into the LANs) and measured the time required for solving. 

The IAPTF utilise this crucial feature in the quest of performance enhancement in solving medium 

and large size POMDP by opting out of the heavyweight GIP initial belief sampling and simply use 

python scripts to process last testing output and elaborate a complete initial belief data that is directly 

injected into the POMDP environment and thus processed by GIP. This new variant of GIP is named 

here GIP-LPSolve with Initial Belief.  

The obtained results were surprisingly better than expected in term of performance enhancement. GIP-

LPSolve with Initial Belief performed much better than the classic GIP in terms of consumed time 

and policy graph (PG) accuracy were calculated by dividing the number of attack vectors by the total 

number of policy graph. The performances are unanimous and showed in Figure 79. Furthermore, to 

assess the contribution of IAPTF expertise extraction, generalisation and reuse and its impact on 

performance enhancement, we proceeded to re-test the same network with or without introducing 

minor or major changes to a different number of machine configurations. The obtained results in the 

context of 100- to 200-machine LANs were extremely encouraging and nearly halved the consumed 

time in solving as shown in Figure 79.  



 

 

Figure 79: Re-testing the same network with introducing a percentage of change using RL-GIP-LPSolve. 

The obtained results were unanimous. The performance enhancement in small LANs were marginal 

but started to increase in medium LANs to reach very efficient results in 100-machine LANs. The 

large LANs context is further better, and results were extremely encouraging as shown in Figure 79. 

Overall, retesting RL-GIP-LPSolve produced very good results in small and medium LANs but 

remained relatively high in large LANS. The results show some loss of performance for HRL 

(compared with regular RL for very small networks) with number of machines up to 10 machines (4 

clusters, 33 vulnerabilities, 24 exploits). This issue is completely justified by the fact that clustering 

and cluster processing is useless and only slow down IAPTF. In small networks, security clustering 

produce often a big number of security clusters and thus many very small (2-3 machines) POMDPs 

on the top of the POMDP representing the Heads of clusters. This will result in forcing IAPTF in 

executing a big amount of data manipulation and POMDPs' solving which are in fact unnecessary. 

The fact that Regular RL solving of entire POMDP is faster. However, HRL-GIP effect is largely 

appreciated in larger networks and reach a very good rate in 100-machine network (25 clusters, 102 

vulnerabilities, 80 exploits). HRL approach requires 224087.118 ± 12564.7 (2.6 days) compared with 



 
538318.624± 31964.2 (6.2 days) in regular RL-GIP. Going beyond the 100-machine size, HRL is at 

least 4 times more efficient and reaching 200-machine size (52 clusters, 153 vulnerabilities, 115 

exploits), HRL-GIP performed almost as well as approximate PERSEUS and required 340582.592 

±16297.8 (3.9 days) compared with 1685011.539± 71160.5 (19.5 days) for RL-GIP and 278369.056 

± 5236.9 (3.2 days). When we repeat the tests using the output of previous testing as initial belief 

(after processing), GIP-HRL surpasses PERSEUS performance and only required 1.2 days compared 

with 3.2 for approximate.  We then tested the HRL-GIP-LPSolve with different LANs and changes 

percentages, as shown in figure 80.  

 

Figure 80: Re-testing the same network with introducing a percentage of change using HRL-GIP-LPSolve. 

The obtained results outperformed the regular RL representation in all medium size LANs. In context 

of large LAN as illustrated in figure 81 the performance were beyond expectation with a clear 

performance enhancement in the retesting with 10% and 30% changes and with the 100-machines 

threshold for HRL-GIP-LPSolve retesting compared with first testing.  

 



 
Finally, it worth to highlight that despite the re-testing covered different percentage of change, the 

10% and 30% scenarios are the most probable and realistic as in networking the vast majority of 

machines configuration and defence remain unchanged or only experience few changes (not exceeding 

10% over short period (weeks to months) and 30% over medium period (up to 2-years). The figure 81 

illustrate IAPTF the amount of contribution of both hierarchical RL modelling and Initial Belief 

customization by using last test output data. 

 

Figure 81: IAPTF re-testing performances’ enhancement by algorithm on small, medium and large size 

LANs. 

The performances enhancement in retesting is unanimous with obtained results surprisingly better in 

term of performance enhancement. HRL-GIP-LPSolve performed much better than the classic GIP in 

term if consumed time with results in the context of 100 to 200 machines LANs extremely positive. 

  



 
7.10 Discussion and reflections 
Discussing IAPTF results is a multi-step operation starting by discussing RL choice and validating 

the proposed model and learning approach. Later, we examine and discuss the obtained results in 

solving real-world PT problems modelled as POMDPs, then we proceed with discussing the obtained 

results obtained with different algorithms, RL representation and Initial Belief handling approaches 

as well different security auditing re-testing and compliance scenarios. This discussion focuses on the 

five evaluation metrics set initially which are: consumed time, coverage (exploration), reliability 

(exploitation), congestion and finally expertise extraction and reply in retesting with or without 

changes.  

7.10.1 Reinforcement Learning and modelling choices 
The choice of POMDP over MDP which are quite tractable to solve and easy to specify is because 

this later only consider the perfect knowledge of state which is mostly not the case in PT practice [36]. 

In fact, POMDP accounts for all sources of uncertainty uniformly and allows for continuous network 

discovery and information gathering actions. Nonetheless, POMDP choice comes with the price of 

enormous intractability in solving the problem optimally [23-24]. Consequently, we opted for 

modelling the POMDP as Belief-State MDP, this approach comes with the excellent news related to 

the fact that Value-Iteration is an exact method for determining the value function of POMDPs and 

the optimal action can be read from the value function for any belief state but the time complexity of 

solving POMDP in value-iteration is exponential in term of number of actions, number of observations 

and the dimensionality of the belief space which grows with number of states [140-141].  

In term of solving approach, which is Policy Iteration for POMDPs, we opted for this option as it 

mimics the best possible way the PT expert decision making and self-learning and improvement. In 

general, Policy Iteration algorithms choose a policy and then determine the value function based on 

the current policy to later update the value function, based on Bellman’s equation, and finally update 

the policy and optionally iterate.  Policy Iteration algorithms for POMDPs considered for this research 

are first GIP which is the improvement of original algorithm that was complex by introducing an 

efficient evaluation mechanism to assess local value function from policy and also the representation 

of policy using finite-state controller [49]. The second option considered was the PERSEUS Point-

Based Value Iteration [65] which solve POMDP for finite set of belief points through initializing 

linear segment for each belief point and iterate while occasionally and keep adding new belief points 



 
as long as the improvements fall below a threshold.  Finally, it is important to highlight that despite 

the use of a high performance server and optimised solving algorithms, large networks with size 

exceeding 200-machine result in very large POMDPs problems that are outside the scope of tractable 

exact solutions. The HRL modelling was then proposed to overcome this specific issue and making 

IAPTF universal and operational in all scenarios. 

7.10.2 IAPTF performance  
Overall, the obtained results consolidate prior assumptions on the role of ML and specifically RL in 

the automation of decision-making, performance enhancement and optimisation in the use of 

resources in offensive cyber security and notably PT practice. Commercial and open-source PT 

systems and frameworks were designed initially to work either under human instructions or in a 

blindly automated manner, but both approaches fail to address the current environment in which PT 

practice is evolving notably the increasing size and complexity of the networks, the high number of 

vulnerabilities and the composite testing scenarios which mimic modern hackers operating 

approaches. HRL modelling is very efficient when used in the appropriate context (medium and large 

LANs), and IAPTF results are additional evidence of the drastic performance enhancement compared 

to an average human expert.  

In practice, the output of the RL solving is acting policies graphs (PGs) which undergo additional 

processing to convert the results into a more understandable format. In addition to the consumed time 

for solving the POMDP problem, other factors will be considered notably the time required to perform 

different PT tasks by the Metasploit MSF and other variables which are either calculated or 

approximated to define the overall consumed time that IAPTF will take to perform a full testing on 

the test-bed networks. The obtained results shown in the Figures 71-83 illustrate an initial comparison 

of different RL solving algorithms performances on different LANs which were also compared with 

manual PT consumed time based on the author’s experience as a PT consultant and CEH as well as 

empirical estimation of the overall time required to perform an automated PT with no optimisation. It 

is clearly obvious that IAPTF outperforms both manual and automated PT. In addition, different 

discount rates were considered in the optic of finding a suitable balance between performance 

enhancements and preserving the realistic nature of our IAPTF.  

In regular RL model, IAPTF performs better than CEH expert in small and medium size LANs when 

accounting for the gain associated to expertise extraction and cost cut. This was expected as solving 



 
large POMDP problems and time wasted in interactions will slow down the IAPTF.  Nevertheless, the 

weakness in the performances is covered by IAPTF testing coverage (validated PGs) which exceed 

by at least double human covered attack paths, a human tester is often pushed to pre-eliminate some 

testing vectors or omitting some complex attacking vectors which in some case revealed catastrophic 

for the asset security. The coverage and exploration metrics will be measured in detail and discussed 

in future works. Finally, we noticed that IAPTF performance on large size LANs decreases sharply, 

and this is mainly due to the complexity which impacts the size of the POMDP environments along 

with usage of memory during the solving of the problem. This major issue is currently being dealt 

with by proposing a hierarchical PT POMDP model relying on grouping several machines under the 

same cluster which will be detailed in future works along with improving IAPTF. 

Nonetheless, regular RL approach required to solve large POMDP environment generated from a 

medium size LAN required a huge amount of time of 149.5 hours (6.2 days) for a network of 100 

machines and which is an unreasonable amount of time. The poor performances in medium networks 

of 100-200 machines was expected as the exact POMDP solving is a P-SPACE complete problem 

compared with NP-complete in approximate solving, thus the time required for solving became 

computationally intractable. We tested the new hierarchical representation of PT which meant solving 

several small size POMDP problem for each cluster then solving the inter-clusters POMDP problem. 

We accounted for the overall time required. The obtained results for five solving approaches, namely 

PERSEUS, RL-GIP-LPSolve, RL-GIP-LPSolve+Initial Belief HRL-GIP-LPSolve, and HRL-GIP-

LPSolve+Initial Belief are plotted in figure 79 showing the mean values and standard deviations. In 

GIP as with other exact solving with linear programming (LP) algorithm is PSPACE-hard problem 

which in computational complexity theory can be solved using an amount of memory that is 

polynomial in the input length (polynomial space) and thus requiring polynomial time for finding 

optimal policies for POMDPs when that solution by linear programming is possible. When the 

decision horizon is large the use of discounted factor is crucial with the role of LP to ensure that the 

problem is solvable in polynomial time which is a huge reduction from the above PSPACE-hard 

making the solving equivalent to a MDPs which are fully observable POMDPs. 

The performance enhancement in large LANs with size exceeding 100-machine is clear in hierarchical 

modelling where the security clustering is impactful as the security cluster size become more 

https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/PSPACE
https://en.wikipedia.org/wiki/Polynomial-time_reduction


 
consistent (large corporate networks clustering produce typically 6 to 15 machines per cluster) and 

HRL GIP-LPSolve solving becomes more time-efficient in large LANs which is the ultimate 

validation of the HRL modelling designed and implemented to solve large LANs.  In small LANs, we 

noticed that HRL GIP-LPSolve and HRL GIP-LPSolve with Initial Belief are relatively slower than 

GIP-LPSolve and GIP-LPSolve with Initial Belief This loss of performance is expected and justified 

by the extra processing done when defining a hierarchical structure for a problem, since we use value 

approximation at the higher nodes of the hierarchy to represent the value of selecting the various 

specialized lower-level POMDPs. The multiple testing shows that this loss of performance is minimal 

in small LANs with number less than 20 machines which is not the best scenario where the use of 

hierarchy is justified by the structure of the domain. We are looking at techniques to predict bounds 

on the performance loss as a function of the selected hierarchy. Finally, it worth to mention that despite 

the fact that the testing was limited to 200-machines HRL GIP-LPSolve with IB version is expected 

to solve extra-large LANs efficiently and effectively. 

7.10.3 Expertise extraction and retesting 
In terms of re-testing, the performed test on different LANs after introducing four different percentage 

of change in the assessed network with the changes introduced represent 10%, 30%, 50% and 75%. 

The obtained results confirmed one of this research hypotheses namely RL expertise extraction and 

reuse crucial impact when used as prior knowledge (initial belief) on algorithms’ overall performances 

by notably accelerating the convergence toward optimal policy graph. The obtained results in the 

context of 100- to 200-machine LANs were outstanding and reduced considerably consumed time in 

10% and 30% context. The retesting brilliant results are mainly due to the use of the enhanced GIP-

LPSolve which utilises a new mechanism in creating and managing POMDP initial belief was proved 

very efficient especially in small and medium size LANs. In fact, GIP LPSolve is a variant of an exact 

solving RL algorithm which are often labelled as good in results quality but bad in performance, but 

the introduced changes in initial belief sampling and managing along with prioritising some decision 

sequence over others enabled the new variant to perform much better and even outperform other RL 

approximate solving algorithms. On the other hand, re-testing of the same network after the 

introduction of minor changes in few machines permitted to appreciate the full contribution of RL to 

PT practice by cutting drastically the consumed time and thus, allowing a fast and reliable re-testing 



 
which is often the case in PT when periodic re-testing is compulsory despite the lack of any significant 

configuration changes within the networks systems. 

The explanation of the obtained results with different algorithms has deep roots in the functioning of 

the algorithms and how they use the data represented in the POMDP environment along with the initial 

belief sampling. In fact, policy search algorithms adopt a direct but approximate technique to solve 

the RL problem and thus sacrifice accuracy for the sake of performance. This applies for the two 

versions of PERSEUS, GIP -LPSolve and GIP-LPSolve_IB with different levels depending on the 

solving approach and optimiaation. On the other side, the exact solving algorithm and notably the GIP 

reputed by their bad performances but good results and utilising this algorithm within IAPTF were 

not meant for finding the exception but for comparison and evaluation purposes. The obtained results 

with the GIP were expected and confirmed that relying on the basic version of GIP would not produce 

any positive output. Therefore we implemented a customised version (mainly on belief sampling and 

sequences prioritization) which indeed produced far better results on re-testing scenario and even 

outperformed the approximate approaches in case of exactly or nearly similar network re-testing 

where the adopted customisation brought the sought impact on the IAPTF performance.  

7.10.4 Exploration and Exploitation 
RL is the only branch of machine learning that can enable, within a predefined environment, a software 

agent to explore and perform sequential decision-making under uncertainty and produce decision 

policies (also known as policy graphs) that have a high degree of accuracy and relevance along with 

acceptable performances in relation to complex tasks. The RL approach considered for PT practice is 

black-box (sometimes grey-box when initial belief is provided) as the RL agent explore and make 

decisions with respect to RL environment input data. These decisions are PGs which are translated 

into attack vectors using automated scripts. The output PGs and thus attack vector interpretation is a 

tricky task and require deep understanding of IALTF and especially RL model functioning along with 

mechanisms used such as scripting for cleaning and constructing attack vectors.  Exploitation 

measurement is rooted in the deep problem of  “explainable AI” and in this work we focused on the 

results output and its explanation. Form the obtained results, we confirm that IAPTF exploration and 

exploitation back the third hypothesis for this research as a RL-led PT practice produce more reliable 

result in term of testing different vulnerabilities and more accurate results in term of percentage of 

valid attack vector converted into confirmed testing output. All variant algorithms implemented in 



 
IAPTF exceed by far any CEH performance with the number even doubled in large networks making 

IAPTF more reliable in terms of PT output confidence.   In practical terms, using the adequate RL 

algorithm and adopting a new learning scheme enabled IAPTF to produce a very optimised attack 

policies when targeting the Machine M9 suspected to contain sensitive information and defined as the 

most secured machine within the test-bed network as illustrated in Figure 84. Indeed, the produced 

policy is from an attacker point of view obvious but getting an automated system to opt for such attack 

vectors despite being not minimal in terms of cost of the exploits and consumed time is the novelty in 

IAPTF which is able to sacrifice simplicity for a higher objective. IAPTF exploring and large coverage 

capabilities were able to find a very complex and non-obvious attack path in medium-size networks 

where, relying on authors experience, no human tester will directly consider adopting the below attack 

path despite being relevant and exploitable by hackers but instead will mainly focus on shorted and 

more direct attack paths.  

 
Figure 82: Partial illustration of IAPTF output attacking vectors on a 20-machines LAN. 

 

The situation in large LANs is completely different as the attack vectors and notably composite and 

complex are less obvious to grasp by human CEH and often omitted or ignored. The figure 85 

summarises few attack vectors (the most relevant). The high priority target encircled in red are located 

in different security clusters which requires the RL agents to procced to many pivoting (lateral 

movement) operations which is illustrated by the different attack vectors.  



 

 
Figure 83 : Partial illustration of IAPTF output attack vectors on a 100-machines LAN. 

To sum up, IAPTF does not only outperform CEH and blind automated system in term of time but 

also in term of exploration (covered attack) and exploitation (relevance and pertinence) of the executed 

and tested attacks. Several other positive outcomes were noticed, notably the pertinence of the 

produced result as solving POMDP resulted in PGs converted into valid attack vectors and assessment 

validated that IAPTF outperform CEH and blind automation in all five-assessment metrics.  We 

estimate the evaluated the overall contribution of IAPTF to be twice better than human CEH in 200-



 
machine network and 5 to 6 times better than blind automation and this despite the framework 

heavyweight pre-processing and post-processing.  

 

  



 

 
 

Chapter 8: Conclusion 

8.1 Research Output Discussion 
This section reviews the findings of the experiments conducted during this research to evaluate the 

proposed RL and HRL models and the performance of IAPTF in automating the testing of different 

size LANs recreated out of real-world data in our virtual environment.  

PT is a complex and labor-intensive practice which despite the current use of tools and mostly 

automated systems, the complexity of PT tasks is also a major concern in current practice. This 

research has developed a new model and novel framework for PT using RL. Experiments conducted 

during this research have demonstrated the effectiveness of using RL to enable a software agent 

controlling an automated PT system to conduct vulnerability testing, exploration, and validation. 

There were a variety of POMDP solving algorithms used in the experiments: exact solving GIP and 

approximate solving PESEUS with both using linear programming and different approaches in 

handling and generating the initial belief. These RL solving approaches and algorithms were 

employed in different scenarios and inputs to real computer networks data represented in the form of 

POMDPs. All the solving approaches looked at achieved efficiency in term of consumed time, 

accuracy in term of vulnerability exploitation, and relevance in term of decision policies precision. 

The different solving approaches and algorithms were used into different networks varying in size 

from 2 to 200 machines created for this purpose and obtained results were compared as described in 

Chapter 7.  

Overall, the proposed RL approach implemented within IAPTF outperforms fully automated PT 

systems by far in all testing scenarios including small LANs. During the first phase of IAPTF when 

only regular RL implementation were introduced, the performances of the framework were equivalent 

to the human expert (CEH) in small LANs but the gap started to widen in medium LANs (over 25 

machines) to become huge in large LANs. This was due to our choice of opting into an exact solving 

of POMDP which is complex and costly, nonetheless the testing coverage and relevance of IAPTF is 

far superior than the CEH measured by the number of overall covered attack vectors and valid attack 

vectors respectively. Furthermore, this research proposed and implemented with the IAPTF the 

Hierarchical RL model of PT to tackle the scalability issue in large LANs. The obtained results 

showed that IAPTF performance outperforms any human expert (CEH) both in terms of consumed 

time (efficiency) and in terms of testing coverage and test relevance (effectiveness) [141].    

Finally, we highlight that the IAPTF includes a further feature which is crucial towards the 

optimisation of the current PT automation, namely the expertise extraction, generalization and replay 

which enable fast retesting notably in security compliance scenarios.  IAPTF permits the re-usability 

of the testing output by either learning and/or capturing the expertise during the test and storing it in 



 

the system memory for future use. It was proved to be very efficient in re-testing scenarios (very 

common in PT) and nearly similar cases when the testing time and accuracy of the produced results 

were exceptional. At a later stage of this research, we tackled the scalability issue raised in medium 

and large size networks by adopting and implementing a two-level hierarchical representation of the 

PT environment as POMDP problems. The first level tackled a set of small networks (security 

clusters) considered as independent small POMDP problem to solve, whereas the second level tackled 

the inter-clusters network composed from the head of clusters machines which are elected to be the 

most vulnerable and likely to be used by hackers for pivoting after achieving an accepted privilege 

escalation. This approach was then confirmed and validated in this research as the most realistic and 

optimal strategy to help a full RL-led automation of PT along with producing an efficient result in 

term of timing and expertise capturing. The HRL representation enabled a better explanation of the 

obtained results and more visibility about the testing coverage as well as an effective execution of 

different PT activities by notably excluding impossible scenarios which are often time consuming 

[141].  

The methodology for conducting the research was done after a comprehensive review of related works 

and PT literature in general which enabled us to complete the domain understanding and identify the 

research gap and elaborate research questions. Then we proceeded with decomposing network PT 

practice in activities, tasks and subtasks to identify and understand the human expertise. Next we 

reviewed different AI techniques to elect the most relevant ones for our research which revealed to be 

RL because of its suitability to the domain of sequential decision making under uncertainty. At an 

early stage we proposed a POMDP representation of PT problem which does not only cover the 

planning but the entire practice. Then this research produced a novel application of RL techniques to 

the interactive part (and not the planning) of offensive cybersecurity domain which allows PT systems 

and frameworks to become intelligent and autonomous and thus perform most of testing and re-testing 

tasks with no or little human intervention. The proposed system named IAPTF can act as a module 

and integrate with most of the industrial PT frameworks to significantly improve the efficiency and 

accuracy of medium and large networks context. The proposed modelling of PT in the form of the RL 

problem allowed the coverage of the entire PT practice and thus producing a system fit for the real-

world context. The current implementation of IAPTF is integrated into the most used PT frameworks 

such as Metasploit and permitted highly efficient testing in terms of consumed time, allocated 

resources, covered tests and accuracy of the produced results. 

 



 

8.2 Review of Contributions 
The major contribution of this approach is to apply RL techniques to a real-world problem of 

automating and optimising PT practice. The research resulted into a net improvements of PT 

framework performances notably in terms of consumed time and covered attack-vectors as well as 

enhancing the produced results reliability and persistence. Our work lead optimistically to a PT system 

free from human error. The second major contribution of the system is the ability to capture the 

expertise of human experts without instructing it as IAPTS will rely initially upon the expert feedback 

in form of rewarding values until it reaches a certain maturity. Thirdly, IAPTS will increase testing 

coverage by attempting tests that a human expert will not be able to explore because of the frequent 

lack of time. Finally, IAPTS permits the re-usability of the testing output by either learning and/or 

capturing the expertise during the test and storing it with the system memory for future use. It was 

proved to be very efficient in re-testing scenarios (very common in PT) and nearly similar cases when 

the testing time and accuracy of the produced results were exceptional. 

 

IAPTF performance, when adopting regular RL model, on relatively medium and large networks is 

far superior to the current industry baseline covering acceptable time usually allocated to PT expert.  

When we introduced the Hierarchical RL model, the performance improvement became striking 

notably when comparing blind automation and CEH with the novel hierarchical POMDP model of 

PT practice. The HRL approach relies on a complex processing during which the large networks are 

initially divided into segments (clusters) following a security-oriented approach and the overall 

POMDP environment will contain the representation of the clusters rather than all machines within 

the network. This approach has been tested and results obtained were carefully examined. The 

validated outcomes are excellent as HRL solves two major issues faced during the IAPTF testing: the 

performance enhancement as the system will be solving several small POMDP problems rather than 

dealing with one large and complex environment. In addition, the hierarchical model simplified and 

enhanced the process of expertise capturing and handling as this later is easily identified and 

reconstructed following the two levels (intra-cluster and inter-clusters) and then generalised and 

stored in the system memory employing expert system for future use which will depend on the 

changes introduced in the assessed network [142]. 

 
 



 

 
8.3 Identify and Address Limitations 
 

Despite the fact of addressing the scalability and re-usability issues raised in the middle of this 

research notably by adopting the hierarchical RL model to tackle large LANs and also the use of 

expert system for experience generalisation and reply, this work encountered three limitations which 

are beyond the scope of this research.  The first limitation of IAPTF is the need of high-caliber human 

expert supervision during early learning phases where this expert will perform or closely supervise 

PT activities undergone by IAPTF and adjust the learning and veto the output of the system to ensure 

a good quality training by acting as a rewarding provider for the RL agent actions. The second 

limitation of this research is that IAPTF and more specifically the RL and HRL model is designed 

and built to cover computer networks and infrastructures PT and thus does not account for application 

testing, web testing and IoT testing. This limitation is due to the adopted approach of applying RL in 

the form of POMDP which requires a set of modules to capture and process real-world PT data and 

then use a software agent to solve the problem and enable an optimised automation of PT practice 

along with improving the performances and also enhancing the output results’ reliability and 

persistence which will lead optimistically to a PT system free from human error. Therefore, upgrading 

IAPTF capability to cover new testing variant and context should imperatively pass through the 

extension or eventually the development of new RL model and thus POMDP. The third limitation of 

IAPTF is the ability to capture expertise from unusual and complex testing vector choices when the 

human expert cannot validate the relevance and adequacy to enable the CLIPS expert system to 

process (make it general) and store it for future use without the intervention of IAPTF-Core module.  

 

8.4 Directions for Future Work 
Research and sciences always open the door for more questions rather than only answering existed 

questions. For that, in this research I assume further research on embedding AI techniques and 

optimising current automation of Vulnerability Assessment and PT is highly recommended and 

needed for the benefit of improving cyber resilience and security and offer a better protection to IT 

infrastructures form the fast-emerging cyber-threats and making cyber space a secured domain as 

possible. Future research direction in this domain will include:  

➢ Investigating and implementing multi-agent solving as an alternative to improve performance 

on complex and large POMDP environments. This opting can be very beneficial in case of 

parallel testing where more than one session is launched on the system and in case of 

hierarchical modelling of large networks where the environment representation (states, 

actions, observations, transitions, and reward) associated with each phase of PT will be stored 



 
separately.  

➢ Attempting a multi-layer hierarchical model which account for all phases, activities, tasks and 

sub-tasks of PT practice. This approach would address the expertise identification, capturing 

and generalisation and thus completely get rid of human expert intervention at early stage if 

learning. 

➢ Extend the RL and HRL model to account for more testing scenarios such as application, web 

and IoT testing.   

➢ Generalising the PT RL model itself to include web-penetration testing and eventually IoT and 

extend the IAPTF modules to accommodate for such upgrade. 

➢ Attempt to extend the use of RL in more cyber security domain notably where human expert 

is heavily required such as incident handling and digital forensics.  

 

8.5 Closing Remarks 
In this research, I have worked towards a proof-of-concept framework which rely on RL branch of AI 

and other techniques to replace human expert in conducting PT and vulnerability assessment activities 

in an optimised and autonomous way. The sought-after framework is not intended to be stand-alone 

software but to integrate commercial and open-source existing systems such as Metasploit Pro, Core-

Impact, Nessus and others. This research validated the theoretical model of network PT practice as a 

POMDP environment interaction problem and not just as planning problem, and which was then 

adapted to larger networks by adopting a hierarchical POMDP representation following the splitting 

of large networks into several security clusters and dealing with each one of them separately to then 

process the network composed from the head of clusters. Furthermore, during this research and before 

reaching the proposed formal RL and HRL models we contributed into formalising the network PT 

practice and advancing the domain understanding in relation to offensive cyber security evolution in 

parallel with real-world hackers and cyber-criminal organisations development.  
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Appendix A 
 
 

Table 11: Time and standard deviation in seconds consumed to solve POMDP problem for different size 

LANs 

 
 
 
 
 

Table 12: Time in seconds consumed to solve POMDP problem for Re-testing cases after introducing a 

variable percentage of change and using last testing output as initial belief. 
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