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ABSTRACT

A B S T R A C T

Increased computer throughput can be achieved through the use of parallel processing. 
The granularity of a parallel program is the average number of instructions performed 
by the tasks constituting it. Coarse-grained programs typically execute huge numbers 
of instructions per task (w 105). The tasks in fine-grained programs are typically short 
(æ 103). In general, the finer the program grain, the greater the potential for exploiting 
parallelism. Amdahl’s Law shows that in the absence of overheads, the more potential 
parallelism that is realised in an algorithm, the faster it will be. The economical granularity 
of tasks is determined by the intertask communications overhead. Break-even occurs when 
processing is approximately equally divided between useful work and overhead.

The two common parallel programming paradigms are shared variable and message pass-
ing. Shared variable is, in general, the more natural of the two as it allows implicit 
communication between tasks. This encourages the programmer to make use of fine-
grained tasks. The message passing paradigm requires explicit communication between 
tasks. This encourages the programmer to use coarser-grained tasks.

Two kinds of parallel architecture have become established. The first is the multiproces-
sor, which is built around a shared bus giving broadcast communications and a shared 
memory. This is characterised by low communications overhead, but limited scalability. 
The second is the multicomputer, which is based on point-to-point communications with 
larger communications overhead, but good scalability. Quantitatively, the low overhead 
of the multiprocessor is well matched to fine-grain tasks and, hence, to supporting the 
shared variable paradigm, while the high overhead of the multicomputer matches it to 
coarse-grain parallelism and, hence, to the message passing paradigm.

Currently, there appears to be no middle ground in parallel computing; an architecture 
which can support both several hundred medium-grained («  104 instructions) parallel 
tasks and the shared variable programming paradigm would be advantageous in many 
applications.

This thesis asserts that it is possible to implement a new computer architecture, Cherub, 
which has at least 200 processors and is able to support shared variable programming with 
an optimal task granularity of around 104 instructions. This can be achieved through the 
combination of a hardware-based distributed shared single address space and a wafer-scale 
communications network.

To support the thesis, the dissertation first specifies a programmer’s interface to Cherub 
which is simple enough to implement in hardware. It then designs algorithms which 
provide this interface, allowing the requirements of the underlying network to be esti-
mated. Finally, a wafer scale communications network is outlined, and simulations are 
used to demonstrate that it can provide the performance required to successfully imple-
ment Cherub.
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Chapter 1

Introduction

1.1 A n Informal P erspective

The existence of a radically new systems architecture often has landslide effects through-
out the computer industry. For example, Atlas’s demand paging [Kil61, Kil62], IVY’s 
distributed shared memory [Li 86, Li 89] and Chorus’s microkernel [Gui82, Arm86, Her88] 
have all had profound effects over subsequent computer design.

This dissertation proposes a new architecture, Cherub, which uses hardware to create a 
high performance distributed single shared address space and allows the use of a scalable 
medium-grained shared variable programming paradigm. It is hoped that this may lead 
to a significant advance in parallel computing.

1.1.1 P arallel Program m ing

Increased computer throughput can be achieved through the use of parallel processing. 
Two main issues are of importance in parallel systems:

• Granularity of Processing and Intertask Communication Overhead

• Programmability

Granularity of Processing and Intertask Communication Overhead

The granularity of a parallel program is the average number of instructions performed 
by the tasks constituting it. Coarse-grained programs typically execute huge numbers 
of instructions per task («  105). The tasks in fine-grained programs are typically short 
(«  103). In general, the finer the program grain, the greater the potential for exploiting 
parallelism. Amdahl’s Law shows that in the absence of overheads, the more potential 
parallelism that is realised in an algorithm, the faster it will be. The economical granularity 
of tasks is determined by the intertask communication overhead. Break-even occurs when 
processing is approximately equally divided between useful work and overhead.

13



CHAPTER 1. INTRODUCTION

Typical intertask communication overheads include setup, data sharing, synchronisation, 
result transfer and termination, as illustrated in figure 1.1.

Task 1

Process setup Synchronisation Termination

\ \ If \
Data sharing Result transfer

Task 2

Figure 1.1: Typical Task Communication Overheads

Ideally, a sequential program of execution time £ can be decomposed into N  tasks, all of 
which can all be performed in parallel. The time taken to execute the program will be:

£_
N

If the decomposition is performed in a binary tree fashion, such that each task creates 
another, then the decomposition will take a logarithmic factor of the intertask communi-
cation overhead, t oveThead• The time taken to decompose and execute the program will, 
therefore, be:

toverhead. ' l o § 2  N

Differentiating with respect to N allows us to determine the optimum number of processors 
for a given value of l:

d t  _ toverhead ^  /

dN  ~ N ■ In 2 _  ÏV2
0 as N  —► oo)

The optimum number of processors, N0, is at this curve’s minimum:

N 0 = -—  ------In 2
overhead,

This is illustrated in figure 1.2, which shows the time taken to execute programs of various 
lengths which have been perfectly decomposed into parallel tasks, for a given intertask

14



1.1. AN INFORMAL PERSPECTIVE

communication latency. It should be noted that it is not cost effective to parallelise a 
program whose sequential execution time is similar to the intertask communication latency 
(t OVerhead)• In addition small programs (4 • t overhead )  can only be efficiently parallelised for 
a couple of processors and even quite large programs (64 • t overhead) don’t show significant 
performance improvement when run on more then 15 processors.

Parallel execution time / t_oveihead

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00 

5.00 

0.00

5 10

Program sequential execution time 
1 . t_overhead 
4 . ¡„overhead 
Ï6  . t_overhead 
64. t_overhead

15
Number of Tasks

Figure 1.2: The Time Taken to Execute A Program Using Multiple Parallel Tasks

Given that an optimal number of processors exists, then the optimal grain size of a task, 
G0, can also be calculated:

1overhead
- In 2

1overhead
In 2

Therefore, if a medium optimal grain size of, say, 104 instructions is required, then rear-
ranging this gives:

lover head — 10,000/x In  2 
7,000/
G0

Clearly, for a fine level of granularity to be cost effective, the task overheads must be 
similarly low. These are determined by the underlying architecture.

15



CHAPTER 1. INTRODUCTION

Program m ability

A further tradeoff exists between the performance and the programmability of a parallel 
system; a programmer will only use parallelism when it can be realised easily using the 
programming paradigm.

The two most common parallel programming paradigms are shared variable and message 
passing:

• In the shared variable paradigm tasks communicate and synchronise implicitly through 
the use of common data structures.

• In the message passing paradigm tasks communicate explicitly through primitives for 
the protected sending and receiving of messages. The sequential arrival of messages 
inherently synchronises the actions of the tasks.

The shared variable paradigm is, in general, the more natural of the two to program as 
its simplified communication mechanism does not force the explicit partitioning of data 
between tasks. Furthermore, it allows parameters to be passed by reference rather than 
by value. This ease of use has two implications:

• The near transparent overheads of communication encourages the use of finer- 
grained tasks and, hence, more parallelism.

• It takes relatively little programming effort to coordinate a large number of parallel 
tasks.

Programmers, therefore, generally prefer the shared variable programming paradigm.

For reasons of simplicity, the shared variable programming paradigm is typically imple-
mented using a shared memory computer architecture; shared data structures are simply 
held in shared memory, allowing the underlying architecture to perform the communica-
tion transparently. Two shared memory architectures are common:

• Tightly Coupled Multiprocessors with Physically Shared Memory

• Loosely Coupled Multicomputers with Distributed Shared Memory

These are described in the following two sections.

1 .1 .2  T ig h tly  C oupled  M u ltip rocessors W ith  P h ysica lly  Shared M em ory

Multiprocessor architectures, also known in the literature as parallel random-access ma-
chines (PRAMs), are the most conventional way of implementing a shared variable paral-
lel programming paradigm. These machines typically have one or more shared broadcast 
busses by which the processors are connected to a single globally accessible memory. A 
typical multiprocessor system is illustrated in figure 1.3.

16



AN INFORMAL PERSPECTIVE1.1.

Figure 1.3: A Typical Multiprocessor

Multiprocessor systems are said to be tightly coupled because the processors must coor-
dinate access to the shared memory. To reduce shared memory accesses, the processors 
often have local memories in which they cache data. The Sequent Symmetry [seq87], for 
example, has up to 30 Intel 80386 processors, each with a 64 Kbyte two-way set associa-
tive cache. Memory coherence is maintained invisibly to the overlying software through 
snooping hardware. This mechanism depends upon the ability to broadcast information 
efficiently to all of the processors in the system.
The main advantage of multiprocessor systems to the programmer is that the data sharing 
is implicit and its effect on performance is generally small because of the broadcast and 
snooping properties of the hardware. They, therefore, encourage the use of fine-grained 
tasks, typically of around 103 instructions. Their major problem, however, is that con-
tention for shared bus and memory bandwidth results in a performance bottleneck.

This bottleneck may be reduced by:

• Using more busses to reduce contention. Physical size, however, severely limits the 
number of busses that can be connected to a single processor.

• Using wider busses to transfer larger words and so reduce the number of times the 
processors need to access the shared memory. Eventually, however, physical size 
limits bus width.

• Using faster busses and memory to reduce contention. Ultimately, the bus speed is 
limited by that of the memory because only one processor may access the memory 
through the bus at a time.

Although these techniques can be very effective, most high-performance multiprocessor 
systems are limited to around 30 processors1. Scaling up shared memory architectures is, 
therefore, an important problem in computer architecture and is attracting considerable 
attention [Bel92].

One interesting attempt to produce a scalable multiprocessor is the BBN Butterfly [bbn86]. 
The machine has 256 processors, each with a local memory. Each processor has the ability 
to directly access the memory of other processors via a non-broadcast butterfly network.

’The Elxsi 6400 is limited to 12 processors, the Encore Multimax to 20, the Flex/32 to 20, the Sequent 
Symmetry to 30 and the IP-1 to 33 [Don91],
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CHAPTER 1. INTRODUCTION

This creates a scalable shared global memory, but strongly encourages the programmer 
to make use of local memory as remote memory accesses are five to ten times slower. 
This results in relatively poor peak performance and has led to the machine’s commercial 
failure.

1.1 .3  L oosely  C oupled  M u lticom p u ters W ith  D istr ib u ted  Shared M em -
ory

Most attempts to break out of the multiprocessor bus and memory saturation bottleneck 
have used multicomputer platforms. These comprise large numbers of processors linked 
by a point-to-point network and communicating with each other by message passing. 
This type of design is described as loosely coupled, meaning that each processor is almost 
entirely self sufficient. A typical multicomputer system is illustrated in figure 1.4.

Figure 1.4: A Typical Multicomputer

Loosely coupled multicomputers have two main advantages over tightly coupled multipro-
cessors:

• Higher Scalability

A bus-based system provides high-performance when relatively small numbers of 
processors are involved. Such machines are not scalable however. Multicomputers 
use communication networks with overall bandwidths proportional to the number of 
processors in the system, albeit at the cost of reduced connectivity. This provides 
scalability over many hundreds of processors2.

W interbottom’s Topsy [Win89] is a typical multicomputer. This employs high per-
formance communications network and efficient caching to create a scalable system 
over 256 processors.

• Lower Cost

Multicomputers are always cheaper than shared memory multiprocessors for the 
same amount of raw, not necessarily realisable, processing power. This is because 
the shared buses of multiprocessor systems are more complicated and expensive 
than the networks of multicomputers, especially when large numbers of processors 
are involved.

2The Intel iPSC/2 is limited to 128 processors, the CYBERPLUS to 256, the NCUBE to 1,024 and the 
J-Machine to 64K [Don91].
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1.1. AN INFORMAL PERSPECTIVE

In order to use a shared variable programming paradigm on multicomputers a mechanism 
called distributed shared memory (DSM) [Li 86] has been devised. This uses a distributed 
memory management system to copy pages of data between the physical memories of the 
individual processors on demand. The selectivity of the mechanism minimises overloading 
of the network by ensuring that only those processors which need an updated data page 
get it.
DSM potentially offers a scalable shared memory architecture. Unfortunately, as the 
message handling latency in multicomputers is relatively high, these machines can only 
support coarse-grain («  105 instructions) parallelism efficiently.
A notable alternative mechanism to DSM for the implementation of shared variable pro-
gramming is employed in the Linda paradigm [Zen88, Gel89, Bor88, Car86b, Ahu88]. This 
uses an associative shared store called a tuple space which is implemented on a loosely cou-
pled multicomputer by hashing data items to processors. Data items can be accessed either 
by name or by type, thus allowing a logical separation to be made between the location 
of an item and its value. This also affords a degree of data type polymorphism. Unfortu-
nately, the latency of performing associative lookups considerably limits the granularity 
of sharing possible.

1.1 .4  H ardw are Single Shared A ddress Space A rch itectu res

When intertask communication and DSM mechanisms are performed in software, the 
latency of setting up a new task is high (typically milliseconds) and so restricts these 
systems to coarse-grain parallelism. Ideally, it is desirable to implement these functions in 
hardware, thus reducing their latency. However, the intertask communication mechanisms 
in traditional operating systems are very complex and consequently difficult to implement 
in hardware.
A single shared address space (SSAS) memory model, where all tasks occupy a shared 
address space rather then private ones, appears to simplify several memory management 
problems so as to offer the potential to reduce latency (and hence grain size) and also make 
hardware memory management (HDSM) more feasible. The main advantages this has over 
the logically separate address spaces conventionally presented by operating systems are:

• The shared memory eliminates the redundancy among many traditional operating 
system mechanisms, such as file systems and inter-process communication. Poten-
tially, this allows these software mechanisms to be coalesced into hardware, thus 
substantially reducing their latencies.

• As there is no address aliasing, and protection is implemented above the processor 
cache, there is no need to flush and subsequently reload the processor caches and 
address translation look-aside buffers (TLBs) on context switches. This will greatly 
speed up restarting processes after DSM accesses.

• The overhead of process creation and termination is very low as there is no need to 
create address space tables for the threads. This makes it more economic to employ 
fine-grained processes.
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CHAPTER 1. INTRODUCTION

• Greater reuse of the page tables in the system is possible, thus freeing memory for 
more useful data.

Combining SSAS and HDSM, therefore, has the potential for reducing the latency of shared 
memory access so that network communications performance dominates overhead and 
hence determines granularity.

1.1.5 W afer-S ca le  Integration

For a HDSM to be useful, a communications network with a comparable latency and 
bandwidth is required. Fibre optics, one of the most modern communication mediums, 
has the bandwidth to match HDSM, but compatible low latency switching elements are 
not available.

Wafer-scale integration (WSI), the process by which very large-scale integration (VLSI) 
circuits are packaged as whole wafers rather than as individual chips, can be used to 
embed processors and memory dies in a silicon substrate which contains a communications 
network. The main performance advantages wafer-scale integration has over conventional 
chip and PCB technologies are:

• Higher Speed
Conventional VLSI technology uses chains of output transistors to drive the pins of 
chips. These prove to be slow. The interconnected tiles on a wafer do not need these 
circuits and hence the speed of internal wafer communication is considerably higher 
then conventional chip to chip communication.

• Increased Wire Density
As Dally suggests [Dal87], VLSI chip technology is severely limited by the number of 
pins that can be placed on a chip. If the number is high, the package must be large 
to accommodate them. Consequently the chip is expensive and its PCB density is 
low. In addition, space considerations make it hard to route very large numbers 
of tracks away from a chip; expensive multi-layer PCBs are required. Therefore, 
data-paths in conventional computers are severely limited in width.
This is not so much of a problem in wafer-scale devices as these can employ very 
dense tracking. Consequently, communication data-paths in wafers can be much 
wider, by a factor of four say, then those in conventional systems.

It is asserted that a network constructed using WSI can have sufficient performance to 
support a HDSM with a medium task granularity of 104 instructions over several hundred 
processors. WSI also offers other advantages, chiefly lower cost per function and higher 
reliability.

1.2 T he T hesis

Currently, there appears to be no middle ground in parallel computing; an architecture 
which can support both several hundred medium-grained («  104 instructions) parallel
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tasks and the shared variable programming paradigm would be advantageous in many 
applications.
This thesis asserts that it is possible to implement a new computer architecture, Cherub, 
which has several hundred processors and is able to support shared variable programming 
with an optimal task granularity of around 104 instructions. This can be achieved through 
the combination of a hardware-based distributed shared single address space and a wafer- 
scale communications network.

1.3 A P lan of the D issertation

To support the thesis, three pieces of work are required:

• First, a specification of the properties expected of the new architecture must be 
written, showing that it will be useful for a significant set of applications.

• Next, the algorithms used to implement the architecture must be designed, allowing 
the requirements of the underlying network to be estimated.

• Finally, it must be shown that a wafer-scale integrated communications network is 
able to provide the required performance.

This work is divided between six chapters:

• Chapter two examines issues regarding distributed shared memory construction. It 
suggests a SSAS as appropriate for constructing a medium-grained HDSM.

• Chapter three introduces Cherub, a proposed computer architecture based on a 
HDSSASMA and defines its appearance to the programmer.

• Chapter four describes the algorithms required to implement Cherub. The laten-
cies of these algorithms are estimated to allow the requirements of the underlying 
architecture to be defined.

• Chapter five asserts that only wafer-scale integration will be able to provide the 
performance required to successfully implement Cherub. A wafer-scale network is 
designed and is shown, through simulation, to achieve that performance.

• Chapter six summarises the results achieved in the dissertation and draws some 
conclusions.

• Appendix A contains a glossary of terms.

• Appendix B examines a large example application which would benefit greatly from 
the scalable medium-grained shared variable programming paradigm Cherub sup-
ports.

• Appendix C describes the network simulations which were performed.
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1.4 C ontributions to K nowledge

This dissertation is believed to be the first detailed description and investigation of a 
HDSSASMA, and certainly the first HDSSASMA relying on WSI!
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Chapter 2

Reducing Intertask 
Communication Latencies

“You asked for information; you need background to
understand it.”

(Silver Tower — Dale Brown)

2.1 Introduction

In chapter one it was asserted that, currently, there is no middle ground in parallel 
computing and an architecture which can support both several hundred medium-grained 
(«  104 instructions) parallel tasks and the shared variable programming paradigm would 
be advantageous in many applications. It was suggested that such an architecture, called 
Cherub, could be constructed.
We have seen that two kinds of parallel architecture have become established. The first is 
the multiprocessor, which is built around a shared bus giving broadcast communications 
and a shared memory. This is characterised by low communications overhead, but limited 
scalability. The second is the multicomputer, which is based on point-to-point commu-
nications with larger communications overhead, but good scalability. Quantitatively, the 
low overhead of the multiprocessor is well matched to fine-grain tasks and, hence, to 
supporting the shared variable paradigm, while the high overhead of the multicomputer 
matches it to coarse-grain parallelism and, hence, to the message passing paradigm.

Multicomputer based distributed shared memory can support a scalable shared variable 
programming paradigm, but its high intertask communication latency must be significantly 
reduced if a medium grain of parallelism is to be supported. This chapter, therefore, 
examines the design of DSM systems and looks at ways of reducing their high intertask 
communication latencies.
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2.2 Princip les o f D istributed  Shared M em ory

In order to use a shared variable programming paradigm on multicomputers a mechanism 
called distributed shared memory (DSM) has been devised. This provides the semantics 
of a shared memory on top of multicomputer hardware. A large enough grain of data 
sharing is employed to balance the amount of communication with the capabilities of the 
network.

For a DSM to provide the illusion of a physically shared memory, it must automatically 
transform shared-memory accesses into inter-processor communication which locates and 
retrieves the required data. This is usually performed by a DSM server on each processor 
which is responsible for moving shared memory pages among the processors on demand. 
A typical DSM system is illustrated in figure 2.1.

Processor 1

P a g e  A P r o c e s s o r  1 , 2 ,  3

P a g e  B P r o c e s s o r  1 , 3

P a n e  C P r o c e s s o r  2

P a g e  D P r o c e s s o r  1

P a g e  E P r o c e s s o r  2 , 3

(PageDirectory Server)

Page A
Page B
Page C

Local memory

(^ D S M  S e rv e r^ )

Processor 2

Page A
Page C
Page E

Local memory 

(^D S M  Sen rer

Processor 3

Page A
Page B
Page E

Local memory

Communications Network

Figure 2.1: The Structure of a Typical DSM System

To be able to share the pages in the DSM, the servers must be able to locate them. 
This may be accomplished by one or more page directory servers. These maintain page 
directories which contain, directly or indirectly, the locations of the data items and their 
copies. The entries in the directories must be updated as pages are moved among the 
processors. Usually the functions of the shared memory server and the page directory 
server are combined in a single server.

One of the first DSMs was implemented by Li [Li 86]. He proposed three different directory 
schemes:

• Centralised Directory Server
In this scheme a central directory server maintains lists of the pages owned by each

24



2.3. DSM PERFORMANCE ISSUES

node. Whenever a node requires a page, it communicates with its owner through 
the centralised server. As a consequence of all page requests passing through the 
centralised server, it is a performance bottleneck.

• Fixed Distributed Directory Server

In this scheme several directory servers are employed to reduce the bottleneck ex-
perienced in the previous system. Each server is assigned a predefined subset of the 
pages. Every node in the system can identify the server responsible for each page 
and consult the appropriate one when page faults occur.

This scheme generates a considerable amount of network traffic; at least three mes-
sages are produced on a read fault and potentially many more on a write fault.

• Dynamic Distributed Directory Server

In the dynamic distributed server scheme every node has its own directory server. 
If a node receives a page request for a page it no longer owns, then it forwards 
the request according to where it believes it resides. A node’s hints are updated 
according to the page faults it generates, the requests it receives and the periodic 
update broadcasts made by other nodes. Fowler [Fow86] proved that this algorithm 
always terminates by finding the true owner of the page.
The number of messages required to locate an owner approximates to the logarithm 
of the number of hosts sharing the page. This reduces the network overhead of 
sharing infrequently modified pages.

Li’s work was so fundamental that, even after nearly a decade, DSMs still employ his fixed 
and dynamic distributed page management algorithms.

2.3 D SM  Perform ance Issues

Three main issues related to performance must be considered when designing a DSM: its 
granularity, its coherence mechanism and its synchronisation mechanism.

2.3.1 D a ta  G ranularity

Data granularity is the unit of data shared between processes. For implementational 
efficiency, the designers of distributed shared memories usually make the main memory 
page the unit of data granularity. Five competing issues determine the performance of a 
given page size:

• Locality of Reference

A program will typically exhibit locality of reference, meaning that around a given 
time it will only use a small fraction its instructions and data. The pages which 
contain a program’s active instructions and data are called its working set. These 
pages must be held in memory if thrashing is to be avoided. Unfortunately, the pages 
in the working set will also contain inactive instructions and data — in general, the
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larger a page, the greater the proportion of its contents that will be inactive. This 
results in inefficient memory usage.

• Internal Fragmentation

Typically programs will not fill an integral number of pages; on average, half the 
final pages of their text, data and stacks will be empty. This residue space is wasted. 
Clearly, the smaller the page size, the lower the wastage through such internal frag-
mentation will be.

• False Data Sharing

False data sharing can occur in shared memories where two or more unrelated vari-
ables, used by different programs, are located in the same page. The page appears to 
be shared even though the variables are not. The smaller the page, the less false data 
sharing will occur. False data sharing can have a profound effect on performance. 
For instance, some applications have shown speedups of 50% when false sharing was 
eliminated [Hag91b],

• Paging Overheads

Servicing a DSM page fault can incur a considerable latency, typically milliseconds, 
the majority of which is independent of the page size [Whi92], Therefore, the larger 
the page size, the fewer the number of page faults required to transfer a given amount 
of data and, consequently, the lower the latency incurred.

• Size of Directories

It is necessary to keep directory information about the pages in the DSM. This can 
affect the performance of the system as the larger the page size, the smaller the 
directory required and the greater the memory available to hold useful data.

Clearly, a performance tradeoff exists, mainly between the amount of false sharing caused 
when the page size is too large and the paging overheads and excessive directory tables 
caused when it is too small. Experiments with the Psyche operating system [Bol] show 
that 256 byte pages appear to achieve a good compromise, although sometimes page sizes 
as small as 64 bytes are optimal.

Generally, hardware implementations of DSMs (called HDSMs) are able to employ much 
smaller page sizes than their counterparts implemented in software1. This is because the 
latency of servicing a page fault is much lower.

Unfortunately, due to their complexity, current HDSMs often sacrifice functionality in 
order to simplify the hardware: MemNet only allows one DSM region per machine; the 
J-Machine performs coherence in software and is implemented on low performance pro-
cessors; while Dash and PLUS do not employ scalable coherence algorithms. *

■‘Typical software implemented DSMs such as Mach [Acc86, Tev87b, For89], IVY [Li 86] and Mirage 
[Fle89a, Fle89b] employ pages of 4,096, 1,024 and 512 bytes respectively, while HDSMs such MemNet 
[Del86a, Del88a, Tam90], J-machine [Dal89], Dash [Len90, Len92] and PLUS [Bis90] enjoy pages of 32, 
32, 16 and 4 bytes respectively.
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2.3 .2  C oheren ce M echanism s

For reasons of efficiency, the DSM servers allow the processors to cache data in their local 
memory. This creates the logical memory hierarchy shown in figure 2.2. This, however, 
introduces data coherence problems. Generally updates to the shared memory must be 
propagated to the local copies cached at the processors. Data coherence can be maintained 
by restricting memory accesses while these propagations take place.

Layers of Low Latency 
Local Memory

Layers of High Latency 
Shared Memory

Shared Disk

Figure 2.2: The Logical DSM Hierarchy

Coherence policies and associated mechanisms have evolved significantly over the last 
decade:

• Strong Coherence
Early implementations of DSMs, such as IVY [Li 86] and MemNet [Del86a], emulated 
true shared memory architectures by providing strong, or sequential, data coherence. 
Using strong coherence semantics, a read operation performed by a processor returns 
the most recently written value.
Strong coherence is typically implemented by allowing the existence of either a single 
writable copy of a given page, or multiple readable copies. In Li’s IVY access to each 
page is strictly controlled by a write invalidate protocol; if a node Q faults when 
writing to a page p, its fault handler:

-  invalidates all copies of p,
-  obtains a copy of p from another node, if Q does not already have one.
-  changes the access permissions of p to write,
-  returns to the faulting instruction.

Upon returning, node Q is said to own page p. Node Q is then allowed to read and 
write to the page freely. If a node Q faults when reading from page p, then its fault 
handler:
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— changes the access permissions of p to read on the owning node,

— obtains a copy of p and sets its access permissions to read,
— returns to the faulting instruction.

Upon returning, node Q is free to read the page until it is invalidated by another 
node.

A good example of an operation which requires strong coherence is synchronising 
using a lock variable; all processes must see the most up-to-date status of the lock.

It was soon discovered that traditional shared memory algorithms often perform 
badly when using strong coherence. This is usually due to remote contention for 
data. However, strong coherence is still the most commonly implemented coherence 
strategy in DSMs.

• Relaxed Coherence

The designers of second generation DSMs, such as Dash [Len90, Len92] and PLUS 
[Bis90], noted that strong coherence semantics are not necessary in most distributed 
applications. Consequently, they devised DSMs with a relaxed form of memory 
coherence. Using relaxed coherence semantics, a read operation performed by a pro-
cessor will not necessarily return the most recently written value. If used correctly, 
this scheme can substantially increase program performance. However, if used incor-
rectly, it can cause programs to break unpredictably, thus giving incorrect results.

A good example of a relaxed coherence scheme is that employed in the PLUS system 
[Bis90]. To minimise the cost of cache misses this uses a protocol which updates 
the cache copies of other nodes rather than invalidating them. When a processor 
generates a fault by reading a non-cached page:

— The local coherence manager requests a copy of the page from the remote 
coherence manager responsible for the master copy.

— If the page is currently being written, the remote coherence manager waits until 
the write completes.

— The remote coherence manager then adds the requesting node to a list of nodes 
with copies of the page.

— The required page is then sent to the local coherence manager.

— Finally, the faulting process is restarted.

When a processor writes to a page, it does not block, but rather:

— The local coherence manager sends details of the write to the remote coherence 
manager responsible for the master copy of the page.

— The remote coherence manager updates its copy of the page accordingly.

— The remote coherence manager then sends an update request to the nearest 
node with a copy of the page. This propagates the request to any other nodes 
which also contain copies.
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-  The last node in the copy list sends an acknowledge to the local coherence 
manager which originated the write operation.

This protocol guarantees write consistency since writes are applied in the order that 
they are received at the remote coherence manager. However, a given read does not 
necessarily obtain the most up-to-date value of a memory location. Special synchro-
nisation primitives are, therefore, required for when data consistency is important. 
In the case of PLUS, this takes the form of a fence operation which causes the co-
herence manager to block writes to a page until all the earlier ones have completed.

Relaxed coherence semantics typically provide more efficient shared access than 
strong coherence as they require fewer synchronisations and less data movement. 
The Dash multicomputer system, for example, combines relaxed data coherence 
with a data acquire and release mechanism [Len90, Len92]. It was found that this 
gave a performance increase of between 10 to 40 percent over conventional strong 
coherence.
Typically asynchronous algorithms, such as producer-consumer relationships, are 
suited to relaxed coherence. For example, a consumer process will only access the 
contents of a shared memory buffer after a producer process has filled it and per-
formed a synchronisation operation. By using PLUS’S relaxed, rather than IVY’s 
strong, coherence protocol, one invalidation message can be saved per page of data 
passed in the buffer.

• User Provided Coherence

The designers of third generation DSMs, such as Mach [For89] and the J-machine 
[Dal89], observed that, ideally, applications should be able to customise the DSM 
server according to their intended data access patterns. By employing a well defined 
interface, they allowed applications to provide their own DSM servers. For example, 
in the J-machine:

-  All memory locations are tagged with a state s.

-  Each memory operation can optionally specify a precondition, x, and a post 
condition, y, on the state.

-  If prior to accessing a memory location s /  r, an exception handling process 
specific to s and x is created.

-  When the operation completes s is assigned the value y.

The main problem with such schemes is that although their flexibility can be useful, 
DSM servers are difficult to write. As a result most programmers relied on the system 
provided default. The scheme, therefore, introduced additional software latencies, 
often without benefit.

• User Assisted Coherence

The designers of the latest generation of DSMs also believe that it is best if an 
application makes its own coherence decisions, but they also understand that it is 
important to minimise the associated overhead on the programmer:
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— The Munin system [Ben90] categorises nine types of shared memory by their 
pattern of access. A different cache coherence mechanism — some strong, others 
relaxed — can be employed for each. By logging the memory access patterns 
of a number of programs, it is possible to suggest which coherence mechanism 
best suits each. For example:

* Producer-Consumer Relationships
The producer does not need to access data pages after they have been written 
and the consumer does not need them again after they have been read.

* Burst-Write Pages
These should be held on the processor while being written, but can be released 
for another processor once the burst is over.

The main problem with this approach is that a page isn’t necessarily used in 
the same way throughout its life. A good example of this is a page on the 
stack. In addition, not all languages are amenable to this type of analysis. For 
example, single assignment languages, such as the functional language Paragon 
[And91b], do not reuse data space memory.

-  Hill et al [Hil92] suggest that the programmer or compiler should be able to 
bracket shared data accesses with annotations which indicate their intended 
use. Unlike the schemes employed in Munin, the annotations are only advisory 
and so can improve the performance of the shared memory without altering its 
coherence semantics.
Hill’s Check-In and Check-Out (CICO) shared-memory model uses special 
D ir\S W  hardware to support the following annotations:

check_out_X Expect exclusive access to block
check_out_S Expect shared access to block
checkJn Relinquish a block

In addition, two additional annotations are supported to allow data prefetching 
to be overlapped with computation:

prefetch_X Expect exclusive access to block in near future
prefetch-S Expect shared access to block in near future

Hill hand annotated several parallel applications from the SPLASH benchmark 
suite [Sin92] to simulate the effects of the CICO model. In most cases it was 
possible to avoid competitive page sharing almost entirely. The programs that 
relied upon unsynchronised data sharing (data races) were notable exceptions, 
but even so, their data faults were significantly reduced.

2 .3 .3  S yn ch ron isation  M echanism s

In most systems the execution of processes must be delayed while constraints imposed on 
the ordering of actions are satisfied. This is usually achieved through the use of synchro-
nisation mechanisms which guarantee mutual exclusion among processes within certain 
critical regions of code.
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The conventional shared variable programming paradigm provides a number of synchro-
nisation mechanisms such as locks, semaphores [Dij65] and monitors [Hoa74]. These are 
typically implemented using one or more shared variables, which are continually read, or 
‘spun’ on, by processes waiting for the synchronisation conditions to occur. Not only does 
such spinning waste processor time, thus reducing throughput, but in DSMs it also incurs 
excessive communication costs as the pages containing the variables must be frequently 
moved between the processors running the processes. This is called thrashing. It is, there-
fore, necessary to provide synchronisation primitives which are efficient in the distributed 
shared memory environment.
Two examples of DSMs which have specialised synchronisation mechanisms are:

• Mirage

The Mirage system [Fle89a, Fle89b] allows a process to lock a page, such as one 
containing a synchronisation variable, into its processor’s memory for a given time 
quantum called a delta. All other processes accessing the page are blocked until 
either the delta expires, or the process gives up the page voluntarily. Thus thrashing 
is prevented.

• Linda

The Linda programming paradigm provides an inherent distributed synchronisation 
mechanism through the presence or absence of keyed data items, tuples, in a region 
of associative, distributed shared memory called the tuple space (TS). Tuples are 
placed in the TS using the Linda out primitive. They are removed by the in primitive. 
This searches the TS for the tuple and, if it is present, removes it. If it is not present, 
the primitive blocks until the tuple is placed into the TS.

Gelernter has demonstrated that it is possible to use Linda to construct spin-free 
locking mechanisms [Car89j. A tuple with a well-known key is associated with a 
critical region of code. Whenever this tuple is in the tuple space, the code region is 
unlocked. Before a process can enter the critical code region it must perform an in 
primitive. This locks the critical region. When the process leaves the critical region 
of code, it re-inserts the tuple into the TS using the out primitive. This has the 
effect of unlocking the region.

Similar techniques can be used to construct efficient semaphore and message passing 
mechanisms.

2 .3 .4  Im p lem en tin g  In tertask  C om m u nication  M echan ism s in H ardw are

When intertask communication and DSM mechanisms are performed in software, the 
latency of setting up a new task is high (typically milliseconds) and so restricts these sys-
tems to coarse-grain parallelism. Ideally, it is desirable to implement a DSM in hardware 
(HDSM), thus reducing its latency. Although HDSMs have already been tried — notably 
MemNet, J-machine, Dash and PLUS — typically they have compromised their function-
ality because of the complexity of intertask communication mechanisms. Some way must, 
therefore, be found of simplifying these mechanisms.
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One way of doing so is using a cache-only memory architecture (COMA) such as the 
DDM [Hag91a, Hag92] and the KSR1 [Bur92]. These are distributed architectures whose 
processors’ memories are organised as large set-associative caches. Hardware coherence 
hardware is used to create the illusion of a single global layer of cache. Complex memory 
management schemes which create a virtual memory can then be implemented relatively 
easily above the level of the global cache. Unfortunately, this still leaves the process 
creation and termination mechanisms implemented in relatively slow software.

This idea has evolved into the single shared address space (SSAS) architecture, where all 
tasks occupy a shared address space rather than private ones. This appears to simplify 
several memory management problems so as to potentially reduce latency (and hence 
grain size) and also make the coalescing of interprocess communication mechanisms into 
hardware more feasible.

2.4 Single Shared Address Space A rchitectures (S SA S’s)

In conventional computer architectures, processes have logically separate address spaces, 
typically at least 32 virtual address bits in size. These provide processes with both address 
independence and data space protection. In recent years, however, there has been a 
dramatic increase in program size. Applications such as databases and multimedia are 
easily able to consume 32 bits of data virtual address [Kru89, Mas91a]:

• Databases
To benefit from hardware DRAM caching, database designers often directly map 
entire databases into virtual memory. Many commercial databases already consume 
40 address bits.

• Multimedia
At 24 frames a second and around 4 Mbytes per frame, uncompressed video will 
consume 32 address bits in only 45 seconds. Similarly, at around 25 Mbytes each, 
32 address bits can only hold 160 high quality A4 colour images.

In 1990, Hennessy and Patterson [Hen90] made the following observation:

Address-Consumption Rule:
The memory needed by the average program grows by a factor of 1.5 to 2 per 
year. That is, one address bit is consumed per year.

In the past, when the number of available address bits has been exhausted both hardware 
and software techniques have been tried to alleviate the problem:

• Segmentation
The HP PA-RISC [Hew90], used in the Snake Workstation, and IBM RS/6000 [Jef90] 
have address spaces constructed of 32-bit segments. When an address is accessed, the 
type of machine instruction used determines the segment referred to. This effectively 
gives programs access to a number of 32-bit address spaces.
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• Swizzling
A notable software solution called swizzling [Wil91c], has been described by Wilson. 
In this scheme, programs on disk contain wide symbolic addresses. These are con-
verted to actual 32-bit addresses at page fault time. Unfortunately, this means that 
all imported pointers must be translated, even those not used. In addition, memory 
must not only be assigned for the imported page, but also for the pages referenced 
by it. This makes the technique particularly inefficient.

Past experience, most notably the PDP-11 architecture, has shown that such solutions are 
hardly ever satisfactory and only act as stop-gaps until processors with larger addresses 
appear; either they are too difficult to program, or they incur very high performance over-
heads. Fortunately, a number of forward-looking companies have realised this; both the 
MIPS R4000 [MIP] and Digital Alpha [Dig92] have unsegmented 64-bit virtual address 
spaces. This step has had a revolutionary, rather than evolutionary, effect upon operat-
ing system design. A 64-bit address space is virtually unconsumable using conventional 
programming. It eliminates the traditional need to reuse the address space of programs. 
Consequently, there has been considerable interest in single shared address space (SSAS) 
architectures, most notably Psyche [Sco89a, Sco89b, Scoa, Cha, LeB89, Scob, Mar], Opal 
[Cha92a, Cha92b] and ANGEL [Wil91a, Wil92, Sti92],
SSAS computing is the logical extension of the light-weight processes found in conventional 
operating systems such as Chorus [Arm86, Her88], Mach [Acc86, Tev87a], Choices [Cam87] 
and the Synthesis Kernel [Mas89]. Light-weight processes have very little context of their 
own, typically only a stack segment. A number of light-weight processes share the address 
space of a heavy-weight process, thus making it very cheap to share data, switch contexts 
and perform optimised scheduling between them. The SSAS extends this concept by 
making all processes light-weight, residing within a globally shared protected address 
space. Single and multiple address space architectures are compared in figure 2.3. The 
dotted lines denote protection domains.

It is interesting to note that even 64 bits of virtual addressing is not really enough! If 
all of the computers in the world — many millions perhaps — are to be mapped into a 
single address space using wide-area networks, even more address bits — the next step is 
logically 128 — will be required.

Through the abstraction of a protected SSAS it is possible to unify, and hence simplify, 
many traditional operating system mechanisms such as memory, files, inter-process com-
munication, and protection.

2.4 .1  U sin g  a SSA S to  S im plify  O peratin g  S ystem  M echan ism s

SSAS architectures can be used to simplify many traditional operating system mechanisms, 
thus making it easier to implement them in hardware.

Unifying Caching M echanisms

Traditionally operating systems have a plethora of caching and copying mechanisms, all 
of which are implemented in software. Often operations are replicated. Two examples of
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Multiple Address Space Architecture

P R O C E S S  1

P R O C E S S  2

P R O C E S S  3

Single Address Space Architecture
1

gsM
T E X T  1 D A T A  1 S T A C K  1

1
T E X T  2 D A T A  2 S T A C K  2  I 1  T E X T  3 D A T A  3 S T A C K  3

Figure 2.3: Comparing Single and Multiple Address Space Architectures

this from the UNIX System V operating system [Bac86] are:

• The File System Block and Inode Caches
UNIX uses a cache to hold regularly used file inodes. These are not held in the 
normal block cache because of the sparse nature of inode accesses and the large size 
of file system blocks. However, the inode cache can still contain inodes which are 
also held in the file system block cache. This is clearly wasteful.

• The Page List and the File System Block Cache
Program text, though read-only, is held in memory when being executed by programs 
but is discarded when not being used. UNIX keeps the pages of the program text 
in the file system block cache as well as the memory in case it is needed again soon. 
It is wasteful to have two copies of the same text in memory.

Multiple level caches like this waste memory, but more importantly add to software la-
tencies. The problem is that UNIX was designed when main memory was scarce. Hence 
it employs hierarchical caches to optimise memory usage. Now that main memory is 
relatively inexpensive, such excessive caching is pointless.

A SSAS architecture is able to use its alias-free memory hierarchy to provide invisible 
caching, replacing individual caches with a single unified mechanism. This technique has 
also been used to coalesce other operating system mechanisms by unifying memory with:

• Files (memory mapped files in MULTICS [Cor65], Mach [Tev87b] and UNIX [Mey88, 
Lef89]);

• Inter-process communication (memory objects in Mach [Acc86]); and

• Processes (Killian’s /proc file system [Kil85]).
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This reduces the software overheads normally associated with many of the traditional 
operating system mechanisms and increases the system call, and hence intertask commu-
nication, bandwidth. The Synthesis Kernel shows how effective such a reduction in the 
layers of operating system software can be [Pu 88, Mas89].

There are two potential problems with this:

• Loss of High-Level Control
Unifying mechanisms can sometimes result in a performance degradation due to 
the loss of high-level control. Yokoyama et al [Yok89] describe the situation with 
memory mapped files in which a process overwrites a whole page of data in a file 
which is on disk. A conventional file system call is told that the whole page of data 
is to be overwritten and so knows that it is not necessary to read its old contents 
from disk. A memory mapped file, however, will perform this pointless disk read.

• Unsuitability of Some Mechanisms
Some operating system mechanisms are not suited to being treated as conventional 
memory. Serial output devices, such as terminals, are notable examples of this.

It is clear, therefore, that although unification benefits most data operations, applications 
should retain a degree of control for situations where it does not.

The coalescing of software levels, made possible by a well-designed SSAS architecture, 
has the potential to reduce the latency of intertask communication in a distributed shared 
memory and make finer-grained processing feasible.

Increased M emory Sharing

In general, memory sharing between processes is a good thing as it implies more economical 
memory usage. The history of the UNIX operating system illustrates how memory sharing 
has increased in importance over time:

• UNIX 3BSD (1981) allowed processes running the same program to share a copy of 
the text segment (which could not be altered), while each process had its own copy 
of the data segment. This saved main memory when multiple copies of a program 
were executed simultaneously.

• In System V R2V4 (1984) the fork system call was re-implemented to use copy- 
on-write (COW) techniques. These allow a process’s memory to be copied at low 
cost by allowing processes to share pages while they are unmodified; pages are only 
copied when they are changed, thus postponing page copying and often eliminating 
it altogether. This significantly reduces the overhead of the fork system call in two 
ways:

— The time required to create the new process image is minimised as there is no 
data copying involved initially.

-  The memory requirements of the processes are minimised through the efficient 
sharing of data.
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COW also provides an efficient and relatively unobtrusive way of checkpointing pro-
cesses for debugging [Fel89] or fault tolerance [Wil93].

• System V R3 (1987) introduced shared libraries [Jam86]. These go a step further 
by allowing different programs to share common routines from specially structured 
libraries. Dynamic linking is required to execute programs, but the saving in disk 
(around 96%) and main memory (around 34%) usually results in a net performance 
gain [Ros89].

An additional advantage of shared libraries is that errors in them can be fixed without 
rebuilding executable files. By installing a new shared library, old executable files 
automatically use the updated library without relinking.

A SSAS architecture allows the logical extension of these techniques; everything in the 
address space can be potentially shared or copied using COW. It is hoped that this increased 
level of sharing will reduce the need for data movement between processors in a distributed 
shared memory system, thus improving performance.

Reducing DSM  Context Switch Latencies

In physically shared memory architectures, where the shared memory latency is very low, 
processors typically block while waiting for data to be loaded from the shared memory. 
In DSM architectures the memory latency is much higher, thus making it cost effective to 
perform context switches when shared memory faults occur. Therefore, the context switch 
latency of a DSM is important in determining its performance and should be minimised.

One of the major factors in determining the latency of a context switch is the design of 
the processor cache. Normally processors have either one or more layers of local cache 
memory composed of associatively addressed SRAM2. Most processor caches are accessed 
using physical addresses. One of the main reasons for this is that it provides process 
address independence — different processes can use the same virtual addresses without 
clashing. If physical addressing is not used, each time a context switch occurs the cache 
must be flushed, as the new virtual addresses refer to different physical locations. This is 
a significant performance penalty as writing cache lines back to memory is slow. Further-
more, when an old process is restarted it must recapture its cache context, thus incurring 
an additional penalty.

Unfortunately, when accessing a physically addressed cache an address translation step is 
required to convert the virtual addresses used by processes into the physical addresses used 
by the cache and main memory. This takes time and requires another partially associative 
cache, the translation lookaside buffer (TLB). The number of entries in the TLB effectively

2SRAM caches are typically three to four times faster then DRAM based main memory. They are, 
however, very silicon expensive. This is because DRAM generally uses one-transistor memory cells, which 
require about one-fourth of the area used by the four and six-transistor (flip-flop) memory employed 
in SRAM. In addition each cache line has a number of tags and flags which are used by the associative 
addressing hardware. These consume extra silicon. Processor caches, therefore, tend to be small. The 
SPARC-2, for example, is one of the most modern RISC processors and it has a one Mbyte external SRAM 
cache. This is small compared to the main memory of most modern workstations which is at least eight 
Mbytes.
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determines the smallest page size which can be employed by a processor; the smaller the 
page size, the smaller the memory the TLB addresses.

For performance reasons it is, therefore, desirable to construct virtually addressed caches. 
These eliminate the TLB translation from cache hits, allowing lookups to be performed in 
a single clock period. In addition, without the limitations of the TLB, a smaller page size 
can be employed. Unfortunately, to avoid having to flush the cache on context switches, 
the cache lines must be tagged with additional information3. This is silicon expensive, 
however, considerably reducing the size of the cache.

A SSAS architecture simplifies the construction of virtually addressed caches because it 
does not allow address aliasing. This reduces DSM context switch latencies, increases the 
speed of cache lookups, and allows larger caches to be constructed.

2 .4 .2  D isadvantages o f a SSAS A rch itectu re

Separate address space architectures do have a number of useful properties which are lost 
with a SSAS:

• Process Address Independence

The separate address space architecture allows different processes to use the same 
virtual addresses without clash. Processes in single address space architectures must 
somehow avoid inadvertent address clashes.

This is trivial with different programs; they can be simply compiled to run at different 
addresses. Allowing multiple copies of a given program to be run simultaneously, 
however, or supporting UNIX fork semantics, is much more difficult:

— Running Multiple Copies of a Program Simultaneously
Executing a number of copies of a program simultaneously is difficult in a single 
address architecture because any static data accessed using absolute addresses 
is shared between all the programs. This problem is especially prevalent in 
shared libraries. Note that this is only important when a process modifies its 
static data; read-only data is not a problem.
One way of solving the problem is to use a level of indirection. Modifiable static 
data is accessed via indirection vectors placed at unique fixed addresses on the 
bottom of the process’s stack. When the process starts up it makes a copy of its 
data using COW. It then initialises the indirection vectors to the appropriate 
locations in the data copy. As processes have unique stacks, they can access 
their own static data by dereferencing the appropriate vectors.
The main advantage of this technique is that it does not reduce the ability of 
programs to share data. It has two minor drawbacks however:

* An indirection cost is incurred on each static data access. Fortunately, 
processes rarely write to static data. When this does happen, however, the

3Process address independence can be provided by tagging cache lines with the owning process’s ID 
(PID). Caches then only need to be flushed when a PID is recycled. Tags are problematic, however, when 
different processes share common regions of memory.
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indirection vectors will be automatically cached so that the performance 
cost is minimised.
The indirection overhead could be greatly reduced by inventing a new pro-
cessor instruction which dereferences indexed locations on the bottom of 
the process’s stack.

* The indirection vectors need to be managed so that every item of static data 
in the system is assigned a unique vector. As these vectors are relatively 
sparse, this is not a significant problem when process stacks are large.

Figure 2.4 shows how a shared library can be implemented using this technique. 
Jump vectors to the routines are placed at the start of the library. This enables 
the internal format of the library to be changed without having to relink the 
programs which use it.

i ;

Process 1 suck poinler Process 2 suck  pointer

Figure 2.4: Using Indirection to Allow Code Sharing

-  Supporting UNIX Fork Semantics
The UNIX fork system call creates a new child process with an exact image of its 
parent’s address space. This mechanism relies on having an architecture which 
is able to provide address independence. SSAS architectures cannot provide 
this and so have difficulty supporting fork semantics.
The author has proposed software techniques for providing UNIX-like fork 
semantics on single address space machines [Gul89, Gul88]. Generally, these 
involve scheduling forked processes so that they never execute simultaneously. 
It is then possible to swap forked processes in memory so that the executing 
process always occupies the original memory. Clearly this is slow and, due to 
the migration of processes in memory, it severely limits the way addresses can 
be passed between processes. Similar techniques are employed in the Cedar 
[Tei84, Swi86] and Pilot [Red80] operating systems.
Hardware segmentation, often employed in conventional operating systems4, 
is a faster and cleaner solution to this problem. This allows a child process 
to create local aliases for its stack and data, so that they overlay those of its 
parent. When a process wishes to pass stack or data addresses to another, 
it must first convert them to global addresses. The ANGEL operating system 
uses this scheme [Wil91a, Wil92], but this solution has two main disadvantages:

4For example, MS-DOS, MULTICS [Cor65], Hewlett-Packard’s Precision [Lee89] and COSMOS [Hor],
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When a process attempts to access an address to which it is not entitled, an exception 
is generated. The process may be allowed to trap this error, giving it the opportunity 
to correct its domain registers and continue.

Assume that the SSAS is divided into a number of non-overlapping memory ranges, 
or objects6 7. Access to each object is strictly controlled by the operating system; it 
provides a mechanism with which a process can manipulate its domain registers, but 
permits it to access only those objects to which it is entitled. When the operating 
system grants a process access to an object, it loads the object’s start address, limit 
and access rights into one of its domain registers.

Two different schemes for object access control have been used in previous, although 
not exclusively SSAS, systems:

— Passwords
This scheme is employed by operating systems such as Chorus (ports) [Arm86], 
Psyche (keys) [Sco89b], Amoeba (capabilities) [Mul91] and Opal (protected 
pointers) [Cha92b]. When a process creates a new object it specifies a number of 
secret passwords corresponding to access rights such as read, write and execute. 
Passwords are simply random numbers with enough bits to make their forgery 
improbable. A process can get the operating system to enter an object into its 
domain registers by making a system call, quoting the object’s start address 
and the appropriate secret passwords for the required access rights.
It is envisaged that each user has a local name server object which contains 
mappings of hierarchical names to object and password pairs. A user’s processes 
are given the password to enable them to read their name server object. One 
of the features of this approach is that a public program which uses an object 
which users are not allowed to access directly', must have the object’s password 
hard-wired into its code. This can be obtained from the master name server 
when the program is compiled by a privileged user.
The main advantage of the password scheme is that the operating system does 
not need to be concerned about the movement of passwords between processes, 
only their attempted use. This reduces communications overheads.
The main disadvantage of the scheme is that a single process’s rights to access 
an object cannot be easily revoked; changing the password has the undesirable 
side effect of also preventing other processes from accessing the object. It is 
also difficult to prevent a process from giving away a password to a process 
which is not entitled to it.

— Access Control Lists
This scheme is employed by operating systems such as Mach [Acc86] and AN-
GEL [Wil92], It provides a higher degree of security than password protection, 
but at the cost of an additional communication overhead.
Each object has a secret access control list which is maintained by the kernel. 
This states which processes are able to access the object and in which ways. 
When a process accesses an object which is not in its domain registers, the

6These are called Windows in Ra [Ber88, Das88], Realms in Psyche and Segments in Opal.
7For example, the UNIX command p s  accesses the kernel memory device /dev/kmem.
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kernel examines the object’s access control list. If the process has the required 
access rights to the object, then its details are entered into the domain registers. 
If not, then an exception is generated.
A process can obtain access rights to an object in only two ways: by initially 
creating the object; or by being granted them by another process, such as a 
name server. This server must both possess the access rights and be allowed 
to give them away. The server grants the access rights by issuing a system call 
which tells the kernel to add the new process to the object’s access control list. 
This scheme has two main advantages: it is impossible for a process to fraudu-
lently obtain access rights to an object and a process’s rights to access an object 
can be revoked by simply removing its name from the appropriate access control 
list.

Both of these schemes allow the traditional login process to be replaced with a 
mechanism by which the name and password of a local name server object are 
supplied and validated. This policy allows the traditional operating system concept 
of users to be discarded in favour of a more powerful sharing mechanism.
The number of domain registers determines the number of objects which can be 
mapped into a process’s address space simultaneously. In effect domain registers are 
similar to UNIX file descriptors. Processes in SunOS 4.0, for example, are limited 
to 64 active file descriptors.

• Resource Reclamation
Previously, it was claimed that it is virtually impossible to fill a 64-bit address space. 
Yet real systems have finite amounts of physical memory. At some point it becomes 
necessary to reuse it.
When a process in a separate address space architecture terminates, its resources 
can be reclaimed easily because it has a private context. In SSAS architectures, as 
a side-effect of the increased sharing, it is more difficult to define process contexts; 
an item of data can only be reclaimed when there are no pointers to it anywhere in 
the system.

The minimum level of support for the architecture requires applications to explicitly 
request the deletion of data from the address space. This places the onus on programs 
to clear up after themselves, but if necessary, automatic garbage collection routines 
can be provided.

2.5 C onclusion

This chapter has shown that, in order to provide the required scalability, Cherub must 
be implemented on a distributed architecture. A distributed shared memory (DSM) 
— a mechanism which provides the semantics of a physically shared memory on a dis-
tributed architecture — is therefore required to implement the shared variable program-
ming paradigm. Unfortunately, when intertask communication and DSM mechanisms are 
implemented in software, the latency of setting up a new task is high. This restricts them 
to coarse-grain parallelism. Implementing a DSM in hardware (HDSM) would reduce its
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latency, but is difficult due to the complexity of the conventional memory model. Hence, 
a simplified memory model must be constructed.

Single shared address space (SSAS) architectures were then introduced. Although still very 
much in their infancy, with many issues concerning their structure and efficient use yet to 
be fully investigated, these appear to offer several operating system simplifications such 
as unifying caching mechanisms, increasing memory sharing and reducing DSM context 
switch latencies. Combining SSAS and HDSM, therefore, has the potential for reducing the 
latency of shared memory access so that network communications performance dominates 
overhead and hence determines granularity.
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Chapter 3

Simplifying The Operating 
System Call Interface

“Compromise is the art of design”
(Unknown)

3.1 Introduction

Existing parallel architectures either support a few tens of fine-grained concurrently ex-
ecuting tasks communicating via shared variables, or hundreds of coarse-grained tasks 
communicating via message passing. Currently, there is little middle ground. In chapter 
one it was asserted that a significant number of applications exist which are well suited to 
a medium-grained parallel architecture with several hundred processors which can sup-
port the shared variable programming paradigm [Don91]. The Cherub architecture is an 
attempt to address this need.

Chapter two has asserted that by employing a SSAS memory model, Cherub’s intertask 
communication mechanisms can be simplified to the extent that they can be easily im-
plemented in hardware. This will greatly reduce communication latency, thus allowing 
medium-grained programming. The increased data sharing encouraged by the memory 
model will also result in a significant improvement in the efficiency of memory usage over 
conventional architectures.
This chapter deals with the problem of designing a new operating system interface which 
can be used to provide similar functionality to the system calls of a conventional operating 
system, but which are considerably simpler to implement in hardware. To do this we must 
first understand what services a conventional operating system provides. Then we must 
examine ways of unifying those services through the use of a SSAS. Finally, having defined 
an interface to Cherub, we must show that it is useful. This can be achieved by identifying 
classes of applications for which the interface is well suited.

The Cherub architecture presented in this chapter is the work of the author and is, in 
effect, an early form of the ANGEL operating system being developed at City University 
and Imperial College [Wil91a, Wil92, Sti92].
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3.2 A Conventional O perating System  Interface

Before we can decide what the Cherub interface should look like, we must determine what 
services conventional operating systems provide. For example, the system calls of UNIX 
Version 7 (V7) can be grouped into a number of categories:

• Process Management
The UNIX V7 operating system supports multiprocessing — running processes con-
currently. System calls are provided for the creation {fork), execution {exec), syn-
chronisation {wait) and termination {exit) of processes.

• Persistent Data Storage
Persistent, high latency, data storage is accomplished in UNIX through the file sys-
tem:

-  Data is stored in files located within a hierarchical name space. System calls 
are provided for the creation {créât, mknod, link) and destruction {unlink) of 
files, as well as for the manipulation of the name space {chdir, mount, unmount, 
chroot).

-  Data access is provided though a set of system calls {open, close, read, write, 
Iseek, ioctl, stat, fstat).

-  Protection is achieved through the concept of user and group identities. Sys-
tem calls are provided for the manipulation of identities {getuid, getgid, setuid, 
setgid) and for altering their associated access rights to files {chmod, chown).

• Non-persistent Data Storage
Non-persistent, low latency, data storage takes place in memory. Text, data and 
stack memory regions, called segments, are automatically allocated upon a process’s 
creation and deallocated on its termination. Processes allocate memory for their 
heaps manually {brk).

-  Memory locations are named using addresses comprising segment and offset 
components.

-  Memory locations are accessed using read and write machine instructions.
-  Protection is achieved by giving each process its own private address space.

• Interprocess Communication
V7 provides two interprocess communication mechanisms:

-  Synchronous communication is performed via the file system. System calls 
{pipe, dup) are provided which allow the output of one program {stdout) to 
be fed into the input of another (stdin). Protection and naming is provided 
through the file system owner and group mechanisms.

-  System calls are also provided for the asynchronous sending {kill, alarm) and 
receiving {signal, pause) of events. Processes are named with unique identifiers 
{getpid) and protection is provided through the file system.
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• Time Management

V7 provides several system calls that allow the reading (time) and setting (stime) 
of the time-of-day clock, as well as for determining file access (utime) and process 
execution (times) times.

• Debugging

V7 provides a system call which allows a process to control the execution of another 
for debugging purposes (ptrace).

• Booting and Shutting the System Down

Finally, to shut the system down, the disk cache is first flushed (sync) and then 
the operating system is halted (reboot). When the operating system is rebooted, it 
creates a single user process called init. This is responsible for creating additional 
user processes which perform user logins.

Many system functions are provided by user level programs through the use of special 
devices which are accessed as normal files. These devices include:

• /dev/tty

These devices allow access to the character based terminals connected to the ma-
chine. They can be used to read input from keyboards and write output to screens.

• /dev/km em  and /dev/mem

These devices can be used to access the kernel’s virtual memory and the system’s 
physical memory respectively. They are used by programs which require detailed 
process information, such as ps.

• /dev/d i

These devices can be used to access the raw contents of the disk drives. They are 
used by programs which require detailed file system information, such as df.

We will use the UNIX V7 system calls as a checklist of the services the Cherub interface 
should provide.

3.3 T he Cherub Interface

Like a conventional operating system, Cherub must provide programming abstractions 
such as processes, persistent and non-persistent storage and inter-process communication. 
However, this must be done in a way which lends itself to being implemented in hardware. 
This implies that these abstractions should be unified — and hence simplified — using a 
SSAS.

• The Cherub SSAS is seen by the programmer as a single 64-bit address space, called 
the Object Space.
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• The Object Space contains protected non-overlapping address ranges called objects1. 
Objects unify programming abstractions such as processes, persistent and non- 
persistent storage and inter-process communication.

• All objects have the same fixed finite size; they neither grow nor diminish in size. 
This simplifies the address space management as objects are not allowed to overlap.

Cherub must provide mechanisms for management of objects within the Object Space. 
Explicit creation and deletion mechanisms are employed for their simplicity. Names must 
also be provided by which objects can be referenced.

• Objects are created using the create-object system call. This takes twro parameters, 
new-dr and image-dr. These will be explained when protection and access semantics 
are discussed. The call unifies the UNIX process (fork) and file (creat, link, mknod) 
creation system calls.
The system call allocates a unique identifier, global-name, by which the object can 
be referred to. This is actually the start address of the object within the Object 
Space, thus creating a flat name space. To allow objects to be referenced by address, 
the location of an object does not change throughout its lifetime. This mechanism 
unifies the UNIX naming schemes for files, memory and processes. The first twelve 
objects in the Object Space are reserved for the operating system. This will be 
explained later.
It is envisaged that personalised user name servers will be employed to map hierar-
chical names, similar to those of UNIX files, onto the flat globaLnames employed by 
Cherub.

• Objects are persistent, that is, once created they exist until explicitly deleted. This 
simplifies resource allocation. Object deletion is performed by the destroy-object 
system call. This takes a single parameter, old-dr, which will be explained when 
protection is discussed.
Once an object is deleted, its globaLname becomes invalid and any attempt to use 
it will generate an exception. Garbage collection of unreferenced objects must be 
performed by the programmer.
This system call unifies the UNIX process termination (exit), file destruction (unlink) 
and memory reclamation mechanisms.

Cherub must also provide some mechanism by which object information such resource 
usage and access times can be obtained.

• Statistics about an object can be obtained using the object-info system call. This 
takes two parameters, old-dr and statistics-buffer-ptr. The system call writes infor-
mation regarding the object specified by old-dr into the statistics-buffer. The old-dr 
parameter will be explained later.
This system call unifies the UNIX stat and fstat system calls with the /dev/kmem, 
/dev/mem, and /dev/di devices.

1 These are not objects in the full object-oriented sense.
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Objects in the Object Space must be protected from the accidental or malicious actions 
of processes. A password system will be employed because of its simplicity and low com-
munications overhead.

• Objects are protected by passwords called capabilities. Each object has three ca-
pabilities: read, write and execute. An object’s capabilities are assigned upon its 
creation and cannot be changed. By convention, the value 0 is both an invalid ca-
pability and address. This value, therefore, can be used by a process to relinquish 
an access right to an object. It also helps trap invalid pointer dereferences.
Each process has a number of protection domain registers. To access an object in a 
particular manner, a process must first load the applicable capability to that object 
into one of its protection domain registers. A capability’s validity is determined when 
it is first used to access an object. A data access made without the correct capability 
generates an exception, allowing the process to correct the error. The validation and 
exception process takes a finite amount of time, thus complicating attempts to crack 
capabilities systematically. This mechanism equates with the UNIX open and close 
system calls.

Once a process has a capability to an object, it can use it for the object’s lifetime. 
Giving another process an object’s capability allows it to access the object in the ap-
propriate manner. The set of capabilities possessed by a process, therefore, equates 
with the UNIX concept of ownership and access rights (chown, chmod, getuid, get- 
gid, setuid, setgid). Consequently, logging-in is simply a mechanism by which the 
globaLname and capabilities for a memory object, which contains the set of name 
mappings and capabilities associated with a given user, are presented to a name 
server program for verification and use.
The protection domain registers are also used by the system calls:

— The capabilities to be assigned to an object are passed to the create-object 
system call in the protection domain register specified by the new-dr parameter.

— For a destroy-object system call to be successfully performed on an object, its 
write capability must be contained in the protection domain register specified 
by the old-dr parameter.

— For a object-info system call to be performed, the object’s read capability must 
be contained in the protection domain register specified by the old-dr parameter. 
The process must also possess the write capability to the statistics-buffer used.

All object are accessed as if they were conventional memory, thus providing a consistent 
interface to the programmer. This unifies the UNIX file (read, write, Iseek, ioctl) and 
memory access mechanisms. However, object access semantics can differ, thus providing 
scope for various programming abstractions.

• The semantics of objects are defined upon creation. To maintain the simplicity of 
the SSAS, it is envisaged that there will be only six types of object: memory, process, 
sleep-wakeup, semaphore, rendezvous and hardware. (Other object types may be 
added in the future.)
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The access semantics of an object are passed to the create.object system call in the 
protection domain register specified by the new-dr parameter.

• To reduce the overhead of data copying, the contents of an object may be initialised 
upon creation to those of an image object for which the read capability is held. This 
provides a cheap mechanism for copying objects. If the object is not initialised, it 
contains zeroes.

The access semantics of some of object types, however, mean that it is not sensi-
ble to use them as images when making create.object system calls. For example, 
synchronisation objects contain personal state information, such as which addresses 
processors are sleeping on. This is meaningless when duplicated.

The details of the object to be used as an image are passed to the create-object 
system call in the protection domain register specified by the image-dr parameter.

Thus, it can be seen that the plethora of system calls provided by conventional operating 
systems such as UNIX can be replaced with just three, operating on a global shared address 
space containing various types of objects. The access semantics of these objects will now 
be explained in the following four sections.

3.3 .1  P rocess O b jects

Processes are represented in the Cherub architecture as objects in the Object Space. They 
have the following properties:

• Process objects are created and terminated explicitly using the create-object and 
destroy-object system calls, although process termination may also occur implicitly 
through exceptions.

• Processes are light-weight in that they have a relatively small amount of context 
information. This is limited to some scheduling information, a number of exception 
vectors and a set of general purpose, debugging and protection domain registers.

• In principle, Cherub supports any number of concurrently executing processes, al-
though several hundred, one per processor, is optimal.

• All processes are scheduled and run concurrently by Cherub, unless they are blocked 
on memory accesses, have reached a breakpoint, or have been halted.

Process objects must also provide conventional process related operating system primitives 
such as signal and exception handling (signal, kill), timers (alarm), debugging (ptrace), 
protection (setuid, seteuid, getuid, geteuid) and run-time statistics (utime). These prim-
itives are provided through offsets in the process object which have specific roles. The 
format of a process object is as follows:
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Execution Time 
Countdown Timer 

Status Word 
Exception Vectors 

and Exception Flag 
General Purpose Registers 

(including PC, USP, ESP and SR)
Breakpoint Registers

Protection GlobaLName
Domain Read-Capability
Registers < Write-Capability

each Execution-Capability
containing Access-Semantics

Unused

The roles of these offsets are listed below. All are 64-bits wide.

• Execution Time
This field shows how much processor time, in pS, has been spent running the process. 
This field equates with the UNIX utirne system call.

• Countdown Timer

This field is used to generate timed exceptions. When a non-zero value is written 
to this field, it is used to initialised a yuS countdown timer. Writing zero to the 
field disables the timer and reading it gives the number of pS remaining. When this 
reaches zero, an exception is generated.
This mechanism equates with the UNIX alarm system call.

• Status Word

This field contains a number of bit flags which relate to the current execution status 
of the process. These include information such as whether the process is running or 
blocked on a data access. Most of these flags are read-only.
One of the most important flags is the stop flag. This can be modified. When set, 
this prevents the process from being executed. This flag is set by default when a new 
process is created. This allows a parent process to construct its child’s environment 
before it starts executing.

• Exception Vectors and Exception Flag

The exception vectors contain the addresses of exception handler routines. There 
is one vector per exception type. By default, when a process is created all of its 
exception vectors are empty.

The exception flag bitfield is used to send an exception to a process. There is one 
bit per exception type. When a particular bit is set, the appropriate exception is 
generated. This causes the process to suspend the normal execution of instructions
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and, if the appropriate exception vector is not 0, to execute the specified handler. 
If the exception vector was not defined, the process is terminated by an implicit 
destroy .object system call.

The exception vectors are prioritised. An exception cannot preempt a higher priority 
one. The exception handler must clear the appropriate bit in the exception flag 
before the process can accept a further exception of this, or a lesser, level. Blocked 
exceptions are queued by Cherub and issued in priority order.

Upon returning from an exception handler, normal instruction execution is resumed. 

These mechanisms equate with the UNIX signal and kill system calls.

• General Purpose Registers

These are the general purpose processor registers. These include the program counter, 
user stack pointer, exception stack pointer and status register. The processor has in-
structions which manipulate these registers directly.

• Breakpoint Registers

These registers are used for debugging purposes. These contain the addresses which, 
when accessed by the process, generate exceptions. These are akin to the debugging 
registers of the Intel 80386 processor [Int86]. Due to the uniformity of the object 
space, these addresses can refer to either instructions or data. This mechanism 
equates with the UNIX ptrace system call.

• Protection Domain Registers

Each process has a number of sets of protection domain registers which enable it 
to access the contents of objects. The processor has instructions which manipulate 
these registers directly. As domain registers equate with UNIX file descriptors, it is 
likely that 64 sets2 will be sufficient. Each set contains five registers:

— GlobaLName
This holds the globaLname by which an object is referred to. If this field 
contains 0, the register set does not hold valid data.

— Read-Capability
This contains the read capability for the object (if any). If this field contains 
0, this capability does not exist.

— Write-Capability
This contains the write capability for the object (if any). If this field contains 
0, this capability does not exist.

— Execute-Capability
This contains the execute capability for the object (if any). If this field contains 
0, this capability does not exist.

— Access-Semantics
This register holds the access semantics which the object provides.

2The number of file descriptors currently supported by SunOS 4.0.
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No policy is enforced on the use of the 64 domain registers, but by convention the 
following associations are used:

Domain Register Use
0 The system process object.
1 The process object itself.
2 The process’s text object.
3 The process’s data object.
4 The process’s stack object.
5 A rendezvous object for signaling the process’s termination.

6, 7 and 8 The equivalent of UNIX’s stdin, stdout and stderr.
9, 10 and 11 Semaphore objects associated with the previous three registers.

12 to 63 Additional objects used by the process.

Domain register one refers to the process object itself. This equates with the UNIX 
getpid system call. Domain registers two, three and four refer respectively to the 
text, data and stack objects that will be used by the process. Domain register five 
refers to a rendezvous object which is used for synchronising with the parent upon 
termination. Domain registers six to eleven equate with UNIX’s stdin, stdout and 
stderr and allow their unification with the dup and pipe system calls. Additional 
objects, if any, can be placed in the remaining registers.

When a process object is created, it has no stack. A memory object must be created 
separately for this purpose. Similarly, it is necessary to create a rendezvous object 
with which the child process can synchronise with its parent upon completion. The 
details of these objects must be loaded into the appropriate domain registers prior 
to process execution.

Object one in the Object Space is reserved for a special process object, called the System 
Process. This object represents the Cherub operating system and is the first process 
created when the system is booted. It, therefore, equates to the UNIX init process. The 
System Process is able to ignore all capability restrictions and its domain registers initially 
refer to objects one through twelve.

The System Process’s execution.time field corresponds to the current time-of-day clock. 
Most processes possess the read capability for the System Process in domain register zero, 
thus enabling them to read the clock (time). Processes which also possess the System 
Process’s write capability can set the clock (stime), reboot the operating system by issuing 
a destroy.object system call, or halt it by setting its stop flag (reboot).

It can be seen that process objects provide access to a wide range of process and system con-
trol mechanisms. Due to the multitude of dissimilar process related mechanisms provided 
by conventional operating system interfaces, processes are the most complex type of object 
in Cherub. Although, the number of mechanisms provided by Cherub is not significantly 
lower then conventional systems, they are accessed in a unified manner through the process 
object.
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3 .3 .2  M em ory  O b jects

Memory objects are contiguous regions of virtual memory composed of a number of hard-
ware memory pages. The contents of memory objects survive machine reboots, thus uni-
fying UNIX’s concepts of persistent (Iseek, ioctl, read, write) and non-persistent storage.

Cherub will employ a 256 byte page size — experiments with the Psyche operating system 
have shown this to be a good compromise. The page size determines the optimal size 
for shared data structure elements. Pages are allocated automatically on demand and 
continue to exist for the lifetime of the object, thus replacing UNIX’s brk system call.

As explained in chapter two, current theory dictates that a DSM should only provide 
strong coherence — a read returns the last value written to a location — as it is the 
easiest mechanism to program. However, it is also believed that applications should be 
able to give the underlying computer architecture hints about intended future memory 
usage. The processors in Cherub provide four new machine instructions for this purpose.

• busy-read(address) and busy .read- write (address)

These instructions tell the architecture that the program will probably access the 
data page containing address heavily in the near future. The instruction type corre-
sponds with the nature of the intended data access.

• idle (address)

This instruction tells the architecture that the program will probably not access the 
data page containing address in the near future.

• finish(address)

This instruction tells the architecture that the program will probably not access the 
data page containing address again.

The instructions are advisory only; they do not guarantee exclusive memory access.

Memory objects combine efficient fine-grained coherent data sharing with persistent stor-
age.

3 .3 .3  S leep -W ak eu p , Sem aphores and R endezvous O bjects

These synchronisation objects allow a number of processes to coordinate their actions 
without the high overheads associated with polling. The three types of synchronisation 
objects to be supported were chosen because of their success in UNIX:

• Sleep-Wakeup

Processes reading from an offset within this type of object are blocked. When a 
process writes to the object, all processes reading from that offset are unblocked, 
returning the written value. Writes to offsets from which no processes are reading 
are lost. This resembles the UNIX kernel’s sleep-wakeup mechanism [Bac86].
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• Semaphores

This object is similar to the sleep-wakeup object except that each write will only 
unblock one process. Furthermore, writes are not lost when no processes are reading; 
they are simply stored until the next read. Data items will be read in the order that 
they were written. This resembles Dijkstra’s P and V semaphores [Dij65].

• Rendezvous

The access semantics of this object resemble those of the sleep-wakeup object except 
that a write to an offset from which no processes are reading will block until a read 
takes place. This resembles the UNIX wait system call [Bac86].

By combining these three simple mechanisms, more complicated primitives such as Mellor- 
Crummey and Scott’s locks and barriers [Mel91] may be constructed.

It should be noted that synchronisations can be performed using memory objects alone. 
For example, the strict coherence provided by memory objects can support spin-lock syn-
chronisation. However, this mechanism is wasteful of CPU time and in distributed systems 
incurs excessive interprocess communication. Synchronisation objects are, therefore, pro-
vided for the sake of efficiency.

Synchronisation objects provide access to simple, efficient, synchronisation primitives.

3 .3 .4  H ardw are O bjects

Hardware objects map onto the control registers of the hardware devices, such as terminals 
and tape drives, which are connected to the architecture. They can be used by processes 
to control these devices using memory mapped I/O. These objects equate with UNIX 
devices such as /dev/tty. The allocation and internal structure of hardware objects are 
implementation dependent.

Hardware objects create a simple, unified interface to dissimilar devices.

3.4 Program m ing Cherub

Having defined Cherub’s system call interface and the access semantics of its objects, it 
is now possible to show how the new architecture will be programmed. Two of the areas 
previously identified as involving major operating system issues are process management 
and data storage. Examining these makes it possible to demonstrate that Cherub is easy 
to program and that it involves lower overheads then conventional operating systems, thus 
allowing it to support finer grained processing.

3 .4 .1  P ro cess  M anagem ent

The Cherub process life cycle is illustrated in figure 3.1. The following stages are involved 
in setting up, synchronising with, and cleaning up after, a new process:
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Figure 3.1: The Cherub Process Life Cycle

1. Create Child Process Object
The parent process creates the child process object using the create^object system 
call.

2. Create Stack Object
A memory object must be created using the create.object system call. This will be 
the new process’s stack object. When the child process terminates, this object will 
be used to pass its results back to the parent.

3. Create Rendezvous Object
A rendezvous object must be created using the create.object system call to enable 
the child and parent processes to synchronise upon termination.

4. Build Child Process’s Environment On Stack
The arguments and environment needed by the child process are first written into 
its stack object. Next, the child process’s first twelve domain registers are set up. 
Finally, the address of the process object is placed in a well-known register of the 
new process.

5. Restart Process
The parent process issues finish instructions on the pages of the child’s process and 
stack objects. The process object is then started by resetting its stop flag.

6. Load Text And Data Pages

The child process issues busy.read-write instructions on the pages of its process, 
stack and rendezvous objects. The process then demand loads the pages it needs for 
execution from its text and data objects. Similar overheads will also be incurred by 
a non-parallel function.
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7. Synchronisation

Once the child process has completed execution, a synchronisation operation must 
be performed to inform the parent. The address of the results is passed to the parent 
process using the rendezvous object. The parent process is then able to read the 
results from the child’s stack object.

8. Termination
Once the results have been transferred, the child process issues destroy-object sys-
tem calls to terminate its synchronisation object and itself. The parent process is 
responsible for terminating the stack object once it has finished with the results. In 
this way the child process pays most of the overhead of the cleanup operation, not 
the parent.

The programming overhead of this mechanism can be significantly reduced by the provision 
of library calls such as:

• pid = create-process (execution-address, capabilityJist, argument-list, environment-list)
This library call creates a process, a stack and a rendezvous object, sets up the pro-
cess’s domain registers, builds the environment on the stack using the argument and 
environment lists and starts the process at the given execution address. It returns a 
process identifier which can be used to refer to the process. This is equivalent to a 
unified UNIX fork and exec system call.

• synchronise-process(pid)
This library call performs a read on a process’s rendezvous object. This is equivalent 
to the UNIX wait system call.

• terminate-process()

This library call first performs a write to the issuing process’s rendezvous object. It 
then destroys the process object, along with its synchronisation object. The parent 
process is responsible for destroying the stack object once it has finished with its 
contents. This is similar to the UNIX exit system call.

These library routines provide functionality similar to their UNIX system call counterparts, 
but are based upon primitives which are simple enough to be implemented in hardware. 
Alternatively, process creation may be automatically performed by intelligent compilers 
with parallelisation constructs, thus further simplifying the programming overhead of using 
the machine.

As was shown in chapter one, if the intertask communication overheads associated with 
the process life cycle can be performed in under 7,000 instructions, then a task granularity 
of around 10,000 instructions is optimal. Figure 3.2 illustrates the maximum potential 
speedup which may be obtained when a sequential task is decomposed into subtasks of 
this granularity, all of which can be executed by processes in parallel.

To determine whether the desired level of granularity is feasible, the implementation of 
these mechanisms must be examined. This will be done in the next chapter.
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Figure 3.2: The Time Taken To Execute A Program In Parallel On Cherub

3 .4 .2  D a ta  Storage

All data storage in Cherub uses the memory object type:

• Objects are created and terminated using create-object and destroy.object system 
calls. They are persistent.

• Upon creation, an object is named with a globaLname assigned by Cherub. This 
corresponds to its start location in the Object Space. If required, user-level per-
sonalised name servers can be implemented to map hierarchical names onto the flat 
ones employed by Cherub.

• The contents of an object are accessed using conventional read and write machine 
instructions. The strong coherence semantics of the object ensures that data written 
to it is immediately visible to other processes.

Shared code libraries may be constructed using the indirection vectors technique 
described in chapter two.

• An object can be accessed by any number of processes which possess its capability, 
thus allowing parameter passing by reference.

This is clearly a simpler and more efficient storage mechanism then UNIX’s explicit, 
coarse-grained, read and write system calls. Consequently, it is much better suited for 
implementation in hardware.
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3.5 A pplications Suitable for Cherub

Finally, having seen how Cherub would be programmed, it is possible to suggest the prop-
erties which would make an application particularly well suited to the new architecture:

• The application should be able to make use of concurrently executing medium- 
grained processes, each consisting of around 10,000 instructions. Ideally no more 
then several hundred of these should be running concurrently, one per processor.

• The application should use the shared variable parallel programming paradigm. The 
shared data structures should have the following properties:

-  The data structures should be shared for read and write, thus requiring data 
coherency.

-  Synchronisation by record locking should be necessary when modifying shared 
data structures to maintain data consistency.

-  False data sharing during record locking should be unacceptable. Hence, only 
one record should be stored in each page. This is the case in real-time appli-
cations. Hence the page size should be small — around 256 bytes. It should 
be undesirable to use an architecture with a larger page size. This could be 
because either:

* The database contains a large number of records; or
* A fast record transfer time is very important, as is the case in many real-

time applications.

A non-trivial real application which has these properties, an airborne early warning sys-
tem, is examined in appendix B. This demonstrates how Cherub can help to provide an 
efficient and elegant solution for this application.

3.6 Conclusion

In this chapter we have introduced the Cherub system call interface, which is programmed 
through a SSAS called the Object Space. It was decided that only three main operating 
system mechanisms are required:

• Conventional UNIX operating system mechanisms such as processes, persistent and 
non-persistent storage and inter-process communication are unified as six types 
of object within the Object Space: process, memory, sleep-wakeup, semaphore, 
rendezvous and hardware.

• Object protection is provided by password-like capabilities. The set of capabilities 
possessed by a process replaces the UNIX concept of users and groups.

• A flat naming scheme, based on the start addresses of objects within the Object 
Space, is employed. It is expected that private user name servers will be employed 
to map hierarchical UNIX-like file names into object names and capabilities.
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It is asserted that these mechanisms are simple enough to be implemented in hardware, 
thus reducing intertask communication latencies to below 7,000 machine instructions and 
resulting in an optimal task granularity of 10,000 instructions. This will enable Cherub to 
provide a degree of parallelism which is useful for a significant range of applications, while 
maintaining a natural data sharing mechanism which simplifies its usage.

The next chapter will examine this assertion, showing how Cherub can be implemented in 
hardware and estimating its performance.
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Chapter 4

Implementing the Cherub 
Architecture

4.1 Introduction

In chapter three the interface to a new distributed computer architecture, Cherub, was 
defined. This will be programmed through a single shared address space, with the intention 
that many conventional inter-task communication mechanisms will be simplified to the 
extent that they can be implemented in hardware. It is hoped that this will reduce the 
latency of the process life-cycle to below 7,000 machine instructions. This chapter will 
determine whether this is possible.

It is important to appreciate that good implementation mechanisms are just as critical 
as models of computation when designing parallel architectures; almost any model of 
computation can be implemented on a machine if the right mechanisms are employed. In 
Chapter three it was stated that Cherub should provide the following:

• Support for several hundred concurrent light-weight processes.

• A granularity of data sharing of around 256 bytes.

• A medium granularity of processing; the total time spent setting up, providing data 
for, synchronising and scheduling a 10,000 instruction process should be similar to 
that needed to execute about 7,000 instructions.

• A multiple access policy, to a globally shared address space.

These properties can only be provided by combining high performance state-of-the-art 
hardware with low overhead mechanisms. This chapter is, therefore, divided into three 
parts. First the underlying hardware needed to support Cherub is determined. Secondly, 
mechanisms are designed which implement Cherub on that hardware. Lastly, the perfor-
mance of the mechanisms is considered.
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4.2 T he Cherub Hardware

Before mechanisms for the implementation of the Cherub Object Space can be suggested, 
the architecture’s hardware must be defined. Fortunately, many MIMD (Multiple In-
struction, Multiple Data) [Fly66] multicomputer architectures conform logically, if not 
physically, to a single model: a number of processors, each with one or more layers of 
local memory, connected by a network to layers of shared memory and disk storage. This 
logical organisation is illustrated in figure 4.1.

Processor Processor Processor

Layers of Low Latency 
Local Memory

Layers of High Latency 
Shared Memory

Shared Disk

Figure 4.1: Cherub’s Logical Hardware Organisation

The main factors affecting the performance of such an architecture are:

• The number and speed of the processors;

• The amount and speed of the local memory;

• The latency, bandwidth and scalability of the network; and

• The amount and speed of the shared memory.

From a philosophical standpoint, as it may take several years to implement Cherub, it is 
important to employ mechanisms which are designed not for existing but rather future 
hardware1. On the other hand, as it is virtually impossible to accurately predict the speed 
or direction of technological advance, there is little point in trying to look too far ahead. 
Consequently, the proposed implementation of Cherub assumes hardware which should be 
available within the decade. It is, therefore, necessary to predict the capabilities of such 
hardware:

• Storage
In 1990, Hennessy and Patterson [Hen90] observed three trends in memory hierar-
chies: *

M his process of designing with future technology in mind is sometimes called Technology Intercept 
Planning.
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-  DRAM-Growth Rule:
Density increases at about 60% per year, roughly quadrupling in 3 years.

-  Disk-Growth Rule:
Density increases at about 25% per year, roughly doubling in 3 years.

-  Address-Consumption Rule:
The memory needed by the average program grows by a factor of 1.5 to 2 per 
year.

This has several interesting implications for Cherub.

-  Silicon Storage
If the DRAM-Growth trend observed by Hennessy and Patterson continues, 
one Giga-bit silicon memory devices will exist within the decade2. As the cost 
of storage is typically inversely proportional to its density, these will cost under 
$25 each3 *.
Compared to its cost, however, the access time of DRAM is dropping relatively 
slowly, about 7% per year [Hen90]. As DRAMs with 60 ns access times are 
now starting to appear, this implies that at the end of the decade, the average 
DRAM access time will be no better then 40 ns.
Two recent development in silicon-based storage devices include Flash Electri-
cally Erasable and Programmable ROM (Flash-EEPROM) and Ferroelectric 
RAM (FRAM).

* Flash-EEPROM [Mas91b, Hes90, Lah90] is reprogrammable nonvolatile 
memory, a blending of both EPROM and EEPROM. It has a EPROM-like 
density, EEPROM-like reprogrammability and an access time of around 
120 ns. Flash memory has two main disadvantages. Firstly it has a limited 
write life-time of around 10,000 cycles. Secondly, it has to be erased in 
sectors. These make it more useful as a silicon disk then as a replacement 
for DRAM. It is currently possible to house four to sixteen megabytes of 
flash memory in a credit-card form. In fact, as removable media, these 
card-sized modules already exceed the storage capacities of conventional 
floppy disks.

* Ferroelectric RAMs [Moa90, Gna89] are similar to conventional DRAMs in 
design, but use newly developed ferroelectric cells to provide nonvolatility 
and very high switching speeds (typically around 1 ns). They offer the 
potential to build nonvolatile memories with the speed of static RAMs and 
the density and cost of dynamic RAMs. They have a life-time of at least 
1010 write cycles

If FRAM is able to achieve a DRAM-like capacity within the decade, it will be 
desirable for Cherub to employ it instead of SRAM and DRAM. However, it is 
doubtful whether the technology will mature this quickly.

2Hitachi’s electron beam based lithography system, the HL-700F, is currently able to draw 0.1/rm lines 
at a rate of one 4 inch wafer per hour. Hitachi have simulated 0.1 micron devices and are convinced of the 
feasibility of Giga-bit memory chips [hit90].

3DRAM currently retails for around S3500 per Giga-bit of 70 ns memory. A 510 Mbyte magnetic disk
can be purchased for $979, around $245 per Giga-bit.
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It is important to realise that in the near future a single DRAM chip could 
provide 128 Mbytes of storage. Similarly, a large 16 Mbyte SRAM processor 
secondary cache might only require one chip4. It is, therefore, assumed that 
Cherub will have several Gbytes of DRAM storage and its processors’ secondary 
caches will contain at least 16 Mbytes of SRAM. In comparison, primary caches 
are relatively small as they constitute a major processor yield hazard. A typical 
future processor’s primary cache might only be 512 Kbytes in size.

-  Magnetic Storage
When Hennessy and Patterson made their memory hierarchy predictions it ap-
peared that silicon-based storage would eventually become cheaper then mag-
netic storage. In addition, it appeared that optical storage might a provide an 
even cheaper, if semantically different, backing storage medium [Pin89].
These predictions now look doubtful; recently significant breakthroughs have 
been made in magnetic disk technology. Oxide magnetic heads and recording 
media have been replaced by metallic magnetic materials, allowing a recording 
density approaching 100 Mbit per square inch. Furthermore, newly evolving 
techniques, such as vertical storage [Ron90, Die89], could potentially increase 
the capacity of magnetic disks up to 30 times that of the present generation. 
Meanwhile optical storage density has been limited by the physical size of the 
read/write laser.
As processors increase in performance, the high latency and low bandwidth of 
magnetic storage becomes more marked. Techniques such as RAID disk arrays 
[Pat88, And91a, 01s89] and interleaving [Kim86] are being investigated to in-
crease the bandwidth of magnetic disks. Disk arrays have also been used to 
provide fault tolerance against drive or media failure [Gib89]. Smaller disks, 
faster rotation speeds, multiple read/write heads per track [Mit89] and intelli-
gent disk heuristics [Ric89, Sel90, Kin90] are being investigated to improve the 
data access latency. However, it still remains a significant bottleneck.
I f the current trends in disk storage continue, it is probable that Cherub will 
employ a RAID-like disk array providing Tbytes of storage. This array is likely 
to have a latency of around 10ms, a transfer rate of several hundred Mbytes per 
second, and be accessed on a sector basis of at least 16 Kbytes in size.

The predicted properties of the Cherub memory hierarchy are listed in table 4.1. It 
is necessary to decide which of these technologies should be used as local memory 
and which should be shared. For reasons of performance, it is necessary to achieve 
a reasonable balance between the access time of a memory block and the time taken 
to transfer it. A tradeoff, therefore, exists when implementing data coherence at a 
given level in the memory hierarchy:

— Due to false data sharing, the lower in the memory hierarchy coherence is 
performed, the greater the number of invalidations that have to be percolated 
up to the higher levels.

4This can be deduced from the assumption that 1 Git-DRAMs will exist. SRAM is between 4 and 6 
times more expensive in transistors then DRAM. Therefore, 1 Gbit of DRAM «  16 Mbytes of SRAM, 
assuming that cache line tags incur a 25 percent transistor overhead.
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-  Alternatively, the higher in the memory hierarchy coherence is performed, the 
greater its latency is in relation to the time needed to transfer a memory block. 
In addition, the smaller blocks require more directory table entries, resulting in 
increased memory wastage.

Memory
Technology

Predicted
Cycle Time Block Size Capacity

Primary Cache few ns 256 byte lines Kbytes
Secondary Cache 10s ns 256 byte lines Mbytes

DRAM 1,00s ns 16 Kbyte pages Gbytes
Disk 1,000s ns 16 Kbyte blocks Tbytes

Table 4.1: Predicted Properties of Cherub Memory Hierarchy

In chapter three it was stated that Cherub should support a granularity of data shar-
ing of around 256 bytes. This implies that the sharing, and hence the data coherence 
mechanism, should occur in either the primary or the secondary cache. However, 
in order to provide data coherence, lists must be maintained of the pages held on 
each processor. Due to its relatively low yield, it is too expensive to hold these tables 
in primary cache. Therefore, data coherence will be implemented in the secondary 
cache.

• Processors
In 1990, Borg et al [Bor90] made some predictions regarding workstations of the 
near future. Adapting them slightly for Cherub we get:

-  Processors will have a RISC architecture and two levels of cache;
-  The primary cache cycle time will be 2 ns;
-  The additional time to go to the second level cache will be 16 cycles (32 ns);
-  The main memory (DRAM) latency will be 140 cycles (280 ns); and
-  The main memory transfer rate will be 16 bytes every 10 ns.

These predictions give some idea of the performance the Cherub global shared mem-
ory must achieve to create a balanced memory hierarchy.
When silicon storage was discussed it was shown, by extrapolating Hennessy and 
Patterson’s memory hierarchy trends, that a Borg-like processor might reasonably 
have 512 Kbytes of on-chip primary cache and 16 Mbytes of off-chip secondary cache. 
Studies of such very large virtually addressed caches [Prz90, Bug90, Sho88, Wan89] 
generally agree that it is most cost effective to make primary caches direct mapped 
and second level caches set associative. A write-through policy is usually adopted in 
the primary cache to maintain coherence and a write-back policy in the secondary 
cache to reduce memory traffic. The cache miss ratios reported in the literature 
depend largely upon the behaviour of applications simulated, but total cache miss 
ratios below 1.0 x 10~3 are often quoted [Bug90, Sho88].
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Assuming that the primary cache miss ratio is 0.1, the secondary cache miss ratio is 
0.01 [Bug90] and the main memory is large enough to avoid disk accesses, an average 
processor cycle will take around 6 ns:

Memory Level 
Primary Cache 

Secondary Cache 
Main Memory

Hit Ratio

0.1 X (1-0.01) 
0.1 X 0.01

Cycle Time (ns)
2
32

280 + 256 -T-16 x 10

Average Cycle Tim e (ns) 
(Hit Ratio x Cycle Time)

O
3.2
0.4
5.4

Thus, ignoring overheads, a 10,000 instruction Cherub process will typically take 
under 60//S to execute.
Given that Cherub can have at least 200 concurrent tasks, it is implied that the 
architecture, should have at least that number of processors. This suggests that 
network addresses should have at least eight bits.
In order to support process objects, as defined in the previous chapter, the processor 
should have at least the following registers:

-  64 general purpose registers (64 bits each)
-  64 protection domain registers (5 X 64 bits each)
-  8 breakpoint registers (64 bits each)

A Cherub processor accesses its primary and second level caches using an on- 
processor intelligent cache controller. This is responsible for locating lines of data, 
if they are in the caches, and if not, communicating with the cache controllers of 
other processors to find them. The controllers associate unique request identifica-
tion numbers with the data requests they issue to other controllers so that they can 
match the requests to the incoming replies.

• Network
The exact form of the network joining the processors is largely irrelevant. However, 
it must be able to support communication among many processors, which implies 
that it supports point-to-point rather then broadcast communication.
On initial inspection, a circuit switched communications network appears to be well 
suited to Cherub’s needs. This mechanism allows cheap, exclusive, two-way com-
munication between cache controllers.
The implications of using other types of networks are examined in chapter five.

To summarise, it has been predicted that if Cherub is constructed within the decade, it 
could reasonably consist of the hardware components illustrated in figure 4.2:

• At least 200 high performance RISC processors with a 6 ns instruction cycle.

• Each processor could have a 512 Kbyte local on-chip primary SRAM cache, organised 
as 256 byte lines.
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• Each processor could have a 16 Mbyte local secondary SRAM cache, organised as 
256 byte lines. Data coherence will be provided at this level.

• A scalable point-to-point communications network.

• Around a Gbyte of DRAM storage.

• Around a Tbyte of optical or magnetic disk storage.

Figure 4.2: Cherub’s Physical Organisation

Having predicted the Cherub hardware, it is now possible to examine mechanisms for 
implementing the Object Space upon it.

4.3 Im plem enting the O bject Space

Chapter three specified that the 64 address bit Cherub object space is divided into ranges 
of virtual address which are allocated to individual objects. Furthermore, all objects are 
the same size, are named by their unique globaLname and their contents are addressed 
using offsets.
As all objects are the same size, it is possible to use the upper n bits of a virtual address, 
where 0 < n < 64, to denote the globaLname of an object and the bottom 64 — n bits 
to give the offset within it, thus simplifying the design of the addressing hardware. This 
allows any combination of 2n objects, each containing 264-n bytes of address space. A 
compromise is clearly necessary:

• A small value of n gives large objects, thus simplifying the management of large data 
structures. However the system will then have few objects and much of the virtual 
address space will be wasted through internal fragmentation.
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Files in the the UNIX operating system are effectively limited to four Gbytes in size, 
given that the file size field in the inode is 32 bits. This has proved to be a severe 
limitation when handling large databases [Rob92], where at least 40 bits are often 
required.

• A large value of n gives small objects, thus making more efficient use of the virtual 
address space. However, the small object size will complicate the management of 
large data structures.

By default, the UNIX operating system’s newfs command allocates an inode struc-
ture per 2,048 bytes of disk space. Although, often this number of inodes proves 
to be generous, it is not unusual for systems such as news servers to have several 
million files.

It is, therefore, asserted that a reasonable balance is to have 224 objects, each 40 address 
bits in length. This creates 16,777,216 objects, each containing 1 Tbyte of virtual address 
space.
Chapter three specified that objects are persistent5. They must, therefore, be stored on 
disk or some other permanent storage medium. It should be noted that an object can 
potentially be larger then the capacity of any single disk drive currently available. Con-
sequently, it must be possible to store an object over multiple disks, so that its size is not 
limited by the physical capacity of any one media component. A logical to physical map-
ping scheme is, therefore, employed to convert logical disk addresses into the appropriate 
physical block and devices. This also allows techniques such as sparse storage, disk striping 
[Kim86] and RAID [Pat88, And91a, 01s89] to be employed. The cache controllers contain 
tables which enable them to perform this mapping. Logical to physical disk mapping is 
illustrated in figure 4.3.
The disk is logically divided into 1 Kbyte blocks, although the disk drives will probably be 
physically accessed using much larger, say 16 Kbyte, blocks. This small logical block size 
is very important since it reduces the latency of block transfers and zero-fills. It also helps 
reduce internal disk block fragmentation, albeit at the cost of larger disk block indexes. 
This will be explained later.
The layout of the logical disk address space is illustrated in figure 4.4. It is mainly divided 
into two parts — the free lists and process run-queues will be explained later:

• Object Descriptors

The information about objects is held on disk in object descriptor structures. These 
are 256 bytes long, the granularity of data sharing, thus eliminating false data shar-
ing. They have the following fields:

5Object persistence is only addressed in this thesis in a rudimentary manner since it is not considered 
that true persistence — fault tolerance — is necessary. The design only guarantees that the contents of 
memory objects will survive reboots if the system is shut down cleanly.

C h e r u b ’s ability to make inexpensive copies of memory objects, provides a convenient checkpointing 
mechanism. In his thesis, Wilkinson [Wil93] shows that it is possible to provide fault tolerance by regularly 
checkpointing objects and monitoring the access dependencies among them. If fault tolerance is required, 
therefore, the implementation must be redesigned to support the copying of objects other than memory.
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Figure 4.3: Logical to Physical Disk Address Mapping for Sparse and Striped Storage

Logical Disk Address

Free Descriptor Lists
Free B lockLists__

Processor Ru_n-_Queues

16,777,216 
Object Descriptors

Data Blocks

Figure 4.4: Logical Disk Layout
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Field Size (Bytes)

Valid Bit

}'Access Semantics

Read Capability 8
Write Capability 8

Execute Capability 8
Creation Time 4

Last Modified Time 4
Last Accessed Time 4

Object Dependent 219

It should be noted that this structure limits capabilities to 64 bits6 and restricts 
the number of possible object access semantics to 1287, leaving 219 bytes for object 
dependent data. These sizes are thought to be sufficient.

For speed, the Object Space’s descriptors are held in a preallocated four Gbyte table 
in the logical disk address space; the actual physical storage devoted to this table, 
however, is likely to be small as the disk address mapping scheme allows the logical 
disk address space to be sparse. An object’s globaLname is used as an index into 
the table to obtain its descriptor.

• Data Blocks

The remainder of the logical disk address space is divided into one Kbyte blocks. 
These are used to hold object indexes and data. This will be explained further 
when memory objects are discussed. The logical block size chosen compromises 
between minimising the data block transfer and zero fill latencies, reducing internal 
fragmentation, and minimising the size and depth of the data block indexes required.

Object descriptors and data blocks are allocated from linked lists of free disk blocks, each 
one Kbyte block containing up to 128 64-bit free descriptor or data block numbers. A 
large number of free lists are maintained to reduce contention; a processor is initially 
assigned its own free object and data block lists. When these are exhausted, it allocates 
from the other processors’ lists.
The mechanisms used to implement the different object access semantics are described in 
the following four sections.

4.3 .1  P ro cess  O b jects

Process objects should be assigned to processors selectively so as to maximise the through-
put of the system, while minimising the overheads of creating and terminating individual 
processes.

6An attem pt to systematically break a 64-bit capability will, on average, take approximately 30 thou-
sand years, assuming each attem pt only takes 100 ns!

7If more then 128 object types are required, Cherub’s design goal of simplicity through unification has 
probably been compromised.
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Many conventional process placement algorithms work by load balancing [Jac89, Win89, 
Ber91]. Such schemes attempt to distribute processes so that currently executable pro-
cesses are spread evenly among the processors in the system. In addition, some algorithms 
detect when load imbalances occur and compensate by migrating running processes to less 
loaded processors [Jul87, Bar86, Che88a, Dou89].
Cherub performs neither load balancing or process migration; it is asserted that the over-
heads of such mechanisms are not cost effective when the average process life-time and 
the number of processors involved are considered. The justification for this is as follows:

• Load Balancing

The major problem when balancing load in Cherub is that as the number of instruc-
tions executed by a process is typically very small, processor loads change frequently. 
Most load balancing mechanisms reported in the literature such as bidding [Sta.84], 
drafting [Ni 85] and gradienting [Lin86] are not effective in such situations. This is 
because they are so complex that by the time a placement decision has been made, 
the load on the receiving processor may have changed significantly. Furthermore, 
the performance advantage that a complex scheduling algorithm may have over a 
simpler one when employed on small systems is often significantly reduced on larger 
systems [Gri91].
Cherub employs a random process placement scheme. Each processor is assigned a 
unique doubly linked list in the disk address space, which represents its run-queue. 
When a new process object is created, its address is placed at the head of a randomly 
selected queue. Busy processors time-slice between their executable processes. As 
the average process life-time in Cherub is expected to be short, it is reasonable to 
employ relatively long time-slices, such as 12,000 instructions, which is just over 
the average process life-time. Idle processors check their run-queues periodically, 
say every 100 instructions, for new work. This polling frequency is an important 
component of the latency of starting a new process.

This random placement scheme is intended to reduce contention by avoiding a single 
global process run-queue. Experiments have shown that such random placement 
[Eag84] often performs well compared with more complex strategies when small pro-
cesses are involved. Furthermore, when load imbalances do occur, Cherub’s processes 
are so short-lived that they should not persist.

• Process Migration

Another of Cherub’s disadvantages is that process migration is far less profitable then 
in coarser grained systems. This is because, even on a heavily loaded fine-grained 
system, the time taken to migrate a process and its cache context is likely to greatly 
its life-time. Process migration, therefore, is not supported in the implementation.

A process object descriptor is very similar to that of a memory object, except that, since 
a complete process register file can be held in four 1 Kbyte logical disk blocks, only 
four data block pointers are required. In addition, as COW sharing of process objects 
is not supported, the level of indirection is not necessary. A process object descriptor is 
illustrated in figure 4.5.
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Object descriptor

Valid
Read capability

Write capability 
Execute capability 
Creation time 
Last modified time 
Last accessed time 
Access semantics

Four data block pointers

1 Kbyte data blocks

Figure 4.5: Process Object Representation on Disk

The contents of the process object data block, and hence the process register file, are as 
follows:

64 domain registers X 40 bytes each = 2,560 bytes
64 general purpose 64-bit registers X 8 bytes each = 512 bytes

8 breakpoint registers X 8 bytes each = 64 bytes
8 other registers X 8 bytes each = 64 bytes

3,200 bytes (4 disk blocks)

For consistency with the other types of object, the cache controller allows a process object’s 
remaining address space to be accessed, but it always reads as zeroes.

The cache controllers translate accesses to certain process object addresses into special 
actions. For instance, setting a process’s stop flag causes it to be removed from its pro-
cessor’s run-queue. Similarly, setting the System Process’s stop flag results in all of the 
processors’ run-queues being cleared. Alternatively, destroying the System Process object 
causes the run-queues to be cleared and the System Process object to be restarted.

4 .3 .2  M em ory  O b jects

Chapter three specified that memory objects have the following properties:
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• They are are large, potentially sparse, regions o f persistent storage.

As was explained in section 4.3, all objects will be held on disk to provide persistence. 
A memory object’s data blocks are indexed, thus allowing common sparse objects 
to be represented efficiently, while still supporting rare non-sparse objects. Typical 
examples of memory objects are illustrated in figure 4.6.

Sparse Stack Sparse Data Non-Sparse Data

EH Used Address Space 

CD Unused Address Space

Figure 4.6: Examples of Typical Memory Objects

• They can be used to hold both program data and stacks efficiently.

To enable memory objects to contain both program data and stacks, it must be 
possible to use both ends of their offset range efficiently. Therefore, their indexes 
are balanced as illustrated in figure 4.7. Only a single indirection is required to 
access data in the first and last eight Kbytes of an object, although up to five levels 
of indirection are needed to access data in its middle. It should be noted that, 
as a result of this balanced structure, some of the pointers in the final quadruple 
indirection index are wasted.

• It is possible to duplicate their contents cheaply.

Efficient memory object duplication is implemented through copy on write. The 
memory object indexes point to data block entries which contain the disk addresses 
of the data blocks holding their contents. These allow unmodified data blocks to be 
shared between one or more related objects. As an example, assume that object B in 
figure 4.8 has been created using object A as an image. Each block’s COW counter 
indicates the number of objects which are sharing it; in this case they will initially 
contain the value two. While a data block remains unchanged, it can be shared 
between the objects. If a data block is modified, a copy is made of it, a new data 
block entry is created for it and the original block’s COW counter is decremented.

4 .3 .3  Syn ch ron isation  O bjects

Synchronisation object descriptors are similar to those of process objects, except that they 
contain pointers to two linked lists, sleep and wakeup. This is illustrated in figure 4.9.
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1 Kbyte blocks

Object descriptor

Valid
Read capability 
Write capability 
Execute capability

Creation time 
Last modified time 
Last accessed time

Access semantics

8 Direct pointers 
Single indirect pointer 
Double indirect pointer 
Triple indirect pointer 

Quadruple indirect pointer 

Quadruple indirect pointer 

Quadruple indirect pointer 
Quadruple indirect pointer 
Triple indirect pointer 
Double indirect pointer 
Single indirect pointer 
8 Direct pointers________

Index Block Data Block Data Block Entry

Figure 4.7: Memory Object Representation on Disk

Object Offsets 

00 0000 0000 - 00 0000 1FFF

00 0000 2000 - 00 0002 1FFF

00 0002 2000 - 00 0102 1FFF 

00 0102 2000 - 00 8102 1FFF

00 8102 2000 - 40 8102 1FFF 

40 8102 2000 - 80 8102 1FFF 

80 8102 2000-CO 8102 1FFF 

CO 8102 2000 - FF 7EFD DFFF 

FF 7EFD E000 - FF FEFD DFFF

FFFEFD E000 - FF FFFD DFFF 

FF FFFD E000 - FF FFFF DFFF 

FF FFFF E000 - FF FFFF FFFF
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Object A

Direct Pointer 
Single Indirect Pointer

Index

Data Block Entry
COW counter I Logical Disk A

Data Block Entry Data Block Entry
COW c o m e  I Logic*! D iit Address | | COW ca lim i j Logic .1 P it t  Addicu

Object B

Direct Pointer
Single Indirect Pointei

Index

Figure 4.8: Implementing Copy On Write In Memory Objects
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The use of these lists depends upon the exact type of synchronisation supported:

Object descriptor 

Valid

Read capability 
Write capability 
Execute capability

Creation time 
Last modified time 
Last accessed time 

Access semantics

Sleep list — 

Wakeup list _

Figure 4.9: Synchronisation Object Representation on Disk

• Sleep-wakeup

Sleep-wakeup objects only use the sleep list. When a process reads from one of these 
objects, its processor’s number and the address accessed are added to the head of the 
sleep list. The process is blocked by being removed from its processor’s run-queue.

When a process writes to a sleep-wakeup object, the address written is compared 
with the items in the sleep list. Each process blocked on the address is removed from 
the list. The processes are placed back on their processor’s run-queue, their reads 
giving the stored value.

• Semaphores

When a process reads from a semaphore object, the address accessed is compared 
with those in the wakeup list. If a matching item is found, it is removed from the 
list, its read giving the written value. If no match is found, the processor number 
and the address accessed are added to the tail of sleep list and the process is removed 
from the run-queue.
When a process writes to a semaphore object, the address written is compared with 
those in the sleep list. If a match is found, it is removed from the list and the 
process is placed back on the appropriate run-queue, its read giving the written 
value. Otherwise, the processor number, address and the value written are added to 
the tail of the wakeup list. The process is left on the run-queue.

These mechanisms allow very low overhead synchronisations. Similar mechanism 
were employed by Ahuja in the Linda machine [Ahu88].
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• Rendezvous

When a process reads from a rendezvous object, the address accessed is compared 
with those in the wakeup list. If a matching item is found, it is removed from the list 
and both the new and the old process are placed back on the appropriate run-queues, 
the read giving the written value. If no match is found, the processor number and 
the address accessed are added to the tail of sleep list and the process is removed 
from the run-queue.

When a process writes to a rendezvous object, the address written is compared with 
those in the sleep list. If a match is found, it is removed from the list and the 
process is placed back on the appropriate run-queue, its read giving the written 
value. Otherwise, the processor number, address and the value written are added 
to the tail of the wakeup list and the process is blocked by being removed from its 
processor’s run-queue.

4 .3 .4  H ardware O bjects

The object descriptor for a hardware object contains the network address the device phys-
ically occupies. Accesses to these objects are translated directly into transactions with the 
appropriate devices. The exact form these transactions take depends upon the hardware 
devices involved.

4.4 Im plem enting O bject Space Caching and Coherence

In section 4.3 it was shown how the Object Space could be constructed using the lowest 
level of the Cherub memory hierarchy, the shared logical disk address space. As was 
previously explained in section 4.2, it is intended that the higher levels in the memory 
hierarchy shall be used as successive levels of cache for the logical disk address space, with 
data coherence taking place in the secondary cache. This hierarchy of caches is illustrated 
in figure 4.10.
The levels in the memory hierarchy will now be discussed in reverse order. The lowest two 
levels are relatively uninteresting and are only examined superficially:

• Disk

The lowest layer in the Cherub memory hierarchy is constructed from persistent 
mass storage devices such as magnetic or optical disk drives. It is expected to 
contain Tbytes of storage.

As disk seek times8 and rotation latencies9 are typically high, a large physical block 
size, 16 Kbytes, is employed to balance them against the transfer time10. A mapping 
scheme is used to translate the one Kbyte logical disk block addresses used by Cherub 
into the appropriate physical device and block numbers used by the hardware.

8 Current seek times range from 12 ms to 20ms.
9Typically 8.3 ms on a 3,600 RPM drive.

10Current transfer rates range from 1 to 4 Mbytes per second.
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Virtual Address

Primary Cache
( t

Valid Bit 
Dirty Bit
Virtual Address Tag 
Usage Tag
Logical Disk Address Tag

Secondary Cacher
Valid Bit 
Dirty Bit 
Disk Address Tag 
Usage Tag

DRAM

256 Bytes Data

Virtual Addressj 256 Byte Cache Lines

Logical Disk Address

Disk

256 Bytes Data Copylist

Logical Disk Address

256 Byte Cache Lines

Physical Disk Address

256 Byte Cache Lines

256 Byte Cache Lines

16 KByte Pages

16 KByte Blocks

Figure 4.10: The Cherub Cache Hierarchy
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• DRAM
The next layer in the Cherub memory hierarchy is constructed from DRAM and is 
expected to contain Gbytes of storage. This is employed as a cache for the disk 
memory layer and is accessed using logical disk block addresses.
The DRAM is logically divided into a number of pages, each comprising 16 contigu-
ous logical disk blocks. This allows whole disk blocks to be transferred to and from 
the DRAM. Logical disk blocks are located in the cache using hash lists.
To minimise contention, each processor is assigned a unique set of pages it is respon-
sible for. These pages are initially placed on a free list. When this is empty, they 
are chosen at random for replacement11.

The top two layers in the Cherub memory hierarchy are very interesting and are examined 
in some detail:

• Secondary Cache
The second level in the memory hierarchy is constructed from off-processor SRAM. 
It is expected that each cache will contain around 16 Mbytes of storage, organised as 
256 byte lines — the granularity of data sharing. This level of the memory hierarchy 
has two main roles: firstly it is responsible for translating virtual Object Space 
addresses into logical disk addresses; and secondly it performs the data sharing and 
coherence mechanisms.

— Virtual Object Space to Logical Disk Address Translation
In section 4.2 it was decided that Cherub’s data sharing, and hence coherence, 
mechanisms will be implemented at the level of the secondary cache. However, 
due to the possibility of virtual address aliasing through COW, it is also neces-
sary to perform virtual Object Space to logical disk block address translation 
at the layer of data sharing. The secondary cache is, therefore, addressed using 
logical disk block addresses. As these are more evenly distributed then virtual 
addresses, the cache can be set associative, thus reducing its cost.
The address translation is performed by first using the virtual address to locate 
the appropriate object descriptor entry. Depending upon the access semantics 
of the object involved, the offset can then be used to locate the logical disk 
block containing the data accessed.

— Data Sharing and Coherence
For simplicity, data coherence is maintained using Li’s fixed distributed server 
algorithm. Each logical disk block is hashed to a home cache controller. This is 
responsible for maintaining the coherence of the data in its blocks. Each cache 
line has a valid bit and a permissions bit. Together these determine the access 
rights to its data. There are three possibilities:

* NIL
A cache miss; the data is not in the cache. *

"S tudies have shown that for large cache sizes there is little performance difference between intelligent 
replacement policies, such as least recently used (LRU), and non-intelligent schemes, such as random 
[Hen90].
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* READ
A read-only copy of the data is in the cache.

* WRITE
A read-write copy of the data is in the cache.

Li’s coherence protocol allows either multiple readable copies of a cache line, 
or a single writable copy. When a permission violation occurs, the processor’s 
cache controller recovers by communicating with the home cache controller of 
the required line. Table 4.2 summarises these communications.
Cherub keeps track of the copies of a given cache line using a list stored at its 
home address. The list is implemented using a bitfield which has one entry 
per processor. An extra bit marks whether the list represents read or write 
copies. Although, the approach of using bitfields to represent the lists is not 
scalable for very large systems, it will work reasonably for 200 processors and 
it is simple to implement in hardware. Furthermore, in view of the increased 
sharing promoted by the SSAS memory model, it is assumed that many pages 
(especially in shared libraries) will be shared by a large number of processors 
in the system, thus making more elaborate representations, such as linked lists, 
less efficient.

Each cache line has two bits which are used in selecting lines for replacement. These 
bits are set by the busy, idle and finish instructions. When the secondary cache 
is full, a line is chosen for replacement by first grouping them in reverse order of 
their usefulness (empty, finish, idle and busy) and then selecting the cache line from 
the least useful group which will generate the fewest coherence messages. This will 
probably cause lines which are not at their home controller to be replaced first, 
followed by the lines which have the least number of copies.
Since it is likely that there will be locality of reference within logical disk blocks, 
busy and finish instructions also allow important performance optimisations to be 
performed:

-  Busy
Each cache controller maintains a list of lines which are likely to be needed 
in the future, as defined by busy instructions. If a connection is about to be 
made to a cache controller, the list is first checked to see whether it is the home 
controller of any of the wanted lines. If so, they are read from the controller 
with the requested permissions, after first ensuring that there is room in the 
cache to accommodate them (by discarding existing lines if necessary).

-  Finished
Whenever a connection is made to a cache controller, a check is made to see 
whether it is the home controller of any cache lines which are marked as finish. 
If so, they are all written back to the cache controller and discarded from the 
cache.

When a cache line is replaced in its home secondary cache, its copy lists are lost. All 
copies of the line must, therefore, be invalidated before it can be replaced. To allow 
primary cache lines, which are virtually addressed, to be selectively invalidated, each
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Status

Communication Between
Requesting Controller 

and
Home Controller

Home Controller 
and

Other Controllers

Home Controller 
and

Requesting Controller

Want: read lists
Others: nil “b □ □
Copy: yes data read
Want: write lists
Others: nil ”b □ □
Copy: yes data read
Want: write
Others: nil lists □ □
Copy: no
Want: read lists
Others: read(s) “b □ □
Copy: yes data read
Want: read invalidate to read lists
Others: write lists ~b ~b
Copy: yes data write data read
Want: read
Others: read(s) lists □ □
Copy: no
Want: write lists
Others: read(s) lists invalidate to nil ~b
Copy: yes data read
Want: write
Others: read(s) lists invalidate to nil lists
Copy: no
Want: write invalidate to nil lists
Others: write lists + +
Copy: yes data write data read

Want:
Others:
Copy:
Lists:
Data Read: 
Data Write:

K e y
The permissions required for a line
The permissions currently possessed by other controllers
Whether or not a copy of the data is required (it is not already cached)
Examine and maintain copy lists
Load faulting line from h o m e  controller
If modified, write line back to h o m e  controller

Table 4.2: Coherence Mechanism
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is tagged with its corresponding logical disk address. This allows secondary cache 
invalidations to be propagated up to the primary cache.
Due to their unusual access semantics, it is not possible to cache the contents of 
hardware objects.

• Primary Cache
The first layer of the memory hierarchy is constructed from on-processor SRAM. 
It is expected that each primary cache will have around 512 Kbytes of storage, 
constructed from fines no larger then 256 bytes in length — the granularity of data 
sharing in the secondary cache.
For reasons of performance, namely elimination of the TLB address translations, 
the primary cache is addressed using virtual addresses. This means that only data 
from the virtual address space is held in the primary cache. The cache employs a 
write-through policy to maintain data coherence with the secondary cache.
It is expected that the primary cache will be fully associative, thus allowing a pseudo 
random replacement policy to be employed. This is important because virtual ad-
dress space usage is not expected to be uniform; most data accesses will be in the 
first few fines of objects, which always start in 240 byte boundaries. This makes di-
rect mapped and set associative replacement schemes, which work best when virtual 
address use is fairly evenly distributed, inappropriate.
As in the secondary cache, each fine has two bits which indicate its usefulness. The 
replacement mechanism groups cache fines in reverse order of their usefulness (empty, 
finish, idle and busy) and then selects a fine at random from the least useful group.
In general, object data coherence is maintained by simply ensuring that fines are 
discarded from the primary cache when they are invalidated in the secondary cache. 
Process objects, however, are slightly unusual in that the processor’s registers must 
also be kept coherent. This is accomplished by ensuring that the primary cache 
contains writable copies of each of a process objects’s 13 fines before it is executed. 
The processor’s registers are then loaded from them. If, however, any of these fines is 
requested by another cache controller, then execution of the process must be stopped 
and its registers written back before the appropriate cache fine can be discarded.
Protection is provided using the protection domain registers. Each time a process 
accesses the primary cache its protection domain registers are simultaneously exam-
ined to determine whether the accessed address lies within a mapped object. If so, 
the appropriate capability is validated against the correct one for the object. Each 
capability has a single bit tag which indicates whether it has already been validated. 
These tags mean that capabilities only have to be validated when they are first used. 
When a fine in the secondary cache which contains an object descriptor is invali-
dated, the capability tags are cleared, forcing them to be revalidated when they are 
next used.
The last accessed and last modified times in an object domain descriptor indicate 
when the object was last successfully mapped into a protection domain register with 
the appropriate capabilities. Although this is not semantically identical to the UNIX 
file times, which indicate when files were last accessed and modified, this mechanism 
provides similar information at a very low performance cost.
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In this section the Cherub data caching, sharing, coherence and protection mechanisms 
have been discussed. The lower three levels in the memory hierarchy act as successive 
levels of cache for the logical disk address space. Data sharing and address translation are 
implemented in the secondary cache. Very important cache line coherence and replacement 
optimisations are made possible through the busy, idle and finish instructions. Protection 
is implemented in the primary cache.

4.5 Perform ance Evaluation of the Im plem entation  M ech-
anism s

The previous two sections outlined algorithms for the implementation of the Cherub Object 
Space. In this section the latencies of these algorithms will be examined in order to 
determine the requirements of Cherub’s underlying communications network.

Before the latency of the Cherub process life-cycle as a whole can examined, however, it 
is necessary to estimate the latency for accessing a cache line. Most data sharing in the 
Cherub life-cycle will take the form illustrated in figure 4.11. This involves five steps:

1. Cache controller A requires write access to line X .

2. It first makes room in its cache for the new line by invalidating line Y . This requires 
a connection to be made to C , V’s home controller, relinquishing access to the line 
and if it is dirty, writing it back.

3. Controller A can then make a connection to X ’s home controller, B , and request 
the new line.

4. However, it is likely that X  is currently owned by another cache controller, say D. A 
connection is, therefore, made to D, invalidating and obtaining its copy of the line.

5. Finally, a connection is made to controller A and cache line X  is transferred to it.

This process can be generalised to cover the prepaged transfer of a number of lines, if two 
reasonable simplifying assumptions are made:

• All of the data required will be somewhere in a second level cache; i.e. nothing has 
been paged out to the lower levels in the memory hierarchy.

• All of the cache lines in a given data block are owned by the same cache controller. 
This is very likely to be true.

If a network message requesting a cache line is 16 bytes in length, then the component 
latencies for accessing a cache line will be:

81



CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

O w n s  l i n e  Y

W a n t s  l i n e  X  H o m e  C o n t r o l l e r  L i n e  X

H o m e  C o n t r o l l e r  L i n e  Y  O w n s  L i n e  X

Figure 4.11: A Cache Line Read With Write-back and Invalidation

Stage Operations Latency
1 Cache lookup and miss on line X. A

Select a cache line, Y, for replacement. A
2 Make connection to Y’s home cache controller. C

Invalidate line Y. 272T  per dirty line
16T per clean line

Read line into cache. N/A (pipelined)
3 Make a connection to line X’s home cache controller. C + 16T

Cache lookup on line X. Find current owner. A
4 Make connection to current owning cache controller. C + 16T

Lookup and invalidate line X in cache. A
Transfer line back to home cache controller. 272T per line transferred

5 Make connection to requesting cache controller. C
Transfer required line. 272T  per line transferred
Read line into cache. N/A (pipelined)

Where:
C = Time to make a network connection (network connection latency)
T  = Time to transfer a byte across a network connection (related to network bandwidth) 
A = Time to access a cache line
I  = Time to execute one machine instruction (will be used later)

Obviously, optimisations can be performed. For example, where a cache line is known to 
be empty — when it has been removed from a free list, for instance — there is no need to 
transfer its contents across the network when obtaining permissions for it. However, the 
latency of a cache line access as stated — the summation of its component latencies — is:

4A + 4C + 272T per dirty line flushed + 16T per clean line flushed
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+ 576T  per new line transferred

Assuming that 25% of lines flushed from the cache are dirty12, this averages to:

4A + AC + 80T per flushed line + 576T  per line transferred 

= 4A + 4C + 656T per line transferred

It is now possible to estimate the latency of the Cherub process life-cycle using the list of 
tasks given in chapter three.

• Create Process, Stack and Rendezvous Objects (Parent Cache Controller)

To create these objects, it is necessary to remove three object descriptors and eight 
blocks — four for the process object and two each for the stack and rendezvous 
objects — from the appropriate free lists. It is assumed that the cache lines from the 
object descriptors and blocks are originally owned by the parent cache controller; 
the validity of this assumption will be determined when the cleanup operation is 
discussed. The latency of creating the objects is, therefore:

Operation Latency
Get three new object descriptors 
Get eight new blocks and zero fill

9A 
41A

• Build environment on Stack Object (Parent Processor)

It is estimated that up to 500 instructions will be needed to initialise a process and 
perform finish instructions on the process object and its stack13:

Operation Latency
Build environment and issue f i n i s h e d  instructions 500 /

12Experimental evidence for this is difficult to obtain since little analysis has been performed on SSAS 
systems. However, a rough estimate can be made from examining the UNIX System V buffer cache:

• File cache blocks — which include data from files, directories, inodes, pipes and program texts — 
are rarely dirty (5% of the time) and occupy around 65% of the cache [Bac88a],

• The remainder of the cache (35%) [Bac88a] contains data and stack pages from the virtual memory. 
If these pages are in an executing process’s working set, it is likely that they will be dirty (100% of 
the time).

The expected proportion of dirty cache lines is, therefore:

0.05 x 0.65 +  1.0 x 0.35 =  0.38

UNIX System V’s one Kbyte page size will, however, incur considerable false data sharing. It is, therefore, 
not unreasonable to assume that C h e r u b ’s 256 byte page size would result in a considerably lower fraction 
of dirty pages, say, 25%.

13Initialising the five registers in each of the 12 domain registers might reasonably take 200 instructions. 
Placing the function arguments and environmental data on the stack could take another 250. Finally, up 
to 50 f in is h  instructions might have to be issued.
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• Place Process Object on Process Run-Q ueue (Parent Cache Controller)

The child process is placed on a random processor’s run-queue:

Operation Latency
1 line read, 2 line writes 12A +  1 2 C +  1.968T

• Rem ove Head of Run-queue (Child Cache Controller)

Assuming the new processor is idle, on average it will poll its run-queue after 50 
instructions. (If the processor is busy, on average it will only poll after 6,000 instruc-
tions. This is intended to keep processor throughput high.) The processor removes 
the process from its run-queue prior to execution:

Operation Latency
2 line reads, 1 line write 12A +  12C +  1 ,9 6 8 T + 50/

• Transfer Process Object (Child Cache Controller)

The new processor starts to execute the child process. It prepages in the child's 
process object:

Operation Latency
Read object descriptor 

Get 13 lines from process object
4 A  +  4 C +  656T 

4 A  +  4C +  8 ,528T

• Transfer Stack Object (Child Cache Controller)

The child process prepages in its stack object:

Operation Latency
Read object descriptor 
Get data block entry 

Get data block (4 lines)

4 A  +  4 C  +  656T  
4A +  4C +  656T  

4 A  +  4 C  +  2, 624T

• Synchronise (Child Cache Controller)

When the child process has terminated, it writes the address of its results to the 
rendezvous object. This unblocks the parent process which is reading from the 
rendezvous object:

Operation Latency
Read object descriptor 

Read sleep-list
Put parent process back on processor queue

4A +  4C +  656T  
1 2 A +  1 2 C +  1.968T  
12A +  1 2 C +  1.968T

• Return Results on Stack (Parent Cache Controller)

The parent process prepages in the stack object, which contains the child’s results:
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Operation Latency
Read object descriptor 
Get data block entry 

Get data block (4 lines)

4T + 4C + 656T 
4A + 4C + 656T  

4A + 4C + 2 ,624T

• Cleanup Process, Stack and Rendezvous Objects (Parent and Child Cache 
Controllers)
The destruction of the rendezvous and process objects is performed by the child 
process. Therefore, the latency of the cleanup operation should be hidden from the 
parent process. The cleanup will, however, generate extra communication which will 
add to network load.
The stack object contains the child’s results. The parent process will probably not 
destroy this object until it terminates, thus hiding the latency from its parent.
The cache lines from the object descriptors and blocks freed in the cleanup operation 
will be owned by the terminating processor. They are placed back on its freelist, 
thus minimising the latency of creating new objects.

Therefore, from section 1.1.1, a given level of granularity g is optimal iff:

toverhead <  (g  - I n 2 ) 1

= 134A + 84C + 25,584T < (g ■ In 2 -  550)/

Now assuming that:
g = 10,000 instructions;
1 = 6 ns; and
A = 2 ns (32 ns to transfer a 256-bit line to primary cache)

then the performance of the underlying communications network must be such that ap-
proximately:

84C + 26,000T< 40,000 ns

If it is assumed that the network traffic will be fairly evenly spread over time14, the number 
of connections resulting from a program constructed from 100 pairs of child and parent 
tasks will be:

. .  , - (7,000 -  5 5 0 ) /-  50ASimultaneous connections = —. __ — -  ——t  - X 10Ü «  40
(10,000 + 7,000)/

From inspection, it can be seen that Cherub requires a very high performance communica-
tions network which scales well when heavily loaded; it must certainly have a connection 
latency below 500 ns and a bandwidth in excess of 650 Mbytes per second when loaded 
with 40 connections.

14 It is assumed that perfect parallelisation cannot be achieved in most programs and so the various 
process life-cycles will drift out of synchronism with one another.
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4.6 C onclusion

In this chapter an efficient implementation for the Cherub architecture was suggested, 
based on predictions about future hardware. It was decided that the Object Space should 
be implemented on disk storage for persistence, the memory hierarchy being used as 
successive layers of cache.

In a tradeoff between minimising false data sharing and table costs, it was decided that 
data sharing should be performed at the level of the secondary processor cache. As a 
result of this decision, the data coherence and address translation mechanisms must also 
exist at this level.
It was shown that important performance optimisations can be achieved through careful 
use of the frusy, idle and finish instructions. These allow cache line prepaging to be 
performed, resulting in a significant reduction in the number of network connections which 
are necessary.
The latencies of the proposed mechanisms were estimated, showing that Cherub requires 
a very high performance communications network which scales well when heavily loaded. 
The design of a network which has these properties is developed in the next chapter.
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Chapter 5

A Wafer—Scale Communications 
Network

5.1 Introduction

Now that the mechanisms for the implementation of Cherub have been outlined, a com-
munications network must be designed which has the latency and bandwidth to support 
them:

• Latency is defined as the observed delay through a network component. The total 
latency of a message path is the sum of its component latencies. Latency is a function 
of network loading.

• Bandwidth is defined as the throughput of a network component. The available 
bandwidth of a message path is that of the narrowest component in the path.

In most systems overall latency is the most important network performance metric. This is 
the time taken from the start of data transmission at the source until its complete reception 
at the destination. Chapter four established that a typical 310 byte message must have 
an overall communication latency of around 480 ns in a network already loaded with 40 
connections. This implies a minimum bandwidth of around 650 Mbytes per second.

This chapter suggests that wafer scale integration could be used to achieve the level of 
network performance required by Cherub. A suitable wafer network is designed and its 
performance is estimated by simulation.

5.2 C lassifying Networks

The two most common ways of classifying communication networks are according to their 
topology and communication strategy:
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5.2.1 N etw ork  T opologies

All communications networks can be thought of as a number of nodes joined in various 
topologies by data transmission channels. Total connectivity, supposedly the ideal situ-
ation where all the nodes in a system are connected to one another, is only possible for 
small networks. This is due to the complexity of the interconnections required, which is 
exponentially related to the number of nodes in the system.

The topology of any network with less than total connectivity will have profound effects on 
network loading, traffic density and locality within the communications system. The de-
signers of parallel systems have experimented with numerous network topologies [Geo90].

Due to their ease of construction, the most popular types of topology employed are one and 
two dimensional networks, although networks with higher dimensions, such as hypercubes, 
or irregular topologies have also been shown to be practical in medium scale architectures.

• One dimensional networks
One of the simplest methods of networking computers is to connect them all by a one 
dimensional network. A common type of one dimensional network is the multipro-
cessor bus. This uses one or more globally shared transmission channels to connect 
a number of processors. This type of network supports broadcast transmissions, any 
conflicts occurring on the buses being handled by arbitration logic. A bus system is 
illustrated in figure 5.1.

S h a r e d  c o m m u n i c a t i o n  c h a n n e l

6 6 6 6 666
P r o c e s s o r s

Figure 5.1: Bus network

MemNet [Del86b, Del88b] is an example of a system which uses multiple buses 
to provide ultra-high speed communications. The MemNet nodes communicate 
using 20 parallel bit-serial lines operating at 10 MHz, giving a gross aggregate data 
bandwidth of 160 megabits per second.
Unfortunately, contention severely restricts bus scalability. In addition the speed 
at which a bus can be run is often physically limited by its length. An alternative 
mechanism is to use a staged communications network consisting of a number of 
local communication channels. A staged network is illustrated in figure 5.2. The 
bandwidth of such networks increase with the number of nodes, but at the expense 
of increased latency.
The latency of a network topology is at least partially determined by its maximum 
communication path length, or diameter 6. For a staged network comprising n nodes 
this is:

6(Staged(n)) = n — 1
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S ta g e d  c o m m u n i c a t i o n  n e tw o r k

P r o c e s s o r s

Figure 5.2: Staged network

The main disadvantage of this communication system is that it has a poor ratio of 
interconnection, r ,  the ratio of nodes to links. Assuming that the network traffic is 
distributed evenly, which is clearly not always possible:

T(Staged(n)) = 1 ----

The diameter of a staged network can be halved by joining its ends to form a ring. 
A ring network is illustrated in figure 5.3. A ring containing n nodes will have a 
diameter:

6(Ring(n)) n
2

and a ratio of interconnection:

r(Ring(n)) = 1

The Kendall Square Research KSR1 architecture [Bur92] uses a ring network to 
provide scalable communication among 32 processors. In addition, up to 34 of these 
rings can be linked by a master ring to create a machine with 1,088 processors.

• Two dimensional networks
To reduce the bandwidth limitations imposed by one dimensional communication 
networks, two dimensional communication networks have been explored. These typ-
ically take the form of 4-connected meshes of nodes. A mesh network is illustrated 
in figure 5.4.

For the same number of nodes, two dimensional networks have smaller diameters 
than their one dimensional counterparts. A square mesh containing n nodes has a 
diameter of:
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5 .2 .2  C om m u n ication  S trategy

Another common way of classifying networks is by communication strategy. Four strategies 
are commonly employed:

• Circuit switched routing

In a circuit switched network an electronic circuit is created between the source and 
destination nodes. Once the circuit has been made, the message can be transmitted 
over it. When the transfer is complete, the circuit can be cleared. If during a circuit’s 
construction a required communication channel is already in use, the complete circuit 
is cleared and the sender waits for a back-off period before retrying. This prevents 
deadlock.

The main advantage of this scheme is that once the circuit has been established, 
the bandwidth is independent of network load. The scheme’s main disadvantage 
is that the latency of establishing a circuit is highly dependent upon network load 
and is potentially unbounded. This can make short message based communication 
inefficient.

• Packet switched routing

In a packet switched network a message is broken down into small packets at the 
source node. These are transmitted across the communication network and reassem-
bled in order at the destination. Each packet carries its own routing information 
and is routed independently. This allows messages to be interleaved on the same 
communication channel. If a communication channel required by a packet is already 
in use, the packet is buffered until the channel becomes free. Thus, there is the 
potential for deadlock.

The main advantage of this system is that the low latency of transmitting a sin-
gle packet makes short message based communication efficient. Furthermore, as 
the network exhibits graceful loading characteristics, message latency is relatively 
predictable. The scheme’s main disadvantage is that its bandwidth is not constant 
— the packet throughput depends upon the network load. In addition each node 
requires memory buffers to hold the message packets while they are being routed.

• Wormhole routing

Wormhole routing is a variation on packet switched communication. In this scheme 
a message is broken down into packets which are routed between the source and 
destination nodes in a continuous stream. Only the head packet in a stream carries 
routing information and so, unlike true packet switched communication, packets 
from different streams cannot be interleaved on a single communication channel.

If the head packet becomes blocked, all of the packets in the stream stop advancing, 
thus blocking the progress of other messages requiring the channels they occupy. As 
a result there is the potential for deadlock.

The main advantage of this scheme is that once the head of a message stream has 
arrived at its destination, the bandwidth is independent of network load.
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• Virtual cut-through routing

This mechanism is similar to wormhole routing, except that when the head of a 
message stream becomes blocked, the packets in the message are temporarily buffered 
at that node, thus removing them from the network.

This scheme has the bandwidth advantages of wormhole routing and exhibits better 
performance under load, resulting in lower latencies. However, each node requires 
enough memory buffers to be able to buffer complete message streams and, conse-
quently, there is the potential for deadlock.

As previously established in section 4.5, the Cherub architecture requires a network which 
has an overall bandwidth of 650 Mbytes per second for 310 byte messages. It is asserted 
that this is an unprecedented level of performance, totally beyond the capabilities of con-
ventional networks. Single mode fibre optics, one of the most modern communication 
mediums, has the bandwidth to match this requirement — Gbits per second — but com-
patible low latency switching elements are currently not available without resorting to 
fabrication technologies such as gallium-arsenide1. Instead, a new very fast and wide in-
terconnection network is required. One way of achieving this is by employing wafer-scale 
integration.

5.3 W afer-Scale Integration

Conventional very large-scale integration (VLSI) computer chips are typically manufac-
tured by lithographing superimposed layers of metal and polysilicon onto circular wafers 
of silicon to form the circuits of discrete chips. The completed wafers are then cut into 
individual chips prior to packaging and testing. The maximum chip size is normally deter-
mined by factors such as the VLSI yield, the defect density, the allowable interconnection 
lengths and the dimensions of the available packaging.
Wafer-scale integration (WSI), the process by which wafers are packaged whole rather 
than as individual chips, is an interesting alternative method of creating electronic circuits. 
There are two main schools of thought in WSI: whole wafer integration and hybrid wafer 
integration.

• Whole wafer integration

In this technique wafers are lithographed and packaged whole. This allows the very 
highest levels of integration to be employed, but is prone to crystal and processing 
defects.

• Hybrid wafer integration

In this technique tested circuit dies are attached, often by flip-chip bonding [Gol83, 
Mil69, Bac88b], to a wafer substrate which contains an interconnection network.

1Whitcroft [Whi92] has proposed a silicon based switching circuit which uses the Fibre Channel standard 
[fib92]. He predicts that this should be able to perform a routing decision in 1 ¿is. Even this is too slow 
for C h e ru b .
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Flip-chip bonding is illustrated in figure 5.6. The tiles and substrate are manufac-
tured with matching pairs of electrical contact pads. Solder is applied to these and 
the tiles are placed on the substrate so that the pads make contact. The substrate is 
then heated, causing the solder to flow. Surface tension in the solder helps to correct 
any misalignment between the surfaces. The wafer is then allowed to cool.

r j i .......'] i )
l ^ ' ^ "  I i S ,’~ X i I S ..... i

a )  A l i g n e d  b )  S o l d e r  F u s e d  c )  B o n d  C o m p l e t e

Figure 5.6: The Flip-chip Bonding Process

Flip-chip bonding also allows processors with the very large secondary caches re-
quired by Cherub to be constructed. Wilkinson [Wil91b] has suggested small pro-
cessor dies with tested cache circuitry should be flip-chip bonded onto much larger 
fault tolerant cache dies. The high yield processor dies would test the lower yield 
cache dies and only use the working cache lines.
Hybrid manufacture has the advantage of very high yield and allows circuits which 
require different manufacturing techniques, such as high density memory and high 
performance processors, to be intermixed on a single wafer substrate. However, due 
to the relatively large size of solder-bumps, its data-paths are narrower then can be 
achieved with whole wafer integration and it requires expensive testing and bonding.

Wafer-scale integration has three main attractions when compared with similar function-
ality constructed from individual chips mounted on PCBs:

• Higher performance
The main performance advantages wafer-scale integration has over conventional chip 
and PCB technologies are:

— Higher speed (Decreased latency)
Conventional VLSI technology uses chains of output transistors to drive the pins 
of chips. These prove to be slow. The capacitance of the solder bumps used in 
hybrid wafer integration is about 20 times lower than that of wire bonds and
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hence the speed of internal wafer communication can be considerably faster then 
conventional chip to chip communication — a factor 4 speed-up is not unusual. 
The circuit interconnections in whole wafer integration, made by aluminium 
alloy metalisation on silicon, are faster still.

-  Increased wire density (Increased bandwidth)
As Dally suggests [Dal87], VLSI chip technology is severely limited by the 
number of pins that can be placed on a chip. If the number is high, the package 
must be large to accommodate them. Consequently the chip is expensive and 
its PCB density is low. In addition, layout considerations make it hard to route 
large numbers of tracks away from a chip; expensive multiple layer PCBs are 
required. Therefore, data-paths in conventional computers are severely limited 
in width.
This is not so much of a problem in whole-wafer integration devices as these 
can employ very dense tracking. Unfortunately, in hybrid wafers the size of the 
solder bumps limits the track density2. Even so, communication data-paths 
can be much wider then those in conventional systems.

For these two reasons wafer-scale communications networks have a significant band-
width advantage over conventional chip and PCB based networks.

• Lower cost per function

A chip’s packaging is a major proportion of its cost of manufacture; a 400 pin grid- 
array ceramic package can cost as much as $50 [Hen90]. WSI offers much higher levels 
of integration on a single device. This reduces the volume of packaging required for 
a given amount of functionality.
The cost per bit for semiconductor and disk memory decreases at very close to the 
rate at which density increases. The continued fall in cost of VLSI technology is 
dependent upon achieving ever-increasing levels of function integration and chip 
yield. There is, however, a hard limit to the level of integration possible using VLSI. 
This could eventually force manufactures to turn to wafer-scale integration in order 
to achieve further price reductions.

• Higher reliability

Hardware reliability problems are often caused by defective connections, either in 
the form of the soldered joints connecting the chip pins to the printed circuit boards 
(PCBs), or the bond wires inside chips which connect the pins to the silicon. In effect, 
a system’s mean time to failure is proportional to its number of pins. Aubusson 
[Aub91] reports that 40% of US avionics failures arise directly from solder contacts 
and PCBs. Assuming that a future processor might reasonably have as many as 400 
pins, the processors alone in a Cherub system will have over 102,400 bond wires. 
Consequently, the system could have a significant reliability problem.

Most of the interconnections in a wafer are made by aluminium alloy metalisation 
on silicon. This is inherently more reliable than printed circuit board (PCB) inter-
connections. In addition, successful WSI must have built-in fault-tolerance as the

2Typical solder bumps are approximately 125 pm in diameter and are spread 75 pm apart [Tew89].
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yield of defect-free wafers is essentially zero. An additional increase in reliability 
may be provided by this.

WSI does have three considerable problems, however, which significantly affect its com-
mercial viability:

• Wafer based products are difficult to design and manufacture 

This is mainly for three reasons:

— The need for fault tolerance
Although manufacturers treat chip yield statistics as proprietary information, 
it is generally accepted that a significant proportion of chips are defective3. 
Rough estimates show that VLSI defect density is inversely proportional to the 
square of the feature size. This is due to defects, which were previously too 
small in relation to the feature size to be significant, now being large enough 
to cause failures.
Yield models have been developed from both theoretical and empirical studies 
of defect distribution. Wallmark [Wal60] applied basic Maxwell-Boltzmann 
statistics to develop a yield model. Although he noted that defects are probably 
correlated, his model assumed none. Hofstein and Heiman [Hof63] and more 
recently Cunningham [Cun90] have modelled random VLSI defects using the 
Poisson distribution.
Eventually the use of Bolzmann and Poisson statistics for modelling defects was 
shown to be too pessimistic for larger chips [Moo70]. This is because defects 
are not placed uniformly on wafers, but tend to cluster, particularly towards 
the edge of the wafer. Stapper et al [Sta83] believe this to be due to aggregates 
of particles which have settled on the wafers during manufacture. However, 
Stapper [Sta81] has shown that, over many wafers, the Poisson distribution is 
valid.
Although manufacturers may be able to afford to mass produce chips with quite 
low yields, the yield of defect-free wafers is essentially zero and will remain so 
for the foreseeable future. VLSI memory manufacturers improve chip yield 
by producing devices with extra rows or columns, as was first proposed by 
Tammaru et al in 1967 [Tam67]. Defective components are located by external 
test circuitry4. These are substituted for working components by a finking 
and fusing process using a laser. However, because of the difficulty of isolating 
circuits in a wafer, external functional testing techniques are difficult to apply 
to complete wafers. Successful WSI, therefore, probably requires built-in fault 
tolerance.

-  Long signal lengths
It is difficult to operate large silicon circuits, such as wafers, synchronously at 
high clock speeds. This is due to the accumulated fine rise and settle delays over

3If the yield is near to perfect, it can be reasoned that a higher density should be employed.
'Testing is often a complicated process [Van90] and internal test circuits could well consume one third 

of the total silicon area.
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the wafer surface leading to problems such as clock skew. This problem can be 
overcome by clocking areas of the wafer independently and using asynchronous 
communications protocols [Mar89, Gin90]. Such circuits are, however, more 
difficult to design.

— Difficult to mix different technologies on a single wafer
It is difficult to combine technologies requiring different fabrication processes 
(such as high density DRAM and high performance logic) or materials (such as 
silicon and gallium-arsenide) on a single wafer substrate. This can be overcome 
with flip-chip bonding techniques.

• Wafers are difficult to package

WSI products are difficult to package for a number of reasons:

— Wafers have a large area
The large difference in the heat expansion qualities of silicon and the packaging 
leads to problems of wafer breakage. Heat-sinking a complete wafer is also 
more difficult. This problem can be solved by cooling wafers using liquids or 
blown air.

— Wafers require large numbers of pins
A wafer device with a million gates could have as many as 4,000 signal pins5 
[Car86a]. Current pin bonding technology limits pin bonding sites to the pe-
riphery of the wafer as bond wires cannot be crossed. Routing large numbers 
of signal lines to the edge of a wafer is wasteful of silicon area. It also incurs 
appreciable signal delays. Furthermore, it is expensive to route large numbers 
of wires away from a wafer.
This problem can be overcome by using fibre optic technology instead of con-
ventional pins. Techniques have been developed which allow optical fibres to 
be bonded directly to the wafer surface [Pru86j. This allows fibre optic drivers 
to be placed at any point on the wafer. Gallium-arsenide based optical net-
work technology currently supports Gbit per second data transfer rates. As 
optical bonding technology currently limits a fibre to a single emitter and re-
ceptor, optical fibres must be paired if bi-directional communication is to be 
supported.

— Power delivery and removal is difficult
The line inductance in a large wafer sized power grid causes significant noise. 
This has to be suppressed by decoupling capacitors. The power grid also con-
sumes an unacceptable proportion of the wafer. This can be solved by placing 
power and ground pins at regular intervals across the wafer’s surface.

— Wafer stacking must be possible
A wafer has a large PCB footprint. To achieve a reasonable packing density 
and to reduce the cost and reliability problems associated with large PCBs, it 
will be necessary to stack wafers on top of each other.

5Hughes’ 3D Wafer Stack Cellular VLSI has 1,000 microspring bridge pressure contacts to neighbouring 
wafers. Mosaic System’s Wafer-Scale Hybrid has 840 pins per wafer.
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This can be achieved by creating vertical electric interconnections, vias, which 
pass through the wafer substrate, enabling stacked wafers to be electrically 
connected. Vias can be created using a process such as aluminium thermomi-
gration [Cli76]. This directionally diffuses liquid aluminium though the silicon 
wafer. Microspring bridges [Gri84] can be used to connect the vias to the signal 
lines on the adjacent wafer. This arrangement is illustrated in figure 5.7.

Metalization layers —► 
Wafer substrate ------►

Metalization layers —► 
Wafer substrate ----- ►

Metalization layers —► 
Wafer substrate ----- ►

Vias

Figure 5.7: Stacking Wafers

Special wafer packages must be designed which stack. It is more difficult, 
however, to power and cool such an arrangement.

• Wafer-scale integration has a bad name
There have been a number of expensive project failures in the history of wafer-scale 
integration. The most famous of these was Amdahl’s company, Trilogy, [Gup88] 
which attempted to create a high performance IBM mainframe clone using WSI. 
To provide fault tolerance all circuits on the wafer were created in triplicate. This 
effectively reduced the usable wafer area by two thirds, which meant that a number 
of wafers had to be employed. These were connected by many bond wires, which led 
to insoluble unreliability problems. Trilogy crashed with the loss of $230 million.

As a consequence of such failures, it is difficult to obtain funding for further research.

These disadvantages are not impossible to overcome and commercial wafer-scale products, 
particularly for memory, have started to appear. From the point of view of fabrication, 
memory is ideally suited to wafer-scale integration. This is because:

• The memory modules in a wafer are identical. This makes them easy to manufacture 
and allows global redundancy to be employed.

• The memory modules in a wafer can share a common bus, thus reducing the pin-out.

• Memory is more in demand than logic and can, therefore, be packaged in larger 
quantities at reduced cost.

Although Carlson and Neugebauer [Car86a] dismiss memory as a WSI candidate, Chesley 
[Che88b, Che87] has suggested a way of using wafer-scale memory to replace conventional 
DRAM chips:
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• Chesley proposes a non-redundant approach to constructing wafers of DRAM using 
whole wafer integration. By not employing a redundancy scheme, Chesley uses all 
of the area of the wafer. This results in a low storage yield of around 50 per cent, 
but simplifies the manufacturing process.

A list of usable wafer regions is used by the computer’s virtual memory hardware 
to map virtual addresses to defect-free physical addresses on the wafer. When each 
wafer is initially tested for defects all perfect blocks are added to the region list. 
Damaged blocks are ignored. The region list is either loaded from disc, whenever 
the system is booted, or is reconstructed after testing the wafer. The latter scheme 
has the advantage of detecting subsequent failures.

As Chesley’s scheme does not employ a defect control mechanism, it is as fast as conven-
tional DRAM. However, its yield is low, making it relatively expensive. By employing a 
defect control mechanism, a wafer’s storage yield can be substantially improved, but at a 
cost of increased latency. Such wafers are better suited as alternatives for magnetic disk 
storage devices.
As a storage medium, wafer-scale silicon storage has several advantages over conventional 
magnetic storage devices:

• it is faster;

• it can be accessed randomly while magnetic storage only allows pseudo random 
access to data;

• it is more reliable; and

• it has better handling properties.

It has the disadvantage, however, of being volatile. Anamartic’s Wafer Stack product 
[Ano89, Cur89] has shown wafer-scale silicon storage to have considerable promise:

• Anamartic’s Wafer Stack silicon storage device is one of the first commercial attempts 
to provide wafer-scale memory. The device uses six-inch wafers containing 202 
one-Mbit DRAM and control logic tiles embedded in a communications network. 
External test circuitry is used to identify the working DRAM tiles and to calculate 
the longest possible Catt Spiral incorporating them which can be grown from a tile 
at the periphery of the wafer [Aub78]. This electrically configures adjacent working 
DRAM tiles to form a single long shift register along which data can pass. Tiles 
which cannot be included in the spiral are wasted. An example wafer is illustrated 
in figure 5.8. A map of the resulting spiral is stored in a PROM. This is used by an 
external controller to access the working DRAM tiles.

On average, defects reduce a wafer’s usable storage capacity to just over 20 Mbytes. 
By pairing relatively good and bad wafers, storage modules can be constructed with 
a minimum storage capacity of 40 Mbytes. It is possible to connect up to four storage 
modules to a single controller.
Wafer Stack has two main disadvantages which reduce its commercial viability:
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Usable DRAM Tile 

Defective DRAM Tile

Unusable DRAM Tile

Catt Spiral

Figure 5.8: A Catt Spiral

— It is slow because it only employs a single 8-bit wide data-path and has a low 
performance processor acting as an intelligent interface. Consequently, it has a 
relatively high latency of around 200 ¿rs and a low peak transfer bandwidth of 
800 Kbytes per second.

— It is expensive because it does not employ state-of-the-art memory chips. In an 
attempt to overcome these restrictions prototype wafers employing four Mbit 
DRAM technology have also been developed. These can hold around 128 chips, 
giving a capacity of 64 Mbytes.

One of the most interesting aspects of the Wafer Stack design is that it employs standard 
DRAM tiles linked by a wafer-scale communications network. This network, however, is 
only one dimensional and is very narrow.

City University’s COBWEB project [And90b] proposed using wafer-scale integration to 
create a parallel graph reduction architecture. It suggested that a wafer can be constructed 
which embeds conventional VLSI tiles in a four-connected packet-switched communica-
tions network. This could provide a very high performance communications network 
similar to that required by Cherub.

5.4 T he CO BW EB W afer-Scale A rchitecture

The COBWEB and related projects [And90b, And89, Gul91] suggest WSI techniques for 
the construction of ultra high performance communications networks. These techniques 
are highly applicable to Cherub and, therefore, COBWEB will now be described in detail.

COBWEB is based on a set of six wafer-scale integration design rules formulated at City 
University:
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Figure 5.9: A COBWEB Wafer

third connects the CE to its payload. Conservative fabrication technology in the network 
increases its yield. Using 1.5 micron CMOS technology and one square cm cells, it is 
estimated that less than 25 per cent of the wafer will be devoted to CEs.
The communication channels comprise two 128-bit register and one-bit status latch pairs. 
The registers are used to hold input and output packets. The status latches signal when 
the registers are full. The registers and latches are shared between adjacent cells so that 
the output register and latch of one cell is the input register and latch of its neighbour.

COBWEB uses packet switched communication; it was thought that this was the simplest 
to implement in silicon and would, therefore, result in the highest CE yield. The CE 
controllers supervise the movement of 128-bit data packets in a series of cell-to-cell hops. 
Packets are transferred in two 64-bit operations. This reduces the CE bus size, a major 
yield hazard. Packet transfer can broken down into a series of steps:

• A packet arrives in the output register of the neighbouring CE. The neighbour sets 
the input latch to indicate the input register is full.

• The CE controller constantly scans each input latch in turn. When it finds a latch 
which is set, it gates the upper 64 bits of the packet, which contain the routing 
information, from the appropriate input register, onto the routing bus and into an 
address latch within the controller.

• The CE controller applies a routing algorithm to determine which output register
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the packet is to be sent to. Simultaneously, the lower 64 bits of the packet are gated 
onto the routing bus.

• The controller waits until the appropriate output register is empty (the output latch 
is reset).

• The lower bits of the packet are gated into the bottom of the appropriate output 
register. The upper half of the packet is then gated into the top of the register.

• The input latch is reset to show that the input register is empty. The output latch 
is set to show that the output register is full.

The packet transfer speed is determined by the CE’s clock rate; the CE’s multiplexer can 
combine an input register poll and a route operation in a single clock cycle. As each CE 
has five input registers, any packet can be routed in 5 clock ticks, ignoring collisions. A 
futuristic 2 ns clock rate will, therefore, result in a 10 ns hop time.

5.4 .2  T he Payload E lem ent

When a packet arrives at its destination, the CE controller loads it into the payload’s 
input register and sets the input latch. When the payload produces output, it loads its 
output register and sets the output latch.

In COBWEB, there are two types of payload cell:

• Processor and memory cells (PMCs)
Most of the payload cells in the wafer will be of this type. Each contains a processor 
and some local memory. The processors are microcoded to perform graph reduction. 
For fault tolerance, the memory is divided into 512 byte pages, each with its own 
associated control logic. The memory is accessed as a heap, with defective pages 
being omitted from the free list.

• Input and output cells (IOCs)
COBWEB is unable to use fibre optic communications because whole wafer integra-
tion does not allow different technologies to be mixed on a single wafer.

IOCs are used to interface the wafer to the pins of its packaging. They contain 
parallel to serial converters, for reducing the number of pins required, pads and 
drivers. Each IOC has 32 data, two signal and two power pins. Limitations in 
current pin bonding technology dictate that the IOCs must be located around the 
edge of the wafer.

5.4 .3  M anufacturing and Packaging

COBWEB wafers would be fabricated by lithographing the two types of cell (PMCs and 
IOCs) onto a square grid using conventional wafer stepping. The wafers would be manu-
factured with an excess of IOCs to ensure that all of the pins can be accommodated.
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Defective CEs may cause a wafer to have a number of disjoint cell networks. The largest 
network of working CEs is determined. If the size of this fails to exceed a threshold value, 
the wafer is discarded. Power is disconnected from the cells which contain short circuits7 
by electronically blowing fuses placed at the junctions of the power grid.
Serviceable wafers would be packaged, their pins being wired to working IOCs. IOCs in 
excess of the pin sets are ignored. Post-production testing is used to verify that the wafer 
pins function correctly. Failing wafers are discarded. This guarantees that every completed 
wafer has a full complement of working pins and a minimum level of functionality.

5.4 .4  Packet R outing

COBWEB uses packet switched communication. When a new packet arrives at a CE 
that is not its destination, it is forwarded to one of its neighbours according to a routing 
algorithm. As packets must be routed around damaged areas on the wafer, routing will 
differ from wafer to wafer according to their defect distributions. The routing algorithm 
used in COBWEB determines its performance, cost and yield.

Routing is implemented using signposts. A signpost is a two-bit number which informs 
the CE where to route the packets for a particular destination. Each CE contains a 
small amount of memory which is used to hold arrays of signposts. Packets contain their 
destination addresses. These are used as indexes into the signpost arrays. Figure 5.10 
illustrates signpost routing.

There are two main advantages of using signposts;

• Graceful degradation

If a damaged node routes a packet incorrectly, there is still a good chance that it 
will eventually arrive at its destination.

• Dynamic routing

Routes can be altered dynamically so that packets are routed around communication 
hot-spots or CEs that fail suddenly. Furthermore, the routing information on the 
wafer need not always be consistent; packets can become temporarily lost without 
harm as long as all the signposts are ultimately consistent.

In his PhD thesis, Anderson [And90a] suggests that a packet-switched wafer communica-
tions network should employ two routing algorithms side-by-side. The Default algorithm 
is fast and efficient, but can result in deadlocks. The Chain algorithm [Ros86] is slower, 
but will resolve deadlocks when they occur. Each CE holds two sets of signposts, one for 
each routing algorithm. In a 316 cell wafer each CE requires 1,264 bits to hold both routing 
arrays. These must be generated and downloaded to the CEs upon wafer initialisation.

• The Default routing algorithm

7Short circuits are detected by applying power to various test pads on the wafer and comparing the 
actual and expected power drains at those points. The circuits are powered at a fraction of their normal 
operating voltages to avoid causing additional damage.
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Figure 5.10: Using Signpost Routing to Avoid Wafer Defects
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In the Default routing algorithm packets travel to their destination by the most 
direct route possible. This may involve routing packets around damaged regions of 
the wafer as illustrated in figure 5.10.

• The Chain routing algorithm
The Default algorithm is not deadlock free. Simulation shows that it is prone to 
deadlock whenever the number of packets in flight approaches one per CE. Figure
5.11 shows how deadlocks can occur in a wafer.

Packet

Required
Route

Figure 5.11: An Example Deadlock in a Wafer

The communication network normally operates according to the Default algorithm, 
but when deadlock is suspected, it reverts to the Chain algorithm which guarantees 
to deliver all the packets in the wafer within a minimum number of hops, k, called 
the Chain Delay.
When a CE detects that it is contributing to a deadlock situation (when a com-
munication channel’s countdown timer expires), it lowers a signal line which places 
the whole network into the Chain mode. The CE remains in this mode until it has 
waited for k hops to elapse. It then reverts to the Default mode and raises the signal 
line. While the wafer is in the Chain mode, its IOCs are prevented from accepting 
further packets.
In the Chain mode, the communication network is configured into an endless loop. If 
there are n working CEs on a wafer, then a packet can be delivered to its destination 
in a maximum of n hops. To be safe, the Chain Delay is set to a value somewhat 
greater than n. This allows all of the CEs to empty their input registers.

One point not addressed by Anderson, however, is that in order to clear the deadlock, the 
Chain algorithm effectively re-orders the packets in the network. Therefore, whenever a 
wafer enters deadlock, the order in which packets are delivered can no longer be guaranteed. 
This has an important impact upon the communication protocols which must employed 
by the processors. In extreme cases this can severely reduce the usable communications 
bandwidth.
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5.4 .5  Y ie ld  A nd H arvest P red iction s

A gate equivalence scheme has been used to compute the area of a CE using very conser-
vative 1.5 micron technology. The values obtained are shown in table 5.1. The majority 
of the wafer area is consumed by memory and power rails.

Structure Area (xlO6/tm2) Gate Equivalent
Input and Output Registers 1.7 5,000

Input and Output Register Controllers 0.2 400
Routing Logic 0.5 1,000
Control Logic 0.9 2,000
Routing Bus 16.0 -

Power Supply 6.3 -
Total 25.6 -

Table 5.1: Areas of the COBWEB Cell Components using 1.5 Micron Fabrication

Given that the CE has an area of 25.6 X 106p2, its yield is predicted by the negative 
binomial model8 to be 0.75 using: known logic fault rates of 0.03 defects/mm2; metal 
fault rates of 0.01 defects/mm2; and clustering parameters of 0.75 to show a high degree 
of defect locality.
The harvest of a wafer is defined as the proportion of the total CEs which can be configured 
into a connected network attached to the wafer’s pads. If a wafer has several disjoint 
networks, the harvest is said to be the largest. COBWEB’s fault tolerant architecture 
ensures that, given a reasonable CE yield, almost all working PEs are harvestable.
It is estimated that a eight inch COBWEB wafer constructed using 1.5 micron technology 
would have a diameter of 20 cells and would contain 260 PCs and 56 IOCs, 28 of which 
would be connected to pins. Simulations of such wafers have shown their harvests contain 
an average of 191 PCs and 38 IOCs. Furthermore, 98 per cent of the wafers will have a 
network consisting of 28 or more IOCs connected to at least 160 working PCs. The graph 
in figure 5.12 illustrates the harvest distribution in 100 typical wafers.

The relationship between CE yield and harvest size in 50 simulated wafers is illustrated in 
figure 5.13. It should be noted that yields below 30 per cent produce very poor harvests 
due to the lack of connectivity.

5.4 .6  C O B W E B  Perform ance

Simulations have been used to determine the average communication path length between 
the IOCs and PCs on wafers with the yields obtained from the defect models. The results

8The yield Y  according to a particular defect type j  is given by the equation:

Yj = (1 + ^ ) ~ a>

where A  is the circuit area, D j  is the density of defect j  and ay is the clustering parameter for defect j .
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Figure 5.12: CE and IOC Harvest of 100 Wafers (260 CEs, 56 IOCs, CE yield 75%)

are illustrated in figure 5.14. The mean path length was found to be approximately 19. If 
each hop takes around 10 ns, the average latency of a packet will be around 190 ns.

The performance p of a packet routing can be expressed as the ratio between the length 
of the shortest possible path and that actually taken:

deal
P= y ------

Simulations have shown that performance deteriorates exponentially as the load on the 
network, the number of packets in flight at any one time, increases. This is illustrated 
in figure 5.15. However, under loads of less than 20 per cent, the performance is close to 
perfect.

5 .4 .7  In feasib ility  o f C O B W E B

There were two main reasons why COBWEB machines were judged to be infeasible:

• To reduce costs and maximise performance it was intended that COBWEB wafers 
would be manufactured using whole wafer integration. Since it is hard to mix differ-
ent technologies on a single wafer, fast processors and inexpensive DRAM could not 
be combined. Therefore, COBWEB would have to use static memory, which means 
that it suffers from a lack of storage capacity.
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Figure 5.13: The Relationship Between CE Yield and Harvest in 50 Simulated Wafers

• COBWEB assumes pin mounting technology; fibre optics communication was either 
not envisaged or was discounted because of the whole wafer integration fabrication 
process. This results in a communication bottleneck because of the huge disparity 
between the internal bandwidth of the wafer and its I/O bandwidth.

The COBWEB project, however, did draw attention to the feasibility of creating an ultra 
high performance wafer-scale communications network. The technique is highly applicable 
to Cherub.

5.5 A W afer-Scale Integrated Network For Cherub

The COBWEB project suggests how an ultra high performance communications network 
may be created using wafer-scale integration. Paper studies have shown that this ar-
chitecture will provide a large degree of defect tolerance. However, the packet-switched 
communications network employed in COBWEB has several serious limitations:

• Interleaved packet delivery is possible. As a consequence, a complicated stateless 
communications protocol is required.

• The network can deadlock. When this happens the deadlock clearance algorithm 
results in unordered packet delivery, further complicating the communications pro-
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Figure 5.14: The Average Path Length in 100 Simulated Wafers

Figure 5.15: Simulated Network Performance Vs Load in 100-CE Wafers
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tocol.

• The data-path is limited in width because a channel requires two separate register 
and bus pairs to support bi-directional communications.

• In order to route packets, each communications element scans its five input registers 
in turn. As a result, packets from a given source are only routed every fifth clock 
cycle. Therefore, very high clock rates must be employed if a high data bandwidth 
is to be achieved. This increases the cost of the circuitry involved.

Circuit-switching is an alternative communication mechanism which offers solutions to 
these problems and is easy to implement in silicon. This technology has been investigated 
in the MESHNET communications architecture [Win89]. This is a network built from 
Network Control Unit (NCU) [Win87] chips which perform circuit routing. Processor and 
memory pairs are connected to the network by Buffer Interface Controller (BIC) [Win88] 
chips. These relatively simple chips are responsible for performing circuit initiation and 
DMA data transfer.

The advantages of employing this communication scheme in Cherub include:

• It uses well-understood technology which has already been applied practically at 
City University.

• The communication protocol has been formally proved to be deadlock free by Whobery 
[Who88].

• When a circuit is established, exclusive communication with the CE is guaranteed 
during its lifetime. This guarantees atomicity and message delivery order.

• Once a circuit is established, it can be multiplexed, allowing low latency, high band-
width two way communication.

The main disadvantage with circuit switching is that it requires complex, and hence silicon 
expensive, routing switches. This severely limits the width of the communications buses 
which can be employed on the wafer.
The proposed Cherub network will employ circuit switching because it is very easy to imple-
ment in silicon. It is asserted that a very wide circuit switched network can be constructed 
by using a hybrid wafer fabrication technique to bond tested processor, SRAM  and optical 
fibre tiles onto a network wafer. The optical fibre tiles can be connected to mass storage 
devices, such as Wafer Disc9 and conventional disk drives, as illustrated in figure 5.16.

It should be noted that the proposed Cherub wafer does not contain DRAM. As the 
processor’s primary and secondary caches will be large enough to make main memory 
accesses relatively infrequent, the DRAM can be provided on a separate wafer. This helps 
minimise the size of the Cherub wafer, thus reducing the network diameter and minimising 
connection latency.

9One of the spinoffs from City University’s COBWEB project was a proposal for a WSI based DRAM 
mass storage device called Wafer Disc [And89], Logically, this is accessed as a very fast and reliable disk 
drive. However, it has two major differences: it is volatile; and it supports concurrent access via multiple 
optical fibre connectors.
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Figure 5.16: The Cherub Architecture

The proposed layout of a Cherub wafer is shown in figure 5.17. The raw wafer only contains 
NCUs and buses forming a communications network. Flip-chip bonding is used to mount 
tested processor, SRAM and fibre optic tiles, each with their own BIC, onto it. As the 
tiles are known to function correctly, less fault tolerance and post-fabrication testing is 
required than with COBWEB. The two layer wafer this forms, allows the construction of 
very wide — 256 bits is reasonable — network data-paths and switching circuits.

As with COBWEB, it is estimated that a eight inch wafer could reasonably hold around 
316 one square cm tiles. Assuming a 75% communications network harvest, this gives 
237 working tiles, which is enough to accommodate the required 200 processor and cache 
pairs, as well as a number of fibre optic tiles.
COBWEB employed a network with a mesh topology. The Cherub wafer contains a net-
work with a torus-like topology, possibly requiring an extra layer of metal10 11. The inter-
connection scheme illustrated in figure 5.18 is used to balance the bus lengths. Although 
this results in an increased yield hazard, it substantially decreases the diameter of the 
network11, thus increasing its performance. This is important with such a large network.

The estimated wafer surface area of the network components, using conservative 0.4 micron 
technology to increase yield, is shown in table 5.2. The width of the communication buses 
employed is limited by the dimensions of solder bumps; a processor connected to a 128- 
bit wide communications bus might reasonably have 225 signal lines (15 X 15), its solder 
bumps occupying 9 square mm of wafer surface. There is room to employ upto 256-bit 
wide communication buses in each direction. Due to a tradeoff between communication 
latency and bandwidth which will be explained later, it was decided to have two 128- 
bit communications buses in each direction. The nine resulting communication channels 
require a four bus crossbar switch.

The Cherub network was first proposed by the author in [Gul91].

10A maximum of three layers of metal can reasonably be used in a VLSI circuit. This is due to step 
coverage problems incurred in the multilayer metalisation process.

11 The diameter of a torus network of width n  nodes is j .  The diameter of a mesh is . Thus a 20 node 
wide C h e r u b  wafer has an diameter of 10, while a similarly sized mesh has one of 13.
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o NCU 

Bus Pair

Figure 5.18: A Double Channel Cherub Network

Structure Area (xlO6/xm2)
2 x 128-bit Communication Channels 49.2

4-way x 128-bit switch 6.0
2 X 225 Solder Bumps 18.0

NCU < 0.2
Total < 73.4

Table 5.2: Areas of the Cherub Cell Components using 0.4 Micron Fabrication
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5.5 .1  T h e C om m u nication  E lem en t

The Cherub communication element differs significantly from that of COBWEB because 
it uses circuit, rather then packet, switching. The main component of the Cherub CE is 
a nine input, 128-bit wide, four-way crossbar switch. This allows up to four pairs of its 
nine inputs to be electronically connected at any one time. The switch is controlled by a 
NCU which makes the routing decisions.
Circuit-switched communication occurs in three stages: circuit construction, data transfer, 
and circuit collapse.

• During circuit construction an electronic link is established between the source and 
the destination BIC. The head of the circuit starts at the source BIC and contains 
the unique identification number of the destination node. Just as with COBWEB, at 
each hop this number is used as an index into routing maps held in SRAM. The two- 
bit result gives the direction, relative to that of travel, that the head must be routed 
in. The head of the circuit is passed to the NCU in this direction. This procedure 
is repeated until the circuit head reaches the destination BIC. This routing scheme 
is illustrated in figure 5.19a.

In order to make an alternative routing decision when the head of a potential con-
nection becomes blocked, two routing maps, a and (3, are maintained for each des-
tination. Thus, assuming a wafer has 256 destinations, each CE requires 1,024 bits 
of maps.

BIC
n

Destination 
Used as Index 
Into Maps 

208
209
210 -  

211 
212

Routing Maps 
Alpha Beta

00 00
00 00

00 01

10 01

10 01

(a)

Figure 5.19: Circuit-Switched Routing

Up to four circuits can be routed through each NCU as long as they use different 
channels. Several possible combinations are shown in figure 5.19b. If it is found 
that a circuit cannot be completed, it immediately collapses back to the source BIC,
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thereby freeing the allocated channels and avoiding deadlocks. The transmitting 
BIC then retries after waiting for a back-off period.

• Once a circuit has been established, data transfer can take place. The circuit appears 
to be an auto-simplex 128-bit wide parallel shift register. This is clocked by the 
source BIC at 100 MHz12, giving a hop time of 10 ns and a raw data bandwidth 
of 1.5 Gbytes per second. The NUCs are clocked at 2 ns, allowing them to make a 
complete scan of their inputs in 10 ns.

• When the communication is complete, the source BIC dissolves the connection, which 
in turn causes circuit collapse. The collapse frees the allocated channels.

Employing twin 128-bit wide communication channels has the effect of sacrificing half 
of the network’s bandwidth in order to improve its connection latency. A CE is allowed 
to use either of the channels travelling in a desired direction to route a circuit. This is 
illustrated in figure 5.20, in which node A communicates with node A' and node B with 
B' though two common channel pairs.

B\o c..^j) o o
O (j) o o ~
o c o o
O X

NCU 

Bus Pair

Figure 5.20: Routing in A Double Channel Network

One disadvantage of this double channel scheme is that a CE has to scan almost twice 
as many channels as on a COBWEB wafer. This doubles the hop time for a given clock 
rate. This problem can be overcome by scanning a channel pair on each clock cycle. The 
channels are prioritised so that if circuit heads appear on both channels simultaneously, 
the one on the highest priority channel is routed first. The second circuit is routed the 
next time the pair is scanned. A performance degradation is, therefore, only experienced 
after collisions.

When the wafer is booted, the wafer temporarily enters a configuration mode. Each NCU 
undergoes a self-test and generates a series of 128-bit test signatures. These are examined 
by an external test circuit which makes a connection to each NCU in turn. This is made 
possible by forcing NCUs which do not yet have routing tables to accept all incoming

12Slow enough to allow for the line rise and settle delays across the eight inch wafer.
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connections. This allows the NCUs to be downloaded with temporary route maps, which 
enables them to route connections to their neighbours. When all of the NCUs have been 
examined, proper route maps are constructed which avoid the NCUs generating incorrect 
signatures. Once these have been downloaded the wafer can function normally.

5.5 .2  T he Payload  E lem en t

There are two possible types of payload element in the Cherub wafer:

• Processor and SRAM Tile Pairs
Most of the Cherub wafer’s surface is populated by processor and SRAM tile pairs. 
The processor tile consists of a high performance RISC processor, 512 Kbytes of 
primary cache, a cache controller and a network interface (BIC). The processors, 
having a 5 ns instruction cycle, are similar in performance to those described by 
Borg et al [Bor90]. The SRAM tiles contain 16 Mbytes of secondary cache.

• Input and Output Tiles
These tiles are placed at regular intervals on the wafer. The payload contains bond 
sites for optical fibres and is used to interface the wafer to external devices. Each 
tile has two bond sites, allowing bi-directional communication. The tile also carries 
a network interface (BIC) and the high speed parallel to serial converters and drive 
circuitry required to transmit and receive data via the fibres.

5.6 Cherub Perform ance Sim ulation

Chapter four determined that, when loaded with 40 connections, the Cherub communica-
tions network must fulfill the following criterion:

84C + 26,000T < 40,000 ns

Where:

C = Time (ns) to make a network connection (network connection latency); and 
T  = Time (ns) to transfer a byte across a network connection.

The proposed wafer-scale communications network is able to transfer 128 bits in 10 ns. 
Therefore, for the 10,000 instruction level of granularity to be optimal on the hardware, 
the network connection latency, C, must be less then about 280 ns.
The performance of eight different circuit switched routing algorithms have been simulated. 
The results are illustrated in figures 5.21 and 5.22. The simulations assume a 316 node 
torus network with an average message length of 19 clocks and a constant back-off period 
of 6 ±  1 clocks13. A 100% network yield was assumed. The routing algorithms used in the 
simulation are explained in appendix C.

13 Approximately one quarter the average message length: an estimate based on the assumption that, on 
average, a collision will occur when a connection is half constructed, being blocked by another connection 
which is half way through its transmission.
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T i m e  T o  M a k e  C o n n e c t i o n  ( n s )

Figure 5.21: The Effect of Routing Algorithms 1-4 on the Time to Make a New Connection

The graphs show that only routing algorithm eight is able to achieve a connection latency 
below 280 ns in a network loaded with 40 connections. It should be noted that the shapes 
of the curves indicate that the communications network is being pushed to its limits, and 
is on the brink of thrashing. This is not unreasonable, however, as it is always desirable 
to employ the smallest level of granularity that the communications network is able to 
support.
Load simulations of routing algorithm eight on Cherub wafers with different communica-
tion network yields produced the results shown in figure 5.23. Once again, a constant 
back-off period of 6 ±  1 network clocks was employed upon collisions.

The graph shows that the yield of the communications network dramatically affects its 
performance. In general, the higher a network’s communications yield, the lower its con-
nection latency will be; communication bottlenecks occur where connections are routed 
around defects. Very high yields indeed are required, certainly above 90%, if Cherub’s 
network is to achieve the desired latency. Due to the in-built redundancy of the proposed 
double bus system and the planned use of conservative 0.4 micron fabrication technology, 
it is expected that such a yield can be achieved.
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T i m e  T o  M a k e  C o n n e c t i o n  ( n s )

A l g o r i t h m  5  

A l g o r i t h m  6  

A l g o r i t h m  7  

A l g o r i t h m  8

E x i s t i n g  C o n n e c t i o n s

Figure 5.22: The Effect of Routing Algorithms 5-8 on the Time to Make a New Connection

5.7 C onclusion

This chapter examined the requirements of the Cherub communications network. It was 
asserted that the level of performance required could only be achieved through the use of 
techniques such as wafer scale integration.

The COBWEB architecture was examined. This allows processors to be combined with 
a packet-switched communications network though the use of whole wafer integration. 
The architecture achieves high performance, but suffers from the inability to combine 
state-of-the-art processor and memory technologies. In addition, packet-switching allows 
unordered and interspersed packet delivery.
It was decided that a large hybrid wafer-scale network would provide both the level of 
performance and the ability to combine the different VLSI technologies required. The 
wafer would employ a double channel circuit-switched communications network with a 
torus-like topology. This would have the benefits of a low connection latency, a high data 
bandwidth and simple communication semantics.
As the processor’s primary and secondary caches would be large enough to make main 
memory accesses relatively infrequent, it was decided to provide DRAM on a separate 
wafer. This helps minimise the size of the Cherub wafer, thus reducing the network 
diameter and minimising connection latency.

The proposed network was simulated and found to be able to provide the level of perfor-
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Figure 5.23: Effect of Network Yield on Connection Latency

mance required, given that a network yield in excess of 90% could be achieved. It was 
asserted that the fault tolerant design of Cherub’s network would make this possible.
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Chapter 6

Conclusion

6.1 T he Thesis

Typically, most parallel architectures are either multiprocessors — which are able to sup-
port a few fine-grained (103 instructions) parallel tasks — or multicomputers — which can 
support hundreds of coarse-grained (105 instructions) ones; there is currently no middle 
ground.
The thesis of this dissertation asserted that there is a significant number of applications 
for which a new type of parallel architecture is desirable. Ideally, this will combine:

• a medium granularity (104 instructions) of processing;

• provision for up to several hundred parallel tasks; and

• the programmability of the shared variable parallel programming paradigm.

The dissertation described the design of the Cherub architecture, which has these proper-
ties, and demonstrated its usefulness with a large example, airborne early warning.

6.2 Proving the Thesis

Due to its scalability, it was decided to employ a multicomputer as the basis for the 
Cherub architecture. Shared variable programming paradigms are typically implemented 
on multicomputers using a mechanism called distributed shared memory. DSM potentially 
offers a scalable shared memory architecture, but as the message handling latency in 
multicomputers is high, DSM typically only supports coarse-grained parallelism effectively. 
The latency of the intertask communication and DSM mechanisms must, therefore, be 
reduced if a medium-grain of parallelism is to be supported.
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Intertask communication latencies are composed of two significant components:

• Software latency

• Overall network latency (a combination of its latency and bandwidth)

The dissertation, therefore, suggested the combination of two approaches for reducing 
communication latency:

• Im plem enting Intertask Communication Mechanisms in Hardware

A significant proportion of the intertask communication latency is due to the software 
used to implement the mechanisms. This can be reduced by implementing them 
in hardware. Unfortunately, in conventional operating systems these mechanisms 
are very complex and, hence, are difficult to implement in hardware. They must, 
therefore, be simplified.
The dissertation suggested that the intertask communication mechanisms can be 
simplified by combining a hardware distributed shared memory (HDSM) with a 
single shared address space (SSAS). The dissertation showed how this combination 
allows the unification of many traditional operating system mechanisms.
The dissertation described the design of an operating system which provides a single 
64-bit address space, called the Object Space, which is shared by all of the pro-
cesses. Objects are fixed size regions within the Object Space which are accessed 
like conventional memory. Objects have the following properties:

— An object is named by an unique globaLname, which is its start address wdthin 
the Object Space.

— Objects can have differing access semantics. The dissertation demonstrated 
that only six types of object (memory, process, sleep-wakeup, semaphore, ren-
dezvous and hardware) need to be supported to provide the functionality of a 
traditional operating system. As a consequence of this unification, only three 
system calls (create-object, destroy-object and object-info) are needed to admin-
ister the Object Space.

— Memory objects only support strong data coherence, because of its well un-
derstood programming semantics. However, as this coherence scheme can of-
ten perform unnecessary work, the architecture provides special instructions 
(busy-read, busy-read-write, idle and finish) which allow the programmer to 
give clues to the memory system about intended future data use. The thesis 
shows how careful use of these instructions allows the latency of the process 
life-cycle to be significantly reduced.

— The dissertation suggested that objects can be protected by passwords called 
capabilities. Each object has three capabilities (read, write and execute). Each 
process has a number of protection-domain-registers. An object can only be 
accessed after its details — its global-name and the appropriate capabilities 
— have been loaded into one of these registers. It is thought that 64 protec-
tion-domain-registers per process will be sufficient for most applications.
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The dissertation implemented the object and system call mechanisms on paper to 
show that they are simple enough to be constructed in hardware. This also allowed 
the performance required from the underlying network to be determined.

• Improving the Latency and Bandwidth o f the Underlying Network
Current state-of-the-art networks, typically fibre optics based, can provide high 
bandwidth communications, but appropriately low latency switching elements are 
not available. The dissertation, therefore, suggested constructing a network using 
wafer-scale integration. It is asserted that such a network will be able to combine 
low latency switching circuitry with wide, and hence high-bandwidth, data paths.
The dissertation suggested that circuit switched routing be employed in the net-
work, because of its high guaranteed bandwidth. A new technique is proposed for 
the construction of very wide circuit switched communications networks using hy-
brid wafer-scale integration. The main limitation in such a network is the physical 
constraint of the fine rise time across the network.
Simulations were used to show that, provided that the network yield exceeds 90%, 
a sufficiently low connection latency can be achieved. It was asserted that the fault 
tolerant design of Cherub’s network would make this possible.

6.3 Contribution to K nowledge

This dissertation has made two significant contributions to computer science:

• It has designed a new HDSSASMA based operating system which is simple enough 
to be implemented in hardware, yet sufficiently comprehensive to provide all of the 
functionality of a conventional operating system like UNIX.

• It has proposed a new wafer-scale integration technique which allows the construc-
tion of very wide circuit switched networks.

6.4 Future Work

Two main ways forward can be envisaged:

• Implementing Cherub’s Operating System
The Cherub operating system could be constructed in hardware to prove that it 
is easy to implement. A Cherub cache controller can be prototyped in a repro-
grammable device such a Xilinx programmable gate array (PGA) [Xil91]. A pro-
cessor which can support an external secondary cache controller, such as the DEC 
Alpha [Dig92], is therefore required.

• Implementing Cherub’s Communications Network
Unfortunately, it is not realistic to expect to be able to implement the proposed 
wafer-scale integrated network. This needs the backing of a commercial sponsor
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with wafer fabrication facilities. However, fibre optics technology could be used to 
construct a network with the required communications bandwidth, if not the latency. 
The communication elements could be prototyped using Xilinx programmable gate 
arrays [Xil91] and connected by optical fibres with gallium-arsenide driving circuitry.
The network requirements derived in section 4.5 can be used to estimate the process 
granularity that can be supported by such a network. For example, if the fibre optic 
network has a bandwidth of 1-Gbit per second and a connection latency of 1 /xs, 
then:

134A + 84C + 25, 584T < (g ■ In 2 -  550)/

Given that:
I  = Time to execute an instruction = (say) 10 ns;
A = Time to access a cache line = (say) 5 ns;
C — Time to make a network connection = 1,000 ns; and 
T  = Time to transfer one byte = 8 ns (»  1 bit per ns)

Rearranging this gives:

g % 42,000

Thus, such a network is able to support a process granularity of around 42,000 
instructions.

6.5 Concluding Remarks

In one way, the designers of parallel computers have been fighting against the flow of tech-
nology, for the performance of processors has improved much faster then that of networks. 
With the growing popularity of fibre optics networks, communications technology is now 
approaching the limitations imposed by the speed of light. As a consequence, the optimal 
granularity of parallel processing can only be expected to increase with time.
In addressing a related problem, this dissertation has suggested a number of techniques 
which can reduce the overall latency of intertask communication. It is asserted that the 
use of such techniques will become commonplace as the limits of network technology are 
approached.
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Appendix A

Glossary of Terms

• A m dahl’s Laws
Two frequently quoted conjectures by Gene Amdahl. The first conjecture states that 
the performance improvement to be gained from an enhancement is limited by the 
time it can be used:

Speedup
1

(1 F r&ctionenilanceci') + F r a c t i o n  e n hanced 
S peedupenhanced

The second conjecture relates the performance of a computer to its memory size and 
I/O  bandwidth:

A balanced computer system needs about 1 Mbyte of main memory capacity 
and 1 Mbit per second I/O  bandwidth per MIPS of CPU performance.

It is thought to represent a balanced system for general-purpose computing.

• Broadcast Network
A communications network which allows a message to be transmitted to a number 
of destination nodes simultaneously. Such networks are inherently non-scalable.

• Cache
A high speed memory which holds recently used data. Used to increase performance.

• Cache Coherency
A mechanism to keep the contents of processor caches in agreement, so that they do 
not hold different values for the same memory location.

• Cache-O nly M em ory Architecture (COM A)
A machine architecture which is based solely on a distributed shared memory.

• Capability
The right to access a particular resource in a specified manner. In Cherub capabil-
ities are implemented as passwords and are used to grant read, write and execute 
permissions to objects.
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• Circuit Switching
A communication routing scheme in which an electronic circuit is constructed be-
tween the source and destination nodes. Once the circuit has been made, message 
transfer can take place over it. When transfer is complete, the circuit is cleared.

• Coarse—Grain Parallelism
A program in which the parallel processors communication and synchronise infre-
quently, normally only after hundreds of thousands of instructions (105).

• Cherub
A proposed implementation of a hardware distributed single shared address space 
memory architecture.

• Context Switch
The process by which a processor switches execution from one task to another. 
Usually performed when an executing process blocks, for example on a DSM page 
fault, or its execution time quantum expires.

• Copy On W rite (COW )
A technique, often employed in operating systems, which allows one or more virtual 
pages to be represented by a single physical page. When one of the virtual pages is 
modified, a copy of the physical page is made and the modification is made to it.

• D ata Granularity
The unit of data shared between processes. In a distributed shared memory this is 
usually a main memory page.

• D istributed M em ory M ulticomputer
A type of parallel architecture in which each processor has its own private main 
memory which other processors cannot access. Typically these architectures em-
ploy non-broadcast communication networks and are, therefore, scalable to many 
hundreds of processors.

• D istributed Shared Memory (DSM )
A mechanism which creates the illusion of a shared memory on a distributed multi-
computer, albeit with a coarser granularity of data sharing.

• Fine-G rain Parallelism
A program in which the parallel processors communicate and synchronise frequently, 
normally after a few thousand (103) instructions.

• Flip Chip Bonding
A wafer-scale integration technique in which circuit dies are mounted upside-down 
on a silicon substrate, joined electrically with solder bumps.

• Generation Scalability
Whether an architecture can be implemented in a new technology and, thus, take 
advantage of increased circuit and packing technologies as they become available.
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• Hardware Distributed Shared M emory (HDSM )
The implementation of a distributed shared memory in hardware in order to reduce 
intertask communication latencies.

• Hardware Distributed Single Shared Address Space M emory Architec-
ture (H DSSASM A)
The combination of a distributed shared memory and a single shared address space 
architecture. Intended to simplify intertask communication mechanisms, making 
their implementation in hardware easier.

• Hot Spot
An area of data that must be accessed frequently by many processors in a multipro-
cessor system. When this occurs, the effective performance of the multiprocessor is 
severely degraded.

• Hybrid Wafer Integration
A wafer-scale integration technique which uses flip-chip bonding to mount tested 
dies on the wafer surface.

• Intertask Communication
The communication, both implicit and explicit, which occurs between tasks. Includes 
the communication needed to create, share data with and terminate a child process.

• M edium -G rain Parallelism
A program in which the parallel processors communicate and synchronise after tens 
of thousands of instructions (104).

• M essage Passing Programming Paradigm
A parallel programming paradigm in which tasks communicate through primitives for 
the protected sending and receiving of message. The sequential arrival of messages 
inherently synchronises the actions of the tasks.

• M ultiple Instruction-stream , M ultiple D ata-stream  (M IM D)

A class of parallel processors in which each processor executes a different program 
on different data from other processors.

• M IPS
Millions of instructions per second. A measure of computer performance.

• M ulticom puter
See distributed memory multicomputer.

• M ultiprocessor
See shared memory multiprocessor.

• N on—broadcast Network
A communication network which only allows a message to be transmitted to a single 
destination node. Such networks are inherently scalable.
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• Packet Switching
A communications routing scheme in which a message is broken down into small 
packets at the source node. These are transmitted across the communication network 
and reassembled in order at the destination.

• Problem  Scalability
Whether an application can implemented efficiently on an architecture with a given 
granularity.

• Redundant Arrays of Inexpensive Disks (RAID)
The use of many small inexpensive disks rather then few large expensive ones. This 
provides higher performance (both latency and bandwidth) and reduces power con-
sumption. With large numbers of disks, failure rate becomes a significant issue, 
making fault tolerance necessary.

• Relaxed Coherence
A cache coherence mechanism designed for increased efficiency. A read operation 
does not necessarily return the most recently written value.

• Single Shared Address Space (SSAS)
A memory model in which all tasks occupy a single common address space, rather 
then multiple privates ones.

• Scalability
See generation scalability and problem scalability.

• Shared M emory M ultiprocessor
A type of parallel architecture with a global memory which is accessible to all of the 
processors. Typically these architectures employ broadcast communications net-
works and, therefore, their scalability is limited to a few tens of processors.

• Shared Variable Programming Paradigm
A parallel programming paradigm in which tasks communicate and synchronise 
through the use of common data structures. Often implemented using a shared 
memory architecture.

• Strong Coherence
A cache coherence mechanism in which a read operation on a memory location 
returns the most recently written value.

• Synchronisation
The delaying of process execution while constraints on the ordering of actions are 
satisfied.

• Thrashing
Very high paging activity which results in severe performance degradation. In gen-
eral, a process is said to be thrashing when it is spending more time paging then 
executing.
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• Translation Look-aside Buffer (TLB)

A partially associative processor cache used in the translation of the virtual addresses 
used by processes into the physical addresses used to access the cache and main 
memory.

• W afer-Scale Integration (W SI)
A method of manufacturing electronic circuits in which wafers are packaged whole 
rather than as individual chips.

• W hole Wafer Integration

A wafer-scale integration technique in which circuits are lithographed on whole 
wafers.
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Appendix B

Airborne—Early Warning: An 
Application for Cherub

B .l  Introduction

This appendix describes airborne early warning (AEW): a non-trivial application naturally 
suited to a medium grain of processing. It demonstrates how the Cherub architecture can 
be used to provide an efficient and elegant solution.

B.2 T he Problem

Modern aircraft attack by flying low and fast, escaping detection by ground-based radar 
stations through using the horizon as cover. To counter this threat, modern anti-aircraft 
defences employ airborne early warning (AEW) systems, high endurance aircraft equipped 
with powerful look-down radars, to fly at high altitude, thus minimising the masking effect 
of the horizon.

Producing radars which are able to look-down and distinguish enemy aircraft from ground 
and sea clutter is far from trivial, however. Providing enough computing power to process 
a noisy radar image, track an average of 400 targets and distinguish friend from foe, is 
beyond most computer architectures available today. Furthermore, the architecture must 
be compact as it, together with its power supply and cooling system, must fit into the 
body of a plane the size of a small airliner.

B .2 .1  Background

Airborne early warning (AEW) was first employed during the American Civil War. Binoc-
ular equipped observers were raised in balloons thousands of feet above the battlefields to 
spy on enemy troop movements and to spot for artillery. Although a severely limited means 
of gathering intelligence, airborne spotters were soon employed by armies throughout the 
world.

During the First World War aircraft rapidly superseded balloons, and the romantic image
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of the dawn patrol was born. At first sun-up formations of biplanes would take off and 
circle the battlefield searching for enemy planes. Dogfights were rare however, for the 
visual range was short, making it easy for enemy aircraft to cross the lines and make 
sneak attacks unobserved.

When in 1936, Watson-Watt demonstrated long-range aircraft detection using radar (ra-
dio detection and ranging), the need for airborne early warning aircraft was immediately 
appreciated. Radar waves travel in approximately straight fines and, therefore, are un-
able to reach air-space hidden by the curvature of the earth. So, the lower an aircraft 
approaches a radar site, the nearer it can get before being detected, thus reducing the 
time available to intercept it. This phenomenon is illustrated in the graph in figure B.l.

Figure B.l: The Relationship Between Radar Altitude And Maximum Detection Range

Radar technology improved rapidly. By the mid 1940s it became possible for aircraft to 
operate in an AEW role. The look-down capacity of these systems, however, was very 
limited; random reflections from the earth’s surface produce thousands of false contacts, 
or clutter, which blot out returns from real targets. Hence early overland AEW was out of 
the question and overwater detection was only possible when the sea was calm. It is only 
with the advent of digital signal processing techniques that effective AEW has become 
possible.
Modern AEW aircraft are important targets for the enemy to attack. The loss of infor-
mation should one be shot down would be catastrophic. To minimise the risk of attack, 
AEWs are deployed deep within friendly air-space. An aircraft flying a circular path 150
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nm within its own air-space can reasonably protect a border 500 nm while minimising the 
risk to itself. This is illustrated in figure B.2.

radar range

Figure B.2: The Air-Space Covered by an AEW Aircraft

B .2 .2  T he Load A E W  P laces On A n A rch itectu re

The load placed on a computer architecture by the AEW role is severe; a large number 
of complex algorithms need to be performed concurrently. Hirst [Mik83] identifies eight 
major tasks performed by computers in AEW aircraft:

• Radar Target Information Gathering, Storage and Processing

• IFF Target Information Gathering, Storage and Processing

• PDS Target Information Gathering, Storage and Processing

• Target Data Correlation

• Providing the Man-Machine Interface

• Data Sharing and Communication

• Flight Equipment Monitoring

• Navigation
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This is by no means a comprehensive list, however, it gives some idea of the complexity 
of the task which must be accomplished in real-time. Only the first four tasks in the list 
are included in the following discussion as these incur most of the processing overheads. 
They will now be examined in greater detail.

B .2 .3  R adar T arget Inform ation  G athering, Storage and P rocessin g

Although radar is only one of the detection mechanisms used in AEW aircraft, it is both its 
most important and complex system. A simplified Pulse-Doppler radar system is shown 
in figure B.3.

Frequency Agile Control

Probability of Validity^--------  Clutter Map
t

Threat Library Radar Waves

Figure B.3: A Simplified Pulse-Doppler Radar System

Radars have much in common with searchlights. A searchlight uses a mirror to emit 
directed visible electromagnetic radiation. Its operator searches for reflections off targets. 
A radar uses a directional antenna to emit non-visible electromagnetic radiation and 
collect returning reflections.
Search radars, the type used in AEW aircraft, typically emit pulses of electromagnetic 
radiation on a single frequency. Periodically, however, the radar will switch to a different 
operating frequency. This complicates the task of an enemy blinding, or jamming, the 
system by transmitting pulses of a similar wavelength. This is called frequency agility.

Radiation spreads out from a radar proportionally to the square of the distance. This 
effects both the strength of an initial radar pulse and that of a returning echo. Therefore, 
the maximum detection range of a radar is proportional to the fourth-root of the power it 
transmits. As the strength of returning signals are often very weak, random noise within 
the radar itself can look like false targets.
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Most modern airborne radars use either phased-array or inverted-cassegrain antennas1. 
These allow the radar energy to be electronically formed into a number of individually 
steerable beams. This flexibility permits the radar to control the number of pulses it 
transmits towards a desired location. The chance that noise in the system will produce false 
targets is almost eliminated by the ability to transmit additional pulses in the direction of 
a new target until the radar has adequate information to make a reliable decision about 
its presence or absence.
The frequency spectrum around that of the radar’s fundamental frequency is extracted1 2 to 
produce digital data which can be processed to reveal further information [Bro82, Far85]:

• Antenna Azimuth and Elevation Analysis
When a return from a target is detected, the antenna’s azimuth shows its bearing 
and the antenna’s elevation indicates, to some degree, its altitude.

• Time Domain Analysis
By measuring the time taken for the pulse to reach a target and return, its range 
can be calculated.

• Frequency Domain Analysis
The movement of a target relative to the radar will produce Doppler shifts in the 
frequency of the reflected pulses. This phenomenon can be used in three ways:

— It allows a target’s instantaneous speed to be calculated. This avoids having to 
obtain speed information over a number of radar scans and is, therefore, both 
faster and more reliable.

— It allows the radar to look down on and distinguish moving targets from ground 
clutter. Objects on the ground will appear to move at the same speed as the 
aircraft. This allows the radar to discern true targets from clutter. Delong and 
Hofsletter [Del69] quote an example of a radar which, with one pulse, is able 
to distinguish a single target from one hundred clutter plots.
In addition to ignoring ground clutter, it is necessary to discard returns from 
slow moving targets which are unlikely to be valid3. This process is called 
velocity gating. Too high a velocity gate, however, can cause slow moving 
aircraft, such as helicopters, to be missed.

— Turbine blades and propellers have characteristic Doppler effects of their own. 
Some radars are able to use these to identify targets using libraries of known 
patterns4.

1 These antennae also reduce s id e lo b e s ,  the transmission or reception of radar signals well off the cen-
terline. Sidelobes waste power and can be exploited by enemy deceptive jammers.

2This is accomplished by first amplifying, filtering and mixing the analogue signal. It is then digitised, 
averaged with the previous pulse to cancel clutter and Fast Fourier Transforms (FFTs)[Rob77] are applied 
to extract the frequency spectrums. Research is currently being conducted on Digital Radio-Frequency 
Memories (DRFMs) [Sun89, Mad90]. These digitise the analogue signals directly, allowing their permanent 
storage for analysis.

3It is not unusual for American F-15 Eagle fighters stationed in Germany to accidentally lock-on to 
fast moving BMWs on the Autobahns.

4It is claimed that the powerful AWG-9 radar employed in the American F-14 aircraft is able to count 
the number of blades in a spinning je t turbine.
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One of the major innovations in modern radar is the use of short wavelengths to enhance 
resolution. This greatly improves target identification, albeit at a much increased signal 
processing cost; dividing the wavelength by n increases the processing by n2, as is shown 
in figure B.4.

C e l l  s i z e  1 / 6  m a j o r  d i m e n s i o n
C o r r e s p o n d i n g  m a p

C e l l  s i z e  1 / 1 2  m a j o r  d i m e n s i o n
C o r r e s p o n d i n g  m a p

Figure B.4: How the Radar Resolution Effects Target Identification

Given the real-time constraints placed on a radar, it is necessary to carefully plan the 
activities it must perform. A prioritised task list is generated, from which the commands 
issued to the radar are scheduled. Tracking existing targets is regarded as a very cost effec-
tive task and is given a high priority. Scanning for new targets is treated as a background 
activity to be performed when the radar is otherwise idle.

B .2 .4  Id en tifica tion , Friend or Foe (IFF) Target Inform ation  G ath erin g, 
Storage and P rocessin g

The greatest proportion of traffic detected by an AEW system at any one time will be 
friendly. To distinguish friendly targets easily, a system called Identification, Friend or 
Foe (IFF) is employed.
Most aircraft, whether civil or military, carry a IFF transceiver which listens for coded 
radio messages at a frequency of 1,090 Mhz. AEW aircraft, and ground-based tracking 
stations accompany their radar pulses with an IFF interrogation request message trans-
mitted on this frequency. If an aircraft receives a correctly coded interrogation message, it 
immediately sends back a coded reply on 1,030 Mhz, giving its identity and height. This 
process is illustrated in figure B.5. The direction of the IFF antenna gives the bearing
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of the target and the time delay between the issue of the interrogation request and the 
arrival of the reply corresponds to the range.

Code Library'

w v

Figure B.5: The Identification, Friend or Foe (IFF) System

Civil air traffic use universal recognised codes, while military traffic codes are secret and 
are varied continuously to avoid forgery. It is therefore easy to recognise a friendly aircraft 
that is using the ascribed coding procedure.

Even though the IFF process is relatively simple, it incurs a considerable overhead. Typi-
cally, several hundred targets would be visible at any one time and they can be established 
or lost at a rate of 25 or so per minute [Bel88].

B .2 .5  P assive  D e tec tio n  S ystem s (P D S ) Target In form ation  G ath erin g , 
S torage and P rocessin g

Target identification is sometimes possible by examining the electromagnetic radiation it 
emits. A low-flying bomber, for example, will have a terrain-following radar and a fighter 
will have a search and targeting radar. These have distinct frequency patterns which are 
as recognizable as human voices.

AEW aircraft are equipped with a set of antennas which feed a broad-band radio receiver. 
Interesting signals are extracted from the noise using Fast Fourier Transforms. The re-
sulting frequency spectrums are identified using an accurate library of known electronic 
signatures. Such a library will have several hundred entries. This process is illustrated in 
figure B.6.

149



APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB
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Figure B.6: The Passive Detection System (PDS)

Previously unknown signals must be recorded, or transmitted directly back to base, for 
analysis by signal experts. This process is called Electronic Intelligence (ELINT) and is 
invaluable for tasks such as locating enemy positions, intercepting classified transmissions 
and designing efficient jamming techniques.

B .2 .6  Target D a ta  C orrelation

The radar, IFF and PDS systems must be correlated to ensure their most effective use. 
This involves the following tasks.

• Radar Command Scheduling

The computer must schedule radar steering commands to perform searches within a 
certain time-frame. These commands must be issued to the radar hardware at the 
appropriate point in the antenna’s scan.

• Target Tracking

The positions of a target in successive scans of the radar form a track of its move-
ments [Far85, Rob77, Sca87]. The greater the track of a target can be predicted, the 
more the radar is able to distinguish between targets and false plots.

• Identifying Targets
Clues about a target’s identify can be gained from each of the detection systems. 
The computer maintains databases of IFF codes, pulse Doppler patterns and PDS
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signatures which can be correlated to assign each track a probable identity. In a hos-
tile jamming environment, however, it is possible that such clues may be unreliable, 
or even contradictory5.

• Statistics Gathering

It is necessary to regularly gather information about the status of the radar, IFF 
and PDS systems. This allows performance analysis and fault detection.

B.3 Current Com puter A rchitectures Em ployed

A number of computer architectural solutions to the AEW problem have been proposed 
or tried:

B .3 .1  C entralised  C om puting: G rum m an E -2  H aw keye

Originally commissioned by the US Navy in 1959, the Hawkeye is the most exported AEW 
in the world. The aircraft has been constantly updated and now carries a comprehensive 
radar, IFF and PDS detection suite.
As the small airframe can only accommodate three operators, the two linked L-304 com-
puters must support automatic target tracking. Consequently, the Hawkeye is only able 
to operate over water, which requires less signal processing. In this role, however, it is 
highly successful6 and can track over 600 targets.

B .3 .2 C entralised  C om puting: B o ein g  E -3  Sentry  (AW ACS)

Initially designed in 1966, the American Boeing E-3 Sentry, often called the Airborne 
Warning and Control System (AWACS), is based on the airframe of a long-bodied DC-8 
airliner. This is a relatively large aircraft and as such provides ample space for a radar 
and its associated electronics.

For simplicity, the designers of AWACS decided to employ a centralised computer, the 
IBM CC-1. This machine was capable of 0.75 MIPs and could track up to 100 equally 
distributed targets simultaneously. It was later discovered that it was necessary to track 
over 400 targets and the more powerful CC-2 computer was retrofitted to earlier aircraft. 
This machine achieves two MIPS. Radar signal processing is accomplished using banks of 
software controlled solid state filters.

The low powered computer system is unable to support automatic track initiation, target 
identification or PDS processing. As a consequence, nine operators are required to control 
the system. This is does not pose a significant problem, however, as the airframe is large 
enough accommodate them.

5During the Vietnam War, the Americans deliberately operated squadrons of F-4 Phantom fighters 
such that to radar and PDS they appeared to be slow, vulnerable bombers. It was hoped that these tactics 
would draw the elusive enemy fighters into aerial ambushes.

6The Hawkeye was recently used for catching drug smugglers off Florida. 45 aircraft, 7 vessels and 
12,242 Kg of marijuana were captured.
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B .3 .3  D istr ib u ted  C om puting: B ritish  A erospace N im rod  A E W .3

The British Nimrod AEW.3, designed in 1971, was based on the Comet Airliner. This had 
a much smaller airframe then the American AWACS and, consequently, space efficiency 
was always much more of a concern in this project. As the number of operators which 
could be accommodated was low, six as opposed to the nine in the American AWACS, it 
was intended that most of the extra workload be absorbed by the computer systems. The 
specification required greater functionality, such as auto-track initiation and identification, 
and a faster response time, then any other system of the time could demonstrate.

It was immediately apparent that a single central computer would not provide sufficient 
processing power, so Marconi Avionics chose to adopt a distributed processing solution. 
The main computer, the Integrated Data Processor (IDP), was developed from a GEC 
4080M. This had a 1 Mbyte memory and was only fast enough to perform all the basic 
sensor correlation and track maintenance tasks. Other functions, such as digital signal 
processing and operator console control were performed by a combination of forty four 
other processors, linked to the IDP by a single communications bus. These contributed 
another 1.4 Mbytes of storage.

The Nimrod project was plagued by two basic design flaws:

• Even with an advanced architecture, the computer system was not able to perform 
adequately. It performed well over water, where its complex software made it better 
then AWACS, but did not have enough computing power to distinguish targets from 
clutter when flying over land [Mar86].

• The complexity of the distributed system compromised the software’s reliability. 
During French comparison trials against AWACS in 1984, a number of computer 
failures were experienced.

By 1986 the British government had flown 20 Nimrod trials and only during one did the 
computers perform well enough to produce useful results. In December 1986 the British 
Prime Minister, Margaret Thatcher, terminated the Nimrod project, writing off the 1.4 
billion already spent on it [Car86c].

B .3 .4  D istr ib u ted  C om puting: B oein g  E -8 A  S ystem

The E-8A is intended as the successor to the successful E-3A AWACS. It has a highly 
advanced radar, the Grumman J-Stars (Joint Surveillance Target Attack Radar System) 
[Gun90] which has unprecedented precision, being able to detect targets both in the air 
and on the ground. This is combined with comprehensive IFF and PDS suites.

The detection systems produce so much data that the aircraft requires a distributed com-
puter system of 27 processors, including one for each of the 15 operator consoles. The 
signal processor alone performs 625 million complex operations per second7 (MCOPS). 
The E-8A’s software has 600,000 lines of code.

7Faster then a CRAY-1 or about 4,000,000 Apple IIEs
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The computers used in the system are so large that the E-8A’s airframe has had to be 
based on that of a Boeing 707, a substantially larger aircraft then the AWACS. This makes 
the aircraft very expensive to buy and maintain.

B .3 .5  Ivor C a tt’s P rop osed  K ernel Logic M achine

Ivor Catt [Cat89, Cat91] suggests using his Kernel Logic Machine architecture in an AEW 
role. This is an array of 1,000 by 1,000 processors on 100 wafers. Each processor would 
be assigned a unit square of ground-space so small that it would never be overloaded.
There appear to be three problems with this solution:

• The proposed solution is very wasteful of computing power; most of the processors 
in the array will be idle at any instant in time waiting for the radar to provide 
information.

• It is not clear how much time it would take to distribute the radar data to, or accept 
the radar steering instructions from, an array of one million computers. It is likely 
that this process would be a bottleneck in the system.

• The amount of power 100 wafers would consume and the Flourinert liquid-based 
cooling system required to dissipate the heat they would generate are likely to pro-
hibit the installation of a Kernel Logic Machine in an aircraft. It is possible that 
this architecture would be better suited to ground-based control where space is not 
at a premium.

It is probable that the level of granularity chosen in the system is wrong. A smaller system, 
comprising a few wafers at most, may well be more cost effective in this role.

B.4 Sum m ary

No computer architecture has yet been shown to be completely satisfactory for the AEW 
application. This is because:

• AEW software is complicated. It involves many closely cooperating tasks and re-
quires large amounts of data sharing and communication. This implies that the 
simplified programming model of a shared memory multiprocessor architecture is 
desirable.

• AEW software must run in real-time and, therefore, requires a greater amount of 
processing power then a multiprocessor can typically offer. This implies the scala-
bility of a distributed multicomputer is required.

B.5 U sing the Cherub A rchitecture

The Cherub architecture provides a compromise which is useful for the AEW role. It offers 
a substantial increase in throughput over multiprocessors without sacrificing the simplicity
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of their shared variable parallel programming paradigm.

We avoid any formal analysis of the real-time aspects of the solution; instead a more 
intuitive approach is taken. Sleat considers the formal implications of a similar real-time 
example in his PhD thesis [Sle91].

B .5 .1  A  D a ta  F low  A nalysis o f th e  P roblem

The dataflow diagram shown in figure B.7 illustrates the interdependencies within the 
AEW system. This is meant to be a representative, rather then a complete, solution to 
the problem.

T r a c k  D a t a b a s e

Figure B.7: A Data Flow Diagram of the AEW Detection System

The following data sources are required:

• Antenna Input (I .A N T JN )

This detects electromagnetic radiation which is being emitted in its direction of 
facing. There may be one or more of such sources in the system.

Read by: T.RAD_FIL
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• R eal-tim e Clock (I.R_T_CLK)
This data source provides timing information.
Read by: D.FAT and T.SCH.RAD

The following data output is required:

• Antenna Output (O .A N T.O U T)
This data output accepts the steering and frequency selection commands which 
control the operation of the radar system. The system may have one or more of 
these outputs.
Written by: T.SCH.RAD 

The following databases are required:

• Track Database (D .TR K )
This is the second most important database in the system. This contains details 
about the targets which are currently being tracked. It includes their locations, 
altitudes, speeds, headings and any information which may be used to identify them, 
such as their IFF, PDS and pulse Doppler signatures. The contents of this database 
are constantly added to, updated or deleted.
Read by: T.IFY_DOP, T.IFY.PDS, T.IFY JFF and T.TRK_TAR 
Written by: T.IFY.DOP, T.IFY_PDS, T.IFY JFF and T.TRK.TAR

• Frequency Analysis Table (D.FAT)
This is the most important database in the system. It contains the filtered and 
processed input from the antenna source in the form of a frequency distribution 
plotted against time. This database is constantly updated with new information. 
The contents of the database are stored permanently for future ELINT analysis.
Read by: T.IFY.DOP, T.IFY.PDS, T.IFY JFF and T.ISO.PLT 
Written by: T.RAD.FIL and T.R.T.CLK

• Doppler Threat Library (D.DTL)

This is a fixed library which contains pulse Doppler patterns for known friendly and 
hostile aircraft. Although this database will contain several thousand entries, it will 
be far from complete; little will be known about an enemy’s most modern fighter 
aircraft.

Read by: T.IFY.DOP

• PD S Threat Library (D .PTL)
This fixed library contains details about the distinctive frequency patterns emitted by 
friendly and hostile radar systems. Like the Doppler Threat Library, it will contain 
several thousand entries, but the information will be incomplete and in many cases 
inaccurate.
Read by: T.IFY.PDS
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• C lutter M ap (D.CLT)

This database holds details about the level of radar clutter which has been found to 
exist in certain regions of air-space. This allows the probability that a radar return 
represents a valid target to be assessed. The database is constantly updated as new 
radar scans are made.

Read by: T.TRK.TAR

Written by: T.TRK.TAR

• IFF Code Database (D .IFF)

This fixed database contains the IFF coding patterns which are used to identify 
aircraft. The codes are complex and are varied according to both the region of air-
space and to the time of the day. Hence the database may have several hundred 
entries.

Read by: T .IFY JFF

• Radar Scheduling Queue (D .SQ U)

This database holds information which is used for scheduling the issue of commands 
to the radar. The queue contains antenna steering and frequency selection com-
mands, along with the time that they are to be issued to the radar hardware.

Read by: T.SCH.RAD

Written by: T.TRK.TAR and T .IN TJFF

The following data transformers are required:

• Schedule Radar (T .SC H .R A D )

This operator uses data from I.R.T.CLK and D.SQU to issue commands to O.ANT.OUT 
at the appropriate time.

Reads: I.R.T.CLK and D.SQU

Writes: O.ANT.OUT

• Interrogate IFF (T .IN T .IFF)

This operator uses data from D.IFF to schedule IFF interrogate requests in D.SQU. 

Reads: D.IFF, D.SQU 

Writes: D.SQU

• Decode IFF (T .D E C .IFF)

This operator identifies IFF Reply messages in D.FAT. It uses D.IFF to decode these 
and update the track information stored in D.TRK.

Reads: D.FAT, D.IFF and D.TRK

Writes: D.TRK
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• Track Target (T.TRK_TAR)

This operator uses the information from T.ISO-PLT and D.CLT to update the track 
information stored in D.TRK. In addition, this operator updates the information 
stored in D.CLT and tracks the targets by scheduling steering commands in D.SQU.

Reads: D.FAT, D.CLT, D.SQU and T.ISO.PLT

Writes: D.CLT, D.TRK and D.SQU

• Identify Target by PDS (T .IFY .PD S)

This operator uses data from D.PDS and D.FAT to update the identity information 
stored in D.TRK.

Reads: D.PDS, D.FAT and D.TRK 

Writes: D.TRK

• Identify Target by Doppler (T .IFY -D O P)

This operator uses data from D.DTL and D.FAT to update the identity information 
stored in D.TRK.

Reads: D.DTL, D.FAT and D.TRK 

Writes: D.TRK

• Radar Data Filtering (T.RAD_FIL)

This operator reads data from T.ANTJNP and performs a number of compression 
and signal analysis techniques upon it. The resulting continuous frequency distribu-
tion patterns are stored in D.FAT.

This operator will be implemented using Digital Radio-Frequency Memories (DRFMs). 

Reads: T.ANTJNP 

Writes: D.FAT

• Isolate Plots by Doppler (T.ISOJPLT)

This operator filters the frequency spectrum in D.FAT using Doppler analysis to 
isolate moving plots from background clutter. It updates D.CLT accordingly.

Reads: D.CLT and D.FAT

Writes: D.CLT and T.TRK-TAR

It can be seen that the system can be naturally decomposed into a large number of 
operators which read and write several large shared databases.

In the following analysis we will consider one operator, T.TRK_TAR, and one database,
D.TRK in greater detail.
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Figure B.8: Tracking a Target

B .5 .2  T .T R K _T A R

As it is necessary to maximise a radar’s power efficiency, it is desirable to follow the 
movements of the targets it has already detected so that they can be relocated with the 
minimum expenditure of energy. This is called tracking and is illustrated in figure B.8.

The life-time of a track can be divided into three phases:

• Track Initiation

The radar detects a plot and associates a probability of validity with it according 
to the number of scans it appears in. If this exceeds a threshold value taken from 
the clutter map, a map showing the density of ground clutter previously detected in 
region of the plot, it is assume to be valid. If not, it is discarded.

# Track Continuation

Once a target is known to exist, its position must be followed from one radar scan 
to the next. The radar predicts the new position of the target based on its current 
course and speed. It then calculates a search area, or tracking dwell, centered around 
this predicted position, based on the target’s manoeuvrability and the amount of 
background clutter. The tracking dwell must be large enough to ensure that it 
includes the target’s new position, but small enough to minimise clutter. The size 
of the dwell is altered dynamically according to D.CLT.
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Once the location and size of the tracking dwell has been determined, steering com-
mands can be issued to the radar to search it. When this has been performed, a 
best match algorithm, using both position and velocity, is applied to merge the new 
plots with the existing tracks. This gives:

— New plots which have appeared;
— Plots which correspond with existing tracks; and
-  Existing tracks for which there are no corresponding plots.

Figure B.8b shows a number of false targets within the tracking dwell of track A’s 
last position. Plot B is within the tracking dwell and has a reasonable direction and 
speed vector. Plot C is outside the tracking dwell and has an unreasonable speed 
vector for the distance it must have covered. Plots D and E are within the tracking 
dwell, but are stationary. B is, therefore, the only plot which could reasonably 
correspond to the original track.

Modern search radars employ high pulse rates; typically, a pulse is emitted every 
100/rs [Mik83]. This greatly reduces the size of tracking dwells because targets move 
less between successive pulses. This saves radar power and reduces the number of 
false targets in the dwells. However, it does mean that tracking must be performed 
both more frequently and quickly.

• Track Termination
When there has been no successful correlation between a track and the radar plots 
for a sufficient number of scans, it is removed. This could indicate that the target 
has landed, flown beyond the range of the radar, or has been shot down.

As the radar must be aimed in real-time, tracking performance is a major factor in the 
design of AEW computer systems. If the radar emits pulses every 100/zS, to maximise its 
power effectiveness the computer must process all the plots found by the previous pulse 
in an average of 50pS. As military aircraft travel in large numbers for mutual protection8, 
this will require a considerable amount of processing.

To solve this problem we suggest the creation of one T.TRK_TAR process for each track 
entry in D.TRK. Each process would have a life-cycle analogous to that of a track:

• Initiation

Track initiation is accomplished by the creation of a new Cherub process which is 
responsible for handling that track. This process performs the following actions:

— Calculates a circular tracking dwell around the target based upon its current 
speed. Its direction is currently unknown.

-  Schedules a high priority command for the radar to search this dwell.

-  Performs a read on the appropriate address in a semaphore synchronisation 
object to block until the radar performs the search.

8During the 1982 Bekka Valley conflict flights of 12 or more Syrian aircraft were common.
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-  When the search is complete, the process examines the resulting plots for one 
which is consistent with the previous plot.

-  If such a plot is consistently found in the number of scans dictated by D.CLT, it 
is deemed to be a track and the process performs track continuation. Otherwise, 
it is deemed to be noise and the process terminates.

Once a plot is deemed to be worthy of tracking, it is classified according to its speed. 
If the speed is below some threshold it is deemed to be ground clutter, otherwise it 
is taken to be a valid target.
Even if a plot is random noise which disappears on the subsequent scan of the radar, 
its tracking process will have executed enough instructions (at least 10,000), by 
scheduling the radar, synchronising and examining the results, to be cost effective.

• Continuation
Continuation processes are prioritised so that tracks known to represent ground 
clutter execute first, thus easing the task of the processes representing moving tracks.
Track continuation involves the following steps:

-  When the radar next searches the target’s tracking dwell, the process examines 
the resulting plots for one which is consistent with the previous plot.

-  It then removes the plot from the set;
-  It updates its D.TRK record according to its new position and speed;
-  It calculates a new tracking dwell for the track;
-  It schedules a low priority command for the radar to scan this dwell; and
-  It performs a read on the appropriate address in a semaphore synchronisation 

segment to block until the radar performs the search.

If a process cannot locate its plot after a prescribed number of radar scans it termi-
nates.
Once all of the track processes in a region have run, if there are any plots which have 
not yet been accounted for, new track processes are created and assigned to monitor 
them.

• Termination
The process of track termination is consistent with the termination of a Cherub 
process.

It is not unreasonable to assume that the T.IFY_DOP, T.IFY_PDS, T.INT.IFF, T .IFY JFF, 
tasks for a given track would be combined with its T.TRK_TAR process to form a sin-
gle task which examines targets, T.EX.TAR. This merge enables the D.TRK and D.FAT 
tables to be shared more efficiently. Furthermore, the T.IFY-PDS and T.IFY.DOP oper-
ations require considerable off-line processing. Hence they are ideal background tasks for 
processors which are waiting for the radar to supply target information.

The number of targets that a radar will be tracking, and hence T.EX.TAR processes, 
can be large; AWACS was designed to cope with over 400 [Mik83]. However, due to the

160



B.5. USING THE CHERUB ARCHITECTURE

directional nature of the radar antenna, only a subset of these tracks, half say, will be 
processed simultaneously. This is consistent with horizontal parallelism and suggests that 
the 400 T.EX_TAR processes be spread over 200 Cherub processors.

B .5 .3  D .T R K

The D.TRK database contains one record for each track which has been detected. During 
periods of heavy air-space usage it could hold 500 or more records.

The database is shared for read and write access by six data operators; the T.TRK-TAR 
operators add, modify or remove records, while T.IFY-DOP, T.IFY-PDS and T .IFY JFF 
only modify them. It is necessary to maintain the strict coherence of the records at all 
times.

The records in the database can be divided into three categories:

• Stationary Tracks
These are plots which are known to exist, but which Doppler analysis shows are not 
moving at a high speed relative to the aircraft. These are assumed to be ground 
clutter. They are stored to allow their easy identification in future scans.

• Tentative Tracks
These are new plots which are in a state of track initiation; they have not been 
observed long enough to determine whether they really exist or not.

• Firm Tracks
These are existing plots which have been categorised as being worthy of tracks. The 
movements of such tracks are relatively predictable.

A record will be added to the track table whenever a radar search detects a new object 
and will be removed after it is not found in a number of radar scans.

Studer and Farina [Far85] suggest a typical track record will include information such as:

• Track Identification Code
The code by which the operator and computer refer to the track.

• Quality Measure
The probability that the track exists. As a tentative track appears in a number of 
radar scans, this probability increases until it reaches some threshold value. At this 
point the track is deemed to be firm.

• Filter Variables

These are used in setting the signal filters for the target. They take into account 
factors such as jamming levels and prevailing radar conditions.

• Time of Last Update

This is the time the track record was last updated. This is used for radar scheduling.
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• Track Status

This contains details such as whether the track is new, tentative, firm, or terminating.

• Information about the track’s last six or more positions, representing over a minute 
of tracking.

— Track Speed Vector
This includes the track’s current speed and acceleration.

— Track Direction Vector
This includes the track’s current direction of travel and rate of turn.

— Track Position
This includes the track’s azimuth, range and altitude.

• Possible Track Identity
Information gained from Doppler, IFF and PDS which may be of use when classifying 
or identifying the track.

We estimate that such a record could be contained in a 256 byte page with little wasted 
space.
The database used in this example is not large, although it would be if a ground surveil-
lance radar was used, but it is accessed in real-time. This makes false data sharing or 
expensive communication overheads, common with architectures with larger page sizes, 
unacceptable.
It is asserted that the shared variable programming paradigm presented by Cherub is one 
of the most natural ways of implementing such a shared database. The database fulfills 
the criteria for being well suited to Cherub:

• It is shared for read and write;

• Strict data coherence must be maintained;

• Its records are suited to a 256 byte page; and

• It must be accessed in real time and so false data sharing is unacceptable.

Record locking can be implemented efficiently by using a semaphore synchronisation seg-
ment. Each record is assigned a semaphore which processes have to gain before being 
allowed to modify it.

B .5 .4  P ro cess  Scheduling

Considering the substantial amount of processing which must be performed by the T.EX_TAR 
operators, it is reasonable to allocate one processor per tw'o targets which are to be pro-
cessed simultaneously. If a maximum of 400 targets is assumed, 200 processors will be 
required.
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Although the resulting workload on the processors is relatively light, it is not unreasonable 
to assume that as the capabilities of radar increase, so will the demand for additional data 
processing power.
The T.SCHLRAD operator, more then any other, must be performed quickly. Conse-
quently, it must be assigned its own processor.

B.6 C onclusion

In this appendix we have selected airborne early warning (AEW) as an example of a real 
application which would test the Cherub architecture. We have demonstrated how it can 
be efficiently decomposed into large number of tasks which operate on shared databases 
and have properties which make them especially suited to Cherub.

The Cherub architecture is able to provide the very high data processing capacity required 
by the AEW role while maintaining a natural data sharing mechanism which simplifies 
the structure of the software.
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Appendix C

The Network Simulations

Although, due to the difficulties in constructing accurate models, simulations are generally 
not well thought of1, they remain one of the only ways of predicting and analysing the 
performance of complex systems such as Cherub’s proposed WSI-based communications 
network.
Chapter four showed that, when loaded with 40 connections, the Cherub communications 
network must fulfill the following criterion:

84C + 26,000r < 40,000 ns

Where:

C = Time (ns) to make a network connection (network connection latency); and
T  = Time (ns) to transfer a byte across a network connection.

In chapter five it was stated that the proposed wafer-scale communications network will be 
able to transfer 128 bits of data every 10 ns. Therefore, the network’s connection latency, 
C, must be less than about 280 ns if an optimal granularity of 10,000 instructions is to be 
achieved.

This appendix describes the simulations which have been performed to understand whether 
the Cherub’s proposed WSI network will be able to achieve this connection latency.

C .l T he Sim ulator

A 1,000 line C program was written to simulate an eight-inch circular wafer containing a 
communications network composed of one square cm communication element (CE) tiles. 
A two dimensional array of structures was used to represent the CEs’ communication 
busses. These busses could be configured into either a mesh or a torus network topology,

1 Fishman [Fis73] has identified 12 types of data misinterpretations common in simulations and Oren 
[Ore78] lists 9 main categories and 44 subcategories of tests for the assessment of acceptability of simulation 
models, programs and data.
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although only the latter was really of interest. The incomplete tile sites at the edge of the 
simulated wafer were not used, giving 316 usable CEs in a perfect wafer.

Circuit switched communication was simulated by allocating busses in a path between a 
source and a destination CE chosen at random. Once the simulated circuit was made, 
it was kept open for 19 network clock periods2, the average length of a connection as 
determined in section 4.5. The circuit was then cleared, freeing the allocated busses.

If during a circuit’s construction a required communication bus was already in use, the 
complete circuit was cleared and the source CE waited for a back-off period before retrying. 
This prevented deadlock. The simulation was able to support various network back-off 
schemes:

1. The connection failed; it did not retry.

2. The connection retried after a constant delay. (After n network clocks.)

3. The connection retried after linearly increasing delay. (After n, 2n, 3n, An . . .  network 
clocks.)

4. The connection retried after exponentially increasing delay. (After n ,2 n ,4 n ,8 n .. .  
network clocks.)

Experiments showed that, generally, the constant delay back-off scheme results in the 
lowest connection latency in networks containing up to 40 connections. A constant delay 
back-off period of 6 ±  1 clocks3 was therefore used in all of the experiments.
The average number of connection in the network was determined by varying the issue 
chance — the probability that an idle CE would attempt to make a new connection on 
each network clock tick. In all the experiments various issue chances were tried, although 
those that produce network loads of about 40 connections were of most interest.

In all of the experiments the networks were run for 10,000 simulated network clock periods 
(100 fis). The networks were first allowed a period of 1,000 network clock ticks to ‘warm 
up’ (10 /rs), thus ensuring that they were not devoid of connections at the start of the 
simulation.

Two sets of experiments were performed:

1. An investigation into the performance of different routing algorithms. This was used 
to find the best possible circuit switched routing algorithm.

2. An investigation into the effect of different network yields on the routing algorithm 
found to perform best in the previous experiment.

These are discussed in detail in the following two sections.

2The simulations were independent of the actual network clock rate employed. However, it is assumed 
that a 10 ns clock will be employed.

3This is approximately one quarter the average connection length: an estimate based on the assumption 
that, on average, a collision will occur when a connection is half constructed, being blocked by another 
connection which is half way through its transmission. The random variation helps to prevent live-locks, 
where a number of connections continually collide because they are using the same back-off steps.
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C.2 Investigating Different Network R outing A lgorithm s

The first experiment examined the performance of several routing algorithms under dif-
ferent network loads. Eight routing algorithms have been devised:

1. Normal MESHNET Routing
At each hop the head of a connection will first attempt to travel north or south in 
order to reduce the relative vertical distance between it and its destination, according 
to the route held in the a map. If there is no vertical separation, then it will attempt 
to decrease the horizontal separation by travelling east or west. If the route in the 
a  map is blocked, the one in the f3 map is attempted. If this is also blocked the 
connection is immediately dissolved.

2. Offset Straight Routes
One of the problems with scheme one is that if either the vertical or horizontal 
separation between the source and the destination is initially zero, an alternative 
routing decision cannot be made upon a collision.
This scheme attempts to overcome this problem by forcing the head of a connection 
to take a single hop away from its destination if either the vertical or horizontal 
separation is initially zero. Unfortunately, this requires a third routing map, which 
is only used on the initial hop of a connection.
The simulations have shown that this routing scheme is slightly inferior to num-
ber one; the greater routing choice provided by the initial sideways hop does not 
outweight the extra hops it incurs.

3. Back-Up One Step On Collisions
Another limitation of scheme one is that once the head of a connection becomes 
blocked both horizontally and vertically, it simply gives up.
In this scheme, once the head of a connection becomes completely blocked, the head 
takes one hop (at most) back and tries the other route (if any) it could have made.
The simulations have shown that this scheme’s extra attempts at making a connec-
tion are very cost effective while the network is under light and moderate loads (60 
connections), but not so when under heavy load, where they just add to network 
contention.

4. Zig-Zag Routing
In scheme one, the head of a connection was always first routed vertically and then 
horizontally. That results in indirect, L-shaped, connection paths.
In this scheme, the head of a connection is routed so as to minimise the greatest 
relative distance, either horizontally or vertically, to the destination. This results in 
zig-zag shaped connection paths.
The simulations show that this scheme performs slightly worse then number one. 
This is because, in general, the number of paths blocked by a circuit is minimised 
when the head makes as few direction changes as possible. This is clearly not the 
case with zig-zag movement.
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5. Recursive Routing

This scheme is similar to number three except that the head of a connection can takes 
as many steps backward as necessary, until all possible routes have been exhausted.

The simulations have shown that this scheme’s excessive attempts at making a con-
nection are not cost effective except when the network is under very light loads (20 
connections).

6. Fixed Routing

This scheme uses a fixed routing path; if a collision occurs, the connection is imme-
diately dissolved, rather then attempting another route. This has the advantage of 
only requiring a single routing map.

7. Wait Before Backing-Up

One of the main disadvantages of scheme three is that once the head of a connection 
becomes blocked, it is immediately backed-up one step — in effect, moving it away 
from its destination.

This scheme attempts to overcome this by, instead of immediately backing-up, wait-
ing for up to half a message length for a route to clear.

8. Permanently Change Direction of Travel On Collision

Another disadvantage of scheme one is that, although the head of a connection will 
temporarily use map /? to avoid a collision, it will always revert to using map a  
again. On collisions, this results in zig-zag connection paths, which scheme four has 
shown to be bad.

This scheme is similar to number one except that once the head of a connection has 
used a given map for routing, it will continue to use it until another collision occurs. 
This, hopefully, will reduce zig-zagging.

Each routing algorithm was simulated a number of times with different issue chances, thus 
varying the average number of connections in the network. To simplify the analysis of the 
results a 100% network yield was assumed.

C .2.1  R esu lts

The performance of the eight circuit switched routing algorithms is illustrated in figures 
C .l and C.2. The graphs show that only routing algorithm eight is able to achieve a 
connection latency below 280 ns in a network loaded with 40 connections. It should be 
noted that the shapes of the curves indicate that the communications network was being 
pushed to its limits and was on the brink of thrashing. This is not unreasonable, however, 
as it is always desirable to employ the smallest level of granularity that the communications 
network is able to support.
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T im e  T o  M a k e  C o n n e c t io n  ( n s )

Figure C.l: The Effect of Routing Algorithms 1-4 on the Time to Make a New Connection

T im e  T o  M a k e  C o n n e c t io n  (n s )

A lg o r i th m  5 

A lg o r i th m  6 

A lg o r i th m  *! 
A lg o r i t h m  8

E x i s t i n g  C o n n e c t io n s

Figure C.2: The Effect of Routing Algorithms 5-8 on the Time to Make a New Connection
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C.3 Investigating the Effects of Different Network Y ields

Having determined that routing algorithm eight is highly effective in a defect-free network, 
it was necessary to investigate its performance in an imperfect network. The simulation 
was altered so that a proportion of the CEs were randomly assumed to be defective4. The 
simulation then constructed routing maps for the wafer which avoided the defects. This 
was achieved using a recursive ‘flood-fill’ algorithm which examined all possible routes 
between a source and destination CE. As an optimisation, a route was only followed until 
either it reached its destination, or it equaled the length of the shortest route so far found.

C .3.1 R esu lts

Two experiments were performed:

1. The Effect o f Network Yield Upon the Average Communication Path  
Length
In this experiment the issue chance was kept constant (at 0.1) while the yield of the 
network was varied. Networks with mesh and torus topologies were simulated for 
comparison.

A v e r a g e  C o n n e c t io n  le n g th  ( H o p s )

Figure C.3: Effect of Network Yield on Average Connection Path Length

The results of the experiment are shown in figure C.3. It can be seen that when the 
network yield is high, the average path length in the torus network is much shorter

4 It was assumed that a single defect would render a CE completely inoperative. In reality this will not 
be the case, as most defects will occur in the replicated communication busses.
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then that in the mesh. However, as the network yield falls, the difference between 
the two types of networks becomes less marked.

2. The Performance of Routing Algorithm Eight In Imperfect Networks
In this experiment, routing algorithm eight was simulated in networks with different 
CE yields. The number of connections in the networks was determined by varying 
the issue chance.

T im e  T o  M a k e  C o n n e c t io n  (n s )

100% Yield
awnsaar
80% Yield" 
70% Yield “

E x i s t i n g  C o n n e c t io n s

Figure C.4: Effect of Network Yield on Connection Latency

The results of the experiment are shown in figure C.4. The graph shows that the 
yield of the communications network dramatically affects its performance. In general, 
the higher a network’s communications yield, the lower its connection latency will 
be; communication bottlenecks occur where connections are routed around defects. 
Very high yields indeed are required, certainly above 90%, if Cherub’s network is to 
achieve the desired latency. Due to the in-built redundancy of the proposed double 
bus system and the planned use of conservative 0.4 micron fabrication technology, 
it is expected that such a yield can be achieved.

C.4 Conclusion

The proposed network was simulated, showing that it is able to provide the level of per-
formance required given that a network yield in excess of 90% can be achieved. It was 
asserted that the fault tolerant design of Cherub’s network will make this possible.
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