

City, University of London Institutional Repository

Citation: Gull, A. (1993). Cherub: A hardware distributed single shared address space

memory architecture. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/29893/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Cherub: A Hardware Distributed
Single Shared Address Space Memory

Architecture

Aarron Gull
Systems Architecture Research Centre

City University

March 1993

This thesis is submitted as part of the requirements for a Ph.D. in Computer Science, in
the Department of Computer Science of City University, London, England.

ABSTRACT

A B S T R A C T

Increased computer throughput can be achieved through the use of parallel processing.
The granularity of a parallel program is the average number of instructions performed
by the tasks constituting it. Coarse-grained programs typically execute huge numbers
of instructions per task (w 105). The tasks in fine-grained programs are typically short
(æ 103). In general, the finer the program grain, the greater the potential for exploiting
parallelism. Amdahl’s Law shows that in the absence of overheads, the more potential
parallelism that is realised in an algorithm, the faster it will be. The economical granularity
of tasks is determined by the intertask communications overhead. Break-even occurs when
processing is approximately equally divided between useful work and overhead.

The two common parallel programming paradigms are shared variable and message pass-
ing. Shared variable is, in general, the more natural of the two as it allows implicit
communication between tasks. This encourages the programmer to make use of fine-
grained tasks. The message passing paradigm requires explicit communication between
tasks. This encourages the programmer to use coarser-grained tasks.

Two kinds of parallel architecture have become established. The first is the multiproces-
sor, which is built around a shared bus giving broadcast communications and a shared
memory. This is characterised by low communications overhead, but limited scalability.
The second is the multicomputer, which is based on point-to-point communications with
larger communications overhead, but good scalability. Quantitatively, the low overhead
of the multiprocessor is well matched to fine-grain tasks and, hence, to supporting the
shared variable paradigm, while the high overhead of the multicomputer matches it to
coarse-grain parallelism and, hence, to the message passing paradigm.

Currently, there appears to be no middle ground in parallel computing; an architecture
which can support both several hundred medium-grained (« 104 instructions) parallel
tasks and the shared variable programming paradigm would be advantageous in many
applications.

This thesis asserts that it is possible to implement a new computer architecture, Cherub,
which has at least 200 processors and is able to support shared variable programming with
an optimal task granularity of around 104 instructions. This can be achieved through the
combination of a hardware-based distributed shared single address space and a wafer-scale
communications network.

To support the thesis, the dissertation first specifies a programmer’s interface to Cherub
which is simple enough to implement in hardware. It then designs algorithms which
provide this interface, allowing the requirements of the underlying network to be esti-
mated. Finally, a wafer scale communications network is outlined, and simulations are
used to demonstrate that it can provide the performance required to successfully imple-
ment Cherub.

3

ABSTRACT

4

Contents

1 Introduction 13

1.1 An Informal Perspective... 13

1.1.1 Parallel P rogram m ing.. 13

1.1.2 Tightly Coupled Multiprocessors With Physically Shared Memory . 16

1.1.3 Loosely Coupled Multicomputers With Distributed Shared Memory 18

1.1.4 Hardware Single Shared Address Space Architectures 19

1.1.5 Wafer-Scale In teg ra tio n ...20

1.2 The Thesis ...20

1.3 A Plan of the D issertation.. 21

1.4 Contributions to Knowledge...22

2 Reducing Intertask Communication Latencies 23

2.1 Introduction...23

2.2 Principles of Distributed Shared Memory ... 24

2.3 DSM Performance Issues... 25

2.3.1 Data G ranularity 25

2.3.2 Coherence Mechanisms ..27

2.3.3 Synchronisation M echanism s..30

2.3.4 Implementing Intertask Communication Mechanisms in Hardware . 31

2.4 Single Shared Address Space Architectures (SSAS’s) ..32

2.4.1 Using a SSAS to Simplify Operating System M echanism s..................... 33

2.4.2 Disadvantages of a SSAS A rch itectu re ..37

2.5 Conclusion ... 41

3 Simplifying The Operating System Call Interface 43

3.1 Introduction... 43

3.2 A Conventional Operating System In te rface ... 44

5

CONTENTS

3.3 The Cherub Interface ..45

3.3.1 Process O bjects..48

3.3.2 Memory O b je c ts ...52

3.3.3 Sleep-Wakeup, Semaphores and Rendezvous O bjects.............................52

3.3.4 Hardware Objects ..53

3.4 Programming Cherub .. 53

3.4.1 Process Management ... 53

3.4.2 Data S to ra g e ...56

3.5 Applications Suitable for C h e ru b ... 57

3.6 Conclusion 57

4 Im plem enting the Cherub Architecture 59

4.1 Introduction.. 59

4.2 The Cherub H ardw are ... 60

4.3 Implementing the Object S pace .. 65

4.3.1 Process O bjects.. 68

4.3.2 Memory O b je c ts ... 70

4.3.3 Synchronisation O b jec ts .. 71

4.3.4 Hardware O b je c ts .. 75

4.4 Implementing Object Space Caching and Coherence ... 75

4.5 Performance Evaluation of the Implementation M echanism s.............................81

4.6 Conclusion .. 86

5 A W afer-Scale Communications Network 87

5.1 Introduction.. 87

5.2 Classifying N etw orks... 87

5.2.1 Network Topologies .. 88

5.2.2 Communication Strategy ... 91

5.3 Wafer-Scale In te g ra tio n ...92

5.4 The COBWEB Wafer-Scale Architecture ..99

5.4.1 The Communications Element .. 100

5.4.2 The Payload Element ..102

5.4.3 Manufacturing and Packaging... 102

5.4.4 Packet R o u tin g 103

5.4.5 Yield And Harvest Predictions ...106

6

CONTENTS

5.4.6 COBWEB Perform ance... 106

5.4.7 Infeasibility of C O B W E B107

5.5 A Wafer-Scale Integrated Network For C h e ru b ...108

5.5.1 The Communication E lem en t... 114

5.5.2 The Payload Element .. 116

5.6 Cherub Performance Simulation... 116

5.7 Conclusion • 118

6 Conclusion 121

6.1 The Thesis ... 121

6.2 Proving the T h e s is ...121

6.3 Contribution to K now ledge... 123

6.4 Future Work 123
6.5 Concluding R em arks..124

B ibliography 125

A G lossary of Term s 137

B A irb o rn e—E arly W arning: A n A pplication for C herub 143

B.l Introduction...143

B.2 The P ro b le m .. 143

B.2.1 Background...143

B.2.2 The Load AEW Places On An A rchitecture.. 145

B.2.3 Radar Target Information Gathering, Storage and Processing 146

B.2.4 Identification, Friend or Foe (IFF) Target Information Gathering,
Storage and Processing ... 148

B.2.5 Passive Detection Systems (PDS) Target Information Gathering,
Storage and Processing ... 149

B.2.6 Target Data C orrelation... 150

B.3 Current Computer Architectures E m ployed 151

B.3.1 Centralised Computing: Grumman E-2 H awkeye........................ 151

B.3.2 Centralised Computing: Boeing E-3 Sentry (AW ACS)........................151

B.3.3 Distributed Computing: British Aerospace Nimrod AEW.3152

B.3.4 Distributed Computing: Boeing E-8A System ... 152

B.3.5 Ivor C att’s Proposed Kernel Logic Machine 153

B.4 S u m m ary 153

7

CONTENTS

B.5 Using the Cherub A rch itec tu re .. 153

B.5.1 A Data Flow Analysis of the P ro b le m ... 154

B.5.2 T .T R K _T A R ... 158

B.5.3 D.TRK .. 161

B. 5.4 Process Scheduling.. 162

B. 6 Conclusion ..163

C The Network Simulations 165

C. l The Simulator... 165

C.2 Investigating Different Network Routing A lg o rith m s.. 167

C. 2.1 Results ... 168
C.3 Investigating the Effects of Different Network Y ie ld s ...170

C.3.1 Results .. 170

C.4 Conclusion .. 171

8

List of Figures

1.1 Typical Task Communication Overheads... 14

1.2 The Time Taken to Execute A Program Using Multiple Parallel Tasks . . . 15

1.3 A Typical M ultiprocessor.. 17

1.4 A Typical M ulticom puter.................. 18

2.1 The Structure of a Typical DSM System ... 24

2.2 The Logical DSM H ierarchy...27

2.3 Comparing Single and Multiple Address Space Architectures34

2.4 Using Indirection to Allow Code Sharing... 38

2.5 Providing Protection by Domain Registers........................ 39

3.1 The Cherub Process Life C y c le ...54

3.2 The Time Taken To Execute A Program In Parallel On C herub 56

4.1 Cherub’s Logical Hardware Organisation... 60

4.2 Cherub’s Physical O rganisation... 65

4.3 Logical to Physical Disk Address Mapping for Sparse and Striped Storage . 67

4.4 Logical Disk Layout ... 67

4.5 Process Object Representation on D isk.. 70

4.6 Examples of Typical Memory O b je c ts .. 71

4.7 Memory Object Representation on D i s k ... 72

4.8 Implementing Copy On Write In Memory Objects ..73

4.9 Synchronisation Object Representation on D isk ... 74

4.10 The Cherub Cache Hierarchy .. 76

4.11 A Cache Line Read With Write-back and Invalidation 82

5.1 Bus network... 88

5.2 Staged ne tw ork ...89

5.3 Ring n e tw o rk ..89

9

LIST OF FIGURES

5.4 Mesh netw ork ... 90

5.5 Torus network... 90

5.6 The Flip-chip Bonding P ro cess .. 93

5.7 Stacking W afers........................... 97
5.8 A Catt S p ira l ... 99

5.9 A COBWEB W afer..101

5.10 Using Signpost Routing to Avoid Wafer Defects...104

5.11 An Example Deadlock in a W afer... 105
5.12 CE and IOC Harvest of 100 Wafers (260 CEs, 56 IOCs, CE yield 75%) . . . 107

5.13 The Relationship Between CE Yield and Harvest in 50 Simulated Wafers . 108

5.14 The Average Path Length in 100 Simulated W afers...109

5.15 Simulated Network Performance Vs Load in 100-CE W afers............................ 109

5.16 The Cherub Architecture ..I l l

5.17 A Simplified Cherub Wafer ...112
5.18 A Double Channel Cherub Network ..113

5.19 Circuit-Switched R o u tin g ..114

5.20 Routing in A Double Channel Network.. 115
5.21 The Effect of Routing Algorithms 1-4 on the Time to Make a New Connectionll7

5.22 The Effect of Routing Algorithms 5-8 on the Time to Make a New Connection 118

5.23 Effect of Network Yield on Connection L atency ...119

B .l The Relationship Between Radar Altitude And Maximum Detection Range 144

B.2 The Air-Space Covered by an AEW .Aircraft ...145

B.3 A Simplified Pulse-Doppler Radar System ...146
B.4 How the Radar Resolution Effects Target Identification 148

B.5 The Identification, Friend or Foe (IFF) S y s te m ..149

B.6 The Passive Detection System (P D S)................. 150

B.7 A Data Flow Diagram of the AEW Detection System 154

B. 8 Tracking a T arget.. 158

C. l The Effect of Routing Algorithms 1-4 on the Time to Make a New Connectionl69

C.2 The Effect of Routing Algorithms 5-8 on the Time to Make a New Connectionl69

C.3 Effect of Network Yield on Average Connection Path L e n g th170

C.4 Effect of Network Yield on Connection L atency .. 171

10

A CENO WLED G EM ENT S

A ck n ow led gem en ts

I would like to extend my thanks to the following people:

• Peter Osmon, my supervisor, for his help and encouragement.

• Tim Wilkinson for his ideas, constructive criticism and lATgXmacros.

• M um and Dad, who have subsidised me for most of my academic career.

D ed ica tion

This is dedicated to those who care.

D eclaration

I grant powers of discretion to the University Librarian to allow this thesis to be copied,
in whole or in part, without further reference to me. This permission covers only single
copies made for study purposes, subject to normal conditions of acknowledgement.

11

A CENO WLED GEMENTS

12

Chapter 1

Introduction

1.1 A n Informal P erspective

The existence of a radically new systems architecture often has landslide effects through-
out the computer industry. For example, Atlas’s demand paging [Kil61, Kil62], IVY’s
distributed shared memory [Li 86, Li 89] and Chorus’s microkernel [Gui82, Arm86, Her88]
have all had profound effects over subsequent computer design.

This dissertation proposes a new architecture, Cherub, which uses hardware to create a
high performance distributed single shared address space and allows the use of a scalable
medium-grained shared variable programming paradigm. It is hoped that this may lead
to a significant advance in parallel computing.

1.1.1 P arallel Program m ing

Increased computer throughput can be achieved through the use of parallel processing.
Two main issues are of importance in parallel systems:

• Granularity of Processing and Intertask Communication Overhead

• Programmability

Granularity of Processing and Intertask Communication Overhead

The granularity of a parallel program is the average number of instructions performed
by the tasks constituting it. Coarse-grained programs typically execute huge numbers
of instructions per task (« 105). The tasks in fine-grained programs are typically short
(« 103). In general, the finer the program grain, the greater the potential for exploiting
parallelism. Amdahl’s Law shows that in the absence of overheads, the more potential
parallelism that is realised in an algorithm, the faster it will be. The economical granularity
of tasks is determined by the intertask communication overhead. Break-even occurs when
processing is approximately equally divided between useful work and overhead.

13

CHAPTER 1. INTRODUCTION

Typical intertask communication overheads include setup, data sharing, synchronisation,
result transfer and termination, as illustrated in figure 1.1.

Task 1

Process setup Synchronisation Termination

\ \ If \
Data sharing Result transfer

Task 2

Figure 1.1: Typical Task Communication Overheads

Ideally, a sequential program of execution time £ can be decomposed into N tasks, all of
which can all be performed in parallel. The time taken to execute the program will be:

£_
N

If the decomposition is performed in a binary tree fashion, such that each task creates
another, then the decomposition will take a logarithmic factor of the intertask communi-
cation overhead, t oveThead• The time taken to decompose and execute the program will,
therefore, be:

toverhead. ' l o § 2 N

Differentiating with respect to N allows us to determine the optimum number of processors
for a given value of l:

d t _ toverhead ^ /

dN ~ N ■ In 2 _ ÏV2
0 as N —► oo)

The optimum number of processors, N0, is at this curve’s minimum:

N 0 = -— ------In 2
overhead,

This is illustrated in figure 1.2, which shows the time taken to execute programs of various
lengths which have been perfectly decomposed into parallel tasks, for a given intertask

14

1.1. AN INFORMAL PERSPECTIVE

communication latency. It should be noted that it is not cost effective to parallelise a
program whose sequential execution time is similar to the intertask communication latency
(t OVerhead)• In addition small programs (4 • t overhead) can only be efficiently parallelised for
a couple of processors and even quite large programs (64 • t overhead) don’t show significant
performance improvement when run on more then 15 processors.

Parallel execution time / t_oveihead

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

5 10

Program sequential execution time
1 . t_overhead
4 . ¡„overhead
Ï6 . t_overhead
64. t_overhead

15
Number of Tasks

Figure 1.2: The Time Taken to Execute A Program Using Multiple Parallel Tasks

Given that an optimal number of processors exists, then the optimal grain size of a task,
G0, can also be calculated:

1overhead
- In 2

1overhead
In 2

Therefore, if a medium optimal grain size of, say, 104 instructions is required, then rear-
ranging this gives:

lover head — 10,000/x In 2
7,000/
G0

Clearly, for a fine level of granularity to be cost effective, the task overheads must be
similarly low. These are determined by the underlying architecture.

15

CHAPTER 1. INTRODUCTION

Program m ability

A further tradeoff exists between the performance and the programmability of a parallel
system; a programmer will only use parallelism when it can be realised easily using the
programming paradigm.

The two most common parallel programming paradigms are shared variable and message
passing:

• In the shared variable paradigm tasks communicate and synchronise implicitly through
the use of common data structures.

• In the message passing paradigm tasks communicate explicitly through primitives for
the protected sending and receiving of messages. The sequential arrival of messages
inherently synchronises the actions of the tasks.

The shared variable paradigm is, in general, the more natural of the two to program as
its simplified communication mechanism does not force the explicit partitioning of data
between tasks. Furthermore, it allows parameters to be passed by reference rather than
by value. This ease of use has two implications:

• The near transparent overheads of communication encourages the use of finer-
grained tasks and, hence, more parallelism.

• It takes relatively little programming effort to coordinate a large number of parallel
tasks.

Programmers, therefore, generally prefer the shared variable programming paradigm.

For reasons of simplicity, the shared variable programming paradigm is typically imple-
mented using a shared memory computer architecture; shared data structures are simply
held in shared memory, allowing the underlying architecture to perform the communica-
tion transparently. Two shared memory architectures are common:

• Tightly Coupled Multiprocessors with Physically Shared Memory

• Loosely Coupled Multicomputers with Distributed Shared Memory

These are described in the following two sections.

1 .1 .2 T ig h tly C oupled M u ltip rocessors W ith P h ysica lly Shared M em ory

Multiprocessor architectures, also known in the literature as parallel random-access ma-
chines (PRAMs), are the most conventional way of implementing a shared variable paral-
lel programming paradigm. These machines typically have one or more shared broadcast
busses by which the processors are connected to a single globally accessible memory. A
typical multiprocessor system is illustrated in figure 1.3.

16

AN INFORMAL PERSPECTIVE1.1.

Figure 1.3: A Typical Multiprocessor

Multiprocessor systems are said to be tightly coupled because the processors must coor-
dinate access to the shared memory. To reduce shared memory accesses, the processors
often have local memories in which they cache data. The Sequent Symmetry [seq87], for
example, has up to 30 Intel 80386 processors, each with a 64 Kbyte two-way set associa-
tive cache. Memory coherence is maintained invisibly to the overlying software through
snooping hardware. This mechanism depends upon the ability to broadcast information
efficiently to all of the processors in the system.
The main advantage of multiprocessor systems to the programmer is that the data sharing
is implicit and its effect on performance is generally small because of the broadcast and
snooping properties of the hardware. They, therefore, encourage the use of fine-grained
tasks, typically of around 103 instructions. Their major problem, however, is that con-
tention for shared bus and memory bandwidth results in a performance bottleneck.

This bottleneck may be reduced by:

• Using more busses to reduce contention. Physical size, however, severely limits the
number of busses that can be connected to a single processor.

• Using wider busses to transfer larger words and so reduce the number of times the
processors need to access the shared memory. Eventually, however, physical size
limits bus width.

• Using faster busses and memory to reduce contention. Ultimately, the bus speed is
limited by that of the memory because only one processor may access the memory
through the bus at a time.

Although these techniques can be very effective, most high-performance multiprocessor
systems are limited to around 30 processors1. Scaling up shared memory architectures is,
therefore, an important problem in computer architecture and is attracting considerable
attention [Bel92].

One interesting attempt to produce a scalable multiprocessor is the BBN Butterfly [bbn86].
The machine has 256 processors, each with a local memory. Each processor has the ability
to directly access the memory of other processors via a non-broadcast butterfly network.

’The Elxsi 6400 is limited to 12 processors, the Encore Multimax to 20, the Flex/32 to 20, the Sequent
Symmetry to 30 and the IP-1 to 33 [Don91],

17

CHAPTER 1. INTRODUCTION

This creates a scalable shared global memory, but strongly encourages the programmer
to make use of local memory as remote memory accesses are five to ten times slower.
This results in relatively poor peak performance and has led to the machine’s commercial
failure.

1.1 .3 L oosely C oupled M u lticom p u ters W ith D istr ib u ted Shared M em -
ory

Most attempts to break out of the multiprocessor bus and memory saturation bottleneck
have used multicomputer platforms. These comprise large numbers of processors linked
by a point-to-point network and communicating with each other by message passing.
This type of design is described as loosely coupled, meaning that each processor is almost
entirely self sufficient. A typical multicomputer system is illustrated in figure 1.4.

Figure 1.4: A Typical Multicomputer

Loosely coupled multicomputers have two main advantages over tightly coupled multipro-
cessors:

• Higher Scalability

A bus-based system provides high-performance when relatively small numbers of
processors are involved. Such machines are not scalable however. Multicomputers
use communication networks with overall bandwidths proportional to the number of
processors in the system, albeit at the cost of reduced connectivity. This provides
scalability over many hundreds of processors2.

W interbottom’s Topsy [Win89] is a typical multicomputer. This employs high per-
formance communications network and efficient caching to create a scalable system
over 256 processors.

• Lower Cost

Multicomputers are always cheaper than shared memory multiprocessors for the
same amount of raw, not necessarily realisable, processing power. This is because
the shared buses of multiprocessor systems are more complicated and expensive
than the networks of multicomputers, especially when large numbers of processors
are involved.

2The Intel iPSC/2 is limited to 128 processors, the CYBERPLUS to 256, the NCUBE to 1,024 and the
J-Machine to 64K [Don91].

18

1.1. AN INFORMAL PERSPECTIVE

In order to use a shared variable programming paradigm on multicomputers a mechanism
called distributed shared memory (DSM) [Li 86] has been devised. This uses a distributed
memory management system to copy pages of data between the physical memories of the
individual processors on demand. The selectivity of the mechanism minimises overloading
of the network by ensuring that only those processors which need an updated data page
get it.
DSM potentially offers a scalable shared memory architecture. Unfortunately, as the
message handling latency in multicomputers is relatively high, these machines can only
support coarse-grain (« 105 instructions) parallelism efficiently.
A notable alternative mechanism to DSM for the implementation of shared variable pro-
gramming is employed in the Linda paradigm [Zen88, Gel89, Bor88, Car86b, Ahu88]. This
uses an associative shared store called a tuple space which is implemented on a loosely cou-
pled multicomputer by hashing data items to processors. Data items can be accessed either
by name or by type, thus allowing a logical separation to be made between the location
of an item and its value. This also affords a degree of data type polymorphism. Unfortu-
nately, the latency of performing associative lookups considerably limits the granularity
of sharing possible.

1.1 .4 H ardw are Single Shared A ddress Space A rch itectu res

When intertask communication and DSM mechanisms are performed in software, the
latency of setting up a new task is high (typically milliseconds) and so restricts these
systems to coarse-grain parallelism. Ideally, it is desirable to implement these functions in
hardware, thus reducing their latency. However, the intertask communication mechanisms
in traditional operating systems are very complex and consequently difficult to implement
in hardware.
A single shared address space (SSAS) memory model, where all tasks occupy a shared
address space rather then private ones, appears to simplify several memory management
problems so as to offer the potential to reduce latency (and hence grain size) and also make
hardware memory management (HDSM) more feasible. The main advantages this has over
the logically separate address spaces conventionally presented by operating systems are:

• The shared memory eliminates the redundancy among many traditional operating
system mechanisms, such as file systems and inter-process communication. Poten-
tially, this allows these software mechanisms to be coalesced into hardware, thus
substantially reducing their latencies.

• As there is no address aliasing, and protection is implemented above the processor
cache, there is no need to flush and subsequently reload the processor caches and
address translation look-aside buffers (TLBs) on context switches. This will greatly
speed up restarting processes after DSM accesses.

• The overhead of process creation and termination is very low as there is no need to
create address space tables for the threads. This makes it more economic to employ
fine-grained processes.

19

CHAPTER 1. INTRODUCTION

• Greater reuse of the page tables in the system is possible, thus freeing memory for
more useful data.

Combining SSAS and HDSM, therefore, has the potential for reducing the latency of shared
memory access so that network communications performance dominates overhead and
hence determines granularity.

1.1.5 W afer-S ca le Integration

For a HDSM to be useful, a communications network with a comparable latency and
bandwidth is required. Fibre optics, one of the most modern communication mediums,
has the bandwidth to match HDSM, but compatible low latency switching elements are
not available.

Wafer-scale integration (WSI), the process by which very large-scale integration (VLSI)
circuits are packaged as whole wafers rather than as individual chips, can be used to
embed processors and memory dies in a silicon substrate which contains a communications
network. The main performance advantages wafer-scale integration has over conventional
chip and PCB technologies are:

• Higher Speed
Conventional VLSI technology uses chains of output transistors to drive the pins of
chips. These prove to be slow. The interconnected tiles on a wafer do not need these
circuits and hence the speed of internal wafer communication is considerably higher
then conventional chip to chip communication.

• Increased Wire Density
As Dally suggests [Dal87], VLSI chip technology is severely limited by the number of
pins that can be placed on a chip. If the number is high, the package must be large
to accommodate them. Consequently the chip is expensive and its PCB density is
low. In addition, space considerations make it hard to route very large numbers
of tracks away from a chip; expensive multi-layer PCBs are required. Therefore,
data-paths in conventional computers are severely limited in width.
This is not so much of a problem in wafer-scale devices as these can employ very
dense tracking. Consequently, communication data-paths in wafers can be much
wider, by a factor of four say, then those in conventional systems.

It is asserted that a network constructed using WSI can have sufficient performance to
support a HDSM with a medium task granularity of 104 instructions over several hundred
processors. WSI also offers other advantages, chiefly lower cost per function and higher
reliability.

1.2 T he T hesis

Currently, there appears to be no middle ground in parallel computing; an architecture
which can support both several hundred medium-grained (« 104 instructions) parallel

20

1.3. A PLAN OF THE DISSERTATION

tasks and the shared variable programming paradigm would be advantageous in many
applications.
This thesis asserts that it is possible to implement a new computer architecture, Cherub,
which has several hundred processors and is able to support shared variable programming
with an optimal task granularity of around 104 instructions. This can be achieved through
the combination of a hardware-based distributed shared single address space and a wafer-
scale communications network.

1.3 A P lan of the D issertation

To support the thesis, three pieces of work are required:

• First, a specification of the properties expected of the new architecture must be
written, showing that it will be useful for a significant set of applications.

• Next, the algorithms used to implement the architecture must be designed, allowing
the requirements of the underlying network to be estimated.

• Finally, it must be shown that a wafer-scale integrated communications network is
able to provide the required performance.

This work is divided between six chapters:

• Chapter two examines issues regarding distributed shared memory construction. It
suggests a SSAS as appropriate for constructing a medium-grained HDSM.

• Chapter three introduces Cherub, a proposed computer architecture based on a
HDSSASMA and defines its appearance to the programmer.

• Chapter four describes the algorithms required to implement Cherub. The laten-
cies of these algorithms are estimated to allow the requirements of the underlying
architecture to be defined.

• Chapter five asserts that only wafer-scale integration will be able to provide the
performance required to successfully implement Cherub. A wafer-scale network is
designed and is shown, through simulation, to achieve that performance.

• Chapter six summarises the results achieved in the dissertation and draws some
conclusions.

• Appendix A contains a glossary of terms.

• Appendix B examines a large example application which would benefit greatly from
the scalable medium-grained shared variable programming paradigm Cherub sup-
ports.

• Appendix C describes the network simulations which were performed.

21

CHAPTER 1. INTRODUCTION

1.4 C ontributions to K nowledge

This dissertation is believed to be the first detailed description and investigation of a
HDSSASMA, and certainly the first HDSSASMA relying on WSI!

22

Chapter 2

Reducing Intertask
Communication Latencies

“You asked for information; you need background to
understand it.”

(Silver Tower — Dale Brown)

2.1 Introduction

In chapter one it was asserted that, currently, there is no middle ground in parallel
computing and an architecture which can support both several hundred medium-grained
(« 104 instructions) parallel tasks and the shared variable programming paradigm would
be advantageous in many applications. It was suggested that such an architecture, called
Cherub, could be constructed.
We have seen that two kinds of parallel architecture have become established. The first is
the multiprocessor, which is built around a shared bus giving broadcast communications
and a shared memory. This is characterised by low communications overhead, but limited
scalability. The second is the multicomputer, which is based on point-to-point commu-
nications with larger communications overhead, but good scalability. Quantitatively, the
low overhead of the multiprocessor is well matched to fine-grain tasks and, hence, to
supporting the shared variable paradigm, while the high overhead of the multicomputer
matches it to coarse-grain parallelism and, hence, to the message passing paradigm.

Multicomputer based distributed shared memory can support a scalable shared variable
programming paradigm, but its high intertask communication latency must be significantly
reduced if a medium grain of parallelism is to be supported. This chapter, therefore,
examines the design of DSM systems and looks at ways of reducing their high intertask
communication latencies.

23

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

2.2 Princip les o f D istributed Shared M em ory

In order to use a shared variable programming paradigm on multicomputers a mechanism
called distributed shared memory (DSM) has been devised. This provides the semantics
of a shared memory on top of multicomputer hardware. A large enough grain of data
sharing is employed to balance the amount of communication with the capabilities of the
network.

For a DSM to provide the illusion of a physically shared memory, it must automatically
transform shared-memory accesses into inter-processor communication which locates and
retrieves the required data. This is usually performed by a DSM server on each processor
which is responsible for moving shared memory pages among the processors on demand.
A typical DSM system is illustrated in figure 2.1.

Processor 1

P a g e A P r o c e s s o r 1 , 2 , 3

P a g e B P r o c e s s o r 1 , 3

P a n e C P r o c e s s o r 2

P a g e D P r o c e s s o r 1

P a g e E P r o c e s s o r 2 , 3

(PageDirectory Server)

Page A
Page B
Page C

Local memory

(^ D S M S e rv e r^)

Processor 2

Page A
Page C
Page E

Local memory

(^D S M Sen rer

Processor 3

Page A
Page B
Page E

Local memory

Communications Network

Figure 2.1: The Structure of a Typical DSM System

To be able to share the pages in the DSM, the servers must be able to locate them.
This may be accomplished by one or more page directory servers. These maintain page
directories which contain, directly or indirectly, the locations of the data items and their
copies. The entries in the directories must be updated as pages are moved among the
processors. Usually the functions of the shared memory server and the page directory
server are combined in a single server.

One of the first DSMs was implemented by Li [Li 86]. He proposed three different directory
schemes:

• Centralised Directory Server
In this scheme a central directory server maintains lists of the pages owned by each

24

2.3. DSM PERFORMANCE ISSUES

node. Whenever a node requires a page, it communicates with its owner through
the centralised server. As a consequence of all page requests passing through the
centralised server, it is a performance bottleneck.

• Fixed Distributed Directory Server

In this scheme several directory servers are employed to reduce the bottleneck ex-
perienced in the previous system. Each server is assigned a predefined subset of the
pages. Every node in the system can identify the server responsible for each page
and consult the appropriate one when page faults occur.

This scheme generates a considerable amount of network traffic; at least three mes-
sages are produced on a read fault and potentially many more on a write fault.

• Dynamic Distributed Directory Server

In the dynamic distributed server scheme every node has its own directory server.
If a node receives a page request for a page it no longer owns, then it forwards
the request according to where it believes it resides. A node’s hints are updated
according to the page faults it generates, the requests it receives and the periodic
update broadcasts made by other nodes. Fowler [Fow86] proved that this algorithm
always terminates by finding the true owner of the page.
The number of messages required to locate an owner approximates to the logarithm
of the number of hosts sharing the page. This reduces the network overhead of
sharing infrequently modified pages.

Li’s work was so fundamental that, even after nearly a decade, DSMs still employ his fixed
and dynamic distributed page management algorithms.

2.3 D SM Perform ance Issues

Three main issues related to performance must be considered when designing a DSM: its
granularity, its coherence mechanism and its synchronisation mechanism.

2.3.1 D a ta G ranularity

Data granularity is the unit of data shared between processes. For implementational
efficiency, the designers of distributed shared memories usually make the main memory
page the unit of data granularity. Five competing issues determine the performance of a
given page size:

• Locality of Reference

A program will typically exhibit locality of reference, meaning that around a given
time it will only use a small fraction its instructions and data. The pages which
contain a program’s active instructions and data are called its working set. These
pages must be held in memory if thrashing is to be avoided. Unfortunately, the pages
in the working set will also contain inactive instructions and data — in general, the

25

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

larger a page, the greater the proportion of its contents that will be inactive. This
results in inefficient memory usage.

• Internal Fragmentation

Typically programs will not fill an integral number of pages; on average, half the
final pages of their text, data and stacks will be empty. This residue space is wasted.
Clearly, the smaller the page size, the lower the wastage through such internal frag-
mentation will be.

• False Data Sharing

False data sharing can occur in shared memories where two or more unrelated vari-
ables, used by different programs, are located in the same page. The page appears to
be shared even though the variables are not. The smaller the page, the less false data
sharing will occur. False data sharing can have a profound effect on performance.
For instance, some applications have shown speedups of 50% when false sharing was
eliminated [Hag91b],

• Paging Overheads

Servicing a DSM page fault can incur a considerable latency, typically milliseconds,
the majority of which is independent of the page size [Whi92], Therefore, the larger
the page size, the fewer the number of page faults required to transfer a given amount
of data and, consequently, the lower the latency incurred.

• Size of Directories

It is necessary to keep directory information about the pages in the DSM. This can
affect the performance of the system as the larger the page size, the smaller the
directory required and the greater the memory available to hold useful data.

Clearly, a performance tradeoff exists, mainly between the amount of false sharing caused
when the page size is too large and the paging overheads and excessive directory tables
caused when it is too small. Experiments with the Psyche operating system [Bol] show
that 256 byte pages appear to achieve a good compromise, although sometimes page sizes
as small as 64 bytes are optimal.

Generally, hardware implementations of DSMs (called HDSMs) are able to employ much
smaller page sizes than their counterparts implemented in software1. This is because the
latency of servicing a page fault is much lower.

Unfortunately, due to their complexity, current HDSMs often sacrifice functionality in
order to simplify the hardware: MemNet only allows one DSM region per machine; the
J-Machine performs coherence in software and is implemented on low performance pro-
cessors; while Dash and PLUS do not employ scalable coherence algorithms. *

■‘Typical software implemented DSMs such as Mach [Acc86, Tev87b, For89], IVY [Li 86] and Mirage
[Fle89a, Fle89b] employ pages of 4,096, 1,024 and 512 bytes respectively, while HDSMs such MemNet
[Del86a, Del88a, Tam90], J-machine [Dal89], Dash [Len90, Len92] and PLUS [Bis90] enjoy pages of 32,
32, 16 and 4 bytes respectively.

26

2.3. DSM PERFORMANCE ISSUES

2.3 .2 C oheren ce M echanism s

For reasons of efficiency, the DSM servers allow the processors to cache data in their local
memory. This creates the logical memory hierarchy shown in figure 2.2. This, however,
introduces data coherence problems. Generally updates to the shared memory must be
propagated to the local copies cached at the processors. Data coherence can be maintained
by restricting memory accesses while these propagations take place.

Layers of Low Latency
Local Memory

Layers of High Latency
Shared Memory

Shared Disk

Figure 2.2: The Logical DSM Hierarchy

Coherence policies and associated mechanisms have evolved significantly over the last
decade:

• Strong Coherence
Early implementations of DSMs, such as IVY [Li 86] and MemNet [Del86a], emulated
true shared memory architectures by providing strong, or sequential, data coherence.
Using strong coherence semantics, a read operation performed by a processor returns
the most recently written value.
Strong coherence is typically implemented by allowing the existence of either a single
writable copy of a given page, or multiple readable copies. In Li’s IVY access to each
page is strictly controlled by a write invalidate protocol; if a node Q faults when
writing to a page p, its fault handler:

- invalidates all copies of p,
- obtains a copy of p from another node, if Q does not already have one.
- changes the access permissions of p to write,
- returns to the faulting instruction.

Upon returning, node Q is said to own page p. Node Q is then allowed to read and
write to the page freely. If a node Q faults when reading from page p, then its fault
handler:

27

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

— changes the access permissions of p to read on the owning node,

— obtains a copy of p and sets its access permissions to read,
— returns to the faulting instruction.

Upon returning, node Q is free to read the page until it is invalidated by another
node.

A good example of an operation which requires strong coherence is synchronising
using a lock variable; all processes must see the most up-to-date status of the lock.

It was soon discovered that traditional shared memory algorithms often perform
badly when using strong coherence. This is usually due to remote contention for
data. However, strong coherence is still the most commonly implemented coherence
strategy in DSMs.

• Relaxed Coherence

The designers of second generation DSMs, such as Dash [Len90, Len92] and PLUS
[Bis90], noted that strong coherence semantics are not necessary in most distributed
applications. Consequently, they devised DSMs with a relaxed form of memory
coherence. Using relaxed coherence semantics, a read operation performed by a pro-
cessor will not necessarily return the most recently written value. If used correctly,
this scheme can substantially increase program performance. However, if used incor-
rectly, it can cause programs to break unpredictably, thus giving incorrect results.

A good example of a relaxed coherence scheme is that employed in the PLUS system
[Bis90]. To minimise the cost of cache misses this uses a protocol which updates
the cache copies of other nodes rather than invalidating them. When a processor
generates a fault by reading a non-cached page:

— The local coherence manager requests a copy of the page from the remote
coherence manager responsible for the master copy.

— If the page is currently being written, the remote coherence manager waits until
the write completes.

— The remote coherence manager then adds the requesting node to a list of nodes
with copies of the page.

— The required page is then sent to the local coherence manager.

— Finally, the faulting process is restarted.

When a processor writes to a page, it does not block, but rather:

— The local coherence manager sends details of the write to the remote coherence
manager responsible for the master copy of the page.

— The remote coherence manager updates its copy of the page accordingly.

— The remote coherence manager then sends an update request to the nearest
node with a copy of the page. This propagates the request to any other nodes
which also contain copies.

28

2.3. DSM PERFORMANCE ISSUES

- The last node in the copy list sends an acknowledge to the local coherence
manager which originated the write operation.

This protocol guarantees write consistency since writes are applied in the order that
they are received at the remote coherence manager. However, a given read does not
necessarily obtain the most up-to-date value of a memory location. Special synchro-
nisation primitives are, therefore, required for when data consistency is important.
In the case of PLUS, this takes the form of a fence operation which causes the co-
herence manager to block writes to a page until all the earlier ones have completed.

Relaxed coherence semantics typically provide more efficient shared access than
strong coherence as they require fewer synchronisations and less data movement.
The Dash multicomputer system, for example, combines relaxed data coherence
with a data acquire and release mechanism [Len90, Len92]. It was found that this
gave a performance increase of between 10 to 40 percent over conventional strong
coherence.
Typically asynchronous algorithms, such as producer-consumer relationships, are
suited to relaxed coherence. For example, a consumer process will only access the
contents of a shared memory buffer after a producer process has filled it and per-
formed a synchronisation operation. By using PLUS’S relaxed, rather than IVY’s
strong, coherence protocol, one invalidation message can be saved per page of data
passed in the buffer.

• User Provided Coherence

The designers of third generation DSMs, such as Mach [For89] and the J-machine
[Dal89], observed that, ideally, applications should be able to customise the DSM
server according to their intended data access patterns. By employing a well defined
interface, they allowed applications to provide their own DSM servers. For example,
in the J-machine:

- All memory locations are tagged with a state s.

- Each memory operation can optionally specify a precondition, x, and a post
condition, y, on the state.

- If prior to accessing a memory location s / r, an exception handling process
specific to s and x is created.

- When the operation completes s is assigned the value y.

The main problem with such schemes is that although their flexibility can be useful,
DSM servers are difficult to write. As a result most programmers relied on the system
provided default. The scheme, therefore, introduced additional software latencies,
often without benefit.

• User Assisted Coherence

The designers of the latest generation of DSMs also believe that it is best if an
application makes its own coherence decisions, but they also understand that it is
important to minimise the associated overhead on the programmer:

29

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

— The Munin system [Ben90] categorises nine types of shared memory by their
pattern of access. A different cache coherence mechanism — some strong, others
relaxed — can be employed for each. By logging the memory access patterns
of a number of programs, it is possible to suggest which coherence mechanism
best suits each. For example:

* Producer-Consumer Relationships
The producer does not need to access data pages after they have been written
and the consumer does not need them again after they have been read.

* Burst-Write Pages
These should be held on the processor while being written, but can be released
for another processor once the burst is over.

The main problem with this approach is that a page isn’t necessarily used in
the same way throughout its life. A good example of this is a page on the
stack. In addition, not all languages are amenable to this type of analysis. For
example, single assignment languages, such as the functional language Paragon
[And91b], do not reuse data space memory.

- Hill et al [Hil92] suggest that the programmer or compiler should be able to
bracket shared data accesses with annotations which indicate their intended
use. Unlike the schemes employed in Munin, the annotations are only advisory
and so can improve the performance of the shared memory without altering its
coherence semantics.
Hill’s Check-In and Check-Out (CICO) shared-memory model uses special
D ir\S W hardware to support the following annotations:

check_out_X Expect exclusive access to block
check_out_S Expect shared access to block
checkJn Relinquish a block

In addition, two additional annotations are supported to allow data prefetching
to be overlapped with computation:

prefetch_X Expect exclusive access to block in near future
prefetch-S Expect shared access to block in near future

Hill hand annotated several parallel applications from the SPLASH benchmark
suite [Sin92] to simulate the effects of the CICO model. In most cases it was
possible to avoid competitive page sharing almost entirely. The programs that
relied upon unsynchronised data sharing (data races) were notable exceptions,
but even so, their data faults were significantly reduced.

2 .3 .3 S yn ch ron isation M echanism s

In most systems the execution of processes must be delayed while constraints imposed on
the ordering of actions are satisfied. This is usually achieved through the use of synchro-
nisation mechanisms which guarantee mutual exclusion among processes within certain
critical regions of code.

30

2.3. DSM PERFORMANCE ISSUES

The conventional shared variable programming paradigm provides a number of synchro-
nisation mechanisms such as locks, semaphores [Dij65] and monitors [Hoa74]. These are
typically implemented using one or more shared variables, which are continually read, or
‘spun’ on, by processes waiting for the synchronisation conditions to occur. Not only does
such spinning waste processor time, thus reducing throughput, but in DSMs it also incurs
excessive communication costs as the pages containing the variables must be frequently
moved between the processors running the processes. This is called thrashing. It is, there-
fore, necessary to provide synchronisation primitives which are efficient in the distributed
shared memory environment.
Two examples of DSMs which have specialised synchronisation mechanisms are:

• Mirage

The Mirage system [Fle89a, Fle89b] allows a process to lock a page, such as one
containing a synchronisation variable, into its processor’s memory for a given time
quantum called a delta. All other processes accessing the page are blocked until
either the delta expires, or the process gives up the page voluntarily. Thus thrashing
is prevented.

• Linda

The Linda programming paradigm provides an inherent distributed synchronisation
mechanism through the presence or absence of keyed data items, tuples, in a region
of associative, distributed shared memory called the tuple space (TS). Tuples are
placed in the TS using the Linda out primitive. They are removed by the in primitive.
This searches the TS for the tuple and, if it is present, removes it. If it is not present,
the primitive blocks until the tuple is placed into the TS.

Gelernter has demonstrated that it is possible to use Linda to construct spin-free
locking mechanisms [Car89j. A tuple with a well-known key is associated with a
critical region of code. Whenever this tuple is in the tuple space, the code region is
unlocked. Before a process can enter the critical code region it must perform an in
primitive. This locks the critical region. When the process leaves the critical region
of code, it re-inserts the tuple into the TS using the out primitive. This has the
effect of unlocking the region.

Similar techniques can be used to construct efficient semaphore and message passing
mechanisms.

2 .3 .4 Im p lem en tin g In tertask C om m u nication M echan ism s in H ardw are

When intertask communication and DSM mechanisms are performed in software, the
latency of setting up a new task is high (typically milliseconds) and so restricts these sys-
tems to coarse-grain parallelism. Ideally, it is desirable to implement a DSM in hardware
(HDSM), thus reducing its latency. Although HDSMs have already been tried — notably
MemNet, J-machine, Dash and PLUS — typically they have compromised their function-
ality because of the complexity of intertask communication mechanisms. Some way must,
therefore, be found of simplifying these mechanisms.

31

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

One way of doing so is using a cache-only memory architecture (COMA) such as the
DDM [Hag91a, Hag92] and the KSR1 [Bur92]. These are distributed architectures whose
processors’ memories are organised as large set-associative caches. Hardware coherence
hardware is used to create the illusion of a single global layer of cache. Complex memory
management schemes which create a virtual memory can then be implemented relatively
easily above the level of the global cache. Unfortunately, this still leaves the process
creation and termination mechanisms implemented in relatively slow software.

This idea has evolved into the single shared address space (SSAS) architecture, where all
tasks occupy a shared address space rather than private ones. This appears to simplify
several memory management problems so as to potentially reduce latency (and hence
grain size) and also make the coalescing of interprocess communication mechanisms into
hardware more feasible.

2.4 Single Shared Address Space A rchitectures (S SA S’s)

In conventional computer architectures, processes have logically separate address spaces,
typically at least 32 virtual address bits in size. These provide processes with both address
independence and data space protection. In recent years, however, there has been a
dramatic increase in program size. Applications such as databases and multimedia are
easily able to consume 32 bits of data virtual address [Kru89, Mas91a]:

• Databases
To benefit from hardware DRAM caching, database designers often directly map
entire databases into virtual memory. Many commercial databases already consume
40 address bits.

• Multimedia
At 24 frames a second and around 4 Mbytes per frame, uncompressed video will
consume 32 address bits in only 45 seconds. Similarly, at around 25 Mbytes each,
32 address bits can only hold 160 high quality A4 colour images.

In 1990, Hennessy and Patterson [Hen90] made the following observation:

Address-Consumption Rule:
The memory needed by the average program grows by a factor of 1.5 to 2 per
year. That is, one address bit is consumed per year.

In the past, when the number of available address bits has been exhausted both hardware
and software techniques have been tried to alleviate the problem:

• Segmentation
The HP PA-RISC [Hew90], used in the Snake Workstation, and IBM RS/6000 [Jef90]
have address spaces constructed of 32-bit segments. When an address is accessed, the
type of machine instruction used determines the segment referred to. This effectively
gives programs access to a number of 32-bit address spaces.

32

2.4. SINGLE SHARED ADDRESS SPACE ARCHITECTURES (SSAS’S)

• Swizzling
A notable software solution called swizzling [Wil91c], has been described by Wilson.
In this scheme, programs on disk contain wide symbolic addresses. These are con-
verted to actual 32-bit addresses at page fault time. Unfortunately, this means that
all imported pointers must be translated, even those not used. In addition, memory
must not only be assigned for the imported page, but also for the pages referenced
by it. This makes the technique particularly inefficient.

Past experience, most notably the PDP-11 architecture, has shown that such solutions are
hardly ever satisfactory and only act as stop-gaps until processors with larger addresses
appear; either they are too difficult to program, or they incur very high performance over-
heads. Fortunately, a number of forward-looking companies have realised this; both the
MIPS R4000 [MIP] and Digital Alpha [Dig92] have unsegmented 64-bit virtual address
spaces. This step has had a revolutionary, rather than evolutionary, effect upon operat-
ing system design. A 64-bit address space is virtually unconsumable using conventional
programming. It eliminates the traditional need to reuse the address space of programs.
Consequently, there has been considerable interest in single shared address space (SSAS)
architectures, most notably Psyche [Sco89a, Sco89b, Scoa, Cha, LeB89, Scob, Mar], Opal
[Cha92a, Cha92b] and ANGEL [Wil91a, Wil92, Sti92],
SSAS computing is the logical extension of the light-weight processes found in conventional
operating systems such as Chorus [Arm86, Her88], Mach [Acc86, Tev87a], Choices [Cam87]
and the Synthesis Kernel [Mas89]. Light-weight processes have very little context of their
own, typically only a stack segment. A number of light-weight processes share the address
space of a heavy-weight process, thus making it very cheap to share data, switch contexts
and perform optimised scheduling between them. The SSAS extends this concept by
making all processes light-weight, residing within a globally shared protected address
space. Single and multiple address space architectures are compared in figure 2.3. The
dotted lines denote protection domains.

It is interesting to note that even 64 bits of virtual addressing is not really enough! If
all of the computers in the world — many millions perhaps — are to be mapped into a
single address space using wide-area networks, even more address bits — the next step is
logically 128 — will be required.

Through the abstraction of a protected SSAS it is possible to unify, and hence simplify,
many traditional operating system mechanisms such as memory, files, inter-process com-
munication, and protection.

2.4 .1 U sin g a SSA S to S im plify O peratin g S ystem M echan ism s

SSAS architectures can be used to simplify many traditional operating system mechanisms,
thus making it easier to implement them in hardware.

Unifying Caching M echanisms

Traditionally operating systems have a plethora of caching and copying mechanisms, all
of which are implemented in software. Often operations are replicated. Two examples of

33

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

Multiple Address Space Architecture

P R O C E S S 1

P R O C E S S 2

P R O C E S S 3

Single Address Space Architecture
1

gsM
T E X T 1 D A T A 1 S T A C K 1

1
T E X T 2 D A T A 2 S T A C K 2 I 1 T E X T 3 D A T A 3 S T A C K 3

Figure 2.3: Comparing Single and Multiple Address Space Architectures

this from the UNIX System V operating system [Bac86] are:

• The File System Block and Inode Caches
UNIX uses a cache to hold regularly used file inodes. These are not held in the
normal block cache because of the sparse nature of inode accesses and the large size
of file system blocks. However, the inode cache can still contain inodes which are
also held in the file system block cache. This is clearly wasteful.

• The Page List and the File System Block Cache
Program text, though read-only, is held in memory when being executed by programs
but is discarded when not being used. UNIX keeps the pages of the program text
in the file system block cache as well as the memory in case it is needed again soon.
It is wasteful to have two copies of the same text in memory.

Multiple level caches like this waste memory, but more importantly add to software la-
tencies. The problem is that UNIX was designed when main memory was scarce. Hence
it employs hierarchical caches to optimise memory usage. Now that main memory is
relatively inexpensive, such excessive caching is pointless.

A SSAS architecture is able to use its alias-free memory hierarchy to provide invisible
caching, replacing individual caches with a single unified mechanism. This technique has
also been used to coalesce other operating system mechanisms by unifying memory with:

• Files (memory mapped files in MULTICS [Cor65], Mach [Tev87b] and UNIX [Mey88,
Lef89]);

• Inter-process communication (memory objects in Mach [Acc86]); and

• Processes (Killian’s /proc file system [Kil85]).

34

2.4. SINGLE SHARED ADDRESS SPACE ARCHITECTURES (SSAS’S)

This reduces the software overheads normally associated with many of the traditional
operating system mechanisms and increases the system call, and hence intertask commu-
nication, bandwidth. The Synthesis Kernel shows how effective such a reduction in the
layers of operating system software can be [Pu 88, Mas89].

There are two potential problems with this:

• Loss of High-Level Control
Unifying mechanisms can sometimes result in a performance degradation due to
the loss of high-level control. Yokoyama et al [Yok89] describe the situation with
memory mapped files in which a process overwrites a whole page of data in a file
which is on disk. A conventional file system call is told that the whole page of data
is to be overwritten and so knows that it is not necessary to read its old contents
from disk. A memory mapped file, however, will perform this pointless disk read.

• Unsuitability of Some Mechanisms
Some operating system mechanisms are not suited to being treated as conventional
memory. Serial output devices, such as terminals, are notable examples of this.

It is clear, therefore, that although unification benefits most data operations, applications
should retain a degree of control for situations where it does not.

The coalescing of software levels, made possible by a well-designed SSAS architecture,
has the potential to reduce the latency of intertask communication in a distributed shared
memory and make finer-grained processing feasible.

Increased M emory Sharing

In general, memory sharing between processes is a good thing as it implies more economical
memory usage. The history of the UNIX operating system illustrates how memory sharing
has increased in importance over time:

• UNIX 3BSD (1981) allowed processes running the same program to share a copy of
the text segment (which could not be altered), while each process had its own copy
of the data segment. This saved main memory when multiple copies of a program
were executed simultaneously.

• In System V R2V4 (1984) the fork system call was re-implemented to use copy-
on-write (COW) techniques. These allow a process’s memory to be copied at low
cost by allowing processes to share pages while they are unmodified; pages are only
copied when they are changed, thus postponing page copying and often eliminating
it altogether. This significantly reduces the overhead of the fork system call in two
ways:

— The time required to create the new process image is minimised as there is no
data copying involved initially.

- The memory requirements of the processes are minimised through the efficient
sharing of data.

35

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

COW also provides an efficient and relatively unobtrusive way of checkpointing pro-
cesses for debugging [Fel89] or fault tolerance [Wil93].

• System V R3 (1987) introduced shared libraries [Jam86]. These go a step further
by allowing different programs to share common routines from specially structured
libraries. Dynamic linking is required to execute programs, but the saving in disk
(around 96%) and main memory (around 34%) usually results in a net performance
gain [Ros89].

An additional advantage of shared libraries is that errors in them can be fixed without
rebuilding executable files. By installing a new shared library, old executable files
automatically use the updated library without relinking.

A SSAS architecture allows the logical extension of these techniques; everything in the
address space can be potentially shared or copied using COW. It is hoped that this increased
level of sharing will reduce the need for data movement between processors in a distributed
shared memory system, thus improving performance.

Reducing DSM Context Switch Latencies

In physically shared memory architectures, where the shared memory latency is very low,
processors typically block while waiting for data to be loaded from the shared memory.
In DSM architectures the memory latency is much higher, thus making it cost effective to
perform context switches when shared memory faults occur. Therefore, the context switch
latency of a DSM is important in determining its performance and should be minimised.

One of the major factors in determining the latency of a context switch is the design of
the processor cache. Normally processors have either one or more layers of local cache
memory composed of associatively addressed SRAM2. Most processor caches are accessed
using physical addresses. One of the main reasons for this is that it provides process
address independence — different processes can use the same virtual addresses without
clashing. If physical addressing is not used, each time a context switch occurs the cache
must be flushed, as the new virtual addresses refer to different physical locations. This is
a significant performance penalty as writing cache lines back to memory is slow. Further-
more, when an old process is restarted it must recapture its cache context, thus incurring
an additional penalty.

Unfortunately, when accessing a physically addressed cache an address translation step is
required to convert the virtual addresses used by processes into the physical addresses used
by the cache and main memory. This takes time and requires another partially associative
cache, the translation lookaside buffer (TLB). The number of entries in the TLB effectively

2SRAM caches are typically three to four times faster then DRAM based main memory. They are,
however, very silicon expensive. This is because DRAM generally uses one-transistor memory cells, which
require about one-fourth of the area used by the four and six-transistor (flip-flop) memory employed
in SRAM. In addition each cache line has a number of tags and flags which are used by the associative
addressing hardware. These consume extra silicon. Processor caches, therefore, tend to be small. The
SPARC-2, for example, is one of the most modern RISC processors and it has a one Mbyte external SRAM
cache. This is small compared to the main memory of most modern workstations which is at least eight
Mbytes.

36

2.4. SINGLE SHARED ADDRESS SPACE ARCHITECTURES (SSAS’S)

determines the smallest page size which can be employed by a processor; the smaller the
page size, the smaller the memory the TLB addresses.

For performance reasons it is, therefore, desirable to construct virtually addressed caches.
These eliminate the TLB translation from cache hits, allowing lookups to be performed in
a single clock period. In addition, without the limitations of the TLB, a smaller page size
can be employed. Unfortunately, to avoid having to flush the cache on context switches,
the cache lines must be tagged with additional information3. This is silicon expensive,
however, considerably reducing the size of the cache.

A SSAS architecture simplifies the construction of virtually addressed caches because it
does not allow address aliasing. This reduces DSM context switch latencies, increases the
speed of cache lookups, and allows larger caches to be constructed.

2 .4 .2 D isadvantages o f a SSAS A rch itectu re

Separate address space architectures do have a number of useful properties which are lost
with a SSAS:

• Process Address Independence

The separate address space architecture allows different processes to use the same
virtual addresses without clash. Processes in single address space architectures must
somehow avoid inadvertent address clashes.

This is trivial with different programs; they can be simply compiled to run at different
addresses. Allowing multiple copies of a given program to be run simultaneously,
however, or supporting UNIX fork semantics, is much more difficult:

— Running Multiple Copies of a Program Simultaneously
Executing a number of copies of a program simultaneously is difficult in a single
address architecture because any static data accessed using absolute addresses
is shared between all the programs. This problem is especially prevalent in
shared libraries. Note that this is only important when a process modifies its
static data; read-only data is not a problem.
One way of solving the problem is to use a level of indirection. Modifiable static
data is accessed via indirection vectors placed at unique fixed addresses on the
bottom of the process’s stack. When the process starts up it makes a copy of its
data using COW. It then initialises the indirection vectors to the appropriate
locations in the data copy. As processes have unique stacks, they can access
their own static data by dereferencing the appropriate vectors.
The main advantage of this technique is that it does not reduce the ability of
programs to share data. It has two minor drawbacks however:

* An indirection cost is incurred on each static data access. Fortunately,
processes rarely write to static data. When this does happen, however, the

3Process address independence can be provided by tagging cache lines with the owning process’s ID
(PID). Caches then only need to be flushed when a PID is recycled. Tags are problematic, however, when
different processes share common regions of memory.

37

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

indirection vectors will be automatically cached so that the performance
cost is minimised.
The indirection overhead could be greatly reduced by inventing a new pro-
cessor instruction which dereferences indexed locations on the bottom of
the process’s stack.

* The indirection vectors need to be managed so that every item of static data
in the system is assigned a unique vector. As these vectors are relatively
sparse, this is not a significant problem when process stacks are large.

Figure 2.4 shows how a shared library can be implemented using this technique.
Jump vectors to the routines are placed at the start of the library. This enables
the internal format of the library to be changed without having to relink the
programs which use it.

i ;

Process 1 suck poinler Process 2 suck pointer

Figure 2.4: Using Indirection to Allow Code Sharing

- Supporting UNIX Fork Semantics
The UNIX fork system call creates a new child process with an exact image of its
parent’s address space. This mechanism relies on having an architecture which
is able to provide address independence. SSAS architectures cannot provide
this and so have difficulty supporting fork semantics.
The author has proposed software techniques for providing UNIX-like fork
semantics on single address space machines [Gul89, Gul88]. Generally, these
involve scheduling forked processes so that they never execute simultaneously.
It is then possible to swap forked processes in memory so that the executing
process always occupies the original memory. Clearly this is slow and, due to
the migration of processes in memory, it severely limits the way addresses can
be passed between processes. Similar techniques are employed in the Cedar
[Tei84, Swi86] and Pilot [Red80] operating systems.
Hardware segmentation, often employed in conventional operating systems4,
is a faster and cleaner solution to this problem. This allows a child process
to create local aliases for its stack and data, so that they overlay those of its
parent. When a process wishes to pass stack or data addresses to another,
it must first convert them to global addresses. The ANGEL operating system
uses this scheme [Wil91a, Wil92], but this solution has two main disadvantages:

4For example, MS-DOS, MULTICS [Cor65], Hewlett-Packard’s Precision [Lee89] and COSMOS [Hor],

38

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

When a process attempts to access an address to which it is not entitled, an exception
is generated. The process may be allowed to trap this error, giving it the opportunity
to correct its domain registers and continue.

Assume that the SSAS is divided into a number of non-overlapping memory ranges,
or objects6 7. Access to each object is strictly controlled by the operating system; it
provides a mechanism with which a process can manipulate its domain registers, but
permits it to access only those objects to which it is entitled. When the operating
system grants a process access to an object, it loads the object’s start address, limit
and access rights into one of its domain registers.

Two different schemes for object access control have been used in previous, although
not exclusively SSAS, systems:

— Passwords
This scheme is employed by operating systems such as Chorus (ports) [Arm86],
Psyche (keys) [Sco89b], Amoeba (capabilities) [Mul91] and Opal (protected
pointers) [Cha92b]. When a process creates a new object it specifies a number of
secret passwords corresponding to access rights such as read, write and execute.
Passwords are simply random numbers with enough bits to make their forgery
improbable. A process can get the operating system to enter an object into its
domain registers by making a system call, quoting the object’s start address
and the appropriate secret passwords for the required access rights.
It is envisaged that each user has a local name server object which contains
mappings of hierarchical names to object and password pairs. A user’s processes
are given the password to enable them to read their name server object. One
of the features of this approach is that a public program which uses an object
which users are not allowed to access directly', must have the object’s password
hard-wired into its code. This can be obtained from the master name server
when the program is compiled by a privileged user.
The main advantage of the password scheme is that the operating system does
not need to be concerned about the movement of passwords between processes,
only their attempted use. This reduces communications overheads.
The main disadvantage of the scheme is that a single process’s rights to access
an object cannot be easily revoked; changing the password has the undesirable
side effect of also preventing other processes from accessing the object. It is
also difficult to prevent a process from giving away a password to a process
which is not entitled to it.

— Access Control Lists
This scheme is employed by operating systems such as Mach [Acc86] and AN-
GEL [Wil92], It provides a higher degree of security than password protection,
but at the cost of an additional communication overhead.
Each object has a secret access control list which is maintained by the kernel.
This states which processes are able to access the object and in which ways.
When a process accesses an object which is not in its domain registers, the

6These are called Windows in Ra [Ber88, Das88], Realms in Psyche and Segments in Opal.
7For example, the UNIX command p s accesses the kernel memory device /dev/kmem.

40

2.5. CONCLUSION

kernel examines the object’s access control list. If the process has the required
access rights to the object, then its details are entered into the domain registers.
If not, then an exception is generated.
A process can obtain access rights to an object in only two ways: by initially
creating the object; or by being granted them by another process, such as a
name server. This server must both possess the access rights and be allowed
to give them away. The server grants the access rights by issuing a system call
which tells the kernel to add the new process to the object’s access control list.
This scheme has two main advantages: it is impossible for a process to fraudu-
lently obtain access rights to an object and a process’s rights to access an object
can be revoked by simply removing its name from the appropriate access control
list.

Both of these schemes allow the traditional login process to be replaced with a
mechanism by which the name and password of a local name server object are
supplied and validated. This policy allows the traditional operating system concept
of users to be discarded in favour of a more powerful sharing mechanism.
The number of domain registers determines the number of objects which can be
mapped into a process’s address space simultaneously. In effect domain registers are
similar to UNIX file descriptors. Processes in SunOS 4.0, for example, are limited
to 64 active file descriptors.

• Resource Reclamation
Previously, it was claimed that it is virtually impossible to fill a 64-bit address space.
Yet real systems have finite amounts of physical memory. At some point it becomes
necessary to reuse it.
When a process in a separate address space architecture terminates, its resources
can be reclaimed easily because it has a private context. In SSAS architectures, as
a side-effect of the increased sharing, it is more difficult to define process contexts;
an item of data can only be reclaimed when there are no pointers to it anywhere in
the system.

The minimum level of support for the architecture requires applications to explicitly
request the deletion of data from the address space. This places the onus on programs
to clear up after themselves, but if necessary, automatic garbage collection routines
can be provided.

2.5 C onclusion

This chapter has shown that, in order to provide the required scalability, Cherub must
be implemented on a distributed architecture. A distributed shared memory (DSM)
— a mechanism which provides the semantics of a physically shared memory on a dis-
tributed architecture — is therefore required to implement the shared variable program-
ming paradigm. Unfortunately, when intertask communication and DSM mechanisms are
implemented in software, the latency of setting up a new task is high. This restricts them
to coarse-grain parallelism. Implementing a DSM in hardware (HDSM) would reduce its

41

CHAPTER 2. REDUCING INTERTASK COMMUNICATION LATENCIES

latency, but is difficult due to the complexity of the conventional memory model. Hence,
a simplified memory model must be constructed.

Single shared address space (SSAS) architectures were then introduced. Although still very
much in their infancy, with many issues concerning their structure and efficient use yet to
be fully investigated, these appear to offer several operating system simplifications such
as unifying caching mechanisms, increasing memory sharing and reducing DSM context
switch latencies. Combining SSAS and HDSM, therefore, has the potential for reducing the
latency of shared memory access so that network communications performance dominates
overhead and hence determines granularity.

42

Chapter 3

Simplifying The Operating
System Call Interface

“Compromise is the art of design”
(Unknown)

3.1 Introduction

Existing parallel architectures either support a few tens of fine-grained concurrently ex-
ecuting tasks communicating via shared variables, or hundreds of coarse-grained tasks
communicating via message passing. Currently, there is little middle ground. In chapter
one it was asserted that a significant number of applications exist which are well suited to
a medium-grained parallel architecture with several hundred processors which can sup-
port the shared variable programming paradigm [Don91]. The Cherub architecture is an
attempt to address this need.

Chapter two has asserted that by employing a SSAS memory model, Cherub’s intertask
communication mechanisms can be simplified to the extent that they can be easily im-
plemented in hardware. This will greatly reduce communication latency, thus allowing
medium-grained programming. The increased data sharing encouraged by the memory
model will also result in a significant improvement in the efficiency of memory usage over
conventional architectures.
This chapter deals with the problem of designing a new operating system interface which
can be used to provide similar functionality to the system calls of a conventional operating
system, but which are considerably simpler to implement in hardware. To do this we must
first understand what services a conventional operating system provides. Then we must
examine ways of unifying those services through the use of a SSAS. Finally, having defined
an interface to Cherub, we must show that it is useful. This can be achieved by identifying
classes of applications for which the interface is well suited.

The Cherub architecture presented in this chapter is the work of the author and is, in
effect, an early form of the ANGEL operating system being developed at City University
and Imperial College [Wil91a, Wil92, Sti92].

43

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

3.2 A Conventional O perating System Interface

Before we can decide what the Cherub interface should look like, we must determine what
services conventional operating systems provide. For example, the system calls of UNIX
Version 7 (V7) can be grouped into a number of categories:

• Process Management
The UNIX V7 operating system supports multiprocessing — running processes con-
currently. System calls are provided for the creation {fork), execution {exec), syn-
chronisation {wait) and termination {exit) of processes.

• Persistent Data Storage
Persistent, high latency, data storage is accomplished in UNIX through the file sys-
tem:

- Data is stored in files located within a hierarchical name space. System calls
are provided for the creation {créât, mknod, link) and destruction {unlink) of
files, as well as for the manipulation of the name space {chdir, mount, unmount,
chroot).

- Data access is provided though a set of system calls {open, close, read, write,
Iseek, ioctl, stat, fstat).

- Protection is achieved through the concept of user and group identities. Sys-
tem calls are provided for the manipulation of identities {getuid, getgid, setuid,
setgid) and for altering their associated access rights to files {chmod, chown).

• Non-persistent Data Storage
Non-persistent, low latency, data storage takes place in memory. Text, data and
stack memory regions, called segments, are automatically allocated upon a process’s
creation and deallocated on its termination. Processes allocate memory for their
heaps manually {brk).

- Memory locations are named using addresses comprising segment and offset
components.

- Memory locations are accessed using read and write machine instructions.
- Protection is achieved by giving each process its own private address space.

• Interprocess Communication
V7 provides two interprocess communication mechanisms:

- Synchronous communication is performed via the file system. System calls
{pipe, dup) are provided which allow the output of one program {stdout) to
be fed into the input of another (stdin). Protection and naming is provided
through the file system owner and group mechanisms.

- System calls are also provided for the asynchronous sending {kill, alarm) and
receiving {signal, pause) of events. Processes are named with unique identifiers
{getpid) and protection is provided through the file system.

44

3.3. THE CHERUB INTERFACE

• Time Management

V7 provides several system calls that allow the reading (time) and setting (stime)
of the time-of-day clock, as well as for determining file access (utime) and process
execution (times) times.

• Debugging

V7 provides a system call which allows a process to control the execution of another
for debugging purposes (ptrace).

• Booting and Shutting the System Down

Finally, to shut the system down, the disk cache is first flushed (sync) and then
the operating system is halted (reboot). When the operating system is rebooted, it
creates a single user process called init. This is responsible for creating additional
user processes which perform user logins.

Many system functions are provided by user level programs through the use of special
devices which are accessed as normal files. These devices include:

• /dev/tty

These devices allow access to the character based terminals connected to the ma-
chine. They can be used to read input from keyboards and write output to screens.

• /dev/km em and /dev/mem

These devices can be used to access the kernel’s virtual memory and the system’s
physical memory respectively. They are used by programs which require detailed
process information, such as ps.

• /dev/d i

These devices can be used to access the raw contents of the disk drives. They are
used by programs which require detailed file system information, such as df.

We will use the UNIX V7 system calls as a checklist of the services the Cherub interface
should provide.

3.3 T he Cherub Interface

Like a conventional operating system, Cherub must provide programming abstractions
such as processes, persistent and non-persistent storage and inter-process communication.
However, this must be done in a way which lends itself to being implemented in hardware.
This implies that these abstractions should be unified — and hence simplified — using a
SSAS.

• The Cherub SSAS is seen by the programmer as a single 64-bit address space, called
the Object Space.

45

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

• The Object Space contains protected non-overlapping address ranges called objects1.
Objects unify programming abstractions such as processes, persistent and non-
persistent storage and inter-process communication.

• All objects have the same fixed finite size; they neither grow nor diminish in size.
This simplifies the address space management as objects are not allowed to overlap.

Cherub must provide mechanisms for management of objects within the Object Space.
Explicit creation and deletion mechanisms are employed for their simplicity. Names must
also be provided by which objects can be referenced.

• Objects are created using the create-object system call. This takes twro parameters,
new-dr and image-dr. These will be explained when protection and access semantics
are discussed. The call unifies the UNIX process (fork) and file (creat, link, mknod)
creation system calls.
The system call allocates a unique identifier, global-name, by which the object can
be referred to. This is actually the start address of the object within the Object
Space, thus creating a flat name space. To allow objects to be referenced by address,
the location of an object does not change throughout its lifetime. This mechanism
unifies the UNIX naming schemes for files, memory and processes. The first twelve
objects in the Object Space are reserved for the operating system. This will be
explained later.
It is envisaged that personalised user name servers will be employed to map hierar-
chical names, similar to those of UNIX files, onto the flat globaLnames employed by
Cherub.

• Objects are persistent, that is, once created they exist until explicitly deleted. This
simplifies resource allocation. Object deletion is performed by the destroy-object
system call. This takes a single parameter, old-dr, which will be explained when
protection is discussed.
Once an object is deleted, its globaLname becomes invalid and any attempt to use
it will generate an exception. Garbage collection of unreferenced objects must be
performed by the programmer.
This system call unifies the UNIX process termination (exit), file destruction (unlink)
and memory reclamation mechanisms.

Cherub must also provide some mechanism by which object information such resource
usage and access times can be obtained.

• Statistics about an object can be obtained using the object-info system call. This
takes two parameters, old-dr and statistics-buffer-ptr. The system call writes infor-
mation regarding the object specified by old-dr into the statistics-buffer. The old-dr
parameter will be explained later.
This system call unifies the UNIX stat and fstat system calls with the /dev/kmem,
/dev/mem, and /dev/di devices.

1 These are not objects in the full object-oriented sense.

46

3.3. THE CHERUB INTERFACE

Objects in the Object Space must be protected from the accidental or malicious actions
of processes. A password system will be employed because of its simplicity and low com-
munications overhead.

• Objects are protected by passwords called capabilities. Each object has three ca-
pabilities: read, write and execute. An object’s capabilities are assigned upon its
creation and cannot be changed. By convention, the value 0 is both an invalid ca-
pability and address. This value, therefore, can be used by a process to relinquish
an access right to an object. It also helps trap invalid pointer dereferences.
Each process has a number of protection domain registers. To access an object in a
particular manner, a process must first load the applicable capability to that object
into one of its protection domain registers. A capability’s validity is determined when
it is first used to access an object. A data access made without the correct capability
generates an exception, allowing the process to correct the error. The validation and
exception process takes a finite amount of time, thus complicating attempts to crack
capabilities systematically. This mechanism equates with the UNIX open and close
system calls.

Once a process has a capability to an object, it can use it for the object’s lifetime.
Giving another process an object’s capability allows it to access the object in the ap-
propriate manner. The set of capabilities possessed by a process, therefore, equates
with the UNIX concept of ownership and access rights (chown, chmod, getuid, get-
gid, setuid, setgid). Consequently, logging-in is simply a mechanism by which the
globaLname and capabilities for a memory object, which contains the set of name
mappings and capabilities associated with a given user, are presented to a name
server program for verification and use.
The protection domain registers are also used by the system calls:

— The capabilities to be assigned to an object are passed to the create-object
system call in the protection domain register specified by the new-dr parameter.

— For a destroy-object system call to be successfully performed on an object, its
write capability must be contained in the protection domain register specified
by the old-dr parameter.

— For a object-info system call to be performed, the object’s read capability must
be contained in the protection domain register specified by the old-dr parameter.
The process must also possess the write capability to the statistics-buffer used.

All object are accessed as if they were conventional memory, thus providing a consistent
interface to the programmer. This unifies the UNIX file (read, write, Iseek, ioctl) and
memory access mechanisms. However, object access semantics can differ, thus providing
scope for various programming abstractions.

• The semantics of objects are defined upon creation. To maintain the simplicity of
the SSAS, it is envisaged that there will be only six types of object: memory, process,
sleep-wakeup, semaphore, rendezvous and hardware. (Other object types may be
added in the future.)

47

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

The access semantics of an object are passed to the create.object system call in the
protection domain register specified by the new-dr parameter.

• To reduce the overhead of data copying, the contents of an object may be initialised
upon creation to those of an image object for which the read capability is held. This
provides a cheap mechanism for copying objects. If the object is not initialised, it
contains zeroes.

The access semantics of some of object types, however, mean that it is not sensi-
ble to use them as images when making create.object system calls. For example,
synchronisation objects contain personal state information, such as which addresses
processors are sleeping on. This is meaningless when duplicated.

The details of the object to be used as an image are passed to the create-object
system call in the protection domain register specified by the image-dr parameter.

Thus, it can be seen that the plethora of system calls provided by conventional operating
systems such as UNIX can be replaced with just three, operating on a global shared address
space containing various types of objects. The access semantics of these objects will now
be explained in the following four sections.

3.3 .1 P rocess O b jects

Processes are represented in the Cherub architecture as objects in the Object Space. They
have the following properties:

• Process objects are created and terminated explicitly using the create-object and
destroy-object system calls, although process termination may also occur implicitly
through exceptions.

• Processes are light-weight in that they have a relatively small amount of context
information. This is limited to some scheduling information, a number of exception
vectors and a set of general purpose, debugging and protection domain registers.

• In principle, Cherub supports any number of concurrently executing processes, al-
though several hundred, one per processor, is optimal.

• All processes are scheduled and run concurrently by Cherub, unless they are blocked
on memory accesses, have reached a breakpoint, or have been halted.

Process objects must also provide conventional process related operating system primitives
such as signal and exception handling (signal, kill), timers (alarm), debugging (ptrace),
protection (setuid, seteuid, getuid, geteuid) and run-time statistics (utime). These prim-
itives are provided through offsets in the process object which have specific roles. The
format of a process object is as follows:

48

3.3. THE CHERUB INTERFACE

Execution Time
Countdown Timer

Status Word
Exception Vectors

and Exception Flag
General Purpose Registers

(including PC, USP, ESP and SR)
Breakpoint Registers

Protection GlobaLName
Domain Read-Capability
Registers < Write-Capability

each Execution-Capability
containing Access-Semantics

Unused

The roles of these offsets are listed below. All are 64-bits wide.

• Execution Time
This field shows how much processor time, in pS, has been spent running the process.
This field equates with the UNIX utirne system call.

• Countdown Timer

This field is used to generate timed exceptions. When a non-zero value is written
to this field, it is used to initialised a yuS countdown timer. Writing zero to the
field disables the timer and reading it gives the number of pS remaining. When this
reaches zero, an exception is generated.
This mechanism equates with the UNIX alarm system call.

• Status Word

This field contains a number of bit flags which relate to the current execution status
of the process. These include information such as whether the process is running or
blocked on a data access. Most of these flags are read-only.
One of the most important flags is the stop flag. This can be modified. When set,
this prevents the process from being executed. This flag is set by default when a new
process is created. This allows a parent process to construct its child’s environment
before it starts executing.

• Exception Vectors and Exception Flag

The exception vectors contain the addresses of exception handler routines. There
is one vector per exception type. By default, when a process is created all of its
exception vectors are empty.

The exception flag bitfield is used to send an exception to a process. There is one
bit per exception type. When a particular bit is set, the appropriate exception is
generated. This causes the process to suspend the normal execution of instructions

49

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

and, if the appropriate exception vector is not 0, to execute the specified handler.
If the exception vector was not defined, the process is terminated by an implicit
destroy .object system call.

The exception vectors are prioritised. An exception cannot preempt a higher priority
one. The exception handler must clear the appropriate bit in the exception flag
before the process can accept a further exception of this, or a lesser, level. Blocked
exceptions are queued by Cherub and issued in priority order.

Upon returning from an exception handler, normal instruction execution is resumed.

These mechanisms equate with the UNIX signal and kill system calls.

• General Purpose Registers

These are the general purpose processor registers. These include the program counter,
user stack pointer, exception stack pointer and status register. The processor has in-
structions which manipulate these registers directly.

• Breakpoint Registers

These registers are used for debugging purposes. These contain the addresses which,
when accessed by the process, generate exceptions. These are akin to the debugging
registers of the Intel 80386 processor [Int86]. Due to the uniformity of the object
space, these addresses can refer to either instructions or data. This mechanism
equates with the UNIX ptrace system call.

• Protection Domain Registers

Each process has a number of sets of protection domain registers which enable it
to access the contents of objects. The processor has instructions which manipulate
these registers directly. As domain registers equate with UNIX file descriptors, it is
likely that 64 sets2 will be sufficient. Each set contains five registers:

— GlobaLName
This holds the globaLname by which an object is referred to. If this field
contains 0, the register set does not hold valid data.

— Read-Capability
This contains the read capability for the object (if any). If this field contains
0, this capability does not exist.

— Write-Capability
This contains the write capability for the object (if any). If this field contains
0, this capability does not exist.

— Execute-Capability
This contains the execute capability for the object (if any). If this field contains
0, this capability does not exist.

— Access-Semantics
This register holds the access semantics which the object provides.

2The number of file descriptors currently supported by SunOS 4.0.

50

3.3. THE CHERUB INTERFACE

No policy is enforced on the use of the 64 domain registers, but by convention the
following associations are used:

Domain Register Use
0 The system process object.
1 The process object itself.
2 The process’s text object.
3 The process’s data object.
4 The process’s stack object.
5 A rendezvous object for signaling the process’s termination.

6, 7 and 8 The equivalent of UNIX’s stdin, stdout and stderr.
9, 10 and 11 Semaphore objects associated with the previous three registers.

12 to 63 Additional objects used by the process.

Domain register one refers to the process object itself. This equates with the UNIX
getpid system call. Domain registers two, three and four refer respectively to the
text, data and stack objects that will be used by the process. Domain register five
refers to a rendezvous object which is used for synchronising with the parent upon
termination. Domain registers six to eleven equate with UNIX’s stdin, stdout and
stderr and allow their unification with the dup and pipe system calls. Additional
objects, if any, can be placed in the remaining registers.

When a process object is created, it has no stack. A memory object must be created
separately for this purpose. Similarly, it is necessary to create a rendezvous object
with which the child process can synchronise with its parent upon completion. The
details of these objects must be loaded into the appropriate domain registers prior
to process execution.

Object one in the Object Space is reserved for a special process object, called the System
Process. This object represents the Cherub operating system and is the first process
created when the system is booted. It, therefore, equates to the UNIX init process. The
System Process is able to ignore all capability restrictions and its domain registers initially
refer to objects one through twelve.

The System Process’s execution.time field corresponds to the current time-of-day clock.
Most processes possess the read capability for the System Process in domain register zero,
thus enabling them to read the clock (time). Processes which also possess the System
Process’s write capability can set the clock (stime), reboot the operating system by issuing
a destroy.object system call, or halt it by setting its stop flag (reboot).

It can be seen that process objects provide access to a wide range of process and system con-
trol mechanisms. Due to the multitude of dissimilar process related mechanisms provided
by conventional operating system interfaces, processes are the most complex type of object
in Cherub. Although, the number of mechanisms provided by Cherub is not significantly
lower then conventional systems, they are accessed in a unified manner through the process
object.

51

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

3 .3 .2 M em ory O b jects

Memory objects are contiguous regions of virtual memory composed of a number of hard-
ware memory pages. The contents of memory objects survive machine reboots, thus uni-
fying UNIX’s concepts of persistent (Iseek, ioctl, read, write) and non-persistent storage.

Cherub will employ a 256 byte page size — experiments with the Psyche operating system
have shown this to be a good compromise. The page size determines the optimal size
for shared data structure elements. Pages are allocated automatically on demand and
continue to exist for the lifetime of the object, thus replacing UNIX’s brk system call.

As explained in chapter two, current theory dictates that a DSM should only provide
strong coherence — a read returns the last value written to a location — as it is the
easiest mechanism to program. However, it is also believed that applications should be
able to give the underlying computer architecture hints about intended future memory
usage. The processors in Cherub provide four new machine instructions for this purpose.

• busy-read(address) and busy .read- write (address)

These instructions tell the architecture that the program will probably access the
data page containing address heavily in the near future. The instruction type corre-
sponds with the nature of the intended data access.

• idle (address)

This instruction tells the architecture that the program will probably not access the
data page containing address in the near future.

• finish(address)

This instruction tells the architecture that the program will probably not access the
data page containing address again.

The instructions are advisory only; they do not guarantee exclusive memory access.

Memory objects combine efficient fine-grained coherent data sharing with persistent stor-
age.

3 .3 .3 S leep -W ak eu p , Sem aphores and R endezvous O bjects

These synchronisation objects allow a number of processes to coordinate their actions
without the high overheads associated with polling. The three types of synchronisation
objects to be supported were chosen because of their success in UNIX:

• Sleep-Wakeup

Processes reading from an offset within this type of object are blocked. When a
process writes to the object, all processes reading from that offset are unblocked,
returning the written value. Writes to offsets from which no processes are reading
are lost. This resembles the UNIX kernel’s sleep-wakeup mechanism [Bac86].

52

3.4. PROGRAMMING CHERUB

• Semaphores

This object is similar to the sleep-wakeup object except that each write will only
unblock one process. Furthermore, writes are not lost when no processes are reading;
they are simply stored until the next read. Data items will be read in the order that
they were written. This resembles Dijkstra’s P and V semaphores [Dij65].

• Rendezvous

The access semantics of this object resemble those of the sleep-wakeup object except
that a write to an offset from which no processes are reading will block until a read
takes place. This resembles the UNIX wait system call [Bac86].

By combining these three simple mechanisms, more complicated primitives such as Mellor-
Crummey and Scott’s locks and barriers [Mel91] may be constructed.

It should be noted that synchronisations can be performed using memory objects alone.
For example, the strict coherence provided by memory objects can support spin-lock syn-
chronisation. However, this mechanism is wasteful of CPU time and in distributed systems
incurs excessive interprocess communication. Synchronisation objects are, therefore, pro-
vided for the sake of efficiency.

Synchronisation objects provide access to simple, efficient, synchronisation primitives.

3 .3 .4 H ardw are O bjects

Hardware objects map onto the control registers of the hardware devices, such as terminals
and tape drives, which are connected to the architecture. They can be used by processes
to control these devices using memory mapped I/O. These objects equate with UNIX
devices such as /dev/tty. The allocation and internal structure of hardware objects are
implementation dependent.

Hardware objects create a simple, unified interface to dissimilar devices.

3.4 Program m ing Cherub

Having defined Cherub’s system call interface and the access semantics of its objects, it
is now possible to show how the new architecture will be programmed. Two of the areas
previously identified as involving major operating system issues are process management
and data storage. Examining these makes it possible to demonstrate that Cherub is easy
to program and that it involves lower overheads then conventional operating systems, thus
allowing it to support finer grained processing.

3 .4 .1 P ro cess M anagem ent

The Cherub process life cycle is illustrated in figure 3.1. The following stages are involved
in setting up, synchronising with, and cleaning up after, a new process:

53

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

Time

Q eate G ra te C itate Build Reatart
Child Data Rendezvous Environment Piooes»

Read Destroy
Synchronise RejUl„ Stack

Parent Process

Rendezous Object

A A

Stack Object

.1 D*1 S > nd .onb t|

v y • Destroy Destroy
! Rendezvous Child

Child Process

Figure 3.1: The Cherub Process Life Cycle

1. Create Child Process Object
The parent process creates the child process object using the create^object system
call.

2. Create Stack Object
A memory object must be created using the create.object system call. This will be
the new process’s stack object. When the child process terminates, this object will
be used to pass its results back to the parent.

3. Create Rendezvous Object
A rendezvous object must be created using the create.object system call to enable
the child and parent processes to synchronise upon termination.

4. Build Child Process’s Environment On Stack
The arguments and environment needed by the child process are first written into
its stack object. Next, the child process’s first twelve domain registers are set up.
Finally, the address of the process object is placed in a well-known register of the
new process.

5. Restart Process
The parent process issues finish instructions on the pages of the child’s process and
stack objects. The process object is then started by resetting its stop flag.

6. Load Text And Data Pages

The child process issues busy.read-write instructions on the pages of its process,
stack and rendezvous objects. The process then demand loads the pages it needs for
execution from its text and data objects. Similar overheads will also be incurred by
a non-parallel function.

54

3.4. PROGRAMMING CHERUB

7. Synchronisation

Once the child process has completed execution, a synchronisation operation must
be performed to inform the parent. The address of the results is passed to the parent
process using the rendezvous object. The parent process is then able to read the
results from the child’s stack object.

8. Termination
Once the results have been transferred, the child process issues destroy-object sys-
tem calls to terminate its synchronisation object and itself. The parent process is
responsible for terminating the stack object once it has finished with the results. In
this way the child process pays most of the overhead of the cleanup operation, not
the parent.

The programming overhead of this mechanism can be significantly reduced by the provision
of library calls such as:

• pid = create-process (execution-address, capabilityJist, argument-list, environment-list)
This library call creates a process, a stack and a rendezvous object, sets up the pro-
cess’s domain registers, builds the environment on the stack using the argument and
environment lists and starts the process at the given execution address. It returns a
process identifier which can be used to refer to the process. This is equivalent to a
unified UNIX fork and exec system call.

• synchronise-process(pid)
This library call performs a read on a process’s rendezvous object. This is equivalent
to the UNIX wait system call.

• terminate-process()

This library call first performs a write to the issuing process’s rendezvous object. It
then destroys the process object, along with its synchronisation object. The parent
process is responsible for destroying the stack object once it has finished with its
contents. This is similar to the UNIX exit system call.

These library routines provide functionality similar to their UNIX system call counterparts,
but are based upon primitives which are simple enough to be implemented in hardware.
Alternatively, process creation may be automatically performed by intelligent compilers
with parallelisation constructs, thus further simplifying the programming overhead of using
the machine.

As was shown in chapter one, if the intertask communication overheads associated with
the process life cycle can be performed in under 7,000 instructions, then a task granularity
of around 10,000 instructions is optimal. Figure 3.2 illustrates the maximum potential
speedup which may be obtained when a sequential task is decomposed into subtasks of
this granularity, all of which can be executed by processes in parallel.

To determine whether the desired level of granularity is feasible, the implementation of
these mechanisms must be examined. This will be done in the next chapter.

55

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

Parallel execution time (Instructions)

70.000

60.000

50.000

40.000

30.000

20.000

10,000

0

1 process
2 processes
4 processes
8 processes
16 processes
32 processes
64 processes
128 processes
256 processes

Sequential execution time (Instructions)
0 1,000,000 2,000,000

Figure 3.2: The Time Taken To Execute A Program In Parallel On Cherub

3 .4 .2 D a ta Storage

All data storage in Cherub uses the memory object type:

• Objects are created and terminated using create-object and destroy.object system
calls. They are persistent.

• Upon creation, an object is named with a globaLname assigned by Cherub. This
corresponds to its start location in the Object Space. If required, user-level per-
sonalised name servers can be implemented to map hierarchical names onto the flat
ones employed by Cherub.

• The contents of an object are accessed using conventional read and write machine
instructions. The strong coherence semantics of the object ensures that data written
to it is immediately visible to other processes.

Shared code libraries may be constructed using the indirection vectors technique
described in chapter two.

• An object can be accessed by any number of processes which possess its capability,
thus allowing parameter passing by reference.

This is clearly a simpler and more efficient storage mechanism then UNIX’s explicit,
coarse-grained, read and write system calls. Consequently, it is much better suited for
implementation in hardware.

56

3.5. APPLICATIONS SUITABLE FOR CHERUB

3.5 A pplications Suitable for Cherub

Finally, having seen how Cherub would be programmed, it is possible to suggest the prop-
erties which would make an application particularly well suited to the new architecture:

• The application should be able to make use of concurrently executing medium-
grained processes, each consisting of around 10,000 instructions. Ideally no more
then several hundred of these should be running concurrently, one per processor.

• The application should use the shared variable parallel programming paradigm. The
shared data structures should have the following properties:

- The data structures should be shared for read and write, thus requiring data
coherency.

- Synchronisation by record locking should be necessary when modifying shared
data structures to maintain data consistency.

- False data sharing during record locking should be unacceptable. Hence, only
one record should be stored in each page. This is the case in real-time appli-
cations. Hence the page size should be small — around 256 bytes. It should
be undesirable to use an architecture with a larger page size. This could be
because either:

* The database contains a large number of records; or
* A fast record transfer time is very important, as is the case in many real-

time applications.

A non-trivial real application which has these properties, an airborne early warning sys-
tem, is examined in appendix B. This demonstrates how Cherub can help to provide an
efficient and elegant solution for this application.

3.6 Conclusion

In this chapter we have introduced the Cherub system call interface, which is programmed
through a SSAS called the Object Space. It was decided that only three main operating
system mechanisms are required:

• Conventional UNIX operating system mechanisms such as processes, persistent and
non-persistent storage and inter-process communication are unified as six types
of object within the Object Space: process, memory, sleep-wakeup, semaphore,
rendezvous and hardware.

• Object protection is provided by password-like capabilities. The set of capabilities
possessed by a process replaces the UNIX concept of users and groups.

• A flat naming scheme, based on the start addresses of objects within the Object
Space, is employed. It is expected that private user name servers will be employed
to map hierarchical UNIX-like file names into object names and capabilities.

57

CHAPTER 3. SIMPLIFYING THE OPERATING SYSTEM CALL INTERFACE

It is asserted that these mechanisms are simple enough to be implemented in hardware,
thus reducing intertask communication latencies to below 7,000 machine instructions and
resulting in an optimal task granularity of 10,000 instructions. This will enable Cherub to
provide a degree of parallelism which is useful for a significant range of applications, while
maintaining a natural data sharing mechanism which simplifies its usage.

The next chapter will examine this assertion, showing how Cherub can be implemented in
hardware and estimating its performance.

58

Chapter 4

Implementing the Cherub
Architecture

4.1 Introduction

In chapter three the interface to a new distributed computer architecture, Cherub, was
defined. This will be programmed through a single shared address space, with the intention
that many conventional inter-task communication mechanisms will be simplified to the
extent that they can be implemented in hardware. It is hoped that this will reduce the
latency of the process life-cycle to below 7,000 machine instructions. This chapter will
determine whether this is possible.

It is important to appreciate that good implementation mechanisms are just as critical
as models of computation when designing parallel architectures; almost any model of
computation can be implemented on a machine if the right mechanisms are employed. In
Chapter three it was stated that Cherub should provide the following:

• Support for several hundred concurrent light-weight processes.

• A granularity of data sharing of around 256 bytes.

• A medium granularity of processing; the total time spent setting up, providing data
for, synchronising and scheduling a 10,000 instruction process should be similar to
that needed to execute about 7,000 instructions.

• A multiple access policy, to a globally shared address space.

These properties can only be provided by combining high performance state-of-the-art
hardware with low overhead mechanisms. This chapter is, therefore, divided into three
parts. First the underlying hardware needed to support Cherub is determined. Secondly,
mechanisms are designed which implement Cherub on that hardware. Lastly, the perfor-
mance of the mechanisms is considered.

59

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

4.2 T he Cherub Hardware

Before mechanisms for the implementation of the Cherub Object Space can be suggested,
the architecture’s hardware must be defined. Fortunately, many MIMD (Multiple In-
struction, Multiple Data) [Fly66] multicomputer architectures conform logically, if not
physically, to a single model: a number of processors, each with one or more layers of
local memory, connected by a network to layers of shared memory and disk storage. This
logical organisation is illustrated in figure 4.1.

Processor Processor Processor

Layers of Low Latency
Local Memory

Layers of High Latency
Shared Memory

Shared Disk

Figure 4.1: Cherub’s Logical Hardware Organisation

The main factors affecting the performance of such an architecture are:

• The number and speed of the processors;

• The amount and speed of the local memory;

• The latency, bandwidth and scalability of the network; and

• The amount and speed of the shared memory.

From a philosophical standpoint, as it may take several years to implement Cherub, it is
important to employ mechanisms which are designed not for existing but rather future
hardware1. On the other hand, as it is virtually impossible to accurately predict the speed
or direction of technological advance, there is little point in trying to look too far ahead.
Consequently, the proposed implementation of Cherub assumes hardware which should be
available within the decade. It is, therefore, necessary to predict the capabilities of such
hardware:

• Storage
In 1990, Hennessy and Patterson [Hen90] observed three trends in memory hierar-
chies: *

M his process of designing with future technology in mind is sometimes called Technology Intercept
Planning.

60

4.2. THE CHERUB HARDWARE

- DRAM-Growth Rule:
Density increases at about 60% per year, roughly quadrupling in 3 years.

- Disk-Growth Rule:
Density increases at about 25% per year, roughly doubling in 3 years.

- Address-Consumption Rule:
The memory needed by the average program grows by a factor of 1.5 to 2 per
year.

This has several interesting implications for Cherub.

- Silicon Storage
If the DRAM-Growth trend observed by Hennessy and Patterson continues,
one Giga-bit silicon memory devices will exist within the decade2. As the cost
of storage is typically inversely proportional to its density, these will cost under
$25 each3 *.
Compared to its cost, however, the access time of DRAM is dropping relatively
slowly, about 7% per year [Hen90]. As DRAMs with 60 ns access times are
now starting to appear, this implies that at the end of the decade, the average
DRAM access time will be no better then 40 ns.
Two recent development in silicon-based storage devices include Flash Electri-
cally Erasable and Programmable ROM (Flash-EEPROM) and Ferroelectric
RAM (FRAM).

* Flash-EEPROM [Mas91b, Hes90, Lah90] is reprogrammable nonvolatile
memory, a blending of both EPROM and EEPROM. It has a EPROM-like
density, EEPROM-like reprogrammability and an access time of around
120 ns. Flash memory has two main disadvantages. Firstly it has a limited
write life-time of around 10,000 cycles. Secondly, it has to be erased in
sectors. These make it more useful as a silicon disk then as a replacement
for DRAM. It is currently possible to house four to sixteen megabytes of
flash memory in a credit-card form. In fact, as removable media, these
card-sized modules already exceed the storage capacities of conventional
floppy disks.

* Ferroelectric RAMs [Moa90, Gna89] are similar to conventional DRAMs in
design, but use newly developed ferroelectric cells to provide nonvolatility
and very high switching speeds (typically around 1 ns). They offer the
potential to build nonvolatile memories with the speed of static RAMs and
the density and cost of dynamic RAMs. They have a life-time of at least
1010 write cycles

If FRAM is able to achieve a DRAM-like capacity within the decade, it will be
desirable for Cherub to employ it instead of SRAM and DRAM. However, it is
doubtful whether the technology will mature this quickly.

2Hitachi’s electron beam based lithography system, the HL-700F, is currently able to draw 0.1/rm lines
at a rate of one 4 inch wafer per hour. Hitachi have simulated 0.1 micron devices and are convinced of the
feasibility of Giga-bit memory chips [hit90].

3DRAM currently retails for around S3500 per Giga-bit of 70 ns memory. A 510 Mbyte magnetic disk
can be purchased for $979, around $245 per Giga-bit.

61

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

It is important to realise that in the near future a single DRAM chip could
provide 128 Mbytes of storage. Similarly, a large 16 Mbyte SRAM processor
secondary cache might only require one chip4. It is, therefore, assumed that
Cherub will have several Gbytes of DRAM storage and its processors’ secondary
caches will contain at least 16 Mbytes of SRAM. In comparison, primary caches
are relatively small as they constitute a major processor yield hazard. A typical
future processor’s primary cache might only be 512 Kbytes in size.

- Magnetic Storage
When Hennessy and Patterson made their memory hierarchy predictions it ap-
peared that silicon-based storage would eventually become cheaper then mag-
netic storage. In addition, it appeared that optical storage might a provide an
even cheaper, if semantically different, backing storage medium [Pin89].
These predictions now look doubtful; recently significant breakthroughs have
been made in magnetic disk technology. Oxide magnetic heads and recording
media have been replaced by metallic magnetic materials, allowing a recording
density approaching 100 Mbit per square inch. Furthermore, newly evolving
techniques, such as vertical storage [Ron90, Die89], could potentially increase
the capacity of magnetic disks up to 30 times that of the present generation.
Meanwhile optical storage density has been limited by the physical size of the
read/write laser.
As processors increase in performance, the high latency and low bandwidth of
magnetic storage becomes more marked. Techniques such as RAID disk arrays
[Pat88, And91a, 01s89] and interleaving [Kim86] are being investigated to in-
crease the bandwidth of magnetic disks. Disk arrays have also been used to
provide fault tolerance against drive or media failure [Gib89]. Smaller disks,
faster rotation speeds, multiple read/write heads per track [Mit89] and intelli-
gent disk heuristics [Ric89, Sel90, Kin90] are being investigated to improve the
data access latency. However, it still remains a significant bottleneck.
I f the current trends in disk storage continue, it is probable that Cherub will
employ a RAID-like disk array providing Tbytes of storage. This array is likely
to have a latency of around 10ms, a transfer rate of several hundred Mbytes per
second, and be accessed on a sector basis of at least 16 Kbytes in size.

The predicted properties of the Cherub memory hierarchy are listed in table 4.1. It
is necessary to decide which of these technologies should be used as local memory
and which should be shared. For reasons of performance, it is necessary to achieve
a reasonable balance between the access time of a memory block and the time taken
to transfer it. A tradeoff, therefore, exists when implementing data coherence at a
given level in the memory hierarchy:

— Due to false data sharing, the lower in the memory hierarchy coherence is
performed, the greater the number of invalidations that have to be percolated
up to the higher levels.

4This can be deduced from the assumption that 1 Git-DRAMs will exist. SRAM is between 4 and 6
times more expensive in transistors then DRAM. Therefore, 1 Gbit of DRAM « 16 Mbytes of SRAM,
assuming that cache line tags incur a 25 percent transistor overhead.

62

4.2. THE CHERUB HARDWARE

- Alternatively, the higher in the memory hierarchy coherence is performed, the
greater its latency is in relation to the time needed to transfer a memory block.
In addition, the smaller blocks require more directory table entries, resulting in
increased memory wastage.

Memory
Technology

Predicted
Cycle Time Block Size Capacity

Primary Cache few ns 256 byte lines Kbytes
Secondary Cache 10s ns 256 byte lines Mbytes

DRAM 1,00s ns 16 Kbyte pages Gbytes
Disk 1,000s ns 16 Kbyte blocks Tbytes

Table 4.1: Predicted Properties of Cherub Memory Hierarchy

In chapter three it was stated that Cherub should support a granularity of data shar-
ing of around 256 bytes. This implies that the sharing, and hence the data coherence
mechanism, should occur in either the primary or the secondary cache. However,
in order to provide data coherence, lists must be maintained of the pages held on
each processor. Due to its relatively low yield, it is too expensive to hold these tables
in primary cache. Therefore, data coherence will be implemented in the secondary
cache.

• Processors
In 1990, Borg et al [Bor90] made some predictions regarding workstations of the
near future. Adapting them slightly for Cherub we get:

- Processors will have a RISC architecture and two levels of cache;
- The primary cache cycle time will be 2 ns;
- The additional time to go to the second level cache will be 16 cycles (32 ns);
- The main memory (DRAM) latency will be 140 cycles (280 ns); and
- The main memory transfer rate will be 16 bytes every 10 ns.

These predictions give some idea of the performance the Cherub global shared mem-
ory must achieve to create a balanced memory hierarchy.
When silicon storage was discussed it was shown, by extrapolating Hennessy and
Patterson’s memory hierarchy trends, that a Borg-like processor might reasonably
have 512 Kbytes of on-chip primary cache and 16 Mbytes of off-chip secondary cache.
Studies of such very large virtually addressed caches [Prz90, Bug90, Sho88, Wan89]
generally agree that it is most cost effective to make primary caches direct mapped
and second level caches set associative. A write-through policy is usually adopted in
the primary cache to maintain coherence and a write-back policy in the secondary
cache to reduce memory traffic. The cache miss ratios reported in the literature
depend largely upon the behaviour of applications simulated, but total cache miss
ratios below 1.0 x 10~3 are often quoted [Bug90, Sho88].

63

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

Assuming that the primary cache miss ratio is 0.1, the secondary cache miss ratio is
0.01 [Bug90] and the main memory is large enough to avoid disk accesses, an average
processor cycle will take around 6 ns:

Memory Level
Primary Cache

Secondary Cache
Main Memory

Hit Ratio

0.1 X (1-0.01)
0.1 X 0.01

Cycle Time (ns)
2
32

280 + 256 -T-16 x 10

Average Cycle Tim e (ns)
(Hit Ratio x Cycle Time)

O
3.2
0.4
5.4

Thus, ignoring overheads, a 10,000 instruction Cherub process will typically take
under 60//S to execute.
Given that Cherub can have at least 200 concurrent tasks, it is implied that the
architecture, should have at least that number of processors. This suggests that
network addresses should have at least eight bits.
In order to support process objects, as defined in the previous chapter, the processor
should have at least the following registers:

- 64 general purpose registers (64 bits each)
- 64 protection domain registers (5 X 64 bits each)
- 8 breakpoint registers (64 bits each)

A Cherub processor accesses its primary and second level caches using an on-
processor intelligent cache controller. This is responsible for locating lines of data,
if they are in the caches, and if not, communicating with the cache controllers of
other processors to find them. The controllers associate unique request identifica-
tion numbers with the data requests they issue to other controllers so that they can
match the requests to the incoming replies.

• Network
The exact form of the network joining the processors is largely irrelevant. However,
it must be able to support communication among many processors, which implies
that it supports point-to-point rather then broadcast communication.
On initial inspection, a circuit switched communications network appears to be well
suited to Cherub’s needs. This mechanism allows cheap, exclusive, two-way com-
munication between cache controllers.
The implications of using other types of networks are examined in chapter five.

To summarise, it has been predicted that if Cherub is constructed within the decade, it
could reasonably consist of the hardware components illustrated in figure 4.2:

• At least 200 high performance RISC processors with a 6 ns instruction cycle.

• Each processor could have a 512 Kbyte local on-chip primary SRAM cache, organised
as 256 byte lines.

64

4.3. IMPLEMENTING THE OBJECT SPACE

• Each processor could have a 16 Mbyte local secondary SRAM cache, organised as
256 byte lines. Data coherence will be provided at this level.

• A scalable point-to-point communications network.

• Around a Gbyte of DRAM storage.

• Around a Tbyte of optical or magnetic disk storage.

Figure 4.2: Cherub’s Physical Organisation

Having predicted the Cherub hardware, it is now possible to examine mechanisms for
implementing the Object Space upon it.

4.3 Im plem enting the O bject Space

Chapter three specified that the 64 address bit Cherub object space is divided into ranges
of virtual address which are allocated to individual objects. Furthermore, all objects are
the same size, are named by their unique globaLname and their contents are addressed
using offsets.
As all objects are the same size, it is possible to use the upper n bits of a virtual address,
where 0 < n < 64, to denote the globaLname of an object and the bottom 64 — n bits
to give the offset within it, thus simplifying the design of the addressing hardware. This
allows any combination of 2n objects, each containing 264-n bytes of address space. A
compromise is clearly necessary:

• A small value of n gives large objects, thus simplifying the management of large data
structures. However the system will then have few objects and much of the virtual
address space will be wasted through internal fragmentation.

65

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

Files in the the UNIX operating system are effectively limited to four Gbytes in size,
given that the file size field in the inode is 32 bits. This has proved to be a severe
limitation when handling large databases [Rob92], where at least 40 bits are often
required.

• A large value of n gives small objects, thus making more efficient use of the virtual
address space. However, the small object size will complicate the management of
large data structures.

By default, the UNIX operating system’s newfs command allocates an inode struc-
ture per 2,048 bytes of disk space. Although, often this number of inodes proves
to be generous, it is not unusual for systems such as news servers to have several
million files.

It is, therefore, asserted that a reasonable balance is to have 224 objects, each 40 address
bits in length. This creates 16,777,216 objects, each containing 1 Tbyte of virtual address
space.
Chapter three specified that objects are persistent5. They must, therefore, be stored on
disk or some other permanent storage medium. It should be noted that an object can
potentially be larger then the capacity of any single disk drive currently available. Con-
sequently, it must be possible to store an object over multiple disks, so that its size is not
limited by the physical capacity of any one media component. A logical to physical map-
ping scheme is, therefore, employed to convert logical disk addresses into the appropriate
physical block and devices. This also allows techniques such as sparse storage, disk striping
[Kim86] and RAID [Pat88, And91a, 01s89] to be employed. The cache controllers contain
tables which enable them to perform this mapping. Logical to physical disk mapping is
illustrated in figure 4.3.
The disk is logically divided into 1 Kbyte blocks, although the disk drives will probably be
physically accessed using much larger, say 16 Kbyte, blocks. This small logical block size
is very important since it reduces the latency of block transfers and zero-fills. It also helps
reduce internal disk block fragmentation, albeit at the cost of larger disk block indexes.
This will be explained later.
The layout of the logical disk address space is illustrated in figure 4.4. It is mainly divided
into two parts — the free lists and process run-queues will be explained later:

• Object Descriptors

The information about objects is held on disk in object descriptor structures. These
are 256 bytes long, the granularity of data sharing, thus eliminating false data shar-
ing. They have the following fields:

5Object persistence is only addressed in this thesis in a rudimentary manner since it is not considered
that true persistence — fault tolerance — is necessary. The design only guarantees that the contents of
memory objects will survive reboots if the system is shut down cleanly.

C h e r u b ’s ability to make inexpensive copies of memory objects, provides a convenient checkpointing
mechanism. In his thesis, Wilkinson [Wil93] shows that it is possible to provide fault tolerance by regularly
checkpointing objects and monitoring the access dependencies among them. If fault tolerance is required,
therefore, the implementation must be redesigned to support the copying of objects other than memory.

66

4.3. IMPLEMENTING THE OBJECT SPACE

Figure 4.3: Logical to Physical Disk Address Mapping for Sparse and Striped Storage

Logical Disk Address

Free Descriptor Lists
Free B lockLists__

Processor Ru_n-_Queues

16,777,216
Object Descriptors

Data Blocks

Figure 4.4: Logical Disk Layout

67

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

Field Size (Bytes)

Valid Bit

}'Access Semantics

Read Capability 8
Write Capability 8

Execute Capability 8
Creation Time 4

Last Modified Time 4
Last Accessed Time 4

Object Dependent 219

It should be noted that this structure limits capabilities to 64 bits6 and restricts
the number of possible object access semantics to 1287, leaving 219 bytes for object
dependent data. These sizes are thought to be sufficient.

For speed, the Object Space’s descriptors are held in a preallocated four Gbyte table
in the logical disk address space; the actual physical storage devoted to this table,
however, is likely to be small as the disk address mapping scheme allows the logical
disk address space to be sparse. An object’s globaLname is used as an index into
the table to obtain its descriptor.

• Data Blocks

The remainder of the logical disk address space is divided into one Kbyte blocks.
These are used to hold object indexes and data. This will be explained further
when memory objects are discussed. The logical block size chosen compromises
between minimising the data block transfer and zero fill latencies, reducing internal
fragmentation, and minimising the size and depth of the data block indexes required.

Object descriptors and data blocks are allocated from linked lists of free disk blocks, each
one Kbyte block containing up to 128 64-bit free descriptor or data block numbers. A
large number of free lists are maintained to reduce contention; a processor is initially
assigned its own free object and data block lists. When these are exhausted, it allocates
from the other processors’ lists.
The mechanisms used to implement the different object access semantics are described in
the following four sections.

4.3 .1 P ro cess O b jects

Process objects should be assigned to processors selectively so as to maximise the through-
put of the system, while minimising the overheads of creating and terminating individual
processes.

6An attem pt to systematically break a 64-bit capability will, on average, take approximately 30 thou-
sand years, assuming each attem pt only takes 100 ns!

7If more then 128 object types are required, Cherub’s design goal of simplicity through unification has
probably been compromised.

68

4.3. IMPLEMENTING THE OBJECT SPACE

Many conventional process placement algorithms work by load balancing [Jac89, Win89,
Ber91]. Such schemes attempt to distribute processes so that currently executable pro-
cesses are spread evenly among the processors in the system. In addition, some algorithms
detect when load imbalances occur and compensate by migrating running processes to less
loaded processors [Jul87, Bar86, Che88a, Dou89].
Cherub performs neither load balancing or process migration; it is asserted that the over-
heads of such mechanisms are not cost effective when the average process life-time and
the number of processors involved are considered. The justification for this is as follows:

• Load Balancing

The major problem when balancing load in Cherub is that as the number of instruc-
tions executed by a process is typically very small, processor loads change frequently.
Most load balancing mechanisms reported in the literature such as bidding [Sta.84],
drafting [Ni 85] and gradienting [Lin86] are not effective in such situations. This is
because they are so complex that by the time a placement decision has been made,
the load on the receiving processor may have changed significantly. Furthermore,
the performance advantage that a complex scheduling algorithm may have over a
simpler one when employed on small systems is often significantly reduced on larger
systems [Gri91].
Cherub employs a random process placement scheme. Each processor is assigned a
unique doubly linked list in the disk address space, which represents its run-queue.
When a new process object is created, its address is placed at the head of a randomly
selected queue. Busy processors time-slice between their executable processes. As
the average process life-time in Cherub is expected to be short, it is reasonable to
employ relatively long time-slices, such as 12,000 instructions, which is just over
the average process life-time. Idle processors check their run-queues periodically,
say every 100 instructions, for new work. This polling frequency is an important
component of the latency of starting a new process.

This random placement scheme is intended to reduce contention by avoiding a single
global process run-queue. Experiments have shown that such random placement
[Eag84] often performs well compared with more complex strategies when small pro-
cesses are involved. Furthermore, when load imbalances do occur, Cherub’s processes
are so short-lived that they should not persist.

• Process Migration

Another of Cherub’s disadvantages is that process migration is far less profitable then
in coarser grained systems. This is because, even on a heavily loaded fine-grained
system, the time taken to migrate a process and its cache context is likely to greatly
its life-time. Process migration, therefore, is not supported in the implementation.

A process object descriptor is very similar to that of a memory object, except that, since
a complete process register file can be held in four 1 Kbyte logical disk blocks, only
four data block pointers are required. In addition, as COW sharing of process objects
is not supported, the level of indirection is not necessary. A process object descriptor is
illustrated in figure 4.5.

69

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

Object descriptor

Valid
Read capability

Write capability
Execute capability
Creation time
Last modified time
Last accessed time
Access semantics

Four data block pointers

1 Kbyte data blocks

Figure 4.5: Process Object Representation on Disk

The contents of the process object data block, and hence the process register file, are as
follows:

64 domain registers X 40 bytes each = 2,560 bytes
64 general purpose 64-bit registers X 8 bytes each = 512 bytes

8 breakpoint registers X 8 bytes each = 64 bytes
8 other registers X 8 bytes each = 64 bytes

3,200 bytes (4 disk blocks)

For consistency with the other types of object, the cache controller allows a process object’s
remaining address space to be accessed, but it always reads as zeroes.

The cache controllers translate accesses to certain process object addresses into special
actions. For instance, setting a process’s stop flag causes it to be removed from its pro-
cessor’s run-queue. Similarly, setting the System Process’s stop flag results in all of the
processors’ run-queues being cleared. Alternatively, destroying the System Process object
causes the run-queues to be cleared and the System Process object to be restarted.

4 .3 .2 M em ory O b jects

Chapter three specified that memory objects have the following properties:

70

4.3. IMPLEMENTING THE OBJECT SPACE

• They are are large, potentially sparse, regions o f persistent storage.

As was explained in section 4.3, all objects will be held on disk to provide persistence.
A memory object’s data blocks are indexed, thus allowing common sparse objects
to be represented efficiently, while still supporting rare non-sparse objects. Typical
examples of memory objects are illustrated in figure 4.6.

Sparse Stack Sparse Data Non-Sparse Data

EH Used Address Space

CD Unused Address Space

Figure 4.6: Examples of Typical Memory Objects

• They can be used to hold both program data and stacks efficiently.

To enable memory objects to contain both program data and stacks, it must be
possible to use both ends of their offset range efficiently. Therefore, their indexes
are balanced as illustrated in figure 4.7. Only a single indirection is required to
access data in the first and last eight Kbytes of an object, although up to five levels
of indirection are needed to access data in its middle. It should be noted that,
as a result of this balanced structure, some of the pointers in the final quadruple
indirection index are wasted.

• It is possible to duplicate their contents cheaply.

Efficient memory object duplication is implemented through copy on write. The
memory object indexes point to data block entries which contain the disk addresses
of the data blocks holding their contents. These allow unmodified data blocks to be
shared between one or more related objects. As an example, assume that object B in
figure 4.8 has been created using object A as an image. Each block’s COW counter
indicates the number of objects which are sharing it; in this case they will initially
contain the value two. While a data block remains unchanged, it can be shared
between the objects. If a data block is modified, a copy is made of it, a new data
block entry is created for it and the original block’s COW counter is decremented.

4 .3 .3 Syn ch ron isation O bjects

Synchronisation object descriptors are similar to those of process objects, except that they
contain pointers to two linked lists, sleep and wakeup. This is illustrated in figure 4.9.

71

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

1 Kbyte blocks

Object descriptor

Valid
Read capability
Write capability
Execute capability

Creation time
Last modified time
Last accessed time

Access semantics

8 Direct pointers
Single indirect pointer
Double indirect pointer
Triple indirect pointer

Quadruple indirect pointer

Quadruple indirect pointer

Quadruple indirect pointer
Quadruple indirect pointer
Triple indirect pointer
Double indirect pointer
Single indirect pointer
8 Direct pointers________

Index Block Data Block Data Block Entry

Figure 4.7: Memory Object Representation on Disk

Object Offsets

00 0000 0000 - 00 0000 1FFF

00 0000 2000 - 00 0002 1FFF

00 0002 2000 - 00 0102 1FFF

00 0102 2000 - 00 8102 1FFF

00 8102 2000 - 40 8102 1FFF

40 8102 2000 - 80 8102 1FFF

80 8102 2000-CO 8102 1FFF

CO 8102 2000 - FF 7EFD DFFF

FF 7EFD E000 - FF FEFD DFFF

FFFEFD E000 - FF FFFD DFFF

FF FFFD E000 - FF FFFF DFFF

FF FFFF E000 - FF FFFF FFFF

72

4.3. IMPLEMENTING THE OBJECT SPACE

Object A

Direct Pointer
Single Indirect Pointer

Index

Data Block Entry
COW counter I Logical Disk A

Data Block Entry Data Block Entry
COW c o m e I Logic*! D iit Address | | COW ca lim i j Logic .1 P it t Addicu

Object B

Direct Pointer
Single Indirect Pointei

Index

Figure 4.8: Implementing Copy On Write In Memory Objects

73

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

The use of these lists depends upon the exact type of synchronisation supported:

Object descriptor

Valid

Read capability
Write capability
Execute capability

Creation time
Last modified time
Last accessed time

Access semantics

Sleep list —

Wakeup list _

Figure 4.9: Synchronisation Object Representation on Disk

• Sleep-wakeup

Sleep-wakeup objects only use the sleep list. When a process reads from one of these
objects, its processor’s number and the address accessed are added to the head of the
sleep list. The process is blocked by being removed from its processor’s run-queue.

When a process writes to a sleep-wakeup object, the address written is compared
with the items in the sleep list. Each process blocked on the address is removed from
the list. The processes are placed back on their processor’s run-queue, their reads
giving the stored value.

• Semaphores

When a process reads from a semaphore object, the address accessed is compared
with those in the wakeup list. If a matching item is found, it is removed from the
list, its read giving the written value. If no match is found, the processor number
and the address accessed are added to the tail of sleep list and the process is removed
from the run-queue.
When a process writes to a semaphore object, the address written is compared with
those in the sleep list. If a match is found, it is removed from the list and the
process is placed back on the appropriate run-queue, its read giving the written
value. Otherwise, the processor number, address and the value written are added to
the tail of the wakeup list. The process is left on the run-queue.

These mechanisms allow very low overhead synchronisations. Similar mechanism
were employed by Ahuja in the Linda machine [Ahu88].

74

4.4. IMPLEMENTING OBJECT SPACE CACHING AND COHERENCE

• Rendezvous

When a process reads from a rendezvous object, the address accessed is compared
with those in the wakeup list. If a matching item is found, it is removed from the list
and both the new and the old process are placed back on the appropriate run-queues,
the read giving the written value. If no match is found, the processor number and
the address accessed are added to the tail of sleep list and the process is removed
from the run-queue.

When a process writes to a rendezvous object, the address written is compared with
those in the sleep list. If a match is found, it is removed from the list and the
process is placed back on the appropriate run-queue, its read giving the written
value. Otherwise, the processor number, address and the value written are added
to the tail of the wakeup list and the process is blocked by being removed from its
processor’s run-queue.

4 .3 .4 H ardware O bjects

The object descriptor for a hardware object contains the network address the device phys-
ically occupies. Accesses to these objects are translated directly into transactions with the
appropriate devices. The exact form these transactions take depends upon the hardware
devices involved.

4.4 Im plem enting O bject Space Caching and Coherence

In section 4.3 it was shown how the Object Space could be constructed using the lowest
level of the Cherub memory hierarchy, the shared logical disk address space. As was
previously explained in section 4.2, it is intended that the higher levels in the memory
hierarchy shall be used as successive levels of cache for the logical disk address space, with
data coherence taking place in the secondary cache. This hierarchy of caches is illustrated
in figure 4.10.
The levels in the memory hierarchy will now be discussed in reverse order. The lowest two
levels are relatively uninteresting and are only examined superficially:

• Disk

The lowest layer in the Cherub memory hierarchy is constructed from persistent
mass storage devices such as magnetic or optical disk drives. It is expected to
contain Tbytes of storage.

As disk seek times8 and rotation latencies9 are typically high, a large physical block
size, 16 Kbytes, is employed to balance them against the transfer time10. A mapping
scheme is used to translate the one Kbyte logical disk block addresses used by Cherub
into the appropriate physical device and block numbers used by the hardware.

8 Current seek times range from 12 ms to 20ms.
9Typically 8.3 ms on a 3,600 RPM drive.

10Current transfer rates range from 1 to 4 Mbytes per second.

75

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

Virtual Address

Primary Cache
(t

Valid Bit
Dirty Bit
Virtual Address Tag
Usage Tag
Logical Disk Address Tag

Secondary Cacher
Valid Bit
Dirty Bit
Disk Address Tag
Usage Tag

DRAM

256 Bytes Data

Virtual Addressj 256 Byte Cache Lines

Logical Disk Address

Disk

256 Bytes Data Copylist

Logical Disk Address

256 Byte Cache Lines

Physical Disk Address

256 Byte Cache Lines

256 Byte Cache Lines

16 KByte Pages

16 KByte Blocks

Figure 4.10: The Cherub Cache Hierarchy

76

4.4. IMPLEMENTING OBJECT SPACE CACHING AND COHERENCE

• DRAM
The next layer in the Cherub memory hierarchy is constructed from DRAM and is
expected to contain Gbytes of storage. This is employed as a cache for the disk
memory layer and is accessed using logical disk block addresses.
The DRAM is logically divided into a number of pages, each comprising 16 contigu-
ous logical disk blocks. This allows whole disk blocks to be transferred to and from
the DRAM. Logical disk blocks are located in the cache using hash lists.
To minimise contention, each processor is assigned a unique set of pages it is respon-
sible for. These pages are initially placed on a free list. When this is empty, they
are chosen at random for replacement11.

The top two layers in the Cherub memory hierarchy are very interesting and are examined
in some detail:

• Secondary Cache
The second level in the memory hierarchy is constructed from off-processor SRAM.
It is expected that each cache will contain around 16 Mbytes of storage, organised as
256 byte lines — the granularity of data sharing. This level of the memory hierarchy
has two main roles: firstly it is responsible for translating virtual Object Space
addresses into logical disk addresses; and secondly it performs the data sharing and
coherence mechanisms.

— Virtual Object Space to Logical Disk Address Translation
In section 4.2 it was decided that Cherub’s data sharing, and hence coherence,
mechanisms will be implemented at the level of the secondary cache. However,
due to the possibility of virtual address aliasing through COW, it is also neces-
sary to perform virtual Object Space to logical disk block address translation
at the layer of data sharing. The secondary cache is, therefore, addressed using
logical disk block addresses. As these are more evenly distributed then virtual
addresses, the cache can be set associative, thus reducing its cost.
The address translation is performed by first using the virtual address to locate
the appropriate object descriptor entry. Depending upon the access semantics
of the object involved, the offset can then be used to locate the logical disk
block containing the data accessed.

— Data Sharing and Coherence
For simplicity, data coherence is maintained using Li’s fixed distributed server
algorithm. Each logical disk block is hashed to a home cache controller. This is
responsible for maintaining the coherence of the data in its blocks. Each cache
line has a valid bit and a permissions bit. Together these determine the access
rights to its data. There are three possibilities:

* NIL
A cache miss; the data is not in the cache. *

"S tudies have shown that for large cache sizes there is little performance difference between intelligent
replacement policies, such as least recently used (LRU), and non-intelligent schemes, such as random
[Hen90].

77

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

* READ
A read-only copy of the data is in the cache.

* WRITE
A read-write copy of the data is in the cache.

Li’s coherence protocol allows either multiple readable copies of a cache line,
or a single writable copy. When a permission violation occurs, the processor’s
cache controller recovers by communicating with the home cache controller of
the required line. Table 4.2 summarises these communications.
Cherub keeps track of the copies of a given cache line using a list stored at its
home address. The list is implemented using a bitfield which has one entry
per processor. An extra bit marks whether the list represents read or write
copies. Although, the approach of using bitfields to represent the lists is not
scalable for very large systems, it will work reasonably for 200 processors and
it is simple to implement in hardware. Furthermore, in view of the increased
sharing promoted by the SSAS memory model, it is assumed that many pages
(especially in shared libraries) will be shared by a large number of processors
in the system, thus making more elaborate representations, such as linked lists,
less efficient.

Each cache line has two bits which are used in selecting lines for replacement. These
bits are set by the busy, idle and finish instructions. When the secondary cache
is full, a line is chosen for replacement by first grouping them in reverse order of
their usefulness (empty, finish, idle and busy) and then selecting the cache line from
the least useful group which will generate the fewest coherence messages. This will
probably cause lines which are not at their home controller to be replaced first,
followed by the lines which have the least number of copies.
Since it is likely that there will be locality of reference within logical disk blocks,
busy and finish instructions also allow important performance optimisations to be
performed:

- Busy
Each cache controller maintains a list of lines which are likely to be needed
in the future, as defined by busy instructions. If a connection is about to be
made to a cache controller, the list is first checked to see whether it is the home
controller of any of the wanted lines. If so, they are read from the controller
with the requested permissions, after first ensuring that there is room in the
cache to accommodate them (by discarding existing lines if necessary).

- Finished
Whenever a connection is made to a cache controller, a check is made to see
whether it is the home controller of any cache lines which are marked as finish.
If so, they are all written back to the cache controller and discarded from the
cache.

When a cache line is replaced in its home secondary cache, its copy lists are lost. All
copies of the line must, therefore, be invalidated before it can be replaced. To allow
primary cache lines, which are virtually addressed, to be selectively invalidated, each

78

4.4. IMPLEMENTING OBJECT SPACE CACHING AND COHERENCE

Status

Communication Between
Requesting Controller

and
Home Controller

Home Controller
and

Other Controllers

Home Controller
and

Requesting Controller

Want: read lists
Others: nil “b □ □
Copy: yes data read
Want: write lists
Others: nil ”b □ □
Copy: yes data read
Want: write
Others: nil lists □ □
Copy: no
Want: read lists
Others: read(s) “b □ □
Copy: yes data read
Want: read invalidate to read lists
Others: write lists ~b ~b
Copy: yes data write data read
Want: read
Others: read(s) lists □ □
Copy: no
Want: write lists
Others: read(s) lists invalidate to nil ~b
Copy: yes data read
Want: write
Others: read(s) lists invalidate to nil lists
Copy: no
Want: write invalidate to nil lists
Others: write lists + +
Copy: yes data write data read

Want:
Others:
Copy:
Lists:
Data Read:
Data Write:

K e y
The permissions required for a line
The permissions currently possessed by other controllers
Whether or not a copy of the data is required (it is not already cached)
Examine and maintain copy lists
Load faulting line from h o m e controller
If modified, write line back to h o m e controller

Table 4.2: Coherence Mechanism

79

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

is tagged with its corresponding logical disk address. This allows secondary cache
invalidations to be propagated up to the primary cache.
Due to their unusual access semantics, it is not possible to cache the contents of
hardware objects.

• Primary Cache
The first layer of the memory hierarchy is constructed from on-processor SRAM.
It is expected that each primary cache will have around 512 Kbytes of storage,
constructed from fines no larger then 256 bytes in length — the granularity of data
sharing in the secondary cache.
For reasons of performance, namely elimination of the TLB address translations,
the primary cache is addressed using virtual addresses. This means that only data
from the virtual address space is held in the primary cache. The cache employs a
write-through policy to maintain data coherence with the secondary cache.
It is expected that the primary cache will be fully associative, thus allowing a pseudo
random replacement policy to be employed. This is important because virtual ad-
dress space usage is not expected to be uniform; most data accesses will be in the
first few fines of objects, which always start in 240 byte boundaries. This makes di-
rect mapped and set associative replacement schemes, which work best when virtual
address use is fairly evenly distributed, inappropriate.
As in the secondary cache, each fine has two bits which indicate its usefulness. The
replacement mechanism groups cache fines in reverse order of their usefulness (empty,
finish, idle and busy) and then selects a fine at random from the least useful group.
In general, object data coherence is maintained by simply ensuring that fines are
discarded from the primary cache when they are invalidated in the secondary cache.
Process objects, however, are slightly unusual in that the processor’s registers must
also be kept coherent. This is accomplished by ensuring that the primary cache
contains writable copies of each of a process objects’s 13 fines before it is executed.
The processor’s registers are then loaded from them. If, however, any of these fines is
requested by another cache controller, then execution of the process must be stopped
and its registers written back before the appropriate cache fine can be discarded.
Protection is provided using the protection domain registers. Each time a process
accesses the primary cache its protection domain registers are simultaneously exam-
ined to determine whether the accessed address lies within a mapped object. If so,
the appropriate capability is validated against the correct one for the object. Each
capability has a single bit tag which indicates whether it has already been validated.
These tags mean that capabilities only have to be validated when they are first used.
When a fine in the secondary cache which contains an object descriptor is invali-
dated, the capability tags are cleared, forcing them to be revalidated when they are
next used.
The last accessed and last modified times in an object domain descriptor indicate
when the object was last successfully mapped into a protection domain register with
the appropriate capabilities. Although this is not semantically identical to the UNIX
file times, which indicate when files were last accessed and modified, this mechanism
provides similar information at a very low performance cost.

80

4.5. PERFORMANCE EVALUATION OF THE IMPLEMENTATION MECHANISMS

In this section the Cherub data caching, sharing, coherence and protection mechanisms
have been discussed. The lower three levels in the memory hierarchy act as successive
levels of cache for the logical disk address space. Data sharing and address translation are
implemented in the secondary cache. Very important cache line coherence and replacement
optimisations are made possible through the busy, idle and finish instructions. Protection
is implemented in the primary cache.

4.5 Perform ance Evaluation of the Im plem entation M ech-
anism s

The previous two sections outlined algorithms for the implementation of the Cherub Object
Space. In this section the latencies of these algorithms will be examined in order to
determine the requirements of Cherub’s underlying communications network.

Before the latency of the Cherub process life-cycle as a whole can examined, however, it
is necessary to estimate the latency for accessing a cache line. Most data sharing in the
Cherub life-cycle will take the form illustrated in figure 4.11. This involves five steps:

1. Cache controller A requires write access to line X .

2. It first makes room in its cache for the new line by invalidating line Y . This requires
a connection to be made to C , V’s home controller, relinquishing access to the line
and if it is dirty, writing it back.

3. Controller A can then make a connection to X ’s home controller, B , and request
the new line.

4. However, it is likely that X is currently owned by another cache controller, say D. A
connection is, therefore, made to D, invalidating and obtaining its copy of the line.

5. Finally, a connection is made to controller A and cache line X is transferred to it.

This process can be generalised to cover the prepaged transfer of a number of lines, if two
reasonable simplifying assumptions are made:

• All of the data required will be somewhere in a second level cache; i.e. nothing has
been paged out to the lower levels in the memory hierarchy.

• All of the cache lines in a given data block are owned by the same cache controller.
This is very likely to be true.

If a network message requesting a cache line is 16 bytes in length, then the component
latencies for accessing a cache line will be:

81

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

O w n s l i n e Y

W a n t s l i n e X H o m e C o n t r o l l e r L i n e X

H o m e C o n t r o l l e r L i n e Y O w n s L i n e X

Figure 4.11: A Cache Line Read With Write-back and Invalidation

Stage Operations Latency
1 Cache lookup and miss on line X. A

Select a cache line, Y, for replacement. A
2 Make connection to Y’s home cache controller. C

Invalidate line Y. 272T per dirty line
16T per clean line

Read line into cache. N/A (pipelined)
3 Make a connection to line X’s home cache controller. C + 16T

Cache lookup on line X. Find current owner. A
4 Make connection to current owning cache controller. C + 16T

Lookup and invalidate line X in cache. A
Transfer line back to home cache controller. 272T per line transferred

5 Make connection to requesting cache controller. C
Transfer required line. 272T per line transferred
Read line into cache. N/A (pipelined)

Where:
C = Time to make a network connection (network connection latency)
T = Time to transfer a byte across a network connection (related to network bandwidth)
A = Time to access a cache line
I = Time to execute one machine instruction (will be used later)

Obviously, optimisations can be performed. For example, where a cache line is known to
be empty — when it has been removed from a free list, for instance — there is no need to
transfer its contents across the network when obtaining permissions for it. However, the
latency of a cache line access as stated — the summation of its component latencies — is:

4A + 4C + 272T per dirty line flushed + 16T per clean line flushed

82

4.5. PERFORMANCE EVALUATION OF THE IMPLEMENTATION MECHANISMS

+ 576T per new line transferred

Assuming that 25% of lines flushed from the cache are dirty12, this averages to:

4A + AC + 80T per flushed line + 576T per line transferred

= 4A + 4C + 656T per line transferred

It is now possible to estimate the latency of the Cherub process life-cycle using the list of
tasks given in chapter three.

• Create Process, Stack and Rendezvous Objects (Parent Cache Controller)

To create these objects, it is necessary to remove three object descriptors and eight
blocks — four for the process object and two each for the stack and rendezvous
objects — from the appropriate free lists. It is assumed that the cache lines from the
object descriptors and blocks are originally owned by the parent cache controller;
the validity of this assumption will be determined when the cleanup operation is
discussed. The latency of creating the objects is, therefore:

Operation Latency
Get three new object descriptors
Get eight new blocks and zero fill

9A
41A

• Build environment on Stack Object (Parent Processor)

It is estimated that up to 500 instructions will be needed to initialise a process and
perform finish instructions on the process object and its stack13:

Operation Latency
Build environment and issue f i n i s h e d instructions 500 /

12Experimental evidence for this is difficult to obtain since little analysis has been performed on SSAS
systems. However, a rough estimate can be made from examining the UNIX System V buffer cache:

• File cache blocks — which include data from files, directories, inodes, pipes and program texts —
are rarely dirty (5% of the time) and occupy around 65% of the cache [Bac88a],

• The remainder of the cache (35%) [Bac88a] contains data and stack pages from the virtual memory.
If these pages are in an executing process’s working set, it is likely that they will be dirty (100% of
the time).

The expected proportion of dirty cache lines is, therefore:

0.05 x 0.65 + 1.0 x 0.35 = 0.38

UNIX System V’s one Kbyte page size will, however, incur considerable false data sharing. It is, therefore,
not unreasonable to assume that C h e r u b ’s 256 byte page size would result in a considerably lower fraction
of dirty pages, say, 25%.

13Initialising the five registers in each of the 12 domain registers might reasonably take 200 instructions.
Placing the function arguments and environmental data on the stack could take another 250. Finally, up
to 50 f in is h instructions might have to be issued.

83

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

• Place Process Object on Process Run-Q ueue (Parent Cache Controller)

The child process is placed on a random processor’s run-queue:

Operation Latency
1 line read, 2 line writes 12A + 1 2 C + 1.968T

• Rem ove Head of Run-queue (Child Cache Controller)

Assuming the new processor is idle, on average it will poll its run-queue after 50
instructions. (If the processor is busy, on average it will only poll after 6,000 instruc-
tions. This is intended to keep processor throughput high.) The processor removes
the process from its run-queue prior to execution:

Operation Latency
2 line reads, 1 line write 12A + 12C + 1 ,9 6 8 T + 50/

• Transfer Process Object (Child Cache Controller)

The new processor starts to execute the child process. It prepages in the child's
process object:

Operation Latency
Read object descriptor

Get 13 lines from process object
4 A + 4 C + 656T

4 A + 4C + 8 ,528T

• Transfer Stack Object (Child Cache Controller)

The child process prepages in its stack object:

Operation Latency
Read object descriptor
Get data block entry

Get data block (4 lines)

4 A + 4 C + 656T
4A + 4C + 656T

4 A + 4 C + 2, 624T

• Synchronise (Child Cache Controller)

When the child process has terminated, it writes the address of its results to the
rendezvous object. This unblocks the parent process which is reading from the
rendezvous object:

Operation Latency
Read object descriptor

Read sleep-list
Put parent process back on processor queue

4A + 4C + 656T
1 2 A + 1 2 C + 1.968T
12A + 1 2 C + 1.968T

• Return Results on Stack (Parent Cache Controller)

The parent process prepages in the stack object, which contains the child’s results:

84

4.5. PERFORMANCE EVALUATION OF THE IMPLEMENTATION MECHANISMS

Operation Latency
Read object descriptor
Get data block entry

Get data block (4 lines)

4T + 4C + 656T
4A + 4C + 656T

4A + 4C + 2 ,624T

• Cleanup Process, Stack and Rendezvous Objects (Parent and Child Cache
Controllers)
The destruction of the rendezvous and process objects is performed by the child
process. Therefore, the latency of the cleanup operation should be hidden from the
parent process. The cleanup will, however, generate extra communication which will
add to network load.
The stack object contains the child’s results. The parent process will probably not
destroy this object until it terminates, thus hiding the latency from its parent.
The cache lines from the object descriptors and blocks freed in the cleanup operation
will be owned by the terminating processor. They are placed back on its freelist,
thus minimising the latency of creating new objects.

Therefore, from section 1.1.1, a given level of granularity g is optimal iff:

toverhead < (g - I n 2) 1

= 134A + 84C + 25,584T < (g ■ In 2 - 550)/

Now assuming that:
g = 10,000 instructions;
1 = 6 ns; and
A = 2 ns (32 ns to transfer a 256-bit line to primary cache)

then the performance of the underlying communications network must be such that ap-
proximately:

84C + 26,000T< 40,000 ns

If it is assumed that the network traffic will be fairly evenly spread over time14, the number
of connections resulting from a program constructed from 100 pairs of child and parent
tasks will be:

. . , - (7,000 - 5 5 0) /- 50ASimultaneous connections = —. __ — - ——t - X 10Ü « 40
(10,000 + 7,000)/

From inspection, it can be seen that Cherub requires a very high performance communica-
tions network which scales well when heavily loaded; it must certainly have a connection
latency below 500 ns and a bandwidth in excess of 650 Mbytes per second when loaded
with 40 connections.

14 It is assumed that perfect parallelisation cannot be achieved in most programs and so the various
process life-cycles will drift out of synchronism with one another.

85

CHAPTER 4. IMPLEMENTING THE CHERUB ARCHITECTURE

4.6 C onclusion

In this chapter an efficient implementation for the Cherub architecture was suggested,
based on predictions about future hardware. It was decided that the Object Space should
be implemented on disk storage for persistence, the memory hierarchy being used as
successive layers of cache.

In a tradeoff between minimising false data sharing and table costs, it was decided that
data sharing should be performed at the level of the secondary processor cache. As a
result of this decision, the data coherence and address translation mechanisms must also
exist at this level.
It was shown that important performance optimisations can be achieved through careful
use of the frusy, idle and finish instructions. These allow cache line prepaging to be
performed, resulting in a significant reduction in the number of network connections which
are necessary.
The latencies of the proposed mechanisms were estimated, showing that Cherub requires
a very high performance communications network which scales well when heavily loaded.
The design of a network which has these properties is developed in the next chapter.

86

Chapter 5

A Wafer—Scale Communications
Network

5.1 Introduction

Now that the mechanisms for the implementation of Cherub have been outlined, a com-
munications network must be designed which has the latency and bandwidth to support
them:

• Latency is defined as the observed delay through a network component. The total
latency of a message path is the sum of its component latencies. Latency is a function
of network loading.

• Bandwidth is defined as the throughput of a network component. The available
bandwidth of a message path is that of the narrowest component in the path.

In most systems overall latency is the most important network performance metric. This is
the time taken from the start of data transmission at the source until its complete reception
at the destination. Chapter four established that a typical 310 byte message must have
an overall communication latency of around 480 ns in a network already loaded with 40
connections. This implies a minimum bandwidth of around 650 Mbytes per second.

This chapter suggests that wafer scale integration could be used to achieve the level of
network performance required by Cherub. A suitable wafer network is designed and its
performance is estimated by simulation.

5.2 C lassifying Networks

The two most common ways of classifying communication networks are according to their
topology and communication strategy:

87

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

5.2.1 N etw ork T opologies

All communications networks can be thought of as a number of nodes joined in various
topologies by data transmission channels. Total connectivity, supposedly the ideal situ-
ation where all the nodes in a system are connected to one another, is only possible for
small networks. This is due to the complexity of the interconnections required, which is
exponentially related to the number of nodes in the system.

The topology of any network with less than total connectivity will have profound effects on
network loading, traffic density and locality within the communications system. The de-
signers of parallel systems have experimented with numerous network topologies [Geo90].

Due to their ease of construction, the most popular types of topology employed are one and
two dimensional networks, although networks with higher dimensions, such as hypercubes,
or irregular topologies have also been shown to be practical in medium scale architectures.

• One dimensional networks
One of the simplest methods of networking computers is to connect them all by a one
dimensional network. A common type of one dimensional network is the multipro-
cessor bus. This uses one or more globally shared transmission channels to connect
a number of processors. This type of network supports broadcast transmissions, any
conflicts occurring on the buses being handled by arbitration logic. A bus system is
illustrated in figure 5.1.

S h a r e d c o m m u n i c a t i o n c h a n n e l

6 6 6 6 666
P r o c e s s o r s

Figure 5.1: Bus network

MemNet [Del86b, Del88b] is an example of a system which uses multiple buses
to provide ultra-high speed communications. The MemNet nodes communicate
using 20 parallel bit-serial lines operating at 10 MHz, giving a gross aggregate data
bandwidth of 160 megabits per second.
Unfortunately, contention severely restricts bus scalability. In addition the speed
at which a bus can be run is often physically limited by its length. An alternative
mechanism is to use a staged communications network consisting of a number of
local communication channels. A staged network is illustrated in figure 5.2. The
bandwidth of such networks increase with the number of nodes, but at the expense
of increased latency.
The latency of a network topology is at least partially determined by its maximum
communication path length, or diameter 6. For a staged network comprising n nodes
this is:

6(Staged(n)) = n — 1

88

5.2. CLASSIFYING NETWORKS

S ta g e d c o m m u n i c a t i o n n e tw o r k

P r o c e s s o r s

Figure 5.2: Staged network

The main disadvantage of this communication system is that it has a poor ratio of
interconnection, r , the ratio of nodes to links. Assuming that the network traffic is
distributed evenly, which is clearly not always possible:

T(Staged(n)) = 1 ----

The diameter of a staged network can be halved by joining its ends to form a ring.
A ring network is illustrated in figure 5.3. A ring containing n nodes will have a
diameter:

6(Ring(n)) n
2

and a ratio of interconnection:

r(Ring(n)) = 1

The Kendall Square Research KSR1 architecture [Bur92] uses a ring network to
provide scalable communication among 32 processors. In addition, up to 34 of these
rings can be linked by a master ring to create a machine with 1,088 processors.

• Two dimensional networks
To reduce the bandwidth limitations imposed by one dimensional communication
networks, two dimensional communication networks have been explored. These typ-
ically take the form of 4-connected meshes of nodes. A mesh network is illustrated
in figure 5.4.

For the same number of nodes, two dimensional networks have smaller diameters
than their one dimensional counterparts. A square mesh containing n nodes has a
diameter of:

89

5.2. CLASSIFYING NETWORKS

5 .2 .2 C om m u n ication S trategy

Another common way of classifying networks is by communication strategy. Four strategies
are commonly employed:

• Circuit switched routing

In a circuit switched network an electronic circuit is created between the source and
destination nodes. Once the circuit has been made, the message can be transmitted
over it. When the transfer is complete, the circuit can be cleared. If during a circuit’s
construction a required communication channel is already in use, the complete circuit
is cleared and the sender waits for a back-off period before retrying. This prevents
deadlock.

The main advantage of this scheme is that once the circuit has been established,
the bandwidth is independent of network load. The scheme’s main disadvantage
is that the latency of establishing a circuit is highly dependent upon network load
and is potentially unbounded. This can make short message based communication
inefficient.

• Packet switched routing

In a packet switched network a message is broken down into small packets at the
source node. These are transmitted across the communication network and reassem-
bled in order at the destination. Each packet carries its own routing information
and is routed independently. This allows messages to be interleaved on the same
communication channel. If a communication channel required by a packet is already
in use, the packet is buffered until the channel becomes free. Thus, there is the
potential for deadlock.

The main advantage of this system is that the low latency of transmitting a sin-
gle packet makes short message based communication efficient. Furthermore, as
the network exhibits graceful loading characteristics, message latency is relatively
predictable. The scheme’s main disadvantage is that its bandwidth is not constant
— the packet throughput depends upon the network load. In addition each node
requires memory buffers to hold the message packets while they are being routed.

• Wormhole routing

Wormhole routing is a variation on packet switched communication. In this scheme
a message is broken down into packets which are routed between the source and
destination nodes in a continuous stream. Only the head packet in a stream carries
routing information and so, unlike true packet switched communication, packets
from different streams cannot be interleaved on a single communication channel.

If the head packet becomes blocked, all of the packets in the stream stop advancing,
thus blocking the progress of other messages requiring the channels they occupy. As
a result there is the potential for deadlock.

The main advantage of this scheme is that once the head of a message stream has
arrived at its destination, the bandwidth is independent of network load.

91

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

• Virtual cut-through routing

This mechanism is similar to wormhole routing, except that when the head of a
message stream becomes blocked, the packets in the message are temporarily buffered
at that node, thus removing them from the network.

This scheme has the bandwidth advantages of wormhole routing and exhibits better
performance under load, resulting in lower latencies. However, each node requires
enough memory buffers to be able to buffer complete message streams and, conse-
quently, there is the potential for deadlock.

As previously established in section 4.5, the Cherub architecture requires a network which
has an overall bandwidth of 650 Mbytes per second for 310 byte messages. It is asserted
that this is an unprecedented level of performance, totally beyond the capabilities of con-
ventional networks. Single mode fibre optics, one of the most modern communication
mediums, has the bandwidth to match this requirement — Gbits per second — but com-
patible low latency switching elements are currently not available without resorting to
fabrication technologies such as gallium-arsenide1. Instead, a new very fast and wide in-
terconnection network is required. One way of achieving this is by employing wafer-scale
integration.

5.3 W afer-Scale Integration

Conventional very large-scale integration (VLSI) computer chips are typically manufac-
tured by lithographing superimposed layers of metal and polysilicon onto circular wafers
of silicon to form the circuits of discrete chips. The completed wafers are then cut into
individual chips prior to packaging and testing. The maximum chip size is normally deter-
mined by factors such as the VLSI yield, the defect density, the allowable interconnection
lengths and the dimensions of the available packaging.
Wafer-scale integration (WSI), the process by which wafers are packaged whole rather
than as individual chips, is an interesting alternative method of creating electronic circuits.
There are two main schools of thought in WSI: whole wafer integration and hybrid wafer
integration.

• Whole wafer integration

In this technique wafers are lithographed and packaged whole. This allows the very
highest levels of integration to be employed, but is prone to crystal and processing
defects.

• Hybrid wafer integration

In this technique tested circuit dies are attached, often by flip-chip bonding [Gol83,
Mil69, Bac88b], to a wafer substrate which contains an interconnection network.

1Whitcroft [Whi92] has proposed a silicon based switching circuit which uses the Fibre Channel standard
[fib92]. He predicts that this should be able to perform a routing decision in 1 ¿is. Even this is too slow
for C h e ru b .

92

5.3. WAFER-SCALE INTEGRATION

Flip-chip bonding is illustrated in figure 5.6. The tiles and substrate are manufac-
tured with matching pairs of electrical contact pads. Solder is applied to these and
the tiles are placed on the substrate so that the pads make contact. The substrate is
then heated, causing the solder to flow. Surface tension in the solder helps to correct
any misalignment between the surfaces. The wafer is then allowed to cool.

r j i'] i)
l ^ ' ^ " I i S ,’~ X i I S i

a) A l i g n e d b) S o l d e r F u s e d c) B o n d C o m p l e t e

Figure 5.6: The Flip-chip Bonding Process

Flip-chip bonding also allows processors with the very large secondary caches re-
quired by Cherub to be constructed. Wilkinson [Wil91b] has suggested small pro-
cessor dies with tested cache circuitry should be flip-chip bonded onto much larger
fault tolerant cache dies. The high yield processor dies would test the lower yield
cache dies and only use the working cache lines.
Hybrid manufacture has the advantage of very high yield and allows circuits which
require different manufacturing techniques, such as high density memory and high
performance processors, to be intermixed on a single wafer substrate. However, due
to the relatively large size of solder-bumps, its data-paths are narrower then can be
achieved with whole wafer integration and it requires expensive testing and bonding.

Wafer-scale integration has three main attractions when compared with similar function-
ality constructed from individual chips mounted on PCBs:

• Higher performance
The main performance advantages wafer-scale integration has over conventional chip
and PCB technologies are:

— Higher speed (Decreased latency)
Conventional VLSI technology uses chains of output transistors to drive the pins
of chips. These prove to be slow. The capacitance of the solder bumps used in
hybrid wafer integration is about 20 times lower than that of wire bonds and

93

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

hence the speed of internal wafer communication can be considerably faster then
conventional chip to chip communication — a factor 4 speed-up is not unusual.
The circuit interconnections in whole wafer integration, made by aluminium
alloy metalisation on silicon, are faster still.

- Increased wire density (Increased bandwidth)
As Dally suggests [Dal87], VLSI chip technology is severely limited by the
number of pins that can be placed on a chip. If the number is high, the package
must be large to accommodate them. Consequently the chip is expensive and
its PCB density is low. In addition, layout considerations make it hard to route
large numbers of tracks away from a chip; expensive multiple layer PCBs are
required. Therefore, data-paths in conventional computers are severely limited
in width.
This is not so much of a problem in whole-wafer integration devices as these
can employ very dense tracking. Unfortunately, in hybrid wafers the size of the
solder bumps limits the track density2. Even so, communication data-paths
can be much wider then those in conventional systems.

For these two reasons wafer-scale communications networks have a significant band-
width advantage over conventional chip and PCB based networks.

• Lower cost per function

A chip’s packaging is a major proportion of its cost of manufacture; a 400 pin grid-
array ceramic package can cost as much as $50 [Hen90]. WSI offers much higher levels
of integration on a single device. This reduces the volume of packaging required for
a given amount of functionality.
The cost per bit for semiconductor and disk memory decreases at very close to the
rate at which density increases. The continued fall in cost of VLSI technology is
dependent upon achieving ever-increasing levels of function integration and chip
yield. There is, however, a hard limit to the level of integration possible using VLSI.
This could eventually force manufactures to turn to wafer-scale integration in order
to achieve further price reductions.

• Higher reliability

Hardware reliability problems are often caused by defective connections, either in
the form of the soldered joints connecting the chip pins to the printed circuit boards
(PCBs), or the bond wires inside chips which connect the pins to the silicon. In effect,
a system’s mean time to failure is proportional to its number of pins. Aubusson
[Aub91] reports that 40% of US avionics failures arise directly from solder contacts
and PCBs. Assuming that a future processor might reasonably have as many as 400
pins, the processors alone in a Cherub system will have over 102,400 bond wires.
Consequently, the system could have a significant reliability problem.

Most of the interconnections in a wafer are made by aluminium alloy metalisation
on silicon. This is inherently more reliable than printed circuit board (PCB) inter-
connections. In addition, successful WSI must have built-in fault-tolerance as the

2Typical solder bumps are approximately 125 pm in diameter and are spread 75 pm apart [Tew89].

94

5.3. WAFER-SCALE INTEGRATION

yield of defect-free wafers is essentially zero. An additional increase in reliability
may be provided by this.

WSI does have three considerable problems, however, which significantly affect its com-
mercial viability:

• Wafer based products are difficult to design and manufacture

This is mainly for three reasons:

— The need for fault tolerance
Although manufacturers treat chip yield statistics as proprietary information,
it is generally accepted that a significant proportion of chips are defective3.
Rough estimates show that VLSI defect density is inversely proportional to the
square of the feature size. This is due to defects, which were previously too
small in relation to the feature size to be significant, now being large enough
to cause failures.
Yield models have been developed from both theoretical and empirical studies
of defect distribution. Wallmark [Wal60] applied basic Maxwell-Boltzmann
statistics to develop a yield model. Although he noted that defects are probably
correlated, his model assumed none. Hofstein and Heiman [Hof63] and more
recently Cunningham [Cun90] have modelled random VLSI defects using the
Poisson distribution.
Eventually the use of Bolzmann and Poisson statistics for modelling defects was
shown to be too pessimistic for larger chips [Moo70]. This is because defects
are not placed uniformly on wafers, but tend to cluster, particularly towards
the edge of the wafer. Stapper et al [Sta83] believe this to be due to aggregates
of particles which have settled on the wafers during manufacture. However,
Stapper [Sta81] has shown that, over many wafers, the Poisson distribution is
valid.
Although manufacturers may be able to afford to mass produce chips with quite
low yields, the yield of defect-free wafers is essentially zero and will remain so
for the foreseeable future. VLSI memory manufacturers improve chip yield
by producing devices with extra rows or columns, as was first proposed by
Tammaru et al in 1967 [Tam67]. Defective components are located by external
test circuitry4. These are substituted for working components by a finking
and fusing process using a laser. However, because of the difficulty of isolating
circuits in a wafer, external functional testing techniques are difficult to apply
to complete wafers. Successful WSI, therefore, probably requires built-in fault
tolerance.

- Long signal lengths
It is difficult to operate large silicon circuits, such as wafers, synchronously at
high clock speeds. This is due to the accumulated fine rise and settle delays over

3If the yield is near to perfect, it can be reasoned that a higher density should be employed.
'Testing is often a complicated process [Van90] and internal test circuits could well consume one third

of the total silicon area.

95

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

the wafer surface leading to problems such as clock skew. This problem can be
overcome by clocking areas of the wafer independently and using asynchronous
communications protocols [Mar89, Gin90]. Such circuits are, however, more
difficult to design.

— Difficult to mix different technologies on a single wafer
It is difficult to combine technologies requiring different fabrication processes
(such as high density DRAM and high performance logic) or materials (such as
silicon and gallium-arsenide) on a single wafer substrate. This can be overcome
with flip-chip bonding techniques.

• Wafers are difficult to package

WSI products are difficult to package for a number of reasons:

— Wafers have a large area
The large difference in the heat expansion qualities of silicon and the packaging
leads to problems of wafer breakage. Heat-sinking a complete wafer is also
more difficult. This problem can be solved by cooling wafers using liquids or
blown air.

— Wafers require large numbers of pins
A wafer device with a million gates could have as many as 4,000 signal pins5
[Car86a]. Current pin bonding technology limits pin bonding sites to the pe-
riphery of the wafer as bond wires cannot be crossed. Routing large numbers
of signal lines to the edge of a wafer is wasteful of silicon area. It also incurs
appreciable signal delays. Furthermore, it is expensive to route large numbers
of wires away from a wafer.
This problem can be overcome by using fibre optic technology instead of con-
ventional pins. Techniques have been developed which allow optical fibres to
be bonded directly to the wafer surface [Pru86j. This allows fibre optic drivers
to be placed at any point on the wafer. Gallium-arsenide based optical net-
work technology currently supports Gbit per second data transfer rates. As
optical bonding technology currently limits a fibre to a single emitter and re-
ceptor, optical fibres must be paired if bi-directional communication is to be
supported.

— Power delivery and removal is difficult
The line inductance in a large wafer sized power grid causes significant noise.
This has to be suppressed by decoupling capacitors. The power grid also con-
sumes an unacceptable proportion of the wafer. This can be solved by placing
power and ground pins at regular intervals across the wafer’s surface.

— Wafer stacking must be possible
A wafer has a large PCB footprint. To achieve a reasonable packing density
and to reduce the cost and reliability problems associated with large PCBs, it
will be necessary to stack wafers on top of each other.

5Hughes’ 3D Wafer Stack Cellular VLSI has 1,000 microspring bridge pressure contacts to neighbouring
wafers. Mosaic System’s Wafer-Scale Hybrid has 840 pins per wafer.

96

5.3. WAFER-SCALE INTEGRATION

This can be achieved by creating vertical electric interconnections, vias, which
pass through the wafer substrate, enabling stacked wafers to be electrically
connected. Vias can be created using a process such as aluminium thermomi-
gration [Cli76]. This directionally diffuses liquid aluminium though the silicon
wafer. Microspring bridges [Gri84] can be used to connect the vias to the signal
lines on the adjacent wafer. This arrangement is illustrated in figure 5.7.

Metalization layers —►
Wafer substrate ------►

Metalization layers —►
Wafer substrate ----- ►

Metalization layers —►
Wafer substrate ----- ►

Vias

Figure 5.7: Stacking Wafers

Special wafer packages must be designed which stack. It is more difficult,
however, to power and cool such an arrangement.

• Wafer-scale integration has a bad name
There have been a number of expensive project failures in the history of wafer-scale
integration. The most famous of these was Amdahl’s company, Trilogy, [Gup88]
which attempted to create a high performance IBM mainframe clone using WSI.
To provide fault tolerance all circuits on the wafer were created in triplicate. This
effectively reduced the usable wafer area by two thirds, which meant that a number
of wafers had to be employed. These were connected by many bond wires, which led
to insoluble unreliability problems. Trilogy crashed with the loss of $230 million.

As a consequence of such failures, it is difficult to obtain funding for further research.

These disadvantages are not impossible to overcome and commercial wafer-scale products,
particularly for memory, have started to appear. From the point of view of fabrication,
memory is ideally suited to wafer-scale integration. This is because:

• The memory modules in a wafer are identical. This makes them easy to manufacture
and allows global redundancy to be employed.

• The memory modules in a wafer can share a common bus, thus reducing the pin-out.

• Memory is more in demand than logic and can, therefore, be packaged in larger
quantities at reduced cost.

Although Carlson and Neugebauer [Car86a] dismiss memory as a WSI candidate, Chesley
[Che88b, Che87] has suggested a way of using wafer-scale memory to replace conventional
DRAM chips:

97

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

• Chesley proposes a non-redundant approach to constructing wafers of DRAM using
whole wafer integration. By not employing a redundancy scheme, Chesley uses all
of the area of the wafer. This results in a low storage yield of around 50 per cent,
but simplifies the manufacturing process.

A list of usable wafer regions is used by the computer’s virtual memory hardware
to map virtual addresses to defect-free physical addresses on the wafer. When each
wafer is initially tested for defects all perfect blocks are added to the region list.
Damaged blocks are ignored. The region list is either loaded from disc, whenever
the system is booted, or is reconstructed after testing the wafer. The latter scheme
has the advantage of detecting subsequent failures.

As Chesley’s scheme does not employ a defect control mechanism, it is as fast as conven-
tional DRAM. However, its yield is low, making it relatively expensive. By employing a
defect control mechanism, a wafer’s storage yield can be substantially improved, but at a
cost of increased latency. Such wafers are better suited as alternatives for magnetic disk
storage devices.
As a storage medium, wafer-scale silicon storage has several advantages over conventional
magnetic storage devices:

• it is faster;

• it can be accessed randomly while magnetic storage only allows pseudo random
access to data;

• it is more reliable; and

• it has better handling properties.

It has the disadvantage, however, of being volatile. Anamartic’s Wafer Stack product
[Ano89, Cur89] has shown wafer-scale silicon storage to have considerable promise:

• Anamartic’s Wafer Stack silicon storage device is one of the first commercial attempts
to provide wafer-scale memory. The device uses six-inch wafers containing 202
one-Mbit DRAM and control logic tiles embedded in a communications network.
External test circuitry is used to identify the working DRAM tiles and to calculate
the longest possible Catt Spiral incorporating them which can be grown from a tile
at the periphery of the wafer [Aub78]. This electrically configures adjacent working
DRAM tiles to form a single long shift register along which data can pass. Tiles
which cannot be included in the spiral are wasted. An example wafer is illustrated
in figure 5.8. A map of the resulting spiral is stored in a PROM. This is used by an
external controller to access the working DRAM tiles.

On average, defects reduce a wafer’s usable storage capacity to just over 20 Mbytes.
By pairing relatively good and bad wafers, storage modules can be constructed with
a minimum storage capacity of 40 Mbytes. It is possible to connect up to four storage
modules to a single controller.
Wafer Stack has two main disadvantages which reduce its commercial viability:

98

5.4. THE COBWEB WAFER-SCALE ARCHITECTURE

Usable DRAM Tile

Defective DRAM Tile

Unusable DRAM Tile

Catt Spiral

Figure 5.8: A Catt Spiral

— It is slow because it only employs a single 8-bit wide data-path and has a low
performance processor acting as an intelligent interface. Consequently, it has a
relatively high latency of around 200 ¿rs and a low peak transfer bandwidth of
800 Kbytes per second.

— It is expensive because it does not employ state-of-the-art memory chips. In an
attempt to overcome these restrictions prototype wafers employing four Mbit
DRAM technology have also been developed. These can hold around 128 chips,
giving a capacity of 64 Mbytes.

One of the most interesting aspects of the Wafer Stack design is that it employs standard
DRAM tiles linked by a wafer-scale communications network. This network, however, is
only one dimensional and is very narrow.

City University’s COBWEB project [And90b] proposed using wafer-scale integration to
create a parallel graph reduction architecture. It suggested that a wafer can be constructed
which embeds conventional VLSI tiles in a four-connected packet-switched communica-
tions network. This could provide a very high performance communications network
similar to that required by Cherub.

5.4 T he CO BW EB W afer-Scale A rchitecture

The COBWEB and related projects [And90b, And89, Gul91] suggest WSI techniques for
the construction of ultra high performance communications networks. These techniques
are highly applicable to Cherub and, therefore, COBWEB will now be described in detail.

COBWEB is based on a set of six wafer-scale integration design rules formulated at City
University:

99

5.4. THE COBWEB WAFER-SCALE ARCHITECTURE

□□□□
□□□□□□ □□□□□□□□

□□□□□□EIE
□□□□□□□□
□□□□□□□□
□□□□□□□□

□□□□□□
mm

COBWEB wafer

Four- Connected
Communications Mesh

Figure 5.9: A COBWEB Wafer

third connects the CE to its payload. Conservative fabrication technology in the network
increases its yield. Using 1.5 micron CMOS technology and one square cm cells, it is
estimated that less than 25 per cent of the wafer will be devoted to CEs.
The communication channels comprise two 128-bit register and one-bit status latch pairs.
The registers are used to hold input and output packets. The status latches signal when
the registers are full. The registers and latches are shared between adjacent cells so that
the output register and latch of one cell is the input register and latch of its neighbour.

COBWEB uses packet switched communication; it was thought that this was the simplest
to implement in silicon and would, therefore, result in the highest CE yield. The CE
controllers supervise the movement of 128-bit data packets in a series of cell-to-cell hops.
Packets are transferred in two 64-bit operations. This reduces the CE bus size, a major
yield hazard. Packet transfer can broken down into a series of steps:

• A packet arrives in the output register of the neighbouring CE. The neighbour sets
the input latch to indicate the input register is full.

• The CE controller constantly scans each input latch in turn. When it finds a latch
which is set, it gates the upper 64 bits of the packet, which contain the routing
information, from the appropriate input register, onto the routing bus and into an
address latch within the controller.

• The CE controller applies a routing algorithm to determine which output register

101

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

the packet is to be sent to. Simultaneously, the lower 64 bits of the packet are gated
onto the routing bus.

• The controller waits until the appropriate output register is empty (the output latch
is reset).

• The lower bits of the packet are gated into the bottom of the appropriate output
register. The upper half of the packet is then gated into the top of the register.

• The input latch is reset to show that the input register is empty. The output latch
is set to show that the output register is full.

The packet transfer speed is determined by the CE’s clock rate; the CE’s multiplexer can
combine an input register poll and a route operation in a single clock cycle. As each CE
has five input registers, any packet can be routed in 5 clock ticks, ignoring collisions. A
futuristic 2 ns clock rate will, therefore, result in a 10 ns hop time.

5.4 .2 T he Payload E lem ent

When a packet arrives at its destination, the CE controller loads it into the payload’s
input register and sets the input latch. When the payload produces output, it loads its
output register and sets the output latch.

In COBWEB, there are two types of payload cell:

• Processor and memory cells (PMCs)
Most of the payload cells in the wafer will be of this type. Each contains a processor
and some local memory. The processors are microcoded to perform graph reduction.
For fault tolerance, the memory is divided into 512 byte pages, each with its own
associated control logic. The memory is accessed as a heap, with defective pages
being omitted from the free list.

• Input and output cells (IOCs)
COBWEB is unable to use fibre optic communications because whole wafer integra-
tion does not allow different technologies to be mixed on a single wafer.

IOCs are used to interface the wafer to the pins of its packaging. They contain
parallel to serial converters, for reducing the number of pins required, pads and
drivers. Each IOC has 32 data, two signal and two power pins. Limitations in
current pin bonding technology dictate that the IOCs must be located around the
edge of the wafer.

5.4 .3 M anufacturing and Packaging

COBWEB wafers would be fabricated by lithographing the two types of cell (PMCs and
IOCs) onto a square grid using conventional wafer stepping. The wafers would be manu-
factured with an excess of IOCs to ensure that all of the pins can be accommodated.

102

5.4. THE COBWEB WAFER-SCALE ARCHITECTURE

Defective CEs may cause a wafer to have a number of disjoint cell networks. The largest
network of working CEs is determined. If the size of this fails to exceed a threshold value,
the wafer is discarded. Power is disconnected from the cells which contain short circuits7
by electronically blowing fuses placed at the junctions of the power grid.
Serviceable wafers would be packaged, their pins being wired to working IOCs. IOCs in
excess of the pin sets are ignored. Post-production testing is used to verify that the wafer
pins function correctly. Failing wafers are discarded. This guarantees that every completed
wafer has a full complement of working pins and a minimum level of functionality.

5.4 .4 Packet R outing

COBWEB uses packet switched communication. When a new packet arrives at a CE
that is not its destination, it is forwarded to one of its neighbours according to a routing
algorithm. As packets must be routed around damaged areas on the wafer, routing will
differ from wafer to wafer according to their defect distributions. The routing algorithm
used in COBWEB determines its performance, cost and yield.

Routing is implemented using signposts. A signpost is a two-bit number which informs
the CE where to route the packets for a particular destination. Each CE contains a
small amount of memory which is used to hold arrays of signposts. Packets contain their
destination addresses. These are used as indexes into the signpost arrays. Figure 5.10
illustrates signpost routing.

There are two main advantages of using signposts;

• Graceful degradation

If a damaged node routes a packet incorrectly, there is still a good chance that it
will eventually arrive at its destination.

• Dynamic routing

Routes can be altered dynamically so that packets are routed around communication
hot-spots or CEs that fail suddenly. Furthermore, the routing information on the
wafer need not always be consistent; packets can become temporarily lost without
harm as long as all the signposts are ultimately consistent.

In his PhD thesis, Anderson [And90a] suggests that a packet-switched wafer communica-
tions network should employ two routing algorithms side-by-side. The Default algorithm
is fast and efficient, but can result in deadlocks. The Chain algorithm [Ros86] is slower,
but will resolve deadlocks when they occur. Each CE holds two sets of signposts, one for
each routing algorithm. In a 316 cell wafer each CE requires 1,264 bits to hold both routing
arrays. These must be generated and downloaded to the CEs upon wafer initialisation.

• The Default routing algorithm

7Short circuits are detected by applying power to various test pads on the wafer and comparing the
actual and expected power drains at those points. The circuits are powered at a fraction of their normal
operating voltages to avoid causing additional damage.

103

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

Usable Cell

Defective Cell

Unusable Cell

Route Taken

2-Bit Route Map Entries for Cell 20

01 01 01 01 X 10
0 1 2 3

00

t

56 57

11 — ----- 01

10

Routing Direction

Figure 5.10: Using Signpost Routing to Avoid Wafer Defects

104

5.4. THE COBWEB WAFER-SCALE ARCHITECTURE

In the Default routing algorithm packets travel to their destination by the most
direct route possible. This may involve routing packets around damaged regions of
the wafer as illustrated in figure 5.10.

• The Chain routing algorithm
The Default algorithm is not deadlock free. Simulation shows that it is prone to
deadlock whenever the number of packets in flight approaches one per CE. Figure
5.11 shows how deadlocks can occur in a wafer.

Packet

Required
Route

Figure 5.11: An Example Deadlock in a Wafer

The communication network normally operates according to the Default algorithm,
but when deadlock is suspected, it reverts to the Chain algorithm which guarantees
to deliver all the packets in the wafer within a minimum number of hops, k, called
the Chain Delay.
When a CE detects that it is contributing to a deadlock situation (when a com-
munication channel’s countdown timer expires), it lowers a signal line which places
the whole network into the Chain mode. The CE remains in this mode until it has
waited for k hops to elapse. It then reverts to the Default mode and raises the signal
line. While the wafer is in the Chain mode, its IOCs are prevented from accepting
further packets.
In the Chain mode, the communication network is configured into an endless loop. If
there are n working CEs on a wafer, then a packet can be delivered to its destination
in a maximum of n hops. To be safe, the Chain Delay is set to a value somewhat
greater than n. This allows all of the CEs to empty their input registers.

One point not addressed by Anderson, however, is that in order to clear the deadlock, the
Chain algorithm effectively re-orders the packets in the network. Therefore, whenever a
wafer enters deadlock, the order in which packets are delivered can no longer be guaranteed.
This has an important impact upon the communication protocols which must employed
by the processors. In extreme cases this can severely reduce the usable communications
bandwidth.

105

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

5.4 .5 Y ie ld A nd H arvest P red iction s

A gate equivalence scheme has been used to compute the area of a CE using very conser-
vative 1.5 micron technology. The values obtained are shown in table 5.1. The majority
of the wafer area is consumed by memory and power rails.

Structure Area (xlO6/tm2) Gate Equivalent
Input and Output Registers 1.7 5,000

Input and Output Register Controllers 0.2 400
Routing Logic 0.5 1,000
Control Logic 0.9 2,000
Routing Bus 16.0 -

Power Supply 6.3 -
Total 25.6 -

Table 5.1: Areas of the COBWEB Cell Components using 1.5 Micron Fabrication

Given that the CE has an area of 25.6 X 106p2, its yield is predicted by the negative
binomial model8 to be 0.75 using: known logic fault rates of 0.03 defects/mm2; metal
fault rates of 0.01 defects/mm2; and clustering parameters of 0.75 to show a high degree
of defect locality.
The harvest of a wafer is defined as the proportion of the total CEs which can be configured
into a connected network attached to the wafer’s pads. If a wafer has several disjoint
networks, the harvest is said to be the largest. COBWEB’s fault tolerant architecture
ensures that, given a reasonable CE yield, almost all working PEs are harvestable.
It is estimated that a eight inch COBWEB wafer constructed using 1.5 micron technology
would have a diameter of 20 cells and would contain 260 PCs and 56 IOCs, 28 of which
would be connected to pins. Simulations of such wafers have shown their harvests contain
an average of 191 PCs and 38 IOCs. Furthermore, 98 per cent of the wafers will have a
network consisting of 28 or more IOCs connected to at least 160 working PCs. The graph
in figure 5.12 illustrates the harvest distribution in 100 typical wafers.

The relationship between CE yield and harvest size in 50 simulated wafers is illustrated in
figure 5.13. It should be noted that yields below 30 per cent produce very poor harvests
due to the lack of connectivity.

5.4 .6 C O B W E B Perform ance

Simulations have been used to determine the average communication path length between
the IOCs and PCs on wafers with the yields obtained from the defect models. The results

8The yield Y according to a particular defect type j is given by the equation:

Yj = (1 + ^) ~ a>

where A is the circuit area, D j is the density of defect j and ay is the clustering parameter for defect j .

106

5.4. THE COBWEB WAFER-SCALE ARCHITECTURE

>•

k
H

Harvest oF 100 woFers with 260 CEs and 56 IOCs CCE uield 75>:)
o re'sul tsb' 1 “ 1 r

35

25

o o

o coo o
ceco 00 o

00 o
00

o o oooo o
O OOOO 0500

O O 00 oo oooo
o o oo oo

00 0 o
O 00 o o

180 200
CE harvest

Figure 5.12: CE and IOC Harvest of 100 Wafers (260 CEs, 56 IOCs, CE yield 75%)

are illustrated in figure 5.14. The mean path length was found to be approximately 19. If
each hop takes around 10 ns, the average latency of a packet will be around 190 ns.

The performance p of a packet routing can be expressed as the ratio between the length
of the shortest possible path and that actually taken:

deal
P= y ------

Simulations have shown that performance deteriorates exponentially as the load on the
network, the number of packets in flight at any one time, increases. This is illustrated
in figure 5.15. However, under loads of less than 20 per cent, the performance is close to
perfect.

5 .4 .7 In feasib ility o f C O B W E B

There were two main reasons why COBWEB machines were judged to be infeasible:

• To reduce costs and maximise performance it was intended that COBWEB wafers
would be manufactured using whole wafer integration. Since it is hard to mix differ-
ent technologies on a single wafer, fast processors and inexpensive DRAM could not
be combined. Therefore, COBWEB would have to use static memory, which means
that it suffers from a lack of storage capacity.

107

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

Figure 5.13: The Relationship Between CE Yield and Harvest in 50 Simulated Wafers

• COBWEB assumes pin mounting technology; fibre optics communication was either
not envisaged or was discounted because of the whole wafer integration fabrication
process. This results in a communication bottleneck because of the huge disparity
between the internal bandwidth of the wafer and its I/O bandwidth.

The COBWEB project, however, did draw attention to the feasibility of creating an ultra
high performance wafer-scale communications network. The technique is highly applicable
to Cherub.

5.5 A W afer-Scale Integrated Network For Cherub

The COBWEB project suggests how an ultra high performance communications network
may be created using wafer-scale integration. Paper studies have shown that this ar-
chitecture will provide a large degree of defect tolerance. However, the packet-switched
communications network employed in COBWEB has several serious limitations:

• Interleaved packet delivery is possible. As a consequence, a complicated stateless
communications protocol is required.

• The network can deadlock. When this happens the deadlock clearance algorithm
results in unordered packet delivery, further complicating the communications pro-

108

5.5. A WAFER-SCALE INTEGRATED NETWORK FOR CHERUB

Figure 5.14: The Average Path Length in 100 Simulated Wafers

Figure 5.15: Simulated Network Performance Vs Load in 100-CE Wafers

109

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

tocol.

• The data-path is limited in width because a channel requires two separate register
and bus pairs to support bi-directional communications.

• In order to route packets, each communications element scans its five input registers
in turn. As a result, packets from a given source are only routed every fifth clock
cycle. Therefore, very high clock rates must be employed if a high data bandwidth
is to be achieved. This increases the cost of the circuitry involved.

Circuit-switching is an alternative communication mechanism which offers solutions to
these problems and is easy to implement in silicon. This technology has been investigated
in the MESHNET communications architecture [Win89]. This is a network built from
Network Control Unit (NCU) [Win87] chips which perform circuit routing. Processor and
memory pairs are connected to the network by Buffer Interface Controller (BIC) [Win88]
chips. These relatively simple chips are responsible for performing circuit initiation and
DMA data transfer.

The advantages of employing this communication scheme in Cherub include:

• It uses well-understood technology which has already been applied practically at
City University.

• The communication protocol has been formally proved to be deadlock free by Whobery
[Who88].

• When a circuit is established, exclusive communication with the CE is guaranteed
during its lifetime. This guarantees atomicity and message delivery order.

• Once a circuit is established, it can be multiplexed, allowing low latency, high band-
width two way communication.

The main disadvantage with circuit switching is that it requires complex, and hence silicon
expensive, routing switches. This severely limits the width of the communications buses
which can be employed on the wafer.
The proposed Cherub network will employ circuit switching because it is very easy to imple-
ment in silicon. It is asserted that a very wide circuit switched network can be constructed
by using a hybrid wafer fabrication technique to bond tested processor, SRAM and optical
fibre tiles onto a network wafer. The optical fibre tiles can be connected to mass storage
devices, such as Wafer Disc9 and conventional disk drives, as illustrated in figure 5.16.

It should be noted that the proposed Cherub wafer does not contain DRAM. As the
processor’s primary and secondary caches will be large enough to make main memory
accesses relatively infrequent, the DRAM can be provided on a separate wafer. This helps
minimise the size of the Cherub wafer, thus reducing the network diameter and minimising
connection latency.

9One of the spinoffs from City University’s COBWEB project was a proposal for a WSI based DRAM
mass storage device called Wafer Disc [And89], Logically, this is accessed as a very fast and reliable disk
drive. However, it has two major differences: it is volatile; and it supports concurrent access via multiple
optical fibre connectors.

110

5.5. A WAFER-SCALE INTEGRATED NETWORK FOR CHERUB

Figure 5.16: The Cherub Architecture

The proposed layout of a Cherub wafer is shown in figure 5.17. The raw wafer only contains
NCUs and buses forming a communications network. Flip-chip bonding is used to mount
tested processor, SRAM and fibre optic tiles, each with their own BIC, onto it. As the
tiles are known to function correctly, less fault tolerance and post-fabrication testing is
required than with COBWEB. The two layer wafer this forms, allows the construction of
very wide — 256 bits is reasonable — network data-paths and switching circuits.

As with COBWEB, it is estimated that a eight inch wafer could reasonably hold around
316 one square cm tiles. Assuming a 75% communications network harvest, this gives
237 working tiles, which is enough to accommodate the required 200 processor and cache
pairs, as well as a number of fibre optic tiles.
COBWEB employed a network with a mesh topology. The Cherub wafer contains a net-
work with a torus-like topology, possibly requiring an extra layer of metal10 11. The inter-
connection scheme illustrated in figure 5.18 is used to balance the bus lengths. Although
this results in an increased yield hazard, it substantially decreases the diameter of the
network11, thus increasing its performance. This is important with such a large network.

The estimated wafer surface area of the network components, using conservative 0.4 micron
technology to increase yield, is shown in table 5.2. The width of the communication buses
employed is limited by the dimensions of solder bumps; a processor connected to a 128-
bit wide communications bus might reasonably have 225 signal lines (15 X 15), its solder
bumps occupying 9 square mm of wafer surface. There is room to employ upto 256-bit
wide communication buses in each direction. Due to a tradeoff between communication
latency and bandwidth which will be explained later, it was decided to have two 128-
bit communications buses in each direction. The nine resulting communication channels
require a four bus crossbar switch.

The Cherub network was first proposed by the author in [Gul91].

10A maximum of three layers of metal can reasonably be used in a VLSI circuit. This is due to step
coverage problems incurred in the multilayer metalisation process.

11 The diameter of a torus network of width n nodes is j . The diameter of a mesh is . Thus a 20 node
wide C h e r u b wafer has an diameter of 10, while a similarly sized mesh has one of 13.

I l l

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETW ORK

□omnm

Ü Î F

■■narmianr ~n i i ■ i ¡ ir

T e s t e d p r o c e s s o r a n d c a c h e p a i r s

B o n d e d to w o r k i n g N C U s

F ib r e o p t i c s s i t e

C o m m u n i c a t i o n c h a n n e l p a i r

nnnrTTTTinrn

S e c o n d a r y

C a c h e

P r i m a r y

C a c h e

m —
Flip Chip

Bonds

t Solder Bumps^
■ ■ ■ ■ ■ ----

■ ■■ ■ ■ I
■ ■■ ■ ■ I

SRAM Tile Processor Tile

Figure 5.17: A Simplified Cherub Wafer

112

5.5. A WAFER-SCALE INTEGRATED NETWORK FOR CHERUB

o NCU

Bus Pair

Figure 5.18: A Double Channel Cherub Network

Structure Area (xlO6/xm2)
2 x 128-bit Communication Channels 49.2

4-way x 128-bit switch 6.0
2 X 225 Solder Bumps 18.0

NCU < 0.2
Total < 73.4

Table 5.2: Areas of the Cherub Cell Components using 0.4 Micron Fabrication

113

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

5.5 .1 T h e C om m u nication E lem en t

The Cherub communication element differs significantly from that of COBWEB because
it uses circuit, rather then packet, switching. The main component of the Cherub CE is
a nine input, 128-bit wide, four-way crossbar switch. This allows up to four pairs of its
nine inputs to be electronically connected at any one time. The switch is controlled by a
NCU which makes the routing decisions.
Circuit-switched communication occurs in three stages: circuit construction, data transfer,
and circuit collapse.

• During circuit construction an electronic link is established between the source and
the destination BIC. The head of the circuit starts at the source BIC and contains
the unique identification number of the destination node. Just as with COBWEB, at
each hop this number is used as an index into routing maps held in SRAM. The two-
bit result gives the direction, relative to that of travel, that the head must be routed
in. The head of the circuit is passed to the NCU in this direction. This procedure
is repeated until the circuit head reaches the destination BIC. This routing scheme
is illustrated in figure 5.19a.

In order to make an alternative routing decision when the head of a potential con-
nection becomes blocked, two routing maps, a and (3, are maintained for each des-
tination. Thus, assuming a wafer has 256 destinations, each CE requires 1,024 bits
of maps.

BIC
n

Destination
Used as Index
Into Maps

208
209
210 -

211
212

Routing Maps
Alpha Beta

00 00
00 00

00 01

10 01

10 01

(a)

Figure 5.19: Circuit-Switched Routing

Up to four circuits can be routed through each NCU as long as they use different
channels. Several possible combinations are shown in figure 5.19b. If it is found
that a circuit cannot be completed, it immediately collapses back to the source BIC,

114

5.5. A WAFER-SCALE INTEGRATED NETWORK FOR CHERUB

thereby freeing the allocated channels and avoiding deadlocks. The transmitting
BIC then retries after waiting for a back-off period.

• Once a circuit has been established, data transfer can take place. The circuit appears
to be an auto-simplex 128-bit wide parallel shift register. This is clocked by the
source BIC at 100 MHz12, giving a hop time of 10 ns and a raw data bandwidth
of 1.5 Gbytes per second. The NUCs are clocked at 2 ns, allowing them to make a
complete scan of their inputs in 10 ns.

• When the communication is complete, the source BIC dissolves the connection, which
in turn causes circuit collapse. The collapse frees the allocated channels.

Employing twin 128-bit wide communication channels has the effect of sacrificing half
of the network’s bandwidth in order to improve its connection latency. A CE is allowed
to use either of the channels travelling in a desired direction to route a circuit. This is
illustrated in figure 5.20, in which node A communicates with node A' and node B with
B' though two common channel pairs.

B\o c..^j) o o
O (j) o o ~
o c o o
O X

NCU

Bus Pair

Figure 5.20: Routing in A Double Channel Network

One disadvantage of this double channel scheme is that a CE has to scan almost twice
as many channels as on a COBWEB wafer. This doubles the hop time for a given clock
rate. This problem can be overcome by scanning a channel pair on each clock cycle. The
channels are prioritised so that if circuit heads appear on both channels simultaneously,
the one on the highest priority channel is routed first. The second circuit is routed the
next time the pair is scanned. A performance degradation is, therefore, only experienced
after collisions.

When the wafer is booted, the wafer temporarily enters a configuration mode. Each NCU
undergoes a self-test and generates a series of 128-bit test signatures. These are examined
by an external test circuit which makes a connection to each NCU in turn. This is made
possible by forcing NCUs which do not yet have routing tables to accept all incoming

12Slow enough to allow for the line rise and settle delays across the eight inch wafer.

115

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

connections. This allows the NCUs to be downloaded with temporary route maps, which
enables them to route connections to their neighbours. When all of the NCUs have been
examined, proper route maps are constructed which avoid the NCUs generating incorrect
signatures. Once these have been downloaded the wafer can function normally.

5.5 .2 T he Payload E lem en t

There are two possible types of payload element in the Cherub wafer:

• Processor and SRAM Tile Pairs
Most of the Cherub wafer’s surface is populated by processor and SRAM tile pairs.
The processor tile consists of a high performance RISC processor, 512 Kbytes of
primary cache, a cache controller and a network interface (BIC). The processors,
having a 5 ns instruction cycle, are similar in performance to those described by
Borg et al [Bor90]. The SRAM tiles contain 16 Mbytes of secondary cache.

• Input and Output Tiles
These tiles are placed at regular intervals on the wafer. The payload contains bond
sites for optical fibres and is used to interface the wafer to external devices. Each
tile has two bond sites, allowing bi-directional communication. The tile also carries
a network interface (BIC) and the high speed parallel to serial converters and drive
circuitry required to transmit and receive data via the fibres.

5.6 Cherub Perform ance Sim ulation

Chapter four determined that, when loaded with 40 connections, the Cherub communica-
tions network must fulfill the following criterion:

84C + 26,000T < 40,000 ns

Where:

C = Time (ns) to make a network connection (network connection latency); and
T = Time (ns) to transfer a byte across a network connection.

The proposed wafer-scale communications network is able to transfer 128 bits in 10 ns.
Therefore, for the 10,000 instruction level of granularity to be optimal on the hardware,
the network connection latency, C, must be less then about 280 ns.
The performance of eight different circuit switched routing algorithms have been simulated.
The results are illustrated in figures 5.21 and 5.22. The simulations assume a 316 node
torus network with an average message length of 19 clocks and a constant back-off period
of 6 ± 1 clocks13. A 100% network yield was assumed. The routing algorithms used in the
simulation are explained in appendix C.

13 Approximately one quarter the average message length: an estimate based on the assumption that, on
average, a collision will occur when a connection is half constructed, being blocked by another connection
which is half way through its transmission.

116

5.6. CHERUB PERFORMANCE SIMULATION

T i m e T o M a k e C o n n e c t i o n (n s)

Figure 5.21: The Effect of Routing Algorithms 1-4 on the Time to Make a New Connection

The graphs show that only routing algorithm eight is able to achieve a connection latency
below 280 ns in a network loaded with 40 connections. It should be noted that the shapes
of the curves indicate that the communications network is being pushed to its limits, and
is on the brink of thrashing. This is not unreasonable, however, as it is always desirable
to employ the smallest level of granularity that the communications network is able to
support.
Load simulations of routing algorithm eight on Cherub wafers with different communica-
tion network yields produced the results shown in figure 5.23. Once again, a constant
back-off period of 6 ± 1 network clocks was employed upon collisions.

The graph shows that the yield of the communications network dramatically affects its
performance. In general, the higher a network’s communications yield, the lower its con-
nection latency will be; communication bottlenecks occur where connections are routed
around defects. Very high yields indeed are required, certainly above 90%, if Cherub’s
network is to achieve the desired latency. Due to the in-built redundancy of the proposed
double bus system and the planned use of conservative 0.4 micron fabrication technology,
it is expected that such a yield can be achieved.

117

CHAPTER 5. A WAFER-SCALE COMMUNICATIONS NETWORK

T i m e T o M a k e C o n n e c t i o n (n s)

A l g o r i t h m 5

A l g o r i t h m 6

A l g o r i t h m 7

A l g o r i t h m 8

E x i s t i n g C o n n e c t i o n s

Figure 5.22: The Effect of Routing Algorithms 5-8 on the Time to Make a New Connection

5.7 C onclusion

This chapter examined the requirements of the Cherub communications network. It was
asserted that the level of performance required could only be achieved through the use of
techniques such as wafer scale integration.

The COBWEB architecture was examined. This allows processors to be combined with
a packet-switched communications network though the use of whole wafer integration.
The architecture achieves high performance, but suffers from the inability to combine
state-of-the-art processor and memory technologies. In addition, packet-switching allows
unordered and interspersed packet delivery.
It was decided that a large hybrid wafer-scale network would provide both the level of
performance and the ability to combine the different VLSI technologies required. The
wafer would employ a double channel circuit-switched communications network with a
torus-like topology. This would have the benefits of a low connection latency, a high data
bandwidth and simple communication semantics.
As the processor’s primary and secondary caches would be large enough to make main
memory accesses relatively infrequent, it was decided to provide DRAM on a separate
wafer. This helps minimise the size of the Cherub wafer, thus reducing the network
diameter and minimising connection latency.

The proposed network was simulated and found to be able to provide the level of perfor-

118

5.7. CONCLUSION

Figure 5.23: Effect of Network Yield on Connection Latency

mance required, given that a network yield in excess of 90% could be achieved. It was
asserted that the fault tolerant design of Cherub’s network would make this possible.

119

CHAPTER 5. WAFER-SCALE COMMUNICATIONS NETWORK

120

Chapter 6

Conclusion

6.1 T he Thesis

Typically, most parallel architectures are either multiprocessors — which are able to sup-
port a few fine-grained (103 instructions) parallel tasks — or multicomputers — which can
support hundreds of coarse-grained (105 instructions) ones; there is currently no middle
ground.
The thesis of this dissertation asserted that there is a significant number of applications
for which a new type of parallel architecture is desirable. Ideally, this will combine:

• a medium granularity (104 instructions) of processing;

• provision for up to several hundred parallel tasks; and

• the programmability of the shared variable parallel programming paradigm.

The dissertation described the design of the Cherub architecture, which has these proper-
ties, and demonstrated its usefulness with a large example, airborne early warning.

6.2 Proving the Thesis

Due to its scalability, it was decided to employ a multicomputer as the basis for the
Cherub architecture. Shared variable programming paradigms are typically implemented
on multicomputers using a mechanism called distributed shared memory. DSM potentially
offers a scalable shared memory architecture, but as the message handling latency in
multicomputers is high, DSM typically only supports coarse-grained parallelism effectively.
The latency of the intertask communication and DSM mechanisms must, therefore, be
reduced if a medium-grain of parallelism is to be supported.

121

CHAPTER 6. CONCLUSION

Intertask communication latencies are composed of two significant components:

• Software latency

• Overall network latency (a combination of its latency and bandwidth)

The dissertation, therefore, suggested the combination of two approaches for reducing
communication latency:

• Im plem enting Intertask Communication Mechanisms in Hardware

A significant proportion of the intertask communication latency is due to the software
used to implement the mechanisms. This can be reduced by implementing them
in hardware. Unfortunately, in conventional operating systems these mechanisms
are very complex and, hence, are difficult to implement in hardware. They must,
therefore, be simplified.
The dissertation suggested that the intertask communication mechanisms can be
simplified by combining a hardware distributed shared memory (HDSM) with a
single shared address space (SSAS). The dissertation showed how this combination
allows the unification of many traditional operating system mechanisms.
The dissertation described the design of an operating system which provides a single
64-bit address space, called the Object Space, which is shared by all of the pro-
cesses. Objects are fixed size regions within the Object Space which are accessed
like conventional memory. Objects have the following properties:

— An object is named by an unique globaLname, which is its start address wdthin
the Object Space.

— Objects can have differing access semantics. The dissertation demonstrated
that only six types of object (memory, process, sleep-wakeup, semaphore, ren-
dezvous and hardware) need to be supported to provide the functionality of a
traditional operating system. As a consequence of this unification, only three
system calls (create-object, destroy-object and object-info) are needed to admin-
ister the Object Space.

— Memory objects only support strong data coherence, because of its well un-
derstood programming semantics. However, as this coherence scheme can of-
ten perform unnecessary work, the architecture provides special instructions
(busy-read, busy-read-write, idle and finish) which allow the programmer to
give clues to the memory system about intended future data use. The thesis
shows how careful use of these instructions allows the latency of the process
life-cycle to be significantly reduced.

— The dissertation suggested that objects can be protected by passwords called
capabilities. Each object has three capabilities (read, write and execute). Each
process has a number of protection-domain-registers. An object can only be
accessed after its details — its global-name and the appropriate capabilities
— have been loaded into one of these registers. It is thought that 64 protec-
tion-domain-registers per process will be sufficient for most applications.

122

6.3. CONTRIBUTION TO KNOWLEDGE

The dissertation implemented the object and system call mechanisms on paper to
show that they are simple enough to be constructed in hardware. This also allowed
the performance required from the underlying network to be determined.

• Improving the Latency and Bandwidth o f the Underlying Network
Current state-of-the-art networks, typically fibre optics based, can provide high
bandwidth communications, but appropriately low latency switching elements are
not available. The dissertation, therefore, suggested constructing a network using
wafer-scale integration. It is asserted that such a network will be able to combine
low latency switching circuitry with wide, and hence high-bandwidth, data paths.
The dissertation suggested that circuit switched routing be employed in the net-
work, because of its high guaranteed bandwidth. A new technique is proposed for
the construction of very wide circuit switched communications networks using hy-
brid wafer-scale integration. The main limitation in such a network is the physical
constraint of the fine rise time across the network.
Simulations were used to show that, provided that the network yield exceeds 90%,
a sufficiently low connection latency can be achieved. It was asserted that the fault
tolerant design of Cherub’s network would make this possible.

6.3 Contribution to K nowledge

This dissertation has made two significant contributions to computer science:

• It has designed a new HDSSASMA based operating system which is simple enough
to be implemented in hardware, yet sufficiently comprehensive to provide all of the
functionality of a conventional operating system like UNIX.

• It has proposed a new wafer-scale integration technique which allows the construc-
tion of very wide circuit switched networks.

6.4 Future Work

Two main ways forward can be envisaged:

• Implementing Cherub’s Operating System
The Cherub operating system could be constructed in hardware to prove that it
is easy to implement. A Cherub cache controller can be prototyped in a repro-
grammable device such a Xilinx programmable gate array (PGA) [Xil91]. A pro-
cessor which can support an external secondary cache controller, such as the DEC
Alpha [Dig92], is therefore required.

• Implementing Cherub’s Communications Network
Unfortunately, it is not realistic to expect to be able to implement the proposed
wafer-scale integrated network. This needs the backing of a commercial sponsor

123

CHAPTER 6. CONCLUSION

with wafer fabrication facilities. However, fibre optics technology could be used to
construct a network with the required communications bandwidth, if not the latency.
The communication elements could be prototyped using Xilinx programmable gate
arrays [Xil91] and connected by optical fibres with gallium-arsenide driving circuitry.
The network requirements derived in section 4.5 can be used to estimate the process
granularity that can be supported by such a network. For example, if the fibre optic
network has a bandwidth of 1-Gbit per second and a connection latency of 1 /xs,
then:

134A + 84C + 25, 584T < (g ■ In 2 - 550)/

Given that:
I = Time to execute an instruction = (say) 10 ns;
A = Time to access a cache line = (say) 5 ns;
C — Time to make a network connection = 1,000 ns; and
T = Time to transfer one byte = 8 ns (» 1 bit per ns)

Rearranging this gives:

g % 42,000

Thus, such a network is able to support a process granularity of around 42,000
instructions.

6.5 Concluding Remarks

In one way, the designers of parallel computers have been fighting against the flow of tech-
nology, for the performance of processors has improved much faster then that of networks.
With the growing popularity of fibre optics networks, communications technology is now
approaching the limitations imposed by the speed of light. As a consequence, the optimal
granularity of parallel processing can only be expected to increase with time.
In addressing a related problem, this dissertation has suggested a number of techniques
which can reduce the overall latency of intertask communication. It is asserted that the
use of such techniques will become commonplace as the limits of network technology are
approached.

124

Bibliography

[Acc86] Accetta M. et al. “MACH: A New Kernel Foundation for UNIX Development” .
In Proceedings of the Summer USENIX Technical Conference, pages 64-75, June
1986.

[Ahu88] Ahuja S. et al. “Matching Language and Hardware for Parallel Computation in
the Linda Machine” . IEEE Transactions on Computers. Voi. 37, No. 8, pages
921-929, August 1988.

[And89] Anderson P. et al. “Wafer Disk: A New Systems Architecture Component” .
Technical Report, Department of Computer Science, City University, April 1989.

[And90a] Anderson P. Computer Architecture for WSI. PhD thesis, Department of Com-
puter Science; City University, December 1990.

[And90b] Anderson P. et al. “The Feasibility of a General-purpose Parallel Computer
using WSI”. Technical Report, Computer Science Department; City University,
1990.

[And91a] Anderson M. “RAID 5 architecture provides economical failsafe disk storage”.
EDN (USA), 36(12):141—143, 6 June 1991.

[And91b] Anderson P. et al. “Implementation of Paragon Specifications”. Technical Re-
port, City University, 1991.

[Ano89] Anonymous. “Whole stack, not wafer-thin”. Workstation, page 8, December
1989.

[Arm86] Armand F. et al. “Towards a Distributed UNIX System - The Chorus Ap-
proach”. In Proceedings of the EUUG Autumn Conference, pages 413-431, Au-
tumn 1986.

[Aub78] Aubusson R. & Catt I. “Wafer-Scale Integration - A Fault-Tolerant Proce-
dure”. IEEE Journal of Solid State Circuits; Voi. SC-13, June 1978.

[Aub91] Aubusson R.C. “Wafer-Scale Integration - An International Perspective”. In
Computing and Control Division Colloquium on Wafer Scale Integration, pages
1/1—1/4, 1991.

[Bac86] Bach M.J. The Design of the UNIX Operating System. Prentice-Hall Interna-
tional Editions, 1986.

125

BIBLIOGRAPHY

[Bac88a] Bach M.J. & Gomes R. “Measuring File System Activity in the UNIX System”.
In Proceedings of the Spring EUUG Conference, pages 43-52, 1988.

[Bac88b] Bache R.A.C. et al. “Bond design and alignment in flip chip solder bonding”.
In Proceedings of 8th IEPS Conference, 1988.

[Bar86] Barak A. & Paradise O.G. “MOS - A Load-Balancing UNIX”. In Proceedings
of EUUG Autumn Conference, pages 273-280, 1986.

[bbn86] “Butterfly Parallel Processor Overview”. Technical Report, BBN Laboratories,
June 1986.

[Bel88] Bell M. & Clarke B. “Research into Air Traffic Tools”. Technical Report,
Cambridge Consultants Ltd, February 15th 1988.

[Bel92] Bell G. “Ultracomputers: A Teraflop Before its Time”. Communications of the
ACM, 35(8):27-47,1992.

[Ben90] Bennet J.K. et al. “Adaptive Software Cache Management for Distributed
Shared Memory Architectures” . IEEE Ch2887 8/90/000/0125, 1990.

[Ber88] Bernabeu-Auban et al. “Clouds - A Distributed, Object Based Operating Sys-
tem Architecture and Kernel Implementation”. In Proceedings of the EUUG
Autumn Conference, pages 25-37, October 1988.

[Ber91] Bernard G. “A Decentralised and Efficient Algorithm for Load Sharing in Net-
works of Workstations”. In Proceedings of EurOpen Spring Conference, pages
139-148, 1991.

[Bis90] Bisiani R. & Ravishankar M. “PLUS: A Distributed Shared-Memory System”.
17th Annual International Symposium On Computer Architecture, 1990.

[Bol] Bolosky W.J. & Scott M.L. “A Trace-Based Comparison of Shared Memory
Multiprocessors using Optimal Off-Line Analysis” . Technical Report, Depart-
ment of Computer Science; University of Rochester.

[Bor88] Borrmann L. et al. “Tuple Space Integrated into Modula-2: Implementation of
the Linda Concept in a Hierarchical Multiprocessor. English translation from
German”. In Proceedings 10. GI/ITG-Fachtagung Architektur und Betrieb von
Rechensystemen; Paderborn;, March 1988.

[Bor90] Borg A. et al. “Generation and Analysis of Very Long Address Traces”. In Pro-
ceedings of the 17th Annual International Symposium on Computer Architecture
(Cat. No.90CH2887-8), pages 270-279, 1990.

[Bro82] Brookner E. “Developments in Digital Radar Processing”. Trends and Perspec-
tives in Signal Processing, pages 7-23, January 1982.

[Bug90] Bugge H.O. et al. “Trace-Driven Simulations For a Two-Level Cache Design of
Open Bus Systems”. In Proceedings of the 17th Annual International Symposium
on Computer Architecture (Cat. No.90CH2887-8), pages 250-259, 1990.

126

BIBLIOGRAPHY

[Bur92] Burkhardt H. III. “Announcing the KSR1 Supercomputer” . Press Release:
comp.arch newsgroup, Feb 1992.

[Cam87] Campbell R. et al. “Choices (Class Hierarchical Open Interface for Custom
Embedded Systems)”. Operating Systems Review, 21(3):9—17, July 1987.

[Car86a] Carlson R.O. & Neugebauer C.A. “Future Trends in Wafer Scale Integration”.
In Proceedings of the IEEE; Voi 74, No. 12, pages 1741-1752, December 1986.

[Car86b] Carriero N. & Gelernter D. “The S/N et’s Linda Kernel” . ACM Transactions
on Computer Systems, Voi. 4, No. 2, pages 110-129, May 1986.

[Car86c] Carrington T. “Nimrod Lasted Despite Problems, Say the U.S. Proponents of
AWACS”. The Wall Street Journal (W SJ861218-0045), 18th December 1986.

[Car89] Carriero N. & Gelernter D. “How to Write Parallel Programs: A Guide to the
Perplexed”. ACM Computing Surveys; Voi. 21, No.3, pages 323-357, September
1989.

[Cat89] Catt I. “The Kernel Logic Machine” . Electronics and Wireless World, pages
254-295, March 1989.

[Cat91] Catt I. “From Spiral to Kernel”. IEE Computing and Control Division Collo-
quium on Wafer Scale Integration, pages 5/1-5/3, Tuesday 28th May 1991.

[Cha] Chaves E.M. Jr. et al. “Kernel-Kernel Communication in a Shared-Memory
Multiprocessor” . Technical Report, Department of Computer Science; Univer-
sity of Rochester.

[Cha92a] Chase J.S. et al. “How to Use a 64-Bit Virtual Address Space”. Technical Report
92-03-02, Department of Computer Science and Engineering; Univerisity of
Washington, March 1992.

[Cha92b] Chase J.S. et al. “Lightweight Shared Objects in a 64-Bit Operating System”.
Technical Report 92-03-09, Department of Computer Science and Engineering;
Univerisity of Washington, March 1992.

[Che87] Chesley G. “Addressable WSI: A non-redundant approach”. Computer Archi-
tecture News; Voi. 15, No. 1, pages 73-80, March 1987.

[Che88a] Cheriton D.R. “The V Distributed System”. Communications of the ACM,
31(3):314—333, March 1988.

[Che88b] Chesley G. “Comment on ‘Future Trends in Wafer Scale Integration’” . In
Proceedings of the IEEE; Voi. 76, No. 3, pages 283-284, March 1988.

[Cli76] Cline H.E. & Anthony T.R. “Thermomigration of Aluminium-Rich Liquid
Wires Through Silicon”. Journal of Applied Physics, 47:2332-2336, 1976.

[Cor65] Corbato F.J. & Vyssotsky V.A. “Introduction and Overview of the MULTICS
System”. In Proceedings of AFIPS Fall Joint Computer Conference, pages 185—
196,1965.

127

BIBLIOGRAPHY

[Cun90]

[Cur89]

[Dal87]

[Dal89]

[Das88]

[Del69]

[Del86a]

[Del86b]

[Del88a]

[Del88b]

[Die89]

[Dig92]

[Dij65]

[Don91]

Cunningham J.A. “The Use and Evaluation of Yield Models in Integrated
Circuit Manufacturing”. IEEE Transactions On Semiconductor Manufacturing;
Vol. 3, No. 2, pages 60-71, May 1990.

Curran L. “Wafer-scale integration arrives in ‘disk’ form”. Electronic Design;
Vol. 37, No. 22, pages 51-54, October 1989.

Dally W.J. “A VLSI Architecture for Concurrent Data Structures” . Mas-
sachusetts Institute of Technology; Kluwer Academic Publishers, pages 137-143,
1987.

Dally W. et al. The J-Machine: A Fine-Grain Concurrent Computer, pages
1147-1153. Elsevier, 1989.

Dasgupta P. et al. “The Clouds Distributed Operating System: Functional
Description, Implementation Details and Related Work”. In International Con-
ference on Distributed Computing Systems, IEEE, 1988.

Delong D.F. & Hofsletter E.M. “The Design of Clutter-Resistant Radar Wave-
form with Limited Dynamic Range“. IEEE Transactions on Information The-
ory; IT-15(3), pages 376-385, 1969.

Delp G. & Farber D. “MemNet: An Experiment on High-Speed Mem-
ory Mapped Network Interface” . Technical Report 85—11—1R, University of
Delaware; Computer Science Department, 1986.

Delp G. & Farber D. “MemNet: An Experiment on High-Speed Memory
Mapped Network Interface”. Technical Report 85-11-1R, Computer Science
Department; University of Delaware, 1986.

Delp G. The Architecture and Implementation of MemNet: A High Speed
Shared Memory Computer Communication Network. PhD thesis, University
of Delaware; Computer Science Department, 1988.

Delp G. The Architecture and Implementation of MemNet: A High Speed
Shared Memory Computer Communication Network. PhD thesis, University
of Delaware; Computer Science Department, 1988.

Diepers, H. “Key-parameters of vertical magnetic recording”. In Proceedings
of VLSI and Computer Peripherals - VLSI and Microelectronic Applications in
Intelligent Peripherals and their Interconnection Networks (Cat. No.89CH270\-
5), pages 1/79-84, 1989.

Digital Equipment Corporation. Alpha Architecture Handbook, 1992.

Dijkstra E.W. “Co-operating Sequential Processes”. Programming Languages;
Genuys, F. (ed.). London: Academic Press, 1965.

Dongarra J.J & Duffl.S. “Advanced Architecture Computers” . Technical Re-
port, 1st Mathematics & Computer Science Division; Argonne National Labo-
ratory, 1991.

128

BIBLIOGRAPHY

[Dou89]

[Eag84]

[Far85]

[Fel79]

[Fel89]

[fib92]

[Fis73]

[Fle89a]

[Fle89b]

[Fly66]

[For89]

[Fow86]

[Gel89]

[Geo90]

[Gib89]

[Gin90]

Douglas F. “Experience with Process Migration in Sprite” . In Proceedings of
USENIX Workshop on Distributed and Multiprocessor Systems, pages 59-72,
1989.

Eager D.L. et al. “Dynamic Load Sharing in Homogeneous Distributed Sys-
tems”. Technical Report, University of Washington, October 1984.

Farina A. & Studer F.A. Radar Data Processing ; Volume 1 - Introduction and
Tracking. Research Studies Press Ltd, 1985.

Feldman S. “Make - A Program for Maintaining Computer Programs” . Software
- Practice and Experience, April 1979.

Feldman S. & Brown C. “IGOR: A System for Program Debugging via Re-
versible Execution”. In ACM SIGPLAN/SIGOPS: Proceedings of the Workshop
on Parallel and Distributed Debugging, May 1988, volume 24, number 1, pages
112-123, January 1989.

“Fibre Channel: Physical and Signaling Interface (FC-PH)”. Technical Report,
American National Standard for Information Systems, June 1992.

Fishman G.S. Concepts and Methods in Discrete Event Digital Simulation. John
Wiley and Sons, Inc., 1973.

Fleisch B.D. “Distributed Shared Memory in a Loosely Coupled Environment” .
University of California, Los Angeles, July 1989.

Fleisch B.D & Popek G.J. “Mirage: A Coherent Distributed Shared Memory
Design”. Operating Systems Review, December 1989.

Flynn M.J. “Very High-Speed Computing Systems”. Proceedings of the IEEE,
54:1901-1909,1966.

Forin A. et al. “The Shared Memory Server” . In Proceedings of the Winter
USENIX Technical Conference, pages 229-243, 1989.

Fowler R.J. Decentralised Object Finding Using Forwarding Addresses. PhD
thesis, University of Washington; Department of Computer Science and Engi-
neering, 1986.

Gelernter D. “Multiple Tuple Spaces In Linda”. Lecture Notes in Computer
Science; Parallel Architecture and Languages; Europe, pages 20-27, 1989.

Georgescu I. “Communication in Parallel Processing Systems” . Studies and
Researches in Computers and Informatics; Vol. 1; No. 1, March 1990.

Gibson G.A. et al. “Failure Correction Techniques For Large Disk Arrays”. In
Proceedings of the 16th Annual International Symposium on Computer Archi-
tecture (Cat. No.89CH2705-2), pages 123-132, April 1989.

Ginosar R. & Mitchell N. “On the Potential of Asynchronous Pipelined Pro-
cessors”. Technical Report, VLSI Systems Research Group, Department of
Computer Science, University of Utah, March 1990.

129

BIBLIOGRAPHY

[Gna89] Gnadinger F.P. “High speed nonvolatile memories employing ferroelectric tech-
nology”. In Proceedings of VLSI and Computer Peripherals. VLSI and Mi-
croelectronic Applications in Intelligent Peripherals and their Interconnection
Networks (Cat. No.89CH270f-5), pages 1/20-23, 1989.

[Gol83] Goldman L.S. Sz Totta P.A. “Area array solder connections for VLSI” . Solid
State Technology, 1983.

[Gri84] Grindberg J. et al. “A Cellular VLSI Architecture” . IEEE Computer, pages
69-81,1984.

[Gri91] Grimshaw A.S. & Vivas V.E. “FALCON: A Distributed Scheduler for MIMD
Architectures” . In Symposium on Experiences with Distributed and Multipro-
cessors Systems, pages 149-164, 1991.

[Gui82] Guillemont M. “The CHORUS Distributed Operating System: Design and Im-
plementation”. In ACM International Symposium on Local Computer Networks,
pages 207-223, April 1982.

[Gul88] Gull A. “STIX: A Port of The MINIX Operating System to the Atari ST”.
Undergraduate Thesis, 1988.

[Gul89] Gull A. “Memory Management Hardware: Panacea or Pain”. In EUUG Spring
Conference ’89, pages 217-221, April 1989.

[Gul91] Gull A. “Using A Wafer-Scale Component to Create an Efficient Distributed
Shared Memory”. In EurOpen Autumn 1991 Conference Proceedings, 1991.

[Gun90] Gunston B. Avionics: The Story and Technology of Aviation Electronics. Patrick
Stephens Ltd, 1990.

[Gup88] Gupta U. “Who’s News: Gene Amdahl Can’t Stop Tilting at IBM”. Wall Street
Journal, 7th June 1988.

[Hag91a] Hagersten E. et al. “DDM — A Cache-Only Memory Architecture”. Technical
Report, SICS Research Report R91:19, November 1991.

[Hag91b] Hagersten E. et al. “A Performance Study of the DDM — A Cache-Only Mem-
ory Architecture”. Technical Report, Swedish Institute of Computer Science;
Report R91:17, Submitted to ISCA92, 1991.

[Hag92] Hagersten E. Towards Scalable Cache Only Memory Architectures. PhD thesis,
The Royal Institute of Technology (KTH), Stockholm, Sweden, October 1992.

[Hen90] Hennessy J.L. & Patterson D.A. “Computer Architecture: A Quantitative Ap-
proach”. Morgan Kaufmann Publishers, Inc., Front sheet, 1990.

[Her88] Herrmann F. et al. “CHORUS, a New Technology for Building UNIX Systems”.
In Proceedings of the EUUG Autumn Conference, pages 1-18, Autumn 1988.

[Hes90] Hesse J. “Development trends in nonvolatile semiconductor memories ’. Radio
Fernsehen Elektron (East Germany), 39(8):495—498, 1990.

130

BIBLIOGRAPHY

[Hew90] Hewlett-Packard Company. PA-RISC 1.1 Architecture and Instruction Set:
Reference Manual, November 1990.

[H1192] Hill M.D. et al. “Cooperative Shared Memory: Software and Hardware for
Scalable Multiprocessors” . In Proceedings of Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS V), To appear (October 1992).

[hit90] “HT2 Hitachi Technology Transfer” . Product Release Information; Hitachi Eu-
rope Ltd, 1990.

[Hoa74] Hoare C.A.R. “Monitors, An Operating System Structuring Concept” . Com-
munications of the ACM; Voi. 17, pages 549-557, Oct 1974. Erratum in Com-
munications of the ACM; Voi. 18; p. 95; Feb 1975.

[Hof63] Hofstein S. & Heiman F. “The Silicon Insulated-Gate Field-Effect Transistor” .
In Proceedings of the IEEE 51(9), pages 1190-1202, September 1963.

[Hör] Horwat W. et al. “COSMOS: An Operating System for a Fine-Grain Concurrent
Computer” . Technical Report, Massachusetts Institute of Technology.

[Int86] Intel Corporation. 80386 Programmer’s Reference Manual, 1986.

[Jac89] Jacqmot C. & Milgrom E. “UNIX and Load Balancing: a Survey”. In Proceed-
ings of the EUUG, pages 1-15, Spring 1989.

[Jam86] James Q. Arnold. “Shared Libraries on UNIX System V” . In Proceedings of the
USENIX Association, 1986.

[Jef90] Jeffery B. “IBM’s RS/6000-a strategic report” . Comput. Econ. Rep. (USA),
12(5): 1—4, May 1990.

[Jul87] Jul E. et al. “Fine-Grained Mobility in the Emerald System”. Proceedings of
the 11th ACM Symposium on Operating System Principles; Operating Systems
Review, 21(5):105—106, November 1987.

[Kil61] Kilburn et al. “The Manchester University Atlas Operating System Part 1:
Internal Organization”. Computer Journal, 4(3):222-225, October 1961.

[Kil62] Kilburn et al. “One-Level Storage System”. IEEE Transactions on Electronic
Computers, EC-ll(2):223-235, April 1962.

[Kil85] Killian T.J. “Processes as Files”. Technical Report, Bell Laboratories, March
1985.

[Kim86] Kim M.Y. “Synchronised Disk Interleaving”. IEEE Transactions On Comput-
ers, C-35(ll):978-988, November 1986.

[Kin90] King R.P. “Disk arm movement in anticipation of future requests” . ACM
Transactions Computer Systems (USA), 8(3):214-229, August 1990.

[Kru89] Krueger S. “Are 32 Bits Enough?”. BYTE, November 1989.

131

BIBLIOGRAPHY

[Lah90]

[LeB89]

[Lee89]

[Lef89]

[Len90]

[Len92]

[Li 86]

[Li 89]

[Lin86]

[Mad90]

[Mar]

[Mar86]

[Mar89]

[Mas89]

[Mas91a]

[Mas91b]

Lahti W. & McCarron D. “Store data in a flash (flash-memory ICs)” . BYTE
(USA), 15(12):311—13, 315, 317, 318, November 1990.

LeBlanc T.J. et al. “Memory Management For Large-Scale NUMA Multipro-
cessors” . Technical Report, Department of Computer Science; University of
Rochester, March 1989.

Lee R.B. “Precision Architecture”. IEEE Computer, pages 78-91, January
1989.

Leffler et. al. The Design and Implementation of the 4-3BSD UNIX Operating
System. Addison-Wesley Publishing Company, 1989.

Lenoski D. et al. “The Directory-Based Cache Coherence Protocol for the Dash
Multiprocessor” . In Proceedings of 17th International Symposium on Computer
Architecture, pages 148-159, 1990.

Lenoski D. et al. “The Stanford Dash Multiprocessor” . Computer, pages 63-79,
March 1992.

Li K. Shared Virtual Memory on Loosely Coupled Multiprocessors. PhD thesis,
Yale University; Department of Computer Science, 1986.

Li K. & Hudak P. “Memory Coherence In Shared Virtual Memory Systems”.
ACM Transactions on Computer Systems, 7(4):321-359, November 1989.

Lin F.C.I1. & Keller R.M. “Gradient Model: A Demand-driven Load Balancing
Scheme”. In Proceedings of International Conference on Distributed Computing
Systems, pages 329-336, 1986.

Madni, A.M. “Digitally Programmable Voltage-to-frequency Converter” . In
1990 IEEE Aerospace Applications Conference Digest (Cat. No.90TH0223-8),
IEEE , pages 171-9, 1990.

Marsh B.D. et al. “First-Class User-Level Threads” . Technical Report, De-
partment of Computer Science; University of Rochester.

Marcom J. “Britain Picks Boeing’s Plane Over Nimrod - AWACS Order of Si.4
Billion Ends What Officials Calls ‘sad story’ of GEC craft” . The Wall Street
Journal (WSJ861219-0105), 19th December 1986.

Martin A.J. et al. “The First Asynchronous Microprocessor: The Test Re-
sults” . Technical Report, Department of Computer Science, California Institute
of Technology, April 1989.

Massalin H. & Pu C. “Threads and Input/Output in the Synthesis Kernel” .
In Proceedings of the 12th ACM Symposium on Operating Systems Principles,
volume 21, number 5, pages 191-201, December 1989.

Mashey J.R. “64-bit Computing” . BYTE, September 1991.

Masuoka F. et al. “Review and prospects of non-volatile semiconductor mem-
ories” . IEICE Trans. (Japan), 74(4):868-74, 1991.

132

BIBLIOGRAPHY

[Mel91] Mellor-Crummey J.M. fe Scott M.L. “Algorithms for Scalable Synchronisation
on Shared Memory Multiprocessors” . ACM Transactions on Computer Systems,
9(1):21—65, February 1991.

[Mey88] Meyer A. “Direct Mapped Files” . In Proceedings of the Spring EUUG Confer-
ence, pages 231-236, 1988.

[Mik83] Mike Hirst. Airborne Early Warning: Design, development and operations.
Osprey Publishing Limited, 1983.

[Mil69] Miller L.F. “Controlled collapse reflow chip joining”. IBM J.Res.Develop, May
1969.

[MIP] MIPS Computer Systems Inc. User’s Manual Hardware; RISC Microprocessors
Vfi4000 / Vr 3600 MIPS RISC Architecture.

[Mit89] Mitchell P. et al. “Latency the block to speed (disk drives)” . Computer Systems
Europe (UK), 9(11):51, November 1989.

[Moa90] Moazzami R. et al. “A ferroelectric DRAM cell for high-density NVRAMs”.
IEEE Electron Device Lett. (USA), ll(10):454-456, October 1990.

[Moo70] Moore G. “What Level of LSI is Best for You?” . Electronics 43(4), pages
126-130, February 16, 1970.

[Mul91] Mullender S.J. “Experiences with Amoeba” . In Proceedings of EurOpen Spring
Conference, pages 1-11, 1991.

[Ni 85] Ni L.M. et al. “A Distributed Drafting Algorithm for Load Balancing”. IEEE
Transactions on Software Engineering, SE— 11 (10): 1153—1161, October 1985.

[01s89] Olson T.M. “Disk Array Performance In A Random I/O Environment” . Com-
puter Architecture News, pages 71-77, September 1989.

[Ore78] Oren T.I. “Concepts for Advanced Computer Assisted Modelling”. In Pro-
ceedings of Symposium on Modelling and Simulation Methodology, pages 29-55,
1978.

[Pat88] Patterson D.A. et al. “A Case For Redundant Arrays Of Inexpensive Disks
(RAID)”. In Proceedings of ACM SIGMOD 88, pages 109-116, June 1988.

[Pin89] Ping-Hui K. “Support of the ISO-9660/HSG CD-ROM File System in H P-
UX”. In Proceedings of the USENIX Association, pages 189-202, Summer 1989.

[Pru86] Prucnal P.R. et al. “Integrated Fibre-optic Coupler for very Large Scale Inte-
gration Interconnects” . Optics Letts, 11:109-111, 1986.

[Prz90] Przybylski S. “The performance impact of block sizes and fetch strategies” . In
Proceedings of the 17th Annual International Symposium on Computer Archi-
tecture (Cat. No.90CH2887-8), pages 160-169, 1990.

[Pu 88] Pu C. et al. “The Synthesis Kernel” . Computing Systems, 1 (1): 11—27, Winter
1988.

133

BIBLIOGRAPHY

[Red80]

[Ric89]

[Rob 7 7]

[Rob92]

[Ron90]

[Ros86]

[Ros89]

[Sca87]

[Scoa]

[Scob]

[Sco89a]

[Sco89b]

[Sel90]

[seq87]

[Sho88]

[Sin92]

[Sle91]

Redel D. et al. “Pilot: An Operating System for a Personal Computer” . Com-
munications of the ACM, 23(2), February 1980.

Richard Stevens W. “Heuristics for Disk Positioning in 4.3 BSD”. Computing
Systems, 2(3):251-274, Summer 1989.

Roberts J.B.G. et al. “A New Approach to Pulse Doppler Processing”. In
Radar-77 International Conference, October 1977.

Robertson et al. “Okapi at TREC”. Technical Report, Department of Informa-
tion Science; City University, December 1992.

Ronnau U. “Massive storage”. Personal Computing (West Germany), (4):18-
20, 22, April 1990.

Roscoe A.W. & Dathi N. “The Pursuit of Deadlock Freedom”. PRG-57, Oxford
University PRG, 1986.

Rosenthal D.S.H. “More Haste, Less Speed”. In EUUG Spring Conference ’89,
pages 123-130, April 1989.

Scanlan M.J.B. Modern Radar Techniques. Collins, 1987.

Scott M.L. et al. “Implementation Issues for the Psyche Multiprocessor Oper-
ating System”. Technical Report, Department of Computer Science; University
of Rochester.

Scott M.L. et al. “Multi-Model Parallel Programming in Psyche”. Technical
Report, Department of Computer Science; University of Rochester.

Scott M.L. et al. “A Multi-User, Multi-Language Open Operating System (ex-
tended abstract)” . Technical Report, Department of Computer Science; Uni-
versity of Rochester, April 1989.

Scott M.L. et al. “Evolution of an Operating System for Large-Scale Shared-
Memory Multiprocessors”. Technical Report, Department of Computer Science;
University of Rochester, March 1989.

Seltzer M. et al. “Disk scheduling revisited”. In Proceedings of the Winter 1990
USENIX Conference, USENIX, pages 313-324, Winter 1990.

Symmetry Technical Summary, 1003-44447 Rev. A; edition, 1987.

Short R.T. & Levy H.M. “A Simulation Study of Two-Level Caches”. In Pro-
ceedings of the 15th Annual International Symposium on Computer Architecture
(Cat. No.88CH2545-2), pages 81-88, 1988.

Singh J.P. et al. “SPLASH: Stanford Parallel Applications for Shared Memory”.
Computer Architecture News, 20(l):5-44, March 1992.

Sleat P.M. A Static, Transaction Based Design Methodology for Hard Real-
Time Systems. PhD thesis, Department of Computer Science; City University,
1991.

134

BIBLIOGRAPHY

[Sta81]

[Sta83]

[Sta84]

[Sti92]

[Sun89]

[Swi86]

[Tam67]

[Tam90]

[Tei84]

[Tev87a]

[Tev87b]

[Tew89]

[Van90]

[Wal60]

[Wan89]

Stapper C.H. “Comments on ‘Some Considerations in the Formulation of IC
Yield Statistics’” . Solid-State Electronics 24, pages 127-132, February 1981.

Stapper C.H. et al. “Integrated Circuit Yield Statistics” . In Proceedings of the
IEEE; Vol. 71, No. 4, pages 453-470, April 1983.

Stankovic J.A. & Sidhu I.S. “An Adaptive Bidding Algorithm for Processes,
Clusters and Distributed Groups” . In Fourth International Conference on Dis-
tributed Computing Systems, pages 49-59, 1984.

Stiemerling T. “ANGEL Object Space and Virtual Memory Management” .
Technical Report, Computer Science Department; City University, 1992.

Sundaram G.S. “DRFMs: A Leap Forward For Electronic Warfare”. Int. Def.
Rev. (Switzerland), suppl., pages 138-9, September 1989.

Swinehart D.C. et al. “A Structural View of the Cedar Programming Environ-
ment” . ACM Transactions on Programming Languages and Systems, 8(4):419-
490, October 1986.

Tammaru E. & Angell J.B. “Redundancy for LSI yield enhancement” . IEEE
Journal Solid State Circuits; Vol. SC-2, pages 172-182, December 1967.

Tam M.C. & Farber D. “CapNet - An Approach to Ultra High Speed Net-
works” . In IEEE International Conference on Communications ICC ’90 Cat.
No.90CH2829-0), pages 955-961, 1990.

Teitelman W. “A Tour Through Cedar” . In Proceedings of 7th International
Conference on Software Engineering, March 1984.

Tevanian A. & Rashid R.F. “MACH: A Basis for Future UNIX Development” .
Technical Report, Department of Computer Science; Carnegie Mellon Univer-
sity, June 1987.

Tevanian A. et al. “A Unix Interface for Shared Memory and Memory Mapped
Files under Mach”. Technical Report, Department of Computer Science;
Carnegie-Mellon University, 1987.

Tewksbury S.K. Wafer-Level Integrated Systems: Implementation Issues.
Kluwer Academic Publishers, 1989.

Van De Goor A.J. & Verruijt C.A. “An Overview of Deterministic Functional
RAM chip Testing”. ACM Computing Surveys; Vol. 22, N o.l, pages 5-33,
March 1990.

Wallmark J. “Design Considerations for Integrated Electronic Devices”. In
Proceedings of the IRE 48(3), pages 293-300, March 1960.

Wang W.H. et al. “Organization and Performance of a two-Level Virtual-Real
Cache Hierarchy”. In Proceedings of the 16th Annual International Symposium
on Computer Architecture (Cat. No.89CH2705-2), pages 140-148, 1989.

135

BIBLIOGRAPHY

[Whi92]

[Who88]

[Wie82]

[Wil91a]

[Wil91b]

[Wil91c]

[Wil92]

[Wil93]

[Win87]

[Win88]

[Win89]

[XÜ91]

[Yok89]

[Zen88]

Whitcroft A. & Osmon P. “The CBIC: Architectural Support for Message Pass-
ing or Shared Memory?”. In Proceedings of the 8th UK Performance Engineering
Workshop; Imperial College of Science, Technology and Medicine, 21st - 22nd
September 1992.

Whobrey D. “A Communications Chip for Multiprocessors” . Technical Report,
Department of Computer Science, City University, June 1988.

Wierman J.C. “Percolation Theory”. Ann. Prob., 10:509-524, 1982.

Wilkinson et al. “A Proposal for an Object Oriented Architecture”. Technical
Report, Computer Science Department; City University, 1991.

Wilkinson T. “Combining Tested and Fault-tolerant Silicon for High Perfor-
mance Microprocessors”. Technical Report, Computer Science Department;
City University, July 1991.

Wilson P.R. “Pointer Swizzling at Page Fault Time: Efficiently Supporting
Huge Address Spaces in Standard Hardware”. ACM SIGARCH Computer Ar-
chitecture News, 19(4), June 1991.

Wilkinson et al. “ANGEL: A Proposed Multiprocessor Operating System”. In
European Workshops on Parallel Computing 92, March 1992.

Wilkinson T. Implementing Fault Tolerance in a 64~bit Distributed Operating
System. PhD thesis, Computer Science Department; City University, To be
published 1993.

Winterbottom P. “NCU: Network Control Unit. Preliminary Data Sheet” . Tech-
nical Report, Computer Science Department; City University, December 1987.

Winterbottom P. “BIC: Buffer Interface Controller. Preliminary Data Sheet” .
Technical Report, Computer Science Department; City University, February
1988.

Winterbottom P. & Osmon P. “Topsy: An Extensible UNIX Multicomputer ’.
Technical Report, Computer Science Department; City University, 1989.

Xilinx Inc. The XCfOOO Data Book, 1991.

Yokoyama S. et al. “A Contiguous High Performance File System”. In Proceed-
ings of the EUUG, pages 197-206, April 1989.

Zenith S.E. “The Simplicity of Linda”. Parallel Update; BCS Parallel Processing
Specialist Group Newsletter, pages 9-14, March 1988.

136

Appendix A

Glossary of Terms

• A m dahl’s Laws
Two frequently quoted conjectures by Gene Amdahl. The first conjecture states that
the performance improvement to be gained from an enhancement is limited by the
time it can be used:

Speedup
1

(1 F r&ctionenilanceci') + F r a c t i o n e n hanced
S peedupenhanced

The second conjecture relates the performance of a computer to its memory size and
I/O bandwidth:

A balanced computer system needs about 1 Mbyte of main memory capacity
and 1 Mbit per second I/O bandwidth per MIPS of CPU performance.

It is thought to represent a balanced system for general-purpose computing.

• Broadcast Network
A communications network which allows a message to be transmitted to a number
of destination nodes simultaneously. Such networks are inherently non-scalable.

• Cache
A high speed memory which holds recently used data. Used to increase performance.

• Cache Coherency
A mechanism to keep the contents of processor caches in agreement, so that they do
not hold different values for the same memory location.

• Cache-O nly M em ory Architecture (COM A)
A machine architecture which is based solely on a distributed shared memory.

• Capability
The right to access a particular resource in a specified manner. In Cherub capabil-
ities are implemented as passwords and are used to grant read, write and execute
permissions to objects.

137

APPENDIX A. GLOSSARY OF TERMS

• Circuit Switching
A communication routing scheme in which an electronic circuit is constructed be-
tween the source and destination nodes. Once the circuit has been made, message
transfer can take place over it. When transfer is complete, the circuit is cleared.

• Coarse—Grain Parallelism
A program in which the parallel processors communication and synchronise infre-
quently, normally only after hundreds of thousands of instructions (105).

• Cherub
A proposed implementation of a hardware distributed single shared address space
memory architecture.

• Context Switch
The process by which a processor switches execution from one task to another.
Usually performed when an executing process blocks, for example on a DSM page
fault, or its execution time quantum expires.

• Copy On W rite (COW)
A technique, often employed in operating systems, which allows one or more virtual
pages to be represented by a single physical page. When one of the virtual pages is
modified, a copy of the physical page is made and the modification is made to it.

• D ata Granularity
The unit of data shared between processes. In a distributed shared memory this is
usually a main memory page.

• D istributed M em ory M ulticomputer
A type of parallel architecture in which each processor has its own private main
memory which other processors cannot access. Typically these architectures em-
ploy non-broadcast communication networks and are, therefore, scalable to many
hundreds of processors.

• D istributed Shared Memory (DSM)
A mechanism which creates the illusion of a shared memory on a distributed multi-
computer, albeit with a coarser granularity of data sharing.

• Fine-G rain Parallelism
A program in which the parallel processors communicate and synchronise frequently,
normally after a few thousand (103) instructions.

• Flip Chip Bonding
A wafer-scale integration technique in which circuit dies are mounted upside-down
on a silicon substrate, joined electrically with solder bumps.

• Generation Scalability
Whether an architecture can be implemented in a new technology and, thus, take
advantage of increased circuit and packing technologies as they become available.

138

• Hardware Distributed Shared M emory (HDSM)
The implementation of a distributed shared memory in hardware in order to reduce
intertask communication latencies.

• Hardware Distributed Single Shared Address Space M emory Architec-
ture (H DSSASM A)
The combination of a distributed shared memory and a single shared address space
architecture. Intended to simplify intertask communication mechanisms, making
their implementation in hardware easier.

• Hot Spot
An area of data that must be accessed frequently by many processors in a multipro-
cessor system. When this occurs, the effective performance of the multiprocessor is
severely degraded.

• Hybrid Wafer Integration
A wafer-scale integration technique which uses flip-chip bonding to mount tested
dies on the wafer surface.

• Intertask Communication
The communication, both implicit and explicit, which occurs between tasks. Includes
the communication needed to create, share data with and terminate a child process.

• M edium -G rain Parallelism
A program in which the parallel processors communicate and synchronise after tens
of thousands of instructions (104).

• M essage Passing Programming Paradigm
A parallel programming paradigm in which tasks communicate through primitives for
the protected sending and receiving of message. The sequential arrival of messages
inherently synchronises the actions of the tasks.

• M ultiple Instruction-stream , M ultiple D ata-stream (M IM D)

A class of parallel processors in which each processor executes a different program
on different data from other processors.

• M IPS
Millions of instructions per second. A measure of computer performance.

• M ulticom puter
See distributed memory multicomputer.

• M ultiprocessor
See shared memory multiprocessor.

• N on—broadcast Network
A communication network which only allows a message to be transmitted to a single
destination node. Such networks are inherently scalable.

139

APPENDIX A. GLOSSARY OF TERMS

• Packet Switching
A communications routing scheme in which a message is broken down into small
packets at the source node. These are transmitted across the communication network
and reassembled in order at the destination.

• Problem Scalability
Whether an application can implemented efficiently on an architecture with a given
granularity.

• Redundant Arrays of Inexpensive Disks (RAID)
The use of many small inexpensive disks rather then few large expensive ones. This
provides higher performance (both latency and bandwidth) and reduces power con-
sumption. With large numbers of disks, failure rate becomes a significant issue,
making fault tolerance necessary.

• Relaxed Coherence
A cache coherence mechanism designed for increased efficiency. A read operation
does not necessarily return the most recently written value.

• Single Shared Address Space (SSAS)
A memory model in which all tasks occupy a single common address space, rather
then multiple privates ones.

• Scalability
See generation scalability and problem scalability.

• Shared M emory M ultiprocessor
A type of parallel architecture with a global memory which is accessible to all of the
processors. Typically these architectures employ broadcast communications net-
works and, therefore, their scalability is limited to a few tens of processors.

• Shared Variable Programming Paradigm
A parallel programming paradigm in which tasks communicate and synchronise
through the use of common data structures. Often implemented using a shared
memory architecture.

• Strong Coherence
A cache coherence mechanism in which a read operation on a memory location
returns the most recently written value.

• Synchronisation
The delaying of process execution while constraints on the ordering of actions are
satisfied.

• Thrashing
Very high paging activity which results in severe performance degradation. In gen-
eral, a process is said to be thrashing when it is spending more time paging then
executing.

140

• Translation Look-aside Buffer (TLB)

A partially associative processor cache used in the translation of the virtual addresses
used by processes into the physical addresses used to access the cache and main
memory.

• W afer-Scale Integration (W SI)
A method of manufacturing electronic circuits in which wafers are packaged whole
rather than as individual chips.

• W hole Wafer Integration

A wafer-scale integration technique in which circuits are lithographed on whole
wafers.

141

APPENDIX A. GLOSSARY OF TERMS

142

Appendix B

Airborne—Early Warning: An
Application for Cherub

B .l Introduction

This appendix describes airborne early warning (AEW): a non-trivial application naturally
suited to a medium grain of processing. It demonstrates how the Cherub architecture can
be used to provide an efficient and elegant solution.

B.2 T he Problem

Modern aircraft attack by flying low and fast, escaping detection by ground-based radar
stations through using the horizon as cover. To counter this threat, modern anti-aircraft
defences employ airborne early warning (AEW) systems, high endurance aircraft equipped
with powerful look-down radars, to fly at high altitude, thus minimising the masking effect
of the horizon.

Producing radars which are able to look-down and distinguish enemy aircraft from ground
and sea clutter is far from trivial, however. Providing enough computing power to process
a noisy radar image, track an average of 400 targets and distinguish friend from foe, is
beyond most computer architectures available today. Furthermore, the architecture must
be compact as it, together with its power supply and cooling system, must fit into the
body of a plane the size of a small airliner.

B .2 .1 Background

Airborne early warning (AEW) was first employed during the American Civil War. Binoc-
ular equipped observers were raised in balloons thousands of feet above the battlefields to
spy on enemy troop movements and to spot for artillery. Although a severely limited means
of gathering intelligence, airborne spotters were soon employed by armies throughout the
world.

During the First World War aircraft rapidly superseded balloons, and the romantic image

143

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

of the dawn patrol was born. At first sun-up formations of biplanes would take off and
circle the battlefield searching for enemy planes. Dogfights were rare however, for the
visual range was short, making it easy for enemy aircraft to cross the lines and make
sneak attacks unobserved.

When in 1936, Watson-Watt demonstrated long-range aircraft detection using radar (ra-
dio detection and ranging), the need for airborne early warning aircraft was immediately
appreciated. Radar waves travel in approximately straight fines and, therefore, are un-
able to reach air-space hidden by the curvature of the earth. So, the lower an aircraft
approaches a radar site, the nearer it can get before being detected, thus reducing the
time available to intercept it. This phenomenon is illustrated in the graph in figure B.l.

Figure B.l: The Relationship Between Radar Altitude And Maximum Detection Range

Radar technology improved rapidly. By the mid 1940s it became possible for aircraft to
operate in an AEW role. The look-down capacity of these systems, however, was very
limited; random reflections from the earth’s surface produce thousands of false contacts,
or clutter, which blot out returns from real targets. Hence early overland AEW was out of
the question and overwater detection was only possible when the sea was calm. It is only
with the advent of digital signal processing techniques that effective AEW has become
possible.
Modern AEW aircraft are important targets for the enemy to attack. The loss of infor-
mation should one be shot down would be catastrophic. To minimise the risk of attack,
AEWs are deployed deep within friendly air-space. An aircraft flying a circular path 150

144

B.2. THE PROBLEM

nm within its own air-space can reasonably protect a border 500 nm while minimising the
risk to itself. This is illustrated in figure B.2.

radar range

Figure B.2: The Air-Space Covered by an AEW Aircraft

B .2 .2 T he Load A E W P laces On A n A rch itectu re

The load placed on a computer architecture by the AEW role is severe; a large number
of complex algorithms need to be performed concurrently. Hirst [Mik83] identifies eight
major tasks performed by computers in AEW aircraft:

• Radar Target Information Gathering, Storage and Processing

• IFF Target Information Gathering, Storage and Processing

• PDS Target Information Gathering, Storage and Processing

• Target Data Correlation

• Providing the Man-Machine Interface

• Data Sharing and Communication

• Flight Equipment Monitoring

• Navigation

145

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

This is by no means a comprehensive list, however, it gives some idea of the complexity
of the task which must be accomplished in real-time. Only the first four tasks in the list
are included in the following discussion as these incur most of the processing overheads.
They will now be examined in greater detail.

B .2 .3 R adar T arget Inform ation G athering, Storage and P rocessin g

Although radar is only one of the detection mechanisms used in AEW aircraft, it is both its
most important and complex system. A simplified Pulse-Doppler radar system is shown
in figure B.3.

Frequency Agile Control

Probability of Validity^-------- Clutter Map
t

Threat Library Radar Waves

Figure B.3: A Simplified Pulse-Doppler Radar System

Radars have much in common with searchlights. A searchlight uses a mirror to emit
directed visible electromagnetic radiation. Its operator searches for reflections off targets.
A radar uses a directional antenna to emit non-visible electromagnetic radiation and
collect returning reflections.
Search radars, the type used in AEW aircraft, typically emit pulses of electromagnetic
radiation on a single frequency. Periodically, however, the radar will switch to a different
operating frequency. This complicates the task of an enemy blinding, or jamming, the
system by transmitting pulses of a similar wavelength. This is called frequency agility.

Radiation spreads out from a radar proportionally to the square of the distance. This
effects both the strength of an initial radar pulse and that of a returning echo. Therefore,
the maximum detection range of a radar is proportional to the fourth-root of the power it
transmits. As the strength of returning signals are often very weak, random noise within
the radar itself can look like false targets.

146

B.2. THE PROBLEM

Most modern airborne radars use either phased-array or inverted-cassegrain antennas1.
These allow the radar energy to be electronically formed into a number of individually
steerable beams. This flexibility permits the radar to control the number of pulses it
transmits towards a desired location. The chance that noise in the system will produce false
targets is almost eliminated by the ability to transmit additional pulses in the direction of
a new target until the radar has adequate information to make a reliable decision about
its presence or absence.
The frequency spectrum around that of the radar’s fundamental frequency is extracted1 2 to
produce digital data which can be processed to reveal further information [Bro82, Far85]:

• Antenna Azimuth and Elevation Analysis
When a return from a target is detected, the antenna’s azimuth shows its bearing
and the antenna’s elevation indicates, to some degree, its altitude.

• Time Domain Analysis
By measuring the time taken for the pulse to reach a target and return, its range
can be calculated.

• Frequency Domain Analysis
The movement of a target relative to the radar will produce Doppler shifts in the
frequency of the reflected pulses. This phenomenon can be used in three ways:

— It allows a target’s instantaneous speed to be calculated. This avoids having to
obtain speed information over a number of radar scans and is, therefore, both
faster and more reliable.

— It allows the radar to look down on and distinguish moving targets from ground
clutter. Objects on the ground will appear to move at the same speed as the
aircraft. This allows the radar to discern true targets from clutter. Delong and
Hofsletter [Del69] quote an example of a radar which, with one pulse, is able
to distinguish a single target from one hundred clutter plots.
In addition to ignoring ground clutter, it is necessary to discard returns from
slow moving targets which are unlikely to be valid3. This process is called
velocity gating. Too high a velocity gate, however, can cause slow moving
aircraft, such as helicopters, to be missed.

— Turbine blades and propellers have characteristic Doppler effects of their own.
Some radars are able to use these to identify targets using libraries of known
patterns4.

1 These antennae also reduce s id e lo b e s , the transmission or reception of radar signals well off the cen-
terline. Sidelobes waste power and can be exploited by enemy deceptive jammers.

2This is accomplished by first amplifying, filtering and mixing the analogue signal. It is then digitised,
averaged with the previous pulse to cancel clutter and Fast Fourier Transforms (FFTs)[Rob77] are applied
to extract the frequency spectrums. Research is currently being conducted on Digital Radio-Frequency
Memories (DRFMs) [Sun89, Mad90]. These digitise the analogue signals directly, allowing their permanent
storage for analysis.

3It is not unusual for American F-15 Eagle fighters stationed in Germany to accidentally lock-on to
fast moving BMWs on the Autobahns.

4It is claimed that the powerful AWG-9 radar employed in the American F-14 aircraft is able to count
the number of blades in a spinning je t turbine.

147

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

One of the major innovations in modern radar is the use of short wavelengths to enhance
resolution. This greatly improves target identification, albeit at a much increased signal
processing cost; dividing the wavelength by n increases the processing by n2, as is shown
in figure B.4.

C e l l s i z e 1 / 6 m a j o r d i m e n s i o n
C o r r e s p o n d i n g m a p

C e l l s i z e 1 / 1 2 m a j o r d i m e n s i o n
C o r r e s p o n d i n g m a p

Figure B.4: How the Radar Resolution Effects Target Identification

Given the real-time constraints placed on a radar, it is necessary to carefully plan the
activities it must perform. A prioritised task list is generated, from which the commands
issued to the radar are scheduled. Tracking existing targets is regarded as a very cost effec-
tive task and is given a high priority. Scanning for new targets is treated as a background
activity to be performed when the radar is otherwise idle.

B .2 .4 Id en tifica tion , Friend or Foe (IFF) Target Inform ation G ath erin g,
Storage and P rocessin g

The greatest proportion of traffic detected by an AEW system at any one time will be
friendly. To distinguish friendly targets easily, a system called Identification, Friend or
Foe (IFF) is employed.
Most aircraft, whether civil or military, carry a IFF transceiver which listens for coded
radio messages at a frequency of 1,090 Mhz. AEW aircraft, and ground-based tracking
stations accompany their radar pulses with an IFF interrogation request message trans-
mitted on this frequency. If an aircraft receives a correctly coded interrogation message, it
immediately sends back a coded reply on 1,030 Mhz, giving its identity and height. This
process is illustrated in figure B.5. The direction of the IFF antenna gives the bearing

148

B.2. THE PROBLEM

of the target and the time delay between the issue of the interrogation request and the
arrival of the reply corresponds to the range.

Code Library'

w v

Figure B.5: The Identification, Friend or Foe (IFF) System

Civil air traffic use universal recognised codes, while military traffic codes are secret and
are varied continuously to avoid forgery. It is therefore easy to recognise a friendly aircraft
that is using the ascribed coding procedure.

Even though the IFF process is relatively simple, it incurs a considerable overhead. Typi-
cally, several hundred targets would be visible at any one time and they can be established
or lost at a rate of 25 or so per minute [Bel88].

B .2 .5 P assive D e tec tio n S ystem s (P D S) Target In form ation G ath erin g ,
S torage and P rocessin g

Target identification is sometimes possible by examining the electromagnetic radiation it
emits. A low-flying bomber, for example, will have a terrain-following radar and a fighter
will have a search and targeting radar. These have distinct frequency patterns which are
as recognizable as human voices.

AEW aircraft are equipped with a set of antennas which feed a broad-band radio receiver.
Interesting signals are extracted from the noise using Fast Fourier Transforms. The re-
sulting frequency spectrums are identified using an accurate library of known electronic
signatures. Such a library will have several hundred entries. This process is illustrated in
figure B.6.

149

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

Threat Library

¥
Decoder

Target Category

Receiver

4 J 4

■Approximate Bearing

■Approximate Range

Antenna

Figure B.6: The Passive Detection System (PDS)

Previously unknown signals must be recorded, or transmitted directly back to base, for
analysis by signal experts. This process is called Electronic Intelligence (ELINT) and is
invaluable for tasks such as locating enemy positions, intercepting classified transmissions
and designing efficient jamming techniques.

B .2 .6 Target D a ta C orrelation

The radar, IFF and PDS systems must be correlated to ensure their most effective use.
This involves the following tasks.

• Radar Command Scheduling

The computer must schedule radar steering commands to perform searches within a
certain time-frame. These commands must be issued to the radar hardware at the
appropriate point in the antenna’s scan.

• Target Tracking

The positions of a target in successive scans of the radar form a track of its move-
ments [Far85, Rob77, Sca87]. The greater the track of a target can be predicted, the
more the radar is able to distinguish between targets and false plots.

• Identifying Targets
Clues about a target’s identify can be gained from each of the detection systems.
The computer maintains databases of IFF codes, pulse Doppler patterns and PDS

150

B.3. CURRENT COMPUTER ARCHITECTURES EMPLOYED

signatures which can be correlated to assign each track a probable identity. In a hos-
tile jamming environment, however, it is possible that such clues may be unreliable,
or even contradictory5.

• Statistics Gathering

It is necessary to regularly gather information about the status of the radar, IFF
and PDS systems. This allows performance analysis and fault detection.

B.3 Current Com puter A rchitectures Em ployed

A number of computer architectural solutions to the AEW problem have been proposed
or tried:

B .3 .1 C entralised C om puting: G rum m an E -2 H aw keye

Originally commissioned by the US Navy in 1959, the Hawkeye is the most exported AEW
in the world. The aircraft has been constantly updated and now carries a comprehensive
radar, IFF and PDS detection suite.
As the small airframe can only accommodate three operators, the two linked L-304 com-
puters must support automatic target tracking. Consequently, the Hawkeye is only able
to operate over water, which requires less signal processing. In this role, however, it is
highly successful6 and can track over 600 targets.

B .3 .2 C entralised C om puting: B o ein g E -3 Sentry (AW ACS)

Initially designed in 1966, the American Boeing E-3 Sentry, often called the Airborne
Warning and Control System (AWACS), is based on the airframe of a long-bodied DC-8
airliner. This is a relatively large aircraft and as such provides ample space for a radar
and its associated electronics.

For simplicity, the designers of AWACS decided to employ a centralised computer, the
IBM CC-1. This machine was capable of 0.75 MIPs and could track up to 100 equally
distributed targets simultaneously. It was later discovered that it was necessary to track
over 400 targets and the more powerful CC-2 computer was retrofitted to earlier aircraft.
This machine achieves two MIPS. Radar signal processing is accomplished using banks of
software controlled solid state filters.

The low powered computer system is unable to support automatic track initiation, target
identification or PDS processing. As a consequence, nine operators are required to control
the system. This is does not pose a significant problem, however, as the airframe is large
enough accommodate them.

5During the Vietnam War, the Americans deliberately operated squadrons of F-4 Phantom fighters
such that to radar and PDS they appeared to be slow, vulnerable bombers. It was hoped that these tactics
would draw the elusive enemy fighters into aerial ambushes.

6The Hawkeye was recently used for catching drug smugglers off Florida. 45 aircraft, 7 vessels and
12,242 Kg of marijuana were captured.

151

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

B .3 .3 D istr ib u ted C om puting: B ritish A erospace N im rod A E W .3

The British Nimrod AEW.3, designed in 1971, was based on the Comet Airliner. This had
a much smaller airframe then the American AWACS and, consequently, space efficiency
was always much more of a concern in this project. As the number of operators which
could be accommodated was low, six as opposed to the nine in the American AWACS, it
was intended that most of the extra workload be absorbed by the computer systems. The
specification required greater functionality, such as auto-track initiation and identification,
and a faster response time, then any other system of the time could demonstrate.

It was immediately apparent that a single central computer would not provide sufficient
processing power, so Marconi Avionics chose to adopt a distributed processing solution.
The main computer, the Integrated Data Processor (IDP), was developed from a GEC
4080M. This had a 1 Mbyte memory and was only fast enough to perform all the basic
sensor correlation and track maintenance tasks. Other functions, such as digital signal
processing and operator console control were performed by a combination of forty four
other processors, linked to the IDP by a single communications bus. These contributed
another 1.4 Mbytes of storage.

The Nimrod project was plagued by two basic design flaws:

• Even with an advanced architecture, the computer system was not able to perform
adequately. It performed well over water, where its complex software made it better
then AWACS, but did not have enough computing power to distinguish targets from
clutter when flying over land [Mar86].

• The complexity of the distributed system compromised the software’s reliability.
During French comparison trials against AWACS in 1984, a number of computer
failures were experienced.

By 1986 the British government had flown 20 Nimrod trials and only during one did the
computers perform well enough to produce useful results. In December 1986 the British
Prime Minister, Margaret Thatcher, terminated the Nimrod project, writing off the 1.4
billion already spent on it [Car86c].

B .3 .4 D istr ib u ted C om puting: B oein g E -8 A S ystem

The E-8A is intended as the successor to the successful E-3A AWACS. It has a highly
advanced radar, the Grumman J-Stars (Joint Surveillance Target Attack Radar System)
[Gun90] which has unprecedented precision, being able to detect targets both in the air
and on the ground. This is combined with comprehensive IFF and PDS suites.

The detection systems produce so much data that the aircraft requires a distributed com-
puter system of 27 processors, including one for each of the 15 operator consoles. The
signal processor alone performs 625 million complex operations per second7 (MCOPS).
The E-8A’s software has 600,000 lines of code.

7Faster then a CRAY-1 or about 4,000,000 Apple IIEs

152

BA. SUMMARY

The computers used in the system are so large that the E-8A’s airframe has had to be
based on that of a Boeing 707, a substantially larger aircraft then the AWACS. This makes
the aircraft very expensive to buy and maintain.

B .3 .5 Ivor C a tt’s P rop osed K ernel Logic M achine

Ivor Catt [Cat89, Cat91] suggests using his Kernel Logic Machine architecture in an AEW
role. This is an array of 1,000 by 1,000 processors on 100 wafers. Each processor would
be assigned a unit square of ground-space so small that it would never be overloaded.
There appear to be three problems with this solution:

• The proposed solution is very wasteful of computing power; most of the processors
in the array will be idle at any instant in time waiting for the radar to provide
information.

• It is not clear how much time it would take to distribute the radar data to, or accept
the radar steering instructions from, an array of one million computers. It is likely
that this process would be a bottleneck in the system.

• The amount of power 100 wafers would consume and the Flourinert liquid-based
cooling system required to dissipate the heat they would generate are likely to pro-
hibit the installation of a Kernel Logic Machine in an aircraft. It is possible that
this architecture would be better suited to ground-based control where space is not
at a premium.

It is probable that the level of granularity chosen in the system is wrong. A smaller system,
comprising a few wafers at most, may well be more cost effective in this role.

B.4 Sum m ary

No computer architecture has yet been shown to be completely satisfactory for the AEW
application. This is because:

• AEW software is complicated. It involves many closely cooperating tasks and re-
quires large amounts of data sharing and communication. This implies that the
simplified programming model of a shared memory multiprocessor architecture is
desirable.

• AEW software must run in real-time and, therefore, requires a greater amount of
processing power then a multiprocessor can typically offer. This implies the scala-
bility of a distributed multicomputer is required.

B.5 U sing the Cherub A rchitecture

The Cherub architecture provides a compromise which is useful for the AEW role. It offers
a substantial increase in throughput over multiprocessors without sacrificing the simplicity

153

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

of their shared variable parallel programming paradigm.

We avoid any formal analysis of the real-time aspects of the solution; instead a more
intuitive approach is taken. Sleat considers the formal implications of a similar real-time
example in his PhD thesis [Sle91].

B .5 .1 A D a ta F low A nalysis o f th e P roblem

The dataflow diagram shown in figure B.7 illustrates the interdependencies within the
AEW system. This is meant to be a representative, rather then a complete, solution to
the problem.

T r a c k D a t a b a s e

Figure B.7: A Data Flow Diagram of the AEW Detection System

The following data sources are required:

• Antenna Input (I .A N T JN)

This detects electromagnetic radiation which is being emitted in its direction of
facing. There may be one or more of such sources in the system.

Read by: T.RAD_FIL

154

B.5. USING THE CHERUB ARCHITECTURE

• R eal-tim e Clock (I.R_T_CLK)
This data source provides timing information.
Read by: D.FAT and T.SCH.RAD

The following data output is required:

• Antenna Output (O .A N T.O U T)
This data output accepts the steering and frequency selection commands which
control the operation of the radar system. The system may have one or more of
these outputs.
Written by: T.SCH.RAD

The following databases are required:

• Track Database (D .TR K)
This is the second most important database in the system. This contains details
about the targets which are currently being tracked. It includes their locations,
altitudes, speeds, headings and any information which may be used to identify them,
such as their IFF, PDS and pulse Doppler signatures. The contents of this database
are constantly added to, updated or deleted.
Read by: T.IFY_DOP, T.IFY.PDS, T.IFY JFF and T.TRK_TAR
Written by: T.IFY.DOP, T.IFY_PDS, T.IFY JFF and T.TRK.TAR

• Frequency Analysis Table (D.FAT)
This is the most important database in the system. It contains the filtered and
processed input from the antenna source in the form of a frequency distribution
plotted against time. This database is constantly updated with new information.
The contents of the database are stored permanently for future ELINT analysis.
Read by: T.IFY.DOP, T.IFY.PDS, T.IFY JFF and T.ISO.PLT
Written by: T.RAD.FIL and T.R.T.CLK

• Doppler Threat Library (D.DTL)

This is a fixed library which contains pulse Doppler patterns for known friendly and
hostile aircraft. Although this database will contain several thousand entries, it will
be far from complete; little will be known about an enemy’s most modern fighter
aircraft.

Read by: T.IFY.DOP

• PD S Threat Library (D .PTL)
This fixed library contains details about the distinctive frequency patterns emitted by
friendly and hostile radar systems. Like the Doppler Threat Library, it will contain
several thousand entries, but the information will be incomplete and in many cases
inaccurate.
Read by: T.IFY.PDS

155

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

• C lutter M ap (D.CLT)

This database holds details about the level of radar clutter which has been found to
exist in certain regions of air-space. This allows the probability that a radar return
represents a valid target to be assessed. The database is constantly updated as new
radar scans are made.

Read by: T.TRK.TAR

Written by: T.TRK.TAR

• IFF Code Database (D .IFF)

This fixed database contains the IFF coding patterns which are used to identify
aircraft. The codes are complex and are varied according to both the region of air-
space and to the time of the day. Hence the database may have several hundred
entries.

Read by: T .IFY JFF

• Radar Scheduling Queue (D .SQ U)

This database holds information which is used for scheduling the issue of commands
to the radar. The queue contains antenna steering and frequency selection com-
mands, along with the time that they are to be issued to the radar hardware.

Read by: T.SCH.RAD

Written by: T.TRK.TAR and T .IN TJFF

The following data transformers are required:

• Schedule Radar (T .SC H .R A D)

This operator uses data from I.R.T.CLK and D.SQU to issue commands to O.ANT.OUT
at the appropriate time.

Reads: I.R.T.CLK and D.SQU

Writes: O.ANT.OUT

• Interrogate IFF (T .IN T .IFF)

This operator uses data from D.IFF to schedule IFF interrogate requests in D.SQU.

Reads: D.IFF, D.SQU

Writes: D.SQU

• Decode IFF (T .D E C .IFF)

This operator identifies IFF Reply messages in D.FAT. It uses D.IFF to decode these
and update the track information stored in D.TRK.

Reads: D.FAT, D.IFF and D.TRK

Writes: D.TRK

156

B.5. USING THE CHERUB ARCHITECTURE

• Track Target (T.TRK_TAR)

This operator uses the information from T.ISO-PLT and D.CLT to update the track
information stored in D.TRK. In addition, this operator updates the information
stored in D.CLT and tracks the targets by scheduling steering commands in D.SQU.

Reads: D.FAT, D.CLT, D.SQU and T.ISO.PLT

Writes: D.CLT, D.TRK and D.SQU

• Identify Target by PDS (T .IFY .PD S)

This operator uses data from D.PDS and D.FAT to update the identity information
stored in D.TRK.

Reads: D.PDS, D.FAT and D.TRK

Writes: D.TRK

• Identify Target by Doppler (T .IFY -D O P)

This operator uses data from D.DTL and D.FAT to update the identity information
stored in D.TRK.

Reads: D.DTL, D.FAT and D.TRK

Writes: D.TRK

• Radar Data Filtering (T.RAD_FIL)

This operator reads data from T.ANTJNP and performs a number of compression
and signal analysis techniques upon it. The resulting continuous frequency distribu-
tion patterns are stored in D.FAT.

This operator will be implemented using Digital Radio-Frequency Memories (DRFMs).

Reads: T.ANTJNP

Writes: D.FAT

• Isolate Plots by Doppler (T.ISOJPLT)

This operator filters the frequency spectrum in D.FAT using Doppler analysis to
isolate moving plots from background clutter. It updates D.CLT accordingly.

Reads: D.CLT and D.FAT

Writes: D.CLT and T.TRK-TAR

It can be seen that the system can be naturally decomposed into a large number of
operators which read and write several large shared databases.

In the following analysis we will consider one operator, T.TRK_TAR, and one database,
D.TRK in greater detail.

157

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

Figure B.8: Tracking a Target

B .5 .2 T .T R K _T A R

As it is necessary to maximise a radar’s power efficiency, it is desirable to follow the
movements of the targets it has already detected so that they can be relocated with the
minimum expenditure of energy. This is called tracking and is illustrated in figure B.8.

The life-time of a track can be divided into three phases:

• Track Initiation

The radar detects a plot and associates a probability of validity with it according
to the number of scans it appears in. If this exceeds a threshold value taken from
the clutter map, a map showing the density of ground clutter previously detected in
region of the plot, it is assume to be valid. If not, it is discarded.

Track Continuation

Once a target is known to exist, its position must be followed from one radar scan
to the next. The radar predicts the new position of the target based on its current
course and speed. It then calculates a search area, or tracking dwell, centered around
this predicted position, based on the target’s manoeuvrability and the amount of
background clutter. The tracking dwell must be large enough to ensure that it
includes the target’s new position, but small enough to minimise clutter. The size
of the dwell is altered dynamically according to D.CLT.

158

B.5. USING THE CHERUB ARCHITECTURE

Once the location and size of the tracking dwell has been determined, steering com-
mands can be issued to the radar to search it. When this has been performed, a
best match algorithm, using both position and velocity, is applied to merge the new
plots with the existing tracks. This gives:

— New plots which have appeared;
— Plots which correspond with existing tracks; and
- Existing tracks for which there are no corresponding plots.

Figure B.8b shows a number of false targets within the tracking dwell of track A’s
last position. Plot B is within the tracking dwell and has a reasonable direction and
speed vector. Plot C is outside the tracking dwell and has an unreasonable speed
vector for the distance it must have covered. Plots D and E are within the tracking
dwell, but are stationary. B is, therefore, the only plot which could reasonably
correspond to the original track.

Modern search radars employ high pulse rates; typically, a pulse is emitted every
100/rs [Mik83]. This greatly reduces the size of tracking dwells because targets move
less between successive pulses. This saves radar power and reduces the number of
false targets in the dwells. However, it does mean that tracking must be performed
both more frequently and quickly.

• Track Termination
When there has been no successful correlation between a track and the radar plots
for a sufficient number of scans, it is removed. This could indicate that the target
has landed, flown beyond the range of the radar, or has been shot down.

As the radar must be aimed in real-time, tracking performance is a major factor in the
design of AEW computer systems. If the radar emits pulses every 100/zS, to maximise its
power effectiveness the computer must process all the plots found by the previous pulse
in an average of 50pS. As military aircraft travel in large numbers for mutual protection8,
this will require a considerable amount of processing.

To solve this problem we suggest the creation of one T.TRK_TAR process for each track
entry in D.TRK. Each process would have a life-cycle analogous to that of a track:

• Initiation

Track initiation is accomplished by the creation of a new Cherub process which is
responsible for handling that track. This process performs the following actions:

— Calculates a circular tracking dwell around the target based upon its current
speed. Its direction is currently unknown.

- Schedules a high priority command for the radar to search this dwell.

- Performs a read on the appropriate address in a semaphore synchronisation
object to block until the radar performs the search.

8During the 1982 Bekka Valley conflict flights of 12 or more Syrian aircraft were common.

159

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

- When the search is complete, the process examines the resulting plots for one
which is consistent with the previous plot.

- If such a plot is consistently found in the number of scans dictated by D.CLT, it
is deemed to be a track and the process performs track continuation. Otherwise,
it is deemed to be noise and the process terminates.

Once a plot is deemed to be worthy of tracking, it is classified according to its speed.
If the speed is below some threshold it is deemed to be ground clutter, otherwise it
is taken to be a valid target.
Even if a plot is random noise which disappears on the subsequent scan of the radar,
its tracking process will have executed enough instructions (at least 10,000), by
scheduling the radar, synchronising and examining the results, to be cost effective.

• Continuation
Continuation processes are prioritised so that tracks known to represent ground
clutter execute first, thus easing the task of the processes representing moving tracks.
Track continuation involves the following steps:

- When the radar next searches the target’s tracking dwell, the process examines
the resulting plots for one which is consistent with the previous plot.

- It then removes the plot from the set;
- It updates its D.TRK record according to its new position and speed;
- It calculates a new tracking dwell for the track;
- It schedules a low priority command for the radar to scan this dwell; and
- It performs a read on the appropriate address in a semaphore synchronisation

segment to block until the radar performs the search.

If a process cannot locate its plot after a prescribed number of radar scans it termi-
nates.
Once all of the track processes in a region have run, if there are any plots which have
not yet been accounted for, new track processes are created and assigned to monitor
them.

• Termination
The process of track termination is consistent with the termination of a Cherub
process.

It is not unreasonable to assume that the T.IFY_DOP, T.IFY_PDS, T.INT.IFF, T .IFY JFF,
tasks for a given track would be combined with its T.TRK_TAR process to form a sin-
gle task which examines targets, T.EX.TAR. This merge enables the D.TRK and D.FAT
tables to be shared more efficiently. Furthermore, the T.IFY-PDS and T.IFY.DOP oper-
ations require considerable off-line processing. Hence they are ideal background tasks for
processors which are waiting for the radar to supply target information.

The number of targets that a radar will be tracking, and hence T.EX.TAR processes,
can be large; AWACS was designed to cope with over 400 [Mik83]. However, due to the

160

B.5. USING THE CHERUB ARCHITECTURE

directional nature of the radar antenna, only a subset of these tracks, half say, will be
processed simultaneously. This is consistent with horizontal parallelism and suggests that
the 400 T.EX_TAR processes be spread over 200 Cherub processors.

B .5 .3 D .T R K

The D.TRK database contains one record for each track which has been detected. During
periods of heavy air-space usage it could hold 500 or more records.

The database is shared for read and write access by six data operators; the T.TRK-TAR
operators add, modify or remove records, while T.IFY-DOP, T.IFY-PDS and T .IFY JFF
only modify them. It is necessary to maintain the strict coherence of the records at all
times.

The records in the database can be divided into three categories:

• Stationary Tracks
These are plots which are known to exist, but which Doppler analysis shows are not
moving at a high speed relative to the aircraft. These are assumed to be ground
clutter. They are stored to allow their easy identification in future scans.

• Tentative Tracks
These are new plots which are in a state of track initiation; they have not been
observed long enough to determine whether they really exist or not.

• Firm Tracks
These are existing plots which have been categorised as being worthy of tracks. The
movements of such tracks are relatively predictable.

A record will be added to the track table whenever a radar search detects a new object
and will be removed after it is not found in a number of radar scans.

Studer and Farina [Far85] suggest a typical track record will include information such as:

• Track Identification Code
The code by which the operator and computer refer to the track.

• Quality Measure
The probability that the track exists. As a tentative track appears in a number of
radar scans, this probability increases until it reaches some threshold value. At this
point the track is deemed to be firm.

• Filter Variables

These are used in setting the signal filters for the target. They take into account
factors such as jamming levels and prevailing radar conditions.

• Time of Last Update

This is the time the track record was last updated. This is used for radar scheduling.

161

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

• Track Status

This contains details such as whether the track is new, tentative, firm, or terminating.

• Information about the track’s last six or more positions, representing over a minute
of tracking.

— Track Speed Vector
This includes the track’s current speed and acceleration.

— Track Direction Vector
This includes the track’s current direction of travel and rate of turn.

— Track Position
This includes the track’s azimuth, range and altitude.

• Possible Track Identity
Information gained from Doppler, IFF and PDS which may be of use when classifying
or identifying the track.

We estimate that such a record could be contained in a 256 byte page with little wasted
space.
The database used in this example is not large, although it would be if a ground surveil-
lance radar was used, but it is accessed in real-time. This makes false data sharing or
expensive communication overheads, common with architectures with larger page sizes,
unacceptable.
It is asserted that the shared variable programming paradigm presented by Cherub is one
of the most natural ways of implementing such a shared database. The database fulfills
the criteria for being well suited to Cherub:

• It is shared for read and write;

• Strict data coherence must be maintained;

• Its records are suited to a 256 byte page; and

• It must be accessed in real time and so false data sharing is unacceptable.

Record locking can be implemented efficiently by using a semaphore synchronisation seg-
ment. Each record is assigned a semaphore which processes have to gain before being
allowed to modify it.

B .5 .4 P ro cess Scheduling

Considering the substantial amount of processing which must be performed by the T.EX_TAR
operators, it is reasonable to allocate one processor per tw'o targets which are to be pro-
cessed simultaneously. If a maximum of 400 targets is assumed, 200 processors will be
required.

162

B.6. CONCLUSION

Although the resulting workload on the processors is relatively light, it is not unreasonable
to assume that as the capabilities of radar increase, so will the demand for additional data
processing power.
The T.SCHLRAD operator, more then any other, must be performed quickly. Conse-
quently, it must be assigned its own processor.

B.6 C onclusion

In this appendix we have selected airborne early warning (AEW) as an example of a real
application which would test the Cherub architecture. We have demonstrated how it can
be efficiently decomposed into large number of tasks which operate on shared databases
and have properties which make them especially suited to Cherub.

The Cherub architecture is able to provide the very high data processing capacity required
by the AEW role while maintaining a natural data sharing mechanism which simplifies
the structure of the software.

163

APPENDIX B. AIRBORNE-EARLY WARNING: AN APPLICATION FOR CHERUB

164

Appendix C

The Network Simulations

Although, due to the difficulties in constructing accurate models, simulations are generally
not well thought of1, they remain one of the only ways of predicting and analysing the
performance of complex systems such as Cherub’s proposed WSI-based communications
network.
Chapter four showed that, when loaded with 40 connections, the Cherub communications
network must fulfill the following criterion:

84C + 26,000r < 40,000 ns

Where:

C = Time (ns) to make a network connection (network connection latency); and
T = Time (ns) to transfer a byte across a network connection.

In chapter five it was stated that the proposed wafer-scale communications network will be
able to transfer 128 bits of data every 10 ns. Therefore, the network’s connection latency,
C, must be less than about 280 ns if an optimal granularity of 10,000 instructions is to be
achieved.

This appendix describes the simulations which have been performed to understand whether
the Cherub’s proposed WSI network will be able to achieve this connection latency.

C .l T he Sim ulator

A 1,000 line C program was written to simulate an eight-inch circular wafer containing a
communications network composed of one square cm communication element (CE) tiles.
A two dimensional array of structures was used to represent the CEs’ communication
busses. These busses could be configured into either a mesh or a torus network topology,

1 Fishman [Fis73] has identified 12 types of data misinterpretations common in simulations and Oren
[Ore78] lists 9 main categories and 44 subcategories of tests for the assessment of acceptability of simulation
models, programs and data.

165

APPENDIX C. THE NETWORK SIMULATIONS

although only the latter was really of interest. The incomplete tile sites at the edge of the
simulated wafer were not used, giving 316 usable CEs in a perfect wafer.

Circuit switched communication was simulated by allocating busses in a path between a
source and a destination CE chosen at random. Once the simulated circuit was made,
it was kept open for 19 network clock periods2, the average length of a connection as
determined in section 4.5. The circuit was then cleared, freeing the allocated busses.

If during a circuit’s construction a required communication bus was already in use, the
complete circuit was cleared and the source CE waited for a back-off period before retrying.
This prevented deadlock. The simulation was able to support various network back-off
schemes:

1. The connection failed; it did not retry.

2. The connection retried after a constant delay. (After n network clocks.)

3. The connection retried after linearly increasing delay. (After n, 2n, 3n, An . . . network
clocks.)

4. The connection retried after exponentially increasing delay. (After n ,2 n ,4 n ,8 n .. .
network clocks.)

Experiments showed that, generally, the constant delay back-off scheme results in the
lowest connection latency in networks containing up to 40 connections. A constant delay
back-off period of 6 ± 1 clocks3 was therefore used in all of the experiments.
The average number of connection in the network was determined by varying the issue
chance — the probability that an idle CE would attempt to make a new connection on
each network clock tick. In all the experiments various issue chances were tried, although
those that produce network loads of about 40 connections were of most interest.

In all of the experiments the networks were run for 10,000 simulated network clock periods
(100 fis). The networks were first allowed a period of 1,000 network clock ticks to ‘warm
up’ (10 /rs), thus ensuring that they were not devoid of connections at the start of the
simulation.

Two sets of experiments were performed:

1. An investigation into the performance of different routing algorithms. This was used
to find the best possible circuit switched routing algorithm.

2. An investigation into the effect of different network yields on the routing algorithm
found to perform best in the previous experiment.

These are discussed in detail in the following two sections.

2The simulations were independent of the actual network clock rate employed. However, it is assumed
that a 10 ns clock will be employed.

3This is approximately one quarter the average connection length: an estimate based on the assumption
that, on average, a collision will occur when a connection is half constructed, being blocked by another
connection which is half way through its transmission. The random variation helps to prevent live-locks,
where a number of connections continually collide because they are using the same back-off steps.

166

C.2. INVESTIGATING DIFFERENT NETWORK ROUTING ALGORITHMS

C.2 Investigating Different Network R outing A lgorithm s

The first experiment examined the performance of several routing algorithms under dif-
ferent network loads. Eight routing algorithms have been devised:

1. Normal MESHNET Routing
At each hop the head of a connection will first attempt to travel north or south in
order to reduce the relative vertical distance between it and its destination, according
to the route held in the a map. If there is no vertical separation, then it will attempt
to decrease the horizontal separation by travelling east or west. If the route in the
a map is blocked, the one in the f3 map is attempted. If this is also blocked the
connection is immediately dissolved.

2. Offset Straight Routes
One of the problems with scheme one is that if either the vertical or horizontal
separation between the source and the destination is initially zero, an alternative
routing decision cannot be made upon a collision.
This scheme attempts to overcome this problem by forcing the head of a connection
to take a single hop away from its destination if either the vertical or horizontal
separation is initially zero. Unfortunately, this requires a third routing map, which
is only used on the initial hop of a connection.
The simulations have shown that this routing scheme is slightly inferior to num-
ber one; the greater routing choice provided by the initial sideways hop does not
outweight the extra hops it incurs.

3. Back-Up One Step On Collisions
Another limitation of scheme one is that once the head of a connection becomes
blocked both horizontally and vertically, it simply gives up.
In this scheme, once the head of a connection becomes completely blocked, the head
takes one hop (at most) back and tries the other route (if any) it could have made.
The simulations have shown that this scheme’s extra attempts at making a connec-
tion are very cost effective while the network is under light and moderate loads (60
connections), but not so when under heavy load, where they just add to network
contention.

4. Zig-Zag Routing
In scheme one, the head of a connection was always first routed vertically and then
horizontally. That results in indirect, L-shaped, connection paths.
In this scheme, the head of a connection is routed so as to minimise the greatest
relative distance, either horizontally or vertically, to the destination. This results in
zig-zag shaped connection paths.
The simulations show that this scheme performs slightly worse then number one.
This is because, in general, the number of paths blocked by a circuit is minimised
when the head makes as few direction changes as possible. This is clearly not the
case with zig-zag movement.

167

APPENDIX C. THE NETWORK SIMULATIONS

5. Recursive Routing

This scheme is similar to number three except that the head of a connection can takes
as many steps backward as necessary, until all possible routes have been exhausted.

The simulations have shown that this scheme’s excessive attempts at making a con-
nection are not cost effective except when the network is under very light loads (20
connections).

6. Fixed Routing

This scheme uses a fixed routing path; if a collision occurs, the connection is imme-
diately dissolved, rather then attempting another route. This has the advantage of
only requiring a single routing map.

7. Wait Before Backing-Up

One of the main disadvantages of scheme three is that once the head of a connection
becomes blocked, it is immediately backed-up one step — in effect, moving it away
from its destination.

This scheme attempts to overcome this by, instead of immediately backing-up, wait-
ing for up to half a message length for a route to clear.

8. Permanently Change Direction of Travel On Collision

Another disadvantage of scheme one is that, although the head of a connection will
temporarily use map /? to avoid a collision, it will always revert to using map a
again. On collisions, this results in zig-zag connection paths, which scheme four has
shown to be bad.

This scheme is similar to number one except that once the head of a connection has
used a given map for routing, it will continue to use it until another collision occurs.
This, hopefully, will reduce zig-zagging.

Each routing algorithm was simulated a number of times with different issue chances, thus
varying the average number of connections in the network. To simplify the analysis of the
results a 100% network yield was assumed.

C .2.1 R esu lts

The performance of the eight circuit switched routing algorithms is illustrated in figures
C .l and C.2. The graphs show that only routing algorithm eight is able to achieve a
connection latency below 280 ns in a network loaded with 40 connections. It should be
noted that the shapes of the curves indicate that the communications network was being
pushed to its limits and was on the brink of thrashing. This is not unreasonable, however,
as it is always desirable to employ the smallest level of granularity that the communications
network is able to support.

168

C.2. INVESTIGATING DIFFERENT NETWORK ROUTING ALGORITHMS

T im e T o M a k e C o n n e c t io n (n s)

Figure C.l: The Effect of Routing Algorithms 1-4 on the Time to Make a New Connection

T im e T o M a k e C o n n e c t io n (n s)

A lg o r i th m 5

A lg o r i th m 6

A lg o r i th m *!
A lg o r i t h m 8

E x i s t i n g C o n n e c t io n s

Figure C.2: The Effect of Routing Algorithms 5-8 on the Time to Make a New Connection

169

APPENDIX C. THE NETWORK SIMULATIONS

C.3 Investigating the Effects of Different Network Y ields

Having determined that routing algorithm eight is highly effective in a defect-free network,
it was necessary to investigate its performance in an imperfect network. The simulation
was altered so that a proportion of the CEs were randomly assumed to be defective4. The
simulation then constructed routing maps for the wafer which avoided the defects. This
was achieved using a recursive ‘flood-fill’ algorithm which examined all possible routes
between a source and destination CE. As an optimisation, a route was only followed until
either it reached its destination, or it equaled the length of the shortest route so far found.

C .3.1 R esu lts

Two experiments were performed:

1. The Effect o f Network Yield Upon the Average Communication Path
Length
In this experiment the issue chance was kept constant (at 0.1) while the yield of the
network was varied. Networks with mesh and torus topologies were simulated for
comparison.

A v e r a g e C o n n e c t io n le n g th (H o p s)

Figure C.3: Effect of Network Yield on Average Connection Path Length

The results of the experiment are shown in figure C.3. It can be seen that when the
network yield is high, the average path length in the torus network is much shorter

4 It was assumed that a single defect would render a CE completely inoperative. In reality this will not
be the case, as most defects will occur in the replicated communication busses.

170

C.4. CONCLUSION

then that in the mesh. However, as the network yield falls, the difference between
the two types of networks becomes less marked.

2. The Performance of Routing Algorithm Eight In Imperfect Networks
In this experiment, routing algorithm eight was simulated in networks with different
CE yields. The number of connections in the networks was determined by varying
the issue chance.

T im e T o M a k e C o n n e c t io n (n s)

100% Yield
awnsaar
80% Yield"
70% Yield “

E x i s t i n g C o n n e c t io n s

Figure C.4: Effect of Network Yield on Connection Latency

The results of the experiment are shown in figure C.4. The graph shows that the
yield of the communications network dramatically affects its performance. In general,
the higher a network’s communications yield, the lower its connection latency will
be; communication bottlenecks occur where connections are routed around defects.
Very high yields indeed are required, certainly above 90%, if Cherub’s network is to
achieve the desired latency. Due to the in-built redundancy of the proposed double
bus system and the planned use of conservative 0.4 micron fabrication technology,
it is expected that such a yield can be achieved.

C.4 Conclusion

The proposed network was simulated, showing that it is able to provide the level of per-
formance required given that a network yield in excess of 90% can be achieved. It was
asserted that the fault tolerant design of Cherub’s network will make this possible.

171

