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ABSTRACT

This thesis presents a model for conical entrance 
orifice plate flow sensor and the results of the applica-
tion of the model.

The model for the conical entrance orifice plate 
flow sensor was developed using a low Reynolds number k-e 
model of turbulence - the Lam and Bremhorst k-e model, 
and the 'PHOENICS' computer code. The flow fields 
modelled were axisymmetric and the geometry of the 
conical entrance orifice plate is in accordance with that 
given in BS 1042 : Section 1.2.

A pipe 100 mm in diameter and with water as the 
working fluid was used in the simulation. Numerical 
results were obtained with diameter ratios ¡3 equal to 
0.1, 0.2 and 0.3, and for pipe Reynolds numbers between 
80 and 60,000. The model predicted the discharge coeffi-
cient to within ± 3 % of the value stated in the British 
Standard for the range of f3 ratios and Reynolds numbers 
investigated, which suggest that the conical entrance 
orifice plate can be used at Reynolds numbers higher than 
that specified in BS 1042 : Section 1.2 : 1989 for the 
smaller /3 ratios.

The model also suggested that the discharge 
coefficient is a function of ¡3 ; that pressure tappings 
other than corner tappings can be used and the conical 
entrance orifice was relatively insensitive to turbulence 
level upstream at the pipe inlet. The effects of geomet-
ric tolerances were explored and the results indicated 
that some latitude on the geometric tolerances as 
specified in the Standard may be allowed.
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NOMENCLATURE

Rie ' 

s*

u,-' V  uk

U ,  V

V.

xi'

Area of a control volume face 

Discretization coefficient 

Turbulence model constants 

Discharge coefficient 

Turbulence model constants 

Diameter of orifice 

Diameter of pipe 

Turbulence model functions 

Kinetic energy of turbulence 

Pressure

Reynolds number in pipe flow based 

on bulk velocity and pipe diameter 

Turbulence Reynolds number 

Source term for variable cp 

Tensor notation for velocities in 

the i, j and k directions respec-

tively

Velocity component in x and y direc-

tion

Radial velocity 

Axial velocity

Tensor notation for space coordi-

nates

Greek symbols

P Orifice to pipe diameter ratio
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f

<P

V

Exchange coefficient for variable cp 

Rate of dissipation of turbulence 

energy 

Viscosity

Kinematic viscosity 

Density of fluid

A generalised dependent variable 

Diffusion Prandtl number for turbu-

lence energy k

Diffusion Prandtl number for dis-

sipation rate e

Subscripts

t

1

E, N, P, S, W

e, n, s, w

nb

Turbulent

Laminar

Grid points

Control volume faces

Neighbouring grid point

(other notations are dealt with as they arise)
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CHAPTER 1

INTRODUCTION

1.1 The use of orifice in flowmetering

For many years, differential pressure meters were 

available for measuring flowrate of fluids in a pipe with 

reasonable accuracy at a reasonable cost. In spite of 

technological progress and innovation over the last few 

decades, many requirements for flow metering are still 

adequately met by differential pressure meters. It has 

been estimated that differential pressure devices still 

hold 50% of the market (1) , and will continue to contrib-

ute to the major share of flowmeter sales. Of the 

pressure differential devices, the orifice plate is the 

most popular. The wide popularity of the orifice plate is 

due to the ease of construction, absence of need for 

calibration unless high precision is required, installa-

tion simplicity and its ability to handle some of the 

difficult applications.

1.2 Basic principle of operation

The basic principle of operation of the meter 

depends upon the fact that when a fluid flows through a 

contraction, it must accelerate; this causes its kinetic 

energy to increase, and consequently, its pressure must 

fall by a corresponding amount in accordance with the 

principle of the conservation of energy. The ideal 

flowrate may be related to the pressure drop by applying

11



the Continuity and Bernoulli equations (2). Then empiri-

cal correction factors may be applied to obtain the 

actua1 f1owrate.

For an incompressible fluid, the mass rate of flow 

Qm is given by

where Apjpe is the cross sectional area of the pipe, Aor). 

is the orifice hole area, y is the density of fluid, 

is the pressure difference across the orifice and CD is 

called the discharge coefficient.

1.3 Square edge orifice

Although the orifice has achieved widespread 

popularity only in the last 100 years or so, records 

indicate that it was used by the Romans for regulating 

the flow of water to householders. Just when and where a 

thin plate orifice was first used in the measurement of 

fluids, particularly for sales purposes, has not been 

definitely determined, but it was probably before 1890 

(3). It was after this period that the importance of 

orifice as a means of measuring volumes of gas and 

liquids for sale, and for the control of flow rates in 

continuous industrial processes, has become better known

(1 .1)
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and exploited.

1.3.1 Experimental studies

In 1903, Weymouth (4) started experimenting with a 

thin-plate sharp-edged concentric orifice, using Flange 

Taps for measuring the differential pressure. In 1915, 

Hickstein (5) published data similar to Weymouth's but 

based on the use of pressure connections at 2.5 pipe 

diameters upstream and 8 pipe diameters downstream of the 

orifice. In 1916, Judd (6) proposed the use of vena 

contracta taps, and also referred, for the first time, to 

the design of eccentric and segmental orifices. Mean-

while, Hodgson (7,8) developed many types of orifices 

over the period 1909-1924 and established a whole range 

of coefficient curves for various values of diameter 

ratio and for a wide range of Reynolds numbers.

First attempt at collecting and organizing the 

available data into a commercially usable form was begun 

in 1915 by the then newly formed American Society of 

Mechanical Engineers (ASME) Flow Meters Committee. Until 

1931, the ASME and the American Gas Association (AGA) 

accumulated and assimilated data for orifice meters 

independently. In December of that year, the Joint AGA- 

ASME Orifice Coefficient Committee was formed. The 

eventual outcome of this effort was a 1928-1932 Joint 

ASME-AGA Program at Ohio State University to determine 

the absolute values of orifice discharge coefficients.

13



Following these tests, a long series of similar projects 

was undertaken, and the results appeared in a series of 

releases and revisions that continues to the present 

time.

1.3.2 Theoretical studies

With the advent of computers, efforts to model 

orifice flow begun. Mills (9) obtained numerical solu-

tions of the Navier-Stokes equations for axi-symmetric, 

viscous, incompressible flow through a square edged 

orifice in a circular pipe for Reynolds numbers ( based 

on orifice diameter) up to 50, and fixed diameter ratio 

f3 =  0 . 5 . The discharge coefficients calculated showed 

good agreement with the values obtained experimentally by 

Johansen (10) even though there was not a complete 

similarity in regard to orifice geometry and location of 

pressure tappings. Keith (11,12) extended the work of 

Mills to other (3 ratio (0.3, 0.5 and 0.7). Mattingly and 

Davis (13) obtained numerical results for laminar flow 

through square edged orifice for Reynolds numbers (based 

on pipe radius) of 10 and 25, and /? ratio from 0.3 to 

0.7. The effects of orifice plate thickness on the 

discharge coefficient was also investigated. The dis-

charge coefficients calculated were compared with the 

experimental values presented by Johansen (10) and Tuve 

and Sprenkle (14), and Mills' result, and close agreement 

was noted. Nigro et al. (15) considered three geometries 

of orifice plate, namely that of the square edge orifice

14



plate, the "thin" orifice plate and the bevelled edge 

orifice plate. Solutions were presented for Reynolds 

numbers (based on orifice diameter) up to 1,000 for a 

range of orifice to pipe diameter ratios from 0.2 to 0.8. 

They concluded that orifice geometry played a significant 

role in the flow structure in the vicinity of the orifice 

and as such would affect the calculated discharge 

coefficient. The numerical results were also compared 

with the experimental results compiled by Tuve and 

Sprenkle for a half-bevelled orifice plate.

With the development of the k-e two-equation model 

of turbulence at Imperial College, London, various 

workers (16,17,18) used the model to study turbulent flow 

through orifice, as the model is in wide use and has been 

successfully tested against recirculating flows similar 

to those encountered downstream of an orifice plate.

Davis and Mattingly (16) modeled the flow through 

infinitely thin orifice plates with ¡3 ratios from 0.4 to 

0.7. Reynolds numbers ( based on pipe radius) studied 

were in the approximate range 104 - 106. The numerical 

results were obtained using 13 grids in the radial 

direction and up to 68 grids in the axial direction. The 

results were compared with available experimental data, 

and the agreement between computed and experimental 

discharge coefficient was within 4%.

15



Hafiz (17) used the same model to investigate flow 

through square-edged orifice plates with /3 ratios from 

0.3 to 0.7 and for Reynolds numbers ( based on orifice 

diameter ) of 105, 2.5x10s and 106. The numerical results 

were obtained using a 32x22 ( axial and radial ) grid. 

The results for the lower Reynolds numbers showed that 

the discharge coefficients were predicted to within ±3% 

of experiment; while for a Reynolds number of 106, the 

difference was about +5% for the discharge coefficient 

corresponding to the flange tapping. The variation of 

discharge coefficient with orifice plate thickness was 

also investigated, and the results showed an increase of 

discharge coefficient with plate thickness. When the 

plate became thinner, the discharge coefficient became 

asymtotically constant.

Patel and Sheikholeslami (18) simulated an orifice 

plate with a /3 ratio of 0.4 at an orifice-diameter 

Reynolds number of 106. The grids used were 80x60 ( axial 

and radial ). The numerical results enabled the computa-

tion of the discharge coefficient to within 1.5% of 

standard values. Computations of the discharge coeffi-

cient at different Reynolds numbers showed that the 

coefficient decreases with increasing Reynolds numbers.

The k-e two-equation model of turbulence had also 

been used by various workers in investigating the 

influence of geometric effects (upstream step, plate

16



buckling, pipe roughness) , and the effect of rough 

pipework on the discharge coefficients of orifice plates.

Langsholt and Thomassen (19) modelled the flow 

through a square edged orifice meter with artificially 

introduced geometric effects (upstream step, plate 

buckling, pipe roughness). Depending on the geometric 

effects introduced, the /9 ratios of the orifice plates 

used in the modelling were 0.3, 0.5 and 0.6, and the 

Reynolds numbers used were 1.7xl05 and 2.0xl06. The grids 

used were 48x19 (axial and radial) for the majority of 

the results presented. The results were compared with 

available experimental data, and the conclusion was that 

relative changes in the flow coefficient due to a 

geometrical alteration was simulated in an apparently 

correct manner, although there was a lack in absolute 

accuracy in the simulated flow coefficient.

Reader-Harris (20) examined the effect of rough 

pipework on the discharge coefficients of orifice plates. 

An orifice plate of zero thickness was specified, and the 

¡3 ratios ranged from 0.5 to 0.8. The computational test 

section contained 40 grid points in the axial direction 

and 25 in the radial direction. In all cases the Reynolds 

number based on pipe diameter and mean velocity was 

4xl05. The change in discharge coefficient due to rough-

ness was shown to be approximately proportional to /34.

17



1.4 Conical entrance orifice plates

The square edged or standard orifice plate has been 

extensively studies. At high Reynolds numbers, the 

coefficient of discharge is well-established to be nearly 

constant. However, at low Reynolds numbers, appreciable 

variation in the value of this coefficient has been 

observed (10,14). Therefore, the use of the standard 

forms of orifice plates for the metering of high viscosi-

ty fluids such as oil are unsatisfactory. In view of the 

industrial importance of metering such liquids, there is 

a considerable interest among differential pressure 

flowmeter users in any device which has a constant 

discharge coefficient in the low Reynolds number region. 

Special forms of orifices have been developed. The 

conical entrance orifice plates and quarter circle 

orifice plates are given in BS 1042 as having a constant 

discharge coefficient down to a low Reynolds number, thus 

making it suitable for the measurement of flowrate of 

viscous fluids such as oil. Conical entrance orifice 

plates have the further property that their discharge 

coefficient is the same at any diameter ratio (within the 

limits specified by the standard). The conical entrance 

orifice plate is illustrated in Figure (1.1).

1.4.1 Review of literature

The conical entrance orifice plate was first 

developed in 1930 by H.E. Dali of George Kent Ltd. as the 

Kent P.L. orifice. Some data on the P.L. orifice is

18



Fig. 1.1 Conical Entrance Orifice Plate
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available from its U.S. patent specifications (21), and 

Linford (22) based on Dali's work, gave characteristic 

curves showing the variations of discharge coefficient 

with change of Reynolds number. The data on the conical 

entrance orifice plate given in BS 1042: Part 1: 1964 is 

based on information from George Kent Ltd.

Since the publication of BS 1042: Part 1: 1964, the 

characteristics of conical entrance orifice plates have 

been explored by a number of investigators. Kastner and 

McVeigh (23) investigated orifice plate profiles for low 

Reynolds numbers. They conducted tests on a number of 

orifice plates and eight of these are of the conical 

entrance type. The eight plates were tested using a 50 mm 

(2 inches) internal diameter brass pipe with p value 

ranges from 0.063 to 0.3. Stoll and Zientara (24) 

reported work by three fluid metering companies using a 

50 mm (2 inches) diameter pipe and 5 conical entrance 

orifice plates having p values of 0.1 to 0.5. They 

described the testing program and listed all of the data 

accumulated.

The effect of installation conditions on the 

discharge coefficient of the conical entrance orifice 

plates was investigated by McVeigh (25). He conducted 

tests using a 38.1mm (1.5 inches) diameter copper pipe 

and orifice plates having a diameter ratio of 0.267, 0.4 

and 0.5. The upstream straight pipe length was varied,

20



and 90° bends were placed before the orifice.

Turton (26) also published results on tests carried 

out on conical entrance orifice plates having diameter 

ratios of 0.1 to 0.5, using a 50 mm diameter copper pipe.

Additional information on the performance charac-

teristics of conical entrance orifice plates are provided 

by Ho and Leung (27) . They tested plates with diameter 

ratios of 0.247, 0.360 and 0.448 using a 25 mm diameter 

pipe. The orifices were tested both in the concentric and 

eccentric position.

The British Standard (28) for conical entrance 

orifice plates specifies a constant conic entrance angle 

of 45' and a constant value of 0.084 for the ratio J/d

F. . . .
(fig. 1.1). It is limited to 0.1 < ¡3 < 0.316. For the 

Kent P.L. plates, both the conic entrance angle and depth 

of bevel J vary with (3. At low values of f3, the Kent P.L. 

plate is similar to that specified by BS 1042. The 

differences between the two plates increase with /3. At ¡3 

= 0.3, the difference in conical entrance angle is about 

6% and the difference in J/d is about 12%.

The work reported by Stoll and Zientara (24) and 

McVeigh (25) was on plates similar to the Kent P.L. 

plates. Only the work by Kastner and McVeigh (23), Turton 

(26) and Ho and Leung (27) was based on plates as

21



specified in BS 1042. Kastner and McVeigh conducted tests 

for pipe Reynolds numbers below 1,2 00 for six of the 

plates and below 4,000 for the remaining two plates. 

Turton performed tests over a range of pipe Reynolds 

numbers of 800 to 23,000 while Ho and Leung tested the 

orifices for the pipe Reynolds numbers in the region of 

100 to about 1,000.

In the above investigations, the differential 

pressure across the orifices was measured by means of 

corner tappings or are not reported. The investigators 

were of the opinion that observance of the dimensional 

tolerance associated with the conical entrance orifice 

plate was time consuming and difficult especially for the 

smaller diameter plates (23,24,26,27). Many of the 

results reported were on plates that do not meet the 

dimensional tolerances specified in the Standard.

1 • 5 Objectives of the study

As can be seen from the literature review, rela-

tively few experimental results were available in the 

performance characteristics of conical entrance orifice 

plates. No information is available on the use of 

pressure tappings other than corner tappings. BS 1042 

specifies dimensional tolerances which were found 

difficult to satisfy especially for the smaller diameter 

plates. Thus, there is a need to further explore the 

characteristics of conical entrance orifice plates.
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The performance of flowmeters are affected by a 

number of parameters, and for each of the parameters, 

there is a wide range of values encountered in practice. 

Therefore, laboratory experiments for all situations are 

practically impossible. However, widely ranging parame-

ters can be introduced and evaluated using computer 

methods, and, for selected cases, validation experiments 

would demonstrate credibility. Thus, the number of 

experimental investigations can be reduced.

In the last two decades, significant progress has 

been made in the development of computational fluid 

dynamics ( CFD ) techniques. These developments, and 

continually increasing ease and economy of digital 

computers, are now making numerical flow simulation a 

valuable tool in the development of various engineering 

equipment. The progess of CFD has also aided the develop-

ments of models of turbulence. Various turbulence models 

have been developed and tested in details, and some have 

been found satisfactory for engineering analysis purpos-

es. As a result, computer simulation using a suitable 

turbulence model can be extremely useful in conjunction 

with experiments in the investigations of the performance 

of various types of flowmeters.

Hence, the performance characteristics of conical 

entrance orifice plates are investigated using existing 

turbulence models. The effects of the Reynolds number and
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the variation in dimensional tolerance on the discharge 

coefficient are studied. Computations were performed with 

the aid of a general - purpose, flow - analysis computer 

code, "PHOENICS". It is hoped that this investigation 

will provide more information on the performance charac-

teristics of conical entrance orifice plates and to 

identify areas where further experimental investigations 

might be needed. This will ultimately lead to the better 

utilization of the conical entrance orifice plates as a 

low Reynolds number flow measuring device.
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CHAPTER 2

OUTLINE OF THEORY

2.1 The basic equations

In order to model fluid flow processes, it is 

necessary to consider the general physical laws that 

describe the fluid dynamics of the flow. These physical 

laws include the conservation of mass and momentum.

The equations of motion, in the absence of external 

forces, can be written in the following tensorial form 

for Newtonian fluids.

Continuity

>> K M  VU 
— -i- \ — --- c

(2 .1)

Momentum

A:
\

>>X'̂  )
■v X  (' I ̂

2> ‘■i

(2 .2 )

where the Kronecker delta <5̂. = 0 for i*j and <S. . = 1 for

i = j-

E<^uoXiov\ Cax'i') is usually called the 

Navier-Stokes equation of motion. The derivation of 

equations (2.1) and (2.2) can be found in a variety of 

books on fluid dynamics (29,30).
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2.1.1 Time - averaged Navier-Stokes equation

The Navier-Stokes equations apply equally to 

turbulent or laminar flows if actual velocities, etc., 

are used. Because of the complexity and apparently random 

nature of the velocity fluctuations in turbulent flow, 

overwhelming difficulties are involved in undertaking a 

complete analysis involving the instantaneous turbulent 

fluctuations. As it is futile to deal with actual 

velocities and other fluctuating quantities in turbulent 

flow, the development of equations to describe turbulent 

flows for applied problems is accomplished by time 

averaging the turbulent fluctuations about a mean flow 

field (31).

Thus, assuming that all the flow variables can be 

expanded in the form f = ^ + f' where T  is a mean 

value of f and f' is a fluctuation about the mean, the 

instantaneous velocity Ui and pressure >̂c can be written 

as

Vkl - VX'v. v VvJ (2.3)

vu -

. ptc

T, i , ^VC
(2.4)

- u VV- cVt - = o
^ 0

(2.5)

= %  + ?l
(2.6)

\ oto Vtv

+ E At
•̂0

(2.7)
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I
0 ( 2 . 8 )

r^o-vtv
tc

The mean values are taken over a sufficiently long 

interval of time, t,, for them to be completely indepen-

dent of time.

By introducing these mean and fluctuating compo-

nents into equations (2.1) and (2.2), the following 

equations are obtained for steady incompressible flow 

with body forces neglected.

Continuity

à X}
C (2.9)

Momentum

1 , -
\

(2.10)

Equation (2.10) is the time-averaged Navier-Stokes 

equation or the Reynolds equation. The quantity -pUi 'Uj1 

is commonly called the Reynolds stresses of turbulent 

flow, and represents the transfer momentum by the 

turbulent motion.
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The Reynolds equations cannot be solved in the form 

given because the new apparent turbulent stresses or 

Reynolds stresses must be regarded as new unknowns. To 

proceed further, it is necessary to find additional 

equations involving the new unknowns or make assumptions 

regarding the relationship between the new apparent 

turbulent quantities and the time-mean flow variables. 

This is known as the closure problem and is most commonly 

tackled through turbulence modelling.

2.2 Turbulence models

The turbulence models can be classified in several 

ways. The one most often used is that in accordance with 

the number of differential equations solved in addition 

to the mean flow equations. The turbulence model which 

appears to be most widely used for engineering calcula-

tions are the two equations k-e model.

2.2.1 The standard k-e turbulence model

The k-e model of turbulence was first put forward 

by Harlow and Nakayama (32) in 1968, and has appeared in 

the papers of Jones and Launder (33,34) and Launder et 

al. (35). A full account of the model is given by Launder 

and Spalding (36).

In this model, the Reynolds stresses are calculated 

using the Boussinesq eddy viscosity hypothesis and may be 

written as :
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M l 
à \ \

, ^^3 \ - irj e . U  
^ T x T  ) 3 5 K

where nt is a turbulent viscosity, k is the turbulent 

kinetic energy ^U-'U,', and <5̂. is the Kronecker delta. 

The turbulent viscosity /¿t is specified by

Mt = CMp k \

-  V k 2/ e  ( 2 . 1 2 )

where is a constant, k is the turbulent kinetic 

energy, and Le is the length scale related to e, the rate 

of energy dissipation by viscosity. Lf is typical of the 

size of the eddies in the energy transfer range.

Thus, two unknowns, k and e are introduced which 

require two equations for closure. Exact equations 

expressing transport of k and e can be derived from the 

Navier-Stokes equations and modelled forms of these may 

be expressed as follows (36): 

a) Kinetic energy equation

3 5 ^  G V  H X k
-V f àXXi 

'à X v. ^  X V\

- e

(2.13)

b) Kinetic energy dissipation rate equation
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(2.14)

'bt _ a- ^ rr 
v t  " 'S

A U  ̂  1
crt ' àx^ A

-V £  "bV^ bu.^ 1 à  VXy. (
■s K T>V Cvx^ + “SxT j - Ci £

In equation (2.12), (2.13) and (2.14), it is assumed that 

C„ C2, CM, crt, ak are constants, and have the following 

values as given by Launder et al. (35) and Launder and 

Spalding (36) :

= 0.09 C1 =1.44 C2 =1.92 ak =1.0 cr£ =1.3

The closed set of equations with this set of 

parameters has come to be known as the standard k-e model 

for high Reynolds number flows.

The standard k-e model has been applied in the 

studies of such diverse flow situations as flow over a 

backward facing step (37), flow in a sudden pipe expan-

sion (38) , flow in diffusers (39) , and flow over a square 

obstacle (40). In general, the comparisons between 

calculations and experiments is considered to be satis-

factory. Thus, the standard k-e model is widely used in 

engineering calculations.

2.3 Low Reynolds number k-e model

The standard k-e model is derived by assuming high 

Reynolds number condition (41). During the past few 

years, many attempts were made for extending the turbu-
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lence closure models to enable them to be used at low 

Reynolds numbers condition.

Most of the low Reynolds number models proposed 

make use of either a wall damping effect and/or a direct 

effect of molecular viscosity on the constants and 

functions of the turbulence-transport equations original-

ly used for high Reynolds number condition. As there is 

a lack of reliable turbulence data at low Reynolds 

numbers, these modifications were largely based on 

numerical experiments and comparisons between calcula-

tions and experiments in terms of global parameters.

Patel et al. (42) evaluated in detail eight low 

Reynolds number turbulence models, namely those of Chien 

(43) , Dutoya and Michard (44) , Hassid and Poreh (45) , 

Hoffmann (46), Lam and Bremhorst (47), Launder and Sharma 

(48), Reynolds (49), and Wilcox and Rubesin (50). The 

first seven models are based on the standard k-e model. 

The different models were evaluated in the light of 

available physical and experimental evidence. Patel et al. 

showed that most modifications to the basic high Reynolds 

number model do not have a sound physical basis. The 

models of Hassid-Poreh, Hoffmann, Dutoya-Michard, and 

Reynolds failed to reproduce results of even the simplest 

test case, that of the flat-plate boundary layer.

After an overall evaluation of the results obtained
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for all the test cases, Patel et al concluded that the 

models of Launder and Sharma, Chien, and Lam and Brem- 

horst, which are based on the modification of the 

standard k-e model, and that of Wilcox and Rubesin 

produce comparable results and their performance are 

considerably better than other models.

Of these models, only the one by Lam and Bremhorst 

is of a form similar to the standard k-e model of Launder 

and Spalding. The other models require the introduction 

of extra terms in the transport equations for k and e, 

and are thus more complicated than the Lam and Bremhorst 

model.

2.3.1 The Lam and Bremhorst*s k-e model

Lam and Bremhorst (47) proposed that the turbulence 

kinetic energy k and the dissipation rate of turbulence 

energy e can be determined from the following transport 

equations:

(2.15)

* ^ 3
\ ' \ V .

(2.16)
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and the turbulent viscosity given by

v (2.17)

where ak = 1.0, a 1.3, c 1.44, c2 = 1.92 and 0^=

0.09, same as that given by Launder and Spalding.

In the above equations, the functions f , f1 and f2 

are introduced to account for the low Reynolds number and 

wall-proximity effects. When the f's are all assumed to 

be equal to one, the above equations are similar in form 

to the standard k-e model of Launder and Spalding.

i) the function f

Function f in equation (2.17) is introduced to 

account for the effect of molecular viscosity on the 

shear stress (42) . In regions near a wall where viscous 

effects become important, f̂  will differ considerably 

from unity. Jones and Launder (33, 34) proposed a formula 

for f̂  that made it a unique function of the turbulence 

Reynolds number Rt (Rt = £  ) . In this formulation, f̂

is affected only indirectly by the presence of a wall 

through Rt.

Lam and Bremhorst argued that the presence of a 

wall should have a direct influence, and they postulated 

that
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\ (2 .18)
Tu. - U  - e

" ̂AlT'V,
r  t i\x.

where T K = K ^ is a turbulence Reynolds number, and 

and At are constants; the y in Rk is the normal distance 

from the nearest wall. This renders f a function of both 

Rk and Rt. Also, i/t is proportional to y4 near the wall, 

in agreement with the mixing length formula of Van 

Driest. The presence of a wall now has a direct and 

indirect influence on f . The values of the constants Â  

and At, determined by trial and error, have the following 

values :

A^ = 0.0165 At = 20.5

ii) the function f1

The function f1 is introduced to increase the e- 

production near the wall. Remote from a wall, f1 is 

approximately unity. In the near wall region, it is found 

that f1 has to assume larger values. This has the effect 

of increasing the dissipation rate, and results in a 

lower peak of k to match available experimental data. Lam 

and Bremhorst proposed that

(2.19)

The constant Ac1 is given a small value so that remote 

from a wall and when the turbulence level is high, f̂  and 

hence f1 will be approximately unity. Close to a wall, f 

will be small and f1 will become large. The value of the
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constant Acl is taken to be 0.05, and is determined by- 

trial and error.

iii) the function f2

Function f2 is introduced to simulate the change in 

the decay rate of homogeneous turbulence as the Reynolds 

number Rt becomes small. It was chosen so that the model, 

when applied to the calculation of the decay of isotropic 

grid turbulence, accorded with experiment for both high 

and low turbulence intensities. Lam and Bremhorst assumed 

that

* (2.20)

2.4 Selection of the model used in the investigation

Lam and Bremhorst (47) tested their model by 

application to fully developed turbulent pipe flow. 

Satisfactory predictions have been obtained with the 

model and agreement with available experimental data is 

found to be good. Patel et al. (42) evaluated eight low 

Reynolds number turbulence models, and concluded that the 

Lam and Bremhorst model, along with the models of Launder 

and Sharma, Chien, and Wilcòx and Rubesin produce 

comparable results in the test cases chosen and their 

performance are considerably better than other models.

The Lam and Bremhorst model is also simpler than
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other models. It is similar in form to the standard k-e 

model of Launder and Spalding. Thus, existing computer 

codes that use the standard k-e model can be easily 

modified to implement the Lam and Bremhorst model. 

Therefore, this model is selected in the investigation of 

the performance of conical entrance orifice plate, which 

is essentially used at low Reynolds number condition.
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CHAPTER 3

SOLUTION PROCEDURE

3.1 Introduction

3.1.1 The general conservation equation

The differential equations which describe turbulent 

flows were presented in chapter 2. For steady axisymmet- 

ric flow through a pipe, the general form of these 

conservation equations governing the transport of mass, 

momentum, turbulence kinetic energy and its dissipation 

rate can be written in cylindrical coordinates (z,r) as

* s* (3-D

In the above equation, <p stands for a general 

variable, namely, Vr the radial velocity, V2 the axial 

velocity, k the turbulent kinetic energy, and e, its 

dissipation rate. The equation for <p = 1 is the conserva-

tion of mass equation. The corresponding values of and 

are given in table 3.1.

The differential equations represented by equation

(3.1) and table (3.1) were solved by means of the 

"PHOENICS" computer code. The version of " PHOENICS" used 

is version 1.3. This computer code embodies a finite- 

domain formulation of the differential equations and a 

procedure for solving them.
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Conservation of 4> r , S<|>

mass \ 0 0

axial momentum v,
+ t 4 v | ^ )  

-3î_
hz

radial momentum VY AXefÇ

!

— 2-AX.ê.ç Vv 'bf>
^  T v ~

kinetic energy K AX. -V . * * *  
0“K

i

dissipation rate t -AX -V

!

t

- k c ^ t )
1

------------------------------------------------------------------------------------- L

v*
V >̂Z

G:

-^e« = M - -V XLt

Table 3.1 Exchange coefficients r<f> and sovxv-ce -tevvns Sx 
for any general property <fi *
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The calculation procedure was derived from the work 

of Patankar and Spalding (51), and has also been reported 

by Caretto et 211. (52) and Patankar (53,54,55). The 

"PHOENICS1 computer code has been described by Spalding 

(56). Information were also given in technical reports 

published by CHAM Limited of London (57,58). Thus, the 

"PHOENICS" computer code will only be briefly described 

here.

3.1.2 The "PHOENICS11 computer code

"PHOENICS" is a general purpose computer code for 

the simulation of fluid flow, heat transfer, chemical 

reaction and related phenomena, and was developed by CHAM 

Limited of London.

It comprises of two distinct computer programs. The 

smaller one is called the 'SATELLITE1, and the larger one 

'EARTH'. The 'SATELLITE' is a data-preparation program. 

In order to simulate a physical phenomenon, the problem- 

specific information is expressed in 'PHOENICS Input 

Language' and turned into commands which are contained in 

a 'quick-input' file, Ql. The 'SATELLITE' reads the Q1 

file and converts the problem-specific information into 

a data file for transmission to 'EARTH'. All information 

as to what is to be simulated is supplied to 'EARTH' 

through the use of the Ql file.

The 'EARTH' program is the code that actually
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performs the simulation. It can be regarded as a general 

purpose partial-differential-equation solver. It contains 

sequences for computer memory storage allocation, 

formulation and solution of the finite domain equations, 

output of results etc. 'EARTH' contains a subroutine 

'GREX1' which has been created to provide fluid property, 

boundary condition and other commonly required features 

for 'EARTH' to carry out its flow simulating function.

As the variety of actual fluid flow, heat transfer 

and chemical reaction phenomena that 'EARTH' may be 

called upon to simulate is virtually unlimited, there is 

a need to be able to extend the capabilities of 'EARTH' 

as the case may be. 'EARTH' contains a Fortran subroutine 

called 'GROUND'. 'GROUND' is a mere empty shell which 

user may access to insert his own special coding sequenc-

es as necessary to suit his own particular need. 'GROUND' 

is called by 'EARTH' at pre-set points of the solution 

cycle, and if the user inserts appropriate Fortran 

statements in the appropriate location of the 'GROUND' 

subroutine, 'EARTH' absorbs these into the solution 

process. Thus, the subroutine 'GROUND' may be problem- 

specific. 'GREX1' can be regarded as an examplary 

'GROUND'.

Besides 'SATELLITE' and 'EARTH', an interactive 

graphics program, 'PHOTON', is supplied as part of the 

"PHOENICS" package. 'PHOTON' serves as a post-processor
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to display the results of 'EARTH' calculations and can be 

used to display the grid, the velocity vectors, and 

contour levels of scalar variables.

3.2 The finite-domain equations

"PHOENICS" employs a finite-domain formulation of 

the differential equations represented by equation (3.1) 

and table (3.1). The formulation and the associated 

solution procedure has been reported by Patankar and 

Spalding (51), Caretto et a l . (52) and Patankar (53,54, 

55), and will only be briefly described here.

3.2.1 The finite-domain arid

The whole domain under study is divided into small, 

discrete regions (called cells) by a set of orthogonally 

intersecting grid lines. The grid spacing may be non- 

uniform. Figure (3.1) shows a typical control cell.

Within each cell is a typical point P (called a 

grid node) formed by the intersection of the grid lines. 

The other grid points E, W, N, S are the east, west, 

north and south neighbours of P. The corresponding faces 

of the control cell are denoted by e, w, n and s, and are 

located midway between the nodes.

With the exception of the velocities, all the 

variables are calculated at the grid nodes. The velocity 

components are calculated at the faces of the control
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Fig. 3.1 A typical two dimensional cell
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cell. This is known as the staggered-grid system. Figure

(3.2) shows a staggered grid arrangement. The advantages 

of the staggered grid arrangement are that the normal 

velocity components are directly available for the 

calculation of mass flow rate at the control volume 

faces, and that the pressure gradients driving the 

velocities can be calculated conveniently.

3.2.2 Derivation of the finite-domain equation

The finite-domain equations are obtained by 

integrating the differential equations over the control 

cells. The treatment for the convection terms, diffusion 

terms and the source terms will be briefly described.

i) the radial direction convection term

Integration of the convection term in the radial 

direction over a control volume (with unit angular 

distance, i.e. one radian) gives

~ 5̂, ~v ^  v vv ) v <kv ¿a.MÇ>\_

In the above expression, all fluid properties are 

assumed to be uniform over cell faces. (pVrA)n and (pVpA)s 

denotes the mass fluxes through the north and south cell 

faces respectively. 0n and <ps are the values of the 

variable at the north and south cell faces. A is the area
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of the cell face. With the exception of Vf, the values 

prevailing at the cell face are those at the nearest grid 

node on the 'upwind' side of the face.

ii) the axial direction convection term

Similarly, integration of the convection term in 

the axial direction gives

where the subscript e and w stands for the east and west 

cell faces.

iii) the diffusion terms

The diffusion terms are integrated, similar to the

convection terms, over a given control volume. The

. d>
property gradients ^  and exchange coeffi-

cients I\ are taken to be uniform over cell faces. The 

properties <p are assumed to vary linearly, and that the 

value of the exchange coefficient on the cell face is 

taken to be the arithmetic mean of those on either side 

of the cell faces in the present study.

Thus the diffusion flux of <p across the east face 

of the control cell is given by

^ < L
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where &¥Eis the distance from grid node P to grid node E.

iv) the source term

The source term is integrated over the control 

volume and is expressed as a linear function of 0p. Thus,

where S2 is the coefficient of 0p, and S1 is the part of 

Is that does not explicitly depend on 0p.

3.2.3 General form of the finite-domain equation

The combination of the convection, diffusion and 

source terms leads to the finite-domain equation, which 

can be written as :

where aN, as, aE, and au are coefficients expressing 

convecton and diffusion, and

ap = aN + as + aE + au - S2

Equation (3.2) can be written in a generalized form

where the subscript nb denotes the neighbouring grid

S  v -v S *  <4>?

ap0p ~ aN̂ N + aŝ S + aÊ E + aŵ U + S (3.2)

ap0p - E 3^0^ + S (3.3)
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nodes of P, and the summation is to be taken over all the 

neighbouring grid points. For two dimensional cases, 

there are four neighbouring points, and for three 

dimensional cases, there are six neighbouring points. A 

typical three-dimensional control cell is shown in figure

(3.3)

3.2.4 Momentum equations

The treatment of the momentum equations is the same 

as above, with the control volume staggered in relation 

to the normal control volume around the main grid point 

P. The momentum control volumes is shown in figure (3.4). 

Thus, the resulting discretization equation for the 

velocity component ue can be written as

a eUe =  2  a nbUnb +  S 1 +  ( P P "  P E>Ae

2 anbUnb + S (3.4)

The term S1 includes the source terms other than 

the pressure gradient. The term (pp - PE)Ae is the 

pressure force acting on the control volume, Ae being the 

area on which the pressure differences acts. The coeffi-

cients ae and a^ are similar to those given in 

equation (3.3). Expressions similar to equation (3.4) can 

be written for each of the velocity components.

3.2.5 Pressure and velocity correction equations

The momentum equations can only be solved when the
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Fig. 3.3 A typical 3 dimensional control cell
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Fig. 3.4 Momentum Control Volume
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pressure field is given. Let u* denotes the velocity 

field based on an estimated pressure field p*. u* will, 

in general, not satisfy the continuity equation and must 

be corrected by an amount of u' as a consequence of a 

pressure correction p' applied to the estimated pressure 

p*. Thus,

p = p* + p' (3.5)

and

u = u* + u ' (3.6)

A discretization equation for the pressure correc-

tion p ’ can be obtained (54,55,57), and for two dimen-

sional cases, is of the form

a PP  p ~~ ' n a s P  ' s 3 e P  '  e  a wP  1 u ^  ( 3 * 7 )

where b = (pu*A)u - (pu*A)e + (pv*A)s - (pv*A)n

and is the continuity error of the cell. The a's are 

influence coefficients of the form •

Velocity - correction formula can be obtained by 

manipulating equations like equation (3.4) and (3.6), and 

is of the form

a eu 'e =  ( P ' p  -  P ' E) Ae ( 3 . 8 )
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A velocity - correction equation can be obtained 

for each velocity component.

3.3 Solution procedure

The finite-domain equations like equations (3.3) 

and (3.4) are only nominally linear. The coefficients in 

these equations are themselves dependent on the value of 

the physical quantity </>. Also, the coefficients for one 

physical quantity may be influenced by the values of 

other physical quantities. Because of these interlinkages 

and nonlinearities, the final solution has to be obtained 

by iteration.

A solution procedure called 'SIMPLE' has been 

developed for the calculation of the flow field. The 

procedure has been described by Patankar and Spalding 

(51), Caretto et el (52) and Patankar (53, 54, 55). The 

important operations of the 'SIMPLE' algorithm are : 1

1. Guess the pressure field p*.

2. Solve the momentum equations such as equation

(3.4) to obtain the velocity components.

3. Solve the pressure-correction equations such as 

equation (3.7) to obtain p'.

4. Calculate the pressure p from equation (3.5), 

and the corrected velocity components from equa-

tion (3.6).

5. Solve the finite-domain equations for all other
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variables.

6. Use the newly obtained values of the variables as 

improved estimates, return to step 2, and repeat 

the whole procedure until convergence.

"PHOENICS" use the 'SIMPLEST' solution algorithm 

(59), which is a variant of the 'SIMPLE' algorithm. In 

'SIMPLEST', the coefficients anb of the momentum equa-

tions (equation (3.4)) contain only the diffusion 

contributions; the convection terms are added in to S.
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CHAPTER 4

DEVELOPMENT OF A MODEL FOR CONICAL ENTRANCE 

ORIFICE PLATE FLOW SENSOR

4.1 Introduction

The conical entrance orifice plate is essentially 

used as a low Reynolds number flow measuring device, and, 

as discussed in chapter 2, the Lam and Bremhorst k-e 

model is selected in the investigation of its performance 

characteristics. However, the "PHOENICS" computer code, 

which is used in the present study, is only equipped with 

the standard k-e model. Therefore, to develope a model 

for the conical entrance orifice flow sensor, it is 

necessary, first of all, to incorporate the Lam and 

Bremhorst k-e model into the "PHOENICS" computer code, 

making use of the facilities provided by "PHOENICS".

An instruction file called Q1 must also be created 

to transmit to the 'EARTH' program of "PHOENICS" all the 

necessary information for the simulation. These include 

the orifice plate geometry, upstream and downstream 

lengths, the number and distribution of the grid points 

and relevant properties of medium such as viscosity and 

density of fluid used in the simulation. The number of 

grid points must also be determined for the final 

solution to be 'grid-independent'.
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4.2 Incorporating the Lam-Bremhorst k-e model into the

computer program

The Lam and Bremhorst k-e model differs from the 

standard k-e model embodied in "PHOENICS' in the expres-

sion for the source terms and viscosity. Therefore, these 

have to be incorporated into the computer program through 

the use of the subroutine 'GROUND'.

4.2.1 Modification to subroutine 'GROUND'

'GROUND' is merely an empty shell provided by 

"PHOENICS" for the user to insert his own coding sequenc-

es for his own special purposes. The listings of the 

coding sequences required to be inserted in subroutine 

'GROUND' for the implementation of the Lam and Bremhorst 

k-e model are given in Appendix A and is described here.

i) Calculation of the length scale of turbulence

The length scale 1 = CDk3/2/e (3 6) is first calcu-

lated from existing values of k and e and stored in the 

'EARTH' array AUX(LENl) for later use. It is required in 

the evaluation of the source terms for the k and e 

equations. The required coding is inserted in section 12 

of group 9 of subroutine 'GROUND'.

ii) Calculation of the turbulent kinematic viscosity

The turbulent kinematic viscosity in the Lam and 

Bremhorst model is given by vt = C ^ f ^ / e  (equation 2.17). 

The function f̂  (equation 2.18) depends on the turbulence
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Reynolds number Rk = k% y/Vt and Rt = k2/i/te; the y in Rk 

is the normal distance from the nearest wall.

Hence the distance y of all the cell centres from 

the nearest wall are first determined and stored in the 

array GWDIST. These, together with the existing values of 

k, are used to calculate the value of Rk for each cell in 

the domain under study. The values of Rt are also ob-

tained using existing values of k and e. The values of Rk 

and Rt so calculated are temporarily stored in the 

'EARTH' arrays EASP3 and EASP5 and used in evaluating f̂ . 

The values of f are then used to evaluate the turbulent 

kinematic viscosity v t . The values of i/t are then stored 

in the 'EARTH' array AUX(VIST).

The coding sequences required for the determination 

of the turbulent kinematic viscosity are inserted in 

section 5 of group 9 of 'GROUND'.

iii) Calculation of the functions f1 and f2

The functions f1 (equation 2.19) and f2 (equation 

2.20) are required in the determination of the source 

term of the e equation (table 3.1). The values of the 

functions f, and f2 obtained are stored temporarily in the 

'EARTH' arrays EASP4 and EASP6 for use in later sections.

The coding sequences required are also inserted in 

section 5 of group 9, immediately after the coding
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sequences for the calculation of the turbulent kinematic 

viscosity.

iv) Calculation of the source term for the k equation

In 1PHOENICS", the source term for a general 

variable <p is expressed in a linearized form as:

where C is called the coefficient part of the linearized 

source term and is called the value part of the 

linearized source term.

Thus, for the k equation, the source term (table 

3.1) is given by:

Equation (4.2) dictates that the coefficient is

The coding sequences for the evaluation of the 

coefficient of the source term is included in section 10 

of group 13 of 'GROUND', and that for the calculation of 

the value of the source term is included in section 21 of

S = C(Va.- 0) (4.1)

S = /xtG - p e

(4.2)

and the value is -Ç--A. £ Q1 h
Tu *■ ^

group 13.



v) Calculation of the source term for the e equation

For the e equation, the source term (table 3.1) is 

given by:

S — fi^iMtG - f2C2P £ )

= -a Sì ^2.i f  £  ii Ut [_i  £- ,, r - Li 
c" f,., L ft K « -  !-l

Thus, the coefficient is

C £value is —1 jj_ ,1 C-r

Si ^ -It

(4.3)

and the

The corresponding coding sequences for the coeffi-

cient is inserted in section 10 of group 13 while that 

for the value is in section 21 of the same group.

vi) Wall boundary conditions

Close to solid walls, viscous effects predominate 

over the turbulent ones, and there are two methods of 

accounting for the near-wall regions in numerical methods 

for computing turbulent flow. One method is the modelling 

of the low-Reynolds-number phenomena, and the other is 

the use of wall functions.

a) Low-Reynolds-number modelling

The Lam and Bremhorst k-e model is a low-Reynolds- 

number turbulence model and is thus valid for the whole 

domain under investigation, including the near-wall 

regions. In this model, the velocity components and the 

value of k are specified to be zero at the wall. However,
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e is finite at the wall, and is given by (47):

e (4.4)

The variation of k and e near the wall may be 

expanded in a Taylor series. By retaining only the first 

term in the expressions, equation (4.4) is equivalent to:

X 0 ^  K
(4.5)

Thus, Parry (60) recommended that, as the boundary 

conditions for the k equation and e equation, a zero 

value is assigned at the wall for the k equation, and 

e = — _i__ for the e equation for the grid cell close

to the wall.

Boundary conditions are introduced in "PHOENICS" by 

way of sources S = C(Va_- </>) (equation 4.1). When the 

boundary condition dictates that the value of cp at a grid 

point should be fixed, Va. is set to the desired value and 

C is set to a very large number. For then, equation (3.3) 

reduces to :

<P? =  (2 a n iA b  +  va-CV  ( ap + C)

= Va.

because Va x C is much larger than all other terms in the 

numerator and C is much larger than all other terms in
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the denominator.

Thus, to implement the boundary condition for e in 

accordance with Parry's recommendation, the 'value' of 

the source term is set equal to 2vlk/y2, and the 'coeffic-

ient' is set to be 1010, a very large number. The corre-

sponding coding sequences for the 'value' of the source 

term used in the boundary condition is inserted in 

section 22 of group 13.

b) The wall-function method

The wall function formulae (3 6, 6i) are used in 

this method, and when used with the Low-Reynolds-number 

model, the distance between the wall and the first grid 

node can be very small.

For the near wall grid nodes, the following 

algebraic relations are employed when the wall function 

method is used:

u+ = y+ for

u" = ln(Ey+) for

k = uT2/ yc>t

e = uT3/  X  y

y+ < 11.5

y+ > 11.5 (4.6)

(4.7)

(4.8)

where y+ = uTy/ v , u+ = u/uT, uT = 7(rw / p) , y is the 

normal distance from the wall, u is the resultant velocity 

parallel to the wall, and t h  is the wall shear stress.

57



X  is the von Harman's constant ( X  = 0.435) and E is a 

roughness parameter (E = 9 for smooth walls).

The above relationships are embodied in "PHOENICS" 

as one of the standard features.

4.3 Modelling of flow through a conical entrance

orifice plate

The Lam-Bremhorst k-e model was applied to the flow 

through a conical entrance orifice plate. The flow was 

assumed to be steady and axi-symmetric; and cylindrical 

polar-coordinates were used in the numerical modelling.

4.3.1 Geometry

The computational test section containing the 

orifice plate is shown in figure 4.1. The domain is 

divided into regular cylindrical-polar grids. Variable 

grid spacing was used. The grids were concentrated in 

regions of large velocity gradients; i.e. in the area of 

the orifice plate in the axial direction, and close to 

the pipe wall and to the orifice lip in the radial 

direction.

The conical entrance orifice plate was created by 

declaring the appropriate regions of the computational 

test section to be inaccessible to the fluid. In 

"PHOENICS", the area A in the diffusion and convection 

terms, and the volume VQ in the source terms of the
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finite-domain equation may differ from the products of 

the cell-side lengths which represent the nominal cell- 

face areas and volumes. Thus,

A = A x f.non A

Vo = Vnom x f v

where A ^  and stand for the nominal values, and fA and 

fy are the so-called 'porosity factors' to which the user 

of the computer code can ascribe values which may differ 

from unity. fA can differ from cell to cell and from face 

to face. The volume porosity can also vary from cell to 

cell. A porosity factor of 0.0 has the effect of com-

pletely blocking off the appropriate part of the cylin-

drical integration domain, which a porosity factor of 1.0 

indicates that no blockage is present, and the corre-

sponding cell is freely accessible by the fluid.

Thus, the inaccessibility to the fluid of specified 

regions in the computational test section may be repre-

sented by way of porosity factors, which allow the extent 

of blockage of each cell face and all volume to be 

numerically expressed.

Figure 4.2 shows the use of porosity factors in 

creating the conical entrance orifice plate in the 

computational test section. The plate, with the exception 

of the conical part, is created by assigning a porosity
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factor of 0.0 to the cells in the region of interest. The 

conical part is simulated by employing equal number of 

grid points in the axial and radial directions, and a 

porosity factor of 0.5 for cells in the region of 

interest. For a bevel angle of 45 degree, the lengths of 

the cells in the axial and radial directions are set to 

be equal (V» = Vvt in figure 4.2). All other cells in the 

integration domain are assigned a porosity factor of 1.0, 

indicating that no blockage is present.

4.3.2 Grid distribution

For the solution of the finite-domain equation, the 

computational test section has to be divided into regular 

cylindrical-polar grids. The distribution of grid lines 

were such that they concentrated in regions of large 

velocity gradient.

Thus, variable spacings were used in the axial 

direction in regions A1 and A4 (figure 4.3a), and for 

grids in the radial direction in regions R1 and R3 (figure 

4.3b). The grids were concentrated axially in the area of 

the orifice plate and radially near the plate lip and 

pipe wall. The axial grid spacing in region A3 also 

varied, with grids concentrated near the conical part of 

the orifice.

To simulate the conical part of the orifice, the 

number of cells in region A2 in the axial direction is
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a) Division of the computational test 
regions to describe the axial grid

section into 
line distribution

b) Division of the computational test section into
regions to describe the radial grid line distribution

Fig. 4.3 Grid line distribution
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the same as the number of cells in region R2 in the 

radial direction. The axial grid spacing in region A2 is 

uniform; so is the radial grid spacing in region Rj. 

These two spacings are set to be equal for a bevel angle 

of 45 degree.

4.3.3 Boundary conditions

The boundaries of the computational test section 

are shown in figure 4.4. There are a total of eight 

boundaries - the inlet plane (region 6) and outlet plane 

(region 7) , the pipe wall (regions 1 and 2) , the two 

faces of the orifice plate (regions 3 and 4), the lip of 

the orifice plate (region 5) and the axis of symmetry. 

The conditions of the variables at the boundaries have to 

be specified for the solution of the finite-domain 

equations.

i) Inlet plane (region 6)

At inlet, the axial velocity profile was assumed to 

be uniform with a magnitude \j z given by

V,

where v is the kinematic viscosity of the fluid, D is the 

pipe diameter and R^ is the pipe Reynolds number.

The inlet profiles of turbulent kinetic energy k 

and its rate of dissipation e were also assumed to be 

uniform and their magnitudes kjn and ein given by the
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following relationship.

(4.9)

in (4.10)

where i = intensity of turbulence

A = length scale factor

R = pipe radius

ii) Outlet plane (region 7)

At the outlet plane, only the pressure needs to be 

specified. The pressure is taken to be constant with a 

numerical value of zero.

iii) At walls (regions 1, 2, 3, 4 and 5)

At the pipe wall, and at the orifice plate walls 

(except the bevelled part of the orifice) , the wall- 

function method (or the low-Reynolds-number modelling 

method) (section 4.2.1) is used to specify the magnitudes 

of the velocity, turbulent kinetic energy and its rate of 

dissipation at the near wall grid nodes.

4.3.4 Auxiliary information

i) Under-relaxation

The system of finite-domain equations like equa-

tions (3.3) and (3.4) are only nominally linear. Because 

of the interlinkages and nonlinearities present in these

66



equations, the final solution has to be obtained by 

iteration. However, successive iteration does not always 

lead to a converged solution. The values of variables 

might drift away from what can be considered a reasonable 

solution and such divergence of the iterative process 

must be avoided.

To suppress the tendency to diverge, it is often 

necessary to slow down the changes in the values of the 

variables by using 'under-relaxation'. Two under-relax-

ation devices are incorporated as a standard feature of 

"PHOENICS" - the 'false-time-step under-relaxation' and 

the 'linear under-relaxation'.

a) 'false-time-step under-relaxation' 

This under-relaxation practice adds 

S1 and to aP in equation (3.3). Thus

domain equation becomes

, the finite-

* p
^ \r\b ^

a.

S,
(4.11)

where V0 is the cell volume, is the 'false-time-

step', and 0p* is the value of <pp from the previous 

iteration.

The smaller the value of , the greater will

be the tendency for the finite-domain equation to imply
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*

<t>P = 0P

Thus, the solution is being slowed down and the 

divergence of the iterative solution procedure may be 

prevented.

b) 'linear under-relaxation'

Equation (3.3) can be rewritten as

=  0 P* +  [  ( 2  a nb^nb +  S l ) /  a P “  ^ P * ]

where 0p* is the value of <pp from the previous iteration. 

The terms in the square bracket represent the change in 

0p during two consecutive iterations. To slow down the 

change, an under-relaxation factor a can be used such 

that

0p = 0P* + a[(Z anb0nb + S1) / ap - 0p*] (4.12)

when a is unity, no under-relaxation is effected. If a is 

close to zero, the value of 0p changes only slowly, and 

thus the divergence of the iterative procedure may be 

prevented.

ii) Convergence

An iterative process is said to have converged when 

further iterations will not produce any change in the 

values of the dependent variables. Practically, the 

iterative process is terminated when some arbitrary
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convergence criterion is satisfied. In "PHOENICS", the 

convergence is monitored through the use of residuals, 

which is a measure of how well the finite-domain equa-

tions are satisfied by the current values of the depen-

dent variables. The residual R̂  of a variable 0 at a node 

P can be calculated from

= 2 — ap</)p (4*13)

The residuals represent the error that need to be 

reduced and eliminated during the successive iterations.

"PHOENICS" calculates the sum of the absolute 

values of for all cells in the integration domain. To 

facilitate monitoring, the residuals are suitably 

normalised by a reference value. When the sum of the 

absolute values of the residual for a variable falls 

below the associated reference value, the solution for 

that variable is terminated. The values for that variable 

will still be updated and the residual calculated as the 

solution for other variables continues. When the residual 

goes above the associated reference value, the solution 

process for that variable will be activated again.

4.4 Tests on the conical entrance orifice plates

The Lam-Bremhorst k-e model was chosen in the study 

of the characteristics of the conical entrance orifice 

plates. Other things that need to be looked into in the
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simulation of flow through the orifice plates are the 

lengths of the solution domain on the upstream and 

downstream side of the orifice plate, and the distribu-

tion of the grid points in the domain under investiga-

tion. Also, the value of the residuals (equation 4.13) 

when the solution can be considered as converged has to 

be considered.

In the use of the conical entrance orifice plates 

as a flow measuring device, discharge coefficient is the 

quantity of primary interest. Therefore, a correct model 

can basically be said to have been obtained when the 

chosen lengths of the solution domain on the upstream and 

downstream side of the orifice plate are sufficiently 

large, so that any further increase in these lengths will 

not result in a change in the discharge coefficient; the 

grid distribution is sufficiently fine so that the 

discharge coefficient remains unchanged as the grid is 

further refined; the level of the residuals being 

sufficiently small so that the discharge coefficient 

remains constant with respect to changes in the residu-

als.

4.4.1 General information on the test cases

In the modelling of flow through orifice plates, 

most of the previous workers (16,17) tested the grid 

distribution of their models at only one /3 ratio. Then 

the grid distribution so obtained was used in models for
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other p ratio orifice plates.

For the same grid distribution, the density of the 

grid in different regions of the solution domain would 

not be the same as the p ratio is altered. Therefore, 

error might occur in the numerical results obtained.

The limits of use for conical entrance orifice 

plates as specified in BS 1042 (section 1.2 : 1984) is 

for a p ratio of 0.1 < p < 0.316, and for a pipe 

Reynolds number (R^) of 80 < R^ < 60,000. Thus, tests 

were performed at p ratios of 0.1, 0.2 and 0.3 and at a 

Reynolds number (R^) of 60,000, so as to determine the 

number of grids, and the upstream and downstream lengths 

of the orifice plates required for the model.

i) Physical case used in the tests

In all these tests, numerical results were obtained 

using a pipe 100 mm in diameter and with water as the 

working fluid. The density of water is taken to be 

1000 kg/m2 and its kinematic viscosity taken to be 

10'6 m2/s.

ii) Inlet and outlet conditions

At the inlet, the profiles for the axial velocity 

\JZ ' the turbulent kinetic energy k and its dissipation 

rate e need to be specified for the solution procedure. 

Thus, a uniform profile was specified at the inlet for 

the distribution of velocity \lz ( turbulent kinetic energy
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k and its rate of dissipation e.

- the inlet velocity Vz was set to be equal to

600 mm/s so as to attain a pipe Reynolds number 

of 60,000.

- the kinetic energy of turbulence k is given by 

equation (4.9), with the level of turbulence 

intensity i set arbitrarily to a small value 

of 0.003.

- the corresponding value of dissipation rate e
0'0<\ s

was determined from the equation e = o-q i 

where R is the pipe radius (62). Thus, the length 

scale factor A in equation (4.10) is equal to

0.333.

At the outlet, a constant pressure was prescribed 

and was given a numerical value of zero.

iii) Monitoring of convergence of the solution procedure 

The convergence of the solution procedure is 

monitored through the use of residuals (equation 4.13). 

To facilitate monitoring, the residuals were normalised 

by a reference value.

For the pressure p, the residual is the sum of the 

absolute values of the cell-wise volumetric continuity 

errors. In the test runs, the residual for p was normali-

sed by dividing it with a reference value given by 

1.25 x 10'3 x Qv, where Qy is the volume rate of flow in
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the pipe. The reference value for the axial velocity \lz is

2.5 x 10'3 x \L x Q , where Qm is the mass rate of flow in 

the pipe. The reference value for the radial velocity Vv 

is 1.25 x 10'2 x \/7 x Q . The reference value for the 

turbulence kinetic energy k is 2.5 x 102 x kin x Qm/ where 

k. is the value of k at the inlet. The reference valuei n

for the dissipation rate e is 2.5 x 105 x ein x Qm, where 

e- is the value of e at the inlet.in

The reference values were chosen arbitrarily, but 

were such that the magnitudes of the normalised residuals 

for the variables would not be too far away from each 

other. Otherwise, the solution of some variables would 

stop while the values of other variables were still far 

from being converged. This might lead to divergence.

For the test cases considered, the fluid flow was 

predominantly in the axial direction. It was observed 

that the normalised residual for the axial velocity Vz 

gave a good indication about the convergence of the 

pressure field. Also, in the use of conical entrance 

orifice plates as a flow measuring device, the discharge 

coefficient will be the parameter of primary interest. 

Thus, the normalised residual for Vx was plotted against 

the discharge coefficient in figures 4.5 to 4.7 in order 

to show the convergence of the solution procedure.
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4.4.2 Tests on the B = 0.1 conical entrance orifice

plates

i) Grid distribution

To determine the number of grids required for the 

model, simulation was performed with three different 

grids. The computational test section was divided into 

regions as depicted in figure 4.3, and the number of 

grids in each region is given in table 4.1. The grids in 

regions Ax and R2, which correspond to the conical part 

of the orifice plate, were uniformly spaced. The grid 

distribution in other regions were non-uniform, being 

more concentrated near the walls.

No. of grid nodes Total no. of grid nodes 

(axial x radial)A1 A2 A3 A4 R1 R2 R3

Test no. 1 38 f '  12 24 38 vs 9 12 30 1 1 2 x 5 1

Test no. 2 38 f°15 30 38 •« 9 15 30 121 x 54

Test no. 3 62 \£J 20 40 6 2 ^ 1 2 20 40 184 x 72

Table 4.1 Grid distribution for the computational test section 

((3 ratio = 0.1 )

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and 

downstream of the orifice plate were specified to be 

30 D and 16 D respectively in tests number 1 and 2, where 

D is the pipe diameter. The corresponding values were 40 

D and 20 D for test number 3, with the density of grid 

more than 40 % greater than that in test number 2.

74



iii) Under-relaxation

To suppress the tendency of the solution to 

diverge, under-relaxation factors had to be used. 'Linear 

under-relaxation' was applied to the pressure while 

'false-time-step under-relaxation' was applied to other 

variables. The values of the under-relaxation factors 

used were varied during the course of solution to prevent 

divergence or to accelerate convergence. The range of 

values of under-relaxation factors used were 0.1 to 0.5 

for the pressure p, 0.01 to 0.001 for the axial velocity 

V.^0.01 for the radial velocity Vv; 0.1 to 0.001 for the 

turbulence kinetic energy k and 0.1 for the rate of 

dissipation e .

iv) Results

Figure 4.5 shows the variation of the discharge 

coefficient (corner tappings) with the normalised 

residual for the axial velocity Vr for the three grid 

distributions shown in table 4.1. It can be seen that the 

discharge coefficient becomes asymptotically constant as 

the residual is reduced and the solution can be consid-

ered to be well converged when the magnitude of the 

residual has reduced to below 10. The number of itera-

tions required for the solution varied from about 60,000 

to over 100,000 sweeps, depending on the grid distribu-

tion used. The variation of the discharge coefficients 

with the normalised residuals of all the variables are 

given in tables 4.2 to 4.4.
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Normalised Residuals Discharge Coefficient

P Vv V. K E
corner

tappings
flange

tappings
D & 1/2 D 
tappings

3.009E+1 1.481 E+2 4.487E+3 6.358E+3 2.489E+5 0.6808 0.6806 0.6803
2.987E+1 1.280E+2 1.765E+3 5.725E+3 1.545E+5 0.7295 0.7294 0.7291
2.996E+1 4.378E+1 1.349E+3 4.278E+2 8.753E+3 0.7235 0.7234 0.7233
4.742E+1 2.084E+1 1.172E+3 3.506E+2 1.005E+4 0.7190 0.7190 0.7189
3.532E+1 1.121E+1 7.640E+2 1.428E+2 4.438E+3 0.7161 0.7161 0.7159
1.748E+1 7.734E+0 2.474E+2 1.027E+2 3.599E+3 0.7147 0.7146 0.7145
1.433E+1 4.444E+0 1.976E+1 1.826E+1 5.412E+2 0.7147 0.7146 0.7145
1.314E+1 3.886E+0 3.739E+0 4.849E+1 1.505E+3 0.7147 0.7146 0.7145
3.150E+0 1.310E+0 1.165E+0 2.949E+0 8.407E+1 0.7147 0.7146 0.7145

Table 4.2 Variation of normalised residuals with discharge coefficients
( B ratio = 0.1 test no. 1 )



Normalised Residuals Discharge Coefficient

P Vv Vx K 2
corner

tappings
flange

tappings
D & 1/2 D 
tappings

4.933E+1 5.537E+2 2.854E+3 9.033E+3 3.408E+5 0.6932 0.6932 0.6930
2.273E+1 3.364E+2 1.173E+3 1.729E+4 6.827E+5 0.7368 0.7367 0.7365
3.532E+1 1.718E+2 6.246E+2 1.234E+4 3.477E+5 0.7358 0.7357 0.7356
2.493E+1 5.376E+1 4.225E+2 9.270E+2 2.355E+4 0.7268 0.7268 0.7266
2.182E+1 7.699E+0 2.946E+2 3.733E+2 1.049E+4 0.7226 0.7226 0.7225
3.595E+1 6.840E+0 1.419E+2 1.393E+2 4.376E+3 0.7207 0.7207 0.7206
3.696E+1 5.477E+0 8.646E+1 8.888E+1 2.947E+3 0.7202 0.7201 0.7201
3.480E+1 3.779E+0 4.920E+1 2.060E+1 1.520E+2 0.7200 0.7199 0.7198
2.226E+1 3.086E+0 3.102E+1 2.025E+1 5.718E+2 0.7199 0.7198 0.7198
2.630E+1 2.686E+0 2.233E+1 2.089E+1 5.154E+2 0.7199 0.7198 0.7197
9.972E-1 7.446E-1 9.673E+0 1.103E+2 3.886E+3 0.7199 0.7198 0.7197
8.652E-1 3.413E-1 4.150E+0 7.154E+0 1.237E+2 0.7199 0.7198 0.7197

Table 4.3 Variation of normalised residuals with discharge coefficients
( 8 ratio = 0.1 test no. 2 )



Normalised Residuals Discharge Coefficient

P V, Vx K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

2.083E+0 5.249E+2 4.589E+3 7.332E+3 5.890E+5 0.7152 0.7150 0.7147
7.393E-1 3.723E+2 2.974E+3 9.271 E+3 6.985E+5 0.7566 0.7564 0.7561
9.695E-1 2.351 E+2 1.355E+3 6.965E+3 3.254E+5 0.7583 0.7581 0.7580

7.404E-1 2.003E+2 8.564E+2 2.586E+3 9.509E+4 0.7540 0.7538 0.7536

8.544E-1 1.036E+2 6.582E+2 5.135E+2 8.228E+3 0.7465 0.7464 0.7462

3.827E+0 3.851 E+0 3.989E+2 2.791 E+2 1.252E+4 0.7228 0.7228 0.7227

4.863E+0 4.021 E+0 2.558E+2 1.715E+2 8.082E+3 0.7223 0.7223 0.7222

4.951 E+0 3.427E+0 1.057E+2 3.277E+1 1.371 E+3 0.7223 0.7223 0.7222

3.506E+0 3.013E+0 6.595E+1 4.682E+1 1.826E+3 0.7223 0.7223 0.7222

3.991 E+0 2.643E+0 3.664E+1 5.577E+1 2.469E+3 0.7222 0.7221 0.7221

3.831 E+0 2.425E+0 2.773E+1 2.983E+1 1.248E+3 0.7221 0.7220 0.7221

7.014E+0 2.265E+0 1.717E+1 5.520E+1 2.999E+3 0.7221 0.7220 0.7220

7.161 E+0 1.764E+0 9.576E+0 2.513E+1 1.183E+3 0.7221 0.7220 0.7220

3.548E+0 7.696E-1 3.986E+0 6.177E+0 1.689E+2 0.7221 0.7220 0.7220

Table 4.4 Variation of normalised residuals with discharge coefficients
( B ratio = 0.1 test no. 3 )



From tables 4.2 to 4.4, it can be seen that the 

discharge coefficients obtained in run number 2 (121 x 54 

grids) differ from that obtained in run number 3 (184 x 

72 grids) by only about 0.3 %. Thus the results obtained 

using the grid distribution in run number 2 (121 x 54 

grids) can be regarded to be grid-independent. The value 

of the discharge coefficient (corner tappings) obtained 

with this grid distribution is 0.7199, which differs from 

the BS value of 0.734 (BS 1042: section 1.2 : 1984) by 

1.92 %.

In order to confirm that sufficient lengths were 

specified for the upstream and downstream distances in 

the model, another test run was conducted using an 

upstream length of 150 D and a downstream length of 

106 D. In this test, the axial grid distribution in the 

region of the orifice plate and the radial grid distribu-

tion was identical to that of run number 2. The results 

obtained are compared with run number 2 in table 4.5.

Upstream Downstream No. of grid nodes Discharge Coefficient
length length A1 A2 A3 A4 R1 R2 R3 Corner

tappings
Flange D & 1/2 D 

tappings tappings
30 D 16 D 33 15 30 38 9 15 30 0.7199 0.7198 0.7197
150 D 106 D 83 15 30 133 9 15 30 0.7196 0.7196 0.7195

Table 4.5 Effect of upstream and downstream lengths 
( 3 ratio = 0.1 )

Thus, an upstream length of 30 D and a downstream 

length of 16 D as used in run number 2 would be suffi-
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cient distances to be used in the model.

In all the above tests, the results were obtained 

using the 'wall-function method' in specifying the wall 

boundary conditions.

4.4.3 Tests on the B = 0.2 conical entrance orifice 

plates

i) Grid distribution

To determine the number of grids required for the 

model, simulation was performed with three different 

grids. The computational test section was divided into 

regions as depicted in figure 4.3, and the number of 

grids in each region was given in table 4.6. The grids in 

region A2 and R2, which correspond to the conical part of 

the orifice plate, were uniformly spaced. The grid 

distribution in other region were non-uniform, being more 

concentrated near the walls.

No. of grid nodes Total no. of grid nodes 

(axial x radial)A1 A2 A3 A4 R1 R2 R3

Test no. 1 38 15 30 38 8 15 19 121 x 42
Test no. 2 38 21 42 38 8 21 19 139 x 4 8
Test no. 3 62 32 64 62 10 32 28 220 x 70

Table 4.6 Grid distribution for the computational test section 

( 6 ratio = 0.2 )

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and
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downstream of the orifice plate were specified to be 

30 D and 16 D respectively in test number 1 and 2, where 

D is the pipe diameter. The corresponding values were 

40 D and 20 D for test number 3, with the grid density 

more than 40% greater than that in test number 2.

iii) Under-relaxation

Under-relaxation factors had to be used to suppress 

the tendency to diverge. 'Linear under-relaxation' was 

applied to the pressure, while ' false-time-step under-

relaxation' was applied to other variables. The values of 

the under-relaxation factors were varied during the 

course of solution to combat divergence or to accelerate 

convergence. The range of values used were 0.1 to 0.5 for 

the pressure p, 0.001 to 0.0001 for the axial velocity Vx , 

0.01 to 0.001 for the radial velocity Vr)0.1 to 0.001 for 

the turbulence kinetic energy k and 0.1 for the rate of 

dissipation e.

iv) Results

Figure 4.6 shows the variation of the discharge 

coefficient (corner tappings) with the normalised 

residual for V* for the three grid distributions given in 

table 4.6. It can be seen that the discharge coefficient 

becomes asymptotically constant as the residual is 

reduced and the solution can be considered to be con-

verged when the magnitude of the residual has reduced to 

below 10. The number of iterations required for the
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Fig. 4.6 Variation of the Discharge Coefficient with the Normalised Residual

for the axial velocity component



Normalised Residuals Discharge Coefficient

P Vv K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

2.857E+1 1.096E+2 1.490E+3 3.525E+3 1.959E+4 0.6543 0.6541 0.6538
2.619E+1 8.744E+1 9.642E+2 3.318E+3 1.551 E+4 0.6990 0.6987 0.6984
1.389E+1 5.341 E+1 4.361 E+2 3.728E+3 1.337E+4 0.7359 0.7357 0.7355
1.025E+1 1.161E+1 1.204E+2 8.818E+1 3.716E+2 0.7323 0.7324 0.7320
5.448E+0 6.183E+0 7.638E+1 4.749E+1 2.025E+2 0.7310 0.7309 0.7307
5.475E+0 3.491 E+0 4.865E+1 1.506E+1 6.363E+1 0.7305 0.7304 0.7301
4.638E+0 2.168E+0 3.176E+1 5.982E+0 2.493E+1 0.7302 0.7302 0.7299
7.634E+0 1.254E+0 1.300E+1 5.656E-1 1.513E+0 0.7302 0.7301 0.7299
7.533E+0 1.037E+0 8.192E+0 2.645E+0 1.101 E+1 0.7302 0.7301 0.7299
3.353E+0 8.969E-1 5.105E+0 1.276E+0 5.230E+0 0.7302 0.7301 0.7299
7.377E+0 7.930E-1 2.065E+0 1.432E+0 5.748E+0 0.7302 0.7301 0.7299

Table 4.7 Variation of normalised residuals with discharge coefficients
( B ratio = 0.2 test no. 1 )



Normalised Residuals Discharge Coefficient

P Vv v , K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

5.615E+0 3.659E+1 1.337E+3 2.622E+2 1.462E+3 0.6660 0.6659 0.6654
9.739E+0 4.573E+1 1.048E+3 1.630E+5 7.487E+5 0.6920 0.6918 0.6913
5.697E+0 2.892E+1 6.892E+2 1.357E+2 6.411E+2 0.7105 0.7103 0.7097
5.713E+0 2.641 E+1 5.694E+2 1.075E+2 4.859E+2 0.7175 0.7172 0.7168
6.810E+0 1.975E+1 3.165E+2 6.830E+1 2.862E+2 0.7296 0.7294 0.7291
5.453E+0 1.567E+1 2.169E+2 4.525E+1 1.830E+2 0.7342 0.7340 0.7337
4.485E+0 1.155E+1 1.437E+2 2.646E+1 9.733E+1 0.7370 0.7368 0.7364
5.257E+0 7.741 E+0 9.166E+1 1.244E+1 3.999E+1 0.7381 0.7379 0.7377
6.493E+0 5.671 E+0 6.545E+1 1.171 E+1 3.840E+1 0.7383 0.7382 0.7378
4.446E+0 2.281 E+0 4.664E+1 5.675E+0 1.729E+1 0.7378 0.7379 0.7375
5.009E+0 1.254E+0 3.072E+1 5.621 E+0 2.049E+1 0.7370 0.7369 0.7368
4.520E+0 4.178E-1 2.541 E+0 2.734E+0 8.834E+0 0.7359 0.7358 0.7357
6.662E+0 3.184E-1 1.118E+0 9.232E-1 3.883E+0 0.7359 0.7358 0.7355

Table 4.8 Variation of normalised residuals with discharge coefficients
( 3 ratio = 0.2 test no. 2 )



Normalised Residuals Discharge Coefficient

P Vv K K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

3.485E+2 8.766E+2 3.051 E+3 2.537E+2 9.603E+2 0.7520 0.7524 0.7521
5.115E+2 5.285E+2 1.381E+3 1.719E+2 9.750E+2 0.7472 0.7473 0.7473
4.675E+2 2.528E+2 7.140E+2 1.180E+2 7.240E+2 0.7418 0.7419 0.7419
8.178E+1 4.446E+1 3.653E+2 2.447E+2 1.689E+3 0.7415 0.7417 0.7416
8.627E+0 1.413E+0 1.785E+2 8.790E+1 5.890E+1 0.7377 0.7378 0.7377
8.647E+0 1.018E+0 1.413E+2 6.905E+0 3.240E+1 0.7377 0.7378 0.7375
9.556E+0 8.165E-1 1.165E+2 5.358E+0 2.438E+1 0.7377 0.7376 0.7376
1.231E+1 6.528E-1 8.682E+1 5.721 E+0 2.478E+1 0.7377 0.7376 0.7376
1.167E+1 6.408E-1 5.306E+1 1.771E+0 1.082E+1 0.7377 0.7376 0.7376
1.088E+1 5.962E-1 4.289E+1 1.313E+0 7.462E+0 0.7378 0.7377 0.7375
6.980E-1 4.054E-1 3.618E+1 6.520E-1 2.550E+0 0.7378 0.7377 0.7375
1.069E+1 6.231 E-1 3.098E+1 7.320E+1 2.519E+2 0.7376 0.7375 0.7375
1.457E+1 8.112E-1 1.620E+1 3.864E+1 1.908E+2 0.7382 0.7381 0.7379
1.258E+1 6.475E-1 1.093E+1 3.751 E+1 1.553E+2 0.7380 0.7379 0.7377
2.812E+0 6.957E-1 8.827E+0 4.258E+1 2.318E+2 0.7380 0.7379 0.7377

Table 4.9 Variation of normalised residuals with discharge coefficients
{ 3 ratio = 0.2 test no. 3 )



solution varied from about 10,000 sweeps for the coarser 

grids to over 70,000 sweeps for the finer grids. The 

variation of the discharge coefficients with the normali-

sed residuals are given in tables 4.7 to 4.9.

From tables 4.7 to 4.9, it can be seen that the 

discharge coefficient obtained in run number 2 (139 x 48 

grids) differs from that obtained in run number 3 (220 x 

70 grids) by less than 0.3 %. Thus, the results obtained 

using the grid distribution in run number 2 (139 x 48 

grids) can be regarded to be grid-independent. The value 

of the discharge coefficient (corner tappings) obtained 

with this grid distribution is 0.7359, which differs from 

the BS value of 0.734 (BS 1042 : section 1.2 : 1984) by 

only 0.26 %.

To confirm that sufficient upstream and downstream 

lengths were used in the model, a test run as conducted 

using an upstream length of 150 D and a downstream length 

of 106 D. In this test, the axial grid distribution in 

the region of the orifice plate and the radial grid 

distribution was identical to that of run number 2. The 

results obtained are compared with run number 2 in table 

4.10.

Upstream Downstream No. of grid nodes Discharge Coefficient
length length A1 A2 A3 A4 R1 R2 R3 Corner Flange D & 1/2 D

tappings tappings tappings
30 D 16 D 38 21 42 38 8 21 19 0.7359 0.7358 0.7355
150 D 106 D 83 21 42 133 8 21 19 0.7353 0.7353 0.7350

Table 4.10 Effect of upstream and downstream lengths 
( 3 ratio = 0.2 )
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Thus, an upstream lengths of 30 D and a downstream 

length of 16 D as used in run number 2 would be suffi-

cient distances to be used in the model.

In all the above tests, the 'wall-function method1 

was used in specifying the wall boundary condition. An 

additional test run was conducted with the wall boundary 

condition specified by the 'low Reynolds-number modelling 

method' and using the same grid distribution as in run 

number 3. The value of the discharge coefficient (corner 

tappings) thus obtained was 0.4670.

4.4.4 Tests on the ¿3 = 0.3 conical entrance orifice 

plates

i) Grid distribution

To determine the number of grids required for the 

model, simulation was again performed with three differ-

ent grids. The computational test section was divided 

into regions as depicted in figure 4.3, and the number of 

grids in each region was given in table 4.11. The grids 

in regions A2 and R2, which correspond to the conical 

part of the orifice plate, were uniformly spaced. The 

grid distribution in other region were non-uniform, being 

more concentrated near the walls.
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No. of grid nodes Total no. of grid nodes 

(axial x radial)A1 A2 A3 A4 R1 R2 R3

Test no. 1 38 20 40 38 8 20 13 136 x41

Test no. 2 38 25 50 38 8 25 13 151 x 46

Test no. 3 62 35 70 62 10 35 17 229 x 62

Table 4.11 Grid distribution for the computational test section 

( 6 ratio = 0.3)

ii) Upstream and downstream lengths

The lengths of the solution domain upstream and 

downstream of the orifice plate were specified to be 

30 D and 16 D respectively in tests number 1 and 2 , where 

D is the pipe diameter. The corresponding values were 

40 D and 20 D for test number 3, with the grid density 

more than 40 % greater than that in test number 2.

iii) Under-relaxation

Under-relaxation factors were used to suppress 

divergence. 'Linear under-relaxation' was applied to the 

pressure while 'false-time-step under-relaxation' was 

applied to other variables. The values of the factors 

used were varied during the course of solution in order 

to combat divergence or to accelerate convergence. The 

range of values used were 0.5 for the pressure p, 0.01 to 

0.05 for the axial velocity^ and the radial velocity VY t 

0.1 for the turbulence kinetic energy k and the rate of 

dissipation e.
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iv) Results

Figure 4.7 shows the variation of the discharge 

coefficient (corner tappings) with the normalised 

residual for the axial velocity for the three grid 

distributions shown in table 4.11. It can be seen that 

the discharge coefficient becomes asymptotically constant 

as the residual is reduced and the solution can be 

considered to be converged when the magnitude of the 

residual has reduced to below 5. The number of iterations 

required for the solution varied from about 15,000 sweeps 

for the coarser grids to over 100,000 sweeps for the 

finer grids. The variation of the discharge coefficients 

with the normalised residuals of all the variables are 

given in tables 4.12 to 4.14.

From table 4.12 to 4.14, it can be seen that the 

discharge coefficients obtained in run number 2 (151 x 46 

grids) differs from that obtained in run number 3 (229 x 

62 grids) by less than 0.18 %. Thus, the results obtained 

using the grid distribution in run number 2 (151 x 46 

grids) can be regarded to be grid-independent. The value 

of the discharge coefficient (corner tappings) obtained 

with this grid distribution is 0.7451, which differs from 

the BS value of 0.734 (BS 1042: section 1.2: 1984) by 

1.51%.

To confirm that sufficient upstream and downstream 

lengths were used in the model, a test run was conducted
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Normalised Residuals Discharge Coefficient

P Vy Vz K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

3.692E+1 3.963E+1 8.108E+2 6.945E+4 1.115E+5 0.6588 0.6587 0.6584

2.791 E+1 3.603E+1 5.896E+2 1.359E+5 2.179E+5 0.6840 0.6838 0.6837
3.142E+1 2.540E+1 4.138E+2 6.279E+4 8.982E+4 0.7110 0.7109 0.7106

2.643E+1 2.601 E+1 3.035E+2 1.321E+5 1.781 E+5 0.7592 0.7592 0.7590
2.239E+1 1.203E+1 1.318E+2 1.061E+4 1.009E+4 0.7404 0.7404 0.7402

4.510E+0 3.567E+0 2.409E+1 1.897E+2 2.872E+2 0.7423 0.7422 0.7420

3.359E+0 3.154E+0 1.668E+1 3.872E+1 5.286E+1 0.7419 0.7417 0.7416

3.066E+0 2.263E+0 1.086E+1 9.811 E+0 1.460E+1 0.7416 0.7415 0.7413

3.402E+0 1.708E+0 7.758E+0 2.200E+0 2.478E+0 0.7415 0.7415 0.7413

2.945E+0 1.041 E+0 4.447E+0 2.552E+0 3.019E+0 0.7415 0.7415 0.7413

2.296E+0 3.891 E-1 1.399E+0 4.979E-1 5.720E-1 0.7416 0.7415 0.7414

Table 4.12 Variation of normalised residuals with discharge coefficients
( 6 ratio = 0.3 test no. 1 )



Normalised Residuals Discharge Coefficient

P Vv K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

1.147E+1 5.787E+1 1.179E+3 1.086E+3 1.608E+3 0.7686 0.7703 0.7698
3.200E+0 3.169E+1 5.149E+2 2.182E+2 3.313E+2 0.7570 0.7579 0.7581
2.836E+0 1.725E+1 2.367E+2 6.115E+1 8.923E+1 0.7547 0.7554 0.7554
2.997E+0 8.415E+0 1.364E+2 2.528E+1 3.463E+1 0.7521 0.7525 0.7526

2.401 E+0 3.439E+0 9.948E+1 1.250E+1 1.686E+1 0.7501 0.7503 0.7505
2.900E+0 5.660E-1 5.791 E+1 8.977E+0 1.311 E+1 0.7482 0.7483 0.7484

2.236E+0 2.489E-1 3.978E+1 9.877E+0 1.605E+1 0.7478 0.7477 0.7478

3.158E+0 1.597E-1 3.083E+1 6.899E+0 1.107E+1 0.7473 0.7473 0.7473

3.270E+0 1.517E-1 1.947E+1 5.699E+0 8.650E+0 0.7466 0.7466 0.7466

3.305E+0 1.705E-1 1.261 E+1 2.408E+0 3.542E+0 0.7461 0.7460 0.7459

2.862E+0 1.539E-1 7.648E+0 2.053E+0 2.962E+0 0.7456 0.7456 0.7454

2.666E+0 1.471E-1 5.716E+0 9.071 E-1 1.254E+0 0.7454 0.7453 0.7452

2.442E+0 1.353E-1 3.496E+0 2.787E+0 3.847E+0 0.7452 0.7452 0.7449

2.367E+0 1.310E-1 2.550E+0 4.169E-1 4.317E-1 0.7451 0.7451 0.7449

Table 4.13 Variation of normalised residuals with discharge coefficients
( B ratio = 0.3 test no. 2 )



Normalised Residuals Discharge Coefficient

P V, V. K £
corner

tappings
flange

tappings
D & 1/2 D 
tappings

1.207E+1 3.600E+1 1.104E+3 2.361 E+2 5.665E+2 0.6924 0.6914 0.6907
5.365E+0 2.157E+1 7.305E+2 5.490E+1 1.330E+2 0.7050 0.7040 0.7033
4.978E+0 1.550E+2 5.535E+2 1.177E+2 9.794E+1 0.7122 0.7111 0.7103
5.298E+0 9.342E+0 4.118E+2 1.036E+2 5.606E+1 0.7210 0.7201 0.7193
5.492E+0 6.330E+0 3.463E+2 2.066E+1 3.627E+1 0.7261 0.7251 0.7243

5.438E+0 4.121 E+0 2.234E+2 1.805E+1 3.044E+1 0.7339 0.7330 0.7320
5.082E+0 3.436E+0 1.676E+2 1.715E+1 2.721 E+1 0.7374 0.7365 0.7356
4.719E+0 3.460E+0 9.577E+1 1.225E+1 1.724E+1 0.7424 0.7416 0.7407

4.441 E+0 4.060E+0 5.163E+1 9.159E+0 1.092E+1 0.7459 0.7454 0.7445

5.150E+0 3.108E+0 2.580E+1 3.519E+0 1.368E+0 0.7486 0.7483 0.7476

4.955E+0 1.046E+0 1.443E+1 2.027E+0 1.182E+0 0.7470 0.7469 0.7465

4.322E+0 4.616E-1 9.688E+0 2.207E+0 1.617E+0 0.7457 0.7456 0.7452

4.843E+0 3.371 E-1 5.590E+0 9.273E+0 1.344E+1 0.7448 0.7447 0.7443

4.763E+0 3.600E-1 4.119E+0 9.306E+0 1.575E+1 0.7445 0.7444 0.7440

4.922E+0 3.580E-1 2.532E+0 3.112E+0 5.485E+0 0.7442 0.7441 0.7437

5.175E+0 3.601 E-1 1.770E+0 7.318E+0 1.278E+1 0.7441 0.7440 0.7436

Table 4.14 Variation of normalised residuals with discharge coefficients
( B ratio = 0.3 test no. 3 )



using an upstream length of 150 D and a downstream length 

of 106 D. In this test, the axial grid distribution in 

the region of the orifice plate and the radial grid 

distribution was identical to that of run number 2. The 

results obtained are compared with run number 2 in table 

4.15.

Upstream Downstream No. of grid nodes Discharge Coefficient

length length A1 A2 A3 A4 R1 R2 R3 Corner Flange D & 1/2 D;
tappings tappings tappings

30 D 16 D 33 25 50 38 8 25 13 0.7451 0.7451 0.7449

150 D 106 D 83 25 50 133 8 25 13 0.7445 0.7444 0.7443

Table 4.15 Effect of upstream and downstream lengths 
( I3 ratio = 0.3 )

Thus, an upstream length of 30 D and a downstream 

length of 16 D as used in run number 2 would be suffi-

cient distances to be used in the model.

The 'wall-function method' was used in specifying 

the wall boundary condition in all the above tests. An 

additional test run was carried out with the wall 

boundary conditions specified by the 'low-Reynolds number 

modelling method', using the same grid distribution as in 

run number 2. The value of the discharge coefficient 

(corner tappings) thus obtained was 0.5148.

4.4.5 Concluding remarks on the tests

Tests were conducted on conical entrance orifice 

plates with f3 ratios of 0.1, 0.2 and 0.3. The grid
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distributions for the solution to be grid-independent 

were determined, and these was 121 x 54 grids for 

/3 = 0.1, 139 x 48 grids for ¡3 = 0.2 and 151 x 46 grids 

for /3 = 0.3. These grid distributions and the ones with 

higher grid density (i.e. 184 x 72 grids for /3 = 0.1, 

220 x 70 grids for ¡3 = 0.2 and 229 x 62 grids for 

13 = 0.3) would be used in the study of the characteris-

tics of the conical entrance orifice plates.

The tests also showed that, with the wall boundary 

conditions specified by the 1low-Reynolds-number model-

ling' method, the discharge coefficients obtained deviate 

significantly from the BS value of 0.734. Chen (63) had 

similar observation on the use of 'low-Reynolds-number 

modelling' method in specifying wall boundary conditions 

in his investigation on the natural convection in a 

large-scale air-filled cavity. He used both the 'low- 

Reynolds-number modelling' method and the 'wall-function' 

method, and found that the results obtained with the 

first method deviated from the experimental data.

The 'low-Reynolds-number modelling' method probably 

need a much finer grid distribution near the walls than 

the 'wall-function' method to give the correct result. 

Thus, only the 'wall-function' method would be used in 

specifying the wall boundary conditions in the investiga-

tion of the characteristics of the conical entrance 

orifice plates.
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A typical Q1 file, which supplied all 

as to what is to be simulated to 'EARTH", 

Appendix B.

information 

is given in
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CHAPTER 5

APPLICATIONS OF THE MODEL

5.1 Introduction

The development of the model for the conical 

entrance orifice plate flow sensor was discussed in the 

last chapter. Tests were performed at a Reynolds number 

(ReD) of 60,000, and the grid distributions required for 

the solution to be regarded as grid-independent were 

determined. These grid distributions (i.e. 121 x 54 grids 

for ¡3 = 0.1, 139 x 48 grids for /3 = 0.2 and 151 x 46 

grids for /3 = 0.3) and the ones with larger number of 

grids (i.e. 184 x 72 grids for (3 = 0.1, 220 x 70 grids 

for ¡3 = 0.2 and 229 x 62 grids for (3 = 0.3) are used in 

the present chapter to investigate the characteristics of 

the conical entrance orifice plate flow sensors.

5.2 Effect of Reynolds number on the discharge coeffi-

cient

5.2.1 Computed discharge coefficients

Table 5.1 shows the computed discharge coefficients 

against the Reynolds number (ReD) for various f3 ratio. It 

can be seen from the table that the discharge coeffi-

cients vary with the Reynolds number and with the 

ratio. This is also evident from figures 5.1 to 5.3.

In order to measure the pressure difference across 

the orifice plate, BS 1042 : Section 1.2 specified that
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8

Reynolds

Number

Discharge Coefficient

Corner

tappings

Flange

tappings

D & 1/2 D 

tappings
0.1 80 0.7139 (-2.74%) 0.7139 0.7139

1,000 0.7211 (-1.76 %) 0.7211 0.7211
2,000 0.7215 (-1.70 %) 0.7215 0.7215
4,000 0.7214 (-1.72 %) 0.7214 0.7214
6,000 0.7203 (-1.87%) 0.7203 0.7203
10,000 0.7186 (-2.10%) 0.7186 0.7186
30,000 0.7190 (-2.04%) 0.7190 0.7189
60,000 0.7199 (-1.92%) 0.7198 0.7197

0.2 80 0.7200 (-1.91 %) 0.7201 0.7199
1,000 0.7379 (0.53%) 0.7379 0.7379
2,000 0.7410 (0.95%) 0.7410 0.7410
4,000 0.7428 (1.20%) 0.7428 0.7428
6,000 0.7390 (0.68%) 0.7390 0.7390
10,000 0.7438 ( 1.34 %) 0.7438 0.7436
30,000 0.7356 ( 0.22 %) 0.7355 0.7352
60,000 0.7359 (0.26 %) 0.7358 0.7355

0.3 80 0.7239 (-1.38 %) 0.7242 0.7239
1,000 0.7476 (1.85%) 0.7476 0.7476
2,000 0.7520 (2.45%) 0.7521 0.7522
4,000 0.7545 (2.79 %) 0.7547 0.7547
6,000 0.7556 ( 2.94 %) 0.7557 0.7557
10,000 0.7492 (2.07%) 0.7493 0.7497
30,000 0.7457 ( 1.59 %) 0.7456 0.7454
60,000 0.7451 ( 1.51 %) 0.7451 0.7449

* value In bracket is the percentage variation of the discharge 
coefficient from that given in BS 1042 : Section 1.2 : 1984

Table 5.1 Variation of discharge coefficient with Reynolds number
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Fig. 5.1 Variation of the computed discharge coefficient with Reynolds number



Di
sc
ha
rg
e 

Co
ef
fi
ci
en
t

R e y n o l d s  N u m b e r

Fig. 5.2 Variation of the computed discharge coefficient with Reynolds number
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Fig. 5.3 Variation of the computed discharge coefficient with Reynolds number



corner tappings shall be used with conical entrance 

orifice plates, and the discharge coefficient given is 

based on the use of corner tappings. However, it can be 

seen from table 5.1 that the discharge coefficients 

obtained from the computed pressure at locations corre-

sponding to the use of corner tappings, flange tappings 

and D &  ̂ D tappings are almost identical, with differ-

ence occuring only at the fourth digit after the decimal 

point.

Thus, the computed results suggest that, in 

addition to corner tappings as specified in BS 1042 : 

Section 1.2, flange tappings and D & h D tappings can 

also be used as pressure tappings with the conical 

entrance orifice plate flow sensors in flow measurement, 

and that there is practically no difference in the 

discharge coefficients for each type of tappings.

The variation of the computed discharge coeffi-

cients with Reynolds number (Re0) is also shown in 

figures 5.1 to 5.3. Since the discharge coefficients are 

almost identical for the three types of tappings, only 

the results obtained using corner tappings are presented 

in the figures.

Besides the Lam-Bremhorst k-e model (LRN model), 

results were also obtained using the standard k-e model 

(HRN model) and by assuming laminar flow in the computa-
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tional test section (LAM model). The discharge coeffi-

cients (corner tappings) obtained by using the different 

models are also presented in figures 5.1 to 5.3.

From these figures, it can be seen that for the HRN 

model, the discharge coefficients obtained vary signifi-

cantly with the Reynolds number as the Reynolds number 

gets larger, and that the discharge coefficients differ 

significantly from the BS value of 0.734 at these larger 

Reynolds numbers. Apparently, the flow is locally 

behaving more viscously than that indicated by the 

Reynolds number.

For the LRN model and LAM model, the discharge 

coefficients obtained vary with the Reynolds number in 

approximately the same manner. As would be expected, the 

difference between the discharge coefficients obtained by 

the two models is very small at the lower Reynolds 

numbers, with the difference gets larger as the Reynolds 

number is increased. This is particularly evident in 

figure 5.2 and 5.3, which show the computed results for 

(3 = 0.2 and 0.3.

5.2.2 Comparison with experimental results

In order to test and verify the validity of the 

model, the computed discharge coefficients have to be 

compared with available experimental results. Only 

limited experimental results had been published on the
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performance of conical entrance orifice plates (23-27). 

Of the available information, those reported by Stoll and 

Zientara (24) and Turton (26) covered a wide range of 

Reynolds numbers and f3 ratio. The others were concerned 

only with a limited range. Thus, the results reported by 

Stoll and Zientara and Turton are used to test the model.

Figures 5.4 to 5.6 show the comparison of the 

computed discharge coefficient with the experimental 

results reported by Stoll and Zientara and Turton. The 

results are all based on the use of corner tappings. It 

can be seen from these figures that the discharge 

coefficients predicted by the LRN model are lower than 

most of the experimental results for = 0.1. For ¡3 = 0.2 

and 0.3, the predicted discharge coefficients are lower 

than most of the experimental values for the lower 

Reynolds numbers, and higher than most of the experimen-

tal values for the larger Reynolds numbers. In general, 

the predicted discharge coefficients can be said to fall 

within the range of values obtained experimentally. The 

comparison of the computed discharge coefficient with the 

experimental results can be considered to be reasonable 

and trends of the discharge coefficient predicted by the 

LRN model parallel the published results.

The difference between the predicted discharge 

coefficients and the experimental results might partly be 

due to the geometry of the conical entrance orifice
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plates used. In the numerical model, the geometry and 

dimensions as specified in BS 1042 : Section 1.2 were

used. However, the work reported by Stoll and Zientara 

was on conical entrance orifice plates similar to the 

KENT P.L. type orifice. The geometry of the KENT plate is 

a function of £, although at low values of >3, the 

dimensions of the KENT plate are within the limits 

specified in BS 1042 : Section 1.2. Stoll and Zientara 

gave information on the dimensions of one set of plates 

tested, and some of these dimensions were outside the 

limits specified in BS 1042. The results presented by 

Turton were on plates manufactured in accordance with 

BS 1042 : Section 1.2. However, as reported by Turton, it 

was difficult to observe the dimensional tolerances 

specified and most of the plates used in the experiment 

had dimensions outside the limits given in BS 1042. Since 

the actual dimensions of the orifice plates used in the 

experiments are not exactly the same as that used in the 

numerical model, difference between the computed dis-

charge coefficients and the experimental results might be 

expected.

5.2.3 Comparison with values given in British Standard 

BS 1042 : Section 1.2 : 1984 limits the use of

conical entrance orifice plates to values of /3 between 

0.1 and 0.316, and for Reynolds numbers between 80 and 

60,000. The revision of BS 1042 : Section 1.2 in 1989

further limits the use of conical entrance orifice plates
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to Reynolds numbers between 80 and 2 x 105/3. A constant 

discharge coefficient of 0.734 ± 2 % is given in both 

editions of BS 1042 : Section 1.2.

The variation of the computed discharge coeffi-

cients from the value given in the British Standard is 

shown in table 5.1. The same information is also plotted 

in figure 5.7. From the figure, it can be seen that the 

difference between the computed discharge coefficients 

and the value given in the British Standard is a function 

of Reynolds number and the p ratio, and the LRN model 

predicted the discharge coefficient to within ± 3 % of 

the value stated in BS 1042 : Section 1.2.

Figure 5.7 and table 5.1 also show that the 

greatest difference between the predicted and given value 

of discharge coefficient occurs at a Reynolds number 

below 10,000. For Reynolds numbers between 10,000 and 

60,000, the discharge coefficients as predicted by the 

LRN model are within ± 2.1 % of the value given in the 

Standard for all the three p ratios investigated. This 

results suggest that the conical entrance orifice plates 

can be used for Reynolds numbers up to 60,000, as 

asserted in the earlier edition (1984) of BS 1042 : 

Section 1.2, and if the discharge coefficient is taken as 

a function of p , the tolerance on the discharge coeffi-

cient can be reduced.
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5.3 Pressure profile and flow pattern through the

conical entrance orifice plate 

5.3.1 Variation of vail pressure along pipe

Figure 5.8 to 5.13 show the variation of wall 

pressure along the pipe as predicted by the LRN model for 

values of ¡3 from 0.1 to 0.3, and for Reynolds numbers 

between 80 and 60,000. From such pressure profiles, it is 

possible to compute the discharge coefficients with any 

particular choice of pressure tappings.

The streamwise distribution of static pressure 

along the pipe wall is shown in figures 5.8 and 5.9 for 

a Reynolds number of 60,000 and 30,000 respectively. 

Evident from the figures are the pressure drop caused by 

the presence of the orifice plate, and the location of 

the point of minimum pressure downstream of the orifice.

Figures 5.10(a) to 5.10(c) present the variation of 

wall pressure along the pipe for a Reynolds number of 

10,000 for the three /3 ratios under investigation. It can 

be seen from these figures that the pressure minima 

evident in figures 5.8 and 5.9 can no longer be observed 

for ¡3 = 0.1 and 0.3. Downstream of the orifice, the 

computed wall pressure remains almost constant up to the 

outlet plane for these two (3 ratios.

Figures 5.11(a) to 5.11(g) show the streamwise wall 

pressure distribution for a Reynolds number of 6,000 as
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computed by the LRN model. The effect of increasing the 

downstream pipe length on the pressure profile can also 

be seen from these figures. As the downstream pipe length 

increased, the presence of a minimum wall pressure at the 

intersection of the orifice plate and the pipe wall 

becomes obvious. The same can be observed in figures 5.12 

and 5.13 which show the streamwise wall pressure distri-

bution for a Reynolds number of 1,000 and 80 respective-

ly. For flows at higher Reynolds number, the pressure 

minima is located at some distance downstream of the 

orifice plate as is evident in figures 5.8 and 5.9. The 

move in the location of the pressure minima upstream to 

the orifice plate at low Reynolds numbers was also noted 

by Mattingly and Davis (13) in their study of laminar 

flow through square edged orifice. Mattingly and Davis 

interpreted this as viscous effects at low Reynolds 

numbers.

Although the downstream pressure profile changes as 

the downstream pipe length increases from 16 D, the 

computed discharge coefficient remains practically 

constant for a given Reynolds number and £ ratio, and is 

not affected by the downstream pressure profile changes 

as can be seen from figures 5.11 to 5.13.

From the wall pressure profiles, it can be seen 

that there is very little difference in the pressure 

differentials at locations corresponding to the use of
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corner, flange and D & kD pressure tappings. Thus, the 

computed discharge coefficients for these three pressure 

tappings are almost identical, as is shown in table 5.1.

For comparison with the LRN model, the variation of 

wall pressure along the pipe as computed by the LAM model 

is presented in figures 5.14(a) to 5.14(c) for = 0.3 

and Reynolds numbers of 80, 30,000 and 60,000. For a 

Reynolds number of 80, there is the expected good 

agreement between the LRN model and the LAM model, as is 

evident by comparing figure 5.13(e) with figure 5.14(a). 

However, at the Reynolds numbers of 30,000 and 60,000, 

the LAM model cannot predict the presence of the pressure 

minima as can be seen by comparing figure 5.9(c) with 

figure 5.14(b), and figure 5.8(c) with figure 5.14(c). 

The pressure remains almost constant downstream of the 

orifice plate. The LAM model is not used in the present 

investigation.

5.3.2 Flow pattern through the orifice

Figure 5.15(a) shows the flow pattern as predicted 

by the LRN model through a conical entrance orifice plate 

for ¡3 = 0.2 and for a Reynolds number of 30,000. For 

clarity of the velocity vector plot, a grid-scaling 

factor of 2 0 was applied in the radial direction. The 

grid-scaling factor for the axial direction was unity. 

Shown in the figure is the general pattern of flow 

convergence through the orifice plate and the jet flow
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downstream of the plate. Also evident from the figure is 

the presence of a recirculating eddy downstream of the 

orifice plate. Figure 5.15(b) shows the magnified view of 

the corners immediately upstream and downstream of the 

orifice plate, and the presence of a recirculating eddy 

at the upstream corner can be clearly seen.

As can be seen from the axial pressure profile 

plots presented in section 5.3.1, relatively significant 

pressure changes might occur streamwise in the region 

immediately downstream of the orifice plate. Thus, the 

flow pattern there may be of interest.

The changes in the flow pattern downstream of the 

orifice plate with Reynolds number are shown in figures 

5.16 to 5.18 for different values of ¡3 . For clarity of 

the velocity vector plots, grid-scaling factors between 

15 to 25 were employed to scale the dimension of the 

grids in the radial direction in these figures. The grid-

scaling factor for the axial direction was unity.

Figures 5.16(a) to 5.16(f) present the velocity 

vector plots for /3 = 0.3. A recirculating eddy can be 

seen in the corner produced by the pipe wall and the 

downstream surface of the orifice plate in figures 

5.16(a) and 5.16(b), corresponding to a Reynolds number 

of 60,000 and 30,000 respectively. As the Reynolds number 

is reduced, the extent of the recirculating zone exceed
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P RATIO =0.2 REYNOLDS NO. = 30,000 (GRID STRETCHED 5 TIMES IN THE Y DIRECTION)

Fig. 5.15(b) Predicted velocity vector at the corners of the conical entrance

orifice
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Fig. 5.16(c) Predicted velocity vector for flow through conical entrance orifice
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Fig. 5.16(d) Predicted velocity vector for flow through conical entrance orifice
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¡b RATIO = 0.3 REYNOLDS NO. = 1,000 (GRID STRETCHED 25 TIMES IN THE Y DIRECTION)

Y

Fig. 5.16(e) Predicted velocity vector for flow through conical entrance orifice
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ft RATIO =0.3 REYNOLDS NO. = 80 (CRID STRETCHED 25 TIMES IN THE Y DIRECTION)

----------- >  : 4.00 W v W\\<5 0 sc a le  ( z d i r e c t i o n

Y

*

---- >  Z

Fig. 5.16(f) Predicted velocity vector for flow through conical entrance orifice



the downstream length of the pipe used in the simulation. 

This can be seen from figures 5.16(c), 5.16(d) and

5.16(e), corresponding to a Reynolds number of 10,000, 

6,000 and 1,000 respectively. At a Reynolds number of 80, 

however, an entire recirculating eddy can again be seen 

in the downstream corner, as is evident from figure 

5.16(f).

The flow pattern downstream of the orifice plate at 

different Reynolds numbers are shown in figures 5.17 and 

5.18 for /3 = 0.2 and 0.1 respectively. The flow pattern 

varies with the Reynolds number in about the same manner 

as that observed for ¡3 = 0.3.

5.3.3 Recirculation zone downstream of the conical

entrance orifice plate

The results presented in figures 5.16 to 5.18 used 

a downstream length of 16 D, and as shown in section 

5.3.2, the extent of the recirculation zone may be larger 

than the downstream pipe length of 16 D used depending on 

the /? ratio and Reynolds numbers. Thus, for some of these 

cases, results were also obtained using a longer down-

stream pipe length. The length of the downstream recircu-

lation zone, which is the distance of the reattachment 

point from the orifice plate, is shown in table 5.2 for 

various Reynolds numbers and ¡3 ratio.

From table 5.2, it can be seen that, for a constant
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(3 RATIO » 0.2 REYNOLDS NO. - 60,000 (GRID STRETCHED 15 TIMES IN T11E Y DIRECTION)

-> : 5 0 0 0  W\Vn|s -+
0 scale ( 7 . direction ) 6D

Y

f

---------->  Z

Fig. 5.17(a) Predicted velocity vector for flow through conical entrance orifice
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/S RATIO = 0.2 REYNOLDS NO. = 30,000 (GRID STRETCHED 15 TIMES IN THE Y DIRECTION)

'X/—

1’ig • 5.17(b) Predicted velocity vector for flow through conical entrance orifice
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P  RATIO = 0.2 REYNOLDS NO. = 10,000 (GRID STRETCHED 15 TIMES IN THE Y DIRECTION)

-> : 000 WWWjS 0 sc a le  ( z d i r e c t i o n  )
+

6D

Y
X

---- >  Z

Fig. 5.17(c) Predicted velocity vector for flow through conical entrance orifice
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> : 50.0
sc a le  (  z d i r e c t i o n  )

T Î)
»  Z

Fig. 5 . 1 7 ( e ) Predicted velocity vector for flow through conical entrance orifice

■i*
 *
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p RATIO =0.2 REYNOLDS NO. = 80 (GRID STRETCHED 25 TIMES IN THE Y DIRECTION)

-----> : 0.00 YY\V\\|c, -v
0

sca le  ( z d i r e c t i o n  ) 6D

Y

f

---- >  Z

Fig. 5.17(f) Predicted velocity vector for flow through conical entrance orifice
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/Ï RATIO = 0.1 REYNOLDS NO. = 60,000 (CRID STRETCHED 15 TIMES IN THE Y DIRECTION)

> : 8 0 0 0  YY\VY\|s
sc a le  (  z d i r e c t i o n  )

6D

>  Z

Fig. 5.18(a) Predicted velocity vector for flow through conical entrance orifice

&
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ft RATIO = 0.1 REYNOLDS NO. 30,000 (GRID STRETCHED 15 TIMES IN THE Y DIRECTION)

-> : <1000 YY\VY»l<â
sc a le  ( z d i r e c t i o n  ) 6D

Y

Fig. 5.18(b) Predicted velocity vector for flow through conical entrance orifice
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/5 RATIO »0.1 REYNOLDS NO. » 10,000 (CRID STRETCHED 25 TIMES IN THE Y DIRECTION)

-> : 1800vy\ m\s GD
sc a le  ( z d i r e c t i o n  )

Fig. 5.18(c) Predicted velocity vector for flow through conical entrance orifice
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P  RATIO » 0.1 REYNOLDS NO. » 6,000 (CRID STRETCHED 25 TIMES IN THE Y DIRECTION)

Fig. 5.18(d) Predicted velocity vector for flow through conical entrance orifice
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/3 RATIO - 0.1 REYNOLDS NO. rs 1,000 (CRID STRETCHED 25 TIMES IN T11E Y DIRECTION)

> oo .o  y a y y \ | s 0 scale  ( Y. d i r e c t i o n  )
6D

>  Z

F i g . 5 . 18(e) Predicted velocity vector for flow through conical entrance orifice

*
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/i RATIO = 0.1 REYNOLDS NO 80 (GRID STRETCHED 25 TIMES IN THE Y DIRECTION)

Fig. 5.18(f) Predicted velocity vector for flow through conical entrance orifice



13 Reynolds upstream downstream length of downstream

ratio Number length length recirculation zone

0.1 80 30 D 206 D 38.0 D

1,000 30 D 606 D 416.0 D

6,000 30 D 1506 D > 1506.0 D

10,000 30 D 16 D > 16.0 D

30,000 30 D 16 D 4.1 D

60,000 30 D 16 D 4.1 D

0.2 80 30 D 56 D 16.0 D

1,000 30 D 406 D 202.0 D

6,000 30 D 1506 D 1188.0 D

10,000 30 D 16 D 3.2 D

30,000 30 D 16 D 3.2 D

60,000 30 D 16 D 3.2 D

0.3 80 30 D 16 D 8.0 D

1,000 30 D 406 D 108.0 D

6,000 30 D 1506 D 638.0 D

10,000 30 D 16 D > 16.0 D

30,000 30 D 16 D 2.8 D

60,000 30 D 16 D 2.8 D

Table 5.2 Length of the downstream recirculation zone
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(3 ratio and for the Reynolds numbers investigated, the 

recirculating eddy lengthens with Reynolds number at low 

Reynolds numbers. At high Reynolds numbers, however, the 

size of the eddy remains approximately constant and 

becomes smaller than that observed at the lower Reynolds 

numbers.

Little information is available on how the size of 

the recirculating eddy will vary with Reynolds number for 

flows through orifice for the range of Reynolds number 

given in table 5.2. Therefore, no direct comparison with 

other results can be made. However, the trend observed in 

table 5.2 agree qualitatively with that observed by 

Ghoniem (64) who studied the flow over a rearward-facing 

step. The structure of the recirculation zone forming 

behind a rearward-facing step in a channel was computed 

for Reynolds number in the 50-5000 range. It was observed 

that the recirculation zone length increases with 

Reynolds number, reaching a maximum at transition, and 

then decay to a shorter length at the turbulent range.

For constant Reynolds number, the recirculating 

eddy lengthens with decreasing ¡3 as is observed from 

table 5.2. The same trend was reported by other workers 

(13, 16) although for different ranges of ¡3 ratio and 

Reynolds number.
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5.4 Effect of turbulence intensity and length scale

factor

The simulation of the conical entrance orifice 

plate flow sensor was performed using a uniform profile 

for all quantities at the pipe inlet. In particular, 

empirical relationships (equations 4.9 and 4.10) were 

used to assign values to k and e at the inlet (kin = iVz2 

and ein = k J ^ / U )  .

The intensity of turbulence i and length scale 

factor X used in the simulation was 0.003 and 0.333 

respectively. These are typical values used in specifying 

inlet conditions for internal flows without swirl (65) . 

However, the actual values for these quantities will vary 

depending on the particular situation when the conical 

entrance orifice plate is employed in flow measurement. 

Thus, the inlet value of i and X are varied to investi-

gate their effect on the discharge coefficient.

Table 5.3 shows the effect of changing the turbu-

lence intensity i and length scale factor X for /3 = 0.2 

and ReD = 10,000. A uniform inlet profile of k and e was 

used in test no. 1 to test no. 8. However, for test nos. 

9 and 10, a 2-step profile was used for k. For the upper 

half of the inlet plane, the value of i was specified to 

be 0.1 in both cases; the values of i for the lower half 

of the inlet plane were 0.01 and 0.001 respectively for 

test nos. 9 and 10.
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3 = 0.2
test Reynolds Discharge Coefficient

no. Number i A Corner

tappings

Flange

tappings

D & 1/2 D 

tappings

1 10,000 0.001 0.03 0.7438 ( 0 .00% ) 0.7438 ( 0 .0 0% ) 0.7436 ( 0 .00% )

2 10,000 0.001 0.333 0.7439 ( 0.01 % ) 0.7438 ( 0.00 % ) 0.7436 ( 0 .00% )

3 10,000 0.003 0.03 0.7438 ( 0 .00% ) 0.7437 ( -0.01 % ) 0.7435 ( -0.01 % )

4 10,000 0.003 0.333 0.7438 ( 0 .00% ) 0.7438 ( 0 .00% ) 0.7436 ( 0 .00% )

5 10,000 0.003 1.0 0.7438 ( 0 .00% ) 0.7438 ( 0 .00% ) 0.7436 ( 0 .00% )

6 10,000 0.03 0.333 0.7438 ( 0 .00% ) 0.7437 ( -0.01 % ) 0.7435 ( -0.01 % )

7 10,000 0.1 0.333 0.7438 ( 0 .00% ) 0.7437 ( -0.01 % ) 0.7435 ( -0.01 % )

8 10,000 0.1 1.0 0.7438 ( 0 .00% ) 0.7438 ( 0 .0 0% ) 0.7436 ( 0 .00% )

9 10,000 0.01 -0.1 
(2 - step profile)

0.333 0.7438 ( 0 .00% ) 0.7437 ( -0.01 % ) 0.7435 ( -0.01 % )

10 10,000 0.001 -0.1 
(2 - step profile)

0.333 0.7439 ( 0.01 % ) 0.7438 ( 0 .0 0% ) 0.7436 ( 0 .0 0% )

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 4

Table 5.3 Variation of discharge coefficient with turbulence intensity i and length scale factor a



It can be seen from table 5.3 that there is very 

little variation in the computed discharge coefficients 

for the range of values of i and X investigated. The 

deviation of the discharge coefficient from the reference 

value (with i = 0.003 and X = 0.333) is within 0.01 %.

Table 5.4 shows the results for ¡3 = 0.2 and for a 

Reynolds number of 60,000. The deviation from the 

reference value is within 0.04 %.

Table 5.5 presents the results for ¡3 =  0 .1  and 0.3 

with Rep = 60,000. The deviation of the discharge coeffi-

cient is within 0.07 % of the reference value.

Thus, it can be seen that, for the range of values 

considered, the variation in the inlet values of i and X 

has very little effect on the discharge coefficient of 

conical entrance orifice plate. This is in agreement with 

the observation by McVeigh (25) that the conical entrance 

orifice plate is comparatively insensitive to upstream 

effects.

5.5 Effects of geometric tolerances on conical entrance

orifice plate

The British Standard for conical entrance orifice 

plates specifies a conic entrance angle F of 45° ± 1°. 

The thickness of the conical entrance J is specified to 

be 0.084d ± 0.003d and the axial length of the parallel
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CMOIICO

test Reynolds Discharge Coefficient

no. Number i A Corner Flange D & 1/2 D

tappings tappings tappings

1 60,000 0.001 0.03 0.7360 ( 0.01 % ) 0.7358 ( 0 .00% ) 0.7355 ( 0.00 % )

2 60,000 0.001 0.333 0.7358 ( -0.01 % ) 0.7358 ( 0.00 % ) 0.7355 ( 0.00 % )

3 60,000 0.003 0.03 0.7359 ( 0 .0 0% ) 0.7358 ( 0 .00% ) 0.7355 ( 0 .00% )

4 60,000 0.003 0.333 0.7359 ( 0 .0 0% ) 0.7358 ( 0 .00% ) 0.7355 ( 0.00 % )

5 60,000 0.003 1.0 0.7358 ( -0.01 % ) 0.7358 ( 0 .00% ) 0.7355 ( 0.00 % )

6 60,000 0.03 0.333 0.7359 ( 0 .0 0% ) 0.7358 ( 0 .00% ) 0.7355 ( 0 .00% )

7 60,000 0.1 0.333 0.7358 ( -0.01 % ) 0.7358 ( 0 .00% ) 0.7355 ( 0 .00% )

8 60,000 0.1 1.0 0.7356 ( -0.04 % ) 0.7355 ( -0.04 % ) 0.7353 ( -0.03 % )

9 60,000 0.01 -0.1 
(2 - step profile)

0.333 0.7359 ( 0 .0 0% ) 0.7358 ( 0 .00% ) 0.7355 ( 0 .00% )

10 60,000 0.001 -0.1 
(2 - step profile)

0.333 0.7359 ( 0 .0 0% ) 0.7358 ( 0 .00% ) 0.7355 ( 0.00 % )

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 4

Table 5.4 Variation of discharge coefficient with turbulence intensity i and length scale factor a
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13

test

no.

Reynolds

Number i A

Discharge Coefficient

Corner

tappings

Flange

tappings

D & 1/2 D

tappings

0.1 1 60,000 0.001 0.03 0.7196 ( -0.04%) 0.7195 (-0 .04% ) 0.7194 ( -0.04%)

2 60,000 0.003 0.333 0.7199 ( 0.00% ) 0.7198 ( 0.00%) 0.7197 ( 0.00%)

3 60,000 0.1 1.0 0.7196 (-0 .04% ) 0.7196 ( -0.03%) 0.7195 ( -0.03%)

0.3 1 60,000 0.001 0.03 0.7453 ( 0.03% ) 0.7452 ( 0.01 % ) 0.7450 ( 0.01 % )

2 60,000 0.003 0.333 0.7451 ( 0.00 % ) 0.7451 ( 0.00 % ) 0.7449 ( 0.00%)

3 60,000 0.1 1.0 0.7447 ( -0.05 % ) 0.7446 ( -0.07 % ) 0.7445 ( -0.05%)

* value in bracket is the percentage deviation of the discharge coefficient from that of test no. 2 for each 13 ratio

Table 5.5 Variation of discharge coefficient with turbulence intensity i and length scale factor A



bore e is specified to be 0.021d ± 0.003d, where d is the 

diameter of the orifice. From a manufacturing point of 

view, the observance of the dimensional tolerances 

associated with the conical entrance orifice plate can be 

a time-consuming exercise, especially for small pipe 

diameters, because the tolerance is a function of orifice 

diameters. In fact, many of the available experimental 

results on conical entrance orifice plates were obtained 

on plates with dimensions outside the limits specified in 

the British Standard.

Therefore, the LRN model developed in chapter 4 is 

used to investigate the effects of variation in the 

thickness of the conical entrance J, the axial length of 

the parallel bore e and the conic entrance angle F on the 

discharge coefficient.

At each value of (3, the simulation was performed 

with two different grid distributions (121 x 54 grids and 

184 x 72 grids for /3 = 0.1; 139 x 48 grids and 220 x 70 

grids for /3 = 0.2; 151 x 46 grids and 229 x 62 grids for 

P = 0.3). For values of J, e and F smaller than the 

nominal values specified in BS 1042 : Section 1.2 (i.e. 

J = 0.084d, e = 0.021d and F = 45°), the grid distribu-

tions with smaller number of grids were used. The 

distributions with larger number of grids were used for 

values of J, e and F larger than that specified. This is 

to ensure that the grid density in the region of interest
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is sufficient for the solution to be regarded as grid- 

independent, as determined in chapter 4.

Since the discharge coefficients obtained by 

simulation may differ from the true value by several 

percent, it is desirable to have a reference discharge 

coefficient against which the effects of variation in 

geometry can be estimated. Thus, for a given grid 

distribution, the computed discharge coefficient with 

values of J, e and F equal to the nominal values speci-

fied in the British Standard (i.e. J = 0.084d, e = 0.02Id 

and F = 45°) is used as the reference discharge coeffi-

cient. By comparing the reference discharge coefficient 

with that obtained for different values of J, e and F, 

the effects of variation in these quantities on the 

discharge coefficient can be estimated.

5.5.1 Effect of variation in the thickness of the conical

entrance

BS 1042 : Section 1.2 specifies the thickness of 

the conical entrance J to be 0.084d ± 0.003d. The effect 

of variation in the thickness of the conical entrance is 

given in table 5.6 and also in figures 5.19(a) to 

5.19(c). These results were obtained with e = 0.021d and 

F = 45°, the nominal values specified in the British 

Standard. With the value of J within the limits specified 

in the Standard (i.e. J = 0.084d ± 0.003d), table 5.6 

shows that the deviation of the discharge coefficient
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13
Thickness

of
Conical Entrance

Percentage Deviation
Reynolds no. 

= 80
Reynolds no. 

= 10,000
Reynolds no. 

= 60,000

0.1 0.055 d -2.51 % -2.05 % -2.31 %

0.060 d -1.95 % -1.57 % -1.74 %

0.070 d -1.00 % -0.79 % -0.86 %

0.081 d -0.20 % -0 .1 5 % -0 .1 8 %

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0 .1 8 % 0 .1 5 % 0 .1 5 %

0.100 d 0.81 % 0.68 % 0.76 %

0.110 d 1 .1 7 % 1.00 % 1 .1 4 %

0.115 d 1.34 % 1 .1 5 % 1.30 %

0.2 0.050 d -2.93 % -2.73 % -2.68 %

0.060 d -1.85 % -1.59 % -1.64 %

0.070 d -0.96 % -0.78 % -0.87 %

0.081 d -0 .1 8 % -0 .1 3 % -0 .1 6 %

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0 .1 7 % 0.11 % -0.23 %

0.100 d 0.80 % 0.46 % 0.26 %

0.110 d 1 .1 7 % 0.62 % 0.68 %

0.120 d 1.49 % 0.70 % 0.88 %

0.130 d 1 .7 7 % 0.81 % 1.03 %
0.3 0.050 d -2.78 % -2.52 % -2.51 %

0.055 d -2.24 % -2.02 % -2.00 %

0.060 d -1.75 % -1.54 % -1.56 %

0.070 d -0.93 % -0.77 % -0.82 %

0.081 d -0 .1 7 % -0.15 % -0.20 %

0.084 d 0.00 % 0.00 % 0.00 %

0.087 d 0.24 % 0.19 % 0.09 %

0.100 d 0.84 % 0.47 % 0.50 %
0.110 d 1 .2 2 % 0.60 % 0.71 %

0.120 d 1.52 % 0.69 % 0.91 %

* The discharge coefficient for a thickness of 0.084d is used as the reference 
value for calculating the percentage deviation; d is the orifice diameter.

Table 5.6 Percentage deviation of the discharge coefficient from the reference 

value with changes in the thickness of the conical entrance
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from the reference value is within ± 0.24 % for the f3 

ratios and Reynolds numbers investigated.

From figures 5.19(a) to 5.19(c), it can be seen 

that the general trend is for the deviation of the 

discharge coefficient from the reference value to 

increase as J moves away from the nominal value of 0.084d 

specified in the Standard and the discharge coefficient 

increases with the thickness of the conical entrance J 

for the range of J tested. Since the axial length of the 

parallel bore e is kept constant at 0.02Id, an increase 

in the value of J means an increase in the thickness of 

the orifice plate. Thus, the results agree with the trend 

observed by Kastner and McVeigh (23), who conducted tests 

on seven conical entrance orifice plates (with a nominal 

value of (3 = 0.2) of different thickness at Reynolds 

numbers below 3,000. They found that the discharge 

coefficient increased with increasing thickness of the 

plates. However, no information was provided as to 

whether the increase in thickness was due to an increase 

in J or e.

5.5.2 Effect of variation in the axial length of the

parallel bore

The axial length of the parallel bore e is speci-

fied in BS 1042 : Section 1.2 to be 0.021d ± 0.003d. The 

effect of variation in the axial length of the parallel 

bore is given in table 5.7 and also in figures 5.20(a) to
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3
Axial length 

of
Parallel Bore

Percentage Deviation
Reynolds no. 

= 80
Reynolds no. 

= 10,000
Reynolds no. 

= 60,000

0.1 0.015 d -0.88 % -0.38 % -0.22 %

0.016 d -0.73 % -0.32 % -0.18 %

0.017 d -0.59 % -0.25 % -0 .1 3 %

0.018 d -0.43 % -0 .1 8 % -0 .1 0 %

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.29 % 0.80 % 0.57 %

0.0255 d 0.43 % 1.23 % 0.90 %

0.027 d 0.57 % 1.65 % 1.25 %

0.028 d 0.66 % 1.90 % 1.45 %

0.029 d 0.74 % 2 .1 3 % 1 .6 8 %

0.2 0.013 d -0.90 % -1.04 % -0.88 %

0.015 d -0.67 % -0.71 % -0.64 %

0.018 d -0.32 % -0.32 % -0.30 %

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.21 % 0.30 % -0.04 %

0.027 d 0.39 % 0.56 % 0.42 %

0.030 d 0.55 % 0.86 % 0.58 %

0.032 d 0.65 % 1.07 % 0.72 %

0.3 0.013 d -0.57 % -1.22 % -0.97 %

0.015 d -0.41 % -0.87 % -0.70 %

0.018 d -0 .1 8 % -0.41 % -0.35 %

0.021 d 0.00 % 0.00 % 0.00 %

0.024 d 0.24 % 0.28 % 0.23 %

0.027 d 0.33 % 0.51 % 0.48 %

0.030 d 0.44 % 0.69 % 0.73 %

* The discharge coefficient for an axial length of 0.021 d is used as the reference 
value for calculating the percentage deviation; d is the orifice diameter.

Table 5.7 Percentage deviation of the discharge coefficient from the reference 

value with changes in the axial length of the parallel bore
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Fig. 5.20(b) Variation of the discharge coefficient with the thickness

of the parallel bore
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5.20(c). These results were obtained with J — 0.084d and 

F = 45°, the nominal values specified in the Standard. 

With the value of e within the limits specified in the 

Standard (i.e. e = 0.02Id ± 0.003d), table 5.7 shows that 

the variation of the discharge coefficient from the 

reference value is within ± 0.8 0 % for the ¡3 ratios and 

Reynolds numbers investigated.

From figures 5.20(a) to 5.20(c), it can be seen 

that the general trend is for the deviation of the 

discharge coefficient from the reference value to 

increase as e moves away from the nominal value of 0.02Id 

given in the Standard and the discharge coefficient 

increases with the axial length of the parallel bore e 

for the range of e investigated. An increase in the value 

of e implies a thicker plate as the thickness of the 

conical entrance J is kept fixed at 0.084d. Thus, the 

results again agree with the trend observed by Kastner 

and McVeigh (23) as mentioned in section 5.5.1.

5.5.3 Effect of variation in the angle of the conical

entrance

BS 1042 : Section 1.2 specifies the angle of the 

conical entrance F to be 45° ± 1°. The effect of varia-

tion in the angle of the conical entrance is given in 

table 5.8 and also in figures 5.21(a) to 5.21(c). These 

results were obtained with J = 0.084d and e = 0.021d, the 

nominal values specified in the Standard. With the value
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13
Angle

of
Conical Entrance

Percentage Deviation
Reynolds no. 

= 80
Reynolds no. 

= 10,000
Reynolds no. 

= 60,000

0.1 35 0.77 % 2.00 % 1.67 %

40 0.56 % 1.25 % 1.20 %

43 0.25 % 0.54 % 0.54 %

44 0 .1 3 % 0.28 % 0.28 %

45 0.00 % 0.00 % 0.00 %

46 -0 .1 5 % -0.26 % -0.28 %

47 -0.31 % -0.50 % -0.53 %

50 -0.85 % -1 .1 5 % -1 .1 8 %

55 -1.91 % -2.31 % -2.23 %

0.2 35 0.47 % 1.75 % 1.26 %

40 0.36 % 1.30 % 0.86 %

43 0 .1 8 % 0.59 % 0.38 %

44 0 .1 0 % 0.31 % 0.20 %

45 0.00 % 0.00 % 0.00 %

46 -0.11 % -0.35 % -0.64 %

47 -0.22 % -0.74 % -1 .1 3 %

50 -0.62 % -1.83 % -1.73 %

55 -1.41 % -3.54 % -3.46 %

0.3 35 0 .1 7 % 1.78 % 1.33 %
40 0.21 % 1.11 % 0.87 %

43 0.11 % 0.51 % 0.39 %

44 0.07 % 0.27 % 0 .1 7 %

45 0.00 % 0.00 % 0.00 %
46 -0 .1 0 % -0.41 % -0.34 %

47 -0 .1 7 % -0.81 % -0.66 %

50 -0.37 % -1.96 % -1 .6 7 %

55 -1.01 % -3.98 % -3.40 %

The discharge coefficient for an angle of 45 degree is used as the reference 
value for calculating the percentage deviation.

Table 5.8 Percentage deviation of the discharge coefficient from the reference 

value with changes in the angle of the conical entrance
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of F within the limits specified in the British Standard 

(i.e. F = 45° ± 1°), table 5.8 shows that the deviation 

of the discharge coefficient from the reference value is 

within ± 0.64 % for the p ratios and Reynolds numbers 

investigated.

From figures 5.21(a) to 5.21(c), it can be seen 

that the general trend is for the deviation of the 

discharge coefficient from the reference value to 

increase as F moves away from the nominal value of 45° 

specified in the Standard, and the discharge coefficient 

decreases with an increase in the conic entrance angle 

for the range of F studied. This again agrees with the 

observation of Kastner and McVeigh (23) who noted an 

increase in the discharge coefficient for test plates 

with a smaller bevel angle in their experiments.

5.5.4 Concluding remarks

The effect of geometric tolerances on the discharge 

coefficient of the conical entrance orifice plate was 

simulated using the LRN model. With all other parameters 

kept fixed, the thickness of the conical entrance J, the 

axial length of the parallel bore e and the conic 

entrance angle F were varied from the nominal value as 

specified in BS 1042 : Section 1.2, one at a time, in 

order to estimate the effect of these variations on the 

discharge coefficient. For the range of ¡3 ratios and 

Reynolds numbers investigated, the variation of the
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discharge coefficient is within ± 0.24 % of the reference 

value when J is allowed to vary within the limits 

specified in the Standard (e and F are kept constant at 

their nominal values). The corresponding value for e and 

F is ± 0.8 % and ± 0.64 % respectively when they are 

varied within the specified limits.

BS 1042 : Section 1.2 stated that the uncertainty 

on the value of the discharge coefficient is ± 2 % of 

0.734 and the purpose of specifying the geometric 

tolerances for the orifice is to ensure that the dis-

charge coefficient can be reproduced within the uncer-

tainty stated in the Standard. The discharge coefficient, 

as computed by the LRN model, was shown to be a function 

of the ¡3 ratio (section 5.2.1). Thus, if the discharge 

coefficient of the conical entrance orifice plate is 

taken as a function of 0, and with the same tolerance of 

± 2 % on its value, then the specifications on the 

geometric tolerances can be more restrictive than are 

probably necessary.

Also, figures 5.19 and 5.20 show that the discharge 

coefficient increases with both J and e. For a given 

thickness (e + J) of the orifice plate, an increase in J 

must be accompanied by a decrease in e and vice versa. 

Thus, a positive deviation of the discharge coefficient 

caused by an increase in J or e will be partly offset by 

a negative deviation due to the accompanying decrease in
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the other parameter. Therefore, for a given orifice plate 

thickness, the variation of the discharge coefficient 

will be smaller than that shown in figures 5.19 and 5.20 

as J and e deviate from their nominal values. Hence, some 

latitude on the geometric tolerances as specified in the 

Standard may be allowed. This will facilitate the 

manufacture of the conical entrance orifice plates, as 

observance of the dimensional tolerances specified in the 

Standard can be a time-consuming exercise, especially for 

small pipe diameters, because the tolerance is a function 

of orifice diameter which depends on the pipe diameter 

for a given (3.
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CHAPTER 6

CONCLUSIONS

6.1 Introductory remarks

The flow through the conical entrance orifice 

plates depends on a number of parameters. The influence 

of these parameters on the performance of the orifice can 

be studied experimentally. But it will be very costly and 

time-consuming, if not impossible, to cover all possible 

combinations of these parameters in experiments. Alterna-

tively, computer modelling can be used to study the 

performance of the conical entrance orifice plates. 

Widely ranging parameters can be introduced and evaluat-

ed, and, for selected cases, experiments can be carried 

out to validate the results obtained by simulation. The 

parameters can be varied one at a time, or in combina-

tions with each other, so that their influence on the 

performance of the conical entrance orifice plate can be 

better understood.

The work presented in this thesis shows the 

applicability of a low Reynolds number k-e model of 

turbulence in the simulation of flow through the conical 

entrance orifice plate.

6.2 Achievements of the present study

The achievements of the work presented in this 

thesis can be summarised as follows:
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1) A model for conical entrance orifice plate flow 

sensor was developed making use of the Lam and 

Bremhorst k-€ model of turbulence and the 

'PHOENICS' computer code. There is reasonable 

agreement between the discharge coefficient 

computed by the model and the published value 

(within ± 3 % of the value stated in BS 1042 : 

Section 1.2) for the ratios and Reynolds numbers 

investigated.

2) The use of pressure tappings other than corner 

tappings was studied. BS 1042 : Section 1.2 stated 

that corner tappings shall be used with conical 

entrance orifice plates. The present investigation 

indicated that flange tappings and D & hD tappings 

can also be used, and that there is no significant 

difference between the discharge coefficients for 

the three types of pressure tappings.

3) The effect of Reynolds number on the discharge 

coefficient was investigated. The present study 

indicated that, for the /3 ratios used in the study, 

the conical entrance orifice plates can be used for 

Reynolds numbers up to at least 60,000, the maximum 

Reynolds number tested in this investigation, which 

is beyond the limits specified in BS 1042 : Section

1.2 : 1989 for the smaller ratios.
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4) The discharge coefficient was computed with 

different values of /3. The results indicated that 

the discharge coefficient is a function of /?. If, 

instead of a constant value of 0.734 as is stated 

in the Standard, the discharge coefficient is given 

as a function of f3, the uncertainty associated with 

the discharge coefficient can be reduced.

5) The effect of geometric tolerances on the discharge 

coefficient was explored. The results indicated 

that the dimensional tolerances specified in the 

British Standard for conical entrance orifice plate 

can be more restrictive than are probably neces-

sary. Some latitude on the tolerances may be 

allowed, and this will make the manufacture of the 

conical entrance orifice plates an easier task.

6.3 Suggestions for future work

In the present study, the performance of conical 

entrance orifice plate flow sensor was simulated, and 

there are areas where the simulated results are at 

variance with that given in the British Standard.

As there are only limited experimental results 

available on the performance characteristics of conical 

entrance orifice plate, further experimental efforts 

would be required to better understand its performance 

characteristics and to verify the validity of the

195



simulateci results. This should lead to a better utiliza-

tion of conical entrance orifice plate as a low Reynolds 

number flow measuring device.

Although the model was developed for conical 

entrance orifice plate flow sensors, it can readily be 

modified to suit other types of orifice plates. Thus, the 

model can be used to investigate the behaviour of various 

orifice profiles and their potential as a low Reynolds 

number metering device explored.
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MODIFICATION TO SUBROUTINE 'GROUND'
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c 
c 
c 
c 
c 
c
C------- Group 9. Properties of the medium (or media)
C The sections in this group are arranged sequentially in their 
C order of calling from EARTH. Thus, as can be seen from below,
C the temperature sections (10 and 11) precede the density
C sections (1 and 3); so, density formulae can refer to 
C temperature stores already set.

9 GOTO (91,92,93,94,95,96,97,98,99,900,901,902,903),ISC 
C*****************************************************************

c-----------------------------------------------------------
c
Q ****************
C MATERIAL OMITTED
0 ****************
C
C-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

902 CONTINUE
C * --------------------------------------------------SECTION 12--------------------------------------------------------------------------
C For EL1.LE.GRND-----------------------phase-1 length scale Index AUX(LENl)
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE THE LENGTH SCALE OF TURBULENCE

CALL FN22(KE,l.E-10)
CALL FN22(EP,l.E-10)
CALL FN31(AUX(LEN1),KE,EP,CD,1.5,-1.0)
CALL FN22(AUX(LENl),l.E-10)
CALL FN23(AUX(LEN1),1.E10)

CYSYSYSYSYSYSYSYSYSYS
RETURN

C-------------------------------------------------------------------------------------------------------------------------------------------------------------------------
C
C ****************
C MATERIAL OMITTEDc ****************
C
C-------------------------------------------------------------------------------------------------------------------------------------------------------------------------

****************
MATERIAL OMITTED 
****************

95 CONTINUE
C  * --------------------------------------------------SECTION 5--------------------------------------------------------------------------
C For ENUT.LE.GRND------- reference turbulent kinematic viscosity.
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE THE DISTANCE FROM THE NEAREST WALL

GINZ=ZW-DZ/2.0 
IF (IZ .LE. ZBO) THEN 

DO 9510 IY=1,NY 
IF (IY .LE. YBC) THEN

GVWZ(IY,1)=ZWLAST-GINZ
ELSE IF (IY .GT. YBC .AND. IY .LT. YAC) THEN

GVWZ(IY,1)=(LU1+LU2)*DIAM +(DCEZ*ZWLAST*(YAC-IY)/GZCE)
C -GINZ

ELSE
GVWZ(IY,1)=(LU1+LU2)*DIAM - GINZ 

ENDIF
9510 CONTINUE

ELSE IF (IZ .GT. ZBO .AND. IZ .LE. (ZBO+ZCE)) THEN 
DO 9520 IY=1,NY 
IF (IY .LE. YBC) THEN

GVWZ(IY,1)=ZWLAST-GINZ
ELSE IF (IY .GT. YBC .AND. IY .LE. YAC-(IZ-ZBO)) THEN

GVWZ(IY,1)=(LU1+LU2)*DIAM + (DCEZ*ZWLAST*(YAC-IY)/GZCE) 
C -GINZ
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ELSE
GVWZ(IY,1)=ZWLAST-GINZ 

ENDIF
9520 CONTINUE

ELSE IF (IZ .GT. (ZBO+ZCE) .AND. IZ .LE. (ZBO+ZCE+ZOT)) THEN 

DO 9530 IY=1,NY
GVWZ(IY,1)=ZWLAST-GINZ 

9530 CONTINUE
ELSE

DO 9540 IY=1,NY 
IF (IY .LE. YBC) THEN

GVWZ(IY,1)=ZWLAST-GINZ 
ELSE

GVWZ(IY,1)=GINZ-(LU1+LU2)*DIAM-DCEZ *ZWLAST- 
C DORT+ZWLAST

ENDIF
9540 CONTINUE

ENDIF
C-----------------------------------------------------------------

CALL GETYX(YG2D, GYG, 300, 1)
IF (IZ .LE. ZBO) THEN 

DO 9550 IY=1,NY
GHWY(IY,1)=YVLAST-GYG(IY, 1)

9550 CONTINUE
ELSE IF (IZ .GT. ZBO .AND. IZ .LE. (ZBO+ZCE)) THEN 

DO 9560 IY=1,NY
IF (IY .LE. YAC-(IZ-ZBO)) THEN

GHWY(IY,1)=DORR*YVLAST+DCEY*YVLAST*(ZBO+ZCE+l-IZ)/GY2 
C -GYG(IY,1)

ELSE
GHWY(IY,1)=YVLAST-GYG(IY,1)

ENDIF
9560 CONTINUE

ELSE IF (IZ .GT.(ZBO+ZCE) .AND. IZ .LT. ZAO) THEN 
DO 9570 IY=1,NY 
IF (IY .LE. YBC) THEN

GHWY(IY,1)=DORR*YVLAST-GYG(IY, 1)
ELSE

GHWY(IY,1)=YVLAST-GYG(IY, 1)
ENDIF

9570 CONTINUE
ELSE

DO 9580 IY=1,NY
GHWY(IY,1)=YVLAST-GYG(IY, 1)

9580 CONTINUE
ENDIF

c ---------------------------
DO 9590 IY=1,NY
GWDIST(IY,1)=AMIN1(GVWZ(IY,1),GHWY(IY,1) )

9590 CONTINUE 
CYSYSYSYSYSYSYSYSYSYS 
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO FIND THE TURBULENCE REYNOLDS NO. RK

CALL SETYX(EASP2,GWDIST,NY,1)
IF (IG(10) .EQ. 1) CALL FNO(C1,EASP2)
CALL FN31(EASP3,KE,EASP2,1.0,0.5,1.0)
CALL FN25(EASP3,1.0/ENUL)
IF (IG(10) .EQ. 1) CALL FNO(C2,EASP3)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO FIND THE FIRST FACTOR OF THE FUNCTION FMU

CALL FN1(EASP4,1.0)
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CALL FN36(EASP4,EASP3,-1.0,-0.0165)

CALL FN50(EASP4,2)
CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO FIND THE TURBULENCE REYNOLDS NO. RT

CALL FN22(EP,l.E-10)
CALL FN56(EASP5,KE,KE,EP,1.0)
CALL FN25(EASP5,1.0/ENUL)
CALL FN22(EASP5,l.E-10)
IF (IG(10) .EQ. 1) CALL FNO(C3,EASP5)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO FIND THE SECOND FACTOR OF THE FUNCTION FMU

CALL FN28(EASP3,EASP5,20.5)
CALL FN33(EASP3,1.0)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO COMBINE FIRST AND SECOND FACTORS TO FORM FMU

CALL FN26(EASP3,EASP4)
C------------TO AVOID FMU GREATER THAN 1.0

CALL FN23(EASP3,1.0)
CALL FN22(EASP3,l.E-10)
IF (IG(10) .EQ. 1) CALL FNO(C4,EASP3)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE THE TURBULENT KINEMATIC VISCOSITY

CALL FN22(KE,l.E-10)
CALL FN31(AUX(VIST),KE,EP,CMUCD,2.0,-1.0)
CALL FN26(AUX(VIST),EASP3)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE THE FUNCTION FI IN THE EP SOURCE TERM
C------------TO AVOID DIVISION BY ZERO

CALL FN22(EASP3,l.E-10)
CALL FN28(EASP4,EASP3,0.05)
CALL FN21(EASP6,EASP4,EASP4,0.0,1.0)
CALL FN2 6(EASP4,EASP6)
CALL FN33(EASP4,1.0)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------COMBINE FI WITH Cl OF THE STANDARD K-E EQUATION

CALL FN25(EASP4,C1E)
IF (IG(10) .EQ. 1) CALL FNO(C5,EASP4)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE THE FUNCTION F2 IN THE EP SOURCE TERM

CALL FN50(EASP5,2)
CALL FN1(EASP6,1.0)
CALL FN36(EASP6,EASP5,-1.0,-1.0)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------COMBINE F2 WITH C2 OF THE STANDARD K-E EQUATION

CALL FN25(EASP6,C2E)
C------------TO AVOID DIVISION BY ZERO

CALL FN22(EASP6,l.E-10)
IF (IG(10) .EQ. 1) CALL FNO(C6,EASP6)
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CYSYSYSYSYSYSYSYSYSYS
RETURN

-----------------------------------------------------------------------------------------------------------
C
Q * * * * * * * * * * * * * * * *
c MATERIAL OMITTED
c ****************
C
----------------------------------------------------------------------------------------------------------c*****************************************************************
c
C------- GROUP 13. Boundary conditions and special sources
C

13 CONTINUE
GO TO (130,131,132,133,134,135,136,137,138,139,1310, 
11311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321),ISC

---------------------------------------------------------------------------------------------------------
C
Q . ****************
C MATERIAL OMITTED
Q ****************
c
c-----------------------------------------------------------

139 CONTINUE
C-------------------------------------------------SECTION 10-------------------------------------coefficient = GRND9
C
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE COEFFICIENT OF KE SOURCE IN LRN MODEL

CALL ONLYIF(KE,KE,'ALL')
CALL FN2(CO,AUX(VIST),0.0,CD/CMU)
CALL FN37(C0,AUX(LEN1),-2.0)
CALL FN2 7(CO,EASP3)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE COEFFICIENT OF EP SOURCE IN LRN MODEL

CALL ONLYIF(EP,EP,'ALL')
CALL FN31(CO,AUX(VIST),AUX(LEN1),CD/CMU,1.0,-2.0)
CALL FN2 6(CO,EASP6)
CALL FN27(CO,EASP3)

CYSYSYSYSYSYSYSYSYSYS
RETURN

C----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
C
c ****************
C MATERIAL OMITTED
C ****************
C
c----------------------.-------------------------------------
1320 CONTINUE

C-------------------------------------------------SECTION 21-------------------------------------------------------value = GRND9
C
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE VALUE OF KE SOURCE IN LRN MODEL

CALL ONLYIF(KE,KE,'ALL')
CALL FN31(VAL,EASP1,AUX(LEN1),CMU/CD,1.0,2.0)
CALL FN26(VAL,EASP3)

CYSYSYSYSYSYSYSYSYSYS
CCC
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS TO CALCULATE VALUE OF EP IN LRN MODEL

CALL ONLYIF(EP,EP,'ALL')
CALL FN21(VAL,AUX(VIST),EASP1,0.0,1.0)
CALL FN26(VAL,EASP4)
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CALL FN27(VAL,EASP6)
CYSYSYSYSYSYSYSYSYSYS

RETURN
1321 CONTINUE

C-------------------------------------------------SECTION 22-------------------------------------------------------value = GRND10
C
CYSYSYSYSYSYSYSYSYSYS
C------------THIS IS THE BOUNDARY CONDITION FOR LRN MODEL FOR EP

CALL ONLYIF(EP,EP,'ALL')
CALL FN1(VAL,2.0*ENUL)
CALL FN26(VAL,KE)
CALL FN37(VAL,EASP2,-2.0)

CYSYSYSYSYSYSYSYSYSYS
RETURN

C* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
c------------------------------------------------------------
c
Q ****************
C MATERIAL OMITTEDC ****************
C
c------------------------------------------------------------
c******************************************************************
c
c
C------- GROUP 24. Dumps for restarts

24 CONTINUE 
RETURN 
END
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APPENDIX B

Q1 INPUT FILE

217



Q1 FILE

* * * * * ***********************************

GROUP 1. Run title and other preliminaries 
TEXT(LRN, BETA=0.2, W=600, TEST NO. 2, 139x48 GRIDS)
REAL(GRAD,DIAM,PLEN,PDFT,WIN,TKEIN,EPIN,DELCON)
REAL ( DORR,DCEY,BETA,DCEZ,DORT,LUI,LU2,LU3,LDI,LD2,LD3)
REAL(A,GY1,GY2,GY3)
REAL(GZU1,GZU2,GZU3,GZD1,GZD2,GZD3)
REAL(GZCE,GZOT,GZOT1,GZOT2)
REAL(SPU1,SPU2,SUMU1,SUMU2,SUMBO,SUMAO,SUMD1,POW1,POW2,POWY) 
REAL ( SUMY1,SUMY2,SUMY3,ZD1F,TCE,TTH)
INTEGER(Y1,Y2,Y3)
INTEGER(YBC,YAC)
INTEGER(ZU1,ZU2,ZU3,ZD1,ZD2,ZD3)
INTEGER(ZCE,ZOT,ZAO,ZBO)
INTEGER(ZOT1,ZOT2)

DIAM=100.0;WIN=600.0
BETA=0.2 ; TCE=0.084 ; TTH=0.021

GROUP 2. Transience; time-step specification 
GROUP 3. X-direction grid specification 

CARTES=F
GROUP 4. Y-direction grid specification 

GRAD=0.5*DIAM;YVLAST=GRAD

GY1=8.0 ;GY2=21.0 ;GY3=19.0
Y1=8;Y2=21;Y3=19
NY=Y1+Y2+Y3

DORR=BETA* DIAM/(2.0*YVLAST) 
DCEY=TCE*BETA* DIAM/YVLAST 

**********

GRID DISTRIBUTION 
SUMY1=D0RR 
POWY=2.0
YFRAC(l) =SUMY1*(1.0—( 
YFRAC(2) =SUMY1*(1.0-( 
YFRAC(3) =SUMY1*(1.0-( 
YFRAC(4) =SUMY1*(1.0-( 
YFRAC(5) =SUMY1*(1.0-( 
YFRAC(6) =SUMY1*(1.0-( 
YFRAC(7) =SUMY1*(1.0-( 
YFRAC(8) =SUMY1

IN REGION RI

(GY1-
(GY1-
(GY1-
(GY1-
(GY1—
(GY1-
(GY1—

1.0) /GY1)
2.0) /GY1)
3.0) /GY1) 
4.0J/GY1)
5.0) /GY1)
6.0) /GY1)
7.0) /GY1)

**POWY)
**POWY)
**POWY)
**POWY)
**POWY)
**POWY)
**POWY)

GRID DISTRIBUTION IN REGION R2 
YFRAC(9) =SUMY1+1.0*DCEY/GY2 
YFRAC(10)=SUMYl+2.0*DCEY/GY2 
YFRAC(11)=SUMYl+3.0*DCEY/GY2 
YFRAC(12)=SUMYl+4.0*DCEY/GY2 
YFRAC(13)=SUMYl+5.0*DCEY/GY2 
YFRAC(14)=SUMYl+6.0*DCEY/GY2 
YFRAC(15)=SUMY1+7.0*DCEY/GY2 
YFRAC(16)=SUMYl+8.0*DCEY/GY2 
YFRAC(17)=SUMYl+9.0*DCEY/GY2 
YFRAC(18)=SUMY1+10.0*DCEY/GY2 
YFRAC(19)=SUMY1+11.0*DCEY/GY2 
YFRAC(20)=SUMY1+12.0*DCEY/GY2 
YFRAC(21)=SUMY1+13.0*DCEY/GY2 
YFRAC(22)=SUMY1+14.0*DCEY/GY2
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YFRAC(23)=SUMY1+15.0* DCEY/GY2 
YFRAC(24)=SUMY1+16.0*DCEY/GY2 
YFRAC(25)=SUMY1+17.0*DCEY/GY2 
YFRAC(26)=SUMY1+18.0*DCEY/GY2 
YFRAC(27)=SUMY1+19.0* DCEY/GY2 
YFRAC(28)=SUMY1+20.0* DCEY/GY2 
YFRAC(29)=SUMY1+DCEY 
SUMY2=SUMY1+DCEY

GRID
SUMY3=1.0- 
YFRAC(30) 
YFRAC(31) 
YFRAC(32) 
YFRAC(33) 
YFRAC(34) 
YFRAC(35) 
YFRAC(36) 
YFRAC(37) 
YFRAC(38) 
YFRAC(39) 
YFRAC(40) 
YFRAC(41) 
YFRAC(42) 
YFRAC(43) 
YFRAC(44) 
YFRAC(45) 
YFRAC(46) 
YFRAC(47) 
YFRAC(48)

•kkkkk

DISTRIBUTION IN 
DORR-DCEY-0.03 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3*(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3 *(1 
=SUMY2+SUMY3 
=SUMY2+SUMY3+0. 
*****

REGION R3

.0-(((GY3- 

.0-(((GY3- 

.0-(((GY3- 

.0—(((GY3- 

.0—(((GY3- 

.0—(((GY3- 

.0-(((GY3- 

.0-(((GY3- 

.0-(((GY3- 

. 0- ( ((GY3- 

.0-(((GY3- 

.0-(((GY3- 
•0-(((GY3- 
.0-(((GY3- 
.0-(((GY3- 
.0—(((GY3- 
.0-(((GY3-

03

1 . 0)
1.0)
1 .0 )
1.0)
1 . 0 )
1 . 0 )
1 .0)
1 . 0 )
1 . 0 )
1 . 0 )
•1 .0)
•1.0)
•1.0)
1 . 0 )
•1 . 0 )

1 .0)
1.0)

6 .
7.
8 ,

1.0) /(GY3
2.0) /(GY3
3.0) /(GY3
4.0) /(GY3
5.0) /(GY3 
,0)/(GY3 
,0)/(GY3 
,0)/(GY3

- 9.0)/(GY3 
-10.0)/(GY3 
-11.0)/(GY3 
-12.0)/(GY3 
-13.0)/(GY3 
-14.0)/(GY3 
-15.0)/(GY3 
-16.0)/(GY3 
-17.0)/(GY3

-1.0)
- 1 . 0 )
- 1 . 0 )
- 1 . 0 )
-1.0)
-1.0)
- 1 . 0 )
- 1 . 0 )
- 1 . 0 )
-1 . 0 )
- 1 . 0 )
- 1 . 0 )
- 1 . 0 )
-1.0)
- 1 . 0 )
- 1 . 0 )
- 1 . 0 )

)**POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)* * POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)* * POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)**POWY) 
)**POWY)

GROUP 5. Z-direction grid specification 
UPSTREAM LENGTH 

LU1=29.5;LU2=0.5
DOWNSTREAM LENGTH 

LD1=6.0;LD2=10.0 
TOTAL LENGTH

PLEN=LU1+LU2+LD1+LD2;ZWLAST=PLEN* DIAM 
PRESSURE TAPPING WIDTH 

A=2.0/ZWLAST

UPSTREAM GRID NO.
GZU1=5.0;GZU2=2 0.0 
ZU1=5;ZU2=20

TOTAL NUMBER=(ZU1+2)+(ZU2+1)

ORIFICE GRID NO.
GZCE=21.0;GZ0T1=21.0;GZOT2=21.0 
GZOT=GZOTl+GZOT2 
ZCE=21;Z0T1=21;ZOT2=21 
ZOT=ZOTl+ZOT2

DOWNSTREAM GRID NO.
GZD1=20.0;GZD2=5.0 
ZD1=20;ZD2=5

TOTAL NUMBER=(ZD1+1+2)+ZD2

NZ=(ZU1+2)+(ZU2+1)+10+ZCE+ZOT+10+(ZD1+1+2)+ZD2 
DCEZ=TCE* BETA* DIAM/ZWLAST;DORT=TTH * BETA* DIAM/ZWLAST 

**********

GRID DISTRIBUTION IN REGION A1 
SPU1=((LU1+LU2-1.0)/PLEN-A/2.0)/GZU1 
ZFRAC(1)=-GZUl;ZFRAC(2)=SPU1
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PRESSURE TAPPING POSITION 
ZFRAC(3)=1.0 ;ZFRAC(4)=A

ZFRAC(5)=1.0 ;ZFRAC(6)=LU1/PLEN-SPU1*GZU1-A
SUMU1=LU1/PLEN
SUMU2=LU2/PLEN-A
ZFRAC(7)=GZU2/2.0 ;ZFRAC(8) — (LU2/PLEN-25.4/ZWLAST-A/2.0)/(GZU2/2.0)

PRESSURE TAPPING POSITION 
ZFRAC(9)=1.0 ;ZFRAC(10)=A

ZFRAC(11)=GZU2/2.0 ;ZFRAC(12) = (25.4/ZWLAST-A/2.0-A)/ (GZU2/2.0)

PRESSURE TAPPING POSITION 
ZFRAC(13)=10.0;ZFRAC(14)=A/10.0 

**********

GRID DISTRIBUTION IN REGION A2 
SUMBO=(LU1+LU2)/PLEN 
ZFRAC(15)=GZCE;ZFRAC(16)=DCEZ/GZCE 

**********

GRID DISTRIBUTION IN REGION A3 
ZFRAC (17) =GZOTl ,* ZFRAC (18) =0. l*DORT/GZOTl 
ZFRAC(19)=GZOT2;ZFRAC(2 0)=0.9 *DORT/GZOT2 

**********

GRID DISTRIBUTION IN REGION A4 
SUMAO=SUMBO+DCEZ+DORT

t PRESSURE TAPPING POSITION 
ZFRAC(21)=10.0;ZFRAC(22)=A/10.0

SUMDl=LDl/PLEN-A-DCEZ-DORT 
POW2=2.0
ZD1F=SUMD1/GZD1**P0W2
ZFRAC(23)=1.0;ZFRAC(24)=ZD1F*(1.0* *POW2)
ZFRAC(25)=1.0;ZFRAC(26)=ZD1F*(2.0**POW2-1.0**P0W2)
ZFRAC(27)=1.0;ZFRAC(28)=ZD1F*(3.0**POW2-2.0**POW2)
ZFRAC(29)=1.0;ZFRAC(30) = (25.4/ZWLAST-A-A/2.0)-ZD1F*3.0**POW2

PRESSURE TAPPING POSITION 
ZFRAC(31)=1.0 ;ZFRAC(32)=A

ZFRAC(33)=1.0 ;ZFRAC(34)=ZD1F*5.0**POW2-(25.4/ZWLAST-A)-A/2.0 
ZFRAC(35)=1.0 ;ZFRAC(3 6) = (0.5/PLEN-DCEZ-DORT-A)-A/2.0-ZDlF*5.0**POW2

PRESSURE TAPPING POSITION 
ZFRAC(37)=1.0;ZFRAC(38)=A

ZFRAC(39)=1.0;ZFRAC(40)=ZD1F*6 
ZFRAC(41) =1.0;ZFRAC(42) =ZD1F* 
ZFRAC(43) =1.0;ZFRAC(44) =ZD1F* 
ZFRAC(45) =1.0 ;ZFRAC(46) =ZD1F* 
ZFRAC(47) =1.0;ZFRAC(48) =ZD1F* 
ZFRAC(49) =1.0;ZFRAC(50) =ZD1F* 

=1.0;ZFRAC(52)
=1.0;ZFRAC(54)
=1.0;ZFRAC(56) =ZD1F* 

ZFRAC(57) =1.0 ;ZFRAC(58) =ZD1F* 
ZFRAC(59) =1.0 ;ZFRAC(60) =ZD1F* 

=1.0 ;ZFRAC(62) =ZD1F* 
=1.0;ZFRAC(64) =ZD1F* 

ZFRAC(65) =1.0;ZFRAC(66) =ZD1F* 
ZFRAC(67) =1.0;ZFRAC(68) =ZD1F* 
SPU2=(LD2/PLEN)/GZD2 
ZFRAC(69) =GZD2;ZFRAC(70) =SPU2

ZFRAC(5l) 
ZFRAC(53) 
ZFRAC(55)

ZFRAC(6l) 
ZFRAC(63)

=ZD1F*
=ZD1F*

0**POW2-(0.5/PLEN-DCEZ-DORT-A)-A/2.0 
( 7.0**POW2- 6.0**POW2)
( 8.0**POW2- 7.0**POW2)
( 9.0**POW2- 8.0**POW2)
(10.0**POW2- 9.0**POW2)
(11.0**POW2—10.0**POW2)
(12.0**POW2-11.0**POW2)
(13.0**POW2-12.0**POW2)
(14.0**POW2-13.0**POW2)
(15.0**POW2-14.0**POW2)
(16.0**POW2-15.0**POW2)
(17.0**POW2—16.0**POW2)
(18.0**POW2—17.0**POW2)
(19.0**POW2-18.0**POW2)
(20.0**POW2-19.0**POW2)
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**********
GROUP 6. Body-fitted coordinates or grid distortion
GROUP 7. Variables stored, solved & named 

S0LVE(P1,V1,W1,KE,EP)
SOLUTN(PI,Y,Y,Y,N,N,N)
SOLUTN(VI,Y,Y,Y,N,N,N)
SOLUTN(W1,Y,Y,Y,N,N,N)
SOLUTN(KE,Y,Y,N,N,N,N)
SOLUTN(EP,Y,Y,N,N,N,N)
STORE(ENUT)
ENUT=GRND
EL1=GRND4
PATCH(RESOURCE,PHASEM,1,NX,1,NY,1,NZ,1,1)
COVAL(RESOURCE,RE,GRND9,GRND9)
COVAL(RESOURCE,EP,GRND9,GRND9)
GENR=T

GROUP 8. Terms (in differential equations) & devices 

DIFCUT=0.0
TERMS(P1,Y,Y,Y,N,Y,N); TERMS(VI,Y,Y,Y,N,Y,N)
TERMS(W1,Y,Y,Y,N,Y,N); TERMS(RE,Y,Y,Y,N,Y,N)
TERMS(EP,Y,Y,Y,N,Y,N)

GROUP 9. Properties of the medium (or media)
RH01=1.0E-06;ENUL=1.0

GROUP 10. Inter-phase-transfer processes and properties
GROUP 11. Initialization of variable or porosity fields 

TREIN=0.003*WIN*WIN 
EPIN=0.09*TREIN**1.5/(0.03*GRAD)
FIINIT(PI)=1.0;FIINIT(Wl)=0.5*WIN 
FIINIT(VI)=0.0;FIINIT(RE)=0.3 *TREIN 
FIINIT(EP)=0.3*EPIN 
FIINIT(ENUT)=0.09*TREIN*TREIN/EPIN 
RESTRT(ALL)

GROUP 12. Convection and diffusion adjustments 
GROUP 13. Boundary conditions and special sources 

RELIN=0
ZBO=(ZUl+2)+(ZU2+l)+10
ZAO=ZBO+ZCE+ZOT+l

PATCH(WALL1,NWALL,1,1,NY,NY,1,ZBO,1,1)
COVAL(WALL1,Wl,GRND2,0.0);COVAL(WALL1,RE,GRND2 , GRND2) 
COVAL(WALL1,EP,GRND2,GRND2)

PATCH(WALL2,NWALL,1,1,NY,NY,ZAO,NZ,1,1)
COVAL (WALL2 , Wl, GRND2,0.0); COVAL (WALL2 , RE, GRND2 , GRND2 ) 
COVAL(WALL2 , EP, GRND2 , GRND2)

PATCH(INLET,LOW,1,1,1,NY,1,1,1,1)
COVAL(INLET, PI,FIXFLU,WIN*RH01);COVAL(INLET,Wl,ONLYMS,WIN) 
COVAL(INLET,RE,ONLYMS,TREIN);COVAL(INLET,EP,ONLYMS,EPIN)

PATCH(ZOUTLET,HIGH,1,1,1,NY,NZ,NZ,1, 1) 
COVAL(ZOUTLET,PI,FIXVAL,0.0)

YBC=Y1
YAC=YBC+Y2+1
CONPOR(0.0, CELL,1,1,YAC,NY, (ZBO+1),ZBO+ZCE)
CONPOR(0.0,CELL,1,1,(YBC+1),NY,(ZBO+ZCE+1),(ZBO+ZCE+ZOT))

PATCH(WALL3,HWALL,1,1,YAC,NY,ZBO,ZBO,1,1)
COVAL(WALL3,VI,GRND2,0.0);COVAL(WALL3,RE,GRND2,GRND2) 
COVAL(WALL3,EP,GRND2,GRND2)

PATCH(WALL4,NWALL,1,1,YBC,YBC,(ZBO+ZCE+1),(ZBO+ZCE+ZOT),1,1)
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COVAL(WALL4,W1,GRND2,0.0);COVAL(WALL4,KE,GRND2,GRND2) 
COVAL(WALL4,EP,GRND2,GRND2)

PATCH(WALL5,LWALL,1,1,YBC+1,NY,ZAO,ZAO,1,1)
COVAL(WALL5,VI,GRND2,0.0);COVAL(WALL5,KE,GRND2,GRND2) 
COVAL(WALL5,EP,GRND2,GRND2)

* * * * * * * * * *
USE OF POROSITY TO REPRESENT CONICAL PART OF ORIFICE 

CONPOR(0.0,CELL,1,1,YAC- 1,YAC- l,ZBO+ 2,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 2,YAC- 2,ZBO+ 3,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 3,YAC- 3,ZBO+ 4,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 4,YAC- 4,ZBO+ 5,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 5,YAC- 5,ZBO+ 6,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 6,YAC- 6,ZBO+ 7,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 7,YAC- 7,ZBO+ 8,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 8,YAC- 8,ZBO+ 9,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC- 9,YAC- 9,ZBO+IO,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-10,YAC-10,ZBO+11,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-11,YAC-11,ZBO+12,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-12,YAC-12,ZBO+13,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-13,YAC-13,ZBO+14,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-14,YAC-14,ZBO+15,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-15,YAC-15,ZBO+16,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-16,YAC-16,Z BO+17,Z BO+ ZCE)
CONPOR(0.0,CELL,1,1,YAC-17,YAC-17,ZBO+18,ZBO+ZCE)
CONPOR(0.0,CELL, 1,1,YAC-18,YAC-18,ZBO+19,ZBO+ZCE)
CONPOR(0.0, CELL, 1,1, YAC-19,YAC-19,ZBO+2 0,ZBO+ZCE)
CONPOR(0.0,CELL,1,1,YAC-2 0,YAC-20,ZBO+21,ZBO+ZCE)

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH ,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH ,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH ,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

CONPOR(0.0,NORTH,1,1,YAC- 
CONPOR(0.0,HIGH ,1,1,YAC- 
CONPOR(0.5,CELL ,1,1,YAC-

1,YAC- 1,ZBO+1,ZBO+1)
1,YAC- 1,ZBO+1,ZBO+1)
1,YAC- 1,ZBO+1,ZBO+1)

2,YAC- 2,ZBO+2,ZBO+2)
2,YAC- 2,ZBO+2,ZBO+2)
2,YAC- 2,ZBO+2,ZBO+2)

3,YAC- 3,ZBO+3,ZBO+3)
3,YAC- 3,ZBO+3,ZBO+3)
3,YAC- 3,ZBO+3,ZBO+3)

4,YAC- 4,ZBO+4,ZBO+4)
4,YAC- 4,ZBO+4,ZBO+4)
4,YAC- 4,ZBO+4,ZBO+4)

5,YAC- 5,ZBO+5,ZBO+5)
5,YAC- 5,ZBO+5,ZBO+5)
5,YAC- 5,ZBO+5,ZBO+5)

6,YAC- 6,ZBO+6,Z BO+6)
6,YAC- 6,ZBO+6,ZBO+6)
6,YAC- 6,ZBO+6,ZBO+6)

7,YAC- 7,ZBO+7,ZBO+7)
7,YAC- 7,ZBO+7,Z BO+7)
7,YAC- 7,ZBO+7,ZBO+7)

8,YAC- 8,ZBO+8,ZBO+8)
8,YAC- 8,ZBO+8,ZBO+8)
8,YAC- 8,ZBO+8,ZBO+8)

9,YAC- 9,ZBO+9,ZBO+9)
9,YAC- 9,ZBO+9,ZBO+9)
9,YAC- 9,ZBO+9,ZBO+9)
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CONPOR(0.0,NORTH,1,1,YAC-10,YAC-10,ZBO+IO,ZBO+IO) 
CONPOR(0.0,HIGH ,1,1,YAC-10,YAC-10,ZBO+IO,ZBO+IO) 
CONPOR(0.5,CELL ,1,1,YAC-10,YAC-10,ZBO+IO,ZBO+IO)

CONPOR(0.0,NORTH,1,1,YAC-1l,YAC-ll,ZBO+ll,ZBO+ll) 
CONPOR(0.0,HIGH ,1,1,YAC-11,YAC-11,ZBO+11,ZBO+11) 
CONPOR(0.5,CELL ,1,1,YAC-11,YAC-11,ZBO+11,ZBO+11)

CONPOR(0.0,NORTH,1,1,YAC-12,YAC-12,ZBO+12,ZBO+12) 
CONPOR(0.0,HIGH ,1,1,YAC-12,YAC-12,ZBO+12,ZBO+12) 
CONPOR(0.5,CELL ,1,1,YAC-12,YAC-12,ZBO+12,ZBO+12)

CONPOR(0.0,NORTH,1,1,YAC-13,YAC-13,ZBO+13,ZBO+13) 
CONPOR(0.0,HIGH ,1,1,YAC-13,YAC-13,ZBO+13,ZBO+13) 
CONPOR(0.5,CELL ,1,1,YAC-13,YAC-13,ZBO+13,ZBO+13)

CONPOR(0.0,NORTH,1,1,YAC-14,YAC-14,ZBO+14,ZBO+14) 
CONPOR(0.0,HIGH ,1,1,YAC-14,YAC-14,ZBO+14,ZBO+14) 
CONPOR(0.5,CELL ,1,1,YAC-14,YAC-14,ZBO+14,ZBO+14)

CONPOR(0.0,NORTH,1,1,YAC-15,YAC-15,ZBO+15,ZBO+15) 
CONPOR(0.0,HIGH ,1,1,YAC-15,YAC-15,ZBO+15,ZBO+15) 
CONPOR(0.5,CELL ,1,1,YAC-15,YAC-15,ZBO+15,ZBO+15)

CONPOR(0.0,NORTH,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16) 
CONPOR(0.0,HIGH ,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16) 
CONPOR(0.5,CELL ,1,1,YAC-16,YAC-16,ZBO+16,ZBO+16)

CONPOR(0.0,NORTH,1,1,YAC-17,YAC-17,ZBO+17,ZBO+17) 
CONPOR(0.0,HIGH ,1,1,YAC-17,YAC-17,ZBO+17,ZBO+17) 
CONPOR(0.5,CELL ,1,1,YAC-17,YAC-17,ZBO+17,ZBO+17)

CONPOR(0.0,NORTH,1,1,YAC-18,YAC-18,ZBO+18,ZBO+18) 
CONPOR(0.0,HIGH ,1,1,YAC-18,YAC-18,ZBO+18,ZBO+18) 
CONPOR(0.5,CELL ,1,1,YAC-18,YAC-18,ZBO+18,ZBO+18)

CONPOR(0.0,NORTH,1,1,YAC-19,YAC-19,ZBO+19,ZBO+19) 
CONPOR(0.0,HIGH ,1,1,YAC-19,YAC-19,ZBO+19,ZBO+19) 
CONPOR(0.5,CELL ,1,1,YAC-19,YAC-19,ZBO+19,ZBO+19)

CONPOR(0.0,NORTH,1,1,YAC-2 0,YAC-2 0,ZBO+2 0,Z BO+2 0) 
CONPOR(0.0,HIGH ,1,1,YAC-20,YAC-20,ZBO+20,ZBO+2 0) 
CONPOR(0.5,CELL ,1,1,YAC-20,YAC-20,ZBO+20,ZBO+20)

CONPOR(0.0,NORTH,1,1,YAC-21,YAC-21,ZBO+21,ZBO+21)
CONPOR(0.0,HIGH ,1,1,YAC-21,YAC-21,ZBO+21,ZBO+21)
CONPOR(0.5,CELL ,1,1,YAC-21,YAC-21,ZBO+21,ZBO+21)

**********
GROUP 14. Downstream pressure for PARAB=.TRUE.
GROUP 15. Termination of sweeps 

DELCON=0.005
RESREF(Pl)=0.5*DELCON*0.5*WIN*3.14159*DIAM*DIAM/4.0 
RESREF(Wl)=DELCON*WIN*RHOl*0.5*WIN*3.14159*DIAM*DIAM/4.0 
RESREF(VI)=5.0*DELCON*WIN*RHOl*0.5*WIN*3.14159*DIAM*DIAM/4.0 
RESREF(KE)=1.OE+5*DELCON*TKEIN*RH01*0.5*WIN*3.14159*DIAM*DIAM/4.0 
RESREF(EP)=1.0E+8*DELCON*EPIN*RHOl*0.5*WIN*3.14159*DIAM*DIAM/4.0

LSWEEP=500
NPLT=100
TSTSWP=100

GROUP 16. Termination of iterations 
LITER(PI)=10;LITER(VI)=10 
LITER(Wl)=10;LITER(KE)=10
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LITER(EP)=10
GROUP 17. Under-relaxation devices 

RELAX(PI,LINRLX,0.1); RELAX(VI,FALSDT,0.01)
RELAX(Wl,FALSDT,0.001) ; RELAX(KE,FALSDT,0.001)
RELAX(EP,FALSDT,0.1)

GROUP 18. Limits on variables or increments to them 
GROUP 19. Data communicated by satellite to GROUND 

RSG1=DCEY;RSG2=GY2;RSG3=LU1;RSG4=LU2;RSG5=DIAM 
RSG6=DCEZ;RSG7=GZCE;RSG8=DORT;RSG9=DORR 
RSG10=ENUL 
ISGl=ZBO;ISG2=YBC
ISG3=YAC;ISG4=ZCE;ISG6=ZOT;ISG7=ZAO 

GROUP 20. Preliminary print-out 
ECHO=F

GROUP 21. Print-out of variables 
OUTPUT(PI,Y,N,N,Y,Y,Y)
OUTPUT(VI,Y,N,N,Y,Y,Y)
OUTPUT(W1,Y,N,N,Y,Y,Y)
OUTPUT(KE,Y,N,N,Y,Y,Y)
OUTPUT(EP,Y,N,N,Y,Y,Y)

GROUP 22. Spot-value print-out 
IYMON=NY-l;IZMON=ZAO+l

GROUP 23. Field print-out and plot control 
IYPRF=NY-20; IYPRL=NY 
IZPRF=ZBO-3 0 ; IZPRL=ZAO+3 0 
ITABL=2; NUMCLS=6

GROUP 24. Dumps for restarts

STOP
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