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Abstract

This project is concerned with the development of intelligent agents for use in the 
Intensive Care Unit (ICU), based on the Multigraph Architecture (MA). The 
objectives of the work are twofold:

i. ) To consider the design issues of intelligent systems, using a model-based
approach of adding intelligence to existing instrumentation and information 
systems, irrespective of their implementation.

ii. ) More specifically, to investigate the role of MA in the implementation of such
systems.

The first objective will be achieved by writing a specification for an Integrated 
Model-based Development Environment (IMDE), identifying its functionality, user 
requirements, etc. The second objective is to implement a prototype of one such 
development environment. This will borrow concepts from a framework for 
intelligent process control for chemical plants, previously implemented in the MA. 
Finally an ICU application will be developed, using this IMDE, to monitor the 
respiratory system.

The benefits associated with using such a model-based framework include modular 
design, reusability of software components, automatic synthesis of run-time system 
from the models and simpler consistency and validation procedures. Another 
benefit that is of particular interest in patient monitoring systems is the integration 
of different software components. Because the MA is generic, it can be extended 
to support any modelling paradigm. This means that the development framework 
can handle all aspects in design of the system, e.g. instrument interface, user 
interface, signal processing and knowledge-based signal interpretation. To 
demonstrate this, the IMDE has been extended to include the Causal Probabilistic 
Network (CPN) modelling paradigm as an integral component. This facilitates the 
modelling of uncertaiilty.

Using the techniques described in summary above, the benefits gained from 
applying the multigraph architecture to intelligent patient monitoring can be 
ascertained. This forms the bulk of the work to be described in this thesis.
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CHAPTER 1

INTRODUCTION



1.1 Background

This dissertation describes an intelligent monitoring system for use in the High 

Dependency Environment (HDE). The aim of the work, involving co-operation 

between the Research Centre for Measurement and Information in Medicine 

(MIM) at City University and the Royal Brompton National Heart and Lung 

Hospital (refered to throughout as RBH), is to devise novel forms of intelligent 

instrumentation for application in intensive care medicine. The research is based on 

a specific approach to design and implementation of intelligent systems, called the 

Multigraph Architecture (MA), developed at Vanderbilt University, Tennessee. 

Using this approach, techniques of model-based monitoring and artificial 

intelligence are merged to add intelligence to instrumentation available. The 

clinical application domain is adult intensive care, in particular the management of 

artificially ventilated post-operative cardiac patients. Software development took 

place in the MIM centre and the clinical aspect of work was carried out at the 

RBH.

The following sections describe the motivation and background of the work, both 

from a clinical and software design perspective, leading into a discussion on issues 

concerned with the need for a model-based framework for intelligent systems. The 

statement of the aims and objectives of this research programme and an outline 

plan for the rest of this dissertation complete the chapter.
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1.2 Clinical Perspective

1.2.1 High Dependency Environment

The High Dependency Environment (HDE) is a collective term for any dedicated 

hospital unit for patients requiring specialised or intensive care. These may be 

general or special Operating Rooms (OR) or Intensive Care Units (ICU). The 

ITDEs were formed for the following reasons:

• to reduce mortality and morbidity,

• to effectively manage the use of scarce, human and equipment, resources1,

• to facilitate research.

Measurement is the cornerstone of identifying current patient state and its 

trajectory. Data, generated either from the measurements or through assessments 

made directly by clinical stuff, underlie every clinical decision. By definition 

patients in HDE require intensive monitoring, where monitoring is defined as 

measurement of patient physiological variables together with subjective 

assessments. Monitoring leads to therapeutic intervention if deemed necessary by 

the clinical staff. Modem HDEs are characterised by the availability of a large 

amount of patient data.

1 The use of HDE in a hospital, leads to the availability of a high ratio, typically greater than one, of specialised 
nursing staff to patient. Also it makes it possible for the complex and expensive patient care equipment, found 
in the HDEs, to be utilised for a high percentage of their functional lives.
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1.2.2 Data Complexity

Advances in measurement and computer technologies have resulted in an increase 

in the number, frequency and degree of invasiveness of parameters routinely 

monitored in HDE (Carson et al., 1991). For instance in 1992, real-time intra-

arterial blood gas monitors were introduced, such as the PB3300 manufactured by 

Puritan-Bennett. Previously measurements of blood gases were only possible 

through off-line measurements on blood samples. The PB3300 facilitates the 

continuous monitoring of blood gases which represents an increase in the available 

frequency of patient measurement. Real-time blood gas monitoring is more 

invasive than off-line (discontinuous) blood gas monitoring because it requires the 

placement of the infra-red probe in the artery. Another example of data explosion 

in the HDE is the ventilator. Modern ventilators with data ports can create up to 

8Mb of data every day. This explosion in volume of data and their interdependent 

nature create problems of information management.

1.2.3 Alarms/Alerts

Another problem associated with modern HDEs is the management of alarms and 

alerts. These may be either equipment malfunction alarms or signal set point 

alarms. The problems of HDE alarms are caused by:

• the large number of alarms and their associated audio warnings, (e.g. 

the Ohmeda 5250 respiratory gas monitor has 91 alarms and warnings),

• the large number of sources of alarms,

• use of single variables to generate alarms,
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use of hard thresholds to generate alarms, hence the problem of 

determining alarm thresholds.

If an alarm is not generated when it should (false negative), the well being of 

patient will be threatened. If it is activated without proper cause (false positive), it 

can be annoying to the clinical staff and may lead to it being ignored, silenced or 

disabled. The allowable range of alarm thresholds is a compromise between the 

probability of false alarms and missing alarm events. This is further complicated by 

the presence of artifacts. Physiological signals by nature are prone to corruption by 

artifacts. In situations when there are too many false alarms the clinical staff will 

effectively disable the alarms by setting the threshold levels such that they are 

never triggered. This may jeopardise effectiveness of patient care. Therefore there 

is a need to improve the reliability, specificity and usefulness of alarms by 

implementing integrated, intelligent alarms (Garfinkel et al., 1988; Koski et al., 1990; 

Makivirta, 1989; Schecke etal., 1992; Shabot etal., 1990; Van der Aa, 1990). See chapter 

2 for a review of the work on intelligent alarms.

Another reason for intelligent monitoring is to avoid disasters that may be caused 

by human error, either due to general fatigue or boredom associated with 

monotonous monitoring tasks, or caused by cognitive overload. Cognitive 

overload (or cognitive indigestion) is the problem of intake of information that a 

human operator is faced with when required to monitor multiple channels of high 

rate data. Studies by instrument manufacturers, such as one carried out by 

Hewlett-Packard have shown that “under conditions of high mental load, clinically 

important data can go unnoticed” (Higgins, 1992; p. F5), and unless “clinicians 

specifically allocate attentional resource to the perception of a numeric display, the
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only thing that they will be able to reliably report about the numeric is its colour” 

(Higgins, 1992; p. F5).

1.2.4 Role Of Patient Data Management Systems

Patient Data Management Systems (PDMS) for use in intensive care units and 

other high dependency environments are a relatively new concept. There may be 

many reasons for their introduction, but the most obvious one is to release the 

nursing staff from the clerical work associated with patient charting. Up to a third 

of HDE nursing time can be spent on keeping records and patient charts (Thull et 

al., 1992). The CareVue 9000 system manufactured by Hewlett-Packard is an 

example of a networked PDMS designed to obviate the need for manual paper 

logging in patient charting. In general, PDMSs address some of the problems of 

integration of data from different sources. However since they were designed as a 

replacement to paper charts, with medical audit as a major drive, they do not offer 

any intelligent functionality. In other words they may help the nursing staff in 

patient charting but they do not offer any aid to the physicians in assimilation or 

interpretation of data. The emphasis is on recording of data rather than their 

interpretation. So much so that data visualisation (i.e. aiding the clinician with data 

interpretation through graphical presentation of data and their trend) is largely 

ignored, and the interface from instruments cannot be used for high rate data.

It can be concluded, therefore, that there is a clinical need for enhanced capability 

of converting data into information, so that as much support as possible is given to 

the clinician as the decision-maker.
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1.3 Software Design Perspective

The term intelligent with regard to intelligent monitoring has taken on different 

meanings over the years. In the 1970s microprocessor based instruments were 

called intelligent because they were programmable and offered some degree of 

flexibility. The current generation of medical instruments is commonly referred to 

as smart instruments. The smart features include, simple limit alarms, historical 

trend display, reconfigurable display and some self diagnostic ability. In the control 

engineering community, expected features of intelligent process monitoring 

include: autonomous behaviour, adaptivity, robustness, signal interpretation and 

more recently, diagnosis.

Our understanding of intelligent monitoring, while including the above features, 

goes further by embracing models. Models are abstract representations of a system 

for a specific purpose. Recently there has been an increasing use of models in 

knowledge-based systems, as a structured way of representing knowledge, and 

with corresponding model solutions as the reasoning method. This has led to a 

realisation in the Artificial Intelligence (AI) community that knowledge 

engineering is really a modelling activity (Ford, 1993). Summers and Carson 

(1991) were among the first to take this view and proposed a validation 

methodology for knowledge based systems by drawing parallels with the model 

validation process. Perhaps the most important reason for using models in 

intelligent software is to help manage complexity in large systems (Harel, 1992).

Therefore intelligent monitoring systems should contain explicit knowledge about 

the system to be measured or monitored in terms of constituent models. As
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software becomes more complex it increasingly reflects the complexity of its 

environment. Therefore an intelligent HDE agent must contain models of the 

patient as well as models of HDE activities.

Requirements often identified as issues for a software architecture to implement 

intelligent patient monitoring are:

• real-time capability,

• reusability,

• portability,

• model-based signal interpretation.

The availability of real-time data and the requirement of timely response to patient 

changes impose the need for real-time capability on the intelligent software for 

patient monitoring. The development of real-time software becomes an issue 

because in practice it often deviates from the software engineering methods. Also 

real-time software is different from non real-time software in that the correctness 

of the system is closely interrelated with its performance (or speed).

The reusability is important because often different applications may have many 

parts in common; which parts may potentially be reused. If the architecture does 

not promote reusability the development of new applications will become 

expensive and slow.

Unless the implementation is easily portable, it will be limited to a specific 

hardware platform. Thus applications developed under one platform will not be 

usable on others.
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Model-based signal interpretation is important because the use of compiled 

knowledge such as rales is not adequate to capture the inter-dependence of 

physiological variables. Models allow for coherent and consistent representation of 

the available knowledge in a manageable way.

1.3.1 The Need For A Framework

When designing intelligent monitoring systems there are many issues that need to 

be addressed. First of all there is a variety of techniques available for interpreting 

the data, such as rule-based reasoning2, fuzzy logic3, Bayesian belief networks4 5, 

and artificial neural networks3. Use of these techniques has been proposed to cope 

with problems created by the nature of data, such as noise, uncertainty and the 

complex dynamics. The difficulty associated with selecting what technique to use 

is also complicated by the fact that these techniques are prone to misuse. Other 

aspects to be considered are;

• data acquisition i.e. automatic data collection from a variety of sources,

• the presentation of information and visualisation of data,

2 A knowledge base globally structures the rules as an acyclic tree. The logical implication paths
A —> B —» C —> D — .. flow from the tree’s root node to its leaf nodes. The inference process is defined by 
the enumeration of logical paths, using a search of the knowledge tree. Forward chaining inference proceeds 
from antecedents to consequences. Backward chaining inference proceeds from consequences to antecedents 
or hypotheses. In this way rule-based systems can be considered as structured symbolic estimators.

3 Multivalued set theory, used to express inexact relations between concepts in a knowledge base. It is 
fundamentally a numerical framework as compared with the symbolic framework of rule-based systems.

4 This is a numerical structured framework for probabilistic reasoning.

5 A distributed parallel model of information processing inspired by the organisation and function of the
neurones within the brain. They can generalise (learn), after training, work with incomplete or imperfect data, 
providing a degree of fault tolerance. In this way artificial neural networks can be considered as numeric 
unstructured estimators.
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• the design of the user interface,

• time-critical or real-time behaviour.

Monitoring software differs from other software in that the input to the software, 

if not wholly at least partly, comes from the instrumentation. Therefore they need 

to be able to directly capture the data generated from the instrumentation. These 

data or a summary of them often need to be visualised for effective transfer of 

information to the human observer. The design of the user interface is crucial to 

the acceptability and usability of any software application. Finally, real-time 

monitoring imposes further constraints on the software. The real-time constraint, 

in its most relaxed form implies that the software must be capable of continuous 

operation, and in its most rigid form it demands the software tasks to be 

guaranteed to complete within specified deadlines.

Having overcome these hurdles in the design stage, there is then the software 

implementation to consider. Therefore implementation of intelligent real-time 

monitoring systems can become a formidable task.

The use of a framework is proposed as a means of providing a solution to the 

problem of design and implementation of intelligent software for patient 

monitoring. A framework is like a template of an application program. In Object 

Oriented (OO) software terminology, the term “framework” is defined as “a set of 

classes that embodies an abstract design for solutions to a family of related 

problems” (Johnson, 1988; p. 22). A framework is supported by a software 

architecture; it contains a set of abstractions6, primitive objects7 or basic software

6 Here by abstraction is meant a set of concepts which are used to model the domain.

Object is a region of memory to which a type can be applied.
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modules8 and sometimes generic reusable modules, and most importantly it has an 

infrastructure, i.e. much of the functionality already exists and the relation between 

abstractions is defined. Because a framework implements some common 

functionality much less code needs to be written and applications become smaller, 

and easier to debug. Another benefit comes from the use of abstractions. They help 

in every stage including knowledge acquisition and organisation (Pirjamali et al., 

1993). Other benefits include reusability of software components including both 

software objects and functions.

Examples of real-time frameworks for intelligent monitoring are RTworks9 

(Laffey, 1991) and Intelligent Process Control System (IPCS) (Karsai et al., 1992). 

RTworks supports a distributed architecture based on the client-server model. It 

has generic modules such as interface and visualisation modules. It has an 

infrastructure and, for instance, the interactions between user interface module, 

data modules and other modules, are already implemented. Similarly IPCS is a 

framework, because it has an underlying architecture, some pre-defined 

abstractions, as well as runtime support for some algorithms. More importantly it 

integrates all of these aspects, in other words it has an infrastructure whereby the 

way that different components interact is defined.

8 A software module implements a subset of the functionality of an application.

9 RTworks is a commercial product developed by the Talarian Corporation.
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1.3.2 Multigraph Architecture

The Multigraph architecture (MA) (Biegl, 1988; Sztipanovits and Bourne, 1985) is a 

generic framework for design and implementation of real-time intelligent systems. 

MA is a model-based architecture which allows direct use of models i.e. the 

computational structure is directly derived from models. The term model-based 

implies that the run-time system is derived from, and is dependent on, the models. 

It should not be confused with the use of first principle knowledge of physiology 

(“deep knowledge-based”). The models, containing abstract representations of the 

system of interest which embody the expert knowledge, are represented by 

graphical and syntactic structures.

1.4 Aim And Objectives

Given the need for intelligent patient monitoring in the HDE and the software 

requirements of such systems, as discussed in the previous sections, the aim of this 

work is to investigate the suitability of the MA for building intelligent HDE agents 

and to lay down the basis for design of a generic model-based patient monitoring 

system. The objectives are:

• to design a generic specification of a framework,

• to identify relevant modelling paradigms and software components and 

implement their integration into a prototype framework,

• to build and test an application prototype.
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1.5 Layout Of Thesis

In this chapter the motivation and objectives of the work have been explained as 

well as the approach taken. Along the way definitions have been developed for the 

terms, framework, model-based, intelligent and monitoring. Chapter 2 provides 

a critical review of the literature currently available that has a similar scope and 

objective to those described in this thesis. Chapter 3 presents the MA, and its 

theoretical foundation, namely the graph computational model, as well as IPCS, as 

an example of application of MA concepts in intelligent monitoring. In chapter 4, a 

generic specification is given for a model-based framework for applications of 

intelligent monitoring systems in the HDE. Chapter 5 describes some extensions 

and modifications of the MA framework necessary for patient monitoring. Chapter 

6 contains the clinical application of the current prototype, which consists of a 

respiratory monitoring system. Chapter 7 discusses the model-based software 

synthesis, summarises the design steps and discusses the application of the 

technology to patient monitoring, based on the experiments that have been carried 

out. Finally chapter 8 contains the conclusions and the recommendations which 

describe the advances made in this research programme.
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CHAPTER 2

REVIEW OF APPLICATIONS OF 
INTELLIGENT MONITORING IN THE

HDE
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2.1 Introduction

The principal purpose of this chapter is to review the published research work 

related to intelligent patient monitoring in the High Dependency Environment 

(HDE). The aim is to show how the work described in this thesis fits in with what 

has already taken place and what other researchers are doing. The chapter starts 

with a wider historical view of Artificial Intelligence (AI) applications in HDE, and 

then focuses on some specific projects for a more detailed review. Finally some 

general conclusions are drawn about the current state of the technology.

2.2 Historical Review Of AI Applications In 
The HDE

In 1960 McCarthy published his work on the development of LISP (McCarthy, 

1960; McCarthy, 1978). This landmark development in AI almost coincided with 

the first computer applications in measurement of physiological signals for patient 

monitoring in the early 1960s. Over the next two decades AI grew rapidly and 

expert systems10 emerged. Simultaneously there was a rapid growth of the patient 

monitoring technology in intensive care. As the high volume of data generated by 

the instrumentation in HDEs began to outstrip the human operators’ ability to 

handle the information some AI researchers turned their attention towards the 

problems of data management and interpretation in HDEs.

10 Computer programs for a well defined and specific problem domain, that try to mimic domain experts’ 
problem solving behaviour, by incorporating factual and heuristic knowledge, typically encoded as rules.
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The research in applications of AI for intelligent patient monitoring in HDEs 

started in the late 1970s and has resulted in a large body of work; the earliest 

example of which is the pioneering work of Fagan (1980) on ventilation 

management, called the VM system. VM was designed to interpret on-line data in 

an ICU for the management of post-surgical patients undergoing mechanical 

ventilation. The implementation was based on the formalism of MYCIN 

(Shortlifife, 1976). The domain knowledge was represented implicitly and no 

abstractions were defined except to classify the rules into five groups. These rule 

groups were, initialising rules, status rules, therapy rules, transition rules and 

instrument rules. VM remained a development system.

Perhaps the most exciting development of the 1980s in intelligent patient 

monitoring was the COMputerised Patient Advice System (COMPAS) project, 

developed at University of Utah (Sittig et al., 1989). COMPAS was designed to 

advise clinicians in the management of patients with' Adult Respiratory Distress 

Syndrome (ARDS). It was developed within the existing home-made hospital 

information system, called the Health Evaluation through Logical Processing 

(HELP) system (Pryor et al., 1983). COMPAS was a prototype of computer- 

based, protocol guided, patient care. The patient management protocols were 

derived from skilful knowledge elicitation based on round table discussions of nine 

pulmonary specialists. The protocols were subsequently modified to increase their 

acceptability to clinical users. The rate of compliance of the physician with the 

system’s suggestion is reported to be 92%. COMPAS is significant for a number of 

reasons. Firstly, it is one of the very few applications to undergo clinical trials. 

Secondly, it has been shown to have a direct impact on the quality of patient care, 

and clinical outcome. It is claimed that the increase from 10% to 40% in the 

survival rate of the most severe form of ARDS patients is attributable to the use of
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the system. Finally, the COMPAS project is still in routine clinical use under the 

name of CORE (Henderson et al., 1992).

COMPAS belongs to a class of applications which are aimed at adding intelligence 

to patient monitoring, primarily by incorporating the capability of giving advice. 

Other similar applications include AIRS (Summers et al., 1993), ESTER 

(Hernández-sande et al., 1989), WEANPRO (Tong, 1991). Some researchers on 

the other hand concentrated on the problem of intelligent alarming. PONI 

(Garfinkel et al., 1988) was aimed at reducing the number of false positive alarms in 

the operating room by rule-based alarm validation. PONI was implemented within 

a home-made Hospital Information System (HIS) called the Hospital Operating 

Room NETwork (HORNET) (Garfinkel et al., 1987). The intelligent alarms in 

anaesthesia project, detects faults in breathing circuit, using an expert system 

approach (Van der Aa, 1990). Koski et al. (1990) investigated application of median 

type filters for improving reliability of alarms.

2.3 Critical Review Of Real-Time Monitoring 
Applications In The HDE

The focus of interest in this thesis is the HDE applications of real-time monitoring, 

among which five have been selected for in-depth review. The five projects 

reviewed here have been selected because they are the closest in scope to this 

dissertation; i.e. they are all concerned with the wider problem of intelligent 

patient monitoring rather than expert systems solutions for restricted and isolated 

problems. They all take a common approach of implementing intelligence by 

integrating knowledge-based systems with the existing HDE instrumentation.
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Finally all five projects are in some way related to the respiratory monitoring and 

management of ventilators.

These five projects have also been selected as being representative of the 

prevailing teclmiques, and contain some originality in their approach. The 

Intelligent Cardiovascular Monitor (ICM) is reviewed because it is based on a 

parallel architecture. GUARDIAN is considered because it interfaces to 

instruments for direct real-time data acquisition and because of its distributed 

architecture. SIMON is included because it adopts a model-based framework. 

PATRICIA is described because it is a typical rule-based approach. Finally, the 

AIM-INFORM project has been included, because it attempts to lay the 

foundations for a framework for Knowledge Based Systems (KBS) in HDE 

applications.

2.3.1 ICM

The Intelligent Cardiovascular Monitor (ICM) was developed by Factor and 

colleagues at the University of Yale (Factor et al., 1990). The ICM was designed 

as a prototype application of the parallel software architecture called process 

trellis. The trellis model of parallelism is based on a flat computational graph. The 

so-called hierarchical approach of ICM is really a layered view of the different 

stages of signal transformation from raw data to qualitative data to higher level 

physiological states. The addition of a higher level, therapeutic layer is possible but 

not implemented. The ICM contains about 70 modules for processing of real-time 

data. The prototype was tested with patient data during open heart surgery and
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was reported to produce “reasonable” results. No further information on the test

results is available in the literature.

The process trellis is a parallel architecture that runs on a parallel computer. It 

allows for the program to be divided into sub-tasks. The sub-task can be executed 

simultaneously on CPUs of a parallel computer. The ICM project is specially 

important because it is one of the few that actually addressed the processing power 

requirements for the interpretation of multiple channels of real-time data, by 

incorporating facilities for parallel execution.

2.3.2 GUARDIAN

The GUARDIAN project is a prototype intelligent monitoring system for the ICU, 

developed by the Knowledge Systems Laboratory of Stanford University (Hayes- 

Roth et al., 1992). The application area is the monitoring of post-operative cardiac 

surgery patients. The project was developed as a proof of concept system, not 

designed for practical application. It is based on a Blackboard architecture (Hayes- 

Roth, 1990), where the knowledge is organised into a collection of independent 

knowledge sources (KS). The architecture of blackboard systems will be described 

in more details in section 2.3.5. The knowledge in GUARDIAN is represented 

using a conceptual graph formalism. The system implements a scheme for data 

reduction by changing the sampling frequency and filtering thresholds (Washington 

and Hayes-Roth, 1989). The validation of the system has been in the form of 

investigating its use in medically simple scenarios. The system monitored a patient 

and ventilator simulator, using 20 patient variables. The real-time performance of 

GUARDIAN was tested by presenting the system with four events, which the 

knowledge sources of the system knew about. The utility of the GUARDIAN’S
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response was calculated using a combination of correctness, specificity, timeliness 

and the criticality of the event presented. A high utility was reported.

GUARDIÁN seems to be more of a prototype exemplar for AI techniques rather 

than trying to address real problems of clinical monitoring.

2.3.3 SIMON

The SIMON project represents on-going work in the Department of Electrical 

Engineering of Vanderbilt University (Dawant et al., 1993). It has been named 

SIMON for Signal Interpretation and MONitoring. The initial application domain 

is management of assisted ventilation of premature infants with respiratory distress 

syndrome (RDS). Two major issues addressed by SIMON are context dependence 

and correctness of measurements.

SIMON uses a model based approach. The modelling paradigm, YAQ, (Uckun et 

al., 1992; Uckun et a i, 1993) is based on the work by Forbus on Qualitative 

Process Theory (QPT) (Forbus, 1984). Qualitative modelling may seem an 

attractive option in the physiological domain where, exact mathematical 

representations are not always available. However, the ambiguity in qualitative 

simulation, is a major drawback of qualitative modelling. Qualitative simulation 

differs from numerical simulation in that it attempts to predict all possible 

behaviours. Thus a qualitative simulation produces a set of behaviour sequences. 

As well as lack of precision, a practical implication of this inability to reduce the 

solution space, is rapid and non-linear growth in the simulation time. YAQ 

attempts to contain this exponential growth of the solution space by limiting the
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simulation at each stage to the generation of the immediate expectations for each 

quantity. Also no attempt is made to combine predictions of different quantities. 

Furthermore, YAQ supports the use of numerical as well as symbolic information 

in order to help resolve future ambiguities.

The architecture of SIMON is based on four major modules, each implemented as 

an independent UNIX process, (see figure 2.1). The modules communicate 

through a custom interprocess communication (IPC). The four modules are; data 

acquisition, data abstraction, patient model simulation and graphical user interface 

module.

At the time of writing the SIMON project has not been sufficiently developed to 

undergo test and validation.

2.3.4 PATRICIA

PATRICIA, an intelligent monitoring system for the management of artificially 

ventilated patients, was developed at the University of La Coruna, Spain (Moret- 

Bonillo et al., 1993). Essentially, PATRICIA is a rule-based system based on 

heuristic expert knowledge. A context dependent transformation between numeric 

values and symbolic representation is employed. The use of “context” here is static 

i.e. it can be set to different values at the start of a session but it is not modified 

while the system is running. For instance the context can be patient age or history 

but not the current patient state, since the latter may change during a session.
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Shared Memory access protocol
Custom IPC meassage protocol (local or network)
Graphics protocol (local or network)

Figure 2.1 The Conceptual Architecture Of SIMON 
(after Dawant et al 1993)
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Each variable is sampled at a rate determined by its “persistence”n and this 

sampling rate may be changed dynamically. Numerical data are checked to see if 

they fall within physiologically plausible ranges. The rule-based inferencing is 

invoked at regular intervals determined by “Decision Time”11 12, or alternatively 

when an alarm condition is detected. Artifact detection rules have been proposed 

to trap invalid symbolic data by considering causality among related variables. The 

so-called temporal rules use the value of a variable or its trend during the decision 

time as their antecedent part.

PATRICIA was validated by assessing the rate of agreement of the system with the 

human experts on whose knowledge the system is based, and with the attending 

physician, using retrospective clinical data. In this case agreement means being of 

the same opinion in respect of both result interpretation and suggested therapeutic 

strategy. The attending physician and the human expert were also compared 

mutually. This approach to validation is typical of the validation procedure for 

many rule-based systems. The results from the analysis of 119 patients are as 

summarised in table 2.1

PATRICIA represents no methodological advance over VM (Fagan, 1980). Both 

systems encode the knowledge in the form of rules and utilise forward chaining or 

data driven mode of inferencing. The systems are also similar in their partition of 

knowledge into facts and heuristics. Facts represent the shared knowledge, which 

is commonly available and agreed upon, whereas heuristics represent the

11 Persistence of a variable is the length of time following a sample, for which the value of the variable can be 
trusted to be unchanged. Persistence and Decision Time are part of the vocabulary of the NEXPERT real-time 
reasoning.

12 See foot-note 11.
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knowledge of the local experts, which are typically judgmental and have remained 

undocumented until the knowledge elicitation. The heuristic knowledge captured 

in the knowledge-base is the result of knowledge elicitation from one or more 

experts. However, the implementation of PATRICIA is based on NEXPERT, 

which is typical of a new generation of expert system shells13, supporting Graphical 

User Interface (GUI) design, and also incorporating facilities for reasoning in time.

Rate of agreement between man/man and man/machine

human expert and expert system 92%

attending physician and expert system 78%

attending physician and human expert 79%

Table 2.1 Validation Results For PATRICIA 

(after Moret-Bonillo et al. , 1993)

2.3.5 AIM INFORM

The Advanced Informatics in Medicine (AIM) research programme of concerted 

actions is a collaborative European effort into application of AI in Medicine. The 

INFORM project was concerned in particular with applications of decision support 

in the HDE. The long-term goal of INFORM is to develop, implement and

13 Shells are tools for building knowledge based systems. They include a knowledge representation scheme, 
which is typically based on some rule formats, and an inference engine with standard techniques eg. forward 
chaining and backward chaining.
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evaluate a new generation of Information Systems (IS) for hospital HDEs. The 

exploratory phase of the project was completed in 1990.

Although there was no implementation in the exploratory phase, this was a very 

important project because it attempted to address some fundamental issues, such 

as user requirements and integration of decision support systems into routine 

clinical activities. The work was carried out in two major strands. One was an 

analysis based on an object oriented extension of the entity-relation methodology 

leading to a data model (Leaning et al., 1991) and the other a specification of a 

proposed software architecture (Hunter et al., 1991) based on the Blackboard 

model of problem solving.

Blackboard Architecture

A blackboard architecture is an Al control technique based on a distributed model 

of problem solving. There are three main components in a blackboard system, 

namely the knowledge sources, the control, and the blackboard. Specialised 

knowledge is organised into a number of Knowledge Sources (KS), sometimes 

referred to as agents, which co-operate to solve the problem. The blackboard is 

implemented by a global data structure; and the control may be implemented by a 

finite state machine. The blackboard architecture is so called because it imitates a 

group of experts sitting around a blackboard to solve a problem. When an expert 

sees that a contribution can be made, based on the specialised knowledge, that 

person raises a hand. The chairman of the group monitors the experts and selects 

their contributions in order, according to the agenda visible on the blackboard. The 

contribution might be to confirm or refute a hypothesis on the blackboard or add a 

new one. Thus the blackboard holds a set of partial or full solutions, known as the 

solution space. As the experts or knowledge sources add, delete or modify the
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blackboard entities, the solution space becomes the current best hypothesis for the 

problem. The experts communicate with each other only through the blackboard. 

Extensions of the blackboard architecture have been applied in real-time problems 

(Nicholls and Sheuton, 1992).

2.4 Summary

All projects considered in this review use symbolic rather than numerical 

techniques. All except SIMON use rules or frames for knowledge representation, 

and rule-based inferencing for “utilising” the knowledge. Most systems are 

confined to the Artificial Intelligence (AI) laboratories, with little evaluation or 

field testing. The reviewed work reveals that intelligent patient monitoring is in its 

foetal stages, all are development systems, and that almost no clinical systems yet 

exist. The rare exceptions to this are COMPAS (Sittig et al., 1989) and PONI 

(Garfinkel et al., 1988). Both of these systems were based on home-made Hospital 

Information Systems (HIS), so unlike commercially available HIS and Patient Data 

Management Systems (PDMS), they were flexible enough and “open” enough to 

allow integration with knowledge-based system. Having reviewed some 

applications of intelligent patient monitoring in the HDE, the next chapter will 

review the Multigraph Architecture (MA) and its application in intelligent process 

control.
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CHAPTER 3

MULTIGRAPH ARCHITECTURE & 
INTELLIGENT PROCESS CONTROL

SYSTEM
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3.1 Introduction

Having in the previous chapter reviewed the intelligent monitoring in High 

Dependency Environment (HDE), this chapter is concerned with the Multigraph 

Architecture (MA) in the context of intelligent process control systems. The 

purpose of this chapter is twofold. The first is to describe in some detail the 

Multigraph Architecture (MA), and a prototype framework for Intelligent Process 

Control Systems (IPCS) based on the MA. The second is to emphasis the model- 

based approach of software design, and the role of models in intelligent systems. In 

the section describing the MA, particular attention is paid to comparing this to the 

traditional approach (i.e. rule-based) of implementing knowledge based systems, as 

well as highlighting the benefits associated with this approach. The section on 

IPCS mainly describes the major abstractions, and how their associated objects 

may be used in an application.

3.2 MA Concepts

MA is a model-based architecture for the design of complex real-time knowledge- 

based systems, (Biegl, 1988; Sztipanovits and Bourne, 1985). It is a multi-layered14 

architecture which uses a graph-based model of computation. The MA views 

applications as consisting of the following components in ascending order of 

abstractions:

• Physical layer

14 Layer is a level of abstraction.
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System layer

• Module layer

• Knowledge-based layer.

These layers implement the following functionalities:

• The physical layer is the hardware on which the system runs. It may be 

based on a single processor or be multi-processor based,

• The system layer comprises the software responsible for resource 

allocation and scheduling; it is closely related to the hardware,

• The module layer implements the algorithmic modules; it supports the 

graph-based model of computation,

• In the knowledge-based layer symbolic and knowledge-based 

functionalities are realised.

Each layer is implemented in the following way:

• The physical layer may be implemented by any kind of hardware 

architecture e.g. RISC (Reduced Instruction Set Computer) based 

workstation, transputer array;

• The system layer is implemented by the operating system, usually supplied 

by the hardware manufacturer;

• The module layer is implemented by source or object code libraries;

• The knowledge-based layer is implemented by very high level declarative 

languages which are specific to the problem domain. Knowledge about the 

problem is expressed in declarative languages, usually in terms of models.

29



Figure 3.1 demonstrates the model-based architecture ofMA. The top layer of the 

system comprises the model builder environment or the Multigraph 

Programming Environment (MPE). The models are created and saved at this 

level. Model building is supported by high level tools, such as a graphical model 

builder environment. The models may be heterogeneous structures, i.e. include 

both qualitative and quantitative aspects of knowledge about the system.

The middle layer consists of the model interpreters. The model-based architecture 

of MA means that the computational structure is derived from the models. The 

model interpreter therefore maps the models into computational structures for 

execution by the Multigraph Execution Environment (MEE).

The bottom layer represents the MEE. The computations in MEE are represented 

in the form of a bipartite directed graph called the control graph. The control 

graphs are generated through the model interpretation process. The control graphs 

consist of two kind of nodes, namely actor nodes and data nodes, and the arcs of 

the graph represent the data flow among the nodes. The actor nodes represent a 

computational block and are associated with code segments known as actor 

scripts. Model interpretation combines declarative knowledge, in the form of 

models, with the algorithmic knowledge, available in terms of object libraries of 

procedural code, to generate the execution structure. The actor nodes are 

scheduled for execution by the multigraph kernel whenever they are triggered. 

The multigraph kernel together with the hardware and operating system implement
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a virtual Large Grain Data Flow (LGDF)15 machine. The multigraph kernel calls 

may be grouped into three main categories:

• System interface calls, for interfacing the kernel to the system layer,

• Module interface calls, to interface to algorithmic codes (scripts),

• Knowledge-based interface calls, to interface with the knowledge 

expressed in the declarative languages.

MA is a generic architecture and hence can be extended to support new modelling 

paradigms. It is possible to use multiple modelling paradigms within one 

application to represent different types of knowledge. The extensibility of the 

architecture also implies that the potential for application is not limited to any one 

domain. These are key concepts which allow the integration of different modelling 

paradigms and migration of the architecture to new domains such as patient 

monitoring.

3.3 Benefits Of The Multigraph Architecture

The advantage of a multi-layered system is that it allows the structural 

complexities and algorithmic complexities to be addressed at different layers. 

Hence, there is the possibility of knowledge-based control and dynamic 

reconfiguration of time-critical low level functions. The usual way to achieve this 

is to activate low level functions from symbolic operations. The obvious

15 Grain refers to complexity of code, small grain or micro deals with blocks of single or few machine 
instruction, whereas large grain or macro deals with code segments of the order of signal processing 
subroutines, such as FFT block.
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consequence of this is that the speed of program execution will be limited by the 

symbolic processing. In MA, however, this is overcome by separating the model 

interpretation and the execution of the control graph. Therefore MA provides an 

efficient integration of symbolic and numerical processing.

Another advantage of using the MA is that it is portable. The multigraph kernel 

implements a virtual data flow machine and all the computation is expressed in 

terms of data flow graphs. Hence, provided the kernel is portable to different 

hardware platforms, the system is also portable.

A further advantage is derived from using the control graphs as the computational 

model. Any number of actors on parallel paths on the graph may be executed 

simultaneously provided the resources, ( i.e. processing power and the necessary 

memory), exist. This can be exploited to create parallel and distributed execution 

by simultaneously executing segments of the control graph on arrays of processors 

or distributed workstations.

The MA affords a transparent testing process. In knowledge-based systems 

knowledge is often expressed as rules or as frames of rules. The validation of such 

systems is a classic problem. It is impossible to test all possible combinations of all 

rules under all scenarios (O'Keefe et al., 1987). Yet this unknown combination of 

rules is the reason for using them. In MA the knowledge is organised in terms of 

models, and validation takes place by ensuring correctness and consistency in the 

models.
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Finally, the MA allows for simpler consistency checking. To ensure consistency it 

is sufficient to check the models, rather than the entire execution code.

3.4 Real-Time Performance

Another reason for the use of MA is its real-time performance capability. Before 

discussing the MA and real-time there is the need to define our understanding of 

the term “real-time”, since it has been used with different meanings in the literature 

(O’Rielly and Cromarty, 1985). A common understanding of real-time is fast or 

fast enough processing compared with the available data rate. Often real-time is 

used to mean on-line which may also imply reactivity i.e. a system whose 

behaviour is dependent on sensed events. A more strict definition is a system in 

which the correctness of results depend not only upon the logical correctness of 

computations but also upon the time at which the results are produced. Therefore 

if the timing constraints are not met the system is said to have failed. The 

terminology adopted here will be based on the division by Stankovic (Stankovic 

and Ramamritham, 1988) into hard and soft systems. The term hard real-time is 

used for systems in which the timing constraint is guaranteed to be met, and soft 

real-time is used when a reduced timing constraint applies, i.e. in cases where 

there is some value in tasks which are completed after their deadline.

3.4.1 Real-Time Performance And Symbolic Processing

Traditionally AI and expert systems are associated with symbolic processing. The 

most widely used language for symbolic processing is LISP. LISP is a dynamic
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language. This means that the data structures are created during the run-time in 

contrast to block structured languages such as PASCAL or C. In other words the 

program consumes memory, hence the need for memory management operations to 

free memory, these being called garbage collection. The garbage collection 

associated with symbolic processing creates other problems besides speed of 

execution. Firstly the continuity of operation is violated. Secondly, because 

garbage collection can come into action at unpredictable times and for 

unpredictable lengths of time, predictability cannot be guaranteed.

The review of real-time expert systems by LafFey et al. (1988) contains a 

comprehensive list of problems with traditional AI shells16 and why they can not be 

used in real-time applications as summarised below. Expert system shells:

• are not fast enough,

• do not facilitate reasoning about time evolution of data,

• are difficult to integrate with other software and Input/Output (I/O)

systems,

• do not have a mechanism for focusing attention,

• have no facility to handle asynchronous events,

• cannot efficiently acquire data from external sources,

• cannot provide reliable response time, as most search algorithms 

employed are of exponential complexity.

16 Shells are tools for building knowledge based systems. They include a knowledge representation scheme, 
which is typically based on some rule formats, and an inference engine with standard techniques e.g. forward 
chaining and backward chaining.
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cannot run continuously,

• have no mechanisms to deal with change in work load or availability of

resources.

For these reasons conventional AI systems based on expert system shells cannot be 

used for real-time applications.

3.4.2 Review Of Real-Time KBS

Since 1986, however, there has been a steady introduction of a range of 

commercial tools for development of real-time knowledge based systems. Some 

examples of such tools include G2, COGSYS, PROMASS and RTWorks. All such 

systems use rule-based inference as their reasoning mechanism. C is invariably 

used as the implementation language, in order to avoid the problems associated 

with symbolic processing languages, such as speed and continuity of operation as 

described above. Therefore, the real-time performance problem has been solved by 

sacrificing complexity of knowledge representation and using a restricted rule 

format and simple inference method. Also the timing constraint is met by using 

priorities, in task scheduling. Commonly such systems provide time-stamps and 

histories to facilitate temporal reasoning.

3.4.3 The Real-Time Aspect Of MA

MA has been applied in soft real-time applications, e.g. Intelligent Process Control 

System (IPCS). MA can be applied to real-time problems because it allows for 

separation of the model interpretation and execution. The run-time system can be
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entirely created from modules written in C language and hence the speed of 

execution is comparable with conventional systems. The simple method of 

parallelisation of the execution structures described above is another reason why 

MA is suitable for real-time applications, i.e. meeting real-time demands by using 

parallel hardware. Using hierarchical models it is possible for some tasks such as 

diagnosis to be performed in an incremental manner, for instance by starting at the 

root and progressively increasing the resolution of the diagnosis; in other words, 

using the best intermediate result as a way of meeting timing constraints. Finally in 

MA applications in monitoring such as IPCS, diagnostic algorithms of polynomial 

complexity17 are used, therefore the timing constraint are met by using predictable 

and bounded response time.

In order to implement hard real-time capabilities in the MA it is necessary to 

augment the computational graphs with timing constraints. The computational 

graphs can then be scheduled for execution in such a way to meet the timing 

constraints. This has been the subject of research by Waknis (1993).

The disadvantage of using MA is the overhead associated with developing the 

declarative languages and the corresponding model interpreters.

Using a macro data flow graph as the computational model has a potential 

disadvantage. There is an overhead associated with the scheduler, i.e. the 

processing necessary between invoking the scripts of two successively fired actor

1 This is the standard way of comparing algorithm efficiency in which time taken to solve a problem is specified 
as a function of N, where N in some way represents the size of the problem. Exponential algorithms are 
generally to be avoided because they can only be used with problems of very restricted size i.e. they are not 
scaleable.
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nodes. In order for this overhead to be negligible the size of the script has to be at 

least an order of magnitude larger than the size of the scheduler overhead. This 

implies that for the kernel to be efficient the computation must be capable of being 

represented as a data flow graph with medium sized (of the order of 1000 machine 

instructions) actor scripts.

3.5 MA Applications

MA has been applied to build parallel distributed systems. Abbott and colleagues 

describe an image processing demonstration system (Abbott et al., 1990) and a 

real-time digital signal processing system (Abbott et al., 1993) for the analysis of 

turbine engine test data. The image processing system was implemented on a 

network of four INMOS transputers running the transputer implementation of the 

Multigraph Kernel (MGK), giving very high processing speed up factors (3.95 at 

best, out of a theoretical maximum of 4). The turbine engine monitoring system 

runs on a heterogeneous network of around 100 processors, capable of providing 

around 0.2 Gflops. Neither application required any parallelisation of code, except 

at the control graph level.

Because the process of model interpretation can be restarted at run-time, this has 

been used to create structurally adaptive18 systems, that reconfigure themselves 

during runtime (Blokland and Sztipanovits, 1988; Sztipanovits et al., 1993; Sztipanovits 

and Wilkes, 1988; Wilkes et al., 1990). The computational structure not just its 

parameters may be changed, secondary to changes in the environment, through

18In structurally adaptive systems the computation structure is varied dynamically, cf. parametric adaptivity 
where the structure is fixed but only parameter values may be varied.
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manipulation of the control graph. An application in sonar signal processing has 

been described by Misra et al. (1990).

MA has been used to develop plant-wide process monitoring control and 

diagnostic (MCD) systems (Karsai et ai, 1992; Karsai et al., 1990; Padalkar et al., 

1991; Sztipanovits et al., 1990; Sztipanovits et al., 1987). The MCD applications 

include the monitoring of a cogenerator plant and are based on the Intelligent 

Process Control System (IPCS) framework, detailed in the next section.

3.6 Intelligent Process Control System (IPCS)

As shown in the previous section a software architecture is a partial specification 

of an application. In other words it specifies the form, but not the details, of an 

application program. A framework on the other hand is based on an architecture 

but is augmented with a set of development tools as well as a set of pre-defined 

objects or object classes that may be useful in a group of applications. IPCS is a 

framework for intelligent monitoring.

In this section IPCS (Karsai et al., 1992; Padalkar et al., 1991) is described as an 

example of a general purpose intelligent Monitoring, Control and Diagnostic 

(MCD) system, implemented using the MA. The term intelligent refers to the fact 

that the run-time behaviour is derived from the knowledge embedded in the 

system. The term model-based indicates that the knowledge is organised in terms 

of models.
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IPCS is an integrated set of high level software tools for design and 

implementation of model-based intelligent process control system. IPCS consists 

of two main components:

• a development shell which is a graphical environment for model 

building,

• a target shell which is the run-time environment.

Models in IPCS are graphical and syntactical structures which represent expert 

knowledge. The model builder environment is a graphical editor. The user creates 

structures by placing and connecting icons and editing their properties. Declarative 

language statements are generated from graphical models. Once the models are 

created they are loaded in the run-time environment to build and execute the run-

time system.

The IPCS run-time functionalities include:

• Data collection and processing,

• Fault detection and real-time diagnosis,

• Simulation and control,

• Operator interface for input and output.

The modelling philosophy is specifically designed to support engineering problems. 

The most important concepts are hierarchical decomposition and multiple aspect 

modelling. Together these concepts provide an effective approach for dealing with 

the complexity of monitoring large process plants.

40



3.6.1 Model-builder Editors

There are five declarative languages defined for the IPCS. Each one has its 

associated graphical editor.

Processor Editor

Here the signal processing blocks are created using the Hierarchical Description 

Language (HDL). The function of the HDL editor is to capture the digital signal 

processing functions of the application in a hierarchical manner, using user defined 

or standard libraries of signal processing blocks.

Panel Editor

The panel editor is used to define the operator interface panels. The graphical user 

interface and all user inputs through mouse and keyboard and system outputs to 

the screen are defined here.
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Physical Component Editor

The physical component editor is used for building a hierarchical representation of 

the plant in terms of physical components. Each component can have its associated 

failure states.

Process Model Editor

This is a multiple aspect modelling editor. The process is modelled from six view 

points which are as follows:

• Structural view, which shows how the process model is decomposed 

into simpler models, the related process variables, the process states and 

parameters;

• State transition view, to define the state transitions and link them with 

events that trigger the state transitions;

• Monitoring and control view, which represents signal processing and 

control functionalities including interface to the external world and data

buffers;

• Simulation view, which describes simulation blocks providing 

simulated data for the monitoring and control;

• Failure propagation view, which represents how the failures of 

component processes interact and how they are related to alarms;

• Operator interface view, which shows the operator interface panel 

connections to the monitoring objects.
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PML-Physical Editor

This editor is a double hierarchy editor used to specify the failure mode/failure 

state associations. For example, a leak which is a flow process failure mode is 

associated with a pipe-broken which is a physical component failure state. The 

plants functional hierarchy and physical component hierarchy are thus linked 

through failure mode/failure state links.

The collection of the graphical model editors as described above allow all aspects 

of the system to be designed by visual programming. This means that an 

application can be developed by placing and connecting icons of the relevant 

objects.

3.7 Summary

In this chapter concepts of the Multigraph Architecture (MA) have been described, 

together with the benefits associated with using this architecture. The Intelligent 

Process Control System (IPCS) has been used to indicate how MA is applied to 

real problems, and also to describe the abstractions and their associated software 

objects that may be used in design of process control applications. In later chapters 

it will be shown how these may be used for patient monitoring and also their 

limitations and what extensions are necessary for this domain. The next chapter 

describes the generic specification of a model-based framework for patient 

monitoring.
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CHAPTER 4

GENERIC SPECIFICATION OF A 
MODEL-BASED FRAMEWORK FOR 

PATIENT MONITORING
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4.1 Introduction

The earlier chapters have described how a model-based framework can help in 

design of intelligent real-time software. Therefore the next step is to design a 

model-based framework. This chapter aims to highlight some of the general 

requirements of a framework for patient monitoring in High Dependency 

Environment (HDE), through a generic design. The purpose of the generic design 

is to identify some common software requirements which will serve as a guideline 

for the following stages. The generic design is independent of the implementation 

but will indirectly dictate the choice of the programming environment and style. 

The generic design is intended to serve as the basic ground work that may be used 

by any designer wishing to implement a software framework for patient 

monitoring. Having a design or specification for the framework, an incremental 

approach will then be taken in the corresponding implementation.

4.2 General Requirements

This section contains a description of some general software requirements, such as 

instrumentation interface, data archiving, graphical user interface and data 

visualisation; as well as some desirable attributes of the software architecture, such 

as visual programming, generic, model-based, distributed, open and portable 

architecture, seamless integration and interoperability of different components.
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4.2.1 Interface

To allow for automatic data acquisition from the HDE instrumentation, the 

framework should contain generic interface modules that may be reused with 

minimum requirements for writing new code. For modularity the main task should 

be separated from the data acquisition task, so that the changes in the data 

interface will not affect the main software components in any way. This means that 

an application can be developed without specific knowledge of the bedside 

instrumentation. Thus, the investments in application development will be 

protected from changes in bedside instrumentation and their interfaces. A solution 

would be to have a separate process responsible for generating data and for this 

data server process to communicate with the main application through inter-

process communication protocol, using for instance queues, named pipes and 

sockets. The data server may generate data by interfacing with the instruments 

through dedicated hardware or a machine with a fast data bus, or the data may be 

generated by interfacing with other applications, for example to the patient chart 

database through a Structured Query Language (SQL)19 interface. For test and 

simulation runs the data interface will simply read from data files.

4.2.2 Archiving Of Data

It is necessary for a framework for real-time monitoring applications to have 

facilities for archiving of captured data, to facilitate the recording of the real-time 

data from the monitors. This should also include the ability to play back recorded 

data, in order to give access to past data. The play back of archived data will be

19 Structured Query Language (SQL) is the official standard language for interfacing with relational type 
database systems.
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invaluable during testing and debugging of the other components. Also if the 

system needs to reason in time, having access to past data becomes necessary.

4.2.3 Data Visualisation Modules

Integrated and intelligent instrumentation in HDEs is required to present a large 

amount of information, which may include several channels of sensed data as well 

as the result of the interpretation of the data, to the user. One of the functions of 

the intelligent instrument in HDE is to aid the clinician with the assimilation and 

interpretation of data. Therefore the visualisation of data for effective and efficient 

flow of information to the user becomes a crucial issue. Hence the framework 

should contain software modules, such as graph widgets (for various types of two 

and three dimensional plots) and display bars, as easy to use building blocks for an 

efficient implementation of Graphical User Interface (GUI). In order to facilitate 

the visualisation of captured data the dynamic graph widgets must link to real-time 

data objects.

4.2.4 Visual Programming Environment

In a visual programming environment, the application developer creates new 

applications by placing and connecting together icons, these icons representing 

code segments or modules. Supporting the framework with a visual programming 

environment will make it accessible to users with a lower level of ability in the 

technology. This is specially important because the application developers can then 

afford to spend less time understanding the technology and more time on 

understanding the domain and the user requirements. Visual programming can also
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help in eliminating the need to write code for every step, which is slow and 

repetitive.

4.2.5 Open, Distributed, And Portable Architecture

As far as possible the framework should be based on open technology and comply 

with recognised communication standards. The term “open” implies that the 

hardware/software technology should be available from more than one vendor, that 

it should be extendible by third party vendors and users, and that the users and 

third party vendors should be provided with access to internals of the software 

through a well defined and supported Application Programmers Interface (API). 

Example of open hardware architecture is IBM’s PC architecture while UNIX and 

X-windows are commonly considered as open software. Complying with 

communication standards should, at least in theory, eliminate the need for user 

programming when interfacing with instruments from different vendors.

The framework should be distributed, so that a monitoring environment may be 

spread over a network. This flexibility to distribute the application over a number 

of independent processors can be used to maximise the system response. For 

instance, if a task is computationally expensive requiring faster more expensive 

hardware, the task can be run on such a machine remotely. The bedside 

workstation can be of lower specification with one faster workstation designated 

as a central resource for processing power which may be shared between a number 

of beds.
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The framework should be easily portable across hardware platforms or operating 

environments, otherwise applications developed using the framework will be tied 

to specific hardware.

4.2.6 Model-Based

Modelling is central to monitoring. All measurements and monitoring are based on 

models. The role of models in intelligent monitoring has four aspects. First the 

models are used as a coherent, structured and explicit representation of the 

knowledge. In this respect models help deal with complexity. Second, the models 

are used in software synthesis (Abbott et al., 1993). In model based software 

synthesis, system behaviour is specified through the models. So making new 

applications is largely a matter of building the models rather than coding. Third, 

the models are used in the reasoning and interpretation. Fourth, the adaptive 

system behaviour and reconfiguration requires self modelling, (Sztipanovits, 1989) 

i.e. model of the monitoring system itself, its current and possible configurations 

and the available resources. For the above reasons it is desirable that the 

framework for intelligent patient monitoring be model-based.

4.2.7 Generic

The underlying architecture must be generic. In other words it must not be closely 

linked with any single modelling or reasoning paradigm that will exclude the use of 

other reasoning techniques. On the contrary it must be flexible enough to allow 

integration of different modelling paradigms; so that the framework can be
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extended to incorporate multiple aspect modelling and new modes of reasoning 

and modelling paradigms.

4.2.8 Integration/lnteroperability

The framework should allow for integration of different aspect of monitoring, i.e. 

data acquisition, processing, display and user input. It should make it possible for 

interoperation between different types of modules such as AI modules or database 

modules. The framework should allow easy integration of user code with the rest 

of the application.

4.3 Summary

The aim of this chapter was to identify some general software requirements for a 

framework for intelligent patient monitoring. This was achieved through a generic 

design. Eight features have been identified in the generic design. These included 

facilities for design of instrument interface, data archiving, data visualisation, 

integration and interoperation, visual programming as well as architectural features 

of generic, model-based, open, distributed and portable. A framework that fulfils 

all the above requirements is Intelligent Process Control System (IPCS). In the 

following chapter it will be shown how this framework was adopted for patient 

monitoring.
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CHAPTER 5

CUSTOMISATION AND EXTENSIONS 
TO IPCS FOR PATIENT MONITORING
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5.1 Introduction

While the last chapter dealt with some common requirements for an Integrated 

Model-based Development Environment (IMDE) to form a generic specification of 

such systems, this chapter deals with the work done in developing a prototype 

framework for an Intelligent Patient Monitoring System (IPMS). The prototype 

IPMS was implemented by adopting the Intelligent Process Control System (IPCS) 

framework and adding extensions or modifications as and where necessary. These 

tasks were carried out by identifying the concepts that are relevant to patient 

monitoring but that were missing from the IPCS, and by their subsequent 

implementation. Therefore, the aim of this chapter is to report on the 

implementation of some candidate exemplars using Multigraph as the underlying 

software architecture. This includes implementation of three software libraries: one 

each for signal processing; a fuzzy controller; and probabilistic modelling.20 The 

following three sections describe the work done in each area.

5.2 Signal Processing

It is often helpful to visualise the process of the transformation of data into 

information as taking place at different layers. A graphical representation of the 

layered view is shown in figure 5.1. In this abstraction, the processes at the bottom 

layer will correspond to acquisition of raw data, and the top level will correspond 

to processing of concepts with higher level of information, such as identification of

20 See sections F.1-F.5 in Appendix F for code listings.
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patient state (Factor et al., 1990). It is usually necessary for some kind of pre-

processing of the raw data, generated by the instrument, to take place before 

higher levels of signal interpretation. This may be necessary because of 

contamination of signal by noise, or simply to extract the desired signal 

component. This is represented in the layered view as the first layer (i.e. pre-

processing). Therefore the implementation of this layer includes algorithms of 

different digital signal processing techniques such as filtering and power spectrum 

estimation. The Hierarchical Description Language (HDL) (Karsai, 1988) allows 

for a hierarchical description of the signal processing as networks of processing 

blocks.

To illustrate this process, two types of filtering that find application in patient 

monitoring have been implemented. The first is a generic time domain digital filter 

that can be used for all types of filtering i.e. low pass, high pass, band pass and 

band stop filtering. For real-time applications it is often necessary to process a 

continuous stream of data at the rate at which those data are received. Under these 

circumstances it is necessary to filter in the time domain. The software 

implementation of the generic filter uses a cascade realisation of blocks of second- 

order Infinite Impulse Response (HR), these blocks being implemented in Direct 

Form type II (IIRDF2), see Appendix A. Software implementation of filter design 

techniques such as the bilinear transformation method may be used to obtain the 

filter parameters by specifying the desired frequency response (Taylor, 1994).

The other type of filter implemented is a generic running median filter. Median 

filtering is a discrete time operation, and hence suitable for real-time applications, 

where time domain filtering is desirable. They have the desired characteristic of 

reducing noise and transients without removing the signal’s sharp edges. The
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output of a median filter on a window length of 2k+l is the median of the values 

inside the window. The output is delayed by k number of samples. Median filters 

are characterised as non-linear systems with memory and hence cannot be analysed 

by linear methods (Nodes and Gallagher Jr., 1984). Instead the concept of root 

signals may be used (Gallagher Jr., 1981). A root signal is what remains after 

repeated filtering of a signal. The filter passband is determined by the root signals. 

Median filters remove any variability shorter than the filter delay. Therefore they 

are used for extracting variability in a desired time band. Applications in intelligent 

alarms include signal smoothing for reducing false alarms or trend detection for 

creating trend alarms (Makivirta et a/., 1989).

Because the implementation of the filters is generic they include a set of 

parameters whose instantiated values determine the exact filter behaviour. This 

means that they are fully reusable.

5.3 Fuzzy Paradigm

Fuzzy, or multivalued, set theory was first developed by Zadeh (1965). 

Mathematical fuzziness corresponds to different degrees of ambiguity or 

indeterminacy. Although originally applied as a mathematical framework for 

representing “grey” relationships in a knowledge base (Zadeh, 1983), the focus of 

(commercial) applications soon shifted towards control. Essentially a fuzzy system 

transforms or maps inputs to outputs. The structure of the fuzzy system defines 

this mapping. In practice, the input data (i.e. exact values, not a fuzzy set) are 

mapped to control or classification data. Hence, most implementations of fuzzy 

control are similar to a forward chaining rule-based inference system, where the
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rules use a symbolic representation of the variables based upon a fuzzy 

membership function, and the output set is defuzzified to give a single value 

output.

By associating fuzzy subsets of real line to fuzzy variables, figure 5.2, a fuzzy rule 

is enabled to embody a rich structure (Kosko, 1992a). Kosko (1992b) proposes to 

call fuzzy rule-based systems principle-based systems, for this reason. Also, all 

rules fire to different degrees. Consequently far fewer rules are required to 

represent the same behaviour. This has meant that fuzzy control has been 

successful where traditional expert system control approaches have failed.

The use of classical control techniques is best suited to applications where the 

system dynamics may be modelled mathematically. Physiological systems, 

however, are difficult to model exactly and contain non-linearity. This implies that 

the design of controllers for the physiological domain must be “model-free21” and 

accommodate non-linearity. Fuzzy controllers embody both of these properties. 

Thus application of fuzzy techniques in closed loop control of physiological 

variables is appropriate. Ying et al. (1988) developed the first fuzzy controller for 

Mean Arterial blood Pressure (MAP). This was tested on computer simulations. 

This controller was later modified and applied to the control of MAP in pigs (Ying 

and Sheppard, 1989). In 1992 Ying et al. reported the first successful clinical 

application of fuzzy logic in control of MAP for post-surgical cardiac patients. 

This application will be described in some detail in the next paragraph. Other 

significant work in this area includes closed loop control in delivery of anaesthetic

21 Without specifying mathematically how the outputs of the system to be controlled depend on inputs.
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gas (Meier et al., 1992) or muscle relaxant (Linkens and Mahfouf, 1988; Linkens 

and Hasnain, 1991). A review of closed loop control of MAP can be found in 

Isaka and Sebald (1993).

The fuzzy controller of Ying et al. (1992), shown in figure 5.3, is applied to the 

control of MAP in post-surgical cardiac patient. Post-surgical patients in intensive 

care can develop hypertension, which if not treated can cause further 

complications. The controller works by adjusting intravenous infusion of sodium 

nitroprusside (SNP), a potent fast acting vasodilator. SNP works by relaxing the 

muscles of the peripheral vasculature thus lowering the blood pressure. The MAP 

values were fed from a Hewlett-Packard 78534 monitor to an IBM PS/2 model 70 

Personal Computer (PC). The controller running on this PC was implemented in 

the form of 10 control algorithms programmed in C. The controller outputs were 

sent to a digital infusion pump, manufactured by Abbott/Shaw LifeCare, which 

infused the SNP intravenously to the patients.

The clinical trial took place in the Cardiac surgical Intensive Care Unit (CICU) of 

the Carraway Methodist Medical Center, Birmingham, Alabama, with twelve post-

operative Coronary Artery Bypass Graft (CABG) patients who had elevated MAP. 

The fuzzy controller was on trial on the 12 patients for a total of 95 hr and 13 min; 

the length of time individual patient’s MAP was controlled by the fuzzy controller 

ranged from 1 hr 45 min to 18 hr 7 min. The MAP was sampled every 10 seconds. 

The trial showed that the MAP stayed within 90% to 110% of the desired value 

(MAPd) on average for 89.3% of the time with a standard deviation of 4.96.

Although the IPCS provides implementation of control functions, this is limited to 

simple linear control. Therefore it is necessary to include a generic fuzzy controller
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Figure 5.3 Block Diagram Of Fuzzy MAP Controller (after Ying and Sheppard, 1994)



in the framework for patient monitoring. The fuzzy controller is a general purpose 

fuzzy logic inference engine. Any number of rules with any number of antecedents 

and consequences, with variables of any number of four point (trapezoid) fuzzy 

membership functions can be used. Min, Max and Centroid operators are used 

for inference. All variables have a 0-255 range, so that integer arithmetics can be 

used instead of floating point. The use of integer arithmetics together with the 

application of some known optimisations of the fuzzy computations, make this 

implementation of the fuzzy logic library very efficient, and suitable for real-time 

control applications. The implementation of the rule-base is based on linked list 

structures (Viot, 1993). There is a list of inputs, a list of outputs, a list of rules. 

Each input or output has a list of membership functions. Each rule has an if side 

list (antecedents) and a then side list (consequences).

The fuzzy logic library can be used to implement a MAP controller, similar to the 

one implemented by Ying et al. (1992) as described, without the need for any 

programming. All that the designer has to do is to specify the variables and the 

rules in a simple format which is detailed in Appendix B.

While the fuzzy logic library has been designed to be general purpose the 

application is mostly in fuzzy control. This is because more sophisticated tasks 

such as diagnosis, where it is possible for intermediate facts to be inferred, i.e. 

output of some rules may become input to other rules, require some mechanisms 

to deal with truth maintenance and conflict resolution, (these are concerned with 

the selection and order of the rules to be evaluated and the consequences of these 

on the integrity of the knowledge base). The current implementation of the fuzzy 

logic library does not incorporate such mechanisms, and therefore its application is
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limited to fuzzy control, where typically the rule antecedents and consequences 

form mutually exclusive sets.

5.4 Probabilistic Modelling Paradigm

5.4.1 Uncertainty And Reasoning

The need for representing uncertainty when building intelligent medical 

applications has been recognised, and has formed the focus of much research into 

probabilistic and other approaches, ever since the implementation of Certainty 

Factors (CF) in MYCIN (Shortliffe, 1976).

MYCIN, developed by Shortlifife, is an expert system for the diagnosis and 

treatment of meningitis and bacteraemia. Shortliffe and Buchanan (1975) described 

the difficulties with using a simple Bayes model in a rule-based system, including 

assessment of conditional and a priori probabilities, cognitive complexity, and 

conditional independence assumptions of Bayes, and concluded that there was a 

need for a modular approach to handling uncertainty, which need led to the 

creation of their CF model. In this model CFs are combined using parallel or 

series combination functions. The parallel combination function was later revised 

to be more consistent with common sense (Van Melle, 1981). Heckerman (1986) 

later reformulated the CF model giving it an interpretation consistent with 

probability theory. In this interpretation the CFs may be understood as measures of 

change in belief. In later reviews Shortlifife (Heckerman and Shortliffe, 1992) 

admits that the assumptions of the CF model are stronger than the conditional
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independence assumptions of Bayes, the subjective assessment of CFs from experts 

are still as difficult, that the modular approach of CFs is inappropriate since 

uncertain reasoning is inherently much less modular than certain reasoning, and 

finally that-medical knowledge is usually predictive (from disease to symptom) not 

diagnostic (from findings to disease).

The Causal Probabilistic Network (CPN), also known as a Bayesian belief 

network, offers a numerical framework for dealing with uncertainty in a systematic 

and consistent manner. Equations representing Bayes’ conditional probability form 

the foundations for the CPN algorithms. CPNs provide a modelling (knowledge 

representation) formalism, where the concepts are represented by nodes of a 

directed graph and the (causal) relation between concepts is represented by the 

arcs of the graph. Associated with each node is a discrete probability distribution 

and with each arc a conditional probability table. CPNs avoid problems of CFs by 

allowing the representation of conditional independence through lack of arcs in a 

network, also by not requiring indirect dependencies to be assessed by the user, 

and in general providing a more modular approach in knowledge representation.

Since, the IPCS framework does not support a formalism for handling uncertainty, 

it was decided that a prototype Intelligent Patient Monitoring System (IPMS) 

should extend the modelling paradigms of IPCS to include uncertain reasoning in 

the form of a CPN representation.
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CPN Computations

Given any belief network it is possible to compute any set of probabilities from the 

joint probability distribution function represented implicitly by that network. 

Several algorithms have been developed that implement the computations within a 

belief network. These include the node elimination method by Shachter (1986), for 

influence diagrams (Howard and Matheson, 1981), the message passing scheme of 

Kim and Pearl (1983) for singly connected trees, Pearl’s conditioning method 

(Pearl, 1986) and stochastic simulation (Pearl, 1987), and finally Lauritzen and 

Spiegelhalter’s clustering method (Spiegelhalter 1988; Lauritzen and Spiegelhalter, 

1988). Essentially the Lauritzen and Spiegelhalter algorithm works by 

transforming the network into a tree by forming cluster of nodes called cliques. 

The cliques are formed in such a way that each clique is only connected to its 

parent nodes and children. This allows for propagation of evidence to take place 

only through local computations.

The complexity of evidence propagation computations in a belief network is NP- 

hard". The Lauritzen and Spiegelhalter propagation algorithm is exponential in the 

largest clique size, and linear in the number of cliques in the network. The size of 

the largest clique in a network depends on its connectivity.

22 NP-hard means that it is unlikely that an algorithm can be developed to solve the problem in polynomial time.
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5.4.2 The CPN Graphical Model Editor

In the IPMS the graphical model editor includes a separate modelling language and 

graphical representation dedicated to CPN. The IPCS model builder consists of the 

generic graphical model editor plus a language definition file which is loaded at the 

start of a session. The model editor is therefore adapted to each modelling 

language by writing an Editor Definition File, (*.edf), which file specifies the 

allowed objects, their attributes and their relations (Karsai, 1990). The CPN model 

editor likewise is really a customisation of the generic graphical model builder. The 

CPN model editor supports hierarchical model building as do other modelling 

languages of IPMS. Therefore a CPN model can contain primitive objects as well 

as compound objects, i.e. networks of CPNs, as parts. The CPN primitive objects, 

nodes and relations, correspond to nodes and arcs of a CPN graph. The states and 

conditional probability tables are implemented as attributes of node and relation 

objects respectively.

The current implementation of the CPN model editor contains definitions for 

primitive objects of type node (CPN-NODE), three types of relation objects (CPN- 

ADD, CPN-MULT and CPN-NORM), corresponding to addition, multiplication 

and sampled normal relation, plus one type of compound object (CLUSTER- 

COMPONENT) which is used to represent a collection of related nodes as a part. 

The node object has four attribute slots, for number of states, list of state names, 

list of state values, the distribution table. The addition, multiplication and normal 

relations each have a slot for addition factor, multiplication factor and a 

distribution table correspondingly. All objects have an additional slot for 

comments.
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Figure 5.4 shows the CPN model editor and the network representing the relation 

between alveolar and total ventilation, which forms a small part of the total 

respiratory model. Appendix C contains the textual model database file which is 

automatically generated by the model editor from this graphical model.

5.4.3 The CPN Runtime

To fully integrate the CPN into IPMS, it is necessary to provide a model 

interpreter for converting CPN models into internal representations for use by the 

runtime, as well as implementing the CPN runtime for the Multigraph kernel. This 

is a huge task. It was decided that for this prototype implementation of IPMS it 

would be adequate to use the CPN library of xhugin23 as the run-time support 

(Andersen et al., 1989) and map the entire CPN network into a single signal 

processing block as an HDL24 structure. This HDL structure will have all the 

observable nodes as input and the relevant nodes as output. The xhugin library 

implements a modified (Jensen et al., 1990) version of the belief updating by 

network propagation algorithm of Spiegelhalter and Lauritzen. The model 

interpreter therefore, is a LISP program which converts the CPN specification 

generated by the model editor into a format suitable for use by the xhugin library. 

The xhugin library must be loaded as an object module into the Multigraph kernel. 

The three components, i.e. the model editor, the model interpreter and the runtime 

support, together implement the CPN modelling paradigm.

23 xhugin is a development environment for CPNs on X-windows.

24 Hierarchical Description Language (Karsai, 1988)
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The implementation of the CPN modelling paradigm in the Intelligent Patient 

Monitoring System (IPMS) represents an integration of different modelling 

paradigms within one framework. This integration is very significant because the 

same framework can be used to implement other aspects of the application as well 

as the probabilistic reasoning. Also during the run-time other components of the 

patient monitoring can access the results of probabilistic reasoning and simulation.

In order to demonstrate the use of CPNs, a generic CPN processing block was 

implemented using the xhugin Application Programmers Interface (API). This 

works in two modes, enterevidence and retract_evidence. In the enterevidence 

mode the block is triggered by the arrival of evidence, i.e. measurements, which 

evidence is then propagated around the network to calculate the a posteriori 

distributions. For all root25 and non-root26 nodes, the probability distributions are 

calculated by the CPN algorithms. If an observation entered earlier is no longer 

valid, it can be retracted. In the retract evidence mode the block is triggered by 

the arrival of a retract signal, on the corresponding node. The network is then 

updated to reflect the effect of retraction of evidence on that node. In the 

propagate function the a posteriori tables are used as old beliefs together with 

likelyhood ratios to calculate new beliefs. Thus the propagate function of xhugin 

allows for the incremental computation of the accumulative effect of evidence 

(Pearl, 1988), when the measurement set includes more than one item of data. Ail 

that the user (programmer) has to do is just to ensure that the inputs, outputs and 

parameters defined in the script are consistent with those defined for the block.

25 Nodes that have no parents.

26 Nodes that do have parents.
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Potentially the CPN may be used for simulations. Assuming that a patient model 

can be created that is identifiable27, the CPN models can be used to pose “what i f ’ 

questions to predicate the effect of change in therapy before actually administering 

this change to the patient.

5.5 Summary

Using an application framework for the development of intelligent patient 

monitoring systems simplifies the implementation and allows reuse of software 

components. Software reuse will shorten development time; it should also lead to 

fewer bugs and can help hide a lot of implementation details from the application 

developer. Some general concepts have been identified that may form part of a 

patient monitoring systems. These components which included a signal processing 

library, a fuzzy logic library and a Causal Probabilistic Network (CPN) modelling 

and run-time environment, have been implemented in a generic form and integrated 

into the Intelligent Patient Monitoring System (IPMS) framework. This work, 

therefore, embodies two major achievements; the integration of these aspects 

within a single framework, as well as the reuse of the generic modules within each 

aspect. So the application developer can use this framework to implement, for 

instance, the signal processing or the fuzzy controller, by reusing the generic filter 

blocks or the general purpose fuzzy controller. The next chapter discusses the 

application of the framework in the development of a monitoring system for the 

respiratory system.

2 The model parameters may be uniquely estimated.
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6.1 Introduction

In chapter 4 some general issues common to any intelligent patient monitoring 

system were addressed as well as some desired aspects of a model-based 

development environment for such systems. Implementation of some of these and 

their relevance to patient monitoring were discussed in chapter 5. The aim of this 

chapter is to show the use of the techniques in an exemplar application. An 

application for monitoring of the respiratory system is described.28 Accordingly, 

this chapter consists of the following,

• Background to the problem

• Development and implementation of the application prototype

• The evaluation.

6.2 Background

The Adult Intensive Care Unit (AICU) of the Royal Brompton Hospital (RBH) 

cares for about 2080 patients annually, around 1400 of whom are made up of post-

operative cardiac patients. The average Length Of Stay (LOS) of post-operative 

cardiac patients is two days with a range of less than one day (which is treated as 

zero) to over fifty days. The post-operative cardiac patients form a unique and 

interesting population. They are physiologically severely deranged yet they are low

28 See sections F.6-F.8 in Appendix F for model and code listings.
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risk with a mortality rate of less than 5%. The most common type of cardiac 

surgery is the bypass operation.

Coronary Artery Bypass Graft Surgery

Coronary Artery Bypass Graft (CABG) surgery is also called direct myocardial 

revascularisation or bypass surgery. The surgical procedure aims to restore 

myocardial perfusion29 by bypassing the blockage in the myocardial circulation. 

The obstructed coronary artery may be the left main coronary artery, the left 

anterior descending artery, the right distal coronary artery, the posterior 

descending artery or the marginal branch of the circumflex artery. The bypass graft 

may be the saphenous vein harvested from the leg, or the internal mammary artery 

dissected from the anterior chest wall. About 90% of the CABG patients in the 

RBH have a combination of vein graft bypasses and arterial bypasses.

In the RBH all patients undergoing CABG return to the AICU immediately after 

surgery. So post-operative care in the AICU resembles recovery room care. 

Annually about 200 post-operative cardiac patients are managed under a so-called 

“fast track” style, which means that provided that there are no complications they 

will be discharged from the AICU and admitted to the general surgical ward as 

soon as the patients recover from the effects of the anaesthesia and are able to 

breathe spontaneously and be extubated. Fast track patients typically spend only 

six to eight hours in the AICU.

Respiratory complications are one of the most common types of all the 

complications that can occur after thoracic and cardiac surgery, and play a

29Blood flow to the muscles of the heart.
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significant part during the recovery from cardiac surgery. All of the patients will 

suffer from some degree of acute lung injury, because typically during the surgery 

fluid in the interstitial spaces increases, leaving the lungs congested and 

waterlogged. Also the extracorporeal perfusion can damage the alveolar-capillary 

membrane causing interstitial oedema30. Other factors, such as the mechanical 

disturbance of the thorax caused by a median stematomy31 and the dissection of 

the mammary artery, effect of anaesthesia, sedation, pain and immobility can 

combine to cause hypoventilation and inadequate aeration of the lung bases and in 

turn causing atelectasis32. About 2% of post-operative cardiac patients develop 

Adult Respiratory Distress Syndrome (ARDS).

Adult Respiratory Distress Syndrome

First described in 1967 by Ashbaugh et al. (1967) and later named by Petty and 

Ashbaugh (1971), Adult Respiratory Distress Syndrome (ARDS) can most 

accurately be described as a pathological complex. ARDS is, therefore, an 

umbrella term for the composite manifestations of an evolving severe diffuse acute 

lung injury from all known and unknown causes. ARDS is characterised by 

refractory hypoxaemia33, and decreased lung compliance secondary to permeability 

oedema34.

30 Lung water

31Split down the breast bone

32 Collapse of the alveoli

33 Low partial pressure of oxygen in arterial blood, due to improper oxygenation of the blood in the lungs, 
typically necessitating mechanical ventilation with a high fraction of inspired oxygen, FIO2>50% for 
Pa02>6.8 kPa.

34 Transfer of protein-rich fluid from the pulmonary capillaries to the interstitium and the alveolar spaces, (the 
gas-exchange compartment of the lungs), as the result of increased permeability of the alveolar wall cf. 
haemodynamic pulmonary oedema caused by high hydrostatic pressure in the capillaries. Pulmonary oedema 
is indicated on the chest radiography by the presence of bilateral diffuse infiltrates.
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In the U.S. an estimated 150,000 cases, and in Britain (Wardle, 1984) between 

10,000 and 15,000 cases, occur each year. Despite considerable improvements in 

the understanding of the mechanisms leading to ARDS, and significant advances in 

diagnosis and therapy, mortality remains high (Petty, 1985), over 50% and if 

accompanied by sepsis this is raised to 85%.

The administration of therapy must be optimised because the treatment can itself 

cause further damage. For instance, the administration of high fractions of inspired 

oxygen can cause fibrosis35, and the long term use of positive pressure ventilation 

can cause barotrauma36.

6.3 Application Prototype

6.3.1 The Model Building Process And The Models

The Monitoring Structure

The first step in building the application is to represent the structure of the 

monitored process. The structure meaning the arrangement and interactions of the 

processes that make up the monitored process. This involves a hierarchical 

organisation of the processes from a functional perspective. At a simple level the

’'Scaring cfthe parenchyma, replacing the normally distensible tissue with dense fibrous tissue.

’̂ Damage to the lung tissue as the result of local distending and shearing forces, caused by high pressures or 
volumes during positive pressure ventilation.
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function of the respiratory system is the supply of the oxygen from air or inspired 

gas to tissue and the removal of carbon dioxide from the body. It also involves 

maintenance of the acid-base balance. In this prototype the function of the top 

level in the process hierarchy has been defined as the maintenance of the oxygen 

status even though the respiratory system also contributes to the maintenance of 

acid-base balance, through removal of carbon dioxide. A diagram of the 

respiratory system is shown in figure 6.1. In this diagram the lung is represented by 

a compartment representing the conducting airways, called the anatomical dead 

space, and the respiratory zone or the gas-exchange compartment, called the 

alveolar space. The alveolar space is perfused by the pulmonary circulation 

through the pulmonary capillary blood vessels. The arterial and venous vascular 

beds in the systemic circulation are simplified to a single artery and vein. Similarly 

the oxygen consumption of different tissue types is represented by a single tissue 

exchange. Figure 6.2 shows the respiratory process tree. The top level consists of 

the following processes:

• 02_ consumption, representing the oxygen release and consumption at the 

tissue level;

• 02  delivery, with the oxygen flux or oxygen availability as the output, and 

consisting of the following three processes;

• Svs circ. representing the delivery of oxygen to the site of consumption 

through the systemic circulation;

• 02  transport, corresponding to the oxygen carriage in arterial blood by 

haemoglobin;

• Oxygenation, which represents the oxygen uptake in the lungs.
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Tissue Exchange

Figure 6.1 Diagram Of Respiratory System
Numbers represent typical values for normal adults at rest
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Figure 6.2 Operator Interface Root Panel Showing The Process Hierarchy



Finally the oxygen uptake at the lungs is made up of the interaction of the bottom 

three processes, namely

• Ventilation, or flow of inspired gas to the site of gas exchange;

• Gasx. corresponding to the transfer of gas across the blood-gas barrier by 

diffusion; and

• Pul circ, corresponding to the pulmonary circulation.

The next step is to define the measurements and monitoring signals for all sub-

processes, including the information about how each item is captured, displayed 

and recorded. For instance the top level should include all measurements related to 

the assessment of tissue oxygen status. This includes venous oxygen partial 

pressure, venous oxygen saturation, and blood lactate37. This type of information is 

captured in the Monitoring and Operator interface aspects of the model editor. 

Figure 6.3 shows the monitoring aspect of the ventilation process, in which the 

monitoring signals available from the ventilator are shown on the left hand side, 

together with the interface point objects feeding the corresponding signal object. 

The specification of the user interface panel for the ventilation process is shown in 

figure 6.4 which shows the signals feeding into the graph objects for x-y trend 

plots.

Table 6.1 contains all measurements and monitoring signals and calculated 

variables for all the processes. The first column fists the monitored processes, as

3 Measure of lactic acidosis (lactacidosis) caused by anaerobic metabolism. It is not routinely used at
Brompton AICU. It is possible under disease conditions such as ARDS or sepsis that the oxygen extraction at 
tissue becomes inefficient. Hence tissue hypoxia can be present and not indicated by a lowered Pv02. The 
lactate levels will be necessary to assess hypoxia. Venous levels >2mmol/l are significant and >4 mmol/1 very 
significant.
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Figure 6.3 Monitoring Aspect Model For The Ventilation Process



Figure 6.4 Operator Interface Model For The Ventilation Process



P r o c e ss  N am e M ea su rem en ts M ea su r e m e n t D e sc r ip tio n

M ea su red C a lcu la ted

R esp Svo2 v enous oxygen  sa tu ra tio n

O 2 _ co n su m p tio n 0 2 E R oxygen  ex trac tio n  ra tio ; C [ a - v ]0 2 /C a 0 2

V 0 2 I oxygen  co n su m p tio n  index ; C [a -v ]0 2 .C I

0 2 _ d e liv e rv 0 2 A V I oxygen  a v a ila b ility  index ; C a 0 2 .C I

S y s_ C irc HR h e a r t ra te

A B P s sy sto lic  a r te ria l b lo o d  p re ssu re

A B P d d ia s to lic  a r te ria l b lo o d  p re ssu re

A B  Pm m ean  a r te ria l b lo o d  p re ssu re

C V P cen tra l v enous p re ssu re

C O ca rd iac  o u tp u t

C l ca rd iac  index ; C O /B S A

P u lse_ P p u lse  p re ssu re ; AJBPs-ABPd

SI stro k e  index ; C I/H R

0 2 _ tra n s p o r t C a ()2 a rte ria l oxygen  con ten t

Hli h aem o g lo b in  concen tra tio n

p 50 50%  sa tu ra tio n  p re ssu re

D v s_H b d y sh aem og lob in  frac tio n

O x y g en atio n P a 0 2 a rte ria l oxygen  p a r tia l  p re ssu re

S a()2 a r te r ia l oxygen  sa tu ra tio n

P a C 0 2 a r te r ia l carbon  d io x id e  p a r tia l  p re ssu re

A a D 0 2 a lv e o la r-a r te r ia l oxygen  d ifference;

( B P -V P ) .F I 0 2 -P a C 0 2 .(F I 0 2 + ( l - F I0 2 ) /R ) -P a 0 2

P u l_ C irc PA Ps sy sto lic  p u lm o n a ry  a r te ry  p re ssu re

P A P d d ias to lic  p u lm o n a ry  a r te ry  p re ssu re

PA Pm m ean  p u lm o n a ry  a r te ry  p re ssu re

Q s/Q t in tra p u lm o n a ry  shun t; d e riv ed  fro m  m o d el

G asx R d iff oxygen  d iffu s io n  re s is tan ce ;d e riv e d  fro m  m odel

Table 6.1 Process Measurements (continued on following page)
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P r o c e ss  N am e M ea su rem en ts M e a su r e m e n t D e sc r ip tio n

M ea su red C a lcu la ted

V en tila tion Vte ex p ired  t id a l  vo lum e

f re sp ira to ry  freq u en cy

M V m in u te  vo lu m e

P eak p e a k  a irw ay  p re ssu re

Plat p la te a u  a irw ay  p re ssu re

P E E P p o s itiv e  en d -ex p ira to ry  p re ssu re

Pm in m in im u m  a irw ay  p re ssu re

M ean m ean  a irw ay  p re ssu re

F I0 2 frac tio n  o f  in sp ired  oxygen

c d y n am ic  lu n g  an d  th o ra x  co m p lian ce

R a irw ay  res is tan ce

M V s sp o n tan eo u s m in u te  ven tila tio n

t's sp o n ta n eo u s b re a th in g  freq u en cy

P e tC 0 2 end  t id a l p a r t ia l  p re ssu re  o f  ca rb o n  d iox ide

A L V E N T a lv eo la r  ven tila tio n ; M V -V d .f

PR P p eak  re sp ira to ry  p o w er; M V .P IP

Table 6.1 Process Measurements (continued from previous page)
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they have been defined. The measurement column, contains all the measured and 

calculated signal and data objects that are monitored by this prototype. So, for 

instance, the pulse pressure signal “Pulse P”, belongs to the systemic circulation 

process (Svs Circ). and is calculated from the difference between the systolic and 

diastolic arterial blood pressures. The ventilation variables are sampled once every 

five seconds corresponding to a nominal breathing frequency of 12 breaths/min. 

All other variables are sampled once every two seconds. If the value of a variable 

is only available intermittently, such as the cardiac output or the haemoglobin 

concentration, the last available value is used. The unobservable variables e.g. 

alveolar ventilation are derived from measurements, whenever all necessary inputs 

are available i.e. the actor scripts responsible for these calculations propagate 

outputs at the rate of the slowest input. Alternatively they may be derived with 

reference to a model, for instance the shunt and diffusion resistance may be 

derived from the CPN oxygen status model (Summers et al., 1993).

The Diagnostic Knowledge

Having defined the monitoring structure, the diagnostic knowledge is captured 

through the three abstractions, Alarms, Failure modes and Causal links. Alarms 

may be On-line, in which case they are generated or acquired by the system or 

Off-line, i.e. entered in by the user. The failure modes are directly derived from 

the functional definition of the process. Therefore a process is in failure whenever 

it fails to achieve its designated function or equally if it violates the constraints 

within which it is supposed to operate. The causal links are used to express the 

propagation of failures.
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For the ventilation process, seven on-line and two off-line alarms have been 

defined. The on-line alarms may be created from thresholding single variables such 

as the hypo- and hyper-ventilation alarms created from the measured expired 

minute volume, or using a logical combination of several signals or alarms for 

intelligent alarming. For instance, the high peak respiratory power alarm 

(PRP hi al) is created from peak pressure and minute volume signals, or the 

excessive inspired oxygen alarm (FI02_hi_al), which is generated using the 

fraction of inspired oxygen and arterial oxygen saturation.

The function of the ventilation process is to provide adequate alveolar ventilation, 

hence the failure modes, “low alveolar ventilation” (vdot a lo) and “low minute 

volume” (mvlo).  But the alveolar ventilation must be delivered in such a way not 

to cause respiratory alkalosis by excessively high minute volume (mv hi), damage 

to the lungs through barotrauma (prp hi), or fibrosis of the lung through toxic 

levels of inspired oxygen (fio2_hi). Each failure mode may be associated with one 

or more alarms, e.g. hypo-ventilation alarm, high end tidal partial pressure of 

carbon dioxide or the respiratory acidosis off-line alarm all can indicate the mv lo 

failure mode (Figure 6.5).

The failure propagation of the top level is shown in figure 6.6. Having defined 

oxygen status as the top level, then the top level failure will be tissue hypoxia. This 

may be caused by increased oxygen consumption, related to for instance sepsis, or 

as the result of low oxygen delivery. In either case the imbalance in oxygen status 

will be reflected in an increase in the oxygen extraction ratio. Low oxygen delivery 

may be caused by low cardiac output or low arterial content (figure 6.738). The

38 In figures 6.7 and 6.8. some colours do not show due to the transformation from colour display to the black 
and white print-out. Where necessary these have been replaced by hand written notes.
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Figure 6.5 Failure Propagation Aspect For The Ventilation Process



Figure 6.6 Failure Propagation Aspect For The Top Level



Figure 6.7 Failure Propagation Aspect For The 02_delivery Process



00

Figure 6.8 Failure Propagation Aspect For The Oxygenation Process



arterial oxygen content depends on oxygen uptake (Oxygenation) at the lung and 

the oxygen carrying capacity of the blood (02  transport). The oxygen carrying 

capacity of the arterial blood depends on the concentration of total haemoglobin in 

the blood, the haemoglobin affinity, and the fraction of dyshaemoglobin. Figure 

6.839 shows that a low oxygen uptake at the lungs may be caused by low alveolar 

ventilation, high pulmonary shunt fraction or impaired diffusion represented by a 

high diffusion resistance.

Tables 6.2 and 6.3 show all failure modes and alarms for the entire system. In both 

tables the monitored processes are entered in the first column, and the 

corresponding failures or alarms in the middle columns and the last column 

contains a description of the failure or alarm. So for instance, two failure modes 

have been defined for the oxygen consumption process (0 2  consumption), 

namely high oxygen consumption “o2_cons hi” and high oxygen extraction 

“o2_extr hi”; and the oxygen delivery process (02  delivery) has one on-line 

alarm, which is the low oxygen availability index “02AVI_lo_al”.

6.3.2 The Run-time System

The User Interface

The user interface for the run-time system is made up of a number of panels. There 

is a panel corresponding to each of the processes in the hierarchy, plus a root 

panel. Figure 6.2 shows the root panel of the user interface, which mirrors the 

process hierarchy. The state of each process is indicated by its colour in the root 

panel. The panels for individual processes may be accessed by clicking on the

39 See foot-note 38.
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Process Name Failure Name Failure Description

Resp hypoxia tissue hypoxia

02 consumption o2_cons_hi 

o2 ex trh i

high oxygen consumption 

high oxygen extraction

02 delivery do2_lo low oxygen delivery

SysCirc c o lo low cardiac output

02_tran sport cto2_lo

tH blo

Hb affinity lo 

Dys Hb hi

low oxygen content

low total haemoglobin concentration

low haemoglobin affinity

high dyshaemoglobin fraction

Oxygenation hypoxaemia

o x y g e n f

hypoxaemia

general failure of oxygenation

Pulcirc p u lh ite n s

shunthi

preloadlo

pulmonary hypertension

high fraction of intrapulmonary shunt

low preload

Gasx impaireddifF impaired oxygen diffusion

Ventilation mv_Jo 

m vhi 

fio2 hi 

p tp h i 

vdot a lo

low minute volume 

high minute volume 

high fraction of inspired oxygen 

high peak respiratory power 

low alveolar ventilation

Table 6.2 Process Failures
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P r o c e ss  N am e A larm A larm  D e sc r ip tio n

O n -lin e O ff-lin e

Resp S v 0 2 _ lo low  v en o u s oxygen  sa tu ra tio n

0 2 _ c o n  su m p tio n 0 2 E R _ h i h ig h  oxygen  ex trac tio n  ra tio

V G 2 I_ h i h ig h  oxygen  co n su m p tio n  index

0 2 _ d e liv e ry ()2A V T _lo_al low  oxygen  a v a ila b il i ty  index

S ys_C irc S in _ B rad y sin u s  b rad y ca rd ia

S in_T  achy sin u s ta c h y c a rd ia

S I J o low  stro k e  index

A B P s_ lo low  sy s to lic  a r te r ia l p re s s u re

A B P s_ P P _ lo low  sy s to lic  an d  p u ls e  p re ssu re

C V P J o low  cen tra l v enous p re s s u re

C I_ lo low  c a rd ia c  index

0 2 _ tr a n s p o r l C a 0 2 _ lo _ a l low  a r te r ia l oxygen  co n ten t

H b _ lo _ a l low  h aem o g lo b in  co n cen tra tio n

p 5 0 _ h i h ig h  p 5 0

D v s_ H b _ h i_ a l h ig h  dysh aem o g lo b in

O x y g en atio n h y p o x em ia_ a l h y p o x em ia

A a D ()2 _ h i_ a l h ig h  a lv e o la r-a r te r ia l d iffe ren ce

P u l C i r c P u l_ h i_ t_ a l p u lm o n a ry  h y p erten sio n

tJs /Q t_ lii_ a l h ig h  shun t

P A P d-P A W P _ln h ig h  d iffe ren ce  o f  p u lm o n a ry  
d ias to lic  an d  w ed g e  p re ssu re

P A W P _hi h ig h  p u lm o n a ry  w ed g e  p re ssu re

P A W P _lo low  p u lm o n a ry  w ed g e  p re ssu re

G asx R diff_h i h ig h  d iffu s io n  re s is tan ce

V en tila tion k > p o _ v en t_ a l low  m in u te  vo lum e

h y p e r_ ven t_ a l h ig h  m in u te  vo lu m e

F I0 2 _ h i_ a l h ig h  f rac tio n  o f  in sp ired  oxygen

P e tC 0 2 _ h i h ig h  end  t id a l C 0 2  p re ssu re

P e tC 0 2 _ lo lo w  end  t id a l  C 0 2  p re ssu re

A L V E N T _ lo _ a l low  a lv e o la r  v en tila tio n

P R P _ k i_ a l h ig h  p e a k  re sp ira to ry  p o w er

R e sp _ a tk a_ a l re sp ira to ry  a lk a lo s is

R e sp _ ac id _ a l re sp ira to ry  ac id o s is

Table 6.3 Process Alarms
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Figure 6.9 Operator Interface Panel For The Ventilation Process



process name in the root panel. The panel for each process contains all alarms, 

monitoring signals and the user inputs associated with that process. The panel for 

the ventilation process is shown in figure 6.9. The numerical displays on the left 

show the values of the ventilator parameters. Clicking on the numerical values 

opens the trend graph windows. The buttons on the next column open slider inputs 

for user adjustable alarm thresholds. The area on the right side of the panel 

displays the alarm’s status.

The Diagnostic Messages

The alarms may or may not be associated with failure modes. If an alarm is not 

associated with a failure, the diagnostic log indicates that the alarm is ringing 

together with a time stamp, whenever it is triggered. For instance, the systemic 

circulation process (Svs Circ) has sinus bradycardia40 “Sin Brady” and sinus 

tachycardia41 “Sin Tachy” alarms which are not associated with the only failure 

mode, low cardiac output '‘CO lo”. In the cases where alarms are associated with 

process failures, the diagnostic algorithm will select the smallest subset of failure 

modes as source of failure that is consistent with the information in the failure 

propagation models. If for instance the oxygen availability index low alarm 

“02AVI_lo_al”, the arterial oxygen content low alarm “Ca02_lo_al” and 

haemoglobin concentration low alarm “Hb lo al” are all ON, then the diagnostic 

will indicate only “Hb lo” failure mode. Figure 6.10 shows a sample of the 

messages found in the diagnostic log.

40 ECG with regular rhythm, rate less than 60 beats per minute.

41 ECG with regular rhythm, rate between 100 and 160 beats per minute.
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Diagnostics Log:

/ilarm hypo_ven (in ventilation) turned ON at 
Process Ventilation is faulty at Thu May 11 
Process Oxygenation is normal at Thu May 11

Thu May 
13:22:35 
13:22:35

11 13:22:35

I

Figure 6.10 Sample Of Diagnostic Messages In The Log



Clinical Relevance

The system allows an integrated approach to monitoring the oxygen status of the 

patient. The special alarms P R P h ia l  and FI02_hi_al should remind the less 

experienced clinicians of the need to optimise ventilator support in order to avoid 

further damaging the lungs with positive pressure ventilation. Because the 

structure of the monitoring is based on the process structures it reflects the 

different treatment options. These can be grouped into two broad categories; 

“Systemic” and “Pulmonary”. In the systemic group treatment includes reducing 

the oxygen demand, ensuring adequate oxygen carrying capacity of the blood and 

giving cardiovascular support. The pulmonary group includes treatment for 

improving oxygenation such as shifting the oedema in the lungs by turning the 

patient or reducing the shunt fraction and dead space ventilation with lung volume 

recruitment techniques, overcoming diffusion resistance with higher fractions of 

inspired oxygen, maintaining adequate alveolar ventilation by increasing minute 

ventilation and finally measures to improve the parameters of the lung mechanics 

i.e. the airway resistance and compliance through suctioning and administration of 

bronchodilators.

To validate the system, data were collected from the AICU at Royal Brompton 

Hospital (RBH) and a retrospective study used these data for simulation when 

checking the system for consistency. Also the knowledge-base (presented as 

graphical models) was checked against the knowledge of a domain expert.
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6.4 System Validation

The purpose of the data collection exercise was to collect data for use in the 

retrospective validation of the prototype. The data included printouts of patient 

charts from the Hewlett-Packard networked Patient Data Management System 

(PDMS) CareVue 9000, ventilator measurements and all blood gas report slips. 

The data for the simulation were generated by the data generator process from 

values stored in two types of files; one containing the ventilator data and the other 

containing all other measurements. The data from the ventilator data acquisition 

were recorded as ASCII files which the simulation accessed directly. The values 

for all other measurements (as shown in table 6.1) were taken from the entries in 

the patient charts and blood gas report slips to create the second data file. 

Appendix D contains a sample of the patient chart and the ventilator data file.

The ventilator interface was re-written in VISUAL BASIC for MS WINDOWS to 

allow data collection from the ventilators, through the RS232 serial port, using a 

lap-top PC. This interface is able to diagnose communication failures. For instance 

it is capable of detecting the loss of connection and restarting itself once the 

connection is re-established. It times out from loops, and validates the data by 

checking the length of messages, the start and stop characters and the ranges of 

variables in addition to the one bit parity check for each character.
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6.5 Model-Based Diagnosis

Model-based diagnosis consists of prediction of system behaviour according to 

the model comparison of observed behaviour with predicted one, change of 

model parameters or hypotheses.

Typically in diagnostic systems models are rules describing the causal relations. 

However, in the engineering domain they can be the exact system equations in 

which case the comparison is called residual generation.

The IPCS diagnostic algorithm (Padalkar et al., 1991) differs from similar systems 

in that it uses graph algorithms directly, rather than rule-based inference on a 

network of rules created from the graphs. Other similar systems use causal 

networks to represent failure propagation but then generate rules from the 

networks, and use Assumption based Truth Maintenance Systems (ATMS) 

algorithms on rules. In IPCS the diagnostic does a search on graphs of causal 

networks directly, utilising the timing constraint.

ATMS facilitate nonmonotonic reasoning by remembering the assumptions in 

reaching conclusions, so later they can be retracted if necessary. So each rule has 

two types of antecedents, precondition and assumption. The information 

necessary for resolving conflicts, i.e. history of the inferences and their associated 

assumptions, are recorded in assumption sets, the so-called environment. In 

contrast, in monotonie reasoning only the final conclusions are kept, so new facts 

about assumptions cannot be incorporated.
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The IPCS diagnostic algorithm (Padalkar et al., 1991) is basically a hypothesis and 

test loop. Two types of algorithms are used in the diagnostic system, the Faulty 

Component Identification Algorithm (FCLA) and the Interlevel Migration Process 

(ILMP). First the FCLA algorithm selects the largest subset of processes consistent 

with the current alarm information, then reduces (prunes the process tree) this 

subset using a timing constraint. Finally the ILMP migrates the FCLA to processes 

present at lower levels of process hierarchy and thus a higher resolution on the 

diagnosis is achieved.

In the respiratory monitoring application the physical (component) hierarchy is not 

used. In the industrial domain the physical hierarchy is the dominant hierarchy, 

because the aim is to identify a faulty component with a high degree of resolution. 

In this domain however the reasoning at organ level is sufficient and the aim of 

diagnosis is to differentiate between different disorders. Therefore the disorders 

were represented by the failures of the functional (process) tree, rather than the 

faults of the physical tree.

The diagnostic reasoning can reduce the number of suspect processes. So it 

implements the principle of parsimony i.e. if the higher level alarms ringing are 

consistent with the knowledge of failure dependence specified in the failure 

propagation models it will select the smallest subset of processes as in failure.
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6.6 Summary

This chapter focused on the application of intelligent monitoring for the respiratory 

system. First the clinical background of the problem was described, which was 

then followed by a description of the prototype respiratory monitoring application. 

This included a summary of the model building process, a description of the 

diagnostic knowledge and the corresponding failure propagation models. It has 

been shown how using the Intelligent Process Control System (IPCS) concepts 

have helped organise the monitoring and gave it structure, by viewing it as a 

process hierarchy and organising the monitored signals accordingly; how multiple 

variables and their logical combinations were used to create alarms; how the 

diagnostic algorithm works; and how the model of behaviour was used in 

conjunction with models of failure. It has been demonstrated how the Intelligent 

Patient Monitoring System (IPMS) framework was used to integrate the 

components of patient monitoring and add on some degree of intelligence. A full 

discussion of the methodology and its application to patient monitoring can be 

found in the next chapter.
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CHAPTER 7

DISCUSSION
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7.1 Introduction

This chapter aims to bring together, and to discuss My, the two aspects of this research, 

namely the methodological perspective (software aspect) and its application to patient 

monitoring (clinical application aspect). Therefore this chapter comprises two main 

sections. In the methodology section (7.2), the Multigraph Architecture (MA), is 

summarised and the model-based methodology is described. In the application section 

(7.3), the application of this methodology to patient monitoring, and the benefits gained are 

described.

7.2 Model-Based Methodology

7.2.1 Multigraph Architecture

The MA is a model-based architecture. In the MA the modelling languages allow 

knowledge to be expressed in the vocabulary of the domain, in contrast to first 

generation rule-based systems where no abstractions were defined. Another 

novelty of the MA approach, is in the use of a macro data flow, as a computational 

model, which facilitates parallel execution. MA integrates declarative and 

procedural styles of programming, by using the model interpreters to create 

execution structures (data flow graphs) from declarative structures (models). MA 

is a generic architecture which can be extended to new domains.
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The model-based software synthesis allows programming at a higher level than 

merely coding. The benefits of this are the capability to handle the complexity 

associated with large scale applications, and fewer lines of code which is easier to 

debug.

The model-based framework that was used supported visual programming by 

providing graphical model building tools. Benefits of visual programming are that 

the technology is made accessible to a wider population, as well as making the 

development quicker for those familiar with the technology. Visual programming 

facilitates the reuse of code by representing generic functions or code segments 

with an icon and linking to other graphical parts. Reuse of code means 

development is faster and less repetitive.

7.2.2 Steps In Designing A Model-Based Framework

There are three methodological steps involved in designing a model-based 

framework, as was illustrated through the work on CPNs in chapter 5. These are 

design of modelling concepts, implementation of the algorithms and the 

corresponding model interpreters. The three steps are summarised below.

1. Design of the modelling concepts: The first step is to decide on the 

modelling concepts and appropriate modelling paradigms and theft- 

corresponding representation, i.e. the type of knowledge about the 

system that we wish to represent and the appropriate knowledge 

representation scheme. Issues that are to be considered here include:

• the type of knowledge relevant to the problem.
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• the modelling paradigms that are going to be suitable for the 

domain.

• design of the modelling concepts and their relations (such as 

inheritance) based on the appropriate paradigm, or in other 

words the design of the abstractions, i.e. the vocabulary of the 

domain, necessary for the knowledge representation.

2. The algorithms and model solutions: The next step is to specify the 

algorithms that operate on the modelling concepts and their 

corresponding implementation in software. This forms the generic run-

time support for the models which includes the computation blocks of 

code and the object code libraries.

3. The model interpreters: This stage is specific to the MA. The model 

interpreters are responsible for generating the computational structure 

based on the models of the system and the algorithms. The model 

interpretation can be viewed as a mapping of models to computation 

structures or from declarative to procedural transformation. The model 

interpreters are specific to each modelling paradigm, but are independent 

of the model databases that specify a particular application.

7.3 Application To Patient Monitoring

Most of the other work in the field of intelligent patient monitoring consists of just 

one off applications. The approach described here is different because it has 

involved the design of a framework. This has not been done before. Furthermore it 

is a model-based framework. A special feature of this approach is that making new
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applications becomes largely a matter of building the models, rather than writing 

code.

An important feature of the patient monitoring framework is the integration of 

different aspects of the application. In patient monitoring, the impact of this on the 

implementation stage is of special importance. For instance, the tools for 

knowledge-based software design typically do not allow for the design of user 

interface, or tools for probabilistic reasoning do not allow for data acquisition. The 

current prototype of the framework can be used to design all aspects of monitoring 

including data acquisition, graphical user interface, signal processing and control, 

and model-based reasoning. Furthermore it supports the development of causal 

probabilistic models using the same graphical editor as is used for other aspects. 

Also the framework has the flexibility to allow the integration of users own code 

with these kinds of systems. The inter-operation of different types of software, e.g. 

database and AI, is simplified by using the integrated development framework.

A major issue in the design of intelligent clinical informatics is the integration of 

the intelligent software with the existing computing environment. The Patient Data 

Management System (PDMS) at the Royal Brompton Hospital (RBH), is based on 

hp-9000 workstations from Hewlett-Packard, running the Hewlett-Packard version 

of UNIX (HP-UX), and Motif windowing system. The prototype respiratory 

monitoring system developed at City University is based on the Intelligent Process 

Control System (IPCS) framework which works on SUN work stations, running 

SUN’s version of UNIX (SunOS) and OPEN LOOK windowing system. However 

the IPCS developed at Vanderbilt University also has an Hewlett-Packard port. 

Applications developed on one platform also work directly on the other one. 

Therefore the application can potentially run on the bedside workstations of the
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PDMS, provided the manufacturers, in this case Hewlett-Packard, open their 

system to user or third party modifications.

One of the requirements of intelligent patient monitoring is robustness. One way of 

making the monitoring robust is to make it adaptive, i.e. dynamically modifying the 

behaviour according to some context. Therefore the purpose of context dependent 

monitoring is to make the monitoring adaptive and thereby making the monitoring 

more robust. In patient monitoring the therapeutic goals and therefore signal 

interpretation may change depending on for example the patient history. For 

instance, in the presence of Chronic Obstructive Pulmonary Disease (COPD), the 

clinician may aim for a small amount of hypercapnia rather than aiming for 

normocapnia, if it can be more dangerous to the patient to try to correct this 

hypercapnia than to allow it to persist. The context may be static e.g. age, sex, 

patient history, or dynamic e.g. patient state.

The key concept is to alter in some way the monitoring according to changes in the 

monitoring environment, i.e. changes in the patient and the therapeutic 

interventions. Mathematically this can be represented as an adaptation algorithm g , 

which maps the environment model M  at time /, Mh to the monitoring function/ at 

time t , f h g: M, —»f  (Sztipanovits et a/., 1993). The implication of this is that it is 

necessary to have some way of modelling the patient. Therefore the monitoring 

context is a model of the patient and/or the interventions. For example the 

monitoring context may be a single variable of discrete values, in which case it will 

have to summarise all the available information about the patient. The mechanisms 

for implementing dynamic reconfigurability already exist within the framework for 

patient monitoring. Therefore the respiratory monitoring application can be made 

more robust by using this feature of the framework. However this was not
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implemented in the current prototype because it was not clear how to define the 

context, and the transition in the context and the change in the monitoring 

structure as the result of the change in context. More research is required in this 

area to answer these questions (see section on further work in the next chapter.)

The advantages of using this framework over a rule-based shell were the capability

to:

• design the graphical user interface without having to know about X- windows 

programming, by using the panel editor of the IPCS framework,

• handle the management of data collection through interface objects and the 

data acquisition server.

• organise the knowledge through the use of models and the abstractions and the 

modelling concepts.

• graphically represent the knowledge; this meant that clinicians were able to 

understand and modify the system by graphical editing, i.e. drawing diagrams, 

rather than having to look at code,

• extend the framework for example by integrating the CPN modelling into 

IPMS and link to run-time system through actor scripts using the Hugin 

Application Programmers Interface (API),

• have automatic code generation, by using the model interpretation process to 

create the data flow graph of the application based on the models and the run-

time support,

• run in real-time, by scheduling the actors of the data flow graph to trigger 

whenever their input data arrive,
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link knowledge about system failures, i.e. failure propagation graphs, with 

knowledge of the system behaviour, in causal network models.

The implementation of this prototype, using the framework together with the 

application independent building blocks, took over 100 man hours. This does not 

include the time spent in the design stage or the implementation of the generic 

blocks. An incremental approach was taken in the implementation, i.e. a small but 

functional system was first developed which was subsequently grown to the final 

version. This was partly responsible for slowing down the implementation. About 

90% of the implementation time was spent on graphical model building. In visual 

programming every component of the system must be represented by an icon. 

Therefore a significant portion of this graphical model building time was spent on 

creation of icons. The model building process can be significantly sped up, and 

made more pleasant and acceptable to the application developer by supporting it 

with very sophisticated graphical and icon editors.

Although the monitoring application is not sufficiently developed to be used in a

real clinical setting the application is very significant because:

• it is based on a novel architecture and represents a methodological 

advancement,

• it addresses all aspects of application development, such as data acquisition, 

user interface, signal processing, model-based reasoning,

• it addresses the integration of different types of software such as signal 

processing, AI, database,

• it contains over 50 on-line and off-line variables and alarms,
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• it embodies a reorganisation of the respiratory knowledge in the form of the 

structural models of the respiratory system.

7.4 Summary

This chapter contained two main sections. In the methodology section the 

Multigraph Architecture (MA) and the design steps for a model-based architecture 

were summarised. The methodology section also highlighted the aspects which 

make the approach described in this thesis unique. In the following section the 

application of the multigraph architecture to patient monitoring was discussed. 

This latter section included a discussion of the benefits of using the MA and the 

Intelligent Patient Monitoring System (IPMS) framework for implementing patient 

monitoring applications. These include, for instance, integration of different 

aspects of application development, portability of the application, reuse of code 

and the impact of this on the development time, use of models for software 

synthesis, model-based reasoning and knowledge organisation, the extension of the 

modelling paradigms to include Causal Probabilistic Network (CPN), benefits of 

visual programming. The next chapter contains some concluding remarks, 

including a statement of how the objectives were achieved, possible plans for 

further work and the contribution to the field that is represented by this work.
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CONCLUSIONS
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Achievement Of Aims And Objectives

The aim of the research work was to investigate the suitability and applicability of 

the multigraph architecture in building intelligent patient monitoring systems. In 

doing so a systemic approach has been adopted, by first showing the short comings 

of current knowledge-based techniques and proposing that a model-based 

approach will improve on these techniques. Also in agreement with good software 

engineering practices of modular and reusable design, the adoption of a framework 

has been proposed that can be used in development of intelligent model-based 

patient monitoring systems. Some software requirements for such a framework 

were then created, based on the experiences of the engineering community in 

intelligent process monitoring and the Intelligent Process Control System 

framework. Next some techniques that have been successfully applied in patient 

monitoring, that reflect the unique requirements of this domain, were identified 

and implemented as extensions to the Intelligent Process Control System to make 

the Intelligent Patient Monitoring System. Finally a prototype application based on 

the prototype framework was developed.

Contributions To The Field

This thesis explored and discussed the issues relating to High Dependency 

Environment (HDE) data systems, from computational, organisational and 

management perspectives in order to form a framework for design and 

implementation of intelligent patient monitoring systems in HDE. The work 

described in chapters four, five and six form the original contribution to the field. 

Chapter four described the generic software requirements as a specification for the 

framework. In chapter five some commonly used components were identified,
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implemented in a generic form, and integrated within the framework. This work 

represents the extensions to the Multigraph Axchitecture (MA) tool set for three 

different purposes. The median and Infinite Impulse Response (HR) filters for 

signal processing, the frizzy library for use in a fuzzy controller, and the Causal 

Probabilistic Network (CPN) for probabilistic modelling. The work in chapter six 

represents extension of the MA application to the clinical domain. This work also 

includes an original restructuring of the respiratory knowledge to facilitate 

diagnostic reasoning. The three chapters together contain the design, 

implementation, and application of a model-based framework for use in patient 

monitoring.

The work contributes to the field of AI in medicine, by the application of a novel 

software architecture and the benefits it brings. Also part of the work is 

independent of implementation and the lessons learned are of general interest. Two 

kinds of users may benefit from the work: the application developer who may use 

the extended IPCS tool set in medical as well as other domains; and implicitly the 

clinical end-user who benefits from an enhanced instrument functionality.

Further Work

An important feature of intelligent patient monitoring systems is robustness. As 

described in the previous chapters one way of making the monitoring robust is to 

make it adaptive by dynamically modifying the behaviour according to some 

context. The framework already supports mechanisms for dynamic 

reconfigurability, however more research is necessary before these can be applied 

usefully. There are plans for introducing protocol guided patient care, CarePlan, in 

the Royal Bromptou Hospital (RBH). For CarePlan, very specific diagnostic
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patient groups need to be defined, so that the therapeutic goals and strategies can 

be accurately defined. This same classification may be used as the monitoring 

context. This classification may also include information about the therapeutic 

interventions, e.g. the ventilation mode, and the drugs that are in effect. The 

patient database of the Patient Data Management System (PDMS) can be used in 

estimating mean values of variables for different diagnostic groups. This requires a 

Structured Query Language (SQL) interface to down-load over the network the 

database from the Hewlett-Packard database to a PC database, before the data are 

permanently removed.
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The purpose of this appendix is to provide the necessary background for 

understanding the implementation of the generic filters as described in chapter 5. 

As such it is only a brief overview. A comprehensive treatment of the subject may 

be found in (Proakis & Manolakis, 1989).

A linear time invariant discrete time system may be represented by the general 

linear constant coefficient difference equation

If N  = 0 the system is called non-recursive or Finite Impulse Response (FIR). For 

the case where N * 0 the system is called recursive or Infinite Impulse Response 

(HR). Alternatively the system may be represented by its transfer function H(z), 

using the z transform notation,

The frequency response of the system, H(a>), where c o -2 n f , is the transfer 

function evaluated on the unit circle

N M

y{n) = aky{n -  k ) + ^ , b kx(n -  k). (Eq.A. 1)

M

(Eq.A.2)

H(<y)= H (r)|j=tJB. (Eq.A.3)

So
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H (a>) = (Eq.A.4)
1 + Z a ke-JkA

k=1

where A is the sampling period.

To design a filter we need to obtain a suitable set of coefficients i.e. as and b s, 

from a desired H(îü ). Many different techniques and their software 

implementations exist, such as the Remez Exchange Algorithm for FIRs or the 

bilinear transformation method for IIRs.

Recursive filters have a superior performance (i.e. sharper edges) compared with 

non-recursive filters.

Software Realisation Of IIRs

The transfer function of IIRs can be partitioned into two transfer functions for the 

numerator and the denominator,

H (r) = H, ( - )H2(r ) (Eq.A.5)

where

(Eq.A.6)

and
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H 2(z ) =
1 (Eq.A.7)

1 + X « * z  *
k=1

Therefore the filter can be realised in two forms, either as an all zero filter 

followed by an all pole filter (i.e. form I) or an all pole filter H2(r), feeding into 

the all zero filter H,(r) (i.e. form II). In form II the output of the all pole filter 

forms a set of intermediate values, ws, hence reducing the storage requirements.

.V

w(n) = — J'tal[w(n -  k) + x(n) (Eq.A.8)
*= i

The output of the filter will be

V/
y (n )=Y jbkw(n -k ) .  (Eq.A.9)

k=0

The above two equations make up the Direct Form II realisation of HR (IIRDF2). 

The transfer function can also be realised as K second-order transfer functions 

connected in series,

H(z) = I i H*(-) (Eq.A.10)
k =1

where K is the integer part of (N +1)/ 2. Then the implementation is known as the 

cascade realisation of IIR.
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The fuzzy knowledge-base file format is as follows. First, input and output 

variables and their membership functions are defined, then the rules. There is a 

symbol >" to indicate end of inputs and beginning of outputs. Each variable is 

defined by a name followed by a blank line, followed by membership functions. 

Membership function format is a name followed by four integers that describe the 

trapezoid. After the output definitions there is a line starting with the keyword 

"SW" followed by the fist of all inputs followed by the list of all outputs. Each rule 

is a line under this heading row. Under the column headed by the keyword "SW" is 

one of the keywords "ON" or "OFF". A rule starting by anything except the 

keyword "ON" will be ignored. Under each column of input or output a name of a 

membership function defined for that variable is allowed. The keyword "IG" 

indicates a don't care or ignore for that input or output in the rule. There must be a 

blank line at the end of the rules, and no blank lines in between. The following is a 

sample knowledge-base for the control of the Mean Arterial blood Pressure 

(MAP). The range of all variables is normalised to 0-255. The membership 

function names N, ZE, and P stand for Negative, Zero and Positive respectively. 

The input variables are the difference between the desired and measured MAP 

"error" and the first derivative of this difference "err rate".
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error

N 0 0 63 191
P 63 191 255 255

errrate

N 0 0 63 191
P

—>

63 191 255 255

out

N 0 0 0 0
ZE 127 127 127 127
P 255 255 255 255

sw error err_rate out

ON P P N
ON P N ZE
ON N P ZE
ON N N P
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Patient Chart

Royal 8rompton Rational Heart and Lung Hospital 
FLOWSHEET Exact

medRecNura: C93765
DOB: 29MAR1934 attcndHO: CL

30Sep94
1400 1415 1422 1445 1500 1530 1545 1600 1615 1700 1800

V C Temperature Core Ax 35.4 Ax 35.5 Ax 36.1
1 a Heart Rate 59 53 53 54 53 52 53
t
a Art Blood Pressure 117/ 57 117/ 59 124/ 60 116/ 57 118/ 59 124/ 60 115/ 55 114/ 55

l 'blood Pressure Mean 77 75 82 76 79 83 75 75

e
0
,,Cuff: Pressure Mean

i R Atrial Pressure 7 » 9 10 9 10 10 9

9 s Rhythms SR lS.Brady S.Brady S.Brady S.Brady S.Brady S.Brady
n
H
—  
GCS Eye Response Spont Spont Spont

'jGCS Motor Response Comma nc Commanc Command

rCCS Verbal Response Orientd Orientd Oriente

o¡Glasgow Coma Score 15 15 15
lPain Score 10 6
O
9 Arm Movements Spont Spont

» Hand Grip Str R/L Uk/ Uk. Uk/ Wk

leg Movements R/L Spt/Spt Spt/Spt
Leg Strength R/L Uk/ Uk Wk/ Wk

¡Pupi l Reaction R/L SI/ SI
jPupi l Size R/L mm. 3/ 3

pPeriph Circulation C.Feet C.Fcet CoolH+F CoolH*F CoolH*F
ePulses D.Pedis R/L Yes/Tes Yes/Yes Yes/Yes Yes/Yes

COperati ve Status
* Chronic Health Pts
MAcute Renal Failure
iEvents Vital SignssCare Unit
.Documented by SA r » SA PHB PHB PHB SA SA

V V Mode SIHV*PS¡ SIMV.PS
—

SIMV+PS SIMVtPS SIMV^PS
e sVentilator Type Evita Evi ta Evi ta Evi ta Evi ta

t t^irway Type O.ETTI O.ETT O.ETT O.ETT O.ETT
i F i 02 0.4 o! 0.35 3 0.30 0.26 0.26 0.26
l Tidal Volume (Vent) ata 760 760 780 880

t Ventilator Set Rate ia 10 10 10 10
i Spont Resp Rate 2 1 0 2 4
0 1:E Ratio, 1:2 1:2¡ 1:2 1:2 1:2

Peak Insp Pressure 30j 31 31 31
PEEP 3 3 3 3 3
Pressure Support/ASB, 2°i 2« 20 20 20
Expired Min Volume 9.0 M 8.3 8.9 10.5
Oxygen Admin Method Vent; Vent Vent Vent Vent
Oxygen Litres/min
Weaning Score

60l 60, 60Ì 60 60
Humidifier Type Edith! Edithi Edith Ed i th Edith
Events Ventilation ¡

B 02 Saturation (P) 1001 100Í 100 100 100
l 42.0 39.9 40.2 39.50
0 pH (from H+) 7.38 7.40 7.40
pC02 4.9 4.7 4.7 4.5

« P02 21.5 17.a 17.4 16.1
ajHCOJ 21 22 22 21
s;Base Excess (vt) -2.8 -1.6, -2.0 -2.3
¡Documented by SA SA SA PHB,SA SA SA SA

l| ¡Dextrose Saline _________ 100.0 100.0 100.0

Input/Output continued on the next page ...

Printed: 01 Oct 94 1023

Page 1 of 5
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0150  Evita 00-Time-t-b:min- 0 ,00-23 ,59  0 1 -Exp. tidal volum e-V Te-L-0,00-2,00 0 2 -Breathingfrequency-f-l/m in- 0 -60  03-M V-M V-L/min- 0 ,0-41 ,0  04-Peak-pressure-Peak- 
mbar- 0-99 05-Plateau-pressure-Plat-mbar- 0 -99  06-PEEP-pressurc-PEEP-mbar- 0-99 07-Minimum-prcssure-Pmin-mbar—20-99 08-Mean-prcssure-Mean-inbar- 0 -99 09-Insp. 
02-caicentration-FI02-% -15-99 10-Compliance-C-mL/mbar- 0 -255 ll-Resistance-R-m bar/(L/s)- 0-99 12-Spont. minute voluine-M Vs-L/m in-0 ,0-41,0  13-Spout. frequpicy-fs- 
1/min- 0-60  14-Airway temperature-Temp-deg C -18-45
0150  11 date : 30  - 9 - 94 0 1 0 2  setting-value =  38  % 02M ax. inspiratory flow  =  60  L/min 03Insp. tidal volum e =  0,81 L04Frequency IP P V =  12 1/min 061: E  =  1,0 : 2,0  
07M ax. breathing pressure =  35 mbar 081’requaicy  IM V =  11,2 1 /min 09PEEP /  CPAP =  3 mbar 1OASB = 1 8  mbar 11 Interm. PEEP = 1 8  mbar 12BEPAP_P_level_l =  0  mbar 
13BIPAP_P_level_2 =  10 mbar 14B IP A P_leveltim e_l =  10,0 s
0 1 5 0 .0 0 1 4 .3 0 .010 .79 .0211 .039 .4 .0430 .0518 .06  4 ,0 7 — ,0810 ,0940 ,10— ,11—,12 0 .0 ,13  0 ,1 4 -  
0 1 5 0 ,0 0 1 4 .3 1 ,0 1 0 .8 1 ,0 2 1 1 ,0 3 9 .1 ,0 4 3 0 ,0 5 -,0 6  5 ,07— ,0810 ,0940 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0 1 5 0 .0 0 1 4 .3 1 .0 10 .80 .0211 .039 .4 .0430 .0517 .06  5 ,07— ,0810 ,0939 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -  04Frequm cy IPPV =  11 1/min
0 1 5 0 .0 0 1 4 .3 2 .0 10 .27 .0212 .038 .8 .0429 .0521 .06  2 ,0 7 — ,0 8 1 0 ,0939 ,10— ,11— ,12 0 .0 ,13  0 ,1 4 -  03Insp. tidal volum e =  0 .77  L 08Frequeucy IM V =  10.4 1/min 21M V  low  
limit =  12.0 LAnin
0150 .0014 .33 .010 .69 .0215 .03  8 .8 ,0 4 3 0 ,0 5 2 1 ,0 6  5 ,0 7 — ,0811 ,0939 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .33 .010 .74 .0212 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,07— ,0810 ,0939 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .34 .010 .76 .0210 .03  8 .1 ,0 4 3 0 ,0 5 1 6 ,0 6  4 ,0 7 — ,0810 ,0939 ,10— ,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .34 .010 .76 .0211 .03  8 .1 ,0 4 3 0 ,0 5 - ,0 6  5 ,0 7 — ,0810 ,0939 ,10— ,11—  ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .35 .010 .76 .0211 .03  8 .1 ,0 4 3 0 ,0 5 - ,0 6  4 ,0 7 — ,0810 ,0939 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .35 .010 .75 .0211 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  4 ,07— ,0810 ,0939 ,10— ,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .36 .010 .77 .0210 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 — ,0810 ,0936 ,10— ,11— ,12 0.0 ,13  0 , 1 4 - 0 1 0 2  setting-value =  34  %
0150 .0014 .36 .010 .75 .0211 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  4 ,07— ,0810 ,0935 ,10— ,11— ,12 0.0,13 0 ,1 4 -
0150 .0014 .37 .010 .77 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,07— ,0810 ,0935 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .38 .010 .77 .0211 .03  8 .2 ,0 4 3 0 ,0 5 - ,0 6  4 ,0 7 — ,0810 ,0935 ,10— ,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .38 .010 .77 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  4 ,0 7 — ,0 8 1 0 ,0935 ,10—,11—,12 0 .0 ,13  0 ,1 4 -
0150 .0014 .39 .010 .76 .0211 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 — ,0 8 1 0 ,0935 ,10—,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .39 .010 .79 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 — ,0 8 1 0 ,0935 ,10—,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .40 .010 .76 .0211 .03  8 .3 ,0 4 3 0 ,0 5 - ,0 6  5 ,0 7 — ,0810 ,0935 ,10— ,11—,12 0 .0 ,13  0 ,1 4 -
0150 .0014 .40 .010 .76 .0211 .03  8 .2 ,0 4 3 0 ,0 5 - ,0 6  5 ,0 7 — ,0810 ,0935 ,10— , 11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .41 .010 .77 .0211 .03  8 .2 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,07— ,0810 ,0935 ,10— ,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .41 .010 .77 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 — ,0 8 1 0 ,0935 ,10—,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .42 .010 .76 .0211 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  4 ,0 7 - ,0 8 1 0 ,0 9 3 5 ,1 0 —,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .42 .010 .79 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 - ,0 8 1 0 ,0 9 3 5 ,1 0 — ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .43 .010 .78 .0211 .03  8 .3 ,0430 ,05—,06 5 ,0 7 — ,0810 ,0935 ,10— ,11— ,12 0.0 ,13  0 ,1 4 —
0150 .0014 .44 .010 .78 .0210 .03  8 .3 ,0 4 3 0 ,0 5 1 6 ,0 6  5 ,0 7 — ,0810 ,0935 ,10— ,11—,12 0 .0 ,13  0 ,1 4 -
0150 .0014 .44 .010 .77 .0211 .03  8 .3 ,0 4 3 0 ,0 5 1 7 ,0 6  4 ,0 7 — ,0810 ,0935 ,10— ,11—,12 0.0 ,13  0 ,1 4 -
0150 .0014 .45 .010 .78 .0210 .03  8 .3 ,0430 ,0516 ,06  5 ,07— ,0810 ,0935 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -
0150 .0014 .45 .010 .77 .0211 .03  8 .3 ,0 4 3 0 ,0 5 - ,0 6  5 ,0 7 — ,0 8 1 0 ,0935 ,10— ,11— ,12 0.0 ,13  0 ,1 4 -

□

V
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AI Artificial Intelligence

AICU Adult Intensive Care Unit

API Application Programmers Interface

ARDS Adult Respiratory Distress Syndrome

ASCII American Standard Code for Information Interchange

ATMS Assumption-based Truth Maintenance System

BSA Body Surface Area

CABG Coronary Artery Bypass Graft

CF Certainty Factor

CICU Cardiac Intensive Care Unit

COPD Chronic Obstructive Pulmonary Disease

CPN Causal Probabilistic Network

CPU Central Processing Unit

FCIA Faulty Component Identification Algorithm

FFT Fast Fourier Transform

FIR Finite Impulse Response

GUI Graphical User Interface

HDE High Dependency Environment

HDL Hierarchical Description Language

HIS Hospital Information System

ICU Intensive Care Unit

IEE Institution of Electrical Engineers

IEEE Institute of Electrical and Electronics Engineers

IIR Infinite Impulse Response

IIRDF2 Infinite Impulse Response Direct Form realisation type 2

ILMP InterLevel Migration Process

IMDE Integrated Model-based Development Environment

IPC InterProcess Communication
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IPCS Intelligent Process Control System

IPMS Intelligent Patient Monitoring System

IS Information System

KBS Knowledge-Based System

KS Knowledge Source

LGDF Large Grain Data Flow

LOS Length Of Stay

MA Multigraph Architecture

MA(B)P Mean Arterial (Blood) Pressure

MCD Monitoring Control and Diagnostic

MEE Multigraph Execution Environment

MGK Multigraph Kernel

MIM Measurement and Information in Medicine

MPE Multigraph Programming Environment

NP problems that can be solved by Nondeterministic algorithms in 

Polynomial time

OO Object Oriented

OR Operating Room

PC Personal Computer

PDMS Patient Data Management System

QPT Qualitative Process Theory

RBH Royal Brompton Hospital

RISC Reduced Instruction Set Computer

SNP Sodium NitroPrusside

SQL Structured Query Language
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VENT_DA/VD Fo.FRM................................................................................................. 262
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F.1 Actor Script For MRs

The following code segment (script) implements the Infinite Impulse Response 

filter in time domain as a computational block (actor) for the multigraph 

computational model (section 5.2).

struct Cntxtl {
double al [15]; /* as and bs filter coefficients */
double a2 [15];
double bl [15];
double b2 [15];
double x 1 [15]; /* xs filter weights */
double x2[15];
int initial;
int filterorder;

};

void gr_2ord_script(cntx) /* generic HR filter script */
struct Cntxtl *cntx;
{

double temp,rawdata,filtdata; 
int i;

if(!cntx->initial) { /* first time into script */
for(i=r,i<=cntx->filter_order;i++) { /* initialise weights to zero */

cntx->xl[i]=0.0;
cntx->x2[i]=0.0;

}
cntx->initial=l;

}
ra\vdata=mgk_d_receive(0), /* read data just arrived */
for(i=l;i<=cntx->filter_order;i++) { /* compute filter output */

tenrp=rawdata-(cntx->bl[i]*cntx->xl[i])-(cntx->b2[i]*cntx->x2[i]); 
filtdata=tempb-(cntx->al[i]*cntx->xl[i])+(cntx->a2[i]*cntx->x2[i]); 
cntx->x2[i]=cntx->xl[i]; /* shift stored data */
cntx->x 1 [i]=temp; 
rawdata=filtdata;

}
mgk_d_propagate(0,filtdata); /* push out result */

} /* END gr_2ord_script */
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F.2 Actor Script For Median Filter

The following multigraph script implements a median filter. The output of a 

median filter is the median of the last n data points, where n is the length of the 

data window (section 5.2).

#include <math.h>

#define DATA_WIN 21 /* upper limit of data window */

struct Cntxt2 {
double rd[DATA_WIN+l]; 
double std[DATA_WIN];
int n; /* data window; must be odd */

};

void gr_med_script(cntx) /* generic median filter script */
struct Cntxt2 *cntx;
{

int i;
double *rawdata,*sorted,*tempa,temp[(cntx->n)+l];

rawdata=(cntx->rd)-l; /* unit-offset arrays */
sorted=(cntx->std)-1; 
tempa=temp-1;

i=cntx->n;
while(i) { /* shift out old datum */

rawdata[i+1 ]=rawdata[i]; 
i—;

}
rawdata[l]=mgk_d_receive(0); /* shift in new datum */
for (i=l;i<=(cntx->n);i++) tempa[i]=sorted[i]; /* copy sorted data array */
—i;
while(i> 0 && tempa[i] > rawdata[l]) { /* look for place to insert new */

tempa[i+l]=tempa[i]; 
i--;

}
tempa[i+l]=rawdata[l]; /* insert it here */

while( tempafi] != rawdata[(cntx->n)+1 ] ) {/* copy until old datum */
sorted[i]=tempa[i];
i++;
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/* skip old datum 
/* copy rest

}
i++;
while(i <=(cntx->n)+l) { 

sorted[i-1 ]=tempa[i];

*/
*/

}
mgk_d_propagate(0,sorted[((cntx->n)+l)/2]); /* push out result */

} /* END gr_med_script */
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F.3 Fuzzy Logic Library

This library contains all the functions necessary to implement a simple fuzzy logic 

inference engine with typical applications in fuzzy control. Included is also a parser 

(initialize system) to read and convert a text file containing the rules into the 

knowledge-base (section 5.3).

*
* fuzzl.c forborlandc
*
* RNP 07/04/94
*

* Fuzzy inference for any number of rules with any number
* of antecedents and any number of consequences.
* Based on Greg Viot's fuzzy system — DDJFEB93 & DDJAPR94
*

#include <stdio.h> 
//include <stdlib.h> 
//include <string.h>

//define MAXNAME 10 /* max length of variable names */
//define UPPER_LIMIT 255 /* max value a vriable can take */

/* rule parser return values */
//define RR OK 0
//define RRSHORTFILE (-D
//define RR_SHORT_LINE (-2)
//define RR BAD TRAPEZOID (-3)
//define RR UNDEFINED KEYWORD (-4)

/* read line return values */
//define ELS ERR (-D
//define ELS_OK 0

//define MAX_LINE_LENGTH 80

struct iotype *System_Inputs; /* anchor inputs */
struct io type *System_Outputs; /* anchor output */

struct io_type{ /* input/output data type */
char namefMAXNAME];
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int value;
struct mf_type *membership_functions; 
struct io_type *next;

>;

struct mf_type{ /* membership function type */
char name [MAXNAME];
int value; /* height of trapezoid */
int point 1; /* left most point */
int point2; /* right most point */
float slope 1; /* left side slope */
float slope2; /* right side slope */
struct mf type *next;

};
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struct rule_type{ /* rule type */
struct ruleelementtype *if_side, 
struct rule_element_type *then_side; 
struct rule type *next;

};

struct rule_element_type{ /* rule element type */
int *value;
struct rule_element_type *next;

};

struct rule_type *Rule_Base;

void fuzzification(void);
int ruleevaluation(void);
void defuzzification(void);
void compute_degree_of_membership(struct m ftype *mf,int input);
float conipute_area_of_trapezoid(staict mftype *mf);
void putsystemoutputs(void);
void get_system_inputs(int input 1, int input2);
int initialize_system(FILE *fp).
int EmptyLineSkip(char *Line, FILE *fp);
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{
struct io type *si; 
struct mf type *mf;

for(si=System_Inputs;si!=NULL;si=si->next) /* for each input */
for(mf=si->membership_functions;mfl =NULL;mf=mf->next)

/* for each membership function */ 
compute_degree_of_membership(mf,si->value);

/* compute degree of membership */
return;

} /* END FUZZIFICATION */

v o id  fu z z if ic a tio n (  v o id )
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{
struct ruletype *rule;
struct rule_element_type *ip; /* if pointer */
struct ruleelem enttype *tp, /* then pointer */
int strength; 
int vrules=0;
int match=0; /* test some rules */

for(rule=Rule_Base;rule!=NULL;rule=rule->next) /* for all rules in knowledge base */
{
strength=UPPER_LIMIT; 
for(ip=rule->if_side;ip!=NULL;ip=ip->next) 

strength=min(strength,*(ip->value)); 
for(tp=rule->then_side;tp!=NULL;tp=tp->next)
{

*(tp->value)=max(strength,*(tp->value)); 
if(strength>0)match=l;

}
if(match)vrules++; 
match=0;

}
return(vrules);

in t  ru le  e v a lu a tio n (v o id )

/* for all antecedents */

/* for all consequences */

/* calculate strength */
/* some rules matched */

/* increment no. of valid rules */

/* END RULE EVALUATION */
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{
struct iotype *so; 
struct mf type *mf; 
long sum_of_products; 
long sum_of_areas; 
long area, centroid;

for(so=System Outputs;so!=NULL;so=so->next) /* for all outputs */
{
sum_of_products=0;
sum_of_areas=0;
for(mf=so->membership_functions;mf!=NULL;mf^mf->next)

/* for all membership functions */
{
area=compute_area_of_trapezoid(mf); /* compute area of trapezoid */
centroid=mf->pointl+(mf->point2-mf->pointl)/2;

/* compute centroid of trapezoid */
sum_of_products+=area*centroid;
sum_of_areas+=area;
}
if(sum_of_areas=0)
{
printf("For %s Sum of Areas = 0, will cause div error\n",so->name); 
printf("For %s Sum of Products= %d\n",so->name,sum_of_products); 
so->value=0,
}
else
so->value=sum_of_products/sum_of_areas; /* overall centroid */

}
return;

} /* END DEFUZZIFICATION */

v o id  d e f u z z i fk a t io n (v o id )
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void compute_degree_of_membership(struct mf type *mf,int input)
{

int delta_l, delta_2;
delta_l=input - mf->pointl; /* distance to left most point */
delta_2=mf->point2 - input; /* distance to right most point */

if((delta_l<=0)||(delta_2<=0))mf->value=0;
else
{
mf->value=niin((mf->slopel*delta_l),(mf->slope2*delta_2)); 
mf- > val ue=mi n( mf- >value,UPPER_LIMIT);

}
return;

} /* END DEGREE OF MEMBERSHIP */
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float compute_area_of_trapezoid(struct mf type *mf)
{

float run_l,run_2,area,top; 
float base;

base=mf->point2 - mf->pointl; 
run_l=mf->value / mf->slopel; 
run_2=mf->value / mf->slope2; 
top=base - run_l - run_2; 
area=mf->value*(base+top)/2; 
return(area);

} /* END AREA OF TRAPEZOID */
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{
struct iotype *ioptr; 
struct mf type *mfptr; 
struct ruletype *ruleptr; 
struct ruleelem enttype *ifptr; 
struct rule_element_type *thenptr; 
int cnt=l;

for(ioptr=System_Inputs;ioptr!=NULL;ioptr=ioptr->next) /* for all inputs */
{

printf("%s: Value= %d\n",ioptr->name,ioptr->value); /* print name and value */ 
for(mfptr=ioptr->membership_functions;mfptr!=NULL;mfjptr=nifptr->next)

/* for all membership functions */
{

printf(" %s: Value %d Left %d Right %d\n", 
mfptr->name,m^Dtr->value,mfptr->point 1 ,mfptr->point2);

/* print name, value, left and right points * /

}
printf("\n");

}
for(ioptr=System_Outputs;ioptr!=NULL;ioptr=ioptr->next)

/* for all outputs * /

v o id  p u t_ s y s te m _ o u tp u ts (v o id )

printf("%s: Value= %d\n",ioptr->name,ioptr->value); /* print name and value 
for(mfptr=ioptr->membership_functions,mfptr!=NULL;mfptr=mfptr->next)

/* for all membership functions
{

printf(" %s: Value %d Left %d Riglit %d\n", 
mfptr->name,mfptr->value,mfptr->pointl,mfptr->point2)',

/* print name, value, left and right points
}

printf("\n");
}

I *  print values pointed to by rule type (if & then) 
for(ruleptr=Rule_Base;ruleptr->next!=NULL;ruleptr=ruleptr->next)
{
printf("Rule #%d:",cnt++);
for(ifptr=ruleptr->if_side;ifptr!=NULL,ifptr=ifptr->next) 

printf(" %d",*(ifptr->value));
for(thenptr=ruleptr->then_side;thenptr!=NULLuhenptr=thenptr->next) 

printf(" %d",*(thenptr->value)); 
printf("\n");

}

*/

*/

*/

*/

return;
} /* END PUT SYSTEM OUTPUTS */
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void get_system_inputs(int inputl, int input2)
{

struct io type *ioptr;

ioptr=System_Inputs; 
ioptr->vaIue=i nput 1; 
ioptr=ioptr->next; 
ioptr->value=input2; 
return;

} /* END GET SYSTEM INPUTS */
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int EmptyUneSkipCchar *Line, FILE *fp)
{

do
if (fgets(Line, MAX_LINE_LENGTH + I, fp) =  NULL) 

return (ELS ERR); 
while (sscanf(Line, "%*s") =  EOF); 
return (ELS_OK);

} /* END EmptyLineSkip */
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{
char Line[MAX_LINE_LENGTH + 1], *Tok;
char buff[MAXNAME];
int i,j;
int a,b,c,d;
int firstin;

struct iotype *outptr; 
struct m ftype *top_mf; 
struct mf type *nifptr; 
struct io_type *ioptr; 
struct rule_type *ruleptr; 
struct rule_element_type *ifptr; 
struct rule_element_type *top_if; 
struct rule_element_type *thenptr, 
struct rule element type *top_then;

ioptr=NULL;
ruleptr=NULL;
ifptr=NULL;
top_if=NULL;
thenptr=NULL;
top_tlien=NULL,

* read input variable definitions

if (EmptyLineSkip(Line, ip) =  ELS ERR)
return (RR SHORT F1LE); /* if nothing to read stop */

for (i = 0; ;i++)
{
sscanf(Line, "%s", buff);
if(strcmp(buff,"—>")=0)break; / *  symbol indicates end of input definitions */

/* get storage for input variable */
if(ioptr=NULL)
{

ioptr=(struct io type *)calloc(l,sizeof(struct io_type));
System_Inputs=ioptr;

}
else
{

for(ioptr=System_Inputs;ioptr->next;ioptr=ioptr->next); 
ioptr->next=(struct io type *)calloc(l,sizeof(struct io_type)); 
ioptr=ioptr->next;

}
sprintf(ioptr->name,"%s", buff); /* save name of the variable */
if (EmptyLineSkip(Line, fp) —  ELS ERR) 

return (RR_SHORT_FILE); 
mfptr=NULL; 
for (j = 0; j++)

in t  in i t ia l iz e _ s y s te m (F IL E  * fp )
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{ /* read the membership function defections*/
if (sscanf(Line, "%*s") =  EOF)
break; /*if blank line come out of this loop */
if (sscanf(Line, "%s %d %d %d %d", buff,

&a, &b, &c, &d) < 5) return (RR SHORT LINE);
/* get storage for membership function */

if(mfptr=NULL)
{
mfptr=(struct mf_type *)calloc(l,sizeof(struct rnf type)); 
top_mf=mfptr;
ioptr->membership_functions=mfptr;

}
else
{
for(mfptr=top_mf;mfjptr->next;mfjptr=mfptr->next); 
mfptr->next=(struct mftype *)calloc(l,sizeof(struct mftype)); 
mfptr=mfptr->next;

}
sprintf(mfptr->name,"%s",buff); /* save membership function name */

/* save the trapezoid definition */
mfptr->pointl=a;
mfptr->point2=d;
if(b-a>0) mfptr->slopel=UPPER_LIMIT/(b-a); 
else return(RR BAD TRAPEZOID);
/*{

printf("Error- variable \"%s\" membership element \"%s\".\n", ioptr->name,mlptr->name); 
exit(l);
}*/

if(d-c>0) infptr->slope2=UPPER_LIMIT/(d-c); 
else return(RR BAD TRAPEZOID); 
if (fgets(Line, MAX_LINE_LENGTH + 1, fp) =  NULL) 

return(RR_SHORT_FlLE); /*if no more lines stop */
}
if (EmptyLineSkip(Line, fp) =  ELS ERR) 

return (RR SHORT FILE);
}y1* **********************************************

* read output variable definitions
************************************************ j

ioptr=NULL;
if (EmptyLineSkip(Line, fp) —  ELS ERR) 

return (RR_SHORT_FILE); /* if nothing to read stop */
for (i = 0; ;i++)
{

sscanf(Line, "%s", buff);
if(strcmp(buff,"SW")=0)break; /* symbol “SW” indicates end of output definitions */

/* get storage for output variable */
if(ioptr=NULL)

{
ioptr=(struct io_type *)calloc(l,sizeof(struct io type));
System_Outputs=ioptr;

}
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else
{

for(ioptr=System_Outputs;ioptr->next;ioptr=ioptr->next); 
ioptr->next=(struct iotype *)calloc(l,sizeof(struct io type)); 
ioptr=ioptr->next;

}
sprintf(ioptr->name,"%s", buff); /* save name of the variable */
if (EmptyLineSkip(Line, fp) =  ELSERR) 

return (RRSHORTFILE); 
mfptr=NULL;
for 0 = 0; j++)

{ /* read the membership function defections*/
if (sscanf(Line, "%*s") —  EOF)

break; /*if blank line come out of this loop */
if (sscanf(Line, "%s %d %d %d %d", buff,

&a, &b, &c, &d) < 5) return (RRSHORTLINE);
/* get storage for membership function */

if(mfptr=NULL)

mfptr=(struct rnf type *)calloc(l.sizeoffstruct mf type)); 
top_mf=mfptr;
ioptr->membership_functions=mfptr;

}
else
{
for(mfptr=top_mf;mfptr->next;mfptr=mfptr->next); 
mfptr->next=(struct mf type *)calloc(l,sizeof(struct mf type)); 
m fpt r= m fpt r- > n e x t;

}
sprintf(mfptr->name,"%s",bufif); /* save membership function name */

/* save the trapezoid definition */
mfptr->pointl=a;
mfptr->point2=d;
if(b-a>0) mfptr->slopel=UPPER_LIMIT/(b-a);
else return)RR BAD TRAPEZOID);
if(d-c>0) mfptr->slope2=UPPER_LIMIT/(d-c);
else returniRR BAD TRAPEZOID);
if (fgets(Line, MAX LINE LENGTH + 1, fp) =  NULL)

return)RR SHORT FILE); /*if no more lines stop */
}
if (EmptyLineSkip)Line, fp) =  ELS ERR) 

return (RR SHORT FILE);
}

* read rules heading

strtok(Line, "\n \t");
for (ioptr=System_Inputs;ioptr!=NULL ;ioptr=ioptr->next)

/* for all inputs, check input names*/
{

Tok = strtok(NULL, "\n \t"); 
if (strcmp)Tok,ioptr->name) != 0)

159



return (RRUNDEFINEDKEYWORD);
}

for(ioptr=System_Outputs;ioptr!=NULL ;ioptF=ioptr->next)
/* for all outputs, check output names*/

{
Tok = strtok(NULL, "Vn \t"); 
if (strcmp(Tok,ioptr->name) != 0)

return (RR UNDEFINED KEYWORD);
}

* read rules

if (EmptyLineSkip(Line, fp) =  ELS ERR) 
return (RRSHORTFILE);

ruleptr=(struct ruletype *)calloc(l,sizeof (struct ruletype));
Rule_Base=ruleptr;
for (i = 0; ;I++) /* for all rules */
{

firstin=0;
sscanf(Line, "%s",buff);
if(strcmp(bufF,"ON")!=0) /* if a rule is not "ON" */
{
if (fgets(Line, MAX LINE LENGTH + 1, fp) =  NULL) 

break; /* get a new line */
continue; /* skip back to top of this loop */

}
strtok(Line, "\n \t");
for(ioptr=System_Inputs;ioptr!=NULL;iopti=ioptr->next)

/* for all inputs */
{
Tok=strtok(NULL, "\n \t"); /* get a token */
if(strcmp(Tok,"IG")=0) {continue;} /* ignore this antecedent */
for (mfptr=ioptr->membership_functions;mfptr!=NULL;mfptr=mfptr->next)

/* check this token against all membership function names */
{
if(strcmp(mfptr->name,T ok)=0)

/* get storage for rule element */
{
if(flrstin=0)
{
ifptr=(struct rule_element_type *)calloc( l,sizeof(struct rule element type));
top_if=ifptr;
ruleptr->if_side=ifptr;
firstin=l;

}
else
{
for(ifptr=top_if; ifptr- >next;if{3tr=:ifptr->next);
ifTptr->next==(struct rule element type *)calloc(l,sizeof(struct rule element type)); 
ifptr=ifptr->next;

}
/* save if side rule element */
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ifptr->value=&mfptr->value;
break;
}
>
}
firstin=0;
for(ioptr=System_Outputs;ioptr!=NULL;ioptr=ioptr->next)

/* for all outputs */
{
Tok=strtok(NULL, "\n \t"); /* get a token */
if(strcmp(Tok,"IG")=0) {continue;}

/* check this token against all membership function names */ 
for (mfptr=ioptr->membership_functions;mfptr!=NULL;mfptr=mfptr->next)
{
if(strcmp(mfptr->name,Tok)=0)

/* get storage for rule element */
{
if(firstin=0)
{

thenpti=(struct rule element type *)calloc(l,sizeof(struct rule element type));
top_then=thenptr;
ruleptr->then_side=fhenptr;
firstin=l;

}
else
{
for(thenptr=top_then;thenptr->next;thenptr=thenptr->next);
thenptr->next=(struct rule element type *)calloc(l,sizeof(struct rule_element_type)); 
thenptr=thenptr->next;

/* save then side rule element */
thenptr->value=&mfptr->value;
break;
}
}
}
if (fgets(Line, MAX_LINE_LENGTH + 1, fp) == NULL) 
break;

/* get storage for next rule */
for(ruleptr=Rule_Base;ruleptr->next;ruleptr=ruleptr->next); 
ruleptr->next=(struct rule type *)calloc(l,sizeof(struct rule type)); 
ruleptr=ruleptr->next;

}
return (RR OK);

} /* END initialize_system */
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F.4 CPN Model Editor

The Cpn.edf file defines the objects and their attributes as well as the allowed 

connections among them for the graphical model builder. It also defines the model 

database and database functions for storing and retrieving the CPN models during 

a graphical editing session (section 5.4.2).

/home/vandy/Xgem/def/Cpn.edf

;;; _*_Lisp_*_
;;; Cpn.edf

;;; UTILITY FUNCTIONS 

;;; read_list function

(defun read-list (pvar type flag &rest attrs)
(mapcar #'(lambda (pair)

(if (listp pair)
(list* (car pair) type flag

(mapcar #' (lambda (a v) (cons a v)) 
attrs (cdr pair)))

(list pair type flag)))
pvar))

;;; write list function

(defun write-list (pi flag &rest attrs)
(let ((res nil))

(mapc #'lambda (p)
(if (and (caddr p) (eq (caddr p) flag))
(push
(if (null attrs) (car p)

(cons (car p)
(mapcar #'(lambda (aname)

(cdr (assoc aname (cdddr p)))) 
attrs)))

res)))
PD

(nreverse res)))
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... *******************************************************************95?
;;; CPN objects

;;; cpn_node primitive object definition

(def-implicit |Cpn-node| “cpnO.icon”
(remarks (page-s “Enter remarks for cpn-node:”))
(|CpnStateN| (value “Enter number of states for cpn-node:”))
(|CpnStateL| (value “Enter state name list for cpn-node:”))
(|CpnStateD| (value “Enter state distribution table for cpn-node:”)))

;;; cpn_relation primitive object definition

(def-implicit |Cpn-rel| “cpn3.icon”
(remarks (page-s “Enter remarks for cpn-relation:”)))

;;; Cluster Component compound object definition 
(def-rep |Cluster Componentl

(var name icon pict remarks cpnn cpn-rel parts cones)
(name name) (icon icon) (pict pict)
(views

(|CPN|
(iconp t)
(title “9x15” |White|)
(object “9x15” |VVhite|)
(drawp nil)
(links
(cpnn |Cpn-node| ¡Cpn-node| cpn-link-read pn-link-write)) 
(attrs
(remarks (page-s "Enter remarks for cluster Component:”))) 
(conns (|CPNlink| (solid 1 line arrow)

((|Cpn-node|) nil (|Cpn-rel|) nil)
((|Cpn-rel|) nil (|Cpn-node|) nil)
((|Cpn-rel|) nil (|Cluster Componentl) (|Cpn-node|)) 
((|Cluster Componentl) (|Cpn-node) (|Cpn-rel|) nil))) 

(struct (parts cpn-rel cones)
(¡Cluster Componentl |Cpn-node|) 
cpn-struct-get cpn-struct-make)))

(form (def-cluster-component ?name ?remarks ?icon ?pict 
(cpn-nodes >cpnn)
(cpn-rel >cpn-rel)
(parts >parts)
(cones >concs))))

************************************************
;;; Editor read/write functions

(defun cpn-link-read (pvar)
(read-list pvar ‘|Cpn-nodej jCpn-node| ‘remarks ‘|CpnStateN|
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‘|CpnStateL| ‘|CpnStateD|))

(defun cpn-link-write (pv)
(write-list pv ‘|Cpn-node| ‘remarks ‘|CpnStateN| ‘|CpnStateL| ‘|CpnStateD|))

(defiin-cpn-struct-get (parts cpn rel cones)
(nconc (mapear #'(lambda (part) (list (car part) (cadr part) :item

(cons ‘remarks (caddr part)))) parts) 
(mapear #'(lambda (cpn-rel)

;;; This should GO AWAY!
(if (symbolp cpn-rel) (setq cpn-rel (list cpn-rel “”)))
(let* (

(name nth 0 cpn-rel)) 
rem nth 2 cpn-rel)))

(list name ‘|Cpn-rel| : implicit 
(cons ‘remarks rent)))) 

cpn-rel)))

(defun cpn-struct-make (parts conns links convs)
(list

(mapean #’(lambda (p) (cond ((equal (cadr p) ‘|Cpn-rel|) ())
((equal (cadr p) ‘|Cpn-node|) ())
(t (list (cons (car p)

(list (cadr p)
(list edr (assoc ‘remarks (eddr p)))))))))

parts)
conns))

... ********************************************* 
;;; Model Database:

(defvar *cpn-dbase-dir* #””)

(defvar *valids* ‘(def-cluster-component))

(def-database cpn
(select select-cpn-database)
(list list-epn-database)
(input input-epn-database)
(output output-epn-database))

...********************************************** 
Database functions

;;; function to set the cpn database directory 
(defun select-cpn-database (name)

(if (check-file name)
(setq *cpn-dbase-dir* (truename name)) 
nil))
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;;; function to get the list of cpn model files 
(defun list-cpn-database ()

(let ((list (directory (merge-pathnames *cpn-dbae-dir* “.cpn”))))
(mapcar #’file-namestring list)))

;;; function to read a cpn model into the editor 
(defun input-cpn-dbase (arg)

(prog (infile)
(typecase arg

(string
(setq infile (open (merge-pathnames *cpn-dbase-dir* arg)

:if-does-not-exist nil))
(when (hull infile)

(warning “Can’t input CPN database: ~S” arg) 
(return nil)))

(stream (setq infile arg))
(t (warning “Unknown arg type for ~S.” arg)

(return nil)))
(let* ((eof “(())) (valids *valids*))

(return
(do* ((form (read infile nil eof) (read infile nil eof))

(eofp (eq form eof) (eq form eof)
(good (and (listp form) (member (car form) valids))

(and (listp form) member (car form) valids))))
((or eofp good)

(if eofp (progn (close infile) (return nil))
(return (values form infile)))))))))

;;; function to write to a cpn model file 
(defun output-cpn-database (form &optional file)

(prog (outfile)
(typecase file

(string
(setq outfile

(open (merge-pathnames file
(merge-pathnames *cpn-dbase-dir* “.cpn”))
: direction : output))

(format outfile CPN database: ~S~%” file)
(format outfile “~S~%” (get-icondir)))

(stream (setq outfile file))
(t (warning “Unknown arg type for ~S.” file)

(return nil)))
(if (null form) (close outfile)

(progn
(format outfile Definition for ~S.” (cadr form))
((pprint form outfile)
(terpri outfile)
(return outfile)))))
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(car (find-if #'(lambda (1) (when (listp 1) (and (eq node (nth 2 1))
(eq 'nil (nth 1 1))
(eq 'nil (nth 3 1))))) al)))

(defun get-par (al rel kw)
(let ((pari (remove-if-not #'(lambda (1) (when (listp 1) (and 

(eq rel (nth 2 1))
(eq 'nil (nth 3 1))))) al)))

(cond ((eq kw ’num) (length pari))
((eq kw ’li) (mapcar #'(lambda(l) (if (eq 'nil (cadr 1)) (car 1) (car (cadr 1)))) pari)))))

(defun modify-par (elm-list concs-list)

;;; copy file to file.old
(let* ((*file-name* (format nil "~a" (car (nth 3 elm-list))))

(in-strm (open (strcat *file-name* " nod") :direction input))
(out-strm (open (strcat *file-name* " old") direction :output)))

(do ((*str* (read-line in-strm) (read-line in-strm)))
((null *str*))
(format out-strm "~&~a" *str*))

(close in-strm)
(close out-strm)

;;; modify parent list and write to file 
(setq in-strm (open (strcat *file-name* " old") :direction :input))
(setq out-strm (open (strcat *file-name* " nod") :direction :output :if-exists supersede))

(format out-strm "~%")
(format out-strm "~&~a" (read-line in-strm))
(let ((*str* (read-line in-strm)))

(format out-strm "~&~a " *str*))

(do ((1-do (get-par concs-list (car elm-list) 'l i ) (cdr 1-do))
(n 1 (1+ n)))

((endp 1-do))
(format out-strm "~a " (car 1-do)))

(do ((*str* (read-line in-strm) (read-line in-strm)))
((null *str*))
(format out-strm "~&~a" *str*))

(format out-strm "~%~%")
(close in-strm)
(close out-strm)))
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..*********************************************************************
»»
;; trans
;; translates cpn model files (*.cpn), generated by graphical editing (xgem),
;; from the format specified in "Cpn.edf to xhugin's (the causal probabilistic
;; inference engine) node specification format (*.nod).
. .*********************************************************************

(defun trans (fn-i x-lev x-offs y-lev y-offs)
(setq x-lev (+ x-lev x-offs))
(setq y-lev (+ y-lev y-offs))

;; (format t "~a ~a~&" x-lev y-lev)
(dolist (part (get-list 'PARTS (get-expr fn-i)))
(let* ((obj-offs-list (get-lista 'O (get-list 'CPN (nth 4 (get-expr fn-i)))))

(name (cadr part))
(x-offs (or (nth 3 (get-listb name obj-offs-list)) 0))
(y-offs (or (nth 4 (get-listb name obj-offs-list)) 0)))

(trans name x-lev x-offs y-lev y-offs)))
(let* ((model (get-expr fn-i))

(cones (get-concs model)))
(dolist (elm (get-list 'CPN-NODES model))
(let ((rels (get-rel cones (first elm)))

(node-offs-list (get-lista 'O (get-list 'CPN (nth 4 model))))
(stream (open (streat (format nil "~a" (first elm)) " nod") :direction :output :if-exists 

:append :if-does-not-exist :create)))
(format stream a \"~a\" ~a -a  ~&(" (first elm) (cadr elm)
(+ x-lev (or (nth 3 (get-listc (car elm) node-offs-list)) 0))
(+ 5000 (* -1 (+ y-lev (or (nth 4 (get-listc (car elm) node-offs-list)) 0)))))

(dolist (elml (nth 3 elm))
(format stream " ~s" elm 1))

(format stream ")")
(do ((1-do (get-par cones rels ' l i ) (edr 1-do))

(n 1 (1+ n)))
((endp 1-do))
(format stream " ~a " (car 1-do)))

(format stream "~&~a~%-~%" (nth 4 elm))
(close stream)))

(dolist (elm2 (get-list-pp cones))
(modify-par elm2 cones))))

*****************************************************************************
;;; call trans on top-level model file, here "vent.cpn". 
****************************************************************************

(trans jvent| 0 0 0 0) 
(exit)
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F.6 Model Files

The model files implement the respiratory monitoring application as described in 

section 6.3. Each application is modelled from several aspects, such as the process 

model, panel, physical, and processor (section 3.6.1). The model files are therefore 

organised according to these aspects. Within each aspect there is a project file 

(*.prj) which basically contains a list of the model databases for that aspect.

F.6.1 PML Aspect

This section contains the Process model (PML) files for the prototype application 

(section 6.3). This includes the project file “resp.prj” and a number of PML 

database files.

/home/vandy/Designs/Resp2/Pml/resp.prj

This is the project file for the PML aspect.

;;; Project file: |resp.prj|
(DEF-PROJECT

(|resp| 7users/vandy/Designs/Resp2/Pml/" 
7home/vandy/Icons/Resp2/Pml/" )

"vent.pml" "gasx.pml" "pul circ.pml" "o2trans.pml" "sys circ.pml" 
"o2cons.pml" "oxyg.pinl" "o2del.pml" "resp.pml")
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/home/vandy/Designs/Resp2/Pml/vent.pml

The “vent, pmi” file contains all the definitions for the class of ventilation processes 

from the PML aspect.

;;; PML database: "vent.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |ventilation|.
(DEF-PROCESS |ventilation| (->) NIL

((|mv_lo| NIL) (|mv_hi| NIL) (|fio2_hi| NIL) (|prp_hi| NIL)
(|vdot_a_lo| NIL))

((|pao2| : DOUBLE) (|sao2| : DOUBLE) (|paco2| : DOUBLE)) NIL NIL NIL 
NIL NIL NIL
((IStructural! (T |ventilation| 337 6))
(|Monitoring+Control| (O |pao2| |Signal| 255 282 255 270)

(O |sao2| |Signal| 255 322 255 310)
(O |paco2| |Signal| 255 362 255 350)
(O |vte| |Signal| 85 42 85 30) (O |f] |Signal| 85 82 85 70)
(0|mvi |Signal| 85 122 85 110)
(O |peak| |Signal| 85 162 85 150)
(O |plat| |Signal| 85 202 85 190)
(O |peep| |Signal| 85 242 85 230)
(O |pmin| ¡Signal! 85 282 85 270)
(O ¡mean| |Signal| 85 322 85 310)
(O |fio2| |Signal| 85 362 85 350)
(O |c| ¡Signal! 85 402 85 390) (O |r| |Signal| 85 442 85 430)
(O |mvs| ¡Signal! 85 482 85 470)
(O [fsj |Signal| 85 522 85 510)
(O |etco2| |Signal| 255 242 255 230)
(O |ute| |Event| 427 81 426 105)
(O |fio2_t| |Event| 429 206 429 233)
(O |sao2_t| ¡Eventi 428 166 423 189)
(O |hit_e| |Event| 393 82 377 105)
(O |hypo_vent_al| |OnlineAlarm| 255 42 255 30)
(O |hyper_vent_al| |OnlineAlarm| 255 82 255 70)
(O ¡FI02_hi_al| |OnlineAlarm| 255 122 255 110)
(O |PRP_hi_al| ¡OnlineAlarml 255 162 255 150)
(O ¡ALVENT_lo_al| ¡OnlineAlarm| 255 202 255 190)
(O |Resp_acid_al| |OfflineAlarm| 255 402 255 390)
(O |Resp_alka_al| ¡OfflineAlarm! 255 442 255 430)
(O |ipl| |InterfacePoint| 15 42 5 30)
(O |ip2| |InterfacePoint| 15 82 5 70)
(O |ip3| |InterfacePoint| 15 122 5 110)
(O |ip4| |InterfacePoint| 15 162 5 150)
(O |ip5| |InterfacePoint| 15 202 5 190)
(O |ip6| |InterfacePoint| 15 242 5 230)
(O |ip7| |InterfacePoint| 15 282 5 270)
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(O |ip8| |InterfacePoint| 15 322 5 310)
(O |ip9| |InterfacePoint| 15 362 5 350)
(O |ipl0| |InterfacePoint| 15 402 5 390)
(O |ip ll| |InterfacePoint| 15 442 5 430)
(O |ipl2| |InterfacePoint| 15 482 5 470)
(O ¡ipl3| |InterfacePoint| 15 522 5 510)
(O |ipl4| |InterfacePoint| 195 42 195 30)
(O |ipl5| |InterfacePoint| 195 82 195 70)
(O |ipl6| |InterfacePoint| 195 122 195 110)
(O |ipl7| |InterfacePoint| 195 162 195 150)
(O |ipl9| |InterfacePoint| 195 242 195 230)
(O |ipl8| |InterfacePoint| 195 202 195 190)
(O |fio2_hi_pro| |Alarm2P| 461 138 430 121)
(O |hi_lo_vnt| |Alarm4P| 458 29 458 19)
(O |ip20| |InterfacePoint| 195 482 195 470)
(O |ip211 |InterfacePoint| 195 522 195 510)
(O |petco2_hi| ¡OnlineAlarm| 255 482 255 470)
(O ¡petco2_lo| |OnlineAlarm| 255 522 255 510)
(C |IO connection! (|ipl| NIL NIL NIL) (¡vte| NIL NIL NIL) 

]White| 35 50 85 50)
(C ¡10 connection! (|ip2| NIL NIL NIL) (|f| NIL NIL NIL) 

|White| 35 90 85 90)
(C |IO connection! (|ip3| NIL NIL NIL) (|mv| NIL NIL NIL) 

|White| 35 130 85 130)
(C |IO connection! (|ip4| NIL NIL NIL) (|peak| NIL NIL NIL) 

¡White! 35 170 85 170)
(C |IO connection! (|ip5| NIL NIL NIL) (|plat| NIL NIL NIL)

|White| 35 210 85 210)
(C |IO connection! (|ip6| NIL NIL NIL) (|peep| NIL NIL NIL)

|White| 35 250 85 250)
(C |IO connection! (|ip7| NIL NIL NIL) (|pmin| NIL NIL NIL) 

|White| 35 290 85 290)
(C !IO connection! (|ip8| NIL NIL NIL) (|mean| NIL NIL NIL) 

|White| 35 330 85 330)
(C |IO connection! (|ip9| NIL NIL NIL) (|fio2| NIL NIL NIL)

|White! 35 370 85 370)
(C |IO connection! (|ipl0| NIL NIL NIL) (|c| NIL NIL NIL) 

|White| 35 410 85 410)
(C |IO connection! (|ip 111 NIL NIL NIL) (|r| NIL NIL NIL)

|White| 35 450 85 450)
(C |IO connection! (|ipl2| NIL NIL NIL) (|mvs| NIL NIL NIL)

|White| 35 490 85 490)
(C |IO connection! (|ipl3| NIL NIL NIL) (|fs| NIL NIL NIL)

|White| 35 530 85 530)
(C |IO connection! C|ipl4-| NIL NIL NIL)

(|hypo_vent_al| NIL NIL NIL) |White| 215 50 260 50)
(C |IO connection! (|ipl5| NIL NIL NIL)

(|hyper_vent_al| NIL NIL NIL) ¡White! 215 90 260 90)
(C |IO connection! (|ipl6| NIL NIL NIL)

(|FI02_hi_al| NIL NIL NIL) |White| 215 130 260 130)
(C |IO connection! (|ipl7| NIL NIL NIL)

(|PRP_hi_al| NIL NIL NIL) |White| 215 170 260 170)
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(C |IO connection! (|ipl9| NIL NIL NIL) (|etco2| NIL NIL NIL) 
|White| 215 250 260 250)

(C |IO connection! (|ipl8| NIL NIL NIL)
(|ALVENT_lo_al| NIL NIL NIL) |White| 215 210 260 210)

(C |Dataflow| (|sao2| NIL NIL NIL)
(|fio2_hi_pro| ¡Signal 1| INSIGS 0) |White| 273 333 418 333 
418 146 468 146)

(C ¡Dataflow! (|fio2| NIL NIL NIL)
(|fio2_hi_pro| |Signal2| INSIGS 1) |White| 101 373 115 373 
115 156 468 156)

(C ¡Dataflow! (|fIo2_hi_pro| ¡out! OUTALS 0)
(|FI02_hi_al| NIL NIL NIL) |White| 512 165 530 165 530 129 
274 129)

(C ¡Dataflow) (|sao2_t| NIL NIL NIL)
(|fio2_hi_pro| ¡ThresholdlI INEVS 0) ¡White| 444 185 464 
185)

(C ¡Dataflow! (|fio2_t| NIL NIL NIL)
(|fio2_hi_pro| |Threshold2| INEVS 1) |White| 447 219 464 
219 464 197)

(C ¡Dataflow! (|hi_lo_vnt| ¡out 11 OUTALS 0)
(|hypo_vent_al| NIL NIL NIL) |White| 511 36 523 36 523 24 
266 24 266 47)

(C |Dataflow| (|hi_lo_vnt| |out2| OUTALS 1)
(|hyper_vent_al| NIL NIL NIL) |White| 506 55 291 55 291 91 
276 91)

(C ¡Dataflow] (|mv| NIL NIL NIL)
(|hi_lo_vnt| ¡Signal! INSIGS 0) |White| 102 133 116 133 116 
66 467 66)

(C |Dataflow| (|ute| NIL NIL NIL)
(|hiJo_vnt| ¡Threshold 11 INEVS 0) |White| 437 94 437 77 
466 77)

(C ¡Dataflow) (|hit_e| NIL NIL NIL)
(|hi_lo_vnt| |Threshold2| INEVS 1) |White| 408 92 462 88)

(C |IO connection! (|ip20| NIL NIL NIL)
(|petco2_hi| NIL NIL NIL) ¡White| 215 490 256 490)

(C |IO connection! (|ip21| NIL NIL NIL)
(|petco2_lo| NIL NIL NIL) |White| 215 530 256 530)

(T |ventilation| 337 6))
(¡Simulation! (O |petco2_lo| |OnlineAIarm| 258 521 258 515)

(O |petco2_hi| ¡OnlineAlarm! 258 483 257 473)
(O |hit_e| |Event| 393 82 377 105)
(O |sao2_t| |Event| 429 186 430 211)
(O |fio2_t| |Event| 427 142 428 164)
(O |ute| |Event| 46 180 45 175)
(O |etco2| ¡Signal! 259 332 258 318)
(O |hypo_vent_al| |OnlineAlarm| 255 42 255 30)
(O |hyper_vent_al| ¡OnlineAlarm| 255 82 255 70)
(O |FI02_hi_al| |OnlineAlarm| 255 122 255 110)
(O |PRP_hi_al| |OnlineAlarm| 255 162 255 150)
(O |ALVENT_lo_al! |OnlineAlarm| 256 449 256 439)
(O ¡Resp acid al] |OSlineAlarm| 255 372 255 360)
(O |Resp_alka_al| ¡OfflineAlarm| 255 412 262 400)
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(O |vte| |Signal| 85 42 85 30) (O |f| |Signal| 85 82 85 70)
(O |mv| |Signal| 85 122 85 110)
(O |peak| |Signal| 85 162 85 150)
(O |plat| ¡Signal] 85 202 85 190)
(O |peep| |Signal| 85 242 85 230)
(O |pmin| |Signal| 85 282 85 270)
(O |mean| |Signal| 85 322 85 310)
(O |fio2| |Signal| 85 362 85 350)
(O |c| |Signal| 85 402 85 390) (O |r| |Signal| 85 442 85 430)
(O |mvs| |Signal| 85 482 85 470)
(O |fs| |Signal| 85 522 85 510) (T |ventilation| 337 6)) 

(|StateTransitions| (O |hit_e| |Event| 393 82 377 105)
(O |sao2_t| |Event| 429 186 430 211)
(O |fio2_t| |Event| 427 142 428 164)
(O |ute| |Event| 46 180 45 175) (T |ventilation| 337 6)) 

(|FailurePropagation| (O |mv_lo| |FailureModej 25 44 2 30)
(O |mv_hi| |FailureMode| 25 84 2 70)
(O |fio2_hi| |FailureMode| 25 122 2 110)
(O |prp_hi| |FailureMode| 25 162 2 150)
(O |vdot_a_lo| |FailureMcxle| 25 202 2 190)
(O |hypo_vent_al| |OnlineAlarm| 105 42 105 30)
(O |hyper_vent_al| |OnlineAJarm| 105 82 105 70)
(O |FI02_hi al| |OnlineAlarm| 105 122 105 110)
(O |PRP_hi_al| |OnlineAlarm] 105 162 105 150)
(O |ALVENT_lo_al| |OnlineAlarm| 105 202 105 190)
(O |Resp_acid_al| |OfflineAlarm| 105 372 105 360)
(O |Resp_alka_al| ¡OfflineAlarm| 105 412 105 400)
(O |petco2_hi| ¡OnlineAlarm| 106 248 106 237)
(O jpetco2_lo| |OnlineAlarm| 106 294 105 283)
(C ¡Failuremode exclusivity! (|mv_lo| NIL NIL NIL)

(|mv_hi| NIL NIL NIL) ¡White| 42 62 42 94)
(C ¡Failure/Alarm connection! (|mv_lo| NIL NIL NIL) 

(|hypo_vent_al| NIL NIL NIL) |White| 45 55 110 55)
(C ¡Failure/Alarm connection! (|mv_hi| NIL NIL NIL) 

(|hyper_vent_al| NIL NIL NIL) |White! 45 95 110 95)
(C ¡Failure/Alarm connection! (|fio2_hi| NIL NIL NIL) 

(|FI02_hi_al| NIL NIL NIL) |White| 45 135 110 135)
(C ¡Failure/Alarm connection! (|prp_hi| NIL NIL NIL) 

(|PRP_hi_al| NIL NIL NIL) |White| 45 175 110 175)
(C ¡Failure/Alarm connection! (¡vdot_a_lo| NIL NIL NIL) 

(|ALVENT_lo_al| NIL NIL NIL) |White| 45 215 110 215)
(C ¡Failure/Alarm connection! (|mv_lo| NIL NIL NIL) 

(|Resp_acid_al| NIL NIL NIL) |White! 30 54 14 54 14 383 108 
383)

(C ¡Failure/Alarm connection! (|mv_hi| NIL NIL NIL) 
(|Resp_alka_al| NIL NIL NIL) ¡White] 30 95 6 95 6 423 108 
423)

(C ¡Failure/Alarm connection! (|mv_lo| NIL NIL NIL) 
(|petco2_hi| NIL NIL NIL) |White| 30 54 14 54 14 259 108 
259)

(C ¡Failure/Alarm connection! (|mv_hi| NIL NIL NIL) 
(|petco2_lo| NIL NIL NIL) |White| 30 95 6 95 6 308 108 308)
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(T |ventilation| 337 6»
(|OperatorInterface| (O |petco2_lo| |OnlineAlarm| 258 521 258 515) 

(O |petco2_hi| |OnlineAlarm| 258 483 257 473)
(O |vte| |Signal| 85 42 85 30) (O \f\ |Signal| 85 82 85 70)
(0|m v| |Signal| 85 122 85 110)
(O |peak| |Signal| 85 162 85 150)
(O |plat| I Signal I 85 202 85 190)
(O |peep| |Signal| 85 242 85 230)
(O |pmin| |Signal| 85 282 85 270)
(O |mean| |Signal| 85 322 85 310)
(O |fio2| |Signal| 85 362 85 350)
(O jcj |Signal| 85 402 85 390) (O |r| |Signal| 85 442 85 430)
(O |mvs| |Signal| 85 482 85 470)
(O |fs| |Signal| 85 522 85 510)
(O |etco2| |Signal| 483 214 482 197)
(O ]ute| IEvent| 488 368 486 353)
(O |fio2_t| |Event| 488 331 489 317)
(O |sao2_t| |Event| 489 405 489 391)
(O |hit_e| |Event| 489 295 488 281)
(O |hypo_vent_al| |OnlineAlarm| 355 42 355 30)
(O |hyper_vent_al| |OnlineAlarm| 355 82 355 70)
(O |FI02_hi_al| |OnlineAlarm| 355 122 355 110)
(O |PRP_hi_al| |OnlineAlarm| 355 162 355 150)
(O |ALVENT_lo_al| |OnlineAlarm| 485 41 483 29)
(O |Resp_acid_al| |OfflineAlarm| 355 382 355 370)
(O |Resp_alka_al| |OfflineAlarm| 355 422 355 410)
(O |ventilation| |vent| 299 212 313 354)
(C [Display connection! (|peak| NIL NIL NIL)

(|ventilation| |peak| 1NSIGNALS 3) |White| 100 175 237 175 
237 261 304 261)

(C ¡Display connection! (|plat| NIL NIL NIL)
(|ventilation| |plat| INSIGNALS 4) |White| 100 215 227 215 
227 270 304 270)

(C |Display connection! (|peep| NIL NIL NIL)
(|ventilation| |peep| INSIGNALS 5) |White| 100 255 216 255 
216 280 304 280)

(C ¡Display connection! (|mean| NIL NIL NIL)
(¡ventilation! |mean| INSIGNALS 7) |White| 100 335 216 335 
216 300 304 300)

(C |Display connection! (|fio2| NIL NIL NIL)
(¡ventilation! |fio2| INSIGNALS 8) |White| 100 375 227 375 
227 308 304 308)

(C ¡Display connection! (|mvs| NIL NIL NIL)
(¡ventilation! |mvs| INSIGNALS 11) |White| 100 495 282 495 
282 330 304 330)

(C ¡Display connection! (|fs| NIL NIL NIL)
(¡ventilation! |fs| INSIGNALS 12) |White| 100 535 292 535 
292 342 304 342)

(C ¡Display connection! (|r| NIL NIL NIL)
(¡ventilation! |r| INSIGNALS 10) |White| 100 455 276 455 
276 325 304 325)

(C ¡Display connection! (|c| NIL NIL NIL)
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(|ventilation| |c| INSIGNALS 9) |White| 100 415 245 415 245 
316 304 316)

(C ¡Display connection! (|mv| NIL NIL NIL)
(|ventilation| |mv| INSIGNALS 2) |White| 100 135 245 135 
245 241 304 241)

(C ¡Display connection! (|f] NIL NIL NIL)
(|ventilation| ¡f] INSIGNALS 1) |White! 100 95 264 95 264 
229 304 229)

(C ¡Display connection! (|vte| NIL NIL NIL)
(|ventilation| |vte| INSIGNALS 0) |White| 100 55 278 55 278 
219 304 219)

(C ¡Display connection! (|pmin| NIL NIL NIL)
(|ventilation| |pmin| INSIGNALS 6) |White| 100 290 304 290)

(C ¡Alarm connection! (|hypo_vent_al| NIL NIL NIL)
(¡ventilation! ¡hypo_ven| ALARMS 0) |White! 373 54 434 54 
434 220 414 220)

(C ¡Control connection! (¡ventilation! |evl| OUTEVENTS 0)
(|ute| NIL NIL NIL) |White| 416 323 430 323 430 375 494 
375)

(C |Alarm connection! (|hyper_vent_al| NIL NIL NIL)
(|ventilation| ¡hyper_ven| ALARMS 2) |White| 373 95 437 95 
437 233 414 233)

(C ¡Alarm connection! (|FI02_hi_al| NIL NIL NIL)
(|ventilation| |fio2_hi| ALARMS 1) |White| 373 133 444 133 
444 226 414 226)

(C ¡Alarm connection! (¡PRP_hi_al| NIL NIL NIL)
(¡ventilation! !PRP_hi| ALARMS 3) |White| 375 174 456 174 
456 240 414 240)

(C ¡Alarm connection! (¡ALVENT_lo_al| NIL NIL NIL)
(¡ventilation! |Alv_ven_lo| ALARMS 4) |White| 489 54 450 54 
450 250 414 250)

(C ¡Control connection! (|ventilation| |ev3| OUTEVENTS 2)
(|sao2_t| NIL NIL NIL) |White| 415 338 424 338 424 419 493 
419)

(C ¡Control connection! (¡ventilation! |ev2| OUTEVENTS 1)
(|fio2_t| NIL NIL NIL) ¡White| 415 308 443 308 443 343 491 
343)

(C ¡Control connection! (¡ventilation! |ev4| OUTEVENTS 3)
(|hit_e| NIL NIL NIL) |White| 414 294 453 294 453 310 494 
310)

(C ¡Alarm connection! (¡Resp_acid_al| NIL NIL NIL)
(¡ventilation! |Resp_acid| ALARMS 5) |White| 372 395 444 
395 444 262 414 262)

(C ¡Alarm connection! (|Resp_alka_al| NIL NIL NIL)
(¡ventilation! |Resp_alka| ALARMS 6) |White| 375 434 433 
434 433 274 414 274)

(T |ventilation| 337 6)))
((|Structural| . "vent-str.icon")
(|Monitoring+Control| . "vent-mon.icon") (¡Simulation!)
(¡StateTransitions|) (|FailurePropagation| . "vent-fpg.icon")
(|OperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS)
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(PARAMETERS)
(SIGNALS (|vte| : DOUBLE NIL) (|f) : DOUBLE NIL) (|mv| : DOUBLE NIL) 

(|peak| : DOUBLE NIL) (|plat| : DOUBLE NIL)
(Ipeepl : DOUBLE NIL) (|pmin| : DOUBLE NIL)
(¡mean] : DOUBLE NIL) (|fio2| : DOUBLE NIL)
(|c| : DOUBLE NIL) (|r| : DOUBLE NIL) (|mvs| : DOUBLE NIL)
(|fs| : DOUBLE NIL) (|etco2| : DOUBLE NIL))

(EVENTS (|ute| : DOUBLE NIL NIL) (|fio2_t| : DOUBLE NIL NIL)
(|sao2_t| : DOUBLE NIL NIL) (|hit_e| : DOUBLE NIL NIL))

(ALARMS (|hypo_vent_al| :ONLINE) (|hyper_vent_al| :ONLINE) 
(|FI02_hi_al| : ONLINE) (|PRP_hi_al| : ONLINE)
(|ALVENT_lo_al| : ONLINE) (|Resp_acid_al| : OFFLINE) 
(|Resp_alka_al| : OFFLINE) (|petco2_hi| ONLINE)
(|petco2_lo| : ONLINE))

(INTERFACE ((|ipl| SSIGNALIFP) -> |vte|)
((|ip2| SSIGNALIFP) -> |f|) ((|ip3| SSIGNALIFP) -> |mv|)
((|ip4| SSIGNALIFP) -> |peak|) ((|ip5| SSIGNALIFP) -> |plat|)
((¡ip6| SSIGNALIFP) -> |peep|) ((|ip7| SSIGNALIFP) -> |pmin|)
((|ip8| SSIGNALIFP) -> |mean|) ((|ip9| SSIGNALIFP) -> |fio2|)
((|iplO| SSIGNALIFP) -> |c|) ((|ipl 1| SSIGNALIFP) -> |r|)
((|ipl2| SSIGNALIFP) -> |mvs|) ((|ipl3| SSIGNALIFP) -> |fs|)
((|ipl4| ALARMIFP) -> |hypo_vent_al|)
((|ipl5| ALARMIFP) -> |hyper_vent_al|)
((|ipl6| ALARMIFP) -> |FI02_hi_al|)
((|ipl7| ALARMIFP) -> |PRP_hi_al|)
((|ipl9| SSIGNALIFP) -> |etco2|)
((|ipl8| ALARMIFP) -> |ALVENT_lo_al|)
((|ip20| ALARMIFP) -> |petco2_hi|)
((|ip211 ALARMIFP) -> |petco2_lo|))

(RT-DATABASE)
(PROCESSORS

(|fio2_hi_pro|
(|Alarm2P|

(((|sao2| |fio2| |sao2_t| |fio2_t|) -> (|FI02_hi_al|))
NIL NIL NIL)))

(|hi_lo_vnt|
(|Alarm4P|

(((|mv| |ute| |hit_e|) ->
(|hypo_vent_al| |hyper_vent_al|))

NIL NIL NIL))))
(CONTROL)
(FAULT-MODES

(|mv_lo| (|hypo_vent_al| |Resp_acid_al| |petco2_hi|) (|mv_hi|)
NIL NIL)

(|mv_hi| (|hyper_vent_al| |Resp_alka_al| |petco2_Io|) NIL NIL 
NIL)

(|fio2_hi| (|FI02_hi_al|) NIL NIL NIL)
(|prp_hi| (|PRP_hi_al|) NIL NIL NIL)
(|vdot_a_lo| (|ALVENT_lo_al|) NIL NIL NIL))

(FAULT-GRAPH) (SIMULATION)
(PANEL NIL 

(|ventilation|
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(|vent| (|vte| |f] |mv| |peak| |plat| |peep| |pmin|
|mean| |fio2| |c| |r| |mvs| |fs|)

NIL NIL (|ute| |fio2_t| |sao2_t| |hit_e|) 
(|hypo_vent_al| |hyper_vent_al| |FI02_hi_al| 

|PRP_hi_al| |ALVENT_lo_al| |Resp_acid_al| 
|Resp_alka_al|))))

(SUBPROC))
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/home/vandy/Designs/Resp2/Pml/gasx.pml

The “gasx.pml” describes the class of processes of type gas-exchange.

;;; PML database: "gasx.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |gasx|.
(DEF-PROCESS |gasx| (->) NIL ((|impaired_difll NIL)) NIL NIL NIL NIL 

NIL NIL NIL
((|Structural| (T |gasx| 337 6))
(|Monitoring+Control| (O |RdifF_hij ¡OnlineAIarm| 125 52 125 40)

(O |ipl| |InterfacePoint| 40 52 40 40)
(C |IO connection! (|ipl| NIL NIL NIL)

(|Rdiff_hi| NIL NIL NIL) |White| 60 65 130 65)
(T |gasx| 337 6))

(|Simulation| (O |Rdiff_hi| |OnlineAlarm| 121 53 122 42)
(T |gasx| 337 6))

(|StateTransitions| (T ¡gasx| 337 6))
(|FailurePropagation| (O |impaired diff] ¡FailureMode| 25 52 0 40)

(O |Rdiff_hi| ¡OnlineAlarm| 125 52 125 40)
(C ¡Failure/Alarm connection! (¡impaireddiff] NIL NIL NIL)

(|RdiffJii| NIL NIL NIL) |White| 45 65 130 65)
(T |gasx| 337 6))

(|OperatorInterface| (O |Rdiff_hi| |OnlineAlarm| 125 52 125 40)
(T |gasx| 337 6)))

((¡Structural!. "gasx-str.icon")
(¡Monitoring+Control| . "gasx-mon.icon") (¡Simulation!)
(|StateTransitions|) (|FailurePropagation| . "gasx-fpg.icon") 
((Operatorlnterfacel))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS) (SIGNALS) (EVENTS) (ALARMS (|Rdiff_hi| : ONLINE)) 
(INTERFACE ((|ipl| ALARMIFP) -> |RdiffJii|)) (RT-D AT ABASE) 
(PROCESSORS) (CONTROL)
(FAULT-MODES (|impaired_diff] (|Rdiff_hi|) NIL NIL NIL)) 
(FAULT-GRAPH) (SIMULATION) (PANEL NIL) (SUBPROC))
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/home/vandy/Designs/Resp2/Pml/pul_circ.pml

The “pu lcirc” describes the pulmonary circulation type of process.

;;; PML database: "pul circ.pml"
(DEF-ICONL1B 7home/vandy/Icons/Resp2/Pml7")
;;; Definition for |pul_circ|.
(DEF-PROCESS |pul_circ| (->) NIL

((|pul_hi_tens| NIL) (|shunt_hi| NIL) (|preload_lo| NIL)) NIL NIL 
NIL NIL NIL NIL NIL 
((|Structural| (T |pul_circ| 337 6))
(|Monitoring+Control| (O |PAPm| |Signal| 125 135 126 124)

(O |PAPs| |Signal| 126 209 126 201)
(O |PAPd| ¡Signal! 127 246 129 237)
(O |Qs/Qt_hi_al| |OnlineAlarm| 125 92 125 80)
(O |pul hi t al| ¡OnlineAlarm| 125 52 125 40)
(O |PAPd-PAWP_hi| |OfflineAlarm| 126 176 125 165)
(O |PAWP_hi| |OfflineAlarm| 128 293 130 278)
(O |PAWP_lo| |OfflineAlarm| 129 335 129 320)
(O |ipl| |InterfacePoint| 40 92 40 80)
(O |ip2| |InterfacePoint| 40 52 40 40)
(O |ip3| |InterfacePoint| 40 138 41 124)
(O |ip4| |InterfacePoint| 42 212 41 201)
(O |ip5| |InterfacePoint| 43 250 42 241)
(C |IO connection! (|ipl| NIL NIL NIL)

(|Qs/Qt_hi_al| NIL NIL NIL) |White| 60 102 130 102)
(C |IO connection! (|ip2| NIL NIL NIL)

Opul hi t_al| NIL NIL NIL) |White| 60 62 130 62)
(C |IO connection! (|ip3| NIL NIL NIL) (|PAPm| NIL NIL NIL) 

|White| 58 147 128 148)
(C |IO connection! (|ip4| NIL NIL NIL) (|PAPs| NIL NIL NIL) 

¡White! 61 220 129221)
(C |IO connection! (|ip5] NIL NIL NIL) (|PAPd| NIL NIL NIL)

|White| 63 258 131 258)
(T |pul_circ| 337 6))

(¡Simulation! (O |PAWP_lo| |OfflineAlarm| 129 335 129 320)
(O |PAWP_hi| |OfflineAlarm| 128 293 130 278)
(O |PAPd-PAWP_hi| |OfflineAlarm| 126 176 125 165)
(O |PAPd| ¡Signal! 127 246 129 237)
(O |PAPs| |Signal| 126 209 126 201)
(O |PAPm| |Signal! 125 135 126 124)
(O |pul hi t al| |OnlineAlarm| 126 53 124 41)
(O |Qs/Qt_hi_al| |OnlineAlarm| 125 92 125 80)
(T |pul_circ| 337 6))

(|StateTransitions| (T |pul_circ| 337 6))
(|FailurePropagation| (O |pul_hi_tens| |FailureMode| 25 52 5 40) 

(O |shunt_hi| |FailureMode| 25 92 5 80)
(O |preload_lo| |FailureMode| 32 334 10 313)
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(O |Qs/Qt_hi_al| |OnlineAlarm| 125 92 125 80)
(O |pul_hi_t_al| |OnlineAlarm| 125 52 125 40)
(O |PAPd-PAWP_hi| |OfflineAlarm| 126 176 125 165)
(O |PAWP_hi| ¡OfflineAlarm| 128 293 130 278)
(O |PAWP_lo| ¡OfflineAlarm| 129 335 129 320)
(C ¡Failure/Alarm connection! (|shunt_hi| NIL NIL NIL)

(|Qs/Qt_hi_al| NIL NIL NIL) |White| 45 102 130 102)
(C ¡Failure/Alarm connection! (|pul_hi_tens| NIL NIL NIL) 

(|pul_hi_t_al| NIL NIL NIL) |White| 45 62 130 62)
(C ¡Failure/Alarm connection! (|pul_hi_tens| NIL NIL NIL) 

(|PAWP_hi| NIL NIL NIL) |White| 45 70 92 70 92 306 134 306) 
(C ¡Failure/Alarm connection! (|preload_lo| NIL NIL NIL) 

(|PAWP_lo| NIL NIL NIL) |White| 52 347 134 348)
(C ¡Failure/Alarm connection] (|preload_lo| NIL NIL NIL) 

(|PAPd-PAWP_hi| NIL NIL NIL) |White| 51 341 69 341 69 187 
131 187)

(T |pul_circ| 337 6))
(¡Operatorlnterface| (O |PAWP_lo| |OfflineAlarm| 129 335 129 320) 

(0|PAPm| |Signal| 125 135 126 124)
(O |PAPs| |Signal| 126 209 126 201)
(O |PAPd| |Signal| 127 246 129 237)
(O |Qs/Qt_hi_al| ¡OnlineAlarm| 125 92 125 80)
(O ¡pul_hi_t_al| ¡OnlineAlarm| 126 53 124 41)
(O |PAPd-PAWP_hi| ¡OfflineAlarml 126 176 125 165)
(O |PAWP_hi| |OfflineAlarm| 128 293 130 278)
(O |pul_circ_pnl| |pul_circulation| 336 162 342 272)
(C ¡Display connection! (|PAPm| NIL NIL NIL)

(|pul_circ_pnl| |sl| INSIGNALS 0) |White| 138 146 269 146 
269 171 342 171)

(C ¡Display connection! (|PAPs| NIL NIL NIL)
(|pul_circ_pnl| |s2| INSIGNALS 1) |White| 134 219 273 219 
273 188 340 188)

(C ¡Display connection! (|PAPd| NIL NIL NIL)
(|pul_circ_pnl| |s3| INSIGNALS 2) |White| 141 256 286 256 
286 201 342 201)

(C ¡Alarm connection] (|pul_hi_t_al| NIL NIL NIL)
(|pul_circ_pnl| ¡pul_hi_t_al| ALARMS 1) |\Vhite| 143 65 319 
65 319 230 341 230)

(C ¡Alarm connection! (|Qs/Qt_hi_al| NIL NIL NIL)
(|pul_circ_pnl| |Qs/Qt_hi_al| ALARMS 0) |White| 143 106 314 
106 314 216 339 216)

(C |Alarm connection] (|PAPd-PAWP_hi| NIL NIL NIL)
(¡pul circ_pnl| ¡PAPd-PAWP hi] ALARMS 2) |White| 143 190
246 190 246 244 339 244)

(C ¡Alarm connection! (|PAWP_hi| NIL NIL NIL)
(|pul_circ_pnl| |PAWP_hi| ALARMS 3) ¡White] 146 304 314 304 
314 255 340 255)

(T |pul_circ| 337 6)))
((¡Structural! . "pulcirc-str.icon")
(|Monitoring+Control|. "pulcirc-mon.icon") (¡Simulation!)
(|StateTransitions|) (¡FailurePropagation| . "pulcirc-fpg.icon")
(¡Operatorlnterfacep)
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(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS)
(SIGNALS (|PAPm| :FLOAT NIL) (|PAPs| :FLOAT NIL)

(|PAPd| : FLOAT NIL))
(EVENTS)
(ALARMS (|Qs/Qt hi al| :ONLINE) (|pul_hi_t_al| :ONLINE) 

(|PAPd-PAWP_hi| :OFFLINE) (|PAWP_hi| :OFFLINE)
(|PAWP_lo| :OFFLINE))

(INTERFACE ((|ipl| ALARMIFP) -> |Qs/Qt_hi_al|)
((|ip2| ALARMIFP) -> |pul_hi_t_al|)
((|ip3| FSIGNALIFP) -> |PAPm|) ((|ip4| FSIGNALIFP) -> |PAPs|)
((|ip5| FSIGNALIFP) -> |PAPd|))

(RT-DATABASE) (PROCESSORS) (CONTROL)
(FAULT-MODES (|pui_hi_tens| (|pul_hi_t_al| |PAWP_hi|) NIL NIL NIL) 

(|shunt_hi| (|Qs/Qt_hi al|) NIL NIL NIL)
(|preload_lo| (|PAWP_lo| |PAPd-PAWP_hi|) NIL NIL NIL)) 

(FAULT-GRAPH) (SIMULATION)
(PANEL NIL

(|pul_circ_pnl|
(|pul_circulation| (|PAPm| |PAPs| |PAPd|) NIL NIL NIL 

(|Qs/Qt_hi_al| |pul_hi_t_al| |PAPd-PAWP_hi|
|PAWP_hi|))))

(SUBPROC))
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/home/vandy/Designs/Resp2/Pml/o2trans.pml

The “o2trans” describes the oxygen transport process type.

;;; PML database: "o2trans.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |02_transport|.
(DEF-PROCESS |02_transport| (->) NIL 

((|cto2_lo| NIL) (|tHb_lo| NIL) (|Hb_affinity_lo| NIL)
(|Dys_Hb_hi| NIL))
NIL NIL NIL NIL NIL NIL NIL 
((|Structural| (T ¡02_transport| 337 6))
(|Monitoring+Control|

(O |tHb_lo_al| |OfflineAlarm| 170 100 170 88)
(O |p50_hi| |OfflineAlarm| 170 140 170 128)
(O |Ca02_lo_al| (OfflineAlarm] 170 60 170 48)
(O |Dys_Hb_hi_al| ¡OfflineAlarm| 170 180 170 168)
(T |02_transport| 337 6))

(|Simulation| (O |Dys_Hb_hi_al| |OfflineAlarm| 170 176 171 166) 
(O |Ca02_lo_al| ¡OfflineAlarm| 167 58 170 46)
(O |p50_hi| |OfflineAlarm! 170 136 170 129)
(O |tHb_lo_al| |OfflineAlarm| 168 55 168 48)
(T |02_transport| 337 6))

(|StateTransitions| (T |02_transport| 337 6))
(|FailurePropagation| (O |cto2_lo| |FailureMode| 125 60 87 48)

(O |tHb_lo| |FailureMode| 125 100 94 88)
(O |Hb_affinity_lo| |FailureMode| 125 140 23 128)
(O |Dys_Hb_hi| |FailureMode| 125 180 69 168)
(O |tHb_lo_al| jOfflineAlarm| 170 60 170 88)
(O |p50_hi| |OfflineAlarm| 170 140 170 128)
(O |Ca02_lo_al| |OfflineAlarm| 170 100 170 48)
(O |Dys_Hb_hi_al| |OfflineAlarm| 170 180 170 168)
(C |Failure/Alarm connection! (|cto2_lo| NIL NIL NIL) 

(|tHb_lo_al| NIL NIL NIL) |White| 143 71 175 72)
(C |Failure/Alarm connection! (|tHb_lo| NIL NIL NIL) 

(|Ca02_lo_al| NIL NIL NIL) ¡White! 146 112 173 113)
(C |Failure/Alarm connection! (|Hb_affmity_lo| NIL NIL NIL) 

(|p50_hi| NIL NIL NIL) |White| 145 152 173 152)
(C ¡Failure/Alarm connection! (|Dys_Hb_hi| NIL NIL NIL) 

(|Dys_Hb_hi_al| NIL NIL NIL) |White| 145 192 175 192)
(T |02_transport| 337 6))

(|OperatorInterface| (O |tHb_lo_al| |OfflineAlarm| 169 93 168 48) 
(O |p50_hi| |OfflineAlarm| 170 136 170 129)
(O |Ca02_lo_al| jOfflineAlarm| 167 58 169 85)
(O ¡Dys_Hb_hi_al| ¡OfflineAlarm! 170 176 171 166)
(T |02_transport| 337 6)))

((¡Structural!. "o2trans-str.icon")
(|Monitoring+Control| . "o2trans-mon.icon") (¡Simulation!)
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(|StateTransitions|) (|FailurePropagation| . "o2trans-fpg.icon") 
(|OperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS) (SIGNALS) (EVENTS)
(ALARMS (|tHb lo al| :OFFLINE) (|p50_hi| :OFFLINE)

(|Ca02_lo_al| :OFFLINE) (|Dys_Hb_hi_al| :OFFLINE)) 
(INTERFACE) (RT-DATABASE) (PROCESSORS) (CONTROL) 
(FAULT-MODES (|cto2_lo| (|tHb_lo_al|) NIL NIL NIL)

(jtHb_lo| (|Ca02_lo_al|) NIL NIL NIL)
(|Hb_affinity_lo| (|p50_hi|) NIL NIL NIL)
(|Dys_Hb_hi| (|Dys_Hb_hi_al|) NIL NIL NIL))

(FAULT-GRAPH) (SIMULATION) (PANEL NIL) (SUBPROC))
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/home/vandy/Designs/Resp2/Pml/sys_circ.pml

The “sys circ” pml model defines the systemic circulation process.

;;; PML database: "syscirc.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |sys_circ|.
(DEF-PROCESS |sys_circ| (->) NIL ((|co_lo| NIL)) NIL NIL NIL NIL NIL 

NIL NIL
((|Structural| (T [sys_circ| 337 6))
(|Monitoring+Control| (O HR |Signal| 100 62 100 50)

(O |ABPs| |Signal| 100 102 100 90)
(O |ABPd| |Signalj 100 142 100 130)
(O CVP |Signal| 101 182 100 170)
(O |ABPm| |Signal| 101 221 102 208)
(O |Pulse_Pj |Signal| 101 265 104 254)
(O |CI_lo| |OfflineAlarm| 347 143 347 127)
(O |Sin_Brady| |OnlineAlarm| 345 54 345 42)
(O |Sin_Tachy| ¡OnlineAlarm| 346 92 346 81)
(O |SI_lo| |OnlineAlarm| 349 183 348 170)
(O |ABPs_lo| |OnlineAlarm| 351 229 350 216)
(O |Pulse_P_lo| |OnlineAlarm| 352 274 352 262)
(O |ipl| |InterfacePoint| 40 62 40 50)
(O |ip2| |InterfacePoint| 40 102 40 90)
(O |ip3| |InterfacePoint| 40 142 40 130)
(O |ip4| |InterfacePoint| 40 182 40 170)
(O |ip5| |InterfacePoint| 290 56 290 41)
(O |ip6| |InterfacePomt| 290 92 290 83)
(O |ip7| |InterfacePoint| 40 221 40 209)
(O |ip8| [InterfacePoint| 290 183 290 175)
(O |ip9| |InterfacePoint| 40 265 40 256)
(O |ipl0| |InterfacePoint| 290 229 290 221)
(O ¡ip 111 |InterfacePoint| 290 275 290 264)
(O |ipl2| ¡InterfacePointj 292 313 292 304)
(O |CVP_lo| ¡OnlineAlarml 353 312 353 303)
(C |IO connection! (|ipl| NIL NIL NIL) (HR NIL NIL NIL)

|White| 60 75 105 75)
(C |IO connection! (|ip2| NIL NIL NIL) (|ABPs| NIL NIL NIL)

|White| 60 115 105 115)
(C |IO connection! (|ip3| NIL NIL NIL) (|ABPd| NIL NIL NIL) 

|White| 60 155 1°5 155)
(C |IO connection! (|ip4| NIL NIL NIL) (CVP NIL NIL NIL)

¡White! 60 195 105 195)
(C |IO connection! (|ip5| NIL NIL NIL)

(|Sin_Brady| NIL NIL NIL) |White| 311 65 350 65)
(C |IO connection! (|ip6| NIL NIL NIL)

(|Sin_Tachy! NIL NIL NIL) |White| 309 102 349 102)
(C |IO connection! (|ip7| NIL NIL NIL) (|ABPm| NIL NIL NIL)
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|White| 60 231 106 231)
(C ¡IO connection! (|ip8| NIL NIL NIL) (|SI_lo| NIL NIL NIL) 

|White| 310 194 354 194)
(C |IO connection! (|ip9| NIL NIL NIL) (|Pulse_P| NIL NIL NIL)

|White| 60 275 104 275)
(C |IO connection! (|ip 10| NIL NIL NIL)

(|ABPs_lo| NIL NIL NIL) |White| 311 238 355 238)
(C |IO connection! (|ipl 1| NIL NIL NIL)

(|Pulse_P_lo| NIL NIL NIL) |White| 312 283 354 283)
(C |IO connection! (|ipl2| NIL NIL NIL) (|CVP_lo| NIL NIL NIL) 

|White| 311 321 356 322)
(T |sys_circ| 337 6))

(|Simulation| (O |CVP_lo| |OnlineAIarm| 353 312 353 303)
(O |Pulse_P_lo| |OnlineAlarm| 352 274 352 262)
(O |ABPs_lo| |OnlineAlarm| 351 229 350 216)
(O |Pulse_P| |Signal| 101 265 104 254)
(O CVP |Signal| 101 182 100 170) (O HR |Signal| 100 62 100 50) 
(O |SI_lo| lOnlineAlarm! 349 183 348 170)
(O |CIJo| |OfflineAlarm| 347 143 347 127)
(O |ABPm| |Signal| 101 221 102 208)
(O |ABPd| |Signal| 100 142 100 130)
(O |ABPs| ¡Signal| 100 102 100 90)
(O |Sin_Tachy| |OnlineAlarm| 346 92 346 81)
(O |Sin_Brady| |OnlineAlarm| 345 54 345 42)
(T |sys_circ| 337 6))

(|StateTransitions| (T |sys_circ| 337 6))
(|FailurePropagation| (O |co_lo| |FailureMode| 69 59 54 37)

(O |CI_lo| lOfflineAlarml 347 143 347 127)
(O |Sin_Brady| |OnlineAJarm! 345 54 345 42)
(O |Sin_Tachy| |OnlineAlarm| 346 92 346 81)
(O |SI_lo| |OnlineAlarm| 349 183 348 170)
(O |ABPs_lo| ¡OnlineAlarm! 351 229 350 216)
(O |Pulse_P_lo| |OnlineAlarm| 352 274 352 262)
(O |CVP_lo| |OnlineAlarm| 353 312 353 303)
(C |Failure/Alarm connection! (|co_lo| NIL NIL NIL)

(|ABPs_Io| NIL NIL NIL) |White| 85 70 278 70 278 241 354 
241)

(C |Failure/Alarm connection! (|co_lo| NIL NIL NIL)
(|Pulse_PJo| NIL NIL NIL) |White| 88 75 264 75 264 286 356 
286)

(C ¡Failure/Alarm connection! (|co_lo| NIL NIL NIL)
(|CI_lo| NIL NIL NIL) |White| 90 65 288 65 288 156 351 156) 

(C |Failure/Alarm connection! (|co_lo| NIL NIL NIL)
(|CVP_lo| NIL NIL NIL) |White| 89 80 254 80 254 327 355 
327)

(T |sys_circ| 337 6))
(|OperatorInterface| (O |CVP_lo| |OnlineAlarm| 353 312 353 303)

(O |Pulse_P_lo| |OnlineAlarm| 352 274 352 262)
(O |ABPs_lo| |OnlineAlarm| 351 229 350 216)
(O |Pulse_P| |Signal| 101 265 104 254)
(O CVP |Signal! 101 182 100 170) (O HR |Signal| 100 62 100 50) 
(O |ABPs| |Signal| 100 102 100 90)
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(O |ABPd| |Signal| 100 142 100 130)
(O |ABPm| |Signal| 101 221 102 208)
(O |CI_lo| |OfflineAlarm| 347 143 347 127)
(O |Sin_Brady| |OnlineAlarm| 345 54 345 42)
(O |Sin_Tachy| |OnlineAlarm| 346 92 346 81)
(O |SI_lo| |OnlineAlarmt 349 183 348 170)
(T |sys_circ| 337 6)))

((|Structural! . "syscirc-str.icon")
(|Monitoring+Control| . "syscirc-mon.icon") (|Simulation|)
(|StateTransitions|) (|FailurePropagation|. "syscirc-fpg.icon")
(|OperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS)
(SIGNALS (HR DOUBLE NIL) (|ABPs| : DOUBLE NIL) (|ABPd| :DOUBLE NIL) 

(CVP :DOUBLE NIL) (|ABPm| :DOUBLE NIL)
(|Pulse_P| :DOUBLE NIL))

(EVENTS)
(ALARMS (|CI_lo| :OFFLINE) (|Sin_Brady| :ONLINE)

(|Sin_Tachy| :ONLINE) (|SI_lo| :ONLINE) (jABPsJo! :ONLINE) 
(|Pulse_P_lo| :ONLINE) (|CVP_lo| :ONLINE))

(INTERFACE ((|ipl| SIGNALIFP) -> HR) ((|ip2| SIGNALIFP) -> |ABPs|)
((|ip3| SIGNALIFP) -> |ABPd|) ((|ip4| SIGNALIFP) -> CVP)
((¡ip5| ALARMIFP) -> |Sin_Brady|)
((|ip6| ALARMIFP) -> |Sin_Tachy|) ((|ip7| SIGNALIFP) -> |ABPm|)
((|ip8| ALARMIFP) -> |SI_lo|) ((|ip9| SIGNALIFP) -> |Pulse_P|)
((jip 10| ALARMIFP) -> |ABPs_lo|)
((|ipll| ALARMIFP) -> |Pulse_P_lo|)
((¡ip 12| ALARMIFP) -> |CVP_lo|))

(RT-DATABASE) (PROCESSORS) (CONTROL)
(FAULT-MODES

(|co_lo| (|ABPs_lo| |Pulse_P_lo| |CI_lo| |CVP_lo|) NIL NIL NIL)) 
(FAULT-GRAPH) (SIMULATION) (PANEL NIL) (SUBPROC))

187



/home/vandy/Designs/Resp2/Pml/o2cons.pml

The oxygen consumption process is modelled by the “o2cons” model.

;;; PML database: "o2cons.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |02_consumption|.
(DEF-PROCESS |02_consumption| (->) NIL

((|o2_cons_hi| NIL) (|o2_extr_hi| NIL)) NIL NIL NIL NIL NIL NIL NIL 
((|Structural| (T |02_consumption| 337 6))
(|Monitoring+Control| (O |02ER_hi| |OnlineAlarm| 255 92 255 80)

(O |ipl| |InterfacePoint| 190 92 190 80)
(O |ip2| |InterfacePoint| 190 136 191 125)
(O |V02I_hi| |OnlineAlarm| 256 132 257 120)
(C |IO connection! (|ipl| NIL NIL NIL) (|02ER_hi| NIL NIL NIL) 

IGreenj 205 105 260 105)
(C |IO connection! (|ip2| NIL NIL NIL) (|V02I_hi| NIL NIL NIL) 

|Green| 208 145 261 144)
(T |02_consumption| 337 6))

(|Simulation| (O |V02I_hi| |OnlineAlarm| 256 132 257 120)
(O |02ER_hi| |OnlineAlarm| 255 92 255 80)
(T |02_consumption| 337 6))

(|StateTransitions| (T |02_consumption| 337 6))
(|FailurePropagation|

(O |o2_cons_hi| ¡FailureMode| 154 135 147 119)
(O |o2_extr_hi| |FailureMode| 156 91 147 76)
(O |02ER_hi| |OnlineAlarm| 255 92 255 80)
(O |V02I_hi| |OnlineAlarm| 256 132 257 120)
(C ¡Failure/Alarm connection! (|o2_extr_hi| NIL NIL NIL)

(|02ER_hi| NIL NIL NIL) |Green| 173 103 263 103)
(C ¡Failure/Alarm connection! (|o2_cons_hi| NIL NIL NIL)

(|V02I_hi| NIL NIL NIL) |Green| 173 145 263 145)
(T |02_consumption| 337 6))

(|OperatorInterface| (O |02ER_hi| |OnlineAlarm| 255 92 255 80)
(O |V02I_hi| |OnlineAlarm| 256 132 257 120)
(T |02_consumption| 337 6)))

((¡Structural! . "o2cons-str.icon")
(|Monitoring+Control| . "o2cons-mon.icon") (¡Simulation!) 
(|StateTransitions|) (|FailurePropagation| . "o2cons-fpg.icon") 
(|OperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS) (SIGNALS) (EVENTS)
(ALARMS (|02ER_hi| : ONLINE) (|V02I_hi| :ONLINE))
(INTERFACE ((|ipl| ALARMIFP) -> |02ER_hi|)

((|ip2| ALARMIFP) -> |V02I_hi|))
(RT-DATABASE) (PROCESSORS) (CONTROL)
(FAULT-MODES (|o2_cons_hi| (|V02I_hi|) NIL NIL NIL)

(|o2_extr_hi| (|02ER_hi|) NIL NIL NIL))
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(FAULT-GRAPH) (SIMULATION) (PANEL NIL) (SUBPROC))
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/home/vandy/Designs/Resp2/Pmi/oxyg.ptnl

The oxygenation process is represented by the “oxyg” model.

;;; PML database: "oxyg.pml"
(DEF-ICONLIB 7home/vandy/Icons/Resp2/Pml/")
;;; Definition for |oxygenation|.
(DEF-PROCESS |oxygenation| (->) NIL

((¡hypoxemia! NIL) (|oxy_gen_f| NIL)) NIL NIL NIL NIL NIL NIL NIL 
((¡Structural! (O |Pul_circ| |pul_circ| 549 86 567 222)

(O |Gasx| |gasx| 323 84 358 217)
(O |Ventilation| ¡ventilation! 66 86 117 227)
(T |oxygenation| 320 13))

(|Monitoring+Control| (O ¡Pul_circ| |pul_circ| 576 559 593 538)
(O |Gasx| |gasx| 312 563 342 543)
(O |Ventilation| |ventilation| 62 572 74 536)
(O |fio2| ¡Signal! 84 64 84 52)
(O |pao2| |Signal| 84 104 84 92)
(O |paco2! | Signal | 84 184 84 172)
(O |sao2| ¡Signal! 84 144 84 132)
(O |hypoxemia_al| |OnlineAlarm| 255 52 255 40)
(O |AaD02_hi_al| |OnlineAlarm| 255 92 255 80)
(O |ipl| |InterfacePoint| 35 65 35 50)
(O |ip2| ¡InterfacePoint! 35 105 35 90)
(O |ip3| |InterfacePoint| 35 145 35 130)
(O |ip4| |InterfacePoint| 35 184 35 170)
(O |ip5| |InterfacePoint| 200 55 200 40)
(O |ip6| |InterfacePoint| 200 95 200 80)
(C |IO connection! (|ipl| NIL NIL NIL) (|fio2| NIL NIL NIL)

¡Green! 54 75 85 75)
(C |IO connection! (|ip2| NIL NIL NIL) (|pao2| NIL NIL NIL)

|Green| 54 115 85 115)
(C |IO connection! (|ip3| NIL NIL NIL) (|sao2| NIL NIL NIL)

|Green| 54 155 85 155)
(C |IO connection! (|ip4j NIL NIL NIL) (|paco2| NIL NIL NIL) 

|Green| 54 195 85 195)
(C ¡Dataflow! (¡pao2| NIL NIL NIL)

(¡Ventilation! |pao2| HSIGNALS 0) |White| 103 118 140 118 
140 230 35 230 35 585 65 585 69 586)

(C |IO connection! (|ip5| NIL NIL NIL)
(|hypoxemia_al| NIL NIL NIL) |Green| 220 65 260 65)

(C ¡Dataflow) (|sao2| NIL NIL NIL)
(|Ventilation! |sao2| HSIGNALS 1) |White| 103 158 134 158 
134 222 27 222 27 600 65 600 69 600)

(C ¡Dataflow) (|paco2| NIL NIL NIL)
(¡Ventilation! |paco2| HSIGNALS 2) |White| 103 198 127 198 
127 215 15 215 15 611 65 611 69 614)

(C |IO connection! (|ip6| NIL NIL NIL)
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(|AaD02_hi_al| NIL NIL NIL) |Green| 220 105 260 105)
(T |oxygenation| 320 13))

(|Simulation| (O |AaD02_hi_al| |OnlineAlarm| 255 92 255 80)
(O |hypoxemia_al| |OnlineAlarm| 255 52 255 40)
(O |sao2| |Signal| 84 144 84 132)
(O |paco2| I Signal I 84 184 84 172)
(O |pao2| |Signal| 84 104 84 92)
(O |fio2| |Signal| 84 64 84 52) (T |oxygenation| 320 13)) 

(|StateTransitions| (T |oxygenation| 320 13))
(|FailurePropagation| (O |hypoxemia| |FailureMcxle| 95 60 95 48)

(O |oxy_gen_f] |FailureMode| 95 100 95 88)
(O |cl4| |CausalLink| 58 100 58 88)
(O |cl3| |CausalLink| 71 292 69 275)
(O |cll| |CausalLink| 294 295 292 278)
(O |cl2| |CausalLink| 705 302 704 285)
(O |cl5| |CausalLink| 164 226 164 211)
(O |hypoxemia_al| |OnlineAlarm| 185 60 185 48)
(O [AaD02_hi_al| |OnlineAlarm| 185 98 183 89)
(O |Pul_circ| |pul_circ| 566 287 593 263)
(O |Gasx| |gasx| 331 285 385 257)
(O |Ventilation| |ventilation| 118 284 140 265)
(O |cl6| |CausalLink| 707 338 704 326)
(C ¡Failure/Alarm connection! (|hypoxemia| NIL NIL NIL) 

(|hypoxemia_al| NIL NIL NIL) |Green| 115 71 188 71)
(C |FailurePropagation| (|Pul_circ| |shunt_hi| FAILS 1)

(|cl2| NIL NIL NIL) |White| 681 316 710 316)
(C ¡FaüurePropagationj (|Gasx| |impaired_diffl FAILS 0)

(|cll| NIL NIL NIL) IWhite| 335 307 313 307)
(C ¡FailurePropagation| (|cl 11 NIL NIL NIL)

(|oxy_gen_f] NIL NIL NIL) |White| 306 299 306 145 110 145 
110 117)

(C |FailurePropagation| (|cl2| NIL NIL NIL)
(l°xy_gen_f] NIL NIL NIL) |White| 718 306 718 135 116 135 
116 117)

(C |FailurePropagation| (|cl3| NIL NIL NIL) 
doxy^genJ! NIL NIL NIL) |White| 82 298 82 145 104 145 104 
117)

(C |FailurePropagation| (|oxy_gen_f] NIL NIL NIL)
(|cl4| NIL NIL NIL) | White! 104 110 76 110)

(C |FailurePropagation| (|cl4| NIL NIL NIL) 
dhypoxemia| NIL NIL NIL) |White| 70 103 70 72 101 72)

(C |FaiIurePropagation| (|Ventilation! |vdot_a_lo| FAILS 4)
(|cl3| NIL NIL NIL) |White| 127 301 89 301)

(C |FailurePropagation| (|cl5| NIL NIL NIL)
(I Ventilation! |vdot_a_lo| FAILS 4) |White| 174 240 105 240 
105 297 127 297)

(C |FailurePropagation| (|Ventilation| |mv_lo| FAILS 0)
(|cl5| NIL NIL NIL) |White| 246 299 244 301 262 301 262 240 
183 240)

(C ¡Failure/Alarm connection! (|oxy_gen_f] NIL NIL NIL) 
(|AaD02_hi_al| NIL NIL NIL) |Green| 113 112 191 112)

(C |FailurePropagation| (|cl6| NIL NIL NIL)
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(|Pul_circ| |preload_lo| FAILS 2) |White| 714 346 700 346 
700 328 685 328)

(C |FailurePropagation| (|Ventilation| |prp_hi| FAILS 3)
(|cl6| NIL NIL NIL) |White| 248 403 267 403 267 471 720 471 
720 358)

(T |oxygenation| 320 13))
(|OperatofInterface| (O |fio2| |Signal| 84 64 84 52)

(O |pao2| I Signal I 84 104 84 92)
(O |paco2| |Signal| 84 184 84 172)
(O |sao2| |Signal| 84 144 84 132)
(O |hypoxemia_al| |OnlineAlarm| 255 52 255 40)
(O |AaD02_hi_al| |OnlineAlarm| 255 92 255 80)
(O loxyg pnl| |oxyg| 342 205 355 310)
(C ¡Display connection! (|sao2| NIL NIL NIL)

(|oxyg_pnl| I s 11 INSIGNALS 0) |White| 101 155 213 155 213 
217 351 217)

(C |Alarm connection! (|AaD02_hi_al| NIL NIL NIL)
(|oxyg_pnl| |AaD02_hi_al| ALARMS 1) |White| 274 105 283 105 
283 245 350 245)

(C ¡Alarm connection! (|hypoxemia_al| NIL NIL NIL)
(|oxyg_pnl| |hypoxemia_al| ALARMS 0) ¡White! 272 67 299 67 
299 228 346 228)

(T ¡oxygenation! 320 13)))
((¡Structural! . "oxyg_str.icon")
(|Monitoring+Control|. "oxyg_mon.icon") (¡Simulation!)
(|StateTransitions|) (¡FailurePropagation! . "oxyg_fpg.icon") 
(jOperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS)
(SIGNALS (|fio2| : DOUBLE NIL) (|pao2| : DOUBLE NIL)

(|paco2| : DOUBLE NIL) (|sao2| : DOUBLE NIL))
(EVENTS) (ALARMS (¡hypoxemia_al| :ONLINE) (|AaD02_hi_al! :ONLINE)) 
(INTERFACE ((|ipl| SIGNALIFP) -> |fio2|)

((¡ip2| SIGNALIFP) -> |pao2|) ((|ip3| SIGNALIFP) -> jsao2|)
((|ip4| SIGNALIFP) -> |paco2|)
((|ip5| ALARMIFP) -> |hypoxemia_al|)
((¡ip6| ALARMIFP) -> |AaD02_hi_al|))

(RT-D AT ABASE) (PROCESSORS)
(CONTROL (|Pul_circ| NIL NIL NIL NIL) (|Gasx| NIL NIL NIL NIL) 

(¡Ventilation! (|pao2| |sao2| |paco2|) NIL NIL NIL))
(FAULT-MODES (¡hypoxemia) (|hypoxemia_al|) NIL NIL NIL)

(|oxy_gen_f[ (|AaD02_hi_al|) NIL NIL NIL))
(FAULT-GRAPH

(((¡Ventilation! |prp_hi|)) (|cl6| NIL 100 0 0)
(|Pul_circ| |preload_lo|))

(((¡Ventilation| |mv_lo|)) (|cl5| NIL 100 0 0)
(¡Ventilation! ¡vdot_a_lo|))

(((¡Pul_circ) |shunt_hi|)) (¡cl2| NIL 100 0 0)
(|oxy_gen_f] NIL))

(((¡Gasx| |impaired_diff|)) (|cll| NIL 100 0 0)
(|oxy_gen_f] NIL))

(((¡Ventilation| |vdot_a_lo|)) (|cl3| NIL 100 0 0)
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d°xy_gen_f] NIL))
(((|°xy_gen_f] NIL)) (|cl4| NIL 100 0 0) (|hypoxemia| NIL))) 

(SIMULATION)
(PANEL NIL 

(|oxyg_pnl|
(|oxyg| (|sao2|) NIL NIL NIL

(|hypoxemia_al| |AaD02_hi_al|))))
(SUBPROC (|Pul_circ| (|pul_circ| (->) NIL))

(|Gasx| (|gasx| (->) NIL))
(¡Ventilation| (|ventilation| (->) NIL))))
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/home/vandy/Designs/Resp2/Pml/o2del.pml

The “o2del” model refers to oxygen delivery process.

;;; PML database: "o2del.pml"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |02_delivery|.
(DEF-PROCESS |02_delivery| (->) NIL ((|do2_lo| NIL)) NIL NIL NIL NIL 

NIL NIL NIL
((|Structural| (O |Sys_circ| |sys_circ| 492 99 523 219)

(O |02_transport| |02_transport| 280 97 287 234)
(O |Oxygenation| |oxygenation| 69 98 86 235)
(T |02_delivery| 318 10))

(|Monitoring+Control| (O |Sys_circ| |sys_circ| 542 345 552 316)
(O |02_transport| |02_transport| 294 348 307 319)
(O |Oxygenation| |oxygenation| 68 350 77 322)
(O |02AV_lo_al| |OnlineAlarm| 231 64 228 51)
(O |ipl| |InterfacePoint| 154 63 154 53)
(C |IO connection! (|ipl| NIL NIL NIL)

(|02AV_lo_al| NIL NIL NIL) |White| 174 72 235 73)
(T |02_delivery| 318 10))

(¡Simulation! (O |02AV_lo_al| |OnlineAlarm| 231 64 228 51)
(T |02_delivery| 318 10))

(|StateTransitions| (T |02_delivery| 318 10))
(|FailurePropagation| (O ¡do2_lo| |FailureMode| 115 78 112 55)

(O |cl6| ¡CausalLink! 261 407 243 388)
(O |cl5| |CausalLink| 276 371 263 357)
(O |cl4| |CausalLink| 296 337 297 321)
(O |cl3| |CausalLink| 220 304 219 283)
(O |cl2| |CausalLink| 180 62 179 43)
(O |cll| |CausalLink| 181 109 182 101)
(O |02AV_lo_al| |OnlineAlarm| 57 78 21 57)
(O |Sys_circ| |sys_circ| 585 290 623 265)
(O |02_transport| |02_transport| 329 291 356 268)
(O |Oxygenation| |oxygenation| 35 297 64 275)
(C |FailurePropagation| (|cl2| NIL NIL NIL)

(|do2_lo| NIL NIL NIL) |White| 189 75 165 75 165 87 136 87)
(C |FailurePropagation| (|cll| NIL NIL NIL)

(|do2_lo| NIL NIL NIL) |White| 187 119 165 119 165 97 135 
97)

(C ¡FailurePropagation| (|02_transport| |cto2_lo| FAILS 0)
(|cll| NIL NIL NIL) |White| 334 316 318 316 318 120 196 
120)

(C |FailurePropagation| (|Sys_circ| |co_lo| FAILS 0)
(|cl2| NIL NIL NIL) |White| 594 347 574 347 574 70 198 70)

(C |FailurePropagation| (|Oxygenation| |hypoxemia| FAILS 0)
(|cl3| NIL NIL NIL) |White| 200 317 228 317)

(C |FailurePropagation| (|02_transport| |Dys_Hb_hi| FAILS 3)
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(|cl5| NIL NIL NIL) |White| 335 375 294 375)
(C |FailurePropagation| (|02 transport! |tHb_lo| FAILS 1)

(|cl4| NIL NIL NIL) |White| 335 353 312 353)
(C |FailurePropagation|

(|02_transport| |Hb_affinity_lo| FAILS 2)
(|cl6| NIL NIL NIL) |White| 332 414 277 414)

{C |FailurePropagation| (|cl3| NIL NIL NIL)
(|02_transport| |cto2_lo| FAILS 0) |White| 241 309 320 309 
320 320 334 320)

(C |FailurePropagation| (|cl6| NIL NIL NIL)
(|02_transport| |cto2_lo| FAILS 0) |White| 273 412 272 320 
337 320)

(C |FailurePropagation| (|cl5| NIL NIL NIL)
(|02_transport| |cto2_lo| FAILS 0) |White| 288 374 288 318 
336 318)

(C |FailurePropagation| (|cl4| NIL NIL NIL)
(|02_transport| |cto2_lo| FAILS 0) |White| 307 340 307 314 
333 314)

(C |Failure/Alarm connection| (|do2_lo| NIL NIL NIL)
(|02AV_lo_al| NIL NIL NIL) |White| 120 91 76 90)

(T |02_delivery| 318 10))
(|OperatorInterface| (O |02AV_lo_al| |OnlineAlarm| 231 64 228 51)

(T |02_delivery| 318 10)))
((|Structural| . "o2del_str.icon")
(|Monitoring+Control| . "o2del_mon.icon") (|Simulation|)
(|StateTransitions|) (|FailurePropagation| . "o2del_fpg.icon") 
(|OperatorInterface|))

(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS) (SIGNALS) (EVENTS) (ALARMS (|02AV_lo_al| :ONLINE)) 
(INTERFACE ((|ipl| ALARMIFP) -> |02AV_lo_al|)) (RT-DATABASE) 
(PROCES SORS)
(CONTROL (|Sys_circ| NIL NIL NIL NIL)

(|02 transport! NIL NIL NIL NIL)
(|Oxygenation| NIL NIL NIL NIL))

(FAULT-MODES (|do2Jo| (!02AV_lo_al|) NIL NIL NIL))
(FAULT-GRAPH

(((|02_transport| |cto2_lo|)) (|cll| NIL 100 0 0)
(|do2_lo| NIL))

(((|Sys_circ| |co_lo|)) (|cl2| NIL 100 0 0) (|do2_lo| NIL))
(((|Oxygenation| |hypoxemia|)) (|cl3| NIL 100 0 0)
(|02_transport| |cto2_lo|))

(((|02_transport| |tHb_lo|)) (|cl4| NIL 100 0 0)
(|02_transport| |cto2_lo|))

(((|02_transport| |Dys_Hb_hi|)) (|cl5| NIL 100 0 0)
(|02_transport| |cto2_lo|))

(((¡02_transport| |Hb_affinity_lo|)) (|cl6| NIL 100 0 0)
(|02_transport| |cto2_lo|)))

(SIMULATION) (PANEL NIL)
(SUBPROC (|Sys_circ| (|sys_circ| (->) NIL))

(|02_transport| (|02_transport| (->) NIL))
(|Oxygenation| (|oxygenation| (->) NIL))))
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/home/vandy/Designs/Resp2/Pml/resp.pml

The “resp” process model refers to the top level in the process hierarchy.

;;; PML database: "resp.pml"
(DEF- ICONL IB "/home/vandy/Icons/Resp2/Pml/")
;;; Definition for |Resp|.
(DEF-PROCESS |Resp| (->) NIL ((|hypoxia| NIL)) NIL NIL NIL NIL NIL NIL 

NIL
((|Structural|

(O |02_consumption| |02_consumption| 480 291 480 257)
(O |02_delivery| |02_delivery| 145 289 153 253)
(T |Resp| 324 23))

(|Monitoring+Control|
(O ¡O2_consumption| |02_consumption| 480 291 480 257)
(O |02_delivery| |02_delivery| 145 289 153 253)
(O |pvo2| |Signal| 85 42 85 30)
(O |pvo2_lo| |OnlineAlarm| 235 42 235 30)
(O |ipl| |InterfacePoint| 15 42 15 30)
(O [ip2| |InterfacePoint| 165 42 165 30)
(C |IO connection! (|ipl| NIL NIL NIL) (|pvo2| NIL NIL NIL)

|Green| 35 52 90 52)
(C |IO connection! (|ip2| NIL NIL NIL) (|pvo2_lo| NIL NIL NIL)

|Green| 185 52 240 52)
(T |Resp| 324 23))

(|Simulation| (O |pvo2_lo| ¡OnlineAlarml 207 63 205 54)
(O |pvo2| |Signal| 94 61 93 52) (T |Resp| 324 23))

(|StateTranshions| (T ¡Resp| 324 23))
(|FailurePropagation| (O |hypoxia| |FailureMode| 85 62 85 50)

(O |cl2| |CausalLink| 395 372 395 360)
(O ¡ell! ¡CausalLinkj 324 373 323 360)
(O |pvo2_lo| |OnlineAlarm| 165 62 165 50)
(O |02_consumption| |02_consumption| 481 370 506 333)
(O |02_delivery| |02_delivery| 145 367 166 342)
(C ¡Failure/Alarm connection! (|hypoxia| NIL NIL NIL)

(|pvo2_lo| NIL NIL NIL) |Green| 103 75 170 75)
(C |FailurePropagation| (|02_delivery| |do2_lo| FAILS 0)

(¡cll| NIL NIL NIL) |Green| 283 385 284 385 326 385)
(C |FailurePropagation| (|cll| NIL NIL NIL)

(|hypoxia| NIL NIL NIL) |Green| 336 379 336 332 95 332 95 
78)

(C |FailurePropagation|
(|02_consumption| ¡o2_cons_hi| FAILS 0) (|cl2| NIL NIL NIL)
¡Green! 488 381 480 382 412 382)

(C |FailurePropagation| (|cl2| NIL NIL NIL)
(¡hypoxia! NIL NIL NIL) |Green| 409 377 409 314 100 314 100 
78)

(T |Resp| 324 23))
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(|OperatorInterface| (O |pvo2| |Signal| 94 61 93 52)
(O |pvo2_lo| |OnlineAlarm| 207 63 205 54)
(O |resp| |Respiration| 335 201 341 320)
(C |Display connection! (|pvo2| NIL NIL NIL)

(|resp| |s 11 INSIGNALS 0) |White| 104 82 104 211 341 211)
(C |Alarm connection! (|pvo2_lo| NIL NIL NIL)

(|resp| |pvo2_lo| ALARMS 0) |White| 219 83 219 226 341 226)
(T |Resp| 324 23)))

(((Structural! . "resp str.icon")
(|Monitoring+Control|. "respmon.icon") (|Simulation|) 
(|StateTransitions|) (|FailurePropagation| . "respfpg.icon") 
(|OperatorInterface|))
(PVARS) (PVAR-ATTRS) (STATES) (STATE-DEPS) (TRANSITIONS) 
(PARAMETERS) (SIGNALS (|pvo2| : DOUBLE NIL)) (EVENTS) 
(ALARMS (|pvo2_lo| : ONLINE))
(INTERFACE ((|ipl| VSSIGNALIFP) -> |pvo2|)

((|ip2| ALARMIFP) -> |pvo2_lo)))
(RT-DATABASE) (PROCESSORS)
(CONTROL (|02_consumption| NIL NIL NIL NIL)

(|02_delivery| NIL NIL NIL NIL))
(FAULT-MODES (|hypoxia| (|pvo2Jo|) NIL NIL NIL))
(FAULT-GRAPH

(((|02_delivery| |do2_lo|)) (|cll| NIL 100 0 0)
(|hypoxia| NIL))

(((|02_consuniption| |o2_cons_hi|)) (|cl2| NIL 100 0 0)
(|hypoxia| NIL)))

(SIMULATION)
(PANEL NIL

(|resp| (|Respiration| (|pvo2|) NIL NIL NIL (|pvo2_lo|))))
(SUBPROC (|02_consumption| (|02_consumption| (->) NIL)) 

(|02_delivery| (|02_delivery| (->) NIL))))
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F.6.2 Panel Aspect

The models within this section describe the user interface panel for individual 

processes.

/home/vandy/Designs/Resp2/Panel/resp.prj

The “resp.pij” project file contains a list of the panel databases.

;;; Project file: iresp.prjl 
(DEF-PROJECT

(|resp| "/users/vandy/Designs/Resp2/Panel/" 
"/users/vandy/Icons/Resp2/Panel/")
"resp.pnl" "vent.pnl" "pul_circ.pnl" "oxyg.pnl" )
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/home/vandy/Designs/Resp2/Panel/resp.pnl

This file defines the user interface for the process “resp”.

;;; PANEL database: "resp.pnl"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Panel/")
;;; Definition for ¡Respiration|.
(DEF-PANEL-TYPE [Respiration| ( ( |s l |: DOUBLE)) NIL NIL NIL (|Pv02Jo|) 

((|OperatorInterface| . "resp. icon"))
(DISPLAY (|gdl| |GraphDisplay| ((|sl| |gdll| |Blue| SOLID))

"Pv02 (kPa)" 60 200 0.0 10.0)
(|ldl| |LogDisplay| |sl| "Pv02 (kPa)"))

(CONTROL) (ICONS)
(PICTURE (|OperatorInterface| (O |sl| |Signal| 69 80 71 69)

(O |Pv02_lo| |AIarm| 774 26 730 5)
(O |gdl| |GraphDisplay| 144 77 144 68)
(O |gdl 11 ¡GraphDisplayLink| 107 81 105 72)
(O |ldl| |LogDisplay| 846 132 847 125)
(L "Pv02 (kPa)" 144 59 "9x15" |White|)
(L "Pv02 (kPa)" 846 115 "9x15" |White|)
(C |Display connection! (|sl| NIL NIL NIL)

(|gdll| NIL NIL NIL) |White| 83 91 114 91)
(C ¡Display connection! (|gdll| NIL NIL NIL)

(|gdl| NIL NIL NIL) |White| 123 91 150 91)
(C ¡Display connection! (|sl| NIL NIL NIL)

(|ldl| NIL NIL NIL) ¡White! 80 98 80 151 853 151)
(T |Respiration| 334 20))))
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/home/vandy/Designs/Resp2/Panel/vent.pnl

This file defines the panel for the ventilation process.

;;; PANEL database: "vent.pnl"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Panel/")
;;; Definition for |vent|.
(DEF-PANEL-TYPE |vent|

((|vte| :DOUBLE) (|f) :DOUBLE) (|mv| DOUBLE) (|peak| :DOUBLE) 
(|plat| :DOUBLE) (|peep| DOUBLE) (|pmin| : DOUBLE)
(|mean| :DOUBLE) (|fio2| DOUBLE) (|c| : DOUBLE) (|r| :DOUBLE) 
(|mvs| : DOUBLE) (|fs| :DOUBLE))

NIL NIL
((|evl| :DOUBLE) (|ev2| :DOUBLE) (|ev3| :DOUBLE) (|ev4|:DOUBLE)) 
(jhypo_ven| |hyper_ven| |FI02_hi| |PRP_hi| |ALVENT_lo| ¡Resp_acid| 

|Resp_alka|)
((|OperatorInterface| . "vent.icon"))
(DISPLAY (|gdl| |GraphDisplay| ((|vte| |gdll| |Blue| SOLID))

"Vte (1)" 10 200 0.0 2.0)
(|gd2| |GraphDisplay| ((|f] |gdl2| |Red| SOLID))

"f (1/min)" 10 200 0.0 60.0)
(|gd3| |GrapliDisplay| ((|mv| [gdl3| |Blue| SOLID))

"MV (1/min)" 10 200 0.0 41.0)
(|gd4| |GraphDisplay| ((|peak| |gdl4| |Red| SOLID))

"Peak (mbar)" 10 200 0.0 99.0)
(|gd5| |GraphDisplay| ((|plat| |gdl5| |Blue| SOLID))

"Plat (mbar)" 10 200 0.0 99.0)
(|gd6| |GraphDisplay| ((|peep| |gdl6| |Blue| SOLID))

"PEEP (mbar)" 10 200 0.0 99.0)
(|gd7| |GraphDisplay| ((|pmin| |gdl7| |Blue| SOLID))

"Pmin (mbar)" 10 200 -20.0 99.0)
(|gd8| |GraphDisplay| ((|mean| |gdl8| |Blue| SOLID))

"Mean (mbar)" 10 200 0.0 99.0)
(|gd9| |GraphDisplay] ((|fio2| |gdl9| |Blue| SOLID))

"FI02 (%)" 10 200 15.0 99.0)
(¡gdl0| ]GraphDisplay| ((|c| |gdll0| |Blue| SOLID))

"C (ml/mbar)" 10 200 0.0 255.0)
(|gdll| |GraphDisplay| ((|r| |gdl 111 |Blue| SOLID))

"R (mbar/(l/s))" 10 200 0.0 99.0)
(|gdl2| |GraphDisplay| ((|mvs| |gdl 12| |Blue| SOLID))

"MVs (1/min)" 10 200 0.0 41.0)
(|gdl3| |GraphDisplay| ((|fs| |gdll3| |Blue| SOLID))

"fs (1/min)" 10 200 0.0 60.0)
(|bdl| |BarDisplay| |fio2| "FI02 (%)" 15.0 99.0))

(CONTROL (|sll| |Slider| |evl| "hypo_v" 2.0 10.0 6.0)
(|sl2| |Slider| |ev2| "fio2_t" 30.0 100.0 38.0)
(|sl3| |Slider| |ev3| "sao2_t" 85.0 100.0 93.0)
(|sl4| |Slider| |ev4| "hyper_v" 3.0 15.0 8.0))
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(ICONS)
(PICTURE (|OperatorInterface| (O |vte| |Signal| 150 30 150 10) 

(O |f] |Signal| 150 80 150 60)
(O |mv| |Signal| 150 130 150 110)
(O |peak| |Signal| 150 180 150 160)
(O ¡plat| |Signal| 150 230 150 210)
(O Ipeepl |Signal| 150 280 150 260)
(O |pmin| |Signal| 150 330 150 310)
(O |mean| |Signal| 150 380 150 360)
(O ¡fio2| |Signal¡ 150 430 150 410)
(O |c| |Signal| 150 480 150 460)
(O |r| |Signal| 150 530 150 510)
(O |mvs| |Signal| 150 580 150 560)
(O |fs| ¡Signal| 150 630 150 610)
(O |evl| |Event¡ 240 39 240 65)
(O |ev2| |Event| 240 394 240 381)
(O ¡ev3| ¡Eventi 240 448 240 431)
(O |ev4| ¡Eventi 240 98 240 121)
(O |hypo_ven| |Alarm| 795 30 778 15)
(O |hyper_ven| ¡Alarm| 739 31 691 15)
(O ¡FI02 hi| |Alarm| 797 69 789 61)
(O |PRP_hi| ¡Alarm| 742 70 702 57)
(O |ALVENT_lo| |Alarm¡ 798 114 787 101)
(O jsl 11 |Slider| 190 29 190 15)
(O ¡sl2| |Slider| 190 380 190 368)
(O |sl3| ¡Slider) 190 433 190 421)
(O |sl4| ¡Sliderl 189 87 189 77)
(O ¡gdl I |GraphDisplay| 20 30 20 10)
(O |gd2| ¡GraphDisplayl 20 80 20 60)
(O |gd3| ¡GraphDisplayl 20 130 20 110)
(O |gd4| ¡GraphDisplayl 20 180 20 160)
(O |gd5| ¡GraphDisplayl 20 230 20 210)
(O ¡gd6| ¡GraphDisplayl 20 280 20 260)
(O |gd7| ¡GraphDisplayl 20 330 20 310)
(O |gd8| ¡GraphDisplayl 20 380 20 360)
(O |gd9| |GraphDisplay| 20 430 20 410)
(O ¡gdl0| ¡GraphDisplayl 20 480 20 460)
(O |gdl 11 ¡GraphDisplayl 20 530 20 510)
(O |gdl2| ¡GraphDisplayl 20 580 20 560)
(O |gdl3| ¡GraphDisplayl 20 630 20 610)
(O ¡bdl| |BarDisplay| 783 430 755 430)
(O ¡gdl 13| |GraphDisplayLink| 100 630 100 610)
(O |gdll2| |GraphDisplayLink| 100 580 100 560)
(O ¡gdl 11| |GraphDisplayLink| 100 530 100 510)
(O ¡gdl 10| |GraphDisplayLink| 100 480 100 460)
(O |gdl9| |GraphDisplayLink| 100 430 100 410)
(O |gdl8| |GraphDisplayLink| 100 380 100 360)
(O |gdl7¡ |GraphDisplayLink| 100 330 100 310)
(O |gdl6| |GraphDisplayLink| 100 280 100 260)
(O |gdl5| |GraphDisplayLink| 100 230 100 210)
(O |gdl4| |GraphDisplayLink| 100 180 100 160)
(O |gd!3| |GraphDisplayLink| 100 130 100 110)
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(O |gdl2| |GraphDisplayLink| 100 80 100 60)
(O jgdl 11 ¡GraphDisplayLinkj 100 30 100 10)
(O |Resp_acid| |Alarm| 801 156 784 141)
(O |Resp_alka| |Alarm| 803 199 782 184)
(L "Vte (1)" 21 10 "9x15" |White|)
(L "f (1/min)" 21 60 "9x15" |White|)
(L "MV (1/min)" 21 110 "9x15" |White|)
(L "Peak (mbar)" 21 160 "9x15" |White|)
(L "Plat (mbar)" 21 210 "9x15" |White|)
(L "PEEP (mbar)" 21 260 "9x15" |White|)
(L "Pmin (mbar)" 21 310 "9x15" |White|)
(L "Mean (mbar)" 21 360 "9x15" |White|)
(L "FI02 (%)" 21 410 "9x15" |White|)
(L "FI02 (%)" 783 409 "9x15" |White|)
(L "C (ml/mbar)" 21 460 "9x15" |White|)
(L "R (mbar/(l/s))" 21 510 "9x15" |White|)
(L "MVs (1/min)" 21 560 "9x15" |White|)
(L "fs (1/min)" 21 610 "9x15" |White|)
(C ¡Display connection! (|vte| NIL NIL NIL)

(|gdl 11 NIL NIL NIL) |White| 155 43 110 43)
(C ¡Display connection! (|f| NIL NIL NIL)

(|gdl2| NIL NIL NIL) |White| 155 93 110 93)
(C ¡Display connection! (|gdl2| NIL NIL NIL) 

(|gd2| NIL NIL NIL) |White| 104 93 60 93)
(C ¡Display connection! (Igdl 11 NIL NIL NIL) 

(|gdl| NIL NIL NIL) |White| 104 43 60 43)
(C ¡Display connection! (|mv| NIL NIL NIL) 

(|gdl3| NIL NIL NIL) ¡White| 155 143 110 143) 
(C ¡Display connection! (|gdl3| NIL NIL NIL) 

(|gd3| NIL NIL NIL) ¡White| 104 143 60 143) 
(C ¡Display connection! (|peak| NIL NIL NIL) 

(|gdl4| NIL NIL NIL) |White| 155 193 1 10 193) 
(C ¡Display connection! (|gdl4| NIL NIL NIL) 

(|gd4| NIL NIL NIL) |Wlute| 104 193 60 193) 
(C ¡Display connection! (|plat| NIL NIL NIL) 

(|gdl5| NIL NIL NIL) |White| 155 243 110 243) 
(C ¡Display connection! (|gdl5| NIL NIL NIL) 

(|gd5| NIL NIL NIL) ¡Whitej 104 243 60 243) 
(C ¡Display connection! (|peep| NIL NIL NIL) 

(|gdl6| NIL NIL NIL) |White| 155 293 110 293) 
(C ¡Display connection! (|gdl6| NIL NIL NIL) 

(|gd6| NIL NIL NIL) |White| 104 293 60 293) 
(C ¡Display connection! (|pmin| NIL NIL NIL) 

(|gdl7| NIL NIL NIL) ¡White! 155 343 110 343) 
(C ¡Display connection! (|gdl7| NIL NIL NIL) 

(|gd7| NIL NIL NIL) |White| 104 343 60 343) 
(C ¡Display connection! (|mean| NIL NIL NIL) 

(|gdl8| NIL NIL NIL) |White| 155 393 110 393) 
(C ¡Display connection! (|gdl8| NIL NIL NIL) 

(|gd8| NIL NIL NIL) |White| 104 393 60 393) 
(C ¡Display connection! (|fio2| NIL NIL NIL) 

(|gdl9| NIL NIL NIL) |White| 155 443 110 443)
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(C |Display connection! (|gdl9| NIL NIL NIL)
(|gd9| NIL NIL NIL) |White| 104 443 60 443)

(C |Display connection! (|c| NIL NIL NIL)
(|gdll0| NIL NIL NIL) |White| 155 493 110 493) 

(C |Display connection! (|gdll0| NIL NIL NIL) 
(|gdl0| NIL NIL NIL) |White| 104 493 60 493) 

(C ¡Display connection! (|r| NIL NIL NIL)
(|gdl 111 NIL NIL NIL) |White| 155 543 110 543) 

(C ¡Display connection! (|gdl 11| NIL NIL NIL) 
(|gdll| NIL NIL NIL) |White| 104 543 60 543) 

(C ¡Display connection! (|mvs| NIL NIL NIL) 
(|gdll2| NIL NIL NIL) |White| 155 593 110 593) 

(C ¡Display connection! (|gdll2| NIL NIL NIL) 
(|gdl2| NIL NIL NIL) |White| 104 593 60 593) 

(C ¡Display connection! (|fs| NIL NIL NIL)
(|gdll3| NIL NIL NIL) |White| 155 643 110 643) 

(C ¡Display connection! (|gdll3| NIL NIL NIL) 
(|gdl3| NIL NIL NIL) ¡Whhe| 104 643 60 643) 

(C ¡Control connection! (|sl 11 NIL NIL NIL)
(|ev 11 NIL NIL NIL) |White| 205 50 250 50)

(C ¡Control connection! (|sl3| NIL NIL NIL)
(|ev3| NIL NIL NIL) |White| 205 453 250 453) 

(C ¡Control connection! (|sl2| NIL NIL NIL)
(|ev2| NIL NIL NIL) | White! 205 400 250 4°0) 

(C ¡Display connection! (|fio2| NIL NIL NIL)
(|bdl| NIL NIL NIL) |White| 167 443 793 443) 

(C ¡Control connection! (|sl4| NIL NIL NIL)
(|ev4| NIL NIL NIL) | White! 206 111 244 111)

(T |vent| 383 5))))
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/home/vandy/Designs/Resp2/Panel/pul_circ.pnl

This file specifies the user interface panel for the pulmonary circulation process.

;;; PANEL database: "pul circ.pnl"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Panel/")
;;; Definition for jpul_circulation|.
(DEF-PANEL-TYPE |pul_circulation|

((|sl| :FLOAT) (|s2| :FLOAT) (|s3 |:FLOAT)) NIL NIL NIL 
(|Qs/Qt_hi| |pul_hi_t| |PAPd-PA\VP_hi| |PAWP_hi|) 
((|OperatorInterface| . "pul circ.icon"))
(DISPLAY (|gdl| |GraphDisplay| ((|sl| |gdll| |Blue| SOLID)) 

"PAPm (mmHg)" 2 200 0.0 100.0))
(CONTROL) (ICONS)
(PICTURE (|OperatorInterface| (O |sl| |Signal| 69 80 71 69) 

(O |s2| |Signal| 70 131 70 118)
(O |s3| |SignaI| 70 175 73 166)
(O |Qs/Qt_hi| |Alarm| 774 26 730 5)
(O |pul_hi_t| |Alarm| 776 78 737 59)
(O |PAPd-PAWP_hi| |Alarm| 778 122 738 105)
(O |gdl| |GraphDisplay| 144 77 144 68)
(O |gdl 11 |GraphDisplayLink| 107 81 105 72)
(O |PAWP_hi| |Alarm| 782 167 744 150)
(L "PAPm (mmHg)" 144 59 "9x15" |White|)
(C ¡Display connection! (|sl| NIL NIL NIL)

(|gdl 11 NIL NIL NIL) |White| 83 91 114 91)
(C |Display connection! (|gdll| NIL NIL NIL)

(|gdl| NIL NIL NIL) |White| 123 91 150 91)
(T |pul_circulation| 334 20))))
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/home/vandy/Designs/Resp2/Panel/oxyg.pnl

This file defines the user interface panel for the oxygenation process.

;;; PANEL database: "oxyg.pnl"
(DEF-ICONL IB "/home/vandy/Icons/Resp2/Panel/" ) 
;;; Definition for |oxyg|.
(DEF-PANEL-TYPE |oxyg| ((|sl| DOUBLE)) NIL NIL NIL 

(¡hypoxemia| |AaD02_hi|) ((|OperatorInterface| . "oxyg.icon"))
(DISPLAY (|gdl| |GraphDisplay| ((|sl| |gdll| |Blue| SOLID)) "Sao2 (%)" 2 

200 60.0 100.0))
(CONTROL) (ICONS)
(PICTURE (|OperatorInterface| (O |sl| |Signal| 69 80 71 69)

(O |hypoxemia| ¡Alarm! 774 26 730 5)
(O |AaD02_hi| |Alarm| 776 78 737 59)
(O |gdl| |GraphDisplay| 144 77 144 68)
(O |gdl 11 |GraphDisplayLink| 107 81 105 72)
(L "Sa02 (%)" 144 59 "9x15" |White|)
(C ¡Display connection! (Is l l NIL NIL NIL)

(|gdl 11 NIL NIL NIL) |White| 83 91 114 91)
(C ¡Display connection! (|gdll| NIL NIL NIL)

(|gdl| NIL NIL NIL) |White| 123 91 150 91)
(T |oxyg| 334 20))))
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F.6.3 Physical Aspect

The files in this section contain the information about the monitored system from a 

physical perspective.

/home/vandy/Designs/Resp2/Physical/resp.prj

This is the project file for the Physical aspect.

;;; Project file: |resp.prj|
(DEF-PROJECT

(|resp| 7users/vandy/Designs/Resp2/Physical/" 
7users/vandy/Icons/Resp2/Physical/") 

"cardio.phy" "ventilator, phy" "resp.phy"
)
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/home/vandy/Designs/Resp2/Physical/cardio.phy

This file describes the “cardio” physical system referring to the cardiovascular 

system.

;;; PHY database: "cardio.phy"
(DEF-ICONLIB "/hdskgb/home/vandy/Icons/Resp2/Physical/")
;;; Definition for |cardio|.
(DEF-PHYSICAL-COMPONENT |cardio| NIL NIL 

((|Structural| . "cardio.icon"))
((|StructuraI| (O |general failure| |FailureState| 219 324 175 384) 

(T |cardio| 351 473)))
(FAILURE-STATES (|general failure| NIL)) (PARTS))
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/home/vandy/Designs/Resp2/Physical/ventilator.phy

This file describes the ventilator physical component.

;;; PHY database: "ventilator.phy"
(DEF-ICONLIB "/hdskgb/home/vandy/Icons/Resp2/Physical/")
;;; Definition for |ventilator|.
(DEF-PHYSICAL-COMPONENT |ventilator| NIL NIL 

((|Structural| . "ventilator.icon"))
((|Structural| (O Igeneral failure| ¡FailureState| 338 259 300 299) 

(T |ventilator| 376 431)))
(FAILURE-STATES (|general failure| NIL)) (PARTS))
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/home/vandy/Designs/Resp2/Physical/resp.phy

This file describes “resp”, the top level physical system.

;;; PHY database: "resp.phy"
(DEF-ICONLIB "/hdskgb/home/vandy/Icons/Resp2/Physical/")
;;; Definition for |resp-phy|.
(DEF-PHYSICAL-COMPONENT |resp-phy| NIL NIL ((|Structural|. "resp.icon")) 

((|Structural| (O |cardio| |cardio| 222 374 210 431)
(O |vent| |ventilator| 100 370 95 426) (T |resp| 407 564))) 

(FAILURE-STATES)
(PARTS (|cardio| |cardio|) (|vent| |ventilator|)))
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F.6.4 Processors Aspect

The model files in this section define the processing blocks used in the application. 

The processors wrap the processing blocks defined in the Hierarchical Description 

Language (HDL) for use by the IPCS. The “resp.prj” file contains the name of 

processors databases (*.prc). Each database contains at least one processor (DEF- 

PROCESSOR) and the corresponding HDL structures as primitives 

(DEFPRIMITIVE) or compounds (DEFCOMPOUND). The script for the HDL 

structures are in the file “resp.c”, which is compiled using the “makefile” and the 

corresponding objects are loaded into multigraph kernel using the “load.lsp” lisp 

file, during the IPCS initialisations.

/home/vandy/Designs/Resp2/Processors/resp.prj

The first file in this section is the “resp.pij” project file.

;;; Project file: |resp.prj|
(DEF-PROJECT

(|resp| "/users/vandy/Designs/Resp2/Processors/" 
"/users/vandy/Tcons/Resp2/Processors/") 
"alarm2.prc" "alarm3.prc" "alarm4 prc")
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/home/vandy/Designs/Resp2/Processors/alarm2.prc

This is the processor database file for the alarm generator which uses two signals 

with two “hi” thresholds and the logical AND combination of the two (section

6.3.1).

;;; Procs database: "alarm2.prc"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Processors/")
;;; Definition for |Alarm2P|.
(DEF-PROCESSOR |Alarm2P|

(((¡Signal 11 :DOUBLE) (|Signal2| :DOUBLE))
((¡Threshold 11 : DOUBLE) (|Threshold2| : DOUBLE)) NIL -> NIL NIL 
((¡out) :ONLINE)))
NIL NIL NIL ((|Monitoring+Control| . "a2procmon.icon")) 
((|Monitoring+Control| (O ¡Signal 11 |Signal| 260 200 193 200)

(O |Signal2| |Signal| 260 245 193 253)
(O ¡Threshold 11 |Event| 260 279 166 280)
(O |Threshold2| |Event| 260 315 161 317)
(O joutj |Alarm| 605 238 598 218)
(O |Alarm2| |@Alarm2| 434 222 440 294)
(C ¡Dataflow) (¡Signal 1| NIL NIL NIL)

(|Alarm2| ¡Signal 1| INS 0) |White| 268 211 403 211 403 230 
445 230)

(C ¡Dataflow) (|Signal2| NIL NIL NIL)
(¡Alarm2| |Signal2| INS 1) |White| 275 258 406 258 406 240 
445 240)

(C ¡Dataflow) (¡Threshold^ NIL NIL NIL)
(|Alarm2| ¡Thresholdl| INS 2) |White| 276 289 402 289 402 
271 441 271)

(C ¡Dataflow) (|Threshold2| NIL NIL NIL)
(|Alarm2| |Threshold2| INS 3) |White| 278 324 414 324 414 
281 443 281)

(C |Dataflow| (|Alarm2| ¡Ontput| OUTS 0) (|out| NIL NIL NIL) 
|White| 485 249 612 249)

(T |Alarm2P| 398 2)))
(|Alarm2|

(|@Alarm2|
(¡Signal 11 |Signal2| |Thresholdl| |Threshold2| -> |out|)
NIL NIL NIL NIL)))

;;; Definition for |Alarm2|.
(D EFPR IM m VE  |Alarm2| : IF ANY

((¡signal 11 : STREAM) (|signal2| : STREAM) (¡thresholdl | : STREAM) 
(|threshold2| :STREAM) -> (|outalarm| : STREAM))

((|TlContext| 0.0 :DOUBLE) (|T2Context| 0.0 :DOUBLE)
(|ASContext| 0 :INT))

NIL NIL NIL ((|Monitoring+Control|. "a2pmon.icon"))
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((|Monitoring+Control| (O |signall| |Stream| 164 230 100 230)
(O |signal2| |Stream| 164 280 100 280)
(O |thresholdl| |Stream| 164 330 68 330)
(O |threshold2| |Stream| 164 380 70 380)
(O |outalarm| |Stream| 404 260 432 262)
(O |TlContext| |StaticParameter| 164 80 71 80)
(O |T2Context| |StaticParameter| 164 130 66 130)
(O |ASContext| |StaticParameter| 164 180 66 180)
(T ¡Alarm 11 413 5)))

"alarm2es")
;;; Definition for |@Alarm2|.
(DEFCOMPOUND |@Alarm2|

((¡Signal 11 :STREAM) (|Signal2| :STREAM) (¡Thresholdl| :STREAM) 
(|Threshold2| : STREAM) -> (|Output| : STREAM))
NIL NIL NIL NIL ((¡Monitoring+Control| . "a2compmon icon")) 
((¡Monitoring+Control| (O ¡Signal 1| |Stream| 200 200 113 200)

(O |Signal2| ¡Stream| 200 240 113 240)
(O ¡Threshold 11 |Stream| 200 280 110 280)
(O ¡Threshold2| |Stream| 200 320 107 320)
(O |Output| |Stream| 606 239 634 241)
(O |TlContext| |StaticParameter| 200 80 120 80)
(O |T2Context| |StaticParameter| 200 120 121 120)
(O |ASContext| |StaticParameter| 200 160 121 160)
(O |Alarm2| |Alarm2| 417 219 414 290)
(C ¡Signal connection! (¡Signal 11 NIL NIL NIL)

(|Alarm2| ¡signal 1| INS 0) |White| 209 209 366 209 366 227 
426 227)

(C ¡Signal connection! (|Signal2| NIL NIL NIL)
(|Alarm2| |signal2| INS 1) |White| 206 247 367 247 367 236 
424 236)

(C ¡Signal connection! (|Thresholdl| NIL NIL NIL)
(|Alarm2| |thresholdl| INS 2) |White| 207 287 363 287 363 
267 423 267)

(C ¡Signal connection! (¡Threshold2| NIL NIL NIL)
(|Alarm2| |threshold2| INS 3) |White| 205 328 376 328 376 
278 424 278)

(C ¡Par connection! (|T1 Context! NIL NIL NIL)
(¡A)arm2| |TlContext| PARS 0) |White| 220 89 458 89 458 
224)

(C ¡Par connection! (|T2Context| NIL NIL NIL)
(|Alarm2| |T2Context| PARS 1) |White| 215 132 465 132 465 
224)

(C ¡Par connection! (|ASContext| NIL NIL NIL)
(|Alarm2| |ASContext| PARS 2) |White| 217 172 473 172 473 
224)

(C ¡Signal connection! (|Alarm2| |outalarnt| OUTS 0)
(|Output| NIL NIL NIL) |White| 470 246 612 246)

(T |@Alarm2| 403 9)))
(SIGNALS)
(PARAMS (|TlContext| 95.0 :DOUBLE) (|T2Context| 50.0 :DOUBLE) 

(|ASContext| 0 :INT))
(SHARED) (VARS) (COMPUTE)

212



(STRUCT (|Alarm2|
(|Alarm2|

(|Signall| |Signal2| |Thresholdl| |Threshold2| -> 
|Output|)

(|TlContext| |T2Context| |ASContext|) NIL NIL NIL))))
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/home/vandy/Designs/Resp2/Processors/alarm3.prc

The database file for alarm generator “alarm3”, which is a single signal low 

threshold alarm.

;;; Procs database: "alarm3.prc"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Processors/")
;;; Definition for |Alarm3|.
(DEFPRIMITIVE |Alarm3| : IF ANY

((|signal| : STREAM) (|threshold| : STREAM) -> (|outalarm| : STREAM)) 
((|TlContext| 0.0 :DOUBLE) (|ASContext| 0 :INT)) NIL NIL NIL 
((|Monitoring+Control| . "a3pmon.icon"))
((|Monitoring+Control| (O |signal| |Stream| 164 273 104 274)

(O |threshold| |Stream| 163 314 68 315)
(O |outalarm| |Stream| 404 260 432 262)
(O |TlContext| |StaticParameter| 159 175 71 178)
(O |ASContext| |StaticParameter| 159 219 66 222)
(T ¡Alarm3| 413 5)))

"alarm3es")
;;; Definition for |@Alarm3|.
(DEFCOMPOUND |@Alarm3|

((|signal| : STREAM) (|threshold| : STREAM) -> (|Output| : STREAM))
NIL NIL NIL NIL ((|Monitoring+Control|. "a3compmon.icon")) 
((|Monitoring+Control| (O |signal| |Stream| 204 244 113 245)

(O |threshold| |Stream| 200 322 107 322)
(O |Output| |Stream| 606 239 634 241)
(O |ASContext| |StaticParameter| 199 152 120 163)
(O |TlContext| |StaticParameter| 199 108 120 111)
(O |AIarm3] |Alarm3| 417 219 414 290)
(C |Signal connection! (|threshold| NIL NIL NIL)

(|Alarm3| |threshold| INS 1) |White| 211 329 375 329 375 
277 423 277)

(C |Signal connection! (|signal| NIL NIL NIL)
(|Alarm3| |signal| INS 0) |Orange| 215 256 425 256)

(C |Par connection! (|ASContext| NIL NIL NIL)
(|AIarm3| |ASContext| PARS 1) |Green| 215 165 325 165 325 
233 427 233)

(C |Par connection! (|TlContext| NIL NIL NIL)
(|Alarm3| |TlContext| PARS 0) |Green| 216 116 337 116 337 
226 420 226)

(C ¡Signal connection! (|Alarm3| |outalarm| OUTS 0)
(|Output| NIL NIL NIL) |Green| 472 247 611 247)

(T |@Alarm3| 403 9)))
(SIGNALS) (PARAMS (|TlContext| 8.0 :DOUBLE) (|ASContext| 0 :INT)) 
(SHARED) (VARS) (COMPUTE)
(STRUCT (|Alarm3|

(!Alarm3| (|signal| ¡threshold! -> |Output|)
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(|T1 Context] |ASContext|) NIL NIL NIL))))
;;; Definition for |AJarm3P|.
(DEF-PROCESSOR |Alarm3P|

(((|Signal| :DOUBLE)) ((|Threshold| :DOUBLE)) NIL -> NIL NIL 
(([out] :ONLINE)))

NIL NIL NDL ((|Monitoring+Control|. "a3procmon.icon")) 
((|Monitoring+Control| (O |Signal| |Signal| 260 245 193 253)

(O |Threshold| |Event| 260 311 168 316)
(O |out| |Alarm| 605 238 598 218)
(O |Alarm3| |@AJarm3| 434 222 440 294)
(C |Dataflow| (|Alarm3| |Output| OUTS 0) (|out| NIL NIL NIL) 

|White| 491 249 611 249)
(C |Dataflow| (|Signal| NIL NIL NIL) (|Alarm3| |signal| INS 0) 

|White| 276 258 439 258)
(C ¡Dataflow! (|Threshold| NIL NIL NIL)

(|Alarm3| ¡threshold! INS 1) ¡White| 279 322 420 322 420 
282 439 282)

(T |Alarm3P| 398 2)))
(|A]arm3|

(|@Alarm3| (¡Signal! ¡Threshold! -> |out|) NIL NIL NIL NIL)))
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/home/vandy/Designs/Resp2/Processors/alarm4.prc

The “alarm4” database which generates both high and low alarms for a single 

signal, using a high and a low threshold. Both of these thresholds are adaptable, 

i.e. can be modified during runtime.

;;; Procs database: "alarm4.prc"
(DEF-ICONLIB 7home/vandy/Icons/Resp2/Processors/")
;;; Definition for |Alarm4P|.
(DEF-PROCESSOR |Alarm4P|

(((|Signal| : DOUBLE))
((|Thresholdl| : DOUBLE) (|Threshold2| : DOUBLE)) NIL -> NIL NIL 
((¡out 11 : ONLINE) (|out2| : ONLINE)))

NIL NIL NIL ((|Monitoring+Control|. "a4procmon.icon")) 
((|Monitoring+Control| (O |Signal| |Signal| 260 245 193 253)

(O Threshold 11 |Event| 260 311 168 316)
(O |Threshold2| |Event| 260 350 167 354)
(O out 1 |Alarm| 604 221 602 202)
(O ¡out2j ¡Alarmi 607 268 599 254)
(O ¡Alarm4| |@Alarm4| 434 222 440 294)
(C ¡Dataflow) (|Signal| NIL NIL NIL) (|Alarm4| |signal| INS 0) 

|White| 279 260 442 260)
(C |Dataflow! (|Thresholdl| NIL NIL NIL)

(|Alarm4| |thresholdl| INS 1) |White| 271 324 396 324 396 
271 442 271)

(C ¡Dataflow) (|Threshold2| NIL NIL NIL)
(|Alarm4| |threshold2| INS 2) |White| 272 362 422 362 422 
280 442 280)

(C ¡Dataflow) (|Alarm4| ¡Outputl| OUTS 0) (|outl| NIL NIL NIL) 
¡White) 487 231 609 231)

(C ¡Dataflow! (JAlarm4| |Output2| OUTS 1) (|out2| NIL NIL NIL)
|White| 489 250 512 250 512 280 611 280)

(T ¡Alarm4P| 398 2)))
(|Alarm4|

(|@Alarm4|
(|Signal| |Thresholdl| |Threshold2| -> |outl| |out2|) NIL 
NIL NIL NIL)))

;;; Definition for |@Alarm4|.
(DEFCOMPOUND |@Alarm4|

((|signal| : STREAM) (¡thresholdl | : STREAM) (|threshold2| : STREAM) 
-> (|Outputl| : STREAM) (|Output2| :STREAM))
NIL NIL NIL NIL ((|Monitoring+Control| . "a4compmon.icon")) 
((|Monitoring+Control| (O |signal| |Stream| 204 244 113 245)

(O ¡thresholdl| |Stream| 200 282 101 282)
(O |threshold2| ¡Stream| 200 322 107 322)
(O )Outputl| |Stream| 606 239 634 241)
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(O |Output2| |Stream| 606 269 634 269)
(O |AS2Context| |StaticParanieter| 199 192 120 203)
(O |ASlContext| |StaticParameter| 199 152 120 163)
(O |T2Context| |StaticParameter| 199 108 120 111)
(O |TlContext| |StaticParameter| 199 68 120 51)
(O |Alarm4| |Alarm4| 417 219 414 290)
(C ¡Signal connection! (|Alarm4| |outalarml| OUTS 0)

(¡Output 11 NIL NIL NIL) |White| 466 245 611 245)
(C ¡Signal connection! (¡Alarm4| |outalarm2| OUTS 1)

(|Output2| NIL NIL NIL) |White| 470 261 613 261 613 275)
(C ¡Signal connection! (|threshold2| NIL NIL NIL)

(|Alarm4| |threshold2| INS 2) |White| 208 331 406 331 406 
279 422 279)

(C ¡Signal connection! (¡thresholdl| NIL NIL NIL)
(|Alarm4| |thresholdl| INS 1) |White| 213 290 375 290 375 
267 428 267)

(C ¡Signal connection! (|signal| NIL NIL NIL)
(|Alarm4| |signal| INS 0) |White| 211 255 429 255)

(C ¡Par connection! (|TlContext| NIL NIL NIL)
(|Alarm4| |TlContext| PARS 0) ¡White! 218 78 377 78 377 225 
424 225)

(C ¡Par connection! (|T2Context| NIL NIL NIL)
(|Alarm4| |T2Context| PARS 1) |White| 212 115 372 115 372 
236 430 236)

(C ¡Par connection! (|ASlContext| NIL NIL NIL)
(|Alarm4| |ASlContext| PARS 2) |White| 214 160 461 160 461 
224)

(C ¡Par connection! (|AS2Context| NIL NIL NIL)
(|Alarm4| |AS2Context| PARS 3) |White| 215 203 471 203 471 
224)

(T |@Alarm4| 403 9)))
(SIGNALS)
(PARAMS (|T1 Context! 6.0 :DOUBLE) (|T2Context| 8.0 :DOUBLE) 

(|AS1 Context! 0 :INT) (|AS2Context| 0 :INT))
(SHARED) (VARS) (COMPUTE)
(STRUCT (|Alarm4|

(|Alarm4|
(|signal| ¡thresholdl| |threshold2| -> |Outputl|

|Output2|)
(|TlContext| |T2Context| |ASlContext| |AS2Context|)
NIL NIL NIL))))

;;; Definition for |Alarm4|.
(DEFPRIMITIVE |Alarm4| : IF ANY

((¡signal! : STREAM) (¡threshold 11 :STREAM) (|threshold2| : STREAM) 
-> (|outalarml|: STREAM) (|outalarm2| : STREAM))

((¡TlContext| 0.0 :DOUBLE) (|T2Context| 0.0 :DOUBLE) 
(|ASlContext| 0 TNT) (|AS2Context| 0 :INT))
NIL NIL NIL ((¡Monitoring+Control|. "a4pmon.icon")) 
((¡Monitoring+Control! (O |signal| |Stream| 163 273 104 274)

(O ¡thresholdl| ¡Stream! 163 314 68 315)
(O |threshold2| |Stream| 163 354 68 355)
(O |outalarml| |Stream| 404 243 429 242)
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(O |outalarm2| |Stream| 405 284 434 280)
(O |TlContext| |StaticParameter| 159 95 71 95)
(O |T2Context| |StaticParameter| 159 135 71 138) 
(O |ASlContext| |StaticParameter| 159 175 66 175) 
(O |AS2Context| |StaticParameter| 159 219 66 222) 
(T ¡Alarm4| 413 5)))

"alarm4es")
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/home/vandy/Designs/Resp2/Processors/cpn.prc

This database file contains a cpn processing block with two inputs and one output.

;;; Procs database: "cpn.prc"
(DEF-ICONLIB "/home/vandy/Icons/Resp2/Processors/")
;;; Definition for |cpnp|.
(DEFPRIMITIVE |cpn| : IF ANY

((|inl| : SCALAR) (|in2| :SCALAR) -> (|out| : SCALAR)) NIL NIL NIL 
NIL ((|Monitoring+Control| . "cpn.icon"))
((|Monitoring+Control| (O |inl| |Scalar| 164 159 158 136)

(O |in2| |Scalari 168 239 165 224)
(O |out| |Scalari 472 183 471 160) (T |cpn| 368 27)))

"cpn_script")
;;; Definition for |cpn-pro|.
(DEF-PROCESSOR |cpn-pro|

(NIL ((|inl| : DOUBLE) (|in2| : DOUBLE)) NIL -> NIL ((|out| : FLOAT)) 
NIL)

NIL NIL NIL ((|Monitoring+Control| . "cpn-pro.icon")) 
((|Monitoring+Control| (O |inl| |Event| 157 189 155 170)

(O |in2| |Event| 158 279 156 261)
(O |out| |Event| 519 234 516 208)
(O |cpn-instl| |cpn| 271 175 317 153)
(C |Dataflow| (|inl| NIL NIL NIL) (|cpn-instl| |inl| INS 0)

|White| 176 202 275 243)
(C |Dataflow| (|in2| NIL NIL NIL) (|cpn-instl| |in2| INS 1)

|White| 174 288 276 278)
(C |Dataflow| (|cpn-instl| |out| OUTS 0) (|out| NIL NIL NIL)

|White| 448 254 527 245)
(T |cpn-pro| 373 39)))

(|cpn-instl| (|cpn| (|inl| |in2| -> |out|) NIL NIL NIL NIL)))
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/home/vandy/Designs/Resp2/Processors/load.lsp

This is a lisp file which is used by the IPCS initialisation to load the processors’ 

precompiled object files, which implement the processing blocks (actors) 

computations, into the multigraph kernel.

»5

;; load.lsp

;; RNP 16/03/94

;; Loads the following object and libraries in this order:
;; resp multigraph scripts object
;; k&r hugin users, hugin , maths , standard c libraries.

..********************************************************************* 

(si:faslink "resp.o" "-lkrhu -Ihugin -lm -lc")
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/home/vandy/Designs/Resp2/Processors/makefile

This makefile is used to compile the multigraph actor scripts used in the prototype 

application.

////////////////////////////////////////////////////////////////////////////////////
#
# makefile for resp signal processing
# actor scripts
#
# RNP 14/03/94
#
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitimmititiHiiimwwmtftmmm

SUFFIXES: c . 0  lsp

CSRC = resp.c 
COBJ = resp.o 
BASE = ../../..
CC = cc
INCLUDES= -I$(BASE)/H -I$(HUGINHOME)/include 
CFLAGS= $(INCLUDES)
SHELL= /bin/csh 
ECHO = ~/Bin/echo

all: $(COBJ)

resp.o: resp.c
$(CC) $(CFLAGS) -c resp.c
$(ECHO) '\000\000\004\020\000\000\000\000#()\c' | cat »resp .o
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/home/vandy/Designs/Resp2/Processors/resp.c

The “resp.c” file contains all the scripts for the processors used in the prototype 

application. They include the alarm generators and a cpn processing block.

/**********************************************************************
*
* resp.c
*

* RNP 16/03/95
*
* contains all signal processing actor scripts and initial mgk binding
*
***********************************************************************/

#include <stdio. h>
#include <sys/time.h>
#include "cmgkdefs.h"
#include "cmgkfimc.h"
#include "hugin.h"
#include "krhu.h"

#define domainpath "/home/vandy/Hugin/Domains/respl/respl"

void alarm les(); 
void alarm2es(); 
void alarm3es(); 
void alarm4es(); 
void cpnscriptQ;

makebinder(initcode)
bind(alarmles)
bind(alarm2es)
bind(alarm3es)
bind(alarm4es)

bind(cpnscript)
end_bind(;>

void cpnscript(context) 
int context;
{

/********* *******************/ 
domainreference domain; 
node reference node; 
char node_name[12];
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float find,middel,var; 
/********************************/

domain = LoadDomain(domainpath); 
SelectDomain(domain);

switch(mgk_trigger_port()) { / *  l  *1 
case 0:

strcpy(node_name,"Vt");
break;

case 1:
strcpy(node_name,"f');
break;

default: break; } /* 1 */
node = Get_Node_By_Name(node_name); 
find=mgk_d_receive(mgk_trigger_port()); 
Compute_Beliefs(find,node); 

strcpy(node_name,"02-alv-cap");
node = Get_Node_By_Name(node_name); 
middel = Mean _Value_Of_Node(node); 
var = VariansOfNode(node); 

Free_Domain();
mgk_f_propagate(0, middel);

/* mgk_f_propagate(l, var); */

}

struct Context {
double sp; 
int *dp;

};

void alarm les(context) /* single channel low alarm generator with dynamic threshold*/
struct Context *context;
{

double data,dummy; 
int trigger;
int curtime = time((long *)0);

trigger = mgk_triggerjx>rt(); 
switch(trigger)
{
case 0:
data=mgk_d_receive(0);
if ((data < context->sp) /* if signal value less than threshold */

&&
(*(context->dp) =  0)) /* and alarm is off */

*(context->dp) = 1 ; /* turn the alarm on */
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mgk_i_pr°pagate( 0,curtime);

{
if ((*(context->dp) =  1) && (data >= context->sp))

/* if alarm is on and value is higher than threshold */
{
*(context->dp) = 0; /* turn alarm off */
mgk_ijpropagate(0,-curtime);
}
}
break; 

case 1:
dummy=mgk_d_receive( 1); 

break; 
case 2:

context->sp=mgk_d_receive(2); /* set the threshold to new value */
break;

}

}
e lse

}

struct Context 1 {
double spl; 
double sp2; 
int sp3;

};

static double data2=0.0;

void alarm2es(context) /* two channel (a&b) hi alarm generator */
/* triggered on the slower data channel (a) */

struct Context 1 ^context.
{

double datal; 
int trigger;
int curtime = time((long *)0);

trigger = mgk_trigger_port(); 
switch(trigger)
{
case 0:
data 1 =mgk_d_recei ve(0); 
if ((datal > context->spl)

&&
(data2 > context->sp2)

&&
(context->sp3 =  0))

context->sp3 = 1; 
mgk_ijpropagate(0,curtime);

{
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{
if ((context->sp3 =  1) && ((datai <= context->spl) || (data2 <= context->sp2)))
{

context->sp3 = 0; 
mgM_propagate(0,-curtime);
}
}
break; 
case 1:

data2=mgk_d_receive( 1); 
break; 

case 2;
context->sp 1 =mgk_d_receive( 2); 

break; 
case 3;

context- >sp2=mgk_d_recei ve( 3 ); 
break;

}

}
e lse

}

struct Context2 {
double spl ; 
int sp2;

};

void alarm3es(context) /* single channel hi alarm generator with dynamic threshold */ 
struct Context2 *context;
{

double data,dummy; 
int trigger;
int curtime = time((long *)0);

trigger = mgk_trigger_port(); 
switch( trigger)
{
case 0:
data=mgk_d_receive(0); 
if ((data > context->spl)

&&
(context->sp2 =  0))

{
context- >sp2 = 1; 
mgk_i_propagate(0,curtime);
}
else

if ((context->sp2 =  1) && (data <= context->spl))
{
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{
context->sp2 = 0; 
mgk_i_pr°pagate( 0,-curtime); 
}
}
break; 
case 1:

context->spl=mgk_d_receive( 1); 
break;

}

}

struct Context3 {
double spl; 
double sp2; 
int sp3; 
int sp4;

void alarm4es(context) /* two independent channel hi and lo alarm generator */
struct Context3 *context;
{

double data; 
int trigger;
int curtime = time((long *)0);

trigger = mgk_trigger_port(); 
switch(trigger)
{
case 0:
data=mgk_d_receive( 0); 
if ((data < context->spl)

&&
(context->sp3 =  0))

{
context->sp3 = 1; 
mgk_i_propagate(0,curtime);
}
else
{
if ((context->sp3 —  1) && (data >= context->spl))
{
context->sp3 = 0; 
mgk_i_propagate(0,'-curtime);
}
}
if ((data > context->sp2)

&&
(context->sp4 =  0))

{

226



context->sp4 = 1 ; 
mgk_i_propagate( l,curtime);

{
if ((context->sp4 —  1) && (data <= context->sp2)) 
{'
context->sp4 = 0; 
mgk_i_propagate( 1 ,-curtime);
}
}
break; 
case 1;

context->sp 1 =mgk_d_recei ve( 1 ); 
break; 

case 2:
context->sp2=mgk_d_receive(2);

break;

}
e lse

}

}
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F.7 System Files

The system files contain the initialisations for the multigraph kernel and the IPCS

system.

/home/vandy/System/Resp2/init.lsp

The “init.lsp” contains the kernel initialisations.

;;; Initialization file for KCL

;;; ed, edl, edsl

(defvar *edit-file* "")

(defun int-ed (fname load-p verb-p)
(setq *edit-file* fname)
(system (format nil "vi ~A" fname))
(if load-p

(load fname : print verb-p)))

(defmacro ed (¿¿optional (x *edit-file*)) 
'(int-ed \x nil nil))

(defmacro edl (¿¿optional (x *edit-file*)) 
'(int-ed ',x t nil))

(defmacro edsl (¿¿optional (x *edit-file*)) 
'(int-ed ',x 11))

;;; pp

(defmacro pp (arg)
(if (symbolp arg)

(progn
(if (fboundp '.arg)

(pprint (symbol-function '.arg))) 
(if (boundp ’.arg)
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(pprint (list 'setq ',arg ,arg))))
(pprint \arg)))

;;; unix Cshell 
(defmacro shell ()

"(system "csh"))

;;; undefun
(defmacro undefun (name args)

" (defun ,name ,args
(format t "Undefined function ~S called with args ~S.~%" 

',name (list ,@args))))

;;; signals
(si:: catch-bad-signal s)

;;; optional args
(if (> (si:argc) 2) (load (string (si:argv 2))))
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/home/vandy/System/Resp2/resp.Isp

The “resp.lsp” file contains the initialisations of the IPCS for the application 

prototype.

..************************************************************ 

;; resp.lsp

;; RNP 17/03/95

;; Contains IPCS initialisations

• • *********************************************************** 

(use-fast-links nil)

;;; translating cpn model files from *.cpn to *.net file and 
;;; compiling from * .net to *.kb for xhugin 
;;;(let ((this (truename ".")))
;;; (si:chdir 7users/vandy/Designs/Resp2/Cpn")
;;; (system "csh cpn_compile_script")
;;; (si:chdir this))

(load "trace")
(trace actor-create)
;(trace make-process-model)
;(trace make-processor)

;;; Configuration file for the Respogg models 

... ************************************************************

;;; Declare main task 
(del-task Task

(node "")
(user "")
(passwd "")
(type foreign)

)

;;; Declare main environment 
(del-environment Env Task 

(priority 128)
)

230



;;; Define signal,event, and alarm types 
(def-ifp-type AlarmIFP 
(dir :in)
(data : alarm))

(def-ifp-type SignallFP 
(dir : in)
(data : double)
2)

(def-ifp-type FSignallFP 
(dir :in)
(data : float)
2)

(def-ifp-type SSignallFP 
(dir :in)
(data : double)
10)

(def-ifp-type VSSignallFP 
(dir :in)
(data : double)
30)

(def-ifip-type OutSignallFP 
(dir :out)
(data :doubIe))

;;; not needed here (gdcl-signal |Analog Signal| :double Task Env)

(gdcl-ifp |Resp/02 
(gdcl-ifp |Resp/02_ 
(gdcl-ifp |Resp/02_ 
(gdcl-ifp |Resp/02 
(gdcl-ifp |Resp/02 
(gdcl-ifp |Resp/02 
(gdcl-ifp |Resp/02

delivery/Oxygenation/Ventilation/ip 14| AlarmIFP) 
delivery/Oxygenation/Ventilation/ip 151 AlarmIFP) 
delivery/Oxygenation/Ventilation/ipl6| AlarmIFP) 
delivery/Oxygenation/Ventilation/ipl 7| AlarmIFP) 
delivery/Oxygenation/Ventilation/ipl8| AlarmlFP) 
delivery/Oxygenation/Ventilation/ip20| AlarmIFP) 
delivery/Oxygenation/Ventilation/ip21| AlarmIFP)

(gdcl-ifp |Resp/02_delivery/Oxygenation/Gasx/ipl| AlarmIFP)

(gdcl-ifp |Resp/02_delivery/Oxygenation/Pul_circ/ipl| AdarmIFP) 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Pul_circ/ip2| AlarmIFP)

(gdcl-ifp |Resp/02_delivery/Oxygenation/ip5| AlarmIFP)
(gdcl-ifp |Resp/02_delivery/Oxygenation/ip6| AlarmIFP)

(gdcl-ifp |Resp/02_delivery/Sys_circ/ip5| AlarmIFP) 
(gdcl-ifp ¡Resp/02_delivery/Sys_circ/ip6| AdarmIFP) 
(gdcl-ifp [Resp/02_delivery/Sys_circ/ip8| AJarmIFP) 
(gdcl-ifp |Resp/O2_delivery/Sys_circ/ipl0| AdarmIFP)
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(gdcl-ifp |Resp/02_delivery/Sys_circ/ipl 1| AlarmIFP)
(gdcl-ifp |Resp/02_delivery/Sys_circ/ipl2| AlarmIFP)

(gdcl-ifp |Resp/02_delivery/ipl| AlarmIFP)

(gdcl-ifp |Resp/02_consumption/ipl| AlarmIFP)
(gdcl-ifp |Resp/02_consumption/ip2| AlarmIFP)

(gdcl-ifp |Resp/ip2| ALARMIFP)

(gdcl-alarm |Resp/02_delivery/Oxygenation/Ventilation/hypo_vent_al| :online TASK ENV) 
(gdcl-alarm |Resp/02_delivery/Oxygenation/Ventilation/hyper_vent_al| :onlineTASK ENV) 
(gdcl-alarm |Resp/02_delivery/Oxygenation/Ventilation/fio2_hi_al| : online TASK ENV)

(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ipl| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip2| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip3| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip4| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip5| 
(gdcl-ifp ¡Resp/02_delivery/Oxygenation/Ventilation/ip6| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip7| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip8| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ip9| 
(gdcl-ifp |Resp/O2_delivery/Oxygenation/Ventilation/ipl0| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ipl 1| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ipl2| 
(gdcl-ifp |Resp/02_delivery/Oxygenation/Ventilation/ipl3| 
(gdcl-ifp ¡Resp/02_delivery/Oxygenation/Ventilation/ipl9|

SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)

SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)
SSignallFP)

(gdcl-ifp |Resp/02_delivery/Oxygenation/Pul_circ/ip3| FSignallFP)
(gdcl-ifp |Resp/02_delivery/Oxygenation/Pul_circ/ip4| FSignallFP)
(gdcl-ifjp |Resp/02_delivery/Oxygenation/Pul_circ/ip5| FSignallFP)

(gdcl-ifp |Resp/02_delivery/Oxygenation/ipl| SignallFP)
(gdcl-ifp ¡Resp/02_delivery/0xygenation/ip2| SignallFP)
(gdcl-ifp |Resp/02_delivery/Oxygenation/ip3| SignallFP)
(gdcl-ifp |Resp/02_delivery/Oxygenation/ip4| SignallFP)

(gdcl-ifp |Resp/02_delivery/Sys_circ/ip 11 
(gdcl-ifp |Resp/02_delivery/Sys_circ/ip2| 
(gdcl-ifp ¡Resp/02_delivery/Sys_circ/ip3| 
(gdcl-ifp |Resp/02_delivery/Sys_circ/ip4| 
(gdcl-ifp |Resp/02_delivery/Sys_circ/ip7| 
(gdcl-ifp |Resp/02_delivery/Sys_circ/ip9|

SignallFP)
SignallFP)
SignallFP)
SignallFP)
SignallFP)
SignallFP)

(gdcl-ifp |Resp/ipl| VSSIGNALIFP)

;;; This is black magic 
(si: : allocate-contiguous-pages 1000) 
(si::allocate-relocatable-pages 310) 
(allocate 'cons 300)
(allocate 'string 50)
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;;; Define design directory
(def-design-directory "/users/vandy/Designs/Resp2/Pml")

;;; Define all the project files 
(def-project-files RESPPML "resp.prj")

;;; Load the files of the project 
(load-project 'RESPPML)

;;; Define design directory
(def-design-directory "/users/vandy/Designs/Resp2/Physical")

;;; Define all the project files 
(def-project-files RESPPHY "resp.prj")

;;; Load the files of the project 
(load-project 'RESPPHY)

;;; Define design directory
(def-design-directory "/users/vandy/Designs/Resp2/PML-Physical")

;;; Define all the project files 
(def-project-files RESPPPL "resp.prj")

;;; Load the files of the project 
(load-project 'RESPPPL)

;;; Define design directory
(def-design-directory "/users/vandy/Designs/Resp2/Panel") 
(def-icondir "/users/vandy/Icons/Resp2/Panel")

;;; Define all the project files

(def-project-files RESPPNL "resp.prj")

;;; Load the files of the project 
(load-project 'RESPPNL)

;;; Define design directory
(def-design-directory "/users/vandy/Designs/Resp2/Processors")

;;; Loading signal processing actor script objects and relavant libraries 
(let ((this (truename ".")))
(sixhdir "/users/vandy/Designs/Resp2/Processors")
(load "load")
(sixhdir this))

;;; Define all the project files 
(def-project-files RESPPROC "resp.prj")

;;; Load the files of the project
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(load-project 'RESPPROC)

;;; Define the simulation program 
(def-iiip-program "Respogg....."RespTsim" 2)

;;; Define toplevel process with parameter values, enviroments and tasks 
(def-toplevel-process |Resp| () (Env) (Task))

;;; Define the convenience function START
(defun start () (make-toplevel-process-model) (run-nodes)

(format t "Don't type anything in this window!~%~%~%"))
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F.8 Data Acquisition Program

This section contains the program listings for the data acquisition program (see 

section 6.4) written in visual basic for windows.

VENT_DA7DOC.TXT

The first file contains the basic documentation for the data acquisition program.

Data Acquisition Program 
Version 1.0

This application is intended for use with Drager Evita Intensive Care Ventilators only. The program 
in no way interferes with the normal operation of the ventilator. The primary purpose is to record data 
for offline analysis, therefore little or no processing is carried out and all received data is saved. 
Trend graphs are plotted for some variables and status messages are displayed in a log.

Before starting the program ensure the RS232 cable is connected with the connector marked "PC" at 
the PC side (serial port 1, COM1) and the unmarked connector at the Ventilator side. Slide the earth 
switch at the rear of ventilator upwards and make sure the PC is NOT connected to earth.(See page 
12 of Evita manual.) The Evita RS232 connection socket is electrically isolated from the equipment 
electronics. This together with above earthing arrangement ensure electrical safety from the data 
acquisition hardware (ie PC).

For each data request the ventilator generates about 0.1Kbyte of data. There is a simple data 
reduction that will result in not recording identical data telegrams. If two or more identical data 
telegrams are received only the time stamp is recorded. Despite this, you need to ensure that there is 
enough free disk space to record the data. For example a sample rate of 10 samples per minute and a 
recording session of 10 hours requires about 0.6Mbyte free disk space on the desired drive.

Start the program by double clicking on the icon. To start the data collection select "Start" from the 
"File" menu. This will prompt for a file name for the recorded data, the sampling interval and the 
number of points in the trend graphs.

If you close some graph windows they can be reopened by selecting the "Show all graphs" option in 
the "View" menu. The graphs may be resized by resizeing the graph window first and then left mouse 
click on the graph.

To end the data collection select "Exit" from file menu.
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RNP 22/07/1994

Update 
Version 1.0a

This is a more intelligent version. It can be started when the ventilator is off or cable not connected. 
It will detect when the ventilator has been switched on or cable connection has been re established. 
Similarly if for any reason the ventilator is switched off during a data collection session or cable is 
disconnected, the program will restart as soon as the ventilator is switched on again or cable 
reconnected. The result will be appended to same file as before.

The point of this is that the program can be started when convenient and the data collection starts 
automatically when the ventilator is switched on. Also if data collection is interrupted it will restart 
itself once the ventilator is on and cable connection is ok.

RNP 28/10/1994
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VENT DA/VENT DA.VBZ

The template file used by the visual basic set-up wizard to create master 

distribution diskettes for the data acquisition appUcation.

[Files]
File l=C:\WINDOWS\S YSTEM\GRID. VBX 
File2=C:\WINDOWS\SYSTEM\MSOLE2.VBX 
File3=C:\WINDOWS\S YSTEM\STORAGE.DLL 
File4=C:\WINDOWS\S YSTEM\COMPOBJ.DLL 
File5=C:\WI NDOWS\SYSTEM\OLE2PROX.DLL 
File6=C : \ WINDOW S\S Y STEM\OLE2NL S. DLL 
File7=C:\WINDOWS\S YSTEM\OLE2DISP.DLL 
File8=C : \ WINDOW S\S Y STEM\OLE2. DLL 
File9=C : \DOS\SHARE. EXE 
File 10=C:\WINDO WS\S Y STEM\OLE2. REG 
File 1 l=C:\WINDOWS\S YSTEM\MSOLEVBX.DLL 
File 12=C:\WINDOWS\SYSTEM\ANIBUTON. VBX 
File 13=C:\WINDOWS\S YSTEM\CMDI ALOG. VBX 
File 14=C:\WINDOWS\S YSTEM\COMMDLG.DLL 
Filel5=C:\WINDOWS\SYSTEM\CRYSTAL.VBX 
File 16=C: \WINDO WS\S YSTEMXCRPE. DLL 
File 17=C AWINDOWS\SYSTEM\CRXLATE.DLL 
Filel 8=C:\WINDOWS\S YSTEM\GAUGE. VBX 
File 19=C: \WINDOWS\S YSTEM\GRAPH. VBX 
File20=C:\WI NDOWS\SYSTEM\GSWDLL.DLL 
File21=C:\WINDOWS\S YSTEM\GSW.EXE 
File22=C:\WINDOWS\SYSTEM\KEYSTAT.VBX 
File23=C:\WINDOWS\SYSTEM\MSCOMM.VBX 
File24=C:\WINDOWS\SYSTEM\MSMASKED.VBX 
File25=C:\WINDO WS\S YSTEM\MSOUTLIN. VBX 
File26=C:\WINDOWS\SYSTEM\PICCLIP.VBX 
File27=C:\WINDOWS\SYSTEM\SPIN VBX 
F ile28=C : \WINDOWS\S Y STEMMHREED. VBX 
File29=C:\VENT_D AWE NT_DA.EXE 
File30=C:\VE NT_DA\DOC.TXT

[WinFiles]
File 1=SHARE.EXE
File2=OLE2.REG
File3=GSW.EXE

[Flags]
AppEXEName=C:\VE NT_DAWENT_DA.EXE
APPTITLE=VENT_DA
DataControl=0
OLE—1
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Btrieve=0
ODBC=0
DataAccess=0
VB.Mak Full Path=C : \VENT D A\VENT_DA. MAK 
VB.Mak Path Only=C:\VENT_DA\
Disk Drive=a:
Disk Type=l
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VENT DA/VENT DA.MAK

The project file for the data acquisition program.

VENTDA.FRM
C:\WINDOWS\SYSTEM\GRID.VBX
C:\WINDOWS\SYSTEM\MSOLE2.VBX
C:\WINDOWS\SYSTEM\ANIBUTON.VBX
C:\WTNDOWS\SYSTEM\CMDIALOG.VBX
C:\WINDOWS\SYSTEM\CRYSTAL.VBX
C:\WINDOWS\SYSTEM\GAUGE.VBX
C:\WINDOWS\SYSTEM\GRAPH. VBX
C:\WINDOWS\SYSTEM\KEYSTAT.VBX
C:\WINDOWS\SYSTEM\MSCOMM.VBX
C:\WINDOWS\SYSTEM\MSMASKED.VBX
C:\WINDOWS\SYSTEM\MSOUTLIN. VBX
C:\WINDOWS\SYSTEM\PICCLIP VBX
C:\WINDOWS\SYSTEM\SPIN.VBX
C:\WINDOWS\SYSTEM\THREED.VBX
VENT-DA.BAS
VD_F2.FRM
VD_F1.FRM
VD_F4.FRM
VD_F3.FRM
VD_F5.FRM
VD_F6.FRM
Prqj WinSize=71,55 7,248,215
ProjWinShow=2
IconForm="vent_da"
Title="vent_da"
ExeName="VENT DA.EXE"
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VENT DA/VENT DA.BAS

The file containing the global declarations for the data acquisition program.

'WINDOW MESSAGE FACILITY

Global Const WMJJSER = &H400
Global Const EMSETREADONLY = (WMJJSER + 31)
Declare Function SendMessage Lib "User" (ByVal hWnd As Integer, ByVal wMsg As Integer, ByVal 
wParam As Integer, IParam As Any) As Long

'Comm Control

'Handshaking
Global Const MSCOMM_HANDSHAKE_NONE = 0 
Global Const MSCOMM_HANDSHAKE_XONXOFF = 1 
Global Const MSCOMM HANDSHAKE RTS = 2 
Global Const MSCOMM_HANDSHAKE_RTSXONXOFF = 3

'Event constants
Global Const MSCOMM_EV_SEND = 1 
Global Const MSCOMM_EV_RECEIVE = 2 
Global Const MSCOMMJEVJ3TS = 3 
Global Const MSCOMM_EV_DSR = 4 
Global Const MSCOMM_EV_CD = 5 
Global Const MSCOMM_EV_RlNG = 6 
Global Const MSCOMM_EV_EOF = 7

'Error code constants
Global Const MSCOMM ER BREAK =1001 
Global Const MSCOMM_ER_CTSTO = 1002 
Global Const MSCOMM_ER_DSRTO = 1003 
Global Const MSCOMM ER FRAME = 1004 
Global Const MSCOMM ER OVERRUN = 1006 
Global Const MSCOMM_ER_CDTO = 1007 
Global Const MSCOMM ER RXOVER = 1008 
Global Const MSCOMM_ER_RXPARITY = 1009 
Global Const MSCOMM ER TXFULL = 1010

'message in error log 
Global ef msg As String
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VENT_D A/VENT_D A. FRM

This form (ventda) implements the main window that is opened when data 

acquisition application is first started by clicking on its icon.

VERSION 2.00 
Begin Form vent da

' The attributes of the main application window

BackColor = &H00FFFF80& 
Caption = "Draeger Data"
ClientHeight = 6195 
ClientLeft = 150 
ClientTop = 750 
ClientWidth = 4470 
ControlBox = 0 'False 
Height = 6885
Icon = VENTD A. FRX: 0000
Left = 90
LinkTopic = "Forml" 
MaxButton = 0 'False 
ScaleHeight = 6195 
Scale Width = 4470 
Top = 120
Width = 4590

' The timer object for port reinitialisation

Begin Timer Timer2 
Enabled = 0 'False 
Interval = 30000
Left = 480
Top = 360

End

' The timer object for RS232 timed enquiry

Begin Timer Timerl
Enabled
Interval

0 'False 
6000

Left
Top

End

0
360
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' The Grid object that displays received data

Begin Grid Gridi
Cols = 3
FixedRows = 0
Height = 4095
HighLight = 0 'False
Left = 960
Rows = 16
ScrollBars = 1 'Horizontal
T ablndex = 4
Top = 2040
Width = 3490

End

1 Text boxes to display data telegram and length

Begin TextBox Text2
Height = 300
Left = 960
Tablndex = 1
Top = 1716
Width = 1450

End
Begin TextBox Textl

Height = 1668
Left = 960
MultiLine = -1 'True
Tablndex = 0
Top = 24
Width = 3490

End

' Commms object 
1

Begin MSComm Commi
Interval = 1000
Left 0
NullDiscard = -1 'True
RThreshold = 1
SThreshold = 10
Top = 720

End

' Label objects to identify telegram and length
) •

Begin Label Label3
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BackS tyle = 0 Transparent
Caption = "Telegram"
Height = 252
Left = 120
Tablndex = 5
Top = 120
Width = 852

End
Begin Label Label2

BackStyle = 0 'Transparent
Caption = "Length"
Height = 240
Left = 120
Tablndex = 3
Top = 1680
Width = 636

End

' Label object for Data

Begin Label Label 1
BackStyle = 0 'Transparent
Caption = "Data"
Height = 288
Left = 120
Tablndex = 2
Top = 2040
Width = 492

End

' Main form’s Menu items

Begin Menu mnufile 
Caption = "&File"
Begin Menu mnustart 

Caption = "&Start"
End
Begin Menu mnuexit 

Caption = "E&xit"
End

End
Begin Menu mnuview 

Caption = "&View"
Begin Menu mnugraph 

Caption = "Show all &Graphs"
End
Begin Menu mnustatuslog 

Caption = "Show &Status Log"
End
Begin Menu rrmusherr
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Caption = "Show &Error Log"
End

End
Begin Menu mnuhelp 

Caption = "&Help"
Begin Menu mnudoc 

Caption = "&Documentation"
End
Begin Menu mnuabout

Caption = "&About Data Acquisition ..."
End 

End 
End

Const port = 1 
Const num sets = 3 
Const num sets 1 = 1 
Const dt len = 93 
Const sig id len = 2 
Const m a x ts le n  = 8 
Const vars = 15 
Const mis val = -1

'communication port
'number of pressure data sets in forml graphl 
'number of data sets in resistance compliance grahl form6 
'data telegram length 
'signal identification length
'maximum length of telegram section in data telegram 
'number of variables (rows in gridl of forml)
'missing value

Const ack_len = 534 'identification telegram length new 
'Const nak len = 400 'status telegram length new
Const enq_len = 93 'data telegram length new

Dim arr2(num_sets) As Integer
Dim arr4(num_sets 1) As Integer
Dim start As Integer
Dim initdone As Integer ' new
Dim Filename As String
Dim num_points As Integer ' number of points in graphs 
Dim arr() As Double 
Dim arrlQ As Double 
Dim arr3() As Double

Sub Comml OnComm ()

Static ee msg As String 
Dim erm sg  As String 
Dim time stamp As String

Select Case comm l.CommE vent 
Case MSCOMM ER BREAK 
Case MSCOMM_ER_CDTO 
Case MSCOMM ER CTSTO 
Case MSCOMM_ER_DSRTO
Case MSCOMM ER FRAME 'Framing Error.
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erm sg  = "Framing Error."
Case MSCOMMEROVERRUN 'Data Lost.

er_msg = "Data Lost."
Case MSCOMMERRXOVER 'Receive Buffer Over Flow.

er_msg= "Receive Buffer Overflow."
Case MSCOMM ER RXPARITY 'Parity Error.

er_msg= "Parity Error."
Case MSCOMM_ER_TXFULL 'Transmit Buffer Full,

er msg = "Transmit Buffer Full."

Case MSCOMM EV CD 
Case MSCOMM_EV_CTS 
Case MSCOMM_EV_DSR 

' er_msg = "data set ready"
Case MSCOMMEVRING 
Case MSCOMMEVRECEIVE 
Case MSCOMM_EV_SEND 

transmit buffer.

'Change in Carrier detect 
'Change in clear to send 
'Change in data set ready

'Ring detect
'Received RThreshold number of characters 
'There are SThreshold number of characters in the

End Select

If Len(er_msg) > 0 Then ' if there is an error message
time_stamp = Format(Now, "ttttt") + " " ' get a time stamp
eem sg = ee_msg+ timestamp + er_msg + Chr(13) + Chr(10) 
vd_f5.Text 1.Text = ef_msg+ ee_msg ' stick itin the error log new 
End If

End Sub

Sub Form_Load ()

Static varn(vars) As String

varn(O) = "Evita ID" 
varn(l) = "t (hh,mm)" 
varn(2) = "VTe (1)"
varn(3) = "f (/min)" 
varn(4) = "MV (1/min)" 
varn(5) = "Peak (mbar)" 
varn(6) = "Plat (mbar)" 
vam(7) = "PEEP (mbar)" 
varn(8) = "Pmin (mbar)" 
varn(9) = "Mean (mbar)" 
varn(10) = "FI02 (%)"
varn(l 1) = "C (ml/mbar)' 
varn(12) = "R (mbar*s/l)" 
vam( 13) = "MVs (1/min)' 
vam(14) = "f s (/min)" 
varn(15) = "Temp (deg C)"

' Time
' Exp. Tidal Vol 
' Breathing frequency 
' Minute Vol 
' Peak Pressure 
' Plateau Pressure 
' PEEP
' Minimum Pressure 
' Mean Pressure 
' Insp. 02-concentration 
' Compliance 
' Resistance 
' Spont. Minute Vol"
' Spont. Frequency 
' Airway Temperature

arr2(0) = 5 ' Peak Pressure
arr2(I) = 6 ' Plateau Pressure
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arr2(2)= 9 
arr2(3)= 7

Mean Pressure 
PEEP

arr4(0)= 11 
arr4(l)=  12

' Compliance 
' Resistance

start = 0 
initdone = 0 
lastline = ""

'new
'static defined in timerl 
'static defined in timerl 
'static defined in comml

'Filename = "c:\zan.txt"

'Make text boxes readonly.
dummy = SendMessage(Textl.hWnd, EMSETREADONLY, 1, 0) 
dummy = SendMessage(Text2.hWnd, EM_SETREADONLY, 1, 0)

' Set grid column widths 
gridl.ColWidth(O) = 1450 
For i% = 1 To gridl .Cols - 1 
gridl.ColWidth(i%) = 1010 
Next i%

' Fill grid with variable names 
gridl.Col = 0 
For i% = 0 To vars 
grid 1. Row = i% 
gridl.Text = varn(i%)
Next i%

End Sub

Sub initial ()

Dim latestchar As String
Dim sta tel As String ' Length of Status telegram
Dim txtime As Single ' Transmition time
Dim duration As Single
Dim dline As String ' Data line
Dim posl, pos2
Dim etimestamp As String ' Error time stamp 
1 Dim loopcntr As Integer

latest char = "" ' new
dline =""
etime_stamp = "" ' new

etime_stamp = Format(Now, "ttttt") + " " ' new
efm sg = efm sg + etime stamp + "initializing" + Chr(13) + Chr(10) ' new
vd_f5.Textl Text = ef msg ' new
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'clear port here
comml.CommPort = port
comm 1. Settings = " 1200,E,7,2"
comm 1 .PortOpen = True
comm 1.Output = Chr( 17) ' DC1
txtime! = Timer + .01 'wait
Do
Loop Until Timer > txtime! 
comm 1. PortOpen = False

'clear port here
comm 1. PortOpen = True
comm 1.Output = Chr(20) ' DC4
txtime! = Timer + .01 ' wait
Do
Loop Until Timer > txtime! 
comm 1. PortOpen = False

'clear port
comml.InputLen = 1
comm 1. PortOpen = T rue
comm 1.Output = Chr(6) ' ACK
stajel =""
latest char = "" ' new
duration! = Timer + 6
'loopcntr = 0 ' new
Do

latestchar = comm 1. Input 
If Len(latest char) <> 0 Then 
stajel = sta je l + latestchar 

End If
' loopcntr = loopcntr + 1

Loop Until (Timer > duration! Or latestjhar = Chr(4))
comm 1. PortOpen = False
'this should go
'Print loopcntr
'Save to file

If latest char = Chr(4) And Len(stajel) = ackjen Then ' if message ok then continue 
Open Filename For Append As #1
pos 1 = 1 ' chop the identification telegram into lenghts of about 80 characters
While Len(Mid$(statel, posl)) > 80 

pos2 = InStr(posl + 79, stajel, Chr(27))
If pos2 = 0 Then

pos2 = pos 1 + 80 
End If
dline = Mid$(statel, posl, pos2 - posl) + Chr(13) + Chr(10) 
posl = pos2 
Print #1, dline;

Wend
dline = Mid$(sta tel, posl) + Chr(13) + Chr(10)
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Print #1, dline;
Close #1
Text 1.Text = statel 
Text2.Text = Str$(Len(sta_tel))

'clear port
comml.InputLen = 1 
comm 1. PortOpen = T rue
comm 1. Output = Chr(21) 
s ta je l =""

' NAK

latest_char ="" ' new
'loopcntr = 0 
duration! = Timer + 10

' new

Do
latestchar = comm 1. Input 
If Len(latestchar) <> 0 Then 

sta_tel = sta te l + latestchar 
End If

' loopcntr = loopcntr + 1 ' new
Loop Until (Timer > duration! Or latest char = Chr(4))
comml.PortOpen = False
' this should go
'Print loopcntr
'Print "outofNAK loop"
'Save to file

If latest_char = Chr(4) Then ' if message ok continue
Open Filename For Append As #1
pos 1 = 1 ' chop the status telegram
While Len(Mid$(sta_tel, posl)) > 80 

pos2 = InStr(posl + 79, sta tel, Chr(29))
If pos2 = 0 Then

pos2 = posl + 80 
End If
dline = Mid$(sta_tel, posl, pos2 - posl) + Chr( 13) + Chr(10) 
pos 1 = pos2 
Print #1, dline;

Wend
dline = Mid$(sta_tel, posl) + Chr(13) + Chr(10)
Print #1, dline;
Close #1
Textl.Text = sta tel ' stick the status telegram in the text box 
Text2.Text = Str$(Len(sta_tel))

initdone = 1
timer2.Enabled = False
timerl .Enabled = True
etimestamp = Format(Now, "ttttt") + " "
ef_msg = ef_msg + etime stamp + "Done initializing" + Chr(13) + Chr(10) 
vd_f5.Textl.Text = efm sg 
End If 

End If
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End Sub

Sub mnuabout Click () 

vdO.Show 

End Sub

Sub mnudocClick ()

dummy = Shell("notepad.exe c:\vent_da\doc.txt", 1) 

End Sub

Sub mnuexitClick ()

Close
End

End Sub

Sub mnugraphClick ()

vdfl.Show
vd_f2.Show
vd_f6.Show

End Sub

Sub mnusherrClick () 

vd_f5.Show 

End Sub

Sub mnustart_Click ()

Dim sample_t As Single 

If start <> 1 Then
Filename = InputBox$("Enter output filename:", "File Open")
If Len(Filename) > 0 Then ' if valid filename then initilaize

Do ' get data rate from user input
sam plet = Val(InputBox$("Enter sample interval in seconds (>=3)", "Data rate"))
Loop Until (sam plet >= 3 And samplet < 120) 
timer 1. Interval = 1000 * sample_t
Do ' get number of points to plot
num_points = Val(InputBox$("Enter number of points for trend graphs (>=10)", "Points in 

Graphs"))
Loop Until (num_points > 1 0  And num_points < 100) 
initial ' new
start = 1
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If initdone = 0 Then timer2.Enabled = True 1 new

ReDim arr(numjpoints) As Double ' data of graph 1 of form2
ReDim arrl(num_sets, num_points) As Double 1 data of graph 1 of forml
ReDim arr3(num_setsl, num_points) As Double

v d f l . Show 
vd_f2.Show 
vd f6.Show

End If 
End If

End Sub

Sub mnustatuslog^Click () 

vd_f4. Show 

End Sub

Sub Timerl_Timer ()
ReDim dataval(vars) As Double 
Dim duration As Single 
Dim datatel As String 
Dim tel sec As String 
Dim dline As String 
Dim st msg As String 
Dim time stamp As String 
Dim etime stamp As String 
Dim latest_char As String

Static lastline As String 
Static ss_msg As String 
Static errcount As Integer ' new

If start = 1 And initdone = 1 Then ' new

st_msg ="" 
datatel ="" 
tel_sec ="" 
timestamp = ""
etime_stamp = "" ' new
dline ="" 
latest_char =""

'if possible clear port here 
comml.InputLen = 1 
comm 1 PortOpen = True
comm 1.Output = Chr(5) ' ENQ Request data
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varnum  = 0 
duration! = Timer + 2
Do ' Receive and parse data
latestchar = comm 1. Input 
If Len(latest_char) <> 0 Then 

Select Case latest char
Case 1 Convert the comma character to decimal point

telsec = tel_sec + 
data tel = data tel +

Case Chr(27) ' ESC data separator
If Len(tel sec) > s ig jd Je n  And Len(tel sec) < max tsJen And var_num < vars +

1 Then
grid 1. Row = varnum  
gridl.Col = 1
dataval(var num) = Val(Mid$(tel_sec, 3)) 
gridl.Text = Mid$(tel_sec, 3) 
varnum  = varnum  + 1 

End If 
telsec ="" 
data tel = datajel +

Case Chr(4) ' EOT
If Len(tel sec) > sig_id_len And Len(tel_sec) < max ts J e n  And var num < vars +

1 Then
gridl. Row = varnum  
gridl.Col = 1
dataval(var num) = Val(Mid$(tel_sec, 3)) 
gridl.Text = Mid$(tel_sec, 3) 
varnum  = varnum  + 1 

End If 
te ljec  =""
data tel = data tel + ""

Case Chr(29) ' status separator
If Len(tel sec) > sig id len And Len(tel_sec) < max J s  J e n  And var num < vars +

1 Then
grid 1. Row = varnum  
gridl.Col = 1
dataval(var num) = Val(Mid$(tel_sec, 3)) 
gridl.Text = Mid$(tel_sec, 3) 
varnum  = var_num + 1 

End If 
telsec = ,,,,
data tel = data tel + latest char 

Case Else
telsec = telsec + latestchar 
data tel = data tel + latest_char 

End Select 
End If
Loop Until (Timer > duration! Or latest char = Chr(4)) 
comml.PortOpen = False

If latest char = Chr(4) And Len(data tel) = enqjen Then ' new
errcount = 0 ' new
dline = data tel + Chr(13) + Chr(10)
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compres = StrComp(Mid$(dline, 14), Mid$(lastline, 14)) 'compare ignoring time stamp 
lastline = dime
' If same data just keep time stamp 
If comp res <> 1 And comp res <> -1 Then 
dline = Mid$(data_tel, 1, 14) + Chr(13) + Chr(10)
End If 
' Save to file
Open Filename For Append As #1 
Print #1, dline;
Close #1

Text 1.Text = datatel 
Text2.Text = Str$(Len(data_tel))
'this should go
'data_tel = "hello world" + Chr(29) + "status message 1" + Chr(29) + "status message 2" + 

Chr(29) + "end of message"
' Chopping the status message 
posl = InStr(l, data tel, Chr(29))
If posl <> 0 Then

pos2 = InStr(posl + 1, data_tel, Chr(29)) 
gridl.Row= 1 
gridl.Col = 1
timestamp = grid 1.Text + " "

' this should go
' time stamp = Format(Now, "ttttt") + " "

While pos2 <> 0
stm sg  = s tm sg  + time stamp + Mid$(data_tel, posl + 1, pos2 - posl - 1) + Chr(13) +

Chr(10)
pos 1 = pos2
pos2 = InStr(posl + 1, data tel, Chr(29))
Wend
st_msg = st msg + timestamp + Mid$(data_tel, posl + 1) + Chr(13) + Chr( 10) + 

m ********************* _{_ 13) + chr( 10)
ss_msg = ss_msg + stm sg
vd_f4.Textl Text = ss nisg ' Stick it in the status log

End If

' Graphing

vd_f2. Graph 1. Autolnc = 1 
vd_f2.Graphl.NumPoints = num_points + 1

' shift register to get new data and shift out old 
For i% = 0 To num_points - 1 
arr(i%) = arr(i% + 1)
Next i%

If Len(data tel) < dt len Then
arr(num_points) = m isval ' Missing value

Else
arr(num_points) = dataval(4) ' Tidal Volume
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End If
For i% = 0 To numpoints 
vd f2.Graphl GraphData = arr(i%)
Next i%

For i% = 0 To num_points
vd_f2.Graph 1 .XPosData = vd_f2.Graph 1 .ThisPoint - num_points - 1 

Next i%

vd_f2. Graph 1. GraphT ype = 6 
vd_f2. Graph 1, DrawMode = 2

' Graphing Resistance and Compliance

vd_f6. Graph 1. Autolnc = 1 
vd_f6.Graphl.NumPoints = nuin points + 1 
vd_f6.Graphl.NumSets = num setsl + 1

' shift register to get new data and shift out old

For j% = 0 To num setsl 
For i% = 0 To num_points - 1 

arr3(j%, i%) = arr3(j%, i% + 1)
Next i%

Next j%

If Len(datatel) < dt len Then 
For j% = 0 To num sets 1
arrl(j%, num_points) = mis_val ' Missing value
Next j%
Else

'this should go 
' dataval(ll) = 11 
' dataval(12) = 3

For j% = 0 To num setsl
arr3(j%, num_points) = dataval(arr4(j%)) ' pressures 
Next j%

End If

For j% = 0 To num setsl 
For i% = 0 To num_points 

vd_f6.Graph 1.GrapliData = arr3(j%, i%)
Next i%

Next j%

For j% = 0 To num setsl 
For i% = 0 To num points

vd_f6.Graph 1.XPosData = vd_f6.Graph 1.'ThisPoint - num_points - 1 
Next i%

Next j%
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vd_f6.Graphl.GraphType = 6 
vd_f6.Graphl.DrawMode = 2

' Graphing pressures

v d f l . Graph 1. Autolnc = 1 
vdfl.Graphl.NumPoints = num_points + 1 
vd_fl. Graph l.NumSets = numsets + 1

' shift register to get new data and shift out old

For j% = 0 To num sets 
For i% = 0 To num_points - 1 

arrl(j%, i%) = arrl<j%, i% + 1)
Next i%

Next j%

If Len(data_tel) < dt len Then 
For j% = 0 To num sets
arrl(j%, num_points) = m isval ' Missing value
Next j%
Else

'this should go 
' dataval(5) = 5 
' dataval(6) = 4 
' dataval(9) = 3 
' dataval(7) = 1

For j% = 0 To num sets
arrl(j%, num_points) = dataval(arr2(j%)) ' pressures 
Next j%
End If

For j% = 0 To num sets 
For i% = 0 To num_points 

vd fl Graph 1. GraphData = arr 1 (j%, i%)
Next i%
Next j%

For j% = 0 To num sets 
For i% = 0 To num_points

vd_f 1. Graph 1. XPosData = vd f l . Graph 1 ThisPoint - num_points - 1 
Next i%

Next j%

v d f l . Graph 1. GraphT ype = 6 
vd_fl .Graph 1. DrawMode = 2

Else
errcount = errcount + 1
If errcount >= 4 Then ' If garbage or nothing so many consecutive times
initdone = 0 ' then must reinitilaise
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timer ¡.Enabled = False 
timer2. Enabled = True 
etime_stamp = Format(Now, "ttttt") + " "
ef_msg = efm sg + etimestamp + "Ventilator not responding or cable disconnected!" + 

Chr(13) + Chr(10) + "Trying to reinitialize" + Chr(13) + Chr(10) ' Let sombody know
vd_f5 Text 1 Text = efm sg 

End If 
End If 

End If

End Sub

Sub Timer2_Timer ()

If initdone = 0 Then initial ' Do the reinitialisation every tinier tick

End Sub
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VENT DAAD Fl.FR M

This form ( v d f l )  contains the window for plotting the graphs of the airway 

pressure variables.

VERSION 2.00 
Begin Form vd fl

Caption =: "Airway pressures (mbar)"
ClientHeight = 2996
ClientLeft = 4170
ClientTop = 2282
ClientWidth = 5295
Height = 3374
Icon = VDF 1. FRX: 0000
Left 4110
LinkTopic = "Formi"
ScaleHeight = 2996
ScaleWidth = 5295
Top 1960
Width 5415
Begin GRAPH Graph 1

AsciiColor = "12~1~2"
AsciiFSize = "80—150-100-80"
AsciiLegend = "Peak-Plateau-Mean-PEEP1
Background = 7 'Liglit Gray
BottomTitle = "Samples"
GraphType = 6 'Line
Height = 3015
Left = 0
LegendStyle = 1 'Color
NumPoints = 21
NumSets = 4
RandomData = 0 'Off
Tablndex = 0
ThickLines = 0 'Off
Top == 0
Width = 5295

End
End

Sub Graph l Click ()

'fit g r a p h  to  w in d o w

g r a p h l .H e ig h t  =  H e ig h t  - 1 0 0

g r a p h l .W id t h  =  W id th  - 1 0 0

E n d  S u b
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VENT DA/VI) F2.FRM

This form (vd_f2) contains the window for plotting the volume graphs.

VERSION 2.00 
Begin Form vd_f2

Caption = "Minute Volume (1/min)" 
ClientHeight = 3150 
ClientLeft = 4065
ClientTop = 630
ClientWidth = 5325
Height = 3528
Icon = VD_F2.FRX:0000
Left = 4005
LinkTopic = "Form2"
ScaleHeight = 3150
ScaleWidth = 5325
Top = 308
Width 5445
Begin GRAPH Graph 1

AsciiColor = "l~2~2~2~l"
AsciiFSize = "80-150-100-8
AsciiLegend = "MV (1/min)"
Ascii Symbol = "1—1—9—1—1"
Background = 7 'Light Gray
BottomTitle = "Samples"
GraphType = 6 'Line
Height = 3165
Left 0
LegendStyle = 1 'Color
NumPoints = 21
RandomData = 0 'Off
Tablndex = 0
ThickLines = 0 'Off
Top = 0
Width = 5340

End
End

Sub Graph lC lick  ()

'fit g r a p h  to  w in d o w

g r a p h l .H e ig h t  =  H e ig h t  - 1 0 0

g r a p h l .W id t h  =  W id th  - 1 0 0

E n d  S u b
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VENT I)A/V I) F3.FRM

This form (vd_f3) specifies the window that is opened by the “HELP” menu item.

VERSION 2.00 
Begin Form vd_f3

Caption = "Ventilator Data Acquisition Help"
ClientHeight = 2025
ClientLeft = 2145
ClientTop = 1560
Client Width = 5730
Height = 2430
Icon = VD_F3.FRX:0000
Left = 2085
LinkTopic = "Forml"
MaxButton = 0 'False
ScaleHeight = 2025
ScaleWidth = 5730
Top = 1215
Width = 5850
Begin PictureBox Picture 1 

BorderStyle = 0 'None 
Height = 476
Left = 240
Picture = VD_F3.FRX:0302
ScaleHeight = 480 
ScaleWidth = 510 
T ablndex = 2
Top = 378
Width = 510

End
Begin CommandButton Command 1 

Caption = "OK"
Height = 378
Left = 4680
Tablndex = 1
Top = 2 5 2
Width = 975

End
Begin Label Label 1

AutoSize = -1 'True
Caption = "Labell"
Height = 2030
Left = 960
Tablndex = 0
Top - 0
Width = 3975
Wordwrap = -1 True
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End
End

Sub Commandl Click () 

vdfi.H ide 

End Sub

Sub FormLoad ()

Dim abt msg

abt_msg = Chr(13) + Chr(10) + Chr(lO) + "Ventilator Data Acquisition Program" + Chr(13) + 
Chr(10)+ "Version 1.0a"

abt msg = abt msg + Chr(13)+ Chr(10) + Chr(10)+ "Copyright " + Chr(169)+ " 1994 
R.N.Pirjamali"

abt_msg = abt msg + Chr( 13) + Chr( 10) + Chr(10) + "Developed for City University && 
RBNHLH"

vd_f3. Label 1. Caption = abtm sg 

End Sub
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VENT DAAD F4.FRM

This form (vd_f4) implements the window for displaying the status log.

VERSION 2.00 
Begin Form vd_f4

Caption = "Status Log"
ClientHeight = 3090
ClientLeft = 4935
ClientTop = 4965
ClientWidth = 4335
Height = 3495
Icon = VD_F4.FRX:0C
Left 4875
LinkTopic = "vd f4"
MaxButton = 0 'False
ScaleHeight = 3090
ScaleWidth = 4335
Top : 4620
Width = 4455
Begin TextBox Textl

Height = 4212
Left = 0
MultiLine = -1 'True
ScrollBars = 2 'Vertical
Tablndex = 0
Top = 0
Width = 4932

End
End

Sub FormLoad ()

dummy = SendMessage(Textl.hWnd, EMSETREADONLY, 1, 0) 

End Sub

Sub Textl_Change () 

vd_f4.Show 

End Sub
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VENT DA/V I) F5.FRM

This form (vdf5)  implements the window that contains the communication error 

log.

VERSION 2.00 
Begin Form vd_f5

Caption = "Communication Errors "
ClientHeight = 2295 
ClientLeft = 2955
ClientTop = 2280
ClientWidth = 4320 
Height = 2700
Icon = VD_F 5. FRX: 0000
Left = 2895
LinkTopic = "Forml"
MaxButton = 0 'False 
ScaleHeight = 2295
ScaleWidth = 4320
Top = 1935
Width = 4440
Begin TextBox Textl 

Height = 2295
Left = 0
MultiLine = -1 'True 
ScrollBars = 2 'Vertical 
Tablndex = 0 
Text = "No Comms Errors!"
Top = 0
Width = 4335

End 
End

Sub Form_Load ()

dummy = SendMessage(Textl.hWnd, EM_SETREADONLY, 1, 0) 

End Sub

Sub Textl Change () 

vd_f5.Show 

End Sub
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VENT DA/V I) F6.FRM

This form (vd f6) implements the window that contains the graphs of the 

resistance and compliance variables.

VERSION 2.00 
Begin Form vd_f6

Caption = "Resistance & Compliance"
ClientHeight = 3766 
ClientLeft = 4695
ClientTop = 4004 
ClientWidth = 6075 
Height = 4144 
Icon = VD_F 6. FRX: 0000
Left = 4635
LinkTopic = "Forml"
ScaleHeight = 3766 
ScaleWidth = 6075 
Top = 3682
Width = 6195 
Begin GRAPH Graph 1 

AsciiColor = "l~4~l~l"
AsciiFSize = "80-150-100-80"
AsciiLegend = "C (ml/mbar)~R (mbar*s/l)— R (l/min*kPa)" 
Background = 7 'Light Gray 
BottomTitle = "Samples"
GraphType = 6 'Line 
Height = 3794 
Left = 0
LegendStyle = 1 'Color 
NumPoints = 21
NumSets = 2
RandomData = 0 'Off 
Tablndex = 0
ThickLines = 0 'Off
Top = 0
Width = 6135 

End 
End

Sub Graph l Click ()

' F it  g r a p h  to  w in d o w  s iz e

g r a p h  1 .H e ig h t  =  H e ig h t  - 1 0 0

g r a p h l .W id t h  =  W id th  - 1 0 0

E n d  S u b
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