

City, University of London Institutional Repository

Citation: Hadjiminas, N. & Child, C. H. T. (2012). Be The Controller: A Kinect Tool Kit for

Video Game Control - Recognition of Human Motion Using Skeletal Relational Angles.
Paper presented at the 5th Annual International Conference On Computer Games,
Multimedia And Allied Technology (CGAT 2012), 2012, Bali, Indonesia.

This is the unspecified version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/2996/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Be The Controller: A Kinect Tool Kit for Video

Game Control
Recognition of human motion using skeletal relational angles

Nicholas Hadjiminas

Department of Computing,

School of Informatics, City University

 London, United Kingdom

n123al@hotmail.com

Christopher Child

Department of Computing,

School of Informatics, City University

 London, United Kingdom

C.Child@city.ac.uk

Abstract— As technology evolves, more interactive video game

controllers are being developed in order to provide players with

greater interaction with games. Motion control is one of the most

challenging and exciting topics in today's games industry and the

related controllers have taken the industry by storm becoming a

prerequisite for new generation game consoles.

We propose a new method to quickly and accurately recognize

human motion using skeletal relation angle recognition rather

than body parts Cartesian co-ordinates position recognition in

order to provide a more flexible, accurate and efficient way

tracking human motion. This method was used to develop a tool

kit that aims to help game designers easily identify and recognise

a user’s pose and gestures using Microsoft’s Kinect motion

controller, in order to then link these movements with actions in

a game for example key presses can be liked to poses or gestures

in order to produce key events.

Finally, we evaluated the usability of the tool kit and the success

rate of skeletal relation angle recognition through an experiment.

Ten representative users were selected and asked to complete a

set of tasks using the “Be the Controller” project and a game

(World of Warcraft) in order to simulate real conditions of use of

the software and evaluate its usability. The data from this

experiment helped to form some important conclusions: users

found it easy to create their own poses and gestures; they were

enthusiastic about the fact that they were able to bind their

actions to key/mouse events; and were satisfied with the success

rate of pose recognitions

Keywords- Pose and gesture recognition; Kinect project; Be the

controller tool kit;motion control; human motio; skeletal relational

angles recognition

I. INTRODUCTION

As technology evolves, more interactive video game

controllers are being developed in order to provide players with

greater interaction with games and thus offering more

enjoyment and the ability for a player to become more

immersed in the game on many different levels, (immersed,

refers to how much the user is drawn into the game’s world and

feels as though he is actually in the gaming environment).

Motion control is one of the most challenging topics in today's

games industry whereas the related controllers have taken the

industry by storm becoming a prerequisite for new generation

game consoles [1]. Motion controllers use different types of

mechanisms such as, accelerometers, infra-red (IR) sensors and

cameras. These help detect the player’s movements and

identify his gestures in order to allow him to interact with the

game and manipulate items on screen through real-time

movement and gestures. Contemporary video game controllers

use a camera, IR projector and IR sensors to track the user’s

motion without the need for the user to hold a controller.

Microsoft’s Kinect holds the Guinness World Record of being

the "fastest selling consumer electronics device”. It sold an

average of 133 units per day with a total of 8 million units sold

within the first 60 days of its release [2].

Despite the success of motion controllers they have not

resulted in the significant and radical change to the game

industry expected. This can be explained with a brief look at

the current games market and the use of motion tracking

controllers. One could describe the market for motion tracking

games as casual, consisting of people with little or no

experience with games, who do not like playing games for

extended periods and who will probably not read the

instruction manual before playing a game [3]. Probably the

reason behind this is that motion controllers support more

accessible simple motions compared to the traditional

gamepads with their many action buttons. However, other

game markets, such as the more traditional core games, appear

not to share the immense success of casual games with motion

tracking . There are only a few releases of core game (like Frist

Pearson Shouter games) with motion tracking control and these

are not as successful as their casual competitors. This is in

direct contrast to recent statistics illustrating traditional core

market games as being very successful. For example, Call of

Duty: Black Ops has sold over 18 million copies [4]. Finally, a

cursory analysis of the casual market’s released games, shows

that most users use the motion controller’s capabilities in a

restricted, controlled fashion. This observation regarding the

current state of the motion controllers’ market gives the

impression of market stagnation and there is no obvious

explanation as to why this is happening.

Nevertheless, several theories try to explain this stagnation.

The first of these is that it is caused by the limitations of the

motion controllers [5]. However, this explanation does not

seem to be the case as there are several impressive open source

implementations that use motion controllers developed by

programmers’ communities. Another reason considered more

valid is that the motion controller market is small, thus the

designing of games aimed at this market need considerably

more experiences and the available Software Development Kits

provide developers with only basic functionalities. For

example, available SDKs provide developers with a

mechanism to track the user’s position in the environment but

they do not provide them with a mechanism to identify user’s

actions. Subsequently, the conclusion is that not enough

research has been carried out regarding motion controllers and

which mechanisms are needed in order to allow developers to

use the motion tracking controllers to their full capabilities.

The lack of research regarding the full capabilities of motion

controllers and ways to use them in order to identify players’

actions were the motivation of the “Be The Controller: A

Kinect Tool Kit for Video Game Control” project [6]. The

current paper summarizes the work presented in that project

A. What is the “Be the Controller tool kit” ?

The primary goal of the Be the Controller tool kit is to help

game designers easily identify and recognise a user’s pose and

gestures using Microsoft’s Kinect motion controller, in order to

then link these movements with actions in a game. The project

is divided into two parts: the first part of the tool kit is a

windows application that allows a developer to create a set of

gestures and poses and then export these gestures and pose lists

to files. The second part of the tool kit is a software library (dll

file) that provides the developer with the infrastructure to load

lists of poses and gestures to an application, which are then

recognised and linked to the appropriate action in the

application.

The tool uses a skeletal relation angle recognition method

rather than body parts Cartesian co-ordinates position

recognition method, which provide a more easy and flexible

way to create and recognise pose and gesture. By using this

method the tool can recognise poses unaffected by the

positioning of the body’s parts in the virtual world environment

because it only compares the relationship of the parts, (if the

positioning of two parts changes but they keep the same

angle/relation between them they will still be recognised as the

previous pose).

Furthermore, the tool achieved high performance by restricting

the comparison to the active relations of poses and by

simplifying gestures as a sequence of two poses instead of

representing them as a set of continuous changes of the tracked

relations.

Finally the “Be the controller App” application provides a way

for users to convert the recognised poses and gestures into

keyboard and mouse actions, allowing a user with no

programing experience to use the system to control

contemporary games with the Kinect controller.

II. HUMAN BODY MOVEMENTS

This section looks at the method we suggest to track the

movements of a human for this project. First research about the

movements of the human body is presented and then a

description of the technique used to recognise the user’s

different actions using the positioning of human body parts is

provided.

A. Understanding Body Movements

According to Bartlett, the human body movements are usually

described in three dimensional space using a system of planes

and axis [7]. The three planes of motion the human body passes

through are:

• The sagital plane

• The frontal plane

• The transverse (horizontal) plane

The sagital plane is the plane that lies vertically and bisects the

body into right and left parts. Sagital plane motions are the

movements of human parts around the frontal axis.

The frontal plane also lies vertically however it bisects the

body into the front and back parts. Frontal plane motions are

the movements of human parts around the sagital axe.

The transverse is the plane that lies horizontally and bisects the

body into upper and lower parts. Transverse plane motions are

the movements of human parts around the vertical axe [7].

Figure 1. Planes of Human motion [7]

Axis of movement

Human movement at the body’s joints happen in a plane, about

an axis. The axis of movement for an object is a straight line

that the object can rotate around. There are three axes of

rotation for the body:

• Sagital axis

• Frontal axis

• Vertical axis

Human motion

The most common way of describing a movement is by

referring to the movement’s dominant plane. For example, we

describe the walking activity as a sagital plane movement. This

description does not accurately represent the real movement

scheme; it only covers the gross direction of movement. At

each skeletal joint movement will occur in several planes not

only in a single plane that matches direction of movement. In

the example of the walking activity, the hip will flex or extend

across the sagital plane, adduct or abduct across the frontal

plane and rotate internally or externally across the transverse

plane. This scheme of motion applies to all the individual joints

of body parts and because the movement on the three planes

happens simultaneously, can be seen as one action with three

components, a tri-planar motion [8].

All human motions follow this tri-planar scheme so all

functional movements occur in three dimensions, though, it is

more useful, from the mechanical point of view, when

generalising about average motion pattern to describe motion

in a single plane scheme. The following table shows examples

of motion planes, axis of movements and motions.

Plane Motion Axis Example

Sagital Flexion/extension Frontal Walking

Squatting

Overhead press

Frontal Abduction/abduction

Side flexion
Inversion/eversion

Sagital Star jump

Lateral arm raise
Side bending

Frontal Int-rotationn/ ext- rotation

Horizontal flexion/extension
Supination/pronation

Sagital Throwing

Baseball swing
Golf swing

Table 1 .Examples of dominant planes, motions and axis in gross

movements[8].

Although the single plane scheme is useful when generalising

about average motion it cannot be used to describe the

functional activities of life and sport such as running, jumping,

walking, catching, throwing, twisting, hopping, skipping,

rolling, climbing, kicking, pushing, pulling etc. because these

activities require simultaneous movement in all planes of

motion.

As multi-plane movement dominates activities of life and

sport, this makes it essential to track movement in all three

planes of motion in order to accurately recognise human

actions.

B. Tracking Human actions

New generation controllers use sensors to detect the placement

of player’s body parts in the real word and provide the

programmer with coordinates about the placement of the player

in a virtual environment (world coordinates). The most

common coordinate system used for representing positions in a

virtual environment is the Cartesian coordinate system.

Cartesian is a coordinates system that provides a method of

rendering graphs and representing the positions of points on a

two-dimensional or three-dimensional environment [9].

The most common approach used to recognise human actions

is to try and track the placement of the body parts by their

position in the virtual world. For example, a pose can be the

position of an arm and forearm, and compare it with the current

user’s arm and forearm position trying to recognise this pose.

The main problem with this technique is that the user’s body

parts must be in a position which exactly matches the

coordinates of the stored pose. Even if a variation is allowed in

each dimension dx, dy, dz allowing a diversion range x-dx ≤ x

≤ x+dx in x-axis, y-dy≤ y ≤ y+dy in y-axis and z-dz ≤ z ≤ z+dz

in z-axis, which will create a cube of allowed coordinates

around the base position (Figure 2), the method can only

recognise poses around the initial captured position. For

example, it cannot recognise a stretched hand action if the

initial captured pose was on the front of the body and the user

stretched his hand on the left side. This factor makes this

method unsuitable for tracking the tri-planar human actions.

Figure 2. Cube of allowed coordinates around the base position.

The technique we suggest for recognising human actions is to

track the relationship between each of the body parts. The

relationship between body parts can be measured using the

angle between the vectors represented and passing through

each part. A vector starts at the joint of the parts and ends at

end of the part. For example, a pose that tracks how

outstretched a hand is, can be the angle between the two

vectors starting from the arm and forearm joint, one end at

forearm’s end and the other one at arm’s end. Furthermore, by

allowing a variation (dθ) on the angle (an angle counts as valid

if it is inside the range θ-dθ≤θ≤θ+dθ) the flexibility of the

recognition can be controlled. This method can recognise poses

unaffected by the positioning of the body’s parts in the virtual

world environment because it only compares the relationship of

the parts, (if the positioning of two parts change but they keep

the same angle/relation between them they will still be

recognised as the previous pose). Each user’s pose has a list of

the angles, which represent the relationship between user’s

parts that construct the pose. Finally, a user’s action is tracked

as a sequence of two poses (start and end) within a certain

amount of time.

III. IMPLEMENTATION OF THE RECOGNITION METHOD

The recognition method, we proposed in the previous section,

supported the representation of the relation between human

body parts based on the angles between them. The recognition

process was performed in three steps:

a) Calculate the angle between the body parts

b) Define the direction of the angle

c) Compare the angles of the poses

A. Calculate the angle between two body parts

Firstly, a vector to represent each part was created by

subtracting the End Vertex values from the Start Vertex of the

part (Vector 1 = Vertex B - Vertex A, Vector 2 = Vertex C -

Vertex A). Vector is the movement from one point to the next

[10].

Figure 3. Vector’s vertexes

Then the dot was used to determine the cosine of the angle [11]

Vector1 • Vector2 � | Vector1| | Vector2 | cosine �Θ�
=>

cosine�Θ� �
Vector1 • Vector2

| Vector1| | Vector2 |

Vector1 • Vector2

| Vector1| | Vector2 |
� Normalize�Vector1� Normalize�Vector2�

=> Θ � arcos�Normalize�Vector1� Normalize�Vector2��

The angle calculated with this procedure is unsigned (without

direction information). Direction information is important in

order to separate two sets of vectors with the same angle

between them but with different rotation.

B. Define the direction of the angle

The vectors created by the vertexes of the body parts define a

surface. The Normal of this surface was used to identify the

direction of the angle between the two vectors (Figure 4). The

Normal determines a surface's orientation and is a vector that

points directly away from and is perpendicular to the surface.

Figure 4. Surface Normal

The Cross Product was used in order to calculate the normal of

these vectors. The result of the cross product is a new vector

that is positioned perpendicular to the plane generated by the

vectors. The cross product is not commutative and the right

hand rule was used to determine the direction of the resulting

cross product (Figure 5)

Figure 5. Right hand rule [11]

The next step was to normalise the vector of the normal.

������ �
������

|������|

Figure 6. Normalise a vector

C. Compare the angles of two poses

The final step of the recognition process was the

implementation of a procedure that compares the angle of two

body parts and the orientation of the surface defined by these

parts.

An angle between two user’s body part of the current pose was

considered as matched if it was inside a range of values,

created using the variation defined by the user when he stored

the pose, around the stored pose angle Θstored ± (variation

/100) *π/2

Finally, in order to compare the orientation of the two surfaces

defined by these parts, the Dot product between the direction

(normal) vectors of each surface was used. If the Dot product

was positive the surfaces had the same orientation. For angles

smaller than the calculated variation the orientation test was

ignored in order to prevent failing match tests even if they are

in the allowed range of angles.

IV. BE THE CONTROLLER TOOL KIT

We used the method analysed in the previous sections to

develop a tool kit that aims to help game designers easily

identify and recognise a user’s pose and gestures using

Microsoft’s Kinect motion controller, in order to then link

these movements with actions in a game. The project was

divided into two parts: A pose and gesture generator

application that allows the software developer to capture poses

using the Kinect controller and then select which relation

between the various human body parts they want to track, via

an easy to use graphic interface. A software library that allows

a software developer to load poses and gestures created with

the generator application, and inform the application when a

recognised pose or gesture is performed by the user.

The actors of the system are: the software developer, the user

and the application using the library. Finally, three elements

comprising the core system:

• The Pose and Gestures generator - windows
application (developed using Windows Presentation
Foundation (WPF) system and C# (C Sharp))

• The Recognition library - dll file for windows
(Developed using C#)

• The Kinect sensor

The figure 7 shows a high level overview of the tool kit.

Figure 7. System high level overview

The main functionalities that are supported by the latest version

of the tool kit :

Pose and Gesture Generator application

• Create pose: The system allows the user to create a
new pose

• Test pose recognition: The system allows the user to
test the recognition of an existing pose

• Compare a sequence of poses: The system allows the
user to compare a sequence of poses with existing
poses (base pose)

• Save pose list: The system allows the user to save the
current pose list to a file

• Load pose list: The system allows the user to load a
list of poses from a file to the system

• Create gesture: The system allows the user to create a
new gestures

• Test gesture recognition: The system allows the user
to test the recognition of an existing gesture

• Save gesture list: The system allows the user to save
the current gestures list to a file

• Load gesture list: The system allows the user to load a
list of gestures from a file to the system

• Accept voice commands (with speech recognition):
The system allows the user to control the application
using voice commands

‘Be the Controller’ library

• Initialise Kinect sensor: The system allows the
programmer to initialize the Kinect sensor

• Load pose list: The system allows the programmer to
load a list of poses from a file to the system

• Load gesture list: The system allows the programmer
to load a list of gestures from a file to the system

• Announce the recognition of a pose or gesture: The
system informs the programmer when a pose is
recognised

• Announce the expiration a pose or gesture: The
system informs the programmer when a gesture is
recognised

V. PROJECT EVALUATION

A. “Be The Controller App” application

For the needs of the evaluation experiment, we developed an

application that aimed to provide a way for users to convert the

recognised pose and gestures into keyboard and mouse actions.

This was implemented by converting the return value of a

recognised pose or gesture to a simulation of keyboard key,

mouse key press event or to activate the control of the mouse

cursor position with the user’s left hand. For the simulation of

the keyboard/mouse events in this application the SendInput

function of the Uesr32.dll library was used. This function

provides the closest simulation of keyboard /mouse events,

which makes the application compatible with the majority of

games. A table with the allowed return values and the action

represent each value is available in Appendix I. With the use of

this application it was possible for a user with no programing

experience to use the system , which aided not only game

developers but also people that represent the “typical gamer” to

participate in the evaluation test.

Figure 8. Print screen of Be the Controller app

B. Evaluation Experiment

In the phase of the evaluation of the project, we selected ten

representative users and we assigned them to complete a set of

tasks using the “Be the Controller” project and a well-known

multiplayer online game, World of Warcraft (WOW) [12].

Before each user started the evaluation experiment, we asked

him to answer a pre- questionnaire in order to identify the user

characteristics. During the evaluation, a usability expert

observed the users in order to collect as much relevant

information as possible from them. Finally, at the end of the

evaluation each we asked the user to answer another

questionnaire that aimed to record the way the user saw the

project after the trial.

Based on the pre-questionnaire the characteristics of the ten

users taking part in the experiment are that: all the users had

previous video game experience, 60% of the users had played

games on game consoles. Furthermore, 40% of the users had

previous experience with motion tracking controllers but only

10% of them had played games with the Kinect controller.

Finally, 70% of the users had some previous experience with

World of Warcraft .

The data from the observation of the users during the trail

helped to form some important conclusions about the use of

Kinect in games and the usability of the project. First, it was

clear that the use of Kinect offers more enjoyment and the

ability for a player to become more immersed in the game on

many different levels. This was decreased somewhat by the

fact that the game used for the test was not designed to be

played with Kinect. As a result a delay to the activation of an

action in the game occurred from the moment the

corresponding gesture was performed by the user (global delay

= gesture perform time + game’s action cast time).

Users found it easy to create their own poses and gestures and

they were enthusiastic with the fact that they were able to bind

their action to key/mouse events. In some cases, people were so

excited with the experiment that they spent a lot of time

creating poses and gestures that were very similar to the

avatar’s animation in the game.

Finally, users were satisfied with the success rate of

recognitions of the project, but some did not like the limitations

of the Kinect controller in the creation of some poses. For

example, they were unable to capture poses in which one body

part was in front of other body part. Moreover, it was clear that

the Kinect is not suitable in controlling the mouse cursor

because of the instability of the hand position point tracked by

the Kinect SDK, which made it hard for the user to aim with

the mouse cursor. A possible solution to this issue is instead of

using the point of the hand directly to determine the cursors

position on the screen to use hand’s speed and direction of

move to determine the next position of the cursor. This

implementation is more accurate as the small and short

movements of the hand’s point due to the instability of its

tracked position will produce insignificant movements of the

cursor.

As mentioned before the users were asked to answer a post-

questionnaire and the following table shows the average results

for the answers given by the ten participants in the project. The

following table shows the outcome of the post-questionnaire.

 Question Answer (+2/-2) Average
1 Your actions were always

correctly recognized by the

application

Strongly agree /

Strongly disagree

1.8

2 You found it easy to create your

own pose and gestures.

Strongly agree /

Strongly disagree

1.7

3 The use of Kinect helped you to

become more immersed in the

game.

Strongly agree /

Strongly disagree

1.5

4 How much effort was needed in

order to learn how to use the

Pose and Gesture generator

application?

A lot of effort / No

effort

-1.6

5 If you were a game developer

creating a new MMO game,

would you choose Kinect over

traditional game controllers

(joysticks, game pads etc.) as

the primary controller of your

game?

Yes / No 1.6

6 The voice commands were

always executed correctly.

Strongly agree /

Strongly disagree

1.1

7 Did the “Be the controller app”

always matched correctly your

action to the appropriate

key/mouse command?

Always / Never 1.7

8 The procedure of creating pose

and gesture was easy to

understand.

Strongly agree /

Strongly disagree

1.8

9 Kinect was able to “see” all the

parts of your body all the time.

Strongly agree /

Strongly disagree

0.9

10 Are you willing to spend £129

to buy Kinect controller in order

to play games with motion

tracking?

Yes / No 1.3

Table 2. Result of the post-questionnaire

The results of this post-questionnaire verified the inferences

based on the observation of the users.

VI. DISCUSSION

A. Evaluation Results

The usability experiment helped to validate the conclusion that

the use of motion tracking controllers in games is likely to be a

key growth market. This can be inferred from the fact that

Kinect holds the Guinness World Record for the "fastest selling

consumer electronics device”. People were excited by the idea

of controlling a game without holding a controller, and with the

new direct manipulation interfaces. The fact that led to this

conclusion was that during the experiment, users were

becoming immersed in the game, they seemed to enjoy it

greatly and they spent much more time than the tasks of the

experiment required, creating their own poses and gestures and

performing more complicated actions in the game.

Unfortunately, the overall immersion was reduced because the

game used in the test was not designed to be played with

Kinect, and this had as a result, a delay to the activation of an

action in the game from the moment the corresponding gesture

was performed by the user (global delay = gesture perform

time + game’s action cast time).

The poses and gestures generator was easy to use in order to

create a desired pose/gesture. Users found it simple to create

their own poses and gestures and they were enthusiastic with

the fact that they were able to bind their action to key/mouse

events. In some cases, people were so excited with the

experiment that they spent a lot of time creating poses and

gestures that were very close to the avatar’s animation in the

game.

Finally, confirmation that the chosen recognition method was

appropriate for the recognition of human action was the fact

that users were satisfied with the success rate of recognitions of

the project. However, in some cases users identified limitations

of the Kinect controller in the creation of some poses. For

example, they were unable to capture poses in which one body

part was in front of other body part. Moreover, it was clear that

the Kinect is not suitable to control the mouse cursor because

of the instability of the hand position point tracked by the

Kinect SDK, which made it hard for the user to aim with the

mouse cursor.

All the above conclusions prove that most of the project’s aims

were achieved, such as: Project Stability, Easy to use ,Good

recognition rate, Compatible with game development tools like

XNA, Best Performance

B. Potential Applications for the Research

This section proposes some potential uses of the project.

Initially, two proposals are described and explained how to use

this library to control contemporary games and finally a

proposal to use this library for developing new generation

games that are designed to use Kinect is introduced.

Use of the “Be the controller project” to control

contemporary game

This proposal is aimed at developers of contemporary game

and suggests a way to control games by binding the user’s

motion to the simulation of keyboard/mouse events. This can

be accomplished with the use of the “Be the Controller

Application”, which converts the return value of a recognised

pose or gesture to a simulation of keyboard, mouse key press

event or activates the control of mouse cursor position with the

user’s hands (left or right). This proposal does not require any

programing experience so it can be used by almost anyone.

Furthermore, for the simulation of the keyboard/mouse events

in the “Be the Controller App” the SendInput function of the

Uesr32.dll library was used. This function provides the closest

simulation of keyboard /mouse events, which makes the

application compatible with the majority of games.

The main drawback of this method is that contemporary games

are not designed to be played with Kinect, and have as a result,

a delay to the activation of an action in the game from the

moment the corresponding gesture is performed by the user.

This fact can reduce the immersion of the user with the game.

Use of the Be the controller project to control contemporary

game – Developer site

This proposal is aimed at developers of contemporary game

and suggests a way to use Kinect and “Be the controller”

library as the main input device of the game. In most of the

games when a keyboard and mouse event occurs, the developer

activates, through the game code, the appropriate action and the

corresponding animation in the game [13]. Using the same

scheme, the “Be the controller” library can play the role of a

keyboard and mouse and be used to control the game. When a

pose or gesture recognition event occurs the developer can

activate the appropriate action and the corresponding animation

in the game.

The main disadvantage of this implementation is that when a

gesture is used to activate an action in a game, it is not possible

to identify which animation to play during the time the user

performs the gesture. A possible solution to this problem is to

divide each animation into three parts, a start, middle, and end,

and create a representative pose for each part. The start pose

would represent the beginning of the animation and probably

more than one animation would start with this pose. This

makes it suitable to be used to group the animations into

groups with the same start pose. The middle pose in most cases

is unique and so can be used as an identifier for the animation

because it is created based on the characteristic of the avatar’s

bones at the middle of the animation’s duration. In most cases

at this point of time, the animation is different from other

animations with the same start. Finally, the end pose would

determine the end of the animation and activate the appropriate

action.

These three poses could be used to solve the problem of

choosing the animation to play during the time the user

performs a gesture as follows. When the start pose of a group

of animation is detected, a generic animation that represents

this group should be played until the middle pose of an

animation is recognised, which will then define which

animation matches the user’s action. Furthermore, the middle

pose should be used as the start pose of the gesture represented

in this animation/action and the end pose should be the end of

this gesture. When this gesture is recognised, the corresponding

action to this user motion should be activated in game. This

solution theoretically solves the problem of choosing the

appropriate animation during a user’s motion in most cases.

Use of the Be the controller project to control a game

designed to use Kinect

A game designed to use Kinect sensor as its primary input

creates the user’s avatar animation in real time using the data

received from the Kinect about the position of the user’s body

parts. The “Be the controller” library can be used in this

scheme to convert the user’s body to the main input of the

game. When the library announces the recognition of a gesture

or a pose the developer can activate the appropriate action and

any needed animation in game. In this proposal, there is no

need to play any stored animation during the time the user

performs a gesture because the user’s avatar animation is

created in real time relative to the user’s body parts position.

The main drawbacks of this real time animations scheme is that

inaccuracies in the controller tracking may cause odd

movements and that the real time animation will represent

player’s actions in game less gracefully compare to a custom

design animation.

A more optimal and appropriate scheme for managing game

animations is to combine stored animation with real time

created animation using the data received from the Kinect

sensor. The developer will use the “Be the controller” library to

recognise the player’s actions and will try to match the

particular action with a stored animation analogous to matching

sounds to known words in speech recognition software. If the

library fails to recognise a specific motion or more than one

animation matches the recognised action resulting in

uncertainty as to which stored motion animation to activate, a

real time created animation will be played. This scheme allows

the combination of stored motion animation with real time

created animation in a game and, as a result the visually

effective and attractive design stored animation will increase

the enjoyment of the game, while the real time animation will

address any voids created by unrecognised motion and will

make the gameplay feel more realistic.

VII. CONCLUSIONS

This project has attempted to develop a tool kit that can be used

by an application developer to recognize a user’s motion using

the Microsoft Kinect controller, as a means for the user to

interact with a virtual dynamic world. By applying a theory-

based academic approach it was possible to maximise the

productivity of the development process, and with the use of

software engineering principles and design patterns, good

software has been developed [14]. The study of research

literature concerning human body movements supported the

design and development of a human motion recognition

method that gave a high success rate, which was one of the

most important aims of this thesis. Moreover, the outcomes of

the usability experiment showed that the use of user-centric

design principles resulted in an easy-to-use tool kit.

Through the design and development process of this project, it

became obvious that the Kinect controller is a powerful device

with many capabilities and potential uses in the gaming world.

Moreover, it was clear that the use of Kinect offers increased

levels of enjoyment and the ability for a player to become more

immersed in the game on many different levels. However,

issues arise concerning the capabilities and the limitations of

the Kinect, as a piece of hardware, which may ultimately

decrease the immersion, and enjoyment of a game.

In conclusion, motion controls have a promising future in the

game industry. In most game genres, which have good game

and mechanism design, motion control could become the

default input method of the game. However, more research is

needed in order to make this kind of control a suitable input

method for games with high complexity such as Massive

Multiplayer Online games in which players have many spells

and abilities and where fast, accurate responses are vital.

REFERENCES

[1] Miller, F, Vandome, A & McBrewster , J 2010, Game Controller ,
Alphascript Publishing, Mauritius.

[2] Guinness World Records, 2011, Guinness World Records, Kinect
Confirmed As Fastest-Selling Consumer Electronics Device, viewed 10
August 2011 <http://community.guinnessworldrecords.com/_Kinect-
Confirmed-As-Fastest-Selling-Consumer-Electronics-
Device/blog/3376939/7691.html>.

[3] Adams, E & Rollings, A 2007, Game Design and Development:
Fundamentals of Game Design, Pearson Education, Inc., Upper Saddle
River, New Jersey

[4] Gamasutra 2011, Gamasutra, viewed 2 September 2011
<http://www.gamasutra.com/view/news/36985/Activision_Blizzard_Rep
orts_Digital_Sales_Growth_18M_Black_Ops_Map_Pack_Sales.php>

[5] Carmody, T 2010, Wired, How Motion Detection Works in Xbox
Kinect, viewed 2 August 2011
<http://www.wired.com/gadgetlab/2010/11/tonights-release-xbox-
kinect-how-does-it-work/>.

[6] Hadjiminas N, 2011, Be The Controller: A Kinect Tool Kit for Video
Game Control, City Univercity, London, United Kingtom

[7] Bartlett, R 2007, Introduction to Sports Biomechanics, 2nd edition,
Routledge , London, United Kingdom.

[8] McGinnis, PM 1999, Biomechanics of Sport and Exercise, Champaign,
Illinois

[9] Gregory, J, Lander , J & Whiting M 2009, Game Engine Architecture, A
K Peters/CRC Press, Natick, Massachusetts

[10] Dunn F, Parberry, I 2002, 3D Math Primer for Graphics and Game
Development, Wordware Publishing Inc, Plano, Texas

[11] Millington, I 2010, Game Physics Engine Development: How to Build a
Robust Commercial-Grade Physics Engine for your Game, 2nd Edition,
Morgan Kaufmann,Waltham, Massachusetts.

[12] Blizzard 2001, World of Warcraft, Blizzard Entertainment, Inc., Irvine,
California.

[13] Rouse, R 2005, Game Design: Theory & Practice, 2nd edition.,
Wordware Publishing, US.

[14] Weilkiens, T 2009, Systems Engineering with SysML/UML: Modeling,
Analysis, Design , Morgan Kaufmann, Waltham, Massachusetts.

