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Abstract

A layer within a magnetic multilayer may exhibit properties radically different from 
its bulk properties, when the thickness of the layers is very small. It has been found 
experimentally that the magnetic moments of magnetic layers separated by a thin 
non-magnetic spacer spontaneously align either ferromagnetically or antiferromag- 
netically, depending on the thickness of the spacer layer. This type of magnetic 
interaction is called exchange coupling J(N) and is observed to oscillate as a func-
tion of the spacer thickness N. The purpose of this thesis is to give details of one 
theoretical approach which can be used to model exchange coupling in magnetic 
multilayers. Currently three different models have been employed and we start by 
giving a brief details of these three methods. In the remaining Chapters we develop 
our preferred model, the Quantum well theory. A theory for the one band model at 
zero temperature is developed by expressing J(N) in terms of the local Green’s func-
tions of the trilayer. The local Green’s functions are obtained using a very versatile 
method which can be applied to obtain the local Green’s function of any atomic 
plane in any type of multilayer. The band structure used to describe the trilayer 
is the tight-binding model. A numerical approach is developed to compute the ex-
change coupling. This requires a considerable amount of time to compute rendering 
it impractical to use. Therefore we develop an asymptotic expansion of J(N) which 
relates the exchange coupling to the spacer layer and enables us to compute J(N) in 
a reasonable amount of time. We consider a single example of exchange coupling for 
a one band trilayer to ensure the two methods are in agreement with each other. The 
one band model is useful to help understand the physical mechanisms in exchange 
coupling but its applications are limited. We therefore generalize all the models 
and methods of computation so that we can compute the exchange coupling for a 
two band trilayer. Here we can fully take into account the hybridization between 
the bands. An investigation into what effect the hybridization in the ferromagnetic 
and spacer layers has on the exchange coupling is given. Due to the possibility the 
exchange coupling may oscillate with two periods for the two band trilayer we finally 
consider a single example of double-period exchange coupling.



Chapter 1

General background

1.1 Introduction

An area that has attracted a considerable amount of theoretical and experimental 

work recently is magnetic multilayers. Magnetic multilayers are structures which 

consist of very thin alternating layers of materials with differing magnetic properties. 

What has stimulated the interest is the possibility a layer in the structure may have 

very different properties from its bulk properties. This occurs when the layers are 

very thin ie of the order of several atomic planes.

Magnetic multilayers are usually constructed using the technique called molec-

ular beam epitaxy (MBE), for further details on MBE see Ref [1]. MBE works by 

depositing an evaporated metal onto a substrate at a controlled rate thereby forming 

thin films or layers. Advances in this state of the art technique has enabled scien-

tists to grow very good magnetic multilayers. Under certain conditions crystals can
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be grown at the rate of one atomic plane which can result in structures containing 

sharp interfaces between layers. Also the crystals contain very few impurities.

Of all the possible magnetic multilayers one of the more interesting and more 

commonly studied structures at the moment is the trilayer. This is a thin non-

magnetic metal (spacer layer) sandwiched between two magnetic layers, for example 

Co/Cu. It has been found experimentally, Refs [2] - [6] that the magnetic moments 

of the magnetic layers spontaneously align either ferromagnetically or antiferromag- 

netically depending on the thickness of the spacer layer. This type of interaction 

between the layers oscillates as a function of the spacer layer thickness and is called 

exchange coupling.

It has also been observed experimentally Refs [3] and [7] that the resistance of the 

multilayer, when a current is passed in the direction parallel to the layers, is much 

higher when the magnetic moments are aligned antiferromagnetically (antiparallel) 

compared to the ferromagnetic (parallel) configuration. Applying a magnetic field 

can change the configuration from antiferromagnetic to ferromagnetic and therefore 

also the resistance of the multilayer. This effect is called ’’ giant magnetoresistance” . 

In this way one can see a direct relationship between the giant magnetoresistance and 

exchange coupling of a magnetic multilayer. One reason giant magnetoresistance in 

magnetic multilayers has attracted so much attention is it can be exploited to read 

information from a magnetic computer disc and increase its storage capacity.

Information on a magnetic computer disc is stored in the form of small magne-

tised regions arranged in concentric circles. The conventional reading head reads
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information from the disc by sensing the rate of change of the magnetic field as 

the disc rotates. The speed of a track decreases towards the centre of the disc so 

to compensate for this effect and maintain the same rate of change throughout the 

disc, storage density on the inner tracks must be decreased. On the other hand mag-

netoresistive sensors sense the strength of the magnetic field rather than its rate of 

change. Data can therefore be stored at the same high density throughout the disc 

without the need to compensate for the slower moving centre tracks and the total 

storage capacity of the disc is increased.

The aim of this Chapter is to explain the underlying physical mechanisms that 

cause exchange coupling in magnetic multilayers. We start this process in Sec-

tion 1.2 by explaining what makes transition metals such as Fe ferromagnetic. Cur-

rently three different theoretical methods have been employed to describe oscillatory 

exchange coupling in magnetic multilayers and these are outlined in Section 1.3. Fi-

nally in Section 1.4 we give a general definition of the Green’s function of an operator. 

Here we pay particular attention to the derivation of the density of states using the 

Green’s function method as it is one of the main quantities used in the quantum well 

theory of exchange coupling. We use the quantum well theory to model exchange 

coupling in magnetic multilayers in this thesis.

In Chapter 2 we explain how to compute the exchange coupling for a single 

orbital trilayer using the quantum well theory. Here the exchange coupling is defined 

in terms of the local density of states of the trilayer, which is obtained using the 

Green’s function method. Using the local Green’s functions a numerical and analytic
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approach are developed to compute the exchange coupling. As this situation has 

already been documented its inclusion in this thesis is to help understand all the 

techniques employed when computing the exchange coupling. We also give the first 

explicit proof that Fourier analysis can be employed in the analytic approach by 

obtaining an analytic expression for the local Green’s functions of the trilayer.

In Chapter 3 we generalize the single orbital model of exchange coupling and 

for the first time we compute the exchange coupling for a two band trilayer. We 

start by obtaining a new expression for the local Green‘s function of the two band 

trilayer, as the exchange coupling is defined in terms of these Green’s functions. 

The analytic and numerical approaches, as used in the one band model, are then 

generalized so that we can compute the exchange coupling. Finally for the first time 

the situation of double period exchange coupling is considered.
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1.2 Ferromagnetism in transition metals

To understand magnetism in magnetic multilayers we first need to understand 

what makes bulk transition metals such as Fe, Ni and Co ferromagnetic. Ferromag-

netism in transition metals can be described using the classical Stoner-Wohlfarth 

model Ref [8] the three main ingredients of which are:-

• The main carriers of magnetism in ferromagnetic transition metals are elec-

trons in the 3d bands.

• The distribution of these electrons, called itinerant electrons, is determined by 

the band structure. D(Ef)  the density of states at the Fermi energy Ej  being 

the key quantity.

• The interaction between the itinerant electrons may be described by a molec-

ular field which is proportional to the magnetisation. The associated energy 

per atom is

_  Un2M 2
Em  = ------ ^— ,

where n is the number of electrons per atom, U the interaction parameter and 

M is the relative magnetisation.

When D(Ef)  is high enough and U is strong the Stoner criterion of UD(Ef)  > 1 

is satisfied. The energy bands for the up and down spin carriers become split result-

ing in an imbalance in the number of up and down spin electrons and spontaneous 

magnetisation M.
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A microscopic basis of the Stoner model of ferromagnetism was provided by Hub-

bard Ref [9] and [10] and the Hubbard model remains the best theoretical framework 

for discussing excited states in a ferromagnet. We now outline the Hubbard model.

1.2.1 Hubbard model

The more mobile s-band electrons in transition metals are free electron like and 

can be adequately modelled using the free electron gas model. These electrons are 

more responsible for the transport properties and contribute little to magnetism. 

The carriers of magnetism are ’’ holes” in the d-band which contains five sub-bands. 

Unfortunately the free-electron gas does not provide a good model for these bands. 

Rather one requires a theory of correlations which adequately takes into account the 

atomistic nature of the solid and in particular the d-band electrons. In this thesis 

we adopt the itinerant electron model also referred to as the band model to describe 

the d-band.

The electron charge density in a d-band is concentrated near the nuclei of the 

solid and sparse between the atoms, making it possible to speak with some meaning 

of an electron being ” on” a particular atom. This gives rise to the possibility of using 

the localized spin model also referred to as the atomic model to describe the d-band 

electrons. It is in fact found experimentally that d-band electrons of transition 

metals exhibit behaviour of both the band model and the atomic model. Treating 

the electrons using the band model where they move rapidly one may correlate their 

motion in such a manner as to give properties of the atomic and band theory. In
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this way one may now understand how electrons can exhibit both types of behaviour 

simultaneously.

The band model used is the tight-binding approximation which is widely ac-

cepted to be useful for describing the energy band of the partially filled d-shells of 

transition metals. The electron-electron interactions are treated in the Hartree-Fock 

approximation. To be able to model the d-band electrons we first need the Hamil-

tonian. The complete Hamiltonian is very complicated and too difficult to handle 

so a simple model Hamiltonian therefore has to be built. We use the Hubbard 

Hamiltonian as in Ref [10] and it is

i j liver
if /^tH =  Y. TtfCL Ci™ + 5 £  £  ; k̂ cICa') C¡„Cl,,CK,,Ckw,

ijk lllV T )£ <7<7/

( 1.1)

ftwhere and are the creation and annihilation operators for an electron at 

site Ri with spin a in an orbital //. The band structure enters through

h2
T ,? = ~  V 2 +  V(r) </w(r -  R i)d r , ( 1.2)

which determines the band structure in the tight-binding approximation. V(r) is

the nuclear periodic potential and 

1
ifiajvcr kr]al(a ¡ K Á r  - m i A r '  ~ R , ) ^ p X

(1.3)
<j)k„{r -  R k)K {r' ~ Ri)dr3dr'3.

Here ^ ^ (r  — Ri) is the Wannier wave function of the electron on site Ri in an orbital 

p with spin u.

The first term in the Hamiltonian given in Equation 1.1 represents the ordinary 

band energies of the electrons and the second term their interaction energy. It is
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now possible to begin the simplifying approximations. On the assumption that the 

bandwidth is going to be small the Wannier wave function will form an atomic

shell which is small in radius when compared with the inter-atomic spacing. In this

U in Equation 1.3 is muchucircumstance it may be seen that the integral ( ii 

greater in magnitude than any of the other interaction terms and suggests we can 

neglect all other terms as they do not contribute significantly to the interaction. Also 

we neglect degeneracy ie we can drop the band indices and the model reduces to a 

simple single orbital model. Making these approximations leads to the Hamiltonian 

of Equation 1.1 being reduced to

=  E  TiiCtCj,  +  l- Y .
ija ia

(1.4)

-  r-t r .  -,where Cl(J is the occupation number , Tl} the hopping integral and the

Wannier function is related to the Bloch operator c\  by

it _ _LC l =  c l  exp ( - l i f t ) . (1.5)

1.2.2 Hartree-Fock approximation

All the main features of the Stoner model can be obtained by treating the 

Hubbard-Hamiltonian given by Equation 1.4 in the Hartree-Fock approximation. 

The Hartree-Fock approximation may be applied provided the bare interaction U 

is replaced by a weaker effective interaction parameter Ue^ . An exhaustive study 

of all possible Hartree-Fock solutions is not investigated, attention is simply re-

stricted to the class of solutions which may represent non-magnetic or ferromag-
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netic states. This is achieved by ” linearizing” the interaction terms in the Hub-

bard Hamiltonian of Equation 1.4 and amounts to replacing the term niarii-a with 

riia < rii-a > +ni-o- <  ntcr > where < > is the average expectation of The

Hamiltonian can therefore be written as

Hh f  =  E T i j C t C j ,  +  f / e / / n Tn b
ijo-

( 1.6)

where -  n^rii-v —»• using n-j- = <  n,q > and na
 ̂ ia

in the Hartree-Fock approximation is given by

^2,nka. The total energy
a

Eh  F =  +  Ueffn Tn b
ka

Rewriting n^ri[ as

(1.7)

UeffI J J J r  ^

Uefin]ni =  — — [(nT +  n j)2 -  (nT -

and then using Ref [11] we find that

Ueff
UeEn^ni =  Const — —-— (raj — n j

Const —
UeffM 2n2

( 1.8)

Here

nt — ni . . .
M  =  —--------  is the relative magnetisation

n

and

n — n-f +  ni is the total number of particles in the system.
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Equation 1.8 is in fact the expression for the additional energy of the system in the 

Stoner model. It follows using Ref [12] that

' n(l +  M)

Ua ~  ' n (l — M)
2

or
r oo

na =  /  D ( E ) r ( E ) d E ,
Jo

where

n s )  =  \ E_ ^
1 +  exp \ )

and D(E) is the density of states, ¡.E the chemical potential, kg the Boltzmann 

constant and finally T is the temperature. The total energy in the ’’ Stoner model” 

is given by

E Stoner =  ^  E kerU k<T -  -  

ku

At T=0 this equation is equivalent to

rEn rEn UeiS M 2n2E stoner =  / E D(E)dE  +  /  E D (E )d E ---------- ------- ,  (1.10)
Jo Jo 4

where Ej  is the Fermi energy for the a spin band and

tEf ti
nu =  /  D(E)dE.  (1.11)

" M 2n2
(1.9)

i f  G = t

i f  a  = |

The criterion for ferromagnetism is obtained by comparing the energy E Stoner for 

small M at T =  0 with the paramagnetic energy E0. It is found using Ref [12] that

2M 2 [l -  UeffD(Ef )]n
Em  — Eq + 4 D{Ej)

( 1.12)
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From this equation it can be seen that the system becomes ferromagnetic when

UeffD(Ef ) >  1, (1.13)

which is known as the Stoner criterion.

For a strong ferromagnet (” strong” has nothing to do with the strength of the 

resultant magnetic moment) the Hartree-Fock ground state is an exact eigenstate 

since particles of the same spin do not interact in this model in accordance with the 

Pauli exclusion principle. The Pauli exclusion principle states that two electrons 

with the same spin cannot occupy the same orbital and therefore an electron with 

spin up say avoids an atom which is already occupied with another up spin electron. 

This can be visualised as the up spin band being completely full as in the case of 

Ni see Figure 1.1. If the Fermi level lies in both spin-bands then we have a weak 

ferromagnet as in the case of Fe see Figure 1.2.
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NI

4.4
5.0

3D

Figure 1.1: Schematic representation of the density of states of the d-band of the 

strong ferromagnet nickel. The total number of electrons in the down spin (left) 

and up spin (right) bands are also shown. The bands are filled up to the common 

Fermi level Ef.

FE

2.6

48

3D

Figure 1.2: Schematic representation of the density of states of the d-band of the 

weak ferromagnet iron. The total number of electrons in the down spin (left) and 

up spin (right) bands are also shown. The bands are filled up to the common Fermi 

level Ef.
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1.3 Various theoretical models

Fabrication of good quality magnetic multilayers and the interesting magnetic 

properties they can possess has also stimulated a great deal of theoretical work. The 

theoretical work has sought to realistically model exchange coupling in magnetic 

multilayers thereby equipping us with the necessary tool to make predictions about 

aspects of exchange coupling such as the period of oscillations for example. It has 

also helped us to understand the physical mechanisms involved in exchange coupling 

in magnetic multilayers.

Currently three alternative approaches have been developed to model exchange 

coupling in magnetic multilayers. The first one, which we outline in Section 1.3.1, is 

based on local spin density functional theory. This method computes the exchange 

coupling whilst fully taking into account the local band structure and electron in-

teractions in the magnetic multilayer. The second approach is the perturbation 

theory which treats the magnetic layers in a trilayer as magnetic monolayers weakly 

perturbing a non-magnetic host, this is described in Section 1.3.2. Finally in Sec-

tion 1.3.3 we briefly outline the quantum well theory where we give details of how 

all the required formulae are derived. This is the model we adopt in this thesis to 

model exchange coupling in magnetic multilayers and full details of the how the 

exchange coupling is actually computed are given in the remaining Chapters of this 

thesis.
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1.3.1 Local spin density functional theory

In this Section we briefly outline one approach for computing the exchange cou-

pling in magnetic multilayers based on first principles for determining the total 

energy combined with a suitable scheme for calculating the local band structure 

within the magnetic mulitlayer.

Electrons in a real solid cannot be described by a wave function computed from 

a single particle Schrodinger equation

( - ¿ m  V 2 +C/(r) )  ^ ( r ) =  E^ k ( r )j (1-14)

independent of all other electrons because of the many-body interactions between 

the electrons.

Density functional theory Refs [13] and [14] provides an elegant framework in 

which the total energy can be obtained inclusive of all the electron-electron inter-

actions. The total energy of an interacting electron gas is a unique functional of its 

charge density n(r) and it is

E[n(r)] =  T[n(r)] +  U[n(r)\ +  Exc[n{r)\, (1.15)

where T[n(r)] is the kinetic energy of a non-interacting electron gas, U[n(r)\ is the 

potential energy and Exc[n(r)\ is the exchange and correlation term. If Exc[n(r)\ 

were known one could obtain the solution of the many-electron system. Since in 

practice these functionals are not known an approximation has to be made. The 

most common one used is the Local Spin Density Approximation (LSDA) of Ref [14] 

which uses Exc for the homogeneous electron gas as an approximation to Exc. The
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great advantage of the density functional method lies in the fact that by using 

Ref [14] the system reduces to a single particle problem and the density n(r) can be 

written as

n(r) =  ÇV\*(r)^,-(r), (1.16)
i

where the wave function are solutions of one particle equations

2 V 2 +K r(r) +  l*xc(r) tpi(r) =  Eitpi(r). (1.17)

Here Vcr(r ) is the total Coulomb potential which is related to the charge density by 

Poisson’s equation

— V 2̂ (r ) =  47rp(r) (1-18)

and nxc{r) is the local exchange correlation potential term which can be obtained 

from many-body theory. The local spin density functional method is then combined 

with a suitable scheme for calculating the local band structure within the magnetic 

multilayer and there are a variety of methods. One of these is the Green’s function 

method of Korringa, Kohn and Rostoker (KKR) for planar defects, Refs [15] and 

[16]. Here the magnetic layer and neighbouring host planes are considered to be 

perturbations in an otherwise unperturbed non-magnetic host. A second method 

uses the atomic spheres approximation to perform self-consistent calculations on the 

band structure Refs [17] and [18]. A third method uses the Linearized Augmented 

Plane Wave (LAPW) technique Refs [19], [20] and [21]. Also tight-binding models 

can be used to provide a stationary approximation for self-consistent density func-

tional theory Ref [22]. In all these models a starting density is constructed which

18



for example could take the bulk form for the magnetic and spacer layers. Using this 

density one can calculate the potential using Equation 1.17 and once the potential is 

known the wave functions can then be calculated. This in turn yields a new charge 

density

P(r ) =  e ^ l V ’il2 , (1-19)
i

where the summation is over all occupied one-electrons in the metal. The new 

density is then fed back until self-consistency is achieved. For a layered system, as 

in the multilayer, the self-consistency has to be achieved for each atomic plane. For 

a magnetic multilayer with a large number of atomic planes this makes the problem 

computationally very difficult.

Using this method, the exchange coupling is calculated from the total energy 

difference between the antiferromagnetic and ferromagnetic configurations of the 

magnetic multilayer. Since the energy difference is several orders of magnitude 

smaller than the total energy itself, any inaccuracies or approximations will have a 

disproportionately large effect on the coupling. We can immediately see one problem 

of this theory is the accuracy of the results. Another is the prohibitive amount of 

time it takes to perform the self-consistent calculations has meant the calculations 

have been restricted to relatively small spacer thicknesses. Also because of the need 

to perform the calculations self-consistently it makes the model less transparent. 

This is in turn makes it more difficult to make predictions or gain insight into the 

mechanisms involved in exchange coupling. For all these reasons, fully self-consistent 

calculations for the whole magnetic multilayer have now been abandoned in favour
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o f ’’ frozen potential” approximations Refs [15] and [17]. Here full bulk self-consistent 

calculations are performed for each layer in their bulk form and then ’’ cut and paste” 

into the multilayer environment. In other words the effect of the local band structure 

deviating from its bulk behaviour around an interface is neglected.
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1.3.2 Perturbation theory - R K K Y

The next theoretical appproach we are going to outline which has been used to 

describe exchange coupling in magnetic multilayers is the Ruderman-Kittel-Kasuya- 

Yosida (RKKY) model. It began with much earlier theoretical and experimental 

work when dilute alloys consisting of a host metal combined with magnetic impuri-

ties were being considered. In practice it is very difficult to investigate experimen-

tally the effects of a single magnetic impurity, rather one needs a sufficient number 

of impurities to be able to detect the effects they have on the host metal. The 

magnetic impurities should be far enough apart so that the magnetic structure no 

longer resembles a pure metal but close enough so that their exchange energies dom-

inate other energies. A theory for the long range interaction between two magnetic 

impurities in a non-magnetic host metal is provided by the RKKY mechanism. The 

RKKY model predicts that there is an oscillatory long range interaction yielding fer-

romagnetic or antiferromagnetic coupled spins depending on their mutual distance 

apart L. It is the well known expression Ref [23]

4 A2mk4f
J(i> -  w

2kfL cos(2kfL) — sin(2kfL)
(2 kf L)4

( 1.20)

where kf is the Fermi wave vector of the host metal and A is an adjustable parameter 

that describes the strength of the coupling.

This type of oscillatory behaviour bears close resemblance to the oscillatory 

exchange coupling between ferromagnetic layers separated by a non-magnetic metal 

spacer layer. The resemblance has inevitably lead to the application of the RKKY
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theory so that it can describe the exchange coupling in magnetic multilayers as in

Refs [24], [25] and [26] for example. The first step in the application of the RKKY

model was to replace the single atomic magnetic impurities by magnetic atomic

planes as described by Yafet in Ref [27]. The system now under consideration is the

one shown in Figure 1.3.

NONMAGNETIC 
HOST METAL

^ ^ \ m a g n e t i c  MONOLAYER

NONMAGNETIC 
HOST METAL

NONMAGNETIC HOST METAL

Figure 1.3: Diagram showing two ferromagnetic monolayers deposited in a non-

magnetic host metal. Their mutual distance apart is z.

Exchange interaction energies of the magnetic monolayers are now calculated. 

The three dimensional free-electron system may be regarded as a pseudo one dimen-

sional (ID) system because of the translational invariance in the plane parallel to 

the layers (xy - plane). Choosing the z-axis so that it goes through the observable
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point r then the exchange function Js(z) is given by

rdr
[sin(2&/r) — 2k/r cos(2k/r)\ , (1.21)

where rdr — pdp is the element of area in the xy plane at a constant z. Integrating 

Equation 1.21 by parts gives

Js(z)
7T

-  Si(2kf r) -
cos(2 kjr) sin(2&/r)

2 ktr + (2 kfi
( 1.22)

7T
Here Si is the sine integral formula. At large z

... cos(2&/r) sin(2&/r) T/ r X.
cally like —  ■ +  —j^j— —  and JS(L) becomes

Z/C

L2 ”  Si(2kf r) behaves asymptoti-

(2 kfr) ‘

JS(L) oc
sin(2k f L) 

L2
(1.23)

where L is the mutual distance apart of the two magnetic monolayers.

Examination of Equation 1.23 shows that by treating the model of magnetic 

impurities in the pseudo ID limit leads to oscillatory exchange coupling between 

ferromagnetic layers separated by a non-magnetic metal spacer. Thus the RKKY 

theory appears to be a good candidate for describing the oscillatory interlayer cou-

pling. Indeed it has given some insight into the origin of the observed oscillation 

periods and their relationship to the spacer layer. This is achieved even within the 

free-electron approximation.

Following Ref [25] the model consists of two ferromagnetic monolayers embed-

ded in a non-magnetic metal as shown in Figure 1.3. The distance between the 

ferromagnetic monolayers is z =  (N  +  l)a, where a is the spacing between atomic 

planes and N is the number of atomic planes in the spacer. Experimentally the
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magnetic layers are usually thicker than just the single atomic plane as used in the 

RKKY model. The justification for this approximation is the claim that exchange 

coupling is roughly independent of the thickness of the magnetic layers. We show 

in Section 3.1.2 that the exchange coupling can be influenced by the thickness of 

the magnetic layers, which is also demonstrated in Refs [28] and [29]. It transpires 

that the period of the oscillations is dependent on the spacer layer only, however the 

strength of the exchange coupling can be affected by the thickness of the magnetic 

layers. From this we can see one of the drawbacks of the RKKY model of exchange 

coupling in magnetic multilayers as it cannot take into consideration the thickness 

of the magnetic layers.

The magnetic layers are assumed to consist of spins S{ located on atomic position 

Ri of the host metal. One of the magnetic layers interacts with electrons of the host 

metal and induces a spin polarisation around it. This polarisation is propagated 

across the spacer and eventually interacts with the other magnetic monolayer. This 

results in an effective exchange interaction between the two magnetic monolayers. 

The exchange coupling can be split into two main aspects. One is the interaction 

between a ferromagnetic layer and the host’s electrons and the other is the way 

the spin polarisation is propagated across the host. The RKKY model concentrates 

on the second paying particular attention to the oscillation periods. The exchange 

integral is defined by

I(Rij) =  "  (^ r )  j d3qx(q)exp(iqRij), (1.24)

where Vo is the atomic volume and as before A is an adjustable parameter that
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describes the strength of the coupling. The nonuniform susceptibility (in units of

2/rg/atom) of the host metal is given by

(1.25)

where /(e )  is the Fermi-Dirac function, the indices n and n' refer to the energy

bands, G is a vector of the reciprocal lattice chosen so that k +  q +  G belongs to the

hrst Brillouin Zone (FBZ). The exchange coupling is

j  =  v s 2 z  n « o i ) ,
0 jtF2

(1.26)

where 0 labels one site of the left magnetic monolayer which is taken to be the origin

and F2 denotes the right monolayer.

The integrals over q and k in Equations 1.24 and 1.25 are performed over the 

FBZ, which is not well adapted to the symmetry of the problem. Thus all functions 

of q and k are defined outside the FBZ by simply repeating them periodically. The 

integration can therefore now be performed on any unit cell of the reciprocal space. 

The advantage of using the prismatic auxiliary zone is that the integration over the 

z axis and in plane components of the wave vector can be separated. The expression 

for the coupling becomes

The summation over f?|| in Equation 1.27 is zero unless q\\ =  0. Thus the coupling

2

can be expressed in the terms of the Fourier transform of the susceptibility x(<7z)

x(ç|| =  0,qz) which can written as

(1.28)
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where
/ 7r/a pr/a

dkz / dk
-7r/a J—tv/cl

'Tla „  , f { ekn,kz) / ( efc||,fc2/)
ek\\,kz ek«,kz

exp i(k'z—kz)z

Using Ref [30] it is noted that the main contribution to the integrals in B(k^) come 

from states close to the Fermi surface. tk»,kz and ekn,kz, are expanded up to first order 

about the Fermi energy level and the integrals are then performed using complex 

contour techniques. The integral over is then performed using the stationary 

phase approximation (SPA). The SPA states that the main contributions to the 

integrals comes from around the stationary points. Employing the SPA to calculate 

the integral yields

J{z) =  -
v )  S ’ l6  +

(1.29)

where qz is the spacer Fermi surface spanning vector in the direction perpendicular 

to the layer. The index 0 denotes the stationary points, if>0 the phase is equal to 0, 

| or 7T when q°z is a maximum, minimum or a saddle point respectively, m* is the 

effective mass and it is

2SVkPk ®x y
1 U1\Vz\ + \vz\

where and are the combined principal curvature radii of the Fermi surface at 

the stationary point q°z. and vz are the effective velocity.

The initial prediction of a period using the RKKY theory is much shorter than 

experimentally observed which would appear to invalidate the RKKY mechanism. 

However this apparent discrepancy can be removed using a simple argument. The 

spacer thickness z — (Ar+ l)a  is not a continous variable and an effective much larger
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period may be predicted from the discrete sampling. This effect is demonstrated in 

Refs [31] and [32] and is known as aliasing. In our work we have also noted that 

there appears to be both a short and long period in the oscillations of exchange 

coupling. The correct period being the one that takes into account the discrete 

nature of the spacer thickness.

In general the RKKY model gives an asymptotic analysis of the interlayer ex-

change coupling in magnetic multilayers which is only valid for larger spacer thick-

nesses. This is achieved by showing that oscillations are related to the geometry of 

the spacer Fermi surface. In this way it explains variations in the oscillations by the 

thickness and orientation of the spacer layer. However the amplitude of the oscil-

lations enters through the unknown parameter A. So whilst the RKKY model can 

give some insight into oscillatory exchange coupling it does not provide a complete 

picture as the amplitude cannot be quantified. In the model we adopt, the quantum 

well theory, any factors that may affect any aspect of the exchange coupling are im-

plicitly built into the model through its parameters thus providing a more complete 

picture than the RKKY model can. Also the RKKY model fails when there are 

bound states in a potential well formed in the trilayer which happens for Co/Cu for 

example.
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1.3.3 Quantum well theory

In this Section we outline the quantum well theory of oscillatory exchange cou-

pling in magnetic multilayers. This is the model we have adopted so for the sake 

of brevity only the main formulae are derived here. Full details of the methods of 

computation are given in the remaining Chapters of this thesis. This approach was 

developed by Edwards et al and further details can be found in Ref [33] and [34].

Quantum Well States

To help understand the mechanisms and origins of interlayer exchange coupling 

it is useful to consider what the structure of a trilayer looks like from a quantum me-

chanical viewpoint. In doing this let us first consider the case of two non-magnetic 

metals A and B which have different electron densities u a  < k b  as shown in Fig-

ure 1.4.

METAL A

A
Ef-

METAL B

B
Ef

Figure 1.4: Schematic diagram of the electron densities of two non-magnetic metals, 

A and B, with two different Fermi energy levels.

For non-magnetic metals each electronic state is occupied by two electrons of
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opposite spin. In other words the electron densities in Figure 1.4 represent either 

spin band. Joining the two non-magnetic metals A and B results in a common Fermi 

energy level with one of the bands being offset as shown in Figure 1.5.

Figure 1.5: Schematic picture of the electron density of the two non-magnetic metals 

A and B once they have been joined together.

This schematic picture of the electron densities can be visualised if one regards 

the electrons as water in containers. Joining the two non-magnetic metals together 

is analogous to placing two containers side by side and allowing the water to move 

freely between the two containers. The situation that costs the least amount of 

energy and the one that will therefore occur naturally is when there is a common 

level of water in both containers. The electrons in metal A and B once joined 

behave in a similar fashion and result in a common level of electrons or common 

Fermi level in the multilayer. This process of the electrons forming a common Fermi 

level occurs in any multilayer. If we were to make a trilayer consisting of metal B 

sandwiched between two layers of metal A one would see from the schematic plots of 

the electron densities that the electrons in either spin band move within a potential
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well as shown in as shown in Figure 1.6.

E f

Figure 1.6: Diagram showing the potential well formed for a trilayer made up of 

metal B sandwiched between two layers of metal A.

Using the principle of the plots of the electron densities we can examine how 

electrons move across a trilayer with a non-magnetic spacer layer sandwiched be-

tween two ferromagnetic metals. For a ferromagnetic metal the up and down spin 

bands are split resulting in the spontaneous magnetic moment see Figures 1.1 and 

1.2 in Section 1.2. The band offsets for the up and down spin electrons means 

the schematic plots are more complicated than before and they typically look like 

Figure 1.7.

Hence the electrons moving across the trilayer encounter spin dependent poten-

tial wells as shown in Figure 1.8.

Derivation of Main Formulae

The exchange coupling J(N) is defined to be the difference in total energies of 

the ferromagnetic and antiferromagnetic configurations of the trilayer ie it is

£ î î
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f r  o  fr  T

Figure 1.7: Schematic plots of the electron densities of a trilayer for the ferromag-

netic (left picture) and antiferromagnetic (right picture) alignments of the magnetic 

multilayer. The four large arrows at the top of the picture show the magnetic mo-

ments of the magnetic moments of the magnetic layers and the small arrows denote 

either the up spin band | or the down spin band J, of each layer.

where and are the total energies of the ferromagnetic and antiferromagnetic 

alignments respectively for a given spacer thickness N and A is the cross-sectional 

area. The total energy for a spin orientation s is obtained by integrating the product 

of the energy E with the density of states up to the common Fermi energy level Ef.

E st o t =  [ Ef E D s(E,N)dE,  (1.31)
J  —oo

where DS(E ,N )  is the total density of states for particles of spin s in the trilayer 

having that configuration. The derivation of DS(E ,N )  using the Green’s function 

method is given in Section 1.4. Before we can proceed, one important physical effect
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FERROMAGNETIC CONFIGURATION ANTIFERROMAGNETIC CONFIGURATION

" t
Ef

Ef Er

Figure 1.8: Diagram showing plots of the spin dependent (f up spin band, j  down 

spin band) potential wells seen by electrons in the trilayer for both the ferromagnetic 

and antiferromagnetic configurations.

has yet to be considered. As the thickness of the spacer layer N varies, the shape 

of the density curve also varies in complement. This can result in a change in the 

number of electrons per atom in the spacer layer. As the spacer layer must remain 

electrically neutral we need to either add or subtract the appropriate number of 

electrons to conserve the total charge. Adding or substracting electrons is performed 

at the Fermi energy level. Recalling our analogy of electrons with water this process 

of adding (subtracting) electrons can be viewed as pouring (removing) a little water 

into (from) the container. To take account of this effect we instead consider the 

thermodynamic potential fi(iV), where

n s(N) =  [ Ef(E -  Ef )Da(E,N)dE.  (1.32)
J—oo
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Using this equation we can now write the exchange coupling as

J(N) =
nt(jV) + ni(Ar)]rM-[nt(Ar) + ni(JV) A F (1.33)

where FM denotes the ferromagnetic configuration of the trilayer and AF denotes 

the antiferromagnetic configuration of the trilayer. The model we go on to describe 

in the following Chapters contain the following approximations:-

• The ferromagnets are taken to be semi-infinite. This approximation makes it 

reasonable to use the bulk parameters for the ferromagnets such as the position 

of the bands, the magnetic moment etc. However the models are described 

in such a way that finite ferromagnets could just as easily be considered, as 

happens experimentally.

• Bulk parameters are also used for the spacer layer. This is reasonable if the 

spacer thickness is large.

• Differences in the bulk parameters such as the position of the bands do occur 

around the interfaces in the trilayer. We neglect this effect in our calculations. 

However this could be fully taken into account using the adlayering procedure 

which is fully described in the later Chapters of this thesis.

• The total number of particles is conserved by using the thermodynamic po-

tential instead of minimizing the total energies self-consistently.
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1.4 Green functions

Green’s functions or Green’s functions of operators play a very important role 

in solid state theory and quantum mechanics. This arises from the fact that many 

operators such as the density of states (DOS) can be expressed in terms of Green’s 

functions. In this way, we can obtain many physical properties of a system by 

using the information contained in a Green’s function. The quantity we need to 

find in order to compute the oscillatory interlayer exchange coupling is the DOS. 

Therefore in this section we concentrate on how to compute the DOS using the 

Green’s function method. For further details on Green’s functions and their uses 

see Ref [35]

The general time-independent Schrodinger equation is

(EI-H)t/> =  0, (1.34)

where (E l  — H ) is formally a matrix of infinite size, E is a scalar, I is the unit 

matrix, H is the Hamiltonian matrix and if? is the wave function. Leaving aside 

the trivial solution of ip =  0, a non-trivial solution will exist if det(EI - H) =  0. 

For simplicity we now drop the unit matrix I. Let |n > be the eigenfunction of the 

time-independent Hamiltonian operator H and En be its corresponding eigenvalue. 

We can therefore write

H\n > =  En\n >  . (1.35)

The Green’s function of the operator (E-H) is defined as

G =  ( E - H ) ~ \  (1.36)
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which exists if E ^  eigenvalue of H. Expanding the Green’s function in terms of the 

operator |n >  we obtain

g  =  £ ( £  -  n y 1 \n > < n
n

(1.37)

in the language of projection operators

n

n > <  n|
E - E n ’

(1.38)

where |n > satisfies (En — H)\n > =  0, provided 0 is not an eigenvalue of H. We can 

now define the Green’s functions G± by

G± =  {E -  H ±  ie)~\ (1.39)

where e is a small positive infinitessimal constant. By using Equation 1.37 we find

that

G± (E) =  £
|n > <  n|

E — En ±  itn ^

Using the definition of the delta function ¿(a:) which is

(1.40)

6(x) =  -  lim (7r e->o \x2 +  e2 (1.41)

and the Principal value P(x)  which is

P(x)  — lim f
e-+o Va:2 +  e2

(1.42)

we obtain

G± (E) =  Y ,  W > <  "IP (E  -  En) ±  i*6{E -  En), (1.43)

which gives

G+{E) -  G~{E) =  - 2 ttî > <  n\S(E -  En). (1.44)
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< l\G+ -  G~\V > =  - 2 tri J2 < %  > <  n|i' > K E ~  En), (1-45)
n

the diagonal elements of which are

< l\G+ -  G~\l > =  -2iri < l\n > <  n\l > 6(E -  En). (1.46)
n

Summing over all the states 1 and interchanging the order of summation in the right 

hand side of the equation just above gives

Y ,  < l\G+ -  G-\l >  =  < l\n > <  n \l >  K E -  En)
l n l

Y lr n G u (E )  =  -7 r £ * ( £ - £ ; „ ) ,
l n

giving the following

-  - T r lm G (E )  =  V ) 6(E -  En). (1.47)
*

In general the DOS of a system is the sum of delta functions of the exact eigenvalues

D(E) =  Y H E - E n), (1-48)
n

therefore expressed in terms of the Green’s function of an operator by using Equa-

tion 1.46 we find that the density of states is given by

D(E)  =  - - T r l m G ( E ) .  (1.49)
7r

Considering Equation 1.44 in the representation |/ > we find
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Chapter 2

Single band theory of exchange

coupling in a trilayer

Introduction

The aim of this Chapter is to outline the method for calculating the exchange 

coupling of a trilayer made up of two semi-infinite ferromagnets separated by a non-

magnetic spacer layer. We apply the model to a (001) trilayer with a single simple 

cubic tight-binding band where we include the effects of nearest neighbour hopping 

of electrons only. The restriction of the trilayer containing only a single band of 

electrons is lifted in the next Chapter when we generalize the model to two bands, 

but for the moment we confine ourselves to the case of a single band of electrons. 

Finally we consider the case when the temperature is zero.

The outline of this Chapter takes the following form. We start in Section 2.1 by 

explaining how to obtain the exact Green’s function of an arbitrary atomic plane in
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the spacer layer. Once this has been obtained we can express the exchange coupling 

J(N)  in terms of these Green’s Functions, where N is the number of atomic planes 

in the spacer layer. Two different approaches are then developed to calculate the 

exchange coupling. In Section 2.2 we outline a numerical method for performing 

the calculations using the quantum well theory of Section 1.3.3. However the pro-

hibitive time needed to perform all the calculations render this approach impractical 

although feasible. To overcome this problem we derive an analytic formula for the 

exchange coupling in Section 2.3 which is made possible by making some approxima-

tions. This method relates some aspects of the exchange coupling to the properties 

of the Fermi surface of the spacer layer.

2.1 Green’s function of an arbitrary atomic plane 

in the spacer layer

Obtaining the Green’s function of an arbitrary atomic plane in the spacer layer 

involves three steps :-

1. Obtaining the surface Green’s function of the substrate.

2. Depositing atomic planes onto the substrate, (we call these atomic planes 

adlayers)

3. Joining together two substrates, with the appropriate number of adlayers de-

posited on them to create a trilayer.
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We first deal with the problem of how to deposit adlayers onto the substrate. It 

might seem more logical to start with the surface Green’s function of the substrate, 

especially when the answer will show that the surface Green’s function of the sub-

strate is required to proceed with the adlayering algorithm. However if the reader 

is patient there is a very good reason this.

2.1.1 Adlayering

Adlayering is simply the mathematical analogue of experimentally depositing 

atomic planes onto a substrate. We use the method set out in Refs [36] and [37] 

to find the exact Green’s function of the surface atomic plane of many adlayers 

deposited onto a substrate. When formulating the adlayering procedure the param-

eters that describe the atomic potential and hopping integral of each adlayer are 

retained as variables of the procedure. This enables us to model many different 

structures as long as they have a simple cubic crystal lattice structure and a single 

band of electrons. We also consider the case of a semi-infinite substrate on which to 

deposit the adlayers. This is not a necessary condition in order to begin the recursive 

adlayering algorithm. The substrate can be any thickness as long as it contains at 

least one atomic plane. We start the adlayering procedure by considering the case 

of a single adlayer.
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Single adlayer

Here we deal with how to deposit just one adlayer onto the substrate. This 

method of depositing an adlayer is applied again in the next subsection thereby 

enabling us to generalize the model so that we can deposit many adlayers not just 

the one. For the case of a single adlayer we have the situation as described in 

Figure 2.1.

SEMI-INFINITE CRYSTAL

CLEAVAGE PLANE

-SINGLE ADLAYER

Figure 2.1: Diagram of a single adlayer or atomic plane deposited onto a semi-infinite 

crystal.

The cleavage plane shown in the diagram is just the mathematical device used to 

disconnect the adlayer from the substrate. Once disconnected, electrons are not able 

to hop across the cleavage plane. The adlayer is then reconnected to the substrate
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using Dyson’s Equation, which is

Gl (m,n) =  G°(m,n)  +  ^ G ° (m ,p )W (p ,q )G 1(q,n), (2.1)
PtQ

where G° are the Green’s functions of the system with the cleavage plane, G1 are the 

Green’s functions of the system without the cleavage plane and W (p , q) describes 

the perturbation within the system.

Two types of perturbation are present and result from electrons being able to 

hop from atomic plane to atomic plane and the interaction of an atom with its four 

nearest neighbours in its particular atomic plane. In this particular case the only

non-zero matrix elements are:-

W(  0,1) =  < *||,0 |H |*11»1 > =  r ,

W (1 j o) =  < *11,1 1H |*||,0 > =  T and

W(  1,1) =  < *11,1 1H |*||, 1 > =  W\ =  E\ +  2 T(cos(kxa) +  cos(kya))
(2.2)

Here T is the hopping integral or potential for an electron to hop from atom to atom. 

W { 0,1) and VH(1,0) is the hopping of electrons from the substrate to the adlayer 

and vice versa. W{  1,1) is the hopping of the electrons from atom to atom in the 

adlayer, E\ is the atomic potential of the adlayer and finally a is the inter-atomic 

distance.

Placing m = n = l in Dyson’s Equation, Equation 2.1 and taking account of the 

perturbation defined by Equation 2.2 gives the Green’s function of the single adlayer
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GJ(1 ,1) =  G °(l, 1) +  W iG °(l, 1 ) ^ ( 1 ,1)+

r (G °(l , 0 )^ (1 ,1 )  +  G °(l, lJG^O, 1)).

In the presence of a cleavage plane the electrons are unable to hop from the adlayer 

to the substrate and vice versa, hence

G°(1,0) =  G°(0,1) =  0.

The formula for the Green’s function of the single adlayer therefore simplifies to

G \ l, 1) =  G °(l, 1) +  W1G°(1, lJG ^l, 1) +  TG°( 1 ,1 )^ (0 ,1 ), (2.3)

where G °(l, 1) is the Green’s function of a single unconnected atomic plane and it 

is

G°(l,l) = i .  (2.4)

Putting the result from Equation 2.4 into Equation 2.3 and simplifying leaves us 

with

G \ 1 , 1 ) ( E - W 1) =  1 +  TG1{0,1). (2.5)

The only term in Equation 2.5 we do not yet know is G1(0 ,1). This is found by 

setting m=0 and n = l in Dyson’s Equation, Equation 2.1 and taking account of the 

perturbation. We therefore find that

^ (0 ,1 )  =  TG°(0,0)G1(1 ,1),

where G°(0,0) is the surface Green’s function of the substrate which we call Gs. 

Its computation is not needed to explain the adlayering procedure so we just retain

to be
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Gs as one of the parameters of the algorithm. Its calculation is fully explained in 

Section 2.1.2, so

G°(0,0) =  Gs. (2.6)

Using the solution of G1(0 ,1) and Equation 2.6 we find that the Green’s function of 

a single adlayer is

^ (1 ,1 )
1

E - W X- T 2GS'
(2.7)

where

W\ =  Ei +  2 T(cos(kxa) +  cos(kya)).

We now have a relationship for the exact Green’s function of a single adlayer, albeit 

in terms of the surface Green’s functon of the substrate Gs.

Multi-adlayering

The process of depositing many adlayers onto the substrate is the same as de-

positing just one adlayer, the only difference is the process is repeated until the 

required number of adlayers have been deposited.

The Green’s function of the second adlayer is found by treating our single adlayer 

deposited onto the semi-infinite crystal as the ’’ substrate” . Another adlayer is then 

deposited on top of the single adlayer in exactly the same way as before. Thus 

setting m =  n =  2 in Dyson’s Equation and taking account of the perturbation 

within the system we find that

g 2(2,2) =  E _ w  ̂ _ T 2Gi ( i , i y  (2’8)
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where

IV2 =  E2 +  2T(cos(kxa) +  cos(kya))

and E 2 is the atomic potential of the second adlayer. The process of depositing 

adlayers can be repeated for as long as required until after N steps we find that

Gn (N, N )
1

E - W f f -  T2GN~1(N  -  1, TV -  1 )’
(2.9)

where

Wn  =  E]\r +  2 T(cos(kxa) +  cos(kya))

and En  is the atomic potential of the N th adlayer. Gn (N ,N )  is the surface 

Green’s function of N adlayers deposited onto a substrate, as shown in Figure 2.2 

and Gn_1(N  — 1, AT — 1) is the surface Green’s function of N-l adlayers deposited 

onto the substrate.

2.1.2 Surface Green’s function of a semi-infinite crystal

In the previous section we described the deposition of adlayers onto a substrate 

where the substrate is a semi-infinite crystal. In order to be able to begin the adlay- 

ering procedure we first need to find the surface Green’s function of the semi-infinite 

crystal, which we labelled Gs. Kalkstein and Soven have outlined one approach to 

finding Gs, which is described in Ref [38]. However there is a more direct way of 

finding Gs using the adlayering algorithm and it is this direct approach that we out-

line here, see also Ref [39]. Hence the reason for explaining the adlayering procedure 

first.
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SEMI - INFINITE 

CRYSTAL
-N th ADLAYER

Y
N ADLAYERS

Figure 2.2: Diagram showing N adlayers or atomic planes deposited onto a semi-

infinite crystal.

If we were to deposit an adlayer of the same material as the semi-infinite crystal 

onto the crystal it leaves us again with just a semi-infinite crystal. Therefore the 

Green’s function of the single adlayer G1(l, 1) is equal to the surface Green’s function 

of the semi-infinite crystal Gs. Taking the Green’s function of the single adlayer 

defined by Equation 2.7 we have

<Ŝ 1’ 1  ̂ =  E - W x -  T2GS ‘

By setting

G ^ l , ! )  =  Gs
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and

l j  =  E  — Wi =  E — Es — 2T(cos(kxa) +  cos(kya)),

where Es is the on-site energy of the substrate we obtain

Gs
1

u; -  T2GS '

This leads to a quadratic equation in Gs the solution of which is

2 T2 2 T2
( 2 . 10)

At this point it is useful to note that the complex variable l j  is properly denoted by 

l j  +  i6 where 6 is a very small positive constant. Using this we can rearrange the 

solution of the quadratic to give

Gs
LJ

2T*
V lo2 -  4T 2 

2T2 +
i8

2T2
1 ±

LJ
l/l j 2 -  4T2

(2 . 11)

The only problem that now remains is which branch of the solution to the quadratic 

do we take? To help us determine this we use the density of states, which is

Ds(E, kl{) = - - J 2 l r n G s(E,k{l) (2.12)
T fcll

and consider the situation when we are either inside or outside the band.

Let us first consider when we are inside the band, which occurs when l j 2 < 4T2. 

Here it can be seen from Equation 2.10 that Gs is naturally complex. If we let 8 —» 0 

in Equation 2.11 then we obtain

l j  iy/ AT2 — l j2
2T2 ±  2T2

(2.13)
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for the surface Green’s function of a semi-infinite crystal. When we are inside the 

band the density of states must be positive. By using the formula for the density of 

states it is easy to see that the negative branch of the solution should be taken to 

obtain a positive density of states.

Now we consider the case when we are outside the band, which occurs when 

lo2 > AT2. Here the density of states is zero and this can be verified by letting 

6 —* 0 in Equation 2.11. Therefore the density of states cannot help determine 

which branch of the solution to take when we are outside the band. Instead we need 

to look at the real part of the Green’s function. Outside the energy band the real 

part of the Green’s function should tend to zero as lo —> ±oo. If we let 6 —*■ 0 and 

lo —► ±oo  in Equation 2.11 then we find that

ReGs
u )  \ o o \  

± (2.14)
2T2 2T2

Equation 2.14 shows that when lo <  0 the positive branch of the solution has to be 

taken to obtain a zero ReGs. Alternatively when to > 0 the negative branch of the 

solution should be taken to obtain a zero ReGs. Summarizing these results we 

have

Gs --

Gs =

u \Joo2 -  AT2
2 T2 2 T2

negative branch if LO2 < 4 T2

< positive branch if LO2 > to and

oV3

negative branch if A<N3 AT2 and LO >  0,

(2.15)

where

lo — E — Es — 2 T(cos(kxa) +  cos(kya)).
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2.1.3 Joining

To calculate the exchange coupling of a trilayer we need to obtain the Green’s 

function of every atomic plane in the spacer layer that is embedded between two 

semi-infinite ferromagnetic crystals. To find the Green’s function of the n th plane 

out of N planes in the spacer layer we use the method set out in Refs [37] and 

[39]. We start by passing a cleavage plane between the n th and n+1 st atomic 

plane in the spacer layer. As in the adlayering procedure, the cleavage plane is just 

a mathematical device used to ’’ cut” the trilayer and it effectively separates the 

structure into two independent crystals, which is shown in Figure 2.3.

i----------- CLEAVAGE PLANE

N th PLANE N+1 st PLANE

V_____________________ ______
Y

N ATOMIC PLANES

J

Figure 2.3: Diagram of a trilayer consisting of N atomic planes (spacer layer) sand-

wiched between two semi-infinite crystals.

The left and right hand crystals are now disconnected so there is no hopping of
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electrons across the cleavage plane. The Green’s functions for the cleaved crystals 

are therefore given by

GLeft( iJ )  i f i j e L

Gcl( i , j )  =  " 0 if i e L,j e R and vice versa (2.16)

GRi°ht( i , j )  if i,j e R, 

where Gcl are the Green’s functions of the system with the cleavage plane, GLe^ 

are the Green’s functions of the left independent crystal and GRiaht are the Green’s 

functions of the right independent crystal. To reconnect the two sides to create the 

trilayer we use Dyson’s Equation again

G (i , j )  =  G % , j )  +  ' £ G d(i ,p )W(p,q)G(q,j) ,  (2.17)
P,Q

where G are the Green’s functions of the system without the cleavage plane and Gd 

are the Green’s functions of the system with the cleavage plane. In this case the 

only non-zero matrix elements describing the perturbation W (p , q) are:-

W (n,n +  1) =  < fc||, n | W  | &||, n +  1 > =  T and

W (n +  l,n ) =  < Jc\\,n +  1 | W  \ k\\,n > =  T ,

where W (n,n  +  1) is the potential for an electron to hop from the n th to the n+1 

st atomic plane in the spacer layer and W(n  +  l,n ) is the potential for an electron 

to hop from the n+1 st to the n th atomic plane. Using this information and setting 

i =  j  =  n in Equation 2.17 we find that the Green’s function of the n th atomic 

plane in the spacer layer is

(2.18)

G(n, n) =  Gcl(n, n) +  T(Gcl(n, n)G{n +  1, n) +  Gc,(n, n +  1 )G(n, n)).
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Gcl(n, n +  1) =  Gci(n +  1, n) =  0 because the electrons cannot hop across the cleavage 

plane so this equation simplifies to

G(n, n) =  Gcl(n, n) +  TGcl(n, n)G{n +  1, n). (2.19)

To complete the solution of Equation 2.19 we need to find G(n +  l,n ). This is 

obtained by setting i =  n +  1 and j  =  n in Dyson’s equation, Equation 2.17 and 

taking account of the perturbation. Once these two tasks have been completed we 

obtain

G(n +  1, n) =  TGc‘ (n +  1, n +  l)G (n , n). (2.20)

After substituting the answer from Equation 2.20 into Equation 2.19 and simplifying 

we find that

G(n , n) =
Gcl(n, n)

(2 .21)
1 — T2Gcl(n, n)Gcl(n +  1, n +  1)

Gcl(n,n ) is the Green’s function of the surface atomic plane of the left indepen-

dent crystal which consists of n adlayers deposited onto the left semi-infinite crystal. 

Gcl(n +  1, n +  1) is the Green’s function of the surface atomic plane of the right inde-

pendent crystal which consists of N-n adlayers deposited onto the right semi-infinite 

crystal. These two Green’s functions can be obtained using the adlayering procedure 

which is outlined in Section 2.1.1.

Equation 2.21 is the formula for the Green’s function of an arbitrary atomic 

plane in the spacer layer containing a total of N atomic planes. When computing 

the exchange coupling we need to take the sum of all the Green’s functions of all 

the atomic planes in the spacer layer. One great advantage of obtaining these local
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Green’s functions using the adlayering and joining methods is the joining requires 

little extra computer time over the adlayering. This is because the Green’s function 

of each adlayer is obtained as it is deposited during the adlayering. These Green’s 

functions can therefore be stored in a local array which can then be accessed as 

needed to do the joining.
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2.2 Numerical computation of the exchange

coupling J(N)

Using the quantum well theory in Section 1.3.3 we defined the exchange coupling 

in terms of the thermodynamic potentials Os(iV). We recall from Equation 1.33 

that this relationship is

J(N)
(iU(iV) +  & ( N ) ) f m  -  ((iU(fV) +  & ( N ) ) a f

A
( 2 .22)

where FM and AF denotes the ferromagnetic and antiferromagnetic configurations of 

the trilayer respectively and A is the cross-sectional area. We see from this equation 

that the final step in computing the exchange coupling is adding or subtracting the 

thermodynamic potentials, which is trivial. Therefore in this section we concentrate 

on how to compute the thermodynamic potential itself which is achieved using 

various numerical techniques. The formula for the thermodynamic potential 0 s at 

zero temperature is

VS(N)  =  - - E  E ( £  -  Ej)Im(?£(E, *,,, N)dE,  (2.23)
77 fell j ~°° i= 1

where N is the number of atomic planes in the spacer layer and the local Green’s 

functions of the spacer layer Im G ^ E ,  k\\, N ) are obtained by the methods as set 

out in Section 2.1. The suffix s denotes the spin band.

Strictly speaking the summation over i in Equation 2.23 should be over all atomic 

planes in the trilayer and not just the spacer layer. In other words the summation 

should run from i= —oo to i=oo and not just i= l to i=N. The local density of states of
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the atomic planes below the surface atomic plane of the semi-infinite crystals rapidly 

approaches the bulk density of states as you move away from the interfaces with the 

spacer layer. Taking this into consideration it can be seen by using Equation 2.22 

that the contribution to the exchange coupling arising from the ferromagnetic and 

antiferromagnetic configurations of the semi-infinite crystals tend to cancel each 

other out. This effect means that we only need to perform the summation of the 

Green’s functions in the spacer layer only. However it does take several atomic 

planes for the local density of states of the ferromagnets to approach the bulk density 

of states but the contribution to the exchange coupling arising from this effect is 

minimal and can therefore be neglected.

During the formulation of the numerical evaluation of 0 s we drop the dependence 

of the Green’s functions on the parameters i and N for the sake of convenience. We 

first of all explain how to perform the energy integral by exploiting the complex 

nature of the Green’s functions and then we discuss how to perform the summation 

over &||.

2.2.1 Complex energy integration

Here we also drop the dependence of the Green’s functions on k\\, again for the 

sake of convenience. We are therefore left with

ft* =  _ I  [ E\ e  -  Ef )ImG(E)dE  (2.24)
7r J —oo

for the formula for the thermodynamic potential. Once the energy integral has been 

completed all the parameters are reintroduced for the full solution.
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The energy integral of the one-electron Green’s functions can require a large 

number of energy points and a lot of computational time to achieve accurate results. 

This is especially true for layered systems with size quantized bound states. To help 

reduce the computational time we use the method in Ref [40] to replace the real 

energy integration with one in the complex energy plane.

The general Green’s function G(E)  posseses singularities along the real axis only. 

G(E)  is therefore analytic in the whole complex energy plane except for the real axis. 

This analytic nature of the Green’s functions enables us to use Cauchy’s integral 

formula for complex functions. In order to compute fis using Cauchy’s formula we 

first consider the integral I, where

1 =  ¡ ES ZG(Z)dZ,

Z is the complex variable E +  iS and G(Z) is a complex Green’s function which is 

analytic in the whole complex energy plane except for the real axis. Integrating I 

along the contour shown in Figure 2.4 using Cauchy’s integral formula yields

(j)ZG(Z)dZ  =  ZG(Z)dZ+ \ji ZG(Z)dZ = 0. (2.25)

After simplifying Equation 2.25 we obtain

£  ZG(Z)dZ =  - j  ZG(Z)dZ. (2.26)

The left hand side of Equation 2.26 gives

rEr rtjf rrjQ
j :Z G {Z )d Z  =  JE (E  +  i8)G(E +  i8)dE +  ^  (E — i6)G(E — i8)dE 

= \Ei E(G(E) -  G{E*))dE
JEn
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Figure 2.4: Diagram showing the full integration contour in the complex energy 

plane. Ef is the Fermi energy level, E0 the bottom of the energy band, Ef, is an 

arbitrary point that lies well below the bottom of the energy band and ym is a 

constant that is greater than zero.

and by using G{Z*) =  G*(Z) we see that this can be further simplified to

ji  ZG(Z)dZ =  2i EImG(E)dE.  (2.27)

The right hand side of Equation 2.26 gives

—j  ZG(Z)dZ =  \f\ZG(Z)dZ +  \flZG(Z)dZ 

=  j\ (ZG(Z)  — Z*G*(Z)) dZ,

which simplifies to

-  ZG(Z)dZ =  2ilm \j\ ZG(Z)dZ. (2.28)
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Therefore by using Equations 2.26, 2.27 and 2.28 we find that

EImG(E)dE = Im\j\ ZG(Z)dZ. (2.29)

Applying the answer in Equation 2.29 to the real energy integral for Qs we can 

replace the real energy integral with one in the complex energy plane along the 

contour shown in Figure 2.5.

2
-------------------------------------------------------------------------------- r ym

1 3

Figure 2.5: Diagram showing the reduced integration contour in the complex energy 

plane. Ej  is the Fermi energy level, Eb is an arbitrary point that lies well below the 

bottom of the energy band and ym is a constant that is greater than zero.

This gives

fls =  - - I m j ( Z  -  EF)G{Z)dZ, (2.30)

where Ej  is the Fermi level, E0 is the bottom of the energy band, Eb is less than 

E0 and ym is a constant that is greater than zero. The choice of ym for the contour 

integral is arbitrary as the integral does not depend on the value of ym. However the
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time it takes to perform the integral is dependent on the length of the contour, the 

longer the contour the longer it takes to perform the integral. So taking this into 

consideration ym should not be made too large. On the other hand for very small 

values of ym the singularities of the Green’s function G(E)  on the real axis could 

cause problems. The choice of ym is therefore a compromise arrived at trial and 

error. Also the integral is not dependent on the path of the contour in Figure 2.5 

and can take any route as long as it begins at Eb and ends at Ef.

Integrating i)s along 1

Here

Im (Z -  Ej)G(Z)dZ =

Integrating 0 s along 2

Here

Im j { Z  -  Ef )G{Z)dZ

Integrating fE along 3

Eb +  iy => dZ =  idy
Jrym
' i(Eb +  iy -  Ef)G(Eb +  iy)dy 
o

py-m
/  (Eb -  Ef)ReG(Eb +  iy) -  yImG(Eb +  iy)dy. 
Jo

(2.31)

x +  iym =>• dZ =  dx

rEj
Im / (a: +  iym — Ej)G(x  +  iy m)dx

JEb
rEj
/  (x -  Ef)ImG(x +  iym) +  ymReG(x  +  iym)dx.

J Eb
(2.32)

Here Z =  Ej  +  iy =>• dZ =  idy

Im f ( E -  Ef )G(E)dE =  Im f °  (E} +  iy -  Ef )G{Ef +  iy)idy (2.33)
J J Vm

rVm
=  / yImG(Es +  iy)dy.

Jo

To complete the energy integral we add Equations 2.31, 2.32 and 2.33 which yields
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the following result for fls

« ' =  - - £ £  [ ,m(Eb-E ,)R eG iii(Eb + iy,kibN)
n S i  til

+ y(Im G lii(Ef  +  iy , fc|(, TV) -  ImG^Eb +  iy, %  JV))dy 

/•£/
+  /  (x -  Ef )ImG\t(x  +  iym, fy, TV) +  ym ReG^x +  iym, k\\,N)dx.

JEb
(2.34)

It should be noted that the dependence of the Green’s functions on the parameters 

i,A:|| and N have been reintroduced for the full solution.

2.2.2 Summation over k\\

Now the energy integral has been completed we can proceed with the last task in 

computing the summation over k\\. The summation based directly on the wave 

vector from the two-dimensional Brillouin Zone (BZ) requires so much computer 

time that this approach is not practical. With this in mind several methods have 

been developed to overcome this problem and reduce the time needed to perform the 

summation. Of these we are going to use the approach set out by S.L. Cunningham 

in Ref [41].

The details of the summation method as prescibed by Cunningham are as follows. 

The BZ is first split into a uniform grid of 4NC(NC+1) squares, where NC is of the 

form 2" and n is an integer. The special k\\ points used to perform the summation are 

the centre points of the squares in the grid, we therefore have 4NC(NC+1) points 

to perform the summation. These special points are assumed to be an excellent
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approximation of the wave vector to the average value of this periodic function over 

the whole BZ. The rotational and reflection symmetry of the BZ is then exploited to 

reduce the number of points needed to perform the summation to the — th of the BZ 

that is irreducible under symmetry. The symmetry of the BZ can be employed in 

any summation method to reduce the number of points and time needed to perform

the summation. After using the symmetry of the BZ the number of &|| points

, f , • • , , N C ( N C +  1) . . , , rused to pertorm the summation is reduced to ----  -̂-------- . A typical example oi

the reduced grid is given in Figure 2.6. When performing the summation all the

off diagonal points are multiplied by the weight
1

NC*
and the diagonal points are

multiplied by
2NC-

-. The diagonal points have a weight of only half the size of

the off diagonal points because otherwise they will have been counted twice during 

the summation. Finally the number of k\\ points used to perform the summation is 

increased until the results converge to a required accuracy.

We find that Cunningham’s method of performing the summation over k\\ is quite 

efficient. This can be demonstrated by comparing Cunningham’s method with the 

direct summation over the BZ with periodic boundary conditions.

The direct summation takes the following form. The BZ is divided up into a 

uniform grid with NxN equally sized squares and we let N be any integer. The 

set of k\\ points that are used to perform the summation are the corner points of 

the grid, instead of the centre points. The weight for all the points is — In 

common with Cunningham’s prescription the number of points used to perform the 

summation is increased until the results converge to a required accuracy. From this
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a

Figure 2.6: An example of the reduced grid of Cunningham points when NC=4.

we can see that the direct summation method differs from Cunningham’s method 

in two fundamental ways, the type of grid used to split up the BZ and the position 

of the ¿11 points in the grid.

The example we use to compare the efficiency of the Cunningham points is the 

calculation of the density of states for the surface atomic plane of a semi-infinite 

crystal. We set the hopping integral T of the crystal to 0.5 and the atomic potential 

to 0.

The density of states calculated using Cunningham points are shown in Fig-

ures 2.7 and 2.8. The curve in Figure 2.7 was obtained when NC  =  8 which 

translates into a total of 36 points in the grid. The curve in Figure 2.8 was obtained
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when NC was set equal to 32 with a corresponding 528 points in the grid which is 

when a 2 decimal point accuracy was obtained. Comparing the two graphs we see 

that using just 36 points already gives a clear indication as to what the results will 

converge to.

The density of states calculated using the direct summation method are shown 

in Figures 2.9 and 2.10. The curve in Figure 2.9 is obtained when N — 6 resulting 

in 36 points in the grid. The graph in Figure 2.10 was obtained by setting N equal 

to 50 which results in a grid of 2601 points which is when a 2 decimal point accuracy 

was achieved. This accuracy took approximately five times the number of points 

that Cunningham’s method required.

We conclude from this example that Cunningham’s approach is the more efficient 

of the two because it requires only a fifth of the points to achieve convergence when 

compared to the direct summation method. The point is further emphasized when 

we compare the results when 36 points were used for both the direct summation and 

Cunningham points. It is clear from the two graphs that the direct summation gives 

the less accurate results. Also this example only computes the density of states for 

the surface atomic plane of a semi-infinite crystal with a single-orbital band which 

is only a simply structured curve. It is likely for a more complex band structure 

that one would require considerably more than 5 times the number of points for the 

direct summation method when compared to Cunningham’s method.
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Figure 2.7: Density of states of the surface atomic plane of a semi-infinite crystal. 

&|| summation is calculated using Cunningham’s method. Here NC=8.

E N E R G Y/2T

Figure 2.8: Density of states of the surface atomic plane of a semi-infinite crystal. 

fc|| summation is calculated using Cunningham’s method. Here NC=32.

62



0 .4 0

ENERG Y /  2T

Figure 2.9: Density of states of the surface atomic plane of a semi-infinite crystal 

which is calculated using the direct summation method. Here N=5.

E N E R G Y /2T

Figure 2.10: Density of states of the surface atomic plane of a semi-infinite crystal 

which is calculated using the direct summation method. Here N=50.
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2.3 Analytic computation of the exchange

coupling J(N)

Computing the thermodynamic potential fP and therefore the exchange coupling 

using the numerical techniques described in Section 2.2 has proved very time con-

suming. So much so that this method of computing fls is not viable as a practical 

solution for situations other than the most simple ones. The problem becomes even 

more acute as we generalize the models to include more than one band of electrons. 

The reason for this is the summation over &|| and the energy integration require a 

large number of points to achieve accurate results.

In this section we formulate an alternative approach based on the idea outlined in 

Refs [33], [34] and [42] to compute the thermodynamic potential. The prohibitive k\\ 

summation and complex energy integration are replaced by their respective analytic 

solutions which is made possible using some approximations. This is called the 

Stationary Phase Approximation, denoted by SPA. The end result being that we 

can now evaluate fP in a reasonable time. We recall again from Equation 1.33 that 

the exchange coupling is given by

J(N)
(W(N)  +  &( N) ) f m  -  (W(N)  + fV{N) ) a f  

A
(2.35)

where FM and AF denotes the ferromagnetic and antiferromagnetic configurations 

of the trilayer respectively and A is the cross-sectional area. For the same reason as 

in the numerical computation of the exchange coupling we concentrate on how to 

compute the thermodynamic potential itself here. The thermodynamic potential at
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finite temperature is

n s(N) 1 +  exp ( n -  E
\ kBT

DS(E, N)dE, (2.36)

where N is the spacer thickness, T the temperature, [i the chemical potential, kB is 

the Boltzmann constant,

Ds(E ,N )  =  J 2 G s(E ,k lbN) 
h

and finally

G‘ (E ,kh N) =
T  1=1

Equation 2.36 is the formula for fP now generalized to include temperature as one of 

its parameters. It is clear that if we let T —i 0 then Equation 2.36 will tend towards 

the formula for i)s we used in Section 2.2 when we considered the case of T=0. This 

formula is given by Equation 2.23. During the derivation of the SPA we consider a 

general finite T. Once the derivation has been completed we let T —» 0, which will 

enable us to compare the results from the SPA with the numerical approach.

From a purely mathematical viewpoint it is obvious by looking at the formula 

for the thermodynamic potential that the oscillations in the exchange coupling must 

originate from DS(E , N). If we can show that the discrete variable N can be replaced 

by a continous one, say x and the function — GS(E, k\\,N) (which we call the spectral 

density) is a periodic function of N then we can expand Gs(E,k\\,N) in terms of 

a Fourier series. We show these two criteria are fulfilled by obtaining an analytic 

solution for the Green’s functions of the spacer layer consisting of N atomic planes
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embedded between two semi-infinite crystals. This analytic solution for the single 

tight-binding band is given in Section 2.4.

It is found from this solution that the spectral density is a periodic function in 

N, which is now regarded as a continuous variable and its corresponding Fourier 

series is
1 OO

— GS(E, N) =  R eJ 2  C sn (E, *,,) exp (2iNan/3(E, fc,,)) . (2.37)

Here ReC* (.E, Ay) is the usual Fourier coefficient an, ImC*(^E,k\\) is the usual

Fourier coefficient —bn and /3(E, Ay) is some as yet unknown function which depends

7r
on E and Arn and is related to the period of oscillations by . In fact we will

11 P\E,k\\)

show in Section 2.4 that /3 is the wave vector for the bulk spacer layer, which is

perpendicular to the layers. Replacing GS(E , k\\, N ) in Equation 2.36 by its Fourier

series expansion given by Equation 2.37 we obtain

n s(N)
kBT N  A

47T2

w  r  oo r oo roo

* E /  /  /J— oo J— OO J —
In

OO J— OO «7 — 0 0

1 +  exp
H — E 
kBT

x
(2.38)

C^(E, fc||) exp ('2iNan(3(E, Ay)) dkxdkydE,

where the summation over h\ has been converted into two integrals, one with respect

to kx and the other ky.

2.3.1 kx and ky integrals

In the numerical computation of 0 s we performed the summation over Ay using 

the time consuming Cunningham points. Here in the SPA we have replaced the 

summation by kx and ky integrals which can calculated analytically, after making 

some approximations.
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We begin by looking at the exponential factor exp (2iNan(3(E, in the for-

mula for the thermodynamic potential given by Equation 2.38. This exponential 

oscillates rapidly as a function of k\\ for large values of N ie for large spacer thick-

nesses. These rapid oscillations tend to cancel each other out when performing the 

integral. The dominant contribution to the integral therefore comes from any re-

gion where the exponential factor varies only slowly as a function of k\\. This occurs 

when kx and ky are in the region of a stationary point, denoted by =  (kx,ky). We 

therefore approximate /3(E,k\\) by expanding f3(E, k\\) in terms of a Taylor series 

about the stationary point &|j up to second order. By making this approximation it 

is now possible to find the analytic solution for the two integrals. With the dominant 

contribution coming from around the stationary points we approximate the Fourier 

coefficients by taking their values at &|j.

The Taylor series expansion of /3(E, &||) up to second order about the stationary 

point A'|| is

p(E,k%) =  p iE ,k $  +  i . ^ ( k , - k ° )  +  ^ L ( k ,  - * { ) }  +

d2/31 \d2p
2 1 dkl

{kx — k°)2 +  2
dkxdky (* . -  k°)(k, -  *,°) + - 1 ;)2| .

After simplifying this becomes

0 ( E X )  =  0(E,kS) + _ £ ° ) 2 +  —  (fc - k 0)2
21 d k î (kx +  dkl{ky y)

(2.39)

d f3 ô ¡3
The first simplification of =  —— =  0 is an obvious one. In the simple cubic

dkx dky

crystal lattice structure there is naturally no mixed derivative. When applying 

this Taylor series expansion to a material which has a different lattice structure, for

67



example, this may not be the case. However this second simplification can always be 

obtained by eliminating the mixed term. This is achieved by reducing the quadratic 

form to its corresponding diagonal form by rotating the (kx, ky) axes. So substituting 

the simplified Taylor series expansion into Equation 2.38 we obtain

' ¡i — E '^ kBT N A  „  00 
Üs =  —  -— Re

47r2
r cx

£  /n=1 J~c
In 1 +  exp

kBT
C*(E, fc||) exp(2iNan(3)

i fJ —  OO J — OO

x / / exp ( iNan ( -  kx)2 +  ~  j dkxdkydE.
'd26

y
(2.40)

Consider first the kx integral only. By making the substitution Z =  (kx — kx) we 

find that

J exp ^iNan^j^(kx -  k°)2̂ j dkx =  J exp ^ iN a n ^ ^ Z 2̂  dZ. (2.41)

If the factor > 0 then we let Z =  y exp This substitution for Z in the kx

integral leads to the integral being put in a form of the standard Gaussian integral 

and gives us the answer to be

£  exp U » § f c  -  O ’ )  *  “  «XP ( T )dkl 4 J
\

7r

« “ » f t '
(2.42)

If on the other hand —— < 0 then we let Z — y exp This leads to the
dki

following solution:

J exp -  k°)A dkx =  exp ( - y )
\

7r

« “» f t
(2.43)

It can be seen that this method of evaluating the kx integral can also be applied 

to ky integral in exactly the same way. Once these two integrals have been performed
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we are left with the following formula for i l

n s
kBT A u °°

-Re
(J /*C

E -  /
4 7 T  a

exp ('2iNan(3(E, k^)j

In 1 +  exp
fi — E
kBT

Cn(E, ku)x

d2P d2/3
dkl dk2y

- 1/2 (2.44)
dE,

where

a =

«*■/» if ând £ ?  > 0
dkl

if and S ?  < 0
dkl dkl

• f  d 2 / ?  ait 7777 >  0 and —— <  U or vice versa.
dkl

2.3.2 Energy integration

The next step is to compute the energy integral. We start the process by noting

d2(3 d2/3
that the factors C^(E, and 7—  only depend on E weakly. Taking account

ok£ oky

of this the energy integral for Qs is simplified to

0 s =
kBTA
Atto, n=1

^ E  -  K O M f î )
d2p d2/3
dk2x dk̂ y

- 1 / 2
x

f In 1 +  exp
fi — E
kBT

exp (2iNan(3(E, &|j)) dE,

(2.45)

which enables us to evalaute the energy integral by parts by letting

U = In 1 +  exp
fi — E
kBT

and
dV
dE

V

V d(3

exp (2iNan/3(E,k^Ÿj 

J exp (2iNan/3(E, fc}))

dE i exP 2̂iNanf3(E,

I h
2iNan
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d E
We note that also only weakly depends on E. After integrating Equation 2.45

by parts once we obtain

n s
8tt a2N R e Y .

n—1 in*
C sn(E,k°)

as
dp

d2/3d2p
dki dki

- 1/2

/ oo exp I 

-oo (l

(2iNan3(E,k^))
(2.46)

X' { i

To complete the energy integration in Equation 2.46 we look at the exponential 

factor exp (2iNanf3(E,k^Ÿj. Much the same as before when we were evaluating 

the kx and ky integrals we see that this function oscillates rapidly this time as a 

function of E for large values of N or large spacer thicknesses. Similar to the kx and 

ky integrals these rapid oscillations lead to a lot of cancellations when performing the 

energy integral. However the dominant contribution to the integral here comes from 

around the Fermi level because we have the discrete finite upper limit in the energy 

integral. The dominant contribution comes from the beginning of the last oscillation 

up to the Fermi level. We therefore approximate the integral by expanding fl(E, fc|j) 

using the Taylor series about the point ¡x. This time we take the Taylor series up 

to the first order. Because the dominant contribution comes from around the Fermi 

energy level we approximate the Fourier coefficients and all the factors that only 

weakly depend on E by taking their values at /i. The Taylor series expansion of 

0(E,  &fj) about // is

Putting this Taylor series expansion for f3(E, fcij) given just above into Equation 2.46
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we obtain

0 s =
A n ~  or dE d2ß d2ß

dk2x dk2y

- 1/2

exp
87ta2N in2 dß

r s (  j,o\ exP (2tWanf§ (E  ~ t i )||J /
«2 —c

('2iNanß(fi, fc|j ))

(2.47)

dE.
1 +  exP ( f e f )

Making the substitution Z  =  (// — E) in the energy integral of Equation 2.47 leads

to the integral being put in the form of another standard integral

coo exp (2 iN a n ^ (E  — fi)j roo exp [ —2iNan^Z^j
- d E  — -  ----------------,■ , ' dZ<

2 - o o  l  - l  e x p  ( - Z -f 1 +  exp ( f^ f )  

which gives us the following solution

+  exP ( * f f )

=  - k BT
-ITT

sinh 2NankBT i r J 

Replacing the energy integral by its solution in Equation 2.47 we obtain

AkBT  ~  a ÔE 
8a2N  n2 dß

d2p d2/3 1/2 Cn(/b *}) exp (2iNanß(fx, &[}))
dk2x dPy sinh [-2NankBT * § ÿ

(2.48)

All that remains for us to do, to be able to compare results from the SPA with the 

numerical approach is to let T —> 0. Letting T —> 0 we see that

sinh f —2NankBT% -2NankBT i : %
oE

and fi —*■ Ej. Therefore the formula for fP becomes

n s ^ , * 5 )16a3Â 27r n3 \dß

x exp ( 2iNanß(Ef , fcjj)) .

d2ß d 2ß
dk2x dkl

- 1/2

(2.49)
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We are now able to calculate J(N)  using Equation 2.49. This formula is as 

equally valid for one band as it is for two or more provided that we can show that 

the spectral density — Gs(Ej, k\\, N ) is a periodic function of "continuous” N and it 

is periodic with a single period only.
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2.3.3 Application of the SPA to a single orbital trilayer

Now the formula for the thermodynamic potential fV has been derived using 

the SPA the next step is to apply this formula to a general single orbital trilayer. 

Once this task has been completed we will then be able to compare the results of 

computing the exchange coupling numerically with those using the SPA.

In order to apply Equation 2.49 to a single orbital trilayer we first need to find 

an explicit expression for /3. To do this we use the analytic formula for the average 

spectral density, which is derived in Section 2.4. The end result in Equation 2.85 

shows that the period of oscillations is given analytically by 7t /0 for any given value 

of E and ¿||. Here 6 is the perpendicular wavevector kz(E,k\\) of the bulk tight- 

binding energy band of the spacer metal and therefore ¡3 =  6. Replacing kz(E,k\\) 

by ¡3(E, ¿||) in the bulk tight-binding energy band for the spacer metal we obtain

E =  Esp — 2Tsp (cos(akx) +  cos(aky) +  cos (a/3(E, ¿||))) , (2.50)

where Esp is the atomic potential of the spacer layer, Tsp is the hopping integral 

of the spacer layer and a is the inter-atomic distance. We can now obtain all the 

factors in Equation 2.49, except the Fourier coefficients using Equation 2.50. The 

first task that needs to be completed before we can proceed with the application of 

the SPA is to find all the possible stationary points ¿jj. These are found by finding

d (3 d {3
the values of ¿|| where ——- =  -—  = 0. Differentiating Equation 2.50 once with 

respect to kx we obtain

d E d ¡3
-Qj- =  2Tspa sin(a&x) +  2Tspa sin (a/3(E, k\\)j (2.51)
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therefore the stationary point occurs when

sin(aA:æ) =  0, (2.52)

dE
as —— is equal to zero. Similarly differentiating Equation 2.50 with respect to ky

UKx

this time, we obtain

d Ej d {3
—  =  2Tspa s'm(aky) +  2Tspa sin (a/3(E, fc||)) — , (2.53)

therefore the stationary point occurs when

sin (aky) =  0, (2.54)

d Eas ----- is equal to zero. Equations 2.52 and 2.54 gives all the possible stationary
uk,.

points to be

7T. . 7r 7T 7T.
( C O  = (0,0),(0,±-),(±-,0) and ( ± - , ± - ) .

a a a a
(2.55)

Next we find f3(Ej,k^). f3(Ef,k°\) is simply found by setting E =  Ej  and k\\ =  fcfj 

in Equation 2.50 and rearranging to find that

„  ,.on 1 _____ ( Esp — Ef — 2Tsp(cos(ak°x) +  cos(aA;°))'
j  y A/1 j j — cLrccos l

2 T.
(2.56)

sp
dE

Now we obtain This is found by differentiating Equation 2.50 once with respect

to ¡3 and this gives us

d2/3

dE
~dp

2Tspasm (a/3(E,k\\)j ■ (2.57)

Now we find — Using the right hand side of Equation 2.53 and by noting that
dkl

this is equal to zero we obtain

sin
d (3

(aj3{E,k\\Ÿj —  =  -  sin (akx).
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Differentiating this again with respect to kx yields

Q ß  _

a cos (aß(E, k ^  I —  ) +  sin (aß(E , fey)) —— = - a  cos(a^ ),
<92/?

5Â: dkl

which simplifies to

d2ß
dkl

a cos(akx) 
sin (aß(E,k\\j)

(2.58)

df3 . . . . .  d2p
because —— =  0 at the stationary points. Applying a similar technique for —— we

U rCx O ky

obtain

d2ß a cos[aky
(2.59)

dk2y sin (aß(E,  ¿||)j 

By substituting the values of E  =  Ej  and k\\ =  fc|| into Equations 2.57, 2.58 and

2.59 we can find a and by using Equation 2.49 we find that

A

7 1 = 1

a
n3

sin («/»( jB/, *S))
cos (k^) cos(ky)

X

C ;(£ / ,^ )e x p (2 !W on/3(i:/ , ^ ) ) .
(2.60)

As can be seen from Equation 2.60 all that remains for us to do to complete the 

application of the SPA is to compute the Fourier coefficients C^(Ef,k^). We recall 

from Section 2.3 that C^(Ej,k^) are the corresponding Fourier coefficients of the 

periodic spectral density — GS(E, k\\, N ). The Fourier coefficients could be obtained

directly from the analytic Green’s function of the trilayer, which is outlined in 

Section 2.4. However we use another equally valid method for computing the Fourier 

coefficients that does not require the analytic Green’s function. The advantage of 

this method being we can always compute the Fourier coefficients even when we 

do not have an analytic solution for the Green’s function of a trilayer. In the next
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Chapter when we consider a two orbital trilayer we do not yet have an analytic 

solution for the Green’s functions. This approach therefore enables us to compute 

the Fourier coefficients for the two orbital trilayer as well as the one band trilayer 

provided the spectral density is periodic with one period only.

We start by obtaining a sample data set of the spectral density for which we 

we usually take the spacer layer to be between 500 and 600 atomic planes. The 

spacer layer is chosen thus because the spectral density behaves asymptotically like 

a periodic function for larger spacer thicknesses. This is due to the effects of the left 

and right semi-infinite crystals, which is demonstrated in Equation 2.85. Using the 

periodicity of the spectral density we shift the sample data set so that all the values 

of the spacer layer lie between the two points — — and — where p is the period of 

the spectral density. Once this has been completed the shifted data set is ordered 

so that all the values of the spacer thickness are in ascending order. We should then 

have a tightly bunched smooth data set which typically looks like Figure 2.11.

The Fourier coefficients are then computed from the shifted ordered sample data

set using Simpson’s rule of integration for irregularly spaced data. From Figure 2.11

pwe see that the points are relatively evenly spread out between the two limits of — -

p
and - .  Problems occur with this method of computing the Fourier coefficients when 

the shifted data set becomes bunched. This occurs when the period of the spectral 

density is or is close to being commensurate with the crystal lattice. An example of 

this is shown in Figure 2.12.

When the period of the spectral density is close to being commensurate the
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0 .4 5

0 .4 3  -

0 .4 1  -

0 .3 9  -

0 .3 7  -

0 .3 5  -

0 .3 3  -

0 .3 1  -

0 .2 9  -

0 .2 7  -

0 .2 5  —  
- 1 . 5

— l------------ ,--------------- 1--------------1------------ 1—

- 1 . 0  - 0 . 5  0 .0

L

0 .5 1 .0 1 .5

Figure 2.11: Example of the spectral density shifted so that all values of the spacer

P P
thickness now lie in the region ( — 2 ’ 2  ̂ w^ere P *s Peri°d ° f  the spectral density.

Here p ~  2.71 atomic planes. It is evaluated at E =  E j and at the point kx =  ky =  0.

bunching of the data can be overcome by simply increasing the number of points 

in our sample set until the shifted spectral density becomes more evenly spaced. 

If the period is commensurate then increasing the size of the sample data set does 

not help overcome the problem of bunching. We know that as long as the period of 

the spectral density is close to but not actually commensurate then the problem of 

bunching can always be overcome by simply increasing the size of the data set. So 

if a parameter or parameters are chosen so that the period of the spectral density is 

infmitessimally close to being commensurate then we will be able to obtain a good 

approximation for the exchange coupling when the period is commensurate with the
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0 .4 2

/
\

0 .0

L

Figure 2.12: Example of the shifted spectral density when the period p is close to 

being commensurate. Here p ~  3.01 atomic planes. It is evaluated at E =  E j and

at kx =  ky =  0.

crystal lattice.

One final thing to note about the shifting of the spectral density concerns the 

period used. There are in fact two possible periods which can be employed to shift 

the sample data set. In Section 2.4 we show that the spacer thickness N may be 

mathematically viewed as a continous variable. This property is essential if we 

wish to Fourier analyse the spectral density. Physically the spacer thickness can 

only take integer values and we can only take a ’’ sample” of the spectral density at 

integer values using the numerical techniques such as adlayering. It is this discrete 

sampling which is responsible for a second possible period of oscillations. This
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effect has already been observed in the RKKY theory and is known as aliasing see 

Refs [31] and [32]. The two possible periods for the period of oscillations of the

7T 7T
spectral density are either p =  n. _• . or p =  -------———— . It is easy to see which
p P(E,k  ||) F 7r - / ? ( £ ,% )

of the two periods is appropriate by simply inspecting a plot of the spectral density.
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2.4 Analytic solution for the Green’s functions

of a trilayer

The aim of this section is to show that it is mathematically acceptable to Fourier 

analyse the spectral density — GS(E, fc||, N)  and thus use the SPA. In Section 2.1 

we obtained the exact Green’s function of an arbitrary atomic plane in the spacer 

layer using numerical techniques such as adlayering. Whilst this approach gives the 

exact Green’s functions we seek it is not sufficient to show that the spectral density 

can be Fourier analysed. To show this we need to find an analytic solution for the 

Green’s functions of a trilayer, which we do here.

Our analytic solution is obtained by taking three steps. We first obtain the 

analytic Green’s functions of a finite slab. The finite slab is deposited onto a semi-

infinite crystal and once deposited we call this layer an overlayer. Finally another 

semi-infinite crystal is deposited on top of the overlayer to create the trilayer.

2.4.1 Analytic solution for the Green’s function of a finite 

slab

For a finite slab we have the situation as shown in Figure 2.13. The corresponding 

Green’s functions of the finite slab with a single band of electrons are given by

j
(2.61)
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FINITE SLAB

______ _________________________ )
Y

N ATOMIC PLANES

Figure 2.13: Diagram of a finite slab consisting of N atomic planes.

and expressed explicity in matrix form it is

/
( E - W )  T 0 0 . . .

T ( E - W )  T 0 . . .

0 T ( E - W )  T . . .

\
Gii G in

Gn i  ....................  Gn n

In n ,

(2.62)

where all three matrices have dimension N  x TV because we are considering the case 

of a slab with N atomic planes. (E l  — H)ij  is given by the matrix on the far left 

of Equation 2.62. T is the hopping integral and W  =  Es +  2T(cos(ak00) +  sin(afc„)), 

where Es is the atomic potential of all the atomic planes in the slab, a is the inter-

atomic distance. The middle matrix describes the matrix elements of the Green’s 

function. Finally In n  is the identity matrix.
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The kth column in the identity matrix is obtained by multiplying the matrix

(E l  — H)ij  by the kth column of the Green’s function matrix. In matrix form it is

(E -  W) T 0 0 . . .

T (E - W ) T 0 . . .

0 T ( E - W )  T . . .

\
G\u (  ,  \

0

1

V : : / \ ° Nk )  \ °  J

The 1 in the column matrix on the right hand side of the equals sign appears in kth 

row. From this matrix equation we obtain an inhomogeneous difference equation 

for the Green’s functions of the finite slab which is

0 0 <  n < £;, k < n <  N  1
T G ( n - l , k )  +  ( E - W ) G ( n , k )  +  TG(n +  l ,k )  =  <

1 n — k

thus yielding the following general characteristic equation

TG(n -  1, k) +  (E -  W)G(n , k) +  TG(n +  !,&) =  0. (2.63)

The solution of the characteristic equation reduces to a simple quadratic in X by 

substituting X n for G(n, k) in Equation 2.63. The corresponding quadratic is

which gives

T X 2 +  (E — W ) X  +  T =  0,

X  =  — cos(0) ±  i sin(0) =  — exp (q=z0)

(2.64)
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for the solution of X where

cos(0)
E - W  

2 T

and

sin($)
y/(E -  w y  -  AT2

2 T

The general solution for G(n, k) is therefore

G(n, k) =  A {—l)n exp(in$) +  B( — l )n exp(—inO). (2.65)

All that remains, to complete the solution of the Green’s function G(n, k), is to 

obtain the coefficients A and B. However there is an insufficient number of boundary 

conditions in the inhomogeneous system to find A and B. In order to do this we need 

to look at the slab in a slightly different way to the idea of a single finite slab of N 

atomic planes. Rather we need to view the slab as two isolated finite slabs that meet 

at the k th atomic plane as shown in Figure 2.14. Both the left and right isolated 

slabs are finite so they satisfy the same characteristic equation and their respective 

Green’s functions therefore satisfy the same general form as in Equation 2.65. So 

we now have

GL(n,k ) =  AL( — l )n exp(m$) +  B L( — 1)" exp(—inQ) n < k  

and (2.66)

GR(n,k ) =  AR( — l )n exp(m$) +  B R( — 1)" exp(—inO) n > k ,

where GL denotes the Green’s functions of the left isolated slab and GR denotes the 

Green’s functions of the right isolated slab. The boundary conditions for the left
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LEFT SLAB ----------------------------Y---------
RIGHT SLAB

Figure 2.14: Diagram showing two finite slabs that meet at the k th atomic plane. 

The left slab contains k atomic planes and the right slab contains N-k atomic planes.

and right slabs are:-

(a) GL(0, k) =  0

(b) GR{N +  l ,k )  =  0

(c) GL(k,k)  =  GR(k, k)

(d) 1 =  TGL{ k - l , k )  +  ( E - W ) G L(k,k) +  TGR( k + l , k ) .

Boundary condition (c) occurs because the two slabs meet at the k th atomic

plane and at this plane Gn and GL must be equal to one another. Boundary 

condition (d) arises when we set n=k in the general difference equation that forms 

the solution for the Green’s functions. Using boundary condition (c) we could have 

GL(k , k) or GR(k, k) in boundary condition (d) because GL(k , k) =  GR(k , k).
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Applying boundary condition (a)

GL(0,k) =  A l  +  B l  =  0 

=$■ GL(n,k) — 2iAL( — l )n sin(n0). 

Applying boundary condition (b)

GR(N + l ,k )  =  AR exp(i(N +  1)0) +  B R e x p ( - i (N  +  1)0) =  0 

^>GR(n,k) =  2iAR(—l)n exp(i(N +  1)9) sin((n — N — 1)9). 

Applying boundary condition (c)

GL(k, k) 

2iAL(—l)k sin(k0) 

=> A l

which gives

GR(k,k)

2iAR{ — l )k exp(i(N +  1)9) sin((k — N — 1)9)

Rexp(i(N +  1)0) sin((& — TV — 1)0) 
sin(&0)

GL{n,k)
2iAR(—l )n exp(i(N +  1)0) sin((& — N  — 1)0) sin(n0)

sin(&0)

GR(n, k) =  2iAR{ - l ) nexp ( i (N +  l ) 6 ) s i n { ( n - N - 1 ) 0 )

Applying boundary condition (d)

1

=4> A R

TGL(k -  1, k) +  (E -  W )G L{k , k) +  TGR(k +  1, k) 

sin (kO)
2i( — l ) fc_1 exp(i(N +  1)0)T sin((7V +  1)0) sin(0)

This finally gives us

GL(n,k)

and

GR(n, k)

( —l )n fc+1 sin(n0) sin((fc — ./V — 1)0) 
T sm((N +  1)0) sin(0)

sin(fc0) sin((w -  N -  1)9) 
T sin((N +  1)0) sin(0)

(2.67)
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Now we have an analytic expression for all the matrix elements of the Green’s 

function of the finite slab we can proceed with the next task. Depositing the slab 

onto a semi-infinite crystal.

2.4.2 Analytic solution for the Green’s function of an over-

layer

The next step in obtaining the analytic solution for the Green’s function of a 

trilayer is to deposit the finite slab onto a semi-infinite crystal. In Section 2.1.1 we 

deposit adlayers onto the substrate one by one as as the second step in finding the 

Green’s function of an arbitrary atomic plane in the spacer layer. Depositing a finite 

slab onto the semi-infinite crystal is a similar process to the adlayering algorithm. 

The difference between the two is when we deposit an overlayer all the atomic planes 

are deposited in one go and not one by one as in the adlayering procedure. The 

end result will be the same. For the overlayer we have the situation as described in 

Figure 2.15.

As in previous sections the cleavage plane is the mathematical device used to 

disconnect the overlayer from the semi-infinite crystal. Once disconnected electrons 

are not able to hop across the cleavage plane. The overlayer is then reconnected to 

the semi-infinite crystal using Dyson’s Equation which is

G” (<U) =  Ga (i ,} )  +  ' £ G c‘ (t,p)W(p,q)G"(<1, j ) ,  (2.68)
P.9

where Gcl are the Green’s functions of the system with the cleavage plane and Gov
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CLEAVAGE PLANE

SEMI - INFINITE 
CRYSTAL

OVERLAYER

V.___________ w____
N ATOM IC PLANES

J

Figure 2.15: Diagram of an overlayer consisting of N atomic planes deposited onto 

a semi-infinite crystal.

are the Green’s functions of the system without the cleavage plane. Here the only 

non-zero peturbation matrix elements W (p, q) are:-

(2.69)
hF(0,1) =  < k\\, 0 | H | fc||, 1 > =  T and

VF(1,0) =  < Jfe||,l | H | ¿||,0 > =  T,

where W(1,0) and W(0,1) is the hopping of electrons from the overlayer to the semi-

infinite crystal and vice versa and T is the potential for an electron to hop from atom 

to atom. Substituting the results from Equation 2.69 into Dyson’s Equation gives

us

Gov(i , j )  =  Gcl( iJ )  +  T(Gc,(i ,l )G°v(0,j)  +  Gc,(i ,0)Gov( l , j ) ) .

Assuming that i , j e  1, N  we see that Gcl(i, 0) =  0 because electrons cannot hop across
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the cleavage plane. The formula for Gov( i , j ) therefore simplifies to

Gov( i , j ) =  Gd(i , j )  +  TGcl(i, l)Gov(0,i). (2.70)

The only term in Equation 2.70 we do not yet know is Gov(0,j)- This is found by 

setting i=0 in Dyson’s Equation Equation 2.68 taking account of the perturbation 

and again assuming that i , j e l ,N .  The solution of G°v(0 ,j)  is

G°v(0,j)  =  TGcl(0,0)Gov( l , j ) .  (2.71)

Similarly G°V{1, j )  is obtained by setting i= l in Equation 2.68 which gives us

Gov( l , j )  =  Gcl( l , j )  +  TGd{ 1, l )Gov(0,j) . (2.72)

By using Equations 2.71 and 2.72 we find that

G°v(0,j)
TGd(0,0)Gcl( l , j )  

l - T 2Gcl(0: 0)Gcl{ l , l ) '
(2.73)

Substituting the answer for Gov(0,j)  into Equation 2.70 and assuming that 

i , j e l , N  we obtain

T2Gcl(0,0)Gcl( i , l )G cl( l , j )
Gov( i , j )  =  Gcl( i , j )  +

1 - T 2Gcl(0,0)Gcl( l , l )
(2.74)

for the general formula for the Green’s functions of an overlayer, where Gc/(0,0) is 

the surface Green’s function of the semi-infinite crystal. All the other Gchs are the 

Green’s functions of the finite slab and their solutions are given by Equation 2.67.

It should be noted that Equation 2.74 is only valid for the Green’s functions 

describing the atomic planes making up the overlayer. This is due to the assumption 

that i , j e  1, N  which was applied during the derivation of the formula. Now we have
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found the Green’s functions of the overlayer we can proceed with the final step in 

finding the Green’s functions of the trilayer.

2.4.3 Analytic solution for the Green’s function of the 

spacer layer in a trilayer

The final step in finding the Green’s functions of a trilayer is to deposit a semi-

infinite crystal onto the overlayer as shown in Figure 2.16. The cleavage plane shown

SEMI - INFINITE 

CRYSTAL
SPACER LAYER

Y
N ATOMIC PLANES

J

- CLEAVAGE PLANE

SEMI - INFINITE 
CRYSTAL

Figure 2.16: Diagram of a trilayer.

in the diagram is just the mathematical device used to disconnect the semi-infinite 

crystal from the overlayer. Once disconnected the electrons are not able to hop 

across the cleavage plane. The semi-infinite crystal is reconnected to the overlayer
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using Dyson’s Equation which is

GTr( i , j )  =  G°°(i,j)  +  '£ G ° ' ,(i ,p)W(p1(2.75)
P,9

where Gov are the Green’s functions of the system with the cleavage plane and GTr 

are the Green’s functions of the system without the cleavage plane. Here the only 

non-zero perturbation matrix elements W(p,q)  are:-

W (N ,N  +  1) =  < k\b N  | H | kn,N  +  1 > =  T and
(2.76)

W (N  +  1,7V) =  < k\\,N+l  | H  | k\b N  >  =  T, 

where W (N ,N +1) and W(N+1,N) are the hopping of electrons from the N th atomic 

plane of the overlayer to the surface atomic plane of the right semi-infinite crystal 

and vice versa. T is the hopping of electrons from atom to atom. Substituting the 

values of the perturbation given by Equation 2.76 into Dyson’s Equation gives the 

Green’s function of the trilayer to be

GTr( i , j ) =  G T (i , j )  +  T(Gov(i ,N)GTr(N  +  1 , j )  +  G°v( i ,N  +  1 )GTr(N ,j ) ) .

Assuming that i , j e l , N  leads to G0V(i ,N  -f  1) =  0 because electrons cannot hop 

across the cleavage plane. The formula for the Green’s functions of a trilayer sim-

plifies to

GTr( i , j ) =  G°v( iJ )  +  TG°v{i , N)GTr(N +  l , j ) .  (2.77)

The only term in Equation 2.77 we do not yet know is GTr(N  -f 1 , j ) .  This is 

found by setting i= N + l in Dyson’s Equation Equation 2.75 taking account of the 

perturbation and assuming that i , j e l ,N .  After performing these tasks we find that

GTr(N  +  1 , j )  =  TG°V(N  +  1 , N +  l)GTr(N,j ) .  (2.78)
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(2.79)

Similarly GTr(N ,j )  is found by setting i=N in Dyson’s Equation

GTr{N,j) =  Gov(N,j)  + TGov(N,N)Glr (N +  1, j).

Substituting the solution of GTr(N ,j )  given by Equation 2.79 into Equation 2.78 

and simplifying gives

TGov(N +  1, JV +  1 )Gov(N,j)
Glr ( N + l , j )  = (2.80)

1 -  T2G0V(N, N)Gov(N  +  1, JV +  1)'

Placing the solution of GTr(N  +  1, j )  given by Equation 2.80 into Equation 2.77 

gives

G ( t , j )  C, ( , ; ) +  ! _  t 2Gov(N, N)G™(N  +  1 ,^  + 1) ’ '

for the analytic Green’s function of the trilayer. As before with the formula for the 

Green’s functions of the overlayer given by Equation 2.74 the formula for the Green’s 

functions of the trilayer is only valid for the atomic planes making up the spacer 

layer. Again this is due to the assumption that i , j e l , N  which was used during the 

derivation of Equation 2.81.

Now we need to demonstrate that the spectral density can be Fourier analysed. 

To do this we need to show the spectral density GS(E, fc||, N)  is a periodic function 

in N and the discrete variable N can be mathematically viewed as a continuous one. 

Using Equations 2.67, 2.74 and 2.81 one can eventually find that

N N sin(z0 +  ij)) sin((i — N  — 1)9 — £)
(*’ *) U  Tsm(6)sm{ (N+ l)0 +  if> + ()  ’

(2.82)
¿=1

where

tan ip =
T(jrci(0 ,0) sin 8 

1 — TGcl(0,0) cos 6
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and

tan (  =
TGcl(N +  1,N +  l)sinfl

1 - T G d{N +  1,TV +  l)co s0 '

Here irc,(0,0) is the surface Green’s function of the left semi-infinite crystal and 

Gcl(N  +  1,TV +  1) is the surface Green’s function of the right semi-infinite crystal. 

Now
1 1 JL

(2.83)
1 1
- G ‘ (E ,k „ ,N )  =

7r 2 =  1

so by using Equations 2.82 and 2.83 we obtain

1 ™ , „ ,  ,, 1 ,  cot((iV +1)0 +  V1 +  C)- G ’ ( E , h ,N )  =  ----------

1 N cos(2?0 — (TV +  1 )6 +  if) — C)
(2.84)

N tv 2T sin(0) sin((TV +  1)0 +  +  Ç) J

It is now clear from Equation 2.84 that the discrete variable N can be mathematically 

viewed as a continuous one. One of the required conditions for Fourier analysis is 

therefore fulfilled. We can also see from this Equation that as

J V ^ o o  then 4 g *(£ ,% JV ) -  \ lm (2.85)

which clearly demonstrates that the spectral density behaves asymptotically like a 

periodic function in N as N becomes large. The other condition for Fourier analysis 

is therefore satisfied.
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2.5 Results for a single orbital trilayer

Here in this section we outline an example of oscillatory exchange coupling for a 

single orbital (001) trilayer. The parameters describing each layer within the trilayer 

have been chosen arbitrarily as the aim of this section is to give a visual demonstra-

tion of oscillatory exchange coupling and to test all the techniques employed in the 

model. The parameters have been chosen so that the electrons see a finite potential 

well and the Fermi energy level lies above the top of the well. In doing so we ensure 

there is oscillatory exchange coupling and no bound states. A more comprehensive 

investigation of the possible situations which can occur is given in the next Chapter 

for the two orbital trilayer. The bands employed in our computation of J(N) are 

shown in Figure 2.17.

Once the band structure of the trilayer has been set we can proceed with the 

computation of the exchange coupling. The exact result is first calculated using the 

numerical approach. J(N) is then computed using the analytic approach of the SPA 

and finally we compare the two results to ensure they are both in agreement with 

each other.

Numerical Approach

To compute the exchange coupling using the numerical approach we use the 

method as set out in Section 2.2. The final step when computing J(N) is given 

by Equation 2.22. The thermodynamic potentials $1^(N)f m  and Q^*(N)a f  in this 

formula are calculated using Equation 2.34, where the summation over k\\ is per-
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Figure 2.17: Plot of the energy bands of a single orbital (001) trilayer. The middle 

graph represents the up and down spin bands of the spacer layer. The graphs to 

the left and right show the up (dashed line) and down (solid line) spin bands of the 

ferromagnetic layers. Finally the straight solid line is the Fermi energy level.

formed using the method as set out in Section 2.2.2. It will be remembered that the 

number of ku points used in the summation is arrived at trial and error until the 

results converge to an acceptable accuracy. So we first need to ensure the results do 

indeed converge and secondly we need to ascertain how many fc|| points are needed 

to achieve convergence for this example of exchange coupling. To do this we start 

with a small number of points and increase the number of points comparing the 

results of each step with the results obtained from the previous step. There are two 

things to note about all the graphs in this section. They all have a cubic spline fitted 

to the data and the vertical axes should read J (N ) x a2, where a is the inter-atomic
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distance.

We start in Figure 2.18 by comparing the dependence of the exchange coupling 

on the spacer thickness for 528 and 2080 points in the k\\ summation. It is clear 

from this graph that the results have not yet converged and conclude that more 

than 2080 k\\ points are needed in the summation method. We next compare the 

exchange coupling for 2080 and 8256 k\\ points in Figure 2.19. As before the results 

have not yet converged and conclude again that more points are needed in the 

summation. However the graph does show signs of convergence for smaller spacer 

thicknesses. In Figure 2.20 we compare the exchange coupling for 8256 and 32896 

points in the k\\ summation. The graph clearly shows the results are converging well 

and the evidence suggests that 32896 points in the k\\ summation is sufficient for this 

example of exchange coupling. To check this we compare the exchange coupling for 

32896 and 131328 points in Figure 2.21. This graph clearly shows that it is sufficient 

for this example to use 32896 points in the k\\ summation and the results have indeed 

converged.

One interesting point to note about the convergence is how quickly the results 

converge. If we look at all four graphs again we can see the results converge for 

smaller spacer thicknesses more quickly than larger spacer thicknesses. A feature of 

the summation method is the results converge more quickly when the amplitude of 

the exchange coupling is greater. The amplitude of the exchange coupling decays 

like 1 /N2 so we naturally obtain quicker convergence for smaller spacer thicknesses 

as the amplitude of the oscillations are greatest here.
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Figure 2.18: Comparison of the exchange coupling obtained using 528 (squares) and 

2080 (circles) k\\ points in the k\\ summation for the reduced BZ.

Figure 2.19: Comparison of the exchange coupling obtained using 2080 (squares) 

and 8256 (circles) k\\ points in the k\\ summation for the reduced BZ.
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Figure 2.20: Comparison of the exchange coupling obtained using 8256 (squares) 

and 32896 (circles) k\\ points in the k\\ summation for the reduced BZ.

5 10 15 2 0  25

N

Figure 2.21: Comparison of the exchange coupling obtained using 32896 (squares) 

and 131328 (circles) k\\ points in the k\\ summation for the reduced BZ.
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Stationary phase approximation

Now we compute the exchange coupling using the analytic approach of Sec-

tion 2.3. The final step when computing J(N) is obtained using the same formula 

as for the numerical approach ie Equation 2.22. The thermodynamic potentials 

and Q ^ (N )af  in this equation are calculated by using Equation 2.49 

this time. The factors in this equation are computed using the methods as set out 

in Section 2.3.3.

We use the spectral density to obtain the Fourier coefficients and the spectral 

density for the up spin band of the ferromagnetic configuration of the trilayer is 

shown in Figure 2.22. The down spin band is shown in Figure 2.23. The spectral 

density for the up and down spin bands of the antiferromagnetic configuration of the 

trilayer is shown in Figure 2.24. Then using the periodicity of the spectral density, 

which for this case is ~  2.85 atomic planes, we shift the spectral density using the 

shifting method as described in Section 2.3.3. The shifted spectral densities are 

shown in Figure 2.25. Using the shifted spectral densities it is trivial to obtain the 

Fourier coefficients and then the exchange coupling, which is shown in Figure 2.26. 

As for the numerical results the vertical axis in the graphs showing the exchange 

coupling should read J(N)  x a2, where a is the inter-atomic distance and a cubic 

spline has been fitted to the data.
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Figure 2.22: Dependence of the spectral density on the spacer thickness N. It is 

evaluated at kx =  ky =  0 and E  =  E f .  The solid line simply connects the points as 

a visual aid.

5 0 0  5 2 0  5 4 0  5 6 0  58 0  6 00

SPACER THICKNESS N

Figure 2.23: Dependence of the spectral density on the spacer thickness N. It is 

evaluated at the kx =  ky =  0 and E  =  E f .  The solid line simply connects the points 

as a visual aid.

99



0 .40

0 .3 9  -

0 .3 2  ---------------1---------------1---------------1-------------- 1-------------- 1---------------1-------------- 1-------------- 1---------------1---------------
5 0 0  5 2 0  5 4 0  5 6 0  5 8 0  6 00

SPACER THICKNESS N

Figure 2.24: Dependence of the spectral density on the spacer thickness N. It is 

evaluated at kx =  ky =  0 and E  =  Ej. The solid line simply connects the points as 

a visual aid.

Figure 2.25: Shifted spectral densities of the up spin band (solid line) and down 

spin band (dotted line) of the ferromagnetic configuration and the up and down 

spin bands (dashed line) of the antiferromagnetic configuration.
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Figure 2.26: Exchange coupling for (001) trilayer associated with the point kx

ky =  0.
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Comparison of results

Now we have computed the exchange coupling using the analytic and numerical 

approaches we can compare the results to check they are in good agreement with 

each other. This is displayed in Figure 2.27.

It is clear from this graph that the periods are in good agreement with each 

other and for this example p~ 2.85 atomic planes. However there appears to be 

a large difference between the amplitude of the SPA and numerical approach for 

smaller spacer thicknesses. For larger spacer thicknesses the amplitudes converge 

and the two sets of data are in closer agreement with each other. Also there appears 

to be a phase shift between the two sets of data. The apparent large difference in 

the amplitudes and the phase shift can be explained in terms of a phase shift in 

the asymptotic formula, see Ref [43]. It is a consequence of limiting the asymptotic 

expansion to the leading term which is of order 1 / N 2 and when the formula is ex-

panded to include terms in l/N3 this apparent phase shift disappears. The apparent 

phase shift coupled with a short period of oscillations result in an apparently large 

difference between the two sets of data. A long period would not result in such a 

large difference. For larger spacer thicknesses the apparent phase shift becomes less 

significant and the results should converge which is clearly shown in Figure 2.27.

We conclude that apart from the phase shift the two methods are in close agree-

ment with each other. This demonstrates the period of oscillations is determined 

by the properties of the spacer layer Fermi surface.
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Figure 2.27: Comparison of the exchange coupling obtained using the numerical 

approach (solid circles) and the SPA (open squares).
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Chapter 3

Two band theory of exchange 

coupling in a trilayer

Introduction

In Chapter 2 we described how to compute the exchange coupling for a single 

orbital trilayer. The type of metals we most wish to model contain considerably 

more than just one band of electrons, which would appear to render the model too 

simple to be of much practical use. However the single orbital model is useful to 

help understand the physical mechanisms involved in exchange coupling. Also as 

not all bands in a metal necessarily contribute to the oscillatory exchange coupling 

some may be neglected for computational purposes. Therefore it may be possible to 

model exchange coupling realistically using fewer bands than are actually present.

Oscillatory exchange coupling occurs when there is either partial or complete 

confinement of the electrons to the spacer layer. Partial confinement occurs when
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there is a potential well formed by the trilayer and the Fermi energy level lies above 

the top of the potential well. Complete confinement occurs when the Fermi energy 

level lies within the potential well formed by the trilayer. Visualised another way 

oscillatory exchange coupling occurs when a band of electrons in the spacer layer 

is only partially filled with electrons. With the presence of more than one band 

of electrons it is possible for electrons to hop from band to band in the same way 

they hop from atom to atom, which is called hybridization, although this is not 

always the case. If a band of electrons is not intersected by the Fermi energy level 

ie it is either completely empty or full and does not hybridize with any other band 

that is partially filled then this band does not contribute to the oscillatory exchange 

coupling. Any band which fulfills these criteria can be neglected for computational 

purposes. In this way one can see that the one band and the two band model, which 

we describe in this Chapter, has a greater potential for application than is at first 

apparent.

In transition metals the less mobile d electrons are responsible for the magnetic 

properties and the more mobile s electrons are responsible for the transport prop-

erties. The width of a band reflects the degree of electron hopping and it follows in 

transition metals that the s-band is much wider in energy than the d-band. The one 

band model of exchange coupling cannot be used for a Co/Cu trilayer, for example, 

because although only the s-band is intersected by the Fermi energy level in the 

spacer layer it hybridizes with the d-band. The minimum model needed here is a 

two band model which includes hybridization between the bands. All other bands
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may be neglected for computational purposes because they are all either empty, full 

or do not hybridize with the s-band. One of the major motivations in generaliz-

ing the models described in Chapter 2 is so that we can model trilayers such as 

Co/Cu which cannot be adequately described by the single orbital model. In doing 

so we also extend the possible applications of the quantum well theory of oscillatory 

exchange coupling.

In this Chapter we outline the method for calculatng the exchange coupling for 

a trilayer that is made up of two semi-infinite ferromagnets separated by a non-

magnetic spacer layer. We apply the model to a two band trilayer in the (001) 

orientation. The band structure is modelled using the tight-binding band structure 

where only nearest neighbour hopping of electrons is considered. The lattice struc-

ture is simple cubic and finally we consider the case when the temperature is zero. 

The models will be discussed in such a way that makes the generalization to more 

than two bands of electrons simple, however in this Chapter we consider a trilayer 

with two bands only. As the model is the generalization of the one band model the 

outline of this Chapter takes a similar form to the last one.

We start in Section 3.1 by explaining how to obtain the Green’s function of 

an arbitrary atomic plane in the spacer layer. Once this has been obtained we can 

express the exchange coupling J(N), where N is the spacer thickness, in terms of these 

Green’s functions. In Section 3.2 we compute the exchange coupling numerically 

using the same techniques that were employed in Section 2.2 for the one band 

trilayer. The time required to compute the exchange coupling numerically for the
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two band trilayer is a lot greater than for the single orbital trilayer. The reason for 

this lies in the fact that all the quantities that describe the two band trilayer are 

all matrices and not scalar quantities as in the single orbital trilayer. This renders 

the numerical approach even more impractical than for the case of a single orbital 

trilayer, although feasible. To overcome this problem we apply the SPA to the 

two band trilayer in Section 3.3 and by deriving the analytic asymptotic formula 

for the exchange coupling for the two band trilayer we can evaluate the exchange 

coupling in a reasonable time. Finally in Section 3.4 we investigate what effect the 

hybridization between the s and d bands has on exchange coupling by considering 

a variety of different trilayers.
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3.1 Green’s function of an arbitrary atomic plane

in the spacer layer

Obtaining the Green’s function for an arbitrary atomic plane in the two band 

spacer layer involves the same three steps that were used for the one band trilayer 

and they are:-

1. Obtaining the surface Green’s function of the substrate.

2. Depositing adlayers onto the substrate.

3. Joining together two substrates, with the appropriate number of adlayers de-

posited on them to create the trilayer.

When outlining this process for the single band trilayer in Section 2.1 we started 

with the adlayering procedure. This is because the adlayering algorithm was used 

to find the surface Green’s function of the semi-infinite substrate. We start by 

explaining how to deposit adlayers onto the substrate for the two band model for 

the same reason. This time it is used in two different methods we tried when solving 

for the surface Green’s function of the semi-infinite substrate.

3.1.1 Adlayering

As for one band adlayering two band adlayering is also the mathematical analogue 

of experimentally depositing atomic planes onto a substrate. Here we generalize the 

algorithm described in Refs [36], [37] and Section 2.1.1 which obtains the surface
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Green’s function of many adlayers deposited onto a substrate. The difference here is 

the adlayers are now made up of two bands of electrons. When formulating the ad- 

layering procedure the parameters that describe the atomic potentials and hopping 

integrals of each band of the adlayer are retained as variables of the procedure. This 

again enables us to model many different structures, as long as they have a simple 

cubic crystal lattice structure and at most two bands of electrons. Obviously due 

to the inclusion of the second band of electrons and the effect of the hybridization 

between the bands there are more potential applications for two band adlayering 

when compared to the single band adlayering. During the formulation of the two 

band adlayering procedure we only consider a semi-infinite substrate on which to 

deposit the adlayers. It is not a necessary condition in order to be able to proceed 

with the adlayering and can in fact be any thickness as long as it contains at least 

one atomic plane. Later on we use this proviso to help find the surface Green’s 

function of a semi-infinite crystal. We start by considering how to deposit a single 

adlayer onto the semi-infinite crystal.

Single adlayer

Here we deal with how to deposit just one adlayer onto the substrate. This 

method of depositing an adlayer will be applied again in the next subsection thereby 

enabling us to deposit as many adlayers as required onto a substrate and not just the 

one. For the case of a single adlayer we have the situation as described in Figure 3.1.

The cleavage plane shown in the diagram is just the mathematical device used to
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CLEAVAGE PLANE

SEMI-INFINITE CRYSTAL SINGLE ADLAYER

Figure 3.1: Diagram of a single adlayer or atomic plane deposited onto a semi-infinite 

crystal.

disconnect the adlayer from the substrate. Once disconnected electrons are not able 

to hop across the cleavage plane. The adlayer is then reconnected to the substrate 

using Dyson’s Equation, which is

Gl (m,n) =  G°(m,n) +  ^  G°(m, p)W(p, q)Gx(q, n), (3.1)
P,Q

where G° are the Green’s functions of the system with the cleavage plane, Gx are the 

Green’s functions of the system without the cleavage plane and W(p,q) describes 

the perturbation within the system.

Two types of perturbation are present and result from electrons being able to 

hop from atomic plane to atomic plane and the interaction of an electron with its
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four nearest neighbours in its particular atomic plane. In this case the only non-zero 

perturbation matrix elements are:-

w (o , 1)

oVII 1 H |*||, 1 > =  T,

w (i> o) =  <fc||,l 1 H  |k\h0 > =  T and

=  < *||,1 1 H  1h i 1 > =  Wx = E\ +  2T(cos(kxa) +  cos(kya)).
(3.2)

Here T is the hopping integral or potential for an electron to hop from atom to atom.

W(0,1) and W(1,0) is the hopping of the electrons from the substrate to the adlayer 

and vice versa. W (l,l)  is the hopping of the electrons from atom to atom in the 

adlayer, E\ is the atomic potential of the adlayer and finally a is the inter-atomic 

distance.

If we compare this answer with the one obtained at this point in the one band 

adlayering given by Equation 2.2 they would appear to be the same. There is one 

subtle but important difference here in the two band adlayering. To fully describe 

the band structure of the trilayer all the parameters and local Green’s functions are 

no longer scalar but 2 x 2  matrices. This is the case throughout this Section. The 

hopping matrix T is
/

T =

\

(3.3)

V

ts tsd 

tsd td

where ts is the potential for electrons to hop from s-band to s-band, td the hopping 

of electrons from d-band to d-band and tsd is the potential for electrons to hop from 

s-band to d-band and vice versa. The hopping of elecrons from s-band to d-band is

111



called hybridization. E\ is the atomic potential of the adlayer and is given by

Ex

/

V

Es 0 

0 Ed

\

/

(3.4)

where Es describes the atomic potential of the s-band and Ed the atomic potential 

of the d-band of the adlayer.

From this brief introduction into obtaining the Green’s function of an arbitrary 

atomic plane in the spacer layer we can already see the similarities with the one band 

model. For the sake of simplicity we use the same terminology for the two band 

model as all the quantities describe the same basic physical processes. However it 

must be remembered that all of these quantities are now 2 x 2  matrices for the two 

band model and not scalar.

The Green’s function of the single adlayer is obtained by setting m = n = l in 

Equation 3.1 and once the perturbation defined by Equation 3.2 has been taken 

into account we are left with

G ^ l ,  1) =  G°{  1,1) +  G °(l, l ) W x G \ l ,  1)+

G°(l, 0)TG1(1,1) + G°(l, lJTG^O, 1).

In the presence of a cleavage plane electrons are unable to hop from the adlayer to 

the substrate and vice versa, hence

(  \
0 0

G°(1,0) =  G°(0,1) =

1° ° )

The formula for the Green’s function of the single adlayer therefore simplifies to

GJ(1 ,1) =  G°( 1,1) +  G °(l, l)W iG!l(l, 1) +  G °(l, 1)TG1(0 ,1), (3.5)
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where G °(l, 1) is the Green’s function of a single unconnected atomic plane and it

is

G ° ( U )  = | x

\
1 0

(3.6)

It must be remembered that all the terms in Equation 3.5 are 2 x 2  matrices so 

we have to maintain the order of multiplication, unlike the single band adlayering. 

Putting the result from Equation 3.6 into Equation 3.5 and simplifying leaves us 

with

( E x / -  W1) G ^ l, 1) =  /  +  T G \ 0,1), (3.7)

where I is the 2 x 2  identity matrix. The only term we do not yet know is G1(0 ,1). 

This is found by setting m — 0 and n =  1 in Dyson’s Equation, Equation 3.1 and 

taking account of the perturbation. We therefore find that

^ ( 0 ,1 )  =  G °(0,0)TG 1(1,1),

where G °(0 ,0) is the surface Green’s function of our substrate, which we call Gs. Its 

computation is not needed to explain the adlayering procedure so for the moment 

we just retain it as a variable of the adlayering algorithm. Its calculation is fully 

explained in Section 3.1.2, so

G °(0,0) =  Gs. (3.8)

Using the solution of G1(0 ,1) and Equation 3.8 we find the Green’s function of a 

single adlayer is

G \ ì , ì )  =  (E x I - W 1 - T G ST )~\  (3.9)
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where
( \ ( \

Es 0 ts tsd
Wi =

K °
Ed /

+  2(cos(kxa) +  cos(kya))
tsd td

We now have a relationship for the exact Green’s function of a single adlayer albeit 

in terms of the surface Green’s function of the substrate Gs. It is important that 

we have to be strict about the order of multiplication of the terms in Equation 3.9 

because they are all matrices.

M ulti-adlayering

The process of depositing many adlayers onto a substrate is the same as depositing 

just one adlayer, the only difference is the process is repeated until the required 

number of adlayers have been deposited.

The Green’s function of the second adlayer is found by treating the single adlayer 

deposited onto the substrate as the ’’ substrate” . Another adlayer is then deposited 

in exactly the same way as before. Thus setting m =  n =  2 in Dyson’s equation 

and taking account of the perturbation we find that

G2(2,2) =  (E x I  - W 2 - T G 1(1,1)t )~ 1 , (3.10)

where

W2 — E -2 +  2 T(cos(k30a) +  cos(kya))

and E2 is the atomic potential of the second adlayer. This process of depositing 

adlayers can be repeated for as long as required until after N steps we find that

Gn (N ,N )  =  (e  x I  - W N - T G n - \ N  - l , N  - l ^ y 1 , (3.11)
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where

Wn  =  En  +  2T(cos(kxa) +  cos(kya))

and En  is the atomic potential of the N th adlayer. Gn (N ,N )  is the surface 

Green’s function of N adlayers deposited onto a substrate, as shown in Figure 3.2 

and GN~1(N  — 1, N  — 1) is the surface Green’s function of N-l adlayers deposited 

onto the substrate.

SEMI - INFINITE 

CRYSTAL
-N th ADLAYER

Y-
N ADLAYERS

Figure 3.2: Diagram showing N adlayers or atomic planes deposited onto a semi-

infinite crystal.

3.1.2 Surface Green’s function of a semi-infinite crystal

In the previous section we described the deposition of adlayers onto a substrate 

where the subsrate is a semi-infinite crystal. In order to be able to proceed with
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the adlayering algorithm we first need to find the surface Green’s function of the 

semi-infinite crystal, which we labelled Gs. In Section 2.1.2 we obtained an ana-

lytic solution for the surface Green’s function of the one band semi-infinite crystal 

using the adlayering procedure. Similar to the adlayering procedure itself the best 

approach would appear to be the generalization of the one band analytic solution of 

Gs to the two band semi-infinite crystal. Unfortunately although this is feasible the 

execution of such an approach renders it unviable for practical use. When solving 

for Gs for the one band semi-infinite crystal we needed to decide which branch of 

the solution to take. Since there were only two possible branches of the solution 

this task is relatively simple. As a result of all the terms being matrices in the two 

band model there are considerably more than just two branches in the solution of 

Gs. This makes the generalization of the analytic solution too complex. Therefore 

in this section we outline two different trial methods we used when solving for Gs 

for the two band crystal.

Method 1

In our first trial method we try to obtain a good approximation for the fully 

hybridized surface Green’s function of the semi-infinite crystal with two bands of 

electrons. We do this by depositing hybridized adlayers onto an unhybridized semi-

infinite crystal. Once enough hybridized adlayers have been deposited then the 

surface Green’s function of this crystal should hopefully provide the approximation 

to Gs we seek. We use an unhybridized semi-infinite crystal as the initial ’’ starting
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block” because it is likely the approximation to Gs will be achieved by depositing 

less adlayers than a thinner finite starting block would need and would therefore 

require less computational effort.

The surface Green’s function of the unhybridized crystal takes the following form. 

The off diagonal matrix elements are zero because there is no hybridization between 

the bands in other words the electrons cannot hop from the s-band to the d-band 

and vice versa. The diagonal elements are obtained using the analytic solution for 

the surface Green’s function of a semi-infinite crystal with a single band of electrons, 

which is given by Equation 2.15. This solution can be used here because when there 

is no interaction of the s and d band electrons we can mathematically treat each 

band as though it is a single band. We call Guns  the surface Green’s function of the 

s-band and Gun d  the surface Green’s function of the d-band. The surface Green’s 

function of the unhybridized two band semi-infinite crytsal G(j N will therefore look 

something like

GS _
UN ~

(
Guns 0 \

 ̂ 0  Gun d  j

Now we have the surface Green’s function of the unhybridized semi-infinite crys-

tal we deposit hybridized adlayers onto it using the two band adlayering which is 

outlined in Section 3.1.1. The hybridized adlayers are of exactly the same material 

as the unhybridized semi-infinite crystal except the hybridization between the two 

bands has been switched on. Once enough hybridized adlayers have been deposited 

onto the unhybridized crystal then the surface Green’s function of this crystal should
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provide us with a very good approximation to the surface Green’s function of the 

hybridized semi-infinite crystal and will look something like

/
GS _

H Y  ~
Gh y s Gh y s d

y Gh y s d  G h y d  j

where the off-diagonal matrix elements Gh y s d  are now non-zero. This reflects the 

fact that electrons are now able to hop from s-band to d-band and vice versa in the 

fully hybridized crystal.

Now we need some way of demonstrating that this trial method gives the correct 

approximation to the fully hybridized surface Green’s function of the semi-infinite 

crystal with two bands of electrons we seek. We recall from Section 2.3.3 that 

the Fourier coefficients in the SPA were obtained from the shifted spectral density. 

The shifted spectral density can be used here to test our first trial method. As we 

deposit more hybridized adlayers, the surface Green’s function of this crystal should 

tend towards the surface Green’s function of a fully hybridized semi-infinite crystal, 

hence the shifted spectral density will converge. Once the shifted spectral density 

converges then we will have shown that this trial method works and will also tell us 

how many hybridized adlayers need to be deposited onto the unhybridized crystal.
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3 .40

Figure 3.3: Diagram showing plots of the shifted spectral density with 50, 100, 200 

and 300 hybridized adlayers or atomic planes deposited onto both the left and right 

semi-infinite unhybridized crystals.

Figure 3.4: Diagram showing plots of the shifted spectral density with 500, 750 and 

1000 hybridized adlayers or atomic planes deposited onto both the left and right 

semi-infinite unhybridized crystals.
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Figures 3.3 and 3.4 are made up of several plots of the shifted spectral density. 

We start in Figure 3.3 by depositing 50 hybridized adlayers onto both the left and 

right unhybridized semi-infinite crystals. This is slowly increased until 300 adlayers 

have been deposited. By 300 adlayers we should at least be seeing some evidence 

that the shifted spectral density is converging, which it clearly isn’t. It would 

appear from this that the shifted spectral density is in some way dependent on 

the thickness of the hybridized adlayers. To demonstrate this is the case we deposit 

500, 750 and 1000 hybridized adlayers onto the unhybridized semi-infinite crystals in 

Figure 3.4. From this figure we can clearly see that the shifted spectral density does 

not converge. From this we conclude that trial method 1 does not give the correct 

approximation to the surface Green’s function of a fully hybridized semi-infinite 

crystal and we reject it as a possible solution.

To see why this is so and explain what is happening we need to look at the 

energy bands and some basic quantum mechanics. We start by comparing the bulk 

energy bands of the unhybridized crystal with the hybridized adlayers. These plots 

are given in Figure 3.5.

Looking at the energy bands in Figure 3.5 we see that the hybridization causes 

a shift in the energy bands. This means that our trial method has introduced two 

shallow potential barriers at the edge of the potential well. The potential barriers 

originate from the hybridized adlayers that were deposited onto the unhybridized 

semi-infinite crystal. So diagrammatically the trilayer now looks like Figure 3.6.

We conclude that the potential barriers must be the source of the unexpected
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Figure 3.5: Comparison of the energy bands of the unhybridized semi-infinite crystal 

(Dotted lines) and the hybridized adlayers (Solid lines). The straight solid line is 

the Fermi energy level.

results obtained in Figure 3.3 and 3.4 and the shifted spectral density is in some 

way dependent on the thickness of the potential barriers. To gain some insight as 

to what the effect the potential barriers have let us consider the case of a single 

potential barrier of height Vo, see Figure 3.7. In particular we look at how the width 

of the barrier affects the transmission and reflection of the electrons through the 

barriers. We do this using the parabolic band model, Refs [44] and [45]. There are 

two possible scenarios, one is when the energy level is less than the height of the 

potential barrier and the other is when the energy level is greater than the height 

of the potential barrier.
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Figure 3.6: Potential well plus barriers.

V0

x=0 x=a

Figure 3.7: Diagram of a potential barrier of height Vo and width a.

e <  Vo

We first consider the case when the energy level e is less than the height the potential 

barrier Vo. The three wave equations in this case are:-

Tx =  A exp (ixy/tj +  -0 exp x < 0

T 2 =  C exp (x\JvQ — ej +  D exp (̂ —x\JVo — 0 < x < a  (3.12)

— E exp (ixy/ej x > a
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and the Transmission and Reflection coefficients are given by

R

T

\El
| A |2

IB l
| A |2

R + T =  1

(3.13)

Without loss of generality we set A =  1. The wave function must be continuous 

at all points thoughout the three regions. We therefore match the wave functions at 

the edge of the potential barrier ie x =  0 and x — a. Also we are considering the case 

of a finite potential barrier. When we have a finite potential barrier then the first 

derivative of 'Ir must also be continuous in all regions. We therefore match the first 

derivative of at x =  0 and x =  a as well. We now have four constants and four 

boundary conditions which means we can obtain the values of all the coefficients 

from the four boundary equations which are:-

( a )  1 +  B

(b) iy/e{\ — B )

(c) E exp(ia^/e)

(d) Ei\/eexp(iay/e)

C E D

( C - D ) y j V o - e

C exp (a\Jvô--t) +  D exp(—a\Jv0 — e)

\Jv0 -  t (c exp{ayJVo -  t) -  D exp(—ay^Vo -  e)^
(3.14)

By using Equations 3.13 and 3.14 we find that the transmission coefficient T is

T
4e(Vo -  e)

4e(V0 — e) +  R02 sinh2(aA/y0 — e)
e < K. (3.15)

and the Reflection coefficient R is

R =
Vq sinh2(a- /̂Vo — e)

4e(y0 — e) +  V02 sinh2(a\Ao — e)
e < Vo- (3.16)
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The solution of T and R now gives us the required insight as to how the width of the 

potential barrier affects the passage of electrons through it when the energy level 

is less than the height of the height of the potential barrier. Increasing the width 

of the potential barrier, which is achieved by increasing the parameter a, reduces 

the transmission of the electrons through the barrier and consequently increases the 

reflection of electrons by the barrier. If we take the limit of a —» oc we see that 

there is no transmission of the electrons and all the electrons are reflected by the 

barrier.

Applying this to our trial method we can now explain what happens when the 

potential barriers were introduced for the case when the energy level is less than 

the height of the barriers. Depositing an increasingly large number of adlayers onto 

the unhybridized semi-infinite crystal translates into increasing the width of the 

potential barriers. This will restrict the motion of electrons from the substrates into 

the spacer layer and will have the effect of putting the spacer layer into an infinitely 

deep potential well at the limit of a =  oo. By looking at Figures 3.3 and 3.4 we can 

see that it is not this we are seeing here. We conclude that the potential barriers 

must have been smaller than the energy level. So we now look at the case when the 

energy level e is greater than the height of the potential barrier.

e > Vo

We now consider the case when the energy level is greater than the height of the 

potential barrier. Again we set A equal 1 without loss of generality to simplify the
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We now apply these results to see how the potential barrier have affected the 

motion of the electrons in the trilayer. The transmission of the electrons from 

the ferromagnetic layers is dependent on the thickness of the potential barriers or 

hybridized adlayers. We therefore conclude that no matter how many hybridized 

adlayers are deposited onto the substrates the shifted spectral density will oscillate 

as a function of the number of hybridized adlayers. It is clear we are seeing this 

effect in Figures 3.3 and 3.4. This will in turn lead to the exchange coupling being 

dependent on the thickness of the ferromagnetic layers. We conclude that this trial 

method does not give the correct good approximation to the fully hybridized surface 

Green’s function of a semi-infinite crystal and we reject this method as a possible 

solution.

This result is particularly interesting. Up until the time when we were deriving 

this approximation to the surface Green’s function it had been assumed that the 

exchange coupling was roughly independent of the thickness of the ferromagnetic 

layers, as in Ref [25] for example. Our results gave us the first indication that 

the exchange coupling may oscillate as a function of the ferromagnetic thickness. 

The oscillation period being dependent on the perpendicular wave vector in the 

ferromagnetic layers. For a single-band model we expect two periods to appear in the 

spectral density, one coming from the up spin Fermi surface and the other from the 

down spin Fermi surface of the ferromagnetic layers. In this case, the spectral density 

is a quasi-periodic rather than a periodic function of the ferromagnetic thickness and 

the usual Fourier analysis is no longer possible. A method for analysing a quasi-
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periodic spectral density is discussed in Section 3.3.3 and more details on how this 

method can be used to calculate the dependence of the exchange coupling on the 

ferromagnetic thickness can be found in Ref [29].

Method 2

In common with trial method 1 we attempt to obtain a very good approximation 

to the fully hybridized surface Green’s function of a semi-infinite crystal. We do this 

by building up a very large finite crystal using the two band adlayering procedure 

of Section 3.1.1. It is hoped that as the finite crystal becomes increasingly large 

its surface Green’s function will tend towards the surface Green’s function of the 

semi-infinite crystal.

We start the procedure by taking a single fully hybridized atomic plane and add 

a small imaginary part to the energy. Hybridized adlayers are then deposited onto 

the single atomic plane using the two band adlayering algorithm. In this way we 

can build the finite crystal up so that it contains as many atomic planes as required.

We now need to demonstrate that this second trial method does give the correct 

approximation to the surface Green’s function of the fully hybridized semi-infinite 

crystal we seek. When a crystal is semi-infinite depositing an adlayer of the same 

material as the semi-infinite crystal on top of it will leave us again with just a semi-

infinite crystal. Therefore the Green’s function of the adlayer will be equal to the 

surface Green’s function of the semi-infinite crystal. We can use this property to 

test this trial method. As the adlayers are deposited their Green’s functions can
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be compared with surface Green’s function of the finite block on which it has been 

deposited. The two Green’s functions should be equal to another once the finite 

block is thick enough and its surface Green’s function is a very good approximation 

to the surface Green’s of a semi-infinite crystal.

FINITE SLAB

G „_________________ ;

N ATOMIC PLANES

Figure 3.8: Diagram of a finite crystal containing N atomic planes.

It is found that once the finite block is thick enough then its surface Green’s 

function is approximately equal to the surface Green’s function of a semi-infinite 

crystal. The exact thickness of the finite crystal can be determined computationally. 

Therefore we accept this method. One important thing to note about this trial 

method is it will only work if a small imaginary part is added to the energy at the 

beginning of the procedure. This ensures the electrons do not reach the other edge 

of the finite block thereby simulating the same effect as happens in the semi-infinite 

crystal. This also implies there is no interference effect from the far edge of the very 

large finite block.
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3.1.3 Joining

To calculate the exchange coupling of a trilayer we need to obtain the Green’s 

function of every atomic plane in the spacer layer that is embedded between two 

semi-infinite ferromagnetic crystals. To find the Green’s function of the n th plane 

out of N planes in the spacer layer for the two band trilayer we generalize the method 

as set out in Refs [37], [39] and Section 2.1.3. We start by passing a cleavage plane 

between the n th and n+1 st atomic plane in the spacer layer. The cleavage plane 

is again just the mathematical device used to ’’ cut” the trilayer and it effectively 

separates the structure into two independent crystals, which is shown in Figure 3.9.

The left and right hand sides are now disconnnected so there is no hopping of 

electrons across the cleavage plane and the Green’s functions of the cleaved crystals 

are therefore given by

GLeit(m,n)  if n,m e L

Gci(m ,n) =  0 if n e L,m t R and vice versa (3.21)

GRight(n, m) if n,m e R, 

where Gcl are the Green’s functions of the system with the cleavage plane, GLe^

are the Green’s functions of the left unconnected crystal and GRl9ht are the Green’s 

functions of the right unconnected crystal. To reconnect the two sides we use Dyson’s 

Equation again. It is

G(n, m ) =  Gcl(n, m) +  ^  Gcl(n,p)W(p , q)G(q, m), (3.22)
p,q

where G are the Green’s functions of the system without the cleavage plane, Gct the 

Green’s functions of the system with the cleavage plane and bF(p, q) describes the
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CLEAVAGE PLANE

N th PLANE N+l st PLANE

SEMI - INFINITE 
CRYSTAL

F
Y

N ATOMIC PLANES

J

Figure 3.9: Diagram of a trilayer consisting of N atomic planes in the spacer layer 

sandwiched between two semi-infinite crystals.

perturbation within the system. Here the only non-zero matrix elements describing 

the perturbation W(p,q)  are W(n,n  +  1) and W(n  +  1 , n).

W(n,n  +  1) =  < k\\, n \ W  |&||, n +  1 > =  T

FF(n +  l , n )  =  <  fc||,n +  1 I W  I &||,ra >  =  T ,

and
(3.23)

where W (n ,n  +  1) describes the potential for an electron to hop from the n th 

atomic plane to the n+1 st plane in the spacer layer and W{n  +  1, n) the potential 

for electrons to hop from the n + l st plane to the n th atomic plane. Finally T is
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the hopping integral and it is

ts tsd
T =

tsd td ^

where ts is the potential for electrons to hop from s-band to s-band, td is the potential 

for electrons to hop from d-band to d-band and tsd is the potential for electrons to 

from s-band to d-band and vice versa. Using this information and setting m =  n in 

Equation 3.22 we find the solution of the Green’s function of the n th atomic plane 

of the spacer layer in the trilayer to be

G(n , n) =  Gc/(n, n) +  Gc\n , n)TG(n +  1, n) +  Gcl{n, n +  1 )TG(n, n).

Using Equation 3.21 we find that

Gcl(n +  1, n) =  Gcl(n: n +  1)

/  \
0 0

\ °  0 /

(3.24)

as electrons cannot hop across the cleavage plane. The Green’s function of the n th 

atomic plane of the spacer layer therefore simplifies to

G(n, n) =  Gcl(n, n) +  Gcl(n, n)TG{n +  1, n). (3.25)

To complete the solution of Equation 3.25 we need to find G(n +  1, n). This is 

obtained by setting m =  n +  1 in Dyson’s equation, Equation 3.22 and taking 

account of the perturbation within the system. Once these two tasks have been 

completed we obtain

G(n +  1, n) =  Gcl(n -f l ,n  +  1 )TG(n,n). (3.26)
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After substituting the answer for G(n +  1, n) into Equation 3.25 and simplifying we 

find that

G(n,n) =  ( i  -  Gcl{n: n)TGcl(n +  l ,n  +  Gcl{n,n),  (3.27)

where I is the 2 x 2  identity matrix. Equation 3.27 is the formula for the Green’s 

function of the n th atomic plane of the spacer layer. Gd(n: n) is the surface Green’s 

function of the left unconnected crystal which is made up of n adlayers deposited 

onto the left semi-infinite crystal. Gcl(n +  l,re +  1) is the surface Green’s function 

of the right unconnected which consists of N-n adlayers deposited on the right semi-

infinite crystal. These two Green’s functions can therefore be obtained using the 

two band adlayering procedure which is outlined in Section 3.1.1.

Equation 3.27 is the formula for the Green’s function of an arbitrary atomic 

plane in the spacer layer containing a total of N atomic planes. When computing 

the exchange coupling we need to take the sum of all the local Green’s functions of all 

the atomic planes in the spacer layer. One great advantage of obtaining these local 

Green’s functions using the adlayering and joining methods is the joining requires 

little extra computer time over the adlayering. This is because the Green’s function 

of each adlayer is obtained as it is deposited during the adlayering algorithm. These 

Green’s functions can therefore be stored in a local array which can then be accessed 

as needed to do the joining. The potential time saved is all the more important here 

than it was for the one band trilayer because all the local Green’s functions and 

parameters are matrices which naturally takes a lot more computational effort to 

perform even the simplest of mathematical calculations.
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One final thing to note about this method of finding the local Green’s functions 

of the trilayer is they have been derived in such a way as to make the generalization 

to more than two bands trivial.
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3.2 Numerical computation of the exchange 

coupling J(N)

The exchange coupling for a two band trilayer is the same relationship of the 

thermodynamic potentials we had for a single band trilayer. We recall from Equa-

tion 1.33 that this relationship is

J(N)
(& (N )  +  ì ì *(JV))f m  -  +  n l (N ) )AF

A
(3.28)

where FM and AF denotes the ferromagnetic and antiferromagnetic configuration 

of the trilayer respectively, is the thermodynamic potential for spin band s at 

zero temperature and A is the cross-sectional area, fIs is

f!' ( « )  =  - -  E  / E'  E ( E  -  Ei )TrImGiif ( E ,  kh N)dE, (3.29)
77 ¿[| ¿=1

were N is the number of atomic planes in the spacer layer and the local Green’s 

functions of the spacer layer are obtained using the method outlined in Section 3.1. 

As previously we concentrate on how to compute the thermodynamic potential itself 

as the last step in calculating the exchange coupling is trivial.

There is one important difference between the formula for the thermodynamic 

potential for the one band trilayer given by Equation 2.23 and the formula for the 

two band trilayer just above. We saw in the last Section that all the local Green’s 

functions in the two band trilayer are 2 x 2  matrices. Here we need to take the trace 

of the local Green’s functions in the spacer layer to take this into account. This task 

did not need to be performed in the one band model because all the local Green’s
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functions are scalar quantities.

We start the computation of the thermodynamic potential by first considering the 

energy integral. Once this has been performed we then compute the summation.

3.2.1 Complex energy integration

When performing the energy integral for the one band model in Section 2.2.1 

we used the method as set out by Zeller el al in Ref [40] to replace the real energy 

integral with one in the complex energy plane. This step is possible because the 

general Green’s function G(E) possesses singularities along the real axis only and is 

therefore complex in the whole energy plane except for the real axis. Here in the two 

band model the singularities of the Green’s functions also occur along the real axis 

only. The Green’s functions are therefore analytic functions for the whole complex 

energy plane except for the real axis. We can therefore apply the same method of 

computing the real energy integral using the complex energy plane. For the sake of 

simplicity we use the same contour to perform the integral which was used for the 

one band model. For the sake of brevity we will not repeat the derivation of the 

complex energy integral here as the steps taken are the same as in Section 2.2.1. As 

a reminder the contour we use to perform the complex energy integral is the one 

shown in Figure 3.10. After performing the complex energy integral we obtain
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2

Figure 3.10: Diagram showing the reduced integration contour in the complex energy 

plane. Ef is the Fermi energy level, E\, is an arbitrary point that lies below the 

bottom of the energy bands and ym is a constant that is greater than zero.

1 _ rvm
0 s =  — E E /  {E . -E r iT rR e G '^ E t  +  i y ^ N )

T i= 1 fc||

+y(TrImGtii(Ef + iy,k\\,N) -  TrlmG^Eb + iy,k\\,N))dy
fEf

+ / (x -  Ef)TrImG\i(x + iym,k\\,N) + ymTrReG'ii(x+  iym,k\\,N)dx.
J Ef,

(3.30)

The only difference between this answer and the one obtained for the single band 

is we need to take the trace of the local Green’s functions for the two band model 

because they are all matrices. Another thing to note about using this contour for 

the two band trilayer is where we chose our Eb to be. In the one band trilayer it 

is straightforward to determine exactly where the bottom of the energy band lies
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and therefore where Eb should be. The bulk energy bands for the two band trilayer 

can become slightly shifted because of the effect of hybridization, which is clearly 

demonstrated in Figure 3.5. When choosing Eb for the two band trilayer the effect 

hybridization has on the relative position of the bands needs to be taken into account 

to ensure correct computation of the integral. Finally the formula in Equation 3.30 

is as equally valid for trilayers of more than two bands of electrons, as well as for a 

two band trilayer.

3.2.2 Summation over k\\

Once the energy integral has been completed we can proceed with the last task 

in computing fF the summation over k\\. In the one band model we performed 

this summation using the prescription as set out by Cunningham in Ref [41]. This 

method is as equally valid for structures containing more than one band of electrons 

as it is for a single orbital system. Therefore there is no need to generalize this 

summation technique here for the two band trilayer. For the sake of brevity we will 

not go over the process again here as full details are given in Section 2.2.2.
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3.3 Analytic computation of the exchange

coupling J(N)

The numerical evaluation of the thermodynamic potential fIs and therefore the 

exchange coupling J(N) for the two band trilayer requires a considerable amount of 

computational time. As we have already seen all the parameters and local Green’s 

functions describing the two band trilayer are matrices. Here even the simplest of 

mathematical operations such as adding or subtracting need more time to compute. 

It is therefore obvious the numerical computation of J(N) will take considerably 

longer for the two band model than it does for the one band model. We conclude 

from this that although the numerical approach is theoretically possible it is not 

viable as a practical method. This makes the analytic computation for the two 

band trilayer more important. We again recall from Equation 1.33 that the exchange 

coupling is given by

J(N)
(HT(1V) +  & ( N ) ) f m  -  ( r t (N )  +  & ( N ) ) a f  

A
(3.31)

where FM and AF denotes the ferromagnetic and antiferromagnetic configurations 

of the trilayer respectively and A is the cross-sectional area. The thermodynamic 

potential 0 s for spin band s at finite temperature is

sr (N) 1 +  exp ( P - E  
V kBT

DS(E, N)dE, (3.32)
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where N is the spacer thickness, T the temperature, ¡i the chemical potential, ks is 

the Boltzmann constant,

Ds(E ,N )  =  Y l Gs(E ,k l],N)
*ll

and finally

G’ (E,  *||, AO =  - -  E  TrImG’u(E , JV). (3.33)
^ J=1

In accordance with what has already been seen before in this Chapter we need to 

take the trace of the Green’s functions because they are all matrices. Also as before 

we concentrate on how to compute the thermodynamic potential itself as the last 

step in computing the exchange coupling is trivial. Here in this Section we replace 

the prohibitive energy integral and k\\ summation with their respective analytic 

solutions using Refs [33], [34], [42] and Section 2.3. This enables us to compute the 

exchange coupling in a reasonable time for the two band trilayer.

Before we can proceed with the derivation of the SPA we first need to consider the 

band structure of the trilayer. Oscillatory exchange coupling occurs when the Fermi 

energy level intersects a band in the spacer layer. When we considered a single 

orbital trilayer in the last Chapter, the exchange coupling was found to oscillate 

with at most one period only because there is only one band of electrons. The 

Fermi energy level may intersect both the s and d-band for a two band trilayer. If 

this does occur then the exchange coupling may oscillate with two periods. However 

if only one band of electrons is partially filled we expect one period only. Due to this 

possibility we need to consider single-period and double-period exchange coupling
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3.3.1 Single-period exchange coupling

From a purely mathematical viewpoint it is clear from Equation 3.32 that the 

term responsible for the oscillatory exchange coupling is DS(E ,N )  and we define 

the average spectral density to be — G3(E,k\\,N). When only one of the bands is 

partially filled then the spectral density is periodic in N with one period only. If 

this is the case then we are able to expand the spectral density in terms of a single 

Fourier series as in Section 2.3. There we show the spectral density can be Fourier 

analysed because it fulfills two important criteria ie the discrete spacer thickness 

N can be mathematically viewed as a continous one and the spectral density is a 

periodic function in N. The proof that this is the case is given by obtaining an 

analytic solution for the spectral density which is given in Section 2.4. To rigorously 

prove the two criteria are satisfied for the two band trilayer would require an analytic 

solution for the matrix elements of the Green’s function for the two band trilayer. As 

yet we are unable to obtain such an analytic solution. Therefore we must assume 

that the spectral density does actually fulfill the required conditions to be able 

Fourier analyse it and all the circumstantial evidence agrees with this assumption. 

Since the spectral density is periodic with one period only we can use the same 

Fourier series expansion that was used in the one band model and it is

1 OO

— GS(E, fc||, N) =  R eJ2  c n (E , fc||) exp (2iNanf3(E, fc||)) . (3.34)
71 =  1

separately. We start by first considering single-period exchange coupling.
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Here ReC* ^E,kjj"j is the usual Fourier coefficient an and —ImC^(^E,k^ is the 

usual Fourier coefficient bn. Our working hypothesis is that, by analogy with the 

single orbital trilayer, f3(E,k\\) is the wave vector of the bulk spacer metal, which 

is perpendicular to the atomic planes and is related to the period of oscillations by 

. Replacing GS(E, &y, N)  in Equation 3.32 by its Fourier series expansion 

we obtain

n w -  /  /  in
Hr /T n — 1 J — 00 J — 00 J — 00

1 +  exp
H — E 
kBT

x
(3.35)

C*(E, £||) exp (2iNan/3(E, &||)) dkxdkydE ,

where the summation over k\\ has been converted into two integrals one with respect 

to kx and the other with respect to ky.

Equation 3.35 is exactly the same formula we obtained after we replaced the 

spectral density by its Fourier series expansion for the one band trilayer which is 

given by Equation 2.38. Applying all the same techniques as is used in Section 2.3 

we eventually obtain the same formula for Qs. For the sake of brevity the derivation 

of the formula is not repeated here. We recall from Equation 2.49 the answer is

n s(N)

where

16a3N 2n ~  n3 \df3J 

x exp ( 2 iNanf3(Ej, &||)) ,

e,7r/2 if £ 4  and S ?  > 0

d2(3 d2/3
dk2x dk*

- 1 / 2

(3.36)

dkl dkl

e - / 2 if and ^ < 0
dkl dkl
d2/3 d2/3

if t vt v > 0 and —— < 0 and vice versa.
dk2x dk2y
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3.3.2 Application of the SPA for single-period exchange

coupling

Now the formula for the thermodynamic potential has been derived using the 

SPA, the next step is to apply this formula to a two orbital trilayer and compute 

all the unknown factors in Equation 3.36.

We start by setting the perpendicular wavevector kz(E, k\\) equal to (3(E, fc||) in 

the bulk tight-binding energy bands of the spacer layer. The bulk energy bands of 

the spacer layer are computed by solving the following matrix equation

Es +  2 tse(k) — E 2 tsde(k)

2tsde(k) Ed +  2 tde{k) — E
= 0. (3.37)

Here Es and Ed are the atomic potentials of the s and d bands of the spacer layer 

respectively, ts is the hopping integral of the s-band of the spacer layer, td the 

hopping integral of the d-band and tsd is the hybridization between the bands. 

Finally e(k) =  cos (akx) +  cos (aky) +  cos (a/?), where a is the inter-atomic, distance. 

All the factors in Equation 3.36 are obtained by solving Equation 3.37 and the 

resulting characteristic equation is

E 2 — E [Es +  Ed +  2(ts +  td)e(k)sj +  (Es +  2tse(k))(Ed +  2tde(k)) — 4tsd2e2(k) =  0.

(3.38)

The first task we need to complete before we can proceed with the application of 

the SPA to a two orbital trilayer is to locate all the possible stationary points. The

0 ¡3
general stationary point fey is obtained by finding the values of k\\ where —— and

O fa'll
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dp
dkv

are equal to zero. By solving Equation 3.38 for E and differentiating it once

with respect to kx and then ky we obtain

dE _  de(k) 
dkr dkx

ts +  td ±
xy +  2 e(k)(y2 +  4 tsd2)

\jx2 +  4 xye(k) +  4 t2(k)(y2 +  4 tsd2)
(3.39)

and

dE _  de(k)
dky dky

ts +  td ±
xy +  2 e(k)(y2 +  4 tsd2) 1

\Jx2 +  4xye(k) +  4e2(k)(y2 -f 4tsd2) J
(3.40)

dE d E
where x =  Es — Ed and y =  ts — td. Since —— and —— are equal to zero and by

dkx dky

using Equations 3.39 and 3.40 we find all the possible stationary points are

/ \ / 71". . 7T . , 7T 7T .
(0,0), (0, ± —), ( ± —, 0), ( ± -  ± - )CL CL CL CL

and the values of kx and ky where

ts +  td ±
xy +  2 e(k)(y2 +  4 tsd2)

\Jx2 +  4s?/e(A;) +  4 e2(fc)(y2 +  4 tsd2)

The choice of which branch to take in the equation just above and all future equations 

for this subsection is determined by the band structure and in particular which band 

is intersected by the Fermi energy level in the spacer layer. Next we obtain P(Ej, A?fj). 

P(Ej,k^) is simply obtained be setting E =  Ef and k\\ — fc|j in Equation 3.38 and 

solving it to find that

P(E f , &|j) =  — arccos |
—s ±  \/s2 — Art

2 r
cos(ak®) — cos(ak°) > , (3-41)

where r — 4(tstd — tsd2), s =  2(ts(Ed — E f )  +  td(Es — E f ) )  and t =  (Es — E f ) ( E d  — 

E f ) .  The choice of which branch to take in Equation 3.41 is determined by the
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dE dE
band structure of the spacer layer. Now we compute -Jjÿ- *s simPly f°und

by differentiating the solution of E once with respect to ¡3. Once this has been 

performed we find that

dE  . orri ) , , xy +  2e(k)(y2 +  Usd2)
—  =  —a sin{aß(E,  äii)) < ts +  td ±  ,
dP \ y  x2 +  ixye(k)  +  4e2(k)(y2 +  Atsd2)

. (3.42)

d2(3 d2/3 d2/3
Now we obtain —— and but first we calculate ——. Using the property that 

okt oki oki
dE .
dk.

is equal to zero, we differentiate the right hand side of Equation 3.39 again with

respect to kx and simplify to find that

d2ß a cos(akx)
dk2 s\n(aß(E, fc||)) ’

(3.43)

d2ß
After performing a similar process for —— we obtain

dky

d2ß acos(aky)
dk2 sin(aß(E, fc||))‘

(3.44)

P , , ,  dE d2(3 , d2/3 . . . .  , , , .
Now we have found the lactors ——, —r- and ——■ it is trivial to take their values

dp dk2x dk2

at the point E =  Ej  and k\\ =  fc||. We can then also calculate the factor cr. All that 

remains is to compute the Fourier coefficients C„(Ef,  fcy). Since we are considering 

single-period exchange coupling here the spectral density is a periodic function in 

N with a single period only. Therefore we can employ the shifting method here to 

the two orbital trilayer to compute the Fourier coefficients. Since we have already 

outlined this process the reader is referred to Section 2.3.3 for the full details of the 

shifting method to obtain the Fourier coefficients.
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3.3.3 Double-period exchange coupling

Now we consider the situation when the oscillatory exchange coupling has two 

periods, which occurs when two bands in the spacer intersect the Fermi surface. 

For each we therefore have two perpendicular wave vectors , kbL obtained by 

solving the bulk dispersion E =  E(k\\, kj_) in the spacer. Guided by our results for 

the single-orbital model, we expect that the average spectral density (per atomic

plane) to depend on the spacer thickness only via the products k±Na and kb±Na.

TT
ka,

Since in general -— and —r  are incommensurate, it is clear that the average spectral 
kaL kb±

density is no longer a periodic function of N. This is a serious problem since our 

analytic approach is based on a Fourier series expansion of the spectral density. To 

resolve this problem, consider two independent bands. Our analytic formula for the 

spectral density, Equation 2.84, can be trivially generalized to this situation and it 

is clear that the average spectral density is now a function of two periodic functions

7T 7T
of N, one of them having the period —  and the other —y .  Such a function is called

rCj_ rC |

a quasi-periodic function and can be expanded in terms of trigonometric functions 

using the following trick. We replace the true spacer thickness N by two fictitious 

ones N and M, so that N appears in the factor kaLN  and M in the other factor 

kbLM. The spectral density GS(E, k\\, N, M ) for such a fictitious system, regarded 

as a function of two independent variables N and M, is a periodic function in N and 

M and can therefore be expanded in terms of a double Fourier series.

/!2mrN 2rmrM\
N GS(E, k\\,N, M)  =  ]T d nm  CO S -1-- -̂J + K m  SH I ^(2mrN 2imrM\

n, m = l K +

(3.45)
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where K is the period
7T

and L is the period
7T

As with the
Pa(E ,k\\) “  ““ “ p*(E,kn)'

single-period exchange coupling our working hypothesis is that /3a and f3b are the 

wave vectors of the bulk spacer metal. The physical spectral density is given by 

GS(E, ¿y, N) =  GS(E , ¿||, N, M)  and its expansion takes the complex form of

1 OO

- G ’ (E ,k „ ,N )  =  Re•£ C ‘ mexp (2iiVa(m/3"(iS, t„) +  «/?*(£, *,,))) . (3.46)
n,m =l

Here ReC^m is the Fourier coefficient anm given in Equation 3.45 and —ImC^m is 

the Fourier coefficient bnm. After substituting the complex Fourier series expansion 

into the formula for the thermodynamic potential given by Equation 3.32 we find

that

n s(N)
Ic r T N A r°° r°° r°°

4ir2 /oo r oo r 

- o o  J— o o  J— o o

In 1 +  exp
H — E 
kBT

C U E , k n)x
(3.47)

exp ('2iNa(m/3a(E , ¿||) +  n(3b(E , ¿||))) dkxdkydE , 

where the summation over ¿y has been converted into a double integral one with 

respect to kx and the other with respect to ky.

The procedure we have described can be easily implemented for two independent 

bands when we have an analytic expression for the spectral density. In the most 

general case of two hybridized bands we do not have such an analytic formula but 

our procedure is still applicable provided the average spectral density is a quasi- 

periodic function. The evaluation of the Fourier coefficients C^m in Equation 3.46 

in the most general case of two hybridized bands and is described in Section 3.3.6.
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3.3.4 kx and kx integrals

We proceed with the derivation of the SPA by first making the substitution 

n, E, fc||) =  mf3a(E , k\\) +  n(5h(E , k\\) to simplify the calculations. Once this has 

been made we are left with

oo roo roo
In

o o  J — o o  J — oo
1 +  exp

/i — E  

kBT C ' J E . h )

x exp (2 iNacj)(m, n , E, fc||) j dkxdkydE.

(3.48)

Here the exponential factor exp (2iNa(j)(m, re, E, fc||)j again oscillates rapidly as a 

function of h\ for large values of N ie large spacer thicknesses. As the rapid oscil-

lations tend to cancel each other out when performing the integrals the dominant 

contribution to the integral comes from around the region where kx and ky are in the 

region of a stationary point denoted by k̂  =  ( ky). We approximate n, E , k\\) 

by expanding it in terms of a Taylor series about the stationary point &fj up to second 

order. The Taylor series expansion of E,k\\) is

<f>(E,k||) ~  </>(E, fc[j) +  ^Q^~(kx -  k°) +  Q^-{ky ~  k°) +

1 i d2<\>
2 [d k l

which reduces to

( h - K y  +  2
d2cf>

dkxdky
( k ,-  k°)(ky -  %) +  ^ ( k y -  b y } ,

n) ~ ofin.n, E, ¿(¡) +  ̂ "  *°)2 + ÿfjU 'v -  *i)2)  (3.49)

d(f) d(j)
after simplifying. The first simplihcation of -̂ -r- =  vrr- =  0 is obvious. The sec-

dkr dkv

ond simplihcation of d2(f>
dkxdky

= 0 comes about because there is naturally no mixed

derivative for the simple cubic lattice structure, which is the crystal structure we
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are considering. Even if the mixed derivative were non-zero this second simplifica-

tion can always be achieved by reducing the quadratic form to its corresponding 

diagonal form by effectively rotating the (kx,ky) axis. Finally the Fourier coeffi-

cients C^m(E, &||) are approximated by taking their values at &|j. Substituting the 

simplified Taylor’s series expansion into Equation 3.48 we obtain

n s k» T N A Re ±  P
-, J — cn ,m = l47r2

x nJ — o o  J —  CO

exp iNa

In
O

'd2(t> 
. dkl

1 +  exp
/i — E y  
kBT

Cnm(E i k\\)eXP(2iNa<f>)

(kx -  k°xf  +  | ^ ( ky -  k°y)2̂  dkxdkydE.

(3.50)

Let us first consider the kx integral only. If we let y =  kx — kx then

J  exp | i ' J V û  dkx =  exp ^¿Nay2^ ~ j  dy. (3.51)

If the factor > 0 then let y =  z ex p ( — V  This substitution for y in the kx 
dk2 \ 4 J

integral leads to the integral being put in a form similar to the standard Gaussian 

integral and gives us an answer of

/ _ e x p ( iNa“  ^°)2) )  =  exP ( ' ]  )
\

7r

d2<f>
If on the other hand the factor —— < 0 then let y =  z exp — — ), which gives us

f

dkl

exp ( iNa ( z j ^ (k x -  k°x)2 j j dkx =  exp

¿7 T \

(3.52)

4 J-

i%\
~ T J

7T
(3.53)

It can easily be seen that this method of evaluating the kx integral can also be 

applied to the ky integral in exactly the same way. Once these two integrals have
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been performed we are left with

fls
kBT A 00

-Re

where

r c

E  °___1 «/—<
In

n,m=14a7T

exp (2iNa<f)(n, m, E,

1 +  exp

d V d 2^
dkl dkl

¡1  — E
kBT

- 1 / 2

dE.

c;jE,tj ) x

(3.54)

a =  <

e-' / ’  if and ^  > 0
dkl dkl

e - /^  if ^  and < 0
5 kl dkl

^  -  n  ,1 ^  ,f ^  > 0 and ^
dkl

< 0 or vice versa.

3.3.5 Energy integration

We can now proceed with evaluating the energy integral. We start by noting for
Q2 (ĵ  (j)

larger spacer thicknesses the factors C*m(E,k\\), —— and —— only weakly depend
dkx oky

on E when compared to the exponential factor. Taking this into account the formula 

for i)s therefore simplifies to

n s =
kBTA
Aair Re £  °CL

n,m =l

d24> d2<t>
dkl dkl

- 1/2

x

r In 1 +  exp
H — E 
kBT

exp (2iNa<j)(n, m, E, fey)) dE

which enables us to evaluate the energy integral by parts after letting

' fi — E '
U =  In 1 +  exp

kBT

and
dv_
dE

V =

exp (2iNa<j>{n, m, E, &fj))

J exp (2iNa<l)(n,m,E,k^))
d f  

\d<f>) \dE
dE

V =  —
dE /exp(2iNa(f>(m,n, E, kjj)' 
d(f> l 2iNa

(3.55)
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d E
We also note that —— also only weakly depends on E as well. After integrating

o<p

Equation 3.55 by parts once we obtain

A
n s

8a2irN n,m= 1
fie £  -C 'nm(E,k\,

d2(f) d2(j)
dki dk2y

- 1/2 dE
d<f>

x

/:
°« exp(2iNacf)(nJm, E,k^)

1 +  exp ( g f  )

(3.56)

To complete the integral we again look at the exponential factor. Much the same 

as before this is a rapidly oscillating factor which oscillates this time as a function 

of E for large spacer thicknesses. These will therefore lead to a lot of calculations 

when performing the integral. However this time the dominant contribution to the 

integral comes from around the Fermi level because there is a discrete upper limit 

in the integral. The dominant contribution will come from the beginning of the last 

oscillation upto the Fermi energy level. We therefore approximate the exponential 

factor by expanding </> in terms of a Taylor series about the Fermi level up to the 

first order this time. As the dominant contribution comes from around the Fermi 

level we approximate all the factors that only weakly depend on E by taking their 

values at E =  //. The Taylor series expansion of (f> up to the first order is

dcj)
c/)(n, m, E, ¿¡¡) ~  m, /q k§) +  -  //).

Putting this Taylor series expansion into the formula for the thermodynamic poten-

tial we obtain

ü s = ------ — zKe > -GWAw./cm) — xfi' E -C¡|)
n ,m= 1 18 a2nN 

:p(2iNa<j)(n,m, n, k®\)) J

dkl dkl d(f>

00 exp(2iiVaff (-E -  /Q) 

1 +  exP ( 0 )

(3.57)
dE.
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u — EIf we let --------- =  x then it leads to the integral being put in the form of another
kBT

standard integral

r°° exp(2iNafk(E -  I * ) ) = _ k g T  j°° exp(-2iNakBT x fk )  
J-oo l + e x p f f ^ f )  B J-oo 1 +  exp(æ)exP (fcBr)

which gives the following solution

dx

ikBT7T

sinh ( —2 ^ k BTNan^j

Replacing the energy integral by its solution given above we obtain

n s =
kBT  A

Re J2
d 2<$>d2<\>

dkl dk\

- 1/2
d E

d<j>
x

exr (3.58)
w l

ip(2iNa(f)(m, n, n, )) 

sinh (̂ —2kBTNaTT^^

All that remains for us to do to be able to compare the results from the SPA with

the numerical results is to let T  —> 0. Letting T  —> 0 we see that

sinh ( — 2kBTNair—^ ) —> —2kBTNa-K-^
\ oE  oE

and —> Ef. Therefore fIs becomes

A
n s =

16a37rfV2
R e <7Cnm(Ef,k\\)exp {2iNa<l)(m ,n ,Ef,k^Ÿj x

n,m—l

( d E X d 2<t> d2(f>

\ d + ) dkl dkl

- 1/2

where (f>(m, n, Ef, A’ij) =  m/3a(E f , &[j) +  n/3b(E f , &fj) and

a =

Ê*'2 if ^  and ^  > 0
dK dkl

e - *  if ^  and ^ < 0
dkl dkl

, d 2(j> , d 2(f>if > 0 and —  < 0  or vice versa.
dkl dk2y

(3.59)

Now we compute all the as yet unknown factors.
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3.3.6 Application of the SPA for double-period exchange 

coupling

Now we apply the formula for the thermodynamic potential given by Equa-

tion 3.59 to a two orbital trilayer where the oscillatory exchange coupling has two 

periods. First we need to locate all the possible stationary points k̂  and compute 

(3a(Ef, ¿|j) and f3b(E j , &|j). The method used to compute &fj when the exchange cou-

pling has only one period is as equally valid here when the exchange coupling has 

two periods. Therefore for the sake of brevity the reader is referred to Section 3.3.2 

for the method of computing all the possible stationary points k .̂ Now we obtain 

/3a(Ef,k^) and (3b(Ef,k^). In common with the stationary points the method used 

to compute f3a and f3b is the same here as it was for single-period exchange coupling, 

which is given by Equation 3.41. Previously the band structure determined which 

branch of the solution of (3 should be taken. Since the Fermi level intersects both

bands for double-period exchange coupling we take both branches of the solution

dE
to obtain (3a(Ef,k^) and f3b(Ef,k^). Now we obtain By differentiating (j) 

with respect E we obtain

once

dcf) df3a d(3b 
dE = ml ) E + n d E ’

therefore

dE
d(f> 90a i „ d0b ’ 

1 dE ' dE

(3.60)
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dda d/3bwhere and are computed by using Equation 3.42. By differentiating <f) 

twice with respect to kx we find that

d2t  d2(3a d2(3b
die2 ~  m ~dk[ +  U dk2 ’

d2Ba d2/3bwhere „ and — — are computed using Equation 3.43. Similarly
dk2 dk2

d2p d2/3a d2/3b
idk2, ~  m dk2 +  n dk2 ’

(3.61)

(3.62)

d28a d2/3bwhere __  and are computed using Equation 3.44. We now have all the
dk2y dk2

information to calculate the factor a and all that remains for us to compute is the 

Fourier coefficients C^m(Ej,k^). Since we are considering double-period exchange 

coupling here we cannot use the shifting method to obtain the Fourier coefficients. 

This is because the average spectral density is no longer a periodic function of N. 

Instead we use a fitting procedure to obtain the Fourier coefficients. It should be 

noted that this procedure can also be used to obtain the Fourier coefficients for the 

spectral density when it is periodic function in N with a single period.

We first take a sample of the spectral density and as before we usually take the 

spacer thickness to be between 500 and 600 atomic planes as the spectral density 

behaves asymptotically like a quasi-periodic function for larger spacer thicknesses. 

Now we call the sample of the spectral density g(xk) say, where there are a total of N 

data points. We wish to fit a continuous function f ( x )  to the sample of the spectral 

density which can be represented by a Fourier like series as in Equation 3.46. The
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best bit to the data occurs when

N
J2\ f ( xk ) - g ( x k)\2 (3.63)
k=1

is a minimum. If we rewrite f ( x )  as

R
f(xk) =  J 2 Ca<̂a(xk), (3.64)

a

where Ca represents the Fourier coefficients (7*m(-E/, fc|j) and <f)a{xk) the exponentials 

exp(2ixk(m/3a +  n/3b)) then we obtain

N

E
k=l

R
^ t 0a{xk) g{xk) (3.65)

for the function that needs to be minimised. We can express all the terms in Equa-

tion 3.65 in terms of matrices. Let Gn i  be a N x l matrix containing the gixkYs, 

Cai a a x l  matrix containing the Ca's and be a N xa  matrix containing the 

(f)a(xkys. Equation 3.65 therefore becomes

§NaCa i — Cm- (3.66)

Once the problem has been rewritten in terms of matrices, as just above, one can 

see the best fit of the Fourier series to the spectral density occurs when the sum of 

the squares of the matrix elements in the resultant vector is minimised. This is best 

determined computationally. A unique solution for the matrix elements of Cai can 

therefore be found using Equation 3.66 provided N is either greater than or equal 

to R.

To help visualise what the matrices in Equation 3.66 actually look like let us 

consider a general example when the summation indices in the Fourier series run
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from 0 to 1 for both n and m.

GNI

g{x i) ^

g{x2)

C a i —

y g(xN) )

‘  C 'O'oo

C q\

C\0

\ c "  /
and

1 exp(2ixi +  ß a) exp(2ixißb) exp(2ix1(ßa +  ß b)  ̂

1 exp(2 ix2 +  ß a) exp(2 ix2ß b) exp(2 ix2(ßa +  ß b)

$Na

1 exp(2ta?jv +  ß a) exp(2 ixNß b) exp(2 ixN(ßa +  ß b)

(3.67)

(3.68)

(3.69)
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3.4 Results for the two band trilayer

The aim of this section is to investigate what effect hybridization has on the 

exchange coupling for a two orbital trilayer. We start in Section 3.4.1 by explaining 

how the results presented in this section have been computed. In Section 3.4.2 

we first consider a two orbital trilayer where there is no hybridization between the 

bands in the spacer layer only. Electrons are free to hop from band to band in the 

semi-infinite ferromagnetic layers. In Section 3.4.3 we investigate what effect the 

hybridization in the spacer layer has on the exchange coupling. Once this has been 

completed we look at what effect the hybridization in the ferromagnetic layers has 

on the exchange coupling in Section 3.4.4. Finally in Section 3.4.5 we look at a 

single example of exchange coupling for a two orbital trilayer when there are two 

periods of oscillations.

3.4.1 Method of computation

Computing the exchange coupling for a two orbital trilayer using the numerical 

approach as outlined in Section 3.2 requires a large amount of time. As we wish 

to model a variety of trilayers here we use the alternative analytic approach of 

Section 3.3. Since we have to treat the single and double period exchange coupling 

separately using this method we also outline their method of computation separately.
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Single-period exchange coupling

The final step when computing the exchange coupling is obtained using Equa-

tion 3.31. The thermodynamic potentials f1^(N) f m  and £1^(N)a f  in this formula 

are calculated by using Equation 3.36. It can be seen from the formula for OS(N) 

that several factors need to be obtained and they are all found using the method as 

set out in Section 3.3.2.

Double-period exchange coupling

The final step when computing the exchange coupling is obtained using the same 

formula as for single-period exchange coupling ie Equation 3.31. The difference here 

for double-period exchange coupling is the thermodynamic potentials $1^(N)f m  

and Q ^ (N )a f  are calculated by using Equation 3.59 instead. Finally all the factors 

in this formula are obtained using the methods as set out in Section 3.3.6.

3.4.2 No hybridization in the spacer layer

The first example of exchange coupling for a two orbital (001) trilayer we consider 

is when there is no hybridization in the spacer layer only. Electrons are free to hop 

from band to band in the semi-infinite ferromagnetic layers. The bands employed in 

our calculation of J(N) are shown in Figure 3.11. From this diagram we see that only 

one band is intersected by the Fermi energy level in the spacer layer. The exchange 

coupling oscillates with one period only so we compute J(N) using the single-period 

method.
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The dependence of the spectral density on the spacer thickness for the up spin 

band of the ferromagnetic configuration of the trilayer is shown in Figure 3.12. The 

spectral density for the down spin band is shown in Figure 3.13. The dependence 

of the spectral density on the spacer thickness for the up and down spin bands of 

the antiferromagnetic configuration is shown in Figure 3.14. The samples of the 

spectral densities are all taken to be between 500 and 600 atomic planes as they 

behave asymptotically like periodic functions for larger spacer thicknesses. Then 

using the periodicity of the spectral densities, which for this example is ~  7.55 

atomic planes, the data sets are shifted. The shifted spectral densities are shown 

in Figure 3.15. The Fourier coefficients are computed from the shifted spectral 

densities and finally the exchange coupling is shown in Figure 3.16. The vertical 

axis in this graph should read J(N)a2 and a cubic spline has been fitted to the data.
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Figure 3.11: Bands in the ferromagnetic layers FIVP (solid line) and FIVP (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.12: Dependence of the spectral density on N for the up spin band of the 

FM configuration of the trilayer. It is evaluated at kx — ky =  0 and E =  Ej.  The 

solid line simply connects the points (solid circle) as a visual aid.
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Figure 3.13: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx — ky =  0 and E  =  Ef.
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Figure 3.14: Dependence of the spectral density on N for the up and down spin 

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and

E =  Ef .
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Figure 3.15: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuarion of the trilayer.
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Figure 3.16: Exchange coupling for (001) trilayer associated with the point kx =  

ky — 0.
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3.4.3 Hybridization in the spacer layer

The aim of this section is to investigate what effect the hybridization in the 

spacer layer has on the exchange coupling for a two orbital (001) trilayer. To do 

this we consider three separate example trilayers and once the exchange coupling 

has been computed for each trilayer we compare the results. All the parameters 

describing each of the three trilayers are the same except for the hybridization in 

the spacer layer. In doing this we can isolate what effect the hybridization in the 

spacer layer has on the exchange coupling. We use as our ’’basis” trilayer the one 

that was used in Section 3.4.2 where there was no hybridization in the spacer layer. 

For our first trilayer we add a small amount of hybridization to the spacer layer. 

In the second trilayer we increase the hybridization in the spacer layer some more 

and for the third example we increase the hybridization even further. In all three 

examples only one band in the spacer layer is intersected by the Fermi energy level 

so the exchange coupling oscillates with a single period and we use the single-period 

method to compute J(N).

The band structure for the first trilayer is shown in Figure 3.17. The dependence 

of the spectral density for the up spin band of the ferromagnetic configuration of 

the trilayer is shown in Figure 3.18. The dependence of the spectral density for the 

down spin band is shown in Figures 3.19. The dependence of the spectral density 

on the spacer thickness for the up and down spin bands of the antiferromagnetic 

configuration of the trilayer in shown in Figure 3.20. The spectral densities are 

shifted using its periodicity, which for this trilayer is ~  7.39 atomic planes and are
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shown in Figure 3.21.

The bands employed in our second trilayer are shown in Figure 3.22. The de-

pendence of the spectral density on the spacer thickness for the up spin band of the 

ferromagnetic configuration of the trilayer is shown in Figure 3.23. The dependence 

of the spectral density for the down spin band is shown in Figure 3.24. The de-

pendence of the spectral density on the spacer thickness for the up and down spin 

bands of the antiferromagnetic configuration of the trilayer is shown in Figure 3.25. 

The spectral densities are shifted using the periodicity which for this example is ~  

6.97 atomic planes and are shown in Figure 3.26.

The bands employed in our third trilayer are shown in Figure 3.27. This trilayer 

is a (001) Co/Cu trilayer, see Ref [46]. There is only one Cu band in the (001) 

direction which is intersected by the Fermi surface. It hybridizes with the d-band 

and it follows that it is only these two bands in Cu that determine the coupling. 

Therefore we can describe the electronic structure of the (001) Co/Cu trilayer using 

two hybridizing tight-binding bands. The dependence of the spectral density on 

the spacer thickness for the up spin band of the ferromagnetic configuration of the 

trilayer is shown in Figure 3.28. The dependence of the spectral density for the 

down spin band is shown in Figure 3.29. The dependence of the spectral density 

on the spacer thickness for the up and down spin bands of the antiferromagnetic 

configuration of the trilayer is shown in Figure 3.30. The spectral densities are 

shifted using its periodicity which for this trilayer is ~  6.32 atomic planes and are 

shown in Figure 3.31.
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Once the Fourier coefficents have been obtained using the shifted spectral den-

sities we can compute the exchange coupling for each trilayer. A comparison of the 

results is shown in Figure 3.32. The vertical axis in this graph should read J(N)a2, 

where a is the inter-atomic distance and a cubic spline has been fitted to the data. 

It is immediately obvious that the hybridization in the spacer layer has a significant 

effect on the exchange coupling.

One feature it clearly affects is the period of oscillations. The period is related 

to the Fermi surface of the spacer layer. As the spacer layer of each trilayer are 

all different from one another, due to the difference in the hybridization, we expect 

the periods to be different even before proceeding with the calculations. The re-

sults in Figure 3.32 clearly agrees with this. It also shows that as we increase the 

hybridization between the bands in the spacer layer then the period of oscillations 

is decreased. This effect can also be confirmed analytically as we can obtain the 

period analytically.

Another feature to be affected is the amplitude of oscillations. The amplitude of 

the oscillations is directly related to the difference between the ferromagnetic and 

antiferromagnetic configurations of the trilayer. One factor that plays a part in this 

is the exchange splitting of the ferromagnetic layers. The ferromagnetic layers in 

all three trilayers are the same so the difference in the amplitudes cannot be due 

to the ferromagnetic layers here. We recall from the introduction to the quantum 

well theory in Section 1.3.3 that exchange coupling occurs when there is a potential 

well formed by the trilayer. The strength of the exchange coupling can be directly
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related to the depth of the potential well. The hybridization has caused a shift in 

the bands of the spacer layer and altered the relative depth of the wells, which in 

turn effects the amplitude of oscillations. We make the conclusion from Figure 3.32 

that increasing the hybridization in the spacer layer increases the amplitude of the 

oscillatory exchange coupling.

165



Figure 3.17: Bands in the ferromagnetic layers FMT (solid line) and FIVE (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.18: Dependence of the spectral density on N for the up spin of the FM 

configuration of the trilayer. It is evaluated at kx — ky =  0 and E =  E¡.
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Figure 3.19: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

SPACER THICKNESS N

Figure 3.20: Dependence of the spectral density on N for the up and down spin

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E

=  E /•
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Figure 3.21: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferomagnetic configuration of the trilayer.
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Figure 3.22: Bands in the ferromagnetic layers FIVE (solid line) and FIVE (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

SPACER THICKNESS N

Figure 3.23: Dependence of the spectral density on N for the up spin band of the

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.
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Figure 3.24: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky — 0 and E =  E/.

SPACER THICKNESS N

Figure 3.25: Dependence of the spectral density on N for the up and down spin

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E

=  E /.
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Figure 3.26: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the feromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuration of the trilayer.
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Figure 3.27: Bands in the ferromagnetic layers FM 1 (solid line) and FMF (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.28: Dependence of the spectral density on N for the up spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.
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Figure 3.29: Dependence of the spectral density on N for the down spin band of the

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

Figure 3.30: Dependence of the spectral density on N for the up and down spin 

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E

=  E /•
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Figure 3.31: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuration of the trilayer.
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Figure 3.32: Comparison of the exchange coupling for this section. The squares are 

the first example. The X ’s are our second example and the solid cirlces are the third 

example.
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3.4.4 Hybridization in the ferromagnetic layers

In this Section we turn our attention to investigating what effect the hybridization 

in the ferromagnetic layers has on the exchange coupling for a two orbital (001) 

trilayer. As when investigating hybridization in the spacer layer we do this using 

three examples and compare the corresponding results. For this section we use as 

our ’’ basis” trilayer the third trilayer in Section 3.4.2 ie a Co/Cu trilayer see Ref [46]. 

We start by setting the hybridization in the ferromagnetic layers equal to zero for 

our first example. In the second we add a small amount of hybridization to the 

ferromagnetic layers. Finally for the third trilayer we increase the hybridization 

between the bands in the ferromagnetic layers even further. By only changing 

the hybridization in the ferromagnetic layers we can isolate what effect it has on 

the exchange coupling. In all three examples only one band in the spacer layer 

is intersected by the Fermi energy level so the exchange coupling oscillates with a 

single period and we use the single-period method to compute J(N).

The bands employed in our first trilayer are shown in Figure 3.33. The depen-

dence of the spectral density on the spacer thickness for the up spin band of the 

ferromagnetic configuration of the trilayer is shown in Figure 3.34. The spectral 

density for the down spin band is shown in Figure 3.35. The dependence of the 

spectral density on the spacer thickness for the up and down spin bands of the an-

tiferromagnetic configuration of the trilayer is shown in Figure 3.36. The spectral 

densities are shifted using the periodicity which for this example is ~  6.32 atomic 

planes and are shown in Figure 3.37.
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The bands employed in our second trilayer are shown in Figure 3.38. The de-

pendence of the spectral density on the spacer thickness for the up spin band of 

the ferromagnetic configuration of the trilayer is shown in Figure 3.39. The spec-

tral density for the down spin band is shown in Figure 3.40. The dependence of 

the spectral density on the spacer thickness for the up and down spin bands of the 

antiferromagnetic configuration of the trilayer is shown in Figure 3.41. The shifted 

spectral densities for each respective spectral density are shown in Figure 3.42 from 

which we use to obtain all the Fourier coefficients.

The band employed in our third trilayer are shown in Figure 3.43. The depen-

dence of the spectral density on the spacer thickness for the up spin band of the 

feromagnetic configuration of the trilayer is shown in Figure 3.44. The dependence 

of the spectral density on the spacer thickness for the down spin band is shown 

in Figure 3.45. The dependence of the spectral density for the up and down spin 

bands of the antiferromagnetic configuration of the trilayer is shown in Figure 3.46. 

Finally the shifted spectral densities for each respective spectral density is shown in 

Figure 3.47, which we use to obtain the Fourier coefficients.

Once all the Fourier coefficients have been obtained it is then possible to compute 

the exchange coupling for each of the three trilayers. A comparison of the exchange 

coupling for the three trilayers is shown in Figure 3.48 and as before the vertical 

axis should read J(N)  x a2, where a is the inter-atomic distance and a cubic spline 

has been fitted to the data. As has already been seen with the derivation of the 

SPA the period of oscillations are directly related to the Fermi surface of the spacer
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layer only. In this section the spacer layer is exactly the same for all three trilayers. 

Therefore we expect the period to be the same for all three trilayers and we find 

analytically the period p to be ~  6.32 atomic planes. Figure 3.48 demonstrates the 

period is indeed the same for all three trilayers. The point is further confirmed by 

looking at the shifted spectral densities. We use the period to shift the spectral 

density so that all the points lie within the region -p/2 to p/2. As we take our 

sample data set to be between 500 and 600 atomic planes in the spacer layer, to 

eliminate any interfacial effects, the shifting is sensitive to the period. By this we 

mean if the period used to shift the data differs even slightly from the true period 

then we would not obtain smooth curves for the shifted spectral density. We make 

our first conclusion that the hybridization in the ferromagnetic layers has no effect 

on the period of the exchange coupling.

The next feature we look at is the amplitude of the oscillations. Again by looking 

at Figure 3.48 it can be seen the amplitude of the oscillations increases as we increase 

the hybridization in the ferromagnetic layers. From a purely mathematical viewpoint 

an increase in the amplitude arises from an increase in the difference between the 

ferromagnetic and antiferromagnetic configuration of the trilayer. In physical terms 

this relates to an increase in the exchange splitting of the ferromagnetic layers. 

Therefore we conclude that increasing the hybridization in the ferromagnetic layers 

causes an increase in the exchange splitting and will result in a greater amplitude 

of oscillations in the exchange coupling.

One final affect the hybridization in the ferromagnetic layers has on the exchange
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coupling is a phase shift. There is no phase shift between the data sets for the first 

and second trilayers, which is when there was no hybridization in the ferromagnetic 

layers and a little hybridization in the second trilayer. However for the third trilayer 

there a clear phase shift in the data where the hybridization was largest of all. We 

tentatively conclude the hybridization in the ferromagnetic layers does cause a phase 

shift.
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Figure 3.33: Bands in the ferromagnetic layers FIVE (solid line) and FIVE (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.34: Dependence of the spectral density on N for the up spin band of the

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.
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Figure 3.35: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

=  E /•

Figure 3.36: Dependence of the spectral density on N for the up and down spin

bands of the AF configuration of the trilayer. It is evaluated at kx — ky — 0 and E
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Figure 3.37: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuration of the trilayer.
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Figure 3.38: Bands in the ferromagnetic layers FIVE (solid line) and FIVE (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.39: Dependence of the spectral density on N for the up spin band of the

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.
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Figure 3.40: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

SPACER THICKNESS N

Figure 3.41: Dependence of the spectral density on N for the up and down spin 

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E

=  E /•
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Figure 3.42: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuration of the trilayer.
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Figure 3.43: Bands in the ferromagnetic layers FM* (solid line) and FIVF (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.

Figure 3.44: Dependence of the spectral density on N for the up spin band of the

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.
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Figure 3.45: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

=  E/.

Figure 3.46: Dependence of the spectral density on N for the up and down spin

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E
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Figure 3.47: Plot of the shifted spectral density for the up spin band (solid line) 

and down spin band (dotted line) of the ferromagnetic configuration of the trilayer. 

The dashed line is the shifted spectral density for the up and down spin bands of 

the antiferromagnetic configuration of the trilayer.
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Figure 3.48: Comparison of the exchange coupling for this section. The triangles 

are the first example. The squares are our second example and the solid cirlces are 

the third example.
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3.4.5 Double-period exchange coupling

We now consider an example of exchange coupling for a two orbital (001) trilayer 

where there is a double-period of oscillations. The bands employed in our calculation 

of J(N) are shown in Figure 3.49. For this example the parameters describing the 

trilayer have been chosen arbitrarily so there is a double period of oscillations and 

no bound states. In other words both bands in the spacer layer as well as the ferro-

magnetic layers are intersected by the Fermi energy level. Unlike the other examples 

for this Section we compute the exchange coupling using both the numerical and 

analytic approach. Then we compare the results to ensure they are in agreement 

with each other.

Analytic approach

We compute the exchange coupling using the double-period method of Sec-

tion 3.4.1. The dependence of the spectral density on the spacer thickness for the up 

spin band of the ferromagnetic configuration of the trilayer is shown in Figure 3.50. 

The Fourier coefficients are obtained using the "fitting” procedure as outlined in 

Section 3.3.6. In Figure 3.51 we compare the spectral density with its correspond-

ing Fourier series representation. The spectral density for the down spin band of the 

ferromagnetic configuration of the trilayer is shown in Figure 3.52. In Figure 3.53 

we compare the spectral density with its corresponding Fourier series representa-

tion. The dependence of the spectral density on the spacer thickness for the up and 

down spin bands of the antiferromagnetic configuration of the trilayer is shown in
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Figure 3.54. In Figure 3.55 we compare the spectral density with its Fourier series 

representation. Once the Fourier coefficients have have been obtained we can then 

compute the exchange coupling and this is shown in Figure 3.56. The vertical axis 

in this graph should read J(N )xa2, where a is the inter-atomic distance and a cubic 

spline has been fitted to the raw data.

The Fourier series representations of the spectral densities clearly shows the 

’’ fitting” procedure works well. In the three graphs Figure 3.51, 3.53 and 3.55 it is 

clear there is no difference between the spectral densities and their corresponding 

Fourier series representations. This also demonstrates the spectral densities are 

indeed quasi-periodic functions in N with two periods which is not clear from a 

visual inspection of the spectral densities themselves. They appear to be random 

oscillations rather than quasi-periodic functions. For this example the periods are ~  

2.55 atomic planes and ~  2.13 atomic planes. The graph of the exchange coupling 

in Figure 3.56 is interesting because it is not immediately obvious the exchange 

coupling oscillates with two periods. This is due to the two periods being close to 

one another. However close examination demonstrates there is definitely more than 

one period of oscillations present. Perhaps a better choice of parameters where the 

two periods differ greatly would have been more desirable to make it more obvious 

the exchange coupling oscillates with two periods.
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Figure 3.49: Bands in the ferromagnetic layers FIVP (solid line) and FIVF (dashed 

line) and the spacer layer SP. The straight solid line is the Fermi energy level.
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Figure 3.50: Dependence of the spectral density on N for the up spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

Figure 3.51: Comparison of the spectral density (solid circles) and its corresponding

Fourier series representation (open squares).
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Figure 3.52: Dependence of the spectral density on N for the down spin band of the 

FM configuration of the trilayer. It is evaluated at kx =  ky =  0 and E =  E/.

Figure 3.53: Comparison of the spectral density (solid circles) and its corresponding

Fourier series representation (open squares).
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Figure 3.54: Dependence of the spectral density on N for the up and down spin 

bands of the AF configuration of the trilayer. It is evaluated at kx =  ky =  0 and E

=  E /.

Figure 3.55: Comparison of the spectral density (solid circles) and its corresponding

Fourier series representation (open squares).
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Figure 3.56: Exchange coupling for (001) trilayer associated with the point kx 

ky — 0.
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Numerical approach

Now we compute the exchange coupling using the numerical approach of Sec-

tion 3.2. The last step in computing J(N) is obtained by using the same Equation 

as for the analtytic approach ie Equation 3.3E The thermodynamic potentials 

£1^(N )f m  and Q ^ (N )a f  in this formula are computed using Equation 3.30. The 

summation over k\\ in the formula for the thermodynamic potential is computed 

using the prescription as set out by Cunningham and is outlined in Section 3.2.2. 

In accordance with this summation procedure we increase the number of k\\ points 

used in the summation until the results converge to a required accuracy.

We start by comparing the exchange coupling using 528 and 2080 k\\ points in 

the k\\ summation in Figure 3.57. It is obvious from this graph that the results 

have not converged and conclude that more than 528 fey points are needed in the 

k\\ summation. Therefore we next compare the exchange coupling obtained using 

2080 and 8256 ¿y points in the ¿y summation in Figure 3.58. As before we can 

see the results have not yet converged and conclude that more than 2080 ¿y points 

are needed in the ¿y summation. In Figure 3.59 we compare the exchange coupling 

obtained using 8256 and 32896 ¿y points in the ¿y summation. Again we see from this 

graph that the results have not yet converged but it is showing signs of convergence 

and it it likely not many more steps will be required. Finally in Figure 3.60 we 

compare the exchange coupling obtained using 32896 and 131328 ¿y points in the 

summation. It is clear from this graph that the results have converged to the required 

accuracy and conclude that for this example it is sufficient to use 32896 k\\ points
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in the k\\ summation for the reduced BZ. One thing to note about all the graphs 

showing the exchange coupling is the vertical axis should read J(N )xa2, where a is 

the inter-atomic distance and a cubic spline has been fitted to the data.

5 10 15  2 0  25

N

Figure 3.57: Comparison of the exchange coupling obtained using 528 (squares) and 

2080 (circles) k\\ points in the k\\ summation for the reduced BZ.

198



0.00001 5

0.000005

-0 .000005

-0.00001 5

-0 .000025

-0 .000035

-0 .000045  L 
5

_ l_____ i_____ i_____ ._____ i_____ i_____ i_____ i_____ i_____ i-------- 1-------- 1---------1---------.---------._____

10 15 20 25

N

Figure 3.58: Comparison of the exchange coupling obtained using 2080 (squares) 

and 8256 (circles) k\\ points in the &|| summation for the reduced BZ.
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Figure 3.59: Comparison of the exchange coupling obtained using 8256 (squares)

and 32896 (circles) k\\ points in the k\\ summation for the reduced BZ.
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Figure 3.60: Comparison of the exchange coupling obtained using 32896 (squares) 

and 131328 (circles) k\\ points in the k\\ summation for the reduced BZ.

Comparison of the results

Now we have computed the exchange coupling using the analytic and numerical 

approaches we can compare the results to ensure they are in agreement with each 

other. This is shown in Figure 3.61. As we saw from the results of the single orbital 

trilayer in Section 2.5 we expect a phase shift between the SPA and the numerical 

results, which is a result of limiting this asymptotic formula to the leading term 

only, see Ref [43]. The graph shows there is indeed an apparent phase shift between 

the two sets of data. On close inspection the two sets of data are actually in good 

agreement with each other. However for between 7 and 12 atomic planes there does 

seem to be a relatively large difference between the data. Firstly the cubic spline has 

emphasized the difference at 8 atomic planes. Secondly as we saw with the single
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orbital trilayer the apparent phase shift coupled with a short period resulted in an 

apparently large difference in the results. For this example both periods are short. 

We conclude that the combination of two short periods in the exchange coupling 

and the apparent phase shift has resulted in the relatively large difference between 

the two sets of data between 7 and 12 atomic planes. Otherwise the two sets of 

data are in close agreement. Even between 7 and 12 atomic planes all the main 

features of the exchange coupling are in close agreement except for the amplitude 

of the oscillations and this differs within an acceptable limit.

5 10 15 20 25

N

Figure 3.61: Comparison of the exchange coupling obtained using 131328 (circles) 

fey points in the k\\ summation for the reduced BZ and the results obtained using 

the stationary phase approximation (squares).
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Conclusions

The generalization of the one band model of exchange coupling using the quantum 

well theory has for the first time enabled us to model what effect hybridization has 

on the exchange coupling. It is clear from the results that it can have a significant 

effect and therefore must be taken into account to achieve realistic results. This is 

true even if only one band of electrons is intersected by the spacer Fermi surface 

and it hybridizes with a second band of electrons.

• The analytic expression for the average spectral density for the single orbital 

trilayer proves explicitly for the first time that one can treat N as a continuous 

variable and the spectral density is therefore also a periodic function in N.

• When obtaining the surface Green’s function for the two band semi-infinite 

crystal we demonstrated the exchange coupling is dependent on the thickness 

of the ferromagnetic layers.

• Hybridization in the ferromagnetic layers has no effect on the period of oscil-

lations. The period of oscillations is directly related to the Fermi surface of 

the spacer layer, which is exploited by us in the SPA and by the RKKY model 

of exchange coupling. As the hybridization in the ferromagnetic layers has no 

effect on the Fermi surface of the spacer layer we expected this result prior to 

the analysis and the subsequent result agreed with this.

• Increasing hybridization in the ferromagnetic layers increases the amplitude 

of oscillations. The exchange coupling orginates from the exchange splitting
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of the d-band in the ferromagnetic metals. When the d-band hybridizes with 

an s-band, the s-band electrons effectively ’’ see” the exchange splitting, which 

is transmitted into the spacer layer. As the hybridization is increased the s- 

band ’’ sees” a stronger exchange splitting which results in stronger exchange 

coupling.

• Increasing the hybridization in the spacer layer decreases the period of oscil-

lations. We conclude that the hybridization in the spacer layer has an effect 

on the period as it alters the Fermi surface.

• Increasing the hybridization in the spacer layer increases the amplitude of the 

exchange coupling. This effect is similar to the hybridization in the ferromag-

netic layers and results in the s-band electrons ” seeing” a stronger exchange 

splitting and therefore also stronger exchange coupling.

The main objective of this thesis has been to generalize the one band model of 

exchange coupling to two bands and also incorporate hybridization into the model. 

It should be viewed as an important step in extending the possible aplications of the 

quantum well theory. One interesting feature we demonstrated , a while ago now, 

was that the exchange coupling is dependent on the thickness of the ferromagnetic 

layers. By taking semi-infinite ferromagnetic layers we neglect this parameter in 

our model. One future development of the model is to include the ferromagnetic 

layer thickness into the calculations and some work has been done in this field, 

see Ref [29]. Another development is to generalize the models so that more than
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two bands can be considered as in the nine bands in Cu for example. We can now 

consider the case when the exchange coupling oscillates with 1 or 2 periods, using the 

analytic approach. Another development of the model is the generalization of the 

SPA so that we can model transition metals with more than two bands intersecting 

the Fermi surface in the spacer layer.
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