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Abstract

Group testing is a method for detecting the small number of important units from a 
large population in situations where groups of units may be tested together to observe 
whether any members of the group are important. If a group is found not to contain any 
important units then it is classified immediately, otherwise its members are investigated 
further. Group testing is also a special case of a search problem.

The fundamental ideas of search are discussed and formulated and group testing is 
expressed in terms of search notation. Links are made to other areas of search sim ilar in 
nature to group testing.

A new binary group testing algorithm, multi-stage stepwise group testing is introduced 
and investigated. A study of this and other algorithms is carried out in terms of criteria 
other than the expected number of tests.

The case of additive group testing is considered and a new multi-stage algorithm is 
introduced. The expected number of tests of this algorithm is derived and its properties 
are compared to existing algorithms.

The problem of factor screening is discussed. It is argued that the only model assump-
tion which has not been previously satisfactorily considered is that the error variance 
must be known. Two methods for dealing with this case are proposed, and their relative 
properties are investigated in a simulation study.

An application of group testing is presented using robust circuit design as an example, 
providing useful insight into the performance of group testing and providing a new area 
o f application.
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Chapter 1

Introduction

In an experiment a common problem is to detect the members of a population which have 

some special characteristic of interest. The particular case considered here is where the 

population is large and the number of units of interest is small. Examples of this include 

detecting the defective units from a batch of manufactured output, detecting the members 

of a population with a certain disease, and detecting the factors in an experiment which 

have a non-negligible effect on some response.

The experiment is performed by sequentially performing tests on units within the pop-

ulation, gaining information about which ones may be important, and finally determining 

a classification of the population. The aim is to devise an experimental strategy which 

classifies the population using a small number of tests. If errors are present then it is 

also required to achieve a high probability of detecting any important unit and a low 

probability of incorrectly detecting any non-important unit. Other criteria such as ease 

o f implementation and maximum number of tests per unit will also be considered when 

designing the experiment and the final choice of method will depend on the experimental
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situation.

The distinguishing feature of a group testing experiment is that units may be formed 

into a group and a test performed on the whole group simultaneously (a so called group 

test). The observed outcome of such a test is related to the presence of important units 

in the group, for example a test may reveal the exact number, or simply the presence 

or absence of important units. In particular, a test is able to detect (or estimate) groups 

which contain no important units. Therefore, if the proportion of important units is small, 

then a good grouping scheme will often be able to classify a whole group of non-important 

units using a single test.

Example 1.1 Blood Testing

A classic group testing problem is that of blood testing, and it was in this context that 

group testing was first introduced by Dorfman (1943). During World War II it was nec-

essary to test new recruits for syphilis. Testing recruits individually was costly and since 

most tests were negative, also wasteful. Dorfman proposed that blood samples from a 

group of recruits be pooled together and a single test performed on the pooled sample. If 

the test was negative then all recruits in the group were assumed not to have the disease, 

and thus a single test sufficed for the whole group. If the test was positive however then 

the recruits were tested individually. The aim therefore is to choose the size of each group 

in order to minimize the number of tests required. More sophisticated algorithms involve 

splitting units from groups tested positively into smaller subgroups, gradually isolating 

important units into smaller and smaller groups.

Example 1.2 Factor Screening

In the planning o f an experiment a large number of factors may be proposed which could
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possibly affect the response. In such a case conventional experimental designs may be 

prohibitively large. However, it may be known or suspected that only a few of the factors 

actually have any real effect. By simultaneously varying the levels of a group of factors 

and observing whether or not this has any significant effect on the response, group testing 

may be used to screen out the effective factors, and thus make subsequent experimentation 

more efficient.

It will be useful to define three categories of group testing, namely binary, additive 

and factor screening, and to classify group testing algorithms accordingly. The distinction 

between different categories depends on the response observed from group tests. Since dif-

ferent forms of response lead to a different interpretation of results, different approaches 

will be required for each case. This classification is considered useful since in previous 

studies authors have often made assumptions which were not subsequently used. In par-

ticular, the assumption of additivity has often been made which allows greater inferences 

to be drawn from tests than the binary case. However, since the intention of some authors 

was to provide a starting point for subsequent inclusion of errors, the additive property 

has often been ignored. Thus, as well as providing a framework for factor screening, such 

studies also describe useful methods for the binary case. By classifying methods according 

to the following definitions, any such ambiguities are overcome.

Case 1: Binary Group Testing

A binary group testing situation is where the outcome of a test on a group is binary, 

giving a negative result (or 0) if the group contains no important units and a positive 

result (or 1) if the group contains at least one important unit. In the event of a 

positive outcome it is not known which unit or units in the group are important, nor
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how many are important. In binary group testing it is usual to consider the important 

units as defective and the non-important units as good, and this convention will be 

used in the chapter on binary group testing.

Case 2: Additive Group Testing

An additive group testing situation provides more information in a test than the 

binary case. In this case each unit has some value or effect associated with it. 

When testing a group of units the observed outcome is the sum of the effects of all 

units in the group. It is assumed that all non-important units have the same effect 

(usually taken to be zero) and that this value is known. Important units have some 

other effect and so can be detected by comparing the observed test result with that 

which would have been observed if all units in the group were non-important. Extra 

information is available for this case since, if a subgroup of a previously tested group 

is tested then the difference of the two outcomes gives the result for the complement 

of the subgroup as well. A special case of additive group testing is where the effects 

of important units are equal and known. In this case a test result reveals exactly 

how many important units are in the group. In additive group testing important 

units will be called effective.

Case 3: Factor Screening

In factor screening, as in Case 2, all units have an effect associated with them. In 

this case however, the outcome of a test is the sum of the effects o f the units in the 

group plus some random error. This therefore includes the usual regression model 

and the aim is to detect the independent variables which have a non-negligible effect 

on the response variable. Although a generalization of Case 2, these methods are
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best considered separately since considerations such as symmetry of designs and 

extra replication for error lead to substantially different approaches.

There have been many and varied published examples of where group testing methods 

have been directly applied in real problems. For example Hunter and Mezaki (1964) 

used a two-stage group testing method to select the best catalyst for a certain catalytic 

reaction, Smith (1973) used group testing methods in the design of a simulation ‘optimizer’ , 

Thomas et al (1973) applied such methods to test large inventories of radioactive sources 

and Thompson (1962) used group testing to estimate the proportion of insects capable of 

spreading a virus in a population of six-spotted leafhoppers. A recent context in which 

blood testing has been used is in HIV testing, see for example Monzon et al (1992).

This thesis discusses group testing as a search problem and considers each of the three 

cases described above.

In Chapter 2 the general area of search is considered. Search notation is introduced 

and the fundamental ideas and concepts of search are discussed. In Chapter 3 links are 

made to other areas of search which are similar in nature to group testing, giving rise to 

interesting generalizations.

Binary group testing is described in Chapter 4. A new multi-stage stepwise algorithm 

is introduced in Chapter 5. The expected number of tests is derived and 2, 3 and 4-stage 

algorithms are compared. An asymptotic approximation to the expected number of tests 

is obtained for small p and minimized with respect to the group sizes in each stage. A new 

bifurcation algorithm is seen to be a special case and the properties of this algorithm are 

studied. Chapter 6 provides an investigation of many non-mixing algorithms. Previously 

only the expected number of tests has been considered and so this chapter provides deeper
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insight into the relative properties of algorithms. Recursive equations are obtained for 

computing the p.d.f. of the number of tests which allow many properties of algorithms 

to be examined and compared. Expressions are also obtained for the variance and worst 

case number of tests and a sensitivity analysis is carried out. The general conclusions 

are that stepwise algorithms outperform pooling algorithms, entropy provides an excellent 

alternative to the optimal algorithm, and simpler algorithms are preferable if the number 

of defectives could be much higher than expected.

The case of additive group testing is examined in Chapter 7. A multi-stage version 

of the pooling algorithm is proposed and analyzed, and is seen to provide a simple and 

efficient aiternative to the optimal power-of-two algorithm.

The problem of factor screening is considered in Chapter IV. ft is argued that re-

quiring that the error variance must be known is the main assumption preventing factor 

screening from being a fully practical method. Two methods for dealing with the case 

of unknown variance are proposed. The first method, split-experiment factor screening, 

involves performing two separate experiments in the first stage and swapping the estimates 

of the error variance in the second stage. Expressions for the expected number of tests 

and the average number of false classifications are obtained and the optimal group size is 

derived. The second method, unreplicated factor screening, uses results from the theory 

of unreplicated factorials to estimate the error variance. A simulation study shows that 

both methods can lead to efficient detection of effective factors using relatively few runs.

In Chapter 9 an application of group testing to robust circuit design is presented in 

which group testing is used to detect the important components in an electronic circuit 

where experimentation may be computationally expensive.

17



Throughout the group testing literature, with very few exceptions, algorithms have 

been developed to minimize the expected number of tests used and, where appropriate, 

to minimize the number of incorrect classifications. However, in certain circumstances 

other optimality criteria may be of greater interest, and this would appear to be a fruitful 

area for further research. For example, it may be desirable to have algorithms which do 

not test any particular unit more than a given number of times, or there may be a limit 

to the total number o f tests allowed, and so one would wish to use an algorithm which 

has a high probability o f classifying the whole population using no more than the allowed 

number of tests. Consideration may also be given to practical properties, for example ease 

o f implementation, or speed of computation of the algorithm (an example of the latter 

is given in Section 3.4). Where several criteria are of importance, an algorithm may be 

developed in order to minimize some given numerical function of the criteria. Although 

no such algorithms have been developed in this thesis, Chapter 6 provides an investigation 

o f group testing algorithms in terms of criteria other than the expected number of tests.
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Part I

GROUP TESTING AS A  

SEARCH PROBLEM
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Chapter 2

Search

Group testing may be thought of as an example of a search problem in which an unknown 

target is searched for by making observations at selected test sites. A review of search is 

given in O ’Geran, Wynn and Zhiglyavsky (1991). In the following chapter other search 

problems which are similar in nature to group testing will be discussed, but first it will be 

instructive, and also useful to later work, to discuss the fundamental ideas and concepts 

of search as formulated and developed in [27], and to express group testing as a search 

problem.

2.1 Search

The basic idea o f search is that there is some unknown target set, T, which the searcher 

tries to identify by observing the outcome of a search function, f ,  at selected test sets, 

X\,X?, •. -  The target field T  is the collection of all possible target sets which, in the 

finite case, may be written

T  =  {T i ,T2, . . . }
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so that T  =  Tj for some j .  Similarly the test field X  is the collection of all test sets, so that 

each test is performed at a selected point in X . The outcome of such a test is called an 

observation and depends on the unknown target and the selected test set. This is written 

f ( X , T )  and assumed to be a real valued vector so that

f  : X x T  — >$td

for some d > 1 . A search problem is then defined by the triple

S = ( T , X , f ) .

A number of definitions summarize the basics of a search. The first definition concerns 

the ability to find a target.

D efin ition  2.1 A target set T £ T  is said to be achievable within the search problem 

S =  (T , X, / )  if for any T' € T  such that

f ( X ,  T ) -  / ( X ,  T') for all X e X

it follows that T =  T'.

The idea here is that if no other target set would give exactly the same outcome as the 

target, no matter where the observation was made, then the test field X  together with the 

search function /  is enough to distinguish the target T.

Now since T is unknown, the last definition leads naturally to

D efin ition  2.2 A search problem S is solvable if every T in T  is achievable within S.
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Now for a search problem to be solvable it is required that for every pair of target sets 

in T  there must be at least one test set in X  which can distinguish between them. This 

leads to

D efin ition  2.3 A test set X  6 X separates the target sets T) and Tj if

The target is found when T  is separated from all other Tj £  T, Tj ^ T. Upperbounds for 

search algorithms may be obtained by randomly choosing the test sets and computing the 

probability o f separating the target sets (O ’Geran, Wynn and Zhiglyavsky (1992, 1993b) 

contain applications and developments of this idea).

For a solvable search problem then, it is always possible to find the target by observing 

/  at every set X  in X.  Naturally this would usually be inefficient and it is required to 

devise a strategy for choosing a selection of test sets which can find T without looking 

everywhere. An algorithm is a procedure which results in an ordered collection of test sets

A  — X%, X 2, ■ ■., X l  C X (L < 00)

which determines what observations are made during a search. An algorithm is called 

sequential if the observations

Yi =  f {X i ,T ) ,  Y2 =  f ( X 2,T),  . . . ,Y t =  f ( X t, T)
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are used to determine the next test set X t+i- Conversely an algorithm is nonsequential 

if the complete choice of sets to be tested is made before the experiment begins.

An algorithm solves the search problem S if the subsearch problem

S* = (T,A,f)

is always solvable. “Always” here acknowledges the fact that for a sequential algorithm A 

may depend on T.

It is clear therefore that by making an observation f (X , T ) ,  the collection of possible 

target sets is reduced. Only those Tj 6 T  which would have given the observed outcome 

if they were the target remain candidates to be the target. As the search proceeds and 

more observations are made, the number of candidates gets smaller. Formally,

Definition 2.4 For an algorithm A  and target T , a set Tj 6 T  is said to be t-consistent 

if

f (X i ,T )  — f (Xi ,Tj )  (i =  1 ,2 , . . . ,  i).

It is clear that each test set X  induces a partition of the target field T  according 

to the possible outcomes of the observation f (X , T) .  The partition is such that the Tj 

within blocks would all give the same outcome and those across blocks would give different 

outcomes. Each block of the partition therefore contains those which would be consistent 

if the corresponding outcome was observed. Since the target is always consistent and has 

already been separated from inconsistent sets, at each stage a good choice of test set is 

one which induces a fine partition of the current consistent set. This fineness may be
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measured by some uncertainty criterion, such as entropy. An investigation of entropy and 

other search algorithms is found in O ’Geran, Wynn and Zhiglyavsky (1993a).

As a search proceeds the state of knowledge or belief about the possible candidates for 

T becomes more precise. This is measured by a belief function Ht on B(T)  where B{T)  

denotes the set of all finite subsets and intersections of T . Before the experiment begins 

Ho summarizes the prior beliefs, and this is updated after each observation. The updating 

procedure o f a typical search algorithm is represented in Figure 2.1.

f ( X 2,T)

Bo Hi B2

Figure 2.1 : A sequential search algorithm

A common case is where Ht is a probability measure giving the probability that any 

subset of T  contains T. For example in group testing it is often assumed that each unit 

is independently important with probability p, so that ho  is induced by a function of 

independent Bernoulli random variables, and after each observation Ht is updated using 

Bayes’ theorem.

A convenient way to represent a sequential algorithm (and one which will be used for 

group testing in later chapters) is as a decision tree. In this context a tree consists of 

inner nodes, branches and leaves. Each inner node summarizes the current state of the 

search (for example in terms of Ht or the consistent set), and stipulates the next test
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to be performed. Descending from each inner node are branches corresponding to the 

possible outcomes of this test. Each branch leads either to a leaf if the search is finished 

or to another inner node if tests remain to be performed. The tree has a single inner 

node called the root from which all other nodes descend. This represents the first test 

to be performed. The search is defined by a directed path through the tree, performing 

the tests represented by each of the inner nodes encountered and following the branch 

corresponding to the outcome of the test until a branch leads to a leaf, at which point the 

search is finished. The leaf represents the subset of the target field T  which is consistent 

with all of the test results observed along the path through the tree.

Example 2.1 Bad Penny

A number of coins are of the same weight except one which is heavier. Using a balance 

scale the odd coin is to be found using a minimum number of weighings. Figure 2.2 

shows a tree representing the optimal solution for nine coins which are arbitrarily labeled 

Using this algorithm the problem is solved using just two tests.

Now consider expressing group testing as a search problem. Suppose that the popu-

lation consists o f N units and let these be denoted by Xi,x2, . . The most general 

group testing situation is where any combination of units may be important. Let the 

target T be the set of important units. Then the target field is given by all subsets o f the 

population set { » j ,  x2, . . . ,  a;at } ,

T  =  |0, {*Ar_i,arjv},. ••,{*!, * 2, . ..,  a:jv}

25



W E IG H  A B C  vs GHI

Figure 2.2: Optimal search tree for bad penny problem

(so for example the event T =  £4}  corresponds to the units x\, £3, and X4 being

important and all other units non-important).

Similarly, in the most general case a test group may be any non-empty set of units. 

Thus the test field is the same as the target field minus the empty set

A  =  T - 0 .

Some group testing problems impose constraints on the target and/or test sets, for 

example the number of important units may be known beforehand, or there may be a 

limit to the number of units allowed in a test. In such cases it is straightforward to amend
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T  and/or X  accordingly.

For binary group testing the response is whether or not the tested group contains any 

important units. In terms of the search function this may be given by

f ( X , T )
i ifxnr^0,

0 otherwise.

In the additive case, let P2, • ■ ■, Pn  be the effects of the units xi ,X2, .. Then

the search function is given by

Y  =  f ( X , T )  =  &■
i:x, GA'

27



Chapter 3

Related Topics

One of the main aims of the review paper [27] was to illustrate that the same ideas and 

problems are often found in separate areas of theory and research, and that by making the 

connection between these areas, under the combined subject of search, a more complete 

understanding of many aspects of theory is achieved, as well as the possible exchange of 

results and ideas, examples of which will be discussed.

The paper [27] provided an overview of search without details of specialized areas, and 

in particular the connection between group testing and other problems was only briefly 

covered. These connections will be more fully explored here, and new examples will also be 

covered. It will be seen that many of these problems can be considered as generalizations 

of group testing, based as they are on the same approach of sequentially testing groups 

o f units in order to gain information about the units themselves. The differences between 

the experimental situations, however, give rise to challenging generalizations of group 

testing; for example constraints on the size of test groups, different optimality criteria, 

more complex test responses, and computability. How group testing ideas may be adapted
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to these more general settings (or indeed how the ideas from these problems may be 

adapted to group testing) appears to be a fruitful area of further research. The following 

examples illustrate the wide application of group testing ideas within search theory.

3.1 Weighing

One problem whose relationship to group testing has long been recognized is weighing, an 

example of which was discussed in Example 2.1. A large batch of coins with equal, known 

weight is corrupted by a small number of coins of odd weight and it is required to find 

these odd ones.

There are two main variants of this problem. In the first variant a spring scale is used. 

By weighing a group of coins and comparing the result to that which would have been 

observed if no odd coins were present, the presence or absence of odd coins can be deduced 

(although care must be taken that two complementary odd coins weighed together do not 

cancel each other out). This problem is therefore identical to additive group testing.

The second variant of the problem uses a balance scale. This variant provides an 

interesting generalization of group testing in the case where it is known that there is only 

one odd coin (assume this to be heavier), as in Example 2.1. A test result can then lead to 

three different conclusions; if one or other group being weighed is heavier then that group 

contains the odd coin, otherwise the odd coin is amongst the coins not involved in that 

weighing. This therefore corresponds to a group testing situation with one important unit, 

where the population is split into three groups and a test reveals which group contains the 

important unit (there is of course the constraint that at least two of the groups must be 

of equal size). The problem becomes much more complicated however when two or more
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odd coins are present.

3.2 Multiaccess Communications

An area in which group testing ideas developed independently is multiaccess communi-

cations. This problem involves a number of terminals which intermittently and inde-

pendently wish to transmit information via some central processor which can only deal 

with one message at a time. The processor first determines which terminals are active 

(i.e. have a message to transmit), and then transmits their messages. One approach to 

the first of these functions, known as polling, is to query each terminal individually to 

discover whether or not it is active. However, Hayes (1978) pointed out that polling is 

very inefficient when only a small number of terminals are active, and that message delay 

is then more a function of the time required to poll all terminals than of heavy traffic. 

Hayes suggested that a more efficient method, which he called probing, would be to query 

groups of users simultaneously, the basic idea being to quickly eliminate groups of inactive 

terminals.

This problem reads very similarly to the blood testing problem of Example 1.1, and 

indeed represented a rediscovery of group testing with Hayes and subsequent authors 

developing algorithms very similar, and often identical, to those found in the group testing 

literature. This was not realised however, until some years and many papers later, after 

which Wolf (1985) dubbed multiaccess communications “born again group testing” in a 

paper whose purpose was “to give additional evidence to the well-known phenomenon that 

a good new idea is often the reincarnation of a. good old idea.” (although he also pointed 

out that in this case the “old idea” was not yet dead).
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Figure 3.1 gives a representation of terminals connected to the central processor by 

a tree-like structure of transmitting wires. The central processor queries terminals by 

sending a signal which may originate from any junction of the tree, and which reaches 

all terminals which descend from that junction. The particular example shown in the 

figure represents the bifurcation algorithm of Hayes which begins by querying all terminals 

simultaneously, and if a positive response is received, then splits the population in half 

and repeats the query for each half, continuing recursively until all terminals have been 

classified as either active or inactive (this algorithm is in fact very similar to the binary 

group testing algorithm R5 of Sobel and Groll (1959)).
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More efficient algorithms were developed by subsequent authors (see [45] for a review 

and list of references) until the connection to group testing was made by Berger et al 

(1984) who were thus enabled to draw upon results from the group testing literature, and 

in particular reported the optimal algorithm of Sobel and Groll (1959).

Multiaccess communications is therefore seen to be a very similar problem to group 

testing. However, there are a number of characteristics of multiaccess communications
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which provide interesting generalizations of the basic group testing problem.

The first generalization is in the distribution of important units. In group testing it is 

generally assumed that units are independently important with some known or unknown 

probability. In multiaccess communications however, it is more commonly assumed that 

messages from each terminal arrive exponentially after the last one has been transmitted. 

This therefore adds a temporal aspect to group testing whereby the probability of a unit 

being important depends on the time since the last experiment was performed.

Another interesting generalization arises from the fact that the terminals have busy 

and quiet periods so that the rate at which messages are transmitted varies with time. 

An algorithm is therefore required to be adaptable to perform robustly as a function of 

the probability of units being important. In group testing it would be possible to vary the 

grouping scheme at different times. In multiaccess communications however, there is the 

strategic difficulty that the grouping is determined by the wired connection o f terminals 

and is therefore fixed. Hayes suggested modifying algorithms to start at a lower level of 

grouping; so for example in the bifurcation algorithm of Figure 3.1, the central processor 

could consider the tree of eight terminals as two trees of four terminals and deal with them 

both separately. In very busy periods individual testing would also be permitted. This 

approach of splitting the population into groups which are then bifurcated will in fact be 

seen to be similar to a special case of multi-stage stepwise group testing which will be 

introduced in Chapter 5.

The multiaccess communications model described above where active terminals are 

first identified and their messages then transmitted is known as a reservation protocol. An 

alternative model, called a direct transmission protocol provides another generalization
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of group testing. In this case, when an active terminal is queried it responds with the 

message itself. If this message arrives at the central processor alone then it is transmitted 

immediately, even if other terminals remain to be classified. When querying a group of 

terminals therefore, there are three possible outcomes. If no terminals in the group are 

active then the whole group is classified and need not be considered further. If exactly 

one terminal is active then its message is transmitted and again the group is classified 

and need not be considered further. If however more than one terminal is active then a 

collision of messages occurs and the group must be split into subgroups and requeried. 

This therefore gives a three-valued response function which indicates whether the group 

contains zero, one, or more than one important unit. Berger et al (1984) adapted the 

recursive equations of the optimal algorithm Ri from [38] for this alternative response 

function. How other group testing algorithms may be similarly adapted provides another 

interesting research question.

3.3 Search Trees and Information Retrieval

An important problem which arises in many contexts is to search for a particular member 

of a population in which the units have some linear ordering, e.g. alphabetic or numeric. 

This problem has become especially common in computer science where it is often required 

to retrieve some piece of information from the computer’s memory. There is a vast amount 

of literature on this subject and research is still very much active; many algorithms based 

on tree representations have been developed and their properties investigated. Although 

no attempt has been made to review this literature here, it would seem that many results 

are to be found in this area which could provide interesting and important developments to
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group testing. Two examples of this are Hwang (1976) in which the optimum non-mixing 

binary group testing algorithm was shown to be a succession of alphabetic tree searches, 

and Hwang, Pfeifer and Enis (1981) where the optimum additive group testing algorithm 

was shown to be given by a search tree constructed using the power-of-two rule. It would 

therefore seem beneficial to consider group testing in terms of search trees. Hwang and 

Mallows (1979) laid the foundation for this by proving reliability theorems which specify 

which partitions of the target field are feasible in group testing, and thus specifying the 

constraints imposed by group testing on the construction of tree-like algorithms.

An alphabetic tree search will now be discussed and the connections to group testing 

highlighted. In terms of search notation, the problem is as follows. Suppose the target 

sets Ti G T  (i =  1 ,2 , . . . ,M )  (and hence the set of leaves on the tree) have some linear 

ordering such that T\ < T2 < • • • < 7m - An alphabetic tree search is where the search 

function can be written in the form

- 1  if X < T ,

f (X ,T )  =  0 if X  = T,

1 if X  > T.

(3.1)

This therefore corresponds to, for example, searching for an entry in an alphabetically 

ordered list of files or documents. There are two main versions of such a search which may 

be thought of as retrieval and insertion.

When retrieving a file, assuming that the file exists, a file is chosen to be ‘tested’ . If 

this file is the target file then the search is finished, otherwise it is observed whether the 

target file lies to the left or to the right and another test file is chosen accordingly. In this
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case the test field and the target field are the same, i.e. X  =  T , and all three outcomes 

of f ( X ,T ) given in (3.1) are possible. This can be thought of as a group testing problem 

with a single important unit in which the population is partitioned into three groups, one 

of which contains only one unit, and it is observed which of these groups contains the 

important one.

When inserting a file however, assuming that the file does not have the same name as 

any other file in the list, the target corresponds to a ‘space’ between two files where the 

new file is to be inserted. Suppose there are M — l files in the list. As before, the test field 

is the set of files; label these X \,X 2 , .. Then the target field may be written as

{T i ,T 2,. . .,T m } where

T =

T\ if T  < X\,

Tj if X j-i  < T < X j, 

Tm  if T > X m - i -

Hence, in this case, f ( X ,T ) as in (3.1) can only take the values ±1.

Insertion corresponds to a binary group testing problem in which the units within a 

population have some arbitrary ordering and it is required to search for the first important 

unit (this correspondence was in fact used in [18] to obtain the optimum non-mixing group 

testing algorithm). Consider performing a test on the first k units (with respect to the 

ordering). Then if the result of this test is negative (no important units in group), then 

the first important unit clearly lies to the right of some imaginary point between the A:th 

and (k +  l)th  unit. If however a positive test outcome is observed (at least one important 

unit in group), then the first important unit lies to the left of this point.

See Knuth (1973) for further reading on computer search and search trees.
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3.4 Hashing and the Substring Test

A problem which arises frequently in computer programming is to determine whether or 

not a string contains some specified substring. For example, many libraries have interactive 

computer programs which allow the user to specify a keyword and which then finds all 

books in the library which have that keyword in the title. Since in applications such as 

this the database is very large, fast routines are required for implementing the substring 

test.

One method which has been widely implemented, and which is similar in nature to 

group testing, is hashing which was first discussed in this context by Harrison (1971). The 

method is o f use in situations where the substring test is likely to be unsuccessful, i.e. the 

string being tested is not likely to contain the specified substring. So for example, suppose 

it is required to find all books in a large list of titles which contain the word “search” . 

Clearly only a small proportion of the total list will be selected and so it would therefore 

be worthwhile to perform a preliminary computationally faster test for necessary but not 

sufficient conditions that the substring be found. Hashing provides such a test. The 

method makes use of the ability to do many Boolean operations in parallel on a computer 

by representing strings by a binary signature. The term hashing arises from the fact that 

the signatures are not unique to any particular string. Harrison’s technique is as follows.

A string S is represented by a binary signature b\b2 .. ,bm in which a value of 1 for 

bi indicates that S contains at least one element of the set E{. It is clear that if Si is 

a substring of S2 then the binary signature of S2 will have ones in all positions that Si 

has ones. Therefore the signatures of S1 and S2 are compared, and if this condition is 

not satisfied then it is concluded that Si is not contained in S2, otherwise Si and S2 are
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compared character by character.

Information about the order of characters in the string may be included in the signature 

by letting the sets Ei (i =  1 ,2 , . . . ,  t o ) correspond to ordered groups of characters.

The comparison to group testing is clear. Define a substring to be important if it 

is contained in some string S. Then considering the binary signature of a substring to 

represent the group of all strings with that signature, the signature test corresponds to 

testing to see whether any member of this group is important. If not then clearly the 

substring of interest cannot be important. Therefore, as with group testing, the method 

involves classifying units as unimportant by observing that a group containing those units 

is unimportant. If the group is declared important then closer inspection of the units is 

required. There is however an interesting difference in that, whereas in group testing it is 

required to find all important members in the group, here it is only required to determine 

whether a particular member of the group is important. There is also some difference in 

the aim of an experiment since the overall aim is to reduce computing time. If therefore 

considering using a more sophisticated grouping scheme, the computational time is of 

greater importance than the number of tests performed.

The technique of hashing is also used for information retrieval and thus provides an 

alternative to the methods discussed in Section 3.3. See [22] for further reading on this.

3.5 Search Games

Many popular games can be considered as examples of search problems, for example 

hangman where one aims to discover a hidden word by guessing letters contained in the 

word, and battleships where one searches for the enemy’s ships and submarines. Indeed,
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games are often used for the development and testing of algorithms in computer science 

and artificial intelligence (the ‘8 puzzle’ is the classic test bed for any new A.I. algorithm). 

Two search games with similar characteristics to group testing will now be discussed.

3.5.1 Twenty Questions

Consider first the game of twenty questions in which one player writes down the name of 

a famous person and the other player then tries to discover the identity of this person by 

asking a maximum of twenty questions which can only be answered yes or no.

The analogy to group testing is made by considering the target person to be the single 

important unit in a population. Each question can then be considered as testing a group 

with a binary response. So for example, “Is this person a politician” is equivalent to 

performing a test on the group of all politicians to see whether or not that group contains 

the important unit.

This game, while perhaps of no great mathematical interest, illustrates that search is 

a natural, intuitive process. As a search problem it is clearly ill-defined since the target 

field cannot be precisely specified (what exactly defines a “famous person” ?) and the 

test groups permissible are dictated by the range of questions which may be sensibly 

asked, and yet a typical game contains many elements of a good search procedure, asking 

very general questions at the beginning and gradually homing in on the target as more 

information is obtained and the questions become more precise. Clearly no player decides 

beforehand to employ, for example, a maximum entropy algorithm, and yet players tend 

to ask questions which obtain maximum information (the common opening question “Is 

it male or female?” comes perhaps as close as possible to maximum entropy which in this
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case is bifurcation). Although equally ill-defined, an updated belief function also plays an 

important part. A player will often venture a particular name as a question at an early 

stage in the game when the consistent set of candidates may still be large. This would 

suggest some non-uniform belief function on the target field which is vital to the game 

and is yet unspecifiable.

Although twenty questions as discussed above is ill-defined as a search problem, a more 

formal version of the game has appeared in applied mathematics literature. In this game 

the target is a number between one and one million (just less than 220), and is played 

by asking “is the number in the group GT\ However, it is assumed that the player with 

the secret number is allowed to lie a fixed number of times. For further reading on this 

problem see [7], [15] and [43]. An interesting connection to group testing arises here since 

“lying” in this sense is similar to binary group testing with errors where it is assumed 

that observations occasionally give a false indication of whether or not the group contains 

defectives, see for example Graff and Roeloffs (1974).

3.5.2 Mastermind

A more formally defined search game which has similarities to group testing is Mastermind, 

also known as Bulls and Cows. This is a code-breaking game for two players in which the 

first player conceals a “target” which is a code of digits (or coloured pegs), and the second 

player tries to discover the code by sequentially presenting test codes, for each of which 

a score is received. The score consists of the number of “bulls” and “cows” , where a bull 

is achieved for each digit correct and in the correct position, and a cow for each digit 

which is correct but in the wrong position. The game continues until the second player
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determines (often with considerable thought) the target code. Figure 3.2 shows a simple 

game in which the target is a four-digit code chosen from the digits 0 to 6. The first line 

is the target, T, unknown to the second player. Lines 2 to 6 represent the second player’s 

trials X i to X$, and on the right are the bull and cow scores achieved by these trials. So 

for example, on the third trial the test code (2354) and the target code (2416) have two 

digits in common, one in the correct position (the 2) and one in the wrong position (the 

4), and hence the score is one bull and one cow. The target is found using five trials.

T 2 4 1 6 b c

X x 0 1 2 3 0 2

x 2 1 0 4 5 0 2

*3 2 3 5 4 1 1

X 4 2 4 0 6 3 0

*5 2 4 1 6 4 0

Figure 3.2: A game of Mastermind

In general, the target consists of m digits chosen from a set of d, T = (tx, .. . , / m) say, 

where i,- G 0 , . . . ,  d — 1 (in the example of Figure 3.2, m =  4, d =  7). If m =  1 the game 

is trivial; hence it is assumed that 2 < m < d. There are two variants of the game. In the 

“eastern” variant, components within the target T and the test sets X x,X 2, . .. must be 

distinct, whereas in the “western” variant components may be repeated.

Mastermind can be considered as a group testing problem in which the population is 

o f size d and the number of important units and the size of test sets are both fixed to 

be m. The game provides an interesting generalization of group testing however in that
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the important units are ordered and it is required to discover not only which units are 

important, but also their positions. The search function, which in this case is the number 

of bulls and cows, can then be thought of as a group test which reveals exactly how many 

important units are in the test group, and also gives some partial information on which 

ones are important.

A study of Mastermind appears in [29] in which a number of search algorithms were 

applied to the game. Mastermind was also used as a test bed for new upperbounds 

obtained using randomization in [28] and [30].
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Part II

BINARY GROUP TESTING
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Chapter 4

Binary Group Testing

A binary group testing problem is most commonly expressed as a search for the small 

number of defective units within a large population. The distinguishing feature of binary 

group testing is that a group of units may be tested together to discover whether or not 

the group contains any defectives. It is not observed which, if any, are defective, nor how 

many defectives there are. Therefore, denoting a positive outcome by T ’ and a negative 

outcome by ‘O’ ,

Test result =
0 if group contains no defectives

1 otherwise

D efin ition  4.1 A group of units is called a defective group if the following two conditions 

hold,

i. the group is known to contain at least one defective,

ii. the outcome of a test performed on any proper subset of the group cannot 

be exactly predicted from the previous test results.
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Condition (ii) simply imposes that a defective group is of minimal size, i.e. it cannot be 

reduced to a smaller group also known to contain at least one defective. There are two 

ways that a defective group can arise, either by testing a group of units with a positive 

outcome, or by the removal of non-defective units from a defective group.

Typical examples of binary group testing problems include electrical devices connected 

in series ( “ the Christmas tree lighting problem” ) where any defective devices in the series 

will cause the whole system to fail thus indicating the presence of at least one defective, 

the detection of leaking cylinders where a number of cylinders are placed in an airtight 

chamber and the presence of at least one leaker is indicated by the presence of gas in the 

chamber, and deducing which if any of a number of substances a patient is allergic to by 

simultaneously administering doses of a group of substances and observing whether or not 

there is a reaction.

The most widely investigated binary group testing model is error-free binomial binary 

group testing where each unit is assumed to have an independent probability p of being 

defective and q =  1 -  p of being non-defective where p is known. This was the model 

proposed by Dorfman (1943) in the first formulation of the group testing problem. There 

have been many generalizations of this model in subsequent literature, for example un-

known p, errors in observations, and units with unequal probabilities of being defective. 

The current work however will consider only the error-free binomial case.

The following assumptions define the binary group testing model which is to be con-

sidered here.

1. The population consists of dichotomous units called defective and non-defective.
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2. Each unit is defective with probability p and non-defective with probability q =  1 —p 

where p is known.

3. All units are independent.

4. Any group of units may be tested together.

5. A test observes whether or not there are any defectives in the test group.

6. There are no errors in observations.

There is a further implicit assumption that p is small. This is not in fact a model as-

sumption but is necessary for group testing to achieve savings in tests. In practice of 

course the exact value o f p will not generally be known but will be an estimate based on 

experience, previous test history, or perhaps simply an informed guess. The likely effects 

o f an inaccurate estimate will be investigated later, but otherwise it will be assumed that 

p is known exactly.

For the group testing problem defined by the above assumptions then, it is required to 

devise a procedure for choosing which groups are to be tested in an experiment. The aim 

of such a procedure, or algorithm, is to correctly classify the whole population a„s either 

defective or non-defective using as few tests as possible. There are three rules by which 

units may be classified:

1. In a test upon a single unit.

2. If a group is tested with a negative result then all units in the group are negative.

3. If every unit except one from a defective group has been classified as non-defective 

then the remaining unit is defective.
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In fact rule 3 is a special case of the more general rule that if a subgroup of a defective 

group is tested negatively then the complement of the subgroup within the defective group 

is defective.

The simplest algorithm is to test each unit separately ( “one-at-a-time testing” ) in 

which case all classifications will be made by rule 1 and the number of tests will be equal 

to the number of units. More efficient algorithms achieve savings in tests by classifying 

units using rules 2 and 3. Note, however that negative tests on units are required to 

classify using rules 2 and 3. It is therefore intuitively clear that greater savings in tests 

are achievable for fewer defective units in the population. In the worst case where all 

units are defective, rules 2 and 3 will never be used and the whole population will be 

classified by individual testing. In this case therefore, the number of tests is at least equal 

to the number of units in the population. In fact the number of tests would be equal to 

the number of units plus the number of tests performed on groups containing more than 

one unit. This has two implications. Firstly, the optimal non-sequential algorithm which 

can always solve the problem is that which tests all units individually. Therefore only 

sequential algorithms are of interest for this model. Secondly, no sequential algorithm 

can be guaranteed to classify the whole population using fewer tests than one-at-a-time 

testing. The expected savings in tests that group testing will be seen to achieve must 

therefore be weighed against the risk of using more tests than would otherwise be needed. 

The probability of this is one of the criteria by which algorithms will be compared in 

Chapter 6.

Neither of these implications hold for additive group testing as will be seen later.
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Before discussing binary group testing algorithms, it will be useful to examine the 

Bayesian updating of the probability distribution of defective and non-defective units 

within the population. For some algorithms such as rc-stage group testing, only the initial 

grouping is determined by probability beliefs and so only the prior distribution is required. 

However, for algorithms such as optimal entropy which select each test group to minimize 

the expected value of some loss function, it is necessary to update the distribution after 

each test.

Suppose that there are N  units in the population and define the indicator functions

I i  =
if the ¿th unit is defective 

if the ¿th unit is non-defective
i =  1 ,2 ,...,1V .

Then there are '2N possible values of the series ( / i , I2, . . . ,  In ) and these correspond to the 

possible combinations o f defective and non-defective units in the population. In the nota-

tion of search, call these combinations target sets and arbitrarily label them T\, T2, . . . ,  T2n . 

Let the combination corresponding to the true classification of the population be called 

the target T, so that T =  Tj for some j  6 { 0 ,1 , . . . ,  2^ }. In the binomial case being con-

sidered here, the prior probability that T = Tj where Tj -  (¿1, ¿2, • • •, i n ), h  € {0 ,1 }  for 

k =  1 ,. .  . ,N ,  is

prob(/! =  n , I2 =  i2, . . . , l N  =  ¿at ) =  pNdqN Nd (4.1)

where Nd =  J2k’=\ is the number of l ’s in Tj.
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Now consider the updating of this probability. Suppose that t tests have been per-

formed on groups X\, X 2, .. . ,X t and let the observed outcomes of these tests be / ( X i ,  T), 

/ ( X 2, T ) , . . . ,  / ( X t, T).  Then using Bayes theorem, the updated probability that T  = Tj 

is

prob(T  =  Tj | f ( X i , T ) , . . / ( X t, T ) )

Pr o b ( /(X 1, T ) , . . . ,  f (X u T )\T  = Tj) prob (r =  Tj) 
pro b ( / ( X 1, T ) , . . . , / ( X i,T )) j  =  (4.2)

Now p r o b ( / (X i ,T ) , . . . ,  f (X t,T )  j T — Tj) is the probability of having obtained the test 

outcomes observed up until time t given that Tj is the target, and so by Definition 2.4,

p r o H /tX i , T ) , . . . ,  f ( X u T)  | T  =  Tj) =
1 if Tj is ¿-consistent

0 otherwise

Note also that

prob ( / ( X 1, T ) , . . . , / ( X t,T ))

does not depend on Tj. Therefore it is seen from (4.2) that the updated probability that 

T — Tj is zero for inconsistent sets and is proportional to the binomial prior probability 

prob(T =  Tj) given by (4.1) for consistent sets. Hence the following two rules define the 

Bayesian updating process:

1. After each test, set prob(T =  T') equal to zero for all target sets T' which are 

inconsistent with the latest observation.
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2. Renormalize the probabilities of all remaining consistent target sets so that

2n

¿ P r°b (J j) =  1.
j= 1

Although the updating process is simple, the number of probabilities to be updated 

causes a problem since there are 2N possible target sets for a population of size N. It 

would clearly be preferable, if possible, if the probability distribution was on the individual 

units rather than the combinations of them. This is easily achieved at the beginning of the 

experiment when all units are independent, but as the experiment proceeds and the units 

are tested together in various groups, the dependence between them becomes increasingly 

complex. However, there exists a class of algorithms which achieve great computational 

savings in the updating by imposing constraints on the next test set using the following 

result, proved by Sobel and Groll (1959) :

Lemma 4.1 Suppose that the distribution of the number of defectives in a group of 

units Q is binomial, and that this group is tested with a positive result. Now suppose 

that a further test on a subgroup Q' C Q also gives a positive result (so that Q' forms a 

defective group). Then the updated distribution of the number of defectives in Q -  Q' is 

again binomial.

Now, a non-mixing algorithm is one which imposes the constraint on each choice of test 

group that it must be a subgroup o f a defective group if one exists at that stage. Then 

by the above lemma, at each stage all unclassified units will belong to one of two distinct 

sets, a binomial set in which all units are independently defective with probability p, or a 

defective set which is known to contain at least one defective, where one or other of these
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sets may be empty. Note that since all units within each set are identically distributed, 

the problem of choosing the next test group to minimize the expected value of some loss 

function is reduced to determining only the size of the next test group. The group is then 

chosen arbitrarily from the defective set if one exists, or from the binomial set otherwise. 

Furthermore, the prior probability p, the size of the binomial set, and the size of the 

defective set are sufficient to completely summarize the distribution of defectives in the 

population.

Non-mixing would also appear to be a natural procedure since nearly all algorithms 

which have been introduced belong to the non-mixing class. Moreover, Sobel and Groll 

(1959) showed that the loss in efficiency from imposing the non-mixing constraint is small, 

and sometimes zero.

In Chapter 6 non-mixing binary group testing algorithms will be investigated and 

compared, but first a new family of non-mixing algorithms will be introduced.
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Chapter 5

Multi-Stage Stepwise Group 

Testing

The original group testing method of Dorfman (1943) involved testing groups of units 

and then testing individual units within defective groups. Sterret (1957) showed that the 

expected number of tests can be reduced by testing units within a defective group only 

until the first defective is found, and then testing the remaining units together. Analogous 

to the paper o f Patel (1962) in which Dorfman’s method was generalized to more than two 

stages, a multi-stage version of Sterrett’s algorithm will now be developed. An expression 

for the expected number of tests is obtained and this is approximately minimized with 

respect to the number of groups in each stage by assuming p to be small. A new bifurcation 

technique is introduced which is seen to be a special case of multi-stage stepwise group 

testing.
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5.1 The Stepwise Procedure

Consider a defective group of k units (as defined in Definition 4.1). Let the units be 

arbitrarily numbered 1 ,2 , . . . , A:. Then the stepwise procedure for classifying all members 

of the group involves testing the units one by one until the first defective is found. The 

remaining unclassified members of the group are then tested together. If the test is negative 

then the remainder are declared non-defective and the classification is complete, otherwise 

the remainder form a new defective group and we begin again by looking for the first 

defective and so on. Note, however, that if a negative test is performed on the (k — l)th  

unit while searching for the first defective in a defective group then it can be inferred that 

the A;th unit is defective. On the other hand, if a positive test is performed on the (k -  l)th 

unit then the remainder consists only of the kth unit and only one further test is required.

The stepwise procedure is defined formally in the flow chart given in Figure 5.1. It is 

assumed that the group to be classified consists of k units and is known to be defective. 

As an example, consider a group of ten units, A, 4 ? , . .. ,  J say, and suppose that the group 

is known to be defective. Writing ‘0 ’ for good and ‘ 1’ for defective, suppose the units are 

as follows:

A B C D E F G H I J

0 0 1 0 0 1 0 0 0 0

We begin by testing the units individually until the first defective C is found on the third 

test. The remainder (units D — J)  are then tested together giving a positive result and 

thus form a new defective group. Testing the members of this group one by one, the first 

defective is found at F . The remainder (G — J ) are then tested together giving a negative
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m
set i =  1

m
Test ¿th unit. 
Test positive?

N

0
Classify ¿th unit as defective.

Test remainder set {* +  1, i +  2 ,. . . ,  Ar}. 
Test positive?

0
Classify ¿th unit as good. 

i =  k — 1?

N Y N

0
i = k — 1?

0
Classify Arth unit 

as defective. 
Experiment finished.

N

0
Classify remainder 

as good.
Experiment finished.

. 0Classify Ath unit 
as defective. 

Experiment finished.

Set i =  i +  1. 
Go to [2].

0
Set i =  » +  1. 

Go to [2].

Figure 5.1: Flow chart defining the stepwise procedure for classifying a population of size 
k
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result. Thus the classification is complete, requiring eight tests in all.

The following result gives the expected number of tests required by the stepwise pro-

cedure.

Lemma 5.1

Consider a group of k units, each of which is independently good with probability r, 

and suppose that the group is tested giving a positive result, i.e. the group is found to 

be defective. Let T (k ,r ) be the (conditional) expected number of tests then required to 

classify all units in the group using the stepwise procedure. Then

T (k ,r)
1 — rk (k ~ 1)(2 — r) —

( l  - r * - 1) 

1 — r (5.1)

Proof

Define indicator functions

Ii =
1 if ith unit is defective 

0 if ¿th unit is good
i =  1 , 2 , . . . ,  k.

The tests required can be split into two types, first-defective tests where units are tested in

order to find the first defective from a defective group (i.e. the tests performed in node

of Figure 5.1), and remainder tests where, having found the first defective, the remaining

units are tested together (i.e. the tests performed in node 3 o f Figure 5.1). Therefore,

E{number tests) — E(number first-defective tests) +  Fj(number remainder tests).

Consider first-defective tests. It can be seen from Figure 5.1 that for i =  1 , 2 , . . . ,  k -  1,
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the zth unit is tested in node [2] (i.e. in a first-defective test) if and only if the first i -  1 

units do not contain all the defectives in the group, i.e. if and only if Ylj=ilj 7̂  0- It can 

also be seen that a first defective test is never performed on the kth unit, since it is either 

classified by a remainder test in node [3], or by deduction in node [Tl. Therefore,

k—1
E (no. first-defective tests) =  prob(first-defective test performed on ith unit)

i= 1

= E p ro b (£ /^ 0
*=1 \j=t j=1

k—1

= E
prob (E j= i i j  /  0 | E*=i Ij ±  0) Prob i j  +  o)

Prob (E j= i Ij i  0)

k-l 1 x ( l  -  r * - i+1)
/  V
i= 1 1 — rk

1 . 1
( r2 (l  
k 1 v

1 — rk
'■)

1 — r (5.2)

Consider now the remainder tests of node [3]. Since a remainder test is performed 

each time a defective is found amongst the first k -  1 units in the group (i.e. each time

a positive test is performed in node 2_ of Figure 5.1), the number of remainder tests is
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equal to the number of defectives amongst the first k — 1 units. Therefore, 

E(number remainder tests) =

Combining (5.2) and (5.3) the lemma is proved.

A stepwise group testing algorithm is defined as follows. First the population is split 

into groups and these groups are tested. Groups giving a negative result are eliminated 

from the search, their members being classified as good. Groups giving a positive test 

result are split into subgroups (which may be individual units) and the subgroups within 

each defective group are tested using the stepwise procedure. Subsequent stages continue 

in the same manner, classifying subgroups (or individuals) within defective groups found 

in the previous stage using the stepwise procedure, until the whole population has been 

classified. If the experiment involves s stages of grouping (including the final groups of 

size one), then call the method s-stage stepwise group testing. Thus we refer to Sterrett’s 

original procedure as two-stage stepwise group testing.

( k-i

F

k-1 /
J2  prob
¿ = i  \

^  prob ( E j= i  #  0 | U =  l )  prob (/,■ =  1) 

h  prob ( Ö =1 i j # 0 )

y 1 i x ( l - r )
¿ i  ( l ~ r k)

-  l)(i -  r) (5.3)

E  h *  o
j = 1

r,- =  i E  h *  o
3—1
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The expected number of tests of stepwise group testing algorithms with more than two 

stages and with equal-sized groups in each stage will now be derived. It will be assumed 

that the population may be partitioned exactly into equal-sized groups as required, since 

this allows a general expression to be obtained for the expected number of tests which 

may then be minimized with respect to group sizes. This assumption will not always hold 

in practice of course, and groups may vary in size by one.

Define R (s , N, k,p) to be the expected number of tests required by an s-stage stepwise 

group testing algorithm to classify a population of N units, each with probability p of 

being defective, using a stepwise algorithm with group sizes given by k = (fci, . . . ,  ks). 

For ease of notation write R(s) =  R (s,N ,k ,p ). To begin with R(3) will be derived, after 

which R(s) for general s > 2 will be obtained.

5.2 Three-Stage Stepwise Group Testing

Let the population of N units be partitioned into gi lst-order groups each containing k\ 

members. Each of these groups is partitioned into g2 2nd-order groups of size k2 (so that 

N  =  g\k\ = g\g2k2). The experiment then consists of three stages. In the first stage all 

lst-order groups are tested. All groups giving a negative test result are eliminated from 

the search, their members being classified as good. In the second stage we take a defective 

group and test the 2nd-order groups within that group using the stepwise procedure. This 

is repeated for all the defective lst-order groups found in the first stage. Similarly, in the 

third stage the units within each defective 2nd-order group found in the second stage are 

tested using the stepwise procedure.

The expected number of tests, R(3), required to classify all members of the population
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using a 3-stage stepwise group testing algorithm is evaluated as follows. In the first stage 

of the experiment the lst-order groups are tested, thus requiring g\ tests. In the second 

stage the 2nd-order groups within defective lst-order groups are classified using the step-

wise procedure. Since each 2nd-order group has a prior probability qk2 of containing no 

defectives (where, recall, q =  1 — p is the probability that a unit is good), it is seen from 

Lemma 5.1 that the expected number of tests required for each defective lst-order group 

is T(g2,qk2). Since the expected number of defective lst-order groups is gi(l  -  qkl), the 

expected number of tests required in the second stage is $q(l -  qkl)T(g2,qk2). Similarly, 

the expected number o f tests required to classify the units within each defective 2nd-order 

group is T(k2,q). The expected number of defective 2nd-order groups is gig2(l  — qk2). 

Therefore the expected number of tests in the third stage is g\g2{l  -  qk2 )T(k2,q). Com-

bining the tests for each stage gives the expected number of tests as

R(3) =  91 +  <7l(l -  qkl )T(g2, qk2) +  gld2( 1 -  qk2)T{k2, q).

5.3 s-Stage Stepwise Group Testing

The extension to s stages (5 =  2 ,3 , . . . )  is straightforward. The population is partitioned 

into <71 groups of size k\. For i — 1 ,2 , . .  , ,s  — 1, each ¿th-order group of size ki is partitioned 

into gi+i groups of size &,+1 , where gs =  and ks =  1 (i.e. the highest order groups 

are o f size one), so that N  =  J]i=i 9i■ The expected number of tests of an s-stage stepwise 

algorithm will now be derived.

For i -  1 , . . . ,  5- 1 , let di+1 be the random variable representing the number of defective 

(i +  l)th-order groups within a single defective ¿th-order group. Also, for i =  1, . .  . , s,  let
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Di be the total number o f defective *th-order groups, and let r, be the random variable 

representing the number of tests required to classify all the units within a single defective 

¿th-order group. Then

R(s\Di) = gi +  T>iE(ri)

and so

R(s) =  9l +  E(D 1 )E(r1). (5.4)

Also, recalling the definition o f T(k, r ) from Lemma 5.1, for * =  1 , . . . ,  s — 1,

E(r,|d!+i )  =  T(gi+1 ,qk'+1 \di+1) +  di+1E(ri+1)

and so

E(r,) =  T(gi+1 ,qk'+') +  E(di+1 )E(ri+1). (5.5)

Clearly, a defective group of size one requires no further testing, and therefore

E(rs) =  0. (5.6)

Therefore, from (5.4), (5.5) and (5.6), and using linearity of expectation,

R(s) =  gi +  E (D ,) \T(g2,qk>) +  £  J f [  E(di+1) j  T (fft+2, ^ ) j  . (5.7)

Now, for i =  2 , . . . , s  — 1, consider E(Di), the expected number of ith-order groups. 

Conditioning on Zh_i gives

E(A|A-i) = A-iE(di),
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and so

E (Di) =  E (A -i)E (d i)

which gives
i

E(Di) = E(Di) x I ]  E(dj).
3 = 2

Therefore, from (5.7),

5 — 1
R(s) =  g1 +  Y , V ( D i)T(gi+uqk<+')

i= 1

a—1N
= 9i +  J 2 T :(1 ~ qki')T (9i+1’ qki*1')‘

i=1
(5.8)

5.4 Comparison of Stepwise Algorithms

The proposed multi-stage stepwise algorithms will now be optimized and compared with 

Sterrett’s original procedure, referred to here as two-stage stepwise group testing (a more 

thorough study o f the properties of these algorithms appears in the following chapter). A 

previously mentioned problem arises here in that the expression in (5.8) assumes that the 

population may be divided exactly according to the required grouping scheme. However, 

group sizes differ for algorithms with different numbers of stages and for different values 

o f p. Therefore, in each case, the expected number of tests per unit was minimized for a 

single lst-order group, the size of which was not fixed. The problem was thus to minimize 

R(s)/ki with respect to </,- (t =  2 , . . . , « ) ,  where k\ =  Ui=2 9i and 9 \ =  1. This was done 

using a computer search program.

Table 5.1 gives the expected number of tests per unit, R(s)/ki, required to classify
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a group of size k\ using optimum 2, 3 and 4-stage stepwise algorithms, as well as the 

group sizes in each stage, for various values of p. Also tabulated is the approximation 

R(s)/ki to R(s)/ki, which is derived in the following section. It is seen that the proposed 

multi-stage algorithms can achieve substantial reductions in the expected number of tests 

over Sterrett’s original 2-stage algorithm. The best savings are achieved when p is small.

As p increases stepwise algorithms with fewer stages become the most efficient. For the 

whole range of tabulated values (p <  0.2), the expected number of tests per unit of each

algorithm is less than 1, and thus savings in testing are achieved.

p k
2-stage

R{ 2 )/h  R(2)/h h ,  h
3-stage

R(S)/kx m ) / h h ,  k2, h
4-stage 
R(4)/ki R( 4 )A r

0.001 45 0.0458 0.0462 169, 13 0.0212 0.0216 343, 49, 7 0.0165 0.0171
0.002 32 0.0655 0.0661 110,10 0.0344 0.0353 180,30, 5 0.0284 0.0294
0.005 21 0.1054 0.1071 56, 7 0.0654 0.0677 100, 20,4 0.0579 0.0610
0.01 15 0.1517 0.1553 36, 6 0.1064 0.1111 64, 16, 4 0.0986 0.1056
0.02 11 0.2196 0.2273 25, 5 0.1727 0.1840 36, 9, 3 0.1665 0.1811
0.03 9 0.2731 0.2844 16, 4 0.2286 0.2425 27, 9, 3 0.2246 0.2470
0.04 8 0.3192 0.3350 16, 4 0.2784 0.3025 18, 9, 3 0.2767 0.3022
0.05 7 0.3598 0.3786 12, 3 0.3236 0.3500 12, 6, 3 0.3250 0.3500
0.06 6 0.3969 0.4167 9, 3 0.3659 0.3911 12, 6, 3 0.3680 0.4033
0.07 6 0.4317 0.4583 9, 3 0.4040 0.4378 12, 6, 3 0.4096 0.4567
0.08 5 0.4639 0.4880 9, 3 0.4410 0.4844 8 , 4 , 2 0.4474 0.4850
0.09 5 0.4937 0.5240 9, 3 0.4769 0.5311 8 , 4 , 2 0.4830 0.5300
0.1 5 0.5229 0.5600 6, 3 0.5103 0.5500 8 , 4 , 2 0.5177 0.5750
0.15 4 0.6478 0.7000 4 ,2 0.6526 0.7000 8 , 4 , 2 0.6783 0.8000
0.2 3 0.7493 0.8000 4 ,2 0.7676 0.8500 8 , 4 , 2 0.8204 1.025

Table 5.1: Optimum group sizes and the expected number of tests per unit, R(s)/ki, and 
corresponding approximation R(s)/ki, for a single lst-order group.

5.5 Approximation and Upperbound to R (s )

An upperbound and approximation to R(s), the expected number of tests of an 5-stage 

stepwise algorithm, will now be derived for small p. The optimal group sizes for this
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approximation will be found by allowing the group sizes to vary continuously.

First note the following properties of the grouping:

(i) 9i =

(ii) gi+1 =

N
k\

f«+i

(iü) n *  =  n
3 = 1

(iv) gj+1 >  2

i =  1,2, . .  . ,s  -  1

j  =  1 , 2 , . . . ,  a -  1

(5.9)

(5.10)

(5.11)

(5.12)

(properties (i)-(iii) are due to the assumption of equal-sized groups and property (iv) holds 

since if gj+i =  1 then the j th order groups and the (j  +  l)th-order groups will be the same). 

Now consider (1 -  qk')T(gi+1 ,qk'+1), which, by (5.1),

_  ç(5.+l-l)fc.+l y

=  (gi+i - l ) ( 2 - q k̂ ) -
q 2k>+i ( i  _

1 -  qk>+1 (using (5.10)) (5.13)

(gi+i -  1)(2 -  qk‘+i ) -  q2k<+1 ( l  +  qki+1 +  g2fc<+1 4------- f  q(9i+i-2)ki+1 ĵ

=  (5»+1 -  1) (2 -  (1 -  p )fc,+1)  -  (1 -  p)2A:,+1 ( l  +  (1 -  p)ki+i +  ••• +  ( ! -  p)(fl*+i-2)^+i^ .

Now, since

( i - p r  > 1 ~ x p , (5.14)
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it follows that

(1 -  qki)T(gi+1,qki+1) < (gi+1 -  1)(1 + ki+1p)

(1 — 2 k i + i p )  (g i+ i  — 1 — k i + i p ( l  +  2 + ------f- (g,-+ 1 — 2 ))

=  (9i+i ~  1)(1 + k+ip)

-  (1 -  2kl+1p) ({g i+1 -  1) -  W 0 7 .-+ 1 ~ 2)(g.+i ~ 1) j

< (9i+1 -  1)(1 + k+ip)

-  (1 -  2ki+1p)(gi+1 -  1) + kj+ip(9i+i -  2)(fft+i -  1)
2 (5.15)

(&+i ~ 1) 
2 (2 + 2ki+1p - 2  + 4ki+1p +  ki+ipgi+1 -  2fct+1p)

i.e.

(1 - q ki)T(gi+1,qk̂ )  < kj+ip
2 -  1)(4 + gi+1).

Substituting this into (5.8) gives

R(s) Np S_1 1
-  9\ + —  T -ki+i(9i+i ~ 1)(4 + gi+1)

«'=i

«=i 9i+1 + 9i+i) (using (5.10))
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i.e.

R{s) < 9i +
3(s -  1 )Np 

2

=  R(s), say. (5.16)

However, when p is small, the inequalities in (5.14) and (5.15) are approximately equali-

ties. Therefore R(s) provides an approximation to R(s). To investigate the effectiveness of 

this approximation, Table 5.1 includes a column, headed R(s)/ki, which gives the approx-

imation o f R(s)/k\ for the given group sizes. It can be seen that R(s) provides reasonably 

good approximations to R(s), especially when p is small.

The approximation R(s) will now be minimized with respect to gi ( i =  1 ,2 , . . . , 5) 

subject to the constraints given by (5.11) and (5.12). This will be done by allowing gi to 

vary continuously (in practice of course gi must be an integer), and using differentiation. 

Writing U{ — log <7,-, i.e. gi — eUi (i =  1 ,2 , . . . ,  s), the problem is as follows:

Nv  S_1
minimize: F  =  eUl -|-------^  (e“ ‘+1 — 4e- “ '+1)

2  i=1

subject to the constraints

s

Ui =  log N, 
i=1

(5.17)

ui+i > log 2 for * =  1 ,2 ,.. -  1- (5.18)

This minimization uses the following result.
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Lemma 5.2

In the range > 2  i =  1 ,2 , . . s — 1 (i.e. when constraint (5.18) holds), F  is 

convex.

Proof

Note that a function is convex if and only if the Hessian of the function is non-negative

definite. Now, for i ^  j ,

d2F n
= 0 =

O U iU j

and hence the Hessian of F is a diagonal matrix with diagonal elements

d2F
8 u2 ~ 6 ~ 91 > 0

and

d2F

dui+1 "
= ^ ( e Ul+1 - 4 e - “*+i) f

Therefore the Hessian is non-negative definite, and hence F  is convex, if and only if

e“ '+1 _  4e~Ui+1 > 0 i — 1 , . . . ,  s — 1,

i.e. if and only if eu'+1 > 2 (i =  1 ,2 , . . . ,  s -  1) as required.

Now a convex function may be minimized with respect to a linear constraint using 

Lagrangian methods. Therefore, if we minimize F  with respect to (5.17) using Lagrangian 

methods, and find a solution such that e "^ 1 >  2 for i =  1 ,2 , . . . ,  s -  1, then this solution 

is a valid local minimum. Further, by convexity, it is the unique minimum in the range 

ui+1 > l ° g 2 (#¿+1 > 2 )  * =  1 ,2 ,..  . ,s  — 1, and therefore the unique solution which
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minimizes F  satisfying both constraints (5.17) and (5.18).

Now minimize F  subject to constraint (5.17) using Lagrangian methods, i.e. minimize

L =  eUl +  ^  (e“ '+1 -  ) -  A ^  u{ -  log N j

where A is a Lagrange multiplier.

Differentiating and setting equal to zero yields:

dL n
77---  =  0 =>OU\ eUl =  A (5.19)

dL
O = o =>■ OUi+1

Nv
~ Y  (eUi+! +Ae~Ui+') -  A =  0 (5.20)

with the constraint

U e u' = N .  (5.21)
¿=1

From (5.20) we obtain

Npe2u' +1 _  2Ae“ ‘+1 +  AN p — 0

^ e„,+1 =  A ±  \/A2 -  AN2p2 

Np

eUl ±  \/e2“ i -  AN2p2
~  ------------- Jfp-------------  (from (5.19)) (5.22)

Recall that we require > 2  (i =  1 ,2 ,. . . ,5  -  1) for the optimization to be valid.
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It is easy to see that this is achieved by taking the positive root of (5.22) provided that 

eUl >  2Np, i.e. provided that g\ > 2Np (this also guarantees real roots). Note that, if 

this is so, then e“ i+1 (and hence gi+i) is constant for i =  1 ,2 , . . . ,  s — 1, i.e.

9 2  =  9 3  =  ■■• =  9 s

i
s —1

using (5.21)

(Table 5.1 shows that, for the true expected number of tests, the optimal values of g,• are 

indeed almost or exactly constant for i > 2, i.e. gi = ki-i/ki is approximately constant). 

We now derive an equation to give the optimum value of g-y and show that, as required, 

9 i > 2Np. Substituting the positive root of (5.22) into (5.21), we obtain

p“ i
'eui +  ^ 2 « !  - 4 N 2p2\ 5 —  1

=  N

i.e.

91
'9 \ +  \Jg\ ~  4N 2p2'

S—1

Np = N

(9 i  +  y / g l -4 N 2p*\
91 { — ~ w P---- J

9\~l yjg\ -  4N2p2 =  N ‘ - i p -  g{-
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=>■ g( 1 (gl -  4N 2p2) =  iV*-ip2 -  2p(Ngi)—i +  g{ 1

—4 g{ _1 N 2p2 — N 7̂  p2 — 2p(Ngi)7~i .

It is convenient to express this equation in terms of k̂ . Using (5.9) the equation becomes

_4  (JPj  S_1 N 2p2 =  N ^ p 2 -  2p |

3 3 - 2  9

=> k +  4k r 1 -  -  =  0.
P

Thus the solution to the above equation gives the optimum size of the lst-order groups. 

It now needs to be shown that this solution ensures that constraint (5.18) holds. Recall 

that this is so provided that gi >  2Np, i.e. provided that k\ < 1/2p.

Let

, N _5_ £̂ 2 2
f (k )  =  ----- .

P

It is therefore required to show that the equation f (k )  — 0 has a positive root not greater 

than l/2 p . Consider the first derivative of f (k ):

Since s is the number of stages in the experiment, for multi-stage algorithms we will have 

s e  { 3 ,4 , . . . } ,  and for such a choice of s, f'(k)  > 0 for all k > 0, i.e. f {k )  is an increasing 

function of k in the range k > 0. Furthermore, since / (0 )  < 0 and lim^^oo f ( k ) =  oo, the 

equation f (k )  =  0 has precisely one positive root, k* say, and this root is the optimum

N 2 \ S_1
* T /
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value of Aq. It also follows, since l /2 p  > 0, that k* < 1/2p if and only if /  

Now,

> 0.

/
2

P

>  0 since p > 0.

Hence k* < 1 /2p as required, and the optimization is valid.

However, for the case 5 =  2, / (0 )  < 0 if and only if p < 1/2 and so the above argument 

only holds for 0 < p < 1/2. Therefore this optimization is valid for two-stage algorithms 

only for p in this range. This does not present a problem however since p is assumed small 

already (in fact Ungar (1960) showed that group testing should only be considered when 

p < |(3 — a/ 5) since savings in the expected number of tests are not possible for p larger 

than this).

Summarizing, for an 5-stage stepwise group testing algorithm, the expected number of 

tests is approximately minimized by partitioning the population into lst-order groups of 

size approximately Aq, where Aq is the unique positive solution of

k {^  + Akf11 =  -  . (5.23)
p v '

In practice of course, Aq must be an integer, and so the integer closest to the minimizing
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value of (5.23) would be used. Note also that, from (5.9) and (5.11), k =  [ ] j=2 and so, 

from (5.12), k\ >  2S_1. Therefore, if for some value of s and p the minimizing value of k\ 

in (5.23) is less than 2S_1, then the optimum value for the size of lst-order groups should 

be taken to be 25_1 (this defines a bifurcation algorithm which will shortly be discussed). 

Table 5.2 shows the approximation to the size of lst-order groups for various values of s

and p.

p 2 3 4
5

5 6 7 8
0.001 45 156 280 376 439 473 491
0.002 32 97 162 206 232 244 249
0.005 20 52 77 91 98 100 128
0.01 14 32 43 48 50 64 128
0.02 10 19 23 25 32 64 128
0.05 6 9 10 16 32 64 128
0.1 4 5 8 16 32 64 128
0.15 3 4 8 16 32 64 128
0.2 2 4 8 16 32 64 128

Table 5.2: Approximation to the optimum size of lst-order groups for an 5-stage stepwise 
group testing algorithm

In all subsequent stages defective groups are partitioned equally into gi+\ subgroups 

where

9i+i = y—J  = k{ * = 1,2,...,s -  l.

Unfortunately, (5.23) has no closed form solution in general and must be solved itera-

tively. However, for the cases 5 =  2 and 5 =  4, (5.23) reduces to quadratic equations with 

closed form solutions as follows.

For the case 5 =  2, (5.23) becomes

k\ +  4 =
2
P
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and so the optimum size of first-order groups in a two-stage stepwise algorithm is approx-

imately given by

2 — 4 p 
P

(recall that for s =  2 the above optimization is valid only for p < 1/2).

When s =  4, (5.23) yields

4 2

5.6 A Bifurcation Algorithm

A special case o f multi-stage stepwise algorithms occurs when </2 =  93 =  ■ • ■ =  gs =  2, i.e. 

a bifurcation algorithm. This algorithm differs from previously investigated bifurcation 

techniques in that, by varying the number of stages in the algorithm, the population 

may be initially partitioned into groups and tested, and bifurcation performed on those 

groups giving a positive result, as opposed to starting with bifurcation of the population 

as a whole (i.e. we need not have g\ =  1). Therefore, whereas before we minimized the 

expected number of tests for fixed s with respect to group sizes, here it is interesting to 

fix #2 =  #3 =  ■ • • =  gs =  2, and minimize with respect to s , the number of stages.

To compute the expected number of tests of an s-stage bifurcation algorithm, R b ( s )  

say, first note the following properties of such an algorithm: (i)

(i) gi+1 = 2  i =  1 ,2 , . . . ,  5 -  1
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(“ ) Si =27=1

(iii) ki — 2s~l ¿ =  1 ,2 , . . . ,  5

Therefore, from (5.13),

(1 - q k*)T(gi+1 ,qk'+') =  (2 -  1)(2 -  g2^ “ 1) -  9
2.2s 1( 1 _ 9(2-1).2‘ — i) 

1 -  a*1- ' - 1

=  2 -
o s - i - l

q2

Substituting this into the expression f2(s) for general multi-stage stepwise algorithms given 

in (5.8), gives

R b ( s )

N
2 s- 1

5 — 1 N

i—1

which is the expected number of tests required to classify gi groups of size 2i_1 using an 

5-stage bifurcation algorithm.

Let the optimum number of stages be denoted by s opt. Then s opt will be the smallest 

integer larger than the root of R b( s  +  1) -  R b ( s )  =  0. Now

R b ( s  +  1 )  —  R b ( s )
N_
¥

N N 
2s“ 1 +  2*
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Setting this equal to zero yields

1 - =  0

— 1 + y/5
2

-  1 + log 2
X log

and therefore the optimum number of stages is given by

s o p t  —  2  +
1

log 2
x log

where [.] denotes the integer part of.

Table 5.3 gives the optimum number of stages sopt and the corresponding expected 

number of tests per unit Rb{sopt)/2 Sop‘ ~1 required to classify a single lst-order group of 

size 2Sopt~ 1 for various values of p. It is seen that this bifurcation algorithm performs well 

over the whole range of p, competing well with the best algorithm in Table 5.1 for all 

tabulated values. Bifurcation thus provides a consistent version of the stepwise algorithm, 

with the added advantages of being easy to implement and having an exact expression for 

the optimal grouping scheme.
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p $opt Rb^opt) /
0.001 10 0.0149
0.002 9 0.0268
0.005 8 0.0569
0.01 7 0.0990
0.02 6 0.1688
0.03 5 0.2295
0.04 5 0.2800
0.05 5 0.3283
0.06 4 0.3733
0.07 4 0.4109
0.08 4 0.4474
0.09 4 0.4830
0.1 4 0.5177
0.15 3 0.6526
0.2 3 0.7676

Table 5.3: Expected number of tests per unit for optimal bifurcation algorithms
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Chapter 6

An Investigation of Non-Mixing 

Binary Group Testing Algorithms

Since the subject of group testing was first introduced many new algorithms have been 

proposed. These algorithms are generally more efficient than Dorfman’s original procedure 

in the sense o f requiring fewer tests on average to classify the whole population. However, 

an experimenter may be unhappy to base a choice of algorithm solely on the expected 

number of tests and may wish for more detailed knowledge of an algorithm’s performance. 

Typical questions one might ask are:

• What is the maximum number of tests that may be required?

• What if my estimate of p is inaccurate?

• How certain can I be that group testing will achieve savings in tests?

• What is the probability of requiring more than c tests?
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Previous studies have only considered the expected number of tests of algorithms. The 

purpose of this chapter is to provide a more thorough examination of a number of non-

mixing algorithms and to investigate their relative performances in terms of criteria other 

than the expected number of tests. The following criteria will be considered:

1. p.d.f. of the number of tests,

2. variance of the number of tests,

3. worst case number of tests,

4. sensitivity,

6.1 Non-Mixing Group Testing Algorithms

As was defined earlier, an algorithm for classifying all the units in a population is a set 

of decision rules which, depending on information obtained from previous test results, 

determines the next group to be tested. In this chapter non-mixing algorithms will be 

considered which choose each test group to be a subgroup of a defective group if one exists 

at that stage. It was seen that, by virtue of Lemma 4.1, at each stage all unclassified units 

will then belong to one o f two distinct sets, a binomial set or a defective set. The sizes of 

these two sets are sufficient to completely summarize the probability beliefs at each stage 

o f the search.

Suppose the population consists of N units, each of which has an independent prior 

probability p =  1 -  q of being defective, and let S[n, m] denote a stage in the experiment 

in which there are n units still unclassified of which m form a defective set, the remaining 

n — m forming a binomial set. When m > 2 we call this the defective situation or D-
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situation. When m — 0, so that all unclassified units belong to a binomial set, we call this 

the binomial situation or B-situation. Note that if m =  1 then there is a single unit in a 

defective set so this can be classified as defective, therefore 5[n, 1] =  S[n — 1,0].

The next test group is chosen from the defective set if this is non-empty, and from 

the binomial set otherwise. A non-mixing algorithm may therefore be considered as a 

mapping from the current state o f the search to the size of the next test group:

A 5[n, m]
{ 1 , 2 , . . . , » }

{1 ,2 ,. . . ,7 7 1 -  1}

if 777 =  0 

if 777 ^  0
77 =  1, . . . , A ; 777 =  0, 2, 3, . . ., 77

(note that in the Zl-situation the test group will not be the whole of the defective set 

since this is known to contain at least one defective and the result would therefore be 

predictable). The search is finished when 77 =  0. Write A(n,m ) to denote the size of the 

next test group specified by the algorithm A. An algorithm may therefore be completely 

described by A(n, m) for all possible values of n and m. This will now be done for all 

algorithms which are to be included in the ensuing investigation.

6.1.1 Two-Stage Pooling

Consider first the original algorithm of Dorfman (1943) which will be referred to here as 

pooling. The population is partitioned into g groups of size k (N = gk). Each group is 

tested and units within defective groups are tested individually, units within non-defective 

groups being classified as good. Suppose that this is carried out by classifying groups one 

at a time, testing the units within a defective group before testing the next group. Then
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the decision rules for this algorithm are given by

A (n ,0)
k if n =  0 (mod k)

<
1 otherwise

A{n , m) — 1 m > 2 .

6.1.2 Multi-Stage Pooling

Dorfman’s algorithm was generalized to s > 2 stages by Patel (1962). The population is 

split into <71 lst-order groups of size k\. For i =  1 , 1  each ¿th order group of size ki 

is split into gi+i groups of size fc,-+1 where ks — 1 (i.e. the smallest groups are of size 1 ). 

At the (i +  l)th  stage the (t +  l)th-order groups within defective ¿th-order groups found 

in the previous stage are tested, until all units have been classified. Proceeding as for the 

2-stage scheme by classifying the units within a defective group before testing the next 

group, the decision rules for an 5-stage algorithm assuming equal sized groups throughout 

are

A (n ,0)

A(n, m )

k\ if n =  0 (mod &i)

kj if n =  0 (mod kj), n / 0  (mod j  =  2 , . . . , s

kj+1 if m =  kj; j  =  1 , . . . , 5  -  1

kj if t o  kj , m =  0 (mod kj), m ±  0 (mod kj-i) ;  j  =  2, . . . , 5

m > 2.
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6.1.3 Two-Stage Stepwise Group Testing

Another generalization of Dorfman’s algorithm was stepwise group testing, due to Sterret 

(1957), which has already been discussed in Chapter 5. This method is the same as two- 

stage pooling except that units within defective groups are testing using the stepwise 

procedure described in Section 5.1. The decision rules for this algorithm are given by

A (n ,0)
k if =  0 (mod k)

<
n mod k otherwise

A(n, m) — 1 m >  2 .

6.1.4 Multi-Stage Stepwise Group Testing

The stepwise algorithm was generalized to s > 2 stages in the previous chapter. The 

decision rules for this algorithm are

A (n ,0)
k\ if n =  0 (mod k\)

<
n mod kj^i if n =  0 (mod kj), n ^  0 (mod fcj-i); j  =  2 , . . . , s

A(n, m)
kj+1 if m = kj; j  =  1, . . . , s -  1

kj if m ^ kj , m =  0 (mod kj), m / 0  (mod k j -1); j  =  2 ,.. . ,s

m  >  2.

These rules may also be used to obtain the group sizes for the bifurcation algorithm 

described in Section 5.6 which will be referred to here as stepwise bifurcation to distinguish 

it from the following algorithm.

79



6.1.5 S &c G Bifurcation

Sobel and Groll (1959) introduced a number of algorithms, one of which is the bifurcation

algorithm which tests the whole of the binomial set in the 5-situation and [m/2] of the

units from the defective set in the 5-situation, i.e.

A (n ,0 ) n

A(n,m ) =  [rn/2] m >  2

where [.] denotes the integer part. This algorithm, which will be referred to as 5  & G 

bifurcation, has the advantage that the choice of group sizes does not depend on p and 

therefore requires no prior knowledge.

6.1.6 Maximum Entropy

Another algorithm proposed in [38] involves choosing the next test group in order to 

maximize the amount of entropy in the test. Since entropy is maximized by choosing the 

test set such that the probability of achieving either outcome is as close as possible to 1/2, 

the decision rules are given by

t o > 2.
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The group sizes can in fact be computed explicitly to within ±1 by equating the probability 

of observing a positive test result to 1/2. For the 5-situation this gives

log 1/2
log?

and in the 5-situation

1 
2
log (1 /2  (1 +  ?m)) 

log?

In either case the size o f the next test group will be the integer value just less than or just 

greater than the relevant value of x given above.

6.1.7 Optimal Algorithm

Finally, consider the optimal non-mixing algorithm which classifies the population using 

the smallest possible expected number of tests. Sobel and Groll (1959) used the principle 

o f optimality from dynamic programming to derive the following recursive equations for 

determining the size of the test groups at each stage.

¿ ( M )  =  1

¿ ( ” ,0) = arg ( imin^{?xA ( n - x , 0 )  + ( l - ? a:)A(ri,a;)}^

1 -  qx 
1 -  qm

=>• x
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A(n,m) =  argl min
\ l < i c < m —1

q"
A(n — x, m — x) + A (n ,z ) j

m > 2.

An alternative method for determining the sizes of groups for the optimal algorithm was 

given by Hwang (1976) who observed that a non-mixing algorithm is equivalent to repeat-

edly searching for the first defective in a population of units which, as was seen in Section 

3.3, may be considered as an alphabetic tree search. The optimal solution for alphabetic 

search trees, solved by Hu and Tucker (1971), is given by a “bottom-up” construction 

method and requires less computing time than the above recursive equations.

6.2 Expected Number of Tests

The expected number of tests has been previously investigated for all of the algorithms be-

ing studied here. However, to complement the following investigation of these algorithms, 

Table 6.1 gives the expected number of tests for various values of N and p.

Let R(n,m ) be the expected number of tests remaining when the current state of 

the experiment is S[n,m]. Then the recursion formulae given in [38] for computing the 

expected number of tests for several proposed algorithms are easily generalized for any

non-mixing algorithm. For an algorithm given by A{n, m), n =  1 , . . . ,  N; m =  0 ,2___ _ n,

these formulae are

72(1,0) =  1

72(n,0) = l +  / ( n’°)72(n- A(n,0),0)+ (l —/ ( ra’0)) 72(n, A(n, 0))

QA (n ,m )  _  m  i _  a A (n ,m )

R(n,m ) =  1H-------i _ qm---- R(n ~ A (n ,m ) ,m -  A (n ,m ))+  — — — — R(n, A(n, m))
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n =  1 ,..  .,1V; m — 2 , . . . .  n.

These formulae were used to obtain the entries in Table 6.1. For s-stage pooling algorithms 

(5 =  2, 3,4) the group sizes were taken to be

k{ — I = 1 , . . . ,5

which were shown by Patel (1962) to be approximately optimal. For the stepwise al-

gorithms the optimal group sizes given in Table 5.1 were used. Where these grouping 

schemes were not exactly achievable, group sizes were taken to be as close as possible to 

the optimal in such a way that the sizes of groups in any stage differ by at most one, and

the relevant expressions for A(n, m) were adapted accordingly.

Algorithm p =  0.01
N =  50 
p =  0.05 p =  0.1 p = 0.01

N =  100 
p =  0.05 p = 0.1

2-stage pooling 9.735 20.904 28.794 19.470 41.807 57.568
3-stage pooling 6.496 17.710 26.382 12.992 35.059 52.848
4-stage pooling 5.748 16.687 25.949 11.495 33.373 51.897
2-stage stepwise 7.637 18.015 26.144 15.181 36.031 52.288
3-stage stepwise 5.447 16.192 25.487 10.588 32.385 50.973
4-stage stepwise 4,927 16.199 25.807 9.853 32.398 51.613
Stepwise bifurcation 4.932 16.335 25.807 9.893 32.670 51.613
S & G bifurcation 4.263 16.190 29.920 8.402 35.164 66.707
Entropy 4.253 14.676 23.835 8.428 29.112 47.459
Optimal 4.243 14.555 23.750 8.320 28.959 47.375

Table 6.1: Expected number of tests of algorithms

The general conclusions to be drawn from Table 6.1 are that, in the tabulated range, 

stepwise algorithms outperform pooling, and for both cases more stages are better. The 

stepwise bifurcation algorithm, as was seen earlier, performs almost as well as the best of 

the other stepwise algorithms. S & G bifurcation performs well when p is small, but for
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larger p performs worst of all. It is particularly interesting that entropy performs very 

nearly as well as the optimal algorithm throughout. Since the test group sizes can be 

calculated explicitly for the entropy case, entropy provides an excellent alternative to the 

optimal procedure which is computationally much more expensive to implement.

6.3 Probability Distribution Function

The number of tests required to classify a population of size N using a particular algorithm 

can be summarized by the probability distribution function (p.d.f.) of the number of tests. 

Let X (n ,m )  be the number of tests remaining when the current state of the experiment 

is 5[n, m]. Then the p.d.f. is given by

prob (X (N ,  0) =  xj  * =  0 ,1 , . . . ,  (6.1)

(in fact X (n ,m ) is fixed and determined by which of the units are defective and which 

non-defective; the probabilities in the p.d.f. are with respect to the prior probability 

distribution on the population which in this case is binomial).

For some algorithms expressions are obtainable for the p.d.f., but except in the very 

simplest cases these are complicated and their derivations lengthy. Therefore recursive 

formulae will be obtained which give the p.d.f. for any non-mixing algorithm (for many 

algorithms these are in fact easier to compute than the expressions themselves).

Theorem 6.1

The p.d.f. of the number of tests required to classify a population using the non-m i x ing
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algorithm A(n, m), n =  0 , . . . ,  TV; m =  0 ,2 , . . . ,  n is given by the recursive equations

prob ( x ( 0 , 0) =  x'j = <
1 for x =  0

0 for x ^  0

prob (x ( n ,  0) =  a;) =  qA(nfi) x prQ  ̂ ( j f (n  — A(n, 0), 0) = x -  l )

+  ( 1 — gA("’0)) x prob (x (n ,  A (n ,0 )) =  x — l )

prob (x ( n ,m )  =  x)
qA(n,m) _qm

=  ---- -------—---- X prob yX(n — A(n, m), m — A(n , m)) — x — l )

1 _  qA(n,m)
+  — -------——  X prob A(n , m )) =  x — 1J

n =  1 ,.. . ,N ; m =  2 ,. .

Proof

Suppose there are n units still unclassified. Consider first the U-situation, 5[n, 0]. In 

this case the next test group will be of size ^ (n ,0 ). If this test is negative then the state 

o f the search will be 5[n -  A(n, 0), 0], whereas if the test is positive it will be 5[n, A(n , 0)]. 

In either case one extra test will have been performed, and so conditioning on the outcome 

o f this test gives

prob ( x (n ,  0) =  x) =  prob (next test negative) x prob (  X(n,  0) =  x\ next test negative) 

+  prob (next test positive) x prob ( X(n,  0) =  x \next test positive)

=  qA(n'0) X prob (X (n  -  A(n, 0), 0) =  x -  l )
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+ ( l  — g^(n-°) ) x prob (x (n ,  A(n, 0)) =  x — l )  . (6.2)

Consider now the _D-situation 5[n, t o ], t o  > 2. The next test group will then be of size 

A(n,m). If this test is negative then the state of the search will be 5[n — A(n,m ),m  — 

A (n ,m )], whereas a positive test will give S[n, A(n,m)\. Conditioning on the outcome of 

this test gives

prob ( x ( n  , m) =  z )  =  prob (next test negative) X prob ( X(n, m ) =  x\ next test negative) 

+  prob (next test positive) x prob ( X (n ,m )  =  x| next test positive)

qA(n,m) _ q m
=  —  ---- ——  x prob ( X (n — A(n,m ),m  — X (n, t o )) =  x — l )

1 _  q A (n ,m )
+  ..X p r o b [ l ( B , i ( B , » i ) ) = i - l )  . (6.3)

Combining (6.2) and (6.3) with the obvious fact that zero tests are required to classify 

zero units completes the proof.

When implementing these recursion equations, computing time may be reduced by 

including the extra equation

prob (x (n ,  t o ) =  x'j =  0 Vz < 0.

Figures 6.1 —  6.10 show the p.d.f. of the number of tests required by the algorithms 

being considered to classify a population of 50 units for various values of p.

Note that as p increases the p.d.f.s of pooling and stepwise algorithms appear to tend 

towards a normal-shaped curve. This is due to the fact that these algorithms involve
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partitioning the population into groups, and the total number of tests is then the sum of 

the number of tests in each group. Therefore, since larger p leads to smaller groups, and 

thus to a larger number of groups for a fixed population size, the p.d.f.s should, by virtue 

of the Central Limit Theorem, approach normality as p increases.

Another interesting feature of some of the figures is the occurrence of large peaks 

at equal intervals and other patterns such as an accompanying high value just before 

or just after each peak. This is again due to the grouping nature of the algorithms. 

Algorithms generally involve choosing groups which have a good chance of containing no 

defectives since this achieves savings in tests. Groups containing no defectives are classified 

immediately whereas groups containing defectives require further testing, the amount of 

which is variable. The peaks therefore correspond to the number of groups which are 

tested negatively.

The p.d.f. may be used to obtain the cumulative distribution function (c.d.f.). This is 

given by

prob (X(N,  0) < cj c — 0 ,1 , ___

This is o f particular interest since it allows computation of the probability of requiring 

less than some given number of tests. Table 6.2 shows, for various values of c, the prob-

ability of requiring no more than c tests to classify 50 units using each algorithm for 

p =  0.01, 0.05, 0.1.

As well as illustrating their comparative performances, Table 6.2 also shows two im-

portant properties of the tabulated algorithms. Firstly, the table shows the probability of 

requiring no more than 50 tests which, since the population is of size 50, corresponds to 

the probability of requiring no more tests than would have been used had the units been
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c
Algorithm P 10 20 30 40 50 60 70 80

0.01 0.6050 0.9248 0.9925 0.9996 1.0
2-stage pooling 0.05 0.0769 0.5978 0.9466 0.9981 1.0

0.1 0.0 0.0911 0.6042 0.9656 0.995 1.0
0.01 0.6172 0.9562 0.9993 1.0

3-stage pooling 0.05 0.1183 0.6674 0.9606 0.9989 1.0
0.1 0.0 0.1618 0.7611 0.9871 0.9999 1.0
0.01 0.8144 0.9909 0.9999 1.0

4-stage pooling 0.05 0.1669 0.7385 0.9765 0.9995 1.0
0.1 0.0180 0.2532 0.7235 0.9655 0.9989 1.0
0.01 0.7187 0.9549 0.9887 0.9993 1.0

2-stage stepwise 0.05 0.1336 0.6657 0.9543 0.9981 1.0
0.1 0.0052 0.2035 0.7492 0.9810 0.9998 1.0
0.01 0.8521 0.9922 1.0

3-stage stepwise 0.05 0.2603 0.7371 0.9723 0.9994 1.0
0.1 0.0052 0.2491 0.7663 0.9809 0.9997 1.0
0.01 0.8697 0.9923 0.9999 1.0

4-stage stepwise 0.05 0.2696 0.7365 0.9705 0.9992 1.0
0.1 0.0192 0.2577 0.7306 0.9676 0.9990 1.0
0.01 0.8698 0.9915 0.9999 1.0

Stepwise bifurcation 0.05 0.2756 0.7106 0.9611 0.9985 1.0
0.1 0.0192 0.2577 0.7306 0.9676 0.9990 1.0
0.01 0.9111 0.9964 0.9999 1.0

S & G bifurcation 0.05 0.2814 0.7280 0.9316 0.9920 0.9994 0.9999 1.0
0.1 0.0344 0.2325 0.5334 0.8194 0.9546 0.9921 1.0
0.01 0.9109 0.9975 0.9999 1.0

Entropy 0.05 0.2826 0.7911 0.9822 0.9993 1.0
0.1 0.0097 0.3256 0.8277 0.9849 0.9995 1.0
0.01 0.9109 0.9984 1.0

Optimal 0.05 0.2799 0.7958 0.9847 0.9994 1.0
0.1 0.0137 0.3380 0.8333 0.9857 0.9996 1.0

Table 6.2: Probability of requiring no more than c tests for a population of size 50
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tested individually. It is seen that, over the tabulated range, this probability is at least 

0.995 for all algorithms except S & G bifurcation which has a nearly 5% chance of failing 

to achieve savings in tests when p =  0.1. Secondly, by finding the value of c for which the 

probability of requiring no more than c tests is almost unity (e.g. to the degree of accuracy 

used in the table), the maximum number of tests likely to be required by an algorithm is 

observed. In fact most algorithms could theoretically require many more tests than this, 

but the probability of this is very small.

The overall conclusions to be drawn from Table 6.2 are similar to those for the expected 

number of tests, namely that stepwise algorithms are generally superior to pooling, both 

of which perform better with more stages; S & G bifurcation performs well for very small p 

but badly as p increases; and entropy provides a good alternative to the optimal algorithm.

6.4 Variance

An experimenter may also wish to have knowledge of the variability of the number of 

tests required. Low variance of the number of tests would be advantageous since this 

would lead to greater consistency in the number of tests required from experiment to 

experiment which could be of use in the planning of an experiment. Also, it was seen 

in the previous section that the p.d.f.s of some algorithms tend towards normality as 

the number of groups increases, and so knowledge of the variance and the mean would 

allow predictions o f properties of these algorithms by using a normal approximation. The 

variance o f group testing algorithms was briefly considered in [38] for very small problems 

by considering the number of tests required for all possible outcomes, but this is clearly 

not plausible for larger problems since the number of combinations of defective and non-
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defective units is 2N. It would of course be possible to use the recursive equations from the 

previous section to obtain the p.d.f. and thus compute the variance, but it will be more 

efficient to derive recursive equations for computing the variance itself. This will be done 

by considering group testing as a binary search tree. A binary search tree is as defined in 

Chapter 2 except that each test can only have two possible outcomes and therefore each 

inner node has only two branches descending from it. A general result for the variance of 

binary search trees will first be obtained.

Define the length of a leaf to be the number of tests performed along the path from 

the root to the leaf. Now consider a binary tree, T say, which has n leaves with lengths 

hihi- • ■ Jn, and let pt be the probability that a search through T terminates at the ¿th leaf 

(¿ =  1 ,2 , . . . ,  n). Then the average length of a search through T, l say is

n

f ^ ; Pi li
l — l

and the variance of the length o f a search through T, V  say, is

t = l

Now, let p(ll and p be the respective probabilities that a search follows the left or right 

branch from the root of T, and let 7} and Tr be, respectively, the left and right subtrees 

descending from the root. Therefore, after the first test, a search is performed through 7} 

with probability pW and through Tr with probability p̂ r\

Suppose that 7} and Tr have ni and nr leaves respectively (so that rq +  nT — n ) and 

let the lengths of these leaves be l[l\ . . . ,  1$ for 7) and l[r\ l%\ . . . ,  /j£  for Tr. Finally,
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( r )p\ ’ be the probability that a search through Tr terminates at the zth leaf of Tr . Then the

-(/) -(r)average length of searches through TJ and Tr, l and l say, are

let p'P be the probability that a search through T\ terminates at the ith leaf of Ti, and let

The variance o f searches through 7} and Tr, Vi and Vr say, are

v; = £ p ? ( i ï ) - t ,)) 2 = £ p ï )t f - ? )2-,
i=1 ¿=1

Vr = f > ! r) (4r) -  i1'1)2 = X>Sr)4r)2 -  4'12
1=1

r y

¿=1

We shall now establish relations between the tree T and its subtrees T; and Tr.

The probability that a search through T terminates at the ¿th leaf of Ti is p ^ p f  \ and 

the probability of terminating at the ith leaf of Tr is p^p^K  The number of tests in these 

cases would be +  1 and l\r  ̂ +  1 respectively. Therefore,

1 =  ^ P i h
i=i
ni n r

= E A f ) (4° + i) + Ep(rMr)(4r) + 1)
¿=1 ¿=1

=  p W p + p ^  + i.
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v = (ii-1)2
i—1

= E p (,)p S° (4°  + 1  -  t)2 + (/,« + 1  -  z)2
¿=i ¿=1

= + i + 72 + 2/f)-2/?)7-27)
*=1
Tlt _

+  f > (rM r) (/¡r) + 1 + f  + 2l\r) -  2/ir)7 -  27)
2=1

=  p (1) (vi +  7(° 2 +  l +  72 +  27(0 -  27(07 -  27̂ )

+  p(r) (v r + 7(r)2 +  l +  72 +  27w  -  27(r)7 -  27̂ )

=  p (0 (v , +  (7(i) +  l  -  7)2)  +  PM ( k  +  (7(r) +  i -  / ) 2)  • (6.4)

Now, a binary group testing algorithm may be represented by a binary search tree 

with inner nodes corresponding to the current state of the search (as given by S[n,m}) 

and the size of the next test set, and with branches corresponding to the outcomes of 

the tests. At each node let the left branch correspond to a negative test result, and the 

right branch to a positive test result. The leaves of the tree will correspond to the final 

classification of all units in the population. Let V(n, t o ) be the variance of the number of 

tests remaining when the current state of the experiment is S[n,m\. By considering the 

tree representation of an algorithm the following result will now be proved.

Theorem 6.2

The variance of the number of tests required to classify a population using the non-

The variance of the length of a search through T  is then
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mixing algorithm A(n,m), n =  0 , . . . ,  TV; m =  0,2, ...,ra  is given by the recursive 

equations

V (1 ,0 ) =  0

F (n ,0 ) =  qtB (V  (n -  i s ,0 )  +  (R(n  -  tB, 0 ) +  1 -  R(n,  0 ))2)

+  ( l - g ifl) (V {n,tB) + (R(n ,tB) + l - R ( n , 0 ) f )  (6.5)

q̂ D _q'rn / v
V (n ,m ) =  - y — ( F (n -  tD,m -  tD) + (R(n -  tD, m - t D) +  1 -  R(n ,m))2J

+ i  _  qqm (ra’ +  (-^ (ra’ p̂ ) +  1 ~ -R (ft; ra))2) (6.6)

where ts  = A(n, 0) and =  A(n,m ) are the sizes of the next test group given by the 

algorithm when the current state of the experiment is S[ra, 0] and 5[n, t o ] respectively, and 

R(n,m ) is the expected number of tests as defined in Section 6.2.

Proof

Consider first the ^-situation S[n,m], m > 2. In this case the size of the next test 

group will be to  =  A(n,m).  With probability

the test will be negative, in which case the left hand branch is followed from the node 

corresponding to 5[rc, t o ], leading to the subtree with root 5'[n -  ic , t o  -  tD\. With prob-
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ability

1 -  qtD 
1 -  qm

the test will be positive, in which case the right hand branch is followed leading to the 

subtree with root S[n, tB\. Using (6.4) V(n,m)  may therefore be expressed in terms 

of the variance and expected number of tests of the subtrees descending from the node 

corresponding to S[n,m], which gives the result in (6.6).

Now consider the 5-situation 5[n,0]. In this case the next test group will be of size 

tB =  A(n, 0). With probability qiB the test will be negative, in which case the left hand 

branch is followed from the node corresponding to S[n, 0], leading to the subtree with root 

S[n — i# ,0 ]. With probability 1 — qtg the test will be positive, in which case the right 

hand branch is followed leading to the subtree with root 5[n ,tg]. Using (6.4) U (n ,0) 

may therefore be expressed in terms of the variance and expected number of tests of the 

subtrees descending from the node corresponding to S[n, 0], which gives the result in (6.5).

Finally, if there is only a single unclassified item, then exactly one further test is 

required to complete the classification, and so U (1,0) =  0, which completes the proof.

Table 6.3 gives the variance of the number of tests required by each algorithm to 

classify a population of N  units for various values of N and p.

Table 6.3 shows that the optimal and entropy algorithms generally have low variance, 

particularly for small p. The variance of algorithms with a small number of stages seems 

to be fairly constant for varying p, whereas the variance of more sophisticated algorithms 

seems to increase with increasing p. Note that S & G bifurcation has an extremely large 

variance as p increases —  about three times as large as the highest of the rest when 

N — 100 and p =  0.1.
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Algorithm p =  0.01
N = 50 
p =  0.05 p =  0.1 p =  0.01

N =  100 
p — 0.05 p =  0.1

2-stage pooling 42.46 41.00 39.24 84.91 82.00 82.38
3-stage pooling 36.66 46.65 35.12 73.32 95.92 66.79
4-stage pooling 26.35 40.35 60.32 52.70 80.70 120.65
2-stage stepwise 49.44 46.34 43.31 76.64 92.69 86.62
3-stage stepwise 22.90 49.22 48.16 54.85 98.44 96.32
4-stage stepwise 27.85 49.88 59.57 55.70 99.76 119.15
Stepwise bifurcation 28.22 57.71 59.57 56.44 115.42 119.15
S & G bifurcation 20.29 78.41 133.79 51.13 201.71 360.33
Entropy 20.04 43.79 48.31 41.22 89.05 97.94
Optimal 19.78 43.28 48.31 48.84 88.39 97.83

Table 6.3: Variance of the number of tests of algorithms

6.5 Worst Case Number of tests

An important property o f any algorithm is the maximum number of tests that may be 

required. This was partially discussed in Section 6.3 where Table 6.2 was used to find 

the value of c such that the probability of requiring more than c tests is approximately 

zero. However, the probabilities in Table 6.2 were obtained using the assumption that 

each unit in the population has an independent probability p of being defective where p 

is known. In practice however, it is more likely that an estimate of p will be used. If 

this estimate overestimates p then Table 6.2 may be used to obtain an upperbound to the 

maximum number of tests likely to be required. If on the other hand p is underestimated 

then the maximum number of tests could be much greater than indicated by Table 6.2. 

It would therefore be useful to know the maximum number of tests which could possibly 

be required (the worst case number of tests). Now since savings in tests are achieved only 

when negative group tests are performed, the worst case situation occurs when all tests 

are positive. This may be used to obtain recursive formulae for the worst case number of 

tests as follows.
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Theorem 6.3

Let WC(n,m)  be the worst case number of tests required to classify a population of 

n units of which m form a defective set. Then W C (n ,m ) for the non-mixing algorithm 

A(n, m), n =  0 , . . . ,  N; m =  0 ,2 , . . . ,  n is given by the recursive equations

tT C (0 ,0 ) =  0

WC(n,m)  -  1 +  WC(n, A(n, m)) n =  l , . . . , lV ;  m =  0 ,2 , . .  .,ra.

Proof

The first o f the above equations is trivial since zero tests are required to classify zero 

units. For the case where n units are unclassified of which m form a defective set, note 

that the next test group will be of size A(n,m ) and in the worst case situation this test 

will be positive. Therefore, after performing this test n units will remain unclassified of 

which A(n , m) will form a defective set, and therefore the worst case number of tests after 

performing the next test will be WC(n,A(n,m)).  This leads to the second equation.

Table 6.4 shows the worst case number of tests for each algorithm for various values 

of N  and p.

Comparing Tables 6.4 and 6.1 it is seen that algorithms which have a low expected 

number of tests have poor worst case properties (with the exception of S & G bifurcation 

which is uniformly worst in terms of the worst case number of tests). This is due to the fact 

that algorithms which are better in terms of the expected number of tests generally have 

more sophisticated grouping schemes which involve splitting defective groups into smaller 

and smaller groups, and as was mentioned in Chapter 4, in the worst case situation all units

100



Algorithm p =  0.01
IV =  50 
p =  0.05 p =  0.1 3̂ II O o h-4

N =  100 
p =  0.05 p — 0.1

2-stage pooling 55 60 63 no 120 125
3-stage pooling 62 74 86 124 144 175
4-stage pooling 76 92 92 152 184 184
2-stage stepwise 97 93 90 193 186 180
3-stage stepwise 98 96 92 197 192 184
4-stage stepwise 99 96 94 198 192 192
Stepwise bifurcation 99 97 94 199 194 188
S & G bifurcation 243 243 243 580 580 580
Entropy 241 189 146 541 389 296
Optimal 243 192 148 580 392 298

Table 6.4: Worst case number of tests of algorithms

are eventually tested individually and therefore, in this case, the fewer tests performed 

on groups of more than one unit the better. Therefore, if the estimate of p might not 

be accurate, and in particular if the number of defectives could possibly be much larger 

than expected, then one should be wary of using more sophisticated algorithms such as 

optimal or entropy, and consider instead reducing the expected number of tests by using 

more stages and/or stepwise algorithms.

6.6 Sensitivity Analysis

The investigations of algorithms carried out so far have been under the assumption that p 

is known exactly. In the likely case that p is not known, the question arises, “how robust 

are the algorithms to inaccurate estimation of pV'. Figures 6.11— 6.19 give sensitivity 

curves showing the expected number of tests required against the true value of p when 

group sizes are obtained using various inaccurate estimates of p (no curve is shown for S & 

G bifurcation since this algorithm doesn’t use knowledge of p to obtain each group size). 

Selected points from these curves are shown in Table 6.5.
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F igu re  6.11 S en s itiv ity  p lo t o f 2 -s tage  g roup  tes ting  a lgo rithm  F igu re  6 .1 2  S en s itiv ity  p lo t o f 3 -s tage  g ro u p  te s tin g  a lgo rithm  F igure  6 .13  S e n s itiv ity  p lo t o f 4 -s tage  g ro u p  te s tin g  a lgorithm

True value of p

F igu re  6 .17  S en s itiv ity  p lo t o f s tepw ise  b ifu rca tion  a lgo rithm
True value of p

F igu re  6 .18  S ens itiv ity  p lo t o f e n tro p y  a lg o rith m

True value of p

F igu re  6 .19  S en s itiv ity  p lo t o f o p tim a l a lg o rith m



Estimate True value of p
Algorithm of p 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5

0.01 19.47 49.81 74.74 89.97 98.99 107.05 109.36 109.89
2-stage pooling 0.05 24.71 41.81 59.64 74.06 85.59 101.75 111.19 116.25

0.1 28.70 42.48 57.57 70.50 81.48 98.42 109.88 117.19
0.01 12.99 39.94 62.00 77.63 89.49 105.75 115.19 120.25

3-stage pooling 0.05 16.25 35.06 54.44 70.22 83.23 103.15 117.32 127.47
0.1 27.98 39.45 52.85 65.26 76.76 97.25 114.76 129.69
0.01 11.50 35.53 57.21 73.67 86.86 106.88 121.23 131.73

4-stage pooling 0.05 16.53 33.37 51.90 68.08 82.33 106.20 125.32 140.84
0.1 16.53 33.37 51.90 68.08 82.33 106.20 125.32 140.84
0.01 15.18 42.23 66.60 84.14 97.36 116.57 130.91 143.00

2-stage stepwise 0.05 18.72 36.03 54.60 70.35 83.81 105.51 122.35 136.10
0.1 23.56 37.04 52.29 65.95 78.21 99.18 116.33 130.62
0.01 10.59 34.81 57.26 75.11 90.06 113.97 132.36 147.09

3-stage stepwise 0.05 13.32 32.38 52.30 69.04 83.46 107.38 126.69 142.64
0.1 19.87 34.49 50.97 65.71 78.92 101.55 120.12 135.53
0.01 9.84 34.11 56.43 74.23 89.19 113.54 132.93 148.86

4-stage stepwise 0.05 13.29 32.40 52.57 69.64 84.33 108.52 127.73 143.40
0.1 16.49 33.20 51.61 67.74 81.98 105.97 125.38 141.34
0.01 9.89 35.34 58.00 75.96 91.03 115.46 134.73 150.40

Stepwise bif. 0.05 11.88 32.67 53.99 71.70 86.82 111.61 131.28 147.31
0.1 16.49 33.20 51.61 67.74 81.98 105.97 125.38 141.34
0.01 8.43 33.51 63.42 92.55 121.23 177.61 232.93 287.23

Entropy 0.05 12.04 29.11 50.66 72.16 93.52 135.59 176.57 216.31
0.1 18.08 31.08 47.46 63.82 80.13 112.33 143.61 173.55
0.01 8.32 34.00 64.06 93.54 122.72 180.57 238.03 295.28

Optimal 0.05 11.57 28.96 50.28 71.28 91.89 131.85 170.25 207.51
0.1 18.01 30.98 47.38 63.73 79.99 112.06 143.22 173.09

Table 6.5: Expected number of tests to classify 100 units when p is incorrectly estimated

The table and figures show that savings in the expected number of tests are still 

achieved even for reasonably large inaccuracies in the estimate of p. When p is estimated 

to be 0.01 all algorithms require on average less tests than one-by-one testing for true 

values of p up to 0.15, and for true p up to 0.2 when the estimate is 0.05 or 0.1. The 

pooling and stepwise algorithms seem to be more robust than optimal and entropy which 

cease to be the best algorithms when the true value of p is 0.1, 0.15 and 0.2 for estimated
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values o f 0.01, 0.05 and 0.1 respectively.

As the true value of p becomes larger the simpler algorithms with fewest number of 

stages become the best. Therefore, if it is thought possible that the true value of p could 

be much larger than estimated, then pooling and stepwise algorithms should be preferred, 

thus reiterating the conclusion from the previous section.
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Part III

ADDITIVE GROUP TESTING
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Chapter 7

Additive Group Testing

The additive group testing model provides an interesting and potentially useful problem 

which has received very little attention in the group testing literature. For this model each 

unit has some effect associated with it, and the response from a group test is the sum of the 

effects o f the units in the group. It is assumed that the population consists of ineffective 

units whose effects are constant and known (and which without loss of generality will be 

taken here to be zero), and effective units which have some larger effect. The aim of the 

experiment is to detect the effective factors.

Suppose the population is of size N and for i =  1 ,.. . ,N  let /?,■ be the effect of the ¿th 

unit. Then the following assumptions define the additive group testing model which is to 

be considered.

1. Each unit is effective with probability p and ineffective with probability q =  1 — p 

where p is known.

2. All units are independent.
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3. ^  =  0 if the ¿th unit is ineffective, Pi > 0 if the ith unit is effective.

4. Any group of units may be tested together.

5. The response from a test on a group of units is given by X^Group A-

6. There are no errors in observations.

There is again also the implicit assumption that p is small. Although this is not 

necessary to achieve savings in the expected number of tests as it was for the binary case, 

greater savings are made for smaller values of p.

It is seen from Assumptions 3 and 5 that the response from a group test will be zero 

if all units in the group are ineffective, but positive if at least one unit is effective. As 

with the binary case it is not known which of the units from a positively tested group 

are effective, nor how many effective units there are. However, greater inferences may be 

drawn in the additive case since if a subgroup of a previously tested group is tested then 

the difference in the two responses gives the result for the complement of the subgroup as 

well, whereas in the binary case the result for the complement may only be inferred when 

the tested subgroup is non-defective.

Analogous to Definition 4.1, define an effective group to be a group for which the sum 

of the effects of the units within the group is known, but for which the sum of effects of 

the units within any proper subset of the group is not known.

Note that in Assumption 3 nothing further is assumed about effective units other than 

that their effects are positive. It is necessary that effective units have effects of the same 

sign since otherwise effects of equal size but with opposite signs would cancel each other 

out if tested together in the same group (this will be discussed more fully in the chapter
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on factor screening).

The model defined by the above assumptions was first considered in the group testing 

literature by Pfeifer and Enis (1978) who called it the modified binomial model. Although 

a binomial prior distribution is also assumed here, models with an additive response are 

of general interest whatever prior is assumed, and hence such models will be referred to as 

additive group testing, and the particular case being considered here as binomial additive 

group testing. An alternative additive group testing model which has been previously 

investigated (e.g. Sobel (1968)), but which is not considered here, is the case where the 

effects o f effective units are constant and known. This problem is known as hypergeometric 

group testing since a group test reveals the exact number of effective units in the group.

Pfeifer and Enis (1978) investigated the properties of a 2-stage pooling algorithm. 

As with the binary case this algorithm involves testing groups of units and then testing 

individual units within effective groups. In the additive case however it is only necessary 

to test individual units until all the effective units have been found, since at this point the 

cumulative sum of individually tested units will be equal to the sum of the whole group, 

and so it can be inferred that the rest of the group is ineffective.

This algorithm belongs to the class of hierarchical models defined by Hwang, Pfeifer 

and Enis (1981), the distinguishing feature of which is that two units can be tested together 

in a group only if they have identical test histories, i.e. if each previously tested group 

either contained both of them or neither of them. Hwang, Pfeifer and Enis (1981) solved 

the optimal hierarchical algorithm by showing that the defining recursive equations of the 

optimal procedure may be expressed in a certain form which Glassey and Karp (1976) 

showed is solved by the power-of-two rule. This is a simple tree construction method
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which begins by testing the whole population and then partitions all subsequent effective 

groups of size n into subgroups of size k and n -  k, where k is the unique power o f 2 

satisfying n /3  < k < (2n)/3.

In this chapter pooling algorithms with more than two stages will be considered. Al-

though an explicit and simple expression is available for the optimum algorithm, pooling 

algorithms are still of interest as they offer certain practical advantages. In particular, 

each unit may need to be included in approximately 1 +  log2 N group tests when using 

the optimal algorithm compared with just ¿ group tests for an ¿-stage pooling algorithm. 

Moreover, if there are any effective units in the population then at least one unit will 

be tested at least log2 N times when using the optimal algorithm. Although this may 

often not be a problem, in some cases it may be undesirable to test any single unit too 

many times, for example blood testing or where testing is destructive. Other advantages 

include ease of implementation and allowing simultaneous testing of independent groups 

by different experimenters.

7.1 Multi-Stage Pooling Algorithms for Additive Group 

Testing

As for the binary case, an ¿-stage pooling algorithm involves partitioning the population 

into g\ lst-order groups of size k\. For ¿ = 1 ,2 ,  . . . , s  — 1, each ¿th-order group of size ki 

is partitioned into gi+1 groups of size where gn =  and kn =  1 (i.e. the highest 

order groups are of size 1). For the following analysis it will be assumed that this grouping
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scheme is exactly achievable so that

9i+1 ̂ ¿+1
N for i — 0

<
ki for i — 1 , . . . ,  s — 1.

(7.1)

In practice if this is not the case then group sizes may differ in size by one.

To compute the expected number of tests of an s-stage pooling algorithm the following 

result will be used.

Lemma 7.1

Suppose that a group of k units, each of which is independently ineffective with proba-

bility r, is tested with a positive result so that the sum of the effects of the units is known. 

If the units are then tested individually until the whole group has been classified, then the 

expected number of tests required, TA(k,r)  say, is

TA(k,r) k — 1
r2(l „k— 1 >

(7.2)

Proof

Let the k units be arbitrarily ordered and define indicator functions

Ii =
1 if ¿th unit is effective 

0 if ¿th unit is ineffective
i =  1 ,2 , . . . ,  A;.

Now when testing the units individually, the cumulative sum of the effects of tested units 

will be equal to the sum for the whole group when all effective units in the group have 

been tested, but less than this if any effective units remain untested. Furthermore, the
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kth unit will never need to be tested since its effect can be obtained by subtracting the 

sum of the effects of the first k — 1 units from the sum for the whole group. Therefore, for 

i =  1 ,2 , . . . ,  k — 1, the ¿th unit is tested if and only if the first (i — 1) units do not contain 

all the effective units, i.e. if and only if

i — 1 k
E h  *  E h
i=l i= 1

y  ij ^ o.
j= i

Therefore the expected number of tests is given by

Ai—1
TA(k,r) =  y  prob(fth unit tested)

t=i

Ai—1 /  k
prob ^  Ij #  0

3=1 \ j = *
E J3 Ï  °
3=1

(recalling that the group is effective)

Ai—1

E
i=1

prob (e *=i I j ?  » 1 E j= i  I 3  Î  O) Prob ( E U  I3 t  0)

prob ( Z U  J3 +  0

^  ̂  ̂ _ rpk

(using Bayes Theorem)

1 — rk
r2 1̂ — rk 1 j

1 — r

thus proving the lemma.
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The expected number of tests, Ra ($) say, required by an s-stage pooling algorithm for 

the additive model can now be derived. In the first stage all lst-order groups are tested, 

thus requiring g\ tests. For i — 1,2,. . . , 5  — 1, the (i +  l)th  stage consists of testing the 

(i +  l)th-order groups within effective ¿th-order groups found in the previous stage, thus 

by definition requiring an average of T^igi+i, qk,+1) tests per effective ¿th-order group. 

Since there are in total N/ki ¿th-order groups, each with prior probability (1 — qki) of 

being effective, the expected number of tests required in the (i + l)th  stage is

^ ( l - q ki)TA (g i+1, q k« i )  i =  1 , 2 , . . . , « - 1 .

Therefore the total expected number of tests is given by

S — 1 N .
Ra (s) = 5i +  E t t ( i - ^ ) TA(gi+uqki+1)

i=l K i

5 — 1
, V- N  M k s 1 /

~ 91 ^  kt 9 \  -  qki+i3i+i (^ t+1
q 2 k i + — q ^ i + i i d i + i  1)^N

1 — ĝ *+i

(using (7.2))

5 — 1
=  9 1 + N J 2

i = \

1 1 \ 1 g2̂ >+i(l _  qki+i(st+i-11)
ki+i k{J k{ i -  qk,+i (using (7.1))

, AT( i  1 1 92*<+i ( 1  -  gfc.+i(si+i-i))'

**+ l — 2
(since ks =  1)

-  N '  ̂ y-i 1 q2ki+1( l  — q(ki fc>+i))\

v h i ki 1 ~ 9i,+1 /  ‘
(using (7.1))
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This clearly shows that pooling algorithms are always profitable in the additive case, 

whatever the value of p. Furthermore, the summation term within the brackets gives the 

average proportional saving achieved over one-at-a-time testing.

Table 7.1 shows, for various values of p, the optimal 2, 3 and 4-stage pooling algorithms 

and the corresponding expected number of tests per unit (the optimal group sizes were 

obtained using a computer search). It is seen that the proposed multi-stage algorithms 

require fewer tests on average then the 2-stage algorithm of Pfeifer and Enis (1978), with 4 

stages being better than 3. The savings achieved are largest when pis small. For example, 

for p =  0.1 the 4-stage scheme requires approximately 16% fewer tests on average than 

the 2-stage scheme, for p =  0.01 and p =  0.005 the savings are approximately 46% and 

54% respectively.

2 -stage 3-stage 4-stage
p k m h ,  h m ki, k2, h m

0.005 21 0.1006 56, 7 0.0568 100, 20,4 0.0464
0.01 15 0.1424 36, 6 0.0899 64, 16,4 0.0768
0.05 7 0.3169 16, 4 0.2537 27, 9, 3 0.2377
0.1 5 0.4429 9, 3 0.3849 12, 4, 2 0.3716
0.15 4 0.5353 9, 3 0.4868 12, 4, 2 0.4737
0.2 4 0.6096 6, 2 0.5680 8 ,4 ,2 0.5566
0.3 3 0.7223 4 ,2 0.6950 8 ,4 ,2 0.6878
0.4 3 0.8080 4 ,2 0.7876 8 ,4 ,2 0.7855
0.5 2 0.8750 4 ,2 0.8594 8 ,4 ,2 0.8589

Table 7.1: Group sizes and expected number of tests per unit for optimum pooling algo-
rithms when the response is additive

Pooling algorithms are compared to the optimal hierarchical algorithm in Table 7.2. 

The table shows the expected number of tests required to classify a population of 100 units 

for various values of p. The tabulated entries for the optimal algorithm were obtained 

using the recursive equations derived by Hwang, Pfeifer and Enis (1981). For the pooling
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p
2-stage 
pooling

3-stage
pooling

4-stage 
pooling

optimal

0.005 10.06 5.68 4.64 4.14
0.01 14.25 8.94 7.69 6.91
0.05 31.73 25.59 23.67 22.86
0.1 44.29 38.54 37.30 36.51
0.15 53.53 48.76 47.58 46.99
0.2 60.96 57.02 55.85 55.52
0.3 72.27 69.50 69.01 68.77
0.4 80.86 78.76 78.78 78.55
0.5 87.50 85.94 86.09 85.89

Table 7.2: Expected number of tests to classify 100 units using pooling algorithms and 
optimal algorithm

algorithms the optimal grouping schemes shown in Table 7.1 were used. Where these 

grouping schemes were not exactly achievable, group sizes were taken to be as close as 

possible to the optimal in such a way that the group sizes in any stage differ by at 

most one. It is seen that the multi-stage pooling algorithms are very efficient, with the 

percentage ratio o f the expected number of tests of the optimal algorithm to that of the 

4-stage algorithm varying from about 90% to about 99.75% over the tabulated range of p. 

The proposed multi-stage algorithms therefore offer efficient alternatives to the optimal 

algorithm with the practical advantages of pooling algorithms.
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Part IV

FACTOR SCREENING
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Chapter 8

Factor Screening with Unknown

Error Variance

A problem which arises in certain experimental situations is where the number of explana-

tory variables is large. In this case the number of runs required to model the relationship 

between the response variable and the input variables may lead to prohibitively expen-

sive experimental plans. For example, if there are 20 continuous input variables and it 

is required to estimate all main effects and two-way interactions then over 200 runs are 

required. This increases quadratically as the number of variables increases and is made 

worse when more complex models are considered, e.g. with non-linear effects and/or 

higher-order interactions. In the presence of test error extra runs are also required to 

estimate the error variance.

However, in many situations it may turn out that only a few of the explanatory vari-

ables actually have any real effect on the response. In such contexts factor screening may 

be used as a preliminary phase to an experiment in order to determine, or “screen out” ,

116



the important input variables, thus making subsequent experimentation more efficient 

and allowing the relationship between the response and the inputs to be studied in greater 

detail.

Suppose there are N factors each taking two levels and consider the first-order model:

N

y -  Po +  Y j  + e ( 8-1 )
j = i

where y is the response, /3o is a constant term, Xj — ±1  is the level of the jth  factor, ¡3 j 

is the effect of the jth  factor, and e ~  A (0 , ct2) is an error term. In factor screening it is 

not supposed that model (8.1) represents the true relationship between the response and 

the input factors, but only that it may be used to determine which factors are effective. 

Therefore, in practice, it is not necessary that (8.1) provides a good model of reality, but 

only that factors which are effective have a significantly non-negligible main effect when 

the model is fitted (this will be considered more specifically in the discussion of factor 

screening assumptions which follows). The model will however be assumed to be true for 

the development of the factor screening methods which follow.

Although a factor screening experiment considers factors at just two levels, continuous 

variables and factors with more than two levels may also be considered provided that the 

two levels used in the experiment are chosen in such a way that a change from one level 

to the other causes a significant change in the response for effective variables.

The idea of using group testing methods to find the effective factors in an experiment 

was first discussed by Watson (1961) (hereafter this paper will be referred to as WAT). By 

simultaneously varying the levels of groups of factors and observing whether or not this 

significantly affects the response, inferences may be drawn about the individual factors.
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Consider a two-stage group testing plan in which the population is partitioned into g 

groups of size k. For the purpose of the ensuing work it will be assumed that (8.1) 

provides an accurate model of reality and that the following assumptions hold. These 

assumptions are those given in WAT and have become generally standard in subsequent 

factor screening literature. Although the model defined by these assumptions is clearly 

impractical, it will be argued shortly that in practice factor screening may still be applied 

even if some assumptions do not hold.

(i) all factors have, independently, the same known prior probability p of being 

effective (with q — 1 — p),

(ii) effective factors have the same effect, A > 0,

(iii) there are no interactions present,

(iv) the required designs exist,

(v) the directions of effects of effective factors are known,

(vi) the errors of observations are independent normal with known variance a2,

(vii) N = gk where g is the number of groups and k is the number of factors 

per group.

There is also the implicit assumption that p is small which allows screening to be performed 

using fewer runs than designs which consider all factors individually.

The two-stage factor screening method proposed in WAT is as follows. Each factor is 

considered at two levels, Xj =  ±1 . By Assumption (v) we may define the upper level of a 

factor to be that which produces the largest positive response. The factors are divided into 

equal sized groups (by Assumption (vii) this division is exact). Each group is then treated 

as an individual factor, called a group-factor, taking two levels, the upper level when all

118



factors in the group are at their upper level, and the lower level when all factors in the 

group are at their lower level. A group-factor is said to be effective if varying the group- 

factor from one level to the other produces a non-zero change in the expected value of the 

response. Therefore, by assumptions (iii) and (v), a group-factor is effective if at least one 

factor in the group is effective, and clearly the converse is also true. The group-factors 

are run in an experiment and Assumption (iv) states that the required designs exist. The 

group-factors are then tested for significance and factors from significant groups are tested 

in a second stage. Those found to be significant are classified as effective.

In fact Assumptions (i)-(vii) are not as limiting as they appear but are mainly made 

in order to help the development and analyses of factor screening methods, as will now be 

discussed.

Assumption (i) is required to obtain the optimum group size. In practice the exact 

value of p may not be known and an estimate of the likely proportion of effectives would 

be used. The sensitivity analyses in Section 6.6 showed that group screening can still be 

profitable even if this initial estimate is inaccurate. Alternatively, methods for unknown 

pmay be used (e.g. Sobel and Groll (1966)). If it is not reasonable to assume constant p 

for all factors then different grouping schemes may be used, see for example Ottieno and 

Patel (1984).

Assumption (ii) is not in fact required but acts as an example of the size of effective 

factors which allows an analysis of the properties of factor screening methods, as will be 

seen in the following sections. In practice it is not necessary that the effects of effective 

factors be known beforehand, neither that they be equal since the methods discussed here 

make no use of A  in their implementation.
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Assumption (iii) prevents cancellation of effects within group-factors. Although in-

teraction effects cannot be estimated by factor screening methods, their presence should 

not necessarily prevent the detection of important main effects, provided that the sum of 

the interaction effects within a group do not cancel out the sum of the main effects. For 

discussions and investigations of this see Kleijnen (1987) and references therein. Alterna-

tively, interactions may be included in the model as if they were main effects (although 

this approach is not considered here).

The designs used when testing group-factors and individual factors in the 1st and 

2nd stages respectively will be the multifactorial designs of Plackett and Burman (1946). 

These are orthogonal designs which consider all factors at two levels, and have the property 

that all main effects may be independently estimated with the smallest possible random 

error for a given number of trials. Such designs are given in [35], or may be derived from 

Hadamard matrices. Plackett and Burman designs exist only when the number of factors 

in the experiment plus one is divisible by 4. When this is not the case an extra 1, 2 

or 3 runs will be required since the next largest design will be used. Assumption (iv) is 

included only to facilitate the ensuing analyses.

Assumption (v) enables the levels of factors to be chosen to ensure that no cancellations 

occur within a group. Such knowledge may be available from qualitative consideration 

of the system, but if this assumption doesn’t hold then factor screening should still be 

feasible since the optimal group sizes are such that most groups should contain 0 or 1 

effective factors, thus making cancellations impossible. Even when two or more effective 

factors do appear in the same group, cancellation will occur only in the pathological cases 

where the sum of the effects is approximately zero and thus masked by the experimental
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error. Therefore, although necessary in theory, group screening should still be effective 

without this assumption. This is supported by Mauro and Smith (1982) who carried 

out an investigation into the performance of two-stage group testing when the directions 

of the effects are unknown, and concluded that even in the worst case (i.e. an equal 

number of positive and negative effects all with the same magnitude), group testing still 

performs well. An important difference in the implementation of factor screening is that 

two-sided significance tests would be used without Assumption (v), one-sided tests with 

Assumption (v).

Assumption (vii) is only made to simplify the following analysis. It is not necessary in 

practice that groups be of equal size, and in particular, if the optimal group size does not 

divide the population size exactly then groups may differ in size by one.

The work in this chapter is concerned with Assumption (vi) which assumes that the 

error variance is known. In practice one would generally not expect to know the variance 

and so, in the light of the above discussion, this would appear to be the main assumption 

preventing factor screening from being a fully practical method. In fact, the analysis in 

WAT uses ¿-tests when testing significance and so Assumption (vi) may be weakened to 

requiring an independent estimate of a2 for each stage, but since both first and second 

stage designs are nearly or completely saturated, the usual estimates are not available. If 

the number of factors plus one is not a multiple of 4 then some extra degrees of freedom 

are available, but this is clearly not a satisfactory solution, giving at best 3 and at worst 

0 degrees of freedom to estimate a2. One possible approach would be to replicate each 

experiment as suggested by Kleijnen (1987), in which case the analysis would be as in WAT 

but with twice the number of runs. In the following sections two alternative methods are
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presented which require fewer runs than fully replicated group testing and yet are effective 

at detecting the important factors. In Section 8.1 split-experiment factor screening is 

introduced which involves splitting the factors into two batches and performing separate 

experiments for each batch, replicating in the first stage only and “swapping” the estimates 

of a2 in the second stage. In Section 8.2 a simpler approach using theory from unreplicated 

factorial experimentation is given. Throughout these sections it will be assumed that 

model (8.1) and Assumptions (i)-(vii) hold, except that Assumption (vi) is replaced by 

the following.

(vi; .) The errors of observations are independent normal with unknown

variance a 2.

8.1 Split-Experiment Factor Screening

We seek a factor screening method which allows estimation of <r2. One approach would 

be to carry on as usual but to replicate all observations in both stages. Savings in runs 

could be achieved however if the estimate of er2 used in the first stage could also be used in 

the second stage so that the latter would need no replication. However, if this were done 

then the usual /-statistic used in the second stage significance tests would no longer have 

a /-distribution since the factors tested in the second stage are from significant groups 

found in the first stage, and the first stage estimate of o 2 would have been used to test 

this significance. Split-experiment factor screening overcomes this problem and will now 

be defined.

The N  factors are divided into g groups of size k (optimum choice of k will be discussed 

later). The distinguishing feature of this method is that the groups themselves are split
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into two equal-sized batches, and factors and group-factors are only ever tested with factors 

and group-factors from the same batch. In the first stage each batch of group-factors is 

tested in a Plackett and Burman design (so that two separate experiments are carried 

out in the first stage) with replication r =  2. This enables all group-factor main effects 

to be unbiasedly estimated and provides for both batches independent estimates of the 

error variance, s\ and s\ say. For each batch g / 2 main effects plus a constant term are 

estimated using g +  2 runs and so s2 and s2 will both be based on <7/ 2 + 1  degrees of 

freedom. In the second stage, for each batch, factors from significant groups are run in an 

experiment, again using Plackett and Burman designs (so that the second stage consists of 

two experiments, one for each batch), but this time without replication. These experiments 

allow the main effects of all factors in the second stage to be unbiasedly estimated. To 

test these factors for significance ¿-tests are again used, factors in the first batch using s2 

as the estimate of <r2 in the denominator of the ¿-statistic, and factors in the second batch 

using s2. The numerators are clearly independent of the denominators in this case and so 

under the null hypothesis the ¿-statistics will indeed have ¿-distributions, all with <7/ 2 + 1  

degrees of freedom. Those factors found to be significant are classified as effective.

The number of effective and ineffective factors declared significant and the number of 

runs required will now be studied for this method. Since split-experiment factor screening 

consists essentially of two separate factor screening experiments (one for each batch), the 

properties of this method will be similar to that in WAT. The distribution of the above 

statistics is more complex here however since the same estimates of a2 are used for both 

batches (although in reverse order) and so the results from the two batches are dependent. 

However, the average values can be found since the total number of runs is the sum of
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the runs in the two batches and the number of effective and ineffective factors declared

significant is the sum of those in the batches. The following work is similar to that in 

WAT, the main difference being in the power of the /-tests. Also, the mistakes in WAT 

pointed out by Gurnow (1965) have been avoided.

Consider the first stage. For each batch the group-factors are run in an experiment 

and tested for significance using i-tests. For a group-factor having mean effect fi, let 7Ti(/¿) 

be the power of the /-test. Therefore, from Assumption (ii), 7Ti (x A ) is the probability 

that a group containing x effective factors is declared significant in the first stage. Now 

both experiments in the first stage involve g/2 group-factors plus a constant term and 

use 2(g/2 +  1) runs. Therefore the variance of the estimate of the main effect of each 

group-factor is cr2/(g +  2). The power of a /-test is given by a non-central /-distribution, 

and so if « i  is the size of the /-tests in the first stage then the probability that a particular 

group containing x effective factors is declared significant is given by

Tables for the non-central /-distribution include Pearson and Hartley (1954) and Lieber- 

man and Resnikoff (1957). Alternatively, (8.2) can be computed using the algorithm of 

Cooper (1968).

Let 7rj be the probability that a group-factor is declared significant. Then conditioning

(8.2)

Clearly the probability that an ineffective group-factor is declared significant is

7Tl(0) =  «1- (8.3)
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on the number of effective factors in the group and using Assumption (i) gives

7T*
1 pxqk~x-KX{x A ) (8.4)

Now consider the second stage. For each batch an experiment is run consisting of the 

factors from significant group-factors plus a constant term. Let nx and «2 be the number 

of significant group-factors found in the first and second batch respectively. Then the 

number of runs made in the second stage for the jth  batch ( j  =  1, 2) is njk +  1 (recall that 

there is no replication in the second stage experiments). Therefore the estimate of each 

factor main effect in the jth  batch will have variance a2¡{njk +  1), and from Assumption 

(ii) will have mean A for effective factors and 0 for ineffective factors. The factors in each 

batch are tested for significance using f-tests, the estimate of cr2 being s\ for factors in 

the first batch and s2 for the second (recall that s2 and s2 are the estimates of a2 from 

the first-stage experiments for the first and second batch respectively). For the j  th batch 

( j  =  1,2), let TT2(fi, rij) be the power of the f-test for a factor with mean effect /r (note that 

this power depends on rij since this determines the number of runs made in the second 

stage). Then if a2 is the size of the i-tests in the second stage, then the probability that 

an effective factor from a significant group in the jth  batch is declared significant is

. . . , / A\/rijk + 1
7T2(A , n /) =  prob t +  — ^ -------- > tg/2+1;1_a2 t ~ tg/2+1 s2 - g/2 +  1 X3/2+i

while the probability that an ineffective factor is declared significant is

^ 2( 0,  r i j )  =  a 2 .
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Having established the above properties, the performance of split-experiment factor 

screening may now be studied. Consider first the expected number of runs made, Rse say. 

In the first stage 2(g/2 +  1) runs are made for each batch, and in the second stage rijk +  1 

runs are made for the jth  batch ( j  =  1,2). Therefore

Rse = 2g +  n\k +  n^k +  6.

Now the number of significant groups in the jth  batch has the Binomial distribution

nj ~  Bin(ff/2, jt?) j  =  1,2, (8.5)

and so

Rse -  2 g +  gkitl +  6

=  2g + N7vj + 6 (using Assumption (vii)).

An upper bound and approximation may be obtained for Rse by noting that

7Ti(a;A) < 1 for x =  1 ,2 , . . . ,A; (8.6)

and so from (8.4)

7T*
1 < Ai(0) + X) ( t ) p X(ik~x

x = l  ^  '

= qka 1 + ( l - q k) using (8.3)
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Therefore,

R s e  5: 2g -\- N (cfcx 1 +  (1 — +  6

= N ^1 -  (1 -  ai)qk +  +  6

=  Rse say.

Now if A  is large enough then the inequality in (8.6) will be almost an equality, and so 

Rse provides an approximation to the expected number of runs made. An approximation 

to the optimum group sizes for split-experiment group testing may therefore be obtained 

by minimizing Rse. Allowing k to vary continuously, this is given by the solution of

-  (1 -  a ^ l o g q  -  ^  =  0. ( 8 .7)

Now when p is small,

qk «  1 -  kp

and

log q a  —p.

Substituting these into (8.7) gives

(1 -  « i ) ( l  -  kp )p - 0,

which, il p is small so that quadratic terms may be ignored, gives an approximation to the
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optimal group size, kse say, as

kA/s e  — (1 -  oq)p '

This differs from the optimal group size in unreplicated factor screening only by the “2” 

in the numerator of the square root term. Table 8.1 shows kse for various values of p with 

oq — 0.05. These group sizes do not vary much over the likely range of choices of aq.

p 0.2 0.15 0.1 0.05 0.04 0.03 0.02 0.01

ŝe 3 4 5 6 7 8 10 15

Table 8.1: Optimum group sizes for split-experiment factor screening with aq =  0.05

Consider now the number of effective factors which are correctly declared significant. 

Following the notation in WAT, let this be denoted by M r . Then

Mr  = Mr '1 + m £ } (8.8)

where (j = 1 , 2 ) is the number of effective factors from the jth  batch which are

declared significant. Now r ij is the number of group-factors from the j th batch which 

are declared significant in the first stage, and for i = 1 , 2 let rriij be the number 

of effective factors from the «th significant group in the jth  batch which are declared 

significant. Then

m r ] mlj  +  m2j +  ' ' ' +  Tnn]j O '=  1,2) (8.9)

Now

k
E imij) =  E E(rriij | «th significant group contains x effective factors)

37 = 0
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X prob(zth significant group contains x effective factors). (8.10)

Now effective factors in the second stage are declared significant with probability ^ ( A ,  r i j ) ,  

so that

E(rriij | x effective factors) =  .T7T2(A ,n j). (8.11 )

The probability that a significant group contains x effective factors is given by

prob(x effective factors | group significant)

prob(group significant | x effective factors) X prob(x effective factors)
prob(group significant)

Tt\(xA) p X q k — x

( 8.12)

So substituting (8.11) and (8.12) into (8.10) gives

E0 a) = J2  x* i(xA ) ( l )  pTqk x.
7T

1 x = 0

Therefore, using (8.9) and conditioning on r i j gives

E (M E)|n, = n) = xn^xA ) (k
x = 0

p X q k - x

and so

fl/2
E (A fj^ ) =  ^  E(M^\rij =  n) x prob(nj =  n)

n = 0
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=  ( l )  pXqk * 2(A ’ ra) )  ^ " ( 1  _  ^ i)572 n (using (8.5)).

Therefore, from (8.8), the expected number of effective factors declared significant is

£ (M h ) =  ^  £  x ^ (x A )  ( * )  f q k~x ¿ 2  U7T2(A , n) ^  < " ( 1  -  T r ^ 2̂ .  (8.13)

To obtain an approximation and lower bound to E(Mr ), note first that the power 

7ri(xA ) is the probability that a group containing x effective factors is declared significant, 

and so, since all effects are non-negative,

t t i(A ) < 7Tx(a;A) x =  l,2 ,

Substituting this into (8.13) gives

o 9/2 fq/2\
E(Mr ) > —7Ti(A)kp ^2 n7r2(A , n) ( n j 7r*n( l  -  it\)9l2~n. (8.14)

Note also that the power 7T2(A ,n ) is the probability that an effective factor from a sig-

nificant group is declared significant in the second stage where the number of runs in the 

experiment is nk +  1. Therefore, for n — 1 ,2 ,. .. ,

7r2 ( A ,n ) > t t2 ( A, 1).
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Substituting this into (8.14) gives

E (M r ) > -^7ri(A)fcp7r2(A ,l)|7ri
7T ̂  ¿ j

= Np'Ki(A)'K2(A, 1) using Assumption (vii) (8.15)

Now if both the powers in (8.15) are high and p is small, then this inequality should 

be almost an equality, and therefore (8.15) provides an approximation to the expected 

number of effective factors declared significant. Note that Np is the expected number of 

effective factors present, and therefore

~ 7r1(A)7r2(A , 1)

is a measure of the efficiency of split-experiment factor screening for detecting effective 

factors.

This conclusion is similar to that in WAT for the case of known variance, except that 

the powers are different.

A similar argument to the above may be used for the number of ineffective factors 

which are incorrectly declared significant. Again following the notation in WAT, let this 

be denoted by M j j . Then

Mv = M¡j1] + M P  (8.16)

where M jp  is the number of ineffective factors declared significant in the jth  batch. Let 

Uij be the number of ineffective factors from the Ah significant group in the jth  batch
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which are declared significant. Then

— u\j +  v,2j +  • • • +  uUjj. (8.17)

Conditioning on the number of effective factors in the ¿th significant group,

k
E(njj) = E E(uij | ¿th significant group contains x effective factors)

x = 0

X prob(?th significant group contains x effective factors). (8.18)

Now ineffective factors in the second stage are declared significant with probability a 2 so 

that

E (uij | ¿th significant group contains x effective factors) =  (k — x )a 2. ' 

Substituting this and (8.12) into (8.18) we obtain

EK j )  =  ^  -  a:)7ri (x A ) ( x )  pxqk~x-

Then from (8.17),

E(Mu^nj = n) = Y ](k  -  z ^ z A )  ( * ) f q
k

a 2
7r1 27 = 0

r*k — Z

and so from (8.5),

E (M P ) p  -  x) M x A )  ( f j  pxqk x E 71 ( 3/n2)  < * ( !  -  < ) 9/2~
1 æ=0 '  '  n =0 V /
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1  x = 0  '  '

Therefore, from (8.16), the expected number of ineffective factors incorrectly declared 

significant is

E(Mu) =  ga2 ]T (fc -  x ^ ^ x A )  pxqk~x.
x=0 '  '

8.2 Unreplicated Factor Screening

Consider the factor screening method described in WAT. The N factors are split into g 

groups of size k and the group-factors are tested in a Plackett and Burman design without 

replication. All group-factor main effects are therefore estimable, but since the design is 

saturated (i.e. the number of runs in the experiment is equal to the number of effects being 

estimated), no degrees of freedom are available to estimate a2. Similarly in the second 

stage, factors from significant groups are tested, also using an unreplicated Plackett and 

Burman design and so again leaving no degrees of freedom for error. However, methods 

for detecting significant factors in unreplicated factorials are available, see for example 

Daniel (1959), Zahn (1975) and Box and Meyer (1986). By applying such methods, factor 

screening without replication as in WAT could be used even when the error variance is 

unknown. The particular method to be considered here is due to Lentil (1989). It is 

suitable since it is simple and requires neither calculation of special confidence limits nor 

prior information or upperbound to the number of effective factors (although it is only 

powerful if the proportion of these is small). A summary of this method will now be given.

Consider an unreplicated factorial experiment involving m factors of which only a small 

number are expected to be effective. Denote the factor effects by «q, k 2, . . . ,  Km, and let
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ci,C2, . . . , c m be the corresponding estimates. Then the ct will be independent normal 

variables with means k ,- and with equal variances, r 2 say. Let

s0 =  1.5 X median|cj|.

Then r may be estimated by the pseudo random error (PSE):

PSE — 1.5 X median) |cj| : Cj < 2.5sq )

Lenth claims that, under the assumption of effect sparsity, the distribution of PSE  is 

well approximated by a chi-square distribution with m/ 3 degrees of freedom, and so the 

significance of the effects may be tested using f-tests (the marginal dependence between 

PSE  and c8- (i =  1 ,2 , . . . ,  m) should not be too great provided that m is not too small).

The justification of this method is that if all were zero then the Cj’s would be 

independent realizations of an 7V(0, r 2) random variable C. Therefore so would be a 

consistent estimate of 1.5 X med|C| % l.Olr. Further, since prob(|C| > 2.5r) % .01, PSE  

would be roughly consistent for 1.5 times the ,495th quantile of |Cj which is approximately 

r. Now if there is a small number of effective factors then PSE  should be based on all 

of the ineffective factors and possibly a few of the smaller effective ones. Therefore PSE  

overestimates r , but if the proportion of effective factors is small then the bias should not 

be great. In fact, in a monte-carlo study Lenth showed that PSE  provides a reasonable 

estimate if the proportion of effective factors is less than 0.3 and m is greater than 7.

It is therefore proposed that the factor screening method in WAT as described at the 

beginning of this section be followed. At the end of each stage group-factors and factors
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are tested for significance by i-tests using PSE  as the estimator of a in the denominator of 

the test statistic. In the first stage the t-tests will have g/3 degrees of freedom, while those 

in the second stage will have nk/3 where n is the number of groups declared significant in 

the first stage.

Since ¿-tests are used in this method, the analysis in WAT is appropriate (with degrees 

of freedom as above). All the results from WAT (noting the corrections of [12]) will hold 

approximately, the accuracy being determined by the closeness of PSE  to a chi-square 

distribution. In particular, it is seen that the expected number of runs is approximately 

minimized by using groups of size kp$E where

ipse = l/(T^T5i

Table 8.2 shows kpsE for various values of p with aq =  0.05. These group sizes do not 

vary much over the likely range of choices of aq.

p 0.2 0.15 0.1 0.05 0.04 0.03 0.02 0.01
kpsE 2 3 3 5 5 6 7 10

Table 8.2: Optimum group sizes for unreplicated factor screening using PSE  with aq = 
0.05

If considering using this method it is however important to note that the requirement 

that the proportion of effective factors should be less than 0.3 (as discussed earlier) is 

in fact stricter than it appears. This is because in the first stage PSE  is calculated 

for group-factors, which have a higher probability of being effective than the individual 

factors. Assuming that the above optimal group size kpsE is used, the probability of a
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group-factor being effective, p* say, is

p *  — l  _  g ( ( i - « i ) p )  0 5 _

Supposing that ol\ < 0.1, then p* will be less than 0.3 if p < 0.1. It is therefore suggested 

that this method will only be effective if p < 0.1. The simulation study in the following 

section confirms this.

8.3 Performance of Methods

This section discusses the likely properties of the two proposed methods under varying 

parameter values and presents the results of a simulation study which provides interesting 

insight and aids comparison of the methods.

First note that, whereas in group testing without errors there is a single main objective 

(to minimize the number of runs), in the presence of errors there are several objectives, 

mainly to minimize runs, to maximize the number of effective factors detected and to 

minimize the number of ineffective factors detected. These are of course conflicting re-

quirements since an increase in the number of runs gives more accurate estimates and 

improves the power of the ¿-tests. Hence one method may be considered better than an-

other only if it gives better results for all three objectives. More generally the practical 

implications of the experiment will determine which of the three objectives are the most 

important.

Let us now intuitively examine the likely effects of varying parameter values for split- 

experiment factor screening. Consider first changes in the size of effective factors, A.
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Clearly an increase in A will lead to better detection of effective factors. A small increase 

in the expected number of runs would also be expected since effective groups are less 

likely to be missed in the first stage and hence more likely to be tested in the second. 

This increase in runs is not however to be considered as undesirable since any savings in 

this sense are due only to mistakes in the first stage. The number of ineffective factors 

declared significant should not be directly affected by an increase in A. Now consider the 

effects of changes in p, the probability of a factor being effective. Clearly as p gets smaller 

there will be fewer effective factors, thus leading to a reduction in the number of runs. 

However, this decrease in runs will reduce the power of ¿-tests and thus adversely affect 

the detection of effective factors. So a reduction in p leads to savings in runs but at the 

expense of power.

For unreplicated factor screening using PSE  to estimate a, the effects of varying A 

are not so clear. This is because changes in A  are likely to affect the performance of PSE  

as an estimator of a. This conflicts with the fact that larger effects are better detected 

for any fixed estimate of a. The effects of varying p discussed above for split-experiment 

factor screening are also relevant here, but made more complex by the fact that PSE  

becomes a more accurate estimator of a as p decreases, and as mentioned earlier, is likely 

to become poor for p greater than 0.1 .

Tables 8.3 and 8.4 present the results of a simulation study of factor screening using 

the proposed methods. The simulated experiments involved approximately 100 factors 

(the exact number of factors was determined by the grouping scheme and was chosen to 

allow equal-sized groups and batches), with test sizes a 1 =  o - = 0.05 and use the optimum 

group sizes given in Tables 8.1 and 8.2. Each simulation involved 10,000 runs. This gave
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estimates for the expected number of runs with a standard error of about 1% for split- 

experiment factor screening and slightly less for the unreplicated case. The tables give a 

summary of the results for various values of A  and p. All of the intuitive comments made 

above are reflected in these results.

A  =  0.75<7 A =  <7 A =  2a > II CO

R 1.237 1.237 1.238 1.240
p =  0.2 M r 0.975 0.998 1.000 1.000

M t r 0.019 0.020 0.019 0.019
R 0.884 0.897 0.899 0.899

p =  0.1 M r 0.914 0.987 0.998 1.000
Mu 0.018 0.018 0.018 0.019
R 0.676 0.696 0.699 0.696

p =  0.05 M r 0.792 0.938 0.973 1.000
Mu 0.012 0.013 0.013 0.013
R 0.323 0.350 0.382 0.382

p =  0.01 M r 0.506 0.714 0.919 1.000
Mu 0.006 0.007 0.008 0.009

R =  Average number of runs per factor
M r  =  Average proportion of effective factors detected
Mu — Average proportion of ineffective factors detected

Table 8.3: Results of simulation study of split-experiment factor screening.
Number of factors «  100, cti =  «2 =  0.05.

The tables show that both methods can lead to detection of effective factors using 

a relatively small number of runs. As was expected, unreplicated factor screening using 

PSE  performs poorly when p is greater than about 0.1. For smaller values of p however it 

performs well, detecting factors with effects larger than two standard deviations very effi-

ciently and using very few runs. Split-experiment factor screening, while using more runs 

than the unreplicated case, is generally better at detecting effective factors, particularly 

for larger p and smaller A.

We would perhaps expect split-experiment factor screening to be uniformly better at 

detecting effective factors than the unreplicated method since it uses exact f-tests and more
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A =  0.75a A =  a b<NII<1 bCOII<1

R 0.875 0.892 0.897 0.899
p =  0.2 M r 0.074 0.179 0.229 0.223

Mu 5e-05 4e-05 0.003 0.003
R 0.624 0.647 0.652 0.652

p =  0.1 M r 0.713 0.945 0.993 0.991
Mu 0.002 0.005 0.008 0.008
R 0.403 0.450 0.467 0.469

p =  0.05 M r 0.586 0.894 0.989 0.990
M u 0.004 0.006 0.007 0.007
R 0.171 0.195 0.231 0.232

p =  0.01 M r 0.289 0.553 0.988 0.993
Mu 0.002 0.002 0.003 0.003

R =  Average number of runs per factor
M r  =  Average proportion of effective factors detected
Mu —  Average proportion of ineffective factors detected

Table 8.4: Results of simulation study of factor screening using PSE  to estimate a. 
Number of factors ss 100, a\ = a2 =  0.05.

runs. This is not the case however, when p is small the unreplicated method is better at 

detecting effects of 2a. This is explained by the grouping procedure. For example, when 

p is 0.01, split-experiment factor screening partitions the population into two batches of 

three groups. Since first stage tests are replicated twice for this method, each group- 

factor is therefore involved in six runs. In the unreplicated case however, the population 

is partitioned into ten groups and so each group is involved in ten runs. These extra runs 

lead to better detection of effective groups, despite using only an approximation to the 

i-test. This advantage disappears however as A increases and the power of the true t-test 

improves.

For both methods the proportion of ineffective factors incorrectly detected was very 

small (2% in the worst case). The unreplicated method in particular made very few errors 

of this type.
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Part V

ROBUST CIRCUIT DESIGN

AN EXAMPLE
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Chapter 9

An Application of Group Testing 

to Robust Circuit Design

Within the Engineering Design Centre at City University a research project is underway 

concerned with the design of electronic circuits. This is a collaborative project with Mentor 

Graphics UK Ltd, the aim of which is to apply robust engineering design (RED) principles 

to circuit design by developing statistical modules which can be directly bolted on to the 

design software, thus allowing the designer to make use of the innovations arising in RED 

within the same menu driven environment. The software system used is the Mentor 

Graphics simulator Accusim. The statistical modules implemented include experimental 

design, a regression package and factor plots. These modules allow the designer to model 

the relationship between the inputs and outputs of a circuit, and thus perform optimization 

and sensitivity analysis more efficiently than by using traditional Monte-Carlo analysis, 

which can be prohibitively expensive in computer time for large problems. For further 

reading on this project see [1], [2], [3] and [46].
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This chapter describes an application of group testing to circuit tolerance design. In 

this problem it is assumed that the topology of the circuit and nominal values for each 

component in the circuit have already been chosen by the designer. The aim is to reduce 

the variation in the outputs of the circuit by reducing the variation in the inputs. This can 

be done by using more expensive components which have tighter tolerances. By performing 

statistical experiments, the circuit may be modeled and the model then used to choose 

which components to upgrade. Quadratic effects and two-way interactions are common 

and so the regression package uses 3k designs, which allow up to 40 variables, and Latin 

Hypercube Sampling (L.H.S.) which allows any number of variables and uses 21V+10 tests 

where N  is the number of variables. However, the simulation time is a rapidly increasing 

function of circuit size and so experiments on large circuits are computationally expensive. 

Moreover, it often turns out that the outputs of a circuit are reasonably robust to variation 

in most of the input parameters. In such cases group testing may be useful to screen out 

the components to which the outputs are most sensitive. Further experimentation may 

then be concentrated on these important inputs.

From a group testing point of view there are two main advantages of using electronic 

circuits as a test bed for search algorithms. The first is that the relationship between the 

inputs and outputs of a circuit is generally very complex and many of the assumptions 

required for group testing do not hold, e.g. interactions are present, effects are non-linear, 

and the likely directions of the effects of components are unknown. Electronic circuits 

therefore allow an investigation of the performance of group testing algorithms with non-

standard problems. The second advantage is that the circuit to be considered has been 

previously investigated in statistically designed experiments and the relationship between
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the inputs and outputs previously modeled. Although no information from these analyses 

was used in the group testing experiments, the accuracy of the results from group testing 

may be compared to those from larger experiments.

9.1 The Circuit

The circuit used in this example, shown in Figure 9.1, controls the joystick on an electric 

wheelchair. The circuit consists of 44 components and 7 outputs of which 3 were of interest 

to the designer, namely X2-IC3, X1-IC4 and X2-IC4 which correspond to the left and right 

coordinates of the position of the joystick, and a test signal. Let the components be labeled 

C i, C2, . . . ,  C44. It is known from previous analysis of the circuit that two components, C43 

and C44, are of particular importance. To illustrate this a main effects model was fitted 

for each output of interest with each factor (component) taking two levels. These levels 

were taken to be the nominal value of the component (as specified by the designer), and 

the nominal value plus 20%. Figure 9.2 shows the estimates of the main effects for each 

component from the fitted models. The plots show that only five components have a non-

zero effect on any of the outputs. As already mentioned, the components which have the 

largest effects are C43 and C44 which influence outputs X2-IC4 and X2-IC3 respectively. 

Components Ci and C3 have a non-zero, though smaller influence on outputs X2-IC3 

and X2-IC4, and components C2 and C3 influence output X1-IC4. Two other important 

features o f the circuit are that the effects of important factors do not all have the same 

sign (as can be seen in Figure 9.2), and interactions are present.
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Figure 9.1: Electronic circuit for controlling the joystick on an electric wheelchair
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Figure 9.2 (a). Main effect plots of components for output X2-IC3

component

Figure 9.2 (b). Main effect plots of components for output X1-IC4

component

Figure 9.2 (c). Main effect plots of components for output X2-IC4
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9.2 Group Testing Experiment

The circuit shown in Figure 9.1 was used as a test-bed for group testing. Two-stage pooling 

algorithms were used which involved partitioning the components into group-factors taking 

two levels, a lower level when all components in the group were assigned their nominal 

values, and an upper level when all components in the group were assigned their nominal 

level plus 20%. The main effects of the group-factors were estimated for each output, and 

the individual components within groups having a non-zero effect for at least one output 

were tested in the second stage.

Since no prior information was assumed concerning the proportion of important com-

ponents, group testing experiments were performed using various values for the group size 

k. The groups were formed consecutively in such a way that k varied from group to group 

by at most one. So for example, with k — 3 the circuit was partioned into 15 groups, 

G\, G2, . . . ,  G 15 say, where

G\

G2

G \ 4 =  (C40 , C41, C42)

G\5 — {C43,C44).

The plots in Figures 9.3-9 .6 show the estimates of the main effects of the group-factors 

for each output and for various values of k. It is seen that, in each case, one group-factor 

was found to be important for outputs X2-IC3 and X2-IC4, but none for output X1-IC4.

-  (Cb, C'2 , C 3 )

= (C4,c5,c6)
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The components within the effective group were therefore tested in a second stage and 

Figure 9.2 shows that these tests revealed components C43 and C44 to be important for 

outputs X2-IC4 and X2-IC3 respectively.

Note however that none of the group-factors containing the components C\, C2 and C3 

were found to be important in the first stage and so these components were not detected 

by group testing. It would seem, from Figure 9.2, that for the outputs X2-IC3 and X2-IC4 

this was due to cancellation of equal and opposite effects. For output X1-IC4 however, 

the effects of components C2 and C3 are not of the same magnitude and so it would seem 

that an interaction was present which cancelled the effects of C2 and C3 when they were 

varied together to their upper level.

Table 9.1 shows the number of tests used by the two-stage pooling algorithms with 

groups of size k.

k 3 5 7 9
Number of tests 18 14 13 14

Table 9.1: Number of tests using two-stage pooling algorithm

9.3 Conclusion

The example given in this chapter shows the potential usefulness of group testing while 

also illustrating the type of errors which may arise. The two most important components 

were detected using relatively few tests. In practice, further experimentation might be 

considered for these components in order to model them in greater detail. Table 9.1 shows 

that even with this further experimentation, group testing methods can lead to experi-

mentation using much fewer runs than the methods currently being used. It should be
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noted however that these savings in runs are a result of the small proportion of important 

components in the circuit. Group testing does not therefore offer an alternative to the 3  ̂

or L.H.S. designs, but rather a preliminary method which in certain circumstances may be 

used to screen out the important components and therefore make further experimentation 

more efficient. It was also seen however that the presence of interactions and components 

having equal and opposite effects can lead to failure to detect non-zero effects, and care 

must therefore be taken when considering using these methods.
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Figure 9.3 (a). Main effect plots of group-factors for output X2-IC3 with k=3

group-factor
Figure 9.3 (b). Main effect plots of group-factors for output X1-IC4 with k=3

group-factor
Figure 9.3 (c). Main effect plots of group-factors for output X2-IC4 with k=3

group-factor
Figure 9.4 (a). Main effect plots of group-factors for output X2-IC3 with k=5

group-factor
Figure 9.4 (b). Main effect plots of group-factors for output X1-IC4 with k=5

group-factor
Figure 9.4 (c). Main effect plots of group-factors for output X2-IC4 with k=5
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Figure 9.5 (c). Main effect plots of group-factors for output X2-IC4 with k=7
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